
Bob Coecke
Luke Ong
Prakash Panangaden (Eds.)

Computation, Logic,
Games, and
Quantum Foundations
The Many Facets of Samson Abramsky

Fe
st

sc
hr

ift
LN

CS
 7

86
0

Essays Dedicated to Samson Abramsky
on the Occasion of His 60th Birthday

 123

Lecture Notes in Computer Science 7860
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Bob Coecke Luke Ong
Prakash Panangaden (Eds.)

Computation, Logic,
Games, and
Quantum Foundations

The Many Facets of Samson Abramsky

Essays Dedicated to Samson Abramsky
on the Occasion of His 60th Birthday

13

Volume Editors

Bob Coecke
Luke Ong
University of Oxford, Department of Computer Science
Parks Road, Wolfson Building, Oxford OX1 3QD, UK
E-mail: {bob.coecke, luke.ong}@cs.ox.ac.uk

Prakash Panangaden
McGill University, Department of Computer Science
3480 Rue University, Montréal, QC, H3A 0E9, Canada
E-mail: prakash@cs.mcgill.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38163-8 e-ISBN 978-3-642-38164-5
DOI 10.1007/978-3-642-38164-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013936943

CR Subject Classification (1998): F.3, F.1, F.4, D.2.4, D.2-3, I.2.2-4, D.1, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Samson Abramsky

Preface

When one encounters Samson Abramsky it is hard to believe that he is 60, but
when one attempts to survey his work it is equally hard to believe that he is only
60! The three editors of this volume have known Samson for a long time, the
last two since the mid-1980s and the first since the early years of this century.
In that period Samson’s interests have undergone a number of striking changes.
The papers in this volume reflect this variety and give some indication of the
depth of his contributions in these areas.

His first publication in 1982 was on programming distributed systems; a sur-
prise perhaps for all those who know him as an outstanding theoretician but
a good indication of why his theoretical work has been grounded in computa-
tional practice. The third editor was struggling to understand the semantics of
nondeterministic dataflow networks in 1983 when he encountered a paper called
“Semantic Foundations of Applicative Multiprogramming.” His reaction at the
time was, “this guy thinks he has solved all the hard problems in this area,” but
a closer look led him to exclaim, “he has solved all the hard problems!” This
paper was an inspiration to him and led to his subsequent work on concurrency.
They met shortly thereafter and have enjoyed a fruitful scientific relationship as
well as a warm friendship ever since.

The second editor was Samson Abramsky’s first PhD student and wrote a
thesis on the semantics of the lazy λ-calculus. This led to an interest in the full
abstraction problem, which they solved in spectacular fashion in two independent
but closely related approaches based on games. Subsequently Samson and his
students studied many different language features and showed how the games
paradigm allows a unified view of many programming language features.

The first editor, while still in the process of making some suicidal career
moves within the then hibernating field of quantum foundations, came across
Samson’s work with Vickers on quantales as algebras of processes in the late
1990s. He was saved by Samson from the academic gutter in 2001 (on the advice
of the third editor!) and began his collaboration with Samson on categorical
quantum mechanics. This began with a famous paper in the Proceedings of IEEE
Symposium on Logic in Computer Science 2004, the first on quantum computing
ever accepted to LiCS, and this activity has grown into a large group at Oxford
with close to 40 members today. It is fair to say that the categorical approach
and the still growing group have been instrumental both in establishing quantum
computing as a thriving field within the computer science community, as well
as in the revival of the field of quantum foundations as a whole, an area in
which Samson has been primarily involved in the last few years. It has even had
successes in database analysis, computational linguistics, and relativistic aspects
of quantum mechanics.

VIII Preface

Samson’s work in the 1980s was largely in the area of programming language
semantics. He made key contributions to concurrency theory, domain theory,
and abstract interpretation. Perhaps his most famous paper from this era was
“Domain Theory in Logical Form,” which connected many different threads in
semantics: modal logic, domain theory, Stone-type duality.

In the early 1990s he began to think deeply about linear logic, which had been
introduced by Girard in 1987. He produced his influential unpublished work on
linear realizability algebra, which allowed one to think of linear logic as a program-
ming language. In 1991 Radha Jagadeesan completed his PhD under the supervi-
sion of the third editor and went on to be Samson’s post-doc at Imperial College
and joined in the linear logic enterprise. They produced another classic influen-
tial paper, “Games and Full Completeness for Multiplicative Linear Logic,” which
built on an earlier paper “New Foundations for the Geometry of Interaction” in the
Proceedings of IEEE Symposium on Logic in Computer Science 1992.

The game approach led to the resolution of the long-standing PCF full ab-
straction problem by Abramsky, Jagadeesan, and Malacaria, and by Hyland
and Ong, and by Nickau. These papers laid the foundations of game semantics
and have led to several PhD theses and a revolution in the understanding of
programming language semantics.

In 2004, Samson was elected a Fellow of the Royal Society. In 2007 he received
the LiCS “Test ofTime” award for his paper on “Domain Theory in Logical Form.”

The papers in this volume represent his manifold contributions to semantics,
logic, games, and quantum mechanics. The papers of Hoare, Plotkin, Mislove,
Jung, Honsell and Lenisa, Martin, and Vickers represent the programming lan-
guages and domain theory phase of Samson’s interests. His interest in category
theory is represented by the papers of Fiore and Devesas Campos, Melies, and
Pavlovic. His interest in games both for logic and for computation is well rep-
resented by the papers of Hankin and Malacaria, van Benthem, Clairambault,
Gutierrez and Winskel, Murawski and Tzevelekos, Väänänen, and Ghica who
even applies these ideas to hardware design.

The remaining papers are all from the “quantum phase” of Samson’s interests
and include papers from physicists (Hardy), former physicists (Panangaden),
economists (Brandenburger), category theorists (Malherbe, Scott and Selinger,
and Yanofsky), computer scientists (Nagarajan and Gay) and logicians (Keisler),
as well as current and former members of the Oxford group (Coecke, Kissinger
and Heunen, and Hines). We hope that Samson enjoys reading these papers as
much as we enjoyed putting this collection together.

March 2013 Bob Coecke
Luke Ong

Prakash Panangaden

Organization

Program Committee

Bob Coecke University of Oxford, UK
Ross Duncan Université Libre Bruxelles, Belgium
Dan Ghica University of Birmingham, UK
Chris Heunen University of Oxford, UK
Peter Hines University of York, UK
Radha Jagadeesan DePaul University, USA
Achim Jung University of Birmingham, UK
Aleks Kissinger University of Oxford, UK
Luke Ong University of Oxford, UK
Prakash Panangaden McGill University, Canada
Noson Yanofsky Brooklyn College, USA

Samson Abramsky’s Doctoral Students

Former Students and Their Theses

– Luke Ong: The Lazy Lambda Calculus: an Investigation into the Foundations
of Functional Programming, Imperial College London, 1988.

– David Fuller: Partial Evaluation and Logic Programming, Imperial College
London, 1989.

– Bent Thomsen: Calculi for Higher Order Communicating Systems, Imperial
College London, 1991.

– Ian Mackie: The Geometry of Implementation: Applications of the Geometry
of Interaction to Language Implementation, Imperial College London, 1994.

– Simon Gay: Linear Types for Communicating Processes, Imperial College
London, 1995.

– Guy McCusker: Games and Full Abstraction for a Functional Metalanguage
with Recursive Types, Imperial College London, 1996.

– Rajagopal Nagarajan: Typed Concurrent Programs: Specification & Verifi-
cation, Imperial College London, 1998.

– Jim Laird: A Semantic Analysis of Control, University of Edinburgh, 1999.
– José Esṕırito Santo: Conservative Extensions of the Lambda-Calculus for the

Computational Interpretation of Sequent Calculus, University of Edinburgh,
2002.

– Juliusz Chroboczek: Game Semantics and Subtyping, University of Edin-
burgh, 2003.

– Jan Jurjens: Principles for Secure Systems Design, University of Edinburgh,
2004.

– Ross Duncan: Types for Quantum Computing, University of Oxford, 2007.
– Nikos Tzevelekos: Nominal Game Semantics, University of Oxford, 2008.
– William Edwards: Non-locality in Categorical Quantum Mechanics, Univer-

sity of Oxford, 2009.
– Jacob Biamonte: Categorical Models of Quantum Information in Many-Body

Systems, University of Oxford, 2010.
– Alexander Kissinger: Pictures of Processes: Automated Graph Rewriting for

Monoidal Categories and Applications to Quantum Computing, University
of Oxford, 2011.

– Andrei Akhvlediani: Relating Types in Categorical Universal Algebra, Uni-
versity of Oxford, 2012.

XII Samson Abramsky’s Doctoral Students

Current Students at the University of Oxford

– Philip Atzemoglou: Higher-Order Semantics for Quantum Programming Lan-
guages with Classical Control.

– Miriam Backens: Classical vs. Quantum in Graphical Models.
– Carmen Constantin: Aspects of the Topos Approach to Quantum Theory.
– Abhishek Dasgupta: Frameworks for Parallelising Machine Learning Using

Generic Inference.
– Nadish de Silva: Geometric Aspects of Quantum Phase Space.
– Raymond Lal: Causal Structure in Categorical Quantum Mechanics.
– Shane Mansfield: Approaches to Non-locality and Contextuality in Possibilis-

tic Theories, and Extensions to Probabilistic Theories.
– Daniel Marsden: Parameterized Logics and Applications to Quantum Sys-

tems.
– Yoshihiro Maruyama: Duality, Categorical Logic, and Quantum Symmetry .
– Alexander Merry: Foundations for an Interactive Theorem Prover for Graph-

ical Calculi.
– Hugo Nava Kopp: Abstract Approach to Entropy.
– Johan Paulsson: Between Probabilities and Categories; A Diagrammatic Ap-

proach to Foundations of Quantum Theory.
– Roman Priebe: The Regular Histories Formulation of Quantum Theory.
– Rui Soares Barbosa: Contextuality in Quantum Mechanics.
– Colin Stephen: Categories for Tropical Quantum Computing.
– Norihiro Yamada: Constructive Mathematics and Proofs as Programs.
– Vladimir Zamdzhiev: Graph Grammars and Their Applications to Quantum

Computing.

Tabula Gratulatori

Tony Hoare: Best wishes for your birthday and for long continuation of your
inspiring research career: from your precursor at Oxford, Tony.

Alexandru Baltag
Jon Barrett
Johan van Benthem
Richard Blute
Richard Bornat
Adam Brandenburger
Stephen Brookes
Peter Buneman
Bob Coecke
Robert Constable
Ross Duncan
Martin Escardo
Marcelo Fiore
Simon Gay
Dan Ghica
Jeremy Gibbons
Georg Gottlob
Chris Hankin
Lucien Hardy
Chris Heunen
Jane Hillston
Peter Hines
Furio Honsell

Ian Horrocks
Martin Hyland
Radha Jagadeesan
Achim Jung
Elham Kashefi
Juliette Kennedy
Aleks Kissinger
Dexter Kozen
Daniel Kroening
Marta Kwiatkowska
Marina Lenisa
Paul Levy
Ian Mackie
Pasquale Malacaria
Keye Martin
Paul-Andre Mellies
Albert Meyer
Michael Mislove
John Mitchell
Andrzej Murawski
Rajagopal

Nagarajan
Peter O’Hearn

Luke Ong
Joel Ouaknine
Prakash Panangaden
Dusko Pavlovic
Gordon Plotkin
John Reynolds
Bill Roscoe
Mehrnoosh Sadrzadeh
Dana Scott
Philip Scott
Robert Seely
Peter Selinger
Alex Simpson
Sonja Smets
Nikos Tzevelekos
Jouko Vannanen
Jamie Vicary
Glynn Winskel
Ben Worrell
Noson Yanofsky
Mingsheng Ying

Samson and His Research Group

XVI Samson and His Research Group

Samson and His Friends

XVIII Samson and His Friends

Table of Contents

Use of a Canonical Hidden-Variable Space in Quantum Mechanics 1
Adam Brandenburger and H. Jerome Keisler

Imperfect Information in Logic and Concurrent Games 7
Pierre Clairambault, Julian Gutierrez, and Glynn Winskel

Compositional Quantum Logic . 21
Bob Coecke, Chris Heunen, and Aleks Kissinger

The Algebra of Directed Acyclic Graphs . 37
Marcelo Fiore and Marco Devesas Campos

Diagrammatic Reasoning for Delay-Insensitive Asynchronous
Circuits . 52

Dan R. Ghica

Payoffs, Intensionality and Abstraction in Games . 69
Chris Hankin and Pasquale Malacaria

On the Theory of Composition in Physics . 83
Lucien Hardy

On the Functor �2 . 107
Chris Heunen

Quantum Speedup and Categorical Distributivity . 122
Peter Hines

Unifying Semantics for Concurrent Programming . 139
Tony Hoare

Unfixing the Fixpoint: The Theories of the λY -Calculus 150
Furio Honsell and Marina Lenisa

Continuous Domain Theory in Logical Form . 166
Achim Jung

Presheaf Models of Quantum Computation: An Outline 178
Octavio Malherbe, Philip Scott, and Peter Selinger

Nothing Can Be Fixed . 195
Keye Martin

XX Table of Contents

Dialogue Categories and Frobenius Monoids . 197
Paul-André Melliès

Anatomy of a Domain of Continuous Random Variables II 225
Michael Mislove

Towards Nominal Abramsky . 246
Andrzej S. Murawski and Nikos Tzevelekos

Techniques for Formal Modelling and Analysis of Quantum Systems . . . 264
Simon J. Gay and Rajagopal Nagarajan

Quantum Field Theory for Legspinners . 277
Prakash Panangaden

Bicompletions of Distance Matrices . 291
Dusko Pavlovic

Partial Recursive Functions and Finality . 311
Gordon Plotkin

Breaking the Atom with Samson . 327
Jouko Väänänen

Reasoning about Strategies . 336
Johan van Benthem

Domain Theory in Topical Form . 348
Steve Vickers

Kolmogorov Complexity of Categories . 350
Noson S. Yanofsky

Author Index . 363

On the Functor �2 .
Chris Heunen

E1

Erratum

Use of a Canonical Hidden-Variable Space

in Quantum Mechanics�

Adam Brandenburger1 and H. Jerome Keisler2

1 NYU Stern School of Business, New York University, New York, NY 10012
adam.brandenburger@stern.nyu.edu, www.stern.nyu.edu/~abranden

2 Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706
keisler@math.wisc.edu, www.math.wisc.edu/~keisler

Abstract. In Brandenburger and Keisler ([2012b]) we showed that, pro-
vided only that the measurement and outcome spaces in an experimen-
tal system are measure-theoretically separable, then there is a canonical
hidden-variable space, namely the unit interval equipped with Lebesgue
measure. Here, we use this result to establish a general relationship be-
tween two kinds of conditions on correlations in quantum systems: Bell
locality ([1964]) and λ-independence on the one hand, and no signaling
(Ghirardi, Rimini, and Weber ([1980]), Jordan ([1983])) on the other
hand.

“I rose the next morning, with Objective-Subjective and Subjective-Objective
inextricably entangled together in my mind”1

1 Introduction

Among the most striking properties of quantum systems is that of entangle-
ment — i.e., stronger-than-classical correlations — between particles that may
be situated a large distance apart from each other. Bell ([1964]) famously proved
that these correlations are indeed stronger-than-classical, but left open the ques-
tion of just how strong they can be. A natural candidate for the answer to this
question is that the correlations can be arbitrarily strong, provided they do
not violate relativistic causality. Popescu and Rohrlich ([1994]) showed that this
is false. There are correlations that respect relativistic causality and yet are
stronger than can arise in any quantum system — they are superquantum.

The formal statements of these propositions rely on giving mathematical con-
tent to the concepts of classicality and relativistic causality. The first is captured
via the condition of Bell locality ([1964]) combined with λ-independence,

� This chapter was prepared for the symposium in honor of the 60th birthday of Sam-
son Abramsky. Work with Samson Abramsky, Lucy Brandenburger, Andrei Sav-
ochkin, and Noson Yanofsky was an important input into the current work. The
authors are grateful to two referees and the volume editor for valuable feedback, and
to the NYU Stern School of Business for financial support.

1 The Moonstone, by Wilkie Collins, 1868.

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 1–6, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.stern.nyu.edu/~abranden
www.math.wisc.edu/~keisler

2 A. Brandenburger and H.J. Keisler

while the second is captured via the condition of no signaling (Ghirardi, Rim-
ini, and Weber ([1980]), Jordan ([1983])). In these terms, quantum correlations
are a strict superset of correlations satisfying locality and λ-independence, and
are a strict subset of correlations satisfying no signaling.

In particular, then, we know that the conjunction of locality and λ-
independence is a strictly stronger condition on correlations than is no signal-
ing. But, can we say more about the relationship? Locality itself is known to
be equivalent to the conjunction of two conditions, namely parameter inde-
pendence and outcome independence (Jarrett ([1984]), Shimony ([1986])).
In this chapter we give a result that relates no signaling to the conjunction of
parameter independence and λ-independence.

Our result relates to work being done by the first author with Samson Abram-
sky and Andrei Savochkin, the purpose of which is to provide a justification for
the no-signaling condition that does not involve an appeal to a different branch of
physics (special relativity). The present result is technical in nature. It extends
a result from Brandenburger and Yanofsky ([2008]), which is used in Abram-
sky, Brandenburger, and Savochkin ([2013]), from finite to infinite measurement
spaces. It also relates to recent work by Colbeck and Renner ([2011]), ([2012])
on the issue of whether a subjective (or epistemic) vs. objective (or ontic) view
of quantum states is tenable; see, especially p.4 in their 2011 paper.

2 Preliminaries

Alice has a space of possible measurements, which is a measurable space (Ya,Ya),
and a space of possible outcomes, which is a finite setXa equipped with its power
set, denoted Xa. Likewise, Bob has a space of possible measurements, which is
a measurable space (Yb,Yb), and a space of possible outcomes, which is a finite
set Xb equipped with its power set, denoted Xb. There is also a hidden-variable
space, which is an unspecified measurable space (Λ,L). We restrict attention to
bipartite systems, but our result extends to multipartite systems. Write

(X,X) = (Xa,Xa)⊗ (Xb,Xb), (1)

(Y,Y) = (Ya,Ya)⊗ (Yb,Yb). (2)

Definition 1. An empirical model is a probability measure e on (X,X) ⊗
(Y,Y).

Definition 2. A hidden-variable model is a probability measure p on (X,X)⊗
(Y,Y)⊗ (Λ,L).

Definition 3. We say that a hidden-variable model p realizes an empirical
model e if e = margX×Y p. Two hidden-variable models, possibly with different
hidden-variable spaces, are (realization-) equivalent if they realize the same
empirical model.

Use of a Canonical Hidden-Variable Space in Quantum Mechanics 3

All definitions and notation parallel those in Section 3 of our 2012a paper. The
reader should consult that paper for details and, in particular, for the notation
for conditional probability, the definition of the extension of a probability
measure, and the definition of the fiber product p ⊗Z q of two probability
measures p and q over Z.

The key technique we use in proving our main result in the next section is the
replacement of an arbitrary hidden-variable model with one where the hidden-
variable space (Λ,L) is the unit interval with the Borel subsets and margΛp is
Lebesgue measure. Theorem 5.1 in our 2012b paper shows if the measurement
and outcome spaces are countably generated, then this can always be done — in
such a way that the two hidden-variable models are realization-equivalent and
that various properties (parameter independence and λ-independence included)
satisfied by the first model are again satisfied by the second model.

The next two definitions are taken from Section 4 of our 2012a paper.

Definition 4. The hidden-variable model p satisfies parameter independence
if for every xa ∈ Xa and xb ∈ Xb we have

p[xa||Y ⊗ L] = p[xa||Ya ⊗ L], p[xb||Y ⊗ L] = p[xb||Yb ⊗ L]. (3)

In words, the probability of a particular outcome for Alice, if conditioned on
Alice’s choice of measurement and the value of the hidden variable, does not
depend on Bob’s choice of measurement; and vice versa, with Alice and Bob
interchanged.

Definition 5. The hidden-variable model p satisfies λ-independence if for ev-
ery event L ∈ L,

p[L||Y]y = p(L). (4)

This is an independence requirement between the hidden variable on the one
hand, and the measurements chosen by Alice and Bob on the other hand. What-
ever process determines the value of the hidden variable, this process does not
influence the measurements Alice and Bob choose.

Next is the property of empirical models which we study.

Definition 6. An empirical model e satisfies no signaling if for every xa ∈ Xa

and xb ∈ Xb we have

e[xa||Y] = e[xa||Ya], e[xb||Y] = e[xb||Yb]. (5)

In words, the probability of a particular outcome for Alice, if conditioned on
Alice’s choice of measurement, does not depend on Bob’s choice of measurement;
and vice versa, with Alice and Bob interchanged.

We will make use of the following notation:

ea = margXa×Ya
e, eb = margXb×Yb

e, (6)

s = margY e, (7)

4 A. Brandenburger and H.J. Keisler

pa = margXa×Y×Λp, pb = margXb×Y×Λp, (8)

qa = margXa×Ya×Λp, qb = margXb×Yb×Λp, (9)

r = margY×Λp. (10)

Lemma 1. An empirical model e satisfies no signaling if and only if e is a
common extension of the fiber products ea ⊗Ya s and eb ⊗Yb

s.

Proof. By Lemma 3.6 in our 2012a paper.

3 The Result

Theorem 1. Assume that the σ-algebra Y is countably generated. Then an em-
pirical model e satisfies no signaling if and only if there is a hidden-variable model
p which realizes e and satisfies parameter independence and λ-independence.

Proof. First suppose e satisfies no signaling. We build the (trivial) hidden-
variable model where Λ is a singleton. It is immediate that this model realizes e
and satisfies parameter independence and λ-independence.

Now suppose that there is a hidden-variable model p which realizes e and
satisfies parameter independence and λ-independence. By Lemma 1, we must
show that e is an extension of the fiber product ea ⊗Ya s.

By Theorem 5.1 in our 2012b paper, e is realized by a hidden-variable model p
where (Λ,L) is the unit interval with the Borel subsets, margΛp is Lebesgue mea-
sure, and p satisfies parameter independence and λ-independence. Let L1,L2, . . .
be an increasing chain of finite algebras of sets whose union generates L. By pa-
rameter independence, pa is the fiber product pa = qa ⊗Ya×Λ r.

For each n, let qna and rn be the restrictions of qa and r to Xa ⊗Ya ⊗Ln and
Y ⊗ Ln respectively. In general, p will not be an extension of the fiber product
qna ⊗Ya×Λ rn. Our plan is to show that qna ⊗Ya×Λ rn is an extension of ea ⊗Ya s,
and converges to pa as n→∞.

We first prove convergence. Fix an integer k > 0, and element xa ∈ Xa,
and sets U ∈ Ya ⊗ Lk and Kb ∈ Yb. Then qna [xa||Ya ⊗ Ln] is a uniformly
bounded martingale with respect to the sequence of σ-algebras Ya ⊗Ln, n ≥ k.
By the Martingale Convergence Theorem (Billingsley ([1995, Theorem 35.5])),
qna [xa||Ya ⊗ Ln] converges to qa[xa||Ya ⊗ L] p-almost everywhere. Similarly, for
each Kb ∈ Yb, rn[Kb||Ya ⊗Ln] converges to r[Kb||Ya ⊗L] p-almost everywhere.
We have

(qna ⊗Ya×Λ rn)({xa}×U ×Kb) =

∫
U

qna [xa||Ya ⊗Ln]× rn[Kb||Ya ⊗Ln] dp (11)

and

pa({xa} × U ×Kb) =

∫
U

qa[xa||Ya ⊗ L]× r[Kb||Ya ⊗ L] dp. (12)

Use of a Canonical Hidden-Variable Space in Quantum Mechanics 5

Moreover, as n→∞,

qna [xa||Ya ⊗ Ln]× rn[Kb||Ya ⊗ Ln]→ qa[xa||Ya ⊗ L]× r[Kb||Ya ⊗ L] (13)

p-almost everywhere. By Fatou’s Lemma (Billingsley ([1995, Theorem 16.3])),∫
U

qna [xa||Ya⊗Ln]× rn[Kb||Ya⊗Ln] dp→
∫
U

qa[xa||Ya⊗L]× r[Kb||Ya ⊗L] dp.
(14)

Therefore

(qna ⊗Ya×Λ rn)({xa} × U ×Kb)→ pa({xa} × U ×Kb). (15)

It follows that for each xa ∈ Xa,Ka ∈ Ya, and Kb ∈ Yb,

(qna⊗Ya×Λr
n)({xa}×Ka×Kb)→ pa({xa}×Ka×Kb) = e({xa}×Ka×Kb). (16)

We next prove that for each n, qna ⊗Ya×Λ rn is an extension of ea ⊗Ya s. Let An

be the set of all atoms of Ln of positive Lebesgue measure. Then An is a finite
collection of pairwise disjoint subsets of Λ whose union has Lebesgue measure 1.
Let u = qna ⊗Ya×Λ rn. By Lemma 3.6 in our 2012a paper,

u[xa||Y ⊗ Ln] = u[xa||Ya ⊗ Ln]. (17)

The conditional probability u[xa||Y ⊗ Ln](y,λ) depends only on y and the atom
A ∈ An that contains λ, so we may write

u[xa||Y ⊗ Ln](y,λ) = u[xa||Y ⊗ Ln](y,A) (18)

whenever λ ∈ A ∈ An. We have

u[xa||Y]y =
∑

A∈An
u[xa||Y ⊗ Ln](y,A) × p[A||Y]y. (19)

A similar computationholdswithYa in place ofY. Since p satisfiesλ-independence,

p[A||Y]y = p(A) = p[A||Ya]y (20)

for each A ∈ An and y ∈ Y . Therefore

u[xa||Y] = u[xa||Ya]. (21)

Since qna is an extension of ea, and rn is an extension of s, we have from Lemma
3.6 in our 2012a paper that u = qna ⊗Ya×Λ rn is an extension of ea ⊗Ya s. Thus

(ea ⊗Ya s)({xa} ×Ka ×Kb) (22)

is a constant sequence that converges to e({xa} ×Ka ×Kb), and hence

(ea ⊗Ya s)({xa} ×Ka ×Kb) = e({xa} ×Ka ×Kb) (23)

for all xa ∈ Xa,Ka ∈ Ya, and Kb ∈ Yb. This shows that e is an extension of
ea ⊗Ya s. A similar argument holds for b in place of a, so e satisfies no signaling
by Lemma 1 above.

6 A. Brandenburger and H.J. Keisler

References

[2013] Abramsky, S., Brandenburger, A., Savochkin, A.: No-Signalling is Equivalent
to Free Choice of Measurements (2013)

[1964] Bell, J.: On the Einstein-Podolsky-Rosen Paradox. Physics 1, 195–200 (1964)
[1995] Billingsley, P.: Probability and Measure, 3rd edn. Wiley (1995)
[2012a] Brandenburger, A., Keisler, H.J.: Fiber Products of Measures and Quantum

Foundations. In: Chubb, J., Eskandarian, A., Harizanov, V. (eds.) Logic &
Algebraic Structures in Quantum Computing & Information. Association for
Symbolic Logic/Cambridge University Press (2012) (forthcoming)

[2012b] Brandenburger, A., Keisler, H.J.: A Canonical Hidden-Variable Space (2012),
http://www.stern.nyu.edu/~abranden,
http://www.math.wisc.edu/~keisler

[2008] Brandenburger, A., Yanofsky, N.: A Classification of Hidden-Variable Prop-
erties. Journal of Physics A: Mathematical and Theoretical 41, 425302 (2008)

[2011] Colbeck, R., Renner, R.: No Extension of Quantum Theory Can Have Im-
proved Predictive Power. Nature Communications 2, 411 (2011)

[2012] Colbeck, R., Renner, R.: Is a System’s Wave Function in One-to-One Corre-
spondence with Its Elements of Reality. Physical Review Letters 108, 150402
(2012)

[1980] Ghirardi, G., Rimini, A., Weber, T.: A General Argument Against Superlu-
minal Transmission Through the Quantum Mechanical Measurement Process.
Lettere Al Nuovo Cimento (1971-1985) 27, 293–298 (1980)

[1984] Jarrett, J.: On the Physical Significance of the Locality Conditions in the Bell
Arguments. Noûs 18, 569–589 (1984)

[1983] Jordan, T.: Quantum Correlations Do Not Transmit Signals. Physics Letters
A 94, 264 (1983)

[1994] Popescu, S., Rohrlich, D.: Quantum Nonlocality as an Axiom. Foundations of
Physics 24, 379–385 (1994)

[1986] Shimony, A.: Events and Processes in the Quantum World. In: Penrose, R.,
Isham, C. (eds.) Quantum Concepts in Space and Time, pp. 182–203. Oxford
University Press (1986)

http://www.stern.nyu.edu/~abranden
http://www.math.wisc.edu/~keisler

Imperfect Information

in Logic and Concurrent Games

Pierre Clairambault1, Julian Gutierrez2, and Glynn Winskel1

1 Computer Laboratory, University of Cambridge
2 Dept. of Computer Science, University of Oxford

Abstract. This paper builds on a recent definition of concurrent games
as event structures and an application giving a concurrent-game model
for predicate calculus. An extension to concurrent games with imperfect
information, through the introduction of ‘access levels’ to restrict the
allowable strategies, leads to a concurrent-game semantics for a variant
of Hintikka and Sandu’s Independence-Friendly (IF) logic.

Keywords: Concurrent games, Event structures, IF logic.

1 Introduction

Traditional games and strategies, in which one move is made at a time, have
most often been represented by trees. If we are to develop a theory of concur-
rent, or distributed, games it seems sensible to investigate games and strategies
formulated in terms of the concurrent analogue of trees, viz. event structures.
(Just as transition systems unfold to trees so models such as Petri nets, which
give an explicit account of concurrency, unfold to event structures [13]).

Concurrent games as event structures were introduced in [14] as a tentative
new basis for the formal semantics of concurrent systems and programming
languages. Such games carry an explicit representation of causal dependencies
between moves. The concurrent-games model was extended in [5] by winning
conditions in order to specify objectives for the players of the game. Games with
winning conditions are a useful tool for expressing and solving problems in logic
and verification.

The games studied in [5] are of perfect information. They are determined
(i.e. there is a winning strategy for one of the two players) whenever they are
well-founded and satisfy a structural property, called race-freedom, that prevents
one player from interfering with the moves available to the other. The paper [5]
provides a concurrent-game semantics for the predicate calculus, where nonde-
terministic winning strategies can be effectively built and deconstructed in a
compositional manner.

This paper illustrates how by allowing imperfect information within concur-
rent games we obtain a compositional game semantics for a variant of Hintikka
and Sandu’s Independence-Friendly (IF) logic [7]; the concurrent-game semantics
in this paper generalises that for the predicate calculus in [5]. A striking mathe-
matical feature of the concurrent-game semantics is the facility with which event

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 7–20, 2013.
© Springer-Verlag Berlin Heidelberg 2013

8 P. Clairambault, J. Gutierrez, and G. Winskel

structures lend themselves to the form of dependence and independence central
to IF logic and its variants.

The extension to concurrent games with imperfect information is achieved by
adjoining ‘access levels.’ It was guided originally by the wish to handle games
with imperfect information in a way that respects the existing bicategorical
structure of concurrent games. There are strong similarities with work by Samson
Abramsky and Radha Jagadeesan on an extension of AJM games to handle
access control [1].

Related Work. Perhaps the first encounter of logic with imperfect information
was in Henkin’s generalisation of first-order quantifiers to free up the dependen-
cies between quantified variables [6]. His idea led to other revisions of first-order
logic: Hintikka and Sandu’s Independence-Friendly (IF) logic [7]; Väänänen’s
Dependence logic [15] and its ‘team semantics;’ the latter being a variant of
Hodges’ compositional semantics of IF logic [8]. Semantics for such logics are
often given in terms of games with imperfect information, in which players only
have access to a limited, ‘visible’ part of the history of the games they play.
Imperfect information is often captured by requiring that strategies behave in
a uniform manner across plays with the same visible history. With concurrent
games as event structures we can express imperfect information by specifying
the permitted causal dependencies directly.

Within the theory of concurrent computation we see the modal and fixed-point
variants of IF logic developed by Bradfield et al [4,3] and the alternating-time
temporal logic (ATL) of Alur, Henzinger and Kupferman [2]. In modal IF logic
a direct link is made between the independence of IF logic and the independence
of actions seen in concurrent computation, a correspondence echoed in the se-
mantics of IF logic presented here. The semantics of ATL is given in terms of
‘concurrent game structures,’ which are essentially Blackwell games [11]. The two
players in a Blackwell game play in a series of rounds in which they choose their
moves independently. We shall see how to express such rounds via access lev-
els within the broader framework of concurrent games as event structures—see
Example 2.

2 Event Structures and Concurrent Games

An event structure comprises (E,≤,Con), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty con-
sistency relation Con consisting of finite subsets of E, which satisfy four axioms:

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆X ∈ Con �⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X �⇒ X ∪ {e} ∈ Con.

The configurations,C∞(E), of an event structure E consist of those subsets x ⊆ E
which are

Imperfect Information in Logic and Concurrent Games 9

Consistent: ∀X ⊆ x. X is finite⇒X ∈ Con , and
Down-closed: ∀e, e′. e′ ≤ e ∈ x �⇒ e′ ∈ x.

Often we are concerned with just the finite configurations of E. We write C(E)
for the finite configurations of E.

We say an event structure is elementary when the consistency relation con-
sists of all finite subsets of events. Two events which are both consistent and
incomparable w.r.t. causal dependency in an event structure are regarded as
concurrent. In games the relation of immediate dependency e � e′, meaning e
and e′ are distinct with e ≤ e′ and no event in between plays an important role.
ForX ⊆ E we write [X] for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure ofX ; note
if X ∈ Con then [X] ∈ Con. We use x−⊂y to mean y covers x in C∞(E), i.e. x ⊂ y

with nothing in between, and x
e

−�⊂ y to mean x ∪ {e} = y for x, y ∈ C∞(E) and

event e ∉ x. We use x
e

−�⊂ , expressing that event e is enabled at configuration x,

when x
e

−�⊂ y for some y.
Let E and E′ be event structures. A (partial) map of event structures f ∶

E → E′ is a partial function on events f ∶ E ⇀ E′ such that for all x ∈ C(E) its
direct image fx ∈ C(E′) and if e1, e2 ∈ x and f(e1) = f(e2) (with both defined)
then e1 = e2. The map expresses how the occurrence of an event e in E induces
the coincident occurrence of the event f(e) in E′ whenever it is defined. Partial
maps of event structures compose as partial functions, with identity maps given
by identity functions. We say that the map is total if the function f is total. A
total map of event structures which preserves causal dependency is called rigid.

The category of event structures is rich in useful constructions on processes.
In particular, it has products and pullbacks (both forms of synchronised com-
position) and coproducts (nondeterministic sums). Event structures support a
simple form of hiding associated with a factorization system. Let (E,≤,Con) be
an event structure. Let V ⊆ E be a subset of ‘visible’ events. Define the projection
of E on V , to be E↓V =def (V,≤V ,ConV), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V
and X ∈ ConV iff X ∈ Con & X ⊆ V . Consider a partial map of event structures
f ∶ E → E′. Let V =def {e ∈ E ∣ f(e) is defined} . Then f clearly factors into the

composition E
f0 �� E↓V

f1 �� E′ of f0, a partial map of event structures
taking e ∈ E to itself if e ∈ V and undefined otherwise, and f1, a total map of
event structures acting like f on V .

Event Structures with Polarities. Both a game and a strategy in a game
are represented in terms of an event structure with polarity, comprising an event
structureE together with a polarity function pol ∶ E → {+,−} ascribing a polarity
+ (Player) or − (Opponent) to its events; the events correspond to moves. Maps
of event structures with polarity are maps of event structures which preserve
polarities.

Event structures with polarities support two key operations. The dual, E⊥, of
an event structure with polarityE comprises the same underlying event structure
E but with a reversal of polarities. The simple parallel composition E∥E′ forms
the disjoint juxtaposition of E and E′, two event structures with polarity; a

10 P. Clairambault, J. Gutierrez, and G. Winskel

finite subset of events is consistent if its intersection with each component is
consistent.

2.1 Concurrent Games and Strategies

Pre-strategies. Let A be an event structure with polarity, thought of as a game;
its events stand for the possible occurrences of moves of Player and Opponent
and its causal dependency and consistency relations the constraints imposed by
the game. A pre-strategy represents a nondeterministic play of the game—all its
moves are moves allowed by the game and obey the constraints of the game; the
concept will later be refined to that of strategy and winning strategy. Formally, a
pre-strategy in A is a total map σ ∶ S → A from an event structure with polarity
S. A map between pre-strategies σ ∶ S → A and τ ∶ T → A in A will be a map
θ ∶ S → T such that σ = τθ. When θ is an isomorphism we write σ ≅ τ .

Let A,B be event structures with polarity. Following Joyal [9], a pre-strategy
from A to B is a pre-strategy in A⊥∥B, so a total map σ ∶ S → A⊥∥B. We write
σ ∶ A +

��B to express that σ is a pre-strategy from A to B. Note that a pre-
strategy σ in A coincides with a pre-strategy from the empty game σ ∶ ∅ +

��A.

Composing Pre-strategies. We can present the composition of pre-strategies
via pullbacks. Given two pre-strategies σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C,
ignoring polarities we can consider the maps on the underlying event structures,
viz. σ ∶ S → A∥B and τ ∶ T → B∥C. Viewed this way we can form the pullback
in the category of event structures as shown below

P

Π1

�����
���

���
� �� Π2

����
���

���
��

S∥C

σ∥idC ����
��

��
��

� A∥T

idA∥τ�����
���

��
�

A∥B∥C

��
A∥C ,

where the map of event structures A∥B∥C → A∥C is undefined on B and acts
as identity on A and C. The partial map from P to A∥C given by the diagram
above (either way round the pullback square) factors as the composition of the
partial map P → P ↓ V , where V is the set of events of P at which the map
P → A∥C is defined, and a total map P ↓ V → A∥C. The resulting total map
gives us the composition τ⊙σ ∶ P ↓ V → A⊥∥C once we reinstate polarities.

Concurrent Copy-Cat. Identities w.r.t. composition are copy-cat strategies.
Let A be an event structure with polarity. The copy-cat strategy from A to A is

Imperfect Information in Logic and Concurrent Games 11

an instance of a pre-strategy, so a total map γA ∶ CCA → A⊥∥A. For c ∈ A⊥∥A we
use c to mean the corresponding copy of c, of opposite polarity, in the alternative
component. Define CCA to comprise the event structure with polarity A⊥∥A
together with the extra causal dependencies generated by c ≤CCA

c for all events
c with polA⊥∥A(c) = +. The copy-cat pre-strategy γA ∶ A +

��A is defined to be
the map γA ∶ CCA → A⊥∥A where γA is the identity on the common set of events.

Strategies. The main result of [14] is that two conditions on pre-strategies,
called receptivity and innocence, are necessary and sufficient for copy-cat to be-
have as identity w.r.t. the composition of pre-strategies. Receptivity ensures an
openness to all possible moves of Opponent. Innocence, on the other hand, re-
stricts the behaviour of Player; Player may only introduce new relations of imme-
diate causality of the form ⊖ � ⊕ beyond those imposed by the game. Formally:

Receptivity: A pre-strategy σ is receptive iff

σx
a

−�⊂ & polA(a) = − ⇒ ∃!s ∈ S. x
s

−�⊂ & σ(s) = a .
Innocence: A pre-strategy σ is innocent when it is both
+-innocent: if s � s′ & pol(s) = + then σ(s) � σ(s′), and
−-innocent: if s � s′ & pol(s′) = − then σ(s) � σ(s′).

Theorem 1 (from [14]). Let σ ∶ A +
��B be pre-strategy. Copy-cat behaves as

identity w.r.t. composition, i.e. σ ○ γA ≅ σ and γB ○ σ ≅ σ, iff σ is receptive and
innocent. Copy-cat pre-strategies γA ∶ A +

��A are receptive and innocent.

Then, a strategy is a pre-strategy which is receptive and innocent. In fact, we
obtain a bicategory, in which the objects are event structures with polarity—the
games, the arrows from A to B are strategies σ ∶ A +

��B and the 2-cells are maps
of (pre-)strategies, defined above. A strategy σ ∶ A +

��B corresponds to a dual
strategy σ⊥ ∶ B⊥ +

��A⊥. This duality arises from the correspondence between
pre-strategies σ ∶ S → A⊥∥B and σ⊥ ∶ S → (B⊥)⊥∥A⊥.

Deterministic Games and Strategies. There is the important subcategory
of deterministic strategies. An event structure with polarityS is deterministic iff

∀X ⊆fin S. Neg[X] ∈ ConS �⇒ X ∈ ConS ,

where Neg[X] =def {s
′ ∈ S ∣ pol(s′) = − & ∃s ∈X. s′ ≤ s}. Say a strategy σ ∶ S →

A is deterministic if S is deterministic. Deterministic strategies are necessarily
mono, and so can be identified with certain subfamilies of configurations of the
game, and in fact coincide with the receptive ingenuous strategies of Mimram and
Melliès [12]. While deterministic strategies do compose, a copy-cat strategy γA
can fail to be deterministic. However, γA is deterministic iff there is no immediate
conflict between +ve and −ve events, a condition we call ‘race-free:’

x
a

−�⊂ & x
a′

−�⊂ & pol(a) ≠ pol(a′) �⇒ x ∪ {a, a′} ∈ C(A) . (Race − free)

12 P. Clairambault, J. Gutierrez, and G. Winskel

We obtain a sub-bicategory by restricting objects to race-free games and strate-
gies to deterministic ones. Via the presentation of deterministic strategies as
subfamilies of configurations, the sub-bicategory of deterministic games and
strategies is equivalent to a mathematically simpler order-enriched category.

3 Winning Strategies and Determinacy

A concurrent game with winning conditions [5] comprises G = (A,W) where
A is an event structure with polarity and W ⊆ C∞(A) consists of the winning
configurations for Player. We define the losing conditions to be C∞(A) ∖W .

A strategy in G is a strategy in A. A strategy in G is regarded as winning if it
always prescribes Player moves to end up in a winning configuration, no matter
what the activity or inactivity of Opponent. Formally, a strategy σ ∶ S → A in G
is winning (for Player) if σx ∈W for all +-maximal configurations x ∈ C∞(S)—a

configuration x is +-maximal if whenever x
s

−�⊂ then the event s has −ve polarity.
Equivalently, a strategy for Player is winning if when played against any

counter-strategy of Opponent, the final result is a win for Player. Suppose that
σ ∶ S → A is a strategy in a game (A,W). A counter-strategy is a strategy of
Opponent, so a strategy τ ∶ T → A⊥ in the dual game. We can view σ as a strategy
σ ∶ ∅ +

��A and τ as a strategy τ ∶ A +
��∅. Their composition τ⊙σ ∶ ∅ +

��∅ is
not very informative; rather it is the set of configurations in C∞(A) their full
interaction induces what decides which player wins. Ignoring polarities, we have
total maps of event structures σ ∶ S → A and τ ∶ T → A. Form their pullback,

P
Π1

����
��
��
���� Π2

��	
		

		
		

	

S

σ
��

 T

τ
����
��
��
��

A,

to obtain the event structure P resulting from the interaction of σ and τ . Be-
cause σ or τ may be nondeterministic there can be more than one maximal
configuration z in C∞(P). A maximal configuration z images to a configuration
σΠ1z = τΠ2z in C∞(A). Define the set of results of playing σ against τ to be

⟨σ, τ⟩ =def {σΠ1z ∣ z is maximal in C∞(P)} .

It can be shown [5], that a strategy σ is a winning for Player iff all the re-
sults of the interaction ⟨σ, τ⟩ lie within the winning configurations W , for any
(deterministic) counter-strategy τ ∶ T → A⊥ of Opponent.

Operations. There is a dual, G⊥, of a game with winning conditions G =
(A,WG), defined asG⊥ = (A⊥,C∞(A)∖WG), which reverses the role of Player and
Opponent, and consequently that of winning and losing conditions. Moreover,

Imperfect Information in Logic and Concurrent Games 13

the parallel composition of two games with winning conditions G = (A,WG),
H = (B,WH) is G ` H =def (A∥B, WG`H) where, for x ∈ C∞(A∥B), x ∈
WG`H iff x1 ∈WG or x2 ∈WH —a configuration x of A∥B comprises the dis-
joint union of a configuration x1 ofA and a configuration x2 ofB. To win inG`H
is to win in either game. The unit of ` is (∅,∅). Defining G⊗H =def (G

⊥∥H⊥)⊥

we obtain a game where to win is to win in both games G and H . The unit of ⊗ is
(∅,{∅}). Defining G⊸H =def G

⊥`H , a win in G⊸H is a win in H conditional
on a win in G: For x ∈ C∞(A⊥∥B), x ∈WG⊸H iff x1 ∈WG �⇒ x2 ∈WH .

Again following Joyal, a (winning) strategy from G to H , two games with
winning conditions, is a (winning) strategy in G ⊸ H . We compose strategies
as before. The composition of winning strategies is winning. However, for a
general game (A,W) the copy-cat strategy need not be winning. A necessary
and sufficient condition for copy-cat to be winning is given in [5]—see (Cwins)
of Section 4 for its precise statement. The condition is assured for games which
are race-free. We can refine the bicategories studied in [14] to bicategories of
concurrent games with winning conditions [5].

Determinacy for Well-Founded, Race-Free Concurrent Games. A game
with winning conditions is said to be determined when either Player or Opponent
has a winning strategy. Not all games are determined.

Example 1. Consider the event structure A with two inconsistent events ⊕ and
⊖ with the obvious polarities and winning conditions W = {{⊕}}. In the game
(A,W) no strategy for either player wins against all other counter-strategies of
the other player. In particular, let σ be the unique map of event structures that
contains ⊕ and τ a particular counter-strategy for Opponent:

Player: S

σ

��

⊕ ������

��

⊖

��
A ⊕ ������ ⊖

Opponent: T

τ

��

⊖ ������

��

⊕

��
A⊥ ⊖ ������ ⊕

Then, neither ⟨σ, τ⟩ ⊆W nor ⟨σ, τ⟩ ⊆ L since {{⊕},{⊖}} ⊆ ⟨σ, τ⟩.

Note that G is not race-free. Being race-free is not in itself sufficient to ensure a
game is determined. However, with respect to the class of well-founded games,
i.e. games where all configurations in C∞(A) are finite, we have the following:

Theorem 2 (from [5]). Let A be a well-founded event structure with polarity.
The game (A,W) determined for all winning conditions W iff A is race-free.

It is tempting to believe that a nondeterministic winning strategy always has
a winning deterministic sub-strategy. This is not so and determinacy does not
hold for well-founded race-free games if we restrict to deterministic strategies.

Nondeterministic (winning) strategies are also useful if one wants to define a
partial-order concurrent-game semantics for classical logics—as shown next.

14 P. Clairambault, J. Gutierrez, and G. Winskel

3.1 Application: Concurrent Games for the Predicate Calculus

The syntax for predicate calculus: formulae are given by

φ,ψ,⋯ ∶∶= R(x1,⋯, xk) ∣ φ ∧ψ ∣ φ ∨ψ ∣ ¬φ ∣ ∃x. φ ∣ ∀x. φ

where R ranges over basic relation symbols and x,x1, x2,⋯, xk over variables.
A model M for the predicate calculus comprises a non-empty universe of

values VM and an interpretation for each of the relation symbols as a relation of
appropriate arity on VM . We can then define, by structural induction, the truth of
a formula of predicate logic w.r.t. an assignment of values in VM to the variables
of the formula. We write ρ ⊧M φ iff formula φ is true in M w.r.t. environment ρ;
we take an environment to be a function from variables to values.

W.r.t. a model M and an environment ρ, we can denote a formula φ by �φ�Mρ,
a concurrent game with winning conditions, so that ρ ⊧M φ iff there is a winning
strategy in �φ�Mρ (for Player). The denotation as a game is defined as:

�R(x1,⋯, xk)�Mρ =

⎧⎪⎪
⎨
⎪⎪⎩

(∅,{∅}) if ρ ⊧M R(x1,⋯, xk) ,

(∅,∅) otherwise.

�φ ∧ψ�Mρ = �φ�Mρ⊗ �ψ�Mρ �φ ∨ψ�Mρ = �φ�Mρ` �ψ�Mρ �¬φ�Mρ = (�φ�Mρ)⊥

�∃x. φ�Mρ = ⊕
v∈VM

�φ�Mρ[v/x] �∀x. φ�Mρ = ⊖
v∈VM

�φ�Mρ[v/x] .

We use ρ[v/x] to mean the environment ρ updated to assign value v to variable
x. The game (∅,{∅}), the unit w.r.t. ⊗, is the game used to denote true and the
game (∅,∅), the unit w.r.t. `, to denote false. Denotations of conjunctions and
disjunctions are denoted by the operations of ⊗ and ` on games, while negations
denote dual games. Universal and existential quantifiers denote prefixed sums of
games, operations which we now describe in the following paragraph.

The game⊕v∈V (Av,Wv) has underlying event structure with polarity the sum

∑v∈V ⊕.Av where the winning conditions of a component are those configurations
x ∈ C∞(⊕.A) of the form {⊕} ∪ y for some y ∈W . In ∑v∈V ⊕.Av a configuration
is winning iff it is the image of a winning configuration in a component under
the injection to the sum. Note in particular that the empty configuration of

⊕v∈V Gv is not winning—Player must make a move in order to win. The game

⊖v∈V Gv is defined dually, as (⊕v∈V G⊥v)
⊥. In this game the empty configuration

is winning but Opponent gets to make the first move. Writing Gv = (Av,Wv), the
underlying event structure of⊖v∈V Gv is the sum∑v∈V ⊖.Av with a configuration
winning iff it is empty or the image under the injection of a winning configuration
in a prefixed component.

It is easy to check by structural induction that for any formula φ the game
�φ�Mρ is well-founded and race-free, so determined by Theorem 2. With the help
of techniques to build and deconstruct strategies we can establish:

Theorem 3 (from [5]). For all formulae φ and environments ρ, we have that
ρ ⊧M φ iff the game �φ�Mρ has a winning strategy, for Player.

Imperfect Information in Logic and Concurrent Games 15

4 Concurrent Games with Imperfect Information

We show how to extend concurrent games by imperfect information to form a
bicategory, which in the case of deterministic strategies specializes to an order-
enriched bicategory.

We first introduce the framework of games with imperfect information through
a simple example.

Consider the game “rock, scissors, paper” in which the two participants Player
and Opponent independently sign one of r (“rock”), s (“scissors”), or p (“pa-
per”). The participant with the dominant sign w.r.t. the relation

r beats s, s beats p and p beats r

wins. We could represent this game by RSP , the event structure with polarity

r1⊕

��
��
��
��
��

��
��

��
��

��
⊖ r2

��
��
��
��
��

��
��

��
��

��

s1⊕ �������������� ⊕p1 s2⊖ �������������� ⊖p2

with the three mutually inconsistent signings of Player in parallel with the three
mutually inconsistent signings of Opponent. Without neutral configurations, a
reasonable choice is to take the losing configurations (for Player) to be

{s1, r2}, {p1, s2}, {r1, p2}

and all other configurations as winning for Player. In this case there is a winning
strategy for Player, viz. await the move of Opponent and then beat it with a
dominant move. But this strategy cheats. In “rock, scissors, paper” participants
are intended to make their moves independently. The problem with the game
RSP as it stands is that it is a game of perfect information in the sense that all
moves are visible to both participants. This permits the winning strategy above
with its unwanted dependencies on moves which should be unseen by Player. In
order to model “rock, scissors, paper” more adequately we can use a concurrent
game with imperfect information where some moves are masked, or inaccessible,
and strategies with dependencies on unseen moves are ruled out.

To extend concurrent games with imperfect information while respecting the
bicategorical structure of games we assume a fixed preorder of levels (Λ,⪯). The
levels are to be thought of as levels of access, or permission [1]. Moves in games
and strategies are to respect levels: moves will be assigned levels in such a way
that a move is only permitted to causally depend on moves at equal or lower
levels; it is as if from a level only moves of equal or lower level can be seen.

A Λ-game (G, lG) comprises a game G = (A,W) with winning conditions
together with a level function lG ∶ A → Λ such that a ≤A a′ �⇒ lG(a) ⪯ lG(a

′)
for all events a, a′ ∈ A. A Λ-strategy in the Λ-game (G, lG) is a winning strategy
σ ∶ S → A for which s ≤S s′ �⇒ lGσ(s) ⪯ lGσ(s

′) for all s, s′ ∈ S. For example,
for “rock, scissors, paper” we can take Λ to be the discrete preorder consisting of

16 P. Clairambault, J. Gutierrez, and G. Winskel

levels 1 and 2 unrelated to each other under ⪯. To make RSP into a suitable Λ-
game the level function lG takes +ve events in RSP to level 1 and −ve events to
level 2. The (winning) strategy above, where Player awaits the move of Opponent
then beats it with a dominant move, is now disallowed as it is not a Λ-strategy—
it introduces causal dependencies which do not respect levels. If instead we took
Λ to be the unique preorder on a single level the Λ-strategies would coincide
with all the strategies.

Example 2. Through levels we can restrict play to a series of rounds in the way of
Blackwell games [11] and concurrent game structures [2]. An appropriate choice
of Λ is the infinite elementary event structure:

⊕
� ��	

 	
�

 ⊕
� ��	

 	
�

 ⊕ ⋯ ⊕
� ��	

 	
�

 ⊕ ⋯

⊖
� ��	

�
�

�������
⊖

� ��	

�
�

�������
⊖ ⋯ ⊖

� ��	

�
�

�������
⊖ ⋯

Consider A, a race-free concurrent game, for which there is a (necessarily unique)
polarity-preserving rigid map from A to Λ—this map becomes the level func-
tion. The existence of such a map ensures moves in A occur in rounds com-
prising a choice of move for Opponent and a choice of move for Player made
concurrently.

The introduction of levels meshes smoothly with the bicategorical structure of
concurrent games. For a Λ-game (G, lG), define its dual (G, lG)

⊥ to be (G⊥, lG⊥)
where lG⊥(a) = lG(a), for a an event of G. Similarly, for Λ-games (G, lG) and
(H, lH), define their parallel composition (G, lG)` (H, lH) to comprise G`H
with levels those inherited from the components. A strategy between Λ-games
from (G, lG) to (H, lH) is a strategy in (G, lG)

⊥ ` (H, lH).
As mentioned earlier, in general a copycat strategy is not necessarily winning.

Each event structure with polarity A possesses a ‘Scott order’ on its configura-
tions C∞(A): x′ ⊑ x iff x′ ⊇− x ∩ x′ ⊆+ x, where we use the inclusions x ⊆− y
iff x ⊆ y & polA(y ∖ x) ⊆ {−} and x ⊆+ y iff x ⊆ y & polA(y ∖ x) ⊆ {+}, for
x, y ∈ C∞(A). The ‘Scott-order’ is in fact a partial order. It is helpful in express-
ing a necessary and sufficient condition for copy-cat to be winning w.r.t. a game
(G, lG):

if x′ ⊑ x & x′ is +-maximal & x is −-maximal,

then x ∈W �⇒ x′ ∈W, for all x,x′ ∈ C∞(A) .
(Cwins)

The condition (Cwins) is automatically satisfied when A is race-free. We can
now state:

Theorem 4. Let (G, lG) be a Λ-game.
(i) If G satisfies (Cwins), then the copy-cat strategy on G is a Λ-strategy.
(ii) The composition of Λ-strategies is a Λ-strategy.

Imperfect Information in Logic and Concurrent Games 17

5 Λ-IF: A Parametrized Logic of Independence

We present a variant of Hintikka and Sandu’s Independence-Friendly (IF) logic
and propose a semantics in terms of concurrent games with imperfect informa-
tion. Our logic is parametrized by a preorder that states the possible depen-
dencies between variables. Assume a preorder (Λ,⪯). The syntax for our logic,
denoted by Λ-IF, is essentially that of the predicate calculus, but with levels in
Λ associated with quantifiers: formulae, where λ ∈ Λ, are given by

φ,ψ,⋯ ∶∶= R(x1,⋯, xk) ∣ φ ∧ ψ ∣ φ ∨ ψ ∣ ¬φ ∣ ∃λx. φ ∣ ∀λx. φ

where R ranges over basic relation symbols and x,x1, x2,⋯, xk over variables.
Assume M , a non-empty universe of values VM and an interpretation for each

of the relation symbols as a relation of appropriate arity on VM . W.r.t. a model
M and an environment ρ, we denote each closed formula φ of Λ-IF logic by a Λ-
game, following very closely the definitions for predicate calculus. The differences
are the assignment of levels to events and that the order on Λ has to be respected
by the (modified) prefixed sums which quantified formulae denote.

The prefixed game ⊕λ.(A,W, l) comprises the event structure with polar-
ity ⊕.A in which all the events of a ∈ A where λ ⪯ l(a) are made to causally
depend on a fresh +ve event ⊕, itself assigned level λ. Its winning conditions
are those configurations x ∈ C∞(⊕.A) of the form {⊕} ∪ y for some y ∈ W . The
game ⊕λ

v∈V (Av,Wv, lv) has underlying event structure with polarity the sum

∑v∈V ⊕λ.Av , maintains the same levels as its components, with a configuration
winning iff it is the image of a winning configuration in a component under the
injection to the sum. The game ⊖λ

v∈V Gv is defined dually, as (⊕λ
v∈V G⊥v)

⊥.
True denotes the Λ-game the unit w.r.t. ⊗ and false denotes the unit w.r.t. `.

Denotations of conjunctions and disjunctions are given by the operations of ⊗
and ` on Λ-games, while negations denote dual games. W.r.t. an environment
ρ and a model M , quantifiers are denoted by prefixed sums of Λ-games:

�∃λx. φ�
Λ

M
ρ =

λ

⊕
v∈VM

�φ�
Λ

M
ρ[v/x] �∀λx. φ�

Λ

M
ρ =

λ

⊖
v∈VM

�φ�
Λ

M
ρ[v/x] .

Definition 1. For all Λ-IF formulae φ, environments ρ, and models M , we say
that: (i) φ is true in M w.r.t. ρ, written ρ ⊧Λ

M φ, iff Player has a winning strategy

in the Λ-game �φ�
Λ

Mρ; (ii) φ is false in M w.r.t. ρ, written ρ⊧
Λ
Mφ, iff Opponent

has a winning strategy in �φ�
Λ

M
ρ (note that ρ⊧

Λ
M
φ is equivalent to ρ ⊧Λ

M
¬φ but

different from ρ /⊧
Λ
M
φ); and (iii) φ is undetermined in M w.r.t. ρ, otherwise.

6 Λ-IF Logic vs. IF Logic

The language of Λ-IF formulae is, essentially, that of IF logic where two Λ-IF
variables are incomparable w.r.t. (Λ,⪯) if they are independent within IF logic.
Some similarities and differences between IF logic and Λ-IF logic are illustrated
in the following examples.

18 P. Clairambault, J. Gutierrez, and G. Winskel

Example 3. Let Λ be the poset with two incomparable elements 1 and 2 , i.e. nei-
ther 1 ⪯ 2 nor 2 ⪯ 1, and consider the formula: φ = ∀1x. ∃2y. x = y, whose se-
mantics gives rise to a Λ-game (G, lG) played on an event structure A whose set
of events is (isomorphic to) VM + VM , with the discrete partial order as causal
dependency, consistency X ∈ Con if the restriction of X to either copy of VM is
a singleton set of events, and polarity pol((1, v)) = − and pol((2, v)) = +. The
winning conditions are W = {∅,{{(2, v)} ∣ v ∈ VM},{{(1, v), (2, v)} ∣ v ∈ VM}}.
Finally, the level function lG sends (1, v) to 1 and (2, v) to 2, for all v ∈ VM .
It can be checked that whenever VM has at least two distinct elements neither
player has a winning strategy. Then, φ is undetermined in the model M .

Example 4. Now, consider the same formula as in Example 3 but with the partial
order Λ′ containing two elements 1,2 with 1 ⪯ 2. Its interpretation yields a Λ′-
game (G′, l′G) played on the event structure with polarity A′ which differs from
A in that we now have (1, v) ≤ (2, v) for all v ∈ VM . The winning condition and
the level function are unchanged, but this game now has a winning strategy: the
identity map of event structures idA ∶ A→ A is receptive, innocent, and winning.
Therefore, φ is true as a Λ′-formula, but undetermined as a Λ-formula.

In the previous two examples the two Λ-IF specifications are semantically equiv-
alent to their corresponding IF logic counterparts. However:

Example 5. Take the Λ-IF formula φ = (∀1x. ∃2y. x = y) ∨ (∃1x. ∀2y. x ≠ y),
where neither 1 ⪯ 2 nor 2 ⪯ 1. Even though the two sub-games under ∨ are unde-
termined in the general case, the concurrent game induced by φ has a winning
strategy (for Player): the copy-cat strategy for �∀1x. ∃2y. x = y�Λ

M
ρ.

6.1 On the Expressivity of Λ-IF

Although IF and Λ-IF are semantically different logics, a translation from IF
logic to Λ-IF logic is possible provided the dependencies of variables in IF logic
can be described as a partial order (or even as a preorder), as is the case for IF-
formulae without signaling [10]. In this case a translation from such IF-formulae
to Λ-IF-formulae can be given directly. It also follows from a (fairly direct)
translation of Henkin logic to Λ-IF. Henkin logic is propositional logic extended
with Henkin quantifiers [6]; a Henkin (or branching) quantifier comprises a finite
partial order of quantified variables—the partial order assigning the dependency
between variables, in the same manner as levels (Λ,⪯). For example, in the
Henkin formula

(∀x1∃y1

∀x2∃y2
)φ(x1, x2, y1, y2) .

the variable y1 may depend on x1, but not on x2, or y2. This formula has meaning
given in terms of Skolem functions by

∃f.∃g.∀x1.∀x2. φ(x1, x2, f(x1), g(x2))

and has semantics given by the following game with imperfect information: in
a Henkin quantifier (∀x1∃y1

∀x2∃y2
)φ(x1, x2, y1, y2) Player chooses y2 independently of

Imperfect Information in Logic and Concurrent Games 19

the choice of x1 by Opponent, who chooses x2 independently of the choice of y1
by Player. This behaviour is the same as given by the Λ-IF formula

∀ax1.∃
by1.∀

cx2∃
dy2. φ(x1, x2, y1, y2)

with a ⪯ b, c ⪯ d, a co d, and b co c (where λ co λ′ iff neither λ /⪯ λ′ nor λ′ /⪯ λ).
Being able to encode the Henkin quantifier has two consequences. Firstly, the

ability to encode IF logic from the interpretation of IF-logic in Henkin logic.
Secondly, that Λ-IF inherits from Henkin logic the expressive power of the exis-
tential fragment of second-order logic.

Example 6. We illustrate the translation from IF formulae to Henkin formulae
to Λ-IF formulae. Take the IF formula ∀x.∃y/x. x = y. Its translation to Henkin
logic is

(∀x∃y1

∀x2∃y
)x = y

and to Λ-IF logic is (given the translation above)

∀ax.∃by1.∀
cx2.∃

dy. x = y

with a ⪯ b, c ⪯ d, a co d, and b co c; and eliminating unnecessary quantifiers into

∀ax.∃dy. x = y

with a co d. As described in Example 3 such a formula is undetermined in any
model M with more than two distinct elements.

Remark. Note that, in fact, a formula with a Henkin quantifier

(∀x1∃y1

∀x2∃y2
)φ(x1, x2, y1, y2)

can be translated to the Λ-IF formula

∀ax1.∃
ay1.∀

dx2∃
dy2. φ(x1, x2, y1, y2)

with a co d, which has only two incomparable levels.

7 Conclusion

Although strongly related to IF, the logic Λ-IF has a different evaluation game:
as illustrated by Example 5, the formula ψ∨¬ψ is always a tautology within Λ-IF
(as copy-cat is winning there), whereas it is not in IF when ψ is undetermined.
There is the possibility of giving a proof theory for Λ-IF since it satisfies the
axiom rule, which is not the case for IF logic.

Acknowledgments. This paper is dedicated to Samson Abramsky on the oc-
casion of his 60th birthday. The authors acknowledge the financial support of
the ERC Research Grants ECSYM (at Cambridge) and RACE (at Oxford).

20 P. Clairambault, J. Gutierrez, and G. Winskel

References

1. Abramsky, S., Jagadeesan, R.: Game semantics for access control. Electronic Notes
in Theoretical Computer Science 249 (2009)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5) (2002)

3. Bradfield, J.C.: Independence: logics and concurrency. Acta Philosophica Fennica
78 (2006)

4. Bradfield, J.C., Fröschle, S.B.: Independence-friendly modal logic and true concur-
rency. Nord. J. Comput. 9(1) (2002)

5. Clairambault, P., Gutierrez, J., Winskel, G.: The winning ways of concurrent
games. In: LICS. IEEE Comp. Soc. (2012)

6. Henkin, L.: Some remarks on infinitely long formulas. Infinitistic Methods (1961)
7. Hintikka, J., Sandu, G.: A revolution in logic? Nordic J. of Phil. Logic 1(2) (1996)
8. Hodges, W.: Compositional semantics for a language of imperfect information.

Logic Journal of the IGPL 5(4) (1997)
9. Joyal, A.: Remarques sur la théorie des jeux à deux personnes. Gazette des sciences

mathématiques du Québec 1(4) (1997)
10. Mann, A.L., Sandu, G., Sevenster, M.: Independence-Friendly Logic: A Game-

Theoretic Approach. London Mathematical Society Lecture Note Series, vol. 386.
Cambridge University Press (2011)

11. Martin, D.A.: The determinacy of blackwell games. The Journal of Symbolic
Logic 63(4), 1565–1581 (1998)

12. Melliès, P.-A., Mimram, S.: Asynchronous games: innocence without alterna-
tion. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703,
pp. 395–411. Springer, Heidelberg (2007)

13. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains.
Theoretical Computer Science 13, 85–108 (1981)

14. Rideau, S., Winskel, G.: Concurrent strategies. In: LICS. IEEE Comp. Soc. (2011)
15. Väänänen, J.A.: Dependence Logic - A New Approach to Independence Friendly

Logic. London Mathematical Society Student Texts, vol. 70. Cambridge University
Press (2007)

Compositional Quantum Logic

Bob Coecke, Chris Heunen, and Aleks Kissinger

Department of Computer Science, University of Oxford
{coecke,heunen,alek}@cs.ox.ac.uk

Abstract. Quantum logic aims to capture essential quantum mechan-
ical structure in order-theoretic terms. The Achilles’ heel of quantum
logic is the absence of a canonical description of composite systems,
given descriptions of their components. We introduce a framework in
which order-theoretic structure comes with a primitive composition op-
eration. The order is extracted from a generalisation of C*-algebra that
applies to arbitrary dagger symmetric monoidal categories, which also
provide the composition operation. In fact, our construction is entirely
compositional, without any additional assumptions on limits or enrich-
ment. Interpreted in the category of finite-dimensional Hilbert spaces, it
yields the projection lattices of arbitrary finite-dimensional C*-algebras.
Interestingly, there are models that falsify standardly assumed correspon-
dences, most notably the correspondence between noncommutativity of
the algebra and nondistributivity of the order.

It is our great pleasure to dedicate this paper to Samson, who has been a key ar-
chitect of the current multidisciplinary climate, encompassing conceptual math-
ematics and fundamental physics, that now flourishes in many computer science
departments. His contributions to the field over the past three decades have
not only been striking in their own right, but have created a wide spectrum
of opportunities for young scientists from a variety of backgrounds who have a
passion for conceptual depth and true mathematical beauty. We in particular
appreciate his appetite for hiring weirdos, high-maintenance drama queens, and
outlaws–including some of us who were hereby saved from the academic gutter.
If only he wasn’t a ManU fan...

1 Introduction

In 1936, Birkhoff and von Neumann questioned whether the full Hilbert space
structure was needed to capture the essence of quantum mechanics [3]. They
argued that the order-theoretic structure of the closed subspaces of state space,
or equivalently, of the projections of the operator algebra of observables, may
already tell the entire story. To be more precise, we need to consider an order
together with an order-reversing involution on it, a so-called orthocomplemen-
tation, which can also be cast as an orthogonality relation. Support along those
lines comes from Gleason’s theorem [21], which characterises the Born rule in

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 21–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

22 B. Coecke, C. Heunen, and A. Kissinger

terms of order-theoretic structure. In turn, via Wigner’s theorem [43], this fixes
unitarity of the dynamics.

These developments prompted Mackey to formulate his programme for the
mathematical foundations of quantum mechanics: the reconstruction of Hilbert
space from operationally meaningful axioms on an order-theoretic structure [31].
In 1964, Piron “almost” completed that programme for the infinite-dimensional
case [34,35]. Full completion was achieved much more recently, by Solèr in
1995 [40].1

Birkhoff and von Neumann coined the term ‘quantum logic’, in light of the
developments in algebraic logic which were also subject to an order-theoretic
paradigm. In particular they observed that the distributive law for meets and
joins, which is key to the deduction theorem in classical logic, fails to hold for
the lattice of closed subspaces for a Hilbert space [3].

This failure of distributivity and hence the absence of a deduction theorem
resulted in rejection of the quantum ‘logic’ idea by a majority of logicians. How-
ever, while the name quantum logic was retained, many of its researchers also
rejected the direct link to logic, and simply saw quantum logic as the study of
the order-theoretic structure associated to quantum phenomena, as well as other
structural paradigms that were proposed thereafter [20,30].

The Quantum Logic Paradigm

In the Mackey-Piron-Solèr reconstruction, the elements of the partially ordered
set become the projections on the resulting Hilbert space, that is, the self-adjoint
idempotents of the algebra of operators on the Hilbert space:

p ◦ p = p, p† = p. (1)

Conversely, the ordering can be recovered from the composition structure on
these projections:

p ≤ q ⇐⇒ p ◦ q = p, (2)

and the orthogonality relation can be recovered from it, too:

p ⊥ q ⇐⇒ p ◦ q = 0. (3)

In fact, the reconstruction does not produce Hilbert space, but Hilbert space with
superselection rules. That is, depending on the particular nature of the ordering
that we start with, it either produces quantum theory or classical theory, or
combinations thereof.

1 See also the survey [41], which provides a comprehensive overview of the entire
reconstruction, drawing from the fundamental theorem of projective geometry. Re-
constructions of quantum theory have recently seen a great revival [24,6]. In con-
trast to the Piron-Solèr theorem, this more recent work is mainly restricted to the
finite-dimensional case, and focuses on operational axioms concerning how (multiple)
quantum and classical systems interact.

Compositional Quantum Logic 23

The presence of “quantumness” is famously heralded in order-theoretic terms
by the failure of the distributive law, giving rise to the following comparison.

classical

quantum
� distributive

nondistributive

This translates as follows to the level of operator algebra.

classical

quantum
� commutative

noncommutative

Thus, the combination yields the following slogan.

distributive

nondistributive
� commutative

noncommutative
(4)

This is indeed the case for the projection lattices of arbitrary von Neumann alge-
bras: the projection lattice is distributive if and only if the algebra is commuta-
tive [36, Proposition 4.16], and has been a guiding thought within the quantum
structures research community.

Categorical Quantum Mechanics

More recently, drawing on modern developments in logic and computer science,
and mainly a branch called type-theory, Abramsky and Coecke introduced a
radically different approach to quantum structures that has gained prominence,
which takes compositional structure as the starting point [1]. Proof-of-concept
was provided by the fact that many quantum information protocols which cru-
cially rely on the description of compound quantum systems could be very suc-
cinctly derived at a high level of abstraction.

In what is now known as categorical quantum mechanics, composition of
systems is treated as a primitive connective, typically as a so-called dagger sym-
metric monoidal category. Additional axioms may then be imposed on such cat-
egories to capture the particular nature of quantum compoundness. In other
words, a set of equations that axiomatise the Hilbert space tensor products is
generalised to a broad range of theories. Importantly, at no point is an underlying
vector-space like structure assumed.

In contrast to quantum logic, this approach led to an abstract language with
high expressive power, that enabled one to address concretely posed problems in
the area of quantum computing (see e.g. [4,12,18,27]) and quantum foundations
(see e.g. [9]), and that has even led to interesting connections between quantum
structures and the structure of natural language [16,8].

One of the key insights of this approach is the fact that many notions that are
primitive in Hilbert space theory, and hence quantum theory, can actually be
recovered in compositional terms. For example, given the pure operations of a
theory, one can define mixed operations in purely compositional terms, which to-
gether give rise to a new dagger symmetric monoidal category [37]. We will refer
to this construction, as (Selinger’s) CPM–construction. While this construction

24 B. Coecke, C. Heunen, and A. Kissinger

applies to arbitrary dagger symmetric monoidal categories (as shown in [7,10]),
Selinger also assumed compactness [29], something that we will also do in this
paper. These structures are called dagger compact categories.

Another example, also crucial to this paper, is the fact that orthonormal
bases can be expressed purely in terms of certain so-called dagger Frobenius
algebras, which only rely on dagger symmetric monoidal structure [15,2]. In
turn, these dagger Frobenius algebras enable one to define derived concepts
such as stochastic maps. All of this still occurs within the language of dagger
symmetric monoidal categories [14]. We will refer to this construction as the
Stoch–construction. Similarly, finite-dimensional C*-algebras can also be realised
as certain dagger Frobenius algebras, internal to the dagger compact category of
finite-dimensional Hilbert spaces and linear maps, the tensor product, and the
linear algebraic adjoint [42].

Recently [11], the authors have proposed a construction, called the CP*–
construction, that generalises this correspondence to certain dagger Frobenius
algebras in arbitrary dagger compact caterories. At the same time, this construc-
tion unifies the CPM–construction and the Stoch-construction, starting from a
given dagger compact category. The resulting structure is an abstract approach
to classical-quantum interaction, with Selinger’s CPM–fragment playing the role
of the “purely quantum”, and the abstract stochastic maps fragment playing the
role of the “purely classical”.2

Overview of this Paper

In this paper, we take this framework of “generalised C*-algebras” as a starting
point, and investigate the structure of the dagger idempotents. We will refer to
these as in short as projections too, since these dagger idempotents provide the
abstract counterpart to projections of concrete C*-algebras.

We show that, just as in the concrete case, one always obtains a partially
ordered set with an orthogonality relation. However, equation (4) breaks down
in general. More specifically, in the dagger compact category of sets and relations
with the Cartesian product as tensor and the relational converse as the dagger,
there are commutative algebras with nondistributive projection lattices.

As mentioned above, the upshot of our approach is that it resolves a prob-
lem that rendered quantum logic useless for modern purposes: providing an order
structure representing compound systems at an abstract level, given the ones de-
scribing the component systems. Since we start with a category with monoidal
structure, of course composition for objects is built in from the start, and it
canonically lifts to algebras thereon. Let us emphasise that our framework relies
solely on dagger categorical and compositional structure: the (sequential) com-
position of morphisms, and the (parallel) tensor product of morphisms. This is a

2 There is an earlier unification of the CPM–construction and the Stoch-
construction [38], into which our construction faithfully embeds, see [11]. How-
ever, this construction does not support the interpretation of “generalised
C*-algebras” [11].

Compositional Quantum Logic 25

key improvement over previous work [22,26,23,28] that combines order-theoretic
and compositional structure.3

2 Background

For background on symmetric monoidal categories we refer to the existing liter-
ature on the subject [13]. In particular we will rely on their graphical represen-
tations, which are surveyed in [39].

Diagrams will be read from bottom to top. Wires represent the objects of the
category, while boxes or dots or any other entity with incoming and outcoming
wires – possibly none – represents a morphism, and their type is determined by
the respective number of incoming and outgoing wires. The directions of arrows
on wires represent duals of the compact structure.

Our main objects of study are symmetric Frobenius algebras, defined as fol-
lows. Let us emphasise that this is a larger class of Frobenius algebra than just
the commutative ones, which previous works on categorical quantum mechanics
have mainly considered.

Definition 1. Let (C,⊗, I) be a symmetric monoidal category which carries a
dagger structure, that is, an identity-on-objects contravariant involutive endo-
functor † : Cop → C. A Frobenius algebra in C is an object A of C together
with morphisms

: A⊗A→ A : I → A : A→ A⊗A : A→ I

satisfying the following equations, called associativity (top), coassociativity (bot-
tom), (co)unitality, and the Frobenius condition:

= ==

===

= =

A Frobenius algebra is symmetric when the following equations hold:

= =

A dagger Frobenius algebra is a Frobenius algebra that additionally satisfies the
following equation:

=
()†

=
()†

3 The construction in [22] needs the rather strong extra assumption of dagger biprod-
ucts, while the construction in [26] requires the weaker assumption of dagger kernels.
The intersection of both constructions can be made to work, provided one addition-
ally assumes a weak form of additive enrichment [23].

26 B. Coecke, C. Heunen, and A. Kissinger

Symbolically, we denote the multiplication of two points p, q : I → A, that is,

◦ (p⊗ q) : I → A ,

as p · q. Also, since the multiplication fixes its unit, and the dagger fixes the
comultiplication given the multiplication, we will usually represent our algebras

as (A,).

Remark 2. In [11], rather than symmetry, the stronger condition of normalisabil-
ity is used. As this condition implies symmetry for dagger Frobenius algebras [11,
Theorem 2.6], the results in this paper apply unchanged to normalisable Frobe-
nius algebras.

We write FHilb for the category of finite-dimensional Hilbert spaces and linear
maps, with the tensor product as the monoidal structure, and linear adjoint as
the dagger.

Theorem 3 ([42]). Symmetric dagger Frobenius algebras in FHilb are in 1-
to-1 correspondence with finite-dimensional C*-algebras.
�

Recall that FHilb is a compact category [29], that is, we can coherently pick a
compact structure on each object as follows. If H is a Hilbert space and H∗ is
its conjugate space, the triple(

H, εH : C→ H∗ ⊗H
1 �→
∑

i |i〉 ⊗ |i〉
,
ηH : H⊗H∗ → C
|ψ〉 ⊗ |φ〉 �→ 〈ψ|φ〉

)
is a compact structure which can be shown to be independent of the choice of
basis–see [13] for more details. We depict the maps εH and ηH respectively as:

and compactness means that they satisfy:

= = .

Each symmetric dagger Fobenius algebra also canonically induces a ‘self-dual’
compact structure. The cups and caps of this compact structure are given by:

:= := ,

and one easily verifies that it follows from the axioms of a symmetric Frobenius
algebra that the required ‘yanking’ conditions hold:

= = .

Compositional Quantum Logic 27

3 Abstract Projections

A projection of a C*-algebra is a *-idempotent. In this section we will recast this
definition in light of Theorem 3, that is, we will identify what these projections
are when a C*-algebra is presented as a symmetric dagger Frobenius algebra in
FHilb, as in [42].

We claim that the projections of a C*-algebra arise as points p : I → H
satisfying:

=

pp p

=
p

(5)

where the symmetric dagger Frobenius algebra is the one induced by Theorem

3. Note that the first condition is simply idempotence of -multiplication of
points, and the second one is self-conjugateness with respect to the compact
structure induced by the symmetric dagger Frobenius algebra. Symbolically, we
denote this conjugate of p as p∗.

A C*-algebra is realised as a symmetric dagger Frobenius algebra as follows.
Each finite dimensional C*-algebra decomposes as a direct sum of matrix al-
gebras. These can then be represented as endomorphism monoids End(H) in
FHilb, which are triples of the following form:(
H∗⊗H , 1H∗⊗ηH⊗1H : (H∗⊗H)⊗(H∗⊗H)→ H∗⊗H , εH : C→ H∗⊗H

)
,

Diagrammatically, for an endomorphism monoid the multiplication and its unit
respectively are:

The elements ρ : Cn → Cn of the matrix algebra are then represented by under-
lying points:

pρ := ρ : C→ (Cn)∗ ⊗ Cn

By compactness, each point of type C→ (Cn)∗⊗Cn is of this form. By Theorem 3
we know that all symmetric dagger Frobenius algebras in FHilb arise in this
manner.

We can now verify the above stated claim on how the projections of a C*-
algebra arise in this representation. For these points pρ the conditions of equa-
tion (5) respectively become:

ρ ρ
=

ρ

ρ
= ρ =

ρ†

=
ρ†

28 B. Coecke, C. Heunen, and A. Kissinger

that is, using again compactness, ρ ◦ ρ = ρ = ρ†, i.e. idempotence and self-
adjointness.

We can now generalise the definition of projection to points p : I → A to

arbitrary symmetric dagger Frobenius algebras (A,) in any dagger symmetric
monoidal category.

Definition 4. A projection of a symmetric dagger Frobenius algebra (A,)
in a dagger symmetric monoidal category C is a morphism p : I → A satisfying
equations (5).

The next section studies the structure of these generalised projections of abstract
C*-algebras.

Before that, we compare abstract projections to copyable points. These played
a key role for commutative abstract C*-algebras, because they correspond to the
elements of an orthonormal basis that determines the algebra [15]. However, as
we will now see, in the noncommutative case, there simply do not exist enough
copyable points (whereas the projections do have interesting structure, as the
next section shows). Recall that a point x : I → A is copyable when the following
equation is satisfied.

=

x x x

(6)

Lemma 5. Copyable points of symmetric dagger Frobenius algebras are central.

Proof. Graphically:

x

=

x

x= x = xx =

x

=

x

.

The middle equation follows from symmetry of (A,).
�

Let us examine what this implies for the example of A = (Cn)∗ ⊗ Cn in FHilb

above. Equivalently, we may speak about n-by-n matrices, so that becomes
actual matrix multiplication. Because it is well known that the central elements
of matrix algebras are precisely the scalars, any copyable point is simply a scalar
by the previous lemma. But substituting back into (6) shows that the only scalar
satisfying this equation is 0 (unless n = 1). That is, no noncommutative sym-
metric dagger Frobenius algebra in FHilb can have nontrivial copyable points.
This explains why we prefer to work with (abstract) projections.

4 Quantum Logics for Abstract C*-Algebras

Definition 6. A zero projection of (A,) is a projection 0: I → A satisfying

0 · p = 0

for all other projections p : I → A of (A,).

Compositional Quantum Logic 29

We will assume that an algebra always has a zero projection.

Definition 7. An orthogonality relation is a binary relation satisfying the fol-
lowing axioms:

– symmetry: a ⊥ b ⇐⇒ b ⊥ a ;
– antireflexivity above zero: a ⊥ a =⇒ a = 0 ;
– downward closure: a ≤ a′, b ≤ b′, a′ ⊥ b′ =⇒ a ⊥ b .

Lemma 8. We have

=

Proof. First, note the following stardard equation for Frobenius algebras:

= = =

Then, the result follows from associativity:

= = = = .

�

Lemma 9. For projections we have:

(i) (p · q)∗ = q∗ · p∗ ;
(ii) If p · q is a projection, then p · q = q · p.

Proof. (i) We have

(p·q)∗ =

⎛⎝
qp

⎞⎠∗ =
p q

=

p q

=

pq

= q∗·p∗ ,

where the middle equation follows from Lemma 8. (ii) If p · q = r then, by self-
conjugateness of projections and (i), q · p = q∗ · p∗ = (p · q)∗ = r∗ = r = p · q.
�

Theorem 10. In a dagger symmetric monoidal category, projections on a sym-
metric dagger Frobenius algebra with a zero projection are partially ordered and
come with an orthogonality relation.

Proof. The order is defined as p ≤ q ⇐⇒ p · q = p. Reflexivity follows by the
idempotence of projections. If p · q = p and q · p = q then by Lemma 9 (ii)
we have p = q, so the order is anti-symmetric. If p · q = p and q · r = q then
p · r = p · q · r = p · q = p, so the order is transitive.

30 B. Coecke, C. Heunen, and A. Kissinger

Orthogonality is defined as p ⊥ q ⇐⇒ p · q = 0. Symmetry follows by Lemma
9 (ii) and anti-reflexivity above 0 by idempotence of projections. If p · p′ = p,
q · q′ = q and p′ · q′ = 0 then p · q = p · p′ · q′ · q = p · 0 · q = p · 0 = 0 where we
twice relied on Lemma 9 (ii).
�

Remark 11. The zero projection guarantees that the partially ordered set has a
bottom element.

Given a symmetric dagger Frobenius algebra (A,), we will denote the partial

order and orthogonality of the previous theorem as Proj(A,). The following
two examples correspond to the “pure classical” and the “pure quantum” in the
“concrete” case of FHilb.

Example 12. Commutative dagger special Frobenius algebras (H,) in FHilb

correspond to orthonormal bases of H [15]. For Proj(H,), we obtain the
atomistic Boolean algebra whose atoms are the 1-dimensional projections on the
basis vectors.

Example 13. If H is a finite-dimensional Hilbert space with any chosen compact
structure on it, then L(H) = (H∗ ⊗H,) is a symmetric dagger Frobenius
algebra in FHilb. For Proj(L(H)) we obtain the usual projection lattice of
projections H → H , the paradigmatic example in [3].

Remark 14. In [11], it is shown that algebras of the form (A∗⊗A,) are those
that realise Selinger’s CPM–construction as a fragment of the encompassing
CP*–construction. The commutative dagger special Frobenius algebras were the
ones used to underpin abstract categories of stochastic maps in [14].

Proposition 15. Let (A,) be any symmetric dagger Frobenius algebra in

any dagger symmetric monoidal category. For p, q ∈ Proj(A,), the following
are equivalent:

(a) p and q commute;

(b) p · q ∈ Proj(A,);

(c) p · q is the greatest lower bound of p and q in the partial order Proj(A,).

Proof. Unfold the definitions of Theorem 10.
�

In general, every commutative monoid of idempotents is a meet-semilattice with
respect to the order p ≤ q ⇐⇒ p · q = p, and if it is furthermore finite, then
it is even a (complete) lattice. As shown in [14], in this case the notion of an
idempotent can be generalised to arbitrary types A → B. Considered together
for all algebras, this always yields a cartesian bicategory of relations in the sense
of Carboni-Walters [5]. The conclusion we draw from the previous proposition is
the following: considering noncommutative algebras obstructs the construction
of the categorical operation of composition.

Compositional Quantum Logic 31

5 Composing Quantum Logics

Given two symmetric dagger Frobenius algebras we can define their tensor as
follows.

(A,)⊗ (B,) := (A⊗B,)

It is easily seen to inherit the entire algebraic structure. So we can define a
compositional structure on the corresponding partial orders with orthogonality
as follows.

Proj(A,)⊗ Proj(B,) := Proj(A⊗ B,) .

By a bi-order map we mean a function of two variables that preserves the order
in each argument separately when the other one is fixed (cf. bilinearity of the
tensor product).

Theorem 16. The following is a bi-order map.

−⊗− : Proj(A,)× Proj(B,)→ Proj(A,)⊗ Proj(B,)

(p, q) �→ p⊗ q

If the monoidal structure moreover preserves zeros, that is, if 0A is a (necessarily
unique) zero with respect to A then for all q : I → B we have that 0A ⊗ q is a
zero with respect to A⊗B, then the map −⊗− also preserves orthogonality in
each component.

Proof. If p · p′ = p then:

(p⊗ q) · (p′ ⊗ q) =
p′p qq

=
p′p qq

= (p · p′)⊗ (q · q) = p⊗ q .

If p · p′ = 0 then (p⊗ q) · (p′ ⊗ q) = (p · p′)⊗ (q · q) = 0A ⊗ q = 0A⊗B.
�

Remark 17. The assumption of the existence of zero projections as well as the
assumption of monoidal structure preserving zeros, are both comprehended by
the single assumption of the existence of a “zero scalar”, that is, a morphism
0I : I → I such that for any other morphisms f, g : A → B we have that
0I ⊗ f = 0I ⊗ g. We can then define zero projections 0A := λA ◦ (0I ⊗ 1A) ◦ λ−1

A

where λA : A � I ⊗A.

6 Commutativity versus Distributivity

Having abstracted projection lattices to the setting of arbitrary dagger symmet-
ric monoidal categories, we can now consider other models than Hilbert spaces.

We will be interested in the category Rel of sets and relations, where the
monoidal structure is taken to be Cartesian product, and the dagger is given by

32 B. Coecke, C. Heunen, and A. Kissinger

relational converse. This setting will provide a counterexample to equation (4).
Here, symmetric dagger Frobenius algebras were identified by Pavlovic (in the
commutative case) and Heunen–Contreras–Cattaneo (in general) in [33] and [25],
respectively. They are in 1-to-1 correspondence with small groupoids. As it turns
out, even in the commutative case, groupoids may yield nondistributive projec-
tion lattices.

Proposition 18. Let G be a groupoid, and (G,) the corresponding sym-

metric dagger Frobenius algebra in Rel. Elements of Proj(G,) are in 1-to-1
correspondence with subgroupoids of G, i.e. subcategories of G that are groupoids
themselves.

Proof. This follows directly from [25, Theorem 16].
�

It immediately follows that in Rel, like in FHilb, the abstract projection lattice
is a complete lattice, even though we are not dealing with finite sets.

Corollary 19. If (G,) is a symmetric dagger Frobenius algebra in Rel, then

Proj(G,) forms a complete lattice.

Proof. The collection of subgroupoids is closed under arbitrary intersections.
�

In fact, for our counterexample to equation (4), it suffices to consider groups
(i.e. single-object groupoids). In this case abstract projections correspond to
subgroups, and it is known precisely under which conditions the lattice of sub-
groupoids is distributive, thanks to the following classical theorem due to Ore.
A group is locally cyclic when any finite subset of its elements generates a cyclic
group.

Theorem 20. The lattice of subgroups of a group G is distributive if and only
if G is abelian and locally cyclic.

Proof. See [32, Theorem 4].
�

Perhaps the simplest example of an abelian group that is not locally cyclic is
Z2 × Z2. It has three nontrivial subgroups, namely:

a := Z2 × {0};
b := {(0, 0), (1, 1)};
c := {0} × Z2.

But evidently distributivity breaks down: a ∧ (b ∨ c) = a �= 0 = (a ∧ b) ∨ (a ∧ c).
By Theorem 20, we know that the converse (distributive =⇒ commutative)

holds for groups, but what about for arbitrary groupoids. Consider the groupoid
with two objects x, y and the only non-identity arrows f : x→ y and f−1 : y →
x. The lattice of subgroupoids has the following Hasse diagram:

Compositional Quantum Logic 33

{1x, 1y, f, f−1}

{1x}

{1x, 1y}

{1y}

∅
which is indeed distributive, but f ◦ f−1 �= f−1 ◦ f . Thus we have proven the
following corollary.

Corollary 21. For symmetric dagger Frobenius algebras (G,) in Rel:

(G,) is commutative
� ��

Proj(G,) is distributive.���

�

Let us finish by remarking on the copyable points in Rel. As in FHilb, they
differ from the projections. But unlike in FHilb, where there are only trivial
copyable points, copyable points in Rel are more interesting, for similar reasons
as the above corollary.

Lemma 22. If (G,) is a symmetric dagger Frobenius algebra in Rel corre-
sponding to a groupoid G, then its copyable points correspond to the connected
components of G.

Proof. A point x of G in Rel corresponds to a subset X ⊆ Mor(G). Copyability
now means precisely that

X2 = {(g, fg−1) | f ∈ X, g ∈Mor(G), dom(f) = dom(g)}.

Hence if f ∈ X , and g ∈ Mor(G) has dom(f) = dom(g), then also g ∈ X .
Because G is a groupoid, this means that X is precisely (the set of morphisms
of a) connected component of G.
�

7 Further Work

From the point of view of traditional quantum logic, a number of questions arise,
in particular about which categorical structure yields which order structure:

– when is the orthogonality relation an orthocomplementation?
– when do we obtain an orthoposet?
– when do we obtain an orthomodular poset?
– when is the partial order a (complete) lattice?
– when is this lattice Boolean, modular or orthomodular?

34 B. Coecke, C. Heunen, and A. Kissinger

Conversely, what does the lattice structure say about the category? An important
first step is the characterisation of dagger Frobenius algebras in more example
categories besides FHilb and Rel.

There is a clear intuition of the comultiplication of the algebra being a “logical
broadcasting operation” in the sense of [17]. A more general question then arises
on the general operational significance of the partial ordering and orthogonality
relation constructed in this paper.

One of the more recent compelling results which emerged from quantum logic
is the Faure-Moore-Piron theorem [19] on the reconstruction of dynamics from
the lattice structure together with the its operational interpretation. A key ingre-
dient is the reliance on Galois adjoints. Does this construction have a counterpart
within our framework, and its (to still be understood) operational significance?

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In:
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS), pp. 415–425. IEEE Computer Society (2004), Extended version:
arXiv:quant-ph/0402130

2. Abramsky, S., Heunen, C.: H*-algebras and nonunital Frobenius algebras: first
steps in infinite-dimensional categorical quantum mechanics. In: Abramsky, S.,
Mislove, M. (eds.) Clifford Lectures. Proceedings of Symposia in Applied Mathe-
matics, vol. 71, pp. 1–24. American Mathematical Society (2012)

3. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals of Math-
ematics 37, 823–843 (1936)

4. Boixo, S., Heunen, C.: Entangled and sequential quantum protocols with dephas-
ing. Physical Review Letters 108, 120402 (2012)

5. Carboni, A., Walters, R.F.C.: Cartesian bicategories I. Journal of Pure and Applied
Algebra 49, 11–32 (1987)

6. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Informational derivation of quantum
theory. Physical Review A 84(1), 012311 (2011)

7. Coecke, B.: Axiomatic description of mixed states from Selinger’s CPM-
construction. Electronic Notes in Theoretical Computer Science 210, 3–13 (2008)

8. Coecke, B.: The logic of quantum mechanics – take II (2012), arXiv:1204.3458
9. Coecke, B., Edwards, B., Spekkens, R.W.: Phase groups and the origin of non-

locality for qubits. Electronic Notes in Theoretical Computer Science 270(2), 15–36
(2011), arXiv:1003.5005

10. Coecke, B., Heunen, C.: Pictures of complete positivity in arbitrary dimension.
Quantum Phsyics and Logic, Electronic Proceedings in Theoretical Computer Sci-
ence 95, 27–35 (2011)

11. Coecke, B., Heunen, C., Kissinger, A.: A category of classical and quantum chan-
nels. In: QPL 2012 (2012)

12. Coecke, B., Kissinger, A.: The compositional structure of multipartite quantum
entanglement. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 297–308. Springer,
Heidelberg (2010), Extended version: arXiv:1002.2540

13. Coecke, B., Paquette, É.O.: Categories for the practicing physicist. In: Coecke, B.
(ed.) New Structures for Physics. Lecture Notes in Physics, pp. 167–271. Springer
(2011), arXiv:0905.3010

Compositional Quantum Logic 35

14. Coecke, B., Paquette, É.O., Pavlović, D.: Classical and quantum structuralism.
In: Gay, S., Mackie, I. (eds.) Semantic Techniques in Quantum Computation,
pp. 29–69. Cambridge University Press (2010), arXiv:0904.1997

15. Coecke, B., Pavlović, D., Vicary, J.: A new description of orthogonal bases.
Mathematical Structures in Computer Science (2011) (to appear), arXiv:quant-
ph/0810.1037

16. Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical foundations for a compositional
distributional model of meaning. Linguistic Analysis (2010)

17. Coecke, B., Spekkens, R.W.: Picturing classical and quantum Bayesian inference.
Synthese 186, 651–696 (2012), arXiv:1102.2368.

18. Duncan, R., Perdrix, S.: Rewriting measurement-based quantum computations
with generalised flow. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 285–296.
Springer, Heidelberg (2010)

19. Faure, C.-A., Moore, D.J., Piron, C.: Deterministic evolutions and Schrödinger
flows. Helvetica Physica Acta 68(2), 150–157 (1995)

20. Foulis, D.J., Randall, C.H.: Operational statistics. I. Basic concepts. Journal of
Mathematical Physics 13(11), 1667–1675 (1972)

21. Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. Journal of
Mathematics and Mechanics 6, 885–893 (1957)

22. Harding, J.: A link between quantum logic and categorical quantum mechanics.
International Journal of Theoretical Physics 48(3), 769–802 (2009)

23. Harding, J.: Daggers, kernels, Baer *-semigroups, and orthomodularity. To appear
in Journal of Philosophical Logic (2010)

24. Hardy, L.: Quantum theory from five reasonable axioms. arXiv:quant-ph/0101012
(2001)

25. Heunen, C., Contreras, I., Cattaneo, A.S.: Relative frobenius algebras are
groupoids. Journal of Pure and Applied Algebra 217, 114–124 (2012)

26. Heunen, C., Jacobs, B.: Quantum logic in dagger kernel categories. Order 27(2),
177–212 (2010)

27. Horsman, C.: Quantum picturalism for topological cluster-state computing. New
Journal of Physics 13, 095011 (2011), arXiv:1101.4722

28. Jacobs, B.: Orthomodular lattices, foulis semigroups and dagger kernel categories.
Logical Methods in Computer Science 6(2), 1 (2010)

29. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. Journal of
Pure and Applied Algebra 19, 193–213 (1980)

30. Ludwig, G.: An Axiomatic Basis of Quantum Mechanics. 1. Derivation of Hilbert
Space. Springer (1985)

31. Mackey, G.W.: The mathematical foundations of quantum mechanics. W. A. Ben-
jamin, New York (1963)

32. Ore, O.: Structures and group theory II. Duke Mathematical Journal 4(2), 247–269
(1938)

33. Pavlovic, D.: Quantum and classical structures in nondeterminstic computation.
In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI
2009. LNCS, vol. 5494, pp. 143–157. Springer, Heidelberg (2009)

34. Piron, C.: Axiomatique quantique. Helvetia Physica Acta 37, 439–468 (1964)
35. Piron, C.: Foundations of quantum physics. W. A. Benjamin (1976)
36. Rédei, M.: Quantum Logic in Algebraic Approach. Kluwer (1998)
37. Selinger, P.: Dagger compact closed categories and completely positive maps.

Electronic Notes in Theoretical Computer Science 170, 139–163 (2007)

36 B. Coecke, C. Heunen, and A. Kissinger

38. Selinger, P.: Idempotents in dagger categories (extended abstract). Electronic Notes
in Theoretical Computer Science 210, 107–122 (2008)

39. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B.
(ed.) New Structures for Physics. Lecture Notes in Physics, pp. 275–337. Springer
(2011), arXiv:0908.3347

40. Solèr, M.P.: Characterization of Hilbert spaces by orthomodular spaces. Commu-
nications in Algebra 23(1), 219–243 (1995)

41. Stubbe, I., van Steirteghem, B.: Propositional systems, Hilbert lattices and gener-
alized Hilbert spaces. In: Lehmann, D., Gabbay, D., Engesser, K. (eds.) Handbook
Quantum Logic, pp. 477–524. Elsevier Publ. (2007),
http://www.mat.uc.pt/~isar/PDF/HilbertLatticesELSEVIER.pdf

42. Vicary, J.: Categorical formulation of finite-dimensional quantum algebras. Com-
munications in Mathematical Physics 304(3), 765–796 (2011)

43. Wigner, E.P.: Gruppentheorie. Friedrich Vieweg und Sohn (1931)

http://www.mat.uc.pt/~{}isar/PDF/HilbertLatticesELSEVIER.pdf

The Algebra of Directed Acyclic Graphs

Marcelo Fiore and Marco Devesas Campos

Computer Laboratory
University of Cambridge

Abstract. We give an algebraic presentation of directed acyclic graph
structure, introducing a symmetric monoidal equational theory whose
free PROP we characterise as that of finite abstract dags with in-
put/output interfaces. Our development provides an initial-algebra
semantics for dag structure.

Keywords: dag, PROP, symmetric monoidal equational theory, bial-
gebra, Hopf algebra, topological sorting, initial-algebra and categorical
semantics.

Dedicated to Samson Abramsky on the occasion of his 60th birthday

1 Introduction

This work originated in a question of Robin Milner in connection to explorations
he was pursuing on possible extensions to his theory of bigraphs [7]. The partic-
ular direction that concerns us here is the generalisation of the spatial dimension
of bigraphs from a tree hierarchy to a directed acyclic graph (dag) structure.

In [6], Milner provided axioms for bigraphical structure, axiomatising tree-
branching structure by means of the equational theory of commutative monoids.
As for the axiomatisation of dag structure, he foresaw that it would also in-
volve the dual theory of commutative comonoids and, in conversation with the
first author, raised the question on how these two structures should interact. In
considering the problem, it soon became clear that the axioms in question were
those of commutative bialgebras (where the monoid structure is a comonoid
homomorphism and, equivalently, the comonoid structure is a monoid homo-
morphism) that are degenerate in that the composition of the comultiplication
followed by the multiplication collapses to the identity. This gives the axiomatics
of wiring for dag structure.

The natural setting for presenting our work is the categorical language of
PROPs; specifically relying on the concept of free PROP, which roughly corre-
sponds to the symmetric strict monoidal category freely generated by a sym-
metric monoidal equational theory. Indeed, our main result characterises the
free PROP on the theory D of degenerate commutative bialgebras with a node
(endomap) as that of finite abstract dags with input/output interfaces, see
Section 5. Let us give an idea of why this is so.

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 37–51, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

38 M. Fiore and M. Devesas Campos

It is important to note that the theory D is the sum of two sub-theories: the
theory R of degenerate commutative bialgebras and the theory N1 of a node
(endomap). Each of these theories captures a different aspect of dag structure.
The free PROP on R provides relational edge structure; while the free PROP
on N1 introduces node structure. Thus, the free PROP on their sum, which is
essentially obtained by interleaving both structures, results in dag structure. A
main aim of the paper is to give a simple technical development that formalises
these intuitions.

This work falls within a central theme of Samson Abramsky’s research: the
mathematical study of syntactic structure, an example of which in the context
of PROs is his characterisation of Temperley-Lieb structure [1].

2 Directed Acyclic Graphs

2.1 Dags

A directed acyclic graph (dag) is a graph with directed edges in which there
are no cycles. Formally, a directed graph is a pair (N,R ⊆ N ×N) consisting
of a set of nodes N and a binary relation R on it that specifies a directed edge
from a node n to another one m whenever (n,m) ∈ R. The acyclicity condition
of a dag (N,R) is ensured by requiring that the transitive closure R+ of the
relation R is irreflexive; i.e. (n, n) /∈ R+ for all n ∈ N .

2.2 Idags

We will deal here with a slight generalisation of the notion of dag. An interfaced
dag (idag) is a tuple of sets I, O,N and a binary relationR ⊆ (I +N)× (O +N),
for + the sum of sets, subject to the acyclicity condition (n, n) /∈ (p ◦R ◦ ı)+ for
all n ∈ N , where the relations i ⊆ N×(I+N) and p ⊆ (O+N)×N respectively
denote the injection of N into I +N and the projection of O +N onto N .

Informally, idags are dags extended with interfaces. An idag (I, O,N,R), also
referred to as an (I, O)-dag, is said to have input interface I and output inter-
face O; N is its set of internal nodes. Fig. 1 depicts two examples with input
and output sets of ordinals, where for n ∈ N we adopt the notation n for the
ordinal {0, . . . , n− 1}.

0

1
k

l

0

1

2

a

b

c

d

0

1

2

0

Fig. 1. A (2, 3)-dag and a (3, 1)-dag

The Algebra of Directed Acyclic Graphs 39

0

1

k l

a b

c d

0

Fig. 2. The concatenation of the idags of Fig. 1

The notion of dag is recovered as that of idag with empty sets of input and
output nodes. Idags also generalise binary relations, as these are in bijective
correspondence with idags without internal nodes.

2.3 Operations on Idags

The extension of dags with interfaces allows for two basic operations on them.
The concatenation operation D′ ◦ D of an (I,M)-dag D = (N,R) and an

(M,O)-dagD′ = (N ′, R′) is the (I, O)-dag that retains the hierarchy information
of both idags except that edges in R from input and internal nodes in D to
intermediate nodes in M become redirected to target internal and output nodes
in D′ as specified by R′. Formally, D′ ◦ D = (N + N ′, R′′) where R′′ is the
composite

I+N+N ′ R+id
�� M+N+N ′ ∼= M+N ′+N

R′+id
�� O+N ′+N ∼= O+N+N ′ .

The juxtaposition operation D ⊕ D′ of an (I, O)-dag D = (N,R) and an
(I ′, O′)-dag D′ = (N ′, R′) is the (I + I ′, O +O′)-dag D ⊕ D′ = (N + N ′, R′′)
where R′′ is the composite

I+ I ′+N +N ′ ∼= I +N + I ′+N ′ R+R′
�� O+N +O′+N ′ ∼= O+O′+N +N ′ .

Thus, juxtaposition puts two idags side by side, without modifying their
hierarchies.

2.4 The Category of Finite Abstract Idags

As we are to look at idags abstractly, we need a notion that identifies those
that are essentially the same. Accordingly, we set two (I, O)-dags (N,R) and
(N ′, R′) to be isomorphic whenever there exists a bijection σ : N ∼= N ′ such
that (id + σ) ◦R = R′ ◦ (id + σ).

Abstract (I, O)-dags are then defined to be equivalence classes of isomorphic
(I, O)-dags. The operations of concatenation and juxtaposition respect isomor-
phism and one can use them to endow abstract idags with the structure of a
symmetric monoidal category. We will restrict attention to the finite case: The
category Dag has objects given by finite sets and homs Dag(I, O) given by

40 M. Fiore and M. Devesas Campos

abstract (I, O)-dags with a finite set of internal nodes. These are equipped with
composition operation given by concatenation and identities given by identity
relations. Furthermore, the juxtaposition operation provides a symmetric tensor
product with unit the empty set.

The aim of the paper is to give an algebraic presentation characterising Dag.
The appropriate setting for establishing our result is that of PROPs, to which
we now turn.

3 Product and Permutation Categories

3.1 PROPs

A PROduct and Permutation category (PROP), see [5], is a symmetric strict
monoidal category with objects the natural numbers and tensor product given
by addition. This definition is often relaxed in practice, allowing symmetric strict
monoidal categories with underlying commutative monoid structure on objects
isomorphic to the commutative monoid of natural numbers. A typical example is
the additive monoid of finite ordinals

(
{n | n ∈ N}, 0,⊕

)
, for which n ⊕ m =

n+m.
The main example of PROP to be studied in the paper follows.

Example. The category Dag is equivalent to the PROP D consisting of its full
subcategory determined by the finite ordinals.

PROPs describe algebraic structure, with the categoryModP(C) of functorial
models of a PROP P in a symmetric monoidal category C given by symmetric
monoidal functors P → C and symmetric monoidal natural transformations
between them.

3.2 Free PROPs

As remarked by Mac Lane in [5], “[a] useful construction yields the free PROP
[. . .] with given generators and relations”; the usefulness residing in it being
“adapted to the study of universal algebra”. We briefly recall the construction
and its universal characterisation.

A signature consists of a set of operators O together with an assignment
O → N× N of arity/coarity pairs to operators. In this context, it is usual to
use the notation o : n→ m to indicate that the operator o is assigned the ar-
ity/coarity pair (n,m). For a signature Σ, we let E(Σ) consist of the expressions
with arity/coarity pairs generated by the language of symmetric strict monoidal
categories with underlying commutative monoid the additive natural numbers
together with the operators in Σ (cf. [3]). A symmetric monoidal presentation
on a signature Σ is then a set of pairs of expressions in E(Σ) with the same
arity/coarity pair. A symmetric monoidal equational theory consists of a signa-
ture together with a symmetric monoidal presentation on it. An algebra for a
symmetric monoidal equational theory (Σ, T) in a symmetric monoidal cate-
gory is an object A equipped with morphisms A⊗n → A⊗m for every operator

The Algebra of Directed Acyclic Graphs 41

of arity/coarity pair (n,m) in Σ such that the interpretation of every equation
in T is satisfied. We write Alg(Σ,T)(C) for the category of (Σ, T)-algebras and
homomorphisms in C .

The free PROP P[Σ, T] on a symmetric monoidal theory (Σ, T) has homs
P[Σ, T](n,m) given by the quotient of the set of expressions E(Σ), with arity n
and coarity m, under the laws of symmetric strict monoidal categories and the
presentation T . It is universally characterised by a natural equivalence

ModP[Σ,T](C) � Alg(Σ,T)(C)

for C ranging over symmetric monoidal categories.

4 Examples of Free PROPs

We give examples of symmetric monoidal equational theories together with ab-
stract characterisations of their induced free PROPs.

4.1 Empty Theory

The free PROP P on the empty symmetric monoidal theory (with no operators
and no equations) is the initial symmetric strict monoidal category, i.e. the
groupoid of finite ordinals and bijections.

4.2 Nodes

For a set L, the free PROP NL on the symmetric monoidal theory of
nodes NL =

(
{λ : 1 → 1 }λ∈L, ∅

)
is the free symmetric strict monoidal cat-

egory on the free monoid (L	, ε, ·). Explicitly, NL has finite ordinals as objects
and homs NL(n,m) = P(n,m) × (L)n with identities (idn, ε) and composi-
tion (τ, w) ◦ (σ, v) =

(
τ ◦ σ, (wσ(i) · vi)0≤i<n

)
.

4.3 Idempotent Objects

The symmetric monoidal theory of an idempotent object has signature with op-
erators Δ : 1→ 2 and ∇ : 2→ 1 subject to the presentation

∇ ◦Δ = id1 : 1→ 1 , Δ ◦ ∇ = id2 : 2→ 2 .

The free PROP V on it is a groupoid, with hom V(1, 1) given by Thompson’s
group V , see [2].

4.4 Commutative Monoids and Commutative Comonoids

The symmetric monoidal theory of commutative monoids has signature with
operators η : 0→ 1 and ∇ : 2→ 1 subject to the presentation

∇ ◦ (η ⊗ id1) = id1 = ∇ ◦ (id1 ⊗ η) : 1→ 1 ,

∇ ◦ (∇⊗ id1) = ∇ ◦ (id1 ⊗∇) : 3→ 1 ,

∇ ◦ γ1,1 = ∇ : 2→ 2

42 M. Fiore and M. Devesas Campos

where γ denotes the symmetry. The free PROP on it is the category of finite
ordinals and functions.

The dual symmetric monoidal theory is that of commutative comonoids. It
has signature with operators ε : 1→ 0 and Δ : 1→ 2 subject to the presentation

(ε ⊗ id1) ◦Δ = id1 = (id1 ⊗ ε) ◦Δ : 1→ 1 ,

(Δ⊗ id1) ◦Δ = (id1 ⊗Δ) ◦Δ : 1→ 3 ,

γ1,1 ◦Δ = Δ : 2→ 2 .

The free PROP on it is of course the opposite of the category of finite ordinals
and functions.

4.5 Commutative Bialgebras

The symmetric monoidal theory B of commutative bialgebras has signature with
operators η : 0→ 1, ∇ : 2 → 1, ε : 1 → 0, and Δ : 1→ 2 subject to the presen-
tation consisting of that of commutative monoids, commutative comonoids, and
the following

ε ◦ η = id0 : 0→ 0 ,

ε ◦ ∇ = ε⊗ ε : 2→ 0 , Δ ◦ η = η ⊗ η : 0→ 2 ,

Δ ◦ ∇ = (∇⊗∇) ◦ (id1 ⊗ γ1,1 ⊗ id1) ◦ (Δ⊗Δ) : 2→ 2 .

The symmetric monoidal theory of degenerate commutative bialgebras extends
the above with the equation

∇ ◦Δ = id1 : 1→ 1 .

The free PROP B on the symmetric monoidal theory of commutative bialge-
bras has homs B(n,m) = Nn×m under matrix composition. Accordingly, the
free PROP R on the symmetric monoidal theory of degenerate commutative
bialgebras is the category of finite ordinals and relations. See e.g. [5, §10], [8],
and [4].

4.6 Commutative Hopf Algebras

The symmetric monoidal theory of commutative Hopf algebras extends that of
commutative bialgebras with an antipode operator s : 1→ 1 subject to the laws:

s ◦ η = η : 0→ 1 , ∇ ◦ (s⊕ s) = s ◦ ∇ : 2→ 1 ,

ε ◦ s = ε : 1→ 0 , (s⊕ s) ◦Δ = Δ ◦ s : 1→ 2 ,

∇ ◦ (s⊕ id1) ◦Δ = η ◦ ε = ∇ ◦ (id1 ⊕ s) ◦Δ : 1→ 1 .

Its free PROP H has homs H(n,m) = Zn×m under matrix composition.1

1 We are grateful to Ross Duncan and Aleks Kissinger for bringing this example to
our attention.

The Algebra of Directed Acyclic Graphs 43

4.7 Commutative Monoids with a Node

The symmetric monoidal theory of commutative monoids with a node is the sum
of the theory of commutative monoids and the theory of a single node. Its free
PROP F has homs consisting of interfaced forests. Precisely, F is the sub-PROP
of D determined by the interfaced dags (N,R) with R a total function, see [6].

5 The Algebra of Idags

5.1 Algebraic structure

The generator 1 of the PROP D carries two important algebraic structures:

1. the degenerate commutative bialgebra

0

η : 0→ 1

0

1

0

∇ : 2→ 1

0

ε : 1→ 0

0

0

1

Δ : 1→ 2

and
2. the node

0 0

λ : 1→ 1

These respectively induce universal injections of PROPs as follows

R

��

N1

����
��
�

D

(1)

The main result of the paper is that together the PROPs R and N1 characterise
the PROP D.

Theorem 1. The PROP D is free on the symmetric monoidal theory D of de-
generate commutative bialgebras with a node (i.e. the sum of the theory R of
degenerate commutative bialgebras and the theory N1 of a node).

The theorem is proved by establishing the universal property of the free PROP
by means of the following lemma, whose proof occupies the rest of the section.

44 M. Fiore and M. Devesas Campos

Lemma 1. The cospan (1) is a pushout of symmetric monoidal categories for
the following span of universal PROP injections

P

����
��
�

���
��

��

R N1

5.2 Categorical Interpretation

We start by giving an interpretation of finite idags on degenerate commutative
bialgebras with a node in arbitrary symmetric monoidal categories. Specifically,
for every D-algebra

(A, ηA : I → A,∇A : A⊗A→ A, εA : A→ I,ΔA : A→ A⊗A, λA : A→ A)

in a symmetric monoidal category C we will define mappings

D�−�A : D(n,m)→ C (A⊗n, A⊗m)

extending the interpretations forR andN1, respectively induced by the R-algebra
(A, ηA,∇A, εA, ΔA) and the N1-algebra (A, λA), as follows

R(n,m)

R�−�A ����
���

���
���

�� D(n,m)

��

N1(n,m)		

N1�−�A

���
���

���
��

C (A⊗n, A⊗m)

For dag structure, in stark contrast with tree structure, there is no direct defini-
tion of the interpretation function by structural induction, and a more involved
approach to defining it is necessary. This proceeds in two steps as follows.

1. We give an interpretation Dσ�D�A parameterised by topological sortings σ
of D.

2. We show that the interpretation is independent of the topological sorting,
in that Dσ�D�A = Dσ′�D�A for all topological sortings σ and σ′ of D.

A topological sorting of a finite (n,m)-dag D = (N,R) is a bijection

σ : [N]→ N , for [N] =
{
0, . . . , |N |−1

}
such that

∀ 0 ≤ i, j < |N |.
(
ı2(σi), ı2(σj)

)
∈ R =⇒ i < j

where ı2 denotes the second sum injection. Every such topological sorting induces
a canonical decomposition in D as follows:

D = Dσ
|N | ◦ (idn+|N |−1 ⊕ λ) ◦Dσ

|N |−1 ◦ · · · ◦ (idn ⊕ λ) ◦Dσ
0 (2)

The Algebra of Directed Acyclic Graphs 45

0

1

2

a

Dσ
0

b

Dσ
1

c

Dσ
2

d

Dσ
3 Dσ

4

0

0

1

2

a

Dσ′
0

c

Dσ′
1

b

Dσ′
2

d

Dσ′
3 Dσ′

4

0

Rσ
1

=

ı4

∪

R
σ
1

Fig. 3. Decompositions of the (3,1)-dag of Fig. 1 for the topological sortings σ =
(a, b, c, d) and σ′ = (a, c, b, d); and the decomposition of an auxiliary relation

where, for 0 ≤ k < |N |, each Dσ
k ∈ D

(
n⊕k, n⊕k⊕1

)
corresponds to the relation

Rσ
k = (ın+k ∪R

σ

k) ∈ R
(
n⊕ k, n⊕ k⊕ 1

)
with ın+k the inclusion relation and R

σ

k

encoding the edges from the input nodes 0 ≤ i < n and the internal nodes σ

for 0 ≤ � < k to the internal node σk; while Dσ
|N | ∈ D

(
n⊕ [N],m

)
corresponds

to the relation Rσ
|N | ∈ R

(
n⊕ [N],m

)
encoding the edges from the input and the

internal nodes to the output nodes. Explicitly, for 0 ≤ k < |N | and 0 ≤ j < m,

– ∀ 0 ≤ i < n. (i, n+ k) ∈ R
σ

k ⇐⇒
(
ı1(i), ı2(σk)

)
∈ R

– ∀ 0 ≤ � < k. (n+ �, n+ k) ∈ R
σ

k ⇐⇒
(
ı2(σ
), ı2(σk)

)
∈ R

– ∀ 0 ≤ i < n. (i, j) ∈ Rσ
|N | ⇐⇒

(
ı1(i), ı1(j)

)
∈ R

– ∀ 0 ≤ � < |N |. (n+ �, j) ∈ Rσ
|N | ⇐⇒

(
ı2(σ
), ı1(j)

)
∈ R

where ı1 and ı2 respectively denote the first and second sum injections. See Fig. 3
for two sample decompositions.

46 M. Fiore and M. Devesas Campos

Rσ
1 Rσ

2

=

Rσ′
1 Rσ′

2

(a) Rσ
2 ◦ Rσ

1 = (id⊕ γ) ◦Rσ′
2 ◦ Rσ′

1

Rσ
3

=

Rσ′
3

(b) Rσ
3 ◦ (id⊕ γ) = (id⊕ γ⊕ id) ◦Rσ′

3

Rσ
4

=

Rσ′
4

(c) Rσ
4 ◦ (id⊕ γ ⊕ id) = Rσ′

4

b

Dσ
2

=

b

Dσ
2

(d) Dσ
2 ◦ (id⊕λ) = (id⊕λ⊕ id1)◦Dσ

2

Fig. 4. Graphical demonstration of the identities in Lemma 2 for the (3,1)-dag of Fig. 1

For a finite (n,m)-dag D, we are led to define Dσ�D�A : A⊗n → A⊗m as the
composite

R�Rσ
|N |�A ◦ (idn+|N |−1 ⊗ λA) ◦ R�Rσ

|N |−1�A ◦ · · · ◦ (idn ⊗ λA) ◦ R�Rσ
0 �A .

The above definitions have been specifically chosen so that the properties to
follow are readily established.

A first remark is that the interpretation is invariant under isomorphism.

Proposition 1. Let D = (N,R) and D′ = (N ′, R′) be two finite (n,m)-dags
isomorphic by means of a bijection β : N ∼= N ′. If σ is a topological sorting of
D, then σ′ = β ◦ σ is a topological sorting of D′ and Dσ�D�A = Dσ′�D′

�A.

Proof. Because one has by construction that Rσ
i = R′σ′

i for all 0 ≤ i ≤ |N |.

The Algebra of Directed Acyclic Graphs 47

More fundamental is the independence of the interpretation under topological
sorting.

Lemma 2. Let σ and σ′ be two topological sortings of a finite (n,m)-dag D =
(N,R) with |N | ≥ 2. If σ and σ′ differ only by the transposition of two adjacent
indices, say σ′

i = σi+1 and σ′
i+1 = σi for 0 ≤ i < |N | − 1, then the following

identities hold:

1. Rσ
j = Rσ′

j for all 0 ≤ j < i,

2. Rσ
i+1 ◦Rσ

i = (idn+i ⊕ γ) ◦Rσ′
i+1 ◦Rσ′

i ,

3. Rσ
j ◦(idn+i⊕γ⊕ idj−i−2) = (idn+i⊕γ⊕ idj−i−1)◦Rσ′

j for all i+1 < j < |N |,

4. Rσ
|N | ◦ (idn+i ⊕ γ ⊕ id|N |−i−2) = Rσ′

|N |,

5. R�Rτ
i+1� ◦ (idA⊗n+i ⊗ λA) = (idA⊗n+i ⊗ λA ⊗ idA) ◦ R�Rτ

i+1� for τ = σ, σ′.

Proof. The identities (1–4) follow by construction. Identity (5) is a consequence of
the following general fact: for everyR ∈ R(k + 1, k + 2) such that, for all j ∈ k + 2,
(k, j) ∈ R iff j = k one has R = (idk ⊕ γ) ◦ (R′ ⊕ id1) for R

′ ∈ R(k, k + 1); so
that, for all f : A→ A,

R�R�A ◦ (idA⊗k ⊗ f) = (idA⊗k ⊗ γ) ◦ (R�R′
�A ⊗ idA) ◦ (idA⊗k ⊗ f)

= (idA⊗k ⊗ γ) ◦ (idA⊗k+1 ⊗ f) ◦ (R�R′
�A ⊗ idA)

= (idA⊗k ⊗ f ⊗ idA) ◦ (idA⊗k ⊗ γ) ◦ (R�R′
�A ⊗ idA)

= (idA⊗k ⊗ f ⊗ idA) ◦ R�R�A

Proposition 2. For any two topological sortings σ, σ′ of a finite (n,m)-dag D,

Dσ�D�A = Dσ′�D�A : A⊗n → A⊗m .

Proof. It is enough to establish the equality for σ and σ′ as in the hypothesis of
Lemma 2. Let us then assume this situation.

By Lemma 2 (1), we have

(id⊗ λA) ◦ R�Rσ
i−1�A ◦ · · · ◦ (id⊗ λA) ◦ R�Rσ

0 �A

= (id⊗ λA) ◦ R�Rσ′
i−1�A ◦ · · · ◦ (id⊗ λA) ◦ R�Rσ′

0 �A

so that we need only show

R�Rσ
|N |�A ◦ (id⊗ λA) ◦ R�Rσ

|N |−1�A ◦ · · · ◦ (id⊗ λA) ◦ R�Rσ
i �A

= R�Rσ′
|N |�A ◦ (id⊗ λA) ◦ R�Rσ′

|N |−1�A ◦ · · · ◦ (id⊗ λA) ◦ R�Rσ′
i �A

48 M. Fiore and M. Devesas Campos

For this we calculate in three steps as follows:

1. (id⊗ λA) ◦ R�Rσ
i+1�A ◦ (id⊗ λA) ◦ R�Rσ

i �A

= (id⊗ λA) ◦ (id⊗ λA ⊗ idA) ◦ R�Rσ
i+1�A ◦ R�Rσ

i �A

, by Lemma 2 (5)

= (id⊗ λA) ◦ (id⊗ λA ⊗ idA) ◦ (id⊗ γ) ◦ R�Rσ′
i+1�A ◦ R�Rσ′

i �A

, by Lemma 2 (2)

= (id⊗ γ) ◦ (id⊗ λA) ◦ (id⊗ λA ⊗ idA) ◦ R�Rσ′
i+1�A ◦ R�Rσ′

i �A

= (id⊗ γ) ◦ (id⊗ λA) ◦ R�Rσ′
i+1�A ◦ (id⊗ λA) ◦ R�Rσ′

i �A

, by Lemma 2 (5)

2. (idA⊗n+|N|−1 ⊗ λA) ◦ R�Rσ
|N |−1�A ◦ · · ·

· · · ◦ (idA⊗n+i+2 ⊗ λA) ◦ R�Rσ
i+2�A ◦ (idA⊗n+i ⊗ γ)

= (idA⊗n+|N|−1 ⊗ λA) ◦ R�Rσ
|N |−1�A ◦ · · ·

· · · ◦ (idA⊗n+i+2 ⊗ λA) ◦ (idA⊗n+i ⊗ γ ⊗ idA) ◦ R�Rσ′
i+2�A

, by Lemma 2 (3)

= (idA⊗n+|N|−1 ⊗ λA) ◦ R�Rσ
|N |−1�A ◦ · · ·

· · · ◦ (idA⊗n+i ⊗ γ ⊗ idA) ◦ (idA⊗n+i+2 ⊗ λA) ◦ R�Rσ′
i+2�A

...

= (idA⊗n+i ⊗ γ ⊗ idA⊗|N|−i−2) ◦ (idA⊗n+|N|−1 ⊗ λA) ◦ R�Rσ′
|N |−1�A ◦ · · ·

· · · ◦ (idA⊗n+i+2 ⊗ λA) ◦ R�Rσ′
i+2�A

3. R�Rσ
|N |�A ◦ (idA⊗n+i ⊗ γ ⊗ idA⊗|N|−i−2) = R�Rσ′

|N |�A , by Lemma 2 (4)

5.3 Compositionality

We show that the interpretation of finite idags is compositional for the operations
of concatenation and juxtaposition.

Proposition 3. Let D = (N,R) be a finite (n,m)-dag topologically sorted by σ
and D′ = (N ′, R′) a finite (m, �)-dag topologically sorted by σ′. Write σ′/σ for
the topological sorting of the concatenation (n, �)-dag D′ ◦ D = (N + N ′, R′′)
according to σ and then σ′ (that is, with (σ′/σ)i = σi for 0 ≤ i < |N | and
(σ′/σ)|N |+j = σ′

j for 0 ≤ j < |N ′|). Then,

Dσ′�D′
�A ◦ Dσ�D�A = Dσ′/σ�D′ ◦D�A .

Proof. The result follows from the definition of the interpretation function and
the following identities:

1. Rσ
i = R′′(σ′/σ)

i for all 0 ≤ i < |N |,

The Algebra of Directed Acyclic Graphs 49

2. R′σ′
j ◦
(
Rσ

|N | ⊕ idj
)
=
(
Rσ

|N | ⊕ idj+1

)
◦R′′(σ′/σ)

|N |+j for all 0 ≤ j < |N ′|,

3. R′σ′
|N ′| ◦

(
Rσ

|N | ⊕ id|N ′|
)
= R′′(σ′/σ)

|N+N ′|.

Proposition 4. Let D = (N,R) be a finite (n,m)-dag topologically sorted by
σ and let D′ = (N ′, R′) be a finite (n′,m′)-dag topologically sorted by σ′. The
(n+ n′,m+m′)-dag D ⊕D′ = (N +N ′, R′′) obtained by juxtaposition is topo-
logically sorted by σ′/σ and

Dσ�D�A ⊗Dσ′�D′
�A = Dσ′/σ�D ⊕D′

�A .

Proof. The result follows from the definition of the interpretation function and
the following identities:

1. R′′(σ′/σ)
i = Rσ

i for all 0 ≤ i < |N |,
2. R′′(σ′/σ)

|N |+j = idn+|N | ⊕ R′σ′
j for all 0 ≤ j < |N ′|,

3. R′′(σ′/σ)
|N+N ′| = Rσ

|N | ⊕R′σ′
|N ′|.

Proof (of Lemma 1). For a cone

P

����
��
�

G

��

���
��

��

R

F ��

 N1

H����
��
�

C

of symmetric monoidal categories, consider the D-algebra

A = G1

ηA = (I ∼= F0
Fη

�� A) , ∇A = (A⊗A ∼= F (2)
F∇ �� A)

εA = (A
Fε �� F0 ∼= I) , ΔA = (A

FΔ �� F (2) ∼= A⊗A)

λA = (A
Hλ �� A)

and define the unique mediating functor D → C to map D ∈ D(n,m) to the
composite

D�D�A =
(
G(n) ∼= A⊗n Dσ�(N,R)�A

�� A⊗m ∼= G(m)
)

for a topological sorting σ of a representation (N,R) of the abstract idag D.
(The symmetric monoidal structure of this functor is inherited from that of G.)

6 Conclusion

We have given an algebraic presentation of dag structure in the categorical lan-
guage of PROPs, establishing that the PROP of finite abstract interfaced dags

50 M. Fiore and M. Devesas Campos

is universally characterised as being free on the symmetric monoidal equational
theory of degenerate commutative bialgebras with a node. A main contribution
in this respect has been a simple proof that provides an initial-algebra semantics
for dag structure.

The technique introduced in the paper is robust and can be adapted to a va-
riety of similar results. Firstly, one may drop the degeneracy condition on bial-
gebras. In this case, the free PROP on the sum of the symmetric monoidal equa-
tional theories B and N1 consists of idags with edges weighted by positive natural
numbers. These can be formalised as structures

(
I, O,N,R ∈ N(I+N)×(O+N)

)
such that

(
I, O,N, {(x, y) | R(x, y) �= 0}

)
is an idag. Secondly, one may in-

troduce an antipode operator. In this case, the free PROP on the sum of the
symmetric monoidal equational theories H and N1 consists of idags with edges
weighted by non-zero integers. Analogously, these can be formalised as struc-
tures

(
I, O,N,R ∈ Z(I+N)×(O+N)

)
such that

(
I, O,N, {(x, y) | R(x, y) �= 0}

)
is

an idag. Of course, these two weightings respectively come from the structure of
B and H, see §§ 4.5 and 4.6. Finally, one may generalise from N1 to NL for a
set of labels L. The resulting free PROPs consist of the appropriate versions of
L-labelled idags.

In another direction, one may consider extending the symmetric monoidal the-
ory D with equations involving the node. As suggested to us by Samuel Mimram,
an interesting possibility is to introduce the equation

λ = ∇ ◦ (λ⊕ id1) ◦Δ : 1→ 1 .

According to the canonical decomposition (2), the effect of this equation on the
free PROP D is to force on idags D the identification

D = Dσ
|N | ◦ (idn+|N |−1 ⊕ λ) ◦Dσ

|N |−1 ◦ · · · ◦ (idn ⊕ λ) ◦Dσ
0

= Dσ
|N | ◦
(
idn+|N |−1 ⊕ (∇ ◦ (λ⊕ id1) ◦Δ)

)
◦Dσ

|N |−1 ◦ · · ·

· · · ◦
(
idn ⊕ (∇ ◦ (λ⊕ id1) ◦Δ)

)
◦Dσ

0

= D+

for D+ the transitive closure of D. The free PROP consists then of transitive
idags. For another example, one may consider introducing the equations

λ ◦ η = η : 0→ 1 , ε ◦ λ = ε : 1→ 0 .

The resulting free PROP is that of idags with no dangling internal nodes.

References

[1] Abramsky, S.: Temperley-Lieb algebra: from knot theory to logic and computation
via quantum mechanics. In: Mathematics of Quantum Computing and Technology,
pp. 515–558 (2007)

The Algebra of Directed Acyclic Graphs 51

[2] Fiore, M., Leinster, T.: An abstract characterization of Thompson’s group F . Semi-
group Forum 80, 325–340 (2010)

[3] Jay, C.B.: Languages for monoidal categories. Journal of Pure and Applied Alge-
bra 59, 61–85 (1989)

[4] Lack, S.: Composing PROPs. Theory and Applications of Categories 13(9), 147–163
(2004)

[5] Mac Lane, S.: Categorical algebra. Bulletin of the American Mathematical Soci-
ety 71(1), 40–106 (1965)

[6] Milner, R.: Axioms for bigraphical structure. Mathematical Structures in Computer
Science 15(6), 1005–1032 (2005)

[7] Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press (2009)

[8] Pirashvili, T.: On the PROP corresponding to bialgebras. Cahiers de Topologie et
Géométrie Différentielle Catégoriques 43(3), 221–239 (2002)

Diagrammatic Reasoning

for Delay-Insensitive Asynchronous Circuits

Dan R. Ghica

University of Birmimingham

Abstract. In this paper we construct a new trace model of delay-
insensitive asynchronous circuits inspired by Ebergen’s model in such
a way that it satisfies the compositional properties of a category, with
additional monoidal structure and further algebraic properties. These
properties taken together lay a solid mathematical foundation for a di-
agrammatic approach to reasoning about asynchronous circuits, which
represents a formalisation of common intuitions about asynchronous cir-
cuits and their properties.

1 Asynchronous Circuits

In the last few decades interest in asynchronous digital design ebbed and flowed.
On the one hand, many studies have identified a great promise in asynchronous
circuits, in particular low power consumption and modularity. On the other hand
problems such as large silicone footprint and difficulties of fabrication hampered
the adoption of asynchronous technology into the mainstream. These are just
some of the well known advantages and disadvantages of the technology [1].

Another challenge raised by asynchronous design is that of reasoning about
the correctness of circuits, and it has attracted a great deal of research interest.
Several models of asynchronous circuits exists, such as Huffman [2] and burst-
mode circuits [3], which fall in the broader category of bounded-delay circuits,
and delay-insensitive circuits, of which a notable version are the so-called mi-
cropipelines [4].

The bounded-delay model takes explicitly into account the precise propagation
delays of signals along circuit paths, or at least bounds on these delays. This is
a fairly obvious model, but it has serious disadvantages. The first one is that
computing delays is complicated, as propagation delays in a circuit can be data-
dependent. The second one is that reasoning needs to be “geometric” rather
than “topological”, as wire lengths are highly relevant. This means that accurate
reasoning can only be made after a circuit is placed and routed. Because one
logical design can have a large number of concrete instantiations (layouts) this
low-level way of reasoning is highly undersirable.

Far more attractive is the delay-insensitive model, which aims to design cir-
cuits that behave well no matter what the delays in the circuit. This is the
model we will focus on. Typically, delay insensitive circuits are constructed out
of a fixed set of primitive gates. Some of the most common are:

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 52–68, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits 53

C

The Muller C-element is the typical synchronisation gate. It pro-
duces an output if it receives signals on both inputs.

X
The exclusive or is a merging gate, which outputs if it receives a
signal on either input.

T

The toggle gate alternates (deterministically or nondeterministi-
cally) between the two outputs whenever it receives an input.

The forking wire can be seen as a gate which duplicates its input
signal.

By signal we understand either a high-to-low or a low-to-high change in voltage
on a pin. Other more complex gates can be introduced either as primitives or
constructed out of these.

The main correctness challenge of the design of asynchronous circuits is to
avoid so called “glitches”: two signals which travel along the same wire can, if
too close to each other, cancel each other out:

The reason is that the wires in a circuit are not ideal conductors but have
capacitance, which acts like an inertial delay. If the signals are too close, they
are “absorbed” by the capacitive inertia. A typical glitchy circuit is the one
below:

X

If the two wires going into the xor gate have different enough delays the circuit
will output two signals, otherwise it will produce no output.

1.1 Ebergen’s Trace Model

Glitchy circuits are obviously undersirable. In order to assess the absence of
glitches a circuit must be modeled. The most widely used is a trace model due to
Ebergen [5]. We will present it briefly below. ByK : A1⊗· · ·⊗Am → A′

1⊗· · ·⊗A′
n

let us denote a circuit K with inputs A1, . . . , Am and outputs A′
1, . . . , A

′
n and

let us denote by �K� the set of traces modelling that circuit, where each event
represents an input/output on the port as identified by the label in the signature.
Using the notation of regular expressions extended with interleaving (− |−) and
prefix closure ([−]), the basic gates given above are modelled as:

�C : A1 ⊗A2 → A′
� =
[
((A1 |A2) · A′)∗

]
�X : A1 ⊗A2 → A′

� =
[
(A1A

′ +A2A
′)∗
]

�T : A→ A′
1 ⊗A′

2� =
[
(AA′

1 +AA′
2)

∗]
�F : A→ A′

1 ⊗A′
2� =
[
(A · (A′

1 |A′
2))

∗].

54 D.R. Ghica

A trace model is also given for the wire:

�W : A→ A′
� =
[
(AA′)∗

]
.

The composition on a common port is the usual “synchronisation and hiding”
used in trace models of processes such as CSP [6,7] and it can be used to model
larger circuits.

Although the Ebergen trace model is useful and useable, it has practical and
mathematical disadvantages. The behaviour of circuits is not fully defined, e.g. it
is assumed that a Fork will not receive two consecutive inputs unless an output
intervenes. This indeed corresponds to safe, glitch-free behaviour. However, in
order to verify whether a circuit is safe, the formula for (de)composition needs
to be elaborated and we must verify that, indeed, the outputs from one circuit
do not violate the input assumptions on the other. Technically this is done by
showing that there exists a correct projection of the composite traces onto the
components. This is an awkward semantic condition of correctness, very difficult
to check either by hand or automatically.

Another technical shortcoming of the Ebergen trace model is that the wire
model is not an identity for composition because input-output alternation is
not preserved automatically by composition. Composing W : A1 → A2 with
W ′ : A2 → A3 allows the production of traces such as A1A1A3A3, which project
correctly on the components but are not themselves wire-like in behaviour. This
means that Wire is not even idempotent. This technical problem becomes an
issue if we aim to structure asynchronous circuits into a category which, as
discussed below, is highly desirable.

2 Preliminaries

Let in : A → A + B be the usual injection and out : A + B ⇀ A be its section
(a partial function). If f : A ⇀ B is a (partial) function let f∗ : A∗ → B∗ be
the (total) function defined as its point-wise lifting to the corresponding free
monoids.

f∗(ε) = ε

f∗(a · w) = f(a) · f∗(w) if f is defined at a ∈ A

f∗(a · w) = f∗(w) if f is not defined at a.

Let ι : A∗ → (A+B)∗ be the retraction of the point-wise lifting of out : A+B ⇀
A and let ω = out∗ : (A + B)∗ → A∗. If f ⊆ (X + Y)∗ and g ⊆ (Y + Z)∗ we
define f ||Y g = ω(ι1(f) ∩ ι2(g)) = (f ; ι1 ∩ g; ι2);ω where ι1 : (X + Y)∗ →
(X+Y +Z)∗, ι2 : (Y +Z)∗ → (X+Y +Z)∗, ω : (X+Y +Z)∗ → (X+Z)∗. Note
above that it is often convenient to write function application in diagrammatic
order, i.e. f(g(a)) = a; g; f .

We call ι : A∗ → (A+B)∗ the injection of A into A+B, ω : (A+B)∗ → A∗

the projection of A+B onto A, and f ||Y g the composition of f and g on Y . In
general we will use the following notations:

Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits 55

ωX
XY = ω : (X + Y)∗ → X∗ ιXY

X = ι : X∗ → (X + Y)∗.

The following properties are immediate.

Lemma 2.01. 1. ωX
XY ; ι

XZ
X = ιXY Z

XY ;ωXZ
XY Z .

2. for any f, g ⊆ X∗, (f ∩ g); ιXY
X = f ; ιXY

X ∩ g; ιXY
X .

3. for any f ⊆ (X + Y)∗, g ⊆ Y ∗, (f ;ωX
XY ∩ g) = (f ∩ g; ιXY

X);ωX
XY .

Lemma 2.02. Composition is associative, i.e. for any f ⊆ (X + Y)∗, g ⊆ (Y +
Z)∗, h ⊆ (Z + U)∗ we have that f ||Y g ||Z h = f ||Y (g ||Z h).

Proof.

LHS = ((f ; ιXY Z
XY ∩ g; ιXY Z

Y Z);ωXZ
XY Z ; ιXZU

XZ ∩ h; ιXZU
ZU);ωXU

XZU

= ((f ; ιXY Z
XY ∩ g; ιXY Z

Y Z); ιXY ZU
XY Z ;ωXZU

XY ZU ∩ h; ιXZU
ZU);ωXU

XZU from Lem. 2.01(1)

= ((f ; ιXY Z
XY ; ιXY ZU

XY Z ∩ g; ιXY Z
Y Z ; ιXY ZU

XY Z);ωXZU
XY ZU ∩ h; ιXZU

ZU);ωXU
XZU from Lem. 2.01(2)

= (f ; ιXY Z
XY ; ιXY ZU

XY Z ∩ g; ιXY Z
Y Z ; ιXY ZU

XY Z ∩ h; ιXZU
ZU);ωXZU

XY ZU ;ωZU
XZU from Lem. 2.01(3)

= (f ; ιXY ZU
XY ∩ g; ιXY ZU

Y Z ∩ h; ιXY ZU
ZU);ωXU

XY ZU from Lem. 2.01(2)

= RHS,

which can be brought to the same “ternary composition” form following similar
algebraic manipulations.

The interleaving of two strings is a language which we define inductively on the
length of the two strings. For sets it is applied pointwise to all pairs of strings.

ε | ε = ε

XW |X ′W ′ = X · (W |X ′W ′) +X ′ · (XW |W ′)

f | g =
⋃

W∈f,W ′∈g

W |W ′.

Note that:

Proposition 2.03. If f : X → Y and f ′ : X ′ → Y ′ with X,X ′, Y, Y ′ all
mutually disjoint then f | f ′ = f ||∅ f ′.

3 An Affine Model

In this section we will develop a simple, idealised model of asynchronous circuits
in which there exists an idealised wire component behaving like a genuine iden-
tity. The model is developed in two stages. First we examine an affine use model
in which every input is received at most once. This model is a simplified version
of Ebergen’s trace model. In subsequent sections we lift the model to a setting
in which inputs can be received an arbitrary number of times. Unlike Ebergen’s
model, there will be no assumption of seriality, i.e. several inputs can be pro-
cessed before the output is issued. The idealised wire model is the key component

56 D.R. Ghica

that allows the structuring of the model in a category. However, as explained in
the previous section, this model is physically unrealisable, a weakness which we
remedy separately.

The basic gates given above are modelled as before, except that Kleene and
prefix closure are not required:

�C : A1 ⊗A2 → A′
� = (A1 |A2) · A′

�X : A1 ⊗A2 → A′
� = A1A

′ +A2A
′

�T : A→ A′
1 ⊗A′

2� = AA′
1 +AA′

2

�F : A→ A′
1 ⊗A′

2� = A · (A′
1 |A′

2)

�W : A→ A′
� = AA′

�U : ∅ → A� = ε

�E : A→ ∅� = A

�P : ∅ → A� = A.

In addition to the conventional gates we also have an open connector (W), a
“dangling-input” connector (U) and a “dangling-output” connector (E). Finally,
we have a one-pulse generator component P .

We introduce the following notations. If f ⊆ (X + Y)∗ we write f : X → Y .

If f : X → Y, g : Y → Z, with X,Y, Z mutually disjoint, then f ; g
def
= f ||Y g.

For any f : X → Y, f ′ : X ′ → Y ′, with X,X ′, Y, Y ′ mutually disjoint, then

f ⊗ g
def
= (f ; inl∗) ||∅ (g; inr∗). It is immediate that in this case f ; g : X → Z and

f ⊗ g : X +X ′ → Y + Y ′.
The definition of wire can be extended in the obvious way to that of a bus.

W 0 : ∅ → ∅, W 0 def
= id∅

W k : A1 ⊗ · · · ⊗ Ak → A′
1 ⊗ · · · ⊗A′

k, W k def
= W k−1 ⊗W.

Theorem 3.04. Affinely-used asynchronous circuits form category, which we
shall call AffAsy, where

1. Objects are ports of shape A1 ⊗ · · · ⊗An.
2. Morphisms f : X → Y are sets of traces f ⊆ (X + Y)∗.
3. Composition of morphisms f : X → Y, g : Y → Z is defined as f ; g = f ||Y g.
4. The identity morphism on X is Wn if X = A1 ⊗ · · · ⊗An.

Proof. The associativity of composition is Lem. 2.02. The fact that Wn is an
identity is immediate.

Theorem 3.05. AffAsy is a symmetric monoidal category where

1. The tensor of two objects is X ⊗ Y = X + Y .
2. The tensor of two morphisms f : X → Y, g : Y → Z is f ⊗ g : X ⊗X ′ →

Y ⊗ Y ′.
3. The unit object is ∅.

Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits 57

4. The associator, left identity, right identity and symmetry are the correspond-
ing isomorphisms for disjoint sum, lifted pointwise to sequences.

Proof. We show that ⊗ is functorial for composition, i.e. if f : X → Y, g : Y →
Z, f ′ : X ′ → Y ′, g′ : Y ′ → Z ′, then (f ⊗ f ′); (g ⊗ g′) = f ; f ′ ⊗ g; g′. Lets write
U = X +X ′ + Y + Y ′ + Z + Z ′. Expanding the definitions, the LHS is

((f ; inl; ιXX′Y Y ′
XY ∩ f ′; inr; ιXX′Y Y ′

X′Y ′); ιUXX′Y Y ′

∩ (g; inl; ιY Y ′ZZ′
Y Z ∩ g′; inr; ιY Y ′ZZ′

Y ′Z′); ιUY Y ′ZZ′);ωXX′ZZ′
U

We use Lem. 2.01(2) and we combine consecutive injections to rewrite LHS as

LHS = (f ; inl; ιUXY ∩ f ′; inr; ιUX′Y ′ ∩ g; inl; ιUYZ ∩ g′; inr; ιUY ′Z′);ωXX′ZZ′
U

Using similar algebraic manipulations the RHS can be brought to the same form.
The functoriality of ⊗ on identity is by definition. The coherence properties

are the same as for disjoint sum and are preserved by point-wise lifting.

This model is, of course, limited in that it gives the wrong result for glitchy
circuits, which do not behave in an affine way. For example F ;X = ∅, which
can be interpreted as the fact that this composition has no “safe” traces. An
additional serious limitation is that linearity cannot model circuits where the
output is fed back into an input port.

However, this model is a stepping stone which we shall elaborate towards more
realistic behaviours in a way in which basic algebraic properties are preserved.
Here are some of the main such properties.

Theorem 3.06. In AffAsy

1. (A,X,U) is a commutative monoid, with T a retract of X.

Associativity (W ⊗X);X = (X ⊗W);X.

X

X X

X
=

Unit (U ⊗W);X = (W ⊗ U);X = W .

X X= =

Commutativity γA;X = X.

X = X

Retract T ;X = W .

XT =

58 D.R. Ghica

2. (A,C, P) is a commutative monoid with U an absorbing element.

Associativity (W ⊗ C);C = (C ⊗W);C.

C

C

C

C
=

Unit (P ⊗W);C = (W ⊗ P);C = W

C
C

= =

P

P

Commutativity γA;C = C.

C C=

Absorbing element (W ⊗ U);C = (U ⊗W);C = U

C C= =

3. (A,F,E) is a co-commutative co-monoid, with C a section of F .

Co-associativity F ; (F ⊗W) = F ; (W ⊗ F).

=

Co-unit F ; (W ⊗ E) = F ; (E ⊗W).

= =

Co-commutativity F ; γA = F .

=

Section F ;C = W

C =

The non-trivial interplay of the basic gates gives rise to a richer algebraic struc-
ture:

Theorem 3.07. 1. (A,X,E, F, U) is a bialgebra.
Distributivity X ;F = (F ⊗ F); (W ⊗ γA ⊗W); (X ⊗X).

X

X

X

=

Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits 59

Unit E;F = E ⊗ E.

X =

Co-unit X ;U = U ⊗ U .

=

2. (A,C, F,X) is a Laplace pairing (in the sense of Rota, as per [9]).

(X ⊗W);C = (W ⊗W ⊗ F); (W ⊗ γA ⊗W); (C ⊗ C);X.

X

C

C

C

X=

Proof. The proof is immediate from definitions.

The notion of Laplace pairing above is “categorified” in the obvious way from
the conventional algebraic formulation: (x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z).

The proofs of Thm. 3.06 and Thm. 3.07 are immediate from definitions and
only involve simple calculations. Note that all the compositions above are “safe”
in the sense that “no traces are lost in the composition”. In Ebergen’s termi-
nology, the interaction between components has no computation interference.
Exploiting equality in the presence of “interference” would allow us to introduce
more equations (e.g. T ;C = ∅ = F ;X), but we will see in the following section
why such equations are not interesting.

4 An Interleaved Model

4.1 An Idealised Wire Model

The next step is to “lift” the model from the previous affine use to unrestricted
use. Given a set of traces f we define !f as the smallest set of traces containing
f , closed under self-interleaving. We define closure under self-interleaving as:
f0 = ∅, fk = f | fk−1, !f =

⋃
i≥0 f

i. Note that if f : X → Y then !f : X → Y .
We define C = !C, X = !X , T = !T , F = !F , W = !W , U = !U , E = !E,
P = !P , the models of basic components, closed under self-interleaving. This is
a crucial difference between this model and Ebergen’s, we do not assume serial
use. However, the consequence is that the wire W has the physically unrealistic
behaviour of an infinite-bounded buffer which can receive (and store) any n
signals as inputs before issuing them as outputs.

Definition 4.11. We say that f : X → Y, g : Y → Z compose safely if and
only if !(f ; g) = !f ; !g.

60 D.R. Ghica

Our notion of safety corresponds to Ebergen’s computational noninterference.
We can see that T ;C = !(T ;C) = ∅, whereas T;C includes traces such as AAA′,
with A the input and A′ the output of the composition.

Lemma 4.12. All the compositions in Thms. 3.06 and 3.07 are safe in the sense
of Def. 4.11.

Proof. Immediate, by inspection.

Lemma 4.13. If f : X → Y, f ′ : X ′ → Y ′ then !(f ⊗ g) = !f ⊗ !g.

Proof. Immediate from Prop. 2.03.

Theorem 4.14. Asynchronous circuits with an interleaved model form a com-
pact closed category, called IdAsy where

– composition is defined as in AffAsy;
– identity is W;
– the structural monoidal morphisms (associator, left identity, right identity,

symmetry, unit, co-unit) are obtained by applying !− to the corresponding
structural morphisms in AffAsy;

– objects are self-dual A∗ = A;
– the unit ηA : I → A∗

1 ⊗ A2 and the co-unit εA : A∗
1 ⊗A2 → I have the same

sets of traces as the identity W : A1 → A2.

In the compact-closed category it is convenient to define the dual of a morphism
f : A→ B as f∗ : B∗ → A∗, f∗ = (ηA ⊗ idB∗); (idA∗ ⊗ f ⊗ idB∗); (idA∗ ⊗ εB∗).
This construct has an intuitive diagrammatic representation:

fA B f*

A*

B*

Note that:

Lemma 4.15. U∗ = E.

Theorem 4.16. The algebraic structure of AffAsy is preserved by interleaving
(!−) in IdAsy:

– (A,X,U) is a commutative monoid with T a retract of X.
– (A,C,P) is a commutative monoid with U an absorbing element.
– (A,F,E) is a co-commutative co-monoid with C a section of F
– (A,X,E,F,U) is a bialgebra.
– (A,C,F,X) is a Laplace pairing.

Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits 61

Proof. Composition in IdAsy is defined like in AffAsy and it is associative.
W is an identity immediately from Lem. 4.14(1) because composition with W
is safe for any morphism. Similarly, all the equations defining the symmetric
compact closed structure involve only safe compositions, so are preserved by self-
interleaving. The equations involved in Thms. 3.06 and 3.07 are also constructed
out of safe compositions (Lem. 4.12).

The safety requirement in Lem. 4.12 is essential since self-interleaving may in-
troduce new traces in unsafe compositions. For example F ;X = ∅ but F ;X2 =
AA′A′, and in fact F;X = !(AA′A′) where F ;X : A → A′. This example also
illustrates the physically unrealistic nature of this model, because consecutive
signals A′A′ are never absorbed by the wire capacitance. A realistic model should
give F;X = !(A · (A′A′ + ε)), reflecting the fact that in this composition consec-
utive A′ signals may, non-deterministically, disappear.

To prepare the ground for a more realistic model we introduce a new com-
ponent K : A → A′ defined as �K� = !(AA′ + AA). We call this component a

capacitive wire and we represent it as
K

. Not accidentally, this
is reminiscent of the symbol conventionally used for unknown bounded delay;
this is an unknown bounded capacitance. Its behaviour is to either propagate a
signal correctly or to absorb consecutive inputs, non-deterministically.

Let |t| be the length of a sequence. Let t � t′ denote a prefix t of a sequence
t′. It is easy to see that all sequences in K have more inputs than outputs in any
prefix and, overall, an even number of outputs can be lost.

Lemma 4.17. Let ιk : (A1 +A2)
∗ → Ai for k = 1, 2. t ∈ �K : A1 → A2� if and

only if both these conditions hold:

– there exsists k ∈ N such that |t; ι1| − |t; ι2| = 2k
– for any prefix p � t, |p; ι1| ≥ |p; ι2|.

The capacitive wire has the following important property:

Lemma 4.18. 1. K : A→ A is idempotent, i.e. K;K = K.
2. Kn : An → An is idempotent, i.e. Kn;Kn = Kn.

Proof. The idempotence of K is proved showing that the two conditions of
Lem. 4.17 are preserved by composition. If the first capacitive wire loses 2k
signals and the second capacitive wire loses 2k′ signals then their composition
loses 2(k + k′) signals, which is also a valid trace in a capacitive wire.

The second property follows immediately from the naturality of ⊗.

4.2 A Capacitive Wire Model

We are now in a position to give a more physically accurate account of asyn-
chronous circuits by removing the idealised wire W from the set of basic compo-
nents. However, this raises a technical problem because W plays a structural role
in the category as the identity. Also, the traces of the compact-closed unit (ηA)
and co-unit (εA) behave like idealised wires. In order to restore the categorical
structure we use the following standard construction.

62 D.R. Ghica

Definition 4.21. The Karoubi envelope of category C, sometimes written
Split(C), is the category whose objects are pairs of the form (A, e) where A
is an object of C and e : A → A is an idempotent of C, and whose morphisms
are triples of the form (e, f, e′) : (A, e)→ (A, e′) where f : A→ A′ is a morphism
of C satisfying f = e; f ; e′.

Definition 4.22. The category of delay-insensitive asynchronous circuits is de-
fined as DIAsy = Split(IdAsy).

The basic morphisms of the DIAsy category are

1. c = (K⊗ K);C;K
2. x = (K⊗ K);X;K
3. t = K;T; (K⊗ K)
4. f = K;F; (K⊗ K).

The physical and diagrammatic representation of this construction is that all
basic gates have capacitive wires as connectors:

K
K

K

K

K
K

K

K

x

c

t

f

KC=

X

T

K
K

K

F

=

=

=

Lemma 4.23. 1. c = C;K = (K ⊗ K);C
2. x = X;K = (K⊗ K);X
3. t = T; (K⊗ K) = K;T
4. f = F; (K⊗ K) = K;F.

Proof. From Lem. 4.17. For example, in the case of c if m respectively m′ signals
arrive as input, m − 2k respectively m′ − 2k′ reach the C-gate and min(m −
2k,m′ − 2k′) are output. For post-composition with K, min(m,m′) − 2k′′ =
min(m − 2k′′,m′ − 2k′′) signals are output. For any choice of k, k′ we take
k′′ = max(k, k′).

We also have

Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits 63

Proposition 4.24. 1. e = K;E = E
2. u = U;K = U
3. p = P;K = P.

Diagrammatically:

K

K

K

P P

=

=

=

The first two equalities are obvious. For the last one, since P generates an arbi-
trary number of signals it does not matter than some of them are lost.

Theorem 4.25. The category of delay-insensitive asynchronous circuits DIAsy
is compact closed with

1. dual objects (A,K)∗ = (A∗,K∗)
2. unit ηA : I → A∗ ⊗ A defined as ηA = ηA; (K

∗ ⊗ K);
3. co-unit εA : A∗ ⊗A→ I defined as εA = (K∗ ⊗ K); εA.

Diagrammatically, the unit and co-unit of the closed structure are:

K

K

K

K

Moreover, the fact that K is an idempotent means that the existing algebraic
structure is preserved by the construction.

Theorem 4.26. The algebraic structure of AffAsy and IdAsy is preserved in
DIAsy:

– (A, x, u) is a commutative monoid with t a retract of x.
– (A, c, p) is a commutative monoid with u an absorbing element.
– (A, f, e) is a co-commutative co-monoid with c a section of f
– (A, x, e, f, u) is a bialgebra.
– (A, c, f, x) is a Laplace pairing.

Proof. Immediate. For example distributivity in the bialgebra ((A, x, e, f, u) is:

(f ⊗ f); (K ⊗ ((K⊗ K); γA)⊗ K); (x⊗ x)

= K2; (F⊗ F); (W ⊗ γ ⊗W);X2;K2 (Lem. 4.23)

= K2;X;F;K2 (Thm. 4.16)

= x; f. (Lem. 4.23)

64 D.R. Ghica

Note that the proposition above involves circuits in a realistic model of glitchy
circuits. The fact that we use the idealised connectorW in proofs does not detract
from the realism of the model.

To conclude, the category we have constructed has a complex trace model,
which incorporates circuits with glitches. Reasoning directly in the trace model
is awkward. However, its compact closed structure and rich algebraic properties
provide a useful framework in which reasoning can be carried out more abstractly,
algebraically or diagrammatically.

5 Applications

The Geometry of Synthesis project [10,11,12] shows how a higher-level program-
ming language can be compiled directly into static asynchronous circuits, more
specifically Event Logic, starting from its game semantic model [13]. The model
of asynchronous circuits used there is based on the category DIAsy of delay-
insensitive circuits but reasoning is carried out at the level of traces, and is
tedious. As an application, we will show just one of the equivalences that needs
to be proved in order to prove the soundness of the technique, and we do it in a
purely algebraic or diagrammatic fashion [11].

We first introduce the Event Logic component CALL : A∗ ⊗A→ (A∗ ⊗A)⊗
(A∗ ⊗ A). It works as a stateful multiplexer-demultiplexer circuit between one
occurrence of A∗ ⊗ A on the left and two on the right. In [11] it is used to im-
plement the diagonal morphism in a Cartesian category of circuits of particular
shape. One of the required equations of the Cartesian product, mapped into cir-

cuits, amounts to showing that ηA;CALL; (u
∗⊗e⊗ id

2
) = ηA. Diagrammatically,

this is:

Lemma 5.07.

CALL =

The implementation of CALL, not a basic circuit, is given below.

x

x

x

c

c

Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits 65

In the category, the construction is:

CALL = (x∗ ⊗ id); (id
∗ ⊗ γ); (id

∗ ⊗ η ⊗ id ⊗ η ⊗ id
∗
);

(f∗ ⊗ id ⊗ id
∗ ⊗ id ⊗ f∗); (id

∗ ⊗ DW ⊗ id
∗
),

where

DW = (id ⊗ f ⊗ id); (id
2 ⊗ η2 ⊗ id

2
); (id ⊗ x⊗ γ ⊗ x⊗ id);

(c⊗ id
2 ⊗ c); (f ⊗ id

2 ⊗ f); (id ⊗ ε2 ⊗ id)

In the structural morphisms, if the index is not specified, it is by default A, so
η = ηA, and so on. It is quite clear that trace-level reasoning about such circuits
is extremely difficult! On the other hand, the algebraic proof of Lem. 5.07 is a
sequence of straightforward calculations using categorical and algebraic proper-
ties. The diagrammatic representation of the proof, as a rewriting of the circuit
is given in Fig. 1.

The key circuit simplifications come out the fact that e and x are either unit
or co-unit or absorbing element for x, c, f taken as (co)monoids. This process of
reduction results in the circuit η; γ; (id⊗η⊗ id); (c⊗ f∗). Standard diagrammatic
reasoning using the compact-closed structure allows bringing the circuit to the
simpler form η; ((f; c)⊗ id) where using the fact that c is a section of f completes
the proof.

6 Conclusion

In this paper we have constructed a trace model for delay-insensitive asyn-
chronous circuits similar to Ebergen’s, but generalised to handle glitchy be-
haviour. We showed that even in the absence of an idealised connector, which
would behave naturally as an identity for compositions, such circuits can be
structured in a category by taking advantage of the Karoubi envelope construc-
tion where the idempotent is a realistic connector of unknown capacitance. We
further show that even though the trace model is complicated and very awkward
as a basis for reasoning about such circuits, they enjoy many algebraic properties
which allow diagrammatic reasoning consistent with common intuitions about
such circuits. Such properties seem promising as a starting point for mechanised
reasoning via, for example, circuit rewriting.

The most severe limitation of this model is its handling of circuits where
feedback leads to non-terminating behavior. It is only a model of terminating
computations, represented as complete traces. Technically, this is due to the
fact that, unlike Ebergen, we do not adopt prefix closure. Prefix-closure cannot
be naively introduced because causality loops created by feedback can lead to
unrealistic solutions. For example this circuit

= P

66 D.R. Ghica

x

x

x

c

c

x

x

x c

c

c

Fig. 1. Proof of Lem. 5.07

Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits 67

would be trace-equivalent to p (pulse), when in fact it is equivalent to u (dangling
input). Our model instead equates

X

=

with u; e (an unresponsive circuit) which is sound but incomplete. To fix this
problem causality, which we currently ignore, needs to be introduced in the
model.

In a more theoretical direction it would be interesting to examine how the
specific algebraic structures arising in asynchronous circuits interact with the
generic framework introduced by Burroni [14] and further developed by La-
font [15], in which boolean circuits can be reduced to unique canonical forms.
These notions are essential if we aim to automate reasoning about asynchronous
circuits.

Acknowledgments. This paper is inspired in goals and methodology by Abram-
sky, Coecke and their collaborators work on categorical, algebraic and diagram-
matic foundations for quantum computing [8]. This work greatly benefitted from
conversations with Peter Selinger, John Baez, Bob Coecke, Samson Abramsky,
Prakash Panangaden, Bertrfried Fauser, Alex Smith, Paul B. Levy, Claudio Her-
mida and Paul-André Melliès.

References

1. Hauck, S.: Asynchronous design methodologies: An overview. Proceedings of the
IEEE 83(1), 69–93 (1995)

2. Huffman, D.: The synthesis of sequential switching circuits. Journal of the Franklin
Institute 257(3), 161–190 (1954)

3. Yun, K., Dill, D.: Automatic synthesis of extended burst-mode circuits I (specifi-
cation and hazard-free implementations). IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 18(2), 101–117 (1999)

4. Sutherland, I.: Micropipelines. Communications of the ACM 32(6), 720–738 (1989)
5. Ebergen, J.: A formal approach to designing delay-insensitive circuits. Distributed

Computing 5(3), 107–119 (1991)
6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
7. Josephs, M.B., Udding, J.T.: Delay-insensitive circuits: An algebraic approach to

their design. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458,
pp. 342–366. Springer, Heidelberg (1990)

8. Abramsky, S., Coecke, B.: Categorical quantum mechanics. In: Handbook of Quan-
tum Logic and Quantum Structures: Quantum Logic, pp. 261–324 (2008)

9. Fauser, B.: On the Hopf-algebraic origin of Wick normal-ordering. Journal of
Physics A: Mathematical and General 34(105) (2001)

10. Ghica, D.R.: Geometry of Synthesis: A structured approach to VLSI design. In:
Hofmann, M., Felleisen, M. (eds.) The ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pp. 363–375. ACM (2007)

68 D.R. Ghica

11. Ghica, D.R., Smith, A.: Geometry of Synthesis II: From games to delay-insensitive
circuits. Electr. Notes Theor. Comput. Sci. 265, 301–324 (2010)

12. Ghica, D.R., Smith, A.: Geometry of Synthesis III: Resource management through
type inference. In: Ball, T., Sagiv, M. (eds.) The ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL), pp. 345–356. ACM (2011)

13. Ghica, D.R., Murawski, A.S., Ong, C.H.L.: Syntactic control of concurrency. Theor.
Comput. Sci. 350(2-3), 234–251 (2006)

14. Burroni, A.: Higher-dimensional word problems with applications to equational
logic. Theoretical Computer Science 115(1), 43–62 (1993)

15. Lafont, Y.: Towards an algebraic theory of boolean circuits. Journal of Pure and
Applied Algebra 184(2), 257–310 (2003)

Payoffs, Intensionality and Abstraction in Games

Chris Hankin1 and Pasquale Malacaria2

1 Institute for Security Science and Technology, Imperial College London
2 School of Electrical Engineering and Computer Science,

Queen Mary University of London

Abstract. We discuss some fundamental concepts in Game Theory: the
concept of payoffs and the relation between rational solutions to games
like Nash equilibrium and real world behaviour. We sketch some con-
nections between Game Theory and Game Semantics by exploring some
possible uses of Game Semantics strategies enriched with payoffs. Fi-
nally we discuss potential contributions of Abstract Interpretation to
Game Theory in addressing the state explosion problem of game models
of real world systems.

1 Introduction

1.1 An Historical Note

Samson Abramsky joined the Department of Computing at Imperial College
London in 1983 and Hankin joined him there in 1984. They had previously col-
laborated on the launch of an informal inter-collegiate PhD course on Theoretical
Computer Science. Their scientific collaboration with Geoffrey Burn led to work
on higher-order strictness analysis of functional programs [7] and ultimately to
an edited volume on abstract interpretation of declarative languages [1]. Whilst
Samson’s main focus was on domain logics at this time, he also made important
contributions to the theory of program analysis through his invention of the no-
tion of polymorphic invariance [2] and a deep study of the role of logical relations
in establishing the correctness of program analyses [3]. Even his work on domain
logics found an application in program analysis through Jensen’s development
of strictness logics [14].

Malacaria came to Imperial College London in 1993. He worked with Sam-
son and Radha Jagadeesan on Game Semantics, solving the long standing open
problem of providing a fully abstract semantics for PCF [5].

The authors of this paper subsequently worked together on using Game Se-
mantics as a basis for program analyses that were correct by construction. This
work culminated in [15] which uses Game Semantics as a basis for an Information
Flow analysis. More recently, we have been studying the use of Game Theory in
decision support for cyber security.

1.2 This Paper

Textbook presentations of Game Theory are often extensional: game solutions
are found on normal form games. We are interested in a more intensional

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 69–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

70 C. Hankin and P. Malacaria

approach and look to Game Semantics to provide a framework for approach-
ing this problem. In the next section we address some of the criticisms that have
recently been addressed at Game Theory. We then present a common frame-
work based on [8]. We next discuss some of the potential uses of payoffs in Game
Semantics. We conclude by considering the role of abstraction in making the
problem of finding game solutions more tractable.

2 The Problem with Payoffs

Game Theory is sometimes criticised for providing solutions that are unrealistic.
Classical examples enlightening this criticism are provided by the centipede game
or the game of ultimatum bargaining, both extensively studied by economists
and social scientists. More recently what we believe to be a similar criticism
has also arisen in a cyber-security context. In this section we will discuss these
criticisms.

2.1 The Centipede Example

The centipede game [18] is a well known example in the Game Theory literature
illustrating a variety of features and issues about Nash equilibrium solutions
in games. The centipede is a multi-stage alternating game where at each stage
the player whose turn is to move can either decide to end the game with some
payoffs or continue. Crucially the payoffs are arranged so that if one player were
to decide to continue to the next stage but at the next stage the other player
were to decide to stop, the first player would get an inferior payoff than if he had
decided to stop at the previous round. Figure 1 illustrates a simple centipede
game. If the red player were to stop at the first stage he would get 3.20, if the
blue player were to stop at stage 2, the red player would however get an inferior
payoff of 1.60. However if both players were to continue playing until the end
they would end up with much higher payoffs than if they were to stop at any
earlier stage.

One interesting aspect of this game is that the equilibrium solution says that
players should stop at the very beginning, thus ending up with payoff 3.20 for

Fig. 1. The Centipede game

Payoffs, Intensionality and Abstraction in Games 71

red and .80 for blue. This solution is explained as follows: at the very last move,
which is a blue move, the blue player has interest in choosing the move giving
him payoff 25.6 which would be bad for the red player who would get 6.40.
Hence the red player should have stopped at the previous round as he would
have gotten the higher payoff 12.8; but in that case the blue player would have
gotten 3.20, which is inferior to 6.40 the reward he would have gotten had he
stopped at the previous round; and so on...

The problem is that when this game is played “in reality” the outcome is
different. Experimental studies show that people tend not to stop at the early
stages, a notable exception being chess grand masters who when playing the
game tend to stop at the beginning and so behave consistently with the equilib-
rium solution.

So what is wrong with Nash equilibrium? Are ordinary people irrational? Is
Game Theory unrealistic?

These are fundamental questions that arise over and over in one form or
another in any context where Game Theory is applied.

A classic game theoretical answer to these questions is that there is not much
wrong with Nash equilibrium itself: the point is that the game with the payoffs
described above is not the game ordinary people play when they are asked to
play it.... In real life, e.g. when the payoffs are money, people will reason that the
other player may have interest to go ahead too and not stop at the next round.
Hence as long as the red player thinks that his expected future payoff, given
the probability that the blue player stops at the next round, exceeds the payoff
he would get by stopping at the current round then he will carry on. Therefore
to match reality the payoffs of the game should be adjusted to match the real
payoffs. This matching is tricky and depends on very specific circumstances, e.g.
the amount involved compared with the wealth and greediness of the individual,
the suspicion about the other player motives and trustworthiness, etc. Somehow
the payoffs need to be tailor-made for each player.

Without taking into account all these factors in the payoffs, comparing the
formal game with the game played in the real world is just comparing apples
and pears.

2.2 The Prime Factorization Game

Halpern and Pass [17] consider the following game. A player is given a random
odd n-bit number x and he is supposed to decide whether x is prime or composite.
Guessing correctly will give him $2, however an incorrect guess will give him
−$1000, i.e. he will have to pay a penalty of $1000. The player can however
choose the “playing safe” strategy by giving up, in which case he receives $1.

The game theoretical solution is to play, i.e. not to give up: game theoretical
players have mathematical unbounded power so they never make wrong guesses
and so they will always get $2. However clearly in reality people wouldn’t choose
the equilibrium solution: we don’t need experiments to see that.

So what is wrong with Nash equilibrium? Are ordinary people irrational? Is
Game Theory unrealistic?

72 C. Hankin and P. Malacaria

We have already seen these questions above and the game theoretical answer is
the same as we saw above: people are not playing the game those rules describe.
In order to model reality we need to take into account the cost of computation
and so the crucial point in matching the above payoffs to the real game is that
guessing correctly will give the player payoff $2−F (x), where F (x) is a function
representing the cost of determining whether x is prime. Again this F (x) ought
to be tailor-made for specific players, e.g. players having available thousands of
powerful machines will tend to play for larger x as long as other factors like
the electricity required by the factorisation will make it profitable still. Even if
general guidelines from computability and complexity may be helpful they still
miss factors that may be important to the model, e.g. the cost of electricity: for
example in real world, crypto contexts like Bitcoin mining, electricity and the
cost of GPUs are the key criteria in deciding whether to play the game. Once
the right F (x) is used the game theorist would claim that the solution matches
reality.

This game is interesting because F (x) depends heavily on intensional aspects
like the computational resources available and limits of computational devices.
These factors are external to classical Game Theory: an attempt to develop a
Game Theory where computational limitations are taken into account is devel-
oped in [17]. We will suggest in section 4.1 that the intensional aspect of Game
Semantics can be used for similar purposes.

3 A Common Framework

To get further in the discussion and relate Game Theory and Game Semantics
it is necessary to have a formalism common to both. This has been developed
by Chatterjee, Jagadeesan and Pitcher in [8]. We present some definitions based
on that paper that will help in the following discussion.

3.1 Turn-Based Probabilistic Games

We consider two person games with alternating moves. At each state, exactly
one player can make a move, following which the system may evolve into a new
state with some probability. At this point, the other player can make a move.
Hence, a typical evolution has the form:

The system with players A and B is in state s. In this state A can move
with action a resulting in the system moving to state t from which it
evolves to state ti with probability pi. In this state B can move with
action b and so on.

In [8] this is formalized by a structure ((S,E), (S1, S2, S1•, S2•), δ) where (S,E)
is a graph with nodes S and labelled edges E, (S1, S2, S1•, S2•) is a partition of
S s.t. E ⊆ ∪i(Si × L × Si•) (with L the label set) and δ : Si• → D(S(i+1)%2)
associates a distribution over the states to each target state of a player move,
from which the other player can move.

Payoffs, Intensionality and Abstraction in Games 73

We use player A as a synonym for player 1 and player B as a synonym for
player 2. We will consider finite games, i.e. all plays have a finite length.

As argued in [8] this is a general framework for stochastic games, e.g. non
strictly alternating games can be interpreted using dummy moves. To recover
Game Semantics of sequential languages we can use point mass distributions, in
effect eliminating probabilities.

Edges (in E) have rewards associated to them, these are encoded by two maps
r1, r2 with ri : Ei → R where Ei is the set of transition whose source is a state
where player i can move.

As is usual in the literature, a strategy for a player is a method to extend
a play. Given the history of the play where player A can move, a strategy for
A chooses a successor state and an action to extend the play. A pure strategy
is one where this choice is given by a function. A mixed strategy is a choice of
several pure strategies according to some probabilities. Notice however that in a
play, once a strategy is chosen by a player, that player will stick to it along that
particular play, i.e. the same function is used to decide what move to make at
each stage.

Since we can encode histories into states it will be enough to consider history-
free or Markovian strategies, i.e. maps from states to transitions having that state
as origin. Hence by pure strategies in this paper we refer to maps σ, τ : s �→ e
where e = s →l t for some l, t, with σ associated to player 1 and τ to player 2,
and ρ a generic strategy. We will often write transitions as triples (s, l, t).

Given a path in the game tree, i.e. a sequence of transitions P = e1, ..., en we
consider the mean value of this sequence to each player, so

vali(P) =

∑
j ri(ej)

m

where the transitions ej have source states where player i can move and m is
the number of such transitions in the path P . As usual the probability of the
path P is the product of the probabilities of the edges in P .

A path in a strategy ρ for player i is a path in the game tree where whenever
it is the turn of player i to move, it will use ρ to choose the move. The set of all
paths for ρ is denoted by Πρ.

Given a pair of strategies (σ, τ) the payoff vρ for player i is the expected values
of the mean values of the sequences possible according to (σ, τ), i.e. the payoff
(vσ, vτ) is defined as

vσ = E{valσ(P) | P ∈ Πσ ∩Πτ}, vτ = E{valτ (P) | P ∈ Πσ ∩Πτ}

A Nash equilibrium (N.E.) is a strategy pair (σ∗, τ∗) from which no player has
advantage in deviating unilaterally, i.e.:

∀σ, τ. (vσ , v
∗
τ) ≤ (v∗σ, v

∗
τ) ∧ (v∗σ, vτ) ≤ (v∗σ , v

∗
τ),

3.2 Game Algebras

An interesting contribution of [8] is to consider how to build up composite games
and in particular how equilibrium solutions are preserved by such constructions.

74 C. Hankin and P. Malacaria

The authors present a rich algebra of games which includes operators for syn-
chronous product, restriction, sequencing, iteration, player choice, probabilistic
choice and tensor. Here, we just consider binary player choice – player i is able
to choose between games with player i start states.

We consider rooted game graphs:

GA = ((SA, EA), (SA
1 , S

A
2 , S

A
1•, S

A
2•), δ

A)

and
GB = ((SB , EB), (SB

1 , SB
2 , SB

1•, S
B
2•), δ

B)

with start states sA ∈ SA
i and sB ∈ SB

i . Then the player choice between these
two games, written GA⊕iG

B , is a game graph ((S,E), (S1, S2, S1•, S2•), δ) such
that:

Si = SA
i � SB

i � {〈sA, sB〉}

S(i+1)%2 = SA
(i+1)%2 � SB

(i+1)%2

E = EA � EB � {(〈sA, sB〉, l, t) | (sA, l, t) ∈ EA ∨ (sB, l, t) ∈ EB}

δ = δA � δB

The reward functions are also modified in the following way (for j = 1, 2):

rj(e) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

rAj (e), if e ∈ EA

rAj ((s
A, l, t)), if e = (〈sA, sB〉, l, t) ∧ (sA, l, t) ∈ EA

rBj (e), if e ∈ EB

rBj ((sB , l, t)), if e = (〈sA, sB〉, l, t) ∧ (sB, l, t) ∈ EB

Following [8] we then have that any equilibrium payoff of a component game is an
equilibrium payoff of the choice game if and only if there is no other equilibrium
payoff in the other component with a higher value for player i. The cited paper
discusses similar results for the other games constructions.

4 Payoffs in General Game Semantics

4.1 Some General Remarks

The games algebra from [8] is closely related to game constructions in Game
Semantics, but while that work shows some interactions between equilibria and
constructions on Game Semantics, it doesn’t demonstrate their relevance for
game theoretical problems.

We now consider more general relationships between these theories.
Game Semantics were first introduced in [5,13]. Games are “types” i.e. for

example the game N → N represents the space of programs taking a natural

Payoffs, Intensionality and Abstraction in Games 75

number as input and returning a natural number. The basic types are simple
one stage games where the player named Opponent starts by asking a question
(he has only one move available, i.e. a single question) and the player named
Proponent answers the question with a value of that basic type, for example the
boolean game B can be described by the game graph on the left of Figure 2:
Hence each basic value corresponds to a strategy for Proponent. The game graph

Fig. 2. Boolean Game

for B−◦B is in the centre of Figure 2. The affine implication B−◦B is a weaker
form of B → B and represents the type of all algorithms from B to B using
their argument at most once. Notice that the role of Proponent and Opponent
change at each level in the game graph: * is a move for Opponent at the first
level of the game graph but becomes a Proponent move at the second level:
this is the program asking for its input. At the third level Opponent plays data
values: this corresponds to the environment providing values for the program.
Next the program plays a data value which, in the B −◦B example, is the final
value returned by the program.

Programs are interpreted as strategies for Proponent; for example in the game
B−◦B the program that performs the negation of a boolean input is interpreted
by the strategy whose paths in the game graph are ∗ ∗TF, ∗ ∗FT . The constant
programs that do not inspect their argument are: λx.T with path ∗T and λx.F
with path ∗F .

An essential aspect of Game Semantics is composition; composing two strate-
gies corresponds to synchronizing them and hiding their interaction. For example
to compose the strategy for the boolean negation with the constant T -function
results in the following interaction: start by playing the strategy negation, so
to the initial Opponent question play the following question asking for the ar-
gument, now see this question as the initial question for the strategy constant,
hence the strategy constant will answer T , this will be seen as the Opponent
answer to the Proponent question and so Proponent will now play the negation
i.e. F . The crucial point here is that these interactions where Proponent moves
are transferred to the other game as the Opponent moves is then hidden, so the
composition results in the simple strategy in B−◦B that to the initial Opponent

76 C. Hankin and P. Malacaria

question answers T . This is illustrated in the right hand side of Figure 2 where
only the first and last move are left once the interaction (dotted arrows) are
factored out.

The important features of Game Semantics include:

1. compositionality
2. trace level description of computational processes
3. abstractions of games available to allow for static analysis of program

behaviours [15]

The formalism introduced in [5] is consistent with the common framework in-
troduced above and treated in more detail in [8]. The reward functions have not
previously been used in the work on programming language semantics1 – we
could assume that the reward functions are constant zero functions.

A first simple question is: can payoffs discriminate different strategies?
The answer is yes: we can distinguish Game Semantics strategies by appro-

priate rewards. For basic types we could just distinguish them by associating as
reward the n+1 where n is the answer move, e.g. in the boolean game F would
have Proponent reward of 1 and T reward 2. To recover Game Semantics com-
position we can think of assigning zero rewards to moves in the hidden part. In
this interpretation hence two programs representing the same function become
indistinguishable in a game theoretical sense.

This simple rewards structure can be elaborated to make finer distinctions,
for example we can make the rewards in the hidden interaction count. e.g. by
“accumulating the rewards in the hidden part” we can get a cost for the length
of computation, so two strategies answering the same number but doing so with
different computational cost will differ. Also complexity distinctions would ap-
pear at this stage, e.g. polynomial vs non-polynomial strategies. A step in this
direction is already taken in [11]. This line of investigation may provide a way
to find the “right payoffs” in a computational setting in the spirit of [17].

5 Game Theory in Game Semantics

We now explore a novel way to think of Game Semantics where Nash equilibrium
becomes a tool for deciding which strategy the system and the environment
should choose, given a particular objective quantified by payoffs. Notice how we
now move the focus, from the classical single strategy game semantics view, to
a space of candidate strategies in a game type.

In the following two examples we play classical Game Theory games in the
context of Game Semantics. This is specially interesting in that these games
enlighten deep issues about social interaction, competition and cooperation.

We interpret these issues in computer science terms of trustworthiness, us-
ability and security.

1 There is however some recent interesting work by Clairambault and Winskel [9] on
payoffs for concurrent games.

Payoffs, Intensionality and Abstraction in Games 77

5.1 The Centipede PCF Game

We revisit the centipede game within Game Semantics as follows. Consider the
game

(((B −◦B)−◦B)−◦B)

In this game there is a strategy for Proponent answering immediately the initial
Opponent question and one following the initial Opponent question with another
question about the second rightmost B and so on. By assigning the appropriate
rewards to the answer moves we recover the centipede game. The rewards are as
follows: questions have 0 rewards for both players, the answer T at level 0 has
rewards 3.20 for Proponent and 0.8 for Opponent, the answer F has reward 0
for both players (at any level), the answer T at level i+1 has Proponent reward
2n where n is the Opponent reward for the Opponent T answer at level i and
symmetrically the answer T at level i+ 1 has Opponent reward 2m where m is
the Proponent reward for the Proponent T answer at level i.

We now consider Opponent and Proponent strategies whose first answer is T
and all the following answers are F . This models the centipede game. Hence the
equilibrium would tell us that in this game the rational thing to do is to play the
constant program λx.T . What is the meaning of the equilibrium in this context?
It expresses a mistrust by the system that the environment has any reliability,
e.g. the system fears that the environment will not perform correctly, if at all,
the required computation.

It is easy to see, consistently with the previous discussion about the original
centipede game, how degrees of trust of the system with respect to the environ-
ment could be reflected in the payoffs and so how to make the choices about
what the best thing the system should do given a specific degree of trust.

5.2 The System Administrator Dilemma

In a similar vein we can consider the famous prisoner dilemma game and we
look for a simple interpretation in Game Semantics. In the prisoner dilemma
both players have two options: to cooperate or to not cooperate (defect). Each
player receives his maximum payoff if he defects and the other cooperates, his
minimum if he cooperates and the other player defects, mutual cooperation
provides second best payoff and mutual defection second worst payoff; so for
each player payoffs have the property c > a > d > b where c is defect-cooperate,
a mutual cooperation, d mutual defection and b is cooperate-defect.

Again we can see this as a system and environment game where the system
may want to guarantee security and the environment usability. So the system
may have the highest security by denying all access requests; in fact this is
the only secure strategy in an authentication system. The environment on the
other hand may have interest, from a usability point of view, in bypassing any
authentication by providing access to any request.

We can model this in the space

((N −◦B)−◦B)

78 C. Hankin and P. Malacaria

Here Proponent can choose the answer false to the initial opponent question
(defect) or may instead decide to cooperate by choosing the strategy that engages
with the environment by asking the initial question in the authentication module
of type (N−◦B). Here Opponent can choose to answer true and so provide access
to any user or he can act with due diligence and ask for the user credentials at
type N which the system provides, following which Opponent checks the user
credentials and provides an authentication response (true/false, accept/reject)
and based on this answer Proponent can now decide whether to allow user access.

The game theoretical solution is that in the one shot prisoner dilemma the
only Nash equilibrium is for both players to defect: so the system and opponent
are better off not engaging with each other: the system is secure and usable,
because both operate in a vacuum. A major point of debate in the Game Theory
community is that the payoff the players get from both defecting may be much
below the payoff they would get by both cooperating: it would make much more
sense for the system to have its resource used instead of being paralysed under
the fear of unauthorized intrusion.

An interesting twist is in considering the iterated prisoner dilemma. Here we
are hence thinking of something like an operating system where authentication
and resource access are available an unbounded number of times. In this case
the solution favours cooperation and a richer panorama of equilibria with higher
payoff than defection is obtained, e.g. when each player plays cooperation until
the other player defects at which point the player will defect too (this is the
Grim trigger strategy). This strategy well reflects the idea of a good compromise
between usability and security: play nice until the other player plays dirty.

6 Games and Abstraction

Many classic examples in Game Theory like the prisoner dilemma, the centipede
game and prey-predator games can be seen as illustrating the richness and con-
ceptual complexity of rational interaction. However when applying Game Theory
to the real world a state explosion problem often occurs. A large set of actions
or states usually makes equilibrium non-computable; also the conceptual aspect
is obfuscated by such complexity. Some form of ad-hoc abstraction is then in-
troduced for these computational and conceptual reasons.

Our longer term objective is to replace this ad-hoc approach to abstraction by
a more rigorous framework akin to Abstract Interpretation. In [15] we developed
an Abstract Interpretation for Game Semantics; the most salient features of this
abstraction were

1. replacing all data values by a single abstract data value
2. replacing the potentially infinite depth tree game by cyclic graphs

One application of this abstraction was in security, by tracking information flow
along paths in the graphs and, for example, disallowing paths where a “high”
move was followed by an observable “low” move. Similar ideas have been devel-
oped, in the context of access control, by Abramsky and Jagadeesan in [4]. We

Payoffs, Intensionality and Abstraction in Games 79

should mention also related work on abstract game semantics which has been
developed by Ghica [12] and Ong [16].

Following our earlier discussion a natural development of this line of work
would be to add payoffs. This would pose two important questions:

1. what are the appropriate payoffs to use in such abstract games?
2. how should we interpret Nash equilibria in the abstract game – what do they

tell us about Nash equilibria in the concrete game?

Most recently, the authors of this paper have been studying the use of Game
Theory in cyber security. In the last decade Game Theory has been increas-
ingly applied in this area. Examples of applications are in the field of intrusion
detection systems, anonymity and privacy, economics of network security and
cryptography: for a survey of these applications we refer to [6].

The basic idea is that many cyber security situations can be modelled in terms
of an Attacker attempting to breach security of the system and/or damaging its
services and a Defender aiming to enhance the system security both in terms
of design and response. The Attacker and the Defender clearly have conflicting
goals that can be quantified in terms of economic gain/loss or disruption time;
even more serious criminal threats like cyber terrorism can, with some effort, be
quantified in a reasonable way. The Attacker and the Defender will, in general,
interact with some knowledge of each others possible actions: to be effective both
players need to be clever or, in Game Theoretical terms, rational. Because of this
the notion of Nash equilibrium, discussed above, is important; an equilibrium
describes a possible outcome of decision makers trying to optimize their gain
while being aware of each others possible actions. Often this will result in mixing
possible actions according to some probability.

Attacker and the Defender are already an abstraction whose appropriateness
is often questionable e.g. when multiple players and coalitions are more appro-
priate. More crucially we tend to abstract on possible behaviours, i.e. while in
the real world a very large number of choices may be possible we abstract them
to few, for example in a cyber-security scenario there could be thousands of
different types of malware leading to botnets but we may find it convenient, or
even indispensable, to reduce them to a small set of “Attacker’s choices”. The
underlying argument is that if they are “similar enough” then the reasoning on
the reduced set is applicable to the original set.

6.1 A Simple Example

If we restrict ourselves for simplicity to the case of games in normal form we
can think of the following scenario: Attacker A can choose between strategies
A1, A2, . . . An with A1 being “no attack” and A2, . . . An being similar poten-
tial malware attacks. Suppose defender D can choose between three strategies,
D1, D2, D3 e.g. D1 could be do nothing, D2 to alert the user, D3 to stop the
service. Suppose moreover that A2, . . . An result in very close payoffs. In most
cases then we would be inclined to translate this into a simpler game where

80 C. Hankin and P. Malacaria

A has two strategies A1, A2,...,n with the A2,...,n payoff being a function of the
original payoffs e.g. the average, or the minimum or maximum of the original
payoffs. A stable Nash equilibrium in the simpler game (2 × 3) matrix would
then suggest the following strategy for D in the original n× 3 matrix: Play Dk

with Ai, i>1 with the same probability of playing Dk with A2,...,n in the reduced
game. Intuitively if the A2, . . . An are almost indistinguishable play the same
way with each of them individually.

A concrete example is given in Figure 3 where the Attacker has three choices
(columns) the last two having very similar payoffs and Figure 4 where the two
last choices are reduced to one by averaging. The meaning of the payoff values
should be clear e.g. (10,−22) indicates that blocking malware 2 is very good
for the Defender (value 10) and very bad for the Attacker (value -22). Both
games have a unique and very close Nash equilibrium: in the original Defender
plays 1 (resp 3) with probability 3

7 (resp 4
7) and Attacker plays 1 (resp 3) with

probability 15
22 (resp 7

22) . In the reduced game equilibrium Defender plays 1 (resp
3) with probability 16

35 (resp 19
35) and Attacker plays 1 (resp 2) with probability

15
22 (resp 7

22).
A formal way to build this abstraction is to consider the matrices α, γ defined

in Table 1.
The abstraction is given by α and the concretisation by γ. The abstract game

in Figure 4 is obtained by the original game from Figure 3 by multiplying it with
the matrix α.

Fig. 3. The original malware game

Fig. 4. The abstract malware game

Table 1. Matrices α and γ

⎛
⎝

1 0
0 1

2

0 1
2

⎞
⎠

(
1 0 0
0 1 1

)

Payoffs, Intensionality and Abstraction in Games 81

The general form of α, γ for a general normal form game is given by γ being
the normalized transpose of α and α is the matrix whose columns are buckets
of columns of the original matrix and coefficients are: αi,j = 0 if i, j are not in
the same bucket, αi,j = 1

n if i, j are in the same bucket and n is the size of the
bucket.

Then γ is the Moore-Penrose pseudo-inverse of α i.e. it satisfies the following
properties:

1. αγα = α
2. γαγ = γ
3. (αγ)∗ = αγ
4. (γα)∗ = γα

An important consequence of γ being the Moore-Penrose pseudo-inverse of α
is that γ provides the least square approximation [10]. In other terms whilst
γα = 1 which, consistently with the classical theory of Abstract Interpretation,
means that the abstraction α is surjective, the other composition αγ provides a
“best fit” (least square) approximation.

The Abstract Interpretation ideas we have sketched here are applicable be-
yond normal form games, e.g. when considering stochastic games, and can be
integrated with Abstract Interpretation of Game Semantics and approximate
bisimulation.

7 Final Remarks

The paper should be seen as an initial roadmap rather than a completed piece of
work. In particular, the role of abstraction in making the approximate solution
of games a tractable problem needs considerably more study.

Some of the seeds of the ideas presented in this paper were sown twenty to
thirty years ago through our joint and separate work with Samson. We wish
Samson many years of continued scientific work and hope, one day, to be able
to discuss our results with him.

Aknowledgments. We thank Dusko Pavlovic and Fabrizio Smeraldi for helpful
discussions on this work. Both authors are partially supported by the “Games
and Abstraction: the Science of Cyber Security” project (EPSRC projects
EP/K005790/1 and EP/K005820/1).

References

1. Abramsky, S., Hankin, C. (eds.): Abstract Interpretation of Declarative Languages.
Ellis Horwood (1987)

2. Abramsky, S.: Strictness analysis and polymorphic invariance. In: Ganzinger, H.,
Jones, N.D. (eds.) Programs as Data Objects. LNCS, vol. 217, pp. 1–23. Springer,
Heidelberg (1986)

82 C. Hankin and P. Malacaria

3. Abramsky, S.: Abstract Interpretation, Logical Relations and Kan Extensions.
J. Log. Comput. 1(1), 5–40 (1990)

4. Abramsky, S., Jagadeesan, R.: Game Semantics for Access Control. Electr. Notes
Theor. Comput. Sci. 249, 135–156 (2009)

5. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full Abstraction for PCF. Inf. and
Comput. 163(2), 409–470 (2000)

6. Alpcan, T., Basar, T.: Network Security: A Decision and Game Theoretic Ap-
proach. Cambridge University Press (2011)

7. Burn, G.L., Hankin, C., Abramsky, S.: Strictness Analysis for Higher-Order Func-
tions. Sci. Comput. Program. 7(3), 249–278 (1986)

8. Chatterjee, K., Jagadeesan, R., Pitcher, C.: Games for Controls. In: CSFW 2006,
pp. 70–84 (2006)

9. Clairambault, P., Winskel, G.: On concurrent games with payoff,
http://www.cl.cam.ac.uk/~cdt25/ecsym/Publications/

10. Di Pierro, A., Hankin, C., Wiklicky, H.: Measuring the confinement of probabilistic
systems. Theor. Comput. Sci. 340(1), 3–56 (2005)

11. Ghica, D.R.: Slot games: a quantitative model of computation. In: Proc. POPL
2005, pp. 85–97 (2005)

12. Ghica, D.R.: Applications of Game Semantics: From Program Analysis to Hard-
ware Synthesis. In: LICS 2009, pp. 17–26. IEEE Computer Society (2009)

13. Hyland, M., Ong, L.: On Full Abstraction for PCF: I, II, and III. Inf. and Com-
put. 163(2), 285–408 (2000)

14. Jensen, T.P.: Strictness Analysis in Logical Form. In: Hughes, J. (ed.) FPCA 1991.
LNCS, vol. 523, pp. 352–366. Springer, Heidelberg (1991)

15. Malacaria, P., Hankin, C.: Non-Deterministic Games and Program Analysis: An
Application to Security. In: LICS 1999, pp. 443–452. IEEE Computer Society
(1999)

16. Ong, C.-H.L.: Some Results on a Game-Semantic Approach to Verifying Finitely-
Presentable Infinite Structures (Extended Abstract). In: Ésik, Z. (ed.) CSL 2006.
LNCS, vol. 4207, pp. 31–40. Springer, Heidelberg (2006)

17. Pass, R., Halpern, J.: Game theory with costly computation: formulation and ap-
plication to protocol security. In: Proceedings of the Behavioral and Quantitative
Game Theory: Conference on Future Directions. ACM (2010)

18. Rosenthal, R.: Games of Perfect Information, Predatory Pricing, and the Chain
Store. Journal of Economic Theory 25(1), 92–100 (1981), doi:10.1016/0022-
0531(81)90018-1

19. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior.
Princeton University Press, Princeton (1944)

http://www.cl.cam.ac.uk/~cdt25/ecsym/Publications/

On the Theory of Composition in Physics

Lucien Hardy

Perimeter Institute, 31 Caroline Street North,
Waterloo, Ontario N2L 2Y5, Canada

Abstract. We develop a theory for describing composite objects in
physics. These can be static objects, such as tables, or things that hap-
pen in spacetime (such as a region of spacetime with fields on it regarded
as being composed of smaller such regions joined together). We propose
certain fundamental axioms which, it seems, should be satisfied in any
theory of composition. A key axiom is the order independence axiom
which says we can describe the composition of a composite object in any
order. Then we provide a notation for describing composite objects that
naturally leads to these axioms being satisfied. In any given physical con-
text we are interested in the value of certain properties for the objects
(such as whether the object is possible, what probability it has, how wide
it is, and so on). We associate a generalized state with an object. This
can be used to calculate the value of those properties we are interested
in for for this object. We then propose a certain principle, the compo-
sition principle, which says that we can determine the generalized state
of a composite object from the generalized states for the components by
means of a calculation having the same structure as the description of
the generalized state. The composition principle provides a link between
description and prediction.

1 Introduction

It is a great pleasure to contribute to this festschrift for Samson Abramsky. Over
the last twenty years the worlds of quantum theory and computer science have
collided giving rise to quantum information and quantum computing. What has
singled out Samson’s approach has been the emphasis on fundamental structure.
Physicists tend to rely on partial differential equations and simple circuit models.
Computer science, on the other hand, investigates a much richer and deeper set
of paradigms for dynamics. Samson has been the leading force in bringing these
deeper structural insights to bear on quantum theory through his work on the use
of category theory in quantum information [7, 8], his work on investigating the
sheaf-theoretic structure of various no-go theorems in quantum foundations [6, 9],
and much more (for example [5, 10, 3, 4, 1, 2]). The present contribution is in the
same spirit, and Samson’s influence will be clear to all readers of this volume.

Science proceeds by analyzing big things in terms of smaller things while
keeping note of how these smaller things are joined together. In other words,
it concerns composite objects. The composite objects we wish to analyze may
be static objects to be specified at a given time or they may be something that

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 83–106, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

84 L. Hardy

happens in spacetime. Thus, a table is made out of pieces of wood joined together
appropriately. A region of spacetime with fields on it can be thought of as being
composed of many smaller regions of spacetime joined at their boundaries. A
quantum optical experiment can be thought of as consisting of many apparatus
uses (or operations) joined together so that apertures on these apparatuses are
aligned. And so on. In many different branches of physics (and indeed science
generally) we see ideas of composition. Indeed, it is difficult to imagine scientific
explanation that does not correspond to some kind of compositional analysis.
The usual approach is to reinvent basic ideas about how these smaller parts are
composed to make bigger things every time we set up a new physical theory.
It makes sense to think about composition of this sort in the abstract. Having
obtained general notions about the theory of composition, we can see how these
work for particular applications. In this way we may gain useful insight about
how science works in general. This is the subject of this paper.

In the example of a table we can describe how different parts are actually
joined (by somebody) to make the table. However, we do not need to imagine
that somebody is actually putting the composite object together for a theory
of composition to be useful. Rather, we may merely be analyzing an object in
terms of its parts. This is the case in the example of a region of spacetime with
fields on it. Given some larger region we can divide it up into smaller regions
(in many different ways). Nobody is actually building the larger region out of
smaller regions. There may, indeed, be many ways of regarding a bigger object
as being made out of smaller parts.

Initially we will be interested in the description of composite objects irrespec-
tive of whether some particular laws of physics actually allow any given object to
exist. Indeed, an interesting example of a composite object that we can describe,
yet is impossible, is the Penrose (or impossible) triangle.

This well known example consists of three straight beams each having square
cross section and each legally joined to the other two at the ends at right angles
(as shown). The resulting object, however, is clearly impossible. In our theory of
composition we would be able to describe this object simply by specifying the
three objects and the way they are joined.

Having discussed the description of composite objects, we will then go on
to discuss what predictions different physical theories might make about such

On the Theory of Composition in Physics 85

objects. The sort of statements a physical theory will make depends on what
type of physical theory we have. Deterministic theories can give us a yes or no
answer to whether a particular object can exist. Probabilistic theories might give
us a probability. We will propose a principle that may be of some use in setting
up new physical theories. This is the composition principle. This principle says
that we can establish the generalized state for a composite object by means of
a calculation having the same structure as the description of the composition of
that object.

In this paper we will be concerned with some preliminary ideas concerning
composition. We will set up some further notation and introduce some axioms for
composition which may, or may not, be satisfied in certain situations. Our orig-
inal motivation for these considerations comes from quantum theory. However,
the claim is a stronger one. Namely that all physical theories can be understood
in these terms and that the composition principle can always be made to hold.
The hope is that these ideas can play a role in the construction of a theory of
quantum gravity. With regard to quantum theory it is possible that, by thinking
about composition in an abstract and structural way, we may be able to provide
deeper motivation for the kind of axioms that have recently been used in oper-
ational reconstructions of quantum theory [21, 15, 27, 13, 29, 23]. In particular,
we will see that there is a link between the axiom of tomographic locality and
the composition principle proposed here.

2 Examples and the Tensorial Notation

2.1 Tables

To get us warmed up let us consider an example. A piece of furniture is composed
out of many separate parts joined together in different ways. For example, the
following (two-dimensional) table

T

L L

(1)

is made by joining legs, L, to a top T. We can illustrate how the table is put
together by showing the joins as follows

T

L L

a a
(2)

86 L. Hardy

Here we join the leg to the table by a join of a type we describe as a. We have
an arrow because joins are typically asymmetric. For example, we may join the
leg to the table by putting glue on the leg then fixing it in place on the table
(a stronger join may involve screws as well). In this illustration we retain the
shapes of the objects. We can use more abstract notation

T

L L

a a ⇔ La1La2Ta1a2 (3)

We will call this abstract notation the tensorial notation because of its simi-
larity with tensor notation (though, of course, here it is being used to describe
composite objects). The advantage of more abstract notation is that we may
use the same notation across different branches of physics (not just furniture).
In the diagrammatic notation (on the left) we represent each object by a circle.
The table has two different positions one can join legs and these are represented
by the arrow entering the circle in different places. In the symbolic notation the
two different positions are represented by whether we consider the first or second
subscript respectively on Ta1a2 . In the symbolic notation we need to introduce
integers, 1 and 2, to label the different joins. These integers have no significance
beyond that they label the joins. We can relabel them with different integers (or
permute the integers used) and have the same object.

The tensorial notation carries no particular order on the objects. For example,
we can write

La1La2Ta1a2 = La2Ta1a2L
a1 = Ta1a2L

a1La2 = La2La1Ta1a2 (4)

This lack of order is even clearer in the diagrammatic notation. There we do not
care where the circles are placed on the page so long as we preserve the exit and
entry positions on the circles for the joins as well as preserving the graphical
information. For example

T

L L

a a
= T

L

L

a

a

(5)

This lack of order is important. Often we are tempted to think in terms of there
being a particular order in particular physical situations. For example, when we
buy a piece of self-assembly furniture it usually comes with detailed instructions
for what order one is advised to put the pieces together in. This is useful advice to
have if one is trying to build a piece of furniture. However, here we are interested
simply in describing a composite object, not in accounting for how it might have
been put together. Indeed, there may be many alternative orders in which to
assemble a given piece of furniture. This idea that one should not think of the
objects in some particular order will play an important role in what follows.

On the Theory of Composition in Physics 87

2.2 Circuits

A common type of situation in physics is a circuit (such as in quantum theory).
A circuit consists of operations wired together. Here is an illustration of a circuit:

A

B

C

a

c

b

(6)

which can be described by the notation

A

B

C

a

c

b ⇔ Aa1b2Bc3
a1Cb2c3 (7)

An operation corresponds to one use of an apparatus. The apparatus has aper-
tures that are aligned with each other so that systems of various types, denoted
by a, b, etc can pass between the operations. A system of type a passing from
one operation to another corresponds to a join which we will say is of type a.
The apparatus has on it outcomes (such as lights that flash, a meter whose nee-
dle points to a particular number, a LED display indicating an outcome, etc).
The operation has a subset of all the possible outcomes associated with it (this
is implicit in the symbol A). We will say that the operation “happens” if the
outcome recorded is in the set of outcomes associated with the given operation.
In a deterministic theory a given circuit is either possible or impossible. In a
probabilistic theory a given circuit will have a probability for happening (the
probability that the outcome at each circuit is in the set of outcomes for that
operation). A general operational theory for circuits (with particular application
to quantum theory) using the notation in this paper is given in [22–24].

2.3 Other Examples

We can use the same notation to describe many different kinds of situations.
Here are some examples:

Penrose Objects. This is the class of objects described in the following way.
We take a number of square cross-section beams of a certain length. Then
each beam can be joined to others at right angles at its ends. Most objects so
formed will be impossible. In particular, we can describe Penrose triangles
and generalizations thereof (such as Penrose squares, Penrose pentagons,
. . .) in this notation. Some objects described in this way will be possible.

88 L. Hardy

Spacetime with Fields. We can describe a region of spacetime with fields
defined on it that is being regarded as composed of many joined smaller
regions.

Statics Problems. We can describe statics problems (such as a ladder leaning
against a wall).

Distances. We can describe as composite a region of spacetime in which every
path has a distance.

Minimum Distances. We can describe as composite a region of spacetime in
which every pair of points has a minimum distance measured between them
along a path in the region

This framework is for the description of composite objects without saying any-
thing about whether these objects are possible. In physics we are interested in
making predictions. We may wish to predict whether some particular object is
possible, what the probability is for it, or what the value of some property (such
as the width) is. For this purpose we associate a generalized state with an object.
The generalized state can be used to calculate the value of those properties we
are interested in for the given object. A natural question is how do we obtain the
generalized state for a composite object? The composition principle discussed in
Sec. 5 is particularly useful in this respect. It states that we can determine the
generalized state for a composite object from the generalized states for the com-
ponents by means of a calculation that has the same form as the description of
the given composite object. For example,

Aa1b2Ba1Cb2 has generalized state Aa1b2Ba1Cb2 (8)

where Aa1b2 , Ba1 , and Cb2 are the generalized states associated with the com-
ponents. In the case of probabilistic circuits, for example, these mathematical
objects are tensors. The placement of subscripts and superscripts indicates some
particular mathematical procedure for completing the calculation (it need not
be a tensor calculation). If we can always write down our calculations in this
way then the composition principle may turn out to be a very powerful way of
obtaining new physical theories.

3 Background

A decade or so ago, Abramsky and Coecke initiated a hugely influential ap-
proach to quantum theory based on category theory [7]. This emphasizes the
compositional structure of quantum circuits and the connection between this
compositional structure and the structure of quantum calculations. One aspect
of this work is the use of diagrammatic notation. This is taken to heart here.
Another tradition in quantum foundations has been the convex probabilities ap-
proach (in which states are represented by lists of probabilities). This approach
goes back to Mackey [26] and has been worked on by many people over the years
including Ludwig [25], Davies and Lewis [16], Gunson [20], Mielnik [28], Araki
[11], Gudder et al. [19], Foulis and Randall [18], Fivel [17] as well as more recent

On the Theory of Composition in Physics 89

incarnations [21, 12]. More recently there has been some work combining the dia-
grammatic approach of Abramsky and Coecke with the the convex probabilities
approach (for example, see the papers of Chiribella, D’Ariano, and Perinotti
[14, 13] and the duotensor formulation due to the present author [22–24]). In
this paper, the approach developed in [22–24] which concerns probabilistic cir-
cuits is taken as a springboard to a more general theory of composition. The
notation used there (though in a more restricted context) is the same as the
tensorial notation for describing composite object used here. Thus, rather than
writing (A⊗ B) ◦ (C⊗ D) or (A ◦ C)⊗ (B ◦ D) for

C D

A B

a b

(9)

we write
Aa1Ba1C

b2Db2 (10)

This change of notation signals a change of attitude. The tensor product ⊗ is
replaced by the notion of a null join and is treated as yet another type of join,
albeit with special properties (as will be discussed in Sec. 4.1 and Sec. 4.3). The
superscript/subscript structure now tells us where the components are joined.
This is a more versatile notation than the ◦ symbol which plays the same role
in the example given. This notation is such that we can mix up the order and
still denote the same circuit. For example, Cb2Ba1Db2A

a1 corresponds to the same
circuit. This notation is also good for describing other kinds of composite object
(such as tables) where we are not concerned with process or the passage of
systems between boxes.

Although the ideas in this paper are categorical in spirit, no attempt will be
made to bring the formal apparatus of category theory to bear on theory of com-
position proposed here. However, given unifying power of categorical approaches,
it is to be expected that much good would come of such an endeavor.

4 The Description of Composite Objects

In Sec. 2 we provided a particular notation (which we dubbed the tensorial no-
tation) for describing composite objects. This notation has, built into it, various
assumptions about the nature of composition. In this Sec. 4.1 we wish to take
a step back and analyze some of these basic assumptions. We will do this by
suggesting some fundamental axioms. We do not claim that these constitute a
complete set of axioms. They are simply proposed to help us to gain some in-
sight into the notion of composition. The first, and most fundamental, of these
is the composition axiom. This will allow us to use a more primitive form of
notation (than the tensorial notation) which we will call the bipartite notation.
Once we have the bipartite notation we propose two more fundamental axioms.
These are the order independence axiom and the null joins axiom (actually a

90 L. Hardy

set of axioms concerning null joins). These axioms take us much, but not all of
the way to being able to use the tensorial notation. In Sec. 4.2 we will state the
composition locality axiom which, basically, is an axiom saying that we can use
the tensorial notation for describing composite objects. We will also state the
R-enablement axiom which enables us to regard joins in either direction. The
remainder of this section will deal with joins. We will discuss sufficient sets of
joins, and a certain boundary axiom.

All these axioms are motivated by thinking about composite objects such as a
piece of furniture or a region of spacetime broken up into smaller regions. None
of these axioms need be true and some are more basic than others. In this section
we are interested in the description of composite objects irrespective of whether
the laws of physics say the given object is possible. We will address what the
laws of physics say is possible in latter sections.

4.1 The Bipartite Notation and Fundamental Axioms

We assume we have various types of object, A, B, C, We could have more
than one object of a given type. An object is fully specified if we provide a
specification such that no other object has the same specification. Objects whose
full specifications are the same are of the same type and should be represented
by the same letter. Objects whose full specifications are different are different
object types and should be represented by a different letter. We now state the
most basic of axioms.

Composition Axiom: Any object composed of two objects is fully specified if
one is provided with a full specification of the two component objects and a
description of the way in which they are joined.

This axiom corresponds to a kind of reductionism. Were it not true it would be
difficult to develop a theory of composition. We will denote the ways in which
one object can be joined to another by α, β, γ, If we join B to A by means of
join α, according to the composition axiom, we fully specify the resulting object
by

(A,B)α. (11)

We call this the bipartite notation. Note that the α indicates not only the method
of joining but also the join positions on the two objects. For example, A may
represent a wooden die, B a metal die. Then α may represent the join in which
we attach the six side of a wood die to the five side of the metal die by putting
glue on the six of the wooden die and pressing it into place on the five side of the
metal die. Note that there are two aspects of the join. First, there is the type of
join (involving a certain area and glue) and then there is the position of the join
on the two objects. We will denote the type of join by a, b, . . . and the position
of the join by x, y, Thus, we have α = (a, x, y) where a is the type of join
(applying glue over a certain area) and x is the position of the join on the first
object (the six side of the wooden die) and y is the position of the join on the
second object (the five side of the medal die). Another example is in a circuit.

On the Theory of Composition in Physics 91

Then a join α = (a, x, y) would correspond to aligning the aperture at position
x on the first operation with the aperture at position y on the second operation
so that a system of type a can pass between the two operations.

Joins are, in general, asymmetric. For example, we put glue on the first object
then press it into place on the second object. We define αR through

(A,B)α = (B,A)αR . (12)

Hence, if α = (a, x, y) then αR = (aR, y, x). Here aR is the same join type as a
but described in the reverse direction (for example, we put glue on the second
object then press it into place on the first object).

Here are some examples of composite objects.

((A,B)α,C)β ((A,B)α,C)β , ((A,B)α, ((C,A)β ,A)γ)δ, (((A,B)α,C)β ,D)δ
(13)

We get quite complicated bracketting structure here indicating a particular order
of composition.

The second most fundamental axiom we propose is the following

Order Independence Axiom: A given composite object with three compo-
nents can be regarded as being composed in any order. Thus, if

D = (A, (B,C)β)α

then there exists some γ, δ, μ, ν such that

D = ((A,B)γ ,C)δ and D = ((A,C)μ,B)ν

This is a very basic axiom since, were it not true, it would matter what order
we chose to describe the way in which the composite object is built up from
its components. However, if we take this axiom to heart it has potentially far
reaching consequences since, in fact, we do typically choose a special order when
analyzing composite objects for some physical situations. The most pertinent
example is objects composed in time. For example, we may evolve a state through
a number of discrete time steps. Typically we consider the corresponding patches
of space time in sequence. The point of the order independence axiom in this
case is that one can consider the components of such physical objects in any
order, not just the order suggested by the sequence in time.

Whichever way we choose to divide a composite object into two parts, these
two parts are, by definition, joined. However, one way of joining is where we do
not directly join two things but merely consider them both to be “part of the
picture” (and specify no further relationship between them). We represent this
by (A,B)0 and call 0 the null join. We will say that two objects joined by the
null joint are disjoint. It is reasonable to assume this particular way of joining
objects will have special properties since otherwise it would not be distinguished
from other types of join. We assume, then, that

Null Joins Axioms: Null joins have the following properties:

92 L. Hardy

Universality: any pair of objects, A and B, can be joined by a null join.
Uniqueness: If (A,B)α = (A,B)0 then α = 0.
Symmetry: We have (A,B)0 = (B,A)0 for any pair of objects, A and B.
Refinement: if an object is joined to a composite object by the null join

then it is appended to each component of the composite object by the
null join. This means that if we have an object ((A,B)α,C)0 and we write
((A,B)α,C)0 = ((A,C)β ,B)γ (by the order independence axiom) then we
must have β = 0.

Although we give the null join a special name and propose a certain axioms for
it, we do not otherwise treat it on a different footing to other joins. It is just
another type of join. If we are going to compose the space time regions associated
with three sequential time steps in an order that is not that of the sequence then
we might use the null join. Thus, if these three time steps are A, B, and C to be
taken in that sequence then we could write ((A,B)α,C)γ where the join α is that
between the first and second time step and the join γ is that of attaching the
third time step. But we might write ((A,C)0,B)δ where δ is the join of inserting
the time step B in between A and C. It is reasonable to expect that physical
properties for objects connected by the null join will behave in certain ways.
For example, in the duotensor framework [22–24], the probability for a circuit
composed of two disjoint parts factorizes.

4.2 Tensorial Notation and Composition Locality

We will now take steps taking us from the bipartite notation, (A,B)α, to the ten-
sorial notation in the light of the two fundamental axioms just introduced. The
bipartite notation is good for describing a bipartite composite object. However,
when we consider an object consisting of more than two parts it becomes cum-
bersome. A tripartite object is represented by ((A,B)α,C)γ . The problem with
this notation is that it does not represent the spirit of the order independence
axiom. If it does not matter what order three or more parts are joined in, then
it would be convenient if notation treated all the parts on an equal footing. The
tensorial notation accomplishes this though at the cost of assuming something
about the nature of composition. This is the assumption of composition locality
given below.

Let us write
(A,B)α = Aa1 [x]Ba1 [y] (14)

where α = (a, x, y) and a is the type of join, x is the “position” of the join to
object A, and y is the “position” of the join to object B. Here we are just creating
the possibility that joins, such as α, can be separated into type information and
position information (since this is the case in the examples we will consider).
However, we don’t have to do this. We could simply have a new type for every
pair of positions. Hence, this is just notation (we are not assuming anything
extra quite yet). The integer label, 1, on the right is not strictly necessary here

On the Theory of Composition in Physics 93

but is essential when we have more than one join in the tensorial notation. Now,
if we have three objects joined together, we have

((A,B)α,C)β = (Aa1 [x]Ba2 [y])
d2 [u] Cd2 [v] (15)

where α = (a, x, y) and β = (d, u, v). The bracketing means that we do not,
strictly, need the integer labels. However, we include them as we are taking steps
to the tensorial notation where we will need them. Recall that the particular
integers used are of no significance - they are just labels. The example in (15)
can be read as first joining A at x to B at y by join a and then joining the
composite object (A,B)α at u to C at v to by join d. It seems reasonable that
when we join C in this way we can understand the join d to be composed of a
join to A and a join to B. Indeed, consider the object

A

B

C

(16)

Here a bigger rectangle is composed from a square and two smaller rectangles.
We can explode this to illustrate where the joins are

A

B

C
a

b

c

(17)

In this example C is joined separately to A and B. We can think of the join,
(d, u, v) in (15) as being equal to (bc, qr, st) where A at q is joined to C at s by
a join of type b and B at r is joined to C at t by a join of type c. We would
like our notation to reflect this structure. We will first simplify our notation by
absorbing the positions of the joins into the specification of the object. Thus,
rather than writing Aa1b2 [xq] we will write Aa1b2 where the positions x and q
have been absorbed into the definition of A. Similarly, we write Bc3

a1 and Cb2c3

absorbing the relevant positions into the definitions of B and C respectively. It
may, sometimes, be useful to go back to the more cumbersome notation where
we explicitly give the positions.

With this notation in place we can provide a new axiom that is motivated by
the above discussion.

Composition Locality. We can represent a multipartite composite object as
follows:

Aa1b2Bc3
a1Cb2c3 (18)

94 L. Hardy

for a tripartite object, and

Aa1b2c3Bd4e5
a1 Cf6

b2d4
Dc3e5f6 (19)

for an object with four components, and so on. In such expressions the order
of the objects and the particular choice of integer labels are unimportant.
For example,

Aa1c3Bd4
a1Cc3d4 = Aa7c3Cc3d1B

d1
a7 = Bd4

a1A
a1c5Cc5d4 = . . . (20)

In each of these equivalent expressions we maintain the same types of joins
between objects.

The notation in (18) exactly captures the structure of the diagram in (17).
We can make the diagram a little more abstract. Thus, we can represent the
compositional structure shown in (17) by

A

B C

a b

c

(21)

Indeed, since one can use diagrammatic notation, this diagram and this symbolic
notation are just two ways of notating the same thing. Likewise, when we have
four parties, we have symbolic and diagrammatic notation:

Aa1b2c3Bd4e5
a1 Cf6

b2d4
Dc3e5f6 ⇔

A

B C

D

a
b

c

d

e
f (22)

The composition locality axiom enables us to represent composite objects in this
way. It is worth commenting on what is ruled out by this axiom. It could be the
case that when we join two objects, A and B, some new joins become possible
that cannot be understood in terms of joins to A and B separately. It could be
the case that some kinds of join can only be regarded as being between more
than two objects. It could matter what order we understand the composition of
the objects to be taken in. These things are ruled out if we assume composition
locality. In the symbolic notation this is illustrated by the fact that we can write
the objects in any order (as illustrated in (20)). In the diagrammatic notation
it is illustrated by the fact that we can place the objects anywhere on the page
(so long as we maintain the joins between the objects).

In general joins are asymmetric. This is why we use asymmetric notation. For
example, we place glue on the object with raised superscript before pushing it
into place on the object with lowered superscript. Any asymmetrically described
join can be described in the other direction. Thus, we may apply glue on the

On the Theory of Composition in Physics 95

object with lowered superscript object then press it into place on the object
with raised superscript. We denote this reverse description of a join by using a
R superscript. So, if a is some join type, then aR is the same join described in
the reverse direction. This means that

Aa1Ba1 = AaR1
BaR1 (23)

Hence, definitionally, we can raise and lower superscripts and subscripts in this
case if we append the R superscript. If we have more subscripts and superscripts
we would like to be able to do the same. Hence we assume

R-Enablement. In any description of a composite object in tensorial notation
we can reverse the direction of any particular join by changing a subscript
to a superscript, changing the corresponding superscript to a subscript and
appending a R to each. For example,

Aa1b2Ca3
a1Bb2a3 = A b2

aR1
CaR1 a3Bb2a3

We note that, when subscripts are raised or lowered we should maintain a record
of the positions of the joins. We can do this by appropriate indentation of the
labels (though, for the most part, we will not worry about this in this paper).
The assumption of R-enablement is very natural. In diagrammatic notation this
simply corresponds to reversing the direction of the arrows. In diagrammatic
notation we reverse the direction of the join simply by reversing the direction of
the arrows. For example,

A

B C

a b

c

=

A

B C

aR b

cR

(24)

It is natural to lump together the last two axioms. If we have R-enablement
and composition locality then we will say that we have R-enabled composition
locality. In this case we can use the tensorial notation and reverse the direction
of any join.

We will now show that R-enabled composition locality implies the order in-
dependence axiom. We can write

Aa1b2Bc3
a1Cb2c3 = (A,Bc3Cc3)α (25)

where α = (ab, xy, uz) corresponds to joining A at xy to Bc3Cc3 at uz by a join
of type ab (where u is a position at B and z is a position at C). It is then clear
that

R-enabled composition locality⇒ the order independence axiom (26)

To see this we write

Aa1b2Bc3
a1Cb2c3 = Ab2

aR1
BaR1 c3Cb2c3 = (B,Ab2Cb2)β (27)

96 L. Hardy

where β = (aRc, uv, xw) corresponds to joining B at uv to A at x and C at w by
a join of type aRc.

We have not proven that the order independence axiom implies the composi-
tion locality axiom. It would be interesting to find examples of composite objects
that satisfy the very fundamental order independence axiom while violating com-
position locality. In this case we could not use the tensorial notation.

4.3 Composition Locality and Null Joins

Some properties follow from the uniqueness axiom for null joins. Thus, consider
two joins, α = (a, x, y) and β = (b, u, v) where both of these joins are, actually,
the null join. By uniqueness, α = β = 0. Hence, we have a = b. What this means
is that the join type is the same for any null join between a given pair of objects.
We will denote the null join type by the symbol 0. Thus, in this case we have
a = b = 0. We also have x = u and y = v. This means that the null join does
not really have a position at either object. It is also worth noting that 0R = 0
by the symmetry axiom for null joins. All these properties are consistent with
the idea that the null join just corresponds to taking two objects to be part of
the picture without specifying any relationship beyond this.

Consider the composite object (A,Ba1Ca1)0. This consists of two disjoint parts
(that is parts connected by the null join). According to the R-enabled composi-
tion locality axiom we can write

(A,Ba1Ca1)0 = Ab2c3Ba1
b2
Ca1c3 = Ba1b

R
2 Ac3

bR2
Ca1c3 = (B,Ac3Cc3)α = ((A,C)β ,B)αR

(28)
for some b, c, β and α. Now, according to the refinement axiom for null joins, we
must have β = 0 and hence c = 0. By a similar argument, we must have b = 0.
Hence,

(A,Ba1Ca1)0 = A0203Ba1
02
Ca103 (29)

We can notate this this simply by omitting the null joins. Thus, we can write

(A,Ba1Ca1)0 = ABa1Ca1 (30)

where the null joins are taken to be implicit. Another example is the following

(Aa1Ba1 ,C
b2Db2)0 = Aa1Ba1C

b2Db2 (31)

Again, the null joins are taken to be implicit. We can show that the right of (31)
follows from composition locality and the refinement axiom for null joins. This
is true in general. Every pair of objects that are not joined by some non-null join
are joined by a null join. Hence, when we adopt these axioms, we are effectively
forced to notate null joins this way in the tensorial notation (there is no point
in explicitly including the null joins as it is clear where must be). We can also

On the Theory of Composition in Physics 97

see, immediately, that if we do notate null joins in this way then all the null join
axioms are satisfied. Diagrammatically we have

Aa1Ba1C
b2Db2 ⇔

B C

A D

a b
(32)

Thus, disjoint parts of a composite object are naturally represented by disjoint
parts of the graph.

4.4 Pruning

We now wish to address the possibility that we may have more joins listed in
specifying an object than necessary. We may be able to prune the graph while
still describing the composite object as fully as we require for our purposes. It
is worth setting up this discussion with an example.

The notion of a join is really an abstraction. It does not have to correspond
to two objects actually being in contact. For example, we may have a join type,
b, between two squares (with unit length edges) that corresponds to “joining”
the second square one unit of distance to the right of the first square. Thus our
object looks like

A C
1unit

(33)

which we can write as

Ab1Cb1 ⇔ A C

b

(34)

This join does not correspond to placing the two squares exactly next to each
other but letting them have a given displacement from one another. Now, if we
place a third square directly between the two objects then we have the following
object:

A B C (35)

If the join type corresponding to placing the second square immediately to the
right of the first square is denoted a then we can denote this composite object as

Aa1b3Ba2
a1Ca2b3 ⇔ A B Ca a

b

(36)

If we had also to include joins where the squares had relative displacements of
two units, three units, and so on, then as the number of squares increase the

98 L. Hardy

number of joins would increase faster (N(N−1) joins are possible for N objects).
Fortunately, we note that the fact that A and C are joined by a join of type c is
implied by the other joins (the fact that A is joined to B and then B is joined
to C by joins of type a). Hence, we do not lose any information by pruning the
description to the form

Aa1Ba2
a1Ca2 ⇔ A B Ca a

(37)

However, this is a little unsatisfactory. If a third object (B) is present then we can
prune join c. Otherwise we cannot. In this example, we can avoid this problem
by enlargening our set of objects to include “empty space” objects. Thus, we
denote by E an empty unit square. For definiteness, we can imagine that the
squares are made out of sheet aluminium. Then an empty square means that
we have a one unit area with no sheet aluminium in it. Then we can denote the
object illustrated in (33) by the “pruned” notation

Ad1Ee2
d1
Ce2 ⇔ A E Cd e

(38)

where d and e denote the appropriate join types here. If we proceed in this way
then the number of joins need not grow as fast with the number of objects.
Further more, we can specify the object using only joins that correspond to the
components being in contact.

This particular example motivates the following definition for the general case.

A sufficient set of join types for some given set of objects is a set of
join types such that any composite object formed from the given set of
objects is fully specified (in the tensorial notation) if all joins of the type
in the sufficient set are given where they exist between the components.

This, in turn, motivates the following definition

A minimal set of join types for some given set of objects is a sufficient
set of join types having the property that, if any element is removed, we
no longer have a sufficient set.

The key idea behind sufficient (and minimal) sets of join types is that some
joins, while they may exist, need not be specified in the context of a given set
of objects. If we have a sufficient or, better, a minimal set of join types then we
can proceed more efficiently.

4.5 Boundaries

Typically objects are joined to each other at boundaries of those objects. These
boundaries live in space, time, or space-time. An object will have a boundary
that delimits what else it can be joined to. This motivates the following axiom:

Boundary Axiom: given some sufficient set of joins, Jsuff, then for any object
A and any join a ∈ Jsuff admitted by A there exists a unique join b in Jsuff
such that if A is joined to some object by ab then no further joins in Jsuff at
A are possible other than the null join.

On the Theory of Composition in Physics 99

Let us call the unique join, b, in this definition the complement to a for A.
We can write it as āA. By 0̄A we denote the complement to the null join. This
deserves a special name so we call it the complete join for A. If A is joined to
any other object by its complete join then it does not admit further joins (other
than the null join). Thus, the complete join can be thought of as representing
the boundary of A.

Once we have the boundary axiom, we can introduce a final refinement to the
tensorial notation for composition. We can denote an object by Aa1

b2
where we

demand that abR = 0̄A. The subscripts and superscripts may be composite. For
example, we may have Aa1b2

c3d4
where abcRdR = 0̄A. The advantage of this notation

is that if there are joins left open we can read it off. For example, we may have
a composite object

Aa1b2Bc3
a1Cc3d4 (39)

This has open joins b at A and dR at C. This is even clearer if we represent this
diagrammatically

A

B

C

a

c

b

d

(40)

5 The Composition Principle

Up to now we have discussed the description of composite objects and we have
developed the tensorial notation for this description. In physics we are also in-
terested in predicting the values of properties pertaining to the given physical
object. Here are a few examples of properties we might try to predict.

Possible or Impossible. We may be interested in whether some particular ob-
ject is actually possible. If it is possible we can return the value 1 and if not,
we can return the value 0. An example of this are what we might call “Pen-
rose objects” consisting of beams with square cross section that are joined
at right angles at their ends. The Penrose triangle is an example of an im-
possible object and so we should return the value 0. The possible/impossible
approach is a way of understanding deterministic theories (such as New-
tonian dynamics). Processes that violate the predictions of the theory are,
within the context of this theory, impossible.

Probability. We may ask what the probability of a particular set of outcomes
is. An example where we do this is for probabilistic circuits.

Dimensions. We may be interested in what the dimensions of some object is
(its height, width, length).

Minimum Distances. Wemay be interested in the minimum distance between
points in the object (as measured within the object).

100 L. Hardy

In a typical situation in physics we are only interested in some subset of proper-
ties (for example, in thermodynamics, we are interested in the values of certain
macroscopic variables but we are not interested in the velocity of individual
atoms). We define the following notion

The generalized state is a mathematical object, A, associated with an
object, A, which can be used to calculate the value of those properties
we are interested for this object.

Typically in physics a state pertains to a given time and is used to make pre-
dictions for later times. The generalized state is a more general notion than
this since we may be making predictions of a more general type (such as in the
examples given above).

A key question is how do we calculate the generalized state for a composite
object? We propose the following principle.

THE COMPOSITION PRINCIPLE: The generalized state for a
composite object can be calculated from the generalized states for the
components by means of a calculation having the same structure as the
description of the composition of that object.

For example, we can write

Aa1b2Bc3
a1Cb2c3 has generalized state Aa1b2Bc3

a1
Cb2c3

where Aa1b2 , Bc3
a1
, and Cb2c3 are the generalized states associated with Aa1b2 , Bc3

a1 ,
and Cb2c3 respectively. The subscript/superscript placement corresponds to some
mathematical operations respecting the composite structure. We will not show
that the composition principle holds for all physical situations (such as those
given). There may be counterexamples. However, we will illustrate the principle
with a few simple examples.

5.1 Circuits

Here is an example of the composition principle in action. We consider circuits
as described in Sec. 2.2 where we are interested in calculating the probability
of seeing outcomes at the operations that are in the associated outcome sets.
A much discussed assumption for probabilistic circuit models is tomographic
locality (see [23] and references therein). This property has many equivalent
formulations. The most common is that the state associated with a bipartite
system can be determined by local measurements on each of the systems. In
the case where we have tomographic locality the composition principle holds for
calculating probabilities. To calculate the probability of the circuit

A

B

C

a

c

b ⇔ Aa1b2Bc3
a1Cb2c3 (41)

On the Theory of Composition in Physics 101

we can write
Prob(Aa1b2Bc3

a1Cb2c3) = Aa1b2Bc3
a1
Cb2c3

where Aa1b2 , Bc3
a1
, and Cb2c3 are tensors. The subscript/superscript placement

now corresponds to Einstein summation. In this example Aa1b2Bc3
a4

corresponds
tomultiplying two numbers (the elements of the tensors with these particular val-
ues of the subscripts and superscripts) and then the repeated index corresponds
to summation. Thus, we have two operations, multiplication and summation.
This means that something like Ca1Da1 is a sum of products. These two op-
erations guarantee that we can do the calculation in any order. Thus, we can
write

Aa1b2Bc3
a1
Cb2c3 = Cb2c3A

a1b2Bc3
a1

= Bc3
a1
Aa1b2Cb2c3 = . . .

by the associativity property of multiplication and we can perform the three dif-
ferent summations in any order by the associativity property of summation. The
composition principle is satisfied since, for the purpose of calculating probabili-
ties, we have generalized states (the tensors) and the are determined by means
of a calculation having the same structure as compositional structure.

Quantum theory satisfies the principle of tomographic locality and it can be
formulated in such a way that the generalized state is given by tensors as just
described. However, for quantum theory, there exists a more tailor-made way of
representing the generalized state in such a way that the composition principle
is satisfied. This is to represent the generalized state of the operation Bc3

a1 , for

example, by an hermitian operator B̂c3
a1 satisfying certain properties (see [23, 24]

for more details). Then we can write

Prob(Aa1b2Bc3
a1Cb2c3) = Âa1b2B̂c3

a1 Ĉb2c3

In the notation on the right, the repeated label indicates partial trace over the
appropriate part of the operator space (as outlined in [23, 24]).

Tomographic locality has been used as a postulate in many of the recent
reconstructions of quantum theory. It is intriguing that it is connected to the
even deeper idea of the composition principle. In the context of probabilistic
circuit theories, the composition principle follows from tomographic locality. It
is possible that the converse is true. This raises the intriguing possibility of
using the composition principle as a basis for reconstructing quantum theory.
The composition principle is a deeper principle than tomographic locality and
it may play a role in formulating physics that goes beyond the circuit setting of
quantum theory (such as a theory of quantum gravity).

5.2 Labeled Tiles

We consider square tiles of unit length that are labeled n = 1, 2, Let the
nth such tile be T[n]. A complete set of join types is {x, y, 0}. The join type x
corresponds to placing one immediately to the right of the other as follows

Tx1 [m]Tx2 [n] ⇔ m n (42)

102 L. Hardy

The join type y corresponds to placing one tile immediately above the other

Ty1 [m]Ty2 [n] ⇔ m

n

(43)

The third join type is the null join where we simply consider the two tiles as
part of the same picture without specifying their relationship any further.

T[m]T[n] ⇔ m

n

(44)

We can define xR and yR to correspond to joins in the opposite direction. For
example,

TxR1 [m]TxR2
[n] ⇔ n m (45)

We can build up highly composite objects by joining many tiles. For example,

D = Tx2
y1 [1] T

y1x3 [2] Ty4
x3 [3] T

y5
y3x2 [4] Ty5 [5] T

x6 [6] Tx6 [7] ⇔ 1

2 3

4

5
6 7

(46)
This particular composite object is disjoint (it consists of two disjoint parts).

We are interested in calculating geometric properties having to do with the
relative displacement of tiles (where defined). Hence, we define the following
generalized state for objects that have no disjoint parts

A = {
(
(m,n), (Δx,Δy)

)
: for all tile labels m,n in A} (47)

where Δx is the horizontal displacement from tile m to tile n and Δy is the ver-
tical displacement between these tiles (so (Δx,Δy) is the displacement between
these two tiles). We can obtain the generalized state for objects that do have
disjoint parts by using the null join. Corresponding to the object, AB we have

AB := A ∪B (48)

(recall that we suppress the 0 but we could write A01B01 for this object). For the
composite object D in (46) we would get all the displacements in each of the two
disjoint parts. However, no displacements would be specified between the two
disjoint parts since these are not defined.

We can join two composite objects by an x join by specifying the tiles in each
object where this join is to occur. So,

C = Ax1 [u]Bx1 [v] (49)

means that we join A at tile u to B at tile v by an x type join. The associated
generalized state is given by

C = Ax1 [u]Bx1 [v] = A ∪B ∪ X (A[u], B[v]) (50)

On the Theory of Composition in Physics 103

where

X (A[u], B[v]) =

{
(
(m,n),Δ(m,u) + (1, 0) +Δ(v,n)

)
: ∀(m,u) ∈ A and (v, n) ∈ B} (51)

and Δ(m,u) is the displacement between tile m and tile u. This is the set of
displacements between A and B that are established by this new join. For this
join to be consistent no two tiles should end up at the same position. Clearly,
one can determine this by taking an appropriate function of C. The effect of a
y join is given by

E = Ay1 [u]By1 [v] = A ∪B ∪ Y(A[u], B[v]) (52)

where

Y(A[u], B[v]) =

{
(
(m,n),Δ(m,u) + (0, 1) +Δ(v,n)

)
: ∀(m,u) ∈ A and (v, n) ∈ B} (53)

If we just have a single tile, T[n], then the corresponding generalized state is

T [n] = {((n, n), (0, 0))} (54)

It is now easy to see that, in building up the generalized state corresponding
to any composite object (such as D in (46)), we get the same answer no matter
what order we do the calculation. Further, it is clear that geometric properties
are all given by appropriate functions of the resulting generalized state. The
composition principle clearly holds since we obtain generalized states by means
of a calculation having the same structure as that of the description of the
composite object.

When we have more than one join we have an additional consistency condition.
Namely, the displacement between any pair of tiles should be the same. If the
joins are inconsistent then we will get more than one displacement for any given
pair of tiles. This consistency condition is easily checked by taking an appropriate
function of the mathematical object corresponding to the constructed composite
object.

It is worth adding that we could have a more compact specification of the gen-
eralized state. Thus, rather than specifying the relative displacement of every
pair of tiles in each disjoint part, we could simply specify the relative displace-
ment of every tile from a given fiducial tile in each disjoint part. We could ex-
pand this compressed information simply by subtraction to get the displacement
between any two tiles. A similar compression appears in the circuit framework
above where we effectively specify a state by listing the probabilities for a fiducial
set of measurement outcomes from which all others can be calculated.

5.3 Other Examples

It is a simple matter to set up the theory for other examples but lack of space
prohibits us from doing so here. For example, Penrose objects can be specified by

104 L. Hardy

calculating the displacement between the two ends in the coordinate system that
is given by the average of coordinate systems for each beam. Arbitrary regions
of spacetime with fields can be joined by requiring that the fields match and a
certain number of derivatives match at the boundaries. Given a new example it
requires a certain amount of ingenuity to set up the appropriate mathematical
objects along with appropriate joining conditions. However, it seems likely that
this can be done for any physical example. This raises the question of whether
assuming the composition principle actually amounts to assuming something of
the world, or whether it can always be made to be true. Even if the latter is the
case, the composition principle could be a useful tool in constructing new physical
theories. In particular, in a theory of quantum gravity we must, presumably,
build up a picture of bigger things by joining smaller things. However, we can
expect to have indefinite causal structure and consequently boundaries between
such smaller things can be expected to be causally fuzzy. In this case, the new
tools developed in this paper could be very useful for the process of theory
construction.

6 Conclusions

We have developed the tensorial notation for describing composite objects and
explored the assumptions going into this notation using the more primitive bi-
partite notation. In describing objects we are not making any predictions for
them. The composition principle suggests that there is a correspondence be-
tween objects and certain mathematical objects (generalized states) that allow
us to make predictions of properties of the objects by means of equations that
have the same structure as the description of the composition of those objects.
We have given a few simple examples where the composition principle can be
seen to hold. We make the stronger claim that any reasonable physical theory
can be formulated in a way that this principle holds. Further, we claim that
all physical theories ought to be formulated in a way that makes it clear that
the composition principle holds. This is a potentially very useful principle in
constructing new physical theories, such as a theory of quantum gravity.

References

1. Abramsky, S.: Petri nets, discrete physics, and distributed quantum computa-
tion. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 1–2.
Springer, Heidelberg (2007)

2. Abramsky, S.: Temperley-lieb algebra: From knot theory to logic and computation
via quantum mechanics. In: Mathematics of Quantum Computing and Technology,
pp. 415–458. Taylor and Francis (2007)

3. Abramsky, S.: Relational hidden variables and non-locality. Arxiv preprint
arXiv:1007.2754 (2010)

On the Theory of Composition in Physics 105

4. Abramsky, S.: Big toy models: representing physical systems as chu spaces. Syn-
these, 1–22 (2011)

5. Abramsky, S.: Relational databases and bell’s theorem. arXiv preprint
arXiv:1208.6416 (2012)

6. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and
contextuality. New Journal of Physics 13(11), 113036 (2011)

7. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer, pp. 415–425
(2004)

8. Abramsky, S., Coecke, B.: Physics from computer science: a position statement.
International Journal of Unconventional Computing 3(3), 179 (2007)

9. Abramsky, S., Hardy, L.: Logical bell inequalities. Physical Review A 85(6), 062114
(2012)

10. Abramsky, S., Heunen, C.: Operational theories and categorical quantum mechan-
ics. arXiv preprint arXiv:1206.0921 (2012)

11. Araki, H.: On a characterization of the state space of quantum mechanics. Com-
munications in Mathematical Physics 75(1), 1–24 (1980)

12. Barrett, J.: Information processing in generalized probabilistic theories. Physical
Review A 75(3), 032304 (2007)

13. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Informational derivation of Quantum
Theory. ArXiv:1011.6451 and Physical Review A 84, 012111 (2011)

14. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purifica-
tion. ArXiv:0908.1583 and Physical Review A 81(6), 062348 (2010)

15. Dakic, B., Brukner, C.: Quantum theory and beyond: is entanglement special?
Arxiv preprint arXiv:0911.0695 (2009) and Halvorson, H. (ed.): Deep Beauty: Un-
derstanding the Quantum World Through Mathematical Innovation, pp. 365–392.
Cambridge University Press (2011)

16. Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Com-
munications in Mathematical Physics 17(3), 239–260 (1970)

17. Fivel, D.I.: How interference effects in mixtures determine the rules of quantum
mechanics. Physical Review A 50(3), 2108 (1994)

18. Foulis, D.J., Randall, C.H.: Empirical logic and tensor products. Interpretations
and Foundations of Quantum Theory 5, 9–20 (1979)

19. Gudder, S., Pulmannová, S., Bugajski, S., Beltrametti, E.: Convex and linear effect
algebras. Reports on Mathematical Physics 44(3), 359–379 (1999)

20. Gunson, J.: On the algebraic structure of quantum mechanics. Communications in
Mathematical Physics 6(4), 262–285 (1967)

21. Hardy, L.: Quantum theory from five reasonable axioms. Arxiv preprint quant-
ph/0101012 (2001)

22. Hardy, L.: A formalism-local framework for general probabilistic theories including
quantum theory. Arxiv preprint arXiv:1005.5164 (2010)

23. Hardy, L.: Reformulating and reconstructing quantum theory. Arxiv preprint
arxiv:1104.2066 (2011)

24. Hardy, L.: The operator tensor formulation of quantum theory. Arxiv:1201.4390
and Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 370, 3385–3417 (1971)

25. Ludwig, G.: An axiomatic basis of quantum mechanics, vols. I, II. Springer, Berlin
(1985, 1987)

106 L. Hardy

26. Mackey, G.W.: The mathematical foundations of quantum mechanics: a lecture-
note volume. Addison-Wesley (1963)

27. Masanes, L., Müller, M.P.: A derivation of quantum theory from physical require-
ments. ArXiv:1004.1483 and New Journal of Physics 13(6), 063001 (2011)

28. Mielnik, B.: Theory of filters. Communications in Mathematical Physics 15(1),
1–46 (1969)

29. Zaopo, M.: Information theoretic axioms for quantum theory. arXiv preprint
arxiv:1205.2306 (2011)

On the Functor �2

Chris Heunen

Department of Computer Science, University of Oxford�

heunen@cs.ox.ac.uk

Abstract. We study the functor �2 from the category of partial injec-
tions to the category of Hilbert spaces. The former category is finitely
accessible, and in both categories homsets are algebraic domains. The
functor preserves daggers, monoidal structures, enrichment, and various
(co)limits, but has no adjoints. Up to unitaries, its direct image consists
precisely of the partial isometries, but its essential image consists of all
continuous linear maps between Hilbert spaces.

I am delighted to dedicate this paper to Samson Abramsky, on the occasion of his
60th birthday. Among all the wisdom he has imparted on me is this contradictory
gem: “Never solve a problem completely, or noone will have a reason to cite you”.
My better nature gladly took some time off to let this paper follow his advice.

1 Introduction

The rich theory of Hilbert spaces underpins much of modern functional analysis
and therefore quantum physics [24,20], yet important parts of it have resisted
categorical treatment. In any categorical analysis of a species of mathematical
objects, free objects of that kind play a significant role. The important �2–
construction is in many ways the closest thing there is to a free Hilbert space: if
X is a set, then

�2(X) =
{
ϕ : X → C

∣∣∣ ∑
x∈X

|ϕ(x)|2 <∞
}

is a Hilbert space, in fact the only one of its dimension up to isomorphism.
The �2–construction can be made into a functor, if we take partial injections as
morphisms between the sets X , as first observed by Barr [6]. Outside functional
analysis, it also plays a historically important role in the geometry of interac-
tion (which has been noticed by many authors; an incomplete list of references
includes [9,1,12,13,17]).

� The author was supported by U.S. Office of Naval Research Grant Number
N000141010357, and would like to thank Jǐŕı Rosicky, Bart Jacobs, Peter Hines,
Samson Abramsky, Prakash Panangaden, John Bourke, Norbert Schuch, and Jamie
Vicary for encouragement and pointers.

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 107–121, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

108 C. Heunen

Explicit categorical properties of the �2–construction are few and far between
in the literature. These notes gather and augment them in a systematic study.
Section 2 starts with the category of Hilbert spaces: it is self-dual, has two
monoidal structures, and its homsets are algebraic domains, but its enrichment
and limit behaviour is wanting. Section 3 discusses the category of partial injec-
tions, which is more well-behaved: it is also self-dual, has two monoidal struc-
tures, and is enriched over algebraic domains; moreover, it is finitely accessi-
ble. Section 4 introduces and studies the functor �2 itself. It preserves the self-
dualities, monoidal structures, and enrichment. It also preserves (co)kernels and
finite (co)products, but not general (co)limits. Therefore it has no adjoints, and
in that sense does not provide free Hilbert spaces. It is faithful and essentially
surjective on objects. Section 5 studies the image of the functor �2. Up to uni-
taries, its direct image consists precisely of partial isometries. Remarkably, it is
essentially full, that is, its essential image is the whole category of Hilbert spaces.

Choice issues are lurking closely beneath the surface of these results. In fact,
�2(X) is not just a Hilbert space; it carries a priviledged orthonormal basis.
The functor �2 is an equivalence between the category of partial injections, and
the category of Hilbert spaces with a chosen orthonormal basis and morphisms
preserving it. But the latter class of morphisms is too restrictive: all interesting
applications of Hilbert spaces require a change of basis. Following the guiding
thought “a gentleman does not choose a basis”, Section 6 suggests directions for
further research.

2 The Codomain

Definition 2.1. We are interested in the categoryHilb, whose objects are com-
plex Hilbert spaces, and whose morphisms are continuous linear functions.

2.2. The category Hilb has a dagger, that is, a contravariant involutive functor
† : Hilbop → Hilb that acts as the identity on objects. On a morphism f : H →
K it is given by the unique adjoint f † : K → H satisfying 〈f(x) | y〉 = 〈x | f †(y)〉.
For example, an isomorphism u is unitary when u−1 = u†.

2.3. Furthermore, the usual tensor product of Hilbert spaces provides the cat-
egory Hilb with symmetric monoidal structure. The monoidal unit is the 1-
dimensional Hilbert space C. In fact,Hilb has dagger symmetric monoidal struc-
ture, i.e. (f ⊗ g)† = f † ⊗ g†, and all coherence isomorphisms are unitaries.

2.4. Direct sums of Hilbert spaces provide the categoryHilbwith (finite) dagger
biproducts. That is, H⊕K is simultaneously a product and a coproduct, the pro-
jections are the daggers of the corresponding coprojections, and (f⊕g)† = f †⊕g†.
Similarly, the 0-dimensional Hilbert space is a zero object, i.e. simultaneously ini-
tial and terminal.

2.5. Let us emphasize that we take continuous linear maps as morphisms be-
tween Hilbert spaces, rather than linear contractions. The category of Hilbert

On the Functor �2 109

spaces with the latter morphisms is rather well-behaved, see e.g. [5]. However,
it is the former choice of morphisms that is of interest in functional analysis
and quantum physics. Unfortunately it also reduces the limit behaviour of the
category Hilb, as the following lemma shows.

Lemma 2.6. The category Hilb:

(i) has (co)equalizers;
(ii) does not have infinite (co)products;
(iii) does not have directed (co)limits.

Proof. Part (i) holds because Hilb is enriched over abelian groups and has ker-
nels [16]. For (ii), consider the following counterexample. Define an N-indexed
family Hn = C of objects of Hilb. Suppose the family (Hn) had a coproduct H
with coprojections κn : Hn → H . Define fn : Hn → C by fn(z) = n · ‖κn‖ · z.
These are bounded maps, since ‖fn‖ = n · ‖κn‖. Then for all n ∈ N the norm of
the cotuple f : H → C of (fn) must satisfy

n · ‖κn‖ = ‖fn‖ = ‖f ◦ κn‖ ≤ ‖f‖ · ‖κn‖,

so that n ≤ ‖f‖. This contradicts the boundedness and hence continuity of f .
Finally, part (iii) follows from (ii) and [23, IX.1.1]
�

2.7. Despite the previous lemma, Hilb is conditionally (co)complete, in the
sense that it does have objects that partially obey the universal property of
infinite (co)products: for a family Hi of Hilbert spaces,

H =
{
(xi) ∈

∏
i

Hi |
∑
i

‖xi‖2 <∞
}
.

is a well-defined Hilbert space under the inner product 〈(xi) | (yi)〉 =
∑

i〈xi | yi〉
[20]. The evident morphisms πi : H → Hi satisfy πi◦π†

i = id and πi◦π†
j = 0 when

i �= j. A cone fi : K → Hi allows a unique well-defined morphism f : K → H
satisfying πi ◦ f = fi if and only if

∑
i ‖fi‖2 <∞. Note, however, that the cone

(πi) itself does not satisfy this condition. In this sense, �2(X) is the conditional
coproduct of X many copies of C.

2.8. A similar phenomenon occurs for simpler types of (co)limits. Monomor-
phisms in Hilb are precisely the injective morphisms, and epimorphisms are
precisely those morphisms with dense range [15, A.3]. Not every monic epimor-
phism is an isomorphism. For example, the morphism f : �2(N)→ �2(N) defined
by f(ϕ)(n) = 1

nϕ(n) is injective, self-adjoint, and hence also has dense image.
But it is not surjective, as the vector ϕ ∈ �2(N) determined by ϕ(n) = 1

n is not
in its range.

2.9. If f, g : H → K are morphisms in Hilb, then so are f +g and zf for z ∈ C.
Because composition respects these operations, Hilb is enriched over complex
vector spaces. In general, the homsets are not Hilbert spaces themselves [2], so

110 C. Heunen

Hilb is not enriched over itself, and hence not Cartesian closed. At any rate,
there is another way to structure the homsets of Hilb, which is of more interest
here. Say f ≤ g when ker(f)⊥ ⊆ ker(g)⊥ and f(x) = g(x) for x ∈ ker(f)⊥.
The following proposition shows that this makes all homsets into algebraic do-
mains [4], but that this is not respected by composition. This is closely related
to [8, 2.1.4], but Hilb is not a restriction category in the sense of that paper:
setting f to be the projection onto ker(f)⊥ does not satisfy fg = gf .

Proposition 2.10. All homsets in the category Hilb are algebraic domains, but
composition is not monotone.

Proof. The least upper bound of a directed family fi is given by continuous
extension to the closure of

⋃
i ker(fi)

⊥; this makes all homsets into directed-
complete partially ordered sets. If f ≤

∨
i fi always implies f ≤ fi for some i,

then ker(f)⊥ must have been finite-dimensional; thus morphisms f satisfying
dim(ker(f)⊥) < ∞ are the compact elements. It is now easy to see that any
morphism is the directed supremum of compact ones below it, making all homsets
into algebraic domains.

Now consider composition. First suppose that f ≤ f ′ and g ≤ g′. If x ∈ ker(f),
then clearly gf(x) = 0. If x ∈ ker(f)⊥, then f(x) = f ′(x), so g′f ′(x) = 0 implies
f(x) ∈ ker(g′) ⊆ ker(g). Because we may write dom(gf) = ker(f)⊕ ker(f)⊥, we
conclude ker(gf)⊥ ⊆ ker(g′f ′)⊥. But unless f(ker(gf)⊥) ⊆ ker(g)⊥, it need not
be the case that gf equals g′f ′ on ker(gf)⊥. For an explicit counterexample, let

f = f ′ =

(
1 1
0 1

)
, g =

(
1 0
0 0

)
, g′ =

(
1 0
0 1

)
.

Then f ≤ f ′ and g ≤ g′. But ker(gf)⊥ = {(x
−x) | x ∈ C}⊥ = {(xx) | x ∈ C}, and

gf (xx) = (2x
0) �= (2xx) = g′f ′ (x

x), so gf �≤ g′f ′.
�

3 The Domain

Definition 3.1. A partial injection is a partial function that is injective, wher-
ever it is defined. More precisely, it(s graph) is a relation R ⊆ X × Y such that
for each x there is at most one y with (x, y) ∈ R, and for each y there is at most
one x with (y, x) ∈ R. Sets and partial injections form a category PInj under
composition of relations S ◦R = {(x, z) | ∃y : (x, y) ∈ R, (y, z) ∈ S}.

3.2. Notationally, a partial injection f : X → Y can be conveniently represented
as a span (X F
�f1
� �� f2 ��Y) of monics in Set. Here, f1 is (the inclusion of)
the domain of definition of f , and f2 is its (injective) action on that domain.
Composition in this representation is by pullback. We will also write Dom(f) =
f1(F) for the domain of definition, and Im(f) = f2(F) for the range of f .

If it wasn’t already, the span notation immediately makes it clear that PInj
is a dagger category: (X F
�f1
� �� f2 ��Y)† = (Y F
�f2
� �� f1 ��X).

On the Functor �2 111

3.3. The category PInj has two dagger symmetric monoidal structures. The
first one, that we denote by ⊗, acts as the Cartesian product on objects. Be-
cause the Cartesian product of injections is again injective, ⊗ is well-defined on
morphisms of PInj as well. The monoidal unit is a singleton set 1. Notice that
⊗ is not a product, and hence not a coproduct either.

The second dagger symmetric monoidal structure on PInj, denoted by ⊕,
is given by disjoint union on objects. It is easy to see that a disjoint union of
injections is again injective, making ⊕ well-defined on morphisms of PInj. The
monoidal unit is the empty set. Notice that ⊕ is not a coproduct, and hence not
a product either.

Lemma 3.4. The category PInj:

(i) has (co)equalizers;

(ii) has a zero object;

(iii) does not have finite (co)products;

Proof. The equalizer of f, g : X → Y is the inclusion of{
x ∈ X | x �∈ (Dom(f) ∪Dom(g)) ∨

(
x ∈ (Dom(f) ∩Dom(g)) ∧ f(x) = g(x)

)}
into X . The empty set is a zero object in PInj.

Towards (iii), notice that if (X κX ��X + Y YκY
�) were a coproduct in
PInj, then one must have Dom(κX) = X , Dom(κY) = Y and Im(κX) ∩
Im(κY) = ∅, because otherwise unique existence of mediating morphisms is
violated. Hence any coproduct must contain the disjoint union of X and Y . Let
f : X → Z and g : Y → Z be any morphisms. Then a mediating morphism
m : X + Y → Z has to satisfy m(x) = f(x) for x ∈ Dom(f) and m(y) = g(y) for
y ∈ Dom(g). But such anm is not unique, unless Dom(f) = X and Dom(g) = Y .
In fact, it is not even a partial injection unless Im(f) ∩ Im(g) = ∅. We conclude
that PInj does not have binary (co)products.
�

3.5. In fact, part (ii) of the previous lemma follows from the existence of directed
colimits, which we now work towards. Recall that a category has directed colimits
if and only if it has colimits of chains, i.e. colimits of well-ordered diagrams [5,
Corollary 1.7]. Observe that for a chain D : I → PInj, if ci : D(i) → X is a
cocone on D, then Dom(ci) ⊆ Dom(D(i ≤ j)) for all j ≥ i. To see this, notice
that ci = cj ◦D(i ≤ j) since ci is a cocone, and therefore

Dom(ci) = Dom(cj ◦D(i ≤ j)) ⊆ Dom(D(i ≤ j)).

This observation suggests that the colimit of a well-ordered diagram in PInj
should consist of all ‘infinite paths’. The following proposition shows that this is
indeed a colimit.

Proposition 3.6. The category PInj has directed colimits.

112 C. Heunen

Proof. Let D : I → PInj be a chain. Define

X = {x ∈
∐
i

D(i) | ∀j≥i[x ∈ Dom(D(i ≤ j))]}/ ∼,

where the coproduct is taken in Set, and the equivalence relation ∼ is generated
by x ∼ D(i ≤ j)(x) for all i ≤ j in I and x ∈ Dom(D(i ≤ j)). For i ∈ I, define
ci : D(i)→ X by

Dom(ci) = {x ∈ D(i) | ∀j≥i[x ∈ Dom(D(i ≤ j))]},

and ci(x) = [x].
First of all, let us show that the ci form a cocone. One has:

Dom(cj ◦D(i ≤ j))

= {x ∈ D(i) | x ∈ Dom(D(i ≤ j)) ∧D(i ≤ j)(x) ∈ Dom(cj)}
= {x ∈ D(i) | x ∈ Dom(D(i ≤ j)) ∧ ∀k≥j [D(i ≤ j)(x) ∈ Dom(D(j ≤ k))]}.

The well-orderedness of I implies that

∀k≥i[P (k)]⇔ ∀k≥j [P (k)] ∧ P (j)

for any property P on the objects of I, whence

Dom(cj ◦D(i ≤ j)) = {x ∈ D(i) | ∀k≥i[x ∈ Dom(D(i ≤ k))]} = Dom(ci).

Moreover cj ◦ D(i ≤ j)(x) = [D(i ≤ j)(x)] = [x] = ci(x) for x ∈ Dom(ci), by
definition of the equivalence relation.

Next, we show that ci is universal. Let di : D(i) → Y be any cocone, and
define m : X → Y by

Dom(m) = {[x] | x ∈ Dom(di)}

and m([x]) = di(x) for x ∈ D(i); this is well-defined since di is a cocone. Then

dom(m ◦ ci) = {x ∈ D(i) | x ∈ Dom(ci) ∧mi(x) ∈ Dom(m)}
= {x ∈ D(i) | ∀j≥i[x ∈ Dom(D(i ≤ j))] ∧ x ∈ Dom(di)}
= Dom(di)

by 3.5, and m ◦ ci(x) = m([x]) = di(x) for x ∈ D(i). Thus m ◦ ci = di, so m is
indeed a mediating morphism.

Finally, if m′ : X → Y satisfies m ◦ ci = di, then it follows from the above
considerations that Dom(m′) = Dom(m) and m′(x) = m(x) for x ∈ Dom(m).
Hence m is the unique mediating morphism.
�

3.7. Recall that an object X in a category C is called finitely presentable when
the hom-functor C(X,−) : C→ Set preserves directed colimits. Explicitly, this
means that for any directed poset D : I → C, any colimit cocone di : D(i)→ Y

On the Functor �2 113

and any morphism f : X → Y , there are j ∈ I and a morphism g : X → D(j)
such that f = dj ◦ g. Moreover, this morphism g is essentially unique, in the
sense that if f = di ◦ g = di ◦ g′, then D(i → i′) ◦ g = D(i → i′) ◦ g′ for some
i′ ∈ I.

D(i) ��

di ���
��

��
��

��
D(i′) ��

di′
��

D(i′′) ��

di′′

����
��
��
��
�

· · · �� D(j) ��

dj

�������
�����

�����
�����

�����
�� · · ·

Y X
f

�

g

���
�
�

A category is called finitely accessible [5] when it has directed colimits and every
object is a directed colimit of finitely presentable objects.

Lemma 3.8. A set is finitely presentable in PInj if and only if it is finite.

Proof. The only thing, in the situation of 3.7 with X finite, is to notice that if a
partial injection g is to exist, we must have Dom(g) = Dom(f). The rest follows
from [5, 1.2.1].
�
Theorem 3.9. The category PInj is finitely accessible.

Proof. It suffices to prove that every set in PInj is a directed colimit of finite
ones. But that is easy: X is the colimit of the directed diagram consisting of its
finite subsets.
�
Definition 3.10. An inverse category is a categoryC in which every morphism
f : X → Y allows a unique morphism f † : Y → X satisfying f = ff †f and
f † = f †ff †. Equivalently, it is a dagger category satisfying f = ff †f and
pq = qp for idempotents p, q : X → X . The proof of equivalence of these two
statements is the same as for inverse semigroups (see [22, Theorem 1.1.3] or [8,
Theorem 2.20]). Inverse categories are a special case of restriction categories [8].

The category PInj is an inverse category under its dagger (see 3.2). The
following categorification of the Wagner–Preston theorem [22, Theorem 1.5.1]
shows that it is in fact a representative one. See also [8, 3.4].

Proposition 3.11. Any locally small inverse category C allows a faithful em-
bedding F : C→ PInj that preserves daggers.

Proof. First suppose that C is small. Then we may set F (X) =
∐

Z∈C C(X,Z).

For f : X → Y define F (f) : F (X) → F (Y) by F (f) = () ◦ f † on the domain
{g ∈ C(X,Z) | Z ∈ C, g = gf †f}; this gives a well-defined partial injection. It
is functorial, since clearly F (id) = id, and

Dom(F (gf)) = {h : X → Z | h = hf †g†gf}
= {h : X → Z | h = hf †f, hf † = hf †g†g} = Dom(F (g) ◦ F (f)).

It preserves daggers, because F (f †) = () ◦ f = F (f)†, and

Dom(F (f †)) = {h : Y → Z | h = hff †}
= {gf † : Y → Z | g = gf †f : X → Z} = Im(F (f)) = Dom(F (f)†).

114 C. Heunen

Finally, F is clearly injective on objects. It is also faithful: if F (f) = F (g),
then ff † = Ff(f) = Fg(f) = fg† and gf † = Ff(g) = Fg(g) = gg†, whence
fg†f = f and gf †g = g, and so f = g.

Now suppose C is locally small. Consider the diagram of small inverse sub-
categories D of C. It clearly has is a cocone to C. If GD : D → E is another
one, there is a unique mediating functor M : C → E as follows. For an object
X of C, let D′ be the full subcategory of C with only one object X , and set
M(X) = GD′(X). For a morphism f : X → Y of C, let D′′ be the full subcate-
gory of C on the objectsX,Y , and set M(f) = GD′′ (f). This gives a well-defined
functor. So C is the colimit in Cat of its small inverse subcategories. By the
above, any small inverse subcategory C embeds into PInj. It follows that C
itself embeds into PInj.
�

3.12. Like any inverse category, the homsets of PInj carry a natural partial
order: f ≤ g when f = gf †f . Concretely, f ≤ g means Dom(f) ⊆ Dom(g) and
f(x) = g(x) for x ∈ Dom(f). It is easy to see that this makes homsets into
directed-complete partially ordered sets, with Dom(

∨
i fi) =

⋃
i Dom(fi) for a

directed family of morphisms fi : X → Y . In fact, as in Proposition 2.10, homsets
are algebraic domains: any partial injection is the supremum of compact ones
below it, which are those partial injections with finite domain. Moreover, com-
position respects these operations. Thus PInj is enriched in algebraic domains.
This is a satisfying reflection of Theorem 3.9 on the level of homsets.

4 The Functor

Definition 4.1. There is a functor �2 : PInj→ Hilb, acting on a set X as

�2(X) = {ϕ : X → C |
∑
x∈X

|ϕ(x)|2 <∞}.

This vector space becomes a well-defined Hilbert space under the inner product
〈ϕ |ψ〉 =

∑
x∈X ϕ(x)ψ(x). The action on morphisms sends a partial injection

(X F
�f1
� �� f2 ��Y) to the linear function �2f : �2(X) → �2(Y) determined in-
formally by �2f = () ◦ f †. Explicitly,

(�2f)(ϕ)(y) =
∑

x∈f−1
2 (y)

ϕ(f1(x)).

4.2. In verifying that �2f is indeed a well-defined morphism of Hilb, it is es-
sential that f is a (partial) injection.∑

y∈Y

∣∣(�2f)(ϕ)(y)∣∣2 =
∑
y∈Y

∣∣ ∑
x∈f−1

2 (y)

ϕ(f1(x))
∣∣2 ≤∑

y∈Y

∑
x∈f−1

2 (y)

|ϕ(f1(x))|2

=
∑
x∈F

|ϕ(f1(x))|2 ≤
∑
x∈X

|ϕ(x)|2 <∞.

On the Functor �2 115

That this breaks down for functions f in general, instead of (partial) injections,
was first noticed in [6], and further studied in [13]. That is, �2 is well-defined
on the category of sets and partial injections; on the category of finite sets and
functions; but not on the category of sets and functions; nor on the category of
finite sets and relations. Functoriality of �2 is easy to verify.

4.3. The following calculation shows that the �2 functor preserves daggers. For
a partial injection (X F
�f1
� �� f2 ��Y), ϕ ∈ �2(X) and ψ ∈ �2(Y):

〈(�2f)(ϕ) |ψ〉
2(Y) =
∑
y∈Y

(�2f)(ϕ)(y) · ψ(y) =
∑
y∈Y

∑
x∈f−1

2 (y)

ϕ(f1(x)) · ψ(y)

=
∑
x∈F

ϕ(f1(x)) · ψ(f2(x)) =
∑
x∈X

∑
x′∈f−1

1 (x)

ϕ(x) · ψ(f2(x′))

=
∑
x∈X

ϕ(x) · (
∑

x′∈f−1
1 (x)

ψ(f2(x
′))) = 〈ϕ | �2(f †)(ψ)〉
2(X).

4.4. The functor �2 preserves the tensor product ⊗, i.e. it is symmetric (strong)
monoidal. There is a canonical isomorphism C ∼= �2(1). The required natural
morphisms �2(X) ⊗ �2(Y) → �2(X ⊗ Y) are given by mapping (ϕ, ψ) to the
function (x, y) �→ ϕ(x)ψ(y). That there are inverses is seen when one realizes
that �2(X ⊗ Y) is the Cauchy-completion of the set of functions X × Y → C
with finite support. The required coherence diagrams follow easily.

4.5. Also, the �2 functor is symmetric (strong) monoidal with respect to ⊕.
There is a canonical isomorphism between the 0-dimensional Hilbert space and
the set �2(∅) consisting only of the empty function. The natural morphisms
�2(X)⊕ �2(Y)→ �2(X ⊕ Y) map (ϕ, ψ) to the cotuple [ϕ, ψ] : X ⊕ Y → C. One
sees that these are isomorphisms by recalling that �2(X ⊕ Y) is the closure of
the span of the Kronecker functions δx and δy for x ∈ X and y ∈ Y , on which
the inverse acts as the appropriate coprojection. Coherence properties readily
follow.

4.6. From the description of the structure of homsets in PInj and Hilb as
algebraic domains in 3.12 and 2.9, respectively, it is clear that the functor �2

preserves this enrichment: �2(
∨

i fi) =
∨

i �
2fi if fi : X → Y is a directed family

of morphisms in PInj. See also [18, Theorem 13].

4.7. The functor �2 preserves (co)kernels and finite (co)products (because PInj
has very few of the latter). But it follows from Lemma 2.6(iii) and Proposition 3.6
that �2 cannot preserve arbitrary (co)limits. For an explicit counterexample to
preservation of equalizers, take X = {0, 1}, Y = {a}, and let f, g : X → Y be
the partial injections f = {(0, a)} and g = {(1, a)}. Their equaliser in PInj is ∅.

116 C. Heunen

But

eq(�2(f), �2(g)) = {ϕ ∈ �2(X) | �2(f)(ϕ) = �2(g)(ϕ)}

=
{
ϕ ∈ �2(X) | ∀y∈Y .

∑
u∈f−1

2 (y)

ϕ(f1(u)) =
∑

v∈g−1
2 (y)

ϕ(g1(v))
}

= {ϕ : {0, 1} → C | ϕ(0) = ϕ(1)} ∼= C.

Hence eq(�2(f), �2(g)) ∼= C �∼= {∅} = �2(eq(f, g)).

Corollary 4.8. The functor �2 : PInj→ Hilb has no adjoints.

Proof. If �2 had an adjoint, it would preserve (co)limits, contradicting 4.7.
�

4.9. The functor �2 is clearly faithful. It is also essentially surjective on objects:
every Hilbert space H has an orthonormal basis X , so H ∼= �2(X). It cannot be
full because of 4.8, but it does reflect isomorphisms: if �2f is invertible, so is f .

4.10. If X is a set, �2(X) is not just a Hilbert space; it comes equipped with
a chosen orthonormal basis (given by the Kronecker functions δx ∈ �2(X) for
x ∈ X). Hence we could think of �2 as a functor to a category of Hilbert spaces
H with a priviledged orthonormal basis X ⊆ H . If we choose as morphisms
(H,X) → (K,Y) those continuous linear f : H → K satisfying f(X) ⊆ Y
and ff †f = f , then the functor �2 in fact becomes (half of) an equivalence of
categories [3, 4.3].

4.11. Lemma 4.8 showed that �2(X) is not the free Hilbert space on X , at least
not in the categorically accepted meaning. It also makes precise the intuition
that ‘choosing bases is unnatural’: the functor �2 : PInj → Hilb cannot have a
(functorial) converse, even though one can choose an orthonormal basis for every
Hilbert space.

It is perhaps also worth mentioning that �2 is not a fibration in the technical
sense of the word, not even a nonsplit or noncloven one, as the reader might
perhaps think; Cartesian liftings in general do not exist because ‘choosing bases
is unnatural’.

5 The Image

5.1. The choice of morphisms in 4.10 is quite strong, and does not capture all
morphisms of interest to quantum physics. From that point of view, one would at
least like to relax to partial isometries : morphisms i of Hilbert spaces that satisfy
ii†i = i. Equivalently, the restriction of i to the orthogonal complement of its
kernel is an isometry. The following proposition proves that, up to isomorphisms,
the direct image of the functor �2 consists precisely of partial isometries.

Definition 5.2. For a category C, denote by C∼= the groupoid with the same
objects as C whose morphisms are the isomorphisms of C.

On the Functor �2 117

The category Hilb∼= is a groupoid, and hence has a dagger. It carries two
dagger symmetric monoidal structures: ⊕ and ⊗. Because having (co)limits
only depends on a skeleton of the specifying diagram, Hilb∼= does not have
(co)equalizers, nor (finite) (co)products, but does have directed (co)limits.

Proposition 5.3. A morphism in Hilb is a partial isometry if and only if it is
of the form v ◦ �2f ◦ u for morphisms f in PInj and unitaries u, v in Hilb∼=.

Proof. Clearly a map of the form v◦�2f ◦u is a partial isometry. Conversely, sup-
pose that i : H → K is a partial isometry. Choose an orthonormal basis X ⊆ H
for its initial space ker(i)⊥, and choose an orthonormal basis X ′ ⊆ H for ker(i),
giving a unitary morphism u : H → �2(X ⊕ X ′). Let Y = i(X) ⊆ K. Then Y
will be an orthonormal basis for the final space ker(i†)⊥ because i acts isomet-
rically on X . Choose an orthonormal basis Y ′ ⊆ K for ker(i†), giving a unitary
v : �2(Y ⊕ Y ′)→ K. Now, if we define f = (X ⊕X ′ X
�
� �� i ��Y ⊕ Y ′), then
i = v ◦ �2f ◦ u.
�

5.4. However, partial isometries are not closed under composition. To see this,
consider the partial isometries (10) : C → C2 and (sin(θ) cos(θ)) : C2 → C for
a fixed real number θ. Their composition is (sin(θ)) : C → C, which is not a
partial isometry unless θ is a multiple of π/2. There are other compositions that
do make partial isometries into a category [19], but these are not of interest here.
Instead, we shall extend the previous proposition to highlight one of the most
remarkable features of the functor �2.

5.5. The example in 5.4 shows that any linear function C→ C between -1 and
1 is a composition of partial isometries. Note that the projections πi : Cm → C
and coprojections π†

i : C → Cn are partial isometries, as are the weighted diag-
onal Δ/

√
n : C → Cn given by Δ(x) = (x, . . . , x) and the weighted codiagonal

Δ†/
√
m : Cm → C given by Δ†(x1, . . . , xm) =

∑
i xi. Moreover, it is easy to see

that if f and g are (compositions of) partial isometries, then so is f ⊕ g. Finally,
any linear map f : Cm → Cn has a matrix expansion, and can hence be written
in terms of biproduct structure as f = Δ† ◦ (

⊕m
i=1

⊕n
j=1 π

†
j ◦πj ◦ f ◦π†

i ◦πi)◦Δ.

Thus any f : Cm → Cn with ‖f‖ ≤ 1/
√
mn is a composition of partial isometries.

5.6. The essential image of a functor F : C → D is the smallest subcategory
of D that contains all morphisms F (f) for f in C, and that is closed under
composition with isomorphisms of D.

It follows from 5.5 that the essential image of the functor �2 contains at least
all morphisms of Hilb of finite rank. For infinite rank that strategy fails because
Δ is then no longer a valid morphism (see 2.7). Nevertheless, Theorem 5.11
below will prove that the essential image of �2 is all of Hilb. In preparation we
accommodate an intermezzo on polar decomposition.

A morphism p : H → H in Hilb is nonnegative when 〈px |x〉 ≥ 0 for all
x ∈ H , and positive when 〈px |x〉 > 0. Nonnegative maps are precisely those of
the form p = f †f for some morphism f .

118 C. Heunen

Proposition 5.7. For every morphism f : H → K between Hilbert spaces, there
exist a unique nonnegative map p : H → H and partial isometry i : H → K
satisfying f = ip and ker(p) = ker(i).

Proof. See [14, problem 134].
�

5.8. The previous proposition stated the usual formulation of polar decompo-
sition, but the unicity condition ker(p) = ker(i) is something of a red herring.
It should be understood as saying that both i and p are uniquely determined
on the orthogonal complement of ker(f) = ker(p) = ker(i). On each point of
ker(f), one of i and p must be zero, but the other’s behaviour has no restrictions
apart from being a partial isometry or positive map, respectively. Dropping the
unicity condition, we may take p to be a positive map, by altering i to be zero on
ker(f), and p to be nonzero on ker(f). More precisely, define p′ = p on ker(f)⊥

and p′ = id on ker(f); since ker(f) is a closed subspace, H ∼= ker(f)⊕ ker(f)⊥,
and this gives a well-defined positive operator p′ : H → H . Similarly, setting
i′ = i on ker(f)⊥ and i′ = 0 on ker(f) gives a well-defined partial isometry
i′ : H → K, satisfying f = i′p′.

Lemma 5.9. Positive operators on Hilbert spaces are isomorphisms.

Proof. Let p : H → H be a positive operator in Hilb. Since p is self-adjoint,
the spectral theorem [24] guarantees the existence of a measure space (S,Σ, μ),
a unitary u : H → L2(S,Σ, μ), and a measurable function f : S → C whose
range is the spectrum σ(p) of p, such that p = u† ◦ m ◦ u, where m is the
multiplication operator induced by f . Because p is positive, f must take values
in R>0. This makes the function f−1 : S → C given by s �→ f(s)−1 a well-defined
measurable function. Let m−1 be the multiplication operator induced by f−1.
Then u† ◦m−1 ◦ u is the inverse of p.
�

Definition 5.10. A functor F : C → D is essentially full when for each mor-
phism g in D there exist f in C and u, v in C∼= such that g = v ◦ Ff ◦ u.

It follows that the essential image of such a functor is all of D.

Theorem 5.11. The functor �2 : PInj→ Hilb is essentially full.

Proof. Let g be a morphism in Hilb. By Proposition 5.7 and 5.8, we can write
g = pi for a positive morphism p and a partial isometry i. Use Proposition 5.3 to
decompose i = v′ ◦ �2f ◦ u for f in PInj and unitaries v′, u. Finally, Lemma 5.9
shows that v = p ◦ v′ in Hilb∼= satisfies g = v ◦ �2f ◦ u.
�

5.12. Writing 2 for the ordinal 2 = (0 ≤ 1) regarded as a category, the category
C2 is the arrow category of C: its objects are morphisms ofC, and its morphisms
are pairs of morphisms of C making the square commute. A functor F : C→ D
is essentially full if and only if F 2 : C2 → D2 is essentially surjective on objects.
From this point of view Definition 5.10 is quite natural. Nonetheless we might
consider weakening it to take u = id or v = id. But this would break the
previous theorem. For example, if g : �2(X) → �2(Y) is a morphism in Hilb,

On the Functor �2 119

there need not be f : X → Y in PInj and v in Hilb∼= with g = v ◦ �2f . For a
counterexample, take X = Y = {a, b}, and g(a) = g(b) = a; if g = v ◦ �2f , then
(v◦�2f)(a) = (v◦�2f)(b), so (�2f)(a) = (�2f)(b), so f(a) = f(b), whence f cannot
be a partial injection. Similarly, because of the dagger, if g : �2(X)→ �2(Z) is a
morphism in Hilb, there need not be f : Y → Z in PInj and u in Hilb∼= with
g = �2f ◦ u.

6 The Future

6.1. Theorem 5.11 naturally raises a coherence question: is there any regularity
to the isomorphisms u and v that enable us to write an arbitrary morphism of
Hilb in the form v ◦ �2f ◦ u? How do they behave under composition? Curi-
ously enough, essentially full functors do not seem to have been studied in the
categorical literature at all. The results in this article suggest such a study.

It would be very interesting to reconstruct Hilb (up to equivalence) from
Hilb∼= and PInj via the �2 functor. The objects are easily recovered, because
they are the same as those of Hilb∼=. Theorem 5.11 also lets us recover the
homsets and identities, as soon as we can identify when two morphisms in Hilb
of the form v◦�2f ◦u are equal. The main problem is how to recover composition,
which requires a way to turn �2g ◦ v ◦ �2f into w ◦ �2h ◦ u. (Note that turning
�2g ◦ v into w ◦ �2h would be sufficient, because we could then use functoriality
of �2 and composition in PInj. But 5.12 obstructs this; the isomorphism v in
the middle is crucial.) This will likely lead into bicategorical territory.

6.2. The �2–construction has a continuous counterpart, that turns a measure
space (X,μ) into a Hilbert space L2(X,μ) of square integrable complex functions
on X . The L2–construction is quite fundamental and well-studied, but surpris-
ingly enough functorial aspects seem not to have been considered before. One
possibility is to mimic Definition 4.1, and endow the category of measure spaces
with essential injections (X,μ)→ (Y, ν) as morphisms, i.e. subsets R ⊆ X × Y
such that ν({y | xRy}) = 0 for all x ∈ X and μ({x | xRy}) = 0 for all y ∈ Y .

The importance of L2–spaces lies in the following formulation of the spectral
theorem: every normal operator f : H → H is of the form f = u−1 ◦ g ◦ u for a
unitary u : H → L2(X,μ) and an operator g induced by multiplication with a
measurable function X → C. This perspective warrants choosing complex mea-
surable functions as (endo)morphisms on measure spaces, with multiplication
for composition. With 5.8 in mind, we could even restrict to a groupoid of posi-
tive maps. A solution to 6.1 could then be regarded as reconstructing quantum
mechanics (as embodied by Hilb) from its continuous, quantitative aspects (en-
coded by the L2 functor), and its discrete, qualitative aspects (encoded by the
�2 functor).

At any rate, the continuous cousin L2 of �2 poses an interesting research topic.

6.3. Letting L be the class of positive morphisms, and R the class of partial
isometries in Hilb:

1. every morphism f can be factored as f = rl with l ∈ L and r ∈ R;

120 C. Heunen

2. every commutative square as below with l ∈ L and r ∈ R allows a unique
diagonal fill-in d making both triangles commute.

· ��

l

��

·
r

��
· ��

d

���
�

�
� ·

The second property follows immediately from Lemma 5.9. The established no-
tion of orthogonal factorization system additionally demands that (3) both L
and R are closed under composition, and (4) all isomorphisms are in both L and
R. But (3) is not satisfied by 5.4, and the map −1: H → H is a counterexample
to (4).

Write 3 for the ordinal 3 = (0 ≤ 1 ≤ 2), regarded as a category. Then objects
of C3 are composable pairs of morphisms. Recall that a functorial factorization
is a functor F : C2 → C3 that splits the composition functor. Lemma 5.9 ensures
that polar decomposition at least provides a functorial factorization system. It
is usual to require extra conditions on top of a functorial factorization, such as
in a natural weak factorization system. For details we refer to [11]. It leads too
far afield here, but polar decomposition does not satisfy the axioms of a natural
weak factorization system.

In short, polar decomposition unquestionably provides a notion of factoriza-
tion. But it does not fit existing categorical notions, despite the fact that factor-
ization has been a topic of quite intense study in category theory [10,7,11,21,25].
This is an interesting topic for further investigation.

References

1. Abramsky, S.: Retracing some paths in process algebra. In: Sassone, V., Montanari,
U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 1–17. Springer, Heidelberg (1996)

2. Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensored
*-categories. Journal of Pure and Applied Algebra 143, 3–47 (1999)

3. Abramsky, S., Heunen, C.: H*-algebras and nonunital Frobenius algebras: first
steps in infinite-dimensional categorical quantum mechanics. In: Abramsky, S.,
Mislove, M. (eds.) Clifford Lectures. Proceedings of Symposia in Applied Mathe-
matics, vol. 71, pp. 1–24. American Mathematical Society (2012)

4. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Sci-
ence, vol. 3, pp. 1–168. Oxford University Press (1994)

5. Adámek, J., Rosicky, J.: Locally Presentable and Accessible Categories. London
Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press
(1994)

6. Barr, M.: Algebraically compact functors. Journal of Pure and Applied Algebra 82,
211–231 (1992)

7. Bousfield, A.K.: Constructions of factorization systems in categories. Journal of
Pure and Applied Algebra 9(2-3), 207–220 (1977)

8. Robin, J., Cockett, B., Lack, S.: Restriction categories I: categories of partial maps.
Theoretical Computer Science 270(1-2), 223–259 (2002)

On the Functor �2 121

9. Danos, V., Regnier, L.: Proof-nets and the Hilbert space. In: Advances in Linear
Logic, pp. 307–328. Cambridge University Press (1995)

10. Freyd, P., Kelly, M.: Categories of continuous functors I. Journal of Pure and
Applied Algebra 2 (1972)

11. Grandis, M., Tholen, W.: Natural weak factorization systems. Archivum Mathe-
maticum 42, 397–408 (2006)

12. Haghverdi, E.: A categorical approach to linear logic, geometry of proofs and full
completeness. PhD thesis, University of Ottawa (2000)

13. Haghverdi, E., Scott, P.: A categorical model for the geometry of interaction. The-
oretical Computer Science 350, 252–274 (2006)

14. Halmos, P.: A Hilbert space problem book, 2nd edn. Springer (1982)
15. Heunen, C.: An embedding theorem for Hilbert categories. Theory and Applica-

tions of Categories 22(13), 321–344 (2009)
16. Heunen, C., Jacobs, B.: Quantum logic in dagger kernel categories. Order 27(2),

177–212 (2010)
17. Hines, P.: The algebra of self-similarity and its applications. PhD thesis, University

of Wales (1997)
18. Hines, P.: Quantum circuit oracles for abstract machine computations. Theoretical

Computer Science 411(11-13), 1501–1520 (2010)
19. Hines, P., Braunstein, S.L.: The structure of partial isometries. In: Semantic Tech-

niques in Quantum Computation, pp. 361–389. Cambridge University Press (2009)
20. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras.

Academic Press (1983)
21. Korostenski, M., Tholen, W.: Factorization systems as Eilenberg-Moore algebras.

Journal of Pure and Applied Algebra 85(1), 57–72 (1993)
22. Lawson, M.V.: Inverse semigroups: the theory of partial symmetries. World Scien-

tific (1998)
23. Lane, S.M.: Categories for the Working Mathematician, 2nd edn. Springer (1971)
24. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Functional Anal-

ysis, vol. I. Academic Press (1972)
25. Rosicky, J., Tholen, W.: Lax factorization algebras. Journal of Pure and Applied

Algebra 175, 355–382 (2002)

Quantum Speedup

and Categorical Distributivity

Peter Hines

University of York
peter.hines@york.ac.uk

Abstract. This paper studies one of the best-known quantum algo-
rithms — Shor’s factorisation algorithm — via categorical distributiv-
ity. A key aim of the paper is to provide a minimal set of categorical
requirements for key parts of the algorithm, in order to establish the
most general setting in which the required operations may be performed
efficiently.

We demonstrate that Laplaza’s theory of coherence for distributivity
[13,14] provides a purely categorical proof of the operational equivalence
of two quantum circuits, with the notable property that one is exponen-
tially more efficient than the other. This equivalence also exists in a wide
range of categories.

When applied to the category of finite-dimensional Hilbert spaces, we
recover the usual efficient implementation of the quantum oracles at the
heart of both Shor’s algorithm and quantum period-finding generally;
however, it is also applicable in a much wider range of settings.

Keywords: Category Theory, Quantum Computing, Shor’s Algorithm,
Monoidal Tensors, Distributivity, Coherence.

This work is dedicated to Samson Abramsky,
on the occasion of a birthday with prime factors 2, 3, and 5.

1 Introduction

1.1 Shor’s Algorithm: Oracles and Quantum Fourier Transforms

The structure of Shor’s algorithm is deceptively simple: an oracle which acts
classically on the computational basis computes modular exponentials; this ora-
cle is conjugated by the circuit for the quantum Fourier transform. Up to some
relatively simple classical post-processing (computing continued fraction expan-
sions), this is enough to find the prime factors of a number in an exponentially
fast time – at least, as compared with the best known classical algorithm.

The traditional view of Shor’s algorithm and other quantum period-finding
algorithms is that their power arises from the quantum Fourier transform; [17]
lists Shor’s algorithm in the section “Applications of the Fourier transform”.
This was challenged in [3], where it was demonstrated that the quantum Fourier

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 122–138, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Quantum Speedup and Categorical Distributivity 123

transform has a low bubble width circuit — and any quantum algorithm that is
built entirely from low bubble-width circuits has an efficient classical simulation.
Thus, it appears that the obstacle to an efficient classical simulation of Shor’s
algorithm is the oracle for modular exponentiation, rather than the conjugating
quantum Fourier transform.

The conclusions drawn in [3] (the claim that the quantum power of Shor’s
algorithm arises from the central oracle) were, and remain, controversial. How-
ever, further evidence to support this claim was provided in [21], where it was
demonstrated that modular exponentiation, in of itself, is sufficient. From [21]:
Any classical algorithm that can efficiently simulate the circuit implementing
modular exponentiation for general product input states and product state mea-
surements on the output, allows for an efficient simulation of the entire Shor
algorithm on a classical computer. A special case of this, as noted in [21], would
be any tensor contraction scheme for the modular exponentiation circuit.

1.2 The Aims of this Paper

This paper describes the circuit for modular exponentiation used in [19] in purely
categorical terms. The motivation is to find the most general structures in which
this precise form of the oracle may be implemented. We therefore avoid, where
possible, categorical machinery that is closely or uniquely associated with the
theory of finite-dimensional Hilbert spaces.1 Instead, we will simply require a
category with two monoidal tensors related by a notion of distributivity. As this
is established for abstract categories, any concrete category satisfying this simple
requirement is sufficient.

1.3 The Structure of the Paper

This paper is divided into two sections: pure category theory, and concrete real-
isations of this abstract theory.

1. We first use the abstract theory of categories with two monoidal tensors
related by distributivity to define endofunctors and further categorical oper-
ations on such categories. We use these to define an ‘iterator’ operation !N ()
on endomorphism monoids of such categories, and use Laplaza’s theory of
coherence for distributivity to give an exponentially efficient factorisation of
this operation.

2. The second half of the paper gives a concrete realisation of this operation,
and its efficient factorisation, within the quantum circuit paradigm. The
!N () operation has a concrete realisation as the oracle required for quantum
period-finding, and its efficient factorisation is exactly Shor’s implementation
of modular exponentiation oracle.

1 In particular, the constructions we will present are significantly simpler in the pres-
ence of compact closure and biproducts – two categorical properties closely associ-
ated with quantum mechanics. However, neither of these categorical properties are
necessary, so we work in the more general setting.

124 P. Hines

2 Basic Definitions

Our abstract setting is that of categories with distributivity, defined in [13,14]:

Definition 1. A category with distributivity is a category C with two dis-
tinct symmetric monoidal tensors: the multiplicative tensor (⊗) : C×C → C
and the additive tensor (⊕) : C × C → C that are related by natural distribu-
tivity monomorphisms

dlABC : A⊗ (B ⊕ C)→ (A⊗B)⊕ (A⊗ C) (1)

drXY Z : (X ⊕ Y)⊗ Z → (X ⊗ Z)⊕ (Y ⊗ Z) (2)

satisfying coherence conditions laid out in [13,14].

The required coherence conditions are decidedly non-trivial and form an infinite
family of diagrams that are required to commute, although these may be sig-
nificantly simplified (from [13], “we are reduced to a finite number of types of
diagrams if we drop unnecessary commutativity conditions”).

Notation 1. We adopt the convention of using the Greek alphabet for the struc-
tural isomorphisms related to the multiplicative tensor, and the Roman alphabet
for the additive tensor. We denote the multiplicative associativity and symmetry
isomorphisms by τXY Z : X⊗(Y ⊗Z)→ (X⊗Y)⊗Z and σX,Y : X⊗Y → Y ⊗X,
and the additive associativity and symmetry by tXY Z : X⊕(Y ⊕Z)→ (X⊕Y)⊕Z
and sXY : X ⊕ Y → Y ⊕X. We will frequently appeal to MacLane’s coherence
theorem for associativity, and treat both the multiplicative and additive tensors
as strict.

We will also denote the multiplicative unit object by I, and the additive unit
object by 0.

A special case that is often considered (e.g. [6,7]) is where the distributivity
monomorphisms are in fact isomorphisms.

Definition 2. Let (C,⊗,⊕) be a category with distributivity. We say that is
is strongly distributive when the natural distributivity monomorphisms have
global inverses,

dl−1
ABC : (A⊗B)⊕ (A⊗ C)→ A⊗ (B ⊕ C) (3)

dr−1
XY Z : (X ⊗ Z)⊕ (Y ⊗ Z)→ (X ⊕ Y)⊗ Z (4)

Strongly distributive categories are a special case of Definition 1, so we may still
appeal to Laplaza’s coherence theorems. Appropriate care will be taken when
using commutative diagrams containing inverses of these canonical isomorphisms
to ensure that an equivalent result may be derived without the use of inverses.
See the proof of Lemma 1 for an example of this.

Quantum Speedup and Categorical Distributivity 125

2.1 Distinguished Objects, and Copying Functors

Strongly distributive categories have two distinguished objects: the additive and
multiplicative unit objects 0, I ∈ Ob(C). Their interaction with the two monoidal
tensors is given (up to straightforward canonical isomorphism) by the following
tables:

⊗ 0 I
0 0 0

I 0 I

⊕ 0 I
0 0 I

I I I ⊕ I

Observe that I ⊕ I is neither 0 nor I; thus in the absence of any further
identities, strongly distributive categories have additional distinguished objects.

Definition 3. We define � ∈ Ob(C) to be the additive tensor of two multiplica-
tive units, so � = (I ⊕ I).

Such objects are considered in [7], where – in the special case that ⊗ and ⊕
are a product and coproduct respectively – they generate Boolean algebras.
The classical logical interpretation is well-established. As noted in [5] the form
of distributivity introduced in [13] is entirely unsuitable for linear logic, since
distributivity implies a form of ‘copying’ operation that we now describe:

Lemma 1. Let (C,⊗,⊕) be a strongly distributive category. Then

1. �⊗X ∼= X ⊕X
2. for all f ∈ C(X,Y), the following diagram commutes:

�⊗X
1�⊗f �� �⊗ Y

drI,I,Y

��
X ⊕X

dr−1
I,I,X

��

f⊕f �� Y ⊕ Y

Proof.

1. By distributivity, and the fact that I is the unit object for the multiplicative
tensor, �⊗A = (I ⊕ I)⊗A ∼= (I ⊗A)⊕ (I ⊗A) ∼= A⊕A.

2. By naturality, the following diagram commutes:

(I ⊕ I)⊗X
1I⊕I⊗f ��

drI,I,X

��

(I ⊕ I)⊗ Y

drI,I,Y

��
X ⊕X

f⊕f
�� Y ⊕ Y

126 P. Hines

As (C,⊗,⊕) is strongly distributive, we may replace drIIX in the above
diagram by dr−1

IIX , and reverse the corresponding arrow:

(I ⊕ I)⊗X
1I⊕I⊗f �� (I ⊕ I)⊗ Y

drI,I,Y

��
X ⊕X

f⊕f
��

dr−1
I,I,X

��

Y ⊕ Y

�
Definition 4. Let (C,⊗,⊕) be strongly distributive. We define the copying
endofunctor to be δ = (�⊗) : C → C.
This terminology is motivated by the following result:

Proposition 1. Let Δ : C → C × C be the diagonal functor given by

– (Objects) Δ(A) = (A,A).
– (Arrows) Δ(f) = (f, f)

Then there exists a natural isomorphism (i.e. a natural transformation whose
components are isomorphisms) from the composite functor (⊕)Δ : C → C to
the functor (�⊗) : C → C.

We draw this diagrammatically, as follows:

C × C

��

(⊕)

���
��

��
��

��

C

Δ

�����������
(�⊗)

�� C

Proof. For arbitrary X ∈ Ob(C), the components of this natural transformation
are given by the distributivity isomorphisms dlI,I,X : �⊗X → X ⊕X (treating
units arrows as strict). The required identity then follows from Lemma 1.
�
Remark 1. At first sight, this ‘copying’ behaviour appears to be at odds with the
‘no-cloning’ and ‘no-deleting’ theorems [20,18] of quantum information. However,
these are based on tensor products (‘multiplicative’ tensors), whereas the functor
of Definition 4 acts as a form of copying for the additive structure – it is related
to the fanout operation [10] rather than the forbidden quantum cloning.

Iterating a copying operation gives a form of exponential growth, as we
demonstrate:

Corollary 1. For all f ∈ C(X,Y) and n ≥ 1 ∈ �, there exists canonical iso-

morphisms λ
(n)
X : �⊗n⊗X →

⊕2n−1
j=0 X making the following diagram commute:

�
⊗n ⊗X

δn(f) ��

λX

��

�
⊗n ⊗ Y

⊕2n−1
j=0 X

⊕2n−1
n=0 f

��⊕2n−1
j=0 Y

λ−1
Y

��

Quantum Speedup and Categorical Distributivity 127

Proof. We give the canonical isomorphisms λ
(n)
X : �⊗n ⊗ X →

⊕2n−1
j=0 X by

induction: we take λ
(1)
X = drI,I,X : �⊗X → X ⊕X , and

λ
(n)
X = dr

I,I,⊕2n−1−1
j=0 X

(
1� ⊗ λ

(n−1)
X

)
.

The above diagram then commutes by naturality.
�

We now demonstrate that δ : C → C is a (weak) monoidal endofunctor, for the
additive, but not multiplicative, structure.

Proposition 2. The functor δ = (� ⊗) : C → C does not preserve the mul-
tiplicative monoidal structure, even up to isomorphism; however the additive
structure is preserved up to a simple distributivity isomorphism.

Proof. To see that δ does not preserve the multiplicative tensor, observe that
note that

δ(A)⊗ δ(B) = (1� ⊗ σA,� ⊗ 1B)δ
2(A⊗B)

Thus, unless δ(X) ∼= δ2(X) for all X ∈ Ob(C), the copying functor does not
preserve the multiplicative tensor, even up to isomorphism.

However, δ(0) ∼= 0, and the following diagram also commutes:

δ(A⊕B)
∼=

=

δ(A) ⊕ δ(B)

=

�⊗ (A⊕B)
dl(I⊕I),A,B

�� �⊗A⊕ �⊗B

Since the required isomorphisms are canonical coherence isomorphisms in both
cases, δ : (C,⊕)→ (C,⊕) is a (weak) monoidal functor.
�

2.2 Copying and the Iterator

We now study an operation on endomorphism monoids closely related to the
copying functor δ : (C,⊕)→ (C,⊕).

Definition 5. Let (C,⊗,⊕) be a strongly distributive category. For all f ∈
C(A,A), we define the Nth iterator of f to be

!N (f) =

N−1⊕
j=0

f j ∈ C
(
A⊕N , A⊕N

)
We will give an efficient factorisation of !2

n

(f). This will rely on the following
interaction of the functor δ = (� ⊗) : C → C, and the multiplicative and
additive symmetries σX,Y : X ⊗ Y → Y ⊗X and sA,B : A⊕B → B ⊕A.

128 P. Hines

Lemma 2. Let A,B,C be objects of a strongly distributive category (C,⊗,⊕).
Then the following diagram commutes:

�⊗A⊗ (B ⊕ C)

σ�,A⊗1B⊕C
����

��

������
�� 1�⊗dlA,B,C

�����
��

������
���

A⊗ �⊗ (B ⊕ C)

1A⊗dl�,B,C

��

�⊗ (A⊗B ⊕A⊗ C)

dr�,A⊗B,A⊗C

��
A⊗ (�⊗B ⊕ �⊗ C)

1A⊗(drI,I,B⊕drI,I,B)

��

A⊗B ⊕A⊗ C ⊕A⊗B ⊕A⊗ C

1A⊗B⊕sA⊗C,A⊗B⊕1A⊗C

��
A⊗ (B ⊕B ⊕ C ⊕ C) dlA,B⊕B,C⊕C �� A⊗B ⊕A⊗ B ⊕A⊗ C ⊕A⊗ C

Proof. The commutativity of this diagram follows immediately from the coher-
ence theorems of [13,14] (note that we have elided associativity isomorphisms,
for clarity).
�

Theorem 2. For arbitrary n ≥ 1 and f ∈ C(X,X), the arrow !2
n+1

(f) can be
defined in terms of !2

n

(f), the functor (�⊗), and canonical isomorphisms, with
the exact relationship expressed by the commutativity of the following diagram:

�⊗
⊕2n−1

j=1 X

1�⊗dl−1
���

��

����
���

�⊗
⊕2n−1

j=1 X
1�⊗!2

n−1
(f)
�

�⊗ �⊗(n−1) ⊗X

σ
�,�⊗(n−1)

��

⊕2n

j=1 X

dl−1
�,����

������

!2
n
(f)

��
�
⊗(n−1) ⊗ �⊗X

1
�
⊗(n−1)⊗drI,I,X

����
���

������
�

⊕2n

j=1 X

�
⊗(n−1) ⊗ (X ⊕X)

1
�
⊗(n−1)⊗

(
1X⊕f2n−1

) �� �⊗(n−1) ⊗ (X ⊕X)

dl�, ����

������

Proof. Consider the left hand path in the coherent diagram of Lemma 2 above,
from �⊗A⊗ (B⊕C) to A⊗B⊕A⊗B⊕A⊗C⊕A⊗C, along with arrows f ∈
C(B, Y) and g ∈ C(C,Z). Then naturality of canonical coherence isomorphisms
implies the commutativity of the diagram in Figure 1. The required result is
then the special case where X = Y and A = �

⊗n.
�

2.3 String Diagrams for Categories with Distributivity

Results such as Theorem 2 above may be given as string diagrams, using the
conventions formalised in [11,12]. When we have two distinct monoidal tensors,

Quantum Speedup and Categorical Distributivity 129

�⊗ A⊗ (B ⊕ C)
1�⊗1A⊗(f⊕g) ��

σ�,A⊗1B⊕C

��

�⊗ A⊗ (Y ⊕ Z)

σ�,A⊗1Y ⊕Z

��
A⊗ �⊗ (B ⊕ C)

1A⊗1�⊗(f⊕g) ��

1A⊗dl�,B,C

��

A⊗ �⊗ (Y ⊕ Z)

1A⊗dl�,Y,Z

��
A⊗ (�⊗B ⊕ �⊕ C)

1A⊗(drI,I,B⊕drI,I,C)

��

1A⊗(1�⊗f⊕1�⊗g) �� A⊗ (�⊗ Y ⊕ �⊗ Z)

1A⊗(drI,I,Y ⊕drI,I,Z)

��
A⊗ (B ⊕B ⊕ C ⊕ C)

dlA,B⊕B,C⊕C

��

1A⊗(f⊕f⊕g⊕g) �� A⊗ (Y ⊕ Y ⊕ Z ⊕ Z)

dlA,Y ⊕Y,Z⊕Z

��
A⊗B ⊕A⊗B ⊕ A⊗ C ⊕ A⊗C

1A⊗f⊕1A⊗f⊕1A⊗g⊕1A⊗g �� A⊗ Y ⊕ A⊗ Y ⊕ A⊗ Z ⊕ A⊗ Z

Fig. 1. A technical result implied by naturality

we adopt various conventions to ensure that such a diagrammatic reasoning is
still valid:

1. Lines are separated by an implicit multiplicative rather than an additive
monoidal tensor.

2. Operations involving additive monoidal tensors are enclosed in a double box.
3. Entering / leaving a double box requires an (implicit) distributivity iso-

morphism / its inverse. Provided care is taken with labelling of objects,
the required canonical isomorphism may be deduced from the type of the
operation.

We may then use diagrammatic manipulations on either the diagram as a whole
(treating each additive box as a single operation), or on the contents of an
individual double box (treating it as an entire diagram in of itself). These con-
ventions ensure that the diagrammatic manipulations of [11,12] are valid, simply
by restricting the permitted manipulations.

Using the above, an illustration of Theorem 2 is given in Figure 2.

Corollary 2. There exists an efficient construction of !2
n

(f) in O(n) steps,
based on canonical coherence isomorphisms.

Proof. This follows by iterating the construction of Theorem 2. A diagrammatic
illustration is given in Figure 3.
�

130 P. Hines

��
��

��
��

��
��

��
�

��
��

!2
n
(f)

��������

��
��

�

��
��

�

...

���������

���������

��
��

� ...���������

1X ⊕ f 2n

�������������

X X

is equal to

!2
n+1

(f)

...
...

X X

� � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�� � � �

� � � � � ��
�
�
�

�
�
�
�� � � � � �

� � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � � � �

Fig. 2. A ‘string diagram’ illustration of Theorem 2

		
		
		
		
	

��
��

��
�

����

��
��

��
��

����
��

��
����

��
��

IX ⊕ f

1X ⊕ f 2

1X ⊕ f 4

�������

1X ⊕ f 8

���������

X

� � � � ��
�
�
�

�
�
�
�� � � � �

� � � � � ��
�
�
�

�
�
�
�� � � � � �

� � � � � ��
�
�
�

�
�
�
�� � � � � �

� � � � � ��
�
�
�

�
�
�
�� � � � � �

Fig. 3. The efficient construction of !16(f) = 1X ⊕ f ⊕ . . .⊕ f15 ⊕ f16

Table 1. Translating abstract theory into a concrete setting

Abstract category C Concrete category HilbFD

Multiplicative tensor Tensor product
H = H1 ⊗H2 (Treating two systems as a

single compound system).

Additive tensor Direct sum
(U ⊕ 1) (U controlled on |0〉)
(1⊕ V) (V controlled on |1〉)

Multiplicative unit I Complex plane �

Additive unit 0 Zero-dim. space {0}

Distinguished object � = I ⊕ I Qubit space Q, with
orthonormal basis {|0〉 , |1〉}

Quantum Speedup and Categorical Distributivity 131

3 Concrete Realisation in Hilbert Space

The following sections assume a small degree of familiarity with quantum circuits
and Hilbert spaces. More details may be found in in [17] or any other text on
quantum computing and information.

We now consider the constructions of the previous section in the concrete
setting of finite-dimensional complex Hilbert spaces. The two monoidal tensors
are the familiar tensor product and direct sum— the distributivity isomorphisms
relating the these are well-established.

The translation of the basic concepts is given in Table 1. A subtlety of this
is the interpretation of the distinguished object �. The direct sum of two 1-
dimensional spaces is of course a two-dimensional space. However, sinceQ is built
up in this way, we should think of it as having a fixed orthonormal basis specified
by the canonical inclusions2 – this will allow us to use matrix representations
for arrows in this category.

Remark 2. A key point of this paper is that the structures required for the central
oracle of Shor’s algorithm are not dependent on the machinery of either tradi-
tional quantum mechanics (such as a matrix calculus, or notions of linearity and
convergence), or categorical reinterpretations (compact closure, biproduct struc-
tures, &c.). However, the existence of matrix representations certainly makes the
concrete instantiation simpler, as the following sections will demonstrate.

3.1 Interpreting the Direct Sum in the Circuit Model

In the translation from an abstract to a concrete setting provided in Table 1,
the interpretation of the tensor, the multiplicative unit, and the distinguished
object � are standard. Furthermore, as we are forced by the category theory to
specify an orthonormal basis for the two-dimensional qubit space, we are now, for
all practical purposes, working within the quantum circuit paradigm. The final
connection arises from the interpretation of the direct sum in terms of ‘quantum
conditionals’, or ‘controlled operations’ [9].

Definition 6. Let U, V be unitary operations on a finite-dimensional Hilbert
space H. The controlled operations Ctrl0U and Ctrl1V are the operations
on Q⊗H defined by:

Ctrl0U |0〉 |ψ〉 = |0〉U |ψ〉 and Ctrl0U |1〉 |ψ〉 = |1〉 |ψ〉

Ctrl1V |0〉 |ψ〉 = |0〉 |ψ〉 and Ctrl1V |1〉 |ψ〉 = |1〉V |ψ〉

with standard circuit representations shown in figure 4.

2 This is, of course, related to the ‘classical structures’ of [8] — these are a special form
of Frobenius algebra that play the role of orthonormal bases in categorical quantum
mechanics. They are based on a ‘copying’ operation; the connection between these,
and the �⊗ copying functor of Definition 4, is straightforward.

132 P. Hines

Denoting the n-qubit identity operation by In, these operations have matrix rep-

resentations given by C0U =

(
U 0
0 In

)
and C1V =

(
In 0
0 V

)
. The direct sum

U ⊕ V is then simply the composite U ⊕ V = Ctrl0U.Ctrl1V = Ctrl1V.Ctrl0U .

Ctrl0U Ctrl1U

�������	 •

U V...
...

...
...

Fig. 4. Quantum circuits for ‘Control on 0’ and ‘Control on 1’

Controlled operations can themselves be controlled. Given 2n unitary maps

{Ua}2
n−1

a=0 , the construction of
⊕2n−1

a=0 Ua is immediate via an n-qubit ancilla.
This is illustrated in Figure 5 for the direct sum of 23 unitaries, and the ‘binary
counting’ pattern on controls is immediate.

�������	 �������	 �������	 �������	 • • • •
�������	 �������	 • • �������	 �������	 • •
�������	 • �������	 • �������	 • �������	 •

U0 U1 U2 U3 U4 U5 U6 U7

Fig. 5. A circuit for the direct sum
⊕7

a=0Ua

•
��

��
�

��
��

�

��
��

�

��
��

������ •
�����

�����

U

�����

U U

� ��
�
�
�

�
�
�
�

� �

Fig. 6. Three equivalent diagrams

3.2 Controlled Operations and Categorical Swap Maps

In the standard quantum circuit formalism, controlled operations are not nec-
essarily controlled by the qubit directly above them (i.e. the more significant
qubit). We treat this as simply a diagrammatic convention, so a circuit where

Quantum Speedup and Categorical Distributivity 133

Q × Q Q NOT • NOT Q
is implemented by

Q × Q Q • NOT • Q

Fig. 7. The multiplicative symmetry via controlled additive symmetries

the control qubit is not adjacent to the controlled operation is implemented us-
ing multiplicative symmetries (i.e. qubit swap maps) in the obvious way. Thus,
the three circuits of Figure 6 are equivalent, with the first being the usual quan-
tum circuit notation, and the third conforming to the categorical conventions of
Section 2.3.

The qubit swap map (i.e. multiplicative symmetry) itself has an interesting
categorical interpretation via the standard decomposition shown in Figure 7. The
single qubit NOT gate (NOT |0〉 = |1〉, NOT |1〉 = |0〉) is the additive symmetry
s�,� of two multiplicative unit objects. Figure 7 expresses an abstract categorical
identity relating the multiplicative symmetry σ�,�, the additive symmetry sI,I ,
and distributivity. Details are left as an interesting exercise.

3.3 Interpreting the Iterator in the Quantum Circuit Paradigm

The interpretation of !2
n

(U) = 1H ⊕ U ⊕ U2 ⊕ . . . ⊕ U2n−1 for some some
unitary operation U : H → H is immediate; it is simply the sequence of
multiply-controlled operations shown in Figure 8. The operational interpretation
is immediate:

Proposition 3. Given an arbitrary quantum state |ψ〉 ∈ H and a computational
basis ancilla state |a〉, the circuit of Figure 8 acts on their tensor product as
|a〉 |ψ〉 �→ |a〉Ua |ψ〉.

Proof. This follows by definition of the action of controlled operations in the
quantum circuit model.
�

Q �������	 �������	 �������	 �������	 · · · • • Q
Q �������	 �������	 �������	 �������	 · · · • • Q

...
...

...
...

...
...

Q �������	 �������	 • • · · · • • Q
Q �������	 • �������	 • · · · �������	 • Q
H 1H U U2 U3 · · · U2n−2 U2n−1 H

Fig. 8. A circuit for !2
n

(U)

134 P. Hines

3.4 Applications of the !N(U) Operation in Quantum Programming

Quantum circuits acting as |a〉 |ψ〉 �→ |a〉Ua |ψ〉 have an important role to play
in quantum period-finding algorithms (although, of course, the precise circuit
of Figure 9 is not used). The best-known period-finding algorithm is, of course,
Shor’s factorisation algorithm, based on period-finding for modular exponential
functions.

Period-finding algorithms rely on a central oracle that acts classically on some
subset of the computational basis (we refer to [17] for a formal definition, and [9]
for a categorical interpretation in terms of Barr’s l2 functor [4]). Given a classical
reversible function f , they require a unitary that acts as |a〉 |x〉 �→ |a〉 |fa(x)〉.
Given an oracle Uf for the classical computation f , we may instead write this
as |a〉 |x〉 �→ |a〉Ua

f |x〉 and observe that the required oracle for quantum

period-finding is in fact !N (Uf), for some suitably large integer N = 2n.
The complete quantum period-finding algorithm (up to some straightforward

classical pre- and post- processing) is then simply given by conjugating such
an oracle by a quantum Fourier transform, applied to the first register only. For
example, in Shor’s algorithm the central oracle is required to implement modular
exponentials, via the action |x〉 |1〉 �→ |x〉 |rx (mod K)〉 and hence, by linearity,(

N∑
x=0

|x〉
)
|1〉 �→

N∑
x=0

|x〉 |rx (mod K)〉

Given a (readily constructed) quantum oracle U that acts on the computational
basis as U |p〉 = |rp (mod K)〉, then, by Proposition 3, the required oracle for
Shor’s algorithm is !N (U). Thus the (quantum part of) Shor’s algorithm is as
shown in Figure 9.

Q
... QFT−1

!2
n
(U)

QFT
Q

...Q Q
H H

� � � � ��
�
�
�
�
�

�
�
�
�
�
�� � � � �

Fig. 9. The quantum circuit in Shor’s algorithm

4 An Efficient Circuit for the !N(U) Operation

The utility of the !N (U) operation in any period-finding algorithm must rely
on an efficient implementation. Implementing the the central oracle using the
circuit of Figure 8 would be pointless, given the complexity of constructing such
a circuit. Instead, quantum algorithms (in particular, Shor’s algorithm) use an
exponentially more efficient circuit; we demonstrate that this is exactly the im-
plementation given by Corollary 2.

Proposition 4. The circuits A and B shown in Figure 10 are equivalent.

Quantum Speedup and Categorical Distributivity 135

Circuit A

��
��

��
��

��
��

��
�

��
��

!2
n
(U)

��������

��
��

�

��
��

�

...

���������

���������

��
��

� ...��������� •

�������������

H U2n
X

Circuit B

Q

!2
n+1

(U)

Q
...

...

Q Q
H H

� � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � � � �

� � � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � � � � �

Fig. 10. Two equivalent quantum circuits

Proof. This follows directly from the Theorem 2 – in particular, the diagram-
matic illustration given in Figure 2 makes it immediate. Note that the canonical
multiplicative symmetry for qubits is drawn as a category-theoretic symmetry,
rather than the traditional quantum circuit equivalent shown in Figure 7.
�
A simple corollary of Proposition 4 above, and the notational simplifications
of Section 3.2, is that we may give a quantum circuit for !2

n

(U) using O(n)
controlled quantum logic gates as follows:

Corollary 3. The circuit of Figure 11 implements the !2
n

(U) operation.

Proof. This follows by induction on Proposition 4 above.
�

Q · · · • Q
... · · · ...
Q • · · · Qn qubits Q • · · · Q
Q • · · · Q
Q • · · · Q
H U U2 U4 U8 · · · U2n−1 H

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fig. 11. An efficient implementation of !2
n

(U)

Remark 3. The efficient circuit of Figure 11 is exactly the circuit used by P.
Shor to implement modular exponentiation [19]. From a purely quantum circuit
point of view, it is straightforward to demonstrate the equivalence of the circuits
of Figure 8 and Figure 11. The interest, from our point of view, is that this
equivalence of circuits is an expression of a canonical coherence identity, and
thus holds in any strongly distributive category.

136 P. Hines

4.1 Oracles and Black Boxes

In referring to the circuit of Figure 11 as requiring O(n) primitive gates to imple-
ment !2

n

(U), we have explicitly not considered the complexity of implementing
U,U2, U3, Rather, we have treated each of these operations as a ‘black box’.
For concrete algorithms, this is a serious omission; in particular, any practical
realisation of Shor’s algorithm also requires some efficient way of implementing

(controlled versions of) U2k , where the operation U |p〉 = |rp (mod K)〉 is as
described in Section 3.4.

Fortunately, such an efficient implementation also exists — an oracle for the
squaring operation c �→ c2 (mod K) (up to some suitable ancilla, and garbage

collection) provides a simple, efficient way of implementing U2k , for k = 1, . . . , n.
This is described in detail in [19]. Note that this technique is not available for
arbitrary functions; rather, modular exponentiation is one of the few arithmetic
functions for which such an efficient decomposition exists.

5 Conclusions and Future Directions

We have demonstrated that the structural isomorphisms for strongly distributive
categories have a role to play in understanding quantum algorithms – or at least
that perhaps familiar operations in quantum circuits can be given an abstract
interpretation in terms of categorical coherence.

Classically, equivalence up to canonical isomorphism is often used in program
transformation, and it is pleasing, although not entirely unexpected, to see it in
the quantum setting as well. Of more interest is how little of the machinery of
categorical quantum mechanics we have used in establishing these transforma-
tions — the only assumption required is that of two monoidal tensors related by
distributivity up to isomorphism, and thus the constructions of this paper are
valid in a wide range of different categorical and algebraic settings.

Acknowledgements and Apologies

Acknowledgements. The author wishes to thank Robin Cockett for interest-
ing discussions on the category theory of distributive categories, and applica-
tions. Similarly, thanks are due to Samson Abramsky and Bob Coecke for many
discussions on the interpretation of distributivity and the direct sum, and on
categorical quantum mechanics generally. Thanks are also due to Philip Scott,
for discussions and references on categorical models of linear logic, with particu-
lar reference to the treatment of both distributivity and models of Girard’s bang
!() operation.

An Apology. The work in this paper was first presented at a QICS quantum
computing conference (Oxford 2010), under the title ‘The role of coherence in
quantum algorithms’ (http://www.comlab.ox.ac.uk/quantum/content/1005021/).

Quantum Speedup and Categorical Distributivity 137

After the talk, the speaker was approached by a delegation of experimental physi-
cists, who explained that they had attended the talk because of the mention of
‘coherence’ in the title, in the hope that it would be a break from the hard-
core category theory presented in other talks. The author wishes to apologise
for the (intentionally) misleading title, but hopes that they enjoyed the talk
nevertheless.

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proc.
19th Annual IEEE Symp. on Logic in Computer Science (LICS 2004), pp. 415–425.
IEEE Computer Soc. Press (2005)

2. Abramsky, S.: Abstract Scalars, Loops, and Free Traced and Strongly Compact
Closed Categories. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J.
(eds.) CALCO 2005. LNCS, vol. 3629, pp. 1–29. Springer, Heidelberg (2005)

3. Aharanov, D., Landau, Z., Makowsky, J.: The quantum FFT can be classically
simulated, arXiv:quant-ph/0611156 v1 (2006)

4. Barr, M.: Algebraically Compact Functors. Journal of Pure and Applied Alge-
bra 82, 211–231 (1992)

5. Blute, R.F., Cockett, J.R.B., Seely, R.A.G., Trimble, T.H.: Natural deduction and
coherence for weakly distributive categories. Mathematical Structures in Computer
Science 113, 229–296 (1991)

6. Carboni, A., Lack, S., Walters, R.: Introduction to Extensive and Distributive
Categories. Journal of Pure and Applied Algebra 84, 145–158 (1993)

7. Cockett, J.R.B.: Introduction to Distributive Categories. Mathematical Structures
in Computer Science 3, 277–307 (1993)

8. Coecke, B., Pavlovic, D.: Quantum measurements without sums. In: Chen, G.,
Kauffman, L., Lamonaco, S. (eds.) Mathematics of Quantum Computing and Tech-
nology. Taylor and Francis (arxiv.org/quant-ph/0608035) (2007)

9. Hines, P.: Quantum circuit oracles for abstract machine computations. Theoretical
Computer Science 411, 1501–1520 (2010)

10. Høyer, P., Špalek, R.: Quantum Fan-out is Powerful. Theory of Computing 1(5),
81–103 (2005)

11. Joyal, A., Street, R.: The geometry of tensor calculus. Advances in Mathematics
(102), 20–78 (1993)

12. Joyal, A., Street, R.: The geometry of tensor calculus II (manuscript)
13. Laplaza, M.: Coherence for categories with associativity, commutativity, and dis-

tributivity. Bulletin of the American Mathematical Society 72(2), 220–222 (1972)
14. Laplaza, M.: Coherence for distributivity. In: MacLane, S. (ed.) Coherence in Cat-

egories. Springer Lecture Notes in Mathematics, vol. 281, pp. 29–65 (1972)
15. MacLane, S.: Duality for groups. Bulletin of the American Mathematical Soci-

ety 56(6), 485–516 (1950)
16. MacLane, S.: Categories for the working mathematician, 2nd edn. Springer, New

York (1998)

138 P. Hines

17. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press (2000)

18. Pati, A., Braunstein, S.: Impossibility of deleting an unknown quantum state.
Nature 404, 164–165 (2000)

19. Shor, P.: Algorithms for quantum computation: discrete log and factoring. In: Pro-
ceedings of IEEE FOCS, pp. 124–134 (1994)

20. Wootters, W., Zurek, W.: A Single Quantum Cannot be Cloned. Nature 299,
802–803 (1982)

21. Yoran, N., Short, A.: Classical simulability and the significance of modular expo-
nentiation in Shor’s algorithm, arXiv:quant-ph/0706.0872 v1 (2007)

Unifying Semantics

for Concurrent Programming

Tony Hoare

Microsoft Research
Cambridge

United Kingdom

Abstract. Four well-known methods for presenting semantics of a pro-
gramming language are: denotational, deductive, operational, and alge-
braic. This essay presents algebraic laws for the structural features of a
class of imperative programming languages which provide both sequen-
tial and concurrent composition; and it illustrates the way in which the
laws are consistent with the other three semantic presentations of the
same language. The exposition combines simplicity with generality by
postponing consideration of the possibly more complex basic commands
of particular programming languages. The proofs are given only as hints,
but they are easily reconstructed, even with the aid of a machine.

Essay in celebration of Samson Abramsky’s sixtieth birthday.

1 Introduction

Well-known methods for presenting semantics of a programming language are:
denotational [1], deductive [2, 3], operational [4, 5] and algebraic [6, 7]. Each
presentation is useful as a formal specification of a different Software Engineering
tool.

1. The denotational semantics defines a program in terms of all its legitimate
behaviours, when executed on any occasion, and in any possible external
environment (including other programs). It provides a theoretical foundation
for implementation and use of program test environments, which assist in
location, diagnosis and correction of unintended effects in the execution of a
program.

2. The deductive semantics (originally called axiomatic), provides a set of proof
rules, capable of verifying general properties of all possible executions of a
particular program. It is the theoretical foundation for program analysis
tools (extended static checkers), and also for semi-automatic verifiers, that
assist in finding and checking proofs of program correctness.

3. The operational semantics is a set of rules for running a particular program to
produce just one of its possible executions. It is the theoretical foundation
of any implementation of the language, by a combination of interpreters,
compilers and run-time libraries.

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 139–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

140 T. Hoare

4. The algebraic semantics (which is more directly axiomatic) has the simplest
and most elegant presentation. It helps directly in efficient reasoning about
a program, and in optimising its implementation. An additional role of al-
gebra is to help establish relevant aspects of the mutual consistency of the
other forms of semantics. In application, the algebra could contribute to the
definition of consistent interfaces between the major components of a Design
Automation toolset for Concurrent Software Engineering.

The unification of the four semantic presentations proceeds in four steps. (1) The
denotational model is shown to satisfy each law of the algebra. (2) A selection
of the laws of the algebra is given an equivalent presentation as a proof rule,
or as a pair of rules. (3) The basic triple of Hoare logic is given an algebraic
definition, which translates (in both directions) between each structural proof
rule of Hoare logic and a rule from (2). (4) The basic triple (transition) of
Milner [4, 5] is similarly defined, and shown to translate between each rule of an
operational semantics and another of the rules from (2). Thus the selected laws
of the algebra are equivalent to the conjunction of the rules of the other two
semantics. The proofs are highly modular, and they are presented separately for
each operator.

There are many simple and useful, algebraic laws which are valid for the
denotational model, but which have no direct counterpart in the deductive or
the operational semantics. This suggests that the algebraic method will have
much to contribute to the exploration of the principles of programming, and the
formalisation of its discoveries for application at the interfaces between software
engineering tools.

2 Denotations

Let Act be a set, whose elements are interpreted as individual occurrences of
basic atomic actions of a program. It includes actions occurring both inside and
in the environment of a computer system that is executing the program. Let Dep
be a relation between elements of Act. The statement that x Dep y is interpreted
as saying that x is necessary to enable y , in the sense that action y depends on
(prior) occurrence of all the actions that it depends on. In game semantics, Dep
might serve as a justification relation. A dependency is often drawn as an arrow
between two actions, where the actions are drawn as nodes in a graphical dia-
gram of program execution. Examples of such a diagrams include: (1) message
sequence charts, where the vertical arrows represent control dependency in a pro-
cess or thread, and horizontal arrows represent communications or calls between
threads; (2) a Petri occurrence net, where the actions are drawn as transitions,
and there is an implicit place for token storage on each arrow; or (3)a hardware
waveform diagram, where the actions are rising or falling edges of voltage level
on a wire, and arrows between the level changes represent dependencies enforced
elsewhere in the circuit. All these examples show actions as the points, and the
arrows as the line segments, of a discrete non-metric geometry of interaction.

Unifying Semantics for Concurrent Programming 141

The purpose of the Act and Dep parameters is to allow formalisation of the
meaning of the basic commands of a programming language. For example, the
following axioms can be postulated to apply to objects, variables, and communi-
cation channels: the 0th action of any object is its allocation, and the last action
is its disposal. When the nth action is not a disposal:

– the nth action of an object enables the (n+ 1)st action;
– the nth action of an output port enables the nth action of the input port of

that channel;
– on a single-buffered channel, the nth input enables the (n+ 1)st output;
– the nth assignment to a variable enables all the reads of the nth assignment;
– the (n+ 1)st assignment depends on all reads of nth assignment.

The last clause merely says that every read of a variable reads the value most
recently assigned to it. This axiom applies to familiar strong memory models.
Its violation is characteristic of weaker memory models, where fences have to be
inserted to achieve a similar effect.

Let Tra be the powerset of Act. An element of Tra (denoted p, q, r, . . .) is
interpreted as a complete and successful trace of the execution of a particular
program on a particular occasion, whether in the past, the present or the future.
Let Prog be the powerset of Tra. An element of Prog (denoted P,Q,R, . . .)
is interpreted as a complete description of all possible and successful traces of
the execution of a program, in all possible environments of use. If no trace of a
program can be successfully completed, the program is represented by the empty
set of traces. This is an error like a syntax error: ideally, a compiler should be
able to detect it, and consequently ensure that the program is never executed.
Such non-execution must be clearly distinguished from the empty trace, which
contains no actions, and is easy to execute rather than impossible.

The user specification of a program is its most general description, describing
only those traces which will be acceptable to the end users. The program itself
is the most specific description: it will describe only those traces which record
a possible complete behaviour of the program when executed. Correctness is
inclusion (⊆) of the latter in the former. Even a single assertion, describing a
set of possible states of the machine before or after execution of a program, can
be interpreted as a set of traces, namely those which end (alternatively, which
begin) in one of the states described by the assertion. A single state is described
by an assertion which only that state satisfies. We exploit these interpretations
to obtain a simple homogeneous algebra, with just a single sort.

Of course, there is good reason why distinct sorts, with different notations, are
often used for these different kinds of description. For example, programs need to
be expressed in some notation (a computable programming language), for which
there exists an implementation of adequate efficiency and stability on the hardware
available to execute the program. Specifications, on the other hand, are normally
allowed to exploit the full expressive power of mathematics, including scientific
concepts relevant to the real world environment of a particular application. A sin-
gle state is often expressed as a tuple, describing the structure of the state of an

142 T. Hoare

executing machine. Assertions are often restricted to Boolean terms that can be
evaluated in the current state of the machine at run time. The simpler distinct
notations generally used for each of these special cases are shorter than descrip-
tions of general traces; they are more useful, more comprehensible and easier to
reason with. But distinct notations tend to obscure or even accentuate differences
between languages and theories. Disregard of syntactic distinctions is an essential
preliminary to unification of the underlying semantics.

A denotational semantics is formalised as a collection of definitions of the ba-
sic commands of a programming language, and of the operators by which they are
composed into programs.Each action occurrence in a trace is the execution of a ba-
sic command. There is also a basic command Id, interpreted as a program that has
no action, because it does nothing. There are three binary operators: semicolon (;)
standing for sequential composition, star (∗) standing for concurrent composition,
and ∨ standing for disjunction or choice. These form the signature of the algebra.
In many cases, there are several definitions that will satisfy the same algebra, and
some interesting alternatives will occasionally be indicated in the text. The main
thread of development presents a model that is (where necessary) a compromise
between simplicity of exposition and authenticity to application.

2.1 Basic Commands

Id = {{}}

This is the command that performs no action.
Each of the other basic commands of the programming language is also defined

as a set of traces. Each trace is a unit set, containing just a single occurrence of
the action of executing the command. We will assume that there is an infinite set
of possible executions of the command, which can occur in different programs,
in different contexts and on different occasions. As a result, it is trivial to model
resource allocation and disposal: each allocated resource is distinct, because its
allocation was distinct from all allocations of all other resources.

2.2 Sequential Composition

P ;Q = {p ∪ q | p ∈ P and q ∈ Q and p× q ⊆ Seq}
where Seq = (¬(Dep∗))∪, and p×q is the Cartesian product, Dep∗ is the reflexive
transitive closure of Dep and (·)∪ denotes relational converse.

This definition states that a trace of P ;Q is the union of all the actions of
some trace p of P with all the actions of another trace q of Q. Furthermore, there
is no dependency (direct or indirect) of any action occurrence in p on any action
occurrence in q. Such a dependency would certainly prevent the completion of
p before the execution of q starts; and this should surely be an allowed method
of implementation. But our definition also allows many other implementations,
in which actions of q can occur concurrently with (or before) those of p , sub-
ject only to the given dependency constraint. This freedom of implementation

Unifying Semantics for Concurrent Programming 143

is widely exploited by the optimisations performed by the main compilers for
today’s programming languages. The strongest reasonable definition of sequen-
tial composition would replace the above definition of Seq by simply Dep∗. This
requires that all actions of p precede all actions of q.

2.3 Concurrent Composition

P ∗Q = {p ∪ q | p ∈ P and q ∈ Q and p× q ⊆ Par}
where Par = ¬(Dep∗) ∪ (¬(Dep∗))∪. Again, this is the weakest reasonable def-
inition of concurrent composition. The condition on p × q rules out a class of
impossible traces, where an event in p depends on an event in q, and vice-versa;
such a dependency cycle would in practice end in deadlock, which would prevent
the successful completion of the trace.

2.4 Choice

P ∨Q = P ∪Q

This is simplest possible definition of choice: P∨Q is executed either by executing
P or by executing Q. The criterion of selection is left indeterminate. Other
definitions of choice can be implemented by an operator (e.g., a conditional)
that controls the choice by specifying when one of the operands will have no
traces. The details are omitted here.

2.5 Galois Inverses

Galois inverses (of functions that distribute through big unions) are defined in
the usual way for a complete lattice of sets.

1. Q � R =
⋃
(P | P ;Q ⊆ R)

2. P � R =
⋃
(Q | P ;Q ⊆ R)

3. P −−∗R =
⋃
({Q | P ∗Q ⊆ R})

The first of these inverses is a generalisation of Dijkstra’s [8] weakest precondition
wp(Q,R). It is a description of the most general program P whose execution
before Q will satisfy the overall specification R. The second is a version of the
Back/Morgan specification statement [9, 10], the most general description of
the program Q whose execution after P will satisfy the specification R. The
third is very similar, except that P and Q are executed concurrently rather than
sequentially. It is called “magic wand” in separation logic.

2.6 Iteration

P ∗ =
⋃
{X | Id ∪ P ∪ (X∗;X∗) ⊆ X}.

144 T. Hoare

This is Pratt’s definition [11], using the Knaster-Tarski fixed-point theorem.
The same technique can be used to define the more general concept of recursion,
under the condition of monotonicity of the function involved.

3 Algebra and Logic

This section explains the algebraic properties of the listed operators, and gives
hints why they are satisfied by the denotational definitions of the previous sec-
tions. The properties are mostly expressed as the familiar laws of associativity,
commutativity, and distribution. The less familiar laws are those applicable to
concurrency. In this section, the elements of the algebra are all sets; and it is
convenient to denote them by lower case letters p, q, r,

This section also relates the algebra to the familiar rules of a deductive and
an operational semantics. It selects a subset of the equational and inequational
algebraic laws, and expresses them in the form of proof rules, which can be
derived from them, and from which the laws can themselves be derived. It gives
algebraic definitions of the basic judgements of a deductive and of an operational
semantics. It then shows how the selected laws can be derived from the semantic
rules, and vice-versa. This is the same method that is used to show that natural
deduction is just a logical form of presentation for the laws of Boolean algebra.

The Hoare triple p{q}r says that if q is executed after p, then the overall
effect will satisfy the specification r. It is therefore defined as the algebraic
inequation p; q ⊆ r. The logical implication p⇒ p′ between assertions is defined

by the inequation p; Id ⊆ r. Similarly, the Milner transition r
p→ q means that

one of the ways of executing r is to execute p first and then q. This is simply
defined as exactly the same inequation p; q ⊆ r! The silent action τ is defined

as Id. As a result, the basic operational rule of CCS (p; q
p→ q) follows just from

the reflexivity of ⊆ . From these definitions, it is easy to show that the main
structural rules of Hoare and Milner calculi are the same as rules of deduction,
which are interderivable with a subset of the axioms in the algebra. Note that
our rules for operational semantics are based on “big steps”, and in general they
differ from those used by Milner in his definition of CCS [5].

Our definitions also ignore the restrictions that are normally placed on the
judgements of the two rule-based semantics. Hoare logic usually restricts p and
r to be assertions, and Milner transitions (in a small-step semantics) usually
restrict q to be a basic action. Furthermore, p and r are usually machine states,
often represented by displaying the structure of the program that remains to be
executed in the future (the continuation). These restrictions are fully justified
by their contribution to simpler reasoning about programs and to greater effi-
ciency of their implementation. However, the denotational model shows that the
restrictions are semantically unnecessary, and we shall ignore them.

In summary, a significant part of the algebraic semantics, including the novel
laws for concurrency, can be derived from the rules of the two rule-based seman-
tics. Additional evidence is thereby given of the realism and applicability of the
algebraic laws, and of their conformity to an already widely shared understand-
ing of the fundamental concepts of programming.

Unifying Semantics for Concurrent Programming 145

3.1 Monotonicity

Theorem 1. Sequential composition is monotonic with respect to set
inclusion ⊆.

This is a simple consequence of the implicit existential quantifier in the definition
of this operator (and of others).

Monotonicity of a binary operator is normally expressed as two proof rules

(a)
p ⊆ p′

p; q ⊆ p′; q
(b)

q ⊆ q′

p; q ⊆ p; q′

Using the properties of partial ordering, these rules are interderivable with the
single rule

(c)
p ⊆ p′ p′; q ⊆ r′ r′ ⊆ r

p; q ⊆ r

When translated to Hoare triples, (a) and (b) give the two clauses of the familiar
Rule of Consequence. When translated to Milner transitions, (c) gives a stronger
version of the structural equivalence rule of process algebra. The strengthening
consists in replacement of = by ⊆.

3.2 Sequential Composition

Theorem 2. ; is associative and has unit Id.

Proof of associativity does not depend on the particular definition of Seq, which
can be an arbitrary relation between actions. It depends only on the fact that
Cartesian product distributes through set union.

Associativity can be expressed in two complementary axioms

p; (q; r) ⊆ (p; q); r (p; q); r ⊆ p; (q; r).

Using monotonicity of ; and antisymmetry of ⊆, the first of these can be ex-
pressed as a proof rule

(a)
p; q ⊆ s s; r ⊆ r′

p; (q; r) ⊆ r′

Similarly, the second axiom is expressible as

(b)
p; s ⊆ r′ q; r ⊆ s

(p; q); r ⊆ r′

When translated to Hoare triples, (a) is the familiar rule of sequential compo-
sition. When translated to transitions, (b) gives a (less familiar, large-step) rule
for sequential composition.

146 T. Hoare

3.3 Concurrent Composition

Theorem 3. ∗ is associative and commutative and has unit Id. Furthermore, it
is related to sequential composition by the laws

(a1) p; q ⊆ p ∗ q
(a2) q; p ⊆ p ∗ q
(b1) p; (q ∗ r) ⊆ (p; q) ∗ r
(b2) (p ∗ q); r ⊆ p ∗ (q; r)
(c) (p ∗ q); (p′ ∗ q′) ⊆ (p; p′) ∗ (q; q′)

The proof of these four laws depends only on the fact that the Seq relation is
included in Par, and that Par is commutative. When ∗ is commutative, (a1) and
(a2) are equivalent. When ; and ∗ share the same unit, all the laws follow from
(c). They are listed separately, to cater for possible alternative models.

These laws are known as exchange laws, by analogy with the similar inter-
change law of two-categories. They permit the interchange of ; and ∗ as major
and minor connectives of a term. In category theory, the law is a weak equality,
and holds only when both sides are defined. In our case, the law is a strong
inequality, and the right hand side always includes the left.

The exchange laws formalise the principle of sequential consistency. They
allow any formula containing only basic actions, connected by sequential and
concurrent composition, to be reduced to a set of stronger forms, in which all
concurrent compositions have been eliminated. Furthermore, any pair of basic
commands, which appear directly or indirectly separated by ; in the original
formula, appear in the same order in all the stronger interleavings. Of course
many of the interleavings could turn out to be empty, because they violate
dependency ordering; for example, the left hand side of (a1) is empty if any
action of p depends (indirectly, perhaps) on any action of q. The full strength of
the principle of sequential consistency would require another axiom: that every
formula is equal to the union of all the stronger and more interleaved forms
derived from it. This would unfortunately be an infinite axiom set.

(b2) is interderivable with the principle of local reasoning, the fundamental
contribution of separation logic [3]. This is called the frame rule; it serves the
same role as the rule of adaptation in Hoare logic; but it is more powerful and
much simpler.

p; q ⊆ r

(p ∗ f); q ⊆ r ∗ f.

(b1) is interderivable with one of the rules given in the operational semantics of
CCS [5].

r
p→ q

r ∗ f p→ q ∗ f

This rule is interpreted as follows. Suppose r is a process that can first do p
and then behave as the continuation q. Then when r is executed concurrently

Unifying Semantics for Concurrent Programming 147

with a process f , the combination can also do p first, and then behave like the
continuation q running concurrently with the whole of f .

(c) is interderivable with the main concurrency rule of concurrent separation
logic (which is usually expressed with the operator ‖ in place of ∗ between q
and q′):

p; q ⊆ r p′; q′ ⊆ r′

(p ∗ p′); (q ∗ q′) ⊆ r ∗ r′.
This law expresses a principle of modular reasoning. A concurrent composition
can be proved correct by proving properties of its operands separately.

When translated to transitions, (c) is the main concurrency rule of a process
algebra like CCS. In a small-step semantics like that of CCS, q ∗ q′ is defined as
a basic action iff q and q′ are an input and an output on the same channel; and
it is then equal to Id (which we have identified with τ).

3.4 Units

Theorem 4. Id is the unit of both sequential and parallel composition.

From this, two weaker properties are selected for translation into rules.

(a) p; Id ⊆ p
(b) Id; p ⊆ p.

The rule derived from (a) is the Hoare rule for Id, and (b) is an operational rule
for Id, which is not accepted as a rule of a small-step semantics.

3.5 Choice

Theorem 5. ∨ is associative, commutative and idempotent. It is monotonic
and increasing in both arguments. It also admits distribution in both directions
by concurrent and by sequential composition. This last property can be expressed

(a) p; (q ∨ q′) ⊆ p; q ∨ p; q′

(b) (p ∨ p′); q ⊆ p; q ∨ p′; q.

As in previous examples, these properties are interderivable with standard rules.
The rule derived from (a) gives the standard rule in Hoare logic for non-
deterministic choice. (b) gives a very similar Milner rule, expressed in terms
of big-step transitions.

3.6 Galois Adjoints

The algebraic properties of Galois inverses are well-known. For example, they
are monotonic, and give an approximate inverse to an operator :

(q � r); q ⊆ r p ⊆ q � (p; q)

148 T. Hoare

The equations that Dijkstra [8] gives as definitions of the operators of a pro-
gramming language can all be derived as theorems. For example: the definition
of sequential composition is

(p; q) � r = p � (q � r).

However, there seems to be no exact finite equational characterisation of con-
current composition in terms of its adjoint.

3.7 Iteration

Pratt [11] has given a complete axiomatisation of iteration by just three elegant
algebraic equations. (1) is the familiar fixed point property. (2) is monotonicity.
And (3) is (p � p)∗ = p � p.

An obvious conclusion from this section is that an algebraic semantics of a
programming language can be more powerful than a combination of both its
deductive and its operational presentations, and simpler, by objective criteria
than each of them separately. It is more powerful in the expression of more laws,
and in their applicability to an unrestricted class of operands. To supply the
missing laws, a rule-based semantics usually defines a concept of by equivalence,
for example, in terms of contextual congruence or bisimulation. The equivalence
theorems are often proved by induction over the terms of the language, sometimes
jointly with induction over the length of a computation. The inductions are often
simple and satisfying. The disadvantage of inductive proofs in general is that
any extension to the language (or to its axioms) has to be validated by adding
new clauses to every theorem previously proved by induction. This reduces the
modularity of the proofs, and makes extension of the programming language
more difficult than it is by the direct addition of new algebraic axioms. Of course,
in an algebraic presentation, it is still highly desirable to prove consistency of
the new axioms with the original model. Alternatively, a whole new model, may
be required, and a new proof of all the original axioms. To avoid this, a general
parameterised model may be helpful.

4 Conclusion

As well as enabling greater modularity, extensibility and reusability of semantic
reasoning, the algebraic laws seem simpler (by objective criteria) than the rules
of a deductive semantics, and also simpler than an operational semantics. The
obvious conclusion is that algebra could play an expanded role in the exploration
of the principles of programming.

I hope that this message will appeal to the hearts and stimulate the minds
of Samson Abramsky and his many colleagues and admirers. They have made
earlier and far deeper contributions to the unification of the semantics of pro-
gramming than those reported here. The best outcome of this essay would be
to make their results more widely accessible and more widely applicable to the
practical problems of software engineering.

Unifying Semantics for Concurrent Programming 149

Acknowledgements. This essay reports the results of research conducted
with many collaborators. Many of these results have been previously published
[12–18].

References

1. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press (1977)

2. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

3. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 49–67. Springer, Hei-
delberg (2004)

4. Plotkin, G.D.: A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University (1981)

5. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

6. Hennessy, M.: Algebraic Theory of Processes. MIT Press (1988)
7. Baeten, J., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of

Communicating Processes. Cambridge Tracts in Theoretical Computer Science,
vol. 50. Cambridge University Press (2009)

8. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs
(1976)

9. Back, R.J., Wright, J.: Refinement calculus: a systematic introduction. Springer
(1998)

10. Morgan, C.: Programming from specifications. Prentice-Hall, Inc. (1990)
11. Pratt, V.R.: Action logic and pure induction. In: van Eijck, J. (ed.) JELIA 1990.

LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1991)
12. Hoare, C.A.R., Hayes, I.J., He, J., Morgan, C., Roscoe, A.W., Sanders, J.W.,

Sørensen, I.H., Spivey, J.M., Sufrin, B.: Laws of programming. Commun.
ACM 30(8), 672–686 (1987)

13. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall (1998)
14. Wehrman, I., Hoare, C.A.R., O’Hearn, P.W.: Graphical models of separation logic.

Inf. Process. Lett. 109(17), 1001–1004 (2009)
15. Hoare, T., Wickerson, J.: Unifying models of data flow. In: Software and Systems

Safety - Specification and Verification, pp. 211–230 (2011)
16. Hoare, C.A.R., Hussain, A., Möller, B., O’Hearn, P.W., Petersen, R.L., Struth, G.:

On locality and the exchange law for concurrent processes. In: Katoen, J.-P., König,
B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 250–264. Springer, Heidelberg
(2011)

17. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its
foundations. J. Log. Algebr. Program. 80(6), 266–296 (2011)

18. Hoare, T., van Staden, S.: The laws of programming unify process calculi. In:
Gibbons, J., Nogueira, P. (eds.) MPC 2012. LNCS, vol. 7342, pp. 7–22. Springer,
Heidelberg (2012)

Unfixing the Fixpoint:

The Theories of the λY -Calculus

Furio Honsell and Marina Lenisa

Dipartimento di Matematica e Informatica, Università di Udine, Italy
furio.honsell@comune.udine.it, marina.lenisa@uniud.it

Dedicated to Samson Abramsky
on the occasion of his 60th birthday

Abstract. We investigate the theories of the λY -calculus, i.e. simply
typed λ-calculus with fixpoint combinators. Non-terminating λY -terms
exhibit a rich behavior, and one can reflect in λY many results of un-
typed λ-calculus concerning theories. All theories can be characterized
as contextual theories à la Morris, w.r.t. a suitable set of observables.
We focus on theories arising from natural classes of observables, where
Y can be approximated, albeit not always initially. In particular, we
present the standard theory, induced by terminating terms, which fea-
tures a canonical interpretation of Y as “minimal fixpoint”, and another
theory, induced by pure λ-terms, which features a non-canonical inter-
pretation of Y . The interest of these two theories is that the term model
of the λY -calculus w.r.t. the first theory gives a fully complete model
of the maximal theory of the simply typed λ-calculus, while the term
model of the latter theory provides a fully complete model for the obser-
vational equivalence in unary PCF. Throughout the paper we raise open
questions and conjectures.

Introduction

Y, the fixpoint combinator lies at the heart of computation, and quite naturally
PCF has been a paradigm language for many decades. However, λY -calculus,
the purely functional core of PCF, i.e. simply typed λ-calculus extended with
fixpoint combinators, has not been often studied per se. In this paper, we outline
a general investigation of the theories of λY , inspired by what has been done in
the untyped λ-calculus, see e.g. [Bar84, HP09].

From this investigation, we expect to achieve a better understanding of how
theories of the λY , and hence of PCF, relate to e.g. iteration theories [BE93,
PS00], what are the constraints on possible non initial interpretations of Y ,
and which properties of λY -terms can be naturally encoded by non-terminating
λ-processes. We think that this research can be quite rewarding given the re-
markable results obtained in the semantics of simply typed λ-calculus using
games, and other categories, since the fundamental work of Samson Abramsky
on full abstraction of PCF, see [AJM00].

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 150–165, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Unfixing the Fixpoint: The Theories of the λY -Calculus 151

Ultimately, we would be like to answer general questions on the flexibility of
notions such as games or continuous functions in modeling adequately the rich
computational behavior of syntactical combinators. E.g.: ”Are all λY -theories
modeled by game models? If not, which are they?” Abramsky and Luke Ong
[AO93], and one of the authors [HR92], were among the first to realize the con-
straints imposed by Scott-domains on the semantics of the untyped λ-calculus.
Since then a vast literature arose in this area, see e.g. [DFH99, CS09, HP09]
for the untyped λ-calculus. This paper addresses the above issues for the typed
λY -calculus. In particular, we follow a journey around λY -theories analogue
to that for the untyped λ-calculus. We start by defining theories contextually,
given a set of observables. This amounts to reasoning on term models, i.e. on
a model-independent semantics. A straightforward transfer result allows us to
reflect on the λY -calculus essentially all the complexities of the theories of un-
typed λ-calculus. But ”sometimes less is more” and many more issues arise in the
typed setting than one would have expected at the outset. A wealth of intriguing
connections appear. For example, interpretations of Y in naturally defined, non
standard, theories behave as sequential composition in unary PCF, or if then
else in binary PCF.

Summary. In Section 1, we present the syntax of the λY -calculus. In Section 2,
we study general λY -theories and preorders, and we prove a Transfer Theorem,
providing a correspondence between theories of the untyped λ-calculus and λY -
theories. In Section 3, we focus on two special λY -theories related to the maximal
theory on typed λ-calculus and to the observational equivalence on unary PCF,
respectively. Final remarks, conjectures and open problems appear in Section 4.

1 The λY -Calculus

The λY -calculus is a simply typed lambda-calculus with two base constants
⊥,$, and fixpoint combinators Yσ at each type. The following definitions are
standard.

Definition 1 (Syntax).
Types:

σ ::= o | σ → σ

Raw terms:
M ::= x | ⊥ | $ | MM | λx : σ.M | Yσ ,

where ⊥,$ are constants and x ∈ Var.

Definition 2 (Well-Typed Terms). The proof system for typing terms de-
rives judgements Γ % M : σ, where Γ is a type environment, i.e. a finite set
of assumptions {x1 : σ1, . . . , xn : σn}. The rules of the proof system are the
following:

Γ %⊥: o Γ % $: o Γ % Yσ : (σ → σ)→ σ Γ, x : σ % x : σ

152 F. Honsell and M. Lenisa

Γ, x : σ %M : τ

Γ % λx :σ.M : σ → τ

Γ %M : σ → τ Γ % N : σ

Γ %MN : τ

We denote by ΛY (Λ0
Y) the set of well-typed (closed) λY -terms.

Term contexts are defined as usual. In the sequel, we will denote by C[] : σ → τ
a closed context expecting a term of type σ, and producing a term of type τ .

Definition 3 (Reduction/Conversion). The reduction relation between well-
typed terms is the least relation generated by the following rules together with the
rules for transitive and congruence closure (which we omit):
(β) Γ % (λx :σ.M)N ⇒M [N/x] : τ , where Γ, x : σ %M : τ , and Γ % N : σ
(η) Γ % λx :σ.Mx⇒M : σ → τ , provided x �∈M
(Y) Γ % YσM ⇒M(YσM) : σ, where Γ %M : σ → σ.
Conversion, denoted by =, is the symmetric and transitive closure of reduction.

In the following, we will often omit the environment Γ and/or the type, when
they are clear from the context.

2 λY -Theories

We focus on the theories of the λY -calculus, i.e. congruence relations on (closed)
well-typed terms, which are closed under the conversion relation. We show that
all λY -theories admit a contextual characterization. Moreover, we prove a Trans-
fer Theorem, giving a correspondence between λ-theories and λY -theories.

2.1 Contextual Characterization of λY -Theories

It is well-known that all theories on the untyped λ-calculus are contextual, i.e.
they admit a contextual characterization à la Morris, see [HR92]. An analogous
result holds for λY -theories.

Definition 4 (Contextual λY -Theory). A λY -theory ∼ is contextual if there
exists a set of terms Q ⊆ Λ0

Y closed under conversion such that, for all σ and
all M,N ∈ Λ0

Y of type σ,

M ∼ N : σ ⇐⇒ ∀C[] : σ → τ. (C[M] ∈ Q ⇔ C[N] ∈ Q) .

The terms in Q are called convergent or observable terms.

The following result holds:

Theorem 1.
(i) If ∅ �= Q � Λ0

Y and Q is closed under conversion, then the contextual
theory ∼Q is non-trivial.
(ii) Every λY -theory is contextual.

Unfixing the Fixpoint: The Theories of the λY -Calculus 153

Proof.
(i) The proof is standard.
(ii) Let ∼ be a λY -theory, define

Q = {M | ∃A,B. (A ∼ B : σ ∧ M ∼ λx : σ → σ → σ.xAB)} ,
where x does not occur in A or B. Let us denote by ∼Q the contextual theory
induced by Q. If M ∼ N , it is immediate to show that also M ∼Q N . Vice
versa, if M �∼ N , then also M �∼Q N , since for C[] ≡ λx : σ → σ → σ.xM [] we
have C[M] ∈ Q, while C[N] �∈ Q.
�

It is useful to introduce also the notion of contextual preorder defined by:

Definition 5 (Contextual Preorder). A preorder � on closed λ-terms is
contextual if there exists a set of terms Q closed under conversion such that, for
all σ and all M,N ∈ Λ0

Y of type σ,

M � N : σ ⇐⇒ ∀C[] : σ → τ. (C[M] ∈ Q ⇒ C[N] ∈ Q) .

Any preorder � induces a corresponding theory ∼=� ∩(�)−1.
Interesting contextual preorders (theories) are those that admit a character-

ization as logical relations, i.e. the (pre)equivalence of terms at higher types is
determined by the (pre)equivalence at the base type as follows:

Definition 6 (Logical Preorder/Theory). Let �Q (∼Q) be a contextual pre-
order (theory) with observables in Q. We say that
(i) the preorder �Q is a logical relation if, for all M,N ∈ Λ0

Y ,
M �Q N : o ⇐⇒ ∀C[] : σ → τ. (C[M] ∈ Q ⇒ C[N] ∈ Q)
M �Q N : σ → τ ⇐⇒ ∀P �Q Q. MP �Q NQ : τ .

(ii) the theory ∼Q is a logical relation if, for all M,N ∈ Λ0
Y ,

M ∼Q N : o ⇐⇒ ∀C[] : σ → τ. (C[M] ∈ Q ⇔ C[N] ∈ Q)
M ∼Q N : σ → τ ⇐⇒ ∀P ∼Q Q. MP ∼Q NQ : τ .

A natural question to ask is when a preorder (theory) is a logical relation. A
sufficient condition is the following:

Definition 7. Let �Q (∼Q) be a contextual preorder (theory) with observables
in Q. Then
(i) the preorder �Q is well-behaved if, for all M,N ∈ Λ0

Y of type σ,

M ∈ Q ∧ N �∈ Q =⇒ ∃C[] : σ → o. (C[M] ��Q C[N] : o) .

(ii) the theory ∼Q is well-behaved if, for all M,N ∈ Λ0
Y of type σ,

M ∈ Q ∧ N �∈ Q =⇒ ∃C[] : σ → o. (C[M] �∼Q C[N] : o) .

Proposition 1.
(i) Any well-behaved contextual preorder on the λY -calculus is a logical relation.
(ii) Any well-behaved contextual theory on the λY -calculus is a logical relation.

154 F. Honsell and M. Lenisa

Proof.
(i) Let �Q be a well-behaved contextual preorder, and let �′

Q be the preorder
defined by:
M �′

Q N : o iff ∀C[] : σ → τ. (C[M] ∈ Q ⇒ C[N] ∈ Q)
M �′

Q N : σ → τ iff ∀P �′
Q Q. MP �′

Q NQ : τ .
We prove that M �Q N ⇐⇒ M �′

Q N .
In order to prove that M �′

Q N : σ =⇒ M �Q N : σ (*), we first show that:
(a) M �′

Q N : σ =⇒ ∀C[] : σ → τ. (C[M] �′
Q C[N] : τ).

(b) M �′
Q N : σ =⇒ (M ∈ Q ⇒ N ∈ Q).

To prove item (a) one proceeds by extending the preorder �′
Q to open terms by

substitution with �′
Q-related closed terms as follows. Let M,N open terms with

free variables x we define: M �′
Q N iff ∀P �′

Q Q. M [P /x] �′
Q N [Q/x]. Then

we prove the thesis for all possibly open terms, by induction on contexts.
The proof of item (b) requires the hypothesis that the preorder is well-behaved.
Namely, assume by contradiction M �′

Q N : σ, M ∈ Q, but N �∈ Q. Then,
since the preorder is well-behaved, there exists C[] : σ → o such that C[M] ��Q
C[N] : o. But, by item (a), C[M] �′

Q C[N] : o. Contradiction.
Now we are in the position of proving (*). Assume M �′

Q N : σ. Then by
(a), for any context C[] : σ → τ , C[M] �′

Q C[N] : τ , and, by item (b),
C[M] ∈ Q ⇒ C[N] ∈ Q.
In order to prove the converse, i.e. M �Q N : σ =⇒ M �′

Q N : σ, we proceed
by induction on the type σ. For σ = o the thesis is trivial, by definition of �Q
and �′

Q. For σ = σ1 → σ2, let M �Q N : σ1 → σ2, if P �′
Q N : σ1, then, by

(*), P �Q N : σ1. Therefore MP �Q NP �Q NQ : σ2, hence by induction
hypothesis MP �′

Q NP : σ2, thus M �′
Q N : σ1 → σ2.

(ii) Similarly to item (i) above.
�

2.2 λ-Theories and λY -Theories

The class of λY -theories is rich. Consider, for example, the unsolvable λY terms
of order 0. As for the untyped λ-calculus, there are no constraints on the equa-
tional behavior of such ”easy” terms, [Bar84]. At any type τ there are infinitely
many non convertible such terms, e.g. Yσ→τ IM for any M , where I denotes the
identity of type (σ → τ)→ (σ → τ).

The richness of λY -theories is witnessed by the Transfer Theorem below,
which provides a correspondence between λ-theories, i.e. theories on the untyped
λ-calculus, and λY -theories. The gist of this translation is an encoding of untyped
λ-terms into well-typed λY -terms, whereby untyped terms are transformed into
well-typed ones, by suitably inserting terms of the form YσI of appropriate types
σ, where I denotes the identity of type σ → σ. A consequence of the Transfer
Theorem is that there are 2ℵ0 λY -theories.

Definition 8 (Encoding λ-terms into λY -terms). Let inσ : (σ → σ) → σ
and outσ : σ → (σ → σ) be the λY -terms defined by:

inσ = Y(σ→σ)→σI and outσ = Yσ→(σ→σ)I .

Unfixing the Fixpoint: The Theories of the λY -Calculus 155

Then we define the encoding Eσ : Λ→ ΛY , which, given an untyped term, yields
a λY -term of type σ, as follows:

Eσ(M) =

⎧⎪⎨⎪⎩
x : σ if M ≡ x

inσ(λx : σ.Eσ(M1)) : σ if M ≡ λx.M1

outσ(Eσ(M1))Eσ(M2) : σ if M ≡M1M2

Notice that the encoding Eσ is parametric w.r.t. σ.

Theorem 2 (Theory Correspondence). Let ∼λ be a λ-theory, and σ any
type. Then there exists a λY -theory ∼λY such that, for all M,N ∈ Λ0,

M ∼λ N ⇐⇒ Eσ(M) ∼λY Eσ(N) .

Proof.(Sketch) Let ∼λ be a λ-theory, take ∼λY to be the λY -theory induced
by the conversion and contextual closure of {(Eσ(M), Eσ(N)) | M ∼λ N}.
The argument lies in the fact that Y(σ→σ)→σI and Yσ→(σ→σ)I have a com-
pletely inactive rôle computationally, see comment in the proof of Theorem 3
below.
�
The type σ in the above theorem is generic. This result, albeit extremely simple,
indicates that the computational complexity of untyped λ-calculus is immedi-
ately captured by the Y combinator. This result should be compared also to the
results in [Lai03] for FPC.

As a corollary of Theorem 2 above, given the results in e.g. [Bar84], we have
that:

Corollary 1. There are 2ℵ0 λY -theories.

However, all the theories deriving from Theorem 2 are included in the theory
which equates all non-normalizable constant-free terms. A different argument
based on the “easy” nature of unsolvables of order 0 is necessary in order to
show that:

Theorem 3. There are 2ℵ0 maximal λY -theories.

Proof. Y(o→o)→(o→o)I plays the rôle of (λx.xx)(λx.xx) in untyped λ-calculus.
Because of its computationally inactive rôle, it can be “anything it should not
be”, [BB79]. For example, Y(o→o)→(o→o)I can encode the characteristic function
of any subset of Church numerals. Any theory extending two such theories would
therefore equate λxy.x and λxy.y, and hence it would be inconsistent.
�

2.3 Approximable Theories

The traditional understanding of Y is that of an initial or least fixed point. The
pragmatics underpinning this concept is to explain away the Y combinator, by
approximating its action with an iterated application of M on a kick off term
N0. Canonically, the kick-off term is ⊥.

But this is only the “tip of the iceberg”. We call this “iceberg” approximable
theories. These are the theories of λY which support a form of generalized
initiality.

156 F. Honsell and M. Lenisa

Definition 9 (Approximable Theory). A contextual λY -theory ∼Q, with Q
the set of convergent terms, is approximable if for all σ there exists Nσ ∈ Λ0

Y

such that
∀M : σ. ∀C[] : σ → τ. ∃n. C[YσM] ∼Q C[Mn(N0)]

It goes without saying that approximable theories feature an Approximation
Theorem. It should be interesting to study this in the context of iteration theories
[BE93, PS00].

The standard argument, often used in connection with finite models of PCF,
that the Y combinator can be dropped, is clearly due to the fact that the theories
are uniformly approximable.

3 Canonical and Non-canonical Interpretations
of Fixpoint Combinators

Canonical theories of the λY -calculus arise from the interpretation of Yσ combi-
nators as minimal fixpoint combinators, as in the standard Scott model. Different
interpretations of the fixpoint combinators give rise to different (non-canonical)
theories.

In this section, we focus on a canonical theory, ∼Y C , and on a non-canonical
one, ∼Y N . The interest of these two theories lies in the fact that the first is
connected to the maximal theory of the simply typed λ-calculus, and it pro-
vides a fully-complete interpretation of it, while the latter gives a fully complete
interpretation of the observational equivalence on unary PCF.

3.1 A Canonical λY -Theory

The canonical λY -theory ∼Y C on which we focus on can be defined as the con-
textual theory obtained by taking as convergent those terms that are convertible
to a normal form without ⊥. This is the paramount example of an approximable
theory.

Definition 10 (Canonical λY -Theory).
(i) Let �Y C be the preorder defined by, for all M,N ∈ Λ0

Y ,

M �Y C N : σ iff ∀C[] : σ → τ. (C[M] ∈ QY C ⇒ C[N] ∈ QY C) ,

where QY C = {M ∈ Λ0
Y | ∃M ′ normal form. (⊥ �∈M ′ ∧ M = M ′)}.

(ii) Let ∼Y C be the theory induced by �Y C, i.e. ∼Y C=�Y C ∩(�Y C)
−1.

Canonical preorder and theory are logical relations, which admit a very simple
characterization at the base type:

Proposition 2.
(i) M �Y C N : o ⇐⇒ (M ∈ QY C ⇒ N ∈ QY C)

M �Y C N : o ⇐⇒ ∀P �Y C Q. (MP �Y C NQ).
(ii) M ∼Y C N : o ⇐⇒ (M ∈ QY C ⇔ N ∈ QY C)

M ∼Y C N : o ⇐⇒ ∀P ∼Y C Q. (MP ∼Y C NQ).

Unfixing the Fixpoint: The Theories of the λY -Calculus 157

Proof.
(i) First one can easily show thatM �Y C N : o ⇐⇒ (M ∈ QY C ⇒ N ∈ QY C).
Then the thesis follows from the fact that �Y C is well-behaved. Namely, let
M,N be terms of type σ such that M ∈ QY C but N �∈ QY C . Then, if σ = o, the
discriminating context is (λx : o.x)[], otherwise, for σ = σ1 → . . . → σn → o,
C[] is []Π1 . . .Πn, where Π1, . . . , Πn are suitable projections “extracting” the
discriminating subterms.
(ii) Analogous to the above proof.
�

The following properties are satisfied by the preorder�Y C and the corresponding
theory ∼Y C :

Lemma 1.
(i) ⊥ �Y C $: o.
(ii) At any type there are only finitely many equivalence classes w.r.t. ∼Y C .
(iii) For any type σ and any term M : σ → σ,

YσM ∼Y C Mp(σ)⊥σ ,

where

– ⊥σ, for σ = σ1 → . . .→ σn → o, denotes λx : σ.⊥,
– p(σ) is any number greater than the number of ∼Y C-equivalence classes at

type σ, e.g. p(o) = 2 and p(σ → τ) = p(τ)p(σ).

Proof.
(i) Immediate form Proposition 2.
(ii) Clearly, at type o there are only two equivalence classes, [⊥]∼Y C and [$]∼Y C .
Hence, by the characterization of ∼Y C given in Proposition 4, there are only
finitely many equivalence classes at any type σ → τ .
(iii) Since ⊥ �Y C YσM : σ, then Mp(σ)⊥σ �Y C Mp(σ)(YσM) = YσM , hence
Mp(σ)⊥σ �Y C YσM . In order to prove the converse, i.e. YσM �Y C Mp(σ)⊥σ,
one proceeds by showing that if there exists a context C[] such that C[YσM]⇒∗

P , for some P normal and ⊥-free, and the number of reductions of YσM in the
chain are less than n, then there exists P ′ such that both C[Mn(YσM)]⇒∗ P ′,
for some P ′ normal and such that ⊥ �∈ P ′, without any reductions of YσM .
Hence we have also that C[Mn(⊥σ)] ⇒∗ P ′ and we can replace Mn(⊥σ) for
YσM in C[]. Because of item (i) n can be chosen uniformly for all terms of
type σ.
�

As a consequence of item (iii) of the above lemma, we have:

Theorem 4. The λY -theory ∼Y C is approximable.

The term model determined by the theory ∼Y C on the λY -calculus is sequential,
in the sense that each equivalence class at type σ → τ behaves either as a
constant function in all arguments or it is strict in at least one argument, i.e.
when this argument is ⊥, the result of the application is ⊥.

158 F. Honsell and M. Lenisa

Theorem 5. The term model of the λY -calculus induced by the theory ∼Y C is
sequential.

Proof. First of all, notice that:
(a) YσI ∼Y C ⊥σ, for all σ.
(b) Normal forms are strict in the head variable.
(c) Since the theory is approximable, every term YσM can be replaced by
Mk(Y(σ→σ)→σIM) for some k, getting a ∼Y N -equivalent term.
Given (a)–(c), the thesis follows easily by induction on terms.
�

Relating the Canonical Theory to the Simply Typed λ-Calculus. The
λY -theory ∼Y C is related to the maximal theory of the simply typed λ-calculus
with constants ⊥,$ at the base type o, defined by:

M ∼λ N : σ iff ∀C[] : σ → τ. (C[M] ∈ Qλ ⇔ C[N] ∈ Qλ) ,

where Qλ = {M ∈ Λ0 | M of type σ ∧ M �= ⊥σ}.
In the following, we show that the term model of the λY -calculus w.r.t. ∼Y C

is fully complete for the theory ∼λ of the simply typed λ-calculus.
Cleary, any term of the simply typed λ-calculus can be viewed as a term of

the λY -calculus via a trivial emdedding I. Vice versa, one can define a mapping
L : ΛY → Λ, by encoding Yσ combinators as follows:

L(Yσ) = λx : σ → σ.xp(σ)(⊥σ) .

The above is justified by item (iii) of Lemma 1.
Then, it is easy to check that:

Proposition 3.
(i) M ∼λ N ⇐⇒ L(M) ∼Y C L(N) .
(ii) M ∼Y C N ⇐⇒ I(M) ∼λ I(N) .

Hence, we have:

Theorem 6. The term model of the λY -calculus w.r.t. ∼Y C is fully complete
w.r.t. the maximal theory ∼λ of the simply typed λ-calculus.

3.2 A Non-canonical λY -Theory

In this section we focus on a non-canonical λY -theory ∼NY , which exhibits a
number of intriguing connections with many results in the literature on models
of unary PCF. It can be defined as the contextual theory obtained by taking
as convergent terms those that are convertible to a term in which ⊥ does not
appear. Its counterpart in the context of the untyped λ-calculus is the theory
discussed in [HR92].

Unfixing the Fixpoint: The Theories of the λY -Calculus 159

Definition 11 (Non-canonical λY -theory).
(i) Let �Y N be the preorder defined by, for all M,N ∈ Λ0

Y ,

M �Y N N : σ iff ∀C[] : σ → τ.(C[M] ∈ QY N ⇒ C[N] ∈ QY N) ,

where QY N = {M ∈ Λ0
Y | ∃M ′. (⊥ �∈M ′ ∧ M = M ′)}.

(ii) Let ∼Y N be the theory induced by �Y N , i.e. ∼YN=�Y N ∩(�Y N)−1.

Non canonical preorder and theory are logical relations, admitting the following
characterization:

Proposition 4.
(i) M �YN N : o ⇐⇒ (M ∈ QY N ⇒ N ∈ QY N)

M �Y N N : o ⇐⇒ ∀P �Y N Q. (MP �Y N NQ).
(ii) M ∼Y N N : o ⇐⇒ (M ∈ QY N ⇔ N ∈ QY N)

M ∼Y N N : o ⇐⇒ ∀P ∼Y N Q. (MP ∼Y N NQ).

Proof.
(i) First one can easily show that M �YN N : o ⇐⇒ (M ∈ QY N ⇒ N ∈
QY N). Then the thesis follows from the fact that �Y N is well-behaved. Namely,
let M,N be terms of type σ such that M ∈ QY N but N �∈ QY N . Then, if σ = o,
the discriminating context is (λx : o.x)[], otherwise, for σ = σ1 → . . .→ σn → o,
C[] is [](Yσ1I) . . . (YσnI).
(ii) Analogous to the above proof.
�

The following properties are satisfied by the preorder and the theory ∼Y N :

Lemma 2.
(i) ⊥ �YN $: o and YoI ∼Y N $: o.
(ii) At any type there are only finitely many equivalence classes w.r.t. ∼YN .
(iii) For any type σ → τ and any term N : σ,

(Yσ→τ I)N ∼Y N

{
Yτ I : τ if YσI �Y N N

⊥ : τ otherwise .

(iv) For any type σ and any term M : σ → σ,

Y(σ→σ)→σIM �Y N YσM .

(v) For any type σ and any term M : σ → σ,

YσM ∼Y I Mp(σ)M0 ,

where

– M0 ≡ Y(σ→σ)→σIM : σ,
– p(σ) is any number greater than the number of ∼Y I -equivalence classes at

type σ.

160 F. Honsell and M. Lenisa

Proof.
(i) Immediate, from Proposition 4.
(ii) Clearly, at type o there are only two equivalence classes, [⊥]∼Y N and [$]∼Y N .
Hence, using the characterization of ∼YN given in Proposition 4, there are only
finitely many equivalence classes at any type σ → τ .
(iii) First one shows that for all σ, τ , Yσ→τ I(YσI) ∼Y N Yτ I (∗). This is
immediate, observing that, for any context C[], both terms are “inactive”, i.e.
either they reduce via the fixpoint reduction rule without involving the context,
or if they appear in a redex involving the context, then they play a “passive” role
as argument. Hence ⊥ ∈∗ C[Yσ→τ I(YσI)] iff ⊥ ∈∗ C[Yτ I], where by ⊥ ∈∗ M we
denote the fact that for all M ′ such that M = M ′, ⊥ ∈M ′.
Now assume YσI �Y N M , i.e. ∀C[]. ⊥ ∈∗ C[M] ⇒ ⊥ ∈∗ C[YσI].
We prove that ∀C[]. ⊥ ∈∗ C[Yσ→τ IM] ⇔ ⊥ ∈∗ C[Yτ I].
(⇒) Assume ⊥ ∈∗ C[Yσ→τ IM]. Then ⊥ ∈∗ C′[YσI], where C′[] = C[Yσ→τ I[]].
Then, by (∗), ⊥ ∈∗ C[Yτ I].
(⇐) If ⊥ ∈∗ C[Yτ I], then since YτI and Yσ→τ IM are both inactive, then also
⊥ ∈∗ C[Yσ→τ IM].
Now assume YσI ��Y N M , i.e. there exists C[] such that ⊥ �∈∗ C[YσI] but
⊥ ∈∗ C[M]. Then we show that ⊥ ∈∗ C[Yσ→τ IM]. Namely, YσI is inactive, and
hence there exists C′[] such that C[] = C′[], ⊥ �∈ C′[], but ⊥ ∈∗ C′[M]. Hence
⊥ ∈M , and ⊥ ∈∗ C′[Yσ→τ IM].
(iv) The proof follows by an argument similar to the ones used above.
(v) By item (iv), for all k, Mk⊥ �Y N YσM . Hence Mp(σ)⊥ �Y N YσM . In order
to prove the converse, i.e. YσM �Y N Mp(σ)⊥, one proceeds by showing that if
there exists a context C[] such that C[YσM] ⇒∗ P , ⊥ �∈ P , and the number
of reductions of YσM in the chain are less than n, then there exists P ′ such
that C[Mn(YσIM)] ⇒∗ P ′, ⊥ �∈ P ′, without any reduction of YσM , and hence
also C[Mn(Y(σ→σ)→σIM)]⇒∗ P ′. Hence we can replace Mn(Y(σ→σ)→σIM) for
YσM in C[]. Because of item (i) n can be chosen uniformly for all terms of
type σ.
�

As a consequence of item (v) of the above lemma, we have that:

Theorem 7. The λY -theory ∼Y N is approximable.

Moreover, we have:

Theorem 8. The term model of the λY -calculus induced by the theory ∼Y N is
sequential.

Proof. First of all, notice that:
(a) The terms YσI are strict in all arguments, namely:

Yσ1→...→σn→oIM1 . . .Mn =

{
$ if ∀i. YσiI ≤YN Mi

⊥ otherwise .

(b) Normal forms are strict in the head variable.

Unfixing the Fixpoint: The Theories of the λY -Calculus 161

(c) Finally, since the theory is approximable, every term YσM can be replaced
by Mk(Y(σ→σ)→σIM) for some k, getting a ∼Y N -equivalent term.
Given (a)–(c), the thesis follows easily by induction on terms.
�

Relating the Non-canonical Theory to Unary PCF. Interestingly, one
can show that the λY -theory ∼Y N captures exactly the behavioral equivalence
of unary PCF, providing a fully complete model for it.

More precisely, we can define a mapping from unary PCF terms into λY -terms
and vice versa, preserving the correspondence between theories.

We recall that unary PCF is a simply typed λ-calculus over a single base type
o, containing two constants ⊥,$, and with a “sequential composition” operation
∧ of type o → (o → o). The conversion relation of unary PCF is generated by
the βη-conversion together with the equations ⊥ ∧ M = M ∧ ⊥ = M and
$ ∧M = M ∧ $ = M . We denote by ΛUP (Λ0

UP) the set of well-typed (closed)
terms of unary PCF. The behavioral equivalence on unary PCF is the contextual
theory induced by the set QUP = {M ∈ Λ0

UP | M of type τ ⇒M = ⊥τ}, i.e.:

M ∼UP N : σ iff ∀C[] : σ → τ. (C[M] = ⊥τ ⇔ C[N] = ⊥τ) .

Alternatively,
M ∼UP N : o ⇐⇒ (M = ⊥ ⇔ N = ⊥)
M ∼UP N : σ → τ ⇐⇒ ∀P ∼UP Q : σ. (MP ∼UP NQ).
Correspondingly, one can define a preorder �UP .
The observational equivalence ∼UP over unary PCF corresponds to the theory

∼Y N on the λY -calculus, in the sense that one can define a bijective correspon-
dence between equivalence classes of PCF terms w.r.t. ∼UP and equivalence
classes of λY -terms w.r.t. ∼Y N .

Definition 12.
(i) Let T : ΛUP → ΛY be the (type-respecting) mapping inductively defined by:
T (M) = M if M ∈ Var or M ∈ {⊥,$}
T (λx : σ.M) = λx : σ.T (M)
T (∧) = Yo→(o→o)I
T (MN) = T (M)T (N).

(ii) Let S : ΛY → ΛUP be the (type-respecting) mapping inductively defined by:
S(M) = M if M ∈ Var or M ∈ {⊥,$}
S(λx : σ.M) = λx : σ.S(M)

S(YσI) =

{
$ if σ ≡ o

λx : σ′.λz : τ .(xS(Yσ1I) . . .S(YσnI) ∧ S(Yτ I)z) if σ = σ′ → τ

where σ′ = σ1 → . . .→ σn → o and τ = τ1 → . . .→ τm → o.
S(Yσ) = λx : σ → σ.xp(σ)S(Y(σ→σ)→σIx)
where p(σ) is greater than the number of ∼Y I-equivalence classes at type σ,

S(MN) =

{
S(YσI)S(P1) . . .S(Pn) if MN ≡ YσIP1 . . . Pn

S(M)S(N) otherwise .

Then we have:

162 F. Honsell and M. Lenisa

Proposition 5.
(i) For any PCF-term M of type σ, M ∼UP S(T (M)) : σ.
(ii) For any λY -term M of type σ, M ∼Y N T (S(M)) : σ.
(iii) For all PCF-terms M,N of type σ,

M ∼UP N : σ ⇐⇒ T (M) ∼Y I T (N) : σ .

(iv) For all λY -terms M,N of type σ,

M ∼Y N N : σ ⇐⇒ S(M) ∼UP S(N) : σ .

Proof.
(i) First of all, we extend the equivalence ∼UP to open terms as follows. Let
M,N be terms of type σ → τ with free variables x1, . . . , xn of type σ1, . . . , σn,
respectively. Then we define

M ∼UP N iff ∀P ∼UP Q : σ. M [P /x] ∼UP N [P /x] : τ .

Then the proof of item (i) proceeds by induction on the (possibly) open
term M .
(ii) The proof is similar to the proof of the above item, using the extension of
∼Y N to open terms.
(iii) The proof follows from the fact that ∀M ∈ ΛUP . (M = ⊥ : τ ⇔ ⊥ ∈∗
T (M)). This latter fact is proved by induction on M .
(iv) The proof follows from the fact that ∀M ∈ ΛY . ⊥ ∈∗ M ⇔ ⊥ ∈∗ S(M) =
⊥ : τ . This latter fact is proved by induction on M .
�
A consequence of Proposition 5 is the following:

Theorem 9. The term model of the λY -calculus w.r.t. ∼Y N is fully complete
for the observational equivalence on unary PCF.

4 Final Remarks, Conjectures, Open Problems

Infinitary Böhm Trees. Coalgebraic versions of λ-calculus and infinitary
Böhm trees are closely related to λY . More results are needed here, involv-
ing the λY analogue of the lazy λ-calculus [AO93] equating all unsolvable λY
terms of order n, for each n.

Categorical Formalization. It would be interesting to cast the results in this
paper in a categorical setting.

More Non-standard Approximable Theories. Clearly, given a model of
finitary PCF we are quite freed in interpreting the Y combinator. For instance,
one can start iterations from the maximal element, if it exists. Or simply fix
the fixpoint combinator to yield, on any given combinator, an appropriate value,
chosen at will. A case in point would be to take Y I always to be I. For each
such choice the “game” is to find the contextual characterization which uses the
most insightful observables.

Unfixing the Fixpoint: The Theories of the λY -Calculus 163

Binary PCF. A very intriguing example derives from the universal model of
binary PCF, because it yields a novel perspective on the if then else combinator.
The construction generalizes the steps we followed for the unary PCF, the role
of the sequential composition being replaced by that of if then else. The main
surprise lies in the natural contextual theory capturing this choice of the fixed
point. The set of observable terms amounts to the set of terms which can be
reduced to a term of the λIY -calculus, i.e. terms where all abstracted variables
do occur. We assume at least three constants of type o: ⊥, tt,ff .

Conjecture 1.
(i) ⊥o �Y I tt,ff : o and YoI ∼Y I tt.
(ii) At any type there are only finitely many equivalence classes w.r.t. ∼Y I .
(iii) For any type σ → τ and any term N : σ,

(Yσ→τ I)N ∼Y I

⎧⎪⎨⎪⎩
YτI if YσI �Y I N

λx1 : τ1 . . . xn : τn.ff if λx1 : σ1 . . . xn : σn.ff �Y I N

λx1 : τ1 . . . xn : τn.⊥ otherwise .

(v) For any type σ there exists a natural number p(σ) such that, for any term
M : σ → σ,

YσM ∼Y I Mp(σ)(Y(σ→σ)→σIM) .

Models of λY -Theories. By Proposition 3, each model of the maximal theory
∼λ on the simply typed λ-calculus is a model of the theory ∼Y C of the λY -
calculus, and vice versa. As a consequence, the PER model of [AL01] provides
a fully complete model of the λY -theory ∼Y C .

Similarly, by Proposition 5, each model of the theory ∼UP on unary PCF
is a model of the λY -theory ∼NC . Models of unary PCF have been studied
e.g. in [Lai03, BLP03]. In particular, in [Lai03] it is shown that any standard
order-extensional model of unary PCF is fully complete either for unary PCF
or for unary PCF extended with parallel or. More precisely, any standard order-
extensional model of unary PCF, which is sequential, is fully complete for unary
PCF, while non-sequential models are fully complete for the extended language.
E.g. the standard Scott model is fully complete for unary PCF with parallel or,
while the bidomain model of [Lai03] is fully complete for unary PCF.

It is interesting to notice that, in the context of games, we can recover both
kinds of models.

Namely, the game model of unary PCF built over the Sierpinski game, being
sequential, is fully complete. On the other hand, one can build a non-sequential
game model by changing the definition of tensor product, as in [HL13]. In the
standard notion of tensor product of games, see e.g. [AJM00], on the game A⊗B,
at each step, the player who has the turn can move exactly in one of the two
components, A or B. In [HL13], an alternative notion of tensor product, i.e.
A ∨ B, has been considered, where at each step the player who has the turn
can either move in A, or in B, or in both components. A form of parallelism

164 F. Honsell and M. Lenisa

is then recovered in the game model. This construction is based on Conway’s
selective sum, while tensor of traditional game semantics resembles of Conway’s
disjunctive sum, [Con01].

In [HL13], it has been shown that the game A ∨ B, together with a non-
standard definition of strategy composition, gives rise to a tensor product in a
category of coalgebraic games. This category turns out to be linear, i.e. symmet-
ric monoidal closed together with a symmetric monoidal comonad. An analogous
construction can be carried out e.g. in the category of [AJM00]-games. Work-
ing in this category, one could build a non-sequential model of unary PCF over
the Sierpinski game O. Parallel or ∨ : o → (o → o) can then be interpreted
by the strategy on !O ∨ !O −→ O, where Opponent opens in the right-hand
O-component, and Player answers with a pair of moves asking both arguments;
then if Opponent answers in at least one argument (i.e. at least one argument is
different from ⊥), Player provides the final answer in the right-hand component.
In this way, the theory of standard Scott model is recovered in the context of
games.

Open Questions. We conclude with a few open questions:

– Which λY -theories are approximable?
– Are bidomain models complete w.r.t. λY ?
– Are game models complete w.r.t. λY ?

Fixing an answer to such questions would help also to fix ideas on unfixing
fixpoints.

References

[AJM00] Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. In-
formation and Computation 163, 404–470 (2000)

[AO93] Abramsky, S., Ong, C.-H.L.: Full Abstraction in the Lazy lambda-calculus.
Information and Computation 105(2), 159–268 (1993)

[AL01] Abramsky, S., Lenisa, M.: Fully Complete Minimal PER Models for the
Simply Typed λ-calculus. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142,
pp. 443–457. Springer, Heidelberg (2001)

[BB79] Baeten, J., Boerboom, B.: Omega can be anything it should not be. Proc.
of Koninklijke Netherlandse Akademie van Wetenschappen, Serie A, Indag.
Matematicae 41 (1979)

[Bar84] Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. North-
Holland, Amsterdam (1984)

[BE93] Bloom, S., Esik, Z.: Iteration Theories. EATCS Monographs on Theoretical
Computer Science. Springer (1993)

[BLP03] Bucciarelli, A., Leperchey, B., Padovani, V.: Relative Definability and Mod-
els of Unary PCF. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701,
pp. 75–89. Springer, Heidelberg (2003)

[CS09] Carraro, A., Salibra, A.: Reflexive domains are not complete for the exten-
sional lambda calculus. In: Proc. of LICS 2009, pp. 91–100. IEEE Computer
Society Publications (2009)

Unfixing the Fixpoint: The Theories of the λY -Calculus 165

[Con01] Conway, J.H.: On Numbers and Games, 2nd edn. A K Peters Ltd. (2001);
1st edn. Academic Press (1976)

[DFH99] Di Gianantonio, P., Franco, G., Honsell, F.: Game semantics for un-
typed λβη-calculus. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581,
pp. 114–128. Springer, Heidelberg (1999)

[HL13] Honsell, F., Lenisa, M.: Categories of Coalgebraic Games with Selective
Sum, http://sole.dimi.uniud.it/~marina.lenisa/
Papers/Soft-copy-pdf/sel.pdf (submitted)

[HP09] Honsell, F., Plotkin, G.: On the completeness of order-theoretic models of
the λ-calculus. Information and Computation 207(5), 583–594 (2009)

[HR92] Honsell, F., Ronchi Della Rocca, S.: An Approximation Theorem for Topo-
logical Lambda Models and the Topological Incompleteness of Lambda Cal-
culus. Journal of Computer and System Sciences 45(1) (1992)

[Lai03] Laird, J.: A Fully Abstract Bidomain Model of Unary FPC. In: Hofmann,
M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 211–225. Springer, Heidelberg
(2003)

[PS00] Plotkin, G., Simpson, A.: Complete Axioms for Categorical Fixed-point Op-
erators. In: Proc. of LICS 2000, pp. 30–41. Computer Society Press of the
IEEE (2000)

http://sole.dimi.uniud.it/~marina.lenisa/Papers/Soft-copy-pdf/sel.pdf
http://sole.dimi.uniud.it/~marina.lenisa/Papers/Soft-copy-pdf/sel.pdf

Continuous Domain Theory in Logical Form

Achim Jung

School of Computer Science, University of Birmingham
Birmingham, B15 2TT, United Kingdom

Dedicated to Samson Abramsky
on the occasion of his 60th birthday

Abstract. In 1987 Samson Abramsky presented Domain Theory in Log-
ical Form in the Logic in Computer Science conference. His contribution
to the conference proceedings was honoured with the Test-of-Time award
20 years later. In this note I trace a particular line of research that arose
from this landmark paper, one that was triggered by my collaboration
with Samson on the article Domain Theory which was published as a
chapter in the Handbook of Logic in Computer Science in 1994.

1 Personal Recollections

Without Samson, I would not be where I am today. In fact, I might not have
chosen a career in computer science at all. Coming from a mathematics back-
ground I was introduced to continuous lattices by Klaus Keimel, and with their
combination of order theory, topology and categorical structure, they seemed
very interesting objects to study. It was only during my period as a post-doc
working for Samson at Imperial College in 1989/90 that I became aware of their
use in semantics. Ever since I have been fascinated by the interplay between
mathematics and computer science, and how one subject enriches the other.

The time at Imperial was hugely educating for me and it had this quality
primarily because of the productive and purposeful research atmosphere that
Samson created. I believe in those days we went to the Senior Common Room
for tea three times a day: in the morning, after lunch, and again in the afternoon.
Usually, a large section of the Theory and Formal Methods group came along
and it was our chance to talk about research problems that were on our mind.
Samson was there most times and was happy to engage with any question that
we brought up, and typically he would be able to point us to a relevant paper or
result. We were forever astounded by his overview of the subject and his ability
to quote to us not only theorems but also proofs.

In June 1992 Samson and I lectured at a summer school in Prague, organised
by Jǐŕı Adámek and Věra Trnková. My course was on domain theory, his on λ-
calculus. One evening we had dinner together in one of this city’s many charming
restaurants and it was on that occasion that he invited me to become a co-author
on a survey article on domain theory that was meant to form a chapter of the

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 166–177, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Continuous Domain Theory in Logical Form 167

Handbook of Logic in Computer Science, edited jointly by him, Dov Gabbay and
Tom Maibaum. I accepted but admittedly had little idea of what was involved;
although I thought I knew a fair bit about the subject, it turned out that my
knowledge was patchy and disorganised. I spent most of the year 1993 on this
project, drafting chapter after chapter, sending them to Samson and receiving
feedback, advice, criticism and encouragement back from him.

The article appeared in 1994 as [AJ94] and it has been pleasing to us how
popular it has has been with researchers ever since.

2 The Handbook Article

Up to that point, domains were mostly conceived of as certain algebraic directed-
complete partial orders, the most influential reference being Gordon Plotkin’s
Pisa Lecture Notes, [Plo81], which circulated widely in copied and re-copied
form among researchers. The definition of an algebraic domain was first given
by Dana Scott in 1969, [Sco69], in a note that also remained unpublished for
many years, [Sco93], but Dana had moved quickly to the more “mathematically
respectable” setting of complete lattices. Furthermore, he discovered that the
notion of algebraicity could be replaced with a more general one, that of conti-
nuity. His continuous lattices, [Sco72], turned out to have many connections with
mathematics and a period of fruitful collaboration between him and a group of
mathematicians soon followed, culminating in the writing of the Compendium
of Continuous Lattices, [GHK+80].

When asked about the difference between “algebraic” and “continuous” struc-
tures in semantics, Dana’s answer was that the latter were closed under an
additional construction, that of forming retracts. In his view, this ought to be
an advantage in setting up a denotational model. By 1993, this intuition was
confirmed through the work on modelling probabilistic processes, [SD80, JP89],
although continuous structures made their entrance through the real numbers,
not through the need for general retractions.

Samson and I agreed that we would approach the subject of domains from the
more general continuous angle. This suited me well because of my background
in topology and functional analysis, and it seemed to offer a fresh perspective
in the light of Gordon Plotkin’s well-known treatment of the subject. It also
forced us to engage with the “infinitary” dcpo structure of domains more deeply
whereas many aspects of algebraic domains can be captured satisfactorily by the
poset of compact elements.

The project went well, I think, and it was pleasing and sometimes surprising
how easily and elegantly concepts known from the algebraic world could be
generalised to the continuous setting. Early on I found that continuous domains
could be generated from a more finitistic structure, which I dubbed abstract
bases, but Samson pointed out that these had appeared in Mike Smyth’s work
before, [Smy77], under the name “R-structures”. In any case, abstract bases were
crucial for showing that it is possible to add operations (in the sense of universal
algebra) in a free manner to continuous domains, and this established that the

168 A. Jung

view of powerdomains as free constructions, first expounded in [HP79], worked
here as well.

The final chapter of the article was devoted to Stone duality and Samson’s
Domain Theory in Logical Form, [Abr91b], which I will abbreviate to “DTLF”
in this note. The general duality part was easy to do as we were able to import
all our results from the Compendium, among them the beautiful characterisation
of continuous domains given by Jimmie Lawson, [Law79], which says that they
are precisely the Stone duals of completely distributive lattices.

Adapting Samson’s work to the continuous setting, however, proved much
more difficult. We didn’t try for very long, as we ran out of time, so the version
included in the Handbook chapter is for algebraic domains and the only “im-
provement” over [Abr91b] is that I renamed his “P predicate” to “C predicate.”
I was intrigued, however, and have spent a good part of my research time since
then trying to extend Domain Theory in Logical Form to the continuous setting.
Here I describe what I, together with collaborators, have found.

3 Domain Theory in Logical Form

At the heart of Samson’s Domain Theory in Logical Form is the duality between
bounded distributive lattices and spectral spaces discovered by Marshall Stone in
the late 30s, [Sto37].1 Three observations are key to its use in DTLF:

1. Most algebraic domains, when equipped with the Scott topology, are spectral
spaces. In particular, this is true for Scott domains and the more encompass-
ing class of bifinite domains.

2. Bounded distributive lattices are the Lindenbaum-Tarski algebras of
negation-free propositional theories.

3. Constructions on algebraic domains have logical counterparts as free dis-
tributive lattice presentations.

To give an example of the last item, assume that the domain D is the dual of
the lattice L. Then the dual of the Plotkin powerdomain of D can be presented
as follows:

generators {�a | a ∈ L} ∪ {♦a | a ∈ L}
relations �(

∧
i∈I ai) =

∧
i∈I �ai �0 = 0

♦(
∨

i∈I ai) =
∨

i∈I ♦ai ♦1 = 1

�(a ∨ b) ≤ �a ∨ ♦b �a ∧ ♦b ≤ ♦(a ∧ b)

and the logical significance of the Plotkin powerdomain construction becomes
immediately apparent.

1 The paper remained far less well-known than his earlier [Sto36], possibly because
mathematicians had no natural examples for spectral spaces and also, because the
morphisms between them, now called perfect maps, seemed unnaturally restricted.
Hilary Priestley’s version of the duality, [Pri70], was much more successful.

Continuous Domain Theory in Logical Form 169

The general setup of DTLF can be summarised in the following diagram:

program fragment
P : σ

semantic space
Dσ

program logic
Lσ

logical interpretationdenotational interpretation

Stone duality

In this note, “semantic space” stands for algebraic or continuous domain but it
could in fact be any type of structure employed to give a denotational meaning
to programs. The “program logic” is typically propositional, and often enhanced
with modal operators. Judgements are of the form P : σ |= φ, where σ is a type,
P is a program (fragment) of type σ, and φ is a formula in Lσ. Alternatively,
the formulas in Lσ can be used in “Hoare triples” {φ} P {ψ} with the usual
interpretation. The fundamental idea of DTLF is that denotational and logical
interpretation should determine each other completely via Stone duality.

As I said before, at the object level this works well for algebraic domains as
long as one restricts to the bifinite ones. However, the topological maps that
correspond to lattice homomorphisms are the perfect ones, i.e., those that are
not only continuous but also reflect compact saturated sets.2 Scott-continuous
functions, the inevitable choice in domain theory, don’t have that extra property.

Samson’s solution to this puzzle was to distinguish between the “structural”
category of domains, where the morphisms are embedding-projection pairs, and
the Scott-continuous function space as a “type constructor.” The fact is that the
former do have nice counterparts under Stone duality, namely, lattice embed-
dings (injective lattice homomorphisms). One pay-off of this is that the somewhat
technical bilimit construction of domains can dually be represented simply by a
directed union of logical theories.

Extending this work to continuous domains requires a Stone duality that
works for these spaces. At the time, the obvious choice was to move from lattices
to frames which are known to be capable of representing all (sober) topological
spaces, and to take advantage of the fact that continuous domains are indeed
always sober in their Scott topology. The price to pay is that one is then working
with an infinitary operation,3 corresponding to the arbitrary union of open sets.
There seemed to be no hope that this could be avoided as duals of ordinary
(i.e., finite arity) algebraic structures always exhibit a zero-dimensional nature,
and continuous spaces such as the real numbers just don’t have that property.
There was, however, Mike Smyth’s then newly published work on a duality for
stably compact spaces, [Smy92], which employed proximity lattices on the logical

2 A set is saturated if it is upwards closed with respect to the specialisation order.
3 More precisely, an operation of unbounded arity.

170 A. Jung

side. The difference to distributive lattices is that an idempotent relation ≺ is
added to the algebraic structure, plus a number of axioms that link the two. In
trying to understand Mike’s paper, I played with a number of variations of these
axioms, driven more by considerations of mathematical elegance than generality.
It was Philipp Sünderhauf, then a PhD student at Darmstadt, who realised that
one particularly pleasing set of axioms does indeed give a duality for all stably
compact spaces:4

(∀m ∈M. m ≺ a) ⇐⇒
∨
M ≺ a

(∀m ∈M. a ≺ m) ⇐⇒ a ≺
∧
M

In our paper [JS96] we called the resulting structure a strong proximity lattice.

Theorem 1. The set spec(L) of round prime filters of a strong proximity lat-
tice L forms a stably compact space when equipped with the usual spectral topol-
ogy generated by the sets Φ(a) = {F ∈ spec(L) | a ∈ L}. Conversely, given
a stably compact space X, the sets (U,K) with U open, K compact saturated,
and U ⊆ K form a strong proximity lattice, where are the lattice operations are
the componentwise set-theoretic ones and the approximation relation is given by
(U,K) ≺ (U ′,K ′) ⇐⇒ K ⊆ U ′.

Every distributive lattice carries a trivial proximity, namely the lattice order and
so one sees that this theorem is a direct generalisation of that of Stone. However,
many concepts from the classical case appear in a new light in the more general
setting. Of particular importance to the story to be told here is the following:
The unit map Φ of Stone duality maps a lattice element a to the compact-open
set Φ(a) = {F ∈ spec(L) | a ∈ F}. In Samson’s setting this means that every set
Φ(a) is of the form ↑M with M a finite set of compact elements. This is the link
between domain logic and the concrete representation of algebraic domains as
ideal completions of posets. On the other hand, the unit map of the generalised
duality of Theorem 1 returns pairs (U,K) where U is an open set andK compact
saturated. If we view the elements of a strong proximity lattice as (equivalence
classes of) propositional formulas, then this says that every formula a has an
open reading �a�o and a compact reading �a�c where furthermore �a�o ⊆ �a�c.
The maps �−�

o and �−�
c are very well-behaved; they are lattice homomorphisms

from L to the frame of opens of specL and the lattice KL of compact saturated
sets, respectively. In fact, this is what sets the duality of strong proximity lattices
apart from the one in [Smy92].

As in Samson’s case, identifying the correct morphisms is not easy, and it has
to be admitted that the paper [JS96] turns a blind eye to this problem. What we
did provide was to define a Stone dual for continuous functions between stably
compact spaces in the form of certain relations, modelled on Scott’s approximable
mappings.

4 The definition of stably compact space is a bit involved and the interested reader is
referred to [Jun04] or [GHK+03] for a precise definition. As a first approximation, in
a stably compact space the compact saturated sets behave exactly as compact sets
do in Hausdorff spaces.

Continuous Domain Theory in Logical Form 171

It was at this point that M. Andrew Moshier joined the effort, and he boldly
changed our approximable mappings into relations between strong proximity
lattices that resemble the internal approximation structure ≺. Furthermore,
he realised that the axioms of strong proximity lattices look a lot more re-
spectable when they are formulated as derivation rules for sequents, in the style
of Gentzen’s sequent calculus:

(L⊥)
⊥ %

Γ % Δ
======= (R⊥)
Γ % Δ,⊥

Γ % Δ
======= (L$)
$, Γ % Δ

(R$)
% $

φ, ψ, Γ % Δ
========== (L∧)
φ ∧ ψ, Γ % Δ

Γ % Δ,φ Γ % Δ,ψ
================ (R∧)

Γ % Δ,φ ∧ ψ

φ, Γ % Δ ψ, Γ % Δ
================ (L∨)

φ ∨ ψ, Γ % Δ

Γ % Δ,φ, ψ
========== (R∨)
Γ % Δ,φ ∨ ψ

Γ % Δ
(weakening)

Γ ′, Γ % Δ,Δ′

(The comma between formulas on the left is meant to be read as a conjunction,
and on the right as a disjunction. Double lines indicate that a rule can be read
in both directions.)

The “forcing relation” % in these rules can be read alternatively as representing
internal approximation ≺ or as a morphism between strong proximity lattices.
A version of the cut-rule acts as composition. Importantly, the existence of an
inverse to the cut-rule must be postulated to take account of the fact that ≺ is
interpolative. We get the duality theorem:

Theorem 2. The category of continuous sequent calculi and compatible conse-
quence relations is dually equivalent to the category of stably compact spaces and
closed relations.

Without spelling out precisely the definitions of all the terms appearing in this
theorem, perhaps the general flavour of the result can be appreciated: The duality
is between a logical category of theories on the one hand, and a topological
category with relations (rather than continuous maps), on the other.

Much of Samson’s Domain Theory in Logical Form can be extended to this
setting, and this was worked out by Mathias Kegelmann, [Keg99]. In particular,
domain constructions can be given a “logical form”. Mathias does this for prod-
uct, coproduct, powerdomains, and the relation space; the bilimit construction
is studied in [JKM01], and the example which originally motivated the move to
continuous domains, the probabilistic powerdomain construction, is dealt with
in [MJ02].

172 A. Jung

So far so good, but (at least) three questions remained:

1. How to capture the domain theoretic function space construction?
2. What are the “natural” morphisms of strong proximity lattices?
3. What is the role of the compact saturated interpretation �−�

c of propositions?

3.1 The Continuous Function Space Construction

Despite spending quite some time on this question, from the point of view of
DTLF I consider it an open problem.We may take some consolation from the fact
that the analogous problem in the algebraic setting caused Samson considerable
difficulties, too. This is due to two facts. First, the category of algebraic domains
is not closed under the continuous function space construction. As Smyth showed
in his celebrated 1983 paper, [Smy83a], one has to restrict (at least) to bifinite
domains if one wants to be certain that the function space between two domains
is again algebraic. For Samson this meant that he had to impose additional
axioms on his lattices to make sure that the Stone dual was indeed bifinite.
Luckily, though, these additional axioms don’t get much in the way in DTLF
since one can always rely on the fact that, semantically, all constructions of
interest return bifinite domains when applied to such structures.

Second, and more annoying, is the fact that a complete logical characterisation
of the function space requires one to adopt the axiom

(a→
∨
i∈I

a′i) =
∨
i∈I

(a→ a′i)

for all those formulas a whose semantics is a coprime element in the lattice
of open sets.5 As a consequence, throughout DTLF one needs to keep track
whether an element generated in one of the constructions has this property or
not. Luckily, this can be done and the whole setup, though more complicated
now, remains inductively definable.

Trying to transfer Samson’s solution to the continuous world, there is good
news and there is bad. The good news is that we know when we can expect a
function space to be a continuous domain again; it happens when the inputs are
FS-domains, [Jun90]. However, defining an analogue to Samson’s coprimality
predicate has so far exceeded this author’s patience or ability. While it is clear
that a coprime compact saturated set is one that is generated as an upper set
by a single point, the condition for the corresponding open set would be that it
is downward directed; in other words, it should be an open filter. Whether or
not these two conditions can be tracked through all domain constructions, and
especially the probabilistic powerdomain, I don’t know.

Another problem makes its entrance at this point. Even if we knew how to
formalise the Stone duals of FS-domains, we would not then be able to rely on the

5 An element a of a lattice is called coprime if it is contained in a finite union
⋃

M
of opens precisely if it is already contained in one of the m ∈ M , which is exactly
what the axiom expresses.

Continuous Domain Theory in Logical Form 173

fact that all our constructions preserve these conditions, contrary to the situation
in classical DTLF. The issue is the probabilistic powerdomain construction for
which it is not known whether it is closed on the class of FS-domains (nor on
any other cartesian closed category of continuous domains), [JT98].

It turns out that an answer to the second question can be found by studying
the third one, so this is how I will proceed now.

3.2 The Role of Compactness — First Interpretation

The interpretation of open sets in computation was expounded most clearly by
Mike Smyth in his landmark paper [Smy83b]: They are exactly those properties
which are finitely observable. This was a very fruitful view and in some ways
DTLF is the logical extension of this insight. Compactness, on the other hand,
while one of the basic notions of topology, is not that easy to interpret though
by the time Samson and I wrote the Handbook chapter there were already a
number of hints that it was a useful descriptional device: Gordon Plotkin had
shown that the elements of his powerdomain could be characterised as convex
compact6 subsets of the given domain, and similar descriptions are available for
the other two classical powerdomain constructions as well. He also formulated
the intriguing “2/3 SFP Theorem” which says that two of the three conditions
that characterise bifinite domains can be expressed by a compactness condition,
namely, that the domain in question be stably compact in its Scott topology. Re-
lated to this is the role of compactness in the identification of maximal cartesian
closed categories of continuous domains, [Jun90].

Since then Mart́ın Escardó has shown [Esc04] that compactness is related to
quantifiability, in the following sense: For X some topological space one asks
whether it is possible to establish whether a predicate, given as a continuous
map from X to 2 (Sierpiński space), holds for all elements of X . The answer is
that this can be answered “continuously”, that is, as a continuous map ∀X from
2X to 2 if and only if X is compact. This is not just a theorem of topology but
in fact a program can be written for ∀X provided X is effectively given and the
predicate to be tested is likewise given as a subroutine.

Another approach to compactness is to extend Steve Vickers’s idea of a topo-
logical system, [Vic89], where elements of a “space” are related to elements of
a frame by a relation �. The statement x � a can then be read as “x is an
element of the open set a”, or as “x satisfies the observable property a”, or as
“x is a model of the proposition a.” In the given context one is tempted to re-
place “element” by “compact subset” and let ≺ play the role of �. The purely
mathematical import of this has been explored by Olaf Klinke under the name
interaction algebra in [Kli12].

All of the above, however, do not yet combine to produce a convincing story
of why there is a compact interpretation of domain logic, nor what this compact
interpretation represents, nor how it can be usefully employed in semantics. In-
deed, what is missing is a serious case study of this approach in the same vein as

6 With respect to the Lawson topology.

174 A. Jung

Samson’s [Abr90, Abr91a]. An obvious candidate is to attempt a DTLF recon-
struction of the striking result of Joseé Desharnais, Abbas Edalat and Prakash
Panangaden, [DEP98, DEP02], about the completeness of a small and elegant
Hennessy-Milner type logic for probabilistic processes.

3.3 The Role of Compactness — Second Interpretation

From the angle of Stone duality, some progress in extending and interpreting
Theorem 1 has been made. The key insight is that on a stably compact space the
complements of compact saturated sets form a topology, called the co-compact
topology. In other words, stably compact spaces are bitopological structures and
it is only because the two topologies in fact determine each other that this fact
is not usually highlighted. Furthermore, a perfect map between such spaces is
precisely one which is bicontinuous.

These observations motivate an alternative reading of the pairs (U,K) in
Theorem 1: The second component should be X \K and the condition U ⊆ K
should be read as U ∩ (X \K) = ∅. So the pair (U,K) can be interpreted as a
partial predicate in the sense of three-valued logic: it is (observably) true on U ,
(observably) false on X \K and undecided (or undecidable) everywhere else.

This turned out to be a fruitful starting point and in [JM06] Drew Moshier
and I developed a duality theory for bitopological spaces analogous to the one
for frames and topological spaces. More precisely, we define:

Definition 1. A d-frame consists of two frames L+ and L−, together with two
relations con, tot ⊆ L+×L−. Morphisms between d-frames are pairs h+, h− of
frame homomorphisms which preserve con and tot.

The following is now fairly straightforward:

Theorem 3. There is a dual adjunction between the category of d-frames and
the category of bitopological spaces.

As is shown in [JM06], the duality of strong proximity lattices can be seen as a
special case of Theorem 3, and the same is true for Stone’s original dualities for
Boolean algebras and distributive lattices, respectively. A particularly pleasing
aspect is the fact that there is no doubt about the notion of a d-frame homomor-
phism; specialising them to the strong proximity lattice case one obtains what
could rightly be called their natural morphisms. The fact that concretely they
manifest themselves as pairs of relations perhaps explains why we were unable
to identify them in [JS96].

With regards to DTLF, however, the bitopological or bilogical reading is yet to
be fully justified. As we said before, the open interpretation of a proposition gives
rise to the idea of observability or more precisely, semidecidability. An open that
corresponds to the complement of the compact interpretation typically doesn’t
have that property and in some cases is very much non-observable. Why these
complements form a topology, therefore, remains somewhat of a mystery — at
least to this author.

Continuous Domain Theory in Logical Form 175

4 Conclusions

It is probably fair to say that extending Samson’s Domain Theory in Logical
Form from algebraic domains to continuous ones has been a much harder task
than we imagined in 1993, and it has forced us to examine very closely its
various ingredients. While one could claim with some justification that the multi-
lingual sequent calculus of Theorem 2 is the correct generalisation, some key
questions remain open. What is more, making progress on these appears to
depend on solving the long-standing problem of the behaviour of the probabilistic
powerdomain construction on cartesian closed categories.

Let me end by expressing the hope that this summary of results and open
problems will help to encourage researchers to study this fascinating and deep
theory which Samson’s work has opened up for us.

References

[Abr90] Abramsky, S.: The lazy lambda calculus. In: Turner, D. (ed.) Research
Topics in Functional Programming, pp. 65–117. Addison Wesley (1990)

[Abr91a] Abramsky, S.: A domain equation for bisimulation. Information and Com-
putation 92, 161–218 (1991)

[Abr91b] Abramsky, S.: Domain theory in logical form. Annals of Pure and Applied
Logic 51, 1–77 (1991)

[AJ94] Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Semantic Structures. Handbook of Logic in Com-
puter Science, vol. 3, pp. 1–168. Clarendon Press (1994)

[DEP98] Desharnais, J., Edalat, A., Panangaden, P.: A logical characterization of
bisimulation for labeled Markov processes. In: 13th IEEE Symposium on
Logic in Computer Science, Indianapolis 1998, pp. 478–489 (1998)

[DEP02] Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled
Markov processes. Information and Computation 179, 163–193 (2002)

[Esc04] Escardó, M.H.: Synthetic topology of data types and classical spaces.
In: Desharnais, J., Panangaden, P. (eds.) Domain-theoretic Methods in
Probabilistic Processes. Electronic Notes in Theoretical Computer Science,
vol. 87, pp. 21–156. Elsevier Science Publishers B.V. (2004)

[GHK+80] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott,
D.S.: A Compendium of Continuous Lattices. Springer (1980)

[GHK+03] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott,
D.S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and
its Applications, vol. 93. Cambridge University Press (2003)

[HP79] Hennessy, M.C.B., Plotkin, G.D.: Full abstraction for a simple parallel
programming language. In: Bečvář, J. (ed.) MFCS 1979. LNCS, vol. 74,
pp. 108–120. Springer, Heidelberg (1979)

[JKM01] Jung, A., Kegelmann, M., Moshier, M.A.: Stably compact spaces and
closed relations. In: Brookes, S., Mislove, M. (eds.) 17th Conference on
Mathematical Foundations of Programming Semantics. Electronic Notes
in Theoretical Computer Science, vol. 45, 24 pages. Elsevier Science Pub-
lishers B.V. (2001)

176 A. Jung

[JM06] Jung, A., Moshier, M.A.: On the bitopological nature of Stone duality.
Technical Report CSR-06-13, School of Computer Science, The University
of Birmingham, 110 pages (2006)

[JP89] Jones, C., Plotkin, G.: A probabilistic powerdomain of evaluations. In:
Proceedings of the 4th Annual Symposium on Logic in Computer Science,
pp. 186–195. IEEE Computer Society Press (1989)

[JS96] Jung, A., Sünderhauf, P.: On the duality of compact vs. open. In: Andima,
S., Flagg, R.C., Itzkowitz, G., Misra, P., Kong, Y., Kopperman, R. (eds.)
Papers on General Topology and Applications: Eleventh Summer Con-
ference at the University of Southern Maine. Annals of the New York
Academy of Sciences, vol. 806, pp. 214–230 (1996)

[JT98] Jung, A., Tix, R.: The troublesome probabilistic powerdomain. In: Edalat,
A., Jung, A., Keimel, K., Kwiatkowska, M. (eds.) Proceedings of the Third
Workshop on Computation and Approximation. Electronic Notes in The-
oretical Computer Science, vol. 13, 23 pages. Elsevier Science Publishers
B.V. (1998)

[Jun90] Jung, A.: The classification of continuous domains. In: Proceedings of the
Fifth Annual IEEE Symposium on Logic in Computer Science, pp. 35–40.
IEEE Computer Society Press (1990)

[Jun04] Jung, A.: Stably compact spaces and the probabilistic powerspace con-
struction. In: Desharnais, J., Panangaden, P. (eds.) Domain-Theoretic
Methods in Probabilistic Processes. Electronic Notes in Theoretical Com-
puter Science, vol. 87, pp. 5–20. Elsevier Science Publishers B.V. (2004)

[Keg99] Kegelmann, M.: Continuous domains in logical form. PhD thesis, School
of Computer Science, The University of Birmingham (1999)

[Kli12] Klinke, O.: A bitopological point-free approach to compactifications. PhD
thesis, School of Computer Science, The University of Birmingham (2012)

[Law79] Lawson, J.D.: The duality of continuous posets. Houston Journal of Math-
ematics 5, 357–394 (1979)

[MJ02] Moshier, M.A., Jung, A.: A logic for probabilities in semantics. In: Brad-
field, J.C. (ed.) CSL 2002. LNCS, vol. 2471, pp. 216–231. Springer, Hei-
delberg (2002)

[Plo81] Plotkin, G.D.: Post-graduate lecture notes in advanced domain theory
(incorporating the “Pisa Notes”). Dept. of Computer Science, Univ. of
Edinburgh (1981)

[Pri70] Priestley, H.A.: Representation of distributive lattices by means of ordered
Stone spaces. Bulletin of the London Mathematical Society 2, 186–190
(1970)

[Sco69] Scott, D.S.: A type theoretic alternative to ISWIM, CUCH, OWHY. Uni-
versity of Oxford (1969) (manuscript)

[Sco72] Scott, D.S.: Continuous lattices. In: Lawvere, E. (ed.) Toposes, Algebraic
Geometry and Logic. Lecture Notes in Mathematics, vol. 274, pp. 97–136.
Springer (1972)

[Sco93] Scott, D.S.: A type-theoretical alternative to ISWIM, CUCH, OWHY.
Theoretical Computer Science 121, 411–440 (1993); Reprint of a
manuscript written in 1969

[SD80] Saheb-Djahromi, N.: CPO’s of measures for nondeterminism. Theoretical
Computer Science 12, 19–37 (1980)

[Smy77] Smyth, M.B.: Effectively given domains. Theoretical Computer Science 5,
257–274 (1977)

Continuous Domain Theory in Logical Form 177

[Smy83a] Smyth, M.B.: The largest cartesian closed category of domains. Theoretical
Computer Science 27, 109–119 (1983)

[Smy83b] Smyth, M.B.: Power domains and predicate transformers: a topological
view. In: Dı́az, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 662–675. Springer,
Heidelberg (1983)

[Smy92] Smyth, M.B.: Stable compactification I. Journal of the London Mathemat-
ical Society 45, 321–340 (1992)

[Sto36] Stone, M.H.: The theory of representations for Boolean algebras. Trans.
American Math. Soc. 40, 37–111 (1936)

[Sto37] Stone, M.H.: Topological representation of distributive lattices. Časopsis
pro Pěstováńı Matematiky a Fysiky 67, 1–25 (1937)

[Vic89] Vickers, S.J.: Topology Via Logic. Cambridge Tracts in Theoretical Com-
puter Science, vol. 5. Cambridge University Press (1989)

Presheaf Models of Quantum Computation:

An Outline

Dedicated to Samson Abramsky on His 60th Birthday

Octavio Malherbe1, Philip Scott2, and Peter Selinger3

1 IMERL-FING, Universidad de la República, Montevideo, Uruguay
malherbe@fing.edu.uy

2 Dept. of Mathematics and Statistics, University of Ottawa, Canada
phil@site.uottawa.ca

3 Dept. of Mathematics and Statistics, Dalhousie University, Halifax, Canada
selinger@mathstat.dal.ca

Abstract. This paper outlines the construction of categorical models
of higher-order quantum computation. We construct a concrete deno-
tational semantics of Selinger and Valiron’s quantum lambda calcu-
lus, which was previously an open problem. We do this by considering
presheaves over appropriate base categories arising from first-order quan-
tum computation. The main technical ingredients are Day’s convolution
theory and Kelly and Freyd’s notion of continuity of functors. We first
give an abstract description of the properties required of the base cat-
egories for the model construction to work. We then exhibit a specific
example of base categories satisfying these properties.

1 Introduction

Quantum computing is based on the laws of quantum physics. While no actual
general-purpose quantum computer has yet been built, research in the last two
decades indicates that quantum computers would be vastly more powerful than
classical computers. For instance, Shor [34] proved in 1994 that the integer fac-
toring problem can be solved in polynomial time on a quantum computer, while
no efficient classical algorithm is known.

Logic has played a key role in the development of classical computation theory,
starting with the foundations of the subject in the 1930’s by Church, Gödel,
Turing, and Kleene. For example, the pure untyped lambda calculus, one of the
first models of computation invented by Church, can be simultaneously regarded
as a prototypical functional programming language as well as a formalism for
denoting proofs. This is the so-called proofs-as-programs paradigm. Indeed, since
the 1960’s, various systems of typed and untyped lambda calculi have been
developed, which on the one hand yield proofs in various systems of constructive
and/or higher-order logic, while on the other hand denoting functional programs.
Modern programming languages such as ML, Haskell, and Coq are often viewed
in this light.

Recent research by Selinger, Valiron, and others [30,33] in developing “quan-
tum lambda calculi” has shown that Girard’s linear logic [12] is a logical system

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 178–194, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Presheaf Models of Quantum Computation: An Outline 179

that corresponds closely to the demands of quantum computation. Linear logic,
a resource sensitive logic, turns out to formalize one of the central principles of
quantum physics, the so-called no-cloning property, which asserts that a given
unknown quantum state cannot be replicated. This property is reflected on the
logical side by the requirement that a given logical assumption (or “resource”)
can only be used once. However, until now, the correspondence between linear
logic and quantum computation has mainly been explored at the syntactic level.

In this paper we construct mathematical (semantic) models of higher-order
quantum computation. The basic idea is to start from existing low level models,
such as the category of superoperators, and to use a Yoneda type presheaf con-
struction to adapt and extend these models to a higher order quantum setting.
To implement the latter, we use Day’s theory of monoidal structure in presheaf
categories, as well as the Freyd-Kelly theory of continuous functors, to lift the
required quantum structure [6,11]. Finally, to handle the probabilistic aspects of
quantum computation, we employ Moggi’s computational monads [24].

Our model construction depends on a sequence of categories and functors
B → C → D, as well as a collection Γ of cones in D. We use this data to obtain
a pair of adjunctions

[Bop,Set]
L ��

[Cop,Set]
F ��

Φ∗
⊥
� [Dop,Set]Γ

G

⊥
�

in which the left-hand adjunction gives an appropriate categorical model of the
underlying linear logic, and the right-hand adjunction gives a Moggi monad for
probabilistic effects. We then give sufficient conditions on B → C → D and Γ so
that the resulting structure is a model of the quantum lambda calculus. One can
describe various classes of concrete models by appropriate choices of diagrams
B → C → D and cones Γ .

In this paper, we focus on the categorical aspects of the model construc-
tion. Thus, we will not review the syntax of the quantum lambda calculus itself
(see [30] and [33] for a quick review). Instead, we take as our starting point
Selinger and Valiron’s definition of a categorical model of the quantum lambda
calculus [33]. It was proven in [33] that the quantum lambda calculus forms an
internal language for the class of such models. This is similar to the well-known
interplay between typed lambda calculus and cartesian closed categories [19].
What was left open in [33] was the construction of a concrete such model (other
than the one given by the syntax itself). This is the question whose answer we
sketch here. Further details can be found in the first author’s PhD thesis [22].

2 Categories of Completely Positive Maps
and Superoperators

We first recall various categories of finite dimensional Hilbert spaces that we use
in our study. Let V be a finite dimensional Hilbert space, i.e., a finite dimensional
complex inner product space. We write L(V) for the space of linear functions
ρ : V −→ V .

180 O. Malherbe, P. Scott, and P. Selinger

Definition 2.1. Let V,W be finite dimensional Hilbert spaces. A linear function
F : L(V) −→ L(W) is said to be completely positive if it can be written in the

form F (ρ) =
∑m

i=1 FiρF
†
i , where Fi : V −→ W is a linear function and F †

i

denotes the linear adjoint of Fi for i = 1, . . . ,m.

Definition 2.2. The category CPMs of simple completely positive maps has
finite dimensional Hilbert spaces as objects, and the morphisms F : V −→ W
are completely positive maps F : L(V) −→ L(W).

Definition 2.3. The category CPM of completely positive maps is defined as
CPM = CPM⊕

s , the biproduct completion of CPMs. Specifically, the objects
of CPM are finite sequences (V1, . . . , Vn) of finite-dimensional Hilbert spaces,
and a morphism F : (V1, . . . , Vn) −→ (W1, . . . ,Wm) is a matrix (Fij), where
each Fij : Vj −→ Wi is a completely positive map. Composition is defined by
matrix multiplication.

Remark 2.4. The categoryCPM is the same (up to equivalence) as the category
W of [28] and the category CPM(FdHilb)⊕ of [29].

Note that for any two finite dimensional Hilbert spaces V and W , there is a
canonical isomorphism ϕV,W : L(V ⊗W) −→ L(V)⊗ L(W).

Remark 2.5. The categories CPMs and CPM are symmetric monoidal. For
CPMs, the tensor product is given on objects by the tensor product of Hilbert
spaces V ⊗̄W = V ⊗ W , and on morphisms by the following induced map

f⊗̄g:= L(V ⊗ W)
ϕV,W−→ L(V) ⊗ L(W)

f⊗g−→ L(X) ⊗ L(Y)
ϕ−1

X,Y−→ L(X ⊗ Y).
The remaining structure (units, associativity, symmetry maps) is inherited from
Hilbert spaces. Similarly, for the symmetric monoidal structure on CPM, define
(Vi)i∈I ⊗ (Wj)j∈J = (Vi ⊗Wj)i∈I,j∈J . This extends to morphisms in an obvious
way. For details, see [28].

Definition 2.6. We say that a linear map F : L(V)→ L(W) is trace preserving
when it satisfies trW (F (ρ)) = trV (ρ) for all positive ρ ∈ L(V). F is called trace
non-increasing when it satisfies trW (F (ρ)) � trV (ρ) for all positive ρ ∈ L(V).

Definition 2.7. A linear map F : L(V) → L(W) is called a trace preserving
superoperator if it is completely positive and trace preserving, and it is a trace
non-increasing superoperator if it is completely positive and trace non-increasing.

Definition 2.8. A completely positive map F : (V1, . . . , Vn) −→ (W1, . . . ,Wm)
in the category CPM is called a trace preserving superoperator if for all j and
all positive ρ ∈ L(Vj),

∑
i tr(Fij(ρ)) = tr(ρ), and a trace non-increasing super-

operator if for all j and all positive ρ ∈ L(Vj),
∑

i tr(Fij(ρ)) � tr(ρ).

We now define four symmetric monoidal categories of superoperators. All of
them are symmetric monoidal subcategories of CPM.

Presheaf Models of Quantum Computation: An Outline 181

Definition 2.9.

– Qs and Q′
s have the same objects as CPMs, and Q and Q′ have the same

objects as CPM.
– The morphisms of Qs and Q are trace non-increasing superoperators, and

the morphisms of Q′
s and Q′ are trace preserving superoperators.

Remark 2.10. The categories Qs, Q, Q′
s, and Q′ are all symmetric monoidal.

The symmetric monoidal structure is inherited from CPMs and CPM, respec-
tively, and it is easy to check that all the structural maps are trace preserving.

Lemma 2.11. Q and Q′ have finite coproducts.

Proof. The injection/copairing maps are as in CPM and are trace preserving.

3 Presheaf Models of a Quantum Lambda Calculus

Selinger defined an elementary quantum flow chart language in [28], and gave a
denotational model in terms of superoperators. This axiomatic framework cap-
tures the behaviour and interconnection between the basic concepts of quantum
computation (for example, the manipulation of quantum bits under the basic op-
erations of measurement and unitary transformation) in a lower-level language.
In particular, the semantics of this framework is very well understood: each
program corresponds to a concrete superoperator.

Higher-order functions are functions that can input or output other functions.
In order to deal with such functions, Selinger and Valiron introduced, in a series
of papers [31,32,33], a typed lambda calculus for quantum computation and
investigated several aspects of its semantics. In this context, they combined two
well-established areas: the intuitionistic fragment of Girard’s linear logic [12] and
Moggi’s computational monads [24].

The type system of Selinger and Valiron’s quantum lambda calculus is based
on intuitionistic linear logic. As is usual in linear logic, the logical rules of weak-
ening and contraction are introduced in a controlled way by an operator “!”
called “of course” or “exponential”. This operator creates a bridge between two
different kinds of computation. More precisely, a value of a general type A can
only be used once, whereas a value of type !A can be copied and used multiple
times. As mentioned in the introduction, the impossibility of copying quantum
information is one of the fundamental differences between quantum information
and classical information, and is known as the no-cloning property. From a logi-
cal perspective, this is related to the failure of the contraction rule; thus it seems
natural to use linear logic in discussing quantum computation. It is also well
known that categorically, the operator “!” satisfies the properties of a comonad
(see [23]).

Since the quantum lambda calculus has higher-order functions, as well as
probabilistic operations (namely measurements), it must be equipped with an
evaluation strategy in order to be consistent. Selinger and Valiron addressed this
by choosing the call-by-value evaluation strategy. This introduces a distinction

182 O. Malherbe, P. Scott, and P. Selinger

between values and computations. At the semantic level, Moggi [24] proposed
using the notion of monad as an appropriate tool for interpreting computational
behaviour. In our case, this will be a strong monad.

So let us now describe Selinger and Valiron’s notion of a categorical model of
the quantum lambda calculus [33].

3.1 Categorical Models of the Quantum Lambda Calculus

In what follows, let (C,⊗, I, α, ρ, λ, σ) be a symmetric monoidal category [21].

Definition 3.1. A symmetric monoidal comonad (!, δ, ε,mA,B,mI) is a
comonad (!, δ, ε) where the functor ! is a monoidal functor (!,mA,B,mI), i.e.,
with natural transformations mA,B : !A ⊗ !B −→ !(A ⊗ B) and mI : I −→ !I,
satisfying appropriate coherence axioms [16] such that δ and ε are symmetric
monoidal natural transformations.

Definition 3.2. A linear exponential comonad is a symmetric monoidal
comonad (!, δ, ε,mA,B,mI) such that for every A ∈ C, there exists a commu-
tative comonoid (A, dA, eA) satisfying some technical requirements (see [4,33]).

Definition 3.3. Let (T, η, μ) be a strong monad on C. We say that C has Kleisli
exponentials if there exists a functor [−,−]k : Cop × C → C and a natural iso-
morphism: C(A⊗B, TC) ∼= C(A, [B,C]k).

Definition 3.4 (Selinger and Valiron [33]). A linear category for duplication
consists of a symmetric monoidal category (C,⊗, I) with the following structure:

– an idempotent, strongly monoidal, linear exponential comonad (!, δ, ε, d, e),
– a strong monad (T, μ, η, t) such that C has Kleisli exponentials.

Further, if the unit I is a terminal object we shall speak of an affine linear
category for duplication.

Remark 3.5. Perhaps surprisingly, following the work of Benton, a linear cat-
egory for duplication can be obtained from a structure that is much easier to
describe, namely, a pair of monoidal adjunctions [2,23,17]

(B,×, 1)
(L,l) ��

(C,⊗, I)
(F,m) ��

(I,i)

⊥
� (D,⊗, I),
(G,n)

⊥
�

where the category B has finite products and C and D are symmetric monoidal
closed. The monoidal adjoint pair of functors on the left represents a linear-
non-linear model of linear logic in the sense of Benton [2], in which we obtain a
monoidal comonad by setting ! = L ◦ I. The monoidal adjoint pair on the right
gives rise to a strong monad T = G ◦ F in the sense of Kock [16,17], which is
also a computational monad in the sense of Moggi [24].

We now state the main definition of a model of the quantum lambda calculus.

Presheaf Models of Quantum Computation: An Outline 183

Definition 3.6 (Models of the Quantum Lambda Calculus [33]). An
abstract model of the quantum lambda calculus is an affine linear category for
duplication C with finite coproducts, preserved by the comonad !. A concrete
model of the quantum lambda calculus is an abstract model such that there exists
a full and faithful embedding Q ↪→ CT , preserving tensor ⊗ and coproduct ⊕
up to isomorphism, from the category Q of norm non-increasing superoperators
(see Definition 2.9) into the Kleisli category of the monad T .

Remark 3.7. To make the connection to quantum lambda calculus: the category
C, the Kleisli category CT , and the co-Kleisli category C! all have the same objects,
which correspond to types of the quantum lambda calculus. The morphisms f :
A −→ B of C correspond to values of type B (parameterized by variables of type
A). A morphism f : A −→ B in CT , which is really a morphism f : A −→ TB in
C, corresponds to a computation of type B (roughly, a probability distribution
of values). Finally, a morphism f : A −→ B in C!, which is really a morphism
f : !A −→ B in C, corresponds to a classical value of type B, i.e., one that only
depends on classical variables. The idempotence of “!” implies that morphisms
!A −→ B are in one-to-one correspondence with morphisms !A −→ !B, i.e.,
classical values are duplicable. For details, see [33].

3.2 Outline of the Procedure for Obtaining a Concrete Model

We construct the model in two stages. The first (more elaborate) stage constructs
abstract models by applying certain general presheaf constructions to diagrams
of functors B → C → D. In Section 3.8 we find the precise conditions required
on diagrams B → C → D to obtain a valid abstract model. In the second stage,
we construct a concrete model of the quantum lambda calculus by identifying
particular base categories so that the remaining conditions of Definition 3.6 are
satisfied. This is the content of Sections 3.9 and 3.10.

We divide the two stages of construction into eight main steps.

1. The basic idea of the construction is to lift a sequence of functors B Φ→ C Ψ→ D
into a pair of adjunctions between presheaf categories

[Bop,Set]
L ��

[Cop,Set]
F1 ��

Φ∗
⊥
� [Dop,Set].

Ψ∗
⊥
�

Here, Φ∗ and Ψ∗ are the precomposition functors, and L and F1 are their left
Kan extensions. By Remark 3.5, such a pair of adjunctions potentially yields
a linear category for duplication, and thus, with additional conditions, an ab-
stract model of quantum computation. Our goal is to identify the particular
conditions on B, C, D, Φ, and Ψ that make this construction work.

2. By Day’s convolution construction (see [6]), the requirement that [Cop,Set]
and [Dop,Set] are monoidal closed can be achieved by requiring C and D
to be monoidal. The requirement that the adjunctions L) Φ∗ and F1) Ψ∗

are monoidal is directly related to the fact that the functors Ψ and Φ are

184 O. Malherbe, P. Scott, and P. Selinger

strong monoidal. More precisely, this implies that the left Kan extension is
a strong monoidal functor [10] which in turn determines the enrichment of
the adjunction [14]. We also note that the category B must be cartesian.

3. One important complication with the model, as discussed so far, is the fol-
lowing. The Yoneda embedding Y : D → [Dop,Set] is full and faithful, and
by Day’s result, also preserves the monoidal structure ⊗. Therefore, if one
takes D = Q, all but one of the conditions of a concrete model (from Defi-
nition 3.6) are automatically satisfied. Unfortunately, however, the Yoneda
embedding does not preserve coproducts, and therefore the remaining con-
dition of Definition 3.6 fails. For this reason, we modify the construction
and use a modified presheaf category with a coproduct preserving Yoneda
embedding. More specifically, we choose a set Γ of cones in D, and use
the theory of continuous functors by Lambek [18] and Freyd and Kelly [11]
to construct a reflective subcategory [Qop,Set]Γ of [Qop,Set], such that the
modified Yoneda embedding Q −→ [Qop,Set]Γ is coproduct preserving. Our
adjunctions, and the associated Yoneda embeddings, now look like this:

[Bop,Set]
L�Φ∗

�� [Cop,Set] F �G �� [Dop,Set]Γ

B

Y

��

Φ �� C

Y

��

Ψ �� D

YΓ

��

The second pair of adjoint functors F) G is itself generated by the compo-
sition of two adjunctions:

[Cop,Set]
F1 ��

[Dop,Set]
F2 ��

Ψ∗
⊥
� [Dop,Set]Γ

G2

⊥
�

Here D = Q and the pair of functors F2) G2 arises from the reflection
of [Qop,Set]Γ in [Qop,Set]. The structure of the modified Yoneda embed-
ding Q −→ [Qop,Set]Γ depends crucially on general properties of functor
categories [18,11]. Full details are given in [22].
To ensure that the reflection functor remains strongly monoidal, we will

use Day’s reflection theorem [7], which yields necessary conditions for the
reflection to be strong monoidal, by inducing a monoidal structure from
the category [Qop,Set] into its subcategory [Qop,Set]Γ . In particular, this
induces a constraint on the choice of Γ : all the cones considered in Γ must
be preserved by the opposite functor of the tensor functor in D.

4. Notice that the above adjunctions are examples of what in topos theory are
called essential geometric morphisms, in which both functors are left adjoint
to some other two functors: L) Φ∗) Φ∗. Therefore, this shows that the
comonad “!” obtained will preserve finite coproducts.

5. The condition for the comonad “!” to be idempotent turns out to depend on
the fact that the functor Φ is full and faithful; see Section 3.4.

6. In addition to requiring that “!” preserves coproducts, we also need “!”
to preserve the tensor, i.e., to be strongly monoidal, as required in Defini-
tion 3.6. This property is unusual for models of intuitionistic linear logic and

Presheaf Models of Quantum Computation: An Outline 185

restricts the possible choices for the category C. In brief, since the left Kan
extension along Φ is a strong monoidal functor, we find a concrete condition
on the category C that is necessary to ensure that the property holds when
we lift the functor Φ to the category of presheaves; see Section 3.5.

7. Our next task is to translate these categorical properties to the Kleisli cat-
egory. We use the comparison Kleisli functor to pass from the framework
we have already established to the Kleisli monoidal adjoint pair of functors.
Also, at the same time, we shall find it convenient to characterize the functor
H : D → [Cop,Set]T as a strong monoidal functor. The above steps yield
an abstract model of quantum computation, parameterized by B → C → D
and Γ .

8. Finally, in Section 3.9, we will identify specific categories B, C, and D that
yield a concrete model of quantum computation. We let D = Q, the category
of superoperators. We let B be the category of finite sets. Alas, identifying a
suitable candidate for C is difficult. For example, two requirements are that
C must be affine monoidal and must satisfy the condition of equation (1) in
Section 3.5 below. We construct such a C = Q′′ related to the category Q of
superoperators with the help of some universal constructions.

The above base category Q′′ plays a central role in our construction. While the
higher-order structural properties of the quantum lambda calculus hold at the
pure functor category level, the interpretation of concrete quantum operations
takes place mostly at this base level.

Let us now discuss some details of the construction.

3.3 Categorical Models of Linear Logic on Presheaf Categories

The first categorical models of linear logic were given by Seely [27]. The survey
by Melliès is an excellent introduction [23]. Current state-of-the-art definitions
are Bierman’s definition of a linear category [4], simplified yet more by Benton’s
definition of a linear-non-linear category ([2], cf. Remark 3.5 above). Benton
proved the equivalence of these two notions [2,23].

Definition 3.8 (Benton [2]). A linear-non-linear category consists of:

(1) a symmetric monoidal closed category (C,⊗, I,),
(2) a category (B,×, 1) with finite products,

(3) a symmetric monoidal adjunction: (B,×, 1)
(F,m) ��

(C,⊗, I)
(G,n)

⊥
� .

Remark 3.9. We use Kelly’s characterization of monoidal adjunctions to simplify
condition (3) in Definition 3.8 above to:

(3’) an adjunction: (B,×, 1)
F ��

(C,⊗, I),
G

⊥
� and there exist isomorphisms

mA,B : FA⊗ FB → F (A×B) and mI : I → F (1), making (F,mA,B,mI) :
(B,×, 1)→ (C,⊗, I) a strong symmetric monoidal functor.

186 O. Malherbe, P. Scott, and P. Selinger

Details of this characterization can found in [23].

We can characterize Benton’s linear-non-linear models (Definition 3.8) on
presheaf categories using Day’s monoidal structure [6]. This is an application
of monoidal enrichment of the Kan extension, see [10]. We use the following:

Proposition 3.10 (Day-Street[10]). Suppose we have a strong monoidal
functor Φ : (A,⊗, 1)→ (B,⊗, I) between two monoidal categories, i.e., we have
natural isomorphisms Φ(a) ⊗ Φ(b) ∼= Φ(a ⊗ b) and I ∼= Φ(I). Consider the left
Kan extension along Φ in the functor category [Bop,Set], where the copower is
the cartesian product on sets: LanΦ(F) =

∫ a B(−, Φ(a))× F (a). Then LanΦ is
strong monoidal.

Remark 3.11. If A is cartesian then the Day tensor (convolution) [Aop,Set] ×
[Aop,Set]

⊗D−→ [Aop,Set] is a pointwise product of functors. Also if the unit of a
monoidal category C is a terminal object then the unit of ⊗D is also terminal.

3.4 Idempotent Comonad in the Functor Category

A comonad (!, ε, δ) is said to be idempotent if δ : ! ⇒ !! is an isomorphism.

Let (!, ε, δ) be the comonad generated by an adjunction (B,×, 1)
F ��

(C,⊗, I).
G

⊥
�

Then δ = FηG with η : I → GF . Thus if η is an isomorphism then δ is also an
isomorphism. In the context of our model construction, how can we guarantee
that η is an isomorphism? Consider the unit ηB : B ⇒ Φ∗(LanΦ(B)) of the
adjunction generated by the Kan extension:

[Bop,Set]
LanΦ ��

[Cop,Set].
Φ∗
⊥
�

Proposition 3.12 ([5]). If Φ is full and faithful then ηB : B ⇒ Φ∗(LanΦ(B))
is an isomorphism.

3.5 A Strong Comonad

In this section we study conditions that force the idempotent comonad above to
be a strong monoidal functor. This property is part of the model we are building
and is one of the main differences with previous models of intuitionistic linear
logic [23].

To achieve this, consider a fully faithful functor Φ : B −→ C, as in Section 3.2.

Let [Cop,Set] Φ∗
−→ [Bop,Set] be the precomposition functor, i.e., the right adjoint

of the left Kan extension.

Lemma 3.13 ([9]). If there exists a natural isomorphism

C(Φ(b), c)× C(Φ(b), c′) ∼= C(Φ(b), c⊗ c′), (1)

where b ∈ B and c, c′ ∈ C and Φ is a fully faithful functor satisfying Φ(1) = I,
then Φ∗ is a strong monoidal functor.

Presheaf Models of Quantum Computation: An Outline 187

In Section 3.9 we shall build a category satisfying this specific requirement
among others. More precisely, from our viewpoint, this will depend on the con-
struction of a certain category that we will name Q′′, which is a modification of
the category Q of superoperators. Also, we will consider a fully faithful strong
monoidal functor Φ : (FinSet,×, 1)→ (C,⊗C, I) that generates the first adjunc-
tion in Section 3.2, where C = Q′′.

3.6 The Functor H : D → ĈT

Let C and D be categories. Consider an adjoint pair of functors

[Cop,Set]
F ��

[Dop,Set]Γ ,
G

⊥
� as mentioned in Section 3.2, item 3. Let T = G ◦ F

and Ĉ = [Cop,Set]. In this section we consider the construction of a coproduct
preserving and tensor preserving functor H : D → ĈT with properties similar to
the Yoneda embedding, for a general category D.

Let F1) G1 and F2) G2 be two monoidal adjoint pairs with associated
natural transformations (F1,m1), (G1, n1) and (F2,m2), (G2, n2). We shall use
the following notation: F = F2 ◦ F1, G = G1 ◦ G2, and T = G ◦ F . We now
describe a typical situation of this kind generated by a functor Ψ : C → D.

Let us consider F1 = LanΨ and G1 = Ψ∗. With some co-completeness condi-
tion assumed, we can express F1(A) =

∫ cD(−, Ψ(c))⊗A(c) and G1 = Ψ∗.
On the other hand we consider F2 = LanY (YΓ) : [Dop,Set] → [Dop,Set]Γ ,

where YΓ : D → [Dop,Set]Γ is the co-restriction of the Yoneda functor given

by YΓ (d) = D(−, d). Thus we have F2(D) =
∫ d

D(d) ⊗ YΓ (d). Assuming that
[Dop,Set]Γ is co-complete and contains the representable presheaves, then the
right adjoint G2 is isomorphic to the inclusion functor.

Definition of H.

We want to study the following situation:

Ĉ

FT

��

F1 �� D̂
G1

⊥
�
F2 �� D̂Γ
G2

⊥
�

C

Ψ ��

Y

��

ĈT

GT �

��

C

�������������������������������

D

H

���
�
�

YΓ

��

The goal is to determine a full and faithful functor, denotedH in this diagram,
that preserves tensor and coproduct.

188 O. Malherbe, P. Scott, and P. Selinger

First, notice that the perimeter of this diagram commutes on objects:

F1(C(−, c)) =
∫ c′ D(−, Ψ(c′)) ⊗ C(c′, c) = D(−, Ψ(c)) and when we evaluate

again, using F2, we obtain:

F2(D(−, Ψ(c))) =
∫ d′

D(d′, Ψ(c))⊗ YΓ (d
′) = YΓ (Ψ(c)) = D(−, Ψ(c)).

Summing up, we have that F (C(−, c)) = D(−, Ψ(c)) up to isomorphism.
Suppose now that Ψ is essentially onto on objects and we have that:

D(−, d) ∼= D(−, Ψ(c))

for some c ∈ C, i.e., we can make a choice, for every d ∈ |D|, of some c ∈ |C| such
that Ψ(c) ∼= d. Let us call this choice a “choice of preimages”. We can therefore
define a map H : |D| → |ĈT | by H(d) = C(−, c) on objects.

Then we can define a functor H : D → ĈT in the following way: let d
f→ d′

be an arrow in the category D. We apply YΓ obtaining D(−, d) YΓ (f)−→ D(−, d′).
This arrow is equal to D(−, Ψ(c)) YΓ (f)−→ D(−, Ψ(c′)) for some c, c′ ∈ C, and for

the reason stipulated above is equal to F (C(−, c)) YΓ (f)−→ F (C(−, c′)). Now we use
the fact that the comparison functor C : ĈT → D̂Γ , i.e.,

C : ĈT (C(−, c), C(−, c′))→ D̂Γ (F (C(−, c)), F (C(−, c′))),

is full and faithful. Thus there is a unique γ : C(−, c) → C(−, c′) such that
C(γ) = YΓ (f). Then we can define H(f) = γ on morphisms and (as mentioned
above) H(d) = C(−, c) on objects, where c is given by our choice of preimages.

C : ĈT → D̂Γ is a Strong Monoidal Functor

We define C(A)⊗D̂Γ
C(B)

uAB−→ C(A⊗CT B) as F (A)⊗D̂Γ
F (B)

mAB−→ F (A⊗B). It

is easy to check naturality. Also define I
uI=mI−→ C(I) = F (I). Since mAB and mI

are invertible in D̂Γ , we have that uAB and uI are invertible. This implies that
(C,m) is a strong functor. Also, coherence of isomorphisms is easily checked.

H : D → ĈT is a Strong Monoidal Functor

We want to define a natural transformation H(A) ⊗ĈT
H(B)

ψA,B−→ H(A ⊗D B)
that makes H into a strong monoidal functor.

We begin by recalling that (C, u) and (YΓ , y) are strong monoidal, i.e., u and
y are isomorphisms. Since C is fully faithful, this allows us to define ψA,B as the
unique map making the following diagram commute:

YΓ (A)⊗ YΓ (B)
yA,B ��

uHA,HB

�����
���

���
���

��
YΓ (A⊗B) = C ◦H(A⊗B).

C(H(A)⊗H(B))

C(ψA,B)
� �����������������

Presheaf Models of Quantum Computation: An Outline 189

We define ψI similarly. Furthermore, ψ is a natural transformation and satisfies
all the axioms of a monoidal structure. We refer to [22] for the details.

H Preserves Coproducts

Here we focus on the specific problem of the preservation of finite coproducts
by the functor H defined in Section 3.6. First, note that the category [Cop,Set]
has finite coproducts, computed pointwise. Moreover, the Kleisli category ĈT
inherits the coproduct structure from Ĉ since:

Proposition 3.14. If C has finite coproducts, then so does CT .

Therefore, [Cop,Set]T has finite coproducts. Recall that the comparison functor
C : [Cop,Set]T → [Dop,Set]Γ is fully faithful. Also, by a well known property
of representable functors (see [18]), we have that H : D → [Cop,Set]T preserves
coproducts iff [Cop,Set]T (H−, A) : Dop → Set preserves products for every
A ∈ [Cop,Set]T . Using these two facts we prove the following:

Proposition 3.15. If the class Γ contains all the finite product cones, then H
preserves finite coproducts.

We refer to [22] for the details. From this, we impose that Γ contains all the
finite product cones. This is another requirement to obtain a model.

3.7 FT � GT Is a Monoidal Adjunction

We recall how a monoidal adjoint pair (F,m)) (G,n) induces a monoidal struc-
ture for the adjunction FT) GT associated with the Kleisli construction.

Lemma 3.16. Let F) G be a monoidal adjunction, let T = GF , and consider

the Kleisli adjunction C
FT ��CT
GT

⊥
� generated by this adjunction. Then CT is a

monoidal category and FT) GT is a monoidal adjunction.

Proof. Since F) G is a monoidal adjunction, it follows that T = GF is a
monoidal monad. The result then follows by general properties of monoidal mon-
ads and monoidal adjunctions.

3.8 Abstract Model of the Quantum Lambda Calculus

Summing up the parts from previous sections, we have the following theorem.

Theorem 3.17. Given categories B, C and D, and functors B Φ−→ C Ψ−→ D,
satisfying

– B has finite products, C and D are symmetric monoidal,
– B, C, and D have coproducts, which are distributive w.r.t. tensor,
– C is affine,
– Φ and Ψ are strong monoidal,

190 O. Malherbe, P. Scott, and P. Selinger

– Φ and Ψ preserve coproducts,
– Φ is full and faithful,
– Ψ is essentially surjective on objects,
– for every b ∈ B, c, c′ ∈ C we have C(Φ(b), c)× C(Φ(b), c′) ∼= C(Φ(b), c⊗ c′).

Let Γ be any class of cones preserved by the opposite tensor functor, including
all the finite product cones. Let LanΦ, Φ

∗, F and G be defined as in Section 3.2
and subsequent sections. Then

[Bop,Set]
LanΦ ��

[Cop,Set]
F ��

Φ∗
⊥
� [Dop,Set]Γ

G

⊥
�

forms an abstract model of the quantum lambda calculus.

Proof. Relevant propositions from previous sections.

3.9 Towards a Concrete Model: Constructing FinSet
Φ−→ Q′′ Ψ−→ Q

The category Q of superoperators was defined in Section 2. Here, we discuss a

category Q′′ related to Q, together with functors FinSet
Φ−→ Q′′ Ψ−→ Q. The

goal is to choose Q′′ and the functors Φ and Ψ carefully so as to satisfy the
requirements of Theorem 3.17.

Recall the definition of the free affine monoidal category (Fwm(K),⊗, I):
– Objects are finite sequences of objects of K: {Vi}i∈[n] = {V1, . . . , Vn}.
– Maps (ϕ, {fi}i∈[m]) : {Vi}i∈[n] −→ {Wi}i∈[m] are determined by:

(i) an injective function ϕ : [m]→ [n],
(ii) a family of morphisms fi : Vϕ(i) →Wi in the category K.

– Tensor ⊗ is given by concatenation, with unit I given by the empty sequence.

Proposition 3.18. There is a canonical inclusion Inc : K → Fwm(K) sat-
isfying: for any symmetric monoidal category A whose tensor unit is termi-
nal and any functor F : K → A, there is a unique strong monoidal functor
G : Fwm(K)→ A, up to isomorphism, such that G ◦ Inc = F .

We apply this universal construction to the situation where K is a discrete cate-
gory. For later convenience, we let K be the discrete category with finite dimen-
sional Hilbert spaces as objects. Then Fwm(K) has sequences of Hilbert spaces
as objects and dualized, compatible, injective functions as arrows.

Now consider the identity-on-objects inclusion functor F : K → Q′
s, where Q

′
s

is the category of simple trace-preserving superoperators defined in Section 2.
Since Q′

s is affine, by Proposition 3.18 there exists a unique (up to natural
isomorphism) strong monoidal functor F̂ such that:

K

Inc

��

F �� Q′
s

Fwm(K)
F̂

�!

Presheaf Models of Quantum Computation: An Outline 191

Remark 3.19. This reveals the purpose of using equality instead of � in the def-
inition of a trace-preserving superoperator (Definition 2.9). When the codomain
is the unit, there is only one map f(ρ) = tr(ρ), and therefore Q′

s is affine.

Now we remind the reader about the general properties of the free finite coprod-
uct completion C+ of a category C. The category C+ has as its objects finite
families of objects of C, say V = {Va}a∈A, with A a finite set. A morphism from
V = {Va}a∈A to W = {Wb}b∈B consists of the following:

– a function ϕ : A→ B,
– a family f = {fa}a∈A of morphisms of C, where fa : Va → Wϕ(a).

The coproduct in C+ is just concatenation of families of objects of C.
Proposition 3.20. Given any category A with finite coproducts and any functor
F : C → A, there is a unique finite coproduct preserving functor G : C+ → A,
up to natural isomorphism, such that G ◦ Inc = F .

C

Inc
��

F �� A

C+
G

 "��������

If C is a symmetric monoidal category then C+ is also symmetric monoidal. In
addition, if we assume that the categories C and A are symmetric monoidal, then
Inc is a symmetric monoidal functor. If F is a symmetric monoidal functor and
tensor distributes over coproducts in A, then G is a symmetric monoidal functor.
Moreover, if F is strong monoidal then so is G.

In the sequel we want to apply Proposition 3.20 to a concrete category, but first:

Remark 3.21. By definition, Qs is a full subcategory of Q, and the inclusion
functor In : Qs → Q is strong monoidal. Also, since every trace preserving su-
peroperator is trace non-increasing, Q′

s is a subcategory of Qs, and the inclusion
functor E : Q′

s → Qs is strong monoidal as well.

We apply the machinery of Proposition 3.20 to the composite functor

Fwm(K) F̂→ Q′
s

E→ Qs
In→ Q,

where In and E are as defined in Remark 3.21.

Definition 3.22. Let Q′′ = (Fwm(K))+ and let Ψ be the unique finite coprod-
uct preserving functor making the following diagram commute:

Fwm(K)

Inc

��

F̂ �� Q′
s

E �� Qs
In �� Q.

(Fwm(K))+
Ψ

!�!!!!!!!!!!!!!!!!!!!!!!!!

(2)

Note that such a functor exists by Proposition 3.20, and it is strong monoidal.

192 O. Malherbe, P. Scott, and P. Selinger

Remark 3.23. Since Ψ{{V a
i }i∈[na]}a∈A =

∐
a∈A{(V a

1 ⊗ . . .⊗V a
na
)∗}∗∈1, the func-

tor Ψ is essentially onto objects. Specifically, given any object {Va}a∈A ∈ |Q|,
we can choose a preimage (up to isomorphism) as follows:

Ψ{{V a
i }i∈[1]}a∈A =

∐
a∈A

{(V a
1)∗}∗∈1

∼= {Va}a∈A. (3)

Lemma 3.24. Let C be an affine category. Then there is a fully faithful strong
monoidal functor Φ : (FinSet,×, 1)→ (C+,⊗C+ , I) that preserves coproducts.

Definition 3.25. Recall that Fwm(K) is an affine category and Q′′ =
Fwm(K)+. Let Φ : FinSet→ Q′′ be the functor defined by Lemma 3.24.

Remark 3.26. With the above choice of Φ : FinSet → Q′′, equation (1) in
Lemma 3.13 is just the characterization of cartesian products in FinSet using
representable functors.

Theorem 3.27. The choice B = FinSet, C = Q′′, D = Q, with the functors
Φ as in Definition 3.25 and Ψ as in Definition 3.22, and with Γ the class of all
finite product cones in Dop, satisfies all the properties required by Theorem 3.17.

3.10 A Concrete Model

Theorem 3.28. Let Q, Q′′, Φ, Ψ , and Γ be defined as in Sections 2 and 3.9.
Then

[FinSetop,Set]
LanΦ ��

[(Q′′)op,Set]
F ��

Φ∗
⊥
� [Qop,Set]Γ

G

⊥
�

forms a concrete model of the quantum lambda calculus.

Proof. This follows from Theorems 3.17 and 3.27.

4 Conclusions and Future Work

We have constructed mathematical (semantic) models of higher-order quantum
computation, specifically for the quantum lambda calculus of Selinger and Val-
iron. The central idea of our model construction was to apply the presheaf con-
struction to a sequence of three categories and two functors, and to find a set
of sufficient conditions for the resulting structure to be a valid model. The con-
struction depends crucially on properties of presheaf categories, using Day’s
convolution theory and the Kelly-Freyd notion of continuity of functors.

We then identified specific base categories and functors that satisfy these
abstract conditions, based on the category of superoperators. Thus, our choice
of base categories ensures that the resulting model has the “correct” morphisms
at base types, whereas the presheaf construction ensures that it has the “correct”
structure at higher-order types.

Presheaf Models of Quantum Computation: An Outline 193

Our work has concentrated solely on the existence of such a model. One ques-
tion that we have not yet addressed is specific properties of the interpretation of
quantum lambda calculus in this model. It would be interesting, in future work,
to analyze whether this particular interpretation yields new insights into the
nature of higher-order quantum computation, or to use this model to compute
properties of programs.

Acknowledgements. This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and by the Program for the
Development of Basic Sciences, Uruguay (PEDECIBA).

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proc.
19th Annual IEEE Symp. on Logic in Computer Science (LICS 2004), pp. 415–425.
IEEE Computer Soc. Press (2004)

2. Benton, N.: A mixed linear and non-linear logic: proofs, terms and models (ex-
tended abstract). In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933,
pp. 121–135. Springer, Heidelberg (1995)

3. Bierman, G.: On intuitionistic linear logic. Ph.D. thesis, Computer Science depart-
ment, Cambridge University (1993)

4. Bierman, G.: What is a categorical model of intuitionistic linear logic? In: Dezani-
Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 78–93.
Springer, Heidelberg (1995)

5. Borceux, F.: Handbook of Categorical Algebra 1. Cambridge University Press
(1994)

6. Day, B.: On closed categories of functors. Lecture Notes in Math., vol. 137, pp.
1–38. Springer (1970)

7. Day, B.: A reflection theorem for closed categories. J. Pure Appl. Algebra 2, 1–11
(1972)

8. Day, B.: Note on monoidal localisation. Bull. Austral. Math. Soc. 8, 1–16 (1973)
9. Day, B.: Monoidal functor categories and graphic Fourier transforms,

ArXiv:math/0612496 (2006)
10. Day, B., Street, R.: Kan extensions along promonoidal functors. Theory and Ap-

plications of Categories 1(4), 72–78 (1995)
11. Freyd, P., Kelly, G.M.: Categories of continuous functors I. J. Pure and Appl.

Algebra 2, 169–191 (1972)
12. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50(1), 1–101 (1987)
13. Im, G.B., Kelly, G.M.: A universal property of the convolution monoidal structure.

J. Pure and Appl. Algebra 43, 75–88 (1986)
14. Kelly, G.M.: Doctrinal adjunction. Lecture Notes in Math., vol. 420, pp. 257–280.

Springer (1974)
15. Kelly, G.M.: Basic Concepts of Enriched Category Theory. LMS Lecture Notes,

vol. 64. Cambridge University Press (1982)
16. Kock, A.: Monads on symmetric monoidal closed categories. Arch. Math. 21, 1–10

(1970)
17. Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik 23 (1972)
18. Lambek, J.: Completions of Categories. Lecture Notes in Math., vol. 24. Springer

(1966)

194 O. Malherbe, P. Scott, and P. Selinger

19. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cambridge
University Press (1986)

20. Laplaza, M.L.: Coherence for distributivity. Lecture Notes in Math., vol. 281,
pp. 29–65. Springer (1972)

21. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer (1998)
22. Malherbe, O.: Categorical models of computation: partially traced categories and

presheaf models of quantum computation. Ph.D. thesis, University of Ottawa
(2010), Available from arXiv:1301.5087

23. Melliès, P.-A.: Categorical models of linear logic revisited (2002) (Preprint), Ap-
peared as: Categorical semantics of linear logic. In: Curien, P.-L., Herbelin, H.,
Krivine, J.-L., Melliès, P.-A. (eds.) Interactive Models of Computation and Pro-
gram Behaviour. Panoramas et Synthèses, vol. 27. Société Mathématique de France
(2009)

24. Moggi, E.: Computational lambda-calculus and monads. Technical Report ECS-
LFCS-88-66, Lab. for Foundations of Computer Science, U. Edinburgh (1988)

25. Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1), 55–92 (1991)

26. Nielsen, A., Chuang, I.L.: QuantumComputation and Quantum Information. Cam-
bridge University Press (2000)

27. Seely, R.: Linear logic, *-autonomous categories and cofree coalgebras. In: Gray,
J.W., Scedrov, A. (eds.) Categories in Computer Science and Logic. Contemporary
Mathematics, vol. 92, pp. 371–382. Amer. Math. Soc. (1989)

28. Selinger, P.: Towards a quantum programming language. Math. Structures in
Comp. Sci. 14(4), 527–586 (2004)

29. Selinger, P.: Dagger compact closed categories and completely positive maps. In:
Selinger, P. (ed.) Proceedings of the Third International Workshop on Quantum
Programming Languages (QPL 2005), Chicago. ENTCS, vol. 170, pp. 139–163
(2007)

30. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical
control. Mathematical Structures in Computer Science 16, 527–552 (2006)

31. Selinger, P., Valiron, B.: On a fully abstract model for a quantum functional lan-
guage. In: Proceedings of the Fourth International Workshop on Quantum Pro-
gramming Languages. ENTCS, vol. 210, pp. 123–137. Springer (2008)

32. Selinger, P., Valiron, B.: A linear-non-linear model for a computational call-by-
value lambda calculus (Extended abstract). In: Amadio, R. (ed.) FOSSACS 2008.
LNCS, vol. 4962, pp. 81–96. Springer, Heidelberg (2008)

33. Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.)
Semantic Techniques in Quantum Computation, pp. 135–172. Cambridge Univer-
sity Press (2009)

34. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: Goldwasser, S. (ed.) Proc. 35th Annual Symposium on Foundations of
Computer Science, pp. 124–134. IEEE Computer Society Press (1994)

35. Valiron, B.: Semantics for a higher order functional programming language for
quantum computation. Ph.D. thesis, University of Ottawa (2008)

Nothing Can Be Fixed

Keye Martin

Naval Research Laboratory
Washington, DC 20375

keye.martin@nrl.navy.mil

Abstract. We establish the existence of zero elements in certain par-
tially ordered monoids and use them to prove the existence of least fixed
points in domain theory. This algebraic stance is the magic underlying
Pataraia’s constructive proof of the fixed point theorem.

To Samson, on the 30th Anniversary of His 30th Birthday

In the Michaelmas Term of 2000, Samson gave a seminar on Pataraia’s construc-
tive proof of the fixed point theorem. Because of his remarkable lucidity that
day, every detail of the presentation has stayed with me for over twelve years,
and as a result, I now have something new to report: there are times when al-
gebraic zeroes can yield fixed points, hence our title. Alternate interpretations,
such as “nothing can stay the same” (like one’s age) or “things are broken and
cannot be repaired,” are probably coincidental.

Definition 1. A partially ordered monoid is a monoid (M, ·, 1) with a partial
order ≤ such that

a ≤ b & x ≤ y =⇒ ax ≤ by

for all a, b, x, y ∈ M . It is directed complete when all of its directed sets have
suprema and is said to have a zero when there is an element e with e = ex = xe
for all x. Zero elements are unique when they exist.

Theorem 1. If M is a directed complete monoid with 1 ≤ x for all x ∈ M ,
then M has a zero.

Proof. Let x, y ∈ M . Using 1 ≤ x and 1 ≤ y, multiply the first on the right by
y and the second on the left by x to get x, y ≤ xy. Then M is a directed set.
Let e =

⊔
M . We then have e ≤ ex, xe but also ex, xe ≤ e since e is above every

element of M . Then e = ex = xe is the zero element of M . �

The last result enables an algebraic proof of the fixed point theorem in domain
theory:

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 195–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

196 K. Martin

Theorem 2. A monotone map f : D → D on a dcpo D with least element ⊥
has a least fixed point.

Proof. Let S = {x ∈ D : x � f(x)}. Notice that S �= ∅ since ⊥ ∈ S and is a dcpo
by the monotonicity of f . Let P (S) denote the set of monotone maps above the
identity which take S into S. Then P (S) is a directed complete monoid under
composition with least element 1. By Theorem 1, it has a zero e. Since f ∈ P (S),
we then have f ◦ e = e, which implies that f(e(x)) = e(x) for all x ∈ S and thus
that f has a fixed point.

To prove f has a least fixed point, let M denote the set of A ⊆ D closed
under directed suprema in D with ⊥ ∈ A and f(A) ⊆ A. Under the operation
of intersection and order of reverse inclusion, M is a directed complete monoid
with identity D. By Theorem 1, it has a zero e, and as seen above, f has a fixed
point fix(f) ∈ e. Given any x = f(x) ∈ D, the set {a : a � x} ∈ M and thus
contains e. Then fix(f) � x. �

We applied Theorem 1 twice in the proof of Theorem 2 only to make the point
that both the existence of the fixed point as well as its leastness can be handled
with Theorem 1. Alternatively, the same effect can be achieved by taking S in
the first part of Theorem 2 to be e ∈M .

References

1. Escardo, M.H.: Joins in the frame of nuclei. Applied Categorical Structures 11,
117–124 (2003)

2. Pataraia, D.: A constructive proof of Tarski’s fixed-point theorem for dcpo’s. Pre-
sented in the 65th Peripatetic Seminar on Sheaves and Logic, Aarhus, Denmark
(November 1997)

Dialogue Categories and Frobenius Monoids

Paul-André Melliès

Abstract. About ten years ago, Brian Day and Ross Street discovered a beautiful
and unexpected connection between the notion of ∗-autonomous category in proof
theory and the notion of Frobenius algebra in mathematical physics. The purpose
of the present paper is to clarify the logical content of this connection by formulat-
ing a two-sided presentation of Frobenius algebras. The presentation is inspired
by the idea that every logical dispute has two sides consisting of a Prover and
of a Denier. This dialogical point of view leads us to a correspondence between
dialogue categories and Frobenius pseudomonoids. The correspondence with di-
alogue categories refines Day and Street’s correspondence with ∗-autonomous
categories in the same way as tensorial logic refines linear logic.

Forewords

A few weeks before writing this paper, I learned that my dear friend Kohei Honda
passed away in London. This sudden accident was a tremendous shock, and his dis-
parition haunts me. Vivid memories come back of the wonderful three years we spent
together in Edinburgh. Kohei and I met for the first time in early 1996. Samson Abram-
sky had just moved from Imperial College to the Laboratory for the Foundations of
Computer Science — taking there the position of Robin Milner who had just left Ed-
inburgh to join the University of Cambridge. Samson wanted to create a new group
there and he was looking for two Research Assistants. He decided to hire Kohei and
me. This was really a bold choice Samson made on that occasion because Kohei and I
were coming from territories quite alien to semantics. Kohei was already recognized for
his discovery of the asynchronous π-calculus with Mario Tokoro, independently and at
about the same time as Gérard Boudol, see [9] for details. Kohei was absolutely fanatic
about the π-calculus and he would openly declare that game semantics was only a small
fragment of π — I like to think that the future will tell him right in some interesting and
unexpected way. I should say that I was just as stubborn myself about rewriting theory.
Back in France, Pierre-Louis Curien had advised me to join Samson’s group if I wanted
to learn semantics — but I was so much hooked on rewriting theory when I arrived at
the LFCS that it took me two long years before really working on linear logic and game
semantics.

During the three years we spent together in Edinburgh, Kohei and I very soon became
this slightly eccentric pair of French and Japanese researchers sharing an office on the
ground floor of the JCMB building. The office was dark and cold, with two narrow
window panes facing a few bushes and an anonymous alley... but I spent there among

 CNRS, Laboratoire PPS, UMR 7126, Université Paris Diderot, Sorbonne Paris Cité, F-75205
Paris, France.

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 197–224, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

198 P.-A. Melliès

the most luminous hours of my life, and I am sure that Kohei was just as enthusiastic
developing his own stream of ideas.

Samson was an exquisite leader and nothing of the effervescence of the interaction
group — this is the way we decided to call ourselves — would have been possible
without his sharp understanding of logic and of semantics combined with a frenetic
curiosity for the surrounding fields. Any topic could be freely discussed in the group
and there was absolutely no feeling of intellectual property among us. As a matter
of fact, many ideas which I have worked out in Paris in the past fifteen years were
already germinating at the time. I distinctively remember Kohei and Nobuko Yoshida
explaining how call-by-value programs should be interpreted by letting Player start the
game rather than Opponent1. I also remember Samson explaining how higher-order
states could be interpreted by relaxing the visibility condition on strategies2. And I
remember Martin Wehr developping a narcotic interest in n-dimensional categories and
trying to convince all of us that n-dimensional syntax would become the foundation
of logic and of programming languages3. These are only a few illustrations coming to
my mind so numerous were the ideas floating around in this small group of dedicated
people.

This short period of my life in Edinburgh defines a lot about who I am today, and
I am happy to dedicate the present work to Samson as a testimony of friendship and
gratitude. My primary purpose here is to entertain him with a connection between two
of his favorite topics of interest: game semantics and logic on the one hand, Frobenius
algebras and the categorical approach to physics on the other hand.

1 Frobenius Algebras and 2-Dimensional Cobordism

Let n > 0 be a positive integer. The basic idea of topological field theory is to construct
a symmetric monoidal functor

Cob(n) −→ Vect

from the category of n-dimensional cobordism to the category Vect of vector spaces on
a given field k. The category Cob(n) is defined as follows:

– its objects are the closed oriented (n− 1)-dimensional manifolds,
– its morphisms M → N are the bordisms from M to N, that is, the oriented n-

dimensional manifold B equipped with an orientation-preserving diffeomorphism
∂B � (−M)∪N. Here −M denotes the manifold M equipped with the opposite
orientation. Two bordisms B,B′ : M → N are considered equal in Cob(n) if there
is an orientation-preserving diffeomorphism which extends the diffeomorphism
∂B � (−M)∪N � ∂B′.

1 A paper developing this idea was presented by Kohei and Nobuko at the ICALP 1997 confer-
ence, see [10] for details.

2 A paper developing this idea was presented by Samson, Kohei and Guy McCusker at the
LICS 1998 conference, see [1] for details.

3 Martin presented some of his ideas on higher dimensional syntax in the CTCS 1999 confer-
ence, see [21] for details.

Dialogue Categories and Frobenius Monoids 199

– For any object M in Cob(n), the identity map idM is represented by the product
bordism B = M× [0,1],

– Composition of morphisms in Cob(n) is defined by gluing bordisms together. The
operation of gluing is not canonical but the point is that it defines a unique class of
manifolds modulo diffeomorphism.

The category Cob(n) can be endowed with the structure of a symmetric monoidal
category, whose tensor product ⊗ is given by taking the disjoint sum of two (n− 1)-
dimensional manifolds, and whose unit I is given by the empty manifold. A natural
question is to understand what information is contained in a topological field theory of
a given dimension n. The answer is very well known in the case of dimension n = 2. In
that case, a topological field theory is the same thing as a commutative and cocommu-
tative Frobenius algebra in the category Vect. This observation justifies the notion of
Frobenius monoid in any monoidal category V . A Frobenius algebra is then the same
thing as a Frobenius monoid in the category Vect.

Definition 1 (Frobenius Monoid). A bimonoid A in a monoidal category V is an ob-
ject equipped a monoid structure (A,m,e) and a comonoid structure (A,d,u). In other
words, it is an object A equipped with a binary operation m and a binary co-operation d

A

d

AAA

m

AA

both of them associative, and equipped with a unit e and a co-unit u

A

u

A

e

I

I

A Frobenius monoid is defined as a bimonoid A satisfying the two equalities below:

=

d

m d

m

d

m

= (1)

A Frobenius monoid in a symmetric monoidal category V is called commutative (resp.
cocommutative) when its underlying monoid (resp. comonoid) is commutative (resp.
cocommutative).

200 P.-A. Melliès

Note that the characterization of topological field theories of dimension 2 extends to
every symmetric monoidal category V .

Proposition 1. A symmetric monoidal functor Cob(2)→ V into a symmetric monoidal
category V is the same thing as a commutative and cocommutative Frobenius monoid
in V .

2 Frobenius Pairs

Once the notion of Frobenius algebra has been extracted from the definition of topo-
logical field theory, it makes sense to study it independently of its topological origins.
In this paper, we will do something quite counterintuitive from the topological point
of view, but which makes a lot of sense from the logical point of view. In the same
way as a logical dispute involves a Prover and a Denier, we will decouple the monoid
side (A,m,e) from the comonoid side (B,d,u) in the definition of a Frobenius monoid.
Each side A and B is meant to describe an aspect of the « split personnality » of the
Frobenius monoid. The operations of the monoid (A,m,e) are depicted in light blue
whereas the co-operations of the comonoid (B,d,u) are depicted in dark red:

A

e

I

A

m

AA B

d

BB

u

I

B

Once the notion of Frobenius monoid in a monoidal category V has been split in two,
an interesting question is to understand how its two sides A and B are coupled inside a
Frobenius monoid. The first thing to ask is that the two objects A and B are involved in
an exact pairing A � B defined as a pair of morphisms

η : I −→ B⊗A ε : A⊗B −→ I

satisfying the zig-zag equalities below:

= =

ε

η

ε

η

Note that whenV is the category of k-vector spaces, one may alternatively equip the two
spaces A and B with a non-degenerate binary form ε : A⊗B→ k. This exact pairing A �B

Dialogue Categories and Frobenius Monoids 201

should be moreover compatible with the monoid and comonoid structures of A and B in
the following sense. We define a monoid-comonoid pairing

(A,m,e) � (B,d,u) (2)

between a monoid and a comonoid as an exact pairing A � B between the underlying
objects satisfying the two equalities:

=

ε

η

η

m

d

ε

e
=

u

These equations mean that the comonoid structure (B,d,u) on the object B may be
recovered from the monoid structure (A,m,e) on the object A, and conversely, that
the monoid structure (A,m,e) on the object A may be recovered from the comonoid
structure (B,d,u) on the object B. In a symmetric way, one requires the existence of a
comonoid-monoid pairing

(B,d,u) � (A,m,e) (3)

defined as an exact pairing B � A between the underlying objects:

η ′ : I −→ B⊗A ε′ : A⊗B −→ I

which moreover satisfies the two equations below:

= m

d

η

η

ε'

'

'

e
=

u

ε'

In the same way as before, the two equalities say that that the comonoid structure (B,d,u)
on the object B may be recovered from the monoid structure (A,m,e) on the object A,
and conversely. This leads to our definition of Frobenius pair.

Definition 2 (Frobenius Pairs). A Frobenius pair in a monoidal category V con-
sists of a monoid-comonoid pairing (2) and a comonoid-monoid pairing (3) between
a monoid (A,m,e) and a comonoid (B,d,u) together with an isomorphim L : A→ B

202 P.-A. Melliès

between the underlying objects A and B. One also requires that the equalities below are
satisfied:

L

L

m

= =

L

d d

ε ε'

(4)

Note that the two equations (4) are equivalent to the equations below:

d

L

L

m = =

L

m

η'η

These equalities may be understood in the following way. The monoid-comonoid pair-
ing (A,m,e) � (B,d,u) induces a left action of the monoid (A,m,e) on the object B,
defined as

d

εB

BA

BA B

d

ε

(5)

There is also a left action of the monoid A on itself, defined using the monoid structure:

A

m

AA

m

Equation (4) means that the morphism L transports the left action of the monoid A on
itself into the action (5) on the object B. In a symmetric way, the exact pairing B � A
induces a right action of the monoid A on B, and the second equation (4) amounts to
ask that the morphism L transports the canonical right action of the monoid A on itself
in the right action of the monoid A on the object B. The ultimate justification for the
notion of Frobenius pair is the following correspondence with Frobenius monoids:

Proposition 2. A Frobenius pair (A,B) in a monoidal category V is the same thing as
a Frobenius monoid A equipped with an exact pairing A � B.

Dialogue Categories and Frobenius Monoids 203

Proof. Given a Frobenius monoid A together with an exact pairing A � B with unit η
and counit ε , one defines the unit η ′ and counit ε′ of the exact pairing B � A and the
isomorphism L as follows:

ε

m

u

ε'

=

AB

A

B

d

e

=

η'

A B

η

m

u

A

B

d

e

=

A

B B

L

η A

m

u

The object B inherits its comonoid structure (B,d,u) from the monoid structure (A,m,e)
of the object A and the exact pairing A � B. One checks that the resulting structure co-
incides with the comonoid structure on B induced from the exact pairing B � A. This
already ensures that the pair (A,m,e) and (B,d,u) satisfy the equalities (2) and (3). Fi-
nally, one easily checks that the two equalities (4) are satisfied, and that the pair (A,B)
thus defines a Frobenius pair. Conversely, every Frobenius pair (A,B) defines a Frobe-
nius monoid with monoid structure (A,m,e) and comonoid structure (A,d′,u′) induced
from the isomorphism L with (B,d,u). A careful inspection shows that the relationship
between Frobenius pairs (A,B) and Frobenius monoid A equipped with a duality A � B
is one-to-one.

Remark. The idea of presenting Frobenius algebras as a pair consisting of a monoid A
and of its canonical right dual B = A∗ is essentially folklore, and appears already in [5].
So, the only novelty here is that we do not ask that the object B coincides with the
canonical right dual A∗. More on that specific point will be said when we move to
ribbon categories in §5.

3 The Frobenius Bracket

Given a Frobenius pair in a monoidal category, the following morphism

L

m

uu

I

B

L

A

m

AA

defines a bilinear form
{|−,−|} : A⊗A −→ I

204 P.-A. Melliès

called the Frobenius bracket. The definition of Frobenius bracket together with the asso-
ciativity af the product a1•a2 = m(a1,a2) ensures that the following equality is satisfied:

{|a1 •a2,a3 |} = {|a1,a2 •a3 |} (6)

This equality is generally called the associativity property of the Frobenius bracket,
see [19] for a discussion. In addition, the defining property (4) of Frobenius pair implies
that the Frobenius bracket may be alternatively formulated as:

L

m

u

ε'

L

ε

L

= =

4 Helical Frobenius Pairs

We suppose from now on that we work in a balanced monoidal category in the sense
of [11,12,13] typically given by the category V = Mod(H) of representations of a quan-
tum group H. The braiding γ and the twist θ of the category V are represented as
follows:

γ θXX,Y

X Y

XY

X

X

Note that the twist θX should be understood as the operation of applying a rotation
of angle 2π on the border X of the 2-dimensional manifold. This extra structure on
the category V enables us to formulate the following definition of helical Frobenius
monoid.

Definition 3 (Helical Frobenius Monoids). A Frobenius monoid A in a balanced mo-
noidal category is called helical when the two equalities below are satified:

=
m

u m

u

θ
A

m

u

θ
A

=

We proceed as in §2 and immediately introduce the corresponding two-sided notion of
helical Frobenius pair:

Dialogue Categories and Frobenius Monoids 205

Definition 4 (Helical Frobenius Pairs). A Frobenius pair in a balanced monoidal cat-
egory is called helical when the two equalities below are satisfied:

ε'

=
θ

ε

γ

θ
A

γ

ε

= B

Since the morphism L is reversible in the definition of a Frobenius pair, one may replace
this helicality condition by the equivalent one:

ε'

=

L

ε

L

θ
A

γ

ε

=

L

γ

θ
B (7)

We will see that this formulation of helicality is more natural than the original one when
we move one dimension up to the 2-categorical notion of Frobenius amphimonoid. It
should be noted that this latter condition (7) is equivalent to asking that the Frobenius
bracket is commutative in the sense that the two equalities below are satisfied:

=L

m

u L
m

u

θ
A

L
m

u

θ
A

=

The equivalence follows from the fact that the twist is a natural isomorphism from the
identity functor into itself, and thus satisfies the equality:

L
θL

θ

=

The equation (7) should be understood as a commutativity property of the Frobenius
bracket:

{|a1,a2 |} = {|a2,a1 |}. (8)

206 P.-A. Melliès

Together with the associativity (6) the commutativity of the Frobenius bracket implies
the following cyclicity property:

{|a1 •a2,a3 |} = {|a3 •a1,a2 |} = {|a2 •a3,a1 |} (9)

where a1 •a2 is a notation for the product m(a1,a2) of the two elements a1 and a2. It is
worth recalling here that a symmetric monoidal category is the same thing as a balanced
monoidal category whose twist θX is equal to the identity idX for every object X . A he-
lical Frobenius algebra in a symmetric monoidal category is called symmetric. A typical
illustration is provided by matrix algebras A⊗A∗ where the cyclicity equations (8–9)
reflect the cyclicity of the trace functional. As expected, one needs to modulate the two
equations (8–9) by a twist θ when one works in a general balanced monoidal category.

At this stage, Proposition 2 may be refined into the following correspondence be-
tween helical Frobenius monoids and helical Frobenius pairs:

Proposition 3. A helical Frobenius pair (A,B) in a balanced monoidal category V is
the same thing as a helical Frobenius monoid A equipped with an exact pairing A � B.

5 Frobenius Pairs in Ribbon Categories

The two-sided formulation of a Frobenius monoid as a pair (A,B) relies on the existence
of an exact pairing A � B between the two sides A and B of the Frobenius pair. It is
thus interesting to see what happens when one embeds the notion of Frobenius pair
in a monoidal category V which is already equipped with an exact pairing A � A† for
every object A. This is precisely what happens in the case of a ribbon category like the
category V = Mod f (H) of finite dimensional representations of a quantum group H.
Recall that a ribbon category4 is defined as a balanced monoidal category V where
every object A comes equipped with an exact pairing A � A† whose counit εA : A⊗A† →
I satisfies the equality below:

=

ε

A
θ

ε

θ
A†

A A† A A†

A A

(10)

A nice consequence of the definition of ribbon category is that the right dual A† is also
a left dual of the object A, with counit ε′A of the exact pairing A† � A defined as:

4 The notion of ribbon category is also called tortile category in [11,18].

Dialogue Categories and Frobenius Monoids 207

ε'

=

ε

γ

θ
A†

AA† AA†

A A

(11)

Another nice property is that every Frobenius pair (A,B) in a ribbon categoryV satisfies
the equality 5 below:

=

ε

A
θ

ε

θ

A AB B

B

(12)

It is worth observing that the opposite category V op(0,1) of a balanced monoidal cate-
gory V is also balanced, with the same braiding and twist combinators as the original
category. By V op(0,1), we mean the monoidal category V where the orientation of the
tensor product (of dimension 0) and of the morphisms (of dimension 1) has been re-
versed. The transformation V �→ V op(0,1) thus consists in applying a central symmetry
on the string diagrams. The family of exact pairings A � A† induces a monoidal functor

† : V −→ V op(0,1)

which transports the ribbon structure of V to the ribbon structure of V op(0,1) in the
obvious sense. Note that one would obtain the very same functor † by starting from the
family of exact pairings A† � A defined in (11). Now, every exact pairing A � A† in V
induces an exact pairing A �A† in the opposite categoryV op(0,1) with unit defined as the
image ε †A : I→A†⊗op A of the counit εA : A⊗A† → I of the original exact pairing. From
this follows that every ribbon structure on V induces a ribbon structure on V op(0,1).

Now, suppose given a Frobenius pair (A,B) in such a ribbon category V . The mo-
noidal structure of the functor † ensures that the comonoid structure of the object B
is transported to a monoid structure on the object B†. The resulting monoid struc-
ture (B†,d †,u†) may be constructed either from the exact pairing B† � B or from the
exact pairing (B†,d †,u†). From this follows that the monoid (B†,d †,u†) is involved in
two exact pairings with the comonoid (B,d,u), either as a left dual or as a right dual:

(B†,d †,u†) � (B,d,u) (B,d,u) � (B†,d †,u†)

5 The equality is in fact satisfied by any bilinear form A⊗B→ I in a ribbon category.

208 P.-A. Melliès

with unit η ′B and counit ε′B in the first case, and with unit ηB and counit εB in the second
case. These exact pairings should be compared with the exact pairings between (A,m,e)
and (B,d,u) involved in the definition of the Frobenius pair:

(A,m,e) � (B,d,u) (B,d,u) � (A,m,e)

with unit η and counit ε in the first case and with unit η ′ and counit ε′ in the second
case. Each comparison induces a monoid isomorphism between the monoid (A,m,e)
and the monoid (B†,d †,u†). The two isomorphisms are respectively defined as:

A

ε

B†

η'
B

ε'

A

B†

η
B

(13)

The notion of helical Frobenius pair plays an important role at this stage, and this is
precisely the reason why we introduced it in §4. The point is that the two isomor-
phisms A→ B† coincide precisely when the Frobenius pair is helical. We leave the
reader check this statement starting from the observation that the equality (10) holds in
any ribbon category. So, in the case of a helical Frobenius pair, one obtains an isomor-
phism of monoids

(A,m,e)

(−)∗

"#isomorphism
o f monoid

∗(−)

#$ (B†,d †,u†)

where the isomorphisms (−)∗ : A→ B† and ∗(−) : B→ A† are defined as:

A

ε

B†

η'
B

ε'

A

B†

η
B

=* =

A

B†
ε

η
A

=* =

A

B

†

B

A†

ε'

η'
A

A†

B

From these definitions, one deduces the following equations:

ε'

=

AB AB

ε'A

*

A
†

*

B
†

AB

εB

==

ε

*

A
†

A BA B

εA

A B

ε'B

*

B
†

=

Dialogue Categories and Frobenius Monoids 209

These equations lead to an alternative but equivalent formulation of helical Frobenius
pairs (A,B) living in a ribbon category:

Proposition 4. A helical Frobenius pair (A,B) in a ribbon category is the same thing
as a monoid (A,m,e) and a comonoid (B,d,u) equipped with a monoid isomorphism

(−)∗ : (A,m,e) −→ (B†,d †,u†)

and an isomorphism L : A→ B between the underlying objects satisfying the equalities:

L

L

m

= =

L

d d

* *

Here, we use the ∗ notation for the two evaluation brackets between A and B defined as
follows:

*

B
†

AB

εB

==

A B

ε'B

*

B
†

A B

* *

AB

(14)

We let the reader check the statement. Starting from the alternative formulation of
Proposition 4, the two evaluation brackets ε : A⊗ B → I and ε′ : B⊗ A → I of the
Frobenius pair (A,B) are recovered as the two operations ∗ depicted in (14).

6 Dialogue Categories and Chiralities

At this point, it is time to introduce the notion of dialogue category, which underlies
tensorial logic in the same way as the notion of ∗-autonomous category underlies linear
logic, see [4,8] for details. Tensorial logic is a primitive logic of tensor and negation
whose purpose is to circumscribe the primary ingredients of logic. Our main ambition
here is to extend to dialogue categories the correspondence between ∗-autonomous cate-
gories and Frobenius algebras originally discovered by Day and Street [6][19] and then
independently rediscovered a few years later by Egger [7].

Definition 5 (Dialogue Categories). A dialogue category is a monoidal category
(C ,⊗,e) equipped with an object ⊥ together with a family of bijections

ϕx,y : C (x⊗ y,⊥) � C (y,x�⊥)

natural in y for all objects x of the category C , and a family of bijections

ψx,y : C (x⊗ y,⊥) � C (x,y�⊥)

natural in x for all objects y of the category C .

210 P.-A. Melliès

We will be more specifically interested in the notion of helical dialogue category intro-
duced in [16,17].

Definition 6 (Helical Dialogue Category). A helical dialogue category is a dialogue
category C equipped with a family of bijections

wheelx,y : C (x⊗ y,⊥) −→ C (y⊗ x,⊥)

natural in x and y and required to make the diagram

C ((y⊗ z)⊗ x,⊥)
associativity �� C (y⊗ (z⊗ x),⊥)

wheely,z⊗x

��
C (x⊗ (y⊗ z),⊥)

wheelx,y⊗z

��

associativity

��

C ((z⊗ x)⊗ y,⊥)

C ((x⊗ y)⊗ z,⊥)
wheelx⊗y,z �� C (z⊗ (x⊗ y),⊥)

associativity

��
(15)

commute for all objects x,y,z of the category C .

A useful graphical mnemonics for the wheel combinator is to draw it in the following
way:

wheelx,y :

x y

f �→

xy

f
(16)

In that graphical formulation, the coherence diagram expresses that the diagram below
commutes:

xz

f

y

xz

f

yx z

f

y

wheel x y

wheel x wheel, y z y , z x

, z

Dialogue Categories and Frobenius Monoids 211

The bare notion of dialogue category is fundamental but one may argue that it does
not properly reflect the symmetries of logic, and more specifically the two-sided nature
of logical disputes. The equivalent notion of dialogue chirality was introduced for that
reason, see [15] for details. We recall below the two-sided notion of helical dialogue
chirality corresponding to the one-sided notion of helical dialogue category. The formal
correspondence between them6 is established in [16].

Definition 7 (Helical Chirality). A helical chirality is a pair of monoidal categories

(A ,�, true) (B,�, false)

equipped with a monoidal equivalence and an adjunction

A

(−)∗

��monoidal
equivalence

∗(−)

$% B op(0,1) A

L

"#⊥
R

#$ B

and with two families of bijections

χL
m,a,b : 〈m� a |b〉 −→ 〈a |m∗� b〉

χR
m,a,b : 〈a � m |b〉 −→ 〈a |b � m∗ 〉

natural in a, b and m, where the evaluation bracket is defined as

〈− |−〉 := A (− , R(−)) : A op×B −→ Set

The currification combinators χL and χR are moreover required to make the three dia-
grams commute:

〈 (m� n) � a |b〉 χL
m�n ��

associativity

��

〈a | (m� n)∗� b〉

〈m� (n � a) |b〉 χL
m �� 〈n � a |m∗� b〉 χL

n �� 〈a |n∗� (m∗� b)〉

associativity
monoidality o f negation

��

(17)

〈a � (m� n) |b〉 χR
m�n ��

associativity

��

〈a |b � (m� n)∗〉

〈 (a � m) � n |b〉 χR
n �� 〈a � m |b � n∗ 〉 χR

m �� 〈a | (b � n∗) � m∗ 〉

associativity
monoidality o f negation

��

(18)

6 The notion of helical chirality described here is called “ambidextrous” in [16]. We keep the
terminology “helical” here in order to stress the correspondence with helical dialogue cate-
gories.

212 P.-A. Melliès

〈 (m� a) � n |b〉 χR
n ��

associativity

〈m� a |b � n∗ 〉 χL
m �� 〈a |m∗� (b � n∗)〉

associativity

〈m� (a � n) |b〉 χL
m �� 〈a � n |m∗� b〉 χR

n �� 〈a | (m∗� b) � n∗ 〉

(19)

for all objects a,m,n of the category A and all objects b of the category B.

Every helical dialogue category C defines a helical dialogue chirality by taking A = C ,
B = C op(0,1), La = a�⊥ and Rb = ⊥� b. The right currification combinator χR is
simply defined using the dialogue structure of the category C :

〈a � m |b〉 〈a |b � m∗ 〉
C (a⊗m,⊥� b)

ψ−1
a⊗m,b �� C (a⊗m⊗ b,⊥)

ψa,m⊗b �� C (a,⊥� (m⊗ b))

whereas the definition of the left currification combinator χL is more sophisticated and
requires the helical structure:

〈m�a |b〉 〈a |m∗�b〉

C (m⊗a,⊥� b)
ψ−1

m⊗a,b �� C (m⊗a⊗b,⊥)
wheelm,a⊗b�� C (a⊗b⊗m,⊥)

ψm⊗b,a �� C (a,⊥� (b⊗m))

7 Categorical Bimodules

In order to understand the connection between ∗-autonomous categories and Frobenius
algebras noticed by Day and Street — and then to extend it to dialogue categories
— one needs to work in a suitable bicategory of categorical bimodules or distributors
(following Bénabou’s original terminology). Given two categories A and B, an AB-
bimodule M is defined as a functor

M : A op×B −→ Set.

The notion of bimodule considered here is set-theoretic, but it may be easily adapted to
enriched settings, where the category Set is typically replaced by the category Vect of
vector spaces, see [20] for details. The bicategory (or weak 2-category) of bimodules
has

– small categories as objects,
– AB-bimodules M as 1-dimensional cells M : A →B,
– natural transformations

θ : N⇒M : A op×B −→ Set

as 2-dimensional cells

θ : M⇒ N : A −→B

in the weak 2-category.

Dialogue Categories and Frobenius Monoids 213

Note the reverse direction of the natural transformations. This specific orientation en-
ables to define a monoidal 2-functor:

Cat → BiMod

which transports every functor F : A →B to the bimodule

F• : (a,b) �→ A (Fa,b) : A op×B −→ Set.

It is possible to see BiMod as a 2-dimensional Kleisli construction on the small limit
completion C �→ [C ,Set]op of categories. One recovers the more familiar convention
corresponding to the small colimit completion C �→ [C op,Set] of categories by taking
the weak 2-category BiModop(1,2) obtained from BiMod by reversing the orientation of
the 1- and 2-dimensional cells. As a matter of fact, there also exists a monoidal 2-functor

Cat → BiModop(1,2)

defined in the following way. First of all, it is good to remember that the operation op :
C �→ C op which transforms a category into its opposite category defines a 2-functor

op : Cat −→ Catop(2).

The weak 2-category BiMod is symmetric monoidal with tensor product defined as
product of categories. The underlying monoidal category is also autonomous, which
simply means that it is a ribbon category with a trivial twist θ . From this follows that
there exists a functor (and in fact a monoidal 2-functor)

† : BiMod −→ BiModop(0,1)

which transports every category A to its dual A † in BiMod. By a miracle of mathe-
matics, this dual A † happens to coincide with the opposite category A op. Putting all
this together, one obtains the monoidal 2-functor

Cat
op−→ Catop(2) −→ BiModop(2) †−→ BiModop(0,1,2)

which transports every category A to itself and every functor F : A →B to the bi-
module

F • : (a,b) �→ A (a,Fb) : A op×B −→ Set.

Another miracle of categorical bimodules is that for every functor F : A → B, the
bimodule F • : B → A is left adjoint to the bimodule F• : A → B in the weak 2-
category BiMod.

8 Frobenius Pseudomonoids

Here, we introduce the notion of Frobenius pseudomonoid whose main purpose is to
reflect the properties of a dialogue category A transported from Cat to the monoidal
bicategory BiMod. A preliminary step in the definition of Frobenius pseudomonoid is
to adapt the notion of exact pairing to the 2-categorical setting.

214 P.-A. Melliès

Definition 8 (Lax Pairing). A lax pairing A �B in a monoidal bicategory is a pair
of 1-dimensional cells

η[1] : A ⊗B −→ I ε[1] : I −→B⊗A
together with a pair of 2-dimensional cells

ε

η

η
[2]

[1]

[1]

ε[1]

η
[1]

[2]
ε

such that the composite 2-dimensional cell

ε[1]

ε[1]

ε[1] ε[1]

ε[1]

η
[1] η

[1]

ε[1]

η
[2] [2]

ε

coincides with the identity on the 1-dimensional cell ε[1] and symmetrically, such that
the composite 2-dimensional cell

η
[2] [2]

ε

η
[1]

η [1]η
[1] η

[1]

ε[1]ε[1]

η
[1]η

[1]

coincides with the identity on the 1-dimensional cell η[1].

At this stage, we are ready to refine the notion of form also introduced by Day and
Street [6] in a monoidal bicategory.

Definition 9 (Frobenius Form). A Frobenius form on a pseudomonoid A in a mo-
noidal bicategory is a lax pairing A �A equipped with a 2-dimensional cell

ε[1]

χ

ε[1]

m m

Dialogue Categories and Frobenius Monoids 215

called the associativity law of the Frobenius form, and required to make the following
variation of MacLane’s pentagonal diagram commute:

m

ε[1]

m

m

m

ε[1]
ε [1]

m

m

χ

associativity

ε[1]

mm

χχ

m

ε[1]

m

associativity

(20)

This leads us to our definition of Frobenius pseudomonoid. Note that our definition
departs from the definition given by Street in [19], see the end of §9 for a comparison.

Definition 10 (Frobenius Pseudomonoid).
A Frobenius pseudomonoid is a pseudomonoid A equipped with a Frobenius form.

Observe that once transported in the bicategory BiMod, every dialogue category A
defines such a Frobenius pseudomonoid with Frobenius form defined as

ε[1] : (a1,a2) �→ A (a1⊗ a2,⊥) η[1] : (a1,a2) �→ A (⊥� a1,a2)

and χ simply defined as the associativity law of the monoidal category A . On the other
hand, note that the notion of Frobenius pseudomonoid introduced above does not co-
incide with the notion of Frobenius monoid in the particular case when the underlying
monoidal 2-category W is a monoidal category — seen as a 2-category with trivial
2-dimensional cells. The point is that nothing ensures in Definition 10 that the two co-
monoid structures on A induced from the exact pairing A �A coincide, although we
require this property in our definition of Frobenius monoid. Depending on the taste of
the reader, this unpleasant situation may be seen as a result of the maximalist nature
of Definition 1 or as a result of the minimalist nature of Definition 10. This justifies in
any case to resolve the matter by formulating a 2-categorical version of helicality. To
that purpose, we need to work in a balanced monoidal bicategory, defined as a monoidal

216 P.-A. Melliès

bicategory W equipped with a braiding and a twist compatible with the 2-dimensional
structure.

Definition 11 (Lax Ribbon Pairing). A ribbon structure on a lax pairing A �B in a
balanced monoidal bicategory is a pair of invertible 2-cells:

θ θ θθ

ε[1]
ε[1]

η[1] η[1]

such that both composite 2-dimensional cells

ε

η

[1]

[1]

θ

ε[1]

η
[1]

ε

η

[1]

[1]

θ

ε

η

[1]

[1]

ε[1] ε[1]

η
[1]

η
[1]

θ
θ

coincides with the identity 2-cell7 A lax ribbon pairing is a lax pairing equipped with
such a ribbon structure.

Definition 12 (Helical Frobenius Pseudomonoid). A helical Frobenius pseudo-
monoid in a balanced monoidal bicategory is a Frobenius pseudomonoid whose lax
pairing is equipped with a ribbon structure, and which is moreover equipped with an
invertible 2-dimensional cell

θ

γ

ε[1]
ε[1]

helix
-1

The 2-dimensional cell helix may be understood as a 2-dimensional cell {|a2,a1 |} ⇒
{|a1,a2 |}. The helical structure is required to make the diagram commute:

{|a1 •a2,a3 |} χ ��

helix

��

{|a1,a2 •a3 |} helix �� {|a2 •a3,a1 |}
χ

��
{|a3,a1 •a2 |} {|a3 •a1,a2 |}χ�� {|a2,a3 •a1 |}helix��

(21)

7 The composite 2-cell is required to coincide with the 2-dimensional coercion of θ when one
defines the twist of a balanced monoidal bicategory as a pseudonatural (rather than natural)
transformation, which we do not do here.

Dialogue Categories and Frobenius Monoids 217

Every helical dialogue categoryA induces a helical Frobenius pseudomonoid in BiMod
with helix simply defined as the natural transformation

wheel−1
a1,a2

: A (a2⊗ a1,⊥) ⇒ A (a1⊗ a2,⊥).

which goes in the reverse direction in the bicategory BiMod. We will see in the next
section that a helical dialogue category is the same thing as a helical Frobenius pseu-
domonoid in BiMod whose bimodules ε[1] and η[1] are represented by functors L and R
in the appropriate sense. We could establish the statement directly, but we find clarifying
to reformulate first the notion of helical Frobenius pseudomonoid in a two-sided fash-
ion. This is precisely the way the correspondence between helical dialogue categories
and helical Frobenius pseumonoids originally emerged in our work.

9 Frobenius Amphimonoids

Here, we reformulate in a two-sided fashion the notion of lax helical Frobenius monoid...
in just the same way as we did in §2 for Frobenius monoids. To that purpose, we start
by relaxing the notion of monoid-comonoid pairing between a monoid and a comonoid,
and introduce the corresponding 2-dimensional notion of amphimonoid.

Definition 13 (Biexact Pairing). A biexact pairing A �B is a lax pairing whose 2-
dimensional cells η[2] and ε[2] are reversible. A biexact ribbon pairing is a biexact
pairing equipped with a ribbon structure.

Definition 14 (Amphimonoid). An amphimonoid (A ,B) in a balanced monoidal bi-
category W is defined as a pseudomonoid (A ,�, true) and a pseudocomonoid (B,�,
false) equipped with a biexact ribbon pairing A �B (noted ∗ in the picture) and with
a pair of invertible 2-dimensional cells

e

*

*

*
*

u (22)

defining a pseudomonoid equivalence between (A ,�, true) and the pseudomonoid struc-
ture on B deduced from the biexact pairing.

An important point about the definition is that every amphimonoid induces a biexact
ribbon pairing B �A defined as follows:

218 P.-A. Melliès

=
γ

θ =γ

θ

* *

* *

together with a pair of invertible 2-dimensional cells

e

u

*

*

*
*

defining a pseudomonoid equivalence between (A ,�, true) and the pseudom-
onoid structure on B deduced from the biexact pairing applied in the opposite direc-
tion. We are ready now to introduce our two-sided notion of Frobenius pseudomonoid:

Definition 15 (Frobenius Amphimonoid). A Frobenius amphimonoid (A ,B,L,R) con-
sists of an amphimonoid (A ,B) equipped with an adjunction

A

L

"#⊥
R

#$ B

and two invertible 2-dimensional cells:

L

L

L

* *

χL χR

(23)

Dialogue Categories and Frobenius Monoids 219

The 1-dimensional cell L : A → B may be understood as defining a bracket 〈a |b〉
between the objects A and B of the bicategory V . Each side of Equation (23) may be
thus seen as implementing a currification step:

χL : 〈a1 � a2 |b〉 ⇒ 〈a2 |a∗1 � b〉 χR : 〈a1 � a2 |b〉 ⇒ 〈a1 |b � a∗2 〉
In the definition of a Frobenius amphimonoid, we require that the two combinators χL

and χR make the three coherence diagrams of Equations (17), (18) and (19) commute.
We leave the reader depict each coherence diagram as the relevant string diagram.

Every helical dialogue category defines a Frobenius amphimonoid in BiMod, by taking
La = a�⊥ and Rb = ⊥� b.

Proposition 5. Given an amphimonoid (A ,B) in a balanced monoidal bicategory W ,
there is a back-and-forth translation between the two following data:

– the helical Frobenius structures on the pseudomonoid (A ,�, true),
– the Frobenius structures (L,R,χL,χR) on the amphimonoid (A ,B).

Proof. The correspondence between the two Frobenius structures works as follows.
Given an amphimonoid (A ,B) whoseA -side is a Frobenius pseudomonoid (A ,�, true)
with Frobenius form noted {|−,−|}, one defines the 1-dimensional cells L and R of the
Frobenius amphimonoid (A ,B) in the following way:

= =RL

*

ε[1]

η

*

[1]

(24)

The definition of a lax pairing ensures that L � R defines an adjunction in the bicate-
gory W . The 2-dimensional cell χR is defined as

{|a1 � m,a2 |} χ �� {|a1,m� a2 |}
while the 2-dimensional cell χL is defined as the composite

{|m� a1,a2 |} helix �� {|a2,m� a1 |} χ−1
�� {|a2 � m,a1 |} helix−1

�� {|a1,a2 � m |}
each of them appropriately composed with the coercion (22) and the
2-dimensional structure of the biexact pairing A �B in order to obtain the expected
currification diagrams (23). A careful check establishes that the two combinators χL

and χR just constructed make the three coherence diagrams of Equations (17), (18) and
(19) commute. This establishes that (A ,B) together with the adjunction L � R defines
a Frobenius amphimonoid in the balanced monoidal bicategory W .

220 P.-A. Melliès

Conversely, given a Frobenius amphimonoid (A ,B,L,R) in a balanced monoidal
bicategory W , one defines a Frobenius form on the pseudomonoid A in the following
way:

L=

*ε[1]

η[1]

R=

*

The associativity law χ of the Frobenius form is defined using χR together with the
coercion (22) and the 2-dimensional structure of the biexact pairing A �B. One ob-
tains in this way a Frobenius pseudomonoid (A ,�, true) whose helical structure is then
defined using the currification combinators χL and χR:

L

*

=
γ-1

θ
-1

L

*

L

*ε[1]

=
χ-1

R
L

u
L

χ

ε[1]

γ

θ= -1

-1

One needs then to check carefully that the helical structure makes the coherence dia-
gram (21) does indeed commute. This establishes that (A ,�, true) equipped with the
structure above defines a helical Frobenius pseudomonoid. This concludes the proof.

We like to think of the two-sided notion of Frobenius amphimonoid as logical since it
is based on the currification combinators χL and χR whereas the original one-sided for-
mulation of helical Frobenius pseudomonoid would be rather algebraic or topological.
Although the correspondence exhibited in Proposition 5 does not define a one-to-one
relationship, it conveys the idea that the notions of helical Frobenius pseudomonoid and
of Frobenius amphimonoid should be considered as morally equivalent. This statement
is informal but it could be made rigorous by constructing a 2-dimensional equivalence
between bicategories corresponding to each notions, in the same way as was done for
dialogue categories and chiralities, see [15] for details.
At this point, we are ready to apply Proposition 5 to the specific monoidal bicategory
BiMod. Every category A comes equipped with a biexact pairing A �A op whose unit
and counit are defined as the bimodule:

hom : (a1,a2) �→ A (a1,a2) : A op×A −→ Set

This leads us to the two main results of the paper:

Dialogue Categories and Frobenius Monoids 221

Theorem (First Correspondence Theorem). A helical chirality is the same thing as
a Frobenius amphimonoid in the bicategory BiMod whose 1-dimensional cells

RL

*

hom

op

hom

op

*

are representable, that is, images of functors along the 2-dimensional functor (−)• :
Cat→ BiMod.

The proof is based on a direct comparison between the definition of helical chirality
(Definition 7) and the definition of Frobenius amphimonoid (Definition 15). The second
main result of the paper follows then from this result and Proposition 5.

Theorem (Second Correspondence Theorem). A helical dialogue category is the
same thing as a helical Frobenius pseudomonoid in the bicategory BiMod whose
1-dimensional cells

= =RL

hom

ε[1]

η
[1]

op op

op

hom

op

are representable, that is, images of functors along the 2-dimensional functor (−)• :
Cat→ BiMod.

10 Epilogue: A Comparison with Day and Street

One may recover here the correspondence between ∗-autonomous categories and Frobe-
nius pseudomonoids drawn by Day and Street in [6,19].

Definition 16 (∗-autonomous Pseudomonoid). A ∗-autonomous pseudomonoid is a
Frobenius pseudomonoid whose Frobenius form is based on a biexact pairing A �A .

The definition coincides with the original definition of ∗-autonomous pseudomonoid
given by Street in [19] except that we add the requirement that the coherence dia-
gram (20) commutes. In particular, we may establish the following property, which
adapts to our notion of Frobenius pseudomonoid the Proposition 3.2 stated by Ross
Street in [19] for ∗-autonomous pseudomonoids.

222 P.-A. Melliès

Proposition 6. A pseudomonoid (A ,m,e) is Frobenius if and only if it is equipped with
a 1-dimensional cell

� : A −→ I

such that

A ⊗A m �� A
� �� I (25)

defines the unit ε[1] of a lax pairing A �A .

Proof. Given a Frobenius pseudomonoid, the 1-cell � is defined as

e

ε[1]

=
l

Conversely, given a pseudomonoid equipped with such a 1-dimensional cell �, one de-
fines the Frobenius form as in Equation (25) with coercion χ : {|a1•a2,a3 |} −→ {|a1,a2•
a3 |} induced from the associativity law of the binary product m. Note that Abramsky and
Heunen recently characterized the orthonormal basis on a Hilbert space A as a possibly
nonunital Frobenius algebra structure on the space A, see [3] for details. The relaxation
of unitality is fundamental here because every unital Frobenius algebra A is isomorphic
to its dual A∗. The relaxation is also connected to the theory nuclear and trace ideals,
see [2] for a categorical account by Abramsky, Blute and Panangaden. It would be in-
teresting to know whether this characterization may be performed at the 2-categorical
level, with adapted notions of Hilbert spaces and orthonormal basis.

11 Conclusion

The mathematical style of the paper should not distract the reader from the main idea
conveyed here, which is that the primitive mechanisms of reasoning are of a
purely topological nature — with encouraging and somewhat surprising affinities to
cobordism.

This geometric conception of logic is likely to appear awkward and even disturbing
to the unprepared reader. The reason is that we logicians (and non-logicians) are tra-
ditionally reluctant to think of language as a material phenomenon embedded in space
and time. Even worse, we have learned along the years to treat reasoning as a purely
desincarnated and formal activity living in the ether of symbolic logic. However, this
formalist inclination of the field is probably temporary... and we like to think that the
destiny of logic is to become a « geometry of mind » in the same way as physics has be-
come a « geometry of nature ». The purpose of this geometry will not be to explain the
« mind » as a whole — the idea would be ridiculous — but rather to shed light on some
of its most elementary and fundamental mechanisms, in the same way as physics does
with « nature ». And then to investigate in a reflexive (and somewhat ethnographic) turn
how these micrological mechanisms interact with the macrological (or foundational)
program originally attributed to logic at the beginning of the 20th century.

Dialogue Categories and Frobenius Monoids 223

The dream of « geometrizing logic » is far from accomplished today, but the novelty
is that it does not seem entirely inaccessible anymore. In particular, the recent advances
of contemporary mathematics — at the crossroad of algebra, topology and physics —
provide us with a series of very nice conceptual tools for trying the adventure. By anal-
ogy with physics, a tentative starting point in the exploration of this evanescent « ge-
ometry of logic » is offered by the study of the configuration space of n logical players
(or computer programs) conversing in time on a specific formula. The present paper
is a very preliminary attempt to substantiate these geometric intuitions in the specific
case n = 2 where one benefits from the perfect adequation between tensorial logic and
dialogue games.

For lack of space, we have only scratched the surface of the connection between
tensorial logic and 2-dimensional cobordism. In particular, we did not include any de-
scription of the interplay between the topological flow of negation defining the proofs of
tensorial logic (and thus the innocent strategies in dialogue games, see [14] for details)
and the lax 2-dimensional cobordism describing the formulas of the logic (and thus the
dialogue games themselves). An interesting issue for the connection between logic and
physics is probably to understand whether the lax and two-sided account of cobordism
developed here in dimension 2 still makes sense in higher dimensions, and whether it is
supported by any appropriate physical (or at least geometric) intuition.

References

1. Abramsky, S., Honda, K., McCusker, G.: A fully abstract game semantics for general ref-
erences. In: Proceedings of the Thirteenth Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Society Press (1998)

2. Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensored ∗-categories.
Journal of Pure and Applied Algebra 143, 3–47 (1999)

3. Abramsky, S., Heunen, C.: H∗-algebras and nonunital Frobenius algebras. Clifford Lectures,
AMS Proceedings of Symposia in Applied Mathematics (2010) (to appear)

4. Barr, M.: ∗-autonomous categories. Lectures Notes in Mathematics, vol. 752. Springer (1979)
5. Curtis, C., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. Pure

and Applied Mathematics, vol. XI. Interscience Publishers, New York-London (1962)
6. Day, B., Street, R.: Quantum categories, star autonomy, and quantum groupoids. In: Ga-

lois Theory, Hopf Algebras, and Semiabelian Categories. Fields Institute Communications,
vol. 43, pp. 193–231. American Math. Soc. (2004)

7. Egger, J.: The Frobenius relations meet linear distributivity. Theory and Applications of Cat-
egories 24(2), 25–38 (2010)

8. Girard, J.-Y.: Linear logic. Theoretical Computer Science, 50–102 (1987)
9. Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In: America,

P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)
10. Honda, K., Yoshida, N.: Game Theoretic Analysis of Call-by-Value Computation. In:

Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256,
pp. 225–236. Springer, Heidelberg (1997)

11. Joyal, A., Street, R.: An introduction to Tannaka duality and quantum groups. In: Carboni,
A., Pedicchio, M.C., Rosolini, G. (eds.) Proceedings of the Category Theory, Como 1990.
Lecture Notes in Math., vol. 1488. Springer, Heidelberg (1991)

12. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)

224 P.-A. Melliès

13. Kassel, C.: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer (1995)
14. Melliès, P.-A.: Game semantics in string diagrams. In: Proceedings of the Annual ACM/IEEE

Symposium on Logic in Computer Science (2012)
15. Melliès, P.-A.: Dialogue categories and chiralities (submitted, manuscript available on the

author’s web page)
16. Melliès, P.-A.: A micrological study of helix negation (submitted, manuscript available on

the author’s web page)
17. Melliès, P.-A.: Braided notions of dialogue categories (submitted, manuscript available on

the author’s web page)
18. Shum, M.C.: Tortile tensor categories. Journal of Pure and Applied Algebra 93, 57–110

(1994)
19. Street, R.: Frobenius monads and pseudomonoids. J. Math. Phys. 45, 3930 (2004)
20. Street, R.: Quantum Groups: A Path to Current Algebra. Australian Mathematical Society

Lecture Series. Cambridge University Press (2007)
21. Wehr, M.: Higher Dimensional Syntax. In: The Proceedings of the Category Theory in Com-

puter Science (CTCS) Conference (1999)

Anatomy of a Domain

of Continuous Random Variables II

Michael Mislove

Department of Computer Science
Tulane University

New Orleans, LA 70118
mislove@tulane.edu

Abstract. In this paper we conclude a two-part analysis of recent work
of Jean Goubault-Larrecq and Daniele Varacca, who devised a model
of continuous random variables over bounded complete domains. Their
presentation leaves out many details, and also misses some motivations
for their construction. In this and a related paper we attempt to fill in
some of these details, and in the process, we discover a flaw in the model
they built.

Our earlier paper showed how to construct ΘProb(A∞), the bounded
complete algebraic domain of thin probability measures over A∞, the
monoid of finite and infinite words over a finite alphabet A. In this second
paper, we apply our earlier results to construct ΘRVA∞(D), the bounded
complete domain of continuous random variables defined on supports
of thin probability measures on A∞ with values in a bounded complete
domain D, and we show D �→ ΘRVA∞(D) is the object map of a monad.
In the case A = {0, 1}, our construction yields the domain of continuous
random variables over bounded complete domains devised by Goubault-
Larrecq and Varacca. However, we also show that the Kleisli extension
h† : ΘRVA∞(D) → ΘRV(E) of a Scott-continuous map h : D → E is not
Scott continuous, so the construction does not yield a monad on BCD,
the category of bounded complete domains and Scott-continuous maps.
We leave the question of whether the construction can be rescued as an
open problem.

Keywords: Random variable, bounded complete domain, Cartesian
closed category.

1 Introduction

Domain theory is fundamental for building computational models. Its use dates
to Dana Scott’s first models of the untyped lambda calculus, and the applica-
tions of domains have now spread well beyond the early focus on programming
semantics. One of the seminal advances of the work in semantics was Abramsky’s
use of Stone Duality [1] to tailor a logic to fit precisely any domain constructed
using basic components and adhering to Moggi’s monadic approach to building
models [21].

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 225–245, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

226 M. Mislove

While there is a broad range of computational effects that fall under this ap-
proach, one monad that has caused continuing problems is the probabilistic power
domain. First explored by Saheb-Djarhomi [23], the Borel probability measures
on an underlying domain can be ordered pointwise as valuation maps from the
Scott-open sets to the reals. This forms the object level of a free construction
over the category DCPO of directed complete partial orders, but it suffers from
two flaws: (i) The probabilistic power domain does not satisfy a distributive
law with respect to any of the three nondeterminism monads over domains, so
Beck’s Theorem [3] implies the composition of the probabilistic power domain
and any of the nondeterminism domains is not a monad. Second, there there is
no Cartesian closed category of domains – dcpos that satisfy the usual approx-
imation assumption – that is known to be invariant under this construct. The
best that is known is that the category of coherent domains is invariant under
the probabilistic choice monad [15], but this category is not Cartesian closed.

To address the first flaw, Varacca and Winskel [25,26] explored weakening
the laws of probabilistic choice, and discovered three monads for probabilistic
choice based on weakened laws: (i) p ≤ p +r p; (ii) p ≥ p +r p; and finally (iii)
no relation assumed between p and p +r p (where p +r q denotes choosing p
with probability r and choosing q with probability 1 − r, for 0 ≤ r ≤ 1). They
called these constructions indexed valuation monads, and each of them enjoys a
distributive law with respect to the monads for nondeterminism.

This author took this work a bit further, showing in [18] that one could use one
of the indexed valuation models to define a monad of finite random variables over
either the domain RB or the domain FS, the latter of which is a maximal CCC of
domains, and both of which are closed under all three nondeterminism monads.
More recently, Goubault-Larrecq and Varacca attempted to extend this line of
work to show that there is a monad of continuous random variables over the
CCC of bounded complete domains [10]. The category BCD of bounded complete
domains is more general than Scott domains, the objects used by Dana Scott
in devising the first model of the untyped lambda calculus [24]. While BCD is
a CCC, it is not closed under the convex power domain monad, and it is not a
maximal CCC. The work of Goubault-Larrecq and Varacca inspired the work in
this paper and in the earlier one on this subject [20].

1.1 The Model of Goubault-Larrecq and Varacca

The model of continuous random variables devised by Goubault-Larrecq and
Varacca [10] restricts probability measures to one particular domain C, which
we call the Cantor fan, and models probabilistic choice on an arbitrary domain
D as the family of (Scott) continuous maps f : suppμ→ D, where μ ∈ Prob(C).
To start, the Cantor fan is the ideal completion C of the rooted full binary tree,
where the latter admits the partial order in which the root is the least element,
and node m is below node n iff the path from the root to n passes through m.
This makes C a Scott domain whose space of maximal elements is homeomorphic
to the middle-third Cantor subset of the unit interval. In addition to its usual
convex structure, the domain Prob(C) of probability measures over C admits

Anatomy of a Domain of Continuous Random Variables II 227

a binary probabilistic choice operator in the spirit of Varacca’s Hoare indexed
valuations, so that p ≤ p+r p holds for each p ∈ C. The definition of +r relies on
the concatenation operator on C, regarding C as the family of finite and infinite
words over {0, 1}. Since concatenation · : C × C → C is not monotone, let alone
Scott continuous, Goubault-Larrecq and Varacca restrict their model to contain
only those measures μ ∈ Prob(C) whose support (in the Lawson topology) is an
antichain, since such measures have the property that concatenation defines a
Scott continuous operation on the sets on which they are concentrated. So the
model is the family

ΘRV(D) = {(μ, f) ∈ Prob(C)× [suppμ→ D] | suppμ is an antichain}.

(Here Θ stands for “thin”, a term adopted by Goubault-Larrecq and Varacca.)
They claim thatΘRV(D) forms a monad over BCD; the monad laws are displayed
explicitly in [10], but the definition of the lift of a Scott-continuous map φ : D →
RV(E) to φ# : RV(D) → RV(E) leaves a lot to the reader to unravel. In fact,
we have identified a flaw in that claim that can be traced to the concatenation
operator.

1.2 Our Contribution

In this and a preceding paper [20], we clarify the construction devised by
Goubault-Larrecq and Varacca. We use an example from probabilistic automata
to motivate the order used by Goubault-Larrecq and Varacca. The paper [20]
is devoted to understanding the construction of the thin measures over C; this
requires a completely different presentation from the one given in [10]. Goubault-
Larrecq and Varacca impose the restriction that the only simple measures
– affine combinations of finitely many point masses – in ΘRV(D) are those
supported on antichains, and then define ΘRV(D) to be the least subset of
Prob(C) × [suppμ → D] containing these measures in the first component, and
closed under directed suprema; in effect, they are giving a basis for the allowable
measures, and capturing the rest by taking directed suprema. The alternative
approach in [20] shows their definition is the same thing as defining thin mea-
sures in the model to be those that are supported on Lawson-closed antichains,
using Stone duality to prove this result. Our results allow one to account for all
measures in the model as having the form πA(μ) where A ⊆ C is a Lawson-closed
subset and μ is a probability measure that is supported on a Lawson-closed sub-
set of Max(C), the Cantor set of maximal elements of C. We completed this
analysis by showing the order arises naturally on probabilistic automata. Our
results in this paper and in [20] also are broader than those of [10], since they
hold for A∞ for an arbitrary finite alphabet A, whereas Goubault-Larrecq and
Varacca restrict themselves to the case A = {0, 1}.

In this paper we complete our reconstruction and analysis of the continuous
random variable model of Goubault-Larrecq and Varacca. Using the results from
[20], we define the model of continuous random variables in a fashion similar
to that in [10], but we present the complete structure, rather than having to

228 M. Mislove

appeal to a completion within a larger domain. This approach also allows us to
examine the construction of constituents of the monad, and in particular, the
Kleisli extension, in a more accessible way than is given in [10]. We verify that
the monad laws hold, but we also show that the Kleisli extension of a Scott-
continuous map is not Scott-continuous – in fact, it’s not even monotone. This
means that the construction yields a monad, but one that does not leave any
category of domains and Scott-continuous maps invariant. We leave open the
question whether this approach can be rescued to obtain a monad on BCD or
any other category of domains.

1.3 The Plan of the Paper

In the next section, we review some background material from domain theory
and the other areas we need. The latter includes a version of Stone duality, a re-
sult about the probability measure monad on the category of compact Hausdorff
spaces and continuous maps, as well as some results from [20] on Lawson-closed
antichains in A∞ for a finite alphabet A. Section 3 summarizes the main results
from [20], starting with the motivating example that informs the order we use to
define our model of thin probability measures. The next section constitutes the
main part of the paper, where we develop the family of continuous random vari-
ables over thin probability measures on A∞, for any finite alphabet A. We show
this family is a bounded complete domain. We also show our construct defines
the object map of a monad, but, as commented above, the Kleisli extension of a
Scott-continuous map is not Scott continuous, so it is unclear exactly what the
right category for this monad is. Finally, we show that our results are the same
as those of Goubault-Larrecq and Varacca in case A = {0, 1}, which implies
the flaw we have detected applies equally to their construction. In Section 5 we
summarize our results and pose some questions for future research.

2 Background

In this section we present the background material we need for our main results.

2.1 Domains

The basis for our results rely fundamentally on domain theory. Most of the
results that we quote below can be found in [2] or [7]; we give specific references
for those that are not found there.

To start, a poset is a partially ordered set. Antichains play a major role in
our development: a subset A ⊆ P of a poset is an antichain if any two distinct
elements in A are incomparable in the order.

A poset is directed complete if each of its directed subsets has a least upper
bound; here a subset S is directed if each finite subset of S has an upper bound in
S. A directed complete partial order is called a dcpo. The relevant maps between

Anatomy of a Domain of Continuous Random Variables II 229

dcpos are the monotone maps that also preserve suprema of directed sets; these
maps are usually called Scott continuous.

These notions can be presented from a purely topological perspective: a subset
U ⊆ P of a poset is Scott open if (i) U = ↑U ≡ {x ∈ P | (∃u ∈ U) u ≤ x} is
an upper set, and (ii) if supS ∈ U implies S ∩ U �= ∅ for each directed subset
S ⊆ P . It is routine to show that the family of Scott-open sets forms a topology
on any poset; this topology satisfies ↓x ≡ {y ∈ P | y ≤ x} = {x} is the closure
of a point, so the Scott topology is always T0, but it is T1 iff P is a flat poset.
A mapping between dcpos is Scott continuous in the order-theoretic sense iff it
is a monotone map that is continuous with respect to the Scott topologies on
its domain and range. We let DCPO denote the category of dcpos and Scott-
continuous maps; DCPO is a Cartesian closed category.

If P is a dcpo, and x, y ∈ P , then x approximates y iff for every directed set
S ⊆ P , if y ≤ supS, then there is some s ∈ S with x ≤ s. In this case, we write
x + y and we let ↓↓y = {x ∈ P | x + y}. A basis for a poset P is a family
B ⊆ P satisfying ↓↓y ∩ B is directed and y = sup(↓↓y ∩ B) for each y ∈ P . A
continuous poset is one that has a basis, and a dcpo P is a domain if P is a
continuous dcpo. An element k ∈ P is compact if x + x, and P is algebraic if
KP = {k ∈ P | k + k} forms a basis. Domains are sober spaces in the Scott
topology.

We let DOM denote that category of domains and Scott continuous maps;
this is a full subcategory of DCPO, but it is not Cartesian closed. Nevertheless,
DOM has several Cartesian closed full subcategories. Two of particular interest
to us are the full subcategory SDOM of Scott domains, and BCD its continuous
analog. Precisely, a domain is bounded complete if every non-empty subset has
a greatest lower bound. An equivalent statement to the last condition is that
every subset with an upper bound has a least upper bound. Bounded complete
domains generalize Scott domains, which are algebraic domains for which KP
is countable and that also satisfy the property that every non-empty subset has
a greatest lower bound. We let BCD denote the category of bounded complete
domains and Scott-continuous maps.

Example 1. A prototypical example of a Scott domain is the free monoid A∞ =
A∗ ∪ Aω of finite and infinite words over a finite alphabet A, where we use the
prefix order on words: s ≤ t ∈ A∞ iff (∃w ∈ A∞) sw = t. Two words compare iff
one is a prefix of the other, and the infimum of any set of words is their longest
common prefix. As a domain, KA∞ = A∗, which is countable since A is finite.

Note that this same reasoning applies to any Scott-closed subset of A∞ –
examples here are the language of a finite state automaton, where the “alphabet”
is the product S ×Act of the set of states and the set of actions.

Domains also have a Hausdorff refinement of the Scott topology which will play
a role in our work. The weak lower topology on P has the sets of the form if
O = P \ ↑F as a basis, where F ⊂ P is a finite subset. The Lawson topology on
a domain P is the common refinement of the Scott- and weak lower topologies
on P . This topology has the family

230 M. Mislove

{U \↑F | U Scott open & F ⊆ P finite}

as a basis. The Lawson topology on a domain is always Hausdorff.
A domain is coherent if its Lawson topology is compact. We denote the closure

of a subset X ⊆ P of a coherent domain in the Lawson topology by X
Λ
.

Example 2. Bounded complete domains are coherent. A basic example of a
bounded complete domain is the unit interval; here x + y iff x = 0 or x < y.
The Scott topology on the [0, 1] has open sets [0, 1] together with ↑↑x = (x, 1]
for x ∈ (0, 1]. Since BCD has finite products, [0, 1]n is a domain in the product
order, where x+ y iff xi + yi for each i; a basis of Scott-open sets is formed by
the sets ↑↑x for x ∈ [0, 1]n (this last is true in any domain).

The Lawson topology on [0,1] has basic open sets (x, 1] \ [y, 1] for x < y – i.e.,
sets of the form (x, y) for x < y, which is the usual topology. Then, the Lawson
topology on [0, 1]n is the product topology from the usual topology on [0, 1].

Since [0, 1] has a least element, the same results apply for any power of [0, 1],
where x+ y in [0, 1]J iff xj = 0 for almost all j ∈ J , and xj + yj for all j ∈ J .
Thus, every power of [0, 1] is a bounded complete domain.

A more interesting example of a coherent domain is Prob(D), the family of
probability measures on a coherent domain D, where μ ≤ ν iff μ(U) ≤ ν(U) for
every Scott-open subset U ⊆ D. For example, Prob([0, 1]) is a coherent domain.
In fact, the category COH of coherent domains and Scott continuous maps is
closed under the application of the functor Prob [15].

While coherent domains having least elements are closed under arbitrary prod-
ucts, the category COH of coherent domains and Scott continuous maps is not
Cartesian closed. There is an inclusion of the category of coherent domains and
Lawson continuous monotone maps into the category of compact ordered spaces
and continuous monotone maps that is obtained by equipping coherent domains
with the Lawson topology. This is right adjoint to the functor that associates
to a compact ordered space its family of closed order-convex subsets ordered by
reverse inclusion, where C + D iff D ⊆ C◦. In this case, the Lawson topology
is the topology the family inherits from the Vietoris topology on the family of
compact subsets of the underlying space.

Finally, we need some results related to power domains, the convex power
domain in particular. Details for the following can be found in [19]. For a coherent
domain D, the convex power domain consists of the family

PC(D) = {X ⊆ D | X = ↓X ∩ ↑X is Lawson closed}

under the Egli-Milner order:

X ≤ Y iff X ⊆ ↓Y & Y ⊆ ↑X.

PC(D) is a coherent domain if D is one, where

X + Y iff Y ⊆ (↑X)◦ & (∀x ∈ X)(∃y ∈ Y)x+ y. (1)

Anatomy of a Domain of Continuous Random Variables II 231

3 On Lawson-Compact Antichains and Thin Probability
Measures over A∞

3.1 Lawson-Compact Antichains in A∞

The following results are from Section 2.2 of [20]. They present some results
about Lawson-closed sets and Lawson-closed antichains in AC(A∞) that we
need in developing the model of continuous random variables over the next two
sections.

Lemma 1. If X ⊆ A∞ is a Lawson compact subset of a coherent domain,
then ↓X is a Scott-closed subset of A∞. Moreover there is a canonical map
π↓X : A∞ → ↓X that is both Scott- and Lawson continuous.

Corollary 1. If X ⊆ A∞ is a Lawson-compact antichain, then there is a Law-
son compact subset Y ⊆ Aω (which is necessarily an antichain) for which
π↓X(Y) = X.

Proposition 1. Let A be a finite alphabet. Then X ⊆ A∞ is Scott closed iff
MaxX is Lawson closed and X = ↓(MaxX).

Theorem 1. Let A be a finite alphabet and consider the domain A∞ in the
prefix order. Let

AC(A∞) = {X ⊆ A∞ | X = X
Λ
is an antichain}.

Then AC(A∞) is a Scott domain that is a subdomain of PC(A
∞). In particular,

1. If X,Y ∈ AC(A∞), then X ≤ Y iff π↓X(Y) = X.
2. the supremum of two antichains X,Y ∈ AC(A∞) with an upper bound is

given by X ∨ Y = Max(X ∪ Y), the set of maximal elements of their union.

Proof. The proof that AC(A∞) is a sub-dcpo of PC(A
∞) and that X ∨ Y =

Max(X ∪ Y) is contained in [20], so only the proof of 1) above is lacking.
If X ≤ Y ∈ AC(A∞), then X ⊆ ↓Y and Y ⊆ ↑X . This means that every

x ∈ X is below some y ∈ Y , and vice versa, every y ∈ Y is above some x ∈ X .
Since X is an antichain. if x ≤ y ∈ Y , then π↓X(y) = x, which shows X ⊆
π↓X(Y). Conversely, if y ∈ Y , then there is some x ∈ X with x ≤ y, so again
π↓X(y) = x ∈ X . Thus π↓X(Y) = X .

For the converse, if π↓X(Y) = X , then x ∈ X implies x = π↓X(y) for some
y ∈ Y , so X ⊆ ↓Y . On the other hand, if y ∈ Y , then π↓X(y) ∈ X and
y ∈ ↑π↓X(y). Hence Y ⊆ ↑X .
�

Proposition 4.47 of [19] implies that the Lawson topology on PC(A
∞) is the

same as the topology PC(A
∞) inherits from the Vietoris topology on the family

of compact subsets of A∞, when A∞ is a coherent domain endowed with the
Lawson topology. This implies that the convergence of a directed family of Law-
son compact antichains from A∞ is the same as their convergence in the Vietoris
topology. The relevance of this to our work is summarized in the following result.

232 M. Mislove

Theorem 2. Let A be a finite set, and for each n, let πn : A
∞ → A≤n ≡ {s ∈

A∗ | |s| ≤ n} be the projection onto the set of words of length at most n. Then
πn is continuous for each n, where we endow A∞ and A≤n with either the Scott-
or Lawson topologies. Moreover,

1. Each Lawson-compact antichain X ⊆ A∞ satisfies {πn(X)}n is a directed
family of finite antichains satisfying supn πn(X) = X.

2. Conversely, each directed family of finite antichains Fn ⊆ A≤n satisfies
supn Fn = X is a Lawson compact antichain in A∞ satisfying πn(X) = Fn

for each n.

Some Further Results. We need some additional results about Lawson-
compact antichains in A∞ which are not in [20].

Proposition 2. Let X ∈ AC(A∞) be a Lawson-compact antichain in A∞.
Then:

1. ↓X is a bounded complete domain.

2. The relative Lawson- and Scott topologies on X from ↓X are the same.

Proof. For 1, Proposition 1 implies ↓X is a Scott-closed subset of A∞, and Scott-
closed subset of a bounded complete domain is another such: if s ∈ ↓X , then

↓↓s ⊆ ↓X , so ↓X is continuous, and if ∅ �= S ⊆ ↓X , then infA∞ S ∈ ↓X .
For 2, the Lawson topology refines the Scott topology, so we only need to

show that each relatively-open subset of X in the Lawson topology is relatively
Scott open. A basic open subset of X in the relative Lawson topology has the
form X ∩ (U \ ↑F), where U ⊆ ↓X is Scott open, and F ⊆ ↓X is finite. In fact,
we may assume U = ↑s for some finite word s ∈ A∗, since A∞ is algebraic. Then,
for each t ∈ F , if t and s have an upper bound, then they must compare, and
assuming ↑s\↑F �= ∅, we conclude that s < t. If x ∈ X ∩↑s\↑F , then s < x and
t �≤ x for all t ∈ F . But then we can find s′ ∈ A∗ with s < s′ ≤ x and s′ �≤ t for
all t ∈ F since F is finite. Then x ∈ X ∩ ↑s′ ⊆ ↑s \ ↑F , and X ∩ ↑s′ is relatively
Scott open.
�

Remark 1. Let X ∈ AC(A∞) and let D be a bounded complete domain. Then

1. Part 1 implies [↓X → D] is a bounded complete domain, since BCD is
Cartesian closed.

2. Part 2 implies f : X → D is continuous from the relative Scott topology on
X to the Scott topology on D iff f is continuous from the Lawson topology
on X to the Scott topology on D. We denote the family of these maps by
[X → D].

3. If X ∈ AC(A∗) is a finite antichain and D is bounded complete, then
[X → D] � D|X| is a bounded complete domain, since BCD is closed under
products.

Anatomy of a Domain of Continuous Random Variables II 233

Proposition 3. Let D be a bounded complete domain, and let X ∈ AC(A∞),
where A is a finite alphabet. Then X ≤ Y ∈ AC(A∞) implies there is an
embedding-projection pair

f �→ f ◦ πX : [X → D] ↪→ [Y → D]; g �→ ĝ : [Y → D]
 [X → D],

where πX : Y → X is the projection mapping and ĝ(x) = inf g(Y ∩ ↑x).

Proof. Given f : X → D, f ◦ πX : Y → D is well-defined because X ≤ Y , and it
is continuous because it is a composition of continuous maps.

On the other hand, given g : Y → D, we first recall PU (D) = ({C ⊆ D |
∅ �= C Scott compact},⊇) denotes the upper power domain over D, and that
D bounded complete implies inf : PU (D) → D is a Soctt-continuous retraction
(cf. [19]). Then we define g : ↓Y → PU (D) by g(s) = ↑Dg(↑s ∩ Y). This is well-
defined since s ∈ ↓Y implies ↑s ∩ Y �= ∅ is Lawson, hence Scott compact, and
the Scott continuity of g implies g(↑s ∩ Y) is Scott compact as well.

If s ≤ t, then obviously g(↑s∩Y) ⊇ g(↑t∩Y), so g is monotone. For continuity,
suppose that S ⊆ ↓Y is directed, and let t = supS in ↓Y . Then g(s) ⊇ g(t) by
monotonicity. Conversely, suppose x ∈ g(s) for each s ∈ S. Then for each s ∈ S,
there is some ys ∈ ↑s ∩ Y with g(ys) ≤ x. Since Y is compact, {ys}s∈S has a
limit point y ∈ Y , and since {↑s ∩ Y | s ∈ S} is a filter base of compact sets,
it follows that y ∈ ↑s ∩ Y for each s ∈ S. Thus y ∈ ↑t ∩ Y , and then g(t) ≤ x.
It follows that g(t) = sups∈S g(s), so g : ↓Y → PU (D) by g(s) = ↑Dg(↑s ∩ Y) is
Scott continuous.

Now, inf : PU (D) → D is Scott continuous, and X ≤ Y implies X ⊆ ↓Y , so
ĝ : X → D by ĝ(x) = inf g(x) is Scott continuous.

Now, given f : X → D,

f̂ ◦ πX(x) = inf f(Y ∩ ↑x) = inf f(x) = f(x)

since X ≤ Y and X an antichain imply πX(Y ∩ ↑x) = x.
Conversely, if g : Y → D and y ∈ Y , then

ĝ ◦ πX(y) = inf g(Y ∩ ↑πX(y)) ≤ g(y).
�

Notation:

– In the following, we let
⊕

X∈AC(A∞)[X → D] denote the disjoint sum of the

domains [X → D], as X ranges over AC(A∞).
– Given f ∈

⊕
X∈AC(A∞)[X → D], we let Xf = dom(f). Then f ∈ [X → D]

iff X = Xf .
– We order

⊕
X∈AC(A∞)[X → D] by

f ≤ g iff Xf ≤ Xg and f ◦ πXf
≤ g.

Theorem 3. Let A be a finite alphabet and let D be a bounded complete domain.

1. If X ∈ AC(A∞), then [X → D] is a bounded complete domain.

234 M. Mislove

2.
⊕

X∈AC(A∞)[X → D] is a bounded complete domain.

Proof. We use Theorems 1 and 2 to prove the results. For 1, Theorem 2 implies
πn(X) ∈ AC(A≤n) is a finite antichain for each n ≥ 1, and so [πn(X) → D] �
D|πn(X)| is bounded complete, since BCD has products. Moreover, the family
{[πn(X)→ D], f �→ πm

n ◦f, g �→ ĝ}m≤n is a family of bounded complete domains
and embeddiing-projection pairs, so it has a bilimit, which is also a bounded
complete domain. To complete the proof, we show that [X → D] is that bilimit.

This is proved if we show that supn f̂ ◦ πn = f for each f ∈ [X → D]. If x ∈ X ,
then

sup
n
f̂ ◦ πn(x) = sup

n
inf f(X ∩ ↑πn(x)) = inf f(X ∩ ↑x) = f(x),

the second equality following from part 1) of Theorem 2, and the last from the
fact that x ∈ X ∈ AC(A∞).

For part 2), we first show that

f ≤ g iff Xf ≤ Xg and f ◦ πXf
≤ g

is a partial order on
⊕

X∈AC(A∞)[X → D]: indeed, it’s clearly reflexive and

transitive. If f ≤ g ≤ f , then Xf ≤ Xg ≤ Xf , and so Xf = Xg because AC(A∞)
is partially ordered. Then πXf

|Xg = idXf
. Thus f = f ◦ πXf

≤ g = g ◦ πXg ≤ f ,
and they’re equal.

Next, let S ⊆
⊕

X∈AC(A∞)[X → D] be a a directed set. Then S0 = {Xf |
f ∈ S} is a directed family in AC(A∞), so it has a least upper bound, X0 =
supS0

X . Then {[Xf → D] | f ∈ S} together with [X0 → D] is a cone in⊕
X∈AC(A∞)[X → D], using the embedding-projection pairs between [Xf → D]

and [Xg → D] if f ≤ g ∈ S, and between [Xf → D] and [X0 → D] for each
Xf ∈ S0. An argument similar to the one in the first part of the proof shows that

supX∈S0
f̂ ◦ πX = f for each f ∈ [X0 → D], which implies this is a limit cone.

This implies that [X0 → D] = limf∈S [Xf → D]. Then (f)f∈S ∈ Πf∈S [Xf → D]
determines a unique point h ∈ limf∈S [Xf → D] = [X0 → D]. Thus, πXf

(h) = f
for each f ∈ S, so f ≤ h for each f ∈ S. Likewise, if f ≤ g for each f ∈ S, then
πXf

(g) = f for each f ∈ S, and so πX0(g) = h by the definition of the limit.
Hence h = supS. So,

⊕
X∈AC(A∞)[X → D] is a dcpo.

Since [X → D] is a domain for each X ∈ AC(A∞), the same is true of⊕
X∈AC(A∞)[X → D] – a basis is the family

⊕
X∈AC(A∗)[X → B(D)], where

B(D) is any basis for D. And since [X → D] is bounded complete for each
X ∈ AC(A∞) and since AC(A∞) itself is bounded complete, the same holds for⊕

X∈AC(A∞)[X → D].
�

Notation. For a bounded complete domain D, we use Θ[A∞ → D] ≡⊕
X∈AC(A∞)[X → D] to denote the family of Lawson continuous maps from

some Lawson-compact antichain X ∈ AC(A∞) to D.

Anatomy of a Domain of Continuous Random Variables II 235

Stone Duality. In modern parlance, Marshall Stone’s seminal result states that
the category of Stone spaces – compact Hausdorff totally disconnected spaces –
and continuous maps is dually equivalent to the category of Boolean algebras and
Boolean algebra maps. The dual equivalence sends a Stone space to the Boolean
algebra of its compact-open subsets; dually, a Boolean algebra is sent to the set
of prime ideals, endowed with the hull-kernel topology. This dual equivalence
was used to great effect by Abramsky [1] where he showed how to extract a logic
from a domain constructed using Moggi’s monadic approach, so that the logic
was tailor made for the domain used to build it.

Our approach to Stone duality is somewhat unconventional, but one that also
has been utilized in recent work by Gehrke [8,9]. The idea is to realize a Stone
space as a projective limit of finite spaces, a result which follows from Stone
duality, as we now demonstrate.

Theorem 4 (Stone Duality). Each Stone space X can be represented as a
projective limit X � lim←−α∈A

Xα, where Xα is a finite space. In fact, each Xα is

a partition of X into a finite cover by clopen subsets, and the projection X
 Xα

maps each point of X to the element of Xα containing it.

We note that a corollary of this result says that it is enough to have a basis
for the family of finite Boolean subalgebras of B(X) in order to realize X as
a projective limit of finite spaces, where by a basis, we mean a directed family
whose union generates all of B(X). The following example illustrates this point.

Example 3. Let C denote the middle third Cantor set from the unit interval. This
is Stone space, and so it can be realized as a projective limit of finite spaces C �
lim←−α∈A

Cα. But since C is second countable, we can define a countable family of

finite spaces Cn for which C � lim←−n
Cn. Indeed, we can use the construction of

C from [0, 1] to define these finite spaces:

– C0 = [0, 1] is the entire space.
– C1 = {[0, 13], [

2
3 , 1]} is the result of deleting the middle third from [0, 1].

...
– Cn = {[0, 1

3n], . . . , [
3n−1
3n , 1]}.

...

Note that Cn has 2n elements – this is the “top down” approach to building
C, as opposed the “bottom up” approach obtained by viewing C as the set of
maximal elements of the Cantor fan. In categorical parlance, the approach via
Stone duality realizes C as an F -algebra, whereas the Cantor fan realizes C as a

(final) F -coalgebra, where F is the functor that sends a space X to X
·
∪X , the

disjoint sum of two copies of X .

The Prob Monad on Comp. It is well known that the family of probability
measures on a compact Hausdorff space is the object level of a functor which
defines a monad on Comp, the category of compact Hausdorff spaces and contin-
uous maps. As outlined in [11], this monad gives rise to several related monads:

236 M. Mislove

– On Comp, it associates to a compact Hausdorff space X the free barycentric
algebra over X , the name deriving from the counit ε : Prob(S) → S which
assigns to each measure μ on a probabilistic algebra S its barycenter ε(μ).

– On the category CompMon of compact monoids and continuous monoid ho-
momorphisms, Prob gives rise to a monad that assigns to a compact monoid
S the free compact affine monoid over S.

– On the category CompGrp of compact groups and continuous homomor-
phisms, Prob assigns to a compact group G the free compact affine monoid
over G; in this case the right adjoint sends a compact affine monoid to its
group of units, as opposed to the inclusion functor, which is the right adjoint
in the first two cases.

If we let SProb(X) denote the family of subprobability measures on a compact
Hausdorff space X , then it’s routine to show that SProb defines monads in each
of the cases just described, where the only change is that the objects now have
a 0 (i.e., they are affine structures with 0-element, allowing one to define scalar
multiples r · x for r ∈ [0, 1] and x ∈ SProb(X), as well as affine combinations).

There is a further result we need about Prob which relates to its role as
an endofunctor on Comp and its subcategories. The following result is due to
Fedorchuk:

Theorem 5 (Fedorchuk [5]). The functor Prob : Comp→ Comp is normal; in
particular, Prob preserves inverse limits.

Remark 2. If we combine this result with the results at the end of Subsection 2.1,
then we see that the family of probability measures supported on a Lawson-
compact antichain X in A∞ can be written as the inverse limit of the measures
supported on finite subsets πn(X); this follows from our having shown that
X = supn πn(X) and the fact (quoted from [19]) that the Lawson topology on
the family of antichains is the same as the Vietoris topology, which coincides
with the topology used to form the inverse limit.

3.2 A Motivating Example

The following example is from Section 3 of [20].

Definition 1. A probabilistic automaton is a tuple (S,A, q0, D) where S is a
finite set of states, A a finite set of actions, q0 ∈ S a start state, and D ⊆
S × Prob(A× S) a transition relation that assigns to each state s0 a probability
distribution

∑
A×S r(s0,(a,s))δ(a,s) on A× S.

If we start such an automaton in its start state – which amounts to assigning it
the starting distribution δq0 , and then follow the automaton as it evolves, then
we see a sequence of global trace distributions that describe the step-by-step
evolution of the automaton:

1. δq0 ,
2.
∑

(a1,s1)∈A×S r(q0,(a1,s1))δq0a1s1 ,

Anatomy of a Domain of Continuous Random Variables II 237

3.
∑

(a1,s1)∈A×S r(q0,(a1,s1))(
∑

(a2,s2)∈A×S r(s1,(a2,s2))δq0a1s1a2s2),

...

If we strip away the probabilities, we have a nondeterministic finite state automa-
ton (albeit one without final states), and the resulting automaton generates a
language that is a subset of (S ×A)∞. This automaton generates the sequence

{q0}, {(q0s1a1 | r(q0,(s1,a1)) �= 0}, {q0s1a1s2a2 | r(q0,(s1,a1)), r(s1,(a2,s2)) �= 0},

Note that the sequence of sets of states this automaton generates is a family of
finite antichains, which we showed in Section 2 is a Scott subdomain of PC((S×
A)∞) under the Egli-Milner order. Moreover, the projections πmn : (S×A)≤n →
(S × A)≤m for m ≤ n map the antichain of possible states at the nth stage to
those at the mth stage, by truncation.

Since Prob is a monad on Comp, the mappings πmn lift to map-
pings Prob(πmn) : Prob((S × A)≤n) → Prob((S × A)≤m). Using the
mappings πmm+1, we see that each succeeding distribution is projected
onto the previous distribution. For example, the second distribution∑

(a1,s1)∈A×S r(q0,(a1,s1))δq0a1s1 collapses to δq0 , and the third distribution∑
(a1,s1)∈A×S r(q0,(a1,s1))(

∑
(a2,s2)∈A×S r(s1,(a2,s2))δq0a1s1a2s2) collapses to the

second. Thus, Prob lifts the order on AC((S×A)∞) to Prob(AC((S×A)∞)), and
it is this order we will use in defining the order on the family of thin probability
measures, and eventually on the domain of continuous random variables over a
bounded complete domain. We now make this observation precise.

3.3 A Bounded Complete Domain of Thin Measures

The following form the main results from [20]; they appear in Sections 4 and 5.

Definition 2. If Y is a compact Hausdorff space and X ⊆ Y is a compact
subspace of Y , then for μ ∈ Prob(Y), then we say μ has full support on X if
suppμ = X. We denote by Prob†(X) the family of μ ∈ Prob(Y) having full
support on X.

Definition 3. For a finite alphabet A, we define ΘProb(A∞) ≡⊕
X∈AC(A∞) Prob

†(X) to be the direct sum of the family of probability

measures in Prob†(X) as X ranges over AC(A∞). These are the thin prob-
ability measures on A∞, those that are fully supported on Lawson-compact
antichains in A∞. We order ΘProb(A∞) by μ ≤ ν iff π↓(suppμ)(ν) = μ.

The result summarizes a series of results from [20] about the structure of
ΘProb(A∗).

Proposition 4. Let A be a finite alphabet and let AC(A∞) be the family of
Lawson-compact antichains in A∞. Then:

1. If f : X → Y is a continuous map between compacta, then f(μ) = ν implies
f(suppμ) = supp ν.

238 M. Mislove

2. The family (ΘProb(A∞),≤) is a dcpo.

3. The mapping supp: ΘProb(A∞) → AC(A∞) sending each measure μ to its
support in the Lawson topology is Scott continuous.

4. If μ ∈ ΘProb(A∞) and F ⊆ A∗ is finite with πF (suppμ) = F , then πF (μ)+
μ in Prob†(X).

Theorem 6. If A is a finite alphabet, then ΘProb(A∞) is a bounded complete
algebraic domain.

n-Ary Probabilistic Choice Algebras. In [10], the authors define coin al-
gebras as domains P that have a continuous operation +: [0, 1] × P × P → P
satisfying x ≤ x +p x and x +1 y and x +0 y are independent of their second
and first arguments, respectively. They also show that their family of continu-
ous random variables over a domain X are free coin algebras. We now define a
similar class of algebras and prove a similar freeness result.

Definition 4. For n > 0, let Δn = {(r1, . . . , rn) ∈ [0, 1]n |
∑

i ri = 1}. An
n-ary probabilistic algebra is a domain P that supports an operation +n : Δn ×
Pn → P satisfying the properties:

1. +n((r1, . . . , rn), (p1, . . . , pn)) ≡
∑

i≤n ripi : Δn × Pn → P is Scott continu-
ous, and

2. For each i ≤ n, if (r1, . . . , rn) ∈ Δn and ri = 0, then (p1, . . . , pn) �→∑
j≤n rjpj is independent of its ith input.

For A = {a1, . . . , an}, define +n on Δn ×
⊕

X∈AC(A∗) Prob
†(X) as follows:

– Given μ1, . . . , μn ∈
⊕

X∈AC(A∗) Prob
†(X), let S = Max(

⋃
i≤n suppμi), and

for x ∈ suppμi, let S(x) = ↑x ∩ S.
– If μi =

∑
x∈suppμi

rxδx, then define φSai
(μi) =

∑
x∈suppμi

rx
|S(x)|

∑
y∈S(x) δyai .

– Then define

+n : Δn ×
⊕

X∈AC(A∗)

Prob†(X)→
⊕

X∈AC(A∗)

Prob†(X) by

+n((r1, . . . , rn), (μ1, . . . , μn)) =
∑
i≤n

riφ
S
ai
(μi).

Proposition 5. If A = {a, . . . , an} is a finite alphabet, then ΘProb(A∞) is an
n-ary probabilistic algebra under the continuous extension of the operation given
above to all of ΘProb(A∞).

Theorem 7. If P is an n-ary probabilistic algebra and A is a finite alphabet
with |A| = n, then given any monotone map f : A∞ → P , there is a unique
continuous map F : ΘProb(A∞)→ P satisfying F (

∑
i≤n riμi) =

∑
i≤n rif(μi).

Anatomy of a Domain of Continuous Random Variables II 239

4 Continuous Random Variables

Recall that a random variable is a measurable function f : (X,ΣX)→ (Y,ΣY),
where ΣX and ΣY are σ-algebras on X and Y , respectively, where f is measur-
able iff f−1(A) ∈ ΣX for each A ∈ ΣY . If X and Y have topologies that are used
to generate ΣX and ΣY , then these algebras are called Borel σ-algebras. We are
interested in the case that X and Y arise from coherent domains, and the ΣX

and ΣY are the Borel algebras generated by the Scott topologies. We note that
these are the same as the Borel algebras generated by the Lawson topologies.

If f : X → Y is continuous with respect to topologies onX and Y , respectively,
and if the σ-algebrasΣX and ΣY are the Borel algebras for these topologies, then
f is measurable. In our setting, the topologies will either be the Scott- or Lawson
topologies X and Y inherit from their ambient domains, but the σ-algebras they
generate are the same.

Definition 5. Let A be a finite alphabet, and let X ∈ AC(A∞) be a Lawson-
compact antichain. If D is a bounded complete domain, we let [X → D] =
{f : X → D | f Lawson continuous}, where we endow X with the Lawson topol-
ogy inherited from A∞ and D with its Scott topology. We let

ΘRVA∞(D) =
⊕

X∈AC(A∞)

Prob†(X)× [X → D]

endowed with the partial order

(μ, f) ≤ (ν, g) iff πX(ν) = μ & f ◦ πX |supp ν ≤ g.

Theorem 8. If A is a finite alphabet and D is a bounded complete domain, then
ΘRVA∞(D) is a bounded complete domain where

(μ, f)+ (ν, g) iff μ ≤ ν, suppμ ⊆ A∗ finite, and

f ◦ πsuppμ(x)+ g(x) (∀x ∈ supp ν).

Proof. (Sketch) We know from Theorem 6 that ΘProb(A∗) is a bounded com-
plete algebraic domain in the indicated order, and Proposition 4 shows that
μ + ν iff πF (μ) + μ for each μ ∈ Prob†(X), for each X ∈ AC(A∞). Further,
Theorerm 3 implies Θ[A∞ → D] is bounded complete with [X → D] ≤ [Y → D]
iff X ≤ Y ∈ AC(A∞). Then the product ΘProb(A∗) × Θ[A∞ → D] is
bounded complete. Thus, a directed set S ⊆ ΘRVA∞(D) has a supremum in
ΘProb(A∗)×Θ[A∞ → D] of the form (μ, f) where suppμ = X and f ∈ [X → D]
by the proof of Theorem 3, so (μ, f) ∈ ΘRVA∞(D), showing ΘRVA∞(D) is di-
rected complete. The facts that ΘProb(A∗) × Θ[A∞ → D], as well as each of
its factors are bounded complete domains imply the same is true of the family
ΘRVA∞(D).
�

4.1 Adding Structure to ΘRVA∞(D)

We want to show that ΘRVA∞(D) is the object level of a monad, but to do that,
we need some algebraic structure on this family. We start by noting that, for a

240 M. Mislove

finite alphabet A, the concatenation operation · : A∞×A∞ → A∞ is continuous
with respect to the Lawson topology; in fact, (A∞, ·) is the free compact monoid
overA with this topology (this is an easy exercise, beginning with the observation
that {s} is open in the Lawson topology for any finite word s, since A is finite,
and using the fact that concatenation is monotone in the second argument). But
concatenation is not monotone: s ≤ t does not imply s ·w ≤ t ·w. A way around
this is to avoid words that compare – this is the reason we have been focusing
on measures supported on Lawson-compact antichains, since concatenation is
monotone on such subsets.

Next, we can apply the probability monad Prob : CompMon → CompMon
on compact Hausdorff monoids, and concatenation lifts to convolution of mea-
sures: (μ, ν) �→ μ ∗ ν : ΘProb(A∞) × ΘProb(A∞) → ΘProb(A∞) which makes
(ΘProb(A∞), ∗) a compact monoid (the identity is δ〈 〉, point mass over the empty
word):

Proposition 6. Let A be a finite alphabet, then convolution ∗ : ΘProb(A∞) ×
ΘProb(A∞)→ ΘProb(A∞) is Lawson continuous.

Proof. Since the support of each measure is an antichain, and since convolution
is Lawson continuous, it also is monotone. Thus, the only issue is whether μ ∗ ν
is supported on a Lawson-compact antichain if μ and ν are. But from [11], we
know that suppμ∗ν = suppμ ·supp ν, where we are extending the concatenation
operation to subsets of A∞. On any compact monoid, this is a well-defined,
continuous operation, and if suppμ and supp ν are antichains, then so is suppμ ·
supp ν: if x, x′ ∈ suppμ and y, y′ ∈ supp ν, then x and x′ are incomparable, and
so are y and y′. But then x · y is incomparable with x′ · y′: if x · y ≤ x′ · y′, then
x ≤ x′ · y′. Since x �≤ x′, this means there is some w with x′ · w = x, which
implies x′ ≤ x, a contradiction.
�

Example 4. Since convolution is Lawson continuous, it might be tempting to
assume that it is also monotone, and hence Scott continuous when restricted to
antichains. This is not the case. For example, if s, t ∈ A∗ satisfy s < t, and if
we choose u ∈ A∗ with su �≤ tu, then we have an example where concatenation
· : A∞×A∞ → A∞ is not monotone – namely, at (s, u) ≤ (t, u) ∈ A∞×A∞. This
example lifts to ∗ : ΘProb(A∞)×ΘProb(A∞)→ ΘProb(A∞) via ∗(δs, δu) = δsu
and ∗(δt, δu) = δtu.

We will revisit this example when examine the nature of the monad structure
on ΘRVA∞(D) for a bounded complete domain D in Example 5.

For the next result, we recall the notation used in Proposition 5. If μ1, . . . , μn ∈
ΘProb(A∗), then

– S = Max(
⋃

i≤n suppμi), let Si = ↑ suppμi ∩ S, and for x ∈ suppμi, let
S(x) = ↑x ∩ S.

– φSai
(μi) =

∑
x∈suppμi

μi(x)
|S(x)|

∑
y∈S(x) δyai .

Anatomy of a Domain of Continuous Random Variables II 241

Theorem 9. Let A = {a1, · · · , an} be a finite alphabet, and let D be a bounded
complete domain. Then ΘRVA∞(D) is an n-ary probabilistic algebra where

∑
i≤n

ri(μi, fi) =

(∑
i

riφ
S
ai
(μi),

·⋃
i≤n

fi ◦ πsuppμi |Si

)
.

Proof. From Proposition 5 we know ΘProb(A∗) is an n-ary probabilistic alge-
bra using the definition above for the first component. The proof of Propo-
sition 6 shows that the concatenation of antichains is an antichain. In par-
ticular, if X1, . . . , Xn ∈ AC(A∞), then φSa1

(X1), . . . , φ
S
an
(Xn) is a family of

pairwise disjoint antichains by construction. This implies the function
·⋃
ifi ◦

πsuppμi |Si :
⋃

i φi(Xi) → D is well-defined and it’s continuous because the fi’s
and the πsuppμi |Si ’s are. The proof of the rest is routine.
�

4.2 Towards a Monad

Following the development in [10], the results we have established allow us to
show that ΘRVA∞(D) is the object map of a monad.

Theorem 10. If A is a finite alphabet, the D �→ ΘRVA∞(D) is the object map
of a monad.

Proof. We define the unit of the monad by ηD : D → ΘRVA∞(D) by ηD(x) =
(δ〈 〉, χx), where χx(〈 〉) = x, and 〈 〉 denotes the empty word.

For h : D → ΘRVA∞(E) with E a bounded complete domain, the definition of
h† : ΘRVA∞(D) → ΘRVA∞(E) is more complicated. We define h† on the basis
(
∑

i≤n riδsi , f), where {si | i ≤ n} ⊆ A∗ is a finite antichain and f : {si | i ≤
n} → B(D), a basis for D, and then extend by continuity.

We begin by noting that h : D → ΘRVA∞(E) means h(x) = (μx, fx), so using
π1 and π2 to denote the obvious projections to

⊕
X∈AC(A∞(X) and to [X → E],

respectively, we can write h(x) = (π1 ◦ h(x), π2 ◦ h(x)). Then we can define the
mapping h† : ΘRVA∗(D)→ ΘRVA∞(E) by

h†(μ, f) = h†(
∑

x∈suppμ

rxδx, f) =

(∑
x∈suppμ

rx (δx ∗ (π1 ◦ h ◦ f)(x)) , g
)
,

where ∗ denotes convolution and g :
⋃

x∈suppμ x · supp(π1 ◦ h ◦ f)(x) → E is
g(x · y) = (π2 ◦ h ◦ f)(x)(y); this makes sense because x ∈ suppμ implies f(x) ∈
D, which in turn implies (π2 ◦ h ◦ f)(x) ∈ [supp(π1 ◦ h ◦ f)(x) → E], and
y ∈ supp(π1 ◦ h ◦ f)(x).

Note that (π1 ◦ h ◦ f)(x) is a thin probability measure on A∞, so its support
is an antichain. It follows from Proposition 6 that supp δx ∗ (π1 ◦ h ◦ f)(x) is
an antichain for each x ∈ suppμ, and since suppμ is an antichain, it follows
that

∑
x∈suppμ rx (δx ∗ (π1 ◦ h ◦ f)(x)) is one as well. Hence π1(h

†(μ, f)) is a
thin probability measure on A∞.

242 M. Mislove

By definition (π2◦h◦f)(x) ∈ [supp(π1◦h◦f)(x)→ E] is continuous, and since⋃
x∈suppμ x · supp(π1 ◦h◦ f)(x) is a union of pairwise disjont compact antichains

in A∞, it follows that π2(h
†(μ, f)) = g :

⋃
x∈suppμ x · supp(π1 ◦ h ◦ f)(x)→ E is

continuous.
We now prove h �→ h† satisfies the monad laws:

η†D = idΘRVA∞ (D):

η†D(μ, f) = (
∑

x∈suppμ

rx(δx ∗ (π1 ◦ ηD ◦ f)), (π2 ◦ ηD ◦ f))

= (
∑

x∈suppμ

rx(δx ∗ (δ〈 〉)), χf(x)) = (μ, f).

h† ◦ ηD = h:

h† ◦ ηD(x) = h†(δ〈 〉, χx) = (δ〈 〉 ∗ (π1 ◦ h ◦ χx), π2 ◦ χx)

= ((π1 ◦ h)(x), (π2 ◦ h)(x)) = h(x)

k† ◦ h† = (k† ◦ h)†: We assume k : E → ΘRVA∞(F). Then

k† ◦ h†(μ, f) = k†(
∑

x∈suppμ

rx (δx ∗ (π1 ◦ h ◦ f)(x)) , (π2 ◦ h ◦ f)(x)))

= k†(
∑

x∈suppμ

rx(δx ∗ (μh◦f)(x)), g(h◦f)(x))

Assuming μ(h◦f)(x) =
∑

y∈suppμ(h◦f)(x)
syδy, we can rewrite this as

k† ◦ h†(μ, f) = k†(
∑

x∈suppμ

rx(δx ∗ (
∑

y∈suppμh◦f)(x)

syδy)), g(h◦f)(x))

= (
∑

x∈suppμ

∑
y∈suppμ(h◦f)(x)

rxsyδx ∗ δy ∗ (π1 ◦ k ◦ g(h◦f)(x)(y)),

π2 ◦ k ◦ g(h◦f)(x)(y)) (2)

where throughout we rewrite π1◦k◦g(h◦f)(x) = μk◦g(h◦f)(x)
and π2◦k◦g(h◦f)(x) =

gk◦g(h◦f)(x)
.

Starting on the other end, we find

(k† ◦ h)†(μ, f) = (
∑

x∈suppμ

rx(δx ∗ (π1 ◦ k† ◦ h ◦ f)(x)), (π2 ◦ k† ◦ h ◦ f)(x))

= (
∑

x∈suppμ

rx(δx ∗ μk†((h◦f)(x))), gk†((h◦f)(x))). (3)

Now,

k†((h ◦ f)(x)) = k†(μ(h◦f)(x), g(h◦f)(x)) = k†(
∑

y∈suppμ(h◦f)(x)

syδy, g(h◦f)(x))

= (
∑

y∈suppμ(h◦f)(x)

syδy ∗ (π1 ◦ k ◦ g(h◦f)(x)(y)), π2 ◦ k ◦ g(h◦f)(x)(y))

Anatomy of a Domain of Continuous Random Variables II 243

Substituting this last in Equation 2 then yields Equation 3, which proves the
result.
�

Example 5. The observant reader will have noticed two things: first, we haven’t
said on what category the construction D �→ ΘRVA∞(D) forms a monad, and
second, we haven’t shown that the Kleisli extension h† is Scott continuous. The
fact is that the second is not true, as we now demonstrate, and this implies
that the construction is not a monad on any category of domains and Scott
continuous maps.

Consider two elements s, t ∈ A∗ from Example 4 with s < t and the element
u ∈ A∗ with su �≤ tu. Then δs < δt ∈ ΘProb(A∞). We take D = A∞, and
let h : A∞ → ΘRVA∞(A∞) by h(w) = (δw, ιw), where ιx : {x} → A∞ is the
inclusion of x ∈ A∞ into A∞. Finally, let f : {s} → A∞ and g : {t} → A∞ satisfy
f(s) = g(t) = u. Then, (δs, f) ≤ (δt, g) ∈ ΘRVA∞(A∞) and our definition of h†

implies
π1 ◦ h†(δs, f) = δsu and π1 ◦ h†(δt, g) = δtu.

But s < t and our choice of u imply su �≤ tu, which in turn implies

π1 ◦ h†(δs, f) = δsu �≤ δtu = π1 ◦ h†(δt, g),

from which it follows that h†(δs, f) �≤ h†(δt, g), so h† : ΘRVA∞(A∞) →
ΘRVA∞(A∞) is not monotone, hence not Scott continuous.

4.3 Relation to the Results of Goubault-Larrecq and Varacca

This paper and [20] were inspired by the work of Goubault-Larrecq and Varacca
in [10]. Our goal has been to understand their approach in terms of domain-
theoretic constructions, and to reveal in more detail what is taking place. While
their presentation is necessarily sparse (given the limitations of a conference
submission), we have taken more time to develop the approach in detail. We
also have chosen a more general setting — instead of focusing on the case of
the Cantor fan, we have developed our results assuming we are working over an
arbitrary finite alphabet. Nevertheless, our results subsume theirs for A = {0, 1},
which is to say our construction yields their construction in the case A = {0, 1}.
The proof of this relies on checking that our constructions agree with theirs in
the case of the bases for ΘProb({0, 1}∗) and of

⊕
X∈AC({0,1}∞)[X → D], for D

a bounded complete domain. This is a routine check to carry out. Of course,
the main consequence is that there is a flaw in their work. Our example above
applies equally in their setting, so their construction is not a monad over BCD.

5 Summary and Future Work

In this paper and in [20] we have presented a reconstruction of the model of
continuous random variables over bounded complete domains first devised by
Goubault-Larrecq and Varraca in [10]. We also have extended the results to

244 M. Mislove

apply to an arbitrary finite alphabet, instead of limiting the focus to the case
A = {0, 1}. Our motivation is a more general development that would be di-
rectly applicable to settings such as process calculi over finite alphabets, where
one wants to add probabilistic choice to an existing model. Our main contribu-
tions are the clarification that the structure of the model relies fundamentally
on the family of Lawson-compact antichains in the domain A∞. We have also
shown that the monad construction does not lie within BCD – or any category
of domains and Scott-continuous maps. We leave as an open problem how to
repair this problem – we believe a new idea is needed, since the internal monoid
structure on A∞ using concatenation is not a monotone operation, and so the
convolution operation it induces on Prob(A∞) is not monotone either.

Nevertheless, the proof that the monad laws hold – a proof essentially taken
from [10] – is valid, so there is a monad. The question is what category it is on.
We believe the right category here is one involving monoids and their probability
measures, and continuous maps into (bounded complete) domains. But how to
make sense of this for computational applications is not clear to us. We also
remain intrigued by the construction of the monad, which uses convolution in a
way we have not seen before – the second component in the convolved product
is parameterized by the first; we’d like to understand this better. This is one
reason we believe the probability monad Prob on monoids is at play here, but
we do not understand exactly how.

Another problem we are interested in exploring is the relation between au-
tomata with discrete state spaces and those with continuous state spaces, e.g.,
the unit interval. We believe there is a role for the models described here in
understanding such systems. As pointed out by one of the anonymous referees,
this idea is potentially related to the approximation of labelled Markov processes
over continuous state spaces by ones with finite state space, as explored in [6].

Acknowledgements. The author thanks Tyler Barker for several very useful
and stimulating discussions, and for pointing out the problem with the mon-
tonicity of the Kleisli extension for the monad construction.. The author also
thanks the anonymous referees for their helpful suggestions. Finally, the author
gratefully acknowledges the support of the US NSF during the preparation of
this paper.

References

1. Abramsky, S.: Domain theory in logical form. Annals of Pure and Applied Logic 51,
1–77 (1991)

2. Abramsky, S., Jung, A.: Domain Theory. In: Handbook of Logic in Computer
Science, pp. 1–168. Clarendon Press (1994)

3. Beck, J.: Distributive laws, Seminar on Triples and Categorical Homology Theory.
Lecture Notes in Mathematics, vol. 80, pp. 119–140 (1969)

4. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM 31, 560–599 (1984)

Anatomy of a Domain of Continuous Random Variables II 245

5. Fedorchuk, V.: Probability measures in topology. Russ. Math. Surv. 46, 45–93
(1991)

6. Chaput, P., Danos, V., Panangaden, P., Plotkin, G.: Approximating Markov
Processes by Averaging. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp.
127–138. Springer, Heidelberg (2009)

7. Gierz, G., Hofmann, K.H., Lawson, J.D., Mislove, M., Scott, D.: Continuous Lat-
tices and Domains. Cambridge University Press (2003)

8. Gehrke, M., Grigorieff, S., Pin, J.-É.: Duality and equational theory of regu-
lar languages. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 246–257. Springer, Heidelberg (2008)

9. Gehrke, M.: Stone duality and the recognisable languages over an algebra. In:
Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp.
236–250. Springer, Heidelberg (2009)

10. Goubault-Larrecq, J., Varacca, D.: Continuous random variables. In: LICS 2011,
pp. 97–106. IEEE Press (2011)

11. Hofmann, K.H., Mislove, M.: Compact affine monoids, harmonic analysis and in-
formation theory. In: Mathematical Foundations of Information Flow, AMS Pro-
ceedings of Symposia on Applied Mathematics, vol. 71, pp. 125–182 (2012)

12. Hyland, M., Plotkin, G.D., Power, J.: Combining computational effects: commu-
tativity and sum. In: IFIP TCS 2002, pp. 474–484 (2002)

13. Jones, C.: Probabilistic Nondeterminism. PhD Thesis, University of Edinburgh
(1988)

14. Jung, A.: The classification of continuous domains (Extended Abstract). In: LICS
1990, pp. 35–40. IEEE Press (1990)

15. Jung, A., Tix, R.: The troublesome probabilistic powerdomain. ENTCS 13, 70–91
(1998)

16. Keimel, K., Plotkin, G.D., Tix, R.: Semantic domains for combining probability
and non-Determinism. ENTCS 222, 2–99 (2009)

17. Mislove, M.: Nondeterminism and probabilistic choice: obeying the laws. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 350–374. Springer,
Heidelberg (2000)

18. Mislove, M.: Discrete random variables over domains. Theoretical Computer Sci-
ence 380, 181–198 (2007)

19. Mislove, M.: Topology domain theory and theoretical computer science. Topology
and Its Applications 89, 3–59 (1998)

20. Mislove, M.: Anatomy of a domain of continuous random variables I. Submitted
to TCS, 19 p.

21. Moggi, E.: Computational Lambda-calculus and monads. In: LICS 1989, pp. 14–23.
IEEE Press (1989)

22. Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen, M.,
Engberg, U. (eds.) Fossacs 2002. LNCS, vol. 2303, pp. 342–356. Springer, Heidel-
berg (2002)

23. Saheb-Djarhomi, N.: CPOs of measures for nondeterminism. Theoretical Computer
Science 12, 19–37 (1980)

24. Scott, D.S.: Data types as lattices. SIAM J. Comput. 5, 522–587 (1976)
25. Varacca, D.: Two Denotational Models for Probabilistic Computation. PhD Thesis,

Aarhus University (2003)
26. Varacca, D., Winskel, G.: Distributing probability over nondeterminism. Mathe-

matical Structures in Computer Science 16 (2006)

Towards Nominal Abramsky

Andrzej S. Murawski1 and Nikos Tzevelekos2,	

1 University of Warwick
2 Queen Mary, University of London

Abstract. Since the discovery of fully abstract models of PCF in the early 1990s,
game semantics has expanded to a wide range of programming paradigms, cov-
ering effects like state, control, general references, non-determinism, probability
and concurrency. Those models revealed an interesting phenomenon referred to
as Abramsky’s cube: starting from the PCF model and relaxing each of its com-
binatorial conditions, one was led to capture a corresponding impure effect. In
this paper we initiate the construction of an analogous cube for nominal games, a
strand of game semantics developed in the last ten years that incorporates names
as semantic atoms and captures generative effects without using “bad-object”
constructors. In particular, we examine the stateful axis of the cube: starting from
games for higher-order references we move to full ground references, where
strategies respect visibility, and from there to purely functional behaviour and
innocent strategies.

Authors’ Note

Both authors met Samson at Oxford. Samson arrived there just in time to grill the first of
us as a D.Phil. examiner and a little later started supervising the second on his MFoCS
course.

Our life paths were closely intertwined afterwards. Andrzej joined the Algorithmic
Game Semantics team, while Nikos started his D.Phil. with Samson, to be followed by
a stint on the Logic of Interaction and Information Flow project.

Since Andrzej was supervised by Luke Ong, himself one of Samson’s students, we
belong to different generations of scientific offspring that can be traced back to Samson.
Still, Nikos does not quite like when Andrzej calls him “uncle”.

We are truly grateful to Samson for sound, reliable and insightful advice at various
stages of our academic lives.

Happy Birthday, Samson!

1 Introduction

Game semantics emerged as a new semantic theory in the 1990s through the quest for a
fully abstract model of PCF [AJM00,HO00]. In particular, models proposed by Hyland
and Ong [HO00], and Nickau [Nic94] have brought to the fore a number of techni-
cal constraints on how games should be designed, such as innocence, bracketing and

� Supported by a Royal Academy of Engineering research fellowship.

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 246–263, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Nominal Abramsky 247

visibility. Abramsky suggested that relaxations of the constraints can lead to a whole
hierarchy of models capturing a variety of impure computational features, a paradigm
that came to be known as Abramsky’s cube. The most immediate illustrations of this
methodology were subsequent papers about state [AM97], control [Lai97] and general
references [AHM98], in which violations of the above-mentioned three constraints were
related precisely to three different programming features. The three directions could be
viewed as three axes of a “cube”, which has ever since grown to embrace, among others,
polymorphism, non-determinism, probability and concurrency.

A related advance in the 2000s was the development of nominal game seman-
tics [AGM+04,Lai04,Tze09], which aimed to provide a more accurate account of gen-
erative effects such as references and, specifically, to target the bad-variable problem
in game semantics. The problem stemmed from the fact that references were modelled
as pairs of reading and writing methods, thus giving rise to objects of reference type
whose behaviour need not be compatible with that of genuine reference cells. Nominal
game models rely on collections of names that can be used throughout the play as part
of a move. Operationally, they correspond to reference names in the implementation.

In this paper we follow the paradigm of Abramsky’s cube in the nominal setting
and uncover constraints corresponding respectively to the expressive power of general
references (references to values of any type can be created), ground-type storage (only
references to ground-type values, such as numbers or names, are allowed) and pure
functional computation (no references can be created).

Our point of departure is our nominal model of RefML [MT11], which accounts
for computation with general references. To study restrictions on the creation of ref-
erences, we consider two sublanguages, called GrML and FunML respectively, which
embody respectively ground-type storage and pure functional computation. The model
from [MT11] provides a basic notion of a strategy and we set out to find restrictions
corresponding to GrML and FunML. In non-nominal modelling, the borderline between
general and ground-type storage could be captured by the visibility condition [AHM98].
Although this condition can be easily reintroduced in the nominal setting, it is not pre-
served by composition. To regain compositionality, we also need to eliminate the use
of higher-order local state, that is, the generation of names of higher-order reference
cells by programs. This results in a restriction that we call groundness, which provides
a semantic match for GrML. To pass from ground-type storage to pure functional com-
putation, we introduce a condition inspired by innocence. In order to make the course
of play totally dependent on view, we forbid the creation of any names by programs
and stipulate that copycat behaviour is followed whenever the environment requests the
value of a reference whose name cannot be found in the current P -view.

The conditions of groundness and innocence are accompanied by factorisation re-
sults, as in the original case of the cube, but they are a little more involved due to com-
plications that arise in the nominal setting. An elegant feature of the original cube was
the fact that the essence of the passage from functional computation could be attributed
to single representative strategies, corresponding respectively to a single integer-valued
memory cell and a single higher-order cell. In the nominal setting, in addition to these
strategies, one has to use families of name generators. Moreover, in order to pass to

248 A.S. Murawski and N. Tzevelekos

u,Γ
 () : unit
i ∈ Z

u,Γ
 i : int
a ∈ (u ∩ Aθ)
u,Γ
 a : ref θ

(x : θ) ∈ Γ
u,Γ
 x : θ

u,Γ
 M1 : int u,Γ
 M2 : int
u,Γ
 M1 ⊕M2 : int

u,Γ
 M : int u,Γ
 N0 : θ u,Γ
 N1 : θ
u,Γ
 if M then N1 else N0 : θ

u,Γ
 M : ref θ u,Γ
 N : θ
u,Γ
 M :=N : unit

u,Γ
 M : ref θ
u,Γ
 !M : θ

u,Γ
 M : ref θ u,Γ
 N : ref θ
u,Γ
 M = N : int

u,Γ
 M : θ
u,Γ
 refθ(M) : ref θ

u,Γ
 M : θ → θ′ u,Γ
 N : θ
u,Γ
 MN : θ′

u,Γ ∪ {x : θ}
 M : θ′

u,Γ
 λxθ.M : θ → θ′

Fig. 1. Syntax of RefML. ⊕ stands for binary integer functions, e.g. +, −, ∗, = .

innocence, it is necessary to provide a facility for storing an unbounded collection of
names.

2 RefML

We start off by introducing the programming language RefML [MT11], which we shall
work with throughout the paper. Its types are defined by the grammar below.

θ, θ′ ::= unit | int | ref θ | θ → θ′

RefML is best described as the call-by-value λ-calculus over the ground types unit, int,
and ref θ, augmented with basic commands (termination), primitives for integer arith-
metic (constants, zero-test, binary integer functions) and higher-order reference ma-
nipulation (reference names, dereferencing, assignment, memory allocation, reference
equality testing). The typing rules are given in Figure 1, where A =

⊎
θ Aθ stands for

a countable set of reference names (one such set for each type θ), or just names, and u
refers to a finite subset of A.

Following standard conventions, we write M ;N for the term (λzθ.N)M , where z
does not occur in N and θ matches the type of M . let x = M in N will stand for
(λxθ .N)M in general. The values of the language are given by the syntax:

V ::= () | i | a | x | λxθ .M.

To define the operational semantics of RefML, we introduce a syntactic notion of store.
A syntactic store (or just store) will simply be a function from a finite set of names to
values such that the type of each name matches the type of its assigned value. We write
S[a �→ V] for the store obtained by updating S so that a is mapped to V (this may
extend the domain of S). Given a store S and a term M we say that the pair (S,M) is
compatible if all names occurring in M are from the domain of S.

The small-step reduction rules are given as judgments of the shape (S,M) →
(S′,M ′), where (S,M), (S′,M ′) are compatible and dom(S) ⊆ dom(S′). We present
them in Figure 2, where we let a, b range over names. Evaluation contexts are given by

Towards Nominal Abramsky 249

(S, if 0 then N1 else N0) → (S,N0) (S, a = b) → (S, 0)

(S, if i then N1 else N0) → (S,N1) (S, a = a) → (S, 1)

(S, (λx.M)V) → (S,M [V/x]) (S, refθ(V)) → (S[a′ �→ V], a′)

(S, !a) → (S, S(a)) (S,M) → (S′,M ′)
(S,E[M]) → (S′, E[M ′])(S, a :=V) → (S[a �→ V], ())

Fig. 2. Small-step operational semantics of RefML (side-conditions: i
= 0, a
= b, a′/∈dom(S))

E ::= (λx.N) | N | ⊕N | i⊕ | = N | a =

| ! | :=N | a := | refθ() | if then N1 else N0.

We say that (S,M) evaluates to (S′, V) if (S,M) →→ (S′, V), with V a value. For
%M : unit we say thatM converges, writtenM ⇓, if (∅,M) evaluates to some (S′, ()).

Example 1. It is well known that higher-order references are sufficiently powerful to
enable one to define fixed-point combinators [AHM98] and, consequently, divergent
terms Ωθ at any type. Also, for any type θ, we define the terms newθ by:

newunit = refunit() newθ→θ′ = refθ→θ′(λxθ .Ωθ′)

newint = ref int(0) newrefi θ′′ = ref (ref (· · · ref (newθ′′)))

where θ′′ is one of unit, int or a function type. These terms create new names and
initialise them with default values.

Definition 2. The term-in-context Γ % M1 : θ approximates Γ % M2 : θ (written
Γ % M1

�∼M2) if C[M1] ⇓ implies C[M2] ⇓ for any context C[−] such that %
C[M1], C[M2] : unit. Two terms-in-context are equivalent if they approximate each
other (written Γ %M1

∼=M2).

In the remainder of the paper we shall also discuss two specific fragments of RefML.

– GrML will comprise all RefML-terms in which all occurrences of refθ(M) are re-
stricted to non-functional types, i.e. θ cannot have the shape θ1 → θ2. Thus, GrML
is the sublanguage of RefML allowing for local storage of ground values only.

– FunML will consist of all RefML-terms that do not have any occurrences of
refθ(M). Thus, FunML is also a subset of GrML. FunML can be viewed as a purely
functional fragment of RefML, since terms cannot create reference cells.

3 Game Model

Here we review the game model of RefML first presented in [MT11]. Its distinctive
feature is the presence of stores in moves and the possibility of justifying a move with a
higher-order reference cell in addition to the standard option of justifying a move with
another.

250 A.S. Murawski and N. Tzevelekos

MA⊗B = (IA × IB) � ĪA � ĪB

IA⊗B = IA × IB

λA⊗B = [(iA, iB) �→ PA, λA � ĪA, λB � ĪB]

A⊗B = {((iA, iB),m) | iA
Am ∨ iB
B m}

∪ (
A� ĪA2) ∪ (
B� ĪB2)

MA⇒B = {�} �MA �MB

IA⇒B = {�}
λA⇒B = [� �→ PA, λA[iA �→ OQ], λB]

A⇒B = {(�, iA)} ∪ {(iA, iB)} ∪
A∪
B

Fig. 3. Arena constructions. We write ĪA = MA \ IA.

Formally, the model is constructed using mathematical objects (moves, plays, strate-
gies) that feature names drawn from the set

A =
⊎

θ
Aθ .

Although names underpin various elements of our model, we do not want to delve
into the precise nature of the sets containing them. Hence, all of our definitions pre-
serve name-invariance, i.e. our objects are (strong) nominal sets [GP02,Tze09]. Note
that we do not need the full power of the theory but mainly the basic notion of name-
permutation. Here permutations are bijections π : A → A with finite support which
respect the indexing of name-sets. For an element x belonging to a (nominal) set X we
write ν(x) for its name-support, which is the set of names occurring in x. Moreover, for
any x, y ∈ X , we write x ∼ y if there is a permutation π such that x = π · y.

Our model is couched in the Honda-Yoshida style of modelling call-by-value com-
putation [HY99]. Before we define what it means to play, we introduce the auxiliary
concept of an arena.

Definition 3. An arena A = 〈MA, IA, λA,%A〉 is given by:

– a set of moves MA and a subset IA ⊆MA of initial ones,
– a labelling function λA :MA → {O,P} × {Q,A},
– a justification relation %A ⊆MA × (MA \ IA);

satisfying, for each m,m′ ∈MA, the conditions (πi is the ith projection function):

– m ∈ IA =⇒ λA(m) = (P,A),
– m %A m′ ∧ π2(λA(m)) = A =⇒ π2(λA(m

′)) = Q,
– m %A m′ =⇒ π1(λA(m)) �= π1(λA(m

′)).

We range over moves by m,n and use i, o, p to refer to initial moves, O-moves and
P -moves respectively. We let λA be the OP -complement of λA. Using the ⊗ and ⇒
constructions on arenas (Fig. 3), for each type θ we define the corresponding arena �θ�,
starting from the following definitions.

�unit� = 〈{�}, {�}, ∅, ∅〉 �int� = 〈Z,Z, ∅, ∅〉
�ref θ� = 〈Aθ,Aθ, ∅, ∅〉 �θ → θ′� = �θ�⇒ �θ′�

We write 1 for �unit�, Z for �int�, and Aθ for �ref θ�; and set Mφ =
⊎

θ,θ′ M�θ→θ′�.

Towards Nominal Abramsky 251

Although types are interpreted by arenas, the actual games will be played in preare-
nas, which are defined in the same way as arenas with the exception that initial moves
are O-questions. Given arenas A,B we define the prearena A→ B as follows.

MA→B =MA �MB λA→B = [λA[iA �→ OQ], λB]

IA→B = IA %A→B = {(iA, iB)}∪ %A ∪ %B

Our plays shall feature moves attached with stores, where the names appearing in a
play take values. We let the set Valθ of semantic values of type θ be I�θ� (so Valunit =
Valθ→θ′ = {�}, Valint = Z, Valref θ = Aθ), and let Val =

⊎
θ Valθ . A store Σ is a

type-preserving finite partial function from A to Val, and Sto is the set of all stores:

Sto = {Σ : A⇀ Val | |Σ| finite ∧ (a ∈ dom(Σ) ∩ Aθ =⇒ Σ(a) ∈ Valθ) }.

A move-with-store on a (pre)arenaA is a pair mΣ with m ∈MA and Σ ∈ Sto.

Definition 4. A justified sequence on a prearena A is a sequence of moves-with-store
from MA �Mφ such that, apart from the first move which must be of the form iΣ with
i ∈ IA, every move in s is equipped with a pointer to an earlier move, or to a name
inside the store of an earlier move. These pointers are called justification pointers and
are subject to the following constraints.

– If nT points to mΣ then either m,n ∈ MA and m %A n, or m,n ∈ Mθ→θ′ for
some θ, θ′ and m %�θ→θ′� n. We say that mΣ justifies nT .

– If nT points to a ∈ dom(Σ) of mΣ then a ∈ Aθ→θ′ for some θ, θ′, and n must be
an initial question in M�θ→θ′�. We say that mΣ a-justifies nT .

An intuitive way to comprehend pointers to a name a ∈ dom(Σ) ∩ Aθ→θ′ is to think
of them as pointing to the value � of a stored in Σ. Since the value of a is of function
type, its structure is not revealed at once, but it can be explored by players by invoking
the function, that is, by playing in �θ → θ′� from that initial �.

Note that a justified sequence on A contains moves from MA, called A-moves, and
moves from Mφ, which hereditarily point inside stores of other moves. The latter are
called φ-moves. We shall say thatmΣ is an ancestor of nT (or that nT is a descendant of
mΣ) if there is a chain of pointers from nT tom, possibly passing through stores on the
way. Similarly, we say that mΣ is an a-ancestor of nT (or that nT is an a-descendant
of mΣ) if there is a chain of pointers from nT to a in Σ (the chain may also be visiting
other stores). Note that each φ-move has a unique a-ancestor from MA.

For each S ⊆ A and Σ we define the closure of S under Σ as Σ∗(S) =
⋃

iΣ
i(S),

where Σ0(S) = S and Σi+1(S) = Σ(Σi(S)) ∩ A. The set of available names of a
justified sequence is defined inductively by Av(ε) = ∅ and

Av(snT)=

{
Av(s) there is an a-ancestor mΣ of nT and a /∈ Av(s≤mΣ)

Σ∗(Av(s) ∪ ν(n)) otherwise

where s≤mΣ is the subsequence of s up to mΣ . We shall be writing s � s′ to mean that
s is a subsequence of s′.

252 A.S. Murawski and N. Tzevelekos

Definition 5. Let A be a prearena. A justified sequence s on A is called a legal se-
quence, written s ∈ LA, if it satisfies the conditions below.

– No adjacent moves belong to the same player, and no move points to a move (or the
store of a move) of the same player (Alternation).

– The justifier of each answer is the most recent unanswered question (Bracketing).

We call s a play if it additionally satisfies:

– For any s′mΣ � s, dom(Σ) = Av(s′mΣ) (Frugality).

We write PA for the set of plays on A.

Example 6. Here are two plays on Aint→int → Z ⇒ Z (for the sake of clarity, we
omit pointers that would just point at preceding moves). We use double-line pointers to
highlight the justification pointers pointing at stores.

a(a,) �(a,) 1(a,) 1(a,) 3(a,) 3(a,) a(a,) �(a,) 1(a,) 1(a,) 3(a,) 3(a,)

The plays will be among those used to interpret the respective terms:

x : ref (int→ int) % !x : int→ int x : ref (int→ int) % λhint.(!x)h : int→ int

Each name appearing in a legal sequence s, i.e. such that a ∈ ν(s), is called a P -
name of s, written a ∈ P (s), if it is first introduced in s by a P -move, that is, there
is even-length s′mΣ � s such that a ∈ ν(mΣ) \ ν(s′). The set of O-names of s,
O(s), is defined dually. Clearly, ν(s) = O(s) � P (s). Moreover, let us define γ to
be the canonical function on justified sequences which imposes frugality by deleting
unavailable names from store-domains and all φ-moves that they hereditarily justify.
Concretely, γ(ε) = ε and:

γ(snT)=

{
γ(s) if there is an a-ancestor mΣ of nT and a /∈ Av(s≤mΣ);

γ(s) nT �Av(snT) otherwise.

Definition 7. A strategy σ on a prearenaA, written σ : A, is a set of even-length plays
of A satisfying:

– If soΣpΣ
′ ∈ σ then s ∈ σ (Even-prefix closure).

– If s ∈ σ and s ∼ t then t ∈ σ (Equivariance).
– If s1p

Σ1
1 , s2p

Σ2
2 ∈ σ and s1 ∼ s2 then s1p

Σ1
1 ∼ s2pΣ2

2 (Nominal determinacy).

Example 8. For each arena A there is an identity strategy, idA : A→ A, defined by

idA = { s ∈ P even
A→A | ∀s′ �even s. s′ � Al = s′ � Ar },

where the indices l, r distinguish the two copies ofA, and s′ � Ax is the subsequence of
s′ containing only moves from the x-copy, along with all φ-moves having a-ancestors
from the x-copy (for some a).

Towards Nominal Abramsky 253

The behaviour of idA is called copycat. More generally, we say that moves nTn′T ′
in a

play s are a copycat pair if they are consecutive in s, nT = n′T ′
, and if nT is justified

bym′Σ′
(or by some a ∈ dom(Σ′)) then n′T ′

is justified bymΣ (resp. by a ∈ dom(Σ))
wheremΣm′Σ′

are consecutive in s. It will be useful to spot copycat behaviours occur-
ring in plays exclusively between φ-moves with consecutive a-ancestors.

Definition 9. Let s be an alternating justified sequence in A, s′ � s be ending in
mΣm′Σ′

and let a ∈ dom(Σ) ∩ dom(Σ′) ∩ Aφ such that m′Σ′
is not a-justified by

mΣ . We say that (s, s′, a) is a copycat triple if, for all φ-moves nT in s which have
mΣ or m′Σ′

as an a-ancestor,

– if n has the same polarity asm then there is n′T ′
such that nTn′T ′

are a copycat pair,
– if n has the same polarity asm′ then there is n′T ′

such that n′T ′
nT are a copycat pair.

Example 10. We will be economical when writing stores and, in particular, compo-
nents of the form (a, �) will often be written simply as a. Also, we will omit mention-
ing the empty play from strategies. Copycat behaviour is exemplified in the strategy
σ : Aunit→unit → 1 = {aa�as} where each (aa�as, aa�a, a) is a copycat triple. For
example, the play

aa �a �a �a �a �a

O P O P O P

is in σ. The copycat behaviour means that, when P plays its first move �a (underlined),
he does not change the value of a in the store. Thus, subsequent questions byO pointing
to a in �a are responded to by copycat. The strategy turns out to be the denotation of
x : ref (unit→ unit) % () : unit.

We now turn to defining a suitable notion of interaction between plays. Given arenas
A,B,C, we define the prearena A→ B → C by:

MA→B→C =MA→B �MC λA→B→C = [λA→B[iB �→ PQ], λC]

IA→B→C = IA %A→B→C = %A→B ∪ {(iB, iC)}∪ %C

Let u be a justified sequence on A → B → C. We define u � AB to be u in which
all C-moves are suppressed, along with associated pointers and all φ-moves which are
a-descendants of C-moves. u � BC is defined analogously. u � AC is defined similarly
with the caveat that, if there was a pointer from a C-move to a B-move which in turn
had a pointer to an A-move, we add a pointer from the C-move to the A-move. Let us
write u �γ X for γ(u � X) with X ∈ {AB,BC,AC}. Below we shall often say that a
move is an O- or a P -move in X meaning ownership in the associated prearena.

Definition 11. A justified sequence u on A → B → C is an interaction sequence on
A,B,C if it satisfies bracketing and frugality and, for all X ∈ {AB,BC,AC}, we
have (u � X) ∈ LX and the following conditions hold.

– P (u �γ AB) ∩ P (u �γ BC) = ∅;
– O(u �γ AC) ∩ (P (u �γ AB) ∪ P (u �γ BC)) = ∅;
– For each u′ � u ending in mΣm′Σ′

and a ∈ dom(Σ′) if

254 A.S. Murawski and N. Tzevelekos

• m′ is a P -move in AB and a /∈ Av(u′ � AB),
• or m′ is a P -move in BC and a /∈ Av(u′ � BC),
• or m′ is an O-move in AC and a /∈ Av(u′ � AC),

thenΣ(a) = Σ′(a) and, moreover, if a ∈ Aφ then (u � X, u′ � X, a) are a copycat
triple, where X is the respective element of {AB,BC,AC}.

We write Int(A,B,C) for the set of interaction sequences on A,B,C, and σ‖τ for the
set of interactions between strategies σ : A→ B and τ : B → C:

σ‖τ = { u ∈ Int(A,B,C) | (u �γ AB) ∈ σ ∧ (u �γ BC) ∈ τ }.

We shall be referring to the last condition in the definition as the copycat condition.
According to it, during an interaction the players cannot change the parts of the store
which regard names that are not available to them. Moreover, in the case that these
names are of functional type, the players are obliged to copycat as far as a-descendants
of these names are concerned.

Example 12. Consider strategies σ : Aunit→int → 1⇒ Z and τ : 1⇒ Z→ Z given by
the set of all even prefixes of plays of the form shown on the left below (for all i ∈ Z).

σ : aa �a �a �a �a 3a ia ia

O P O P O P O P

τ : � � j j
O P O P

Aunit→int
σ �� 1⇒ Z

τ �� Z

O aa

P �a O

O �a P (1)

P �a O

O �a P (2)

P 3a O

O 3a P (3)

P 3a O

3a P

Their interaction is on the right above. We mark polarities for σ on the left of the dia-
gram, and for τ on the right. Consider point (1) in the interaction. In τ , P plays �a but a
is not available at that point, hence P must copycat from that point on at a-descendants
of (that occurrence of) �a. This is precisely what happens in points (2) and (3).

Definition 13. Given strategies σ : A → B and τ : B → C we define the composite
strategy σ; τ : A→ C to be { s ∈ PA→C | ∃u ∈ σ‖τ. s = u �γ AC }.

Strategy composition is well-defined and associative.

Definition 14. G is the category of arenas and strategies, in which strategies in the
prearena A→ B are morphisms between A and B.

In [MT11] we have shown how to interpret RefML in G so as to obtain a full abstraction
result. We refer to this interpretation by writing �Γ %M�.

Towards Nominal Abramsky 255

Example 15. Terms newθ from Example 1 are interpreted by the strategies nuθ : 1 →
Aθ, which create a fresh name of type θ and initialise it accordingly.

nuθ = { � a(a,v) | a ∈ Aθ ∧ v ∈ {0, �} }

In the remainder of the paper we identify subclasses of strategies that correspond to
denotations of GrML and FunML-terms respectively.

4 Groundness

This section is devoted to finding a class of strategies that characterise ground stor-
age, as embodied in GrML. The work predating nominal game semantics [AHM98] has
established visibility as the condition characterising the absence of higher-order refer-
ences. Visibility relies on the concept of a P -view [HO00], which can be adapted easily
to our setting.

Definition 16. The P -view
s� of a play s is inductively defined by:

ε� = ε,
mΣ� = mΣ ,
s pΣ� =
s� pΣ,
s x s′ oT � =
s� xoT ,

where x is some mΣ , and oT points either to x or to a name in its store. A play s
is visible if, for any even-length prefix s′pΣ of s, the justifier of pΣ occurs in
s′�. A
strategy is visible if it contains only visible plays.

Remark 17. Note that if a play satisfies visibility then its P -view is a justified sequence.
Nonetheless, it may fail to be a play because of violating frugality. For example, the
following odd-length play on the prearena 1→ (Aunit ⇒ 1)

� � aa �a ba,b

O P O P O

has P -view � � ba,b, which breaks frugality in its last move.

In this section we first make the perhaps surprising observation that visible strategies
fail to compose in the game model introduced in the previous section. We repair the
failure by insisting on an additional nominal constraint.

Example 18. Consider the strategy σ : 1 → ((Z ⇒ Z) ⇒ 1) specified by the play
on the left below, which breaks visibility in its last move. We label the moves of the
prearena as shown on the right.

σ : � � �Q �A �Q 3
O P O P O P

σ̂ : aa �a �aQ �aA �aQ �a �a 3a

O P O P O P O P

1→ (Z⇒ Z)⇒ 1
�

�
�Q

i �A
j

256 A.S. Murawski and N. Tzevelekos

We can see that σ = nuunit→unit; σ̂, where σ̂ : Aunit→unit → ((Z ⇒ Z) ⇒ 1) is
specified by the play on the left above (labelling of moves follows the same pattern).
Interestingly, both nuunit→unit and σ̂ satisfy visibility. After composition, though, the
two a-justified moves of σ̂ will be deleted, since a is no longer an available name.
Observe that, thanks to these two a-justified moves, the justifier of the last P -move
appears in the view. With a hidden, the last move breaks visibility.

Note that the failure of compositionality stems from the special way in which P -names
of higher-order reference cells are treated. This leads us to consider strategies in which
such names do not occur. Below we write Aφ =

⊎
θ,θ′ Aθ→θ′ .

Definition 19. A strategy σ is ground if it is visible and P (s)∩Aφ = ∅ for any s ∈ σ.

Intuitively, the definition corresponds to removing the capability to generate higher-
order reference names.

Lemma 20. Ground strategies compose. Consequently, for any GrML-term Γ % M ,
�Γ %M� is ground.

We will also have a converse of the above in the form of a definability result for finite
strategies (Corollary 32). The first steps to its proof will be two factorisation arguments
that remove violations of groundness.

Lemma 21. Let σ : A1 → A2. There exists a visible strategy σ : Aunit→unit⊗A1 → A2

such that 〈 !A1 ; nuunit→unit, idA1 〉;σ = σ. Moreover, if P (s) ∩ Aφ = ∅ for any s ∈ σ
then P (s) ∩ Aφ = ∅ for any s ∈ σ.

Proof. We are going to augment plays from σ using moves pointing to the higher-order
reference represented by Aunit→unit in such a way that visibility will hold. At the same
time the added moves will be consistent with the copycat behaviour required during
composition.

Formally, the extension s of a play s ∈ σ is defined as follows. Given a store Σ, we
write Σa for Σ ∪ {(a, �)}.

– ε = ε, soΣ = soΣ
a

(o a question), spΣ = spΣ
a

(p an answer).
– spΣ = s �Σ

a
1 · · · �Σa

1︸ ︷︷ ︸
k

pΣ
a

(p a question), where s = · · · oΣa
Om

Σa
k

k · · ·m
Σa

2
2 m

Σa
1

1 and

oΣO (or a name in its store) justifies pΣ in spΣ . Moreover, we require that the ith
(counting from left to right) occurrence of �Σ

a
1 in �Σ

a
1 · · · �Σa

1 be justified by (a, �)
from Σa

i . We depict the definition below, where the dashed line is a justification
pointer to a move or to a store.

· · · oΣa
Om

Σk∪{(a,)}
k · · ·mΣ1∪{(a,)}

2 m
Σ1∪{(a,)}
1 �Σ

a
1 �Σ

a
1 · · · �Σa

1 pΣ
a

– soΣ = soΣ
a

�Σ
a· · · �Σa︸ ︷︷ ︸

k

(o an answer), where the sequence �Σ
a· · · �Σa

answers all

the a-justified questions (labelled �Σ
a
1 above) in s that occur after the justifier of oΣ

a

.

Towards Nominal Abramsky 257

One can then take σ to be the least strategy containing all plays s, where s ranges over
σ. It is easy to see that no new P -names are introduced by the construction (a is an
O-name).
�

The second result delegates the creation of higher-order reference names and thus rids
a strategy of P -names from Aφ. In order to overapproximate the types of names that
can be used as P -names in a prearena A, we define the associated reference set R(A).
First, for each type θ, we define R(θ) by

R(unit) = R(int) = ∅, R(ref θ) = {θ} ∪R(θ), R(θ1 → θ2) = R(θ1) ∪R(θ2).

This is extended to prearenas as follows. For each prearenaA,

R(A) =
⋃

m∈MA

{
{θ} ∪R(θ) | ν(m) ∩ Aθ �= ∅

}
.

To isolate the higher-order types in R(A), we write HON(A) for the subset of R(A)
consisting of function types.

Lemma 22. Let σ : A1 → A2 and A =
⊗

θ∈HON(A1→A2)
(�θ� ⇒ Aθ). Let also

genθ = � % λxθ.refθ(x)� : 1→ (�θ�⇒ Aθ). There exists a strategy σ : A⊗A1 → A2

such that 〈 !A1 ; 〈 genθ 〉θ∈HON(A1→A2), idA1 〉;σ = σ. Moreover, if σ is visible, so is σ.

Proof. The main idea is to delegate the creation of new P -names to the additional A
component by inserting extra moves fromA in front of P -moves. More precisely, given
s ∈ σ, we define an enriched play s as follows, where each vi is a question to the
appropriate �θ�⇒ Aθ .

– soΣpT = s oΣvΣ1 a
Σ1
1 · · · v

Σk−1

k−1 vkp
Σk , where dom(T)\dom(Σ) = {a1, · · · , ak},

vi = T (ai), and Σi = T � dom(Σ) ∪ {a1, · · · , ai}.

In addition, ε = ε.
�

Corollary 23. Let σ : A1 → A2. There exists a ground strategy

σ : A(unit→unit) ⊗
(⊗

θ∈HON(A1→A2)
(�θ�⇒ Aθ)

)
⊗A1 → A2

such that 〈 !A1 ; 〈 nuunit→unit, 〈 genθ 〉θ∈HON(A1→A2) 〉, idA1 〉;σ = σ.
�

Thanks to the corollary the definability problem for finite strategies can be reduced to
the same problem for ground strategies.

5 Innocence

Here we would like to find a semantic match for FunML by a notion of inno-
cence [HO00]. FunML embodies purely functional computation in presence of refer-
ence types: although terms may receive, update and read the value of references, they
cannot create new ones. The notion of innocence defined below extends the standard
notion appropriately to deal with moves that carry higher-order store. Traditionally, the

258 A.S. Murawski and N. Tzevelekos

notion of innocence stipulates that each P -move of a strategy be determined by the
P -view up to the point just before the move is played. In our case, the notion needs to
be customised so as to take into account the names, and the corresponding parts of the
store, which become unavailable in the P -view. The last two conditions below stipu-
late that P cannot play any names which do not appear in his view, and neither can he
change their values.

Definition 24. A ground strategy σ :A is innocent if it satisfies the following conditions.

– If spΣ ∈ σ then ν(pΣ) ⊆ ν(s) (strong determinacy).
– If spΣ, s′ ∈ σ and s′oT ∈ PA with γ(
s�) = γ(
s′oT �) then there exists
s′oT p′Σ

′ ∈ σ such that γ(
spΣ�) ∼ γ(
s′oT p′Σ′�) (innocence).
– If spΣ ∈ σ and γ(
spΣ�) = s′pΣ

′
then ν(pΣ

′
) ∩ ν(s) ⊆ ν(s′) (innocent P -

availability).
– If s′ � s ∈ σ ends in oΣpT and a ∈ dom(T) \ ν(γ(
s′�)) then T (a) = Σ(a) and,

moreover, if a ∈ Aφ then (s, s′, a) are a copycat triple (innocent P -storage).

Remark 25. Note that the first and third conditions above can be equivalently expressed,
modulo the other conditions, as a single one:

– If spΣ ∈ σ and γ(
spΣ�) = s′pΣ
′

then ν(pΣ
′
) ⊆ ν(s′).

Moreover, given the above condition, innocence can be equivalently stated as:

– If spΣ, s′ ∈ σ and s′oT ∈ PA with γ(
s�) = γ(
s′oT �) then there exists s′oT p′Σ
′

∈ σ such that γ(
spΣ�) = γ(
s′oT p′Σ′�).

Due to innocentP -availability and innocent P -storage, innocent strategies are uniquely
determined by their behaviour on available names, that is, names appearing in the P -
view after application of γ. For instance, the behaviour of an innocent strategy on an
O-question asking the value of an unavailable name is a trivial copycat. Combined with
the innocence condition, our observation allows us to characterise innocent strategies
by their view-functions, defined as follows.

vf(σ) = {γ(
s�) | s ∈ σ}

Lemma 26. Innocent strategies compose. Consequently, for any FunML-term Γ %M ,
�Γ %M� is an innocent strategy.

Next we show a factorisation result for ground strategies involving innocent ones. Our
first step will be to factor out violations of strong determinacy, namely, fresh-name
creation, in exactly the same way as in Lemma 22. We set GRN(A) = R(A)\HON(A).

Lemma 27. Let σ : A1 → A2 be a ground strategy,A =
⊗

θ∈GRN(A1→A2)
(�θ�→ Aθ)

and genθ = � % λxθ.refθ(x)� : 1→ (�θ� ⇒ Aθ). There exists a strongly deterministic
ground strategy σ : A⊗A1 → A2 such that 〈!A1 ; 〈 genθ 〉θ∈GRN(A1→A2), idA1〉;σ = σ.

Towards Nominal Abramsky 259

In the setting without names, a factorisation to innocence would just use an integer
reference, which would serve for storing the history of the play [AM97]. If one tries to
apply the same rationale in the nominal setting, one soon realises that names constitute a
basic obstacle because they cannot be obviously mapped into integers. In order to bridge
the gap, we are going to use integers that correspond to the order in which names appear
in a play, and external ‘oracles’ which will maintain a list of names and be able to add
to it (enlisting) as well as access names at a given position (look-up).

We first fix an encoding function from plays to integers. Given a play s, the function
produces a code #(s). The function first translates each name a ∈ Aθ into a pair (i, θ),
if a is the ith name of type θ appearing in s, and subsequently performs some standard
encoding from nested strings of integers (with pointers) into integers. Therefore, the
function is not injective, but orbit injective: s ∼ s′ ⇐⇒ #(s) = #(s′). We also fix an
ordering of names appearing inside plays such that names introduced earlier (i.e. closer
to the beginning of the play) appear earlier in the ordering.1

We next describe the family of strategies oracleθ which we shall use. The strategy
oracleθ : 1 → (Aθ ⇒ 1)⊗ (Z ⇒ Aθ) responds to the initial question with the answer
(�e, �l). After that, the answer to any question a posed at �e will be �, which should
be viewed as confirmation that a has been added to the list. The strategy implements
the look-up function by responding to any question i, posed at �l and such that the ith
question posed at �e from the beginning of the play is a, with a.

Any strongly deterministic ground strategy σ : A shall be converted to an innocent
one which uses an external oracle for each type θ ∈ R(A), and a reference of type int.
Inside that reference, the strategy shall keep an encoding of the whole play so far (using
the function#()). WheneverOmakes a move, say the last move in the play soΣ , P can
consult the int-reference in order to obtain a version of s where names are represented
by integers. Then, P queries the external oracles (via their look-up functionality) with
each integer representation in #(s), and receives the corresponding actual names as
answers. At this point, P has completely reconstructed s in an innocent manner. P
next updates the oracles with all the names newly introduced by oΣ (using the enlisting
functionality), and then plays his move as dictated by σ.

Lemma 28. Let A =
⊗

θ∈R(A1→A2)

(
(Aθ ⇒ 1)⊗ (Z⇒ Aθ)

)
and σ : A1 → A2 be a

strongly deterministic ground strategy. There exists an innocent strategy σ : A⊗Aint⊗
A1 → A2 such that 〈!A1 ; 〈〈 oracleθ 〉θ∈R(A1→A2), newint〉, idA1〉;σ = σ.

Proof. We define σ to be the least innocent strategy extending σ′ =
⋃
{s | s ∈ σ},

where s is a set of plays defined below by induction on the length of the play. For the
base case we set ε = {ε}.

Now suppose s = iΣis′oΣpT . We let s contain all plays of the form

(〈 (�e, �l)θ 〉θ∈R(A1→A2), â, i)
Σ̂is′′oΣ̂s1 s2 p

T̂

1 Note here that names may first appear inside stores, which are not ordered. In such a case,
though, and because of the availability condition, they are reachable through the store through
previously introduced names, the ordering of which can be used to order the new names. E.g.
in the play a(a,b),(b,0)c(a,b

′),(c,d),(b,0),(b′,0),(d,0) we can order our names as a, b, c, b′, d.

260 A.S. Murawski and N. Tzevelekos

where â ∈ Aint a fresh name, Σ̂i = Σi[â �→ 0], Σ̂ = Σ[â �→ #(iΣis′)] and
s′′ ∈ ŝ′ is given by the induction hypothesis. Let a1, · · · , an, b1, · · · , bm be the names
in ν(iΣis′oΣ) ordered according to the canonical ordering, so that a1, · · · , an are the
elements of ν(iΣis′) and b1, · · · , bm those of ν(oΣ) \ ν(iΣis′). We set s1 to be the se-
quence iΣ̂1 a

Σ̂
1 i

Σ̂
2 a

Σ̂
2 · · · iΣ̂n aΣ̂n , such that aj ∈ Aθ (some θ) is the ijth name of type θ

in a1, · · · , an and iΣ̂j is justified by �l θ . Moreover, s2 is the sequence bΣ̂1 �
Σ̂ · · · bΣ̂m �Σ̂ ,

where each bΣ̂j is justified by the according initial �e θ . Finally, T̂ = T [â �→ #(s)].
First, in order to show that there exists an innocent extension σ of σ′, it suffices to

show that σ′ is in fact a strongly deterministic ground strategy satisfying the innocent
P -availability and innocent P -storage conditions, and in addition:

– for all s1p
Σ1
1 , s2p

Σ2
2 ∈ σ′, if γ(
s1�) = γ(
s2�) then γ(
s1pΣ1

1 �) = γ(
s2pΣ2
2 �).

By construction, σ′ is obviously strongly deterministic and ground, and depends solely
on moves and names that are available in the P -view. We can therefore show that it
satisfies the above conditions. Moreover, since σ contains extended versions of all plays
from σ, we have that 〈!A1 ; 〈〈 oracleθ 〉θ∈R(A1→A2), newint〉, idA1〉;σ = σ.
�

Corollary 29. Let σ : A1 → A2 be a ground strategy, Θ1 = GRN(A1 → A2) and
Θ2 = R(A1 → A2). There exists an innocent strategy

σ :
(⊗

θ∈Θ1

(�θ�⇒ Aθ)
)
⊗ Aint ⊗

(⊗
θ∈Θ2

(Aθ ⇒ 1)⊗ (Z⇒ Aθ)
)
⊗A1 → A2

such that 〈 !A1 ; 〈 〈 genθ 〉θ∈GRN(A1→A2), nuint, 〈 oracleθ 〉θ∈R(A1→A2) 〉, idA1 〉;σ = σ.

�

Remark 30 (Factoring the oracle). It is interesting to note that each strategy oracleθ can
be decomposed into an innocent strategy and three reference cells, of types int, ref θ and
unit → unit respectively. That is, oracleθ = 〈nuint, nuref θ, nuunit→unit〉; oracleθ , where
oracleθ : Aint ⊗ Aref θ ⊗ Aunit→unit → (Aθ ⇒ 1) ⊗ (Z ⇒ Aθ) is an innocent strategy
which behaves as follows:2

– whenO provides a new name a to be enlisted, the strategy responds with �Σ , where
Σ records that the ith name played by O is a (this uses the references of types int
and ref θ);

– when, on the other hand, O asks what is the ith name that has been enlisted then
the strategy uses the reference of type unit → unit in order to go back in the play
(in the same fashion as in Lemma 22), until it finds a P -move �Σ which includes a
pair of values (i, a), at which point it carries back that a as an answer to i.

2 Formally, oracleθ is the least innocent strategy which contains all plays of the form
(a1, a2, a3)

Σi(�e, �l)
Σi[a1 �→0] and, in addition, if (a1, a2, a3)

Σi(�e, �l)
Σi

′
s ∈ oracleθ then:

– (a1, a2, a3)
Σi(�e, �l)

Σi
′
s aΣ�Σ[a1 �→Σ(a1)+1][a2 �→a] ∈ oracleθ .

– (a1, a2, a3)
Σi(�e, �l)

Σi
′
s iΣs1s2 a

Σ ∈ oracleθ , where s1 is a copycat sequence of ques-
tions �Σ[a1 �→i] pointing to a3 in preceding stores (starting from the store of iΣ), and such
that its last element points to a P -move �Σ

′
with Σ′(a1) = i. The sequence s2 comprises

of a series of answers �Σ
′

to the questions of s1, and a = Σ′(a2).

Towards Nominal Abramsky 261

Although factorisation results typically deconstruct a strategy σ of a category of games
G1 into a characteristic strategy from G1 and a strategy from G2, where G2 a subcategory
of G1, the factorisation above does not follow this pattern, since the ground strategy
oracleθ is deconstructed into a strategy containing nuunit→unit (which is not ground).
Note, though, that if the initial σ of Lemma 28 were finite (up to name permutations)
then there would not be a need for such oracles, as σ would only contain plays with
boundedly many names, which could be stored in a bounded set of external references.

Finally, we call an innocent strategy σ compact if vf(σ) is finite up to name-
permutations, that is, if the set
{{π · s | π ∈ PERM} | s ∈ vf(σ)} is finite.

Lemma 31. Let Γ % θ be a typing context. For each compact innocent strategy σ :
�Γ % θ� there is an FunML-term Γ %M : θ such that σ = �Γ %M�.

Corollary 32. Let Γ % θ be a typing context and σ : �Γ % θ� a strategy that is finite
up to name-permutations. There is a RefML-term Γ % M : θ such that σ = �Γ % M�.
If σ is ground then there is a GrML-term Γ %M : θ such that σ = �Γ %M�.

6 Conclusion

We have considered three languages embodying respectively general store, ground store
and pure functional computation. These have been related to three families of strategies
in a nominal game model as shown below.

RefML GrML FunML
strategy ground strategy innocent strategy

In particular, our notions of groundness and innocence are nominal generalizations of
the standard notions of visibility and innocence.

Another theme in research on game semantics was universality, i.e. the fact that all
recursively presentable strategies were definable. We believe that, in the nominal setup,
universality is bound to fail for ground and innocent strategies (wrt GrML and FunML
respectively), because of the inability of these languages to store unbounded collections
of names. RefML does not seem to suffer from the same limitation, as lists of names of
type θ can be maintained through the type, say, ref (int→ ref (θ)).

Our results illustrate that, with some extra effort, the methodology of the semantic
cube can also bear fruit in the nominal setting, though the results that are emerging are
perhaps not as elegant as in the original case.

References

AGM+04. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.-H.L., Stark, I.D.B.: Nomi-
nal games and full abstraction for the nu-calculus. In: Proceedings of LICS, pp.
150–159. IEEE Computer Society Press (2004)

262 A.S. Murawski and N. Tzevelekos

AHM98. Abramsky, S., Honda, K., McCusker, G.: Fully abstract game semantics for general
references. In: Proceedings of IEEE Symposium on Logic in Computer Science, pp.
334–344. Computer Society Press (1998)

AJM00. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information
and Computation 163, 409–470 (2000)

AM97. Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M. (ed.) CSL 1997.
LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)

GP02. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding.
Formal Aspects of Computing 13, 341–363 (2002)

HO00. Hyland, J.M.E., Ong, C.-H.L.: On Full Abstraction for PCF: I. Models, observables
and the full abstraction problem, II. Dialogue games and innocent strategies, III.
A fully abstract and universal game model. Information and Computation 163(2),
285–408 (2000)

HY99. Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation. The-
oretical Computer Science 221(1-2), 393–456 (1999)

Lai97. Laird, J.: Full abstraction for functional languages with control. In: Proceedings of
12th IEEE Symposium on Logic in Computer Science, pp. 58–67 (1997)

Lai04. Laird, J.: A game semantics of local names and good variables. In: Walukiewicz, I.
(ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 289–303. Springer, Heidelberg (2004)

MT11. Murawski, A.S., Tzevelekos, N.: Game semantics for good general references. In:
Proceedings of LICS, pp. 75–84. IEEE Computer Society Press (2011)

Nic94. Nickau, H.: Hereditarily sequential functionals. In: Matiyasevich, Y.V., Nerode, A.
(eds.) LFCS 1994. LNCS, vol. 813, pp. 253–264. Springer, Heidelberg (1994)

Tze09. Tzevelekos, N.: Full abstraction for nominal general references. Logical Methods in
Computer Science 5(3) (2009)

A Appendix

In this section we present some more advanced strategy examples.

Example 33. Let us consider the following strategy σ : 1 → ((Z ⇒ Z) ⇒ (Z ⇒ Z)).
The strategy is specified by plays of the form shown on the left below, where sum =
j1 + · · ·+ jk, and we have labelled the moves of the prearena as on the right below.

� � �Q �A · · · �Q �A �Q �A i i j1 i j2 · · · i jk sum
O P O P O P O P O P O P O P O P

1→(Z ⇒ Z)⇒(Z ⇒ Z)
�

�
�Q

i �A
j i

j

Thus, the strategy answers the initial � with the higher-order move �. From that point
on, at eachO-question �Q to �, the strategy replies with an answer �A. When O queries
the value of the returned �A, by playing someO-question i to it, the strategy propagates
the question to all preceding �Q’s, and returns as an answer the sum of all the answers
to those questions. This behaviour can be matched by the semantics of the following
term (the last line below implicitly uses recursion).

let i = ref int(0), F = ref int→int→int(λx
int.λyint.0) in

λf int→int. i++; let g = !F in F := λxint. if (x−!i) then f else gx;

λyint. (!F)(!i)y + (!F)(!i−1)y + · · ·+ (!F)1y

Towards Nominal Abramsky 263

The term implements the informal description of the strategy described above: it uses
an internal higher-order reference F where it stores all input functions f (the ith such
function is stored in F (i)), and returns a function which, on input y, returns the sum of
applying all previous f ’s to y.

Example 34. Let us revisit the strategy σ from Example 33 under the light of the
factorisation in Lemma 21. In particular, σ can be factorised as nuunit→unit; σ̂, where
σ̂ : Aunit→unit→ ((Z⇒Z)⇒ (Z⇒Z)) is a ground strategy specified by plays of the
form:

aa �a �aQ �aA · · · �aQ �aA �aQ �aA ia ia ja1 �a �a ia ja2 �a · · · �a ia jak �a · · · �a suma

O P O P O P O P O P O P O P O P O P O P O P

with sum = j1 + · · ·+ jk. In fact, the strategy σ̂ defined above is a simplified version
of the one obtained via the factorisation theorem, but it follows the same rationale of
using the reference of type unit→ unit for breaking inside the P-view in a visible way.
The strategy corresponds to the term below,

let i = ref int(0), inp = ref int(0), sum = ref int(0) in

λf int→int. let g = (if !i then !F else λxunit.x) in

i++; F := λxunit. (sum := !sum+ f(!inp); g());

λyint. sum := !sum+ fy; inp := y; g(); !sum

where F a free variable of type ref (unit→ unit).

Techniques for Formal Modelling and Analysis

of
Quantum Systems

Simon J. Gay1 and Rajagopal Nagarajan2,	

1 School of Computing Science, University of Glasgow, UK
Simon.Gay@glasgow.ac.uk

2 Department of Computer Science, School of Science and Technology,
Middlesex University, London, UK

R.Nagarajan@mdx.ac.uk

Abstract. Quantum communication and cryptographic protocols are
well on the way to becoming an important practical technology. Although
a large amount of successful research has been done on proving their cor-
rectness, most of this work does not make use of familiar techniques from
formal methods such as formal logics for specification, formal modelling
languages, separation of levels of abstraction, and compositional anal-
ysis. We argue that these techniques will be necessary for the analysis
of large-scale systems that combine quantum and classical components.
We summarize the results of our investigation using different approaches:
behavioural equivalence in process calculus, model-checking and equiva-
lence checking. Quantum teleportation is used as an example to illustrate
our techniques.

Prologue

We were both PhD students of Samson Abramsky, in the Theory and Formal
Methods group, which he led, in the Department of Computing at Imperial Col-
lege London. During our time at Imperial in the early 1990s, the group provided
a superbly stimulating and well-resourced environment and established many
lasting friendships. Samson’s involvement in the “CONFER” project enabled us
to go to a number of workshops around Europe, meeting other researchers and
PhD students who remain colleagues to this day.

Samson’s big ideas during that time were game semantics and interaction
categories, both of which made use of structures drawn from the development
of linear logic. Game semantics led to the definition of fully abstract models of
functional programming languages, while interaction categories [2,3] aimed to
provide a Curry-Howard-style logical basis for typed concurrent programming.
Both of us worked on interaction categories; indeed, we worked closely together

� Partially supported by “Process Algebra Approach to Distributed Quantum Com-
putation and Secure Quantum Communication”, Australian Research Council Dis-
covery Project DP110103473.

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 264–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Techniques for Formal Modelling and Analysis of Quantum Systems 265

during the overlapping period of our PhDs. After he had provided the basic
theory of interaction categories (and there was a lot of it!), Samson gave us the
freedom to explore its consequences and develop applications and examples.

In 1995 Samson moved to Edinburgh, and Simon moved to Royal Holloway
to take up a lectureship. Game semantics became a large, active and successful
research area, which occupied Samson for several more years. Simon’s attention
switched to π-calculus, which had been a sideline during his PhD, and especially
to the topic of session types. Raja remained at Imperial for a few more years,
working as a researcher on a joint project led by Chris Hankin and Samson.

In 2000, all of us relocated: Samson moved to Oxford, Simon to Glasgow
and Raja took up a lectureship at Warwick. Around this time, both Raja and
Samson independently became interested in quantum computing. Raja’s interest
was in the use of formal methods, successfully developed in classical computing,
to analyse and verify quantum protocols. He recruited Simon to collaborate on
an early application [27] of process calculus and model-checking to quantum
systems. Simon’s attention had also been caught by Peter Selinger’s paper [29]
on the denotational semantics of a quantum programming language, and there
seemed to be exciting opportunities for new applications of familiar techniques
from theoretical computer science. Samson, with Bob Coecke, developed the
programme of categorical quantum mechanics [4], based on various elaborations
of compact closed categories—a connection, at least formally, with interaction
categories.

Thus we again found ourselves working in the same area as Samson, and
enjoyed being involved in the development of these new angles on quantum
information processing, drawing on techniques and tools from semantics. Ian
Mackie and Simon organised the EPSRC-funded QNET network, with strong
involvement and support from Samson’s group in Oxford, which led to several
successful workshops and the book Semantic Techniques in Quantum Computa-
tion [16], and has been followed by the Computer Science and Physics network
run by Samson, Bob Coecke, Andreas Döring and Jamie Vicary.

The present paper, which we are delighted to be able to contribute to Samson’s
Festschrift volume, combines an introduction to the field of quantum informa-
tion, and an overview of our own work in this area.

1 Introduction

Quantum computing and quantum communication (more generally, quantum
information processing) appear in the media from time to time, usually with
misleading statements about the principles of quantum mechanics, the nature of
quantum information processing, and the power of quantum algorithms. In this
article, we begin by clarifying the fundamental concepts of quantum information
and discussing what quantum computing systems are and are not capable of.
We then outline several reasons for being interested in quantum information
processing. Moving on to the main theme, we first motivate the application
of formal methods to quantum information processing. We then describe the

266 S.J. Gay and R. Nagarajan

different techniques we have used in specification and verification of quantum
protocols, illustrating them with an example.

There are several reasons to be interested in quantum information process-
ing. First, the subject is really about understanding the information-processing
power permitted by the laws of physics, and this is a fundamental scientific ques-
tion. Second, quantum algorithms might help to solve certain classes of problem
more efficiently; if, however, NP-complete problems cannot be solved efficiently
even by a quantum computer, then understanding why not is also a question of
fundamental interest. Third, quantum cryptography provides a neat answer, in
advance, to any threat that quantum computing might pose to classical cryp-
tography. Fourth, as integrated circuit components become smaller, quantum
effects become more difficult to avoid. Quantum computing might be necessary
in order to continue the historical trend of miniaturization, even if it offers no
complexity-theoretic improvement. Finally, Feynman [15] suggested that quan-
tum computers could be used to simulate complex (quantum) physical systems
whose behaviour is hard to analyze classically.

Will QIP become practically significant? Some aspects are already practical:
there are companies selling Quantum Key Distribution systems today. Whether
or not there is a real demand for quantum cryptography remains to be seen, but it
seems likely that the promise of absolute security will attract organizations that
feel they cannot take any chances. Quantum computing seems to be feasible in
principle, although there are still formidable scientific and engineering challenges.
But many experimental groups are working hard, and physicists and engineers
are very clever. Remember that in 1949 the statement “In the future, computers
may weigh no more than 1.5 tonnes” was a speculative prediction.

The remainder of this paper is organised as follows. In Section 2 we give
a brief introduction to the main ideas of quantum information processing. In
Section 3 we motivate the development of formal methods for quantum sys-
tems, and introduce the three strands that we have been working on. In Sec-
tions 4, 5 and 6 we explain, in turn, the use of process calculus, model-checking,
and equivalence-checking, using quantum teleportation as an example in each
case. Finally, Section 7 concludes.

2 Quantum Information Processing

The idea of quantum information processing (QIP) is to represent information
by means of physical systems whose behaviour must be described by the laws of
quantum physics. Typically this means very small systems, such as a single atom
(in which the spin state, up or down, gives the basic binary distinction necessary
for digital information representation) or a single photon (in which polarization
directions are used). Information is then processed by means of operations that
arise from quantum physics. Quantum mechanics leads to several fundamental
properties of quantum information, which between them lead to various counter-
intuitive effects and the possiblity of behaviour that cannot occur in classical
systems.

Techniques for Formal Modelling and Analysis of Quantum Systems 267

2.1 Superposition

The state of a classical bit is either 0 or 1. The state of a quantum bit (qubit)
is α|0〉+ β|1〉, where the states |0〉 and |1〉 are the basis states (in the standard
or computational basis). In general, α and β are complex numbers and |α|2 +
|β|2 = 1. If both α and β are non-zero, then the state is a superposition of
the basis states, for example 1√

2
|0〉 − 1√

2
|1〉. It is not correct to say, as often

stated in the media, that a qubit can be in two states at once. It is in one state,
but that state may be a superposition of the basis states. Note that any two
orthogonal states may form a basis. For example, the pair { 1√

2
|0〉+ 1√

2
|1〉, 1√

2
|0〉−

1√
2
|1〉}, sometimes written {|+〉, |−〉}, forms the Hadamard basis. Although we

often work with the standard basis, it does not have a privileged status; indeed,
whether or not a particular quantum state is regarded as a superposition depends
on the choice of basis. The state |+〉 is in a superposition with respect to the
standard basis, but not with respect to the Hadamard basis.

2.2 Measurement

It is not possible to inspect the contents of a quantum state. The most we can
do is a measurement. Measuring a qubit that is in state α|0〉 + β|1〉, in the
standard basis, has a random result: with probability |α|2 the result is |0〉, and
with probability |β|2 the result is |1〉. After the measurement, the qubit is in the
basis state corresponding to the result.

2.3 Operations on a Superposition

An operation acts on every basis state in a superposition. For example, starting
with the three-qubit state 1

2 |000〉+
1
2 |010〉 −

1
2 |110〉 −

1
2 |111〉 and applying the

operation “invert the second bit” produces the state 1
2 |010〉+

1
2 |000〉−

1
2 |100〉−

1
2 |101〉. This is sometimes known as quantum parallelism and in the media it is
often described as carrying out an operation simultaneously on a large number
of values. However, it is not possible to discover the results of these simultaneous
operations. A measurement would produce just one of the basis states. This is
absolutely not a straightforward route to “parallelism for free”.

2.4 No Cloning

It is not possible to define an operation that reliably makes a perfect copy of an
unknown quantum state. This is known as the no cloning theorem. It contrasts
sharply with the classical situation, where the existence of uniform copying pro-
cedures is one of the main advantages of digital information. Every word in the
statement of the no cloning theorem is significant. For example, with the knowl-
edge that a given qubit is either |0〉 or |1〉, it is possible to discover its state (by
means of a simple measurement) and then set another qubit to the same state,
thus creating a copy. It is also possible in general to create approximate copies,

268 S.J. Gay and R. Nagarajan

or to copy with a certain probability of perfect success but a certain probability
of complete failure. It is possible to transfer an unknown quantum state from
one physical carrier to another, but the process destroys the original state. This
is known as quantum teleportation, and we will return to it later.

2.5 Entanglement

The states of two or more qubits can be correlated in a way that is stronger than
any possible classical correlation. An example is the two-qubit state 1√

2
|00〉 +

1√
2
|11〉. Measuring either qubit produces, with equal probability, the state |00〉

or |11〉. Measuring the other qubit is then guaranteed to produce the same result
as the first measurement. This correlation is preserved by quantum operations
on the state, in a way that cannot be reproduced classically. This phenomenon
is called entanglement and it is a key resource for quantum algorithms and
communication protocols.

3 Formal Methods for QIP

The correctness of quantum algorithms and protocols can be analyzed math-
ematically. Simple protocols such as teleportation can be checked with a few
lines of algebra, Shor’s [30] and Grover’s [23] algorithms have been extensively
studied, and Mayers [26] and others have proved the security of quantum key
distribution. But what about systems, which are constructed from separate com-
ponents and combine quantum and classical computation and communication?
Experience in classical computing science has shown that correctness of a com-
plete implemented system is a very different question from correctness of the
idealized mathematical protocol that it claims to implement. This is the raison
d’être of the field of formal methods.

Our 2002 paper [27] suggested applying formal methods to quantum systems,
with the same motivation as for classical systems:

– formal modelling languages, for unambiguous definitions;
– analysis of systems, rather than idealized situations;
– systematic verification methodologies, rather than ad hoc reasoning;
– the possibility of tool support.

We have been working on three strands: (1) the quantum process calculus CQP
[17,19], partly in collaboration with Davidson [11]; (2) quantum model-checking
based on temporal logic, in collaboration with Papanikolaou [20,21,28]; (3) quan-
tum equivalence-checking, in collaboration with Ardeshir-Larijani [5]. Our work
on process calculus has focussed on the development of basic theory, leading up
to the definition of behavioural equivalence. This approach has also been studied
by Ying et al., who have developed qCCS [32]. Our work on model-checking uses
a different style of specification language, more closely related to Promela. Some
further work [10] makes connections between these two themes. Related work on
model-checking include [7,14]. Our most recent work addresses the question of
equivalence of sequential quantum programs, expressed in a language based on
Selinger’s QPL [29].

Techniques for Formal Modelling and Analysis of Quantum Systems 269

4 Quantum Teleportation in CQP

Teleportation [8] is a protocol for transferring an unknown qubit state from one
participant, Alice, to another, Bob. The protocol uses classical communication
— in fact, communication of just two classical bits — to achieve the transfer of
a quantum state which is specified by two complex numbers. The trick is that
there must be some pre-existing entanglement, shared by Alice and Bob.

Let x and y refer to two qubits that, together, are in the entangled state
1√
2
|00〉 + 1√

2
|11〉. Let u be a qubit in an unknown state, that is given to Alice.

The protocol consists of the following steps.

1. Alice applies the controlled not (CNot) operator to u and x. This is a two-
qubit operator whose effect on each basis state is to invert the second bit if
and only if the first bit is 1.

2. Alice applies the Hadamard (H) operator to x. This operator is a change of
basis from {|0〉, |1〉} to { 1√

2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉)}.

3. Alice measures u and x, obtaining a two-bit classical result.
4. Alice sends this two-bit classical value to Bob.
5. Bob uses this classical value to determine which of four so-called Pauli op-

erators I, X, Y or Z should be applied to y. In the definition below, we use
the notation σ0 = I, σ1 = X, σ2 = Z, σ3 = Y. (This is non-standard but con-
venient for this example; usually σ2 and σ3 are exchanged). The operators
are defined as follows:

I : identity
X : |0〉 �→ |1〉 |1〉 �→ |0〉
Y : |0〉 �→ i|1〉 |1〉 �→ −i|0〉
Z : |0〉 �→ |0〉 |1〉 �→ −|1〉

6. The state of y is now the original state of u (and u has lost its original state
and is in a basis state).

Although the measurement in step 3 has a probabilistic result, the use of the
classical value to determine a compensating operation in step 5 means that the
complete protocol is deterministic in its effect on the state of Bob’s qubit.

The teleportation protocol is often described by the circuit diagram in
Figure 1.

The following definitions in the process calculus CQP (Communicating Quan-
tum Processes) [17,19] model the teleportation protocol. Alice, Bob and Teleport
are processes; q is a formal parameter representing a qubit; in, out , a and b are
formal parameters representing channels; c is a private channel; x, y are local
names for freshly allocated qubits, which will be instantiated with the names of
actual qubits during execution. The language is based on pi-calculus and most
of the syntax should be familiar.

270 S.J. Gay and R. Nagarajan

|ψ〉 • H

�

�� •

|0〉 �������	 �������	

�

��

|0〉 H • X Z |ψ〉

Fig. 1. Quantum teleportation as a circuit diagram

Alice(q, in , out) = in?[u] . {u, q ∗= CNot} . {u ∗= H} . out ![measure u, q] .0
Bob(q, in , out) = in?[r] . {y ∗= σr} . out![y] .0
Teleport(a, b) = (qbit x, y)({x ∗= H} . {x, y ∗= CNot} .

(new c)(Alice(x, a, c) | Bob(y, c, b))

In Teleport , the actions before (new c) put the qubits x and y into the necessary
entangled state. In order to help with writing a specification, Alice is given the
qubit to be teleported as a message on channel in , and at the end of the protocol,
Bob outputs the final qubit on out .

CQP has an operational semantics defined by labelled transition rules; it also
has a type system in which the no cloning theorem is represented by linear
typing. The example above, for simplicity, does not include type declarations.

The desired behaviour of teleportation is that a qubit (quantum state) is
received on a and the same quantum state is sent on b; the protocol should
behave like an identity operation:

Identity(a, b) = a?[x] . b![x] .0

We can now write a specification of teleportation:

Teleport(a, b) ∼= Identity(a, b)

where ∼= is a behavioural equivalence. Equivalent processes cannot be distin-
guished by any observer: they output the same values in the same circumstances,
they produce the same probability distributions of measurement results, and in
general interact in the same way with their environment.

As usual, we would like behavioural equivalence to be a congruence:

∀P,Q,C. P ∼= Q⇒ C[P] ∼= C[Q]

where C is a process context. Congruence supports equational reasoning, and the
universal composability properties defined by Canetti [9] in a different setting.
Developing a congruence for a quantum process calculus was an open problem
for several years [24], but very recently we have defined a congruence for CQP
[11] and Feng et al. have independently defined one for qCCS [13]. Our equiv-
alence is a form of probabilistic branching bisimulation [31], with appropriate
extensions to deal with the quantum state. We have proved that the specification
of teleportation is satisfied. The work on bisimulation and congruence for CQP
is joint with Tim Davidson.

Techniques for Formal Modelling and Analysis of Quantum Systems 271

5 Model-Checking for Quantum Protocols

In this section we introduce the QuantumModel Checker (QMC) and its applica-
tion to the verification of quantum protocols. QMC, which we have implemented
together with Nick Papanikolaou, is a software tool. It automatically explores all
possible behaviours arising from a protocol model, and enables logic properties
expressed with Quantum Computation Tree Logic (QCTL) [6] to be checked
over the resulting structure.

In QMC, the quantum state |ψ〉 is represented internally in an implicit way:
rather than storing the so-called state vector representation of |ψ〉 (which grows
exponentially in length as a function of the total number of qubits in |ψ〉), we
use the stabilizer array representation [1], which is a binary representation of
the set of Pauli operators that fix (or stabilize) |ψ〉. Using the stabilizer array
representation, we gain significant computational benefits in terms of both space
and time when simulating a given protocol, given that simulation of stabilizer
circuits is performed using a polynomial time algorithm and the representation
of the state grows polynomially with the total number of qubits.

5.1 Quantum Teleportation in QMC

We have designed an imperative-style concurrent specification language for the
needs of the quantum model-checking tool QMC. For the purpose of this paper,
we will demonstrate the syntax of this language by example. In this language the
teleportation protocol (assuming we are trying to teleport the state |ψ〉 = |0〉)
may be expressed by the program in Figure 2. Working within the stabilizer
formalism, we can teleport any of the one-qubit stabilizer states: |0〉, |1〉, 1√

2
(|0〉±

|1〉), 1√
2
(|0〉 ± i|1〉).

In our setting, we allow for global variables (such as e1, e2), typed com-
munication channels (such as ch) which are always global, and local (private)
variables for each process (such as a,b,c,d,q). Communication is asynchronous,
with executability rules restricting the way in which process interleaving is per-
formed. For instance, the process Bob cannot start unless channel ch is filled
with a value.

A protocol model will always consist of definitions of one or more processes;
the commands performed by each of these processes must be interleaved (so as
to emulate concurrent execution), and non–determinism (which occurs explicitly
in selection structures (if :: a -> . . . :: b -> . . . fi) and implicitly when mea-
surements are performed) must be resolved, producing an execution tree for the
modelled system.

5.2 Specifying Properties

The properties of quantum protocols which we are interested in reasoning about
are properties of the quantum state (e.g. which qubits are ‘active’ in a given
state, which qubits are entangled with the rest of the system) over time. We are
also interested in the outcomes of measurements, and the way in which the values

272 S.J. Gay and R. Nagarajan

program Teleport;

var e1,e2:qubit; ch:channel of integer;

process Alice;

var q:qubit; a,b:integer;

begin

q := newqubit;

e1 := newqubit; e2 := newqubit;

had e1; cnot e1 e2;

cnot q e1; had q;

a := meas q;

b := meas e1;

ch!a; ch!b;

end;

process Bob;

var c,d: integer;

begin

ch?c; ch?d;

if

:: ((c=1) and (d=0)) -> X q; break;

:: ((c=0) and (d=1)) -> Z q; break;

:: ((c=1) and (d=1)) -> X q; Z q; break;

:: ((c=0) and (d=0)) -> break;

fi

end;

endprogram.

Fig. 2. QMC source program for quantum teleportation

of classical variables evolve. We use quantum computation tree logic (QCTL) [6]
for this purpose.

QCTL adds the usual temporal connectives (AX, EF, EU) of computational
tree logic [12] to the propositional logic EQPL [25]. The meaning of formulae in
EQPL is expressed in terms of valuations, which are truth-value assignments for
the symbols qb0, qb1, . . . , qbn corresponding to each qubit in the system. For in-
stance, the quantum state 1√

2
(|00〉+ |11〉) is understood as a pair of valuations

(v1, v2) for a 2-qubit system such that v1(qb0) = 0, v1(qb1) = 0, v2(qb0) = 1,
v2(qb1) = 1.

The formulae accepted by the QMC tool for verification allow the user to
reason about the state of individual qubits, and involve usual logical connectives
such as negation and implication. There are two levels of formulae: classical for-
mulae, which hold only if all valuations in a state satisfy them, and quantum
formulae, which are essentially logical combinations of classical formulae. For in-
stance, the quantum conjunction in the formula φ1 � φ2 is only satisfied if both
the classical formulae φ1 and φ2 are satisfied in the current state. A particularly
distinctive type of quantum formula is of the form [Q], where Q is a list of qubit

Techniques for Formal Modelling and Analysis of Quantum Systems 273

variables qbi, qbj , . . .; this type of formula is satisfied only if the qubits listed are
disentangled from all other qubits in the system.

Example of Property for Verification. The requirement for the teleporta-
tion protocol is that, at the end of the protocol, no matter what the measurement
outcomes, the third qubit will be in the same state as the first qubit was to begin
with, and this qubit will be disentangled from the rest of the system. We can
express this requirement, for the case where the input is the quantum state |0〉,
in the input language of QMC using the specification

finalstateproperty ([q2]) #/\ (!q2);

which corresponds to the EQPL formula [q2]�(¬q2). The first part of the formula
asserts that the last qubit (q2) is disentangled from the rest of the quantum state,
while the second part asserts that the current valuation assigns to this qubit a
value of 0. The entire formula is true if both parts are true, indicated by the
connective of quantum conjunction (we represent � in ASCII form by #/\).

Alternatively, it is also possible in QMC to specify that the final state of
a chosen qubit is the same as the initial state of a chosen qubit, again with
the requirement (which is checked) that the chosen qubits are not entangled
with the rest of the state. With this approach, we can define a model which
non-deterministically chooses a state to teleport, and specify that the state is
teleported, independently of its particular value; exhaustive model-checking then
verifies that all stabilizer states are correctly teleported.

6 Beyond Stabilizer States: Checking Equivalence

Our work on quantum model-checking is based on the stabilizer formalism, be-
cause according to the Gottesman-Knill Theorem [22], that is what we can ef-
ficiently simulate with classical algorithms. This has two effects on the results
we can obtain: (1) we can only analyse quantum systems whose operations are
restricted to the Clifford group (which consists of all the operators we have seen
so far along with a phase operator); (2) when exhaustively analysing the be-
haviour of a system on all possible quantum inputs, we can only consider inputs
that are stabilizer states. Note, however, that the stabilizer formalism, although
efficiently classically simulatable, contains many entangled states and supports
a range of interesting quantum protocols.

We can avoid the second of the above limitations by taking advantage of lin-
earity, if we focus our attention on systems that compute functions, mapping a
quantum input to a quantum output. Protocols such as teleportation and error-
correction can be formulated in this way. Furthermore, correctness of such a
protocol can be expressed as equivalence with a particular specification protocol
which is taken to be obviously correct. For example, the specification of tele-
portation is that a quantum state is transferred from input to output. If the
teleportation protocol is formulated as a function, then its specification is that
it should be equivalent to the identity function.

274 S.J. Gay and R. Nagarajan

program Teleportation_Specification

input q0:qbit

output q0:qbit

program Teleportation_Implementation

input q0:qbit

// Preparing an entangled pair.

newqbit q1;

newqbit q2;

q1 *= H;

q1,q2 *= CNot;

//Entangling the input qubit.

q0,q1 *= CNot;

q0 *= H;

// Measurement and corrections.

measure q0 then q2*=Z else q2*=I end;

measure q1 then q2*=X else q2*=I end

// The quantum state is now on q2

output q2:qbit

Fig. 3. Teleportation: Specification and Implementation

The appropriate way to view a quantum protocol as a function is to con-
sider its action as a superoperator, i.e. a linear operator on the space of density
matrices. In this way, both measurements and unitary operators are taken into
account. By linearity, to check that superoperators f and g are equivalent, it is
sufficient to choose a basis for the space of density matrices and check that for
each basis element v, f(v) = g(v). It turns out that it is possible to choose a basis
consisting only of stabilizer states [18], and this brings equivalence-checking into
the realm of automated analysis in the stabilizer formalism.

With Ebrahim Ardeshir-Larijani, we have implemented a tool [5] which takes
as input two programs and checks whether or not they are equivalent, by eval-
uating them on all elements of a stabilizer basis. The language is based on
Selinger’s QPL [29]. For example, verification of a teleportation protocol con-
sists of checking equivalence of the two programs in Figure 3. In comparison
with the discussion of teleportation in Section 4, this model does not define Al-
ice and Bob separately, and removes the communication; the protocol has been
converted into a sequential program.

Compared with the verification of teleportation by the QMC system, we have
a stronger conclusion: that all quantum states are successfully teleported, not
just stablizer states. Retrospectively, we can now intepret the QMC verifica-
tion as a guarantee that all states are correctly teleported, assuming that it is
reasonable to view a QMC program as a superoperator, because QMC checked
all stabilizer states and therefore included a basis. Equivalence checking requires

Techniques for Formal Modelling and Analysis of Quantum Systems 275

less computation than QMC, because a stabilizer basis is smaller than the set of
all stabilizer states (for n qubits there are approximately 2(n

2)/2 stabilizer states
but a basis for the space of density matrices has only 22n elements).

7 Conclusion

We have outlined the principles of quantum information processing, and argued
that formal methods will be necessary in order to guarantee the correctness of
practical quantum systems. We have illustrated three particular approaches: be-
havioural equivalence in process calculus, model-checking and equivalence check-
ing. We used quantum teleportation as a running example.

Future work will include the development of equational axiomatizations of
behavioural equivalence in CQP, improving the efficiency of QMC and extending
equivalence checking to include concurrent programs. On the more practical
side, we intend to work on more substantial examples including cryptographic
systems.

References

1. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Physical
Review A 70, 052328 (2004)

2. Abramsky, S., Gay, S.J., Nagarajan, R.: Interaction categories and the foundations
of typed concurrent programming. In: Broy, M. (ed.) Deductive Program Design:
Proceedings of the 1994 Marktoberdorf International Summer School. NATO ASI
Series F: Computer and Systems Sciences. Springer (1995)

3. Abramsky, S.: Interaction Categories (Extended Abstract). In: Burn, G.L.,
Gay, S.J., Ryan, M.D. (eds.) Theory and Formal Methods 1993: Proceedings of
the First Imperial College Department of Computing Workshop on Theory and
Formal Methods. Workshops in Computer Science, pp. 57–70. Springer (1993)

4. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS
2004), pp. 415–425. IEEE Computer Society (2004); Also arXiv:quant-ph/0402130

5. Ardeshir-Larijani, E., Gay, S.J., Nagarajan, R.: Equivalence checking of quan-
tum protocols. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013).
LNCS, vol. 7795, pp. 478–492. Springer, Heidelberg (2013)

6. Baltazar, P., Chadha, R., Mateus, P.: Quantum computation tree logic – model
checking and complete calculus. International Journal of Quantum Informa-
tion 6(2), 219–236 (2008)

7. Baltazar, P., Chadha, R., Mateus, P., Sernadas, A.: Towards model-checking quan-
tum security protocols. In: First International Conference on Quantum, Nano, and
Micro Technologies, ICQNM. IEEE Computer Society (2007)

8. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.:
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels. Physical Review Letters 70, 1895–1899 (1993)

9. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd IEEE Symposium on Foundations of Computer Science, FOCS,
pp. 136–145. IEEE Computer Society (2001)

276 S.J. Gay and R. Nagarajan

10. Davidson, T., Gay, S.J., Mlnař́ık, H., Nagarajan, R., Papanikolaou, N.: Model
checking for Communicating Quantum Processes. International Journal of Uncon-
ventional Computing 8(1), 73–98 (2012)

11. Davidson, T.A.S.: Formal Verification Techniques using Quantum Process Calcu-
lus. PhD thesis, University of Warwick (2011)

12. Emerson, E.A.: Temporal and modal logic, vol. B: Formal Models and Semantics,
pp. 995–1072. MIT Press (1990)

13. Feng, Y., Duan, R., Ying, M.: Bisimulation for quantum processes. In: 38th ACM
Symposium on Principles of Programming Languages, POPL. ACM (2011)

14. Feng, Y., Yu, N., Ying, M.: Model checking quantum Markov chains.
arXiv:1205.2187 [quant-ph] (2012)

15. Feynman, R.P.: Simulating physics with computers. International Journal of The-
oretical Physics 21(6-7), 467–488 (1982)

16. Gay, S.J., Mackie, I.C. (eds.): Semantic Techniques in Quantum Computation.
Cambridge University Press (2010)

17. Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: 32nd ACM Sym-
posium on Principles of Programming Languages, POPL, pp. 145–157 (2005); Also
arXiv:quant-ph/0409052

18. Gay, S.J.: Stabilizer states as a basis for density matrices. arXiv:1112.2156 (2011)
19. Gay, S.J., Nagarajan, R.: Types and typechecking for Communicating Quantum

Processes. Mathematical Structures in Computer Science 16(3), 375–406 (2006)
20. Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: A model checker for quantum

systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 543–547.
Springer, Heidelberg (2008)

21. Gay, S.J., Papanikolaou, N., Nagarajan, R.: Specification and verification of quan-
tum protocols. In: Semantic Techniques in Quantum Computation. Cambridge
University Press (2010)

22. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum
Hamming bound. Physical Review A 54, 1862 (1996)

23. Grover, L.: A fast quantum mechanical algorithm for database search. In: 28th
ACM Symposium on the Theory of Computation, STOC, pp. 212–219. ACM Press
(1996)

24. Lalire, M.: Relations among quantum processes: bisimilarity and congruence.
Mathematical Structures in Computer Science 16(3), 407–428 (2006)

25. Mateus, P., Sernadas, A.: Weakly complete axiomatization of exogenous quantum
propositional logic. Information and Computation 204(5), 771–794 (2006)

26. Mayers, D.: Unconditional Security in Quantum Cryptography. Journal of the
ACM 48(3), 351–406 (2001)

27. Nagarajan, R., Gay, S.J.: Formal verification of quantum protocols. arXiv:quant-
ph/0203086 (March 2002)

28. Papanikolaou, N.K.: Model Checking Quantum Protocols. PhD thesis, University
of Warwick (2009)

29. Selinger, P.: Towards a quantum programming language. Mathematical Structures
in Computer Science 14(4), 527–586 (2004)

30. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: 35th IEEE Symposium on Foundations of Computer Science, FOCS
(1994)

31. Trčka, N., Georgievska, S.: Branching bisimulation congruence for probabilistic
systems. Electronic Notes in Theoretical Computer Science 220(3), 129–143 (2008)

32. Ying, M., Feng, Y., Duan, R., Ji, Z.: An algebra of quantum processes. ACM
Transactions on Computational Logic 10(3), 19 (2009)

Quantum Field Theory for Legspinners

Prakash Panangaden

School of Computer Science
McGill University

Montréal, Québec, Canada
prakash@cs.mcgill.ca

Happy birthday Samson.

Abstract. The notion of a particle in quantum field theory is dependent
on the observer. This fundamental ambiguity in the definition of what
seems a basic “objectively” observable concept is unsettling. In this short
note I will survey the basics of field quantization and then discuss the
Unruh effect which illustrates this phenomenon. I will describe an ab-
stract version of quantum field theory in which a single mathematical
object, a complex structure, captures all the ambiguity in the definition
of a particle. There is nothing original in this paper, however, this par-
ticular presentation is not easy to extract from the extant literature and
seems not be be known as widely as it deservers.

1 Introduction

I am delighted to have the chance to help celebrate Samson’s 60th birthday. I
first heard of him in 1984 when I was struggling to understand fair merge in
dataflow and saw his marvellously original papers on the subject of semantics
of nondeterminism. I met him for the first time later that year at a workshop in
Carnegie-Mellon university. We discovered that we had both been leg-spinners
in our youth1 and this, helped cement what has turned out to be an almost 30
year long friendship. Samson seemed to have a remarkably spooky way of being
interested in all the things that I was interested in except that he did them
much better and earlier. The one exception was quantum mechanics where I
had the edge on him having done a PhD in physics in the 1970s. However, he
has overtaken me here too and done beautiful work with Bob Coecke and others
at Oxford and elsewhere. Long ago I promised him notes on “Quantum Field
Theory for Legspinners”; this note is far short of what I promised but it is a
partial repayment of the huge debt that I owe him.

In order to set up quantum field theory it is worth recalling some of the
reasons why quantum field theory differs from quantum mechanics. Quantum
mechanics was intended to be a theory of point particles interacting at relatively
low energies. At higher energies a new phenomenon is observed; the creation and
disappearance of particles. Quantum mechanics had conservation of particles

1 Look it up if you don’t know what that means.

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 277–290, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 P. Panangaden

built into it, in quantum field theory one needs entirely new mathematics to
describe the creation and annihilation of particles; it has to be a many-particle
theory. It turns out that there are fundamental ambiguities in what a particle is
which I will emphasize in this article.

2 Geometric Mechanics

The best way to understand classical mechanics is from a geometric perspective.
There are several excellent books; I found the textbooks by Woodhouse [1,2] to
be excellent as well as unpublished (and hard to find) lecture notes by Robert
Geroch [3]. The standard references by Marsden and Ratiu [4] is also excellent.

Geometric mechanics starts from a configuration space, taken to be a smooth
manifold M . One should think of this as a “snapshot” of the system. Notice
that M need not be Rn; one could think of particles constrained to all kinds of
configurations, such as pendulums swinging along spheres. Configuration space is
not a complete description of a mechanical system, since there are no dynamics at
all. In fact, the configuration space just contains information about position. In
order to describe the dynamics completely we also need the momenta. If we also
take momenta into account, we end up with phase space, which mathematically
corresponds to the cotangent bundle over M .

It turns out that the cotangent bundle T∗M of any manifoldM comes equipped
with a “canonical” 2-form. This is called a symplectic2 form; in the physics lit-
erature this is called a “Poisson bracket.”

The 2-form Ω satisfies the following three properties:

(S1) It is antisymmetric: Ωαβ = −Ωβα.
(S2) It is invertible, in the sense that there is an Ωαβ satisfying ΩαγΩγβ = δαβ ,

where the last symbol is the Kronecker delta.
(S3) Δ[αΩβγ] = 0, where the bracketed indices denote complete antisymmetriza-

tion. In general,

T[abc] =
∑
σ∈Sn

(−1)sgn(σ)Tσ(a)σ(b)σ(c),

and the antisymmetrization can be taken over indices of multiple tensors,
as above.3

Any 2-form satisfying these three properties is called a symplectic form.
We can now finally define the arena in which dynamics can happen to be

a symplectic manifold : a smooth manifold equipped with a symplectic form. It
follows that such a manifold is automatically even-dimensional. In fact, a lot of

2 The name “symplectic” has been introduced by Hermann Weyl in 1939 as the Greek
adjective corresponding to the word “complex”, which for him referred to the linear
line complexes introduced by Plücker that satisfied condition (S1) below, because the
word “complex” by that time had got strong connotations with complex numbers.

3 Incidentally, parentheses around indices similarly denote complete symmetrization.

Quantum Field Theory for Legspinners 279

mechanics could alternatively be called the geometry of symplectic manifold. A
symplectic manifold is one of the two major pieces out of which Hilbert spaces
are constructed.

As phase space is supposed to give the “kinematics”, we can trace every
point along its tangent curve, thus extrapolating its “future” and “past”. Hence
the blank canvas of phase space comes “painted with curves”, which are called
dynamical trajectories. The whole picture is also called the phase portrait. The
dynamical trajectories of different points cannot intersect, because behaviour is
presupposed to be deterministic. Together, the dynamical trajectories must fill
the whole of space, since every point lies on a tangent curve.

The tangent vectors of the family of curves in the phase portrait form a
vector field, called dynamics : there is a smooth scalar field on T∗M called the
hamiltonian H , and there is an associated vector field, called the hamiltonian
vector field, denoted by Hα, given by

Hα = Ωαβ∇βH.

The latter assertion follows from the theory of differential equations, that is
lifted from Rn via local charts. The integral curves of Hα give the phase portrait
discussed above. The upshot is that the symplectic form and the Hamiltonian
determine the dynamics of a system.

3 Basic Elements of Quantum Mechanics

In quantum mechanics, the state space of a physical system is represented by
a Hilbert space H. Two nonzero vectors of H will represent the same physical
state if they are linearly dependent. Thus the state space is really the projective
space of H. However, H is still often called the state space.

The major change with respect to classical mechanics is that observables
are now Hermitian operators on the Hilbert space; their algebra is now non-
commutative. Why should this be? Why couldn’t they have been functions on
the state space as in classical physics? The reason is that measuring an observable
changes the state so one cannot just describe an observable as a mapping of states
to numbers but rather as a mapping of states to states.

3.1 Time Evolution

The time evolution is described by a family of unitary operators U(t) : H −→ H,
so that the state vector at time t,

∣∣ψ(t)〉, is given by∣∣ψ(t)〉 = U(t)
∣∣ψ(0)〉 .

It is a fundamental law of quantum mechanics that

U(t) = e−iHt/�

280 P. Panangaden

for a Hermitian operator H , also called the Hamiltonian, which depends on the
physics of the specific system considered. The infinitesimal version of the time-
evolution equation then reads

i�
∂

∂t

∣∣ψ(t)〉 = H
∣∣ψ(t)〉,

This is the celebrated Schrödinger equation.

3.2 Quantization

Where does one get the Hamiltonians for various systems? There is a (heuristic)
process called quantization which constructs a quantum theory from a given
classical theory, in particular, for each classical observable one needs to produce
a corresponding quantal observable. A principled account of quantization from
a geometric perspective is given by Woodhouse [2].

Classical Quantal

State space Manifold (Projective) Hilbert space
Observable Real-valued function quantization

−−−−−−−−−−−→
Hermitian operator

Time evolution Hamiltonian Hamiltonian

In our simple case, we just replace the quantities x and p in the classical
Hamiltonian by the quantum mechanical operators x and p. Thus, for example,

from the classical Hamiltonian H = p2

2m +V (x) for a particle in a potential field,
one obtains the quantum mechanical Hamiltonian

H =
P2

2m
+ V (x) = − 1

2m

d2

dx2
ψ + V (x),

which is correct up to setting � = 1.

4 The Harmonic Oscillator

In a quadratic potential V (x) = 1
2kx

2, the Hamiltonian is

H =
p2

2m
+

1

2
kx2.

The solution of the corresponding classical system is x = A sin(ωt + φ), where
ω =
√
k/m. In anticipation of analogous solutions we write the Hamiltonian as

H =
p2

2m
+

1

2
mω2x2.

While the eigenvectors of H can be found using Hermite polynomials and other
tricks for dealing with the differential equations involved. There is, however,

Quantum Field Theory for Legspinners 281

a nicer algebraic way which makes the connection with quantum field theory
clearer.

Introduce the operator

a = x

√
mω

2
+ ip

√
1

2mω

and its adjoint

a† = x

√
mω

2
− ip
√

1

2mω
,

so that

x =
1√
2mω

[a† + a],

p = i

√
mω

2
[a† − a] and hence

H = ω
(
a†a+ 1

2

)
.

Defining N = a†a, we have
H = ω

(
N + 1

2

)
and hence to find the eigenvalues of H , it is sufficient to find the eigenvalues of
N .

Also, it is straightforward to check that, [a, a†] = 1, [N, a] = −a and [N, a†] =
a†.

Let
∣∣n〉 be an eigenvector of N with an eigenvalue n. (Anticipating, but not

supposing, that n will be an integer.) N
∣∣n〉 = n

∣∣n〉 implies that

N(a†
∣∣n〉) = (a† + a†N)

∣∣n〉 = (n+ 1)(a†
∣∣n〉),

i.e. that a†
∣∣n〉 is an eigenvector of N with eigenvalue n+1, unless it is the zero

vector. Similarly observe that

N(a
∣∣n〉) = (−a+ aN)

∣∣n〉 = (n− 1)(a
∣∣n〉),

i.e. that a
∣∣n〉 is an eigenvector of N with eigenvalue n− 1, unless it is the zero

vector. We call a† the raising operator and a the lowering operator.
Note that 〈

ψ
∣∣N ∣∣ψ〉 = 〈ψ ∣∣ a†a ∣∣ψ〉 = ||a ∣∣ψ〉||2 ≥ 0,

so the spectrum of N is bounded below by zero.4

By repeated application of the lowering operator a to
∣∣n〉, we obtain eigen-

vectors with lower and lower eigenvalues, or the zero vector. Since the spectrum
of N is bounded below, after a finite number (at most 0n1+ 1) of applications,

4 This implies that the spectrum of H is bounded below by 1
2
ω, i.e. the lowest possible

energy is positive.

282 P. Panangaden

we must have obtained a zero vector. If m is the least integer such that am
∣∣n〉

is nonzero, we get a(am
∣∣n〉) = 0, so also N(am

∣∣n〉) = (a†a)(am
∣∣n〉) = 0, which

means that am
∣∣n〉 is an eigenvector of N with eigenvalue zero. But we also know

that am
∣∣n〉 is an eigenvector of N with eigenvalue n−m, therefore n = m is a

nonnegative integer.
Furthermore, if ||

∣∣n〉|| = 1, then

||a†
∣∣n〉||2 =

〈
n
∣∣ aa† ∣∣n〉 = 〈n ∣∣(1 + a†a)

∣∣n〉 = 〈n ∣∣(1 +N)
∣∣n〉 = (n+ 1),

so in particular, we never get a zero vector when applying a† to an eigenvector
of N . This means that by repeated application of the raising operator we obtain
eigenvalues with arbitrarily large eigenvalues. Therefore, all nonnegative integers
are eigenvalues of N .

It is not hard to show that all the eigenspaces are one-dimensional, so up to
physically unimportant phase, there is a unique normalized n-eigenvector

∣∣n〉 for
each nonnegative integer n. From this and the calculation above it then follows
that

a†
∣∣n〉 = √n+ 1

∣∣n+ 1
〉

and similarly
a
∣∣n〉 = √n ∣∣n− 1

〉
.

We have found all the eigenvalues of N and hence of H .

5 The Klein-Gordon Field Theory

Klein-Gordon field theory is a free spinless quantum field theory. It can be viewed
as a collection of harmonic oscillators as described in the previous section. The
Klein-Gordon equation is: [

∂μφ∂
μφ−m2φ

]
= 0.

This is well understood as a classical field theory. We often write it in the short
form:

(�−m2)φ = 0

where� is shorthand for−∂2/∂t2+∂2/∂x2+∂2/∂y2+∂2/∂z2. Since this equation
is linear the space of solutions forms a vector space. This space forms the phase
space for the classical field theory. The symplectic form is

Ω(φ1, φ2) =

∫
Σ

(φ1∇aφ2 − φ2∇aφ1)dσa

where ∇a is the derivative, Σ is a hypersurface large enough that data about
φ and its first derivative on Σ determines the subsequent evolution (a Cauchy
surface) and dσa is the volume element on the hypersurface. One thinks of φ on
a Cauchy surface as being like a “position” and the first derivative normal to the
surface as being like a “momentum”. The fact that these data can be integrated
to give φ as a function of position and time means that we can think of the space
of 4-dimensional solutions (functions of space and time) as the phase space.

Quantum Field Theory for Legspinners 283

5.1 Quantization of the Klein-Gordon field

This involves two main steps

– make basic observables into operators, obeying canonical commutation rela-
tions (CCRs)

– look for Hilbert space representations for these operators.

Now the phase space is the infinite-dimensional space of solutions of the classical
equation. In order to tame the infinite-dimensionality we “put the field in a
box”, that is, we pretend that the space is a torus. This amounts to imposing
periodic boundary conditions of size L. The motivation for this is to get a discrete
spectrum. Later we can consider L −→∞ and see what happens.

The periodicity allows us to do a Fourier decomposition of φ:

φ(t,x) = L− 3
2

∑
k

φk(t)e
ik·x

with Fourier coefficients φk(t) for each of the Fourier modes k = 2π
L (n1, n2, n3),

where the ni are integers.
Fourier theory tells us that the coefficients φk(t) satisfy

φk(t) = L− 3
2

∫
φ(t,x)e−i k·xd3x.

Since we are considering φ a real valued function we know φ(t,x) = φ(t,x) and
so φk(t) = φ−k(t).

We can now rewrite the Lagrangian:

L =
∑
k

{
1

2
|φ̇k|2 −

1

2
ω2
k|φk|2

}
,

where ωk =
√
k2 +m2.

Note that each component of this sum looks like an oscillator! On this basis
we shall think of the field theory we are describing as a collection of decoupled
harmonic oscillators, one at each Fourier mode k.5 This is a step forward since
we know how to quantize oscillators. In the present setting we get “raising” and
“lowering” operators called creation and annihilation operators a†k and ak for
each Fourier mode k.

Now we have particles! Each creation operator creates a particle of a partic-
ular momentum (mode). The corresponding annihilation operators destroy the
particles. The vacuum is the unique state that is killed by all the annihilation
operators. It is usually written

∣∣0〉; it should not be confused with the zero vector
of the Hilbert space.

5 That the oscillators are ‘decoupled’ in this setting just means that the creation and
annihilation operators commute when the Fourier modes are different.

284 P. Panangaden

5.2 Bosonic Fock Space

What is the space on which the ak and a†k act? The naive answer, just taking
the infinite tensor product, will not work as it is “too large”. The correct answer
is bosonic or symmetric Fock space [5,6].

Definition 1. The symmetrized tensor product H ⊗s H of a Hilbert space H
with itself is defined as the equalizer (or coequalizer) of the identity idH⊗H and
‘flip’ map τ : H⊗H −→ H⊗H;u⊗ v �→ v ⊗ u. That is,

H⊗s H
e
↪→ H⊗H⇒ H⊗H q→ H⊗s H.

The effect of the coequalizer is q : u⊗ v �→ 1
2 (u⊗ v + v ⊗ u).

Similarly, the 3-fold symmetrized tensor product is the equalizer (coequalizer)
of the six possible permutations H⊗H⊗H −→ H⊗H⊗H.
Definition 2. Given a Hilbert space H, its Bosonic or symmetric Fock space
F = Fsym(H) is the direct sum of symmetrized tensor products of H,

Fsym(H) = C⊕H⊕ (H⊗s H)⊕ (H⊗s H⊗s H)⊕ . . .

where ⊗s is defined as above.

Heuristically, the Fock space is

eH = C⊕H⊕ H ⊗H
s2

⊕ H
⊗3

s3
⊕ . . .

where each quotient /sn is by the equalizer/coequalizer of the n! permutations
on H⊗n.

Since for ordinary exponentials we have ex+y = ex · ey the analogy implies
Fsym(H ⊕K) ∼= Fsym(H) ⊗Fsym(K). Indeed, this is the case as can be checked
by explicitly constructing the isomorphism.

Given Ψ ∈ Fsym(H) we can write it explicitly as

Ψ = (ψ0, ψ1, ψ2, . . . , ψn, . . .)

where each ψn is a completely symmetric n-index tensor. The components ψn

correspond to probability amplitudes for n-particle states. Thus ψ0 is the prob-
ability amplitude of the vacuum, ψ1 is the probability amplitude of a 1-particle
state, and so on.

Now we wish to represent the operation of creating or annihilating a particle
σ in or from the field. Given σ ∈ H we define

a†(σ)Ψ =
(
0, ψ0σ,

√
2(ψ1 ⊗s σ),

√
3(ψ2 ⊗s σ), . . .

)
,

which corresponds to the creation of a σ particle in the state Ψ .
Similarly the annihilation of a σ particle is given by the operator

a(σ)Ψ =
(
〈ψ1, σ〉,

√
2〈ψ2, σ〉,

√
3〈ψ3, σ〉, . . .

)
,

where the angled brackets denote the contraction or trace, namely 〈ψ2, σ〉 =
ψab
2 σb, 〈ψ3, σ〉 = ψabc

3 σc, and so on.

Quantum Field Theory for Legspinners 285

5.3 Summary

It all seems very canonical but that is misleading. The underlying spacetime is
Minkowski spacetime and this has preferred coordinates: preferred because they
correspond to the global symmetries of the spacetime. Given this preferred time
coordinate it becomes clear what “positive” and “negative” frequency means.
The decomposition of the filed φ(t,x) has a component with time dependence
eiωt: this is a positive frequency piece whereas the Hermitian conjugate piece
looks like e−iωt: it is the negative frequency piece? A very important point to
note here is that the positive and negative frequency solutions are complex while
the original classical field is real. This observation will be important later.

What happens if different time coordinates are used? Then one can obtain a
totally different set of creation and annihilation operators.

6 Quantum Field Theory Abstractly

The algebraic approach to quantum field theory is based on looking at the ob-
servables. The state space is constructed later as a representation for the abstract
algebra. The present abstract framework was developed by I. E. Segal, see, for
example [7] and used by Ashtekar and Magnon [8] to develop quantum field
theory in curved spacetimes.

The algebra of interest in quantum field theory is a ∗-algebra which is con-
structed from the classical quantities. Incidentally the observables by themselves
do not form a ∗-algebra, the observables are a subset of the ∗-algebra of physical
interest. The ∗-algebra is obtained by taking the free ∗-algebra generated by the
solutions to the KG equation; recall that the solutions of the KG equation form
a vector space. To each solution φ is associated two elements of the ∗-algebra,
written F (φ) and F ∗(φ). We impose the equation F (φ) = F ∗(φ) which makes
the basic operators self-adjoint. This does not trivialize the ∗ structure because,
for example, (aF)∗ = aF where a is a complex number and a denotes complex
conjugation.

Dirac’s quantization rule is the following: “when constructing the algebra
of quantum operators the quantum analogues of classical operators no longer
commute, instead the commutators are given by the classical Poisson brackets.”
The commutator of two operators [A,B] is defined as AB − BA and measures
the failure of A and B to commute. The algebraic condition suggested by Dirac’s
rule is

[F (φ1), F (φ2)] = iΩ(φ1, φ2)I

where i is the square root of −1, I is the identity element of the algebra and we
have chosen units in which physical constants (like c, the velocity of light and
h, Planck’s constant) are equal to 1. This equation is imposed on the algebra.

The space of states is chosen to carry a representation of the algebra. Addi-
tional input from physics is needed to select a preferred space from the set of
possible spaces. We are going to demand that the space of states support the
“wave-particle duality” of quantum field theory and carry the structures neces-
sary to describe the creation and annihilation of particles. In short we are going

286 P. Panangaden

to construct a Fock space. First we demand that the space of states F contain a
Hilbert space H. In order to define H we proceed as described below. As a real
vector space H is isomorphic to the space, V , of solutions to the classical field
equations. Intuitively H is going to be thought of as the space of one particle
states. Second we demand that F be the Fock space over H; this means that we
want the space of states to be the “many-particle” states of the quantum field.
Thirdly we demand that every one of the basic operators F (φ) be represented
as the sum of a creation operator and an annihilation operator.

Where does the Hilbert space structure come from? It turns out that one
needs to decide which parts of a classical solution correspond to the propaga-
tion of positive energy particles and which corresponds to the propagation of
negative energy particles. Thus a classical real solution to the KG equation is
“decomposed” into complex solutions and this is where the notion of particle
comes in. I will therefore interrupt the discussion of the Hilbert space structure
and proceed to the heart of the paper.

7 Complex Structures and Polarizations

A choice of negative and positive frequency components amounts to a decom-
position of the Hilbert space into two isomorphic pieces. Note that from the
discussion of the Klein-Gordon field we saw that the choice of a positive and
negative frequency decomposition results in complex vector spaces whereas we
started with a real vector space. Thus the process of decomposition seems to be
linked with the notion of introducing a complexification into the theory. In this
section we make this link explicit [9].

Definition 3. Given a real vector space V , we define a complex structure on
V to be a linear map J : V −→ V such that J2 = −I.

It is easy to see that V has to be even-dimensional or infinite-dimensional.
Consider the complex vector space VC = V ⊕ iV where a complex number

x + iy acts on (u, v) ∈ VC by (x + iy)(u, v) = (xu − yv, xv + yu); i.e. we can
think of (u, v) as u+ iv. If we have a complex structure defined on V it can be
extended to a complex structure Jc on Vc by linearity.

Definition 4. A polarization on a complex vector space is a pair of projection
operators P± such that

1. P+ + P− = I,
2. (P+φ) = P−(φ)
3. (P−φ) = P+(φ)

It follows immediately from (1) that P+P− = P−P+ = 0.

From a polarization one can define a complex structure J on Vc as follows:

Jφ = iP+(φ) − iP−(φ). (1)

Quantum Field Theory for Legspinners 287

From a complex structure one can define a polarization as follows:

P+(φ) =
1

2
(φ− iJφ) (2)

P−(φ) =
1

2
(φ+ iJφ). (3)

It is easy to see by explicit calculation that the P± defined this way are projection
operators and have the other properties required of a polarization. It is also easy
to check that J defined this way is a complex structure.

If φ ∈ Vc is in the “real part” i.e. is of the form (u, 0) then we have P+(u, 0) =
(x, y) and, from the requirement that (P+φ) = P−(φ) we have that P−(u, 0) =
(x,−y). Then the action of J is J(u, 0) = i(x, y)−i(x,−y) = (−y, x)+(−y,−x) =
(−2y, 0) i.e. it is well-defined as a complex structure on V the original real vector
space.

Thus the physical question of how one chooses positive and negative fre-
quency decompositions can be reduced to the mathematical question of choosing
a complex structure. In ordinary quantum field theory one computes the Fourier
transform of φ and obtains a canonical decomposition into positive and negative
frequency components.

Using the condition that every basic operator be representable as the sum of
a creation operator and an annihilation operator and using the explicit formulas
for the action of these operators on Fock space as well as the commutation
conditions that have been imposed on the basic operators we can show that

〈φ, ψ〉 = 1/2[Ω(φ, Jψ) + iΩ(φ, ψ)].

In other words the symplectic structure and the complex structure determine
the inner product on H.

7.1 Defining the Vacuum

We have seen that choosing a complex structure defines the positive and negative
frequency solutions of a theory. This choice is not unique and one needs some
input from the physics to pick out the “right” complex structure. We consider
what happens when two observers have different notions of positive and negative
energy frequencies. Suppose we have two complete, orthonormal sets of of com-
plex solutions to the Klein-Gordon equation, {fi} and {qj}. By orthonormal we
mean that the union of the fi and their complex conjugates satisfy the following
equations

〈fi, fj〉 = −
〈
f∗
i , f

∗
j

〉
= δij .

So the Klein-Gordon “inner product” only behaves like an inner product when
restricted to positive frequency solutions. By complete we mean that they form
a basis in the complex vector space of all solutions.

288 P. Panangaden

If φ̂(x) is our field operator, then the creation and annihilation operators with
respect to the f -basis are defined by

φ̂(x) =
∑
i

(
âifi + â†if

∗
i

)
,

and the vacuum
∣∣0〉 is defined as the unique state that is killed by all the anni-

hilation operators:
âi
∣∣0〉 = 0.

Since we are dealing with complete sets, we can write the fi and gj in terms of
each other:

gj =
∑

i (αijfi + βijf
∗
i) g∗j =

∑
i

(
α∗
ijf

∗
i + β∗

ijfi
)

fi =
∑

j

(
αjigj + βjig

∗
j

)
f∗
i =
∑

j

(
α∗
jig

∗
j + β∗

jigj
)
.

So, for example, αij = 〈gj , f i〉.
We could equally well expand the field operator in the g-basis. Then we have

φ̂(x) =
∑
j

(
b̂jgj + b̂†jg

∗
j

)
,

for some other creation and annihilators b̂j and b̂†j , and we also have another

vacuum defined by b̂j
∣∣0〉′ = 0. The question we are interested in answering is:

what does a one vacuum look like in the other basis?

7.2 Bogolioubov Transformations

It is a routine calculation to find that

âi =
∑

j

[
αjib̂j + βji b̂

†
j

]
b̂j =
∑

i

[
αij b̂i + βij b̂

†
i

]
â†i =

∑
j

[
α∗
ji b̂

†
j + β∗

jib̂j

]
b̂†j =
∑

i

[
α∗
ij b̂

†
i + β∗

ij b̂i

]
.

These are called the Bogoliubov transformations. Now we have two number op-
erators:

N̂i = â†i âi N̂
′
j = b̂†j b̂j.

So we can take one vacuum and with it calculate the expectation value of the
other number operator: 〈

0
∣∣′ N̂i

∣∣0〉′ =∑
j

|βij |2.

We see that under the Bogolioubov transformations the annihilation operators
pick up a creation part, and the coefficients give rise to the non-zero right-
hand side here. It is this mixing of the creation and annihilation operators that
is responsible for particle creation. The Bogolioubov transformation formalism
was first used in order to describe particle by Leonard Parker [10] in the 1960s.

Quantum Field Theory for Legspinners 289

7.3 Rindler Spacetime

Recall that a vector field is a Killing field if the Lie derivative of the metric along
that vector field vanishes. In Minkowski spacetime we have the boost Killing field :

t
∂

∂z
+ z

∂

∂t
.

The integral curves of this Killing field are timelike in the right and left Rindler
wedges. So in these regions of the spacetime we could use these curves to define
a time coordinate. They curves are curves of constant acceleration, so for a
uniformly accelerating observer these are the “natural” time coordinates. An
accelerating observer will see the diagonals of the figure as horizons. So for such
an observer, the Rindler wedge is his “natural” home.

The coordinates of a uniformly accelerated observer are the Rindler coordi-
nates (ρ, η, x, y). These are related to the Minkowski coordinates (t, z, x, y) by
the transformations

t = ρ sinh η, z = ρ cosh η.

The line element of the Rindler spacetime is

ds2 = ρ2dη − dρ2 − dx2 − dy2.

Lines of constant acceleration are lines of constant ρ, and the value of the acceler-
ation is ρ−1. In terms of the scaled coordinates (τ, η, x, y), where the acceleration
a is factored out:

ρ = a−1eaξ, η = aτ.

ξ = 0 corresponds to acceleration a. We will use τ to define positive and neg-
ative frequency, and thus the vacuum for an accelerating observer. It turns out
that, to the accelerated observer, the Minkowski background looks like a thermal
bath: this is what’s known as the Unruh effect [11] or the Fulling-Davies-Unruh
effect [12,13]. It dramatically illustrates the differences between what one ob-
server perceives as a vacuum and another sees as a “hot” radiation bath. Unruh
and Wald [14] carefully analyzed what different observers would see in this sit-
uation. An excellent review of the Unruh effect is a Reviews of Modern Physics
article [15].

8 Conclusions

The story is well known to physicists but less known among the computer sci-
ence community. It is my hope that the group around Abramsky and Coecke
working on categorical quantum mechanics would be stimulated to investigate a
functorial version of quantization. Baez [16] has remarked that this is not possi-
ble, nevertheless it seems to me to be worth understanding why not more deeply
and perhaps seeing if it is possible from a different perspective.

290 P. Panangaden

Acknowledgements. I would like to thank Samson Abramsky for inviting me
spend a sabbatical at Oxford during the academic year 2010-11 and suggesting
that I give lectures on quantum field theory to the group there. I would like
to thank the note takers from those lectures: Chris Heunen, Ray Lal, Shane
Mansfield, Nadish de Silva, Jakub Zavodny, Colin Stephen, Julia Evans and Alex
Lang. I have greatly enjoyed my discussions on quantum field theory with that
group, apart from the note takers this includes Jamie Vicary, Bob Coecke, Aleks
Kissinger, Andreas Döring and, of course, Samson himself. I owe a great deal
to Abhay Ashtekar, Leonard Parker, Rafael Sorkin, Robert Wald and Robert
Geroch from whom I learned most of this material in the 1970s. I gratefully
acknowledge the support of an EPSRC grant that allowed me to spend my
sabbatical year in Oxford.

References

1. Woodhouse, N.M.J.: Introduction to analytical dynamics. Oxford University Press
(1987)

2. Woodhouse, N.M.J.: Geometric Quantization, 2nd edn. Clarendon Press (1997)
3. Geroch, R.: Lectures on geometric quantum mechanics. Mimeographed notes
4. Marsden, J.E., Ratiu, T.: Introduction to Mechanics and Symmetry. Texts in Ap-

plied Mathematics, vol. 17. Springer (1994)
5. Geroch, R.: Mathematical Physics. Chicago Lectures in Physics. University of

Chicago Press (1985)
6. Geroch, R.: Lectures on quantum field theory. Mimeographed notes (1971)
7. Baez, J., Segal, I.E., Zhou, Z.: Introduction to Algebraic and Constructive Quan-

tum Field Theory. Princeton University Press (1992)
8. Ashtekar, A., Magnon, A.: Quantum fields in curved space-times. Proceedings of

the Royal Society of London. A. Mathematical and Physical Sciences 346(1646),
375–394 (1975)

9. Panangaden, P.: Positive and negative frequency decompositions in curved space-
times. J. Math. Phys. 20, 2506–2510 (1979)

10. Parker, L.: Particle creation in expanding universes. Phys. Rev. Lett. 21, 562–564
(1968)

11. Unruh, W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870–892 (1976)
12. Fulling, S.A.: Nonuniqueness of canonical field quantization in riemannian space-

time. Phys. Rev. D 7(10), 2850–2862 (1973)
13. Davies, P.C.W.: Scalar particle production in schwarzschild and rindler metrics. J.

Phys. A 8(4), 609–616 (1975)
14. Unruh, W.G., Wald, R.M.: What happens when an accelerating observer detects

a rindler particle. Phys. Rev. D 29(6), 1047–1056 (1984)
15. Crispino, L., Higuchi, A., Matsas, G.: The unruh effect and its applications. Re-

views of Modern Physics 80(3), 787 (2008)
16. Baez, J.: Notes on geometric quantization. Available on Baez’ web site

Bicompletions of Distance Matrices
To Samson Abramsky on the occasion of his 60th birthday

Dusko Pavlovic

Royal Holloway, University of London, and University of Twente
dusko.pavlovic@rhul.ac.uk

Abstract. In the practice of information extraction, the input data are usually
arranged into pattern matrices, and analyzed by the methods of linear algebra
and statistics, such as principal component analysis. In some applications, the
tacit assumptions of these methods lead to wrong results. The usual reason is
that the matrix composition of linear algebra presents information as flowing in
waves, whereas it sometimes flows in particles, which seek the shortest paths.
This wave-particle duality in computation and information processing has been
originally observed by Abramsky. In this paper we pursue a particle view of in-
formation, formalized in distance spaces, which generalize metric spaces, but
are slightly less general than Lawvere’s generalized metric spaces. In this frame-
work, the task of extracting the ’principal components’ from a given matrix of
data boils down to a bicompletion, in the sense of enriched category theory. We
describe the bicompletion construction for distance matrices. The practical goal
that motivates this research is to develop a method to estimate the hardness of
attack constructions in security.

1 Introduction

Dedication. When Samson Abramsky offered me the position of ’Human Capital Mo-
bility Research Fellow’ in his group at Imperial College back in 1993, I was an ex-
programmer with postdoctoral experience in category theory. It was a questionable in-
vestment. Category theoretical models of computation were, of course, already in use
in theoretical computer science; but the emphasis was on the word ’theoretical’. A cou-
ple of years later, I left academia to build software using categorical models. While it
is clear and well understood that Samson’s work and results consolidated and enriched
categorical methods of theoretical computer science, their applications in the practice
of computation may not be as well known. In the long run, I believe, the impact of
the methods and of the approach that we learned from Samson will become increas-
ingly clear, as the abstract structures that we use, including the fully abstract ones, are
becoming more concrete, more practical, and more often indispensable.

In the present paper, I venture into an extended exercise in enriched category theory,
directly motivated by concrete problems of security [17,16] and of data analysis [18].
Although the story is not directly related to Samson’s own work, I hope that it is ap-
propriate for the occasion, since he is the originator of the general spirit of categorical
variations on computational themes, even if I can never hope to approach his balance
and style.

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 291–310, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

292 D. Pavlovic

Motivation: Distances between Algorithms

Suppose that you are given an algorithm a, and you need to construct another algorithm
b, such that some predicate P(a, b) is satisfied. Or more concretely, suppose that a is
a software system, and b should be an attack on a, contradicting a’s security claim by
realizing a property P(a, b). Since reverse engineering is easy [2,5], we can assume that
the code of a is readily available, and your task is thus to code the attack b. Note that
a is in principle an algorithmic pattern, that can be implemented in many ways, and
may have many versions and instances. So your attack b should also be an algorithmic
pattern, related to a by some polymorphic transformation. The derivation of b from a
should thus be polymorphic, i.e. a uniform construction: it should be a program p that
inputs a description of a and outputs a corresponding description p(a) = b. How hard
is it to find p? An approach to answering such questions is suggested in algorithmic
information theory [25,13]. The notion of Kolmogorov complexity is that the distance
from an algorithm a to an algorithm b can be measured by the length of the shortest
programs that construct b from a, i.e.

d (a, b) =
∧

p(a)=b

|p| (1)

where |p| denotes the length of the program p. It is easy to see that the above formula

yields the triangle law d (a, b) + d (b, c)
+≥ d (a, c), where the superscript ’+’ means that

the uniform order relation ≥ is taken up to a constant, which is in this case the length
of the program composition operation, needed to get a program to construct c from a
by composing a program that constructs c from b with a program that constructs b from
a. Algorithmic information theory always works with such order relations [13,4]. The
equation d (a, a)

+
= 0 holds in the same sense, up to the constant length of the shortest

identity program, that just inputs and outputs identical data. This distance of algorithms,
in the style of Kolmogorov complexity, was proposed in [16] as a tool to measure how
hard it is to construct an attack on a given system. The point was that a system could
be effectively secure even when some attacks on it exist, provided that these attacks are
provably hard to construct. The goal of the present note is to spell out some general
results about distance that turn out to be needed for this particular application.

But why do we need general results about distances to answer the concrete question
about the hardness of constructing attack programs from system programs? The rea-
son is that the task of finding an attack algorithm not too far from a system algorithm
naturally leads to the task of construcing a completion of the space around the system
algorithm. The attacker sees the system, and may be familiar with some other algo-
rithms in its neighborhood; but it is not known whether an attack exists, and how far
it is. The task of discovering the attack is the task of completing the space around the
system. And the construction of a completion is easier in general, than in some concrete
cases.

How does a real attacker search for an algorithm p to derive an attack b from the
system a? He is not trying to guess the construction in isolation, but in the context of
his algorithmic knowledge. This knowledge has at least two components. On one hand,
there is some algorithmic knowledge A about the software systems a0, a1, a2 . . ., and a

Bicompletions of Distance Matrices 293

distance measure A × A
dA−−→ [0,∞] between them, which express how they are related

with each other. On the other hand, there is some algorithmic knowledge B about the

attacks b0, b1, b2 . . ., and their distances B×B
dB−−→ [0,∞]. Last but not least, there is some

knowledge which attacks are related to which systems. This knowledge is expressed as

a distance matrix A × B
Φ−→ [0,∞], where shorter distances suggest easier attacks. In

order to determine whether there are any attacks in the proximity of a given system
a, our task is to conjoin the distance space A of systems with the distance space B

of attacks consistently with the distance matrix A × B
Φ−→ [0,∞] where the observed

connections between the systems and attacks are recorded. In this conjoined space, we
need to find the unknown attacks close to the target system. We find them by completing
the space of the known attacks. But since the completion is in general an infinite object,
we first study it abstractly, to determine how to construct just the parts of interest.

Related Work. The completions that we study are based on Lawvere’s view of metric
spaces as enriched categories [10]. Lawvere’s generalized metric spaces were exten-
sively used in denotational semantics of programming languages [22,3,9], and recently
in ecology [12], following a renewed mathematical interest in the enriched category
approach [11]. In my own work, closely related results arose in the framework of in-
formation extraction and concept analysis [18]. That work was, however, not based on
distance spaces as categories enriched in the additive monoid [0,∞], but on proximity
spaces, or proxets, as categories enriched in the multiplicative monoid [0, 1]. Proxets
are a more natural framework for concept analysis, because they generalize posets, as
categories enriched over the multiplicative monoid {0, 1}, and the existing theory and
intuitions are largely based on posets. Distance spaces, on the other hand, appear to be
a more convenient framework for relating algorithms.

Outline of the Paper. In Sec. 2 we define distance spaces and describe some examples.
In Sec. 3 we spell out the notions of limit in distance spaces, the basic completion
constructions, and the adjunctions as they arise from the limit preserving morphisms.
In Sec. 4, we introduce distance matrices, and describe their decomposition. In Sec. 5
we put the previously presented components together to construct the bicompletions of
distance matrices. Sec. 6 provides a summary of the obtained results and a discussion
of future work.

2 Distance Spaces

2.1 Definition and Background

Definition 2.1. A distance space is a set A with a metric dA : A × A→ [0,∞] which is

– reflexive: d (x, x) = 0,
– transitive: d (x, y) + d (y, z) ≥ d (x, z), and
– antisymmetric: d (x, y) = 0 = d (y, x) =⇒ x = y

A contraction between the distance spaces A and B is a function f : A → B such
that for all x, y ∈ A holds dA (x, y) ≥ dB (f x, f y). The category of distance spaces and
contractions is denoted Dist.

294 D. Pavlovic

Background. In topology, distance spaces have been studied since the 1930s under the
name quasi-metric spaces [23,8]. The prefix ’quasi’ refers to the fact that the metric
symmetry law d(x, y) = d(y, x) is not necessarily satisfied. When the antisymmetry law
is not satisfied either, then the topologists speak of pseudo-quasi-metric spaces [24].
Lawvere [10] observed that pseudo-quasi-metric spaces, which he called generalized
metric spaces, could be viewed as enriched categories [7]. They are enriched over the
additive monoid [0,∞], viewed as a monoidal category with a uniqe arrow x → y if
and only if x ≥ y. The distance d(x, y) ∈ [0,∞] is thus viewed as the ’hom-set’ in the
enriched sense. Lawvere’s main result was the characterization of the Cauchy comple-
tion of a metric space as an enriched category construction. This view of distances and
contractions turned out to provide an alternative to domains for denotational semantics
[22], and their categorical completions were elaborated in [3,9]. Distance spaces as de-
fined in 2.1 are a special case of generalized metric spaces, since they are required to
satisfy the antisymmetry law. This is mainly a matter of convenience, as the following
lemma shows.

Lemma 2.2. A map dA : A×A→ [0,∞] which is reflexive and transitive in the sense of
Def. 2.1 is also antisymmetric if and only if it satisfies either of the following equivalent
conditions

– (∀z. d (z, x) = d (z, y))⇒ x = y
– (∀z. d (x, z) = d (y, z))⇒ x = y

Proof. In the presence of transitivity and reflexivity, d (x, y) = 0 holds if and only if
∀z. d (z, x) ≥ d (z, y), or equivalently if and only if ∀z. d (x, z) ≤ d (y, z). The result
follows. �

Corollary 2.3. Distance spaces are just the skeletal generalized metric spaces.

2.2 Examples

The first example of a distance space is, of course, the interval [0,∞] itself, with the
metric

d[0,∞] (x, y) = x� y =

⎧⎪⎪⎨⎪⎪⎩
y − x if x < y

0 otherwise
(2)

The� notation is convenient because the operation d[0,∞] =�: [0,∞]×[0,∞]→ [0,∞]
makes [0,∞] into a closed category

x + y ≥ z ⇐⇒ x ≥ y� z (3)

Any metric space is obviously an example of a distance space. But in distance spaces,
the distance d(a, b) from a to b does not have to be the same as the distance d(b, a)
from b to a. E.g., a may be on a hill, and b in the valley, and traveling one way may be
easier than traveling the other way. For our purposes described in the Introduction, this
distinction is quite important, since a program constructing an attack b from a system

Bicompletions of Distance Matrices 295

code a does not have to be related in any obvious way to the program performing the
construction the other way.

For a non-metric family of distance spaces, take any poset (S ,�
S

) and define a distance

space (WS , dWS) by setting dWS (x, y) = 0 if x �
S

y, otherwise∞. The other way around,

any distance space A induces two posets, ΥA and ΛA, with the same underlying set and

x �
ΥA

y ⇐⇒ dA (x, y) = 0 x �
ΛA

y ⇐⇒ dA (x, y) < ∞

The constructions W, Υ and Λ form the adjunctions Λ � W � Υ : Dist → Pos. Since
W : Pos ↪→ Dist is an embedding, Pos is thus a reflective and correflective subcategory
of Dist.

Distance spaces are thus a common generalization of posets and metric spaces. For
an example not arising from posets of metric spaces, take any family of sets X ⊆ ℘X,
and define

d(x, y) = |y \ x| (4)

The distance of x and y is thus the number of elements of y that are not in x. If X is
a set of terms, say in a dictionary, and X is a set of documents, each viewed as a set
of terms, then the distance between two documents is the number of terms that occur
in one document and not in the other. In natural language processing, documents are
usually presented as multisets (bags) of terms, and the distance is defined in terms of
multiset subtraction, which generalizes the set difference used in (4). In any case, it is
clear that the asymmetry of the notion of distance is as essential for such applications
as it is for the one described in the Introduction.

2.3 Basic Constructions

Given two distance space A and B, we define:

– dual Ao: take the same underlying set and define the dual metric to be dAo (x, y) =
dA (y, x);

– product A × B: take the cartesian product of the underlying sets and set the product
metric to be dA×B (x, u, y, v) = dA (x, y) ∨ dB (u, v)

– the power BA: take the set of contractions Dist(A, B) to be the underlying set and
set the metric to be dBA (f , g) =

∨
x∈A dB (f x, gx).

These constructions induce the natural correspondences

Dist(A, B) × Dist(A,C) � Dist(A, B ×C) and Dist(A × B,C) � Dist(A,CB)

Terminology. Contractions f : A → B are called covariant, whereas contractions
f : Ao → B are contravatiant.

296 D. Pavlovic

3 Sequences and Their Limits

3.1 Left and Right Sequences

Intuitively, to complete a metric space means to add enough points so that every suitably
convergent sequence has a limit. But usually many different sequences have the same
limit. The main problem of the standard theory of completions is to recognize such
sequences. The categorical approach overcomes this problem by considering canonical
sequences. Instead of the sequences s, t : N → A such that limi→∞ si = ψ = limi→∞ ti,
we consider a canonical sequence ψ : A → [0,∞] where ψx intuitively denotes the
distance from ψ to x.

Definition 3.1. In a distance space A, a (canonical) sequence is defined to be a con-
traction into [0,∞]. More precisely, we define that

– a left sequence is a covariant contraction
←−
λ : A→ [0,∞]

– we write its value at x ∈ A as
←−
λ x

– a right sequence is a contravariant contraction −→	 : Ao → [0,∞]
– we write its value at x ∈ A as x−→	 .

Each of the sets of sequences

←−
A =
(
[0,∞]A

)o
and

−→
A = [0,∞](Ao)

forms a distance space, with the metrics

d←−
A

(←−
λ ,
←−
θ
)
=
∨

x∈A

←−
θ x�

←−
λ x and d−→

A

(−→	 ,−→μ
)
=
∨

x∈A
x−→	 � x−→μ

Remarks. The conditions dA (x, y) ≥ ←−λ x �
←−
λ y and dA (x, y) ≥ y−→	 � x−→	 , which

say that
←−
λ and −→	 are left and right contraction respectively, are by (3) respectively

equivalent to ←−
λ x + d (x, y) ≥ ←−λ y d (x, y) + y−→	 ≥ x−→	

3.2 Limits

Definition 3.2. An element u of a distance space A is an upper bound of a right se-
quence −→	 in A if for all x ∈ A holds

x−→	 ≥ dA (x, u) (5)

An element � of a distance space A is a lower bound of a left sequence
←−
λ in A if for

all y ∈ A holds

←−
λ y ≥ dA (�, y) (6)

Bicompletions of Distance Matrices 297

Proposition 3.3. An element u ∈ A is an upper bound −→	 and � ∈ A is a lower bound of←−
λ if and only if the following conditions hold for all x, y ∈ A

dA (u, y) ≥
∨

x∈A
x−→	 � dA (x, y) (7)

dA (x, �) ≥
∨

y∈A

←−
λ y� dA (x, y) (8)

Proof. Condition (3) implies that (9) and (10) are respectively equivalent with

x−→	 + dA (u, y) ≥ dA (x, y) (9)

dA (x, �) +
←−
λ y ≥ dA (x, y) (10)

The claim follows by instantiating y to u in (7) and x to � in (8). �

Definition 3.4. The supremum
∐−→	 of the right sequence −→	 and the infimum

∏←−
λ of

the left sequence
←−
λ are the elements of A that satisfy for every x, y ∈ A

dA

(∐−→	 , y
)
=
∨

x∈A
x−→	 � dA (x, y) (11)

dA

(
x,
∏←−
λ
)
=
∨

y∈A

←−
λ y� dA (x, y) (12)

Suprema and infima constitute the limits of a distance space.
The distance space A is right (resp. left) complete if every right (resp. left) sequence

has a limit. The suprema and the infima thus yield the operations

∐
:
−→
A → A and

∏
:
←−
A → A

One apparent shortcoming of treating sequences categorically, i.e. saturating them to
canonical sequences, is that it is not obvious how to define continuity, i.e. how to dis-
tinguish the contractions which preserve suprema or infima. Clearly, a left continuous

contraction f : A → B should map the infimum of a left sequence
←−
λ in A into the

infimum of the f -image of
←−
λ in B. But what is the f -image of

←−
λ : A → [0,∞] in B?

This question calls for a slight generalization of the concept of sequence, and limit.

3.3 Weighted Limits

Limits are a special case of weighted limits, which are studied in general enriched cate-
gories [7, Ch. 3]. We just sketch theory of weighted limits in distance spaces.

Definition 3.5. For distance spaces A and K we define

– left diagrams as pairs of contractions
〈
k : K → A,

←−
λ : K → [0,∞]

〉

– right diagrams as pairs of contractions
〈
k : K → A,−→	 : Ko → [0,∞]

〉

298 D. Pavlovic

Terminology and Notation. The component k : K → A of a diagram is called its
shape. Using the angular brackets to denote the functions into cartesian products, we
also write

–
〈
k,
←−
λ
〉

: K → A × [0,∞] for
〈
k : K → A,

←−
λ : K → [0,∞]

〉

–
〈
k,−→	 o〉

: K → A × [0,∞]o for
〈
k : K → A,−→	 : Ko → [0,∞]

〉

Definition 3.6. The weighted supremum
∐
−→	 k of the right diagram 〈k,−→	 o〉 : K →

A× [0,∞]o and the weighted infimum
∏
←−
λ

k of the left diagram 〈k,←−λ 〉 : K → A× [0,∞]
are the elements of A that satisfy for every x, y ∈ A

dA

(∐
−→	 k, y

)
=
∨

x∈K
x−→	 � dA (kx, y) (13)

dA

(
x,
∏
←−
λ

k
)
=
∨

y∈K

←−
λ y� dA (x, ky) (14)

Remarks. Limits arise as a special case of weighted limits, by viewing sequences as
diagrams of shape k = id : A → A. A contraction f : A → B thus maps, say, a

left sequence 〈id,←−λ 〉 : A → A × [0,∞] to the diagram 〈 f ,←−λ 〉 : A → B × [0,∞] in

B. More generally, it maps a left sequence 〈k,←−λ 〉 : K → A × [0,∞] to the diagram

〈 f ◦ k,
←−
λ 〉 : K → B × [0,∞] in B. It is thus clear and easy to state what it means that a

contraction preserves a weighted limit.

Definition 3.7. A contraction f : A→ B preserves

– weighted suprema if f
(∐
−→	 k
)
=
∐
−→	 (f ◦ k), and

– weighted infima if f
(∏
←−
λ

k
)
=
∏
←−
λ

(f ◦ k).

On the other hand, although convenient to work with, weighted limits of diagrams in
distance spaces also boil down to the limits of suitable sequences. We just state this fact,
since it simplifies the construction of the completions; but leave the proof for another
paper, since the proof construction is not essential for the goal of the present paper.

Proposition 3.8. A distance space has

– the weighted suprema of all right diagrams if and only if it has the suprema of all
right sequences;

– the weighted infima of all left diagrams if and only if it has the infima of all left
sequences.

3.4 Completions

Every element a of a distance space A induces two representable sequences

Δa : A→ [0,∞] ∇a : Ao → [0,∞]

x �→ dA (a, x) x �→ dA (x, a)

Bicompletions of Distance Matrices 299

These induced contractions Δ : A → ←−A and ∇ : A → −→A correspond to the Yoneda-

Cayley embeddings [15, Sec. III.2]. They make
←−
A into the lower completion, and

−→
A

into the upper completion of the distance space A.

Proposition 3.9.
←−
A is left complete and

−→
A is right complete. Each of them is universal

among distance spaces with the corresponding completeness properties, in the sense
that

– any monotone f : A → C into a complete distance space C induces a unique∏
-preserving morphism f# :

←−
A → C such that f = f# ◦ Δ;

– any monotone g : A → D into a cocomplete distance space D induces a unique∐
-preserving morphism g# :

−→
A → D such that g = g# ◦ ∇.

←−
A

∃! f#

���
�
�
�

A

Δ
%&"""""""""""

∀ f �����
���

���
��

C

−→
A

∃!g#

���
�
�
�

A

∇
%&"""""""""""

∀g �����
���

���
��

D

These constructions for have been thoroughly analyzed in [3,9]. Here we just state the
basic facts that justify our notations, and substantiate the further developments.

Proposition 3.10. (”The Yoneda Lemma”) For every −→	 ∈ −→A and
←−
λ ∈ ←−A and holds

a−→	 =
∨

x∈A
x (∇a)� x−→	 = d−→

A

(
∇a,−→	

)

←−
λb =

∨

x∈A
(Δb) x�

←−
λ x = d←−

A

(←−
λ ,Δb

)

Instantiating in the preceding proposition
←−
λ to Δa and −→	 to ∇b yields

Corollary 3.11. The embeddings Δ : A→←−A and ∇ : A→ −→A are isometries

dA (a, b) = d−→
A

(∇a,∇b) = d←−
A

(Δa,Δb)

3.5 Adjunctions

Notation. In any distance space A, if is often convenient to abbreviate dA (x, y) = 0 to
x �

A
y. For f , g : A → B, it is easy to see that f �

BA
g if and only if f x �

B
gx for all

x ∈ A.

Proposition 3.12. For any contraction f : A→ B holds

(a) ⇐⇒ (b) ⇐⇒ (c) and (d) ⇐⇒ (e) ⇐⇒ (f)

where

300 D. Pavlovic

(a) f
(∐−→	

)
=
∐

f

(−→	
)

(b) ∃ f∗ : B→ A ∀x ∈ A ∀y ∈ B. dB (f x, y) = dA (x, f∗y)
(c) ∃ f∗ : B→ A. idA � f∗ f ∧ f f∗ � idB

(d) f
(∏←−
λ
)
=
∏

f

(←−
λ
)

(e) ∃ f ∗ : B→ A ∀x ∈ A ∀y ∈ B. dB (f ∗y, x) = dA (y, f x)
(f) ∃ f ∗ : B→ A. f ∗ f � idA ∧ idB � f f ∗

Each of the morphisms f ∗ and f∗ is uniquely determined by f , whenever they exist.

Definition 3.13. A right adjoint is a contraction satisfying (a-c) of Prop. 3.12; a left
adjoint satisfies (d-f). A (distance) adjunction between the distance spaces A and B is a
pair of contractions f ∗ : A� B : f∗ related as in (b-c) and (e-f).

Equations (11) and (12) immediately yield the following fact.

Proposition 3.14. Limits are adjoints to the Yoneda-Cayley embeddings:

dA

(∐−→	 , y
)
= d−→

A

(−→	 ,∇y
)

and dA

(
x,
∏←−
λ
)
= d←−

A

(
Δx,
←−
λ
)

Putting Propositions 3.12 and 3.14 together yields yet another familiar fact.

Proposition 3.15. The sup-completion ∇ : A→ −→A preserves any infima that exist in A.

The inf-completion Δ : A→←−A suprema that exist exist in A.

3.6 Projectors and Nuclei

Proposition 3.16. For any adjunction f ∗ : A� B : f∗ holds

(a) ⇐⇒ (b) and (c) ⇐⇒ (d)

where

(a) ∀xy ∈ B. dA (f∗x, f∗y) = dB (x, y)
(b) f ∗ f∗ = idB

(c) ∀xy ∈ A. dB (f ∗x, f ∗y) = dA (x, y)
(d) f∗ f ∗ = idA

Definition 3.17. A map g from a distance space A to a distance space B is an embed-
ding if it preserves the distance, i.e. satisfies dA (x, y) = dB (gx, gy) for all x, y ∈ A. An
adjoint of an embedding is called a projection.

An adjunction p∗ : A� B : e∗ of a left projection and right adjoint, as in Prop. 3.16(a-
b), is called a reflection. An adjunction e∗ : A � B : p∗ of a left embedding and right
projection, as in Prop. 3.16(c-d), is called a coreflection.

Definition 3.18. A nucleus of the adjunction f ∗ : A � B : f∗ consists of a distance
space � f � together with

Bicompletions of Distance Matrices 301

– embeddings A
e∗←↩ � f �

e∗
↪→ B

– projections A
p∗
� � f �

p∗
� B

such that f ∗ = e∗p∗ and f∗ = e∗p∗.

Proposition 3.19. Any adjunction factors through its nucleus by reflection followed by
a coreflection. The nucleus of the adjunction f ∗ : A� B : f∗ is in the form

� f � = {〈x, y〉 ∈ A × B | f ∗x = y ∧ x = f∗y} (15)

and the factoring is

A
p∗

!�

f∗

%&
� f �

e∗
�

e∗
&' B

p∗
��

f ∗

'(

Any right adjoint factors through the nucleus by a right projection followed by a right
embedding, and any left adjoint factors through the nucleus by a left projection followed
by a left embedding. This factorization is unique up to isomorphism.

Proof. For any adjunction f ∗ : A� B : f∗, form the distance spaces

� f �A = {x ∈ A | f∗ f ∗x = x} � f �B = {y ∈ B | f ∗ f∗y = y}
are easily seen to be isomorphic with the nucleus. The factorisation is thus

� f �A
�	e∗

()��
��
��
��

A
f ∗

!�

p∗ �� ��#
##

##
##

B
f∗

��

p∗
)*)*########

� f �B

 � e∗

����������

�

3.7 Cones and Cuts

The cone extensions are the contractions Δ# and ∇#

−→
A

Δ#

*�

$
�

%
A

∇
%&"""""""""""

Δ ��&&
&&&

&&&
&&&

←−
A

∇#

++

$

�

%

a
(
Δ#−→	
)
=
∨

x∈A
x−→	 � d (x, a)

(
∇#
←−
λ
)

a =
∨

x∈A

←−
λ x � d (a, x)

302 D. Pavlovic

induced by the universal properties of the Yoneda embeddings∇ and Δ, as per Prop. 3.9.
Since Δ# thus preserves suprema, and ∇# preserves infima, Prop. 3.12 implies that each
of them is an adjoint, and it is not hard to see that they are adjoint to each other, i.e.

Δ# :
−→
A �

←−
A : ∇#.

Proposition 3.20. For every −→	 ∈ −→A every
←−
λ ∈ ←−A holds

(−→	 � ∇#Δ
#−→	 and ∇#Δ

#−→	 � −→	
)
⇐⇒ ∃←−λ . −→	 = Δ#←−λ

(←−
λ � Δ#∇#

←−
λ and Δ#∇#

←−
λ �

←−
λ
)
⇐⇒ ∃−→	 .←−λ = ∇#

−→	
The transpositions make the following subspaces isomorphic

(−→
A
)
∇#Δ#
=

{−→	 ∈ −→A | −→	 = ∇#Δ
#−→	
}

(←−
A
)
Δ#∇#

=

{←−
λ ∈ ←−A | ←−λ = Δ#∇#

←−
λ
}

Proof. Unfolding the definitions of ∇# and Δ# gives

a
(
∇#Δ

#−→	
)
=
∨

u∈A

⎛⎜⎜⎜⎜⎜⎝
∨

x∈A
x−→	 � d (x, u)

⎞⎟⎟⎟⎟⎟⎠� d (a, u)

which shows that the first claim follows from the fact that for every u ∈ A holds
∨

x∈A
x−→	 � d (x, u) ≥ a−→	 � dA (a, u)

a−→	 +
⎛⎜⎜⎜⎜⎜⎝
∨

x∈A
x−→	 � d (x, u)

⎞⎟⎟⎟⎟⎟⎠ ≥ dA (a, u)

a−→	 ≥
⎛⎜⎜⎜⎜⎜⎝
∨

x∈A
x−→	 � d (x, u)

⎞⎟⎟⎟⎟⎟⎠� dA (a, u)

�

Definition 3.21. The cones in a distance space A are the sequences in
(−→
A
)
∇#Δ#

and
(←−
A
)
Δ#∇#

. A cut in A is a pair of cones γ = 〈−→γ ,←−γ 〉 ∈
(−→
A
)
∇#Δ#
×
(←−
A
)
Δ#∇#

such that

−→γ = ∇#
←−γ . The set of cuts is denoted by

←→
A .

Lemma 3.22. There are bijections
(−→
A
)
∇#Δ#

�
←→
A �

(←−
A
)
Δ#∇#

, extending the isomor-

phism
(−→
A
)
∇#Δ#
�
(←−
A
)
Δ#∇#

from Prop. 3.20.

Proposition 3.23. The set of cuts
←→
A with the distance defined by

d←→
A

(γ, ϕ) = d−→
A

(−→γ ,−→ϕ
)
= d←−

A

(←−γ ,←−ϕ
)

is a left and right complete distance space.

Bicompletions of Distance Matrices 303

Notation. We often abuse notation and write

– ←−	 for the associated cone ∇#
−→	 , and

–
−→
λ for the associated cone Δ#←−λ .

Proof. of Prop. 3.23 The
←→
A -infima are constructed in

−→
A , the

←→
A -suprema in

←−
A . To spell

this out, consider
←−
λ :
←→
A → [0,∞] and −→	 :

←→
A

o → [0,∞]. Extend them along the
isomorphisms (−→

A
)

∇#Δ#
�
←→
A �

(←−
A
)

Δ#∇#

�
←→
A

to get
←−
λ :
(−→
A
)
∇#Δ#
→ [0,∞] and −→	 :

(←−
A
)o
Δ#∇#

→ [0,∞]. Then

∏←−
λ =

←−
λ ◦ ∇ ∈

(−→
A
)
∇#Δ#

∐−→	 = −→	 ◦ Δ ∈
(←−
A
)
Δ#∇#

The claim now boils down to showing that the inclusion
(−→
A
)

∇#Δ#
↪→ −→A preserves infima,

whereas the inclusion
(←−
A
)

Δ#∇#

↪→←−A preserves the suprema. But this is immediate from

the next Lemma. �

Lemma 3.24. The limits of the cut sequences

−→
Υ :
−→
A

o → [0,∞]
←−
Λ :
−→
A → [0,∞]

−→
K :
←−
A

o → [0,∞]
←−
Ψ :
←−
A → [0,∞]

can be computed as follows

a
(∐−→
Υ
)
=
∧

−→
ξ ∈−→A

a
−→
ξ +
−→
ξ
−→
Υ

(∏←−
Λ
)

a =
←−
Λ(∇a)

a
(∐−→

K
)
= (Δa)

−→
K

(∏←−
Ψ
)

a =
∧

←−
ζ ∈←−A

←−
Ψ
←−
ζ +
←−
ζ a

Corollary 3.25. A distance space A has all suprema if and only if it has all infima.

Dedekind-MacNeille Completion Is a Special Case. If A is a poset, viewed as the

distance space WA, then
←→
W A is the Dedekind-MacNeille completion of A. The above

construction extends the Dedekind-MacNeille completion of posets [14] to distance
spaces, in the sense that it satisfies in the same universal property, spelled out in [1].

4 Distance Matrices

4.1 Definitions

Definition 4.1. A distance matrix Φ from distance space A to distance space B is a
sequenceΦ : Ao × B→ [0,∞]. We denote it by Φ : A� B, and the value ofΦ at x ∈ A

304 D. Pavlovic

and y ∈ B is written xΦy. The matrix composition of Φ : A � B and Ψ : B � C is
defined

x(Φ ;Ψ)z =
∧

y∈B

xΦy + yΨz

With this composition and the identities IdA : A � A where x(IdA)x′ = dA (x, x′),
distance spaces and distance space matrices form the category Matr.

Remark. Note that the defining condition dA (u, x) + dB (y, v) ≥ d (xΦy, uΦv), which
says that Φ is a contraction Ao × B→ [0,∞], can be equivalently written

dA (u, x) + xΦy + dB (y, v) ≥ uΦv (16)

Definition 4.2. Transposing the indices yields the transposed matrix:

Φ : A� B : xΦy

Φo : Bo � Ao : yΦox

The dual Φ‡ : B� A of a matrix Φ : A� B has the entries

Φ : A� B : xΦy

Φ‡ : B� A : yΦ‡x =
∨

u∈A
v∈B

uΦv� (dA (u, x) + dB (y, v))

A matrix Φ : A� B where Φ‡‡ = Φ is called a suspension.

Remarks. The transposition is obviously an involutive operation, i.e. Φoo = Φ. It is
easy to derive from Prop. 3.20 that dΦ (x, y) ≥ dΦ‡‡ (x, y) holds for all x ∈ A and y ∈ B,
and thatΦ = Φ‡‡ holds if and only if there is some Ψ : B� A such thatΦ = Ψ‡. Since
Φ� Ψ ⇒ Ψ‡ � Φ‡, it follows that Φ� Φ‡‡ implies Φ‡ = Φ‡‡‡.

Proposition 4.3. Φ : A� B and Φ‡ : B� A satisfy Φ ;Φ‡ � IdA and Φ‡ ;Φ� IdB.

Proof. The conditionΦ ;Φ‡ � IdA is proven as follows:

∨

u∈A
v∈B

uΦv�
(
dA
(
u, x′
)
+ dB (y, v)

) ≥ xΦy � dA
(
x, x′
)

xΦy +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∧

u∈A
v∈B

uΦv�
(
dA
(
u, x′
)
+ dB (y, v)

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥ dA

(
x, x′
)

xΦy + yΦ‡x′ ≥ dA
(
x, x′
)

The second condition is proven analogously. �

Bicompletions of Distance Matrices 305

Definition 4.4. A matrix Φ : A � B is embedding if Φ ;Φ‡ = IdA; and a projection if
Φ‡ ;Φ = IdB.

Definition 4.5. A decomposition of a matrix Φ : A � B consists of a distance space
D, with

– projection matrix P : A� D, i.e. dD (d, d′) =
∧

x∈A dP‡x + xPd′,
– embedding matrix E : D� B, i.e. dD (d, d′) =

∧
y∈B dEy + yE‡d′,

such thatΦ = P ; E, i.e. xΦy =
∧

d∈D xPd + dEy.

Matrices as Adjunctions. A matrixΦ : A� B can be equivalently presented as either
of the two contractionsΦ• and Φ•, which extend to Φ∗ and Φ∗ using Prop. 3.9

Ao × B
Φ−→ [0,∞]

A
Φ•−−→ ←−B B

Φ•−−→ −→A
−→
A
Φ∗−−→ ←−B ←−

B
Φ∗−−→ −→A

(
Φ∗−→	
)

b =
∨

x∈A
x−→	 � xΦb

(
Φ∗
←−
λ
)

a =
∨

y∈B

←−
λ y� aΦy (17)

Both extensions, and their nucleus, are summarized in the following diagram

A
∇ ��

◦

Φ

��

Φ•

���
��

��
��

��
��

��
��

��
��

��
�

−→
A

Φ∗

,,

$
'
(�
)
*

�Φ�
�

e∗
�-

��e∗

-.

�� ��

p∗

�� ��
p∗

B
Δ

��

Φ•

������������������������� ←−
B

Φ∗

./

'
(

�
)
*
%

(18)

The adjunctionΦ∗ :
−→
A �

←−
B : Φ∗ means that

d←−
B

(
Φ∗−→	 ,←−λ

)
=
∨

y∈B

←−
λ y� (Φ∗−→)y =

∨

x∈A
x−→	 � x(Φ∗

←−
λ) = d−→

A

(−→	 , Φ∗←−λ
)

holds. The other way around, it can be shown that any adjunction between
−→
A and

←−
B is

completely determined by the induced matrix from A to B.

Proposition 4.6. The matrices Φ ∈ Matr(A, B) are in a bijective correspondence with

the adjunctionsΦ∗ :
−→
A �

←−
B : Φ∗.

Lemma 4.7. d←−
B

(Φ∗∇x,Δy) = xΦy = d−→
A

(∇x, Φ∗Δy)

306 D. Pavlovic

4.2 Decomposition through Nucleus

Proposition 4.8. For every −→α ∈ −→A every
←−
β ∈ ←−B holds

−→α � Φ∗Φ∗−→α and Φ∗Φ∗−→α � −→α ⇐⇒ ∃←−β ∈ ←−B . −→α = Φ∗←−β
←−
β � Φ∗Φ∗

←−
β and Φ∗Φ∗

←−
β �

←−
β ⇐⇒ ∃−→α ∈ −→A .←−β = Φ∗−→α

The adjunction Φ∗ : A � B : Φ∗ induces the isomorphisms between the following
distance spaces

�Φ�A =
{−→α ∈ −→A | −→α = Φ∗Φ∗−→α

}

�Φ�B =
{←−
β ∈ ←−B | ←−β = Φ∗Φ∗←−β

}

�Φ� =
{
γ = 〈−→γ ,←−γ 〉 ∈ −→A ×←−B | −→γ = Φ∗←−γ ∧Φ∗−→γ =←−γ

}

with the metric

d�Φ� (γ, ϕ) = d−→
A

(−→γ ,−→ϕ
)
= d←−

B

(←−γ ,←−ϕ
)

Definition 4.9. �Φ� is called the nucleus of the matrix Φ. Its elements are the Φ-cuts.

Theorem 4.10. The nucleus �Φ� of the adjunction Φ∗ :
−→
A �

←−
B : Φ∗ induces the

decomposition of the matrix Φ : A� B into

– the projection P∗ : A� �Φ� with xP∗〈−→α,←−β 〉 = x−→α , and

– the embedding E∗ : �Φ�� B with 〈−→α,←−β 〉E∗y =←−β y

where 〈−→α,←−β 〉 ∈ �Φ� is an arbitrary Φ-cut, i.e. −→α = Φ∗←−β and Φ∗−→α =←−β .

Proof. (sketch) We prove that Φ = P∗; E∗ as follows:

x(P∗; E∗)y =
∧

−→α
xP∗
〈−→α,Φ∗−→α

〉
+
〈−→α,Φ∗−→α

〉
Ey

=
∧

−→α
x−→α +

(
Φ∗−→α
)

y

≤ x∇x + (Φ∗∇x) y

= dA (x, x) + d←−
B

(Φ∗∇x,Δy)

= xΦy

using Lemma 4.7 at the last step. The facts that P∗ is a projection and E∗ is an embed-
ding matrix are proved using the following lemma, which says that �Φ� is

∐
-generated

by A and
∏

-generated by B. �

Bicompletions of Distance Matrices 307

Lemma 4.11. The �Φ�-infima are computed in
−→
A, whereas its suprema are computed

in
←−
B. To state this precisely, consider

←−
λ : �Φ� → [0,∞] and −→	 : �Φ�o → [0,∞].

Extend them along the isomorphisms �Φ�A � �Φ� � �Φ�B to get
←−
λ : �Φ�A → [0,∞]

and −→	 : �Φ�B
o → [0,∞]. Then

∏←−
λ =

←−
λ ◦ ∇ ∈ �Φ�A

∐−→	 = −→	 ◦ Δ ∈ �Φ�B

are constructed in
−→
A and

←−
B, because �Φ�A ↪→ −→A preserves the infima, whereas �Φ�B ↪→←−

B preserves the suprema.

Corollary 4.12. The monotone maps A
∇−→ −→A p∗

� �Φ�
p∗
�
←−
B
Δ←− B

– preserve any infima that exist in A, and any suprema that exist in B,
– generate �Φ� by the suprema from A and by the infima from B, in the sense that for

any 〈−→α,←−β 〉 ∈ �Φ� holds

∐

−→α
∇ = 〈−→α,←−β 〉 =

∏

←−
β

Δ

5 Bicompletion

Any distance space morphism f : A → B induces two matrices, Ω f : A � B and
� f : B� A with

xΩ f y = dB (f x, y) y� f x = dB (y, f x)

Lemma 5.1. For every matrix Ω f : A � B induced by a distance space morphism
f : A→ B holds Ω f ‡ = � f .

Proof. Since y� f x = dB (y, f x) by definition, the claim boils down to y(Ω f)ox =
dB (y, f x), which can be proved as follows

y(Ω f)ox =
∨

u∈A
v∈B

dB (f u, v)� (dB (y, v) + dA (u, x))

≥ dB (f x, f x)� (dB (y, f x) + dA (x, x)) = dB (y, f x)

�

5.1 Nucleus as a Completion

Lemma 5.2. If the distance space B is complete, then for any matrix Φ : A � B there
is a distance space morphism f : A→ B such that Φ = Ω f .

Corollary 5.3. If both A and B are complete, then any matrix Φ : A � B corresponds
to an adjunctionΦ∗ : A� B : Φ∗ such that Φ = ΩΦ∗ = �Φ∗.

308 D. Pavlovic

Definition 5.4. A distance matrix homomorphism h : Φ → Γ where Φ : A � B and
Γ : C � D, is a pair of contractions h = 〈h0 : A→ C, h1 : B→ D〉 such that

– Ωh0 ;Γ = Φ ;Ωh1,
– h0 preserves any suprema that may exist in A,
– h1 preserves any infima that may exist in B.

Let MMat denote the category of distance space matrices and matrix morphisms.

Definition 5.5. A matrix Φ : A � B is complete if A has suprema and B infima1, and
Φ : Ao × B → [0,∞] preserves the infima. Let CMat denote the category of complete
matrices and matrix homomorphisms.

Proposition 5.6. Id�Φ� : �Φ� � �Φ� is the completion of Φ : A � B. In other words,
the functor �−� : MMat → CMat is left adjoint to the full inclusion CMat ↪→ MMat.
The unit of the adjunction η = 〈η0, η1〉 : Φ→ �Φ� consists of

η0 : A
∇−→ −→A p∗−→ �Φ� and η1 : B

Δ−→ ←−B p∗−→ �Φ�

6 Summary and Discussion

Given an arbitrary distance matrix Φ : A � B, we have constructed the completion

Φ
η−→ �Φ� such that

– A
η0−→ �Φ� is

∐
-generating and

∏
-preserving,

– B
η1−→ �Φ� is

∏
-generating and

∐
-preserving.

In terms of the motivating example of program transformations, and of the task of con-
joining the algorithmic knowledge about systems and about attacks, everyΦ-cut is thus
a supremum of the system specifications in A, and an infimum of the attack specifica-

tions in B. Moreover, the suprema of Φ-cuts can be computed in
←−
B , whereas the infima

can be computed in
−→
A . While the suprema2 capture composite systems validating some

composite properties, the infima describe composite attacks where the invalidated prop-
erties add up.

But what has been achieved by providing this very abstract account? It turns out
that the actual completions provide fairly concrete information. There is no space to
illustrate this, but we sketch a high level view. The prior knowledge, represented by
the distance spaces A and B is updated by the empiric data, represented by the matrix
Φ : A � B. In the completion �Φ�, the empiric relations of as and bs are expressed as
distances. Following [21,13, Ch. 4], the task of explaining these empiric links can then
be viewed as the task of finding short programs p with p(a) = b. After such completions,
some distances previously recorded in A and B may increase, since some programs may
be closer related a posteriori than a priori.

1 By Corollary 3.25, both A and B are thus complete.
2 not unlike colimits of software specifications [20,19].

Bicompletions of Distance Matrices 309

The obvious task for future work is to refine the concrete applications of the pre-
sented construction. This is to some extent covered in the full paper, which is in prepa-
ration. The further work on quantifying the hardness of program derivations, and of
program transformations, branches in many directions. Distances arise naturally in this
framework, as described already in [16, Sec. 4.2]. In a different direction, it seems inter-
esting to study the bicompletions in other categorical frameworks, in particular where
the dualities fail in a significant way, as demonstrated a long time ago [6].

References

1. Banaschewski, B., Bruns, G.: Categorical characterization of the MacNeille completion.
Archiv der Mathematik 18(4), 369–377 (1967)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.:
On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

3. Bonsangue, M.M., van Breugel, F., Rutten, J.J.M.M.: Generalized metric spaces: completion,
topology, and power domains via the yoneda embedding. Theor. Comput. Sci. 193(1-2), 1–51
(1998)

4. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer-Verlag
New York, Inc., Secaucus (2010)

5. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary input. In:
Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2005, pp. 553–562. IEEE Computer Society, Washington, DC (2005)

6. Isbell, J.R.: Subobjects, adequacy, completeness and categories of algebras. Rozprawy
matematyczne. Państwowe Wydawnictwo Naukowe (1964)

7. Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Mathematical Society
Lecture Note Series, vol. 64. Cambridge University Press (1982); Reprinted in Theory and
Applications of Categories, vol. 10, pp. 1–136 (2005)

8. Kelly, J.C.: Bitopological spaces. Proc. London Math. Soc. 13, 71–89 (1963)
9. Künzi, H.P., Schellekens, M.P.: On the yoneda completion of a quasi-metric space. Theor.

Comput. Sci. 278(1-2), 159–194 (2002)
10. William Lawvere, F.: Metric spaces, generalised logic, and closed categories. Rendiconti del

Seminario Matematico e Fisico di Milano 43, 135–166 (1973)
11. Leinster, T.: The magnitude of metric spaces (2010), arxiv.org:1012.5857
12. Leinster, T., Cobbold, C.: Measuring diversity: the importance of species similarity. Ecology

(2012) (to appear)
13. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 2nd edn.

Graduate texts in computer science. Springer (1997)
14. MacNeille, H.M.: Extensions of partially ordered sets. Proc. Nat. Acad. Sci. 22(1), 45–50

(1936)
15. Lane, S.M.: Categories for the Working Mathematician. Graduate Texts in Mathematics,

vol. 5. Springer (1971) (second edition 1997)
16. Pavlovic, D.: Gaming security by obscurity. In: Gates, C., Hearley, C. (eds.) Proceedings of

NSPW 2011, pp. 125–140. ACM, New York (2011), arxiv:1109.5542
17. Pavlovic, D.: Quantifying and qualifying trust: Spectral decomposition of trust networks. In:

Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 1–17. Springer,
Heidelberg (2011)

18. Pavlovic, D.: Quantitative Concept Analysis. In: Domenach, F., Ignatov, D.I., Poelmans, J.
(eds.) ICFCA 2012. LNCS, vol. 7278, pp. 260–277. Springer, Heidelberg (2012)

310 D. Pavlovic

19. Pavlovic, D., Smith, D.R.: Software development by refinement. In: Aichernig, B.K.,
Maibaum, T. (eds.) Formal Methods at the Crossroads. From Panacea to Foundational Sup-
port. LNCS, vol. 2757, pp. 267–286. Springer, Heidelberg (2003)

20. Smith, D.R.: Composition by colimit and formal software development. In: Futatsugi, K.,
Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060,
pp. 317–332. Springer, Heidelberg (2006)

21. Solomonoff, R.J.: A formal theory of inductive inference. Part I., Part II. Information and
Control 7, 1–22, 224–254 (1964)

22. Wagner, K.R.: Liminf convergence in omega-categories. Theor. Comput. Sci. 184(1-2),
61–104 (1997)

23. Wilson, W.A.: On quasi-metric spaces. Amer. J. Math. 52(3), 675–684 (1931)
24. Kim, Y.W.: Pseudo quasi metric spaces. Proc. Japan Acad. 10, 1009–10012 (1968)
25. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the algorithmic concepts of

information and randomness. Russian Math. Surveys 25(6), 83–124 (1970)

Partial Recursive Functions and Finality

Gordon Plotkin

LFCS, School of Informatics, University of Edinburgh

Abstract. We seek universal categorical conditions ensuring the repre-
sentability of all partial recursive functions. In the category Pfn of sets
and partial functions, the natural numbers provide both an initial alge-
bra and a final coalgebra for the functor 1 +−. We recount how finality
yields closure of the partial functions on natural numbers under Kleene’s
μ-recursion scheme. Noting that Pfn is not cartesian, we then build on
work of Paré and Román, obtaining weak initiality and finality condi-
tions on natural numbers algebras in monoidal categories that ensure
the (weak) representability of all partial recursive functions. We further
obtain some positive results on strong representability. All these results
adapt to Kleisli categories of cartesian categories with natural numbers
algebras. However, in general, not all partial recursive functions need be
strongly representable.

1 Introduction

It is a great pleasure to write in celebration of Samson Abramsky’s 60th birth-
day. The interaction between category theory and computer science has long
been central in Samson’s work. Here we touch lightly on several themes of this
kind which have been of interest to him: coalgebras, computability, definability,
domain equations, linearity, and—even—natural numbers objects [11].

Our interest is in finding universal categorical conditions that ensure the rep-
resentability of all partial recursive functions. The case of the primitive recursive
functions is well understood. In general terms, the existence of a “natural num-
bers” algebra

1 −→ N←− N

with sufficient initiality properties ensures the representability of all primitive
recursive functions. More precisely, all primitive recursive functions are repre-
sentable in any cartesian closed category with a weak natural numbers object,
i.e., a weakly initial natural numbers algebra [7], and, more generally, in any
cartesian category with a so-called weak stable natural numbers object [7,2,10].

Natural numbers algebras can equivalently be written in the form

1 + N −→ N

and it is then natural to consider the dual notion of natural numbers coalgebras

N −→ 1 + N

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 311–326, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

312 G. Plotkin

and ask for final ones. As is known, for example from domain theory [5, Example
IV-7.15], the natural numbers form a final such coalgebra in the category Pfn
of sets and partial functions. We verify this directly in Section 2. We further
recount there how finality leads to Kleene’s μ-recursion scheme.

One may therefore hope that all partial recursive functions are representable
in any category possessing a natural numbers algebra with sufficiently strong
initiality and finality properties. Such conditions should apply to Pfn, and, more
broadly, to categories considered in general frameworks for partial functions, such
as those of [3] or [4].

Unfortunately, Pfn is not cartesian. Rather, cartesian product equips Pfn
with a symmetric monoidal structure. So the above work on representability in
cartesian categories does not immediately apply. Instead, in Section 3, we turn
to the work of Paré and Román [12]. They gave a notion of stable left (or right)
natural numbers objects in monoidal categories that ensures the representabil-
ity of all primitive recursive functions. Their proof uses the uniqueness clause
of initiality. However we prefer to use only existence, as that is the common
assumption used to ensure representability. This can be done using structural
functions (such as symmetry) and, following Paré and Román, suitable versions
of these can be defined over weak stable natural numbers objects. In [1] Alves et
al considered the symmetric monoidal case using similar methods, but working
in an informal type-theoretic setting rather than a categorical one.

Putting all this together in Section 4, we finally obtain universality properties
that ensure the representability of all partial recursive functions (Theorem 1)
and that can be applied to categories of partial functions. The notion of repre-
sentability that we use is somewhat weak and there is a natural stronger one.
We show that all total recursive functions, and, more generally, all partial re-
cursive functions with recursive graphs, are strongly representable, under weak
additional assumptions (Theorem 2). If we also assume that all definable partial
functions are partial recursive, then all partial recursive functions are strongly
representable (Corollary 1). However this fails in general, and we provide a syn-
tactic category which has a stable natural numbers object which is also final
but in which no partial recursive function with a non-recursive graph is strongly
representable (Theorem 3).

For categorical terminology used below, the reader may refer, for example,
to [2].

2 The Category of Sets and Partial Functions

We begin by reviewing some general ideas. Suppose we are in a category with a
terminal object and binary sums. Then, as remarked in the introduction, natural
numbers algebras 1

zero−−→ N
succ←−− N are in 1-1 correspondence with F -algebras

(N, α :F (N)→ N) where F is the endofunctor F (A) =def 1+A. This correspon-
dence sends (zero, succ) to

α =def 1 + N
[zero,succ]−−−−−−−→ N

Partial Recursive Functions and Finality 313

(Weak) natural numbers objects correspond in this way to (weakly) initial F -
algebras.

One can also discuss F -coalgebras of given endofunctors F . These are struc-
tures of the form (A,α : A → F (A)). In the case where F = 1 + −, we call
such coalgebras natural numbers coalgebras. A homomorphism of F -coalgebras
h : (A,α) → (B, β) is a morphism h :A → B such that the following diagram
commutes:

A
α� F (A)

B

h

�

β
� F (B)

F (h)

�

and one is interested in (weakly) final coalgebras.
A natural place to begin to explore these ideas is the category Pfn of sets

and partial functions, since partial recursive functions are morphisms there. We
know that the natural numbers form an initial algebra α : F (N) ∼= N in Set
(the category of sets and total functions) where, as above, F (X) = 1l +X and
α(inl(∗)) = 0 and α(inr(n)) = n+1. As α is an isomorphism (as is, by Lambek’s
Lemma, the algebra map of the initial algebra of any endofunctor), we obtain a
natural numbers coalgebra α−1 :N→ F (N) in Set. Concretely one has:

α−1(k) =

{
inl(∗) (k = 0)
inr(k′) (k = k′ + 1)

This natural numbers coalgebra is not final in Set. However sums in Set are
also sums in Pfn, and so F extends to Pfn. As we now check, the coalgebra is
final there.

We have to show that for any β :Y ⇀ 1l + Y there is a unique map h :Y ⇀ N
such that the following diagram commutes in Pfn:

Y
β� 1l + Y

N

h

�

α−1
� 1l + N

1l + h

�

314 G. Plotkin

As α is an isomorphism this is equivalent to asking that the following diagram
commutes:

Y
β� 1l + Y

N

h

�
�

α
1l + N

1l + h

�

Using Kleene equality we can write this out as an equation:

h(y) �

⎧⎨⎩
0 (β(y) � inl(∗))
h(y′) + 1 (β(y) � inr(y′))
undefined (β(y)↑)

(1)

where, as usual, we write e ↑ to assert that an expression e is undefined (and
write e↓ to assert it is defined).

One can show there is a unique such h. For uniqueness, for any h, h′ satisfying
the equation one proves by induction on k that, for all y, h(y) � k if, and only
if, h′(y) � k. For existence, one can set:

h(y) �def μk ∈ N. sk(β(y)) � inl(∗)

where s =def β ◦ inr−1, and check h satisfies (1). Here, as usual, μk ∈ N. ϕ(k)
is the smallest k ∈ N such that ϕ(k) holds, if there is one, and is undefined
otherwise.

Given this connection with minimisation it may not now be surprising that
we can obtain Kleene’s μ-recursion scheme from finality. Suppose we have P :
Nn+1 ⇀ N. Then we apply finality to the coalgebra

β :Nn+1 −−⇀ 1l + Nn+1

where

β(x, k) �

⎧⎨⎩
inl(∗) (P (x, k) � 0)
inr(x, k + 1) (P (x, k)↓ and �� 0)
undefined (P (x, k)↑)

Substituting into (1), we find that the unique h :Nn+1 ⇀ N whose existence is
guaranteed by finality satisfies the following equation:

h(x, k) �

⎧⎨⎩
0 (P (x, k) � 0)
h(x, k + 1) + 1 (P (x, k)↓ and �� 0)
undefined (P (x, k)↑)

(2)

Partial Recursive Functions and Finality 315

We then see that h can be defined by the minimisation

h(x, k) � μk′. P (x, k + k′) � 0 ∧ ∀k′′ < k′. P (x, k + k′′)↓

as, with this definition, one checks that h satisfies (2). Specialising, we obtain:

h(x, 0) � μk ∈ N. P (x, k) � 0 ∧ ∀k′ < k. P (x, k′)↓

and so h(−, 0) : Nn ⇀ N is the partial function obtained by μ-recursion from
P , thereby establishing the advertised connection between finality and Kleene’s
μ-recursion scheme.

3 Primitive Recursive Functions in Monoidal Categories

We assume given a monoidal category C with the standard structural maps:

aA,B,C :A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C lA : I⊗A ∼= A rA :A⊗ I ∼= A

satisfying the usual equations. We need some notation. For any object A define
An by setting A0 = I and An+1 = An⊗A. For n ≥ 0 and ci : I→ A (i = 1, . . . , n),
define 〈c1, . . . , cn〉 : I → An by: 〈〉 = idI and 〈c1, . . . , cn, cn+1〉 = (〈c1, . . . , cn〉 ⊗
cn+1) ◦ l−1

I .
We next assume given a natural numbers algebra in C, by which we now mean

a structure
I

zero−−−−→ N
succ←−−−− N

We define k : I → N for k ∈ N to be succk ◦ zero, and for any k = k1, . . . , kn
we write k for 〈k1, . . . , kn〉 : I → Nn. We then say that a morphism f : Nn → N
represents a (total) function f :Nn → N if, for all k1, . . . , kn ∈ N, we have:

f ◦ 〈k1, . . . , kn〉 = f(k1, . . . , kn)

For example, zero represents the constant 0 and succ represents the successor
function.

The natural numbers algebra I
zero−−→ N

succ←−− N is a right stable natural numbers
object if, for any structure of the form

P
f−−→ B

g←−− B

there is a unique morphism h : P ⊗ N → B such that the following diagram
commutes:

P
(P ⊗ zero) ◦ r−1

P� P ⊗N
P ⊗ succ� P ⊗N

P

P

�

f
� B

h

�

g
� B

h

�

316 G. Plotkin

(and left stable natural numbers objects are defined symmetrically). As usual,
one drops uniqueness for the weak notion. A (weak) right (or left) stable natural
numbers object is a (weak) natural numbers object, in the evident sense.

From now on we assume our natural numbers algebra is a weak right stable
natural numbers object.

Taking P = Nn in the definition of weak right stable natural numbers object
we find that the morphism h whose existence is asserted satisfies the following
two equations:

h ◦ 〈k1, . . . , kn, 0〉 = f ◦ 〈k1, . . . , kn〉
h ◦ 〈k1, . . . , kn, k + 1〉 = g ◦ h ◦ 〈k1, . . . , kn, k〉

So, in particular, taking B = N we find that the representable total functions on
natural numbers are closed under the scheme of pure iteration with n parameters.
This, given f :Nn → N and g :N→ N, yields h :Nn+1 → N such that:

h(k1, . . . , kn, 0) = f(k1, . . . , kn)
h(k1, . . . , kn, k + 1) = g(h(k1, . . . , kn, k))

As we now show, weak stability can be used to obtain representations of struc-
tural maps involving N, viz. terminal maps, projections, symmetries, and diag-

onals. First, considering I
idI−−→ I

idI←−− I and applying weak initiality we obtain a
morphism tN :N→ I such that:

tN ◦ 0 = 〈〉
tN ◦ k + 1 = tN ◦ k

By induction on k, we then have tN ◦ k = 〈〉. Using tN, we obtain a morphism
tNn : Nn → I such that tNn ◦ k = 〈〉. Then, using tN and the tNn , we see
that the projections πn

i : Nn → N (i = 1, n) are representable. We also define
π1 :A⊗N→ A to be rA ◦ (A⊗ tN), and define π2 :N⊗A→ A similarly; for any
k ∈ N and c : I→ A we have π1 ◦ 〈c, k〉 = π2 ◦ 〈k, c〉 = c.

Regarding symmetry, considering N
(zero⊗N)◦l−1

N−−−−−−−−−→ N⊗N
succ⊗N←−−−−− N⊗N and

applying weak stability, we obtain a morphism σN,N :N⊗N→ N⊗N such that:

σN ◦ (k1 ⊗ 0) = 0 ⊗ k1
σN ◦ (k1 ⊗ k + 1) = (succ⊗N) ◦ σN ◦ (k1 ⊗ k)

and, by induction on k, we have σN,N ◦ (k1 ⊗ k) = (k ⊗ k1). Using σN,N, we then
obtain morphisms σNm,Nn :Nm⊗Nn → Nn⊗Nm such that σNm,Nn ◦ (k ⊗ k′) =
(k′ ⊗ k).

Regarding diagonal maps, considering I
(0⊗ 0)◦l−1

I−−−−−−−→ N ⊗ N
succ⊗succ←−−−−−− N ⊗ N

and applying weak initiality, we obtain a morphism ΔN :N→ N⊗N such that:

ΔN ◦ 0 = (0 ⊗ 0) ◦ l−1
I

ΔN ◦ k + 1 = (succ⊗ succ) ◦ΔN ◦ k

Partial Recursive Functions and Finality 317

and then, by induction on k, we have ΔN ◦ k = (k ⊗ k) ◦ l−1
I . Using tN and

ΔN we then obtain diagonal morphisms Δm : N → Nm (m ≥ 0), and, in turn
using the Δm and σ, we further obtain diagonal morphisms Δn,m :Nn → (Nn)m

(m,n ≥ 0) such that Δn,m ◦ k = 〈k, . . . ,k〉.
Finally, using the Δn,m and categorical composition, we see that the rep-

resentable functions are closed under composition, i.e., that if f : Nm → N is
representable, and so are gi : Nn → N, for i = 1, . . . ,m, then h : Nn → N is
representable, where, for k1, . . . , kn ∈ N:

h(k1, . . . , kn) =def f(g1(k1, . . . , kn), . . . , gm(k1, . . . , kn))

For suppose that f :Nm → N is represented by the morphism f : Nm → N and
that, for i = 1, . . . ,m, gi :Nn → N is represented by the morphism gi :N

n → N.
Then their composition h :Nn → N is represented by the morphism h :Nn → N,
where

h =def Nn Δn,m−−−−−→ (Nn)m
(... (I⊗ g1)⊗ ...⊗ gm)
−−−−−−−−−−−−−−−→ Nm

f
−−→ N

By a result of Gladstone [6], all primitive recursive functions can be obtained
starting from the base functions (zero, successor, and the projections) and closing
under composition and pure iteration (even allowing only one parameter). We
therefore have:

Proposition 1. All primitive recursive functions are representable in any
monoidal category with a weak stable right (or left) natural numbers object.

(The case of a weak stable left natural numbers object follows by symmetry from
that of a right one.)

4 Partial Recursive Functions in Monoidal Categories

We assume given a monoidal category C, as in the previous section, which also
has binary sums. It would be natural to make a distributivity assumption. For
example we might assume that the tensor right-distributes over binary sums,
i.e., that the canonical map B ⊗A+ C ⊗A→ (B + C)⊗A is an isomorphism.
However, as with other structural maps, this proves unnecessary in the presence
of weak stability.

Turning to natural numbers objects, we further assume given a natural num-
bers algebra

I
zero−−−−→ N

succ←−−−− N

which is a weak right stable natural numbers object such that the map

I + N
α−−→ N

is an isomorphism, where α =def [zero, succ], and is such that the coalgebra

N
α−1

−−−−→ I + N

is weakly final.

318 G. Plotkin

The k are defined as above, but we need a wider notion of representability.
Say that a morphism g :Nn → N represents a partial function f :Nn ⇀ N if, for
all k1, . . . , kn ∈ N, if f(k1, . . . , kn) � k then g ◦ 〈k1, . . . , kn〉 = k.

We know that all primitive recursive functions are representable, and one
sees, much as in the total case, that the representable functions are closed under
composition. So it remains to show that the representable functions are closed
under Kleene’s μ-recursion scheme.

We first need a weak version of right distributivity. Applying weak stability
to the structure

A+B
(A⊗ zero)◦r−1

A
+(B ⊗ zero)◦r−1

B−−−−−−−−−−−−−−−−−−−−−→ (A⊗N)+(B⊗N)
(A⊗ succ)+ (B ⊗ succ)−−−−−−−−−−−−−−→ (A⊗N)+(B⊗N)

we obtain a map

(A+B)⊗N
dA,B,N−−−−−−→ (A⊗N) + (B ⊗N)

and, as can be shown by induction on k, for any k and any a : I→ A and b : I→ B,
we have

dA,B,N ◦((inl◦a) ⊗ k) = inl◦(a ⊗ k) and dA,B,N ◦((inr◦b) ⊗ k) = inr◦(b ⊗ k)

Iterating, for any n we obtain a map:

(A+B)⊗Nn dA,B,Nn

−−−−−−−→ (A⊗Nn) + (B ⊗Nn)

such that for any k1, . . . , kn and any a : I→ A and b : I→ B, we have

dA,B,N ◦ ((inl ◦ a) ⊗ 〈k1, . . . , kn〉) = inl ◦ (a ⊗ 〈k1, . . . , kn〉)

and
dA,B,N ◦ ((inr ◦ b) ⊗ 〈k1, . . . , kn〉) = inr ◦ (b ⊗ 〈k1, . . . , kn〉)

Spelling out weak finality, we have that for any coalgebra β :B → I + B there
is a morphism h : B → N such that (equivalently) either of the following two
diagrams commute:

B
β� I +B

N

h

�

α−1
� I + N

I + h

�

B
β� I +B

N

h

�
�

α
I + N

I + h

�

Partial Recursive Functions and Finality 319

Looking at the second diagram, we obtain two equations, holding for any b, b′ :
I→ B:

h ◦ b = zero (if β ◦ b = inl) (3)

h ◦ b = succ ◦ h ◦ b′ (if β ◦ b = inr ◦ b′) (4)

Now, to show closure under μ-recursion, suppose P :Nn ×N⇀ N is represented
by a morphism P :Nn ⊗N→ N. Then we apply weak finality to the coalgebra

Nn+1 Δn+1,2−−−−−−→ (Nn+1)2

(α−1 ◦P ◦ lNn+1)⊗Nn+1

−−−−−−−−−−−−−−−−→ (I + N)⊗Nn+1

dI,N,Nn+1

−−−−−−−−→ (I⊗Nn+1) + (N⊗Nn+1)
[π1,(N

n⊗succ)◦π2]−−−−−−−−−−−−→ I + Nn+1

and obtain a morphism
h :Nn+1 → N

obeying the following two equations:

h ◦ 〈k1, . . . , kn, k〉 = zero (if P ◦ 〈k1, . . . , kn, k〉 = zero)
h ◦ 〈k1, . . . , kn, k〉 = succ ◦ h ◦ 〈k1, . . . , kn, k + 1〉 (if P ◦ 〈k1, . . . , kn, k〉 = succ ◦ k′,

for some k′)

One then proves by induction on l that, for all k1, . . . , kn, k, we have:

μk′. (P (k1, . . . , kn, k+k′) � 0 ∧ ∀k′′ < k′. P (x, k+k′′)↓) � l ⇒ h◦〈k1, . . . , kn, k〉 = l

and so we see that h represents the partial function

f(k1, . . . , kn, k) �def μk′. P (k1, . . . , kn, k + k′)� 0 ∧ ∀k′′ < k′. P (x, k + k′′)↓

We therefore have, as required, that the representable functions are closed under
Kleene’s μ-recursion scheme, as h◦(Nk⊗zero)◦r−1

Nn represents the partial function

g(k1, . . . , kn) �def μk. P (k1, . . . , kn, k)� 0 ∧ ∀k′ < k. P (x, k′)↓

Our discussion has established:

Theorem 1. Let C be a monoidal category with binary sums and a weak left
(or right) natural numbers object I

zero−−→ N
succ←−− N such that [zero, succ] is an

isomorphism and (N, [zero, succ]−1) is a weakly final natural numbers coalgebra.
Then all partial recursive functions are representable in C.

There is a natural stronger notion of representability of partial functions over N
which we now investigate. Say that a morphism g : Nn → N strongly represents
a partial function f :Nn ⇀ N if, for all k1, . . . , kn ∈ N, f(k1, . . . , kn) � k if, and
only if, g ◦ 〈k1, . . . , kn〉 = k.

320 G. Plotkin

Lemma 1. Let C be a monoidal category with a weak left (or right) natural

numbers object I
zero−−→ N

succ←−− N such that 0 �= 1.Then all representable total
functions are strongly representable.

Proof. We first remark that if k = k′ then k = k′. For if not, as the predecessor
function is representable, we get 0 = 1, contradicting our assumption.

Now, suppose that g : Nn → N represents a total function f : Nn → N, and
choose k1, . . . , kn. Then g ◦〈k1, . . . , kn〉 = f(k1, . . . , kn). So if g ◦〈k1, . . . , kn〉 = k
then, by the remark, we have, as required, f(k1, . . . , kn) = k.
�

Theorem 2. Let C be a monoidal category with binary sums and a weak left
(or right) natural numbers object I

zero−−→ N
succ←−− N such that [zero, succ] is an

isomorphism and (N, [zero, succ]−1) is a weakly final natural numbers coalgebra.
Then:

1. If 0 �= 1 then all total recursive functions are strongly representable in C.
2. If succ ◦ c �= zero for all c : I → N, then all partial recursive functions with

recursive graphs are strongly representable in C.

Proof. The first part follows immediately from Theorem 1 and Lemma 1. For
the second part, suppose that g :Nn ⇀ N has a recursive graph. Then there is
a recursive function P :Nn+1 → N such that P (k, k′) holds iff g(k) � k′. Let P
represent P , and define h :Nn+1 → N and f :Nn+1 ⇀ N as in the above derivation
of μ-recursion from weak finality. Then h ◦ (Nk ⊗ zero) ◦ r−1

Nn represents g. To
show the representation is strong, it suffices to show that h strongly represents
f (we already know it represents f).

To that end, fixing k, we show, by course-of-values induction on l, that, for
all k′, if h ◦ 〈k, k′〉 = l then f(k, k′) � l. Suppose, first, that P (k, k′) � 0. Then
we have f(k, k′) � 0 and, using (3), that l = h ◦ 〈k, k′〉 = 0. Then, by the
assumption, we have l = 0 and this case concludes.

Otherwise we have P (k, k′) ↓ and �= 0 and then we have f(k, k′) � f(k, k′+
1) + 1 and, using (4), that l = h ◦ 〈k, k′〉 = succ ◦ h ◦ 〈k, k′ + 1〉. Hence, by the
assumption, we have l �= 0, and we can apply the induction hypothesis, as succ
has a left inverse.
�

The strong representability of all partial recursive functions can be established
under a further, computability, assumption. Assuming that 0 �= 1 holds in our
given category, every morphism g : Nn → N can be seen as defining a partial
function g :Nn ⇀ N, where

g(k1, . . . , kn) � k ≡def g ◦ 〈k1, . . . , kn〉 � k

Note that g strongly represents g. We have:

Corollary 1. Let C be a monoidal category with binary sums and a weak left
(or right) natural numbers object I

zero−−→ N
succ←−− N such that [zero, succ] is an

isomorphism and (N, [zero, succ]−1) is a weakly final natural numbers coalgebra.
Then, if 0 �= 1 and if all strongly representable partial functions are partial

recursive, all partial recursive functions are strongly representable.

Partial Recursive Functions and Finality 321

Proof. A theorem of Visser [14, III.7] states that any class of unary partial re-
cursive functions that (1) contains an upper bound of every partial recursive
function and (2) is closed under right composition with all total recursive func-
tions consists of all unary partial recursive functions.

Consider the class of all strongly representable (equivalently definable) unary
partial functions. By assumption, these are all partial recursive. By Theorem 1,
the first of the two conditions hold. By Theorem 2 every total recursive func-
tion is strongly representable and it is easy to see that the class of strongly
representable unary partial functions is closed under right composition with
strongly representable unary total functions. So the second condition also holds
and Visser’s theorem applies, showing that all unary partial recursive functions
are strongly representable. It follows easily that all n-ary partial recursive func-
tions are strongly representable.
�

The corollary applies to various free categories such as the free monoidal category
of the kind assumed given in this section.

These results can be applied to Kleisli categories. Suppose we have a cartesian
category C with binary sums and a commutative strong monad T. Then the
cartesian structure of C induces a symmetric monoidal structure on the Kleisli
category CT [8,13]. Further, CT inherits binary sums from C. As we are now
in a symmetric situation, there is no need to distinguish between left and right
(weak) natural numbers objects; so assume next that 1

zero−−−→ N
succ←−−− N is a

(weak) stable natural numbers object in C. One can check that it is also a (weak)

stable numbers object in CT (more precisely that 1
ηN ◦ zero−−−−−−→ N

ηN ◦ succ←−−−−−− N
is). So, if we further assume that [ηN ◦ zero, ηN ◦ succ] is an isomorphism whose
inverse provides a weak final natural numbers coalgebra in CT, then all the
above general results apply to CT.

In [3,4] categories of partial functions are seen as Kleisli categories for so-
called “lifting” monads on cartesian categories. As an example, in any dis-
tributive category, − + 1 is an equational lifting monad in the sense of [3].
As lifting monads are commutative, the discussion of Kleisli categories applies
to them.

We know from Theorem 2 that, under a weak condition, all partial recursive
functions with recursive graphs are strongly representable. We now see that
this need not be the case if the graphs are not recursive. We first show how,
given a consistent extension T of Peano arithmetic, to construct a distributive
categoryC containing a stably initial natural numbers object which also provides
a final coalgebra in the Kleisli category of the lifting monad −+ 1. The desired
counterexample is then obtained by a suitable choice of T.

So let T be a consistent extension of Peano arithmetic. We allow ourselves
to employ symbols for primitive recursive functions and assume their recur-
sive definitions available in T, and make use of evident multifix notation for
them.

322 G. Plotkin

Fix three distinct variables z, x and y. Given formulas ϕ(z) and ψ(z) whose
only possible free variable is z, and a formula γ(x, y) whose only possible free
variables are x and y, say that γ is a T-relation from ϕ to ψ if:

%T ϕ(x) ∧ γ(x, y) ⇒ ψ(y)

that it is T-function from ϕ to ψ if, in addition:

%T ϕ(x) ∧ γ(x, y) ∧ γ(x, y′) ⇒ y = y′

and that it is a total T-function from ϕ to ψ if, further:

%T ϕ(x) ⇒ ∃y. γ(x, y)

Define an equivalence relation on T-relations from ϕ to ψ by:

γ ∼ γ′ ≡ %T ϕ(x)⇒ (γ(x, y)⇔ γ′(x, y))

Note that if γ ∼ γ′ then γ is a (total) T-function from ϕ to ψ if, and only if γ′

is.
The objects of pC are the formulas ϕ whose only possible free variable is z and

the morphisms [γ] :ϕ→ ψ of pC are the ∼-equivalence classes of T-functions γ
from ϕ to ψ. Identities and composition are given by:

ϕ
idϕ−−→ ϕ = [y = x]

and
[δ] ◦ [γ] = [∃w. γ(x,w) ∧ δ(w, y)]

where [γ] :ϕ→ ψ and δ :ψ → χ.
The total T-functions form a subcategory C of pC which we now investigate.

It is distributive. The final object is z = 0 with ϕ
t−→ 1 = [y = 0]. Binary products

are given by ϕ × ψ = ϕ(π1(z)) ∧ ψ(π2(z)), with projections πi = [y = πi(x)]
(i = 1, 2) and with 〈γ, δ〉 = [γ(x, π1(z)) ∧ δ(x, π2(z))], for [γ] :χ→ ϕ, [δ] :χ→ ψ
(we make use of a surjective pairing function).

The initial object is ⊥ with 0
i−→ ϕ = [⊥]. Binary sums are given by

ϕ+ ψ = (∃w. z = 2w ∧ ϕ(w)) ∨ (∃w. z = 2w + 1 ∧ ψ(w))

with coprojections inl = [y = 2x] and inr = [y = 2x+ 1] and with

[[γ], [δ]] = [(∃w. x = 2w ∧ γ(w, y)) ∨ (∃w. x = 2w + 1 ∧ δ(w, y))]

for [γ] : ϕ → χ, [δ] : ψ → χ. It is not hard to see that products distribute over
sums.

Next, we have a natural numbers algebra

1
zero−−→ N

succ←−− N

Partial Recursive Functions and Finality 323

where N = $, zero =def [y = 0], and succ =def [y = s(x)]. Considered as an
algebra α :1 + N→ N, we have:

α = [(x = 0 ∧ y = 0) ∨ (∃w. x = 2w + 1 ∧ y = succ(w))]

Note that k = [y = sk(0)]. Also, succ ◦ c �= zero, for all c : 1 → N, as T is a
consistent extension of Peano arithmetic.

We next check that our natural numbers algebra is a stable natural numbers
object. As C is cartesian, it is enough to show that for any structure of the form

ϕ
[γ]−−−→ ψ

[δ]←−−− ψ

there is a unique [θ] :ϕ×N→ ψ such that the following diagram commutes:

ϕ× 1
idϕ × zero� ϕ×N

idϕ × succ� ϕ×N

ϕ

π1

�

[γ]
� ψ

[θ]

�

[δ]
� ψ

[θ]

�

The diagram commutes if, and only if both

%T ϕ(x1)⇒ (θ(〈x1, 0〉, y)⇔ γ(x1, y))

and
%T ϕ(x1)⇒ (θ(〈x1, s(x2)〉, y)⇔ ∃w. θ(〈x1, x2〉, w) ∧ δ(w, y))

hold. For uniqueness, given θ and θ′ satisfying these two conditions, one shows
that

%T ϕ(x1)⇒ (θ(〈x1, x2〉, y)⇔ θ′(〈x1, x2〉, y))

holds, using induction on x2. For existence, one defines θ using codes for se-
quences, following the standard method used to show that the primitive recursive
functions are representable in Peano arithmetic.

We next interest ourselves in the Kleisli category CL, where L =def − + 1 is
the equational lifting monad available in any distributive category. By a remark
made above, 1

zero−−−→ N
succ←−−− N is a stable natural numbers object in CL as it

is in C. The k in CL are as in C, but composed with the unit ηN :N → N + 1.
As ηN has a left inverse, the condition that succ ◦ c �= zero for all c : 1 → N is
inherited by CL from C.

We wish to check next that (N, [ηN ◦ zero, ηN ◦ succ]−1) is a final (1 + −)-
coalgebra in the Kleisli category CL. There is an equivalence of categories

F) G :CL
∼= pC

324 G. Plotkin

where both F and G are the identity on objects,

F ([γ]) = [(∃w. γ(x,w) ∧ y = 2w) ∨ (¬∃w. γ(x,w) ∧ y = 1)]

for [γ] :ϕ→ ψ in pC and
G([δ]) = [δ(x, 2y)]

for [δ] : ϕ → ψ in CL. Under this equivalence (N, [ηN ◦ zero, ηN ◦ succ]−1) is a
final (1 +−)-coalgebra in CL if, and only if, (N, [zero, succ]−1) is in pC.

We therefore now check that the latter is such a coalgebra, guided by the
corresponding discussion in Section 2. Noting that, in pC, every object is a
retract of N, it is enough to check that for any coalgebra [γ] : N → 1 + N there
is a unique morphism [δ] :N→ N such that the following diagram commutes:

N
[γ]� 1 + N

N

[δ]

�
�

α
1 + N

1 + [δ]

�

This diagram commutes if, and only if, the following holds:

T δ(x, y) ⇔ ∃v. γ(x, v)∧ [(v = 0∧ y = 0)∨ (∃v′. v = 2v′ +1∧∃w. δ(v′, w)∧ y = s(w))]

equivalently if, and only if, both

%T δ(x, 0)⇔ γ(x, 0) (5)

and
%T δ(x, s(y))⇔ ∃w. γ(x, s(w)) ∧ δ(w, y) (6)

hold.
The uniqueness of δ, up to ∼, is shown by induction on y. For its existence,

we first define [θ] :N ×N→ N by weak stability so that

T θ(〈x1, 0〉, y) ⇔ γ(x1, y) and
T θ(〈x1, s(x2)〉, y) ⇔ ∃w. θ(〈x1, x2〉, s(w)) ∧ γ(w, y)

and then set:

δ(x, y) =def θ(〈x, y〉, 0) ∧ ∀y′ < y.¬θ(〈x, y′〉, 0)

The formula δ(x, y) is evidently T-functional and it evidently satisfies (5). To
show it satisfies (6), one first shows that

%T θ(〈x1, s(x2)〉, y)⇔ ∃w. γ(x1, s(w)) ∧ θ(〈w, x2〉, y) (7)

Partial Recursive Functions and Finality 325

holds, using induction on x2. Using (7), one then shows that

%T γ(x1, s(w))⇒ [(∀y′ < s(y).¬θ(〈x1, y′〉, 0))⇔ (∀y′ < y.¬θ(〈w, y′〉, 0))] (8)

holds. Finally, one proves δ(x, y) satisfies (6) by using its definition and then (7)
and (8).

A formula χ(x1, . . . , xn) semi-represents a relation R ⊆ Nn in an extension
T of Peano arithmetic, if, for all k1, . . . , kn, R(k1, . . . , kn) holds if, and only if,
%T χ(k1, . . . , kn) does.

Theorem 3. There is a distributive category C with a stable natural numbers
object

1
zero−−→ N

succ←−− N

such that in the Kleisli category CL, where L = (− + 1):

1. (N, [zero, succ]−1) is a final natural numbers coalgebra, and
2. succ ◦ c �= zero, for all c :1→ N, but
3. the only strongly representable partial recursive functions in CL are those

with a recursive graph.

Proof. By Theorem 3 of [9] (which gives more than we need) there is a consistent
complete extension T of Peano arithmetic in which the only semi-representable
relations are either recursive or non-arithmetical. Define C as above. Then C
has all the required properties except, perhaps, the last. For that, let f :Nn ⇀ N
be a partial recursive function, and suppose that it is strongly representable in
CL by [γ] :Nn → N. Then, for all k1, . . . , kn, we have:

f(k1, . . . , kn) � k ≡ [γ] ◦ 〈k1, . . . , kn〉 = k ≡ %T γ(〈k1, . . . , kn〉, k)

(making use of an evident primitive recursive n-tupling function). So the graph
of f is semi-representable in T and is therefore recursive.
�

Acknowledgements. I thank Jeff Egger, Phil Scott, and Alex Simpson for very
helpful discussions.

References

1. Alves, S., Fernández, M., Florido, M., Mackie, I.: Linear recursive functions. In:
Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Rewriting, Computation and
Proof. LNCS, vol. 4600, pp. 182–195. Springer, Heidelberg (2007)

2. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall (1998);
Also available as Reprints in Theory and Applications of Categories, vol. 22, pp.
1–538 (2012), www.tac.mta.ca/tac/reprints/

3. Bucalo, A., Führmann, C., Simpson, A.K.: An equational notion of lifting monad.
Theor. Comput. Sci. 294(1/2), 31–60 (2003)

4. Cockett, J.R.B., Lack, S.: Restriction categories II: partial map classification.
Theor. Comput. Sci. 294(1/2), 61–102 (2003)

www.tac.mta.ca/tac/reprints/

326 G. Plotkin

5. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Con-
tinuous Lattices and Domains. Encyclopedia of Mathematics and its Applications,
vol. 93. CUP (2003)

6. Gladstone, M.: Simplification of the recursion scheme. J. Symb. Logic 36(4),
653–665 (1971)

7. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic. Cam-
bridge Studies in Advanced Mathematics, vol. 7. CUP (1988)

8. Jacobs, B.P.F.: Semantics of weakening and contraction. Annals of Pure and Ap-
plied Logic 69, 73–106 (1994)

9. Jockusch Jr., C.G., Soare, R.I.: Π0
1 classes and degrees of theories. Trans. Amer.

Math. Soc. 173(2), 33–56 (1972)
10. Johnstone, P.T.: Sketches of an Elephant: a Topos Theory Compendium, vol. 1.

OUP (2002)
11. Mackie, I., Román, L., Abramsky, S.: An internal language for autonomous cate-

gories. Journal of Applied Categorical Structures 1, 311–343 (1993)
12. Paré, R., Román, L.: Monoidal categories with natural numbers object. Studia

Logica 48(3), 361–376 (1989)
13. Power, A.J., Robinson, E.: Premonoidal categories and notions of computation.

Mathematical Structures in Computer Science 7(5), 453–468 (1997)
14. Smoryński, C.: Logical Number Theory I. Springer (1991)

Breaking the Atom with Samson

Jouko Väänänen	

Department of Mathematics and Statistics
University of Helsinki

and Institute for Logic, Language and Computation
University of Amsterdam

1 Dependence

The dependence atom =(x, y) was introduced1 in [11]. Here x and y are finite
sets of attributes (or variables) and the intuitive meaning of =(x, y) is that
the attributes x completely (functionally) determine the attributes y. One may
wonder, whether the dependence atom is truly an atom or whether it has fur-
ther constituents. My very pleasant co-operation with Samson Abramsky led to
the breaking of this atom, with hitherto unforeseen consequences. Here is the
story.

A reasonable goal in logic is to capture the intuitive meaning of some concept
by means of simple axioms. In the case of dependence atoms such simple axioms
are the so-called Armstrong’s Axioms2:

1. Reflexivity: =(xy, x).
2. Augmentation: =(x, y) implies =(xz, yz).
3. Transitivity: If =(x, y) and =(y, z), then =(x, z).

presented in one of the first3 papers on database theory [3].
Armstrong’s Axioms capture the meaning of dependence atoms completely

in the sense that an atom =(x, y) follows from a set Σ of other atoms by these
rules if and only if every database in which the dependence atoms Σ hold also
=(x, y) holds.

A dependence atom holding in a database can be given the same meaning
as a formula holding in a first order structure, but only if we make one very
important leap. This is the leap from considering truth in one assignment to
considering truth in a team, a set of assignments. This innovation is due to
Hodges [9].

� Research partially supported by grant 251557 of the Academy of Finland. I am grate-
ful to Pietro Galliani, Juliette Kennedy, Juha Kontinen and Fan Yang for reading
the manuscript and making helpful comments.

1 It was, however, known as “functional dependence” in database theory since the 70s.
2 We write xy for the union x ∪ y of the sets x and y.
3 According to R. Fagin in “Armstrong databases”, 7th IBM Symposium on Mathe-
matical Foundations of Computer Science, Kanagawa,Japan, May 1982.

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 327–335, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

328 J. Väänänen

LetM be a background structure and X a set of assignments of variables into
M . We call such sets teams. We define what it means for the team X to satisfy
a dependence atom =(x, y) inM, denotedM |=X =(x, y), as follows:

∀s, s′ ∈ X(s � x = s′ � x implies s � y = s′ � y). (1)

This gives exact meaning to =(x, y) in perfect harmony with the idea that
the values of x functionally determine the values of y. This is also the mean-
ing of functional dependence as it started to appear in database theory after
[3].

2 Constancy

A special case of =(x, y) is the constancy atom =(y) where x = ∅:

∀s, s′ ∈ X(s � y = s′ � y). (2)

The intuitive meaning of =(y) is simply that y is constant. In a context like team
semantics, where we have variation in the values of the attributes (or variables),
it makes a lot of sense to take also into account the possibility of no variation. So
in the context of team semantics, where formulas with free variables x1, . . . , xn
are considered, the constancy atom

=(x1 . . . xn) (3)

limits the teams to singleton (or empty4) teams. In singleton (and empty) teams
all dependence atoms =(u, v) are true, so (3) has the effect of trivializing all
dependence atoms.

A complete axiomatization of the logical consequence of a constancy atom
from a set of other constancy atoms is almost too trivial to quote: it consists of
just the rule

Reflexivity: =(xy) implies =(x).

3 Dependence Logic

We can extend the definition of the meaning of dependence atoms to the entire
first order logic built from identities x = y, relational atoms R(x1, . . . , xn) and
the dependence atoms =(x, y) as follows:

4 Teams are sets of assignments and also the empty set is a team.

Breaking the Atom with Samson 329

M |=X x = y ⇐⇒ ∀s ∈ X(s(x) = s(y)).
M |=X ¬x = y ⇐⇒ ∀s ∈ X(s(x) �= s(y)).
M |=X R(x1, . . . , xn) ⇐⇒ ∀s ∈ X((s(x1), . . . , s(xn)) ∈ RM).
M |=X ¬R(x1, . . . , xn) ⇐⇒ ∀s ∈ X((s(x1), . . . , s(xn)) /∈ RM).
M |=X φ ∧ ψ ⇐⇒ M |=X φ andM |=X ψ.
M |=X φ ∨ ψ ⇐⇒ There are X1 and X2 such that

X = X1 ∪X2,M |=X1 φ, andM |=X2 ψ.
M |=X ∃xφ ⇐⇒ M |=X′ φ for some X ′ such that

∀s ∈ X ∃a ∈M(s(a/x) ∈ X ′)
M |=X ∀xφ ⇐⇒ M |=X′ φ for some X ′ such that

∀s ∈ X ∀a ∈M(s(a/x) ∈ X ′)

We call the resulting semantically defined logic Dependence Logic [11].
Conceivably one could extend (1) to full dependence logic in different ways.

An important guideline in making the choices for the above semantics is that for
singleton teams {s} this agrees with satisfaction in first order logic, that is, if
we use the notationM |=s φ for the proposition that the assignment s satisfies
the first order formula φ in M, then for first order φ (i.e. for φ not containing
dependence atoms):

M |={s} φ ⇐⇒ M |=s φ. (4)

4 Downward Closure

Another guiding principle is downward closure: If M |=X φ and Y ⊆ X , then
M |=Y φ for any dependence logic formula φ. Why do we want downward
closure? The idea is that every dependence logic formula specifies a type of
dependence. So, in particular, we do not aim at expressing non-dependence.
Also, we do not consider dependencies which are manifested in part of the team
only, even if the part was a very big part.

Our concept of dependence is thus logical, not probabilistic. For =(x, y) to hold
in X , every pair {s, s′} chosen from X has to satisfy (1), not a single exception
is allowed. This property is, of course, downward closed. We simply extend this
to all formulas and thereby maintain the idea that every formula determines a
weak form of this kind of dependence.

In practical applications probabilistic dependences are much more ubiquitous.
In particular, in practical applications one can usually overlook a tiny portion
of the team as irrelevant noise, possibly resulting from errors in data handling.
In our mathematical theory of team semantics a single row can destroy the
dependence manifested by millions of other rows.

Let us see how downward closure arises: Conjunction determines the simul-
taneity of two dependences. Downward closure is preserved. Disjunction says
that the team splits into two subteams, both with their own dependence. Down-
ward closure is preserved: a smaller team splits similarly into subteams obtained
by intersecting the original subteams with the smaller team. The existential
quantifier says that after some rows are updated, a dependence holds. A smaller
team inherits the update canonically. Finally, the universal quantifier says that

330 J. Väänänen

a given dependence holds even if a certain attribute has simultaneously all pos-
sible values. In a smaller team we simultaneously give all possible values to the
given attribute in the remaining assignments. In each case downward closure is
clearly preserved.

5 Axioms

Given that Armstrong’s Axioms govern the dependence atom, what are the
axioms governing the entire dependence logic? After all, we have just given the
semantics. Ideally the semantics would reflect the completeness of the axioms.
As it happens,5 the above semantics does not reflect the completeness of any
effectively given set of axioms and rules, because the set of Gödel numbers of
valid sentences in dependence logic is a complete Π2-set in the sense of the Levy
hierarchy of set theory [12].

What is the meaning of the logical operations of dependence logic, if logical
consequence cannot be axiomatized? A trivial answer is that the meaning comes
from set theory according to the definition of the semantics. This, however, raises
the further question, do we really have to understand set theory to understand
the meaning of the logical operations ∧,∨, ¬, ∃ and ∀? Shouldn’t “logical” mean
something simpler than set theory?

Conceivably there is a fragment of dependence logic which is completely ax-
iomatizable but still rich enough to express some interesting dependence prop-
erties. A step in this direction is [10], where a complete axiomatization of the
logical consequence relation Σ |= φ, where φ is first order, is given. Some of the
rules of this axiomatization are quite involved but still all the rules have a clear
intuitive content. Here is an example of the rules of [10]:

∃y(
∧

1≤j≤n =(zj , yj) ∧ C) ∨ ∃y′(
∧

n+1≤j≤n+m =(zj , yj) ∧D)

∃y∃y′(
∧

1≤j≤n+m =(zj , yj) ∧ (C ∨D))
(5)

Work is underway to extend such results to non-first order—real dependence
logic—consequences, and Juha Kontinen and his student Miika Hannula have
unpublished results in this direction. In the light of this we may argue that there
are meaningful and insightful steps between Armstrong’s Axioms for atoms and
the axiomatically intractable purely semantic theory of dependence.

6 Breaking the Atom

Are the complicated rules of [10], an example of which is (5), and the even more
complicated ones needed for non-first order consequences, really the best way
to understand the meaning of =(x, y) and first order logic built on top of it?
Maybe =(x, y) can be analyzed in a different way, leading to simpler logical
rules. Samson Abramsky suggested to look inside the atom =(x, y) and see what

5 This is essentially due to A. Ehrenfeucht, as Henkin reports in [8].

Breaking the Atom with Samson 331

are its constituents. This led to the topic of the title of this paper, and to the
paper [2].

To break the atom =(x, y) we can rewrite its semantics as follows:

∀Y ⊆ X(if x is constant on Y , then y is constant on Y). (6)

Using the constancy atoms this amounts to

∀Y ⊆ X(if Y satisfies =(x), then Y satisfies =(x)). (7)

This resembles the semantics of intuitionistic implication in Kripke-semantics

w � φ→ ψ ⇐⇒ ∀u ≥ w(if u � φ, then u � ψ),

so thinking of subsets of X as “extensions” of X we define a new logical opera-
tion:

M |= φ→ ψ iff ∀Y ⊆ X(ifM |=Y φ, thenM |=Y ψ). (8)

With this new implication we have a simple definition of the dependence atom:

=(x, y) iff =(x)→ =(y) (9)

with exactly the same semantics in team semantics as the original (1).
The idea that subteams are “extensions” of the team is not far-fetched. We

can think of teams as uncertain information about an assignment (see [4] for
more on this idea) and then a smaller team represents less uncertainty, i.e. more
certainty. The ultimate extension in this sense is a singleton, representing total
certainty about the assignment.

An obvious potential advantage of =(x) → =(y) over =(x, y) is that on the
one hand =(y) is a much simpler atom than =(x, y) and on the other hand →
is not just an arbitrary new operation, it is the restriction to team semantics of
the classical intuitionistic implication going back to Brouwer, Kolmogorov and
Heyting, with an extensive literature about it.

Considering that φ → ψ is the restriction of intuitionistic implication to the
context of dependence logic, it can be hoped that it inherits some its rich meaning
in constructive mathematics, and that this inheritance can be taken advantage
of. Indeed, if Armstrong’s Axioms are combined with (9) and dependence atoms
are replaced by arbitrary formulas, Heyting’s axioms for intuitionistic implication
and conjunction arise:

1. Reflexivity: (φ ∧ ψ)→ φ.
2. Augmentation: φ→ ψ implies (φ ∧ θ)→ (ψ ∧ θ).
3. Transitivity: If φ→ ψ and ψ → θ, then φ→ θ.

This can be interpreted by saying that dependence logic has an intuitionistic ele-
ment. It is not intuitionistic per se, but it shares some aspects with intuitionistic
logic. Perhaps dependence logic could be developed completely constructively,
but this has not been tried yet.

332 J. Väänänen

Another remarkable property of the intuitionistic implication in dependence
logic is that it is the adjoint of conjunction, just as it should be:

φ ∧ ψ |= θ iff φ |= ψ → θ. (10)

Probably the introduction of intuitionistic implication into dependence logic will
eventually lead to better proof theory, not least because of the natural Galois
connection (10). But alas, intuitionistic implication is not definable6 in depen-
dence logic! In fact Fan Yang [13] has shown that adding intuitionistic implica-
tion to dependence logic leads to full second order logic. So the introduction of
the much needed implication to dependence logic leads to an explosion of the
expressive power. Remarkably, we can still keep downward closure, so we have
not introduced a negation in the classical sense, even though full second order
logic is closed under negation. This is one of the peculiarities of team semantics,
and its oddness disperses with closer investigation, for which we refer to [13].

7 Independence

Given that we have made some headway in understanding dependence by intro-
ducing the dependence atom and investigating its logic, the question naturally
arises, what about independence? With this in mind, in [7] the independence
atom x ⊥ y was introduced7.

Intuitively speaking, x ⊥ y says that x and y are so independent of each
other that knowing one gives no information about the other. This form of
independence turns out to be ubiquitous among attributes in science and society,
wherever independence is talked about. As it turned out in discussions with
Samson, the independence concept of quantum mechanics in [1] is also of the
type x ⊥ y. This observation is the subject of further study in co-operation with
Samson.

To give independence exact meaning, let M be a background structure and
X a set of assignments of variables into M . We define what it means for the
team X to satisfy an independence atom x ⊥ y in M, denoted M |=X x ⊥ y,
as follows:

∀s, s′ ∈ X∃s′′(s′′ � x = s � x and s′′ � y = s′ � y). (11)

In other words, if a value a occurs in some assignment s as a value of x and a
value b occurs as a value of y in some other assignment s′, then there is a third
assignment s′′ which has simultaneously a as the value of x and b as the value of

6 Pietro Galliani has a related but different, and very interesting, analysis of the
dependence atom in terms of what he calls public announcement operators and the
constancy atoms [5]. The public announcement operators have the advantage over
→ that they are definable in dependence logic itself.

7 As with dependence atom, it turned out (this observation was made by Fredrik
Engström) that our independence atom was already studied under a different name
(embedded multivalued dependence) in database theory.

Breaking the Atom with Samson 333

y. So from x being a we cannot infer what y is (unless it is constant), and from
y being b we cannot infer what x is (unless it is constant).

Speaking of being constant, in fact, the constancy atom =(x) implies x ⊥ y
because we can then choose s′′ = s′ in (11). This is the curious state of affairs
uncovered in [7], which shows that independence is not necessarily the opposite
of dependence. Since =(x) implies =(x, y), we can have simultaneously =(x, y)
and x ⊥ y. Being constant is one form of independence.

The analogue of Armstrong’s Axioms is in the case of independence atom the
Geiger-Paz-Pearl [6] axioms:

1. Empty set rule: x ⊥ ∅.
2. Symmetry Rule: If x ⊥ y, then y ⊥ x.
3. Weakening Rule: If x ⊥ yz, then x ⊥ y.
4. Exchange Rule: If x ⊥ y and xy ⊥ z, then x ⊥ yz.

These axioms satisfy in team semantics the same kind of Completeness Theorem8

as Armstrong’s Axioms. So we may regard them really as incorporating the
essence of independence on the atomic level.

Independence atoms can be added to dependence logic9 and we get a proper
extension, called independence logic, which no longer satisfies the Downward
Closure property. This logic is able to express existential second order properties
in a particularly strong sense [5]. If we again add intuitionistic implication, we
get full second order logic [13].

8 Speculation: Breaking the Independence Atom

Let us then try to break the independence atom into pieces. The reasons for
attempting this are the same as in the case of dependence atom: the logic is
non-axiomatizable and trying to axiomatize even just first order consequences10

leads to rather complicated axioms.
Since we are bound to lose downward closure, intuitionistic implication alone

is not enough. The following more complicated compatible conjunction suggests
itself: We add a new logical connective φ 2 ψ to dependence logic with the
following semantics:

M |=X φ2 ψ ⇐⇒

∀�=∅Y, Z ⊆ X((M |=Y φ andM |=Z ψ)→

∃Y ′, Z ′ ⊆ X(Y ⊆ Y ′, Z ⊆ Z ′,M |=Y ′ φ,M |=Z′ ψ, and Y ′ ∩ Z ′ �= ∅)).
8 Proved in [6] in the case of random variables.
9 By an unpublished result of Pietro Galliani the dependence atom is definable from
the independence atom, so if we add the independence atoms to first order logic, we
get the dependence atoms free.

10 Miika Hannula has a complete axiomatization (unpublished).

334 J. Väänänen

In words, every non-empty subteam Y satisfying φ and every non-empty subteam
Z satisfying ψ, can be extended inside X , respectively, to Y ′ and Z ′ such that
they still satisfy φ and, respectively, ψ, but, moreover, they meet. In a finite
model this means that non-empty maximal teams satisfying φ and ψ meet. In
finite modelsM |=X φ2φ says the non-empty maximal subteams ofX satisfying
φ all meet. In forcing terms this means that below X the formula φ defines a set
of compatible teams. In forcing terms φ2ψ is satisfied by teams below which φ
and ψ are compatible. For sentences φ and ψ the sentence φ2 ψ is always true.
For first order φ(x) and ψ(x):

M |= ∀x(φ(x) 2 ψ(x)) ⇐⇒ M �|= ∃xφ(x) or
M �|= ∃xψ(x) or else
M |= ∃x(φ(x) ∧ ψ(x)).

Having added the new operation we can now break the independence atom into
smaller constituents:

x ⊥ y ⇐⇒ =(x) 2=(y). (12)

To what avail? In what sense is =(x)2=(y) simpler than x ⊥ y? At the moment
it is not clear whether the equivalence (12) is an insightful analysis of x ⊥ y.
Certainly the atoms =(x) represent a simplification from x ⊥ y, but it is more
difficult to estimate the connective 2. It is not one of the logical operations
known in logic, and no general theory of 2 exists.

References

1. Abramsky, S.: Relational hidden variables and non-locality. Studia Logica,
arXiv:1007.2754 (2013), doi: 10.1007/s11225-013-9477-4

2. Abramsky, S., Väänänen, J.: From IF to BI: a tale of dependence and separation.
Synthese 167(2, Knowledge, Rationality & Action), 207–230 (2009)

3. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP
Congress, pp. 580–583 (1974)

4. Galliani, P.: The dynamics of imperfect information. Doctoral Thesis, University
of Amsterdam (2012)

5. Galliani, P.: Inclusion and exclusion dependencies in team semantics—on some
logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)

6. Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving prob-
abilistic independence. Inform. and Comput. 91(1), 128–141 (1991)

7. Grädel, E., Väänänen, J.: Dependence and independence. Studia Logica,
arXiv:1208.5268 (2013), doi: 10.1007/s11225-013-9479-2

8. Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods
(Proc. Sympos. Foundations of Math., Warsaw, 1959), pp. 167–183. Pergamon,
Oxford (1961)

9. Hodges, W.: Some strange quantifiers. In: Mycielski, J., Rozenberg, G.,
Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261,
pp. 51–65. Springer, Heidelberg (1997)

Breaking the Atom with Samson 335

10. Kontinen, J., Väänänen, J.: Axiomatizing first order consequences in dependence
logic. Annals of Pure and Applied Logic (to appear)

11. Väänänen, J.: Dependence logic. London Mathematical Society Student Texts,
vol. 70. Cambridge University Press, Cambridge (2007)

12. Väänänen, J.A.: Second-order logic and foundations of mathematics. Bulletin of
Symbolic Logic 7(4), 504–520 (2001)

13. Yang, F.: Expressing second-order sentences in intuitionistic dependence logic.
Studia Logica, arXiv:1302.2279 (2013), doi: 10.1007/s11225-013-9476-5

Reasoning about Strategies

Johan van Benthem	

University of Amsterdam and Stanford University

Abstract. Samson Abramsky has placed landmarks in the world of logic
and games that I have long admired. In this little piece, I discuss one
theme in the overlap of our interests, namely, logical systems for reason-
ing with strategies - in gentle exploratory mode.

1 Reasoning about Strategies: A Priorip Analysis or
Rather Logical Fieldwork?

The notion of a strategy as a plan for interactive behavior is of crucial importance
at the interface of logic and games. Truth or validity of formulas corresponds to
existence of appropriate strategies in systems of game semantics, and in game
theory, it is strategies that describe multi-agent behavior interlocked in equilib-
ria. But strategies themselves are often implicit in logical systems, remaining
“unsung heroes” in the meta-language (5). To put them at centre stage, two
approaches suggest themselves. One is to assimilate strategies with existing ob-
jects whose theory we know, such as proofs or programs. This is the main line
in my new book (6). However, one can also drop all preconceptions and follow
a “quasi-empirical approach”. A traditional core business of logic is analyzing a
given reasoning practice to find striking patterns, as has happened with great
success in constructive mathematics or in formal semantics of natural language.
In this piece, I will analyze a few set pieces of strategic reasoning in basic results
about games, and just see where they lead. I restrict attention to two-player
games (players will be called i, j), and usually, games of winning and losing
only. Also, given the limitations of size for this paper, I will just presuppose
many standard notions.

2 The Gale-Stewart Theorem and Its Underlying
Temporal Logic of Forcing

Two Basic Theorems. Consider determined games, where one of the players
has a winning strategy. This is the area where basic mathematical results about
games and strategies started:

� I thank the two readers of this paper, and also Chanjuan Liu and Prakash Panan-
gaden for their generous practical help.

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 336–347, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Reasoning about Strategies 337

Theorem 1 (Zermelo’s Theorem). Games with finite depth are determined.

Proof. The proof is essentially an algorithm computing positions where players
have winning strategies, a precursor to the game-theoretic method of Backward
Induction (16). Its key recursion defines predicatesWINi (“player i has a winning
strategy from now on”) at nodes of the game tree in terms of auxiliary predicates
end (“endpoint”), turni (“it is player i’s turn to move”), movei (“the union of
all currently available moves for i”), and wini (“player i wins at this node”):

WINi ↔ ((end ∧wini) ∨ (turni ∧ 〈movei〉WINi) ∨ (turnj ∧ [movei]WINi))

Notice the different existential and universal modalities in the two cases.1

Now we move to infinite games. An open winning condition is a set X of
histories h with h ∈ X iff some initial segment of h has all its extensions in
X . Call a game “open” where at least one of the players has such a winning
condition. Here is another classical result:

Theorem 2 (Gale-Stewart Theorem). Open infinite games are determined.

Proof. The proof revolves around this property of all infinite games:

Weak Determinacy: Either player i has a winning strategy, or player j has a
strategy ensuring that player i never reaches a position in the game where i has
a winning strategy.

If i has no winning strategy, then j has a “nuisance strategy” by Zermelo
reasoning. At i ’s turns, no move for her can guarantee a win, and so j can “wait
and see”. If j is to move, there must be at least one successor state where i has
no winning strategy: otherwise, i has a winning strategy after all. Continuing
this way, j produces runs as described.

Next, without loss of generality, let i be the player with the open winning
condition. Then the nuisance strategy is winning for j. Consider any history r
that it produces. If r were winning for i, some initial segment r(n) would have
all its continuations winning. But then “play whatever” would be a winning
strategy for i at r(n): quod non.

A Temporal Logic of Forcing Powers. Now we introduce some minimal ma-
chinery formalizing these arguments. Extensive games may be viewed as branch-
ing tree models M for time, with histories as complete branches h, and stages s
as points on these histories:

s
h

'h

1 A correctness proof for the algorithm is essentially “excluded middle writ-large”:
either player i has a response to every move by j yielding ϕ, or player j has a move
such that each follow-up by i yields ¬ϕ.

338 J. van Benthem

The bold-face line is the actual history, only known up to stage s so far. Points
can have local properties encoded, while total histories can also have global
properties such as Gale-Stewart winning conditions, or the total discounted pay-
offs used in evolutionary games.

Such structures, assuming discrete time, interpret a standard branching tem-
poral language ((10) has a survey of flavours), in the format

M, h, s |= ϕ formula ϕ is true at stage s on history h

with formulas ϕ constructed using proposition letters, Boolean connectives, ex-
istential and universal temporal operators F, G, H, P, O (future and past on
branches, with O for “at the next moment”), as well as existential and univer-
sal modalities ♦, � over all branches at the current stage. Here are the truth
conditions for some major operators:

M, h, s |= Fϕ iff M, h, t |= ϕ for some point t ≥ s,

M, h, s |= Oϕ iff M, h, s+ 1 |= ϕ with s+ 1 the immediate successor of s on h,

M, h, s |= ♦ϕ iff M, h′, s |= ϕ for some h′ equal to h up to stage s.

To this description of the basic structure of the model, we now add a strategic
forcing modality {i}ϕ describing the powers of player i at the current stage of
the game:

M, h, s |= {i}ϕ player i has a strategy from s onward playing which ensures
that only histories h′ result for which, at each stage t ≥ s,M, h′, t |= ϕ

While this looks local to stages s, ϕ can also be a global stage-independent
property of the histories h′. Note that the condition does not imply that the
actual history h satisfies ϕ: any successful strategy may have to deviate from
the current “road to perdition”.

As an illustration of the perspicuity of this language, Weak Determinacy be-
comes the following simple formula:

{i}ϕ ∨ {j}¬{i}ϕ

Valid Principles. Some obvious laws of reasoning for the resulting temporal
forcing logic are a combination of some well-known components:

Fact 3. The following principles are valid in temporal forcing logic:

(a) the standard laws of branching temporal logic,
(b) the standard logic of a monotonic neighborhood modality for {i}ϕ,

plus one for its strongly modalized character: {i}ϕ→ �{i}ϕ,
(c) three more specifically game-oriented principles:

(c1) {i}ϕ↔ ((end ∧ ϕ) ∨ (turni ∧ ♦O{i}ϕ) ∨ (turnj ∧�O{i}ϕ))
(c2) α ∧�G((turni ∧ α)→ ♦Oα) ∧ ((turnj ∧ α)→ �Oα)))→ {i}α
(c3) ({i}ϕ ∧ {j)}ϕ)→ ♦(ϕ ∧ ψ).

Reasoning about Strategies 339

For the list of principles meant under (a), see (10). For those under (b), see (14).
The first law of (c) is the fixed-point recursion in the Zermelo argument, and the
second an introduction law reminiscent of the axiom for the universal iteration
modality in propositional dynamic logic.2 The third principle is a simple form of
independence of strategy choices for the two players that occurs in many logics
of simultaneous action.

Proving Our Basic Results Formally. These laws allow us to derive our
earlier results. Here are the essential steps in the proof of Weak Determinacy:

– (turni ∧ ¬{i}ϕ)→ �O¬{i}ϕ from (c1)

– (turnj ∧ ¬{i}ϕ)→ ♦O¬{i}ϕ from (c1)

– ¬{i}ϕ→ {j}¬{i}ϕ) from (c2)

Now we can also derive the Gale-Stewart Theorem formally. Suppose that ϕ is
an open condition, i.e.:

ϕ→ F�Gϕ

Then it is easy to derive formally that {j}¬{i}ϕ → {j}¬ϕ, and combined with
Weak Determinacy, this makes the game determined:

{i}ϕ ∨ {j}¬ϕ

Zermelo’s Theorem follows as well, since “having an endpoint” is an open prop-
erty of branches, satisfying the implication

Fend→ F�GFend.

Temporal Forcing Logic. Viewed as a system, temporal forcing logic on our
tree models has some familiar laws:

Fact 4. The modal K4-axiom {i}α→ {i}{i}α is valid in temporal forcing logic.

This is not so much the usual “introspection” for knowledge-like modalities,
but a sort of “safety”: following a winning strategy never takes one outside of
the area where one has a winning strategy. But it is also interesting to look at
non-validities of the system:

Example 1. Some informative non-validities:
(a) The modal T -axiom {i}α→ α fails since the current history need not be the
one recommended by i ’s strategy forcing α. 3 (b) Also invalid is the implication
G{i}α→ Fα, that might look plausible as a principle of eventual success. How-
ever, it fails anywhere on the infinite ¬α branch in the following model, viewed
as a one-person game:

2 Note that the principle stated here is less strong than it may seem: to see this, just
apply it to a global winning condition.

3 But valid again in temporal forcing logic is the special instance {i}{i}α → {i}α.

340 J. van Benthem

� � �

Even though we do not know a complete axiomatization for temporal forcing
logic, we do have the wind in our sails:

Fact 5. Temporal forcing logic is decidable.

Proof. All temporal modalities, but also the forcing modality, can be defined
in monadic second-order logic MSOL on trees with successor relations. Histories
are maximal linearly ordered sets of nodes, and strategies can be identified with
subsets of the tree as well, in a manner shown in (7). Then Rabin’s Theorem on
decidability of MSOL tree logic applies.4

Remark. A short piece like this cannot do justice to links with existing temporal
logics for games. Classics such as (2) come to mind as obvious comparisons. (6)
explores further connections between our forcing-based logic of strategies with
various game-related systems in computational logic.

3 Nondeterminacy, Strategy Stealing, and Temporal
Forcing Logics of Special Games

Within our general logic of strategies, further properties come to light in spe-
cial models. Going beyond the Gale-Stewart Theorem, consider a standard non-
determined game.

Example 2. The interval selection game. Take any free ultrafilter U on the nat-
ural numbers N. Two players pick successive closed initial segments of N of
arbitrary finite lengths, producing a sequence like this:

i : [0, n1], with n1 > 0, j : [n1 + 1, n2], with n2 > n1 + 1, etc.

Player i wins if the union of all intervals chosen by her is in U - otherwise,
j wins. Winning sets are not open, as sets in U are not determined by finite
initial segments. This interval game is not determined, by a so-called “strategy
stealing” argument:

Lemma 1. Player i has no winning strategy.

Proof. Suppose that player i had a winning strategy, then j could actually
use it with a delay of one step to copy i’s responses to her own moves, now
disguised as j -moves. Both resulting sets of intervals (disjoint up to some finite
initial segment) would have their unions in U : which cannot be, since U is free.
Player j has no winning strategy for similar reasons.

4 Many strategy-related modalities on trees are even bisimulation-invariant, so by the
main theorem in (15), they are also definable in the modal μ-calculus.

Reasoning about Strategies 341

Analyzing this proof in detail reveals interesting logical structure. Let i start,
the other case is similar. The strategy σ gives i a first move σ(−). Now let
j play any move e. i’s response is σ(σ(−), e), after which it is j’s turn again.
Now crucially, in the interval game, the same sequence of events can be viewed
differently, as a move σ(−) played by i, followed by a move e; σ(σ(−), e) played
by j, after which it is i’s turn. What this presupposes is the following special,
but natural property of a game:

Composition Closure: Any player can play any concatenation of available suc-
cessive moves as one single move. 5

Now the game tree has the following property. The two stages described here
start the same subgames in terms of available moves, but with all turn mark-
ings interchanged. Thus, one subgame is a “dual” of the other.6 The core of j’s
strategy is now that he uses i’s strategy in the other game to produce identical
runs in both subgames, except for the inverted turn marking. This leads to a
contradiction via the following logical Copy Law :

Fact 6. In games with composition closure, the following formula is valid:

{i}ϕ→ ♦OO{j}ϕd, where ϕd is the formula ϕ with all turn occurrences for
players i, j interchanged.

Many further questions make sense about powers of players in games with special
structure, but here, we only conclude that both general and special temporal
forcing logics have an interest of their own.7

4 Explicit Logics of Strategies as Programs

Forcing modalities profess a general love for strategies without an interest in
any specific one. We now go one step further in our logical analysis, introducing
terms that define strategies, thus enabling us to reason explicitly about strategies
themselves. A wide array of motivations for taking this step can be found in
(5). Suitable languages can take various forms, but one obvious candidate is
propositional dynamic logic.

Transition Relations and Programs. Strategies are functions defined on
players’ turns, with typical instructions like “if she plays this, then I play that”.
Plans like this may allow more than one “best move”, so general relations make

5 One could define this property formally in a modal-temporal action language suitably
extending our earlier formalism.

6 This is not the standard game-theoretic dual, since we do not interchange winning
conditions. See (6) for more discussion of different dualizations in games.

7 Yet further questions would arise if we also introduce “intermediate” forcing modal-
ities {σ}∗ϕ saying that partial strategy σ guarantees reaching a barrier of interme-
diate positions in the game satisfying ϕ. This would connect with current modal
logics of barriers and “cut-sets”.

342 J. van Benthem

sense as well, providing at least one move per turn. Thus, strategies are additional
relations on a game tree that can be defined by programs. Since we need one-
step actions only, normally, flat programs suffice using only atomic actions, tests,
sequence; and choice ∪ - often just unions of guarded actions of the form

?ϕ;α; ?ψ(9).8

However, consecutive moves become important when we think of forcing out-
comes. Using PDL programs, we now introduce a new forcing language with a
key modality:

{σ, i}ϕ, stating that σ is a strategy for player i forcing the game, against
any play of the others, to pass only through states satisfying ϕ.

While this notion is natural, it still has an explicit definition in more familiar
terms, viz. program modalities:

Fact 7. For any game program expression σ, PDL can define {σ, i}ϕ.

Proof. The formula [((?turni;σ)
⋃
(?turnj ;movej))

∗]ϕ is the required equiv-
alent, as is easy to see from its truth conditions. 9

Still, working with an explicit forcing modality {σ, i}ϕ provides a natural no-
tation for strategic behavior, and it fits well with actual examples of reasoning
about games and interaction.

Remark. PDL programs can even do a lot more, since they also model partial
strategies that can be combined. See (4), (11) for recent work on on propositional
dynamic logics of strategy combination, where the key operation is intersection
of relations. Laws of such systems mix our earlier forcing modalities with program
terms, as in the following implication:

({σ}ϕ ∧ {τ}ψ)→ {σ ∩ τ}(ϕ ∧ ψ)

Further Benchmarks. Our earlier “quasi-empirical” approach would now
compile a repertoire of ubiquitous strategies, and formalize basic reasoning about
their properties. We will not do so here. Also, PDL programs are geared toward
finite termination, whereas we also want to look at natural non-terminating
strategies such as “keep moving” – but we omit this extension as well.

5 Zoom, Levels, Invariants, and Definability

Zooming In and Out. It now looks as if we have two competing approaches
to logics of strategies, one with existentially quantified forcing modalities, and

8 It is easy to see that, on “expressive” finite game trees (each node is uniquely defin-
able), each strategy is definable by our simplest flat PDL programs. But, if definitions
are to be uniform across models, fixed-point languages are needed (7).

9 In the same style, properties of the outcome of running joint strategies σ, τ , too,
can be described in PDL.

Reasoning about Strategies 343

one with explicit program terms that define strategies. But in practice, both
options are natural. The fact of the matter is that logic provides different levels
of “zoom” on reasoning practices. Sometimes, we want to see underlying details,
sometimes we want the broad picture. That is precisely why logical languages
come in hierarchies of expressive power.

In the case of games, it may even be useful to combine our two formats. It
might look as if explicit forcing modalities {σ, i}ϕ are just more informative
than implicit {i}ϕ. But this is misleading. If we want to say that a player lacks
a strategy for achieving some purpose, then we need expressions ¬{i}ϕ, and no
natural explicit equivalent will do.

Even so, this combined language of forcing also has some surprises in store.
Here is a “triviality result” saying that implicit can always become explicit by
means of a strategy “be successful”:

σϕ,i =?turni;movei, ?{i}ϕ

Fact 8. The following equivalence is valid:

{i}ϕ↔ {σϕ,i, i}ϕ

The proof is easy and follows the earlier-mentioned valid recursion principles
that govern temporal forcing.

Definitions for Strategies. Here is how we view the preceding observation.
Most strategies have bite since they employ restricted tests on local assertions
about the present or the past of the current node, but not about the future (like
the above program did with the forward-looking test ?{i}ϕ).

This fine-structure suggests a study of formats for definability of strategies
in temporal tree models beyond what we have done in the above with our sim-
ple PDL approach. Key strategies with great power are often defined by finite
automata, with Samson’s beloved Copy-Cat as a pet example. As a still more
special case, memory-free strategies have turned out important in game seman-
tics (1), in the field of logics, games and tree automata (13), and interestingly
also, in the guise of Tit-for-Tat, in evolutionary game theory (16).

Two-Level Views and Invariants. Our view of what is going on here com-
bines levels. Often we want two views together. Games have moves and internal
properties, such as marking of nodes as turns or wins. But there is also an ex-
ternal game board recording observable or other relevant behavior. An example
are the ubiquitous “graph games” of computational logic where the graph is the
board (19). Usually, there is an obvious reduction map ρ sending game states to
matching states on the game board satisfying a certain amount of back-and-forth
simulation ((6) has many examples). Now, strategies in a game often consist in
maintaining some invariant at the level of its board. Defining strategies then has
to do with defining such invariants. In fact, the forcing modalities in the above
triviality result may be seen as, somewhat bleak, invariants.

344 J. van Benthem

Excursion. This perspective suggests interesting questions. One of the crucial
results about graph games is the Positional Determinacy Theorem (12) saying
that graph games with parity winning conditions are determined with positional
strategies whose moves depend only on the graph component of the current game
state of play. What this suggests is that the set of winning positions projects
via the reduction map to a set of board positions that can be definable. A
logical explanation of positional determinacy would then be the existence of
a translation from modal forcing statements in the game to equivalent modal
fixed-point assertions about associated graph states.

6 Strategy Logics with Operations on Games

Finally, moving closer to Samson’s trademark compositional methodology, we
can go yet one step further in our formalizations. So far, we had forcing modalities
{i}ϕ, and when needed, we put in explicit terms for strategies {σ, i}ϕ. But all
this still takes place inside the setting of some game that is just given. However,
it also makes sense to add explicit descriptions of games to the logical language,
to obtain a notation, say,

{σ, i, G}ϕ, with a game term G, saying that following the strategy σ
forces ϕ-outcomes only for player i in game G.

Now we can reason about strategies in different games, and how they can be
combined. There are in fact several logical systems in the literature that treat
relevant operations on games that make sense here– such as choice, sequence,
dual, and parallel composition.

Dynamic Game Logic. One available line is the dynamic logic of games in
(17) that extends our forcing modalities with game terms, where the formulas
are now interpreted, not inside games, but on their associated game boards. The
resulting system is a two-agent PDL on neighbourhood models, with typical
decomposition axioms such as the one for “choice games”:

{G ∪H, i}ϕ↔ {G, i}ϕ ∨ {H, i}ϕ.

whose validity can be established by an elementary soundness argument. Other
axioms proceed on analogies with PDL as well, except that for the game dual.

Such soundness arguments provide nice material for the logical fieldwork of
this paper, since we can tease out something that was left implicit in Parikh’s
notation: the underlying calculus of strategies.

Example 3. Strategizing power logic.

Consider the above axiom for choice. Player i starts a game G ∪H by choosing
to play either G or H. If i has a strategy σ forcing ϕ-outcomes in G ∪ H , its
first step describes her choice, left or right, and the rest forces ϕ-outcomes in the
chosen game. Vice versa, if she has a strategy σ forcing ϕ in game G, prefixing
it with a move left gives her a strategy forcing ϕ in G ∪H .

Reasoning about Strategies 345

Under the surface, a general strategy calculus is at work here. Our first ar-
gument involved two operations: head(σ) gives the first move of strategy σ, and
tail(σ) the remaining strategy, in a way that validates

σ = (head(σ), tail(σ))

The second part of the argument prefixed an action a to a given strategy σ,
yielding α; σ satisfying obvious laws like

head(α;σ) = α, tail(α;σ) = σ.

Dynamic game logic encodes a natural notion of game equivalence based on
equal powers for players across games, and it has a literature of its own.10

Still, it is clear that the strategy calculus we just elicited does not look like
our earlier PDL programs. The basic operations of head and tail rather suggests
a co-algebraic perspective of observing and then looking at the rest of the strat-
egy. This brings us to another line in logics with explicit game terms, namely,
the “game semantics” of Samson himself. It would be tedious to explain this
extensive research program in a brief paper like this, and so I will just make a
few points connecting with the above.

Linear Game Logic. In this case, the logical formulas are just game terms,
and systems of linear logic encode game equivalence or inclusion. There is no
explicit forcing modality–though one might say that the precise notion of va-
lidity associates statements about winning powers with game terms. Still, game
semantics takes place in the same temporal models that we have used so far, so it
can be analyzed by earlier techniques. In particular, we could add a description
language for what goes on inside Samson’s games, with forcing modalities and
names of specific strategies. I have ideas on how to do such a two-level logic, but
these would transcend the boundary of this paper.

A concrete “quasi-empirical” challenge for such systems is similar to what
we suggested for dynamic game logic. Begin with the absolute basics, look at
the soundness arguments for linear logic in game semantics, and extract the
minimum needed to make its reasoning about game constructions work. This
reasoning will be more sophisticated than what we have considered before. In
particular, parallel games involve “shadow arguments” (say for the soundness of
the Cut Rule) about what can take place in subgames, and I am not sure how
to represent these minimally.11,12

7 Knowledge, Preference, and Game Theory

Many topics in the above are reminiscent of real game theory. Strategy stealing
proofs and copy-cat behavior are reminiscent of the central role in game theory

10 The system has been extended to some kinds of parallel games in (8).
11 More sophisticated arguments about “shadow matches”, copying strategies in games,

and representing parallel by sequential play, occur in the theory of graph games (19).
12 But we could also start our fieldwork in this area with minimal logical specification

calculi for effects of basic strategies, such as Copy Cat.

346 J. van Benthem

for simple strategies like Tit-for-Tat in infinite evolutionary games (3). I end
with mentioning just two points about new structure that should enter if we
want to engage with real games.

Knowledge. In the background of many arguments about strategies is what
players know. I can hardly “copy” or “steal” a strategy if I do not know what it
looks like. Now in many standard arguments for existence of strategies, the talk
of knowledge is just didactical wrapping. But it is of interest to take it seriously,
merging strategy logics with epistemic logics or other ways of representing infor-
mation. Next on this road are imperfect information games, where players need not
know exactly where they are in the game tree. Such games, even when finite, are
notoriously non-determined, and analyzing them might throw new light on game
logics. Finally, strategies in this case will typically have knowledge-dependent in-
structions, and what also becomes essential is the informational nature of players:
endowed with perfect memory, observation-driven, or yet otherwise. Even their
beliefs and policies for belief revision become important in the usual foundations
of strategic behavior in game theory. (6) explores this area in detail, but at the
end of it all, an overall strategy calculus remains to be found.

Preference. Another obvious feature of real games is the much more sophisti-
cated dynamics of evaluation that drives behavior and mathematical equilibrium
theory. The balance of available moves, beliefs, and preference is what drives ra-
tional play in the usual sense. Players can have any preferences between outcomes
of a game (whether endpoints or infinite histories), and again this structure re-
quires extending our logics of strategies. Issues this time include new notions of
game equivalence, perhaps dependent on rationality types of players, but also
just the analysis of basic game-theoretic arguments about solution methods. In
particular, (6) has an extensive study of the typical algorithm of Backward In-
duction that already poses many challenges to the above. For one, while it does
have a natural definition in the first-order fixed-point logic LFP(FO), it does
not seem to have an obvious program definition in the above PDL terms. For
another, the current game-theoretic discussion between Backward Induction, a
purely future-looking reasoning style, and “Forward Induction”, a way of factor-
ing in the past of the game so far (see (18)), seems to connect with choices in
logical modeling at many points.

I believe that merging the best of computational logics of games and of game
theory has a great future, but as will be amply clear, a lot remains to be done.

8 Conclusion

Logical analysis of strategic reasoning is a rich topic that unifies across the
study of computation and social interaction. I have looked at a number of ways
of pursuing this, in consecutive steps of explicitly defining forcing, strategies, and
games. I believe that my interests in doing so are close to Samson’s, but there
is a caveat. Samson is a type theorist or category theorist at heart, while I am
a model theorist. We may be looking at the very same things, and Samson sees

Reasoning about Strategies 347

a rabbit, while I see a deer. Proof theory versus model theory is a major divide
in logic, but it is also a constructive case of complementarity, as has been shown
again and again. This mixture of shared interests and different inclinations leads
me to a conclusion whose phrasing I borrow from Immanuel Kant: I can know
that Samson and I are allies, but I may hope that we are friends.

References

1. Abramsky, S.: Information, processes and games. In: van Benthem, J., Adriaans, P.
(eds.) Handbook of the Philosophy of Information, pp. 483–549. Elsevier Science
Publishers, Amsterdam (2008)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

3. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)
4. van Benthem, J.: Extensive games as process models. J. of Logic, Lang. and

Inf. 11(3), 289–313 (2002)
5. van Benthem, J.: In praise of strategies. In: van Eijck, J., Verbrugge, R. (eds.)

Games, Actions and Social Software 2010. LNCS, vol. 7010, pp. 96–116. Springer,
Heidelberg (2012)

6. van Benthem, J.: Logic in Games. The MIT Press, Cambridge (2013)
7. van Benthem, J., Gheerbrant, A.: Game solution, epistemic dynamics and fixed-

point logics. Fundam. Inf. 100(1-4), 19–41 (2010)
8. van Benthem, J., Ghosh, S., Liu, F.: Modelling simultaneous games in dynamic

logic. Synthese 165(2), 247–268 (2008)
9. van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. Journal of Applied

Non-Classical Logics 17(2), 157–182 (2007)
10. van Benthem, J., Pacuit, E.: The tree of knowledge in action: Towards a common

perspective. In: Advances in Modal Logic, pp. 87–106 (2006)
11. van Eijck, J.: PDL as a multi-agent strategy logic. In: Schipper, B.C. (ed.) Pro-

ceedings of the 14th Conference on TARK 2013 – Theoretical Aspects of Reasoning
About Knowledge, Chennai, India, pp. 206–215 (2013)

12. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Pro-
ceedings of the 32nd Annual Symposium on Foundations of Computer Science, pp.
368–377. IEEE Computer Society, Washington, DC (1991)

13. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

14. Hansen, H.H., Kupke, C., Pacuit, E.: Neighbourhood structures: Bisimilarity and
basic model theory. Logical Methods in Computer Science 5(2), 1–38 (2009)

15. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-
calculus with respect to monadic second order logic. In: Sassone, V., Montanari, U.
(eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996)

16. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

17. Parikh, R.: The logic of games and its applications. In: Annals of Discrete Mathe-
matics. vol. 24, pp. 111–140. Elsevier (1985)

18. Perea, A.: Epistemic Game Theory. Cambridge University Press (2012)
19. Venema, Y.: Lectures on the modal mu-calculus. Tech. rep., Institute for Logic,

Language and Computation, University of Amsterdam (2007)

Domain Theory in Topical Form

Steve Vickers

School of Computer Science, University of Birmingham,
Birmingham, B15 2TT, UK
s.j.vickers@cs.bham.ac.uk

In his short story “Pierre Menard Author of the Quixote”, Jorge Luis Borges
tells the story of a French author who sets out to compose Don Quixote – not,
you understand, as a mechanical transcription or copy of Cervantes’ original,
but as a re-creation, word for word and line for line, of fragments of it.

In 1999 I had a similar experience with my paper “Topical Categories of Do-
mains” [3], based on some results from Samson’s thesis [1] that also appeared
in his “Domain Theory in Logical Form” [2]. My aim was to give a presenta-
tion of Samson’s results that recreated, as closely as possible, Samson’s own
presentation.

Needless to say, it was not exactly the same, but why should such a re-creation
have been a worthy aim? The answer is one of foundations: I had an idea for
refounding the work using toposes, technically by replacing categories of domains
by toposes classifying them (or their compact bases). One aim from this was to
use the topos theory to give canonical answers to questions of continuity. When
solving domain equations D ∼= F (D), F needs certain continuity properties
that have been formulated in a special purpose way in domain theory. The
canonical answer from topos theory would be to require F to be represented by
a geometric morphism. As an unexpected bonus, the toposes also recreate the
trick of “embedding-projection pairs”, introduced in domain theory to deal with
the fact that some important constructions F are not functorial with respect
to Scott continuous maps. They reappear – in the case of SFP domains – as
homomorphisms between the domains as models of a geometric theory.

Topos machinery can be heavy and untransparent, and Samson for one was not
persuaded of the benefits. Why would anyone put themselves to the trouble of
using toposes? Seeking answers to such objections was the start of my Menardian
quest to recreate parts of his thesis: to leave the essential mathematics of his
presentation undisturbed, but by logical means have it reinterpreted in terms of
the toposes. The measure of success was to be the similarity to what Samson
actually wrote.

With regard to the logical means (using geometric logic), I was by then begin-
ning to understand the topos-theoretic techniques better – particularly through
some collaboration with Peter Johnstone. However, it still took me a few years
to find a narrative form for my paper. As it finally appeared, the Menard part
was wrapped in a broad outline of a geometrization programme by which one
might seek to apply the techniques quite generally in mathematics. It involved
topologizing everything, either as point-free spaces or more generally as toposes,

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 348–349, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Domain Theory in Topical Form 349

and using geometric logic to deal with them in terms of their points. It included
bundle ideas to deal with particular families of spaces (for example, SFP do-
mains as a bundle over a topos that classifies their compact bases), and also
included a proposal to avoid formal problems arising from the infinitary joins in
geometric logic by replacing toposes with Joyal’s “arithmetic universes”.

In fact, this single paper explicitly sets out the essence of much of my work
since. But it is inconceivable that it could have been written without Samson, and
I want to mention some of the various ways in which I owe him some gratitude.

The first is obvious from the Menardian nature of my paper. It could no
more have been written without Samson than Menard’s Quixote could have
been written without Cervantes. Without Samson’s thesis I would not have had
a model to refound.

The second is gratitude to Samson as teacher. My mathematical background
was not domain theory, and Samson patiently taught me huge amounts about
its different aspects, semantic, logical and topological. I particularly remember a
time when I expressed some doubts regarding the importance of powerdomains.
No, said Samson, they are the single most successful part of domain theory. He
was right. In their localic form (which, of course, is also present in Samson’s
thesis) of powerlocales, I have since repeatedly found them to be a deep and
vital part of geometric reasoning.

The third is gratitude to Samson as employer. After the failure of my computer
company (Jupiter Cantab Ltd) in Cambridge, I wanted to return to mathematics
and my former director of studies Ken Moody put me in touch with Samson.
Samson quickly found me a research post on his project “Formal Semantics
for Declarative Languages”. I’m not sure I ever really found any worthwhile
results in the topic of the project, being at heart a pure mathematician. Yet
I was allowed to pursue my real interest, point-free topology and toposes. Its
successor project, “Foundational Structures in Computer Science”, was in fact
typical of the style of serious mathematical research in a context of computer
science that Samson did so much to foster in Britain.

So, thank you Samson!

References

1. Abramsky, S.: Domain Theory and the Logic of Observable Properties. Ph.D. thesis,
Queen Mary College, University of London (1987)

2. Abramsky, S.: Domain theory in logical form. Annals of Pure and Applied Logic 51,
1–77 (1991)

3. Vickers, S.: Topical categories of domains. Mathematical Structures in Computer
Science 9, 569–616 (1999)

Kolmogorov Complexity of Categories�

Noson S. Yanofsky1,2

1 Department of Computer and Information Science, Brooklyn College, CUNY,
Brooklyn, N.Y. 11210

2 The Computer Science Department of the Graduate Center, CUNY,
New York, N.Y. 10016

noson@sci.brooklyn.cuny.edu

Abstract. Kolmogorov complexity theory is used to tell what the algo-
rithmic informational content of a string is. It is defined as the length of
the shortest program that describes the string. We present a program-
ming language that can be used to describe categories, functors, and
natural transformations. With this in hand, we define the informational
content of these categorical structures as the shortest program that de-
scribes such structures. Some basic consequences of our definition are
presented including the fact that equivalent categories have equal Kol-
mogorov complexity. We also prove different theorems about what can
and cannot be described by our programming language.

Keywords: Kolmogorov Complexity, Algorithmic Information, Cate-
gories, Functors, Natural Transformations.

Dedicated to Samson Abramsky in honor of his 60th Birthday

1 Introduction

Kolmogorov complexity is a part of theoretical computer science that was pio-
neered in the early 1960’s by Andrey Kolmogorov, Ray Solomonoff, and Gregory
Chaitin. For reasons ranging from probability theory, to machine learning, and
computational complexity theory, these three researchers gave a universal defi-
nition of what it means for a string of symbols to be simple or complex.

Consider the following three strings:

1. 000
2. 11011101111101111111011111111111011111111111110
3. 01010010110110101011011101111001100000111111010

� A while back, I showed some of these ideas to Samson Abramsky and he was, as
always, full of encouragement and great ideas. I am very grateful to him for all his
help over the years. I would like to acknowledge the help and advice of Michael Barr,
Marta Bunge, James Cox, Joey Hirsh, Florian Lengyel, Dustin Mulcahey, Philip
Rothmaler, and Louis Thral. I want to thank Shayna Leah Hershfeld for many
enlightening conversations about polymorphism and type theory. Support for this
project was provided by a PSC-CUNY Award, jointly funded by The Professional
Staff Congress and The City University of New York.

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 350–362, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Kolmogorov Complexity of Categories 351

All three consists of 0s and 1s and are of length 45. It should be noticed that if
you flipped a coin 45 times the chances of getting any of these three sequences
are equal. That is, the chances for each of the strings occurring is 1/245. In effect,
this shows a failure of classical probability theory in measuring the contents of
a string. Whereas you would not be shocked to see a sequence of coins produce
string 3, the other two strings would be surprising. The difference between these
strings can be seen by looking at short programs that can describe them:

1. Print 45 0’s.
2. Print the first 6 primes.

3. Print ‘01010010110110101011011101111001100000111111010’.

The shorter the program, the less informational content of the string. In contrast,
if only a long program can describe the string, then the string has more content. If
no short program can describe a string, then it is “incompressible” or “random.”

In classical Kolmogorov complexity, rather than talking about programs, one
talks about Turing machines. For a string s, the the Kolmogorov complexity,
K(s), is defined as the size of the smallest Turing machine that starts with
an empty tape and outputs s. Formally, let U be a universal Turing machine,
then K(s) = min{|p| : U(p, λ) = s}. We will also need relative Kolmogorov
complexity: let s and t be two strings, then K(s|t) is the size of the smallest
Turing machine that starts with t on the tape and outputs s. Formally, K(s|t) =
min{|p| : U(p, t) = s}. If K(s) > |s| then s is “incompressible” or “random”.

This notion of Kolmogrov complexity is used inmany different areas of theoreti-
cal computer science. It gives an objectivemeasure of how complicated strings are.
It is our goal to extend these ideas to many other areas of mathematics, computer
science and physics by formulating a notion ofKolmogorovcomplexity for category
theory which is used in all these diverse areas. In order to measure how compli-
cated categories, functors, and natural transformations are, we need a program-
ing language that will describe these categorical structures. In honor of Sammy
Eilenberg, one of the founders of category theory who also had a deep interest in
computer science, we call this programming language “Sammy.” This language
will have variables that can hold categories, functors and natural transformations.
The operations of the language will perform common constructs that people use
to formulate different structures. Each line of the program could have a label that
will be used with ”If-Then” statements to control the execution of the program.

Notice that numbers, strings, trees, graphs, arrays, and other typical data
types are not mentioned in our programming language. This was done on pur-
pose. The other data types can be derived from the categorical structures. Cat-
egories and algorithms are more “primitive” than numbers, strings, etc.

This is not the first time a programing language has been formulated to de-
scribe categorical structure. An important example is in Computational Category
Theory by Rydeheard and Burstall [3]. Tatsuya Hagino’s thesis [2] is another ex-
ample. These languages are, however, different from Sammy. Their programming
languages are made to be implemented and to get computers to actually calculate
with categories. In contrast, there is no intention of implementing Sammy. Our

352 N.S. Yanofsky

goal is simply to compare different structures by comparing the length of their
descriptions. In fact, we will not even write many formal Sammy programs. This
is similar to the fact that no one actually ever formally writes the instructions
for a Turing machine.

With Sammy, we will talk about the Kolmogorov complexity of categorical
structures. We discuss when one structure is more complicated than another. We
will also talk about compressibility and randomness. Along these lines, here is a
simple example of the type of ideas we will meet. Consider N, the totally ordered
category of natural numbers 0 �� 1 �� 2 �� · · · , and 2, the category

with two objects and a single isomorphism between them 0
∼ �� 1 . A functor

F : N −→ 2 corresponds to an infinite sequence of zeros and ones. The category

of all such functors 2
N
is essentially to the real numbers and has uncountably

many elements. How many of these functors can be mathematically described?
There are only countably many computer programs that describe such functors.
This means that the vast majority of functors N −→ 2 cannot be described by
any program and are essentially random.

Not every categorical structure can be described with our programing lan-
guage. Categorical structures that can be described by Sammy will be called
“constructible.” For example, I do not know how to start from nothing and
make the category of smooth manifolds. However it is probably possible to start
from the category of topological spaces and get the category of smooth mani-
folds. This brings us to the notion of relative Kolmogorov complexity. We will
be interested in how long does a program have to be in order to construct a
categorical structure given some categorical structures.

The fact that certain structures are not constructable with Sammy brings in
the whole area of computability theory. There are limitations to what Sammy
can perform. Usual self-referential limitations are based on variations of the liar
paradox (“This statement is false”) such as Gödel (“This statement is unprov-
able”) or Turing (“This program will output the wrong answer when asked if it
will halt or go into an infinite loop”) (see [5] for a comprehensive survey of such
limitations.) In contrast, the limitations of Kolmogorov complexity are based on
the Berry Paradox: consider the number described by “The least number that
needs more than fifteen words to describe it.” This sentence has twelve words.
That is, there is a description of a number that is shorter than it is supposed to
be. One such limitation within classical Kolmogorov complexity[4] is:

Theorem 1. K : Strings −→ N is not a computable function.

We will show that there are similar limitations for our Kolmogorov complexity
theory.

Section 2 introduces Sammy. That section also describes several “library func-
tions” or “macros” in Sammy which will be helpful in the rest of the paper. Sec-
tion 3 is the heart of the paper where we define and prove many of the central
theorems about our complexity measure. Section 4 is a discussion of computabil-
ity and non-computability with the Sammy language. The paper concludes with
some possible ways this work will progress in the future.

Kolmogorov Complexity of Categories 353

2 A Programing Language for Categories

In order to describe categorical structures, we need a programing language. This
language will be called “Sammy”. The language will consist of typical opera-
tions that are used to describe/create different categories, functors and natural
transformations. Programs will be lists of statements that set variables to dif-
ferent values. The variables could be categories, functors, or natural transfor-
mations. Since categories are special types of functors, and functors are special
types of natural transformations (that is, natural transformations are the deep-
est type), we might state everything in terms of natural transformations. But
that would make the programs needlessly complex. Rather, for the sake of sim-
plicity, we will be ambiguous about the types of our statements (that is, our
operations/functions will be polymorphic.) As we have absolutely no intention
of implementing Sammy, we can be vague about certain issues.

We begin with constants. There is 0, the empty category, 1, the category with
one object and one morphism, and 2, the category 0 −→ 1 with two objects and
one nontrivial morphism. We will also need the constant category Cat which
corresponds to the category of all small categories. There are also several con-
stant functors: s : 1 −→ 2 and t : 1 −→ 2 that picks out the source and target
of the nontrivial morphism in 2. There are the unique morphisms ! : 0 −→ 1,
! : 0 −→ 2, ! : 0 −→ Cat, ! : Cat −→ 1, and ! : 2 −→ 1. There are also identity
functors and natural transformations.

There are several operations that take a single input. For a functor F : A −→ B
if we set C = Source(F : A −→ B) then C = A. That is, Source takes a functor
and outputs the category that is the source of the functor. There is a similar
operation C = Target(F : A −→ B). For a given category A, the operation
F = Ident(A) makes F = IdA. For a category A, if we let C = Op(A) then
C = Aop. The Op operation also acts on functors.

We will at times have to talk about an actual object and morphism in the
category. So for example, a functor F : 1 −→ C “picks” an object c in C and a
functor F : 2 −→ C “picks” a morphism f : c −→ c′. Going the other way, an
object c in C “determines” a functor Fc : 1 −→ C and similarly for a morphism
in C. We write this in Sammy as c = Pick(F : 1 −→ C) and Fc = Determine(c).

For natural transformations of the appropriate source and target there is a
horizontal composition and vertical composition written as α = Hcomp(β, γ) and
α = Vcomp(β, γ). Regular composition of functors is simply a special case of
horizontal composition. For categories A and B, we will have C = Pow(A,B) be
the category of all functors and natural transformations from A to B.

Probably the most important operations are the Kan extensions. For functors
G : A −→ B and F : A −→ C, a right Kan extension of F along G is a
pair (R,α) = KanEx(G,F) where R : B −→ C and α : R ◦ G −→ F . A Kan
extension induces another functor that is unique. For every H : B −→ C and
β : H ◦G −→ F there is a unique γ = KanInd(F,G;H, β) where γ : H −→ R and
satisfies α · γG = β. Using Kan extensions one can derive, products, coproducts,
pushouts, pullbacks, equalizers, coequalizers, (and constructible) limits, colimits,
ends, coends, etc. It is a well-known fact that if G : A −→ B is a right adjoint

354 N.S. Yanofsky

(left adjoint, equivalence, isomorphism), then its left adjoint (right adjoint, quasi-
inverse, inverse) G∗ : B −→ A can be found as a simple Kan extension of the
identity IdA along G, that it, G∗ = KanEx(G, IdA).

For “bootstrapping” purposes we will need an operation that takes two cate-
gories and gives their coproduct and their induced maps. This will help us create
categories like 1�1 which will be needed for our Kan extensions to describe prod-
ucts and coproducts; and 2 � 2 which will be needed to describe equalizers and
coequalizers.

There is a dual notion of a Kan Lifting. For functors F : A −→ B and
G : C −→ B a Kan lifting of F along G is a pair (R,α) = KanLif(G,F) where
R : A −→ C that satisfies a universal property which can easily be written down.

Since Kan extensions and Kan liftings are only defined up to a unique iso-
morphism, we might ask what is the output of the function KanEx(G,F)? We
do not care. The computer decides which of the many possible outputs it will
output. It is irrelevant from the categorical perspective. This is similar to a real
programing language when we do not know how something is stored or how a
function is calculated. The user is ambivalent as to how the computer does cer-
tain actions. We are also well-aware that the Kan extensions and Kan liftings
might not exist. In that case, the program will not go on.

There is one more operation that needs to be discussed. Let C be a category.
C2 and C1 are the categories of arrows and objects of C. The maps s : 1 −→ 2
and t : 1 −→ 2 induce (using the Pow operation on functors) maps Cs : C2 −→
C1 and Ct : C2 −→ C1. The pullback of these two maps, C2 ×C1 C2 is the
composable arrows in the category. The important part of the information about
the category is the composability map ◦ : (C2 ×C1 C2) −→ C2. This map will
help us get into the nitty-gritty of how a category is defined. So we have the
following operation: for a category C, the operation F = Composable(C) gives
us the ◦ map.

We would like some control of how the Sammy program will execute. We do
this with a conditional branch statement: If α1 == α2 Goto L where α1 and
α2 are natural transformations and L is a label of some program line. With such
a conditional branch, we can get all the usual logical operations: AND, NOT,
etc. We can also get the unconditional branch Goto L.

There are a number of remarks that need to be made about Sammy:
This might not be the best language for our purposes. Certain operations can

be derived from other operations and hence a smaller more compact language is
possible. For example, the Target operation can be derived from the Source and
Op operations. Bear in mind that our goal is to count the number of operations
up to a coefficient. So we need not be exact. If one operation can be replaced by
a constant number of other operations, nothing is lost.

This language can not describe all constructions. (We shall see later.) What
can be done with this language will be called “constructible.” It is interesting to
look at what type of categories can be described by this programming language
with no other input.

Kolmogorov Complexity of Categories 355

There is a need for a Church-Turing type thesis. The classic Church-Turing
thesis says that whatever can be computed, can be computed by a Turing ma-
chine. We need such a thesis that says that whatever can be constructed by
categorical means, can be constructed using the Sammy programing language.
Alas, this is a thesis and not a theorem because we cannot characterize what
can be constructed by categorical means. We will see that there are certain con-
structions that cannot be performed by Sammy. However, we believe that no
programming language can make those constructions.

With classical Kolmogorov complexity, there is much discussion about “self-
delimiting” programs. This will not be an issue here. We can easily tell when a
Sammy program begins and when it ends.

With Sammy in hand, we introduce some library functions or macros that
will be used in the future:

The coequalizer 1
s
��

s ��
2 � 2 gives the category ∗ ∗ ��
� ∗ which

can be put in a Kan extension and give us pushouts and pullbacks. We can make
many similar constructions.

For functors L : A −→ C and R : B −→ C we can construct the comma
categories as the following pullbacks:

L ↓ R

�����
��
���

�

��+
++

++
++

++

L ↓ C

���
��

��
��

��

()��
��
��
��

C ↓ R

���
��

��
��

��

����
��
��
��
�

A

L
��#

##
##

##
##

C2

C
t

���
��

��
��

��
�

C
s

�����
��
��
��
�

B

R
(),,
,,
,,
,,
,

C C

Special instances of comma categories are slice categories and coslice categories.

The coequalizer 1
t

��

s ��
2

ρ �� ω gives the (infinite) natural numbers as

a monoid. N = ω2 gives the totally ordered category of natural numbers. The
successor function is defined as follows:

r : ω
∼ �� ω × 1

Id×s �� ω × 2
Id×ρ �� ω × ω ◦ �� ω.

That is, take any n ∈ ω and associate it with the nontrivial morphism in 2. This
becomes the +1 member of ω. Then compose n with +1. Now take this map r
and look at s = r2 : N = ω2 −→ ω2 = N. This is the successor map.

356 N.S. Yanofsky

We construct the category with two objects and a unique isomorphism be-
tween them. First make a category with two distinct copies of 2. By keeping
track of the inclusion maps, we have an induced F and G

1 � 1

F

���
�
�

1
t

��

s ��

inc
�0----

-

inc

!�������������������������� 2
inc �� 2 � 2 2

inc
� 1

t
�

s

�

inc
�������

�����
�����

�����
�����

inc

�--------------------------

1 � 1

G

���
�
�

Now use these induced maps in a coequalizer to form the desired category. The
figure on the right is helpful.

1 � 1

F

��
G

��

∗

/1

��..
...

...
...

... ∗

02�
��

��
��

�

13///
///

///
///

//

2 � 2

��

∗ �� ∗ ∗ ∗
�

2 ∗ ∼ �� ∗
�

3 Kolmogorov Complexity of Categories

For a categoryC (or a functor, or a natural transformation) we defineKSammy(C)
to be the number of operations in the smallest Sammy program that describes
C. For relative Kolmogorov complexity, letting

Γ = {C1,C2, . . . ,Cl, F1, F2, . . . , Fm, μ1, μ2, . . . , μn},

or Γ as a sub2-category of Cat then KSammy(C|Γ) is the number of operations
in the smallest Sammy program that describes C given Γ as input. We shorten
KSammy to K when no confusion will arise.

If there is a finite number of operations so that one can go from one categorical
structure to another and vice versa, we say that the Kolmogorov complexity of
these categorical structures are approximately the same. In detail, if there exists
a c such that for all appropriate categorical structures, X, one can change X to X′

and vice versa in c Sammy operations, that is |K(X)−K(X′)| ≤ c, then we write
K(X) ≈ K(X′). As an example, notice that only one Sammy operation is needed
to go from category A to functor IdA and vice versa. Hence K(A) ≈ K(IdA).

There is a need for something called an invariance theorem. This basically
says that the Kolmogorov complexity does not depend on the programing lan-
guage that is used to describe the objects. Imagine that you do not like the
Sammy programing language to describe categorical structures and you decide
to invent your own. Perhaps you call it “Saunders” (after the other founder of

Kolmogorov Complexity of Categories 357

category theory, Saunders Mac Lane.) Then since presumably both languages
can program any constructable categorical structure, they can each program the
other’s operations. That means there exist compilers that can translate Sammy
programs into Saunders programs and there are compilers that can translate
Saunders programs into Sammy programs. From this, we can prove the follow-
ing theorem: There exists a constant c such that for all categorical structures X
we have |KSammy(X)−KSaunders(X)| ≤ c.

Rather than list all the results we have for K, let us examine some paradig-
matic theorems:

Theorem 2. There exists a constant cpair such that for all C and D we have
K(C× D) ≤ K(C) +K(D|C) + cpair.

This essentially says that there is a simple way of taking two categories and
forming their product. There is no new information added. But lets look more
carefully at what the theorem say. It says that to form C × D one can form C
and then form D (but you might use some information that you already have
since you already formed C) and then do a few lines of Sammy to get their
product. The reason for the inequality is because there might be an easier way.
For example 0 × D can be formed in a constant amount of operations: it is 0.
There is also a similar theorem with C and D swapped on the right side of the
inequality.

Theorem 3. There exists a constant cdouble such that for all C we have
K(C× C) ≤ K(C) + cdouble .

That is, there is a simple way to double a category and no new information is
there.

Theorem 4. There exists a constant ctarget such that for all F : A −→ B we
have K(B) ≤ K(F : A −→ B) + ctarget.

This means that one way to describe B is to first find a program for a functor
F : A −→ B and then use the Target operation to get B. The inequality comes
from the fact that there might be shorter programs to describe B. There are
similar such theorems for the source of a functor, for natural transformations,
for identity functors, etc.

We state the following theorem about composition in terms of natural trans-
formations for generality.

Theorem 5. There exists a constant ccompos such that for any three natural
transformations α : F −→ G, β : F −→ H, and γ : G −→ H such that β = γ ◦α
we have

K(β) ≤ K(α) +K(γ|α) + ccompos.

When γ is the unique natural transformation that satisfies this triangle (e.g.
when α is mono) then the inequality in the above theorem becomes an equality.

The theorem for Kan extensions is similar.

358 N.S. Yanofsky

Theorem 6. There exists a constant cKan such that for all G : A −→ B and
F : A −→ C if (LanG(F), α) is the left Kan extension, than

K((LanG(F), α)) ≤ K(F) +K(G|F) + cKan

or for relative Kolmogorov complexity

K((LanG(F), α)|Γ) ≤ K(F |Γ) +K(G|Γ, F) + cKan.

As a special case, if G : A −→ B is a right adjoint (left adjoint, equivalence,
or isomorphism), then the Kan extension along G of the IdA is the left adjoint
(right adjoint, quasi-inverse, inverse) G∗ : B −→ A. Since it is easy to go from
one to the other, we have that K(G) ≈ K(G∗). Notice that for an arbitrary
adjunction, this does not mean that K(A) ≈ K(B) (we shall see that it is
true for an equivalence). Nor does there seem to be any hard-and-fast rule that
says something like a left adjoint goes from something with a low Kolmogorov
complexity to a high Kolmogorov complexity. It is easy to find counterexamples
to such ideas.

If G : A −→ B and F : A −→ C are functors, R : B −→ C is a right Kan
extension, H : B −→ C, and β : H ◦ G −→ F then for the unique induced
γ : H −→ R, we have that K(γ) ≈ K(β). The reason for this is that you can
go from one to the other using composition and the KanInd operation. A simple
example of this is product:

H
β1

��+
++

++
++

++
β0

����
��
��
��
�

!γ

��
F0 F0 × F1 α1

��
α0

� F1

It is easy to see that the information in γ is exactly the information in the βs.
It is easy to derive one from the other.

Our work would be in vain if the measure we described was not an invariant
of categorical structure. We have the following important theorem.

Theorem 7. If categories A and B are equivalent, then KSammy(A) ≈ KSammy

(B).

Proof. The intuition behind the theorem is that Sammy cannot distinguish
categorical structures that are isomorphic. Say the equivalence is given by the
functor G : A −→ B. From G its easily constructed quasi-inverse is G∗ : B −→ A.
We then have that K(G) ≈ K(G∗). We also get that K(G ◦G∗) ≈ K(G∗ ◦G).
If α : IdA −→ GG∗ is the isomorphic unit of the equivalence given by the Kan
extension, then α−1 : GG∗ −→ IdA is easily constructed (we are assuming that
Kan extensions work on natural transformations). Since α−1 ◦ α = idId we get
that K(α−1) ≈ K(IdA) . We then have

K(A) ≈ K(IdA) ≈ K(GG∗) ≈ K(G∗G) ≈ K(IdB) ≈ K(B).

QED.

Kolmogorov Complexity of Categories 359

There are some important consequences of this theorem. One can easily con-

struct the skeletal category as the coequalizer C2

t
��

s ��
C

∼= �� Cskeletal . This

gives us K(C) ≈ K(Cskeletal).
In a future paper [6] we will discuss algebraic theories, monads, Morita equiv-

alence and other algebraic notions from the Kolmogorov complexity perspective.

4 Computability and Non-computability with Sammy

There might be a need to deal with finite numbers. We shall let the number n
correspond a triple (n, Pb, Pe) where n is the totally ordered category with n ele-
ments (keep in mind: 0 �� 1 �� · · · �� n− 2 �� n− 1), Pb : 1 −→ n
is a functor that points to the beginning of the category (the initial object), and
Pe : 1 −→ n is a functor that points to the end of the category (the terminal
object.) Basic operations with such numbers are easy to describe. For example,
we can connect (n, Pb, Pe) and (m, P ′

b, P
′
e) to get (n+m− 1, Pb, P

′
e) with the

coequalizer: 1

Pe

��

P ′
b ��
n �m �� (n+m− 1) . (In truth, natural numbers can

simply be given as functors 1 −→ N. We can manipulate numbers by manipulat-
ing such functors. While this is simple and economical, there is a certain appeal
to doing it the way we did. Many prefer to think of their numbers as “things”
and not just pointers to amounts.)

All the finite totally ordered sets should be considered subcategories of N
and, as such, inherit a partial successor function. Before applying this successor
function we must check to make sure that the pointer is not at the Pe position.

A totally ordered category with n elements can be constructed in O(log2n)
number of Sammy statements. Basically, the idea is that one can look at the
binary representation of n and write a program based on that. For example 727
in binary is 1011010111. We can express this number as

(((((((((1×2+0)×2+1)×2+1)×2+0)×2+1)×2+0)×2+1)×2+1)×2+1).

Similarly when making our totally ordered category, we can either (a) double
the length of the category by connecting one copy of itself to itself, or (b) double
itself and add one, depending on the bit at that position. This proves that
K(n) ≤ O(log2n) which is similar to the classical case.

Notice that the above algorithm did not have any input. In contrast, we can
look at a program that loops through input, reads the bit and performs either
(a) or (b). This input will be given as a functor from log2n to 2. The program
moves a pointer forward on log2n. There will be a conditional branch to see
if the pointer is equal to Pe. While this might be a long program, it does not
depend on the size of the input. We have thus proved that

K(n | (F : log2n −→ 2)) = O(1)

where F describes n in binary.

360 N.S. Yanofsky

Considering numbers as such triples, we have the following theorem:

Theorem 8. Any partially computable function of natural numbers can be com-
puted with Sammy.

Proof. We prove that Sammy can perform the initial functions, recursion, com-
position, and the μ-minimization operator. The zero function is achieved by
simply setting Pe = Pb. The successor of n is achieved by simply composing
with 2. The projection function is simply a Sammy program that accepts n in-
puts and outputs one of the inputs. Recursion can be done by iteration: we loop
through a number until a pointer reaches Pe. Composition is simply composition
of Sammy programs. μ-minimization is done by doing a loop along N the ordered
category of all natural numbers. QED.

What about complexity theory? In [6] it is shown that categories and functors
can mimic a Turing machine. For every rule of a Turing machine there is a set
amount of steps of a Sammy program. Hence our programming language can
do whatever a Turing machines can do. The size of the Sammy program is, up
to a constant, the same as the number of rules in the Turing machine. That is
KSammy(Fs) = O(KClassical(s)) where Fs is a functor that describes a string. In
a sense, this says that our Kolmogorov complexity is a generalization of classical
Kolmogorov complexity.

We do not see why there should be a theorem that goes the other way. In
other words, we do not think that a Turing machine can mimic an arbitrary
Sammy program. If, in fact there are some categorical constructions that can
be constructed by a Sammy program, but cannot be constructed by a Turing
machine, then our Kolmogorov complexity is stronger than classical Kolmogorov
complexity theory. Here is an example of a category and a functor that can
NOT be constructed by a Turing machine but might be able to be constructed
by a Sammy program. Let Halt be a the “halting category” whose objects are
the natural numbers and whose morphisms are defined below. Similarly there
is the “halting functor’, H , from N, the totally ordered category of the natural
numbers, to 2, the category with two objects and a unique isomorphism between
them, is defined on the right.

HomHalt(n, n) =

⎧⎨⎩ ω : if ϕn(n) ↓

Idn : if ϕn(n) ↑
H(n) =

⎧⎨⎩1 : if ϕn(n) ↓

0 : if ϕn(n) ↑

Although, at present time, I do not know how to write a Sammy program to make
such constructions, I believe that using infinite limits and colimits one should
be able to build a type of infinite-time Turing machine to tell if regular Turing
machines will halt or not. (However we are hesitant about making any conjec-
tures. There is an interesting information-theoretic proof of the undecidability
of the halting problem given on page 362 of [1]. Much work remains.)

Although we suspect that Sammy can actually program a larger class of func-
tions than a Turing machine, however, there are some categorical constructions
that are not programmable by Sammy (or any other language.) It is known that

Kolmogorov Complexity of Categories 361

KClassical : Strings −→ N is not a computable function. What about KSammy?
First let us be careful about the definition of KSammy. It is a function that as-
signs to every category, functor, and natural transformation a natural number.
We might as well assume that it only assigns natural transformations since iden-
tity natural transformations are simply functors and identity functors are simply
categories. Let us think of Cat as the discrete category of natural transforma-
tion. We are going to forget the (two) composition structures on Cat because
KSammy does not behave well in terms of composition. So we have a functor
KSammy : Cat −→ N. We prove that this functor is not constructible. The proof
is a self-reference argument similar to the Berry paradox.

Theorem 9. KSammy : Cat −→ N is not constructible.

Proof. Assume (wrongly) that K = KSammy is, in fact, constructible, then
there is a shortest program that describes K. In that case we can ask for the
value of K(K) (this is the core of self reference!). Let K(K) = c. Also, let n be
a natural number and let Pn : 1 −→ N be a functor such that Pn(0) = n. Now
use K and and Pn to construct the following pullback:

Catn
� � ��

��

Cat

K

��
Pn ↓ N � � �� N.

Pn ↓ N is the sub-total order of natural numbers that start at n. Catn is the
discrete set of natural transformations whose shortest program is greater than or
equal to n operations. This pullback only needed a few more operations than c.
Say that K(Catn|n) = c′. However we can “hardwire” any n into the program.
If we do that, we get K(Catn) = c′ + log n. Choose an n such that n >>
c′+ log n. Then Catn contains objects that require n or more lines of code while
we just described Catn in c′ + log n lines of code. This is like a Berry sentence.
Contradiction! The only thing assumed is that K was constructible. It is not
constructible. QED.

We see this paper as just the beginning of a larger project to understand the
complexity of categorical structures. Our work is far from done. With this notion
of Kolmogorov complexity we get different notions of randomness, compressibil-
ity, and different notions of information. We would like to find upper bounds
on some given categorical structures. We also would like to better clarify what
is constructible and what is not. Another goal is to continue finding different
categorical versions of the incompleteness theorems. We also would like to study
different complexity measures. Rather than asking what is the shortest program
that produces a categorical structure, we can ask how much time/space does a
program take to create a certain structure. That is, what is the computational
complexity of a structure. We can ask how much time does it take for the shortest
program to produce that structure (logical depth.) All these measures induce hi-
erarchies and classifications of categorical structures. There are also many other
areas that we plan on studying. Here are a few.

362 N.S. Yanofsky

There is a relationship between classical Kolmogorov complexity and Shan-
non’s complexity theory. We would like to formulate a notion of Shannon’s com-
plexity theory for categories. There should be a definition of entropy of a category
which should measure how rigid or flexible categorical structure is. Let C be a
category, then Aut(C) is the group of automorphism functors F : C −→ C. De-
fine the “entropy” (or “Hartley entropy”) of C as H(C) = Log2|Aut(C)|. Just
as there is a relationship between these measures for strings, there should be a
relationship for categorical structures.

So far we have restricted to classical categories, functors, and natural transfor-
mations. What about categories with more structure? For example, what can we
say about a category that we know has all limits and colimits? What about en-
riched categories, higher categories, categories with structure, quasi-categories,
etc? These different structures have been applied in almost every area of mathe-
matics, computer science and theoretical physics. What we worked out above is
only the first step. Such a study would be extremely interesting to shed some light
on coherence theory. In this paper we saw that a pivotal fact of the Kolmogorov
complexity of categories is that some categories are defined up to a unique iso-
morphism. Coherence theory generalizes such notions and is, in a sense, a higher
dimensional version of uniqueness We will learn much about categorical informa-
tion content and coherence theory by seeing the way they interact.

This work should also be related to the important work in quantum infor-
mation theory. We would like to study some of the physical and mathematical
structures that occur in quantum mechanics with the developed Kolmogorov
complexity tools.

Another area that we would like to explore is Occams razor [5]. This is usually
seen as a criteria in which to judge different physical theories. In short, physicists
formulate functors F :“Physical Phenomena” −→ “Mathematical Structure.”
Universality of the theory demands that “Physical Phenomena” be as large as
possible. In contrast, Occam’s razor demands that “Mathematical Structure”
have low informational content. We would like to use Kolmogorov complexity
on both of these types of categories and the functors that relates them. We feel
that with a better understanding of this we would be able to understand the
question of why it seems that Occam’s razor works so well.

References

1. Calude, C.: Information and Randomness: An Algorithmic Perspective, 2nd edn.
Springer, New York (2002)

2. Hagino, T.: A Categorical Programming Language,
http://voxoz.com/publications/cat/Category

3. Rydeheard, D.E., Burstall, R.M.: Computational Category Theory,
http://www.cs.man.ac.uk/~david/categories/book/book.pdf

4. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Appli-
cations, 2nd edn. Springer (1997)

5. Yanofsky, N.S.: The Outer Limits of Reason: What Science, Mathematics, and Logic
Cannot Tell Us. MIT Press (2013)

6. Yanofsky, N.S.: Algorithmic Information Theory in Categorical Algebra (work in
progress)

http://voxoz.com/publications/cat/Category
http://www.cs.man.ac.uk/~david/categories/book/book.pdf

Erratum: On the Functor �2

Chris Heunen

Department of Computer Science, University of Oxford

heunen@cs.ox.ac.uk

B. Coecke, L. Ong, and P. Panangaden (Eds.): Abramsky Festschrift, LNCS 7860, pp. 107–121, 2013.
© Springer-Verlag Berlin Heidelberg 2013

DOI 10.1007/978-3-642-38164-5_26

The original online version for this chapter can be found at
http://dx.doi.org/10.1007/978-3-642-38164-5_8

The main purpose of this erratum is to correct a claim made in “On the func-
tor �2” (Computation, Logic, Games, and Quantum Foundations, Lecture Notes
in Computer Science Volume 7860, 2013, pp 107–121) in Lemma 5.9. Namely,
positive operators on Hilbert space are not necessarily isomorphisms, but merely
bimorphisms, i.e. both monic and epic; this is precisely the issue in 2.8. Here is
the corrected version.

Lemma 5.9. Positive operators on Hilbert spaces are bimorphisms.

Proof. Let p:H → H be a positive operator in Hilb. If p(x) = 0 then certainly
〈p(x) |x〉 = 0 which contradicts positivity. Hence ker(p) = 0, and so p is monic.

To see that p is epic, suppose that p ◦ f = p ◦ g for parallel morphisms f, g.
Then 〈p ◦ (f − g)(x) |x〉 = 0 for all x. By positivity, For each x there is px > 0
such that p ◦ (f − g)x = px · (f − g)(x). Hence 〈(f − g)(x) |x〉 = 0 for all x, that
is, f = g and p is epic. ��

Definition 5.10 then needs to be adapted accordingly: a functor F :C → D is
essentially full when for each morphism g inD there exist f inC and bimorphisms
u, v in C such that g = v ◦ Ff ◦ u

Author Index

Brandenburger, Adam 1

Clairambault, Pierre 7
Coecke, Bob 21

Devesas Campos, Marco 37

Fiore, Marcelo 37

Gay, Simon J. 264
Ghica, Dan R. 52
Gutierrez, Julian 7

Hankin, Chris 69
Hardy, Lucien 83
Heunen, Chris 21, 107
Hines, Peter 122
Hoare, Tony 139
Honsell, Furio 150

Jung, Achim 166

Keisler, H. Jerome 1
Kissinger, Aleks 21

Lenisa, Marina 150

Malacaria, Pasquale 69
Malherbe, Octavio 178
Martin, Keye 195
Melliès, Paul-André 197
Mislove, Michael 225
Murawski, Andrzej S. 246

Nagarajan, Rajagopal 264

Panangaden, Prakash 277
Pavlovic, Dusko 291
Plotkin, Gordon 311

Scott, Philip 178
Selinger, Peter 178

Tzevelekos, Nikos 246

Väänänen, Jouko 327
van Benthem, Johan 336
Vickers, Steve 348

Winskel, Glynn 7

Yanofsky, Noson S. 350

	Preface
	Organization
	Table of Contents
	Use of a Canonical Hidden-Variable Space
in Quantum Mechanics
	1 Introduction
	2 Preliminaries
	3 TheResult
	References

	Imperfect Information
in Logic and Concurrent Games
	1 Introduction
	2 Event Structures and Concurrent Games
	2.1 Concurrent Games and Strategies

	3 Winning Strategies and Determinacy
	3.1 Application: Concurrent Games for the Predicate Calculus

	4 Concurrent Games with Imperfect Information
	5 Λ-IF: A Parametrized Logic of Independence
	6 Λ-IF Logic vs. IF Logic
	6.1 On the Expressivity of Λ-IF

	7 Conclusion
	References

	Compositional Quantum Logic
	1 Introduction
	2 Background
	3 Abstract Projections
	4 Quantum Logics for Abstract C*-Algebras
	5 Composing Quantum Logics
	6 Commutativity versus Distributivity
	7 FurtherWork
	References

	The Algebra of Directed Acyclic Graphs
	1 Introduction
	2 Directed Acyclic Graphs
	2.1 Dags
	2.2 Idags
	2.3 Operations on Idags
	2.4 The Category of Finite Abstract Idags

	3 Product and Permutation Categories
	3.1 PROPs
	3.2 Free PROPs

	4 Examples of Free PROPs
	4.1 Empty Theory
	4.2 Nodes
	4.3 Idempotent Objects
	4.4 Commutative Monoids and Commutative Comonoids
	4.5 Commutative Bialgebras
	4.6 Commutative Hopf Algebras
	4.7 Commutative Monoids with a Node

	5 The Algebra of Idags
	5.1 Algebraic structure
	5.2 Categorical Interpretation
	5.3 Compositionality

	6 Conclusion
	References

	Diagrammatic Reasoning
for Delay-Insensitive Asynchronous Circuits
	1 Asynchronous Circuits
	1.1 Ebergen’s Trace Model

	2 Preliminaries
	3 AnAffineModel
	4 An Interleaved Model
	4.1 An Idealised Wire Model
	4.2 A Capacitive Wire Model

	5 Applications
	6 Conclusion
	References

	Payoffs, Intensionality and Abstraction in Games
	1 Introduction
	1.1 An Historical Note
	1.2 This Paper

	2 The Problem with Payoffs
	2.1 The Centipede Example
	2.2 The Prime Factorization Game

	3 A Common Framework
	3.1 Turn-Based Probabilistic Games
	3.2 Game Algebras

	4 Payoffs in General Game Semantics
	4.1 Some General Remarks

	5 Game Theory in Game Semantics
	5.1 The Centipede PCF Game
	5.2 The System Administrator Dilemma

	6 Games and Abstraction
	6.1 A Simple Example

	7 FinalRemarks
	References

	On the Theory of Composition in Physics
	1 Introduction
	2 Examples and the Tensorial Notation
	2.1 Tables
	2.2 Circuits
	2.3 Other Examples

	3 Background
	4 The Description of Composite Objects
	4.1 The Bipartite Notation and Fundamental Axioms
	4.2 Tensorial Notation and Composition Locality
	4.3 Composition Locality and Null Joins
	4.4 Pruning
	4.5 Boundaries

	5 The Composition Principle
	5.1 Circuits
	5.2 Labeled Tiles
	5.3 Other Examples

	6 Conclusions
	References

	On the Functor 2
	1 Introduction
	2 The Codomain
	3 TheDomain
	4 The Functor
	5 TheImage
	6 TheFuture
	References

	Quantum Speedup
and Categorical Distributivity
	1 Introduction
	1.1 Shor’s Algorithm: Oracles and Quantum Fourier Transforms
	1.2 The Aims of this Paper
	1.3 The Structure of the Paper

	2 Basic Definitions
	2.1 Distinguished Objects, and Copying Functors
	2.2 Copying and the Iterator
	2.3 String Diagrams for Categories with Distributivity

	3 Concrete Realisation in Hilbert Space
	3.1 Interpreting the Direct Sum in the Circuit Model
	3.2 Controlled Operations and Categorical Swap Maps
	3.3 Interpreting the Iterator in the Quantum Circuit Paradigm
	3.4 Applications of the !

	4 An Efficient Circuit for
the!n(U) Operation
	4.1 Oracles and Black Boxes

	5 Conclusions and Future Directions
	References

	Unifying Semantics
for Concurrent Programming
	1 Introduction
	2 Denotations
	2.1 Basic Commands
	2.2 Sequential Composition
	2.3 Concurrent Composition
	2.4 Choice
	2.5 Galois Inverses
	2.6 Iteration

	3 Algebra and Logic
	3.1 Monotonicity
	3.2 Sequential Composition
	3.3 Concurrent Composition
	3.4 Units
	3.5 Choice
	3.6 Galois Adjoints
	3.7 Iteration

	4 Conclusion
	References

	Unfixing the Fixpoint:
The Theories of the λY -Calculus
	1 TheλY -Calculus
	2 λY -Theories
	2.1 Contextual Characterization of λY -Theories
	2.2 λ-Theories and λY -Theories
	2.3 Approximable Theories

	3 Canonical and Non-canonical Interpretations of Fixpoint Combinators
	3.1 A Canonical λY -Theory
	3.2 A Non-canonical λY -Theory

	4 Final Remarks, Conjectures, Open Problems
	References

	Continuous Domain Theory in Logical Form
	1 Personal Recollections
	2 The Handbook Article
	3 Domain Theory in Logical Form
	3.1 The Continuous Function Space Construction
	3.2 The Role of Compactness — First Interpretation
	3.3 The Role of Compactness — Second Interpretation

	4 Conclusions
	References

	Presheaf Models of Quantum Computation:
An Outline
	1 Introduction
	2 Categories of Completely Positive Maps and Superoperators
	3 Presheaf Models of a Quantum Lambda Calculus
	3.1 Categorical Models of the Quantum Lambda Calculus
	3.2 Outline of the Procedure for Obtaining a Concrete Model
	3.3 Categorical Models of Linear Logic on Presheaf Categories
	3.4 Idempotent Comonad in the Functor Category
	3.5 A Strong Comonad
	3.6 The Functor H :
	3.7 FT GT Is a Monoidal Adjunction

	3.8 Abstract Model of the Quantum Lambda Calculus
	3.9 Towards a Concrete Model: Constructing FinSet Q
	3.10 A Concrete Model

	4 Conclusions and Future Work
	References

	Nothing Can Be Fixed
	References

	Dialogue Categories and Frobenius Monoids
	1 Frobenius Algebras and 2-Dimensional Cobordism
	2 Frobenius Pairs
	3 The Frobenius Bracket
	4 Helical Frobenius Pairs
	5 Frobenius Pairs in Ribbon Categories
	6 Dialogue Categories and Chiralities
	7 Categorical Bimodules
	8 Frobenius Pseudomonoids
	9 Frobenius Amphimonoids
	10 Epilogue: A Comparison with Day and Street
	11 Conclusion
	References

	Anatomy of a Domain
of Continuous Random Variables II
	1 Introduction
	1.1 The Model of Goubault-Larrecq and Varacca
	1.2 Our Contribution
	1.3 The Plan of the Paper

	2 Background
	2.1 Domains

	3 On Lawson-Compact Antichains and Thin Probability Measures over A
	3.1 Lawson-Compact Antichains in A
	3.2 A Motivating Example
	3.3 A Bounded Complete Domain of Thin Measures

	4 Continuous Random Variables
	4.1 Adding Structure to ΘRVA
	4.2 Towards a Monad
	4.3 Relation to the Results of Goubault-Larrecq and Varacca

	5 Summary and Future Work
	References

	Towards Nominal Abramsky
	1 Introduction
	2 RefML
	3 Game Model
	4 Groundness
	5 Innocence
	6 Conclusion
	References

	Techniques for Formal Modelling and Analysis of
Quantum Systems
	1 Introduction
	2 Quantum Information Processing
	2.1 Superposition
	2.2 Measurement
	2.3 Operations on a Superposition
	2.4 No Cloning
	2.5 Entanglement

	3 Formal Methods for QIP
	4 Quantum Teleportation in CQP
	5 Model-Checking for Quantum Protocols
	5.1 Quantum Teleportation in QMC
	5.2 Specifying Properties

	6 Beyond Stabilizer States: Checking Equivalence
	7 Conclusion
	References

	Quantum Field Theory for Legspinners
	1 Introduction
	2 Geometric Mechanics
	3 Basic Elements of Quantum Mechanics
	3.1 Time Evolution
	3.2 Quantization

	4 The Harmonic Oscillator
	5 The Klein-Gordon Field Theory
	5.1 Quantization of the Klein-Gordon field
	5.2 Bosonic Fock Space
	5.3 Summary

	6 Quantum Field Theory Abstractly
	7 Complex Structures and Polarizations
	7.1 Defining the Vacuum
	7.2 Bogolioubov Transformations
	7.3 Rindler Spacetime

	8 Conclusions
	References

	Bicompletions of Distance Matrices
	1 Introduction
	2 Distance Spaces
	2.1 Definition and Background
	2.2 Examples
	2.3 Basic Constructions

	3 Sequences and Their Limits
	3.1 Left and Right Sequences
	3.2 Limits
	3.3 Weighted Limits
	3.4 Completions
	3.5 Adjunctions
	3.6 Projectors and Nuclei
	3.7 Cones and Cuts

	4 Distance Matrices
	4.1 Definitions
	4.2 Decomposition through Nucleus

	5 Bicompletion
	5.1 Nucleus as a Completion

	6 Summary and Discussion
	References

	Partial Recursive Functions and Finality
	1 Introduction
	2 The Category of Sets and Partial Functions
	3 Primitive Recursive Functions in Monoidal Categories
	4 Partial Recursive Functions in Monoidal Categories
	References

	Breaking the Atom with Samson

	1 Dependence
	2 Constancy
	3 Dependence Logic
	4 DownwardClosure
	5 Axioms
	6 Breaking the Atom
	7 Independence
	8 Speculation: Breaking the Independence Atom
	References

	Reasoning about Strategies
	1 Reasoning about Strategies: A Priorip Analysis or Rather Logical Fieldwork?
	2 The Gale-Stewart Theorem and Its Underlying Temporal Logic of Forcing
	3 Nondeterminacy, Strategy Stealing, and Temporal Forcing Logics of Special Games
	4 Explicit Logics of Strategies as Programs
	5 Zoom, Levels, Invariants, and Definability
	6 Strategy Logics with Operations on Games
	7 Knowledge, Preference, and Game Theory
	8 Conclusion
	References

	Domain Theory in Topical Form
	References

	Kolmogorov Complexity of Categories
	1 Introduction
	2 A Programing Language for Categories
	3 Kolmogorov Complexity of Categories
	4 Computability and Non-computability with Sammy
	References

	Author Index

