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Abstract. This tutorial is an introduction to compositionality and ex-
ternally observable behaviour. To make it easier to understand system
descriptions, traditional process-algebraic languages have been replaced
by state machines represented as annotated directed graphs. Emphasis
is on a novel way of treating local variables, and on the Chaos-Free Fail-
ures Divergences semantics. Even so, big themes that are not tied to
any particular semantics are pointed out where possible. Other semantic
models are introduced briefly. Most important verification methods fa-
cilitated by compositionality are mentioned with pointers to literature.
Mathematical details are given less attention but not left out altogether.
Throughout the tutorial, important principles are summarized in framed
pieces of text.

1 Introduction

External behaviour, or externally observable behaviour, is the behaviour of an
entity as seen at its interface, without seeing inside the entity or its other inter-
faces. For instance, when withdrawing cash from an automated teller machine
(ATM), the user enters her bank card into the slot, types something, gets or does
not get money, and gets the card back, and later she sees from the statement
that the balance of her account has reduced accordingly. The user does not see
the telecommunication between the ATM and the central computer of the bank,
and she does not see that the computer checked whether her account had enough
money. For another instance, a C++ program sees the C++ standard library
std::map as something to which (key, value)-pairs can be added, accessed via the
key, and removed, but the program does not see the red/black-tree operations
that take place inside.

Computer science and software engineering favour abstraction and the de-
scription of things in implementation-independent ways. In the case of data
structures, this desire has led to the development of abstract data types and
specification methods for them, such as algebraic data types. Things become
much more difficult with concurrent systems (we will see in Sect. 5.7 that non-
determinism is the culprit). This has led to the development of hundreds of
different notions of external behaviour of concurrent systems. Fortunately, there
are many common ideas and unifying themes. This tutorial is an introduction
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to central insights in theories of the externally observable behaviour of concur-
rent systems. Many of the presented ideas are very well-known, but we will also
discuss some that seem less well-known.

Every theory and every tutorial has its limits. This one concentrates on in-
terleaving concurrency and lacks the aspects of real-time and probabilities. One
might also complain that only the process-algebraic view is presented. However,
this is because there seem to be no alternatives: the vast majority of articles
on the external behaviour of concurrent systems are either openly or implicitly
based on process-algebraic ideas. It seems to the present author that although
the process-algebraic languages are definitely artificial and can be replaced by
other notations (as we will do), at the semantic level process algebras have found
something universally valid. On the other hand, although the theory of recursive
process expressions has received a lot of attention in the literature, it is essen-
tially absent from this tutorial. This is because it is not needed for discussing
compositionality and external behaviour. It is also quite difficult.

There are many extensive treatments on process algebras, including
[13,20,23,25]. Also the present author has published two tutorials [30,34] and
touched the topic in [32]. It is reasonable to ask whether the world needs yet
another one. After reading many papers and submissions over the years, it seems
to the present author that many researchers try to re-invent results in the field,
without realizing that a lot exists already. Perhaps this is because external be-
haviour, and its close friend compositional analysis, are very natural and de-
sirable goals; but much of the literature on process algebras seems, at the first
sight, to present hard theories with a narrow scope instead of material that the
reader could apply to her own situation.

This suggests that there is a need for a tutorial that presents the big picture or
roadmap in an easily accessible way, without unnecessarily requiring its readers
to dwell in tricky details that process-algebraic theories abound. (This does not
mean that tricky details could be avoided altogether.) This tutorial tries to be
such. The readers will decide whether it succeeds.

Writing this tutorial also gave the chance to discuss some ideas that have re-
ceived little attention although the present author believes that they are funda-
mental. Finally, the treatment of local variables of state machines in this tutorial
has not been published before, excluding some sketchy preliminary versions. It
is largely similar to well-known approaches, but uses so-called “data manipula-
tion relations” to separate semantics from syntax. It is therefore given a lot of
attention, while material that can be found in earlier tutorials is discussed more
briefly.

Big themes in a research field tend to become apparent gradually. Often there
is no well-defined first paper, where some idea has first been presented in a clear
form. For instance, after many enough papers it has just become more or less
common knowledge that alphabet-based synchronization is “the” fundamental
notion of parallel composition, because it is simple and (as we will see in Sect. 4)
universal in the sense that other common parallel composition operators can be
constructed from it, but not always vice versa. For this reason, this tutorial does
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Fig. 1. A simplified cash dispenser system

not contain many references. Some of the given references point to recommended
further reading and not necessarily to the original publications.

Section 2 presents the formalism that we will use for describing concurrent
systems: state machines with local variables. It also presents a running example
that will be used throughout this tutorial. The behaviour of a state machine is
the topic of Sect. 3. The section also covers what it means for two behaviours
to be equivalent at a detailed level. In Sect. 4 we will discuss the composition
of a system from interacting state machines and the behaviour of the result.
Behaviour at an abstract level is a central topic in process algebras. It is dis-
cussed in Sect. 5. The most well-known semantic models are introduced and
CFFD-semantics is discussed in more detail. The section also briefly introduces
verification techniques related to compositionality. Section 6 comments on the
state of the art. Throughout the tutorial, important principles are informally
summarized in boxes.

2 State Machines

In this tutorial, systems are presented as collections of interacting state machines.
In this section we concentrate on individual state machines. We first illustrate
them with the aid of an example system and then present a formal definition. In
the meantime, we also comment on subtleties in the operation of the example
system. Finally, we briefly introduce an issue that is of secondary importance
for this tutorial but very important in the verification of concurrent systems in
general: state propositions.

2.1 A Cash Dispenser System

Our example system is a simple cash dispenser system. Let us first discuss its
overall design and operation. The system is shown in Fig. 1. It consists of an auto-
mated teller machine (ATM), a bank computer, and telecommunication channels
between them. It models how a user can withdraw money and how that affects
the balance of her account. To keep the example simple, we only model one user
and account, and leave out many details such as user authentication.

Let N = {0, 1, 2, . . .} denote the set of natural numbers. The operation starts
when the user puts in her bank card (ci for card in). Then she types the amount
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Fig. 2. The ATM and BANK state machines

of money she wants to withdraw (w〈N〉). The amount is represented as a natural
number parameter of w. Such parameters are called event parameters in this
tutorial. Event parameters are thus the values that are communicated between
state machines and/or the environment of the system during an event.

ATM sends the bank a query whether the user can withdraw that much money
(Sq〈N〉). CH1 either delivers the query to the bank (Rq〈N〉) or loses it. The bank
computer checks the balance of the account and sends back the answer “yes” or
“no” via CH2. The yes-answer carries a number indicating the amount of money
for a reason that we will explain in Sect. 2.3. Also CH2 may lose messages.

Depending on the answer, ATM either gives the money to the user (g〈N〉) or
replies that the user does not have enough money (nm). To prepare for losses of
messages, ATM has a timeout mechanism that may make it abort the transaction
and tell the user that connection was lost (lc). In any case, ATM gives the user the
card back (co). If ATM gave the user the money, it informs the bank by sending
the message “done”. When the bank receives it, it reduces the balance of the
account accordingly (r〈N〉). If the bank waits for “done” in vain, a timer triggers
and makes the bank record that the outcome of the transaction is uncertain
(uc) and someone must go to the real physical ATM to check its transcript. The
rationale of these details will be discussed in Sect. 2.3.

2.2 State Machines of the Cash Dispenser System

Figure 2 shows the ATM and BANK state machines. Our notion of a state
machine is pretty much like a coloured Petri net with precisely one token and,
consequently, precisely one input and output arc for each Petri net transition.
The states (drawn as circles or ovals) correspond to Petri net places and the
transitions (arrows) correspond to Petri net transitions and arcs. Together they
show when the ci, w〈20〉, etc., events can take place. The initial state is indicated
with a short arrow that does not start at a state. It corresponds to the Petri net
place where the only token is initially.

Figure 1 has w〈N〉, because it does not tell who decides the amount of money
that is withdrawn, while Fig. 2 has w?x to indicate that ATM is ready for just
any amount, and that amount will be stored in variable x of the next state.
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Fig. 3. The CH1 and CH2 state machines

The execution of a transition is called event. In an event the former syntax is
used and N has been replaced by a natural number, like in w〈20〉. In the case
of g!x the amount of money is determined by ATM and is, of course, the same
as the value of x in the preceding state. In terms of coloured Petri nets, roughly
speaking, in the case of ! the variable is present in the inscription of the input
arc of the Petri net transition, while ? corresponds to the output arc. We will
discuss ! and ? in more detail in Sect. 4.1.

The variable x only exists in some states. This is not fundamental, because
we could extend the type of x by an additional value “undefined” and let x have
that value in the remaining states, or we could just let x keep its most recent
value when its value does not matter. On the other hand, drawing x into only
some states makes it explicit when the value of x is and is not significant. This
helps sometimes understanding systems. The issue is similar to a coloured Petri
net token having some data component in some places and not having it in some
other places. We will explain in Sect. 2.3 why x is not present in the start state
of the lc-transition.

BANK has two variables, b for the balance and z for temporary storage. The
notation [z > b]→ indicates that the transition is possible only if z > b, that is,
the user asked for more money than her bank account has. Such conditions are
called guards, and they correspond to guards in coloured Petri nets. Obviously
b := b − z models the updating of the balance. In coloured Petri nets, the same
effect is obtained by specifying the value of a component of an outgoing token
with a function on the output arc.

Figure 3 shows the channels. Here our notation is not optimal, because we had
to draw the same theme twice in CH1, once for q〈N〉 and once for done. However,
this is notational inconvenience and not important for our goal that emphasizes
semantics. The label τ is a special label that denotes that the execution of the
transition is not directly observable by anything outside CH1. We say that τ is
the invisible action. Here τ -transitions model losses of messages. CH2 is similar.
It could be made from CH1 with the renaming operator of Sect. 4.3.

The examples demonstrate that state machines may have local variables and
sequential computation with them. There are no shared variables in our formal-
ism. This does not imply loss of generality, because one can represent shared
variables as state machines with local variables. Indeed, CH1 and CH2 are ex-
amples of this. We will see an even more direct example in Fig. 7.

Interaction and communication between state machines belongs to Sect. 4.1,
but the basic principle must be told here to be able to discuss the behaviour of
the cash dispenser system as a whole. We say that ci, w, and so on are gates.
Every state machine has an associated set of gates, and many state machines
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may share the same gate. In Fig. 1, the gates of the cash dispenser system are
shown by lines and their labels (excluding the “〈N〉”-parts).

To execute a transition whose label is or starts with a gate name, all state
machines that are connected to that gate must execute a transition with that
gate name simultaneously, and the numbers and values of event parameters
must match. For instance, if ATM wants to execute Sq〈10〉, then also CH1 must
execute Sq〈10〉. If CH1 is not ready to execute it, then ATM cannot execute it
either. On the other hand, if a transition is labelled with τ , then it is executed
by that state machine alone.

In terms of coloured Petri nets, this resembles the fusion of transitions that
have the same gate name, except that τ -transitions are not fused. Furthermore,
fusion is made in all combinations where precisely one transition with the given
gate name is picked from each participating state machine. So, if A has two
a-transitions, B has four, and C has three, then there are 2 · 4 · 3 = 24 fused a-
transitions. Finally, event parameters do not have a direct counterpart, although
similar effects may be obtained by using the same coloured Petri net variable
name in more than one fused transition.

The set of gates of a state machine must contain all gates referred to by
the transitions of the state machine, and it may contain more. The presence of
unused gates in the set of gates is significant, because it prevents the neighbour
state machines from executing transitions with those gate names. One may argue
whether this is an undesirable feature of the theory, but at least it is so difficult
to change that it is better to leave it like that. This is because if the set of gates
were defined as the set of used gates, one could cheat by adding an extra, always
disabled transition with any desired gate name. It is more transparent to allow
the user put extra gates to the set of gates if she wishes.

2.3 Remarks about the Behaviour of the Cash Dispenser System

We already discussed the two main sequences of events of the cash dispenser
system: successful withdrawal of money and failure because of not having enough
money. We also pointed out that messages may be lost, but ATM recovers from
that by executing lc and BANK recovers with uc. The latter deserves a comment.

Ideally, we would like BANK to always get the right idea about whether the
money was given to the user. Unfortunately, sending “yes” to ATM does not
guarantee that the money is given, because “yes” may be lost in the channel,
causing ATM to report loss of connection and not give the money. The “done”
message prevents BANK from incorrectly reasoning that the money is given,
but introduces the possibility of the opposite type of error, that is, incorrectly
reasoning that the money was not given. It is common knowledge in telecom-
munication that in this kind of a situation, wrong conclusions cannot be fully
avoided if a protocol that always eventually terminates is used. Wrong conclu-
sions can be fully avoided if BANK may ask ATM about the outcome again and
again until it receives an answer, but that may lead to a never-ending sequence
of messages.
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Fortunately, we can rule out one of the two types of wrong conclusions. We
chose to prevent the one where ATM does not give the money but the account
is charged. Furthermore, when the system gives the money without charging
the account, the warning uc is always issued, so the people in the bank can
go to the physical ATM, check the situation, and fix the balance afterwards.
Unfortunately, there will also be false uc alarms.

Another subtle issue is the presence of the amount in the “yes” message
and its absence in the start state of the lc-transition of ATM. Their purpose
is to prevent the following and similar sequences of events. The user starts a
transaction. The BANK computer is busy, and sends “yes” so slowly that the
timer in ATM triggers and ATM executes lc before the “yes” arrives. The user
reads the reply by ATM carelessly and thinks that she tried to withdraw too
much money. Therefore, after getting the card back, she puts the card in again
and types a new, smaller amount to withdraw. ATM sends the corresponding
query, but it is lost. Next the delayed “yes” message arrives. If it lacked the
amount information, ATM would interpret it as a “yes” to the new amount.
So it gives the card and money, and sends “done”. BANK receives “done” and
charges the original amount from the account, which is different from what was
given to the user.

So the purpose of the presence of the amount in the “yes” messages is to
guarantee that the given amount is always the same as the charged amount (if
it is charged). The start state of the lc-transition does not need the amount,
because it is picked from the “yes” message.

The subtleties discussed above may make the reader wonder whether we have
ruled out all errors. We have not, but fortunately there are verification tools.

2.4 Formal Definition of State Machines

In this subsection we will define state machines formally. To avoid having to
define the language used in the guards and assignments of transitions, and to
get a much more general theory than allowed by the simple notation that we
have discussed, we will introduce abstract data manipulation relations. The !-, ?-,
[· · ·]→-, and :=-notation will be interpreted as a handy practical representation
for a subset of the data manipulation relations, useful for presenting examples.

Each state machine has the set of types used by it, denoted with Θ. Formally,
a type is just a nonempty set. For instance, the set of natural numbers is a
commonly used type. Each variable of each state has a type from Θ.

It would seem natural to give a type also to each event parameter of each
transition, and we often do so in examples. However, it will become evident in
Sect. 4 that it is better that the formal definition does not pay attention to
the internal structure of the labels of events. Therefore, labels of events will be
formalized as arbitrary symbols called actions, and types will not be needed for
that. We have already mentioned that the invisible action τ has a special role.
The remaining actions are visible. The set of them will be called the alphabet
and denoted with Σ. We stipulate that τ /∈ Σ.
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For instance, the alphabet of BANK could usually in practice be chosen as
{ r〈0〉, r〈1〉, r〈2〉, . . . , uc,Rq〈0〉,Rq〈1〉, . . . ,Rdone, Sy〈0〉, Sy〈1〉, . . . , Sno}. However,
this relies on the assumption that all transitions of all state machines have the
correct number and types of event parameters. To see what might go wrong if
this does not hold, assume that there is also a state machine that represents the
user of the cash dispenser system. The user can execute g〈20〉, that is, get 20
units of money, only when ATM is ready for that. However, if g〈20.5〉 is in the
alphabet of the user but not in the alphabets of the other state machines, then
the user can get 20.5 units of money any time at will! Therefore, in the presence
of event parameters, the precise alphabet of a state machine is Γ × U∗, where
Γ denotes the set of gates and U denotes the set of all data values used by the
system.

Referring to the names of variables in the formal definition would be clumsy.
Therefore, for each state s, we assume that its variables are listed in some order
and rely on their positions in this order. The types of the variables of s can now
be specified as a Cartesian product T (s) of types. For instance, if s has variables
n, b, and x of types int, bool, and float, and if we choose to list them in this
order, then T (s) = int×bool×float. To handle states that have no variables,
we denote the empty list of variable values with 〈〉. Thus, if s has no variables,
then T (s) = {〈〉}. With Θ× we denote the set of all finite Cartesian products
of types, that is, the set of all T1 × · · · × Tn where n is a natural number and
Ti ∈ Θ for 1 ≤ i ≤ n. So T (s) ∈ Θ×, and {〈〉} is the element of Θ× that results
from n = 0.

Of course, the state machine has a set of states S and an initial state ŝ. The
initial values of the variables of the initial state are listed by v̂. So v̂ ∈ T (ŝ). In
some applications, more than one initial state or more than one possible initial
value for a variable would be useful, but we do not present that possibility in
our formal definition, to avoid making it more complex.

The most complicated part is the set Δ of transitions. Each transition is a
tuple (s,R, s′), where s is the start state and s′ is the end state of the transition.
R is the data manipulation relation and will be discussed next.

Let v1, . . . , vn denote the values of the variables of s before executing the
transition. Similarly, let w1, . . . , wm be the values of the variables of s′ after the
transition. So 〈v1, . . . , vn〉 ∈ T (s) and 〈w1, . . . , wm〉 ∈ T (s′). Let a be the action,
that is, the label of the event. When the ?-, etc., notation is used, a is the gate
name together with the values of the event parameters. The purpose of R is to
express the dependency between v1, . . . , vn, a, and w1, . . . , wm. For instance,
in the case of a!(v2 + 1)?w5, R must say that a = a〈p1, p2〉, where p1 = v2 + 1
and w5 := p2. If the transition also has the guard [v1 �= 1]→ and the assignment
w4 := 2v1, then R must also reflect their effect.

A natural first idea would be to let R be a collection of partial functions of the
gate name, v1, . . . , vn, and those event parameters that are specified with ?. The
functions would yield the values of all wi and the remaining event parameters.
They would be partial because of guards. However, sometimes modellers need
nondeterministic operations, like the assignment of a random value to a variable.
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Furthermore, some process-algebraic languages also feature conditions that test
the inputted values. Adding these facilities to partial functions would make the
formalism complicated. It is easier — and also more general — to let R be an
arbitrary relation.

Therefore, R is defined as a relation on T (s) × (Σ ∪ {τ}) × T (s′). Assume
that the state machine is in state s, and the values of the variables of s are
v1, . . . , vn. The state machine is ready to execute the transition with event
name a to state s′ yielding its variables the values w1, . . . , wm if and only
if R(v1, . . . , vn, a, w1, . . . , wm) holds. To avoid clumsy formulas, we abbreviate
v1, . . . , vn and w1, . . . , wm to v̄ and w̄. There may be many a and w̄ with which
R(v̄, a, w̄) holds with the current values of the vi. Most importantly, ?w5 at event
parameter position 2 allows many values for the second event parameter and w5,
as long as they both have the same value. The transition may thus have many
instances. Many instances of the same transition is the same thing as many
bindings of a coloured Petri net transition.

The same behaviour can often be expressed as one transition or as many alter-
native transitions between the same states. That is, the transitions (s,R1, s

′) and
(s,R2, s

′) yield together the same behaviour as the transition (s, (R1 ∨R2), s
′).

For instance, the bottommost transition of BANK could be replaced by two
transitions labelled [z < b]→ Sy!z and [z = b]→ Sy!b. It is not significant whether
some behaviour is represented by one or more transitions.

We say that a data manipulation relation R is empty if and only if R = ∅,
that is, R ⇔ False. A transition with an empty R is never enabled. It could as
well be removed from the state machine.

When expressing data manipulation relations mathematically using variable
names, there is a problem: the previous and the next state may have a variable
with the same name. For instance, each state of BANK has a variable called b.
Therefore, to make it explicit whether we mean a v̄-variable or a w̄-variable, we
write : after the name of the latter. The effect of the topmost transition of BANK
on b can thus be written as b− z = b:, or, equivalently, b: = b− z. Considering :
as a separate token we can use spaces differently and write b := b − z. This
looks familiar and has the expected meaning. This is why we chose : as the
“afterwards” specifier. In many other notations, the “afterwards” specifier is ′,
like in b′ = b− z.

It is common that a variable inherits its value from a variable with the same
name in the previous state. This could be expressed as x: = x, or as x := x.
However, having to write and read a lot of that would be clumsy. Therefore, the
?-, etc., notation has an implicit assumption that if the value of a variable is not
specified with ? or :=, and if also the previous state has a variable with the same
name, then the variable gets the value of its namesake.

We are ready to present the formal definition.

Definition 1. A state machine is a tuple (S,Θ, T , Σ,Δ, ŝ, v̂), where S is a set;
Θ is a set of nonempty sets; T is a function from S to Θ×; ŝ ∈ S; v̂ ∈ T (ŝ); Σ
is a set such that τ /∈ Σ; and Δ is a set of tuples of the form (s,R, s′), where
s ∈ S, s′ ∈ S, and R ⊆ T (s)× (Σ ∪ {τ})× T (s′).
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In the sequel, we will have to talk about the reachable part of a state machine.
It means the state machine induced by the states and transitions to which there
are paths from the initial state. It is obvious that only the reachable part is
relevant for the behaviour of the state machine. However, the reachable part
is only an upper approximation to the relevant part, because, for instance, the
guard of some transition may be equivalent to False. The precise relevant part
is not necessarily easy to recognize. For instance, adding the guard [z = b+ 1]→
to the rightmost transition of BANK would make the top right corner state of
BANK irrelevant, but that is not immediately obvious.

Definition 2. The reachable part of a state machine (S,Θ, T , Σ,Δ, ŝ, v̂) is the
state machine (S′, Θ, T ′, Σ,Δ′, ŝ, v̂), where T ′ is the restriction of T to S′, and
S′ and Δ′ are the smallest sets such that

– ŝ ∈ S′, and
– if s ∈ S′ and (s,R, s′) ∈ Δ, then s′ ∈ S′ and (s,R, s′) ∈ Δ′.

We will see in later sections that data manipulation relations are handy for the
development of the theory. They liberate the concurrency part of the theory al-
most completely from concrete syntax and similar issues. They are usually natu-
rally obtained from inscriptions written in languages for sequential computation.
Their idea is more or less implicitly present in many concurrency formalisms,
including coloured Petri nets. The following observation is at least implicitly
known by many researchers. It is worth emphasizing.

Data manipulation relations are a handy way of combining the language
for sequential computation to the theory of the behaviour of concurrent
systems.

2.5 State Propositions

Many concurrency formalisms (especially temporal logics) associate logical
propositions to states, such as “light is on” or “execution is in a critical section”.
They are called state propositions. We chose not to have state propositions in
our definition, again to avoid complexity. However, we will comment on them in
a couple of places.

In the absence of variables, they could be defined by associating to the state
machine a set Π of state propositions, and a function val : S → 2Π so that
val(s) is the set of state propositions that hold on s. In the presence of variables
the definition becomes more complicated, because also their values may affect
the truth value of a state proposition.

3 Concrete Behaviour

In this section we define the behaviour of a single state machine and demonstrate
that it is essentially a state machine without variables. We also introduce bisim-
ilarity and justify that it is a good notion for two behaviours to be equivalent at
a detailed level.



External Behaviour of Systems of State Machines with Variables 265

Rq〈1〉 Rq〈2〉

Sy〈1〉
Sy〈2〉

Rdone Rdone

r〈1〉
r〈2〉

uc uc Rq〈1〉 Rq〈2〉

Sy〈1〉

Rdone

r〈1〉

uc

Sno

Rq〈1〉 Rq〈2〉

Sno Sno

2

2, 1

2, 2

2, 1

2, 2

2, 1

2, 2

1

1, 1

1, 2

1, 1

1, 1 0

0, 1

0, 2

Fig. 4. BANK unfolded assuming that the types of b and z are {0, 1, 2} and {1, 2}, and
initially b = 2

3.1 Formal Definition of Behaviour: Unfolding

Mathematically, the behaviour of a state machine or system of state machines
is represented as a labelled transition system, abbreviated LTS.

Definition 3. A labelled transition system is a tuple (S,Σ,Δ, ŝ), where S is a
set, Σ is a set such that τ /∈ Σ, Δ ⊆ S × (Σ ∪ {τ})× S, and ŝ ∈ S.

The reachable part of an LTS (S,Σ,Δ, ŝ) is the LTS (S′, Σ,Δ′, ŝ), where S′

and Δ′ are the smallest sets such that

– ŝ ∈ S′, and
– if s ∈ S′ and (s, a, s′) ∈ Δ, then s′ ∈ S′ and (s, a, s′) ∈ Δ′.

If Δ is obvious from the context, then (s, a, s′) ∈ Δ can also be written as
s−a→ s′.

The definition is thus otherwise the same as the definition of state machines,
but there are no Θ, T , and v̂ components, and the elements of Δ have an a
component instead of the R component. The components of the LTS have the
same names as with state machines, that is, ŝ is the initial state, and so on.

The behaviour of a state machine is obtained by unfolding. It resembles the
unfolding of a coloured Petri net to a place/transition net, and similar operations
are found also elsewhere in theoretical computer science. The states of the result
could be represented as (s, v̄), where s is a state of the state machine and v̄ is the
values of the variables of s. To avoid confusion with other tuple notation, we write
s〈v̄〉 instead. We also treat s and s〈〉 as synonyms. If the same s is encountered
with different variable values v̄ and v̄′, then the result will have different states
s〈v̄〉 and s〈v̄′〉. The initial state of the result is ŝ〈v̂〉. Only those s〈v̄〉 are included
in the result that may be reached by executing the state machine starting at the
initial state.

Figure 4 shows the behaviour of BANK with the types of variables replaced
by so small sets that the figure can be drawn. To help reading, the states are
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labelled with the v̄ — that is, the values of b or b, z. For instance, the three end
states of Rdone-transitions originate from the same state of BANK.

Let s〈v̄〉 be a state in the behaviour and (s,R, s′) a transition of the state ma-
chine. It generates a transition from s〈v̄〉 to s′〈w̄〉 with action a to the behaviour
if and only if R(v̄, a, w̄) holds. This transition is written as (s〈v̄〉, a, s′〈w̄〉) or
s〈v̄〉−a→ s′〈w̄〉. If there are event parameters and we want to show them, we
write the transition as (s〈v̄〉, a〈p̄〉, s′〈w̄〉) or s〈v̄〉−a〈p̄〉→ s′〈w̄〉, where p̄ denotes
the event parameters.

For instance, the Sy-transition of BANK is enabled only if z ≤ b, so corre-
sponding transitions start in Fig. 4 at those end states of Rq-transitions that
are labelled with “2, 1”, “2, 2”, and “1, 1”, but not at those labelled with “1, 2”,
“0, 1”, and “0, 2”. The transitions are labelled with Sy〈1〉 and Sy〈2〉.

Let us define the unfolding formally.

Definition 4. Let M = (S,Θ, T , Σ,Δ, ŝ, v̂) be a state machine. Its behaviour
B(M) is the reachable part of the LTS (S′, Σ,Δ′, ŝ′), where

– S′ = { s〈v̄〉 | s ∈ S ∧ v̄ ∈ T (s) };
– Δ′ = { (s〈v̄〉, a, s′〈w̄〉) | ∃R : R(v̄, a, w̄) ∧ (s,R, s′) ∈ Δ }; and
– ŝ′ = ŝ〈v̂〉.

It follows almost immediately from the definitions that if a state machine has
no variables, it is essentially its own behaviour. The biggest difference is that
while the state machine formalism allows to represent a set of transitions in one
bunch as (s,R, s′), the LTS formalism requires to present each of the transitions
individually. In the absence of variables we can let Θ = ∅. For convenience, we
denote also the void T and v̂ with ∅.

Proposition 5. Let (S, ∅, ∅, Σ,Δ, ŝ, ∅) be a state machine without variables.
Its behaviour is isomorphic to the reachable part of (S,Σ,Δ′, ŝ), where Δ′ =
{ (s, a, s′) | ∃R : R(a) ∧ (s,R, s′) ∈ Δ }.

Proof. In the absence of variables, v̂ and each v̄ collapse to the empty list of
values. The states of the behaviour are thus of the form s〈〉, where s is a state
of the state machine. In particular, ŝ′ = ŝ〈〉. The data manipulation relations
only have a-components. Therefore, the transition (s,R, s′) introduces precisely
the transitions (s〈〉, a, s′〈〉) to the behaviour, where R(a) holds. Finally, also the
definition of behaviour has restriction to the reachable part. ��

We also want to demonstrate that the behaviour of any state machine (possibly
with variables) is essentially a state machine without variables. By definition, it
is an LTS. It suffices to show that for each LTS, there is a state machine without
variables whose behaviour is isomorphic to the reachable part of the LTS. We do
that next. In the construction, a separate state machine transition is made from
each LTS transition. The data manipulation relation of that transition is {a},
that is, the relation R such that R(a) holds and R(x) does not hold if x �= a.
The correctness of the proposition is obvious.
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Proposition 6. Let (S,Σ,Δ, ŝ) be an LTS. Its reachable part is isomorphic to
the behaviour of the state machine (S, ∅, ∅, Σ,Δ′, ŝ, ∅), where Δ′ = { (s, {a}, s′) |
(s, a, s′) ∈ Δ }.

So the behaviours of state machines can be treated as state machines. This
unification of state machines with their behaviours gives the theory a lot of
power that we will enjoy in later sections.

The behaviour of a state machine is essentially a state machine with-
out variables, and the behaviour of a state machine without variables is
essentially the state machine itself.

3.2 Equivalence of Detailed Behaviours

From the point of view of externally observable behaviour, labels of events (i.e.,
actions) are important, but names of states are not. If one wants to look at prop-
erties of states during verification, then one must either use the state propositions
of Sect. 2.5, or reason the necessary properties from visible events. One may, for
instance, introduce the actions enter and leave to verify that two state machines
are not in their critical sections at the same time. We already utilised the in-
significance of state names in the previous subsection, by considering two LTSs
essentially the same if there is an isomorphism between their states.

However, isomorphism often fails to unify intuitively obvious instances of
“same behaviour”. For instance, consider Fig. 4. It seems clear that fusing the
two states at bottom right corner (the start states of Sno-transitions) does not
change the externally observable behaviour. Isomorphism cannot reflect that, be-
cause isomorphic LTSs always have the same number of states, and state fusion
changes the number of states.

Bisimilarity is an equivalence notion that is much better than isomorphism
in unifying intuitively equivalent behaviours, while it still avoids unifying be-
haviours when it should not unify. It is strictly weaker than isomorphism, that
is, isomorphic LTSs are always bisimilar, but bisimilar LTSs are not always iso-
morphic. Many researchers consider bisimilarity as the notion of “same behaviour
at the detailed level”. On the other hand, from the point of view of externally
observable behaviour, the detailed level is much less important than the abstract
level that we will discuss in Sect. 5. Therefore, bisimilarity is not a goal in itself
but only a useful technical tool on the way to the real goal. However, it is a tool
that one must master to understand concurrency.

Bisimilarity is sometimes called strong bisimilarity, to distinguish it from
“weak bisimilarity” that we will meet in Sect. 5.6.

Bisimilarity is defined between states. It could be defined between the sets
of states of two LTSs, but it is more flexible to define it between the states
of a single LTS, and apply it to two LTSs by first combining them into one
LTS by taking their disjoint union. Intuitively, taking the disjoint union simply
means drawing the two LTSs on the same sheet of paper and pretending that
they are two isolated regions of the same LTS (whose initial state is chosen
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arbitrarily). The formal definition of disjoint union is well-known and we skip it.
Two LTSs are bisimilar if and only if their initial states are and they have the
same alphabet.

To discuss the basic idea of bisimilarity, consider two bisimilar states s1 and
s2. An essential phenomenon in concurrency is nondeterminism, that is, a state
may have more than one output transition with the same action. The goal of the
definition of bisimilarity is to guarantee that whatever output transitions a state
has, the bisimilar state is able to simulate. That is, for each output transition
s1−a→ s′1 of s1, s2 must have an output transition with the same action a and,
furthermore, the futures after the original and simulating transitions must be
somehow the same. Let s2−a→ s′2 be that transition. The equivalence of futures
is ensured by building the definition so that also s′1 and s′2 will be bisimilar. Of
course, it is also required that whatever output transitions s2 has, s1 must be able
to simulate. However, it is not required that the mapping between transitions
and their simulating transitions is one-to-one; that is, a transition may simulate
and be simulated by many transitions.

The description above is not precise enough to qualify as a definition of bisim-
ilarity. For instance, the description would allow us to declare that s1 and s2
are bisimilar if and only if s1 = s2, which would obviously be against our goal.
Therefore, the formal definition of bisimilarity relies on the auxiliary notion of
bisimulation. Bisimulation is any relation on states that satisfies the above de-
scription. It can be proven that there is a unique weakest bisimulation (it is the
union of all bisimulations). This unique weakest bisimulation is the bisimilarity.

Definition 7. Let (S,Σ,Δ, ŝ) be an LTS. The relation “∼” ⊆ S×S is a bisim-
ulation, if and only if for every s1 ∈ S, s2 ∈ S, s ∈ S, and a ∈ Σ ∪ {τ} such
that s1 ∼ s2 the following hold:

– If s1−a→ s, then there is s′ ∈ S such that s2−a→ s′ and s ∼ s′.
– If s2−a→ s, then there is s′ ∈ S such that s1−a→ s′ and s′ ∼ s.

We say that s1 ∈ S and s2 ∈ S are bisimilar, if and only if there is a bisimulation
“∼” such that s1 ∼ s2.

We say that the LTSs (S1, Σ1, Δ1, ŝ1) and (S2, Σ2, Δ2, ŝ2) are bisimilar if and
only if Σ1 = Σ2, and ŝ1 and ŝ2 are bisimilar in the disjoint union of the LTSs.

The definition of the bisimilarity of LTSs requires that their alphabets must be
the same. This is because the alphabet determines whether the state machine
may prevent other state machines from executing transitions, as was discussed
in Sect. 2.2. It is thus essential from the point of view of neighbour LTSs.

If the formalism is extended with multiple initial states, then the condition
that ŝ1 and ŝ2 are bisimilar must be replaced with the following condition: every
initial state of the first LTS has a bisimilar initial state in the second LTS,
and vice versa. If the formalism is extended with state propositions, then the
requirement must be added that bisimilar states give the same truth values to
state propositions. For simplicity, we will not take these extensions into account
in the subsequent discussion.
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The following result could be easily proven with induction. It says that the
notion of simulation of single transitions given by the definition of bisimilarity
extends to arbitrary sequences of transitions.

Proposition 8. Let “∼” denote bisimilarity. If s0−a1→ s1−a2→ · · · −an→ sn
and s0 ∼ s′0, then there are s′1, s′2, . . . , s′n such that s1 ∼ s′1, s2 ∼ s′2, . . . ,
sn ∼ s′n and s′0−a1→ s′1−a2→ · · · −an→ s′n. A similar result holds for infinite
sequences s0−a1→ s1−a2→ · · ·.

It is not difficult to prove that bisimilarity indeed is an equivalence. To prove
that two states are bisimilar, it suffices to present a bisimulation that relates
them. Bisimulations are not necessarily equivalences. In particular, the empty
relation (the one where s1 ∼ s2 never holds, no matter what s1 and s2 are) is a
bisimulation. When checking whether two LTSs are bisimilar, only the reachable
parts matter, because, so to speak, the empty relation can be used elsewhere.
The empty relation cannot be used in the reachable parts because of the require-
ment that ŝ1 ∼ ŝ2. From this, Proposition 8 implies that the relation must be
nonempty throughout the reachable parts.

For any given finite LTS, there is a unique (modulo isomorphism) smallest
bisimilar LTS. It can be found by leaving out the unreachable parts and fusing
equivalent states in the reachable part. This can be done (at least in a mathe-
matical sense) also to infinite LTSs, but the result cannot be called “smallest”,
because it is not a well-defined concept with infinite objects. The fusion opera-
tion is defined below. The Δ′-part of the definition goes through all transitions
in Δ, but it would suffice to take one state in each [[s]] and go through just their
output transitions. This is because the definition of bisimilarity guarantees that
if one state in an equivalence class has an a-transition to an equivalence class,
then every state in the former equivalence class has an a-transition to the latter
equivalence class.

Definition 9. Let (S,Σ,Δ, ŝ) be an LTS, and let “∼” denote bisimilarity. Its
quotient modulo bisimilarity is the LTS (S′, Σ,Δ′, ŝ′), where

– [[s]] = { s′ | s ∼ s′ },
– S′ = { [[s]] | s ∈ S },
– Δ′ = { ([[s]], a, [[s′]]) | (s, a, s′) ∈ Δ }, and
– ŝ′ = [[ŝ]].

In the case of finite LTSs, the above construction can be done in O(|S| +
|Δ| log |S|) time [35]. (The algorithm in [8] has been influential but does not
meet this time bound.) This is fast enough for almost all practical purposes.
The construction can also be used for checking whether two states or LTSs are
bisimilar. This is a big difference from isomorphism, which is believed not to be
checkable in worst-case polynomial time.

Bisimilarity is a most appropriate notion of “same behaviour” at the
detailed level of behaviour.



270 A. Valmari

4 Putting State Machines Together

In this section we discuss how a system is put together from state machines.
We introduce three operators for that and then combine them into one flexible
operator. We discuss how the behaviour of the system is determined as a function
of the behaviours of its parts, and point out that the same behaviour can also be
obtained by first putting the state machines together. Then we comment on the
notions of input and output, and mention some other operators used in process
algebras.

4.1 Parallel Composition

Many different parallel composition operators have been defined in the literature.
The most suitable for our purpose can be called alphabet-based synchronization.
We define it first for LTSs.

The operator works as we discussed towards the end of Sect. 2.2. Each state
of the result is a tuple consisting of the states of the components. So the joint
LTS keeps track of the states of the component LTSs. The joint LTS executes a
transition labelled with τ when precisely one of the component LTSs executes
a τ -transition. If a �= τ , the joint LTS executes an a-transition when precisely
those component LTSs execute simultaneously an a-transition which have a in
their alphabets. The components that do not participate the execution stay in
their current states. The result is restricted to the reachable part, because the
unreachable part is often big and, as we have pointed out, it is irrelevant for the
behaviour.

Definition 10. Let Li = (Si, Σi, Δi, ŝi) be LTSs for 1 ≤ i ≤ n. Their parallel
composition L1 || · · · || Ln is the reachable part of the LTS (S,Σ,Δ, ŝ), where

– S = S1 × · · · × Sn;
– Σ = Σ1 ∪ · · · ∪Σn;
– if (s1, . . . , sn) ∈ S and there is 1 ≤ j ≤ n such that for every 1 ≤ i ≤ n

• either i = j and (si, τ, s
′
i) ∈ Δi

• or i �= j and s′i = si,

then ((s1, . . . , sn), τ, (s
′
1, . . . , s

′
n)) ∈ Δ;

– if a ∈ Σ, (s1, . . . , sn) ∈ S, and for every 1 ≤ i ≤ n

• either a ∈ Σi and (si, a, s
′
i) ∈ Δi

• or a /∈ Σi and s′i = si,

then ((s1, . . . , sn), a, (s
′
1, . . . , s

′
n)) ∈ Δ;

– Δ has no other elements; and
– ŝ = (ŝ1, . . . , ŝn).

If the ordering of the components is changed (e.g., from L1 ||L2 to L2 ||L1), the
names of states change accordingly (from (s1, s2) to (s2, s1)), but the result is
isomorphic to the original. Therefore, it is appropriate to say that || is commu-
tative. It is also associative, because (L1 ||L2) ||L3 differs from L1 ||(L2 ||L3) and
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even from L1 ||L2 ||L3 only by the names of states: ((s1, s2), s3) vs. (s1, (s2, s3))
vs. (s1, s2, s3).

With ||, the alphabets determine synchronization. A widely used alternative
is to list the synchronizing actions in the operator, e.g., L1 |[a, b]| L2. In this
example, if c �= a and c �= b, then c-transitions of L1 and L2 do not synchronize,
even if both L1 and L2 can execute them. Obviously L1 || L2 is obtained as
L1 |[a1, . . . , an]|L2, where {a1, . . . , an} is the intersection of the alphabets of L1

and L2. On the other hand, |[· · ·]| can be easily built from || and the renaming
operator of Sect. 4.3. So, from the point of view of expressivity, it does not
matter which one we choose. However, |[· · ·]| is not associative, which makes its
mathematics more complicated and may also confuse users.

The widely used CCS parallel composition operator | does not allow more
than two components to synchronize to the same event. (CCS is Calculus of
Communicating Systems [20].) It is a significant disadvantage compared to ||.
Using the ideas in Sect. 4.4, | can be easily constructed from || and the operators
in Sect. 4.2 and 4.3. On the other hand, it is far from obvious how to construct
|| from | and the other operators of CCS and this tutorial. There is also a
complexity-theoretic sense [36] in which || is simpler than |[· · ·]| and |.

Bisimilarity is a congruence with respect to ||. That is, if Li and L′
i are

bisimilar for 1 ≤ i ≤ n, then L1 || · · · || Ln is bisimilar to L′
1 || · · · || L′

n. The
importance of the congruence property will be discussed in Sect. 5.2. Bisimilarity
is a congruence also with respect to the variants that we briefly discussed above,
the operators that will be discussed in the remainder of this section, and, indeed,
with respect to almost all operators that have been suggested in the process
algebra literature.

Let M be a state machine and B(M) its behaviour. We could now define the
behaviour of a parallel composition of state machines as the parallel composi-
tion of the behaviours of the state machines: B(M1) || · · · || B(Mn). However,
computing the behaviours is often very expensive, as it involves unfolding. So
we would like to be able to compute a state machine M1 || · · · ||Mn such that
B(M1 || · · · ||Mn) = B(M1) || · · · || B(Mn). To do that, we must first discuss the
joint effect of data manipulation relations of parallel state machines.

For example, assume that there are three state machines, and they have tran-
sitions labelled with [n > 0]→ a!n?n, [i ≤ 3]→ a!i?j, and a?k!0, respectively.
The inscriptions in the first parameter position imply that i and n must have
the same value, and that value will be stored into k. It is also the value of the
first event parameter, which we denote with p1. The guards imply that the value
must be 1, 2, or 3. The inscriptions in the second parameter position imply that
the value of the second event parameter p2 is 0, and n and j will be 0. Assuming
that there are no other variables, the individual data manipulation relations are
n = p1 > 0 ∧ n := p2, i = p1 ≤ 3 ∧ i := i ∧ j := p2, and k := p1 ∧ p2 = 0. The
joint relation is 0 < n = i = p1 ≤ 3 ∧ p2 = 0 ∧ n := 0 ∧ i := i ∧ j := 0 ∧ k := n.

When formalizing the joint effect, we must make it precise how variables and
actions are treated in the conjunction of data manipulation relations. Variables
of different state machines must be treated as different variables even if they have
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the same name, but actions must be shared. Not necessarily all state machines
participate in a transition. We must specify that those who do not, do not
change the values of their variables. For that purpose, for each list of variables
we define the identity relation I(v̄, a, w̄) ⇔ w̄ = v̄, that is, the variable values
stay the same and the action does not matter. By (R1 ∧ · · · ∧ Rn)(a) we mean
the relation R(v̄1, . . . , v̄n, a, w̄1, . . . , w̄n)⇔ R1(v̄1, a, w̄1) ∧ · · · ∧Rn(v̄n, a, w̄n).

We can now define M1 || · · · ||Mn.

Definition 11. Let Mi = (Si, Θi, Ti, Σi, Δi, ŝi, v̂i) be state machines for 1 ≤
i ≤ n. Their parallel composition M1 || · · · ||Mn is the reachable part of the
state machine (S,Θ, T , Σ,Δ, ŝ, v̂), where

– S = S1 × · · · × Sn;
– Θ = Θ1 ∪ · · · ∪Θn;
– T (s) = T1(s1)× · · · × Tn(sn) for every s = (s1, . . . , sn) ∈ S;
– Σ = Σ1 ∪ · · · ∪Σn;
– Ii is the identity relation for the variables of si;
– if (s1, . . . , sn) ∈ S and there is 1 ≤ j ≤ n such that for every 1 ≤ i ≤ n
• either i = j, (si, Ri, s

′
i) ∈ Δi, and ∃v̄i, w̄i : Ri(v̄i, τ, w̄i)

• or i �= j, Ri ⇔ Ii, and s′i = si,
then ((s1, . . . , sn), (R1 ∧ · · · ∧Rn)(τ), (s

′
1, . . . , s

′
n)) ∈ Δ;

– if a ∈ Σ, (s1, . . . , sn) ∈ S, and for every 1 ≤ i ≤ n
• either a ∈ Σi, (si, Ri, s

′
i) ∈ Δi, and ∃v̄i, w̄i : Ri(v̄i, a, w̄i)

• or a /∈ Σi, Ri ⇔ Ii, and s′i = si,
then ((s1, . . . , sn), (R1 ∧ · · · ∧Rn)(a), (s

′
1, . . . , s

′
n)) ∈ Δ;

– Δ has no other elements;
– ŝ = (ŝ1, . . . , ŝn); and
– v̂ = (v̂1, . . . , v̂n).

The purpose of the conditions ∃v̄i, w̄i : Ri(v̄i, τ, w̄i) and ∃v̄i, w̄i : Ri(v̄i, a, w̄i) is
to avoid creating transitions with obviously empty data manipulation relations.
Without them, the definition would, for instance, create a dead τ -transition from
the ci-transition of ATM. If the conditions are too difficult to check precisely in
a practical situation, then one may use an upper approximation and accept that
the result may have extra dead transitions. For instance, one may generate all
transitions where the gate names match.

Figure 5 shows the parallel composition of a modified ATM and BANK. To
get a readable figure, the channels have been left out, and ATM and BANK
interact directly. Losses of messages in the channels are modelled by additional
transitions in ATM and BANK that read the incoming message but do not
change the state nor the values of local variables. To keep the figure readable,
the balance variable b has been removed.

The horizontal and vertical arrows correspond to transitions that either ATM
or BANK executes alone, and so does the arrow labelled with nm. There are
only four transitions in which both participate simultaneously. In two of them,
labelled q!x z := x and y!z x := z, data is passed, which is shown by the
assignment in the inscription of the arrow. The data manipulation relations of
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co ci w?x q!x

lc

co ci w?x q!x

lc

co g!x

done

co ci w?x q!x

lc

co g!x

done

co ci w?x q!x

lc

q!x
z := x

done

nm

r!z r!z r!z r!z r!z

y!z y!z y!z y!z
y!z

uc uc uc uc uc uc uc ucno no no no no

y!z x := z

no

z z z x, z z

x x x

z z z x, z z x, z x, z z

z z z x, z z

Fig. 5. The parallel composition of ATM and BANK with variable b removed and
channels replaced by direct synchronization that can lose messages

the synchronizing q-transitions are p1 = x and z := p1. Their conjunction is
equivalent to p1 = x∧ z := x. In the figure, this is represented by !x and z := x.

We are ready to show that Definition 11 produces what it should.

Proposition 12. B(M1 || · · · ||Mn) and B(M1) || · · · || B(Mn) are isomorphic.

Proof. The states of B(M1 || · · · ||Mn) are of the form (s1, . . . , sn)〈v̄1, . . . , v̄n〉,
while the states of B(M1) || · · · || B(Mn) are of the form (s1〈v̄1〉, . . . , sn〈v̄n〉). In
both ways of computing the result, τ implies that precisely one state machine
participates. In both ways, if a �= τ , each a-transition is participated by precisely
those state machines which have a in their alphabets. In both ways, the state
machines that do not participate keep their states and variable values. In both
ways, the state machines that do participate change their states similarly, and
change their variable values according to their data manipulation relations. In
both ways, the result is restricted to the reachable part. ��

Of course, it would be possible to define an operation that both puts the state
machines together and unfolds the result. Such an operation corresponds to
traditional state space construction. It is an advantage of process algebras that
the behaviour need not be constructed in one big step but it can be constructed
in many sub-steps, and there is freedom in the order of the sub-steps. We will
see in Sect. 5.8 that useful things can be done between the sub-steps. It would
not be possible, if the behaviour had to be computed in one big batch.

The behaviour of a parallel composition is the parallel composition of
the behaviours of its components. It can be computed in one big batch
or divided to parallel composition and unfolding steps in many different
ways.
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τ

τ

τ

τ

uc

g〈x〉 τ

r〈x〉 uc r〈y〉

uc

τ

τ

g〈y〉
x x y

y

Fig. 6. The user’s money view to the simplified cash dispenser system in Fig. 5

4.2 Hiding

The hiding operator converts visible actions to invisible. With it one can choose
a view to a system. The behaviour of the system can be projected to the chosen
view with techniques discussed in Sect. 5.

Figure 6 shows the projection of Fig. 5 to the view of the user’s money. The
view was chosen by leaving g, r, and uc visible, and hiding everything else. The
figure has been produced manually but, excluding the variables x and y, it is
the same as an automatically generated figure with the data type restricted to
a singleton set. Most details of the figure cannot be explained before discussing
the theory in Sect. 5.4, but some observations can be made already now. For
instance, every “reduce balance” transition (r) is preceded by a “give money”
transition (g) with the same amount. So the system never charges the balance
without giving the money.

If the channels in Fig. 3 are used, then new phenomena emerge. For instance,
the system can charge a wrong amount of money from the account! The following
sequence of events leads to the error. The user tries to withdraw x units of
money. The transaction progresses successfully up to Sy〈x〉, but then both ATM
and BANK give up and return to their initial states. While doing so, BANK
executes uc. The user tries again with a new amount y. After executing Sq〈y〉,
ATM gets the “yes”-answer that was left over in CH2 from the previous attempt,
and gives the user x units of money with g〈x〉. BANK reads the second query
by executing Rq〈y〉 and replies “yes” to it. ATM sends “done”. BANK receives
it and reduces y units of money from the account.

Instead of fixing the cash dispenser system, we continue discussing the theory.
The definition of the hiding operator on LTSs is simple. The hidden actions are
removed from the alphabet, because they become internal to the LTS. This makes
it possible to use their names as action names in other parts of the system.

Definition 13. Let L = (S,Σ,Δ, ŝ) be an LTS, and A be a set. The result of
hiding A in L is the LTS L \A = (S,Σ′, Δ′, ŝ), where

– Σ′ = Σ \A;
– if (s, a, s′) ∈ Δ and a /∈ A, then (s, a, s′) ∈ Δ′;
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– if (s, a, s′) ∈ Δ and a ∈ A, then (s, τ, s′) ∈ Δ′; and
– Δ′ has no other elements.

It might seem natural to require that A ⊆ Σ. However, extra elements in A do
not affect the result (even τ ∈ A is harmless), and the operator is easier to use
if one need not ensure that A indeed is a subset of Σ. So we do not make the
requirement.

In the definition of the hiding operator of state machines, hiding must be
defined for the data manipulation relations, because the same relation may in-
duce transitions with both hidden and unhidden actions. The first part of the
definition of R \A keeps transitions with unhidden actions, and the second part
generates τ -transitions from transitions with hidden actions.

Definition 14. Let M = (S,Θ, T , Σ,Δ, ŝ, v̂) be a state machine, and A be a set.
The result of hiding A in M is the state machine M \A = (S,Θ, T , Σ′, Δ′, ŝ, v̂),
where

– Σ′ = Σ \A;
– (R \A)(v̄, a, w̄)⇔ a /∈ A ∧R(v̄, a, w̄) ∨ a = τ ∧ ∃b ∈ A : R(v̄, b, w̄); and
– Δ′ = { (s,R \A, s′) | (s,R, s′) ∈ Δ }.

Also hiding has the property that it does not matter whether it is done before
or after unfolding, that is, B(M \ A) = B(M) \ A. (This time “=” is equality
and not just isomorphism.)

A number of properties obviously hold, such as

– (M \A) \B = M \ (A ∪B).
– If A ∩Σ2 = ∅, then (M1 \A) ||M2 = (M1 ||M2) \A.

4.3 Relational Renaming

Renaming means changing gate names or actions. As such, it makes it possible
to specify a state machine once and use it in more than one place. For instance,
one may specify the dining philosophers’ system by specifying a single dining
philosopher with actions take left, take right, release left, and release right and a
single chop stick with actions take and release, and taking several copies of them,
renaming the actions to take 1, take 2, and so on.

Simple renaming and || suffice for the philosophers’ system, but they run
into trouble in the following kind of a situation. There are many servers and
even more clients. Any server can serve any client. When a client needs service,
it sends a general call that precisely one free server synchronizes to, but that
server can be any of the free servers. If no server is free, the call transition is
blocked. We want the outside world to see which client and server synchronized.

This situation can be modelled with a more general form of renaming, where
one may map a single action to more than one action. It is called multiple
renaming or relational renaming. We skip the definition for LTSs and only show
the definition for state machines.
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Definition 15. Let M = (S,Θ, T , Σ,Δ, ŝ, v̂) be a state machine. A renaming
relation for M is any set Φ of pairs such that the domain of Φ is precisely Σ,
that is, { a | ∃b : (a, b) ∈ Φ } = Σ, and τ is not in the range of Φ, that is,
¬∃a : (a, τ) ∈ Φ. The result of applying Φ to M is the state machine MΦ =
(S,Θ, T , Σ′, Δ′, ŝ, v̂), where

– Σ′ = { b | ∃a : (a, b) ∈ Φ };
– (RΦ)(v̄, b, w̄)⇔ ∃a : (a, b) ∈ Φ ∧R(v̄, a, w̄) ∨ b = τ ∧R(v̄, τ, w̄); and
– Δ′ = { (s,RΦ, s′) | (s,R, s′) ∈ Δ }.

The purpose of the restriction on the domain of Φ is to simplify the theory
by ruling out unnecessary special cases. Without it, one could remove some
transitions altogether by leaving their action a without a pair (a, b) ∈ Φ; and
one could add extra members to Σ′ by having (a, b) ∈ Φ such that a /∈ Σ.
The restriction does not imply loss of generality, because one can have the same
effects with ||. Let stopA be the state machine with one state, no variables, no
transitions, and the alphabet A. One can remove the a-transitions ofM for every
a ∈ A by writing (M || stopA) \ A. One can add B to the alphabet by writing
M || stopB\Σ .

The client–server example can now be modelled as

CΦ1 || · · · || CΦn || SΦ′
1 || · · · || SΦ′

m ,

where

– C runs in a loop s1−call→ s2−reply→ s1;
– S runs in a loop s1−call?i→ s2〈i〉−reply!i→ s1;
– Φi,j = { (call, call〈i, j〉), (reply, reply〈i, j〉) };
– Φi = Φi,1 ∪ · · · ∪ Φi,m;
– Φ′

i,j = { (call〈i〉, call〈i, j〉), (reply〈i〉, reply〈i, j〉) }; and
– Φ′

j = Φ′
1,j ∪ · · · ∪ Φ′

n,j .

The variable i in the server makes it reply to the right client. Φi adds the identity
i of the client to its actions. It also takes one copy of each action for each server,
so that the client can synchronize with any server. Φ′

j adds the identity of the
server to its actions.

4.4 Synchronization Rules

With the operators introduced this far, one can write complicated expressions
such as ((M1Φ1 ||M2Φ2) \ A) ||M3. However, intuitively each transition of any
such system consists of some state machines participating via some actions,
other state machines not participating, and the result having some action. The
resulting action may be τ even if none of the original actions is, but if any of the
original actions is τ , then only that state machine participates, and the resulting
action is τ .

We now make this idea precise. Let - be a symbol that is not in any alphabet.
It will denote that the state machine does not participate the transition. (We
could have used τ for that purpose but felt it confusing, because not participating
is not the same thing as participating via a τ -transition.)
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Definition 16. Let Mi = (Si, Θi, Ti, Σi, Δi, ŝi, v̂i) be state machines for 1 ≤
i ≤ n. Let Σ be a set such that τ /∈ Σ. A synchronization rule for them is a tuple
r = (a1, . . . , an; a), where a ∈ Σ ∪ {τ} and ai ∈ Σi ∪ {-} for 1 ≤ i ≤ n, and at
least one ai �= -. We let r[0] = a and r[i] = ai for 1 ≤ i ≤ n.

Let Y be a set of synchronization rules for M1, . . . , Mn, and Σ. Then
Y(M1, . . . ,Mn) is the reachable part of the state machine (S,Θ, T , Σ,Δ, ŝ, v̂),
where

– S = S1 × · · · × Sn;
– Θ = Θ1 ∪ · · · ∪Θn;
– T (s) = T1(s1)× · · · × Tn(sn) for every s = (s1, . . . , sn) ∈ S;
– Ii is the identity relation for the variables of si;
– if (s1, . . . , sn) ∈ S and there is 1 ≤ j ≤ n such that for every 1 ≤ i ≤ n
• either i = j, (si, Ri, s

′
i) ∈ Δi, and ∃v̄i, w̄i : Ri(v̄i, τ, w̄i)

• or i �= j, Ri ⇔ Ii, and s′i = si,
then ((s1, . . . , sn), (R1 ∧ · · · ∧Rn)(τ), (s

′
1, . . . , s

′
n)) ∈ Δ;

– if (a1, . . . , an; a) ∈ Y, (s1, . . . , sn) ∈ S, and for every 1 ≤ i ≤ n
• either ai ∈ Σi, (si, Ri, s

′
i) ∈ Δi, and ∃v̄i, w̄i : Ri(v̄i, ai, w̄i)

• or ai = -, Ri ⇔ Ii, and s′i = si,
then ((s1, . . . , sn), R, (s′1, . . . , s

′
n)) ∈ Δ, where R(v̄1, . . . , v̄n, a, w̄1, . . . , w̄n)⇔

R1(v̄1, a1, w̄1) ∧ · · · ∧R(v̄n, an, w̄n);
– Δ has no other elements;
– ŝ = (ŝ1, . . . , ŝn); and
– v̂ = (v̂1, . . . , v̂n).

This definition is not much more difficult to understand than the previous ones,
and it makes it possible to specify arbitrary synchronization patterns. Most,
or perhaps all, major parallel composition operators in process algebras can be
constructed with synchronization rules.

Synchronization rules can also be used to represent local variables as parallel
state machines. For instance, Fig. 7 shows how the variable z of BANK could
be replaced by a state machine that is synchronized with the rest of BANK. In
this example, b of BANK-MAIN is kept as a local variable. z := 0 specifies the
initial value of z. b: refers to the afterwards value of b. So, e.g., [z > b:]→ big?b
means that big〈j〉 is available with those values of j that satisfy z > j. The
third rule and the inscriptions of the transitions say that at most has two event
parameters, the first carrying the current value of z and the second carrying
the same or bigger value; this latter value is also the event parameter of Sy of
BANK-MAIN and thus equal to b; and the outside world sees Sy with the value
of z.

This implementation of BANK is not isomorphic to Fig. 2. The difference is
that while BANK-MAIN is in its initial state, z has no value in Fig. 2, but in
Fig. 7 it keeps its previous value. This difference does not affect the behaviour
significantly, because the value of z in the initial state is not used and is over-
written by the next transition. Indeed, the two models of BANK are bisimilar.

The example has a synchronization rule for each possible combination of event
parameter values for each gate. There are thus infinitely many rules. This is not
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z := 0
get?z

[z > b:]→ big?b

[z ≤ b:]→ at most!z?b

give!z
z

Sno!b
Rq

Sy!b

Rdone

r?z

b := b− z:

uc

b

b b

b

( get〈i〉 , Rq ; Rq〈i〉 ) for i ∈ N

( big〈j〉 , Sno〈j〉 ; Sno ) for j ∈ N

( at most〈i, j〉 , Sy〈j〉 ; Sy〈i〉 ) for i ∈ N and j ∈ N

( - , uc ; uc )
( - , Rdone ; Rdone )
( give〈i〉 , r〈i〉 ; r〈i〉 ) for i ∈ N

Fig. 7. BANK made of Z and BANK-MAIN state machines with synchronization rules

a problem for developing theoretical results. In a practical situation, one can use
suitable notation for representing rules in bunches. Indeed, Fig. 7 has only six
such bunches.

Analogously to earlier operators, we should prove that B(Y(M1, . . . ,Mn)) is
isomorphic to Y(B(M1), . . . ,B(Mn)). Instead of doing that directly, we will get
the result for free from another result: the effect of synchronization rules can be
built from the other operators discussed so far. This implies that synchronization
rules can be considered shorthand notation, and it suffices to develop the theory
for the other operators.

Proposition 17. Let Mi = (Si, Θi, Ti, Σi, Δi, ŝi, v̂i) be state machines for 1 ≤
i ≤ n. Let Σ be a set such that τ /∈ Σ, and let Y be a set of synchronization
rules for them. Then Y(M1, . . . ,Mn) =

(((
(M1 || stopA1

) \A1

)
Φ1 || · · · ||

(
(Mn || stopAn

) \An

)
Φn

)
\A

)
Φ || stopB ,

where

– Ai = { a ∈ Σi | ¬∃r ∈ Y : a = r[i] } for 1 ≤ i ≤ n;
– Φi = { (a, r) | a ∈ Σi ∧ r ∈ Y ∧ a = r[i] } for 1 ≤ i ≤ n;
– A = { r ∈ Y | r[0] = τ };
– Φ = { (r, a) | r ∈ Y ∧ a = r[0] �= τ }; and
– B = { a ∈ Σ | ¬∃r ∈ Y : a = r[0] }.

Proof. The part using Ai removes those non-τ -transitions of Mi that have no
matching rule. Φi renames the remaining non-τ -transitions of Mi so that || syn-
chronizes transitions that match the same rule. Then \A ensures that the final
name is τ if the rule requires so. Φ fixes the final names that must not be τ , and
stopB adds to Σ the elements that are still missing. ��
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Together with the modelling of channels as state machines in the cash dispenser
system, the results and examples in this subsection justify the following informal
claims (however, please see also Sect. 5.3).

All communication between state machines can be expressed in terms
of ||, hiding, and relational renaming. Synchronization rules are a handy
shorthand notation for that.

Use of a local or shared variable is essentially parallel composition with
a state machine that directly represents the variable.

Earlier versions of synchronization rules were presented in [1,17].

4.5 Input and Output

In the ?-, etc., notation, ? denotes input and ! output. If transitions labelled a!x
and a?y synchronize, then it is appropriate to say that the former is an output
and the latter input transition. The one who outputs determines the value of the
event parameter, and the one who inputs is ready for just any value. The one
who inputs usually stores the value in a variable, but this should not be seen as
a fundamental property of input, because one may cheat by storing the value to
a variable that is not used later.

The roles of input and output are not clear at the level of transitions, but
are still at the level of individual event parameters, when transitions labelled
a!1?x and a?y!3 synchronize. The situation may be unclear even if there is only
one event parameter, like with [n: ≥ 0]→ a?n and [i: < 1]→ a?i. Here the first
transition determines that the value is at least 0 and the second that it is less
than 1. So it is 0. However, neither transition determines the value alone, so
neither can be called output. An even more confusing example is [x := x]→ a?x,
because, although it seems to read the afterwards value of x from the event
parameter, the guard forces the value to be the same as the original value. So it
means precisely the same as a!x.

In conclusion, process algebras allow forms of interaction where the notions
of input and output do not make sense. Some interaction patterns may be very
hard to implement in practice, especially in a distributed setting, but it is better
to allow them in the theory than to rule out useful forms of interaction.

Input and output are roles in interaction. Often interaction can be un-
derstood in terms of input and output, but not always.

4.6 Other Operators

Process-algebraic languages (such as [3,13,20]) have other operators in addition
to variants of what we have already discussed. In this subsection we briefly
discuss the most common. They are not necessary for most of the rest of this
tutorial, but are central in many other writings on process algebras. In Sect. 5.3
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they will be used to demonstrate that despite their great modelling power, syn-
chronization rules do not cover all reasonable ways of building systems.

Action prefix a;P (also written as a.P and a→ P ) means a system that first
executes an a-transition and then behaves like P .

There are variants of the choice operator with somewhat different meanings.
P Q, also written as P + Q, has initially the capability of behaving like P
and like Q. Its first transition is either an initial transition of P or of Q, and
then it continues like P or Q according to with whose transition it started. The
environment does not directly see whether P or Q was chosen. Of course, if the
action of the initial transition is visible and only used by Q, then it is possible to
reason thatQ was chosen. As an example of the variants of the choice operator, in
nondeterministic choice � the choice is done silently even if the initial transitions
have different actions.

The interrupt operator P Q is otherwise like choice, but Q has the ability
to start until P has terminated successfully. Successful termination is indicated
by executing a transition with a special action that has been reserved for this
purpose. When Q has started, P cannot continue. A divergence is an infinite
sequence of invisible events. It corresponds to a livelock. Of the operators that
we have discussed, interrupt is the only one that can, roughly speaking, stop a
divergence.

We used graphs to specify individual state machines, but many process-
algebraic languages express everything in terms of textual expressions. Cyclic
behaviour is specified by letting expressions call themselves recursively. In this
setting, choice operators are the main means of specifying branching behaviour.
For instance, BANK can be specified with the following expression.

BANK(b) = Rq?z; ( [z > b]→ Sno; BANK(b)
[z ≤ b]→ Sy!z; ( uc; BANK(b)

Rdone; r!z; BANK(b − z)
)

)

This way of specifying systems makes it easy to model some situations that can-
not be modelled easily or at all with our state machine formalism, like on-the-fly
creation of new state machines. However, recursion complicates significantly the
development of semantic theories like the ones in Sect. 5. As a consequence,
some theories give unintuitive meanings to expressions like P = τ ;P . Further-
more, modellers of systems may find the notation cryptic and laborious to use.
The present author believes that this is one of the reasons why process-algebraic
methods have received much less attention than they deserve.

5 Abstract Behaviour

The detailed behaviour of a system with many hidden actions has typically few
visible transitions and many τ -transitions. It cannot be drawn as a readable
picture because of the many τ -transitions. In this section we discuss theories of
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τ

τ

τ

τ

uc

g〈1〉 τ

r〈1〉 uc r〈1〉

uc

τ

τ

g〈1〉

g〈1〉
uc

g〈1〉

r〈1〉

uc r〈1〉

uc
g〈1〉

uc

Fig. 8. The CFFD- and trace semantics version of the user’s money view in Fig. 6
restricted to data type {1}

abstract behaviour, with which one can get rid of most τ -transitions and produce
pictures such as Fig. 6. There are numerous such theories, so we concentrate on
one and briefly mention some others. As a by-product we get a proof that the
interrupt operator is fundamental instead of a shorthand. We also study the
notion of determinism in the context of abstract behaviour. Finally we mention
some verification techniques that exploit abstract behaviour.

5.1 Trace Semantics

A trace of an LTS is the sequence of visible actions that is obtained from any
finite path that starts in the initial state. For instance, both LTSs in Fig. 8 have
the traces ε, g〈1〉, uc, g〈1〉 r〈1〉, g〈1〉 uc, uc uc, uc g〈1〉, g〈1〉 r〈1〉 g〈1〉, and so on. ε
denotes the empty sequence of visible actions. It is a trace of every LTS. A trace
of a system is a trace of its behaviour. Figure 8 left has been made from Fig. 6
by restricting the type of x and y to {1}.

To make it easier to talk about traces and related things, let s=σ⇒ s′ denote
that there is a path from s to s′ such that its sequence of visible actions is σ. By
s=σ⇒ we mean the same thing but do not mention the end state of the path.
With this notation, the set of traces of L = (S,Σ,Δ, ŝ) is Tr(L) = {σ | ŝ=σ⇒}.

The trace semantics of L is the pair (Σ(L),Tr(L)), whereΣ(L) is the alphabet
of L. Two systems are trace equivalent if and only if they have the same trace
semantics, that is, the same alphabet and the same set of traces, that is, Σ(L) =
Σ(L′) ∧ Tr(L) = Tr(L′). Every semantics induces an equivalence — L � L′ if
and only if they have the same semantics. On the other hand, the equivalence
classes of any equivalence can be thought of as a semantics. Therefore, we will
sometimes use the words “semantics” and “equivalence” interchangeably.

The set of traces of a finite LTS is essentially the same thing as the lan-
guage accepted by a finite automaton whose every state is a final state. As a
consequence, well-known algorithms from automata theory can be used for ma-
nipulating finite LTSs so that the trace semantics is preserved. One may, for
instance, construct the smallest deterministic LTS that has the same trace se-
mantics as a given finite LTS. Figure 8 right shows the result of doing that to
Fig. 8 left.
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When we say that an equivalence � preserves a property we mean that for
every L and L′, L � L′ implies that L and L′ give the same value to the property.
For instance, if � preserves deadlocks and L � L′, then either none or both of
L and L′ may deadlock.

The major drawback of the trace equivalence is that it does not preserve
deadlocks and livelocks. In those applications where this does not matter, trace
semantics is excellent. What the trace equivalence preserves is called stuttering-
insensitive safety properties. Safety properties are the properties whose violation
can be detected after a finite execution, without knowing the future. Deadlock
and livelock cannot be detected so, because if an external observer who only
sees the visible events did not see anything happen, she does not know whether
that was because she did not wait long enough or because nothing is going to
ever happen. She cannot assume that if something is going to happen, it will
happen in, say, 1000 time units, because there may be 1001 τ -events before the
next visible event.

Stuttering-insensitive means that the number of τ -events before a visible event
or deadlock does not matter. Bisimilarity is not stuttering-insensitive, but all
semantics in this section are. Indeed, the usefulness of the abstract semantics
comes from throwing away unnecessary information, and the number of τ -events
is almost always unnecessary information.

Trace equivalence can preserve any stuttering-insensitive safety property, and
does not preserve deadlock-freedom. Temporal logic researchers sometimes clas-
sify deadlock-freedom as a stuttering-insensitive safety property [19, p. 309]. We
have a paradox!

Deadlock-freedom is expressed in temporal logics as �(E1 ∨ · · · ∨En), where
� means “always”, and the Ei are equivalent to the enabling conditions of the
atomic statements of the system. The formula can also be modelled in trace
semantics. However, if one more statement is added to the system but not to
the formula, the formula is still meaningful, but does not any more express
deadlock-freedom. We see that classification of deadlock-freedom as a safety
property assumes that the program code of the system is available, to know
which formula expresses deadlock-freedom. Process algebra researchers do not
make that assumption, so they can model the formula but cannot know if it
expresses deadlock-freedom.

State propositions can be taken into account in traces by adding val (ŝ) to
the semantics and replacing the actions by pairs 〈a, P 〉, where a ∈ Σ ∪ {τ}
and P ⊆ Π [11]. P lists the propositions whose truth values change during the
transition. The pair 〈τ, ∅〉 plays the role of the invisible action. In this formalism,
a trace is a sequence of pairs 〈a, P 〉, where a �= τ or P �= ∅.

5.2 Stable Failures

A deadlock-preserving equivalence is obtained by extending the trace semantics
with the set of stable failures. We say that a state refuses a set A of actions,
if none of its output transitions is labelled with an element from A. Thus a
deadlock is a state that refuses Σ ∪ {τ}, where Σ is the alphabet of the system.



External Behaviour of Systems of State Machines with Variables 283

a1 a2 . . . an−1 an

b1

bm

...
τ τ τ τ

Fig. 9. Showing that stable failures are necessary to preserve deadlocks

A stable failure is a pair (σ,A), where σ is a trace and A ⊆ Σ. The system has
(σ,A) as its stable failure if and only if it has an execution whose trace is σ and
that ends in a state that refuses A ∪ {τ}. The set of stable failures of L is thus

SFail(L) = { (σ,A) | ∃s : ŝ=σ⇒ s ∧ A ⊆ Σ(L) ∧ ∀a ∈ A ∪ {τ} : ¬(s−a→) } .

Here s−a→ means that there is an s′ such that s−a→ s′.
The motivation for this complicated-looking notion is that its presence in the

semantics either explicitly or implicitly is necessary to preserve deadlocks, if we
use ||. Let σ = a1a2 · · · an ∈ Σ(L)∗ and A = {b1, . . . , bm} ⊆ Σ(L). Consider the
LTS Lσ

A in Fig. 9 with the alphabet Σ(L). If L || Lσ
A has executed some other

trace than σ, then τ is enabled. If σ has been executed and L can execute τ
or any of b1, . . . , bm, then that action is enabled. Otherwise nothing is enabled.
So L || Lσ

A deadlocks if and only if both execute σ and then L refuses τ and
b1, . . . , bm. That is possible if and only if (σ,A) is a stable failure of L.

We mentioned in Sect. 4.1 that an equivalence � is a congruence with respect
to an operator f for putting state machines or behaviours together, if and only
if for every L1, . . . , Ln, L

′
1, . . . , L

′
n we have that L1 � L′

1, . . . , Ln � L′
n imply

f(L1, . . . , Ln) � f(L′
1, . . . , L

′
n). Let L1 � L2, where � preserves deadlocks and

the alphabet, and is a congruence with respect to ||. Because it is a congruence,
L1 ||Lσ

A � L2 ||Lσ
A. Then (σ,A) ∈ SFail (L1) if and only if L1 ||Lσ

A has a deadlock
if and only if L2 || Lσ

A has a deadlock if and only if (σ,A) ∈ SFail(L2). We have
proven the following.

Proposition 18. Any congruence with respect to || that preserves the alphabet
and deadlocks also preserves stable failures.

This, actually simple, result is from [28]. The semantics consisting of the alphabet
and stable failures (but not traces) is a congruence with respect to ||, hiding, rela-
tional renaming, and action prefix. If also the choice operator is used, then the
so-called “initial stability” bit that we will discuss a bit later must be added to the
semantics, to retain the congruence property. If, furthermore, the interrupt oper-
ator is used, then also traces must be added to the semantics. These emphasize
that the congruence property is sensitive to the set of operators in use.

The discussion above can be summarized by saying that even if we could di-
rectly observe only deadlocks, we could get information on stable failures and
perhaps also other things by putting the system to a suitable environment, and
observing the deadlocks of the result. The semantic model consisting of the
alphabet, traces, and deadlocks is not fully abstract, because we could get ad-
ditional information about the system by using it as a component in a bigger
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Fig. 10. Illustrating a congruence problem with failures

system. On the other hand, assuming that only ||, hiding, relational renaming,
and action prefix are allowed for connecting the system to its environment, the
semantic model consisting of the alphabet and stable failures is fully abstract: it
contains precisely the information that we can get by putting the system under
test in a suitable environment and then observing deadlocks.

Many advanced process-algebraic verification methods are based on replacing
components of a system by equivalent components that are better suited for con-
tinuing the verification. For instance, an LTS may be replaced by a smaller but
equivalent LTS. The correctness of this relies on the assumption that the equiva-
lence in use is a congruence, implying that the semantics of the system as a whole
does not change in the replacement. Therefore, the congruence property is central.

When ¬(s−τ→) and a ∈ Σ, then s=a⇒ and s−a→ mean the same. As a
consequence, stable failures can be defined equivalently as

{ (σ,A) | ∃s : ŝ=σ⇒ s ∧ A ⊆ Σ ∧ ∀a ∈ A : ¬(s=a⇒) ∧ ¬(s−τ→) } .

Historically there was great interest in failures, defined as

{ (σ,A) | ∃s : ŝ=σ⇒ s ∧ A ⊆ Σ ∧ ∀a ∈ A : ¬(s=a⇒) } .

This line of research ran into trouble because of the congruence problem that is
illustrated in Fig. 10. The LTSs in the figure have the same alphabet, traces, and
failures. However, if a is hidden in both, then (ε, {b}) becomes a failure of the
one on the right but not of the other. The semantics consisting of the alphabet,
traces, and failures is thus not a congruence with respect to hiding.

This is why failures had to be replaced by stable failures. A state is called
stable if and only if it cannot execute τ . The difference of failures and stable
failures is that in the latter, the state after the trace must be stable.

The desire that the equivalence must be a congruence has led to numerous
small variants of equivalences. For instance, the semantics consisting of the al-
phabet, traces, and stable failures stops from being a congruence when the choice
operator is employed. This problem can be solved simply by adding one bit to
the semantics, known as the initial stability bit. It tells whether the initial state
is stable, that is, whether ¬(ŝ−τ→).

The congruence property is sensitive to the set of operators in use. This
is one reason why there are so many semantic models in process algebras.

Information on stable failures can be taken into account in algorithms by at-
taching to each relevant state a set of minimal acceptance sets. An acceptance



External Behaviour of Systems of State Machines with Variables 285

set is the complement, with respect to the alphabet, of a set that the state re-
fuses. Acceptance sets carry the same information as refused sets but tend to be
smaller. All stable failures represented by a non-minimal acceptance set are also
represented by their smaller acceptance sets, so storing non-minimal acceptance
sets would be pointless.

5.3 On Building Operators from Other Operators

Often in computer science, an operator can be thought of as just an abbreviation
of an expression written without using it, while another operator genuinely adds
to the expressivity of the language. For instance, if the propositional operators
∧ and ¬ are available, then ∨ is obtained as ϕ ∨ η ⇔ ¬(¬ϕ ∧ ¬η), but if only ∧
and ∨ are available, then ¬ cannot be constructed. In Sect. 4 we demonstrated
that ||, hiding, and relational renaming suffice to represent both all forms of
communication and the use of local or shared variables. However, this does not
imply that all reasonable operators or all reasonable ways of building systems
could be built from them. This subsection is devoted to this issue.

First we have to discuss what do we mean by representing an operator as a
function of other operators. We use the interrupt operator as an example. If
f is built from other operators than , and if f(L1, L2) is isomorphic to L1 L2

for every LTSs L1 and L2, then it is clear that L1 L2 can be built from the
other operators. Intuition might suggest that it is not possible, and we will soon
see that it is indeed the case.

However, requiring isomorphism is usually unnecessarily strict. For instance,
if we are only interested in the trace semantics, then it suffices that f(L1, L2) has
the same trace semantics as L1 L2. Indeed, such an f can be constructed only
using || and relational renaming. For simplicity, we ignore the issue of successful
termination, although taking it into account would not be difficult.

Let Σ1 and Σ2 be the alphabets of L1 and L2, respectively. For 1 ≤ i ≤ 2, let
Φi rename each a ∈ Σi to (a, i). The alphabets of L1Φ1 and L2Φ2 are disjoint.
Let Σ be their union. Let Φ rename each (a, 1) and each (a, 2) in Σ to a. Let
L be the LTS who has two states ŝL and sL, whose alphabet is Σ, and whose
transitions are { (ŝL, (a, 1), ŝL) | a ∈ Σ1 } ∪ { (ŝL, (a, 2), sL) | a ∈ Σ2 } ∪
{ (sL, (a, 2), sL) | a ∈ Σ2 }. Each visible transition of (L1Φ1 ||L2Φ2 ||L)Φ consists
of a visible transition of L and either L1 or L2 (but not both). Clearly L always
allows L2 to execute visible transitions. On the other hand, L allows L1 to
execute visible transitions only as long as L2 has not executed any.

We see that (L1Φ1 || L2Φ2 || L)Φ behaves otherwise like L1 L2, except that
it is not the starting of L2 but the first visible transition of L2 that stops L1

from executing visible transitions, and nothing stops L1 from executing invis-
ible transitions. However, these differences do not affect the traces. Therefore,
Σ((L1Φ1 ||L2Φ2 ||L)Φ) = Σ(L1 L2) and Tr((L1Φ1 ||L2Φ2 ||L)Φ) = Tr(L1 L2).

On the other hand, we will now show that if the equivalence preserves the
alphabet and stable failures, then there is no function f such that f(L1, L2) is
equivalent to L1 L2 and f can be built from only ||, hiding, relational renaming,
and action prefix. Such equivalences include isomorphism and bisimilarity. They
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also include the CFFD-equivalence and the divergence-preserving variants of
weak and branching bisimilarity mentioned later in this section.

Proposition 19. Let � be an equivalence that preserves the alphabet and stable
failures. There is no function f that can be built from only parallel composition,
hiding, relational renaming, and action prefix, such that L1 L2 � f(L1, L2) for
every LTSs L1 and L2. A similar result holds if also the choice operator may be
used in building f and � also preserves initial stability.

Proof. Assume that f exists. Let ≈ be defined by L ≈ L′ if and only if Σ(L) =
Σ(L′) and SFail (L) = SFail(L′). With the choice operator, ≈ also requires that
the initial state of either none or both of L and L′ is stable. By [28], ≈ is a
congruence with respect to the mentioned operators. Therefore, if L1 ≈ L′

1 and
L2 ≈ L′

2, then L1 L2 � f(L1, L2) ≈ f(L′
1, L

′
2) � L′

1 L′
2, yielding L1 L2 ≈

L′
1 L′

2. This means that ≈ is a congruence with respect to , which is in
contradiction with [28]. ��

Proposition 18 lets us to state the above result as follows: the interrupt operator
cannot be built from other common process-algebraic operators, if the semantics
in use preserves the alphabet and deadlocks and is a congruence with respect to
||. However, we saw that with the trace semantics it was possible. We conclude
that whether or not an operator can be built from other operators depends on
the semantics in use. We also conclude the following:

Despite the great expressive power of ||, hiding, and relational renaming,
they cannot model all useful ways of building systems.

5.4 CFFD-Semantics

Information on livelocks can be added to the semantics in the form of divergence
traces. We say that state s diverges if and only if an infinite sequence of τ -events
can be started at s. A divergence trace is a trace that ends in a diverging state.
For instance, all traces of Fig. 8 left are divergence traces. The set of divergence
traces is denoted with DivTr(L).

When divergence traces are added, then also something else must be done to
the semantics to maintain the congruence property. One possibility is to add the
infinite traces InfTr(L). They are the infinite sequences of visible actions that
arise from infinite executions that start at the initial state. The resulting seman-
tics is called Chaos-free failures divergences semantics or CFFD-semantics [40].
We will explain the odd name soon.

The definition of CFFD-semantics as usually presented in the literature lacks
the trace component. This is because it can be derived from other components:
Tr(L) = DivTr(L) ∪ { σ | (σ, ∅) ∈ SFail (L) }. So it is implicitly present even if
it is not explicitly mentioned. If the LTSs are finite, also infinite traces can be
left out for a similar reason. On the other hand, the initial stability bit must
be added if the choice or interrupt operator is used. This is why variants of the
CFFD-semantics have been presented in the literature.
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An alternative way of solving the congruence problem caused by divergence
traces is to only consider minimal divergence traces and ignore everything after
them. A divergence trace is minimal if and only if none of its proper prefixes
is a divergence trace. This is called catastrophic divergence, and a process that
diverges initially is sometimes called chaos.

This solution arises naturally from the mathematics used for giving a mean-
ing to recursive process definitions of the kind in Sect. 4.6. It was chosen as the
main semantics of the well-known theory of Communicating Sequential Processes
(CSP) [13,23,25]. Unfortunately, it implies that, for instance, the LTS in Fig. 8
left is equivalent to chaos. Thus no information on its behaviour other than that
it diverges initially is preserved. This is a big drawback in many applications.
Therefore, when CFFD-semantics was invented, its name was chosen to empha-
size the similarity to CSP and the absence of chaos. Also CSP researchers admit
that it would be nice to see beyond divergence [24].

Figure 8 left has been produced using CFFD-semantics. So the information
that it gives on the deadlocks and livelocks of the system is real. There are no
deadlocks, but sometimes the system can be in a state where it only can execute
g〈1〉 or uc, and sometimes only g〈1〉 is possible. For instance, we can reason
from the figure that if the user refuses to take the money, BANK will eventually
execute uc if it has not done that already. This is because according to Fig. 2,
ATM cannot send the “done” message before the user has taken the money.
The many livelocks in Fig. 8 arise from the possibility of the user trying again
and again, repeatedly getting loss of connection. If a yes-answer gets through to
ATM, then ATM must execute the g〈1〉-transition to continue, which is seen in
Fig. 8 as commitment to g〈1〉 perhaps together with uc.

Readers of the figures produced with CFFD-semantics — the present author
included — are sometimes confused by questions like the following. Absence
of livelock implies that ATM is in its “yes”-branch. From there, all paths to
livelocks go via the g〈1〉-transition. There is no livelock in the centre state of
Fig. 8 but there is in the bottom middle state, and the transition linking these
two states is labelled by uc and not g〈1〉. What went wrong in the reasoning?

The answer to this question is that CFFD-semantics does not preserve infor-
mation about deadlocks and livelocks in other states of an execution than the
last. Therefore, deadlocks and livelocks must only be analysed at the end states
of executions, not during intermediate states. If the execution ends at the bot-
tom middle state, then one must read deadlocks and livelocks only there, not in
the centre state of the figure.

It would be possible to draw an LTS from which deadlock and livelock infor-
mation could be read also in the middle of an execution. However, it would be
bigger than the one in Fig. 8 left. There is a trade-off.

The more information is preserved, the bigger are the resulting LTSs.

This principle works both when choosing the set of visible actions and when
choosing the semantics.
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A variant of CFFD-semantics called NDFD- or nondivergent failures diver-
gences semantics [14,33] is the weakest congruence that preserves all stuttering-
insensitive properties expressible in classical linear temporal logic [19]. It does
not preserve deadlocks, except when the congruence requirement forces it to do
so. CFFD-semantics preserves the same and also deadlocks. This makes it useful
for many but not all applications.

CFFD- and NDFD-semantics suffer from the same problem as process-alge-
braic methods in general: it is difficult to express so-called fairness assumptions
that are used in temporal logics to guarantee progress.With fairness assumptions
one could, for instance, remove livelocks in Fig. 8 left. Promising ideas towards
solving this drawback were presented in [21,22], but, unfortunately, nobody has
continued that research.

5.5 CFFD-Preorder

A preorder is a reflexive and transitive binary relation. A precongruence with re-
spect to f is a preorder � such that if L1 � L′

1, . . . , Ln � L′
n, then f(L1, . . . , Ln)

� f(L′
1, . . . , L

′
n). Every preorder induces an equivalence and every precongru-

ence induces a congruence by L � L′ ⇔ L � L′ ∧ L′ � L. A precongruence
that induces CFFD-equivalence is obtained by L � L′ ⇔ Σ(L) = Σ(L′) ∧
SFail(L) ⊆ SFail(L′) ∧DivTr (L) ⊆ DivTr (L′) ∧ InfTr(L) ⊆ InfTr(L′). We call
it CFFD-preorder. The reason for requiring equality of alphabets instead of the
subset relation is too technical to be discussed here [33].

Let � denote CFFD-preorder. If L � L′, then whatever trace, stable failure,
divergence trace, or infinite trace L can do, also L′ can do, but not necessarily
vice versa. In particular, if L′ cannot do anything wrong — cannot execute a
wrong visible action, cannot deadlock when it is not allowed to, and cannot
livelock when it is not allowed to — then also L cannot do anything wrong.
So correctness of L′ implies the correctness of every L that satisfies L � L′.
Indeed, there is a theorem saying that if L′ satisfies a stuttering-insensitive
linear temporal logic formula and L � L′, then also L satisfies the formula [33].

This implies that we need not know the components of a system precisely
when verifying the correctness of the system. Instead, if we have many possible
alternatives for a component, it suffices that we use those among them that are
the biggest in CFFD-preorder. This is particularly important when also the users
of the system are modelled. Sometimes the correctness of a system depends on
the users to obey some rules. It is often easy to model the CFFD-biggest user
that obeys the rules. If the system works correctly with it, then it works correctly
with all users that obey the rules.

This also means that often verification does not consist of checking whether
the system is equivalent to the specification but whether the system is at most
the specification. Systems are often allowed to be better than their specifications.
If we buy a fifo queue with capacity 3 and get a fifo queue with capacity 4 for the
same price, we do not mind, although it is not equivalent to the specification.

Checking CFFD-equivalence of two LTSs is PSPACE-complete. Checking
CFFD-preorder is PSPACE-complete in the size of the specification LTS but
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polynomial time in the size of the system LTS. This is fortunate, because the
system LTS is usually a parallel composition of components and thus much bigger
than the specification LTS. Similar remarks apply to trace semantics, CSP, and
linear temporal logic. In Sect. 5.6 we will see that all these semantics are called
“linear time”.

Verification of linear-time properties is typically polynomial time in the
size of the state space of the system and PSPACE-complete in the size
of the state space of the specification.

To get a feeling of CFFD-preorder, let us discuss its extreme elements. For every
alphabet Σ, there is a maximum element, that is, L′ such that every L with the
same alphabet satisfies L � L′. It has an initial state s1 and another state s2,
and the transitions s1−τ→ s2, s1−τ→ s1, and s1−a→ s1 for every a ∈ Σ. Its
traces are Σ∗, all traces are divergence traces, and (σ,Σ) is a stable failure for
every trace σ. Also its set of infinite traces is maximal.

On the other hand, there is no minimum element. The LTS that has no tran-
sitions has no divergence traces, while the LTS that has a τ -transition from its
initial state to itself but no other transitions has no stable failures. Thus a mini-
mum element must have no divergence traces and no stable failures. However, ε
is a trace of every LTS, so each LTS has the divergence trace ε or the stable fail-
ure (ε, ∅). According to the above-mentioned theorem about CFFD-preorder and
linear temporal logic, a minimum element would satisfy all satisfiable stuttering-
insensitive formulas. It would thus satisfy all satisfiable specifications. It would
be a single system that is good for everything! It is a sign of the healthiness of
our theory that such a system does not exist.

With trace preorder, the LTS that has no transitions is a minimum element.
Indeed, it satisfies all specifications that can be formulated in trace semantics.
Trace semantics only preserves stuttering-insensitive safety properties. Safety
properties require that the system must never do anything wrong. The LTS that
has no transitions does not ever do anything wrong, because it does not ever
do anything. We see that a specification formalism is not complete unless it
can specify that the system must do something. Trace preorder cannot do that,
but CFFD-preorder can, by disallowing divergence traces and stable failures
appropriately.

Although CFFD-preorder has no minimum element, it has minimal elements.
It is useful to know that if σ is a trace, then it is a divergence trace or (σ, ∅) is
a stable failure or both. If (σ, ∅) is a stable failure, then, for every visible action
a, σa is a trace or (σ, {a}) is a stable failure or both. Minimal elements are
obtained by avoiding the option “both” and by restricting divergence traces to
the minimal ones. We skip the proof (infinite traces cause some trouble).

Proposition 20. An LTS L is CFFD-minimal if and only if for every σ ∈
Tr(L) either

– (σ, ∅) /∈ SFail(L) and for every a ∈ Σ(L), σa /∈ Tr(L); or
– σ /∈ DivTr(L) and for every a ∈ Σ(L), σa /∈ Tr(L) or (σ, {a}) /∈ SFail(L).
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That is, if L livelocks immediately after some trace σ, then it cannot do anything
else nor refuse anything after σ; and if it does not livelock immediately after σ,
then, for each visible action a, it can execute a as the next visible action after
either no or every way of executing σ. An important theme here is that if L
can do or refuse something after one way of executing a trace, then it can do
or refuse the same after every way of executing the same trace. In other words,
CFFD-minimal systems are deterministic.

This statement is not a theorem but an intuitive statement, because we have
not made it precise what deterministic means, but rely on intuition. The clas-
sical definition used in automata theory does not apply, because, for instance,
it declares nondeterministic the LTS s1←a− ŝ−a→ s2. We will return to this
issue in Sect. 5.7. There we can also tackle the opposite question, that is, are all
deterministic systems CFFD-minimal.

Roughly speaking, the smaller a system is in CFFD-preorder, the more
deterministic it is, and vice versa.

We did not model the user in the cash dispenser system. The unmodelled user
corresponds to the LTS that has one state, a transition for each a ∈ Σ from that
state to itself, and nothing else. Proposition 20 implies that this user is not the
most general reasonable user. It is CFFD-minimal and thus only represents itself
in verification. The most general reasonable user of the cash dispenser system can
be modelled as an LTS with three states and the transitions ŝ−ci→ s1, ŝ−a→ ŝ
for a ∈ Σ \ {ci}, ŝ−τ→ s2, s1−co→ ŝ, and s1−a→ s1 for a ∈ Σ \ {co}, where Σ
consists of ci, co, nm, lc, and w〈i〉 and g〈i〉 for every i ∈ N. This differs from the
unmodelled user in that it can deadlock when the card is not in, modelling the
possibility of the user going away and never again trying to withdraw money.
The model involves the assumption that the user will not go away while the card
is in.

For reasoning about the progress properties of the system from the point of
view of the user, it is a good idea to make ci and co visible and the remaining
actions invisible. With the unmodelled user, this produces the two-state LTS
where ci and co alternate. With the model of the user described above, a deadlock
is added to the initial state of the previous result. From these it is clear that the
system does not livelock, and it deadlocks only when the user goes away while
the card is not in.

The modelling of components and the interpretation of the resulting pictures
when using CFFD-semantics was discussed in detail in [38].

A specification of a system or an assumption about its component must
often be nondeterministic, to leave enough room for different valid im-
plementations and users.

Often preorders are more appropriate than equivalences for comparing
systems against specifications.
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Fig. 11. Two CFFD-equivalent but not observation equivalent LTSs

5.6 Weak and Branching Bisimilarity

A famous abstract equivalence that is not based on sets of traces or failures is
the observation equivalence of CCS, also known as weak bisimilarity [20]. Its
definition resembles the definition of bisimilarity, but uses the = · · ·⇒-relation.
Every visible action, possibly preceded and followed by invisible actions, must be
simulated by a visible action, possibly preceded and followed by invisible actions.
Also every (possibly empty) sequence of invisible actions must be simulated by
a (possibly empty) sequence of invisible actions.

Definition 21. Let (S,Σ,Δ, ŝ) be an LTS. The relation “�” ⊆ S×S is a weak
bisimulation, if and only if for every s1 ∈ S, s2 ∈ S, s ∈ S, and a ∈ Σ ∪ {ε}
such that s1 � s2 the following hold:

– If s1 =a⇒ s, then there is s′ ∈ S such that s2 =a⇒ s′ and s � s′.
– If s2 =a⇒ s, then there is s′ ∈ S such that s1 =a⇒ s′ and s′ � s.

Two LTSs are observation equivalent if and only if they have the same alphabet
and their disjoint union has a weak bisimulation such that the initial states
simulate each other.

The choice and interrupt operators cause a congruence problem also to observa-
tion equivalence, so a variant known as observation congruence has been defined.
Another variant is obtained by making the equivalence sensitive to livelocks, by
requiring that if s1 � s2, then either neither or both of s1 and s2 diverge. This
equivalence is strictly stronger than CFFD-equivalence.

Observation equivalence is a branching time concept, while CFFD-equivalence
is linear time. That is, individual executions and properties of their end states
suffice for checking CFFD-equivalence, while observation equivalence requires
a tree-like structure (or graph). Figure 11 left shows a professor who silently
chooses between coffee and tea, and then enters a cafeteria and takes what she
chose. The one on the right is otherwise similar, but makes the choice after
entering the cafeteria (but without ensuring that both are available). They are
CFFD-equivalent but not observation equivalent.

In Definition 21, the first and last state of the simulating execution must
simulate the first and last state of the simulated execution, but the interme-
diate states need not simulate any states. In branching bisimilarity [41], also
the intermediate states must simulate states along the simulated sequence. It
is strictly stronger than observation equivalence. In its extension that takes di-
vergences into account, it does not suffice that diverging states are simulated
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by diverging states. Instead, each infinite sequence of invisible actions must
be simulated by an infinite sequence of invisible actions. The resulting equiv-
alence preserves [5] stuttering-insensitive computation tree logic [6] similarly to
how CFFD-equivalence preserves classical stuttering-insensitive linear temporal
logic.

5.7 Operational Determinism

“Deterministic” has an established definition in automata theory. A direct trans-
lation of the definition to LTSs is that an LTS (S,Σ,Δ, ŝ) is deterministic if and
only if it has no τ -transitions, and for every a ∈ Σ, s ∈ S, s1 ∈ S, and s2 ∈ S,
if s−a→ s1 and s−a→ s2, then s1 = s2. This definition is not useful in process
algebras, because it deems very few LTSs deterministic, and determinism is not
preserved by bisimilarity. For instance, the LTSs ŝ−a→ s1 and s1←a− ŝ−a→ s2
are bisimilar but only the former is deterministic.

Motivated by the discussion in Sect. 5.5, we could define that an LTS is
deterministic if and only if it is CFFD-minimal. This is similar to the definition
in CSP [23], except that there divergence is treated differently. However, we
would like the definition not be tied to any particular semantics. Furthermore,
we would like the definition to deem deterministic as many LTSs as possible,
because we will soon present a proposition whose usefulness benefits from that.
The following notion [10] is suitable.

Definition 22. LTS (S,Σ,Δ, ŝ) is operationally deterministic, if and only if
for every σ ∈ Σ∗, s1 ∈ S, and s2 ∈ S, if ŝ=σ⇒ s1 and ŝ=σ⇒ s2, then the
following hold:

– for every a ∈ Σ, if s1 =a⇒, then s2 =a⇒; and
– if s1 diverges, then s2 diverges.

CFFD-minimal LTSs are precisely the LTSs that are operationally deterministic
and satisfy the following condition: for every σ ∈ DivTr(L) and a ∈ Σ, σa /∈
Tr(L). That is, Proposition 20 requires that after executing a divergence trace,
the LTS cannot do anything else than diverge; but Definition 22 does not require
so.

Now we can state a proposition about operationally deterministic LTSs. Again,
we skip the proof [10].

Proposition 23. If LTSs L and L′ are operationally deterministic, Σ(L) =
Σ(L′), Tr(L) = Tr(L′), and DivTr(L) = DivTr(L′), then L and L′ are branch-
ing bisimilar, divergence-preserving branching bisimilar, observation equivalent,
divergence-preserving observation equivalent, CFFD-equivalent, NDFD-equiva-
lent, and CSP-equivalent.

This result has the practical application that if an LTS is operationally determin-
istic (and that can be tested very efficiently), then it can be processed with any
algorithm that preserves the alphabet, traces, divergence traces, and operational
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determinism, and the result is valid in each of the mentioned semantics. It has
also the philosophical message that a multitude of semantics in process algebras
collapses if systems are operationally deterministic. A similar result for semantics
that ignore divergences, that does not assume that DivTr(L) = DivTr(L′), was
developed in [7,42]. Unfortunately, to make the collapse also cover congruences
with respect to the choice operator, something extra is needed. For instance,
the requirement that ŝ is stable may be added to the formulation of operational
determinism.

That there are so many different semantics in process algebras is largely
because operational nondeterminism is an important feature in concur-
rency. For instance, if all systems were operationally deterministic, the
distinction between linear time and branching time would disappear.

5.8 Verification Techniques

In this subsection we mention some verification techniques that are related to
the theory in this section. Detailed information can be found in the cited sources,
and in many cases also in the tutorials [30,32,34].

A basic method is compositional LTS construction. It means putting some
components of the system together, reducing their joint behaviour, putting the
result together with the reduced behaviour of a neighbouring subsystem and so
on, until a reduced behaviour of the system as a whole is obtained. The semantics
that is used must be a congruence with respect to the operators used in building
the system. The first explicit mentionings of this idea are perhaps in [27,18], but
the idea is so obviously built into process-algebraic theories that it has certainly
been known before that.

Reducing the behaviour means applying some algorithm to the LTS that
produces an equivalent but (hopefully) smaller LTS. With bisimilarity-based
equivalences, there is a unique smallest equivalent LTS, and it can be found in
polynomial time [15]. With trace- and failure-based equivalences, smallest equiv-
alent LTSs are not necessarily unique, and finding one is PSPACE-hard. The
problem is a generalization of the problem of finding a minimal (not necessarily
deterministic) finite automaton that accepts the same language as a given finite
automaton.

Fortunately, it is not necessary to find a minimal LTS, it suffices that it is
equivalent and small. So one can use heuristic algorithms that run in polynomial
time. Furthermore, algorithms based on the well-known determinization and
minimization algorithms of finite automata have been extended to the failure
semantics world, and they have been reported to run reasonably well in practice,
e.g., [4,23,39]. Please see [29] for more comments on the relative efficiency of
verification using bisimulation-based vs. failure-based semantics.

Stubborn set methods save effort during the computation of parallel composi-
tion by leaving out orderings of events that have the same effect as other orderings
that are not left out. This type ofmethods are also called “partial order”. Stubborn
set methods for the major process-algebraic semantics were presented in [31].
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Independently of the semantics, compositional LTS construction suffers from
the spurious behaviour problem. That is, the behaviour of a subsystem may
be much bigger than the behaviour of the system as a whole. This is because
systems often obey invariants that strongly restrict the possible combinations of
local states of the components, but, in isolation, subsystems do not necessarily
obey them. Consider a fifo queue of capacity k that can store two different
messages. In isolation it has 1 + 2 + 22 + · · ·+ 2k = 2k+1 − 1 states. When the
same queue is in the well-known alternating bit protocol [2], there can be at most
one place where successive messages are different. This reduces the number of
possible states to k2+k+1 (one empty queue, 2k with only one type of messages,
and 2 · 12k(k − 1) with two message types).

The spurious behaviour problem was pointed out and a solution for observation
equivalence was presented in [9]. A general solution that applies to many seman-
tics was presented in [16]. A key idea in these solutions is an interface specification,
also known as interface process. It represents an assumption about the behaviour
of the subsystem when it is within the system as a whole. For instance, one may
represent the assumption that there is at most one place in the queue where suc-
cessive messages are different. If the assumption is incorrect, then that is detected
at the end of compositional LTS construction. Independently of whether it is cor-
rect, the interface process reduces the LTS of the subsystem. Interface processes
require the addition of the notion of “undefined” to the semantics, but [16] shows
how it can be done with very little need to rewrite tools.

If the result of compositional LTS construction is small, it can be analysed
visually, like we did for Fig. 6 and 8. If it is small or big, one can compare it to
a reference LTS with an equivalence or preorder checking algorithm. Preorder
checking has the advantage that it can be done on-the-fly, that is, simultaneously
with the computation of the behaviour of the system. This is a big advantage,
because incorrect systems tend to have lots of spurious behaviour that the cor-
responding correct systems do not have. With on-the-fly verification, the com-
putation may be terminated when the first counter-example has been found, so
that most of the spurious behaviour will not be computed. Preorder checking is
the major verification method with the FDR (Failures-Divergences Refinement)
tool [23]. A CFFD-preorder version of this idea was presented in [12].

Some systems contain many identical components. Sometimes the behaviour
of a subsystem with n + 1 components turns out equivalent to the behaviour
with n components. (The probability of this happening can be increased with
interface processes.) Then a simple induction argument yields that the behaviour
of the system is the same for all numbers of the replicated components starting
from n. Particularly intriguing applications of this idea were presented in [37],
such as proving that the behaviour of a protocol is independent of the (finite)
maximum number of times that it may re-transmit a message before giving
up. The idea can also be used with precongruences: if L � L′ and f(L′,K) �
L′, then f(L,K) � f(L′,K) � L′, yielding f(f(L,K),K) � f(L′,K) � L′

and f(· · · f(f(f(L,K),K),K) · · · ,K) � L′ for any number of K-components.
Outside process algebras, the idea has been presented in [43], among others.
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In [26] it was pointed out that the notion of determinism is related to computer
security. Consider a system with a trusted user and an untrusted user. The
untrusted user must get no information about the behaviour of the trusted user.
This holds, if the untrusted user’s view to the system is deterministic. We already
pointed out that there is a fast algorithm for checking determinism.

6 Conclusions

Compositionality at the structural level is routine in computer science and soft-
ware engineering. There are modules, classes, and other kinds of units, and they
can be nested. There are hierarchical Petri nets. The situation with composi-
tionality of concurrent systems at the semantic level is confusing. On one hand,
the idea is natural and it seems that it attracts many researchers. On the other
hand, many widely valid basic facts have been found by process algebra research
well before the year 2000, but seem little known.

The present author believes that one, but not the only, reason why process-
algebraic results have failed to break through is that process-algebraic languages
are cryptic and lead to cryptic fixed-point theories of semantics.

In this tutorial we have tried to make it clear that the semantic models are
not tied to the cryptic languages, but apply to concurrent systems in general.
We replaced recursion-based definitions of individual processes by state ma-
chines. For composing the system from its components, a small and natural set
of operators was employed, and it was shown that in the end there are just
synchronization patterns where some components do not participate, each one
who participates does that by executing a modeller-chosen visible action, and
the result has a modeller-chosen (not necessarily visible) action. Synchronous
communication may seem unnatural and restricted, but we pointed out that it
is the raw material from which all kinds of communication could be constructed.
On the other hand, our formalism does not cover all reasonable ways of building
systems, such as on-the-fly creation and abortion of processes.

The absence of event parameters from the definition of LTSs does not make
the semantic theory incapable of processing them. It is just that the semantic
theory is insensitive to event parameters, so it is easiest and most general to treat
actions as arbitrary symbols. The user may assume any internal structure for
actions (as long as τ remains invisible). For instance, when modelling transition
fusion of coloured Petri nets, it may be useful to assume that actions contain
tuples of data values.

Another reason for the lack of use of process-algebraic semantic models is
that as such, compositional LTS construction often fails because of the spurious
behaviour problem. People may have tried the basic form of compositional LTS
construction, got disappointed, and rejected process algebras.

Again, this issue is not specific to process algebras but inherent in the com-
positional construction of behaviours. Interface processes help a lot, but they
require making and modelling guesses about the behaviours of subsystems. So
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their use is not fully automatic, reducing their attraction. Furthermore, it may
be that the wide applicability of interface processes is not widely known. In
any case, more case studies are needed to find out if interface processes are a
sufficient solution.

It seems to the present author that current verification methods can process
nontrivial systems, so the methods are useful, but they can process systems of
industrial size only occasionally, so the methods do not meet the needs and are
thus not used a lot. This holds for both process-algebraic compositional methods
and verification methods in general.

In this tutorial we concentrated on the CFFD semantics. The reason is that
often either it or a closely related semantics is very good for a task. If livelocks
are not interesting but deadlocks are, throw divergences and infinite traces away
but keep traces and stable failures. If deadlocks are not interesting but livelocks
are, throw stable failures away but keep the rest. The main semantics of CSP can
be used if it does not matter that there divergence is catastrophic. If branching-
time properties are needed, then CFFD and CSP cannot be used, but some
variant of weak or branching bisimilarity may be suitable.

We pointed out that use of a variable is essentially the same thing as parallel
composition with it, and unfolding a variable can be postponed until the com-
ponents of the system have been put together. They can often be put together
in a stepwise manner in many different orderings. These open up possibilities
for new research, to develop verification methods that apply to systems with
variables but do not suffer from the effect that unfolding has to the size of the
state space. Such methods must be capable of combining data manipulation steps
from successive transitions, to liberate τ -transitions from data manipulation and
thus make it possible to remove them in reductions. Also management of vari-
able names is necessary, because data moves from one component to another, so
names of local variables within components are not helpful in projected views.
This problem was solved manually when drawing Fig. 6.

Because of networked systems and multi-core processors, today there is more
need than ever to teach students basic facts about concurrency. In particular, it
is important to make them realize how things may go wrong. Perhaps projected
views such as in Fig. 6 and 8 can be used for that purpose.

Acknowledgements. The comments by the anonymous reviewers helped to
improve this tutorial.
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