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Abstract. The causal semantics of standard net classes like Elementary Net Sys-
tems and Place/Transition Nets, is typically expressed in terms of partially or-
dered sets of transition occurrences. In each such partial order, causally related
occurrences are ordered while concurrent transition occurrences remain unor-
dered. Partial order semantics can, in particular, support model checking by effi-
cient verification techniques based on net unfoldings.

To enhance the modelling power of standard net classes, one can introduce
different forms of ‘testing’ using, for example, inhibitor arcs. However, the causal
semantics of such extended nets can often no longer be described solely in terms
of partial orders. In this paper, we explain what modifications to the partial order
semantics are needed in order to provide a satisfactory treatment for nets with
activator, inhibitor and mutex arcs. On the technical side, the proposed solution
is based on causal structures which enrich partial orders with additional order
relations corresponding to other aspects of causality. With EN-systems as our
starting point, we discuss how their extensions can be treated using these richer
notions of causality.

Keywords: elementary net systems, activator arcs, inhibitor arcs, mutex arcs,
semantical framework, step sequences, processes, causality semantics.

1 Introduction

In order to be able to verify complex, distributed systems, i.e., to guarantee correctness
of their behaviour, one has to understand the relations between concurrently ongoing
operations. This involves, in particular, providing appropriate mathematical abstractions
to capture the operational properties of such systems.

Petri nets are a system model related to state machines and similar, sequential, be-
haviour defining devices. However, the states of Petri nets are distributed (over so-
called places) and also their actions (transitions, in Petri net terms) occur purely locally.
Whether or not a transition can occur, depends only those components (places) of the
state to which it is directly related. Moreover, when it occurs, it affects only neighbour-
ing places. Hence, each transition occurrence (an event) leads to a local change of state.
All this induces local interactions between transition occurrences making it possible
to extract from a run of a Petri net, the essential causal relationships between events.
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These local interactions can be derived from so-called processes, i.e., labelled acyclic
nets representing the unfolding of a net corresponding to a single execution (with all
choices and conflicts resolved). Abstracting from the places leads to a causal semantics
expressed in terms of partially ordered sets of occurrences of transitions: causally re-
lated events are ordered, while concurrent events remain unordered. Each such partial
order describes the causal structure of a single concurrent history or run of the system
and as such represents several — closely related — (step) sequences of (simultaneously
occurring) transitions, each of them being a possible observation of that run. The stan-
dard net classes of Elementary Net Systems (or EN-systems) and Place/Transition Nets
(or PT-nets) are typical examples of this approach [1,27].

As an example, consider Figure 1(a) depicting an EN-system with three step se-
quences involving the executions of transitions a, b and c, viz. σ1 = {a, b}{c}, σ2 =
{a}{b}{c} and σ3 = {b}{a}{c}. They can be seen as observations of a single history
underpinned by a causal partial order in which a and b are unordered and both a and b
precede c.

Consistency between the different levels of abstraction at which one captures the
concurrency in the behaviour can be established within a generic approach (the seman-
tical framework of [19]) aimed at fitting together systems (i.e., nets from a certain class
of Petri nets), abstract causal orders and individual observations.

Partial order semantics as just described can support efficient verification techniques.
Rather than exploring the full state space of a system constructed from sequential obser-
vations, one uses unfoldings, see [4] for a general description of this approach. The idea
behind the resulting more efficient algorithms is to exploit the concurrency (unordered-
ness) in the behaviour to alleviate the state space explosion problem. For Petri nets,
unfoldings and nonsequential net processes provide a truly concurrent semantics with
partial orders as a succinct representation of related observations. Unfoldings based on
the branching processes from [3] in which also all choices are modelled, are the basis
for efficient verification algorithms [5,18,23].

(a)

c d

a b

(b)

c d
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a b

(d)

c d
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Fig. 1. An EN-system (a); an EN-system with an inhibitor arc joining the output place of transition
b with transition a implying that a cannot be fired if the output place of b is not empty (b); an
EN-system with an activator arc joining the input place of transition b with transition a implying
that a can be fired provided that the input place of b is not empty (c); and an EN-system with
a mutex arc between transitions a and b implying that the two transitions cannot be fired in the
same step (d)
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To enhance the modelling power of the standard net classes one can introduce dif-
ferent forms of ‘testing’, for example, testing for the absence of a token using inhibitor
arcs. This may imply that the causal semantics of such extended Petri net models can
no longer be described solely in terms of partial orders.

Figure 1(b) depicts an EN-system with an inhibitor arc. Such an arc between a place
and a transition indicates that the place has to be empty for the transition to be able to
fire. Hence this net has only two step sequences involving transitions a, b and c, namely
σ1 = {a, b}{c} and σ2 = {a}{b}{c}. This is because a can occur before b or simulta-
neously with b but ‘not later than’ b (weak causality). These two step sequences can be
seen as belonging to the abstract causal history underpinned not by causal partial orders
but rather by causality structures introduced in [14] — called stratified order structures
— based on causal partial orders and, in addition, weak causal partial orders. Another
form of testing is portrayed by the net in Figure 1(c) which depicts an EN-system with
an activator arc. Activator arcs (see, e.g., [24]) are closely related to inhibitor arcs. Such
a ‘testing’ arc between a place and a transition means that the place has to be non-empty
for the transition to be able to fire. As a result, both step sequences and abstract causal
histories of this net are exactly the same as in the previous example.

Yet another example, in Figure 1(d), depicts an EN-system with a mutex arc. Such
an arc means that the two connected transitions may occur in any order but not simul-
taneously (commutativity). Hence this net has two step sequences involving transitions
a, b and c, namely σ2 = {a}{b}{c} and σ3 = {b}{a}{c}. They belong to an abstract
history underpinned by causality structures introduced in [7,10] — called generalised
stratified order structures — based on causal partial orders together with weak causal
partial orders and, in addition, a commutativity relation which tells what pairs of events
cannot belong to the same step.

In this paper, we explain what modifications to the partial order semantics are needed
in order to provide a satisfactory treatment for nets with inhibitor, activator and mutex
arcs. The model which we extend with these new types of arcs are Elementary Net sys-
tems [27]. This model is the basic class of Petri nets and is particularly suited for the
study of fundamental properties of concurrent systems. In particular, EN-systems are the
typical concurrency model in which event independence, simultaneity, and unordered-
ness amount to basically the same semantical phenomenon, making partial orders ex-
actly the right abstract model for their behaviour. We will discuss how the extended
classes of EN-systems can be treated with the richer notions of causal semantics using
the generic approach provided by the semantical framework of [19]. Finally, we will
bring Place/Transition Nets into our discussion and reflect upon similarities and differ-
ences with the EN-systems approach. As a tutorial survey, this paper provides no proofs,
but rather provides ‘facts’ with references for proofs and more background information,
given per (sub)section.

2 Preliminaries

Composing two functions f : X → 2Y and g : Y → 2Z is defined by g ◦ f(x) =⋃
y∈f(x) g(y), for all x ∈ X . Restricting function f to a subset Z of X is denoted by

f |Z . Similarly, the restriction of a binary relation R ⊆ X × Y to a subset Z of X × Y
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is denoted by R|Z . We may use the infix notation xR y to denote that (x, y) ∈ R. The
composition R ◦ Q of two relations R ⊆ X × Y and Q ⊆ Y × Z comprises all pairs
(x, z) in X × Z for which there is y in Y such that (x, y) ∈ R and (y, z) ∈ Q. We
assume the following notions and notations:

– R−1 = {(y, x) | (x, y) ∈ R}. (reverse)
– R0 = idX = {(x, x) | x ∈ X}. (identity)
– Rn = Rn−1 ◦R. (n-th power, n ≥ 1).
– R+ = R1 ∪R2 ∪ . . . . (transitive closure)
– R∗ = R0 ∪R+. (reflexive transitive closure)
– Rsym = R0 ∪R−1. (symmetric closure)
– R is symmetric, reflexive, irreflexive, transitive if, respectively,
R = R−1 , idX ⊆ R , idX ∩R = ∅ , R ◦R ⊆ R.

– R is acyclic if R+ is irreflexive.

A relational structure is a tuple rs = (X,Q1, . . . , Qn) where X is a finite set called
domain, and the Qi’s are binary relations on X (we can select components using the
subscript rs , e.g., Xrs ). For relational structures with the same domain and arity, rs
and rs ′, we write rs ⊆ rs ′ if the subset inclusion holds component-wise. The intersec-
tion

⋂R of a set R of relational structures with the same arity and domain is defined
component-wise.

A sequence over a finite set X is a finite string x1 . . . xn of symbols xi from X . A
step over X is a non-empty subset of X , and a step sequence over X is a finite string
X1 . . .Xn of steps. A step sequence is singular if the Xi’s are mutually disjoint. The
empty (step) sequence, corresponding to the case n = 0, is denoted by λ. As singleton
sets can be identified with their only elements, sequences can be regarded as special
step sequences. Moreover, the set brackets of singleton sets will be omitted.

A labelling � of a set X is a function from X to a set of labels �(X), and a labelled
set is a pair (X, �) where X is a set and � is a labelling of X . The labelling is extended
to finite sequences of elements xi of X by �(x1 . . . xn) = �(x1) . . . �(xn), and to fi-
nite sequences of subsets Xi of X by �(X1 . . .Xn) = �(X1) . . . �(Xn). To make the
labelling explicit, we will sometimes denote a labelled step sequence by (σ, �). We will
also use φ(σ, �) = �(σ) when we want to ‘forget’ about the underlying elements but
rather focus on the step sequence �(σ) over �(X).

We assume throughout that all sets in this paper are labelled sets, with the
default labelling simply being the identity function. If the actual labelling is
irrelevant for a particular definition or result, it may be omitted. Moreover,
whenever it is stated that two domains are the same, we implicitly assume that
their labellings are identical.

3 Causal Partial Orders and Order Structures

To capture the intrinsic causal relationships between events occurring in a concurrent
system history, one normally resorts to using a suitable ordering relation. In its ba-
sic form, such a relation is a partial order (reflecting the generally accepted view that
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causality is transitive and acyclic). However, for systems with a complex structure, par-
tial orders may need to be extended to more expressive order structures which support
additional relations between events, such as weak causality. We will present two kinds
of such extended order structures.

When using (causal) ordering relations in the treatment of concurrent histories, there
are two crucial issues which need to be satisfactorily addressed. The first is the relation-
ship with their associated executions or observations, typically captured by sequences
or step sequences of events. To be meaningful, an ordering relation should be a faith-
ful abstraction of a set of executions in the sense that each of these corresponds to the
given order (should be allowed as an execution). Moreover, there should be an unam-
biguous way of deriving an ordering relation from a set of observations, by capturing all
essential causal orderings between events while ignoring coincidental ordering in any
concrete observation. We will refer to such a property as Abstraction. The second issue
is related to the way ordering relations are derived. Intuitively, an overall causal order-
ing relation should be built up from smaller, more direct local, causal ordering relations
by applying some notion of transitivity. We will refer to such an operation as Closure.

3.1 Partial Orders

A partially ordered set (or poset) po = (X,≺) is a relational structure comprising
a finite set X and an irreflexive and transitive binary relation ≺ on X . Two distinct
elements x, y of X are unordered, x � y, if neither x ≺ y nor y ≺ x. We denote a ≺� b
if a ≺ b or a � b.

Intersecting posets to filter out their common ordering is a sound operation yielding
a new poset.

Fact 1 (poset intersection). If PO is a non-empty set of posets with a common domain,
then

⋂PO is a poset with the same domain.

A poset po is total (or linear) if all pairs of distinct elements of X are ordered, and
stratified (or weak) if �∪idX is an equivalence relation. Note that all total posets are
also stratified. If a poset represents a history of a concurrent system, then x ≺ y means
that x can only be observed before y, while x � y means that x and y can be observed in
any order, even simultaneously. In Figure 2, tpo0 is a total poset and spo0 is a stratified
poset.

tpo0: total

az1

bz2

az3

cz4

spo0: stratified

az1

b z2 az3

cz4

po0: neither total
nor stratified

az1

b z2 az3

c z4

sos0: SO-structure

az1

b z2 az3

c z4

gsos0: GSO-structure

az1

b z2 az3

c z4

Fig. 2. Hasse diagrams of posets and order structures showing also the labels (a, b and c) of their
elements. Solid arcs represent ≺, dashed arcs represent �, and solid edges represent �.
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To formulate the Abstraction property for posets, we first need to make it clear which
executions correspond to a given (causal) poset po. A total poset tpo is a linearisation of
po if po ⊆ tpo, while a stratified poset spo is a stratification of po if po ⊆ spo. (That is,
po is a faithful abstraction of tpo and spo.) We denote this respectively by tpo ∈ lin(po)
and spo ∈ strat(po). In Figure 2, tpo0 ∈ lin(po0) and spo0 ∈ strat(po0). Conversely,
po captures all essential orderings present in its linearisations or stratifications, respec-
tively.

Fact 2 (poset abstraction [28]). For every poset po, lin(po) 
= ∅ and

po =
⋂

lin(po) .

The above fact, known as Szpilrajn’s Theorem, implies that a poset is uniquely deter-
mined by the intersection of its linearisations. The same holds for stratifications.

Fact 3 (poset abstraction [15]). For every poset po, strat(po) 
= ∅ and

po =
⋂

strat(po) .

The Poset Closure property described next is simple and indeed standard, but it is still
a good idea to state it explicitly as we will soon generalise it to more complicated order
structures.

A pre-poset is a relational structure � = (X,≺) such that ≺+ is irreflexive. In such
a case, its po-closure is defined as �po = (X,≺+). Intuitively, ≺ indicates which of the
executed actions are directly causally related and �po provides a full account of both
direct and indirect (derived) causality between events. Therefore, we require that ≺ be
acyclic, i.e., ≺+ is irreflexive. Then its transitive closure yields the overall causality
relationship.

Fact 4 (poset closure). For every pre-poset �, �po is a poset.

As already mentioned, individual executions of a concurrent system are often repre-
sented by sequences of events or sequences of sets of simultaneously occurring events
(step sequences). Both are language theoretic rather than order theoretic notions, but
there is a straightforward way to move between these two representations. Given a
stratified poset spo = (X,≺), there is a unique enumeration X1, . . . , Xk of the equiv-
alence classes of the relation �∪idX such that x ≺ y, for all x ∈ Xi and y ∈ Xj and
i < j. We then associate with spo the singular step sequence steps(spo) = X1 . . .Xk.
Conversely, if σ = X1 . . . Xk (k ≥ 0) is a singular step sequence, then

spo(σ) =
(⋃

i

Xi,
⋃

i<j

Xi ×Xj

)

is the stratified poset associated with σ. In Figure 2,

steps(tpo0) = z1z2z3z4 spo(z1z2z3z4) = tpo0

steps(spo0) = z1{z2, z3}z4 spo(z1{z2, z3}z4) = spo0 .
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Fact 5 (posets and step sequences). spo = spo(steps(spo)), for every stratified poset
spo, and σ = steps(spo(σ)), for every singular step sequence σ.

Hence we can identify each stratified poset spo with steps(spo) or, equivalently, identify
each singular step sequence σ with spo(σ). This also applies to labelled stratified posets
and labelled singular step sequences.

3.2 Stratified Order Structures

Posets capture an ‘earlier than’ relationship between the elements of their domains.
Their first extension we consider consists in introducing the concept of a weaker —
‘not later than’ — relationship.

A stratified order structure (or SO-structure) sos = (X,≺,�) comprises two binary
relations, ≺ (causality) and � (weak causality, in diagrams represented by dashed arcs,
see Figure 2) on a finite set X such that, for all x, y, z ∈ X :

S1 : x 
� x S3 : x � y � z ∧ x 
= z =⇒ x � z

S2 : x ≺ y =⇒ x � y S4 : x � y ≺ z ∨ x ≺ y � z =⇒ x ≺ z .

Intuitively, ≺ represents the ‘earlier than’ relationship in X , and � the ‘not later than’
relationship. Note that ≺ is a partial order, and x ≺ y implies y 
� x. It is easily
seen that if spo is a stratified poset, then the relational structure defined by sos(spo) =

(Xspo ,≺spo ,≺�spo) is an SO-structure.
Again, intersecting SO-structures to filter out their common orderings is a sound

operation yielding a new SO-structure.

Fact 6 (sos intersection). If SOS is a non-empty set of SO-structures with a common
domain, then

⋂SOS is an SO-structure with the same domain.

To formulate the Abstraction property for SO-structures, we first need to define execu-
tions corresponding to a given SO-structure sos . A stratified poset spo is an extension
of sos if sos ⊆ sos(spo). (Thus sos is a faithful abstraction of spo.) We denote this by
spo ∈ ext(sos). In Figure 2, tpo0, spo0 ∈ ext(sos0).

Fact 7 (sos abstraction). For every SO-structure sos , ext(sos) 
= ∅ and

sos =
⋂

sos(ext(sos)) .

The Closure property for SO-structures generalises the notion of po-closure introduced
for posets. A pre-SO-structure is a relational structure � = (X,≺,�) such that the
relation γ ◦ ≺ ◦ γ is irreflexive, where γ = (≺ ∪�)∗. Then its so-closure is:

�so = (X, γ ◦ ≺ ◦ γ, γ \ idX) .

Note that in a pre-SO-structure � there are no x0, x1, . . . , xn = x0 such that x0 ≺ x1

and, for all 0 < i < n, xi ≺ xi+1 or xi � xi+1. This can be regarded as a counterpart
of the acyclicity required of pre-posets.

Fact 8 (sos closure). For every pre-SO-structure �, �so is an SO-structure.

Stratified order structures were independently introduced in [6] and [12]. Their theory
has been presented in [15], and they have been used, for example, to model inhibitor
and priority systems, asynchronous races and synthesis problems (see, e.g., [17]).
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3.3 Generalised Stratified Order Structures

The second extension of causal posets introduces a representation of ‘non-simultaneity’.
A generalised SO-structure (or GSO-structure) gsos = (X,�,�) comprises two ir-

reflexive relations, � (commutativity, which is symmetric) and � (weak causality, as
before) on X such that (X,� ∩ �,�) is an SO-structure. Note that commutativity
represents the ‘earlier than or later than, but never simultaneous’ relationship. Accord-
ingly, � ∩ � represents the ‘earlier than’ relationship, and so it is required that to-
gether with � it forms an SO-structure. In fact, one could have defined GSO-structures
as gsos = (X,≺,�,�) making them a direct generalisation of SO-structures. How-
ever, it is always the case that ≺ is the same as the intersection of � and �, and so it can
be omitted. It is easily seen that if spo is a stratified poset, then the relational structure
gsos(spo) = (Xspo ,≺sym

spo ,≺�spo) is a GSO-structure.
Also in this case, intersecting GSO-structures to filter out their common orderings is

a sound operation yielding a new GSO-structure.

Fact 9 (gsos intersection). If GSOS is a non-empty set of GSO-structures with a com-
mon domain, then

⋂GSOS is an GSO-structure with the same domain.

To formulate the Abstraction property for GSO-structures, we need to define which ex-
ecutions would correspond to a given GSO-structure gsos . A stratified poset spo is an
extension of gsos if gsos ⊆ gsos(spo). (Thus gsos is a faithful abstraction of spo.) We
denote this by spo ∈ ext(gsos). In Figure 2, spo0 ∈ ext(gsos0). We then obtain that
GSO-structures are fully determined by their extensions.

Fact 10 (gsos abstraction). For every GSO-structure gsos , ext(gsos) 
= ∅ and

gsos =
⋂

gsos(ext(gsos)) .

The Closure property for GSO-structures generalises the notion of so-closure introduced
for SO-structures. A pre-GSO-structure is a relational structure � = (X,≺,�,�) based
on local relationships between events such that the relation αsym ∪βsym∪ � is irreflex-
ive and symmetric, where

α = γ ◦ ≺ ◦ γ and β = �∗ ◦ (� ∩�∗) ◦�∗ and γ = (≺ ∪�)∗ .

In such a case, its gso-closure is defined as �gso = (X,αsym∪βsym∪ �, γ \ idX). Note
that � relates events that cannot be executed simultaneously.

Fact 11 (gsos closure). For every pre-GSO-structure �, �gso is a GSO-structure.

Generalised SO-structures were introduced in [7] to represent the most general con-
current histories in the approach of [13]. They were investigated in [10], and used to
provide nets comprising mutex arcs with a causal semantics in [21].
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4 Elementary Net Systems

All net models considered in this paper have a net as their underlying structure.
A net N = (P, T, F ) comprises disjoint finite sets of nodes, P and T , called respec-

tively places and transitions, and the flow relation F ⊆ (T ×P )∪ (P ×T ). A marking
of N is a set of places. In diagrams, places (local states) are represented by circles,
transitions (actions) by rectangles, the flow relation by directed arcs, and a marking
(global state) by tokens (small black dots) drawn inside places. The inputs and outputs
of a node x are the sets •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}; moreover,
•x• = •x ∪ x•. It is assumed that •t 
= ∅ 
= t•, for every transition t. The dot-notation
extends to sets X of nodes in the usual way, e.g., •X =

⋃{•x | x ∈ X}.

EN 0

p7

p1

p2

p3

p4

p5

p6

f cm a g u

Fig. 3. EN-system model of a producer/consumer system

Figure 3 shows a net model of a system consisting of a producer, a buffer of capacity
one, and a consumer. The producer can execute: m (making an item), a (adding a new
item to the buffer), and f (failing to add an item). The consumer can execute: g (getting
an item), u (using the item), and c (completing the work). The buffer executes cyclically
the a and g actions. The three components operate independently with shared actions
being executed jointly. Figure 3 also shows an (initial) marking M = {p1, p4, p5}.

Net executions can be captured by sequences of steps of transitions. A step of a net
is a set U of transitions such that •t• ∩ •v• = ∅, for all t 
= v ∈ U . It is enabled at a
marking M if •U ⊆ M and U• ∩M = ∅. In such a case, the execution of U leads to
marking M ′ = (M\•U) ∪ U•. We denote this by M [U〉M ′.

A step sequence from a marking M to a marking M ′ is a sequence σ = U1 . . . Un

(n ≥ 0) of non-empty steps Ui such that M [U1〉M1, . . . ,Mn−1[Un〉M ′, for some
M1, . . . ,Mn−1. We denote this by M [σ〉M ′, and call M ′ reachable from M . When all
steps Ui are singletons, σ is a firing sequence. For the net in Figure 3, we have:

{p2, p3, p6} [m〉 {p1, p3, p6} {p1, p4, p5} [a{m, g}{a, c}m〉 {p1, p3, p7}
{p2, p3, p6} [{m, c}〉 {p1, p3, p7} {p1, p4, p5} [amgacm〉 {p1, p3, p7} .

An EN-system is a tuple EN = (P, T, F,Minit ) such that (P, T, F ) is its underlying
net, and Minit is an initial marking. Moreover, steps(EN ) and fseq(EN ) comprise
respectively all the step sequences and all firing sequences from the initial marking
Minit . Figure 3 depicts an EN-system with steps(EN 0) = {λ, a, ag, am, a{g,m}, . . .}
and fseq(EN 0) = {λ, a, ag, am, agm, amg, . . .}.

The reachability graph rg(EN ) = (V,A) of EN has V as its set of vertices and A
as its set of labelled arcs. V consists of all markings reachable from the initial marking
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Minit , and A is given as A = {(M,U,M ′) | M ∈ V ∧ M [U〉M ′}. Similarly, the
sequential reachability graph rgseq(EN ) = (V ′, A′) of EN has V ′ as its set of vertices
and A′ as its set of labelled arcs. V ′ consists of all markings reachable from the initial
marking Minit through firing sequences, and A′ is given as A′ = {(M, t,M ′) | M ∈
V ′∧M [t〉M ′}. It can be seen that although, in general, rgseq(EN ) is a proper subgraph
of rg(EN ), their vertices are the same.

The EN-system in Figure 3 is contact-free which means that, for all markings M
reachable from Minit and transitions t, •t ⊆ M implies t• ∩M = ∅. Contact-freeness
can always be enforced without influencing the step sequence behaviour, by comple-
menting (all or some) places p using fresh places p̃ satisfying •p = p̃•, p• = •p̃, and
declaring that p̃ ∈ Minit iff p /∈ Minit . For example, in Figure 3, p4 = p̃3. In what
follows, all EN-systems as well as their extensions are assumed to be contact-free.

Reachability Graphs and Structure

Strong connections between structure and behaviour have been for a long time a rich
source of analytical techniques for Petri nets. These connections are particularly direct
in the case of EN-systems. To start with, at a marking M , we say that two transitions, t
and v, are:

– independent, if they are both enabled and the execution of one does not disable the
other. In EN-systems, being independent is equivalent to saying that {t, v} is a step
enabled at M . This is illustrated in Figure 4(a) for t = f and v = g.

– in conflict, if they are both enabled and the execution of one disables the other. In
EN-systems, being in conflict is equivalent to saying that {t, v} is not a step enabled
at M . This is illustrated in Figure 4(b) for t = a and v = f .

– causally related, if one is enabled and its execution makes the other enabled. This
is illustrated in Figure 4(c) for t = m and v = f .

(a)

{p1, p3, p5}
f g

g f

{f, g}

(b)

{p1, p4, p5}
a f

(c)

{p2, p3, p5}

m

f

Fig. 4. Independence, conflict and causality in the reachability graph rg(EN 0)

The above relationships are behavioural, in the sense that they refer explicitly to exe-
cutability at markings. There is, however, an alternative characterisation, where we say
that two transitions, t and v, are structurally:

– independent, if •t• ∩ •v• = ∅; for example, f and g in EN 0.
– in conflict, if •t ∩ •v 
= ∅ or t• ∩ v• 
= ∅; for example, f and a in EN 0.
– causally related, if t• ∩ •v 
= ∅ or v• ∩ •t 
= ∅; for example, m and f in EN 0.
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We then obtain a direct connection between the behavioural and structural characteri-
sations of three fundamental relationships between transitions in EN-systems.

Fact 12 (structure vs. behaviour). In EN-systems, behavioural independence, conflict
and causality respectively imply structural independence, conflict and causality.

In other words, transitions which are structurally independent will never be in conflict
or causally related whatever the current marking. Similar remarks hold for conflict and
causality.

Another observation concerns the relationship between simultaneity and unordered-
ness in the behaviour of EN-systems. We can formulate the general property that

Simultaneity ⇐⇒ Unorderedness

by which we mean that it is always the case that

M [{t, v}〉M ′ ⇐⇒ M [tv〉M ′ ∧M [vt〉M ′ .

5 Fitting Nets and Order Structures

Given the execution semantics of EN-systems, we could now turn to the development of
a causality semantics in terms of occurrence nets and associated causal posets. However,
since we aim at a systematic presentation of causality semantics for different net classes,
it pays off to develop first a general scheme for doing this. As a result, one can then
simplify the formal treatment and also appreciate common properties shared across a
range of net classes.

The operational and causality semantics of a class of Petri nets PN can be presented
within a common scheme introduced in [19] (see also [17]) and reproduced here as
Figure 5 where N is a net from PN and:

– EX are executions (or observations) of nets in PN.
– LAN are labelled acyclic nets, each representing a concurrent history.
– LEX are labelled executions of nets in LAN.
– LCS are labelled causal structures (e.g., order structures) capturing causality rela-

tionships between executed actions.

In this paper, EX will be step sequences, and LEX labelled singular step sequences.
However, LAN and LCS will depend on the chosen class of nets PN.

The maps in Figure 5 relate the semantical views captured by EX, LAN, LEX and
LCS:

– ω returns a set of executions, defining the operational semantics of N .
– α returns a set of labelled acyclic nets, defining the axiomatic process semantics

of N .
– πN returns, for each execution of N , a non-empty set of labelled acyclic nets, defin-

ing the operational process semantics of N .
– λ returns a set of labelled executions for each process of N , and after applying φ

to such a labelled execution one obtains an execution of N .
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N ∈ PN LAN

EX LEX

LCS

α

ω πN

φ

λ

ε
ı

κ

Fig. 5. Semantical framework for a class of Petri nets PN. The bold arcs indicate mappings to
powersets and the dashed arc indicates a partial function.

– κ associates a labelled causal structure with each process of N .
– ε and ı allow one to go back and forth between labelled causal structures and the

sets of their labelled executions.

The semantical framework provided by the schema indicates how the different seman-
tical views should agree. According to the rectangle on the left, the Petri net defines
processes satisfying certain axioms and, moreover, all labelled acyclic nets satisfying
these axioms can be derived from the executions of the Petri net. Also, the labelled
executions of the processes correspond to the executions of the original Petri net. In
the triangle on the right, the labelled acyclic nets from LAN, the causal structures from
LCS and the labelled executions from LEX are related. The order structure defined
by a labelled acyclic net can be obtained by combining its executions and, conversely,
the stratified extensions of the order structure defined by a labelled acyclic net are the
(labelled) executions of that net. Thus the abstract relations between the actions in the
labelled causal structures associated with the Petri net will be consistent with its chosen
operational semantics.

To demonstrate that these different semantical views agree as captured through this
semantical framework, it is sufficient to establish a series of results called aims. As
there exist four simple requirements (called properties) guaranteeing these aims, one
can concentrate on defining the semantical domains and maps appearing in Figure 5
and proving these properties.

Property 1 (soundness of mappings). The mapsω, α, λ, φ, πN |ω(N), κ, ε and ı|λ(LAN)
are total. Moreover, ω, α, λ, πN |ω(N) and ε always return non-empty sets.

Property 2 (consistency). For all ξ ∈ EX and LN ∈ LAN,

ξ ∈ ω(N)
LN ∈ πN (ξ)

}

iff

{
LN ∈ α(N)
ξ ∈ φ(λ(LN )) .

Property 3 (representation). ı ◦ ε = idLCS.

Property 4 (fitting). λ = ε ◦ κ.

The above four properties imply that the axiomatic (defined through α) and operational
(defined through πN ◦ ω) process semantics of nets in PN are in full agreement. Also,
the operational semantics of N (defined through ω) coincides with the operational se-
mantics of the processes of N (defined through φ ◦ λ ◦ α). Finally, the causality in a
process of N (defined through κ) coincides with the causality structure implied by its
operational semantics (through ı ◦ λ). That is, we have the following.
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Aim 1 α = πN ◦ ω.

Aim 2 ω = φ ◦ λ ◦ α.

Aim 3 κ = ı ◦ λ.

As a consequence, the operational semantics of the Petri net N and the set of labelled
causal structures associated with it are related by ω = φ ◦ ε ◦ κ ◦ α.

6 Semantical Framework for EN-Systems

Some of the notions needed to specialise the general concepts of the semantical frame-
work for EN-systems have already been introduced. We will now present the missing
ones, starting with the definition of a class of labelled acyclic nets capturing the causal-
ity semantics of EN-systems.

An occurrence net is a tuple ON = (P ′, T ′, F ′, �) such that (P ′, T ′, F ′) is its un-
derlying net1 and � is a labelling for P ′ ∪ T ′. Moreover, it is assumed that |•p| ≤ 1
and |p•| ≤ 1, for every place p, and �ON = (T ′, (F ′ ◦ F ′)|T ′×T ′) is a pre-poset (in
other words, F ′ is acyclic). The default initial MON

init and final MON
fin markings respec-

tively consist of all places without inputs and outputs. Figure 6 shows an occurrence net
labelled by places and transitions of the EN-system EN 0 of Figure 3, with the default
initial and final markings {b1, b2, b3} and {b6, b9, b10}.

p1b1

p4b2

p5b3

p3 b4

p2

b5

p4 b6

p6

b7

p1

b8

p5 b9

p2 b10a

e1
m

e2

f

e3

g

e4

u
e5

Fig. 6. An occurrence net ON 0 (labels are shown inside the nodes)

Note that, due to the acyclicity of the flow relation and the lack of multiple inputs
(or outputs) of places, each transition in T ′ appears exactly once in any step sequence σ
satisfying MON

init [σ〉MON
fin . In particular, such a step sequence is singular, and so spo(σ)

is a well-defined stratified poset.
The behaviour of an occurrence net ON is captured by the set steps(ON ) of labelled

step sequences, comprising all pairs (σ, �|T ′ ) such that σ is a step sequence from the
default initial marking of ON to the default final marking. For each such labelled step
sequence, φ(σ, �|T ′ ) = �(σ). Moreover, fseq(ON ) are the labelled firing sequences of
ON , i.e., all the labelled step sequences (σ, �|T ′) such that σ is a sequence of singleton
steps. For the occurrence net of Figure 6, we have a{m, g}{f, u} ∈ φ(steps(ON 0)) as
well as amgfu ∈ φ(fseq(ON 0)).

1 The dot-notations, markings, etc, for ON are as those defined for (P ′, T ′, F ′).
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Fact 13 (labelled executions). steps(ON ) 
= ∅ and fseq(ON ) 
= ∅, for every occur-
rence net ON .

For an occurrence net ON , �ON is a pre-poset representing the direct causal relation-
ships between its transitions. Hence, by Fact 4, po(ON ) = �poON is the induced poset
representing all, direct and indirect, causal dependencies between the transitions in T ′.
For the occurrence net of Figure 6, we have that e1 causes e2 directly, but there is only
an indirect causal link from e1 to e3. Also, there are no causal links between e3 and
e5 which means that they are independent. This and other relationships can be read out
from the diagram of the pre-poset �ON 0

shown in Figure 7.

a

e1
m

e2

f

e3

g

e4

u
e5

Fig. 7. Pre-poset 	ON0 for the occurrence net ON 0

To define processes of an EN-system, we need to provide an axiomatic characterisa-
tion of occurrence nets consistent with the structure of this EN-system. A process of an
EN-system EN is an occurrence net ON with the labelling � which:

– labels places of ON with places of EN .
– labels transitions of ON with transitions of EN .
– is injective on MON

init and �(MON
init ) = Minit .

– is injective on •t and t• and, moreover, �(•t) = •�(t) and �(t•) = �(t)•, for every
transition t of ON .

We denote this by ON ∈ proc(EN ). For example, ON 0 ∈ proc(EN 0), where EN 0

and ON 0 are the nets in Figures 3 and 6.

Fact 14 (injective labelling). The labelling � of ON ∈ proc(EN ) is injective on any
marking reachable from the default initial marking. It is also injective on any individual
step appearing in the step sequences of steps(ON ) 
= ∅.

The only missing component of the semantical framework for EN-systems is now the
mapping returning processes derived from individual step sequences.

The occurrence net procEN (σ) generated by a step sequence σ = U1 . . . Un of EN
is the last element in the sequence ON 0, . . . ,ON n, where each ON k is an occurrence
net (Pk, Tk, Fk, �k) constructed in the following way.

Step 0 P0 = {p1 | p ∈ Minit} and T0 = F0 = ∅.
Step k Given ON k−1, the nodes and arcs of ON k are:
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Pk = Pk−1 ∪ {p1+�p | p ∈ U•
k}

Tk = Tk−1 ∪ {t1+�t | t ∈ Uk}
Fk = Fk−1 ∪ {(p�p, t1+�t) | t ∈ Uk ∧ p ∈ •t}

∪ {(t1+�t, p1+�p) | t ∈ Uk ∧ p ∈ t•} ,

where the label of each node xi is set to be x, and �x denotes the number of the
nodes of ON k−1 labelled by x.

The above construction is illustrated in Figure 8 for the EN-system EN 0 of Figure 3.
The resulting occurrence net is isomorphic to ON 0 of Figure 6 which, as we already
noted, is a process of EN 0.

ON 0p1

p11

p4

p14

p5

p15

ON 1p1

p11
p2

p12

p4

p14
p3

p13

p5

p15

a
a1

ON 2p1

p11
p2

p12
p1

p21

p4

p14
p3

p13
p4

p24

p5

p15
p6

p16

a
a1 m

m1

g

g1

ON 3p1

p11
p2

p12
p1

p21
p2

p22

p4

p14
p3

p13
p4

p24

p5

p15
p6

p16
p5

p25

a
a1 m

m1

f

f1

g

g1

u
u1

Fig. 8. Process procEN0
(σ) = ON 3 generated for EN 0 and step sequence σ = a{m, g}{f, u}

We will now explain how the four semantical properties can be established for EN-
systems and their step sequence semantics (the treatment for firing sequences is almost
the same). Referring to the notation used in Figure 5, we have the following, where EN
is an EN-system, ON an occurrence net, (σ, �) a labelled step sequence, po a poset, and
Σ a set of labelled singular step sequences with the same domain:
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PN are EN-systems EX are step sequences
LAN are occurrence nets LEX are labelled singular step sequences
LCS are labelled posets

ω(EN ) is steps(EN ) α(EN ) is proc(EN )
λ(ON ) is steps(ON ) πEN (σ) is procEN (σ)
φ(σ, �) is �(σ) κ(ON ) is po(ON )
ε(po) is steps(strat(po)) ı(Σ) is

⋂
spo(Σ).

Properties 1–4 hold for EN-systems [19,27]. Below EN is an EN-system and σ its fir-
ing sequence, ON is an occurrence net, po is a poset, and Σ is a set of singular step
sequences with the same domain. (Note that Fact 17 follows from Facts 3 and 5.)

Fact 15. steps(EN ), proc(EN ), steps(ON ) and steps(strat(po)) are non-empty sets.
Moreover, po(ON ) and

⋂
spo(Σ) are posets, and procEN (σ) is an occurrence net.

Fact 16. procEN (σ) is a process of EN . Moreover, if ON is a process of EN and
σ′ ∈ φ(steps(ON )), then σ′ ∈ steps(EN ) and ON = procEN (σ′).

Fact 17. po =
⋂
spo(steps(strat(po))).

Fact 18. steps(ON ) = steps(strat(po(ON ))).

Hence we can claim the semantical aims for EN-systems and step sequences.

Fact 19. Let EN be an EN-system, and ON be an occurrence net.

proc(EN ) = procEN (steps(EN ))

steps(EN ) = φ(steps(proc(EN )))

po(ON ) =
⋂
spo(steps(ON )) .

7 EN-Systems with Activator Arcs

This section extends the treatment of concurrency to nets with activator arcs. Consider
again the EN-system of Figure 3 and add an activator arc from place p4 to transition c
with a small black circle as arrowhead. In the resulting net ENA0 shown in Figure 9, c
can only be enabled if there is a token in place p4. However, the execution of transition
c does not consume the token in place p4.

An elementary net system with activator arcs (or ENA-system) is a tuple ENA =
(P, T, F,Act ,Minit ) such that und(ENA) = (P, T, F,Minit ) is its underlying EN-
system, and Act ⊆ P × T is a set of activator arcs. Notions and notations relating to
ENA are inherited from und(ENA). Moreover, �t denotes the set of all the places p
where the presence of a token is necessary to enable a transition t, i.e., (p, t) ∈ Act .
The behaviour of ENA is also derived from that of und(ENA) after assuming that
a step of transitions U is enabled at a marking M in ENA if it is enabled at M in
und(ENA) and �U ⊆ M , where �U =

⋃
t∈U

�t. The marking resulting from the
execution of such a U is exactly the same as it would be in und(ENA). For the ENA-
system of Figure 9, we have thatM [{a, c}〉M ′ andM [ca〉M ′, whereM = {p1, p4, p6}
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ENA0

p7

p1

p2

p3

p4

p5

p6

cm a g uf

Fig. 9. An ENA-system modelling a second version of the producer/consumer system

and M ′ = {p2, p3, p7}. However, M [ac〉M ′ does not hold because after executing
transition a, a token is removed from the activator place p4 of transition c.

Reachability Graphs of ENA-Systems

Reachability in ENA-systems depends on the chosen execution semantics: sequences or
step sequences. Taking, as an example the ENA-system in Figure 10(a), we may observe
that Minit [{t, v}〉{p3, p4}, but there is no firing sequenceσ such that Minit [σ〉{p3, p4}.

Another observation concerns the relationship between simultaneity and unordered-
ness in the behaviour of ENA-systems. Whereas in the case of EN-systems we have the
general property that Simultaneity ⇐⇒ Unorderedness we now have

Simultaneity ⇐= Unorderedness

by which we mean that it is always the case that

M [{t, v}〉M ′ ⇐= M [tv〉M ′ ∧M [vt〉M ′ .

Figure 10(b, c) shows that the reverse implication does not hold.

(a)

p1

p3

p2

p4

t v

(b)

t v

(c)

v t

v

{t, v}

Fig. 10. Two ENA-systems and the reachability graph of the second one

Semantical Framework for ENA-Systems

The causality semantics for ENA-systems will be developed by instantiating the seman-
tical framework, similarly as in the case of EN-systems. The labelled causal structures
employed are SO-structures, while executions remain to be (labelled singular) step se-
quences. To define processes we extend occurrence nets to include activator arcs.



242 J. Kleijn and M. Koutny

An activator occurrence net (or AO-net) AON = (P ′, T ′, F ′,Act ′, �) is a tuple such
that und(AON ) = (P ′, T ′, F ′, �) is its underlying occurrence net, and Act ′ ⊆ P ′ ×T ′

is a set of activator arcs. It is assumed that �AON = (T ′,≺loc,�loc, �|T ′), where

≺loc = (F ′ ◦ F ′)|T ′×T ′ ∪ (F ′ ◦Act ′) and �loc = (Act ′)−1 ◦ F ′

is a pre-SO-structure (see Figure 11). We then define sos(AON ) = �soAON to be the
SO-structure induced by AON .

(a) t v (b) t v (c) t v

Fig. 11. Two cases (a, b) defining t ≺loc v, and one case (c) defining t �loc v

The step sequences steps(AON ) of an AO-net AON are defined as for und(AON ),
except that the enabling condition takes into account activator arcs.

Fact 20 (labelled executions). steps(AON ) 
= ∅, for every AO-net ON .

Note that it may happen that fseq(AON ) = ∅ even though steps(AON ) 
= ∅. Take, for
example, the AO-net AON 1 in Figure 12(a) for which steps(AON 1) = {{t, v, w}z}
and fseq(AON 1) = ∅ as executing at the default initial marking any transition in
{t, v, w} means that one of the remaining two transitions will never be enabled, and so
the default final marking cannot be reached.

(a)

z

t

v

w (b)

z

t

v

w

Fig. 12. An AO-net AON 1 (a), and a failed attempt to extend it to an AMO-net (b)

An AO-net represents a concurrent run of a system and has to avoid circularity. In-
tuitively, ≺loc stands for causal precedence (the first transition has to produce a token
for consumption or testing by the second transition) and �loc for weak causal prece-
dence (the first transition cannot happen after the second one, since the latter consumes
a token which activates the former). Figure 13 shows an AO-net AON 0 labelled by
places and transitions of the ENA-system ENA0 of Figure 9. Its default initial mark-
ing is {b1, b2, b3}, and its default final marking is {b9, b10, b11}. Note that transition e5
weakly precedes transition e4, i.e., e5 �loc e4. Moreover, we have that a{m, g}{a, c}
and a{m, g}ca belong to φ(steps(AON 0)), but a{m, g}ac does not.
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Fig. 13. An activator occurrence net AON 0

Processes of an ENA-system are similar to those of the underlying EN-system
extended with an appropriate treatment of activator arcs. A process of ENA is an AO-
net AON such that und(AON ) is a process of und(ENA) and, in addition, � is in-
jective on �t and �(�t) = ��(t), for every transition t of AON . We denote this by
AON ∈ proc(ENA).

Process generation from a given step sequence is also based on that introduced for
EN-systems. The AO-net procENA(σ) generated by a step sequence σ = U1 . . . Un

of ENA is the last element in the sequence AON 0, . . . ,AON n where each AON k =
(Pk, Tk, Fk,Actk, �k) is an AO-net with the components constructed as in the definition
for procund(ENA)(σ), and the following additions (see Figure 14):

Step 0 Act0 = ∅.
Step k Actk = Actk−1 ∪ {(p�p, t1+�t) | t ∈ U ∧ p ∈ �t}.
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Fig. 14. Process procENA0
(σ) generated for ENA0 and step sequence σ = a{g,m}{a, c}

We will now show that the semantical properties formulated in Section 5 can be
established for ENA-systems and their step sequences. Referring to the notation used
in Figure 5, we have the following, where ENA is an ENA-system, AON an AO-net,
(σ, �) a labelled step sequence, sos an SO-structure, and Σ a set of labelled singular
step sequences with the same domain:
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PN are ENA-systems EX are step sequences
LAN are AO-nets LEX are labelled singular step sequences
LCS are labelled SO-structures

ω(ENA) is steps(ENA) α(ENA) is proc(ENA)
λ(AON ) is steps(AON ) πENA(σ) is procENA(σ)
φ(σ, �) is �(σ) κ(AON ) is sos(AON )
ε(sos) is steps(ext(sos)) ı(Σ) is

⋂
sos(spo(Σ)).

It can be shown that Properties 1–4 hold. Below ENA is an ENA-system and σ its step
sequence, AON is an AO-net, sos is an SO-structure, and Σ is a set of singular step
sequences with the same domain. (Note that Fact 23 follows from Facts 5 and 7.)

Fact 21. steps(ENA), proc(ENA), steps(AON ) and steps(ext(sos)) are non-empty
sets. Moreover, sos(AON ) and

⋂
sos(spo(Σ)) are SO-structures, and procENA(σ) is

an AO-net.

Fact 22. procENA(σ) is a process of ENA. Moreover, if AON is a process of ENA
and σ′ ∈ φ(steps(AON )), then σ′ ∈ steps(ENA) and AON = procENA(σ

′).

Fact 23. sos =
⋂
sos(steps(ext(sos))).

Fact 24. steps(AON ) = steps(ext(sos(AON ))).

Hence we can claim the semantical aims for ENA-systems.

Fact 25. Let ENA be an ENA-system, and AON be an AO-net.

proc(ENA) = procENA(steps(ENA))

steps(ENA) = φ(steps(proc(ENA)))

sos(AON ) =
⋂
sos(steps(AON )) .

EN-Systems with Inhibitor Arcs

It is easy to extend the treatment presented above for ENA-systems to EN-systems with
inhibitor arcs. Consider again the EN-system of Figure 3 and add to it an inhibitor arc
linking place p3 and transition c. This yields the net system ENI 0 shown in Figure 15.
(Inhibitor arcs are drawn with small open circles as arrowheads.) Adding such an arc
means that c cannot be enabled when the buffer is non-empty (a token in place p3
signifies that the buffer contains an item).

An elementary net system with inhibitor arcs (or ENI-system) is a tuple ENI =
(P, T, F, Inh,Minit ) such that und(ENI ) = (P, T, F,Minit ) is its underlying EN-
system, and Inh ⊆ P × T is a set of inhibitor arcs. Notions and notations relating
to ENI are inherited from und(ENI ). The behaviour of ENI is also derived from that
of und(ENI ): a step of transitions U is enabled at a marking M of ENI if it is enabled
at M in und(ENI ) and {p | ∃t ∈ U : (p, t) ∈ Inh} ∩M = ∅. The marking resulting
from the execution of such a U is exactly the same as in und(ENI ).

Intuitively, the testing for the presence of tokens using activator arcs in ENA-systems
has been replaced by testing for their absence using inhibitor arcs in ENI-systems.
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Fig. 15. An ENI-system modelling a third version of the producer/consumer system

In fact, the latter can be faithfully simulated by the former in the case of EN-systems
(i.e., they have isomorphic reachability graphs). All we need to assume is that every
inhibitor place p has a complement place p̃ satisfying •p = p̃• and •p̃ = p•. Processes
of ENI-systems are similar to those of EN-systems with the inhibitor arcs of the system
represented by activator arcs which rather than testing for the absence of tokens are used
to test for the presence of tokens in complement places. Hence, we assume that each
place p of ENI adjacent to an inhibitor arc has a complement place p̃ in the underlying
EN-system. Then, each inhibitor arc (p, t) can be replaced by an equivalent activator
arc (p̃, t). Since adding complement places is harmless, we can consider the causality
treatment of ENI-systems as being obtained through the corresponding ENA-systems.
Note that ENI 0 in Figure 15 corresponds in this way to ENA0 in Figure 9.

8 ENA-Systems with Mutex Arcs

We now extend ENA-systems with mutex arcs prohibiting certain pairs of transitions
from occurring simultaneously (i.e., in the same step). Mutex arcs were introduced
in [11], and their causality semantics was developed in [21].

Consider Figure 16 which shows another variant of the producer/consumer scheme.
In this case, the consumer is allowed to complete (transition c), but never at the same
time as the producer makes an item (transition m). Other than that, there are no restric-
tions on the executions of transitions c and m. To model such a scenario we use a mutex
arc between c and m (depicted as an undirected edge). Note that mutex arcs are relating
transitions in a direct way. This should not be regarded as an unusual feature as, for
example, Petri nets with priorities also impose direct relations between transitions.

An elementary net system with activator and mutex arcs (or ENAM-system) is a tuple
ENAM = (P, T, F,Act ,Mtx ,Minit ) such that und(ENAM ) = (P, T, F,Act ,Minit )
is the ENA-system underlying ENAM and Mtx ⊆ T × T is a symmetric irreflexive
relation specifying the mutex arcs of ENAM . Where possible, we retain the definitions
introduced for ENAM-systems. The notion of a step now changes however. A step of
ENAM is a non-empty set U of transitions such that U is a step of und(ENAM ) and
Mtx ∩ (U × U) = ∅. With this modified notion of a step, the remaining definitions
pertaining to the dynamic aspects of an ENAM-system are the same as for the underlying
ENA-system.
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ENAM 0

p7

p1

p2

p3

p4

p5

p6

cm a g uf

Fig. 16. An ENAM-system modelling a fourth version of the producer/consumer system

For the ENAM-system of Figure 16, we haveM [cm〉M ′ as well as M [mc〉M ′, where
M = {p2, p4, p6} and M ′ = {p1, p4, p7}. However, M [{c,m}〉M ′ which holds now
for the underlying ENA-system does not hold as c and m cannot belong to the same step.

Reachability Graphs of ENAM-Systems

Reachability in ENAM-systems, like in ENA-systems, is affected by the choice of the
execution semantics. This is, however, due to the presence of activator arcs, rather than
mutex arcs. For an ENAM-system without any activator arcs, the same sets of markings
are reachable under the step sequence and firing sequence semantics.

Another observation concerns the relationship between simultaneity and unordered-
ness in the behaviour of ENAM-systems. Whereas ENA-systems satisfy the relationship
Simultaneity ⇐= Unorderedness, this no longer holds for ENAM-systems, as illustrated
in Figure 17.

(a)

t v

(b)

t v

v t

Fig. 17. An ENAM-system without activator arcs and its reachability graph

Semantical Framework for ENAM-Systems

Causality semantics for ENAM-systems will be developed similarly as for EN-systems
and ENA-systems. The labelled causal structures employed are GSO-structures, while
executions remain to be step sequences. To define processes we extend AO-nets to in-
clude mutex arcs. An activator mutex occurrence net (or AMO-net) is a tuple AMON =
(P ′, T ′, F ′,Act ′,Mtx ′, �) such that und(AMON ) = (P ′, T ′, F ′,Act ′, �) is the AO-net
underlying AMON and Mtx ′ ⊆ T ′ × T ′ is a symmetric irreflexive relation specifying
a set of mutex arcs. Moreover, it is assumed that

�AMON = (T ′,≺loc,�loc,Mtx ′) ,
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where ≺loc and �loc are defined as for und(AMON ), is a pre-GSO-structure. We then
define gsos(AMON ) = �gsoAMON to be the GSO-structure induced by AMON . The step
sequences steps(AMON ) of AMON are defined as for und(AMON ), except that the
definition of a step takes into account mutex arcs. The default initial and final markings
of AMON , as well as its step sequence executions are defined as for und(AMON ).

The way �AMON deals with the mutex arcs is illustrated in Figure 12(b). We have
there three transitions satisfying t �loc v �loc w �loc t. Hence, in any execution
involving all these transitions, they have to belong to the same step. This, however, is
inconsistent with a mutex arc between v and w, and �AMON fails to be a pre-GSO-
structure as (t, t) belongs to �∗

loc ◦ (Mtx ′∩ �∗
loc) ◦�∗

loc .
Processes of an ENAM-system are similar to those of the underlying ENA-system

extended with appropriate treatment of mutex arcs. A process of ENAM is an AMO-
net AMON such that und(AMON ) is a process of und(ENAM ) and, in addition,
Mtx ′ = {(t, v) | (�(t), �(v)) ∈ Mtx}. We denote this by AMON ∈ proc(ENA).

Process generation from a given step sequence is also based on that introduced for
EN-systems. The AO-net procENA(σ) generated by a step sequence σ = U1 . . . Un

of ENAM is the last element in the sequence AMON 0, . . . ,AMON n, where each
AMON k = (Pk, Tk, Fk,Actk,Mtxk, �k) is an AMO-net with the components con-
structed as in the definition for procund(ENAM )(σ) and, in addition:

Mtxk = {(e, f) ∈ Tk × Tk | (�k(e), �k(f)) ∈ Mtx} .

p1

p4

p5

p3

p2

p4

p6

p1

p7

a m

g c

Fig. 18. An AMO-net AMON 0

Figure 18 depicts an AMO-net labelled with places and transitions of the ENAM-system
of Figure 16. We have that both agcm and agmc belong to φ(steps(AMON 0)), how-
ever, ag{m, c} does not. The AMON-net shown in Figure 18 is a process of the ENAM-
system of Figure 16 with φ(steps(AMON 0)) = {agmc, agcm}. Figure 19 shows the
result of applying the process construction to the ENAM-system of Figure 16 and one
of its step sequences. Note that the resulting AMO-net is isomorphic to that shown in
Figure 18.

The way in which mutex arcs are added in the process construction means that some
may be superfluous. For instance, the transitions they join may be causally related.
Analysing paths in the AMO-net would make it possible to eliminate such redundant
mutex arcs. This, however, would be against the locality principle which is central to the
process approach as it would compromise the local causes and effects in the definition
and construction of process nets.
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p1

p11

p4

p14

p5

p15

p3

p13

p2

p12

p4
p24

p6

p16

p0

p10

p7

p17

a
a1 m

m1

g

g1

c
c1

Fig. 19. Process procENAM0
(σ) generated for ENAM 0 and step sequence σ = {a}{g}{m}{c}

The semantical properties formulated in Section 5 can be established also for ENAM-
systems. Referring to the notation used in Figure 5, we have the following, where
ENAM is an ENAM-system, AMON an AMO-net, (σ, �) a labelled step sequence, gsos
a GSO-structure, and Σ a set of labelled singular step sequences with the same domain:

PN are ENAM-systems EX are step sequences
LAN are AMO-nets LEX are labelled singular
LCS are labelled GSO-structures step sequences

ω(ENAM ) is steps(ENAM ) α(ENAM ) is proc(ENAM )
λ(AMON ) is steps(AMON ) πENAM (σ) is procENAM (σ)
φ(σ, �) is �(σ) κ(AMON ) is gsos(AMON )
ε(gsos) is steps(ext(gsos)) ı(Σ) is

⋂
gsos(spo(Σ)).

It can be shown that Properties 1–4 hold. Below ENAM is an ENAM-system and σ
its step sequence, AMON is an AMO-net, gsos is an SO-structure, and Σ is a set of
singular step sequences with the same domain. (Note that Fact 28 follows from Facts 5
and 10.)

Fact 26. steps(ENAM ), proc(ENAM ), steps(AMON ) and steps(ext(gsos)) are non-
empty sets. Moreover, gsos(AMON ) and

⋂
gsos(spo(Σ)) are GSO-structures, and

procENAM (σ) is an AMO-net.

Fact 27. procENAM (σ) is a process of ENAM . Moreover, if AMON is a process
of ENAM and σ′ ∈ φ(steps(AMON )), then σ′ ∈ steps(ENAM ) and AMON =
procENAM (σ′).

Fact 28. gsos =
⋂
gsos(steps(ext(gsos))).

Fact 29. steps(AMON ) = steps(ext(gsos(AMON ))).

Hence we can claim the semantical aims for ENAM-systems.

Fact 30. Let ENAM be an ENAM-system, and AMON be an AMO-net.

proc(ENAM ) = procENAM (steps(ENAM ))

steps(ENAM ) = φ(steps(proc(ENAM )))

gsos(AMON ) =
⋂
gsos(steps(AMON )) .
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9 Place/Transition Nets

Place/Transition nets [26] (or PT-nets) are the basic class of Petri nets suited for the
study of systems in which multiplicity of resources matters.

A PT-net is a tuple PT = (P, T, F,Minit ) such that (P, T, F ) is its underlying net,
and Minit is the initial marking of PT , where a marking in this case is any multiset
of places, i.e., a mapping M : P → N = {0, 1, 2, . . .}. Most notions concerning
the structure and graphical representation of PT-nets are the same as for EN-systems
except that a marking M is represented by displaying M(p) tokens in each place p.
More important changes concern the execution semantics which extends that defined
for EN-systems.

A step U of PT is any multiset of transitions, i.e., U : T → N. Such a step is enabled
at a marking M if, for every place p, the current marking M provides enough input
tokens for each occurrence of a transition in U , thus M(p) ≥ ∑

t∈p• U(t). Executing
an enabled step leads to the marking M ′ such that, for every place p,

M ′(p) = M(p)−
∑

t∈p•
U(t) +

∑

t∈•p

U(t) .

We denote this, as before, by M [U〉M ′. The notions of firing sequence, step sequence,
marking reachability and reachability graph, are then defined similarly as in the case of
EN-systems. Figure 20 depicts three PT-nets such that:

fseq(PT 0) = {. . . , amamamam, . . .}
Minit [gu{g, a}{u,m}am〉Minit (in PT 1)

steps(PT 2) = {. . . , a{g, g}mama{u, u}{g, g}, . . .} .

As in the case of EN-systems, marking reachability in PT-nets does not depend on
whether one uses firing sequences or step sequences. This follows from the fact that
if U and U ′ are two steps satisfying M [U + U ′〉M ′ then M [UU ′〉M ′, where U + U ′

is the multiset sum of U and U ′. As a consequence, every step of transitions occur-
ring at a marking can be split into any sequence of subsets forming a partition of
this set, and each such step sequence leads to the same marking as the original step.
However, the reverse implication does not, in general, hold. For example, if one takes
the PT-net in Figure 23(a), then we have Minit [ab〉{p2, p4} and Minit [ba〉{p2, p4} but
Minit [{a, b}〉{p2, p4} is not a valid execution. Moreover, the relation between transi-
tion occurrences is not structural, but depends on the current marking: with two tokens
in p5 in Figure 23(a), the transitions a and b would be concurrently, i.e., as a step,
enabled.

As before, processes formalise the idea of a concurrent run. Interestingly, occurrence
nets provide the basis for the process definition of PT-nets in the same way as they did
for EN-systems. We only need to take into account the potential multiplicity of tokens
in PT-nets. This is done by giving each occurrence of a token its own place in the
occurrence nets. A process of a PT-net PT is an occurrence net ON with labelling �
which:
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PT 0

p7

p1

p2

p3

p5

p6

f cm a g u

PT 1

p7

p1

p2

p3

p4

p5

p6

f cm a g u

PT 2

p7

p1

p2

p3

p5

p6

f cm a g u

Fig. 20. PT-nets modelling three final versions of the producer/consumer system: PT 0 with an
unbounded buffer (the number of tokens in place p3 can grow unboundedly); PT 1 with a two-
place buffer (the number of tokens in place p3 can be at most two); and PT 2 with an unbounded
buffer and two consumers (represented by the two tokens in place p5)

– labels places of ON with places of PT .
– labels transitions of ON with transitions of PT .
– labels exactly Minit (p) places of MON

init with p, for every place p of PT .
– is injective on •t and t• and, moreover, �(•t) = •�(t) and �(t•) = �(t)•, for every

transition t of ON .

We denote this by ON ∈ proc(PT ). The occurrence net ON in Figure 21 is a process
of PT-net PT 2 in Figure 20.

The main difference with definition of processes of EN-systems is that now the la-
belling of a process is not required to be injective on the default initial marking which
is meant to represent the initial marking. In general, Fact 14 does not hold for processes
of PT-nets. For example, the process in Figure 21 allows the following sequence of
executions:

{q1, q2, q3, q4}[t1〉{q2, q3, q4, q5, q6}[{t2, t3}〉{q5, q7, q8} ,

with �(q7) = �(q8) = p6 and �(t2) = �(t3) = g.
Defining a process for a given step sequence σ of a PT-net PT is a straightforward

extension of the construction for EN-systems. An occurrence net generated by a step
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p3q3

p5q4

a
t1

g
t3

p2 q5

p3 q6

p6 q8

g
t2

p6 q7

Fig. 21. A process ON of the PT-net PT 2 in Figure 20

sequence σ = U1 . . . Un of PT is the last element in the sequence ON 0, . . . ,ON n,
where each ON k is an occurrence net (Pk, Tk, Fk, �k) constructed in the following
way.

Step 0 P0 = {pi | p ∈ P ∧ 1 ≤ i ≤ Minit (p)} and T0 = F0 = ∅.
Step k Given ON k−1, the nodes of ON k are given by:

Pk = Pk−1 ∪ {pi+�p | p ∈ P ∧ 1 ≤ i ≤ ∑
t∈•p Uk(t)}

Tk = Tk−1 ∪ {ti+�t | t ∈ T ∧ 1 ≤ i ≤ Uk(t)} ,

where again the label of each node xi is set to be x, and �x denotes the number of
the nodes of ON k−1 labelled by x.
To define the arcs, we proceed as follows. For every e = ti ∈ Tk \Tk−1, we choose
two sets of conditions, Ine ⊆ M

ONk−1

fin and Oute ⊆ Pk \ Pk−1, such that Ine

comprises a distinct condition pm for each place p ∈ •t while Oute comprises a
distinct condition ql for each place q ∈ t•. Moreover, for any e 
= f ∈ Tk \ Tk−1,
Ine ∩ Inf = ∅ and Oute ∩Outf = ∅. Then:

Fk = Fk−1 ∪
⋃

e∈Tk\Tk−1

(Ine × {e}) ∪ ({e} ×Oute) .

We denote this by ON n ∈ procPT (σ).
Note that since there may be more than one choice of suitable Ine’s, in general, more

than one process can be constructed for a given step sequence σ. The above construction
is illustrated in Figure 22 for PT-net PT 2 of Figure 20. The resulting occurrence net is
isomorphic to ON of Figure 21 which, as we already noted, is a process of PT 2.

The detailed development of the process semantics of PT-nets can be carried out
along the same lines as was done for EN-systems earlier in this paper, with some
straightforward modification resulting from the multiset — rather than set — nature
of markings and executed steps. It is also possible to extend the treatment of PT-nets
to include weighted arcs and (weighted) activator and inhibitor nets, using AO-nets as a
process model, following what was done for ENA-systems and ENI-systems (see, e.g.,
[19,20]).
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p1p11

p5p15

p3p13

p5p25

a
a1

g
g1

p2 p12

p3 p23

p6 p16

g
g1

p6 p26

Fig. 22. Deriving a process for PT 2 and its step sequence σ = {a, g}g

Mutex Arcs and Self-Loops

In PT-nets, in contrast to EN-systems, mutex arcs can be represented by self-loops con-
nected to a place marked with a single token, as shown in Figure 23(a, b). From a mod-
elling perspective, there appears to be no real difference. Semantically, however, the
differences can be significant as mutex arcs represent concurrent histories in a more
compact way. This could have an impact on net unfoldings used for model check-
ing. For example, the single process in Figure 23(c) derived for the representation
of Figure 23(b) has to be replaced by two processes derived for the representation of
Figure 23(a) depicted in Figure 23(d).

(a)

p1

p2

p3

p4

p5

a b

(b)

p1

p2

p3

p4

a b

(c)

p1p11 p2 p12

p3p13 p4 p14

a
a1

b

b1

p1p11 p2 p12

p3p13 p4 p14

p5p15 p5 p25 p5 p35

a

a1

b

b1

(d)

p1p11 p2 p12

p3p13 p4 p14

p5p15 p5 p25 p5 p35

a

a1

b

b1

Fig. 23. Mutex arcs can lead to more condensed process semantics than self-loops

10 Concluding Remarks

This paper is an introduction to the many issues fundamental to understanding con-
current behaviour. Here we have concerned ourselves with different forms of causality
induced by extensions to the basic structure of Petri nets and leading to relational struc-
tures extending the classical partial order approach. There are several strands of related
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research which have not been described here. For instance, we have not considered the
modelling of conflicts between enabled transitions. Our processes and their abstractions
(partial orders) model concurrent runs in which conflicts have already been resolved.
Branching processes of Petri nets [3] model all possible choices and lead to a single un-
folding representing all runs of the net model. They are actually the basis for efficient
verification techniques [5,18,23]. If, in addition, one abstracts from state information
and only considers relations between events, the result is the more abstract model of
event structures [9,25,29], that can be used to study fundamental concepts of concur-
rency in a model-independent way. As far as we are aware, event structures have not yet
been enriched with weak causality and commutativity relationships, and we consider
such extensions a relevant, and indeed exciting, topic of future research in this area.

Finally, an abstraction not considered here at all, usually referred to as trace the-
ory [2] initiated in [22], allows one to group together sequential observations on the
basis of reordering of concurrent (independent) events. The resulting model of trace
monoid captures precisely the semantical treatment of EN-systems outlined in this pa-
per. For the extended models of ENI/ENA-systems, one needs to use the extended model
of comtraces introduced in [14]. The last extension of EN-systems considered here, i.e.,
ENAM-systems, calls for the even more elaborate model of generalised comtraces [16].
It should then not come as a surprise that PT-nets require a different kind of extensions
of the basic trace monoid, initiated through the work on local traces of [8]. An exten-
sive account of the intrinsic relationships between various concurrency monoids and
different net classes can be found in [11].
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