Applications of Coloured Petri Nets
for Functional Validation of Protocol Designs

1 1,2

Lars M. Kristensen'* and Kent Inge Fagerland Simonsen™

! Department of Computer Engineering, Bergen University College, Norway
{1mkr,kifs}@hib.no
2 DTU Informatics, Technical University of Denmark, Denmark
kisi@imm.dtu.dk

Abstract. Communication protocols constitute central building blocks
in most modern IT systems as they define components, rules, and lan-
guages that make data communication possible. The development of cor-
rect protocols is a challenging engineering discipline, making modelling
and validation of protocol design an important application domain for
Coloured Petri Nets (CPNs). We illustrate the practical application of
CPNs for protocol validation by focusing on selected aspects of four re-
cent projects involving industrial-sized protocols. These projects demon-
strate how CPNs can be used to model protocol elements and improve
protocol specifications, how state space exploration can be used to verify
protocol properties, and how behavioural visualisation in combination
with a CPN model provides an effective way of rapidly constructing an
executable prototype of a protocol design.

1 Introduction

Communication protocols play an important role in most IT systems. A promi-
nent example is the vast amount of web applications that are in use today for,
e.g., online banking, shopping, government administration, and entertainment.
The services provided by these applications all rely on the protocols governing
the operation of the Internet. Other examples are telecommunication systems,
logistic systems with sensors and actuators, and control systems in vehicles.
All these systems rely heavily on communication and synchronisation between
concurrently executing software components and subsystems. As protocols are
to support still more complex services that are critical to both the operation of
companies and the everyday life of citizens, it is important that they are working
correctly already from the initial deployment.

Protocol engineering [80] typically involves a specification of the service that
the protocol is to provide. Through a synthesis or design step, a protocol design
is developed with the aim of providing the desired service. For protocol de-
sign, functional and performance validation can be conducted to investigate and
reason about the properties of the design. Functional validation focuses on the

* Work supported by the Research Council of Norway project 194521 (FORMGRID).

K. Jensen et al. (Eds.): ToPNoC VII, LNCS 7480, pp. 56-[[I5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Applications of CPNs for Functional Validation of Protocol Designs 57

logical correctness of the protocol such as the absence of deadlocks and livelocks,
that a request is always followed by a response, or whether the proposed protocol
design provides the desired services. Performance validation is concerned with
quantitative properties such as delays, throughput, and response time. Even-
tually, the protocol design is implemented and may then be subject to further
testing.

Protocol design is in many cases a challenging task. One reason for this is
that the execution of a protocol can proceed in different ways, e.g., depending on
which messages are lost in transmission, the scheduling of the protocol entities,
the time at which events are received from the environment of the protocol,
and the execution path taken by the protocol entities. Another reason is that a
protocol by nature involves independently scheduled entities which makes testing
and reproduction of executions difficult. All this means that protocols often have
a very large number of possible executions. In this process, it is easy for a protocol
engineer to overlook important interaction patterns which may in turn lead to
gaps or malfunction of the protocol.

The specification of the protocol service and the protocol design is, in many
cases, based on natural language descriptions. One example of this is the Request
for Comments (RFC) documents published by the Internet Engineering Task
Force (IETF) |47]. Natural language specifications of protocols often have many
issues that needs to be resolved before a properly working implementation can
be obtained. One class of issues originates from the fact that such specifications
are inherently ambiguous making it difficult to achieve inter-operability between
independent implementations. Another source of issues to resolve is that the
specifications are often incomplete in that the behaviour of the protocol is not
described for all cases.

The challenges outlined above have made protocols a prominent application
domain for formal description techniques [46], including Petri Nets [93, [97]. In
this paper we concentrate on the use of Coloured Petri Nets (CPNs) [56, 159, 161]
for modelling and functional validation of protocol designs. Our purpose is to
provide an introduction to, and an overview of, how CPNs have been applied for
practical validation of protocol designs. We approach this by presenting selected
parts of CPN models and associated results originating from projects conducted
in an industrial context with industrial-sized protocols. More specifically, we
present in the core of this paper the application of the CPN modelling language,
tools, and techniques for functional validation of the following protocols:

The DYMO Routing Protocol. The Dynamic On-Demand Routing Protocol
for Mobile Ad-hoc Networks (DYMO) [15] is a routing protocol for mobile ad-
hoc networks being developed by the MANET working group of the IETF. The
DYMO case study is used to illustrate protocol modelling with CPNs and to
introduce the basic constructs of the CPN modelling language. Our presentation

is based on the CPN model constructed in a project on modelling and validating
DYMO |[25].

The Generic Access Networks (GAN) Architecture. The GAN protocol
architecture |2] is developed by the 3rd Generation Partnership Project (3GPP)

58 L.M. Kristensen and K.I.F. Simonsen

for accessing telephone services via Internet Protocol (IP) networks. The GAN
case study is used to introduce the basics of explicit state space exploration and
show how it can be used in a fully automatic manner as a first step in the
verification of a protocol design. The presentation is based on the project [30]
conducted at TietoEnator A/S to specify the detailed usage of protocol software
and services via specialisation of the GAN protocol architecture.

The Routing Interoperability Protocol (RIP). The RIP protocol devel-
oped at Ericsson Telebit A/S enables routing of IP packets between core IP
networks and mobile ad-hoc networks. The RIP case study is used to illustrate
how application-specific behavioural visualisation can be applied on top of CPN
models. In particular, how it can be used to obtain a first executable prototype
of the protocol design allowing for early experiments and for presentation to
customers and management with the aim of soliciting protocol design require-
ments. Our presentation is based on the project [74] conducted in cooperation
with Ericsson where CPN modelling was used to specify the operation of the
RIP protocol.

The Edge Router Discovery Protocol (ERDP). The ERDP protocol is
an IPv6-based protocol allowing edge routers to configure gateways in mobile
ad-hoc networks with IP address prefixes. The ERDP case study is used to il-
lustrate how the combined use of CPN modelling, state space exploration, and
behavioural visualisation all contributed to identify and resolve design issues and
errors during ERDP development. Our presentation is based on the project [67]
conducted at Ericsson Telebit A/S on the design of the ERDP protocol.

The rest of this paper is organised as follows. Section [provides a high-level
overview of CPNs and related techniques used for functional validation of pro-
tocol designs. Sections then present the application of CPNs on the four
protocols introduced above. In Sect. [l we survey related work where CPNs have
been used for protocol validation. Finally, Sect. [§ contains conclusions and out-
lines directions for future work. The reader is assumed to be familiar with the
basic ideas of Petri nets |97] and TCP/IP communication protocols [21]. The
reader is referred to [61] for a comprehensive introduction to CPNs, state space
exploration, and behavioural visualisation of CPN models.

2 Background: CPNs and Functional Protocol Validation

The CPN modelling language belongs to the family of High-level Petri Nets and
combine Petri Nets with the Standard ML (SML) programming language |100].
Petri Nets provide the foundation of the graphical notation and the semanti-
cal foundation for modelling concurrency, synchronisation, and communication.
The functional programming language SML provides primitives for representing
sequential aspects of protocols (such as data manipulation) and for creating com-
pact and parameterisable models. Formal modelling and validation with CPNs

Applications of CPNs for Functional Validation of Protocol Designs 59

is supported by CPN Tools [95] which provides support for construction, sim-
ulation, functional and simulation-based performance analysis of CPN models.
The addition of data types and a high-level programming language offered by
CPN (in contrast to ordinary Petri nets) is highly important when constructing
Petri net models of protocols. As an example, with ordinary Petri nets each mes-
sage type exchanged between protocol entities need to be present with multiple
places, and data manipulation (e.g., comparison of data packet content such as
sequence numbers) needs to be modelled relying only on net structure resulting
in models that are difficult to comprehend.

The advantage of CPNs (and formal description techniques in general) is that
they are based on the construction of executable models that make it possible to
observe and experiment with the protocol design prior to implementation and
deployment using, e.g., simulation. This typically leads to more complete pro-
tocol specifications since the model will not be fully operational until all parts
of the protocol have been (at least abstractly) specified. Furthermore, the con-
struction of a formal and executable model helps identify and resolve ambiguities
that may be present in a natural language specification. Another advantage is
the support for model abstractions that makes it possible to specify the opera-
tion of the protocol without being concerned with implementation details such
as message layout. A model also makes it possible to explore larger scenarios of a
protocol system than what is in many cases practically possible in a laboratory.

2.1 Simulation and Behavioural Visualisation

During a protocol model construction phase it is common to use interactive sim-
ulation of the CPN protocol model to investigate the operation of the protocol
in detail. An interactive simulation is similar to single-step debugging and the
execution of the CPN model is viewed directly on its graphical representation
and provides a simple way of validating that the model operates as intended. In
an interactive simulation, the modeller is in charge and determines the next step
by selecting between the enabled events in the current state. Interactive simula-
tion is typically combined with the use of automatic simulation which is similar
to program execution and the purpose is to execute the CPN model without
detailed interaction and inspection. Automatic simulation is typically used for
testing purposes, and the modeller typically sets up appropriate breakpoints and
stop criteria.

Even though the CPN modelling language supports abstraction and hierarchi-
cal modules there can still be a significant amount of detail being presented with
this approach, and observing every single step either in an interactive simulation
or in a log file based on an automatic simulation is often too detailed a level of
observation when investigating the behaviour of a model. Furthermore, even if
the CPN model is executable, it still lacks the application- and domain-specific
appeal of a conventional software prototype. CPN Tools can use the BRIT-
NeY Suite animation framework [111] to create behavioural visualisation [112]
and interaction graphics on top of CPN models. The animation framework is a
stand-alone application, and CPN Tools invokes the primitives of the animation

60 L.M. Kristensen and K.I.F. Simonsen

framework using remote procedure calls. The animation framework supports a
wide range of diagram types via a plug-in architecture that makes it possible to
visualise the execution of protocols using both standard diagrams (e.g., message
sequence charts) in addition to tailored, application-specific diagrams. In this
way it is possible to investigate the behaviour of a protocol design while over-
coming the limitations of interactive and automatic simulations. In this paper
we give some examples of both standard and application-specific diagrams. The
reader is referred to [111] for a comprehensive introduction to the animation
framework.

2.2 State Spaces and Verification

Verification of behavioural properties of protocols with CPNs [66] is supported
by explicit state space exploration [6]. In its simplest form this approach involves
computing a directed graph where the nodes corresponds to the set of reachable
states of the CPN model and the arcs represent occurrences of events causing
state changes. State spaces can be constructed fully automatically by the state
space tool in CPN Tools and guarantees complete coverage of all executions.
State space hence provides a highly systematic error-detection technique that
make it possible to automatically (i.e., algorithmically) check whether a protocol
has a formally stated desired property. In addition, state space methods have the
advantage that counter examples (error-traces) can be automatically synthesised
if the protocol does not satisfy a given property.

The main disadvantage of state space exploration is the inherent state explo-
sion problem [103], and a multitude of advanced state space methods have been
developed aimed at alleviating the inherent state explosion problem. Early work
on addressing state explosion in the context of CPNs concentrated on computer
tool support for, and initial experiments with, the equivalence [57], symmetry
[20, 24, 48, 58], and the stubborn set methods [102]. The symmetry and equiv-
alence methods rely on constructing a condensed state space where each node
represents an equivalence class of states and each arc represents an equivalence
class of events. The symmetry method has, e.g., been applied on a mutual ex-
clusion protocol [62] and an embedded systems protocol [81]. The equivalence
method has only been used on a small stop-and-wait protocol [63] due to the
obligation of providing a manual soundness proof for the user-provided equiva-
lence relation. The stubborn set method [101, [103] relies on analysing enabling
and disabling dependencies between events and use this to explore only a sub-
set of the events in each state encountered during state space exploration. The
rich SML-based inscription language which is fundamental building block of the
CPN modelling language, however, poses problems for the analysis of transition
dependencies in the context of CPNs [72] — unless relying on an unfolding of
the CPN model to the equivalent Place/Transition net. Hence, restrictions on
the modelling language are required to apply the stubborn set method without
relying on unfolding. Another widely used verification approach in the context
of CPNs is based is the methodology of [9]. A central component of this ap-
proach is an explicit modelling of both the protocol and its service, and the use

Applications of CPNs for Functional Validation of Protocol Designs 61

of finite-state automata language comparison as a criteria for checking that the
protocol conforms to the specified service. Recent work on addressing the state
explosion problem in the context of CPNs has concentrated on making more
economical use of memory resources when exploring the state space. Memory is
(in many cases) the limiting factor in state space exploration of CPN models due
to the large state vectors. This work resulted in the development of the sweep-
line method [19, 160] and the comback method |27, [110]. The sweep-line suite
of methods [8, 119, 168, 169, 83] is aimed at on-the-fly verification and exploits a
notion of progress found in many concurrent systems. Exploiting progress allows
for the deletion of states from memory during a progress-first traversal of the
state space. This in turn reduces peak memory usage. The sweep-line method
has been used [34, 135, 41, [105] for the verification of several industrial-sized pro-
tocols specified using the CPN modelling language. The comback method can be
viewed as an exploration-order independent storage mechanism based on hash
compaction [98,[113]. It allows the usually large state vectors of CPN models to
be stored in compact form, and the full state vector of a state is reconstructed
when needed for comparison with newly generated states. Unlike the classical
hash compaction method, the comback method guarantees full coverage of the
state space. The ASAP model checking platform |109] has support for a number
of these advanced state space methods — including methods developed outside
the context of CPNs.

2.3 Formal Specification Techniques for Protocols

CPNs and Petri Nets represents one approach to the formal specification and
verification of protocols. Historically, several non-Petri nets based languages tar-
geting protocol specification have been developed, in particular in relation to
telecommunication standardisation efforts |75, 194]. The Language of Temporal
Ordering Specification (LOTOS) [1, [14, [50] was developed as part of Interna-
tional Standardisation Organisation (ISO) efforts and linked to the development
of the Open Systems Interconnection (OSI) reference model. LOTOS is founded
on the Calculus of Communicating (CCS) [86] and add a data type compo-
nent to CCS based on algebraic specification. The Extended State Transition
Language (Estelle) [49] also originated from OSI standardisation efforts and is
based on extended finite state machines |13] combined with extensions to the
PASCAL programming language. The Specification and Description Language
(SDL) [55] has evolved in several generations since 1980 within the Interna-
tional Telecommunication Union - Telecommunication Sector (ITU-T). SDL is
based on communicating extended state machines and has in later versions been
equipped with a formal semantics [55] making it amendable for formal verifica-
tion. A Unified Modelling Language (UML) Profile [52] linking SDL and UML
also exists. A comparison of these classical specification languages can be found
in [5]. Estelle, SDL, and CPNs are all equipped with a language for modelling
data manipulation, but have a different theoretical foundations (extended state
machines versus Petri Nets). Another difference is that CPNs have very few (but
still powerful) modelling constructs in contrast to languages such as Estelle and

62 L.M. Kristensen and K.I.F. Simonsen

SDL which have a large and complex set of language constructs to describe the
behaviour of protocol entities and their interaction. From this perspective, CPNs
provide a simpler and more lightweight approach to protocol modelling which
at the same time less implementation specific than, e.g., typical SDL protocol
specifications. In that respect, CPNs are close to languages like LOTOS that
focus more on abstract and implementation independent protocol specification.
Within ITU-T languages has also been developed related to protocol data rep-
resentation. The Abstract Syntax Notation One (ASN.1) |53] is a notation of
describing data structures carried in messages exchanges between protocol en-
tities. The Encoding Control Notation (ECN) [54] is a language for specifying
ASN.1 encoding rules. In terms of specification of data structures, the SML data
types for defining colour sets in CPNs provide similar capabilities as ASN.1. The
Testing and Test Control Notation 3 (TTCN-3) [26] is a language for writing
protocol test specification.

The Process Meta Language (Promela) language [46] providing the modelling
foundation of the SPIN tool [45] has been widely used for protocol design and
verification. Promela is based on Communication Sequential Processes (CSP)
[44] and is in contrast to CPNs, a textual modelling language with a different
theoretical foundation. In a UML context, state diagrams (charts) [43] are used
for modelling protocol modules (e.g., [84]), and message sequence charts (MSCs)
[51] (sequence diagrams in UML) are being used in particular for specifying pro-
tocols requirements that can later be used in protocol verification [4, 138]. MSCs
have also been used for protocol specification using higher-level control flow con-
structs. In contrast to MSCs which are action-oriented, then state charts and
CPNs are both state and action-oriented modelling formalisms. Timed automata
[7] as supported, e.g., by the UppAAl tool has also been used for the specifica-
tion and verification of protocols (e.g., |29, [96]). The UppAal models consists
of a network of network of communicating timed automata, and are specifically
suited for modelling and verifying protocol where continuous timing constraints
are essential. In comparison, the timed concepts provided by CPNs is a discrete
time concept of time. An example on the use of CPNs to model protocols with
time constraints can be found in [71].

3 The DYMO Protocol

Modelling a protocol involves developing a representation of the messages (or
packets) exchanged between the protocol entities, the procedure rules and in-
ternal state of the protocol entities guarding the processing of messages, and
developing a model of the environment in which the protocol is being executed.
The environment model typically encompass an abstract representation of the
communication medium (or channel) over which the protocol operates. The pri-
mary purpose of this section is to illustrate how these protocol elements can
be represented in the CPN modelling language using the Dynamic On-demand
Routing Protocol (DYMO) [15] for mobile ad-hoc networks as an example. This
section additionally shows how to construct compact parameterised CPN models

Applications of CPNs for Functional Validation of Protocol Designs 63

where the number of protocol entities can easily be configured, and how com-
munication networks with a dynamic topology can be modelled.

3.1 MANETSs and Operation of the DYMO Protocol

A mobile ad-hoc network (MANET) comprises a collection of mobile nodes, such
as laptops, personal digital assistants, and mobile phones, capable of establishing
a communication infrastructure for their common use. Ad-hoc networking differs
from conventional networks in that the nodes operate in a fully self-configuring,
autonomous and distributed manner, without any preexisting communication
infrastructure such as base stations and routers. Network layer and routing pro-
tocols for ad-hoc networking (including the DYMO protocol) are currently under
development by the IETF MANET working group.

The operation of the DYMO protocol consists of two parts: route discov-
ery and route maintenance. Route discovery is used to establish routes be-
tween nodes and begins with an originator node multi-casting a Route Request
(RREQ) message to all nodes in its immediate range. A RREQ message has a
sequence number to enable other nodes in the network to judge the freshness
of the route request. The ad-hoc network is then flooded with RREQs until the
request reaches the target node (provided that there exists a path from the orig-
inating node to the target node). The target node replies with a Route Reply
(RREP) message unicasted hop-by-hop back to the originator node. The route
discovery procedure is requested by the Internet Protocol (IP) layer on a node
when it receives an IP packet for transmission and does not have a route in its
routing table to the target node.

Figure [[left) depicts the topology of a MANET consisting of six nodes num-
bered 1-6. An edge between two nodes indicates that the nodes are within direct
transmission range. In this case, we assume that all communication links are
symmetric. Figure [right) (to be discussed below) lists for each node the rout-
ing table entries created as a result of executing a routing discovery procedure
with node 1 as the originator node and node 6 as the target node. The routing
table entries in Fig. [[(right) are specified as a pair (target, nexthop). The second
column specifies the entries that are created as a result of a node receiving the
RREQ. The third column lists the entries created as a result of receiving the
corresponding RREP. When explaining the operation of the DYMO CPN model
below, we will use the scenario in Fig. [[l as a running example.

The message sequence chart (MSC) in Fig. [depicts one possible exchange
of messages in the DYMO protocol when the originating node 1 establishes
a route to target node 6 in the topology in Fig [M(left). Solid arcs represent
multi-cast transmission and dashed arcs represent unicast transmission. In the
MSC, node 1 multi-casts a RREQ which is received by nodes 2 and 3. When
receiving the RREQ from node 1, nodes 2 and 3 create an entry in their routing
table specifying a route back to the originator node 1. Since nodes 2 and 3 are
not the target of the RREQ they both multi-cast the received RREQ to their
neighbours (nodes 1, 4 and 5, and nodes 1 and 6, respectively). Node 1 discards
these messages as it was the originator of the RREQ. When nodes 4 and 5 receive

64 L.M. Kristensen and K.I.F. Simonsen

° Node RREQ RREP
1 (6,3)
e ° 2 (1,1)
3 (L,1) (6,6
4 (1,2)
0 5 (1,2)
6 (1,3)

Fig. 1. Example MANET topology (left) and routing table entries (right)

(Node 1) (Node 2) (Node 3) (Node 4) (Node 5) (Node6)

RREQ

Fig. 2. Message exchange scenario showing DYMO route discovery procedure

the RREQ they add an entry to their routing table specifying that the originator
node 1 can be reached via node 2. When node 6 receives the RREQ from node 3,
it discovers that it is the target node of the RREQ, adds an entry to its routing
table specifying that node 1 can be reached via node 3, and unicasts a RREP
back to node 3. When node 3 receives the RREP it adds an entry to its routing
table stating that node 6 is within direct range, and use its entry in the routing
table that was created when the RREQ was received to unicast the RREP to
node 1. Upon receiving the RREP from node 3, node 1 adds an entry to its
routing table specifying that node 6 can be reached using node 3 as the next
hop. The RREQ is also multi-casted by node 4, but when node 2 receives it
again, it will be discarded by node 2 because it has already processed the RREQ
message once. Node 5 also multi-casts the RREQ, but nodes 2 and 6 also discard
the RREQ message as it has already been received once. From Fig. [[(right) it can
be seen that upon completion of the route discovery procedure, a bidirectional
route has been discovered and established between node 1 and node 6 using node
3 as an intermediate hop.

The topology of a MANET changes over time because of the mobility of
the nodes. DYMO nodes therefore perform route maintenance where each node

Applications of CPNs for Functional Validation of Protocol Designs 65

monitors the links to the nodes it is directly connected to. The DYMO protocol
has a mechanism to notify nodes about routes that become broken due to nodes
moving out of range of each other. This is done by sending Route Error (RERR)
messages which have the effect of informing nodes using the broken route that
a new route discovery is needed in order to reestablish a communication path.

3.2 CPN Model Overview and Message Modelling

The DYMO CPN model is a hierarchical model organised in 14 modules. Figure[3]
shows the module hierarchy of the CPN model. Each node in Fig. Bl corresponds
to a module with System representing the top-level module of the CPN model. An
arc leading from one module to another indicates that the latter is a submodule
of the former. The model is organised into two main parts. The DYMOProtocol
module and its nine submodules model the DYMO protocol entities including the
internal state of the protocol entities and the procedure rules for receiving mes-
sages, internal processing, and sending of messages. The MobileWirelessNetwork
module and its two submodules model the environment for the DYMO protocol.
This includes the modelling of how messages are transmitted over a wireless link
and the modelling of how the mobility of the nodes affects the current topology
of the network. The division of the model into submodules reflects the structure
of the DYMO specification [16] and hence maintains a close structural relation-
ship between the natural language specification and the formal CPN model. The
CPN model does not capture the transmission of payload from the application
layer as the focus of the model is on the route establishment and maintenance
of the DYMO protocol.

The top-level module System is shown in Fig. Ml and is used to connect the
two main parts of the model. It corresponds to the System node in Fig. Bl The

Syslem

DYMO Protocol [Mobile Wireless Network]

Imtlate Route Discovery]
—{ Wireless Packet Transmission]
—»[Receive Routing Messages]
- — Mobility
—»{ Receive Error Messages]
Process RREQ
Process RERR
Process RREP

—>[Process Incoming Messages

> Route Table Timeouts]

—>[Active Link Monitoring]

Fig. 3. Module hierarchy for the DYMO CPN model

66 L.M. Kristensen and K.I.F. Simonsen

1" ROUTEREQUEST({originator=1,targ
et=6})

DYMORequest

DYMO
Request

DYMO
Response

DYMOResponse

DYMO Protocol

DYMO To
Network
NetworkPacket NodexNode

Mobile Wireless
Network

DYMO Protocol

Network
To DYMO

NetworkPacket

Mobile Wireless Network |

Fig. 4. Top-level System module of the DYMO CPN model

module has two substitution transitions drawn as rectangles with double-line
borders. Each of the substitution transitions have an associated tag positioned
next to it specifying the name of the associated submodule. The DYMOProtocol
substitution transition has the DYMOProtocol module as its associated sub-
module, and the MobileWirelessNetwork substitution transition has the module
MobileWirelessNetwork as its associated submodule. In this model, the substitu-
tion transition has the same name as its associated submodule (but this is not
generally required).

The two socket places DYMOToNetwork and NetworkToDYMO connected to
the substitution transition DYMOProtocol are used to model the interaction
between the DYMO protocol and the MANET environment as represented by
the submodules of the MobileWirelessNetwork substitution transition. The socket
place LinkState is used to model the active link monitoring that nodes perform
to check which neighbour nodes are still reachable. When the DYMO protocol
module sends a message, it will appear as a token representing a network packet
on the socket place DYMOToNetwork. Similarly, a network packet to be received
by the DYMO protocol module will appear as a token on the NetworkToDYMO
socket place. Each of the socket places in Fig. M (places connected to a substitu-
tion transition) is associated with a port place in the submodule associated with
the substitution transition that the socket place is connected to. The association
between a socket and a port place has the effect that the port and the socket
places will always have identical markings (tokens). An arc leading to a socket
place from a substitution transition means that transitions on the submodule
associated with the substitution transitions will add tokens on this place. Anal-
ogously, an arc leading from a socket place to a substitution transition means
that transitions on the submodule will remove tokens from this place.

Applications of CPNs for Functional Validation of Protocol Designs 67

The colour set (data types) of each place determining the kind of tokens that
can reside on the place is written below each place. The colour set declarations
used in Fig. [l is provided in Fig. Bl A record colour set is used for representing
the packets transmitted over the wireless links. A NetworkPacket consists of
a source (field src), a destination (field dest), and some data (payload). The
DYMO messages are designed to be carried in User Datagram Protocol (UDP)
datagrams. This means that the network packets are abstract representations
of IP/UDP datagrams. The model abstracts from all fields in the IP and UDP
datagrams (except source and destination fields) as only these impact the DYMO
protocol logic. The source and destination of a network packet are modelled
by the IPAddr colour set. There are two kinds of IP addresses in the model:
UNICAST addresses and the LL MANET ROUTERS multi-cast address. The multi-cast
address is used, e.g., in route discovery when a node is sending a RREQ to all
its neighbouring nodes. Unicast addresses are used as source of network packets
and, e.g., as destinations in RREP messages. A unicast address is represented
as an integer from the colour set Node. Hence, the model abstracts from real IP
addresses and identify nodes (communication interfaces) using integers in the
interval [1; N] where N is a model parameter specifying the number of nodes in
the MANET.

(* --- Nodes and abstract IP/UDP messages —--— *)
colset Node = int with 0 .. N;
colset IPAddr = union UNICAST : Node + LL_MANET_ROUTERS;

colset NetworkPacket = record src : IPAddr * dest : IPAddr =*
data : DYMOMessage;

(* --- DYMO service —--- %)
colset RouteRequest = record originator : Node * target : Node;

colset DYMORequest = union ROUTEREQUEST : RouteRequest;

colset RouteResponse = record originator : Node * target : Node *
status : BOOL;

colset DYMOResponse = union ROUTERESPONSE : RouteResponse;

Fig. 5. Colour set declarations for nodes, network packets, and DYMO service

The two places DYMORequest and DYMOResponse in Fig. @] are used to in-
teract with the service provided by the DYMO protocol. A route discovery for a
specific destination is requested by putting a token on the DYMORequest place
and a DYMO response to a route discovery request is then provided by DYMO

68 L.M. Kristensen and K.I.F. Simonsen

as a token via the DYMOResponse place. The colour sets DYMORequest (see
Fig. [l specifies the identity of the originator node requesting the route and
the identity of the target node to which a route is to be discovered. Similarly, a
DYMOResponse message contains a specification of the originator, the target,
and a boolean status specifying whether the route discovery was successful.
The colour sets DYMORequest and DYMOResponse are defined as union types to
make it easy to later extend the model with additional requests and responses.
By setting the initial marking of the place DYMORequest, it can be controlled
which route discovery requests are to be made.

The small circles and associated boxes in Fig. @l show the current marking of
the CPN model. The small circle positioned inside a place indicates the number of
tokens on the place in the current marking. In Fig.[4l there is a single token on the
place DYMORequest with colour ROUTEREQUEST ({originator=1,target=6}) as
specified in the box positioned next to the small circle. This marking corresponds
to the DYMO protocol being requested to establish a route from node 1 to node
6 as considered in the scenario in Fig. [l

3.3 Modelling the DYMO Protocol Entities

The top-level module for the DYMO protocol part of the CPN model is the
DYMOProtocol module shown in Fig. [6l The module has five substitution tran-
sitions modelling initiating route requests (substitution transition InitiateRoute-
Discovery), reception of RREQ and RREP messages (substitution transition
ReceiveRoutingMessages), the reception of RERRs (substitution transition Re-
ceiveErrorMessages), processing of incoming messages (substitution transition
ProcesslncomingMessages), and timer management associated with the routing
table entries (substitution transition RouteTableEntryTimeouts). The places DY-
MORequest, LinkState, and NetworkToDYMO are input port places of the module
as indicated by the In tag positioned next to them. Each of these places are asso-
ciated with the accordingly named socket places in Fig. @ Similarly, the places
DYMOToNetwork and DYMOResponse are output port places as indicated by the
Out tag positioned next to them, and they are associated to the accordingly
named socket places in Fig. @

All submodules of the substitution transitions in Fig. [l create and manipulate
DYMO messages which are represented by the colour sets defined in Fig. [l The
definition of the colour sets used for modelling the DYMO messages is based on
a direct translation of the description of DYMO messages as found in the DYMO
specification |16]. In particular, the same names of message fields as in |16] have
been used. The model abstracts from the compact packet layout defined for the
DYMO protocol. This is done to ease the readability of the CPN model, and
since the packet layout is not important when considering only the functional
operation of the DYMO protocol.

The place RoutingTable and the place OwnSeqNum are used to model the rout-
ing table and the sequence number of nodes, respectively, that are maintained
as part of the internal state of each mobile node. In the marking depicted in
Fig.[6l both of these places contain a multi-set containing six tokens. Within the

Applications of CPNs for Functional Validation of Protocol Designs 69

1" ROUTEREQUEST({originator=1,targ
et=6})

DYMO
Request

DYMO
Response

DYMORequest DYMOResponse

Initiate
Route Discovery

Initiate Route Discovery

“(1,1)++pgNum ()
+

(1,0 1

(2,[H)++H 1°(2,1)+

(3,[D)++ 1°(3,1)++

4,[1)++ 1°(4,1)++ a
ol 1‘gsflgﬁ-_oWnsE s
(6,[1) 1°(6,1)

NodexSeqNum

Routing Table R-?;tt)llzg e

T

NodexRouteTable

Route Table
Entry Timeouts Receive Routing

Messages ' \

Route Table Entry Timeouts |

eceive Routing Messages

Process

Incoming

Incoming
[Messages Messages
Process Incoming Messages NodexDYMOMessage Receive Error
Messages H
Link
y Monitoring eceive Error Messages

A 4

Link Monotorin
DYMO To Network
Network To DYMO

NetworkPacket NodexNode

NetworkPacket

Fig. 6. The DYMOProtocol module

boxes specifying the colours of the individual tokens, ++ (pronounced and) is
used to denote union of multi-sets and ¢ (pronounced of) is used to specify the
coefficients (i.e., the number of occurrences of tokens with a given colour). The
colour set SeqNum used to represent the sequence number of a node was defined
above, and the colour set RouteTable is defined in Fig. Bl To allow each node to
have its own sequence number, we use the colour set NodexSeqNum. The marking
in Fig. [0l corresponds to a MANET with six mobile nodes. The first compo-
nent of each token on the place OwnSeqNum specifies the identity of a node and
the second component specifies the sequence number of the node. Initially, the
sequence number of all nodes is set to one. Similarly, it can be seen that the
routing table of each mobile node is empty as represented by the empty list ([1)
specified for each node in the marking of RoutingTable.

The submodules of the DYMOProtocol module all need to access the routing
table and the sequence number maintained by each node. To reduce the num-
ber of arcs in the modules, the routing table and the sequence numbers have
been modelled using fusion sets. A fusion set allows a set of places in different
modules to be linked together into one compound place across the hierarchical
structure of the model. In this case, we have a fusion set OwnSeqNum (for linking
together places modelling the sequence number of each node) and a fusion set
RoutingTable (for linking the places modelling the routing table of each node).
The name of the fusion set which a place belongs to (if any) is written in a tag
positioned next to the place.

70 L.M. Kristensen and K.I.F. Simonsen

int with O .. 65535;
product Node * SegNum;
list NodexSegNum;

colset SeqNum
colset NodexSeqNum
colset NodexSeqNumList

colset RERRMessage = record HopLimit : INT *
UnreachableNodes : NodexSeqNumList;

colset RoutingMessage = record TargetAddr : Node * OrigAddr : Nodes *
OrigSegNum : SeqNum * HopLimit : INT =
Dist : INT;

colset DYMOMessage = union RREQ : RoutingMessage + RREP : RoutingMessage+
RERR : RERRMessage;

Fig. 7. Colour set declarations for DYMO messages

colset RouteTableEntry = record

Address : IPAddr * SeqNum : SegNum *
NextHopAddress : IPAddr * Broken : BOOL *
Dist : INT;

colset RouteTable list RouteTableEntry;
colset NodexRouteTable = product Node * RouteTable;

Fig. 8. Colour set declarations for routing table entries

Initiate Route Discovery Module. We consider the InitiateRouteDiscovery
module shown in Fig. @ as a representative example of a submodule at the
most detailed level of the CPN model. This module specifies how the route
discovery procedure is initiated when a request for a route discovery arrives via
the DYMORequest input port. The rectangles in Fig. @l are ordinary transitions
(i.e., non substitution transitions) which means that they can become enabled
and occur. In the marking shown in Fig. [0 a token corresponding to a request
for a route discovery originating at node 1 and targeting node 6 is present on
the DYMORequest place. In this marking, the transition ProcessRouteRequest is
enabled in the following binding:

(rreq={originator=1,target=1})

which binds the variable rreq of colour set RouteRequest to the value in the
ROUTERREQUEST. Evaluating the input arc expression on the arc from DYMORe-
quest to ProcessRouteRequest results in a multi-set consisting of the single token
present on place DYMORequest. The effect of an occurrence of ProcessRequest

Applications of CPNs for Functional Validation of Protocol Designs 71

DYMO
Request

1'ROUTEREQUEST({ originator=1,targ DYMO
et=6}) Response

DYMORequest DYMOResponse A

ROUTEREQUEST rreq

createRouteResponse

Process RREQ_TRIES (rreg, false)
Route Request Reached

(n, rc, rreq)

c = RREQ_TRIE
(#originator rreq, [r Q- S]

0, rreq)

createRouteResponse

Route (rreq, true)

(n, rc, rreq)

Processing

1°(1,1)++ Established
i‘ g:i;i: NodexRCxRouteRequest [hasRoute (#target rreq, rt)]
1°(4,1)++ () igHg**
1°(5,1)++ n, rc+ 1, rreq)| [(n, rc, rreq) Tt L2+
RCE (o EReinty
1°(4,[])++
(n, incSegNum (5. +4
(seqnum)) 160

Create RREQ Routing

(n, seqnum)

[not (hasRoute
NodexSeqNum (#target rreq, rt)),
rc < RREQ_TRIES]

NodexRouteTable

createRREQ (#target rreq, n, seqnum)

DYMO To
Network

NetworkPacket

Fig. 9. The Initiate Route Discovery module - initial marking

with the binding above in the marking in Fig. [dis that the token on DYMORe-
quest is removed and a token is added to place Processing. The colour of the
token added to Processing is obtained by evaluating the arc expression on the
arc from ProcessRouteRequest to Processing in the binding from above:

(#originator rreq,0,rreq)

The SML operator #originator extracts the originator field in the value bound
to rreq. The marking resulting from the occurrence of ProcessRouteRequest is
shown in Fig. [0 A route request being processed is represented by a token on
Processing over the colour set NodexRCxRouteRequest which is a product type.
The first component of the token on Processing specifies the node processing the
route request (i.e., the originator), the second component specifies how many
times the RREQ has been retransmitted, and the third component specifies the
route request.

In the marking shown shown in Fig. [0 the transition CreateRREQ is enabled
with the binding:

(rc=[],rreq={originator=1,target=1},rc=0,n=1,seqnum=1)

The expression in square brackets positioned next to the CreateRREQ transition
is a guard specifying an additional boolean conditions (beyond the presence of
required tokens on input places) for the CreateRREQ transition to be enabled.
In this case, the guard specifies that for the transition to be enabled, a route

72 L.M. Kristensen and K.I.F. Simonsen

DYMO
Request

DYMO
Response

DYMORequest DYMOResponse A

ROUTEREQUEST rreq

createRouteResponse

Process RREQ_TRIES (rreq, false)
Route Request Reached

(n, rc, rreq)

(#originator rreq,
0, rreq)

[1‘(1,0,(originator:l,target:G})]
- Processing
(1,1)++
T(2,1)++

1
i‘ (3,1)++ NodexRCxRouteRequest
1
1
1

[rc = RREQ_TRIES]

createRouteResponse

Route (rreq, true)
Established

(n, rc, rreq)

[hasRoute (#target rreq, rt)]

T (4,1)++
(5, 1)++HNum () (n, rc + 1, rreq)
“(6,1)

(n, rc, rreq)

e (n, incSegNum
(seqnum)) X
w Create RREQ R_?;;'Ife‘g
(. seqnum) [not (hasRoute
NodexSeqNum (#target rreq, rt)), NodexRouteTable

rc < RREQ_TRIES]
createRREQ (#target rreq, n, seqnum)

DYMO To
Network

NetworkPacket

Fig. 10. The Initiate Route Discovery module - after ProcessRouteRequest occurrence

must not already exist in the route table rt to the target node #target, and
the number of times rc the current route request has been retransmitted must
be less than the retransmission limit RREQ TRIES for RREQs. The SML function
hasRoute used in the guard is implemented as follows:

fun hasRoute (target, rt:RouteTable) =
List.exists (fn {Address, ...} => UNICAST(target) = Address) rt

and uses the predefined SML function List.exists to check whether an entry
in the route table rt leading to the target node already exists. This is a typical
example of how SML is used to represent (sequential) data manipulation.

The marking resulting from the occurrence of CreateRREQ is shown in Fig. [l
When sending a RREQ, the sequence number of node 1 sending the request is
incremented by 1 and so is the counter specifying how many times the RREQ
has been transmitted. Furthermore, a token corresponding to a network packet
containing a RREQ message is produced on place DYMOToNetwork. The des-
tination of the packet is set to LL MANET ROUTERS since it must be sent to all
nodes within reach of node 1.

If a route becomes established (i.e., the originator receives a RREP for the
RREQ), the RouteEstablished transition becomes enabled and a token can be
put on place DYMOResponse indicating that the requested route has been suc-
cessfully established. If the retransmission limit for RREQs is reached (before a
RREP is received), the RREQ TRIES Reached transition becomes enabled and a

Applications of CPNs for Functional Validation of Protocol Designs 73

DYMO

DYMO

Request Response

DYMORequest DYMOResponse A

ROUTEREQUEST rreq

createRouteResponse

Process RREQ_TRIES (rreg, false)
Route Request Reached

(n, rc, rreq)

c = RREQ_TRIE
(#originator rreq, [r Q- S]

0, rreq)

createRouteResponse

[1\ (1,1,{originator=1,target=6})]
. (n, rc, rreq) Route (rreq, true)
1°(1,2)++H Processing Established
: ++
i~ g:i;_H_ NodexRCxRouteRequest thasRoute (#target rreq, rt)]
1°(4,1)++ () igHg**
1°(5,1)++ n, rc + 1, rreq)| |(n, rc, rreq) n, rt 2D+
1'(6,1) Num () () 1°(3,[D+4
1°(4,[D++
(n, incSegNum 1°(5,[D+4
(segnum)) 1°(6.[])

Routing

Create RREQ Table

(n, segnum)

[not (hasRoute
NodexSeqNum (#target rreq, rt)),
rc < RREQ_TRIES]

NodexRouteTable

createRREQ (#target rreq, n, seqnum)

1" {src=UNICAST(1),dest=LL_MANET_
ROUTERS, data=RREQ({TargetAddr=6,
OrigAddr=1,0rigSeqNum=1,HopLimit=
DYMO To 10,Dist=1})}

Network

Out

(N

NetworkPacket

Fig. 11. The Initiate Route Discovery module - after CreateRREQ occurrence

token can be put on place DYMOResponse indicating that the requested route
could not be established.

3.4 Modelling the DYMO Protocol Environment

The MobileWirelessNetwork module shown in Fig.[I2] captures the mobile wireless
network that DYMO is designed to operate over. It consists of two parts: one part
modelling the transmission of network packets represented by the substitution
transition WirelessPacket Transmission, and one part representing the mobility of
the nodes represented by the Mobility substitution transition. The places DY-
MOToNetwork, NetworkToDYMO, and LinkState are associated to the similarly
named socket places in Fig.dl The transmission of network packets is done rel-
ative to the current topology of the MANET which is explicitly represented via
the current marking of the Topology place. The topology is represented using
the colour set Topology defined in Fig. I3l

The idea is that each node has an adjacency list of nodes that it can reach in
one hop, i.e., its neighbouring nodes. The marking of place Topology in Fig.
corresponds to the topology in Fig. [[{left). This adjacency list is then consulted
when a network packet is being transmitted from a node to determine the set
of nodes that can receive the network packet. In this way, the dynamic topology
is modelled by the addition and removal of nodes from the adjacency lists. The

74 L.M. Kristensen and K.I.F. Simonsen

1" {src=UNICAST(1),dest=LL_MANET_

ROUTERS,data=RREQ({TargetAddr=6,

OrigAddr=1,0rigSeqNum=1,HopLimit= DYMO To Network Link

10,Dist=1})} (13 Network To DYMO State
NetworkPacket NetworkPacket y NodexNode

Y

Wireless Packet Transmission

Wireless Packet Transmission

(LI23D++ _
(2,[1,4,5)+ topologyScenario
“(3,[1,61)++

“(4[2D)++

“(5,[2,6])++ Topology
(6,3,51)

Mobility I
[Mobility]

Fig. 12. The Mobile Wireless Network

colset NodeList list Node;
colset Topology = product Node * NodeList;

Fig. 13. Colour set declarations for topology modelling

place LinkState models that a node can be informed about the reachability of its
neighbouring nodes which is used in active link monitoring.

The WirelessPacketTransmission module models the actual transmission of
packets and is shown in Fig. 4 The module captures how network packets
are transmitted via the physical network from one node to the next. Packets are
transmitted over the network according to the function transmit on the arc from
the transition Transmit to the place NetworkToDYMO. When the Transmit tran-
sition occurs in a binding where the boolean variable success is set to true,
then all nodes within reach of the sending node will receive the packet. Oth-
erwise, no nodes will receive the packet. The transition Transmit is enabled in
the marking shown in Fig. [[4] (left) and the marking resulting from a successful
transmission of the packet on DYMOToNetwork is shown in Fig. [[4] (right). In
this case two tokens are added to place NetworkToDYMO corresponding to nodes
2 and 3 receiving the packet being multi-casted from node 1.

In a real network, a transmission could be received by any subset of the
neighbouring nodes (e.g., because of signal interference). Here it is only mod-
elled that either all of the neighbouring nodes receive the packet or none of the
nodes receive it. This is sufficient because the modelling of the dynamic topology
means that a node can move out of reach of the transmitting node immediately

Applications of CPNs for Functional Validation of Protocol Designs 75

1" {src=UNICAST(1),dest=UNICAST(2)
,data=RREQ({TargetAddr=6,0rigAddr
=1,0rigSeqNum=1,HopLimit=10,Dist=
1))++

1" {src=UNICAST(1),dest=LL_MANET_ 1" {src=UNICAST(1),dest=UNICAST(3)
ROUTERS, data=RREQ({TargetAddr=6, ,data=RREQ({TargetAddr=6,0rigAddr
OrigAddr=1,0rigSeqNum=1,HopLimit= =1,0rigSeqNum=1,HopLimit=10,Dist=
10,Dist=1})} 1)}

Network
To DYMO

DYMO To
Network

Network
To DYMO

NetworkPacket NetworkPacket NetworkPacket NetworkPacket

transmit
(adjlist, np, success)

transmit

o np
(adjlist, np, success)

np

Transmit Transmit

[#src np = UNICAST(n)] [#src np = UNICAST(n)]

(n, adjlist) (n, adjlist)
N AW (L3
1'(2,[1,4,51)+H 12145+ 4
L dLeD @ 1 G0+ @
17(4,[2D)++ Topology a2+ Topology
1°(5,[2,6])++ 1 (5.02,6])++
1°(6,[3,51) 1°(6.03.5])

Fig. 14. Transmission of packets - before (left) and after (right) transmission

before the transmission occurs which has exactly the same effect as a signal
interference in that the node does not receive the packet. Hence, signal inter-
ference and similar phenomena imply that a node does not receive a packet is
in the model equivalent to the node moving out of reach of the transmitting
node.

3.5 Lessons Learned and Perspectives

The development of the DYMO CPN model was based on the natural language
specification provided in the Internet draft [15] specifying the DYMO protocol.
The modelling work was done when version 10 |15] was the most recent DYMO
specification. In the process of constructing the CPN model and simulating it,
several issues and ambiguities in the specification were discovered. The most
important ones are summarised in Table [l These issues were submitted to the
IETF MANET Working Group mailing list [82] and issue 1 and 3-7 were ac-
knowledged by the DYMO developers and taken into account in the subsequent
version DYMO specification |16] (version 11). Issue 2 was not considered critical
as it causes route discovery to fail in scenarios which according to the experience
of the DYMO developers would seldom occur in practise.

The modelling conducted with the DYMO protocol illustrates that the con-
struction of a formal and executable model provides a very systematic and
comprehensive way of reviewing a protocol design document (such as the DYMO

76 L.M. Kristensen and K.I.F. Simonsen

Table 1. DYMO CPN modelling |25]: issues identified in the modelling phase

Issue Description

When processing a routing message, a DYMO router may respond with a
RREQ flood, i.e., a RREQ addressed to the node itself, when it is target
1 for a RREQ message (cf. |[15], Sect. 5.3.4). It was not clear from the specifi-
cation which information to put in the RREQ message, i.e., the originator
address, hop limit, and sequence number of the RREQ.
When judging the usefulness of routing information, the target node is not
considered. This means that a new request with a higher sequence num-
2 ber can make an older request for another node stale since the sequence
number in the old message is smaller than the sequence number found in
the routing table.
When creating a RREQ message the distance field in the message is set
to zero. This means that for a given node n an entry in the routing table
3 of a node n’ connected directly to n may have a distance to n which is 0.
Distance is a metric indicating the distance traversed before reaching n,
and the distance between two directly connected nodes should be one.

In the description of the data structure route table entry (cf. [15], Sect. 4.1)
4 it is suggested that the address field can contain more than one node. It
was not clear why this was the case.
When processing RERR messages (cf. [15], Sect. 5.5.4) it is not specified
whether the hop limit shall be decremented.
When retransmitting a RREQ message (cf. [15], Sect. 5.4), it was not
explicitly stated whether the node sequence number should be increased.
Version 10 of DYMO introduced the concept of distance instead of hop
count. Distance is a more general metric, but in the routing message pro-
7 cessing (cf. |16], Sect. 5.3.4) it is incremented by one. We believe it should
be up to the implementers how much distance is incremented depending
on the metric used.

Internet draft) and how it can contribute to increasing the quality of a proto-
col design specification. Similar conclusions can also be drawn from other case
studies where CPN modelling has been applied to protocols developed in the
context of IETF. A CPN model of the DYMO protocol has also been developed
in [12] where a considerably more compact CPN model of the DYMO protocol
directly targeting state space exploration was developed. A number of other is-
sues related to the functionality of the DYMO protocol were reported in [12].
In comparison to the CPN model in this section, the CPN model developed in
[12] provides a more abstract modelling approach that does not use an explicit
representation of MANET topology.

Applications of CPNs for Functional Validation of Protocol Designs 7
4 The GAN Protocol Architecture

This section focuses on how standard behavioural properties of CPNs in combi-
nation with explicit state space exploration can be used to verify basic properties
of protocols. Furthermore, this section gives an example of how CPNs can be
used to model a system spanning multiple protocols and protocol layers. The
presentation is based on a project [30] in which CPN modelling and state space
exploration was used at TietoEnator Denmark in early phases of developing an
implementation corresponding to a particular instantiation [42] of the generic
GAN architecture [2] aimed at integrating IP and telephone services.

4.1 GAN Secure Connection Establishment

The Generic Access Network (GAN) |2] architecture specified by the 3rd Genera-
tion Partnership Project (3GPP) [3] allows access to common telephone services
such as SMS and voice-calls via IP networks. A central part of the GAN ar-
chitecture is the establishment of a secure connection between a mobile station
(e.g., a mobile phone) and a GAN controller through a security gateway. The
GAN architecture relies on standardised protocols such as Dynamic Host Con-
figuration Protocol (DHCP) for IP address configuration, IP Security (IPsec)
[65] for encryption and authentication, and Internet Key Exchange v2 (IKEv2)
protocol [64] for negotiation of IPsec parameters.

The purpose of the CPN model constructed in the project was two-fold.
Firstly, to define the scope of the protocol software to be developed by TietoE-
nator. More specifically, the aim was to determine which parts of the generic
GAN specification were to be included in the implementation to be developed
by TietoEnator. Secondly, to specify the detailed design and usage of the in-
volved protocol software components. The focus of the CPN model is on the
establishment of a secure tunnel and the initial GAN message exchanges since
this is where important details were not provided in the full GAN specification.
In particular, the full GAN specification 2] contained no clear specification of
the IKEv2 message exchange and the states that the protocol entities should
be in when establishing a GAN connection (at the time of the project in 2007).
Furthermore, the GAN specification only states that IKEv2 and IPSec are to be
used, and in which operating modes.

4.2 CPN Model of the GAN Protocol Architecture

The CPN model of the secure connection establishment consists of 31 modules
organised into four hierarchical levels. In the following, we present four selected
modules from the CPN model. Our purpose is to illustrate how the phases that
the protocol entities enter when establishing a GAN connection have been mod-
elled, and provide sufficient detail on the CPN model in order for the reader to
interpret the verification results presented later. A more in-depth presentation
of the CPN model can be found in [30].

78 L.M. Kristensen and K.I.F. Simonsen

MobileStation WirelessRouter [SecurityGatewa GANController

" : . Provisioning Provisioning
e & s
Gateway Controller
—_— NET_PACKET NET_PACKET NET_PACKET

G ConfigProvGANC

Prov.
SG Config

NODE_CONFIG NODE_CONFIG

ConfigProvst

Prov.
GANCConfig

Fig. 15. Top-level module of the GAN model

Figure shows the top-level module which is organised so that it mimics
the GAN network architecture. The substitution transition MobileStation repre-
sents the mobile station which is connecting to the telephone network via an IP
network. The place Wireless Network connected to MobileStation represents the
wireless network which connects the mobile station to a wireless router repre-
sented by the substitution transition WirelessRouter. The wireless router is an
arbitrary access point with routing functionality, and is connected to the Pro-
visioning Security Gateway, through NetworkB. As part of establishing a GAN
connection, an encrypted tunnel is established between the mobile station and
the security gateway. The encrypted tunnel is provided by the Encapsulating
Security Payload (ESP) mode of the IP security layer (IPSec) [65]. To provide
such an encrypted tunnel, both ends have to authenticate each other, and agree
on both an encryption algorithm and keys. This is achieved using the Internet
Key Exchange v2 (IKEv2) protocol [64]. The provisioning security gateway is
connected to the Provisioning GAN Controller via NetworkC. The GAN controllers
are connected to the telephone network and perform the relay of traffic to/from
the IP networks (NetworkC and the WirelessNetwork). This in turn allows mobile
stations to access the services on the telephone network. The places with thin
lines connected to the substitution transitions Provisioning Security Gateway and
Provisioning GAN Controller are used to provide configuration information to the
corresponding network nodes. The CPN model does not include modelling of
the telephone network as the scope of the CPN model covers the components
involved in establishing the connection with the GAN controller. Furthermore,
as the purpose of the model was to represent the protocol entities present on
each of the nodes in the network architecture, it sufficed that the model encom-
passed one mobile node, one wireless router, one provisioning security gateway,
and one provisioning GAN controller.

The basic exchange of messages in establishing a GAN connection to the
provisioning GAN controller involves three steps. The first step is for the mobile
station to acquire an IP address on the wireless network using DHCP. The
second phase is to create a secure tunnel to the provisioning security gateway.
Having established the secure tunnel, the third phase is for the mobile station
to open a secure connection to the GAN controller and register itself. Figure
(left) shows the IKElnitiator module of the mobile station and Fig. (right)
shows the IKEResponder module of the security gateway. These two peer modules

Applications of CPNs for Functional Validation of Protocol Designs 79

model the second step of the GAN connection establishment concerned with
creating the secure tunnel. Incoming IP packets for the module arrive via the
ReceiveBuffer input port places. Outgoing IP packets are put in the SendBuffer
places. The states (phases) that the protocol entities goes through during the
IKE message exchange when establishing the secure tunnel are represented by
the places connecting the substitution transitions.

The state changes are represented by substitution transitions. The submod-
ules of the substitution transitions specify the processing rules for messages
during the individual phases. Figure [[7] shows the Send IKE SA INIT Packet and
Handle SA INIT Request modules which are the submodules of the two top-most
substitution transitions in Fig The Send IKE SA INIT Packet transition in
Fig. [(left) takes the IKE Initiator from the state Ready to Await IKE SA INIT
and sends an IKE message to the security gateway initialising the communica-
tion. The IP address of the security gateway is retrieved from the Ready place.
Figure [[7 (right) shows how the IKE SA INIT packet is handled by the IKE
Responder. The guard of the HandleSA INIT Request transition ensures that
the transition is only enabled if the incoming packet (token) on IncominglK-
ERequest represents a IKE SA INIT packet. In that case, it sends an IKE packet
back to the initiator as specified by the arc expression on the arc from Han-
dle SA INITRequest and the responder enters the Wait for EAP Auth state. The
submodules of the other substitution transitions in Fig. [I0 are similar.

The establishment of a GAN connection involves multiple layers of the IP
network stack. DHCP (used to configure the mobile station) and GAN are ap-
plication layer protocols, IKE is a transport layer protocol, and IPSec belongs
to the network layer. As a consequence, the CPN model of GAN connection
spans multiple protocol layers. Furthermore, the protocol entities also access
and manipulate the routing table and a security policy database (SPD) which
is maintained at the IP network layer. The establishment of a GAN connection
accesses the routing table of a node in order to ensures that packets are put
into the secure tunnel, and extracted again at the other end. The SPD describes
what packets are allowed to be sent and received by the IP protocol stack, and is
also responsible for identifying which packets are to be tunnelled at the mobile
station and the security gateway. Each entry in the SPD contains the source and
destination addresses to use for matching packets, and an action to perform.
Modelled actions are bypass (which means allow packet to pass without tun-
nelling) and tunnel (the matched packet is to be sent through an ESP tunnel).
As we will see later, the content of the routing table and the SPD play an im-
portant role in validating the correctness of the GAN connection establishment.
It was therefore required to explicitly represent them in the CPN model.

4.3 Verification of the GAN CPN Model

The goal of applying state space exploration was to verify the completeness
of the design. This included verifying that all phases, steps, and messages in-
volved in establishing a secure GAN connection were covered by the design, and
the correctness of the connection establishment,i.e., that a GAN connection is

80

Ready
IP_ADDR

Send
IKE_SA_INIT
cket

Await
IKE_SA_INIT

UNIT

[Send
IKE_AUTH
Packet

Send TKE_AUTH Packet

Await IKE_AUTH

ongoing EAP

Send
EAP Data

Data

Send EAl

Wait
for EAP Reply

Send
EAP Data 2

Wait
for EAP Reply 2

UNIT

[receive
EAP Reply
Receive EAP Repl
Wait for
IKE_AUTH Repl

UNIT
Receive
IK| UTH
eply
IKE_AUTH

IPXIP_PAYLOAD IP_ADDR
(dest_ip, ip_payload)

Append
1P Header

{src=(190,1,1,1), dest=dest_ip,
payload=ip_payload}

Receive
Buffer
IP_PACKET

L.M. Kristensen and K.I.F. Simonsen

SA.

fol

Outgoing
IKE Replies

IPXIP_PAYLOAD
(dest_ip, ip_payload)

Append

1P Header | IPAAdr(0,src_ip)

{src=src_ip,
dest=dest_ip,
payload=ip_payload}

Send
Buffer

IP_PACKET

Handle

AUTH

Request
Handle AUTH Request

Addresses [1/0]

Handle
INIT Request

Wait
r EAP AUTH

IP_ADDR

IP_ADDR

IP_ADDR

Incoming
IKE Requests,

IPXIKE_PACKET
(#src(p), ike_packet)

Receive
IKE Request

ADDR

[#payload(p) =
Ikelnitiator(ike_packet)]

Receive
Buffer

1P_PACKET

Fig. 16. IKE initiator (left) and IKE responder (right) modules

Applications of CPNs for Functional Validation of Protocol Designs 81

Ready
1P_ADDR

dest_ip

Y

Send
IKE_SA_INIT

Packet

Handle (src_ip, ike_packet)
SA_INIT Request

(src_ip,

IkeResponder({

msg_id=(#msg_id(ike_packet)),

exch=IKE_SA_INIT

({SAr = [hd(#SAi(sa_init))],
KEr = (#KEi(sa_init)),
SAi=[], KEi=0})}))

(dest_ip,

Ikelnitiator({

exch = IKE_SA_INIT({
SAi=[sa_proposall],
KEi=2, 0
SAr=(],
KEr=0}),

msg_id = 0}))

[#exch(ike_packet)=
IKE_SA_INIT(sa_init)]

src_ip

A

Outgoing Wait Incoming
Await IKE Repli for EAP AUTH IKE R t:
eplies or equests
‘ IKE_SA_INIT)
— ONIT IPXIP_PAYLOAD 1P ADDR

IPXIP_PAYLOAD IPXIKE_PACKET

IKE
Packets
Initiator,

Fig. 17. Example of IKE initiator (left) and IKE responder (right) submodules

eventually established with the mobile station and the GAN controller being
properly synchronised. Verification of the key properties of the design for se-
cure connection establishment was done by state space exploration. The basic
idea underlying state space exploration is to compute all reachable states and
state changes of the CPN model and represent these as a directed graph, where
nodes represent markings and arcs represent occurring binding elements. State
spaces can be constructed fully automatically by the state space tool in CPN
Tools. Verification of the GAN scenario modelling by means of state spaces re-
lied on the use of the state space report that can be generated by CPN Tools.
The generation of a state space report for the smallest possible configuration
of a considered protocol is typically the first step performed when conducting
verification of a CPN model.

The state space report is divided into several sections. In the following we
present excepts from the individual sections and explain how they can be used
for the verification. Figure [I§ shows the first part of the state space report for
the CPN model. This part provides some state space statistics specifying how
large the state space is. It can be seen that the state space consists of 3,854 nodes
and 9, 225 arcs. The construction of the state space took 4 seconds. Statistics for
the strongly connected component graph (SCC-graph) are also specified. It has
3,514 nodes and 8, 881 arcs, and was calculated in 2 seconds. The fact that there
are fewer nodes in the SCC-graph than in the state space implies that there are
non-trivial strongly connected components (SCCs), i.e., SCCs consisting of more
than a single state space node. This means that infinite executions exist and that
the GAN connection establishment may not terminate. We will investigate the
reasons for this at the end of this subsection.

The boundedness properties section of the state space report specifies how
many and which tokens a place may hold — when considering all reachable states
(markings). Figure lists the best upper and best lower integer bounds for
selected places in the mobile station module. It can be seen that the first four
places modelling the states of the mobile station contain at most one token and
may contain zero tokens. Similarly, it can be seen that there is at most one token

82 L.M. Kristensen and K.I.F. Simonsen

State Space Scc Graph
Nodes: 3,854 Nodes: 3,514
Arcs: 9,225 Arcs: 8,881
Secs: 4 Secs: 2

Fig. 18. State space report — statistics

Best Integer Bounds Upper Lower
Down 1 0
Ready 1 0
VIF open to Prov. SG 1 0
VIF Closed 1 0
Send Buffer 1 0
Receive Buffer 1 0
Network Buffer 1 0
Routing Table 1 0
Security Policy Database 1 1

Fig. 19. State space report — integer bounds

in the send, received, and network buffers. The place RoutingTable has a lower
integer bound of 0 and an upper integer bound of 1. The lower integer bound is
0 since in the initial marking there are no tokens on this place. During the start-
up procedure of the mobile station, a token representing a list of routing table
entries is put on this place. The place SecurityPolicyDatabase has a best upper
and a best lower integer bound of 1. This means that there is always exactly
one token present on this place. This is because the security policy database
is modelled as a single token being a list containing the current entries in the
security policy database.

The best upper multi-set bound of a place specifies for each colour in the colour
set of the place the maximal number of tokens that is present on this place with
the given colour in any reachable marking. This is specified as a multi-set, where
the coefficient of each value is the maximal number of tokens with the given
value. If the coefficient is zero, then the colour is omitted in the specification.
Figure shows part of the state space report providing the upper multi-set
bounds for the security policy databases of the mobile station, wireless router,
security gateway, and the GAN controller. The upper multi-set bounds specify
the possible tokens that can reside on these places and by carefully inspecting
these bounds it was possible to validate that the possible entries in the security

Applications of CPNs for Functional Validation of Protocol Designs 83

Mobile Station: Security Policy Database

1¢[{src=((0,0,0,0),0) ,dest=((0,0,0,0),0),
nl_info=PayloadList ([PAYLOAD_DHCP]) ,policy=SpdBypass}]++

1¢[{src=((80,1,1,1),32),dest=((12,0,0,0),8),
nl_info=AnyNextLayer,policy=ESPTunnel (((190,1,1,1),(172,1,1,2)))},
{src=((190,1,1,1),0) ,dest=((0,0,0,0),0),
nl_info=AnyNextLayer,policy=SpdBypass}]++

1¢[{src=((190,1,1,1),0) ,dest=((0,0,0,0),0),
nl_info=AnyNextLayer,policy=SpdBypassl}]

Wireless Router: Security Policy_Database
1¢ [{src=((0,0,0,0),0) ,dest=((0,0,0,0),0),
nl_info=AnyNextLayer,policy=SpdBypass}]

Security Gateway: Security Policy Database
1¢[{src=((13,0,0,0),8) ,dest=((80,1,1,1),32),
nl_info=AnyNextLayer,policy=ESPTunnel (((172,1,1,2),(190,1,1,1)))},
{src=((0,0,0,0),0) ,dest=((0,0,0,0),0),
nl_info=AnyNextLayer,policy=SpdBypass}]

GAN Controller: Security Policy Database
1¢[{src=((0,0,0,0),0) ,dest=((0,0,0,0),0),
nl_info=AnyNextLayer,policy=SpdBypassl}]

Fig. 20. State space report — best upper multi-set bounds

policy database were all as desired. Altogether, an inspection of the boundedness
properties helped significantly in increasing confidence in the correctness of the
design in terms of proper settings of the routing table and the security policy
database.

Figure 2I] shows the part of the state space report specifying the home and
liveness properties. The home properties show that there exists a single home
marking, which is state number 3854. A home marking is a state which can be
reached from any reachable state. For the GAN scenario model this means that it
is impossible to have an execution sequence starting from the initial state (initial
marking) which cannot be extended to reach state 3854. The liveness properties
tell us that there is a single dead marking which is also state number 3854. A
dead marking is a state in which no transitions are enabled. This means that
the marking corresponding to node 3854 is both a home and a dead marking.

To obtain information about the marking corresponding to node number 3854,
the node number was transferred into the simulator of CPN Tools and displayed
graphically on the CPN model. It was then checked (by inspecting the markings
of the individual places) that the marking corresponded to the desired terminat-
ing state of the GAN connection establishment procedure, i.e., the state where

84 L.M. Kristensen and K.I.F. Simonsen

Home Properties Liveness Properties
Home Markings: [3854] Dead Markings: [3854]

Fig. 21. State space report — home and liveness properties

the mobile station has obtained an IP address, has successfully communicated
with the provisioning GAN controller, all protocol modules are in a state cor-
responding to the GAN connection having been established, and the routing
tables and security databases contain the correct entries. The fact that state
3854 is the only dead marking tells us that the protocol as specified by the CPN
model is partially correct, i.e., if execution terminates we have the correct result.
Furthermore, because node 3854 is also a home marking it is always possible to
terminate the GAN connection establishment with the correct result.

The analysis above showed that it is always possible to terminate the GAN
connection establishment procedure correctly, but there is no guarantee that it
will eventually happen. The section of the state space report providing informa-
tion about fairness properties showed that the two transitions RejectDiscoveryRe-
quest and HandleGARCReject which are part of the GAN controller module were
impartial. This means that these two transitions occur infinitely often in any
infinite occurrence sequence. The two transition occurs if the GAN controller
decides to reject an incoming connection from a mobile station. Hence, if the
connection establishment procedure does not terminate in the single home and
dead marking identified, then it is because the GAN controller keeps rejecting
the connection.

4.4 Lessons Learned and Perspectives

The validation of secure connection establishment in the considered GAN sce-
nario is representative for how validation of protocols is typically performed
with CPN Tools — as it in practise involves a combination of both simulation
and state space exploration. As part of the construction of the GAN model, the
support for interactive simulation in CPN Tools was used to perform detailed
checks to ensure that the model behaviour was as desired. Even though the use
of interactive simulations (and simulation in general) cannot be used to prove
correct behaviour, it proved to be very useful in identifying situations related to
improper manipulations of the entries in the routing tables and security policy
database - or when additional detail not present in the GAN specification had
to be worked out and specified. Furthermore, interactive simulation was helpful
in identifying issues that led the GAN connection establishment procedure to
terminate prematurely, e.g., because a certain phase of the connection estab-
lishment was missing in the CPN model. These issues manifested themselves in
markings where the GAN connection had not yet been established, but where

Applications of CPNs for Functional Validation of Protocol Designs 85

no transitions were enabled. This was in particular effective in making explicit
where further specification of the message exchanges were required.

The interactive simulation was in later phases replaced with automatic simu-
lation where a number of random executions of the CPN model were performed
with the purpose of checking whether the execution of the CPN model resulted
in a state in which the GAN connection was properly established. Eventually
state space exploration of the CPN model was conducted which succeeded in
establishing the key property that a GAN connection will eventually be estab-
lished provided that the GAN controller does not keep rejecting the connection
request. The verification conducted also illustrated the general observation that
in many cases, the use of basic state space exploration and the state space report
(i.e., investigating standard behavioural properties of Petri nets) are sufficient
in establishing key properties of a protocol design. In this case the state space
was small in size and could be generated in a few seconds without the use of
advanced state space exploration techniques.

5 The Routing Interoperability Protocol

The section show how a CPN model can be augmented with application-specific
behavioural visualisation reflecting the execution of the CPN model. This sec-
tion is based on a project conducted at Ericsson Telebit A/S addressing the
specification of the Routing Interoperability Protocol (RIP) for routing pack-
ets between IP core networks and mobile ad-hoc networks. The CPN model of
RIP augmented with behavioural visualisation was used as an early model-based
prototype of RIP. It allowed the protocol design to be discussed among protocol
engineers unfamiliar with CPNs, and it also enabled the protocol design to be
presented to customers with the purpose of soliciting requirements of the services
to be provided by the protocol.

5.1 CPN Model of the RIP Protocol

The main purpose of the routing interoperability protocol is to ensure that a
packet flow between a host in the core network and a mobile node in an ad-hoc
network is always relayed via one of the closest gateways that connect the core
network and the mobile ad-hoc network. Figure 22] shows the top level module
of the CPN model which reflects the network architecture that the RIP protocol
is designed to operate in. The network architecture consists of three parts: an
IPv6 core network represented by the CoreNetwork substitution transition (left)
and its submodules, a mobile ad-hoc network represented by the AdHocNetwork
substitution transition (right) and its submodules, and two gateways represented
by the substitution transitions Gatewayl and Gateway2. The basic idea in the
interoperability protocol is that the mobile nodes register the IPv6 address in
the Domain Name Server (DNS) server in the core network that corresponds to

! RIP as discussed in this section should not be confused with the Routing Information
Protocol|85].

86 L.M. Kristensen and K.I.F. Simonsen

1 (RECEIVE("AHN(3)"),{src="3ffe:100
:3:405::1",dest="all-nodes multlcast
cont=GW. ADV((3ffe:100:3:401::1",
| 3ffe:100:3:405::"))})++
1" (RECEIVE("AHN(4)"),{src="3ffe:100
_ [:3:405::1",dest="all-nodes multlcast
GWConfig | cont=Gw. ADV((3ffe:100:3:401::1",
3ffe:100:3:405::"))})

(3ffe 100:3:401::3","3ffe:100:3:4
,"3ffe:100:3:405::")

1 (ROUTING,{src="3ffe:100:3:401::2
" dest="3ffe:100:3:401::1",cont=DNS
LREQ("AHN(3)")})

Gateway1l

AdHoc
Network

AdHoc
Network

Core
Network

Core
Network

AdHocNetworl

CoreNetwork Gateway2

CmdxPacket CmdxPacket

E‘ ("3ffe:100:3:401::4","3ffe:100:3:4

6::1","3ffe:100:3:406::") GWConfig

Fig. 22. The System module — top-level module of the CPN model

an IPv6 address prefix announced by the closest (preferred) gateway. Updates
to the DNS database managed by the DNS server rely on the Dynamic Domain
Name System Protocol [108§].

The places CoreNetwork and AdHocNetwork are used for modelling the packets
in transit on the core network and ad-hoc network, respectively. Figure[22 depicts
a state in which there is one token on place CoreNetwork and two tokens on place
AdHocNetwork. As an example, place CoreNetwork contains one token with the
colour:

(RECEIVE("3ffe:100:3:401::1"), {src="3ffe:100:3:401::2",
dest="3ffe:100:3:401::1",cont=DNSREQ("AHN(3)")1})

representing a DNS request (DNSREQ) in transit on the core network from a host
with source IPv6 address 3ffe:100:3:401::2 to a DNS server with destination
IPv6 address 3ffe:100:3:401::1. IPv6 addresses are 128-bit and by conven-
tion written in hexadecimal notation in groups of 16-bits separated by a colon
(:). Leading zeros are skipped within each group and a double colon (::) is a
shorthand for a sequence of zeros. Addresses consist of an address prefix and an
interface identifier.

The place AdHocNetwork contains two tokens representing gateway adver-
tisements in transit to nodes in the ad-hoc network. The gateways periodically
announce their presence to nodes in the mobile ad-hoc network by sending gate-
way advertisements containing an IPv6 address prefix. The two Config places
contain a token representing the configuration of the corresponding gateway.
It consists of the IPv6 address of the gateway interface connected to the core
network, the IPv6 address of the gateway interface connected to the ad-hoc net-
work, and the address prefix announced by the gateway. Address prefixes are
written in the form x/y where x is an IPv6 address and y is the length of the
prefix. The mobile nodes in the ad-hoc network configure IPv6 addresses based

Applications of CPNs for Functional Validation of Protocol Designs 87

on the received gateway advertisements. In the marking depicted in Fig. 22]
Gatewayl is announcing the 64-bit address prefix 3ffe:100:3:405::/64 and Gate-
way?2 is announcing the prefix 3ffe:100:4:406::/64. Each of the gateways has con-
figured an address on the interface to the ad-hoc network based on the prefix
they are announcing to the ad-hoc network. Gatewayl has configured the address
3ffe:100:3:405::1 and Gateway?2 has configured the address 3ffe:100:3:406::1. The
gateways have also configured addresses on the interface to the core network
based on the 3ffe:100:3:401::/64 prefix of the core network.

Figure 23] lists the definitions of the colour sets used in the System module.
IP addresses, prefixes, and symbolic IP addresses are represented by colour sets
IPAdr, Prefix, and Symname all defined as the set of strings. The colour set
PacketCont and Packet are used for modelling the IP packets. The five different
kinds of packets used in RIP are modelled by the PacketCont colour set:

DNS REQ modelling a DNS request packet. It contains the symbolic TP address
to be resolved to a (numerical) IP address by a DNS server.

DNS REP modelling a DNS reply. It contains the symbolic IP address and the
resolved IP address.

DNS UPD modelling a DNS update. It contains the symbolic IP address to be
updated and the new IP address to be bound to the symbolic address.

GW ADV modelling the advertisements disseminated from the gateways. An ad-
vertisement contains the IP address of the gateway and the announced prefix.

colset Prefix = string; (* address prefixes *)
colset IPAdr = string; (x IP addresses *)
colset SymName = string; (* symbolic names *)

colset SymNamexIPAdr = product SymName * IPAdr;
colset IPAdrxPrefix = product IPAdr * Prefix;

colset PacketCont = union DNS_REQ : SymName + (* DNS Request *)
DNS_REP : SymNamexIPAdr + (* DNS Reply *)
DNS_UPD : SymNamexIPAdr + (* DNS Update *)
GW_ADV : IPAdrxPrefix + (% Advertisments *)
PACKET; (* Generic payload *)

colset Packet = record src : IPAdr * dest : IPAdr * cont : PacketCont;

colset Cmd union ROUTING + RECEIVE : IPAdr +
FLOODING : IPAdr + GWAHNROUTING : IPAdr +
AHNGWROUTING : IPAdr;

colset CmdxPacket = product Cmd * Packet;
colset GWConfig = product IPAdr * IPAdr * Prefix;

Fig. 23. Colour set definitions used in the System module

88 L.M. Kristensen and K.I.F. Simonsen

PACKET modelling generic payload packets belonging to packet flows between
hosts and the mobile nodes.

The colour set Packet models the packets as a record containing the source,
destination, and content. The actual payload (content) and layout of packets
are not essential for modelling the interoperability protocol and has therefore
been abstracted away. The colour set Cmd is used to control the operation of
the various modules in the CPN model. The colour set GWConfig models the
configuration information of the gateway.

The Core Network. Figure 24] shows the CoreNetwork module modelling the
core network. This module is the immediate submodule of the substitution tran-
sition CoreNetwork of the System module shown in Fig. The port place
CoreNetwork is assigned to the CoreNetwork socket place in the System module
(see Fig. 22)). The substitution transition Routing represents the routing mech-
anism in the core network. The substitution transition Host represents the host
on the core network, and the substitution transition DNS Server represents the
DNS server that maintains the DNS database.

The Mobile Ad-hoc Network. Figure 25] depicts the AdHocNetwork module
modelling the mobile ad-hoc network. The place Nodes is used to represent the
nodes in the mobile ad-hoc network. The place Routinglnformation is used to
represent the routing information in the ad-hoc network which is assumed to be
available via some routing protocol executed in the ad-hoc network. This routing
information enables among other things the nodes to determine the distance to
the reachable gateways. Detailed information about the colour of the token on
place RoutinglInformation has been omitted.

Figure lists the definition of the colour sets used in the AdHocNetwork
module. The colour set AHNConfig is used to model the configuration information
for the mobile ad-hoc nodes. Each ad-hoc node is represented by a token on place
Nodes and the colour of the tokens specifies the name of the node and a list of
configured IP addresses. Each configuration specifies the IP address configured,
and the IP address and prefix of the corresponding gateway. It is possible for

DNS
Server
DNSServer
Core .
Network Routing
Host
Host CmdxPacket CNRouting

Fig. 24. Core Network module — modelling the core network

Applications of CPNs for Functional Validation of Protocol Designs 89

o/ Routing 2

Information

1 (AHN(3),[("3ffe:100:3:405::3","3ffe
‘:‘-100:3:405::1 ,"3ffe:100:3:405::")])+ Distancelnformation
1° (AHN(4),[("3ffe:100:3:405::4","3ffe
:100:3:405::1","3ffe:100:3:405::")])+

+
1' (AHN(5),[("3ffe:100:3:406::5","3ffe
:100:3:406::1","3ffe:100:3:406::")])

AHNodes 4—»‘4—» Mobility Routing Flooding
AHNConfig
Node AHNRouting Flooding
T
- AdHoc -
> <

Network

CmdxPacket

Fig. 25. AdHocNetwork module — modelling the ad-hoc network

(* —-- ad-hoc nodes —--- *)
color AHId = int with 1..5;
color AHNode = union AHN : AHId;

(* --- configuration information for ad-hoc nodes --- *)
color AHNIPConfig = product IPAdr * IPAdr * Prefix;
color AHNIPConfigs = list AHNIPConfig;

color AHNConfig = product AHNode * AHNIPConfigs;

Fig. 26. Colour definitions used in the AdHocNetwork module

a mobile ad-hoc node to configure an IP address for multiple gateways. The
mobile node must ensure that the DNS database always contains the IP address
corresponding to the preferred gateway. In the marking shown in Fig. B3 it
can be seen from the labels below the mobile nodes that Ad-hoc Node 3 and
Ad-hoc Node 4 have configured IP addresses based on the prefix announced by
Gatewayl, whereas Ad-Hoc Node 5 has configured an IP address based on the
prefix announced by Gateway2. For an example, Ad-hoc Node 3 has configured
the address 3ffe:100:3:405::3.

There are four substitution transitions in the AdHocNetwork module corre-
sponding to the components of the ad-hoc network. The substitution transition
AHNodes represents the behaviour of the nodes in the mobile ad-hoc network.
The substitution transition Mobility models the mobility of nodes in the ad-hoc
network, i.e., that the nodes may move closer or further away from the gateways.
The substitution transition Routing represents the routing protocol executed in
the ad-hoc network. The purpose of the routing protocol in the context of the
RIP protocol is to provide the nodes with information about distances to the

90 L.M. Kristensen and K.I.F. Simonsen

gateways. The routing is abstractly modelled in a similar way as the routing
mechanism in the core network and will not be discussed further in this paper.
The substitution transition Flooding models the dissemination of advertisements
from the gateways. A detailed presentation of this part of the model has been
omitted here. The complete CPN model of the RIP protocol is hierarchically
structured into 18 modules. A detailed presentation of the CPN model can be
found in [74].

5.2 Behavioural Visualisation of the RIP Protocol

In the routing interoperability project, the BRITNeY Suite animation framework
[111] was used to create an animation GUI on top of the CPN model. The
animation GUI allows a user to observe the execution of the constructed CPN
model using a graphical representation of the network architecture. The graphics
is updated by the underlying CPN model according to the execution of the
formally specified protocol, and the CPN model is also able to react to stimuli
provided by the user via the animation GUI.

Figure 27 shows a representative snapshot of the application-specific graphics
during the execution of the CPN model. The IP addresses configured by the
individual nodes are shown as labels below the nodes. For an example, Ad-hoc
Node 3 has configured two IP addresses: 3ffe:100:3:405:3 and 3ffe:100:3:406:3.
The convention is that the preferred IP address is the topmost address in the
list below the node. The entries in the DNS database are shown in the upper left
corner. It shows the entries for each of the three ad-hoc nodes. The two numbers
written at the top of each node are counters that provide information about
the number of packets on the incoming (left) and outgoing (right) interfaces
of the nodes. Transmissions of advertisements from the gateways are visualised
by green dots. Fig. 27 shows an example where Gateway?2 is transmitting an
advertisement. Transmission of payload packets is visualised using red dots, and
DNS packets are visualised using blue dots.

In addition to observing feedback on the execution of the CPN model in the
animation GUI, it is also possible to provide input to the CPN model directly
via the animation GUI. The user can move the nodes in the ad-hoc network
thereby changing the distances to the two gateways. It is also possible to define
a packet flow from the host in the core network to one of the nodes in the mobile
ad-hoc network by clicking on the red square positioned next to each of the
ad-hoc nodes. The square will change its colour to green once the CPN model
has registered the flow. The flow can be stopped again by clicking on the (now
green) square next to the mobile ad-hoc node. Finally, it is possible to force the
transmission of an advertisement from a gateway by clicking on the gateway.

A more generic form of high-level graphical feedback in the form of MSCs was
also used in this project. Figure 28 shows an example of an MSC diagram based
on a simulation of the CPN model. The MSC shows a scenario where Ad-hoc
Node 3 makes a Move and discovers that Gateway 2 is now the closest gateway.
This causes it to send a DNS update to the DNS server. The last part of the
MSC shows the host initiating a packet flow to Ad-hoc Node 3. One benefit of

Applications of CPNs for Functional Validation of Protocol Designs

AHN(4
AHN(5

0 0

DNS Server
3ffe:100:3:401::

erm“-m

2
3ff 100 3:401;:2 3ffe:100:3:
e 3ffe: 3:

AHN(3) -> 3ffe:100:
-> 3ffe:100:
-> 3ffe:100:

3:406::3
3:405::4
3:406::5
0 0

- L

Gateway 1

E“"* 0 1

Gatewa
100:

3ffe:100:3:
1 3ffe:100:3:

401::3
405::1

Ad-hoc Node 3

DNS request/re ly/update

[]

Gateway adver isement

3ffe:100:3:406::3
3f(f)e 100:3:405::3

401
406: 1

Ad-hoc Node 4

3ffe:100:3:405::4
3(f)fe:%)00:3:406::4

Ad-hoc Node 5

el 4

Fig. 27. Snapshot of the interaction graphics

==

Host } [Gateway 1 } [Gateway 2 } [Node 3 } [Node 4 } [Node 5 }

Adverti;

sement

Adverti

sement

Move

DNS update,

Advertisement

Advertisement

Advertisement

k

Fig. 28. Message sequence chart generated by the animation GUI

DNS lookup;

DNS reply,

DNS update,

Data

91

92 L.M. Kristensen and K.I.F. Simonsen

using MSCs is that they provide an event-based view that records the execution
history. This is in contrast to the state-based view on the CPN model that one
obtains during an interactive simulation. The two forms of feedback therefore
complement each other and MSCs have been widely used in projects where CPNs
were applied to protocol design.

Graphical feedback from the execution of the CPN model is achieved by at-
taching code segments to the transitions in the CPN model. These code segments
are sequential pieces of code that are executed whenever the corresponding tran-
sition occurs in the simulation/execution of the CPN model. As an example
consider the CNRouting module in Fig. The transition Route models the
routing of the packet on the core network. It uses the routing information on
place Routinglnformation to direct the packet to the proper gateway. The SML
function FindNextHop in the guard expression of the transition computes the IP
address of the next hop gateway using the routing information and destination
IP address of the packet. The Route transition has an attached code segment
which is executed whenever the transition occurs. The code segment invokes the
primitives in the animation package for animating the transmission of packets
in the core network.

(* --- Route transition code segment -- *)
input (srcipadr, nhipadr, content);
output ();
action
if String.substring (srcipadr, 13, 1) = "1"
(ROUTING, then show_flow(srcipadr, nhipadr, content)

{ src = srcipadr, else show_flow((String.substring (srcipadr, 0, 16)) ~ "1", nhipadr, content)
dest = destipadr,
[I/O7] cont = content
70 Core » routinginformation - -
Networkl Route RoutingInformation
]
(RECEIVE nhipadr, RoutingInformation
CmdxPacket {src = srcipadr, ! [nhipadr = FindNextHop routinginformation destipadr] uting r !

dest=destipadr,
cont=content})

Fig. 29. The CNRouting module — Routing in the core network

The CPN model receives input from the animation GUI by polling the an-
imation GUI for events. An event queue has been implemented between the
animation GUI and the CPN model. The code segment of transition Produce in
the Poll module shown in Fig. B0l polls the animation GUI for events at regular
intervals during the execution of the CPN model. Events are put into a list-token
representing an event queue on the place Events. The parts of the CPN model
that are to react on events from the animation GUI are linked via place fusion
to the Event place and are able to consume events from the event queue. The
occurrence of the transition Produce corresponds to a poll to the animation GUI
for events.

5.3 Lessons Learned and Perspectives

The CPN model combined with the animation GUI that was developed in the
RIP project served as an early model-based executable prototype. The domain

Applications of CPNs for Functional Validation of Protocol Designs 93

if (event = "none" andalso n<>0)
then events
else events~"[event]

[
Produce [« : Events @
events
EVENTS

Fig. 30. The Poll module — Polling the animation GUI for events

specific graphical user interface (the animation GUI) made it possible to explore
and demonstrate the design of the interoperability protocol with the underlying
formal model being transparent for the observer and the demonstrator. In par-
ticular, it made it possible for persons without knowledge of the CPN modelling
language to experiment with the proposed design. The use of an animation GUI
on top of the CPN model has the advantage that the behaviour observed by the
user is as defined by the underlying model that formally specifies the design. The
alternative would have been to implement a separate visualisation application
totally detached from the CPN model. This would have led to double represen-
tation of the dynamics of the interoperability protocol which could in turn lead
to inconsistencies between the two representation of the design.

Another advantage offered by the development of a model-based prototype
is ease of control compared to a physical prototype, in particular in the case of
mobile nodes and wireless communication where scenarios can be very difficult
to control and reproduce. The use of a model means that there is no need to
invest in physical equipment and there is no need to setup the actual physical
equipment early in the project. The use of a model also makes it possible to
investigate larger scenarios, e.g., scenarios that may not be feasible to investigate
with the available physical equipment. An additional general advantage of the
approach taken in the RIP project is that at an early stage of development,
the implementation details can be abstracted away and only the key part of
the design have to be specified in detail. As an example, the CPN model of the
interoperability protocol abstracted away the routing mechanisms in the core and
ad-hoc networks, and the mechanism used for distribution of advertisements.
Instead, the service assumed from these components for the interoperability
protocol to work was modelled. The possibility of making abstraction means
that it is possible to obtain an executable prototype without implementing all
the components.

6 The Edge Router Discovery Protocol

The previous sections have demonstrated how modelling, simulation, state space
exploration, and behavioural visualisation can be applied for validating the func-
tional design of protocols. This section summarises a project |67] conducted with
Ericsson Telebit A/S where a combination of the techniques introduced in the
previous sections were applied for the design of an Edge Router Discovery Pro-
tocol (ERDP). The CPN model of ERDP was developed in close cooperation

94 L.M. Kristensen and K.I.F. Simonsen

with the protocol engineers at Ericsson Telebit A/S based on a natural-language
specification that would normally have served as a basis for the implementation
of the protocol. Simulation and MSCs were used in initial investigations of the
ERDP protocol behaviour. Then state space exploration was used to conduct a
formal verification of the key behavioural properties of ERDP. The aim of this
section is to show how modelling, simulation, visualisation, and state space ex-
ploration all can help to identify omissions and behavioural errors in a design,
and how they are typically used in conjunction in a protocol design process.

6.1 CPN Model of the ERDP Protocol

ERDP is based on the IPv6 Neighbour Discovery Protocol (NDP) [88] and sup-
ports edge routers residing on the boundary of an IP core network in configuring
gateways with an IPv6 address prefix. This address prefix can in turn be used by
mobile nodes in ad-hoc networks to configure global IPv6 unicast addresses and
obtain Internet access via the core network. Figure 31 shows the ERDP module
which is the top-level module of the CPN model. The substitution transition
Gateway represents the gateway, and the substitution transition EdgeRouter rep-
resents the edge router. The wireless communication link between the edge router
and the gateway is represented by the substitution transition GW ER Link. The
four socket places GWIn, GWOut, ERIn, and EROut model packet buffers between
the link layer and the gateway and edge router. Both the gateway (GW) and
the edge router (ER) have an incoming and an outgoing packet buffer.

All four places in Fig. BIl have the colour set IPv6Packet, used to model the
IPv6 packets exchanged between the edge routers and gateways. Since ERDP
is based on the IPv6 Neighbour Discovery Protocol, the packets are carried
as Internet Control Message Protocol (ICMP) packets. The definitions of the
colour sets for NDP, ICMP, and IPv6 packets were derived directly from RFC
2460 [22] by using record type constructors for representing fields within packets

Gateway EdgeRouter

@?]@ EdgeRouter

GWIn GWOut ERIn EROut
IPv6Packet IPv6Packet IPv6Packet IPv6Packet

GW_ER_Link GW_ER_Link

Fig. 31. Top-level module of the ERDP CPN model

Applications of CPNs for Functional Validation of Protocol Designs 95

and union type constructors for representing the different kinds of packets (see
[67] for detail). It was considered important by the protocol engineers for later
implementation that the definition of the packets followed closely the structure
of IPv6 packets instead of a more abstract representation.

Figure B2l shows the EdgeRouter module. The port places ERIn and EROut are
related to the accordingly named socket places in the ERDP module (see Fig. [3T]).
The place Config models the configuration information associated with the edge
router, and the place PrefixCount models the number of prefixes still available in
the edge router for distribution to gateways. The place PrefixAssigned is used to
keep track of which prefixes are assigned to which gateways.

Figure B3] shows the declarations of the colour sets for the three places in
Fig. The configuration information for the edge router (modelled by the
colour set ERConfig) is a record consisting of the IPv6 link-local address and
the link-layer address of the edge router. A list of pairs (colour set ERPrefixAs-
signed) consisting of a link-local address and a prefix is used to keep track of
which prefixes are assigned to which gateways. A counter modelled by the place
PrefixCount with the colour set PrefixCount is used to keep track of the number
of prefixes still available. When this counter reaches 0, the edge router has no
further prefixes available for distribution. The number of available prefixes can
be modified by changing the initial marking of the place PrefixCount, which is
set to 1 by default.

The substitution transition SendUnsolicitedRA (in Fig.B2)) corresponds to the
multicasting of periodic wunsolicited router advertisements (RAs) by the edge
router such that gateways can discover the presence of the edge router. When a
gateway receives an unsolicited RA, it responds with a unicast router solicitation
(RS). The substitution transition ProcessRS models the reception at the edge

Send

UnsolicitedRA N\
K y k[SendUnsolicitedRA
|1‘{H_er:"ER link-local address",er_|2
. ="ER link-addr"}
Sl
Y Y o
ERDiscard Prefix y 3
Prefixes F@gned @Count @
[ERDiscardPrefixes A ERPrefixAssigned & PrefixCount ERConfig
Y A 4
ProcessRS ~
ProcessRS
A
] EROut
IPv6Packet IPv6Packet

Fig. 32. The EdgeRouter module

96 L.M. Kristensen and K.I.F. Simonsen

colset LinkAddr = string;

colset ERConfig = record 1l_er : IPv6Addr * (* link-local address *)
er_12 : LinkAddr; (* link-addr (layer 2) *)

colset ERPrefixEntry product IPv6Addr * IPv6Prefix;
colset ERPrefixAssigned = list ERPrefixEntry;

colset PrefixCount = int;

Fig. 33. Colour set definitions for edge routers

router of unicasted RSs from gateways, and the sending of a unicast RA to the
gateway in response. The substitution transition ERDiscardPrefixes models the
expiration of prefixes on the edge router side.

The marking shown in Fig. [32 has a single token on each of the three places
used to model the internal state of the edge router protocol entity. In the marking
shown, the token on the place PrefixAssigned with the colour [] corresponds to
the edge router not having assigned any prefixes to the gateways. The token on
the place PrefixCount with colour 1 indicates that the edge router has a single
prefix available for distribution. Finally, the colour of the token on the place
Config specifies the link-local and link addresses of the edge router. In this case
the edge router has the symbolic link-local address ER link-local address, and the
symbolic link-address ER link-addr.

Figure B4 depicts the SendUnsolicitedRA module which is the submodule
of the substitution transition SendUnsolicitedRA in Fig. The transition
SendUnsolicitedRA models the sending of the periodic unsolicited router adver-
tisements. The variable erconfig is of type ERConfig, and the variable prefixleft is

|1‘ {ll_er="ER link-local address",er_|2 |

="ER link-addr"}
A PrefixCount A ERConfig
prefixleft erconfig
A 4 A 4
Send CreateUnsolicitedRA(erconfig)

UnsolicitedRA

[SendUnsolicitedRA(gwprefixassign, prefixleft)]

gwprefixassign

Prefix

Assigned

IPv6Packet
ERPrefixAssigned

Fig. 34. Initial marking of the SendUnsolicitedRA module

Applications of CPNs for Functional Validation of Protocol Designs 97

of type PrefixCount. The transition SendUnsolicitedRA is enabled only if the edge
router has prefixes available for distribution, i.e., prefixleft is greater than 0. This
is ensured by the function SendUnsolicitedRA in the guard of the transition.

Figure B3 depicts the marking of the SendUnsolicitedRA module after the oc-
currence of the transition SendUnsolicitedRA in the marking shown in Fig. 34
An unsolicited router advertisement has been put in the outgoing buffer of
the edge router. It can be seen that the DestinationAddress is the address
all-nodes-multicast, the SourceAddress is ER link-local address, and
the LinkLayerAddress (in the options part) is ER link-addr.

Figure shows the part of the GW ER Link module that models transmis-
sion of packets from the edge router to the gateway across the wireless link.
Transmission of packets from the gateway to the edge router is modelled simi-
larly. The port places GWIn and EROut are linked to the similarly named socket
places in Fig. BTl The transition ERtoGW models the successful transmission
of packets, whereas the transition LossERtoGW models the loss of packets. The
variable ipvbpacket is of type IPv6Packet. A successful transmission of a packet
from the edge router to the gateway corresponds to moving the token modelling
the packet from the place EROut to GWIn. If the packet is lost, the token will
only be removed from the place EROut.

Wireless links, in general, have a lower bandwidth and higher error rate than
wired links. These characteristics have been abstracted away in the CPN model
since the purpose is to reason not about the performance of ERDP but rather
its logical correctness. Duplication and reordering of messages are not possi-
ble on typical one-hop wireless links, since the detection of duplicates and the
preservation of order are handled by the data-link layer. The modelling of the
wireless links does allow overtaking of packets, but this overtaking was elimi-

|1‘ {ll_er="ER link-local address",er_|2

="ER link-addr"}
PrefixCount J1) [[/O] Config [1)
A PrefixCount A ERConfig
prefixleft erconfig
A 4 A 4
Send CreateUnsolicitedRA(erconfig)

UnsolicitedRA

[SendUnsolicitedRA(gwprefixassign, prefixleft)]

gwprefixassign 1" {header={Version=6,TrafficClass=

N notmod,Flowlabel=notmod,PayloadLe
nght=notmod,NextHeader=1,HopLimit

Prefix =255,SourceAddress="ER link-local ad
Assigned dress"‘,DestinationAddress:"aII—node o .
N X s-multicast"},extheaders=notmod,pa IPv6Packet
ERPrefixAssigned yload=ICMP{{Type=134,Code=0,Mes

sage=RA({CurHopLimit=0,M=0,0=0,R
outerLifetime=300,ReachableTime=0,

RetransTimer=0,0ptions=[RA_SrcLink
Addr({Type=1,Length=notmod,LinkLa
yerAddress="ER link-addr"})1})})}

Fig. 35. Module SendUnsolicitedRA, after occurrence of SendUnsolicitedRA

98 L.M. Kristensen and K.I.F. Simonsen

ipvbpacket
LossERtoGW «¢

[Ertogw |
GWIn)« - ERtoGW < - EROut
ipv6packet |—, ipvbpacket

IPv6Packet IPv6Packet

Fig. 36. Part of the GW ER Link module

Table 2. ERDP project |67] — design issues identified in the modelling phase

Category Review 1 Review 2 Total

Errors in protocol specification/operation 2 7 9 issues
Incompleteness and ambiguity in specification 3 6 9 issues
Simplifications of protocol operation 2 0 2 issues
Additions to the protocol operation 4 0 4 issues
Total 11 13 24 issues

nated in the state space exploration phase where bounds were imposed on the
capacity of the input and output packet buffers.

The CPN model was developed as an integrated part of the development
of ERDP. The creation of the CPN model was done in cooperation with the
protocol engineers at Ericsson in parallel with the development of the ERDP
specification. Altogether 70 person-hours were spent on CPN modelling. Prior
to the development of the CPN model, the protocol engineers at Ericsson were
given a 6 hour course on CPNs that made them capable of reading CPN models.
This means that CPN models could be used actively in discussion related to the
design of the ERDP protocol. MSCs (to be illustrated shortly), integrated with
simulation were used in both review steps to investigate the behaviour of ERDP
in detail. The use of MSCs in the project was of particular relevance since it
presented the operation of the protocol in a form well known to the protocol
engineers. Altogether 24 design issues were identified during three iterations
on the CPN model. Table [2 categorises and enumerates the issues encountered
during two review phases (Review 1 and Review 2) of the protocol design. The
issues were identified in the process of constructing the CPN model, performing
single-step executions of the CPN model, and engaging in discussions of the CPN
model with the protocol engineers at Ericsson.

6.2 Verification of the ERDP CPN Model

State space exploration was conducted after the three iterations of modelling
as discussed in the previous section. The purpose of the state space exploration
was to conduct a more thorough investigation of the operation of ERDP, includ-
ing verification of its key properties. The key behavioural property of ERDP is

Applications of CPNs for Functional Validation of Protocol Designs 99

proper configuration of the gateway with prefixes. This means that for a given
prefix and state where the gateway has not yet been configured with that prefix,
the protocol must be able to configure the gateway with that prefix. Further-
more, when the gateway has been configured with the prefix, the edge router
and the gateway should be consistently configured, i.e., the assignment of the
prefix must be recorded both in the gateway and in the edge router protocol
entity. Whether a marking represents a consistently configured state for a given
prefix can be checked by inspecting the marking of the place PrefixAssigned in
the edge router and the marking of the place Prefixes in the gateway.

Obtaining a finite state space. The first step towards state space exploration of
the CPN model was to obtain a finite state space. The CPN model as presented
above has an infinite state space, since an arbitrary number of tokens (packets)
can be put on the places modelling the packet buffers. As an example, the edge
router may initially send an arbitrary number of unsolicited router advertise-
ments. To obtain a finite state space, an upper integer bound of 1 was imposed
on each of the places GWIn, GWOut, ERIn, and EROut (see Fig.[BI]) which model
the packet buffers. This also prevents overtaking among the packets transmit-
ted across the wireless link. Furthermore, the number of packets simultaneously
present in the four input/output buffers was limited to 2. Technically, this was
done by using the branching options available in the CPN state space tool to pre-
vent the processing of enabled transitions whose occurrence in a given marking
would violate the imposed bounds on the buffer places.

No packet loss and prefix expire. The second step was to consider the simplest
possible configurations of ERDP, starting with a single prefix and assuming that
there is no packet loss on the wireless link and that prefixes do not expire. The
full state space for this configuration had 46 nodes and 65 arcs. Inspection of
the state space report showed that there was a single dead marking represented
by node 36. Inspection of this node showed that it represented a state where all
of the packet buffers were empty. However, the edge router and gateway were
inconsistently configured in this state in that the edge router had assigned the
prefix P1 (the single prefix), while the gateway was not configured with that pre-
fix. This was an error in the protocol. To locate the source of the problem, query
functions in the state space tool were used to obtain a counter example leading
from the node representing the initial marking to node 36. Figure [37 shows the
resulting error trace, visualised by means of an MSC. This MSC was generated
automatically from the extracted counter example. The column labelled GW-
Buffer represents the packet buffer between the gateway protocol entity and the
underlying protocol layers. Similarly, the ERBuffer column represents the packet
buffer in the edge router. The problem is that the edge router sends two unso-
licited RAs. The first one gets through and the gateway is configured with the
prefix, which can be seen from the event marked with *A* in the lower part of
the MSC. However, when the second RS, without any prefixes, is received by
the edge router (the event marked with *B*), the corresponding solicited RA
will not contain any prefixes. Because of the way the protocol was specified, the

100 L.M. Kristensen and K.I.F. Simonsen

gateway will therefore update its list of prefixes to the empty list (the event
marked with ¥*C*), and the gateway is no longer configured with a prefix.

To fix the error, the protocol was modified so that the edge router always
replies with the list of all prefixes that it has currently assigned to the gateway.
The state space for the modified protocol consisted of 34 nodes and 49 arcs,
and there were no dead markings in the state space. The state space report
specified that there were 11 home markings. Inspection of these 11 markings
showed that they all represented consistently configured states for the prefix
P1. The markings were contained in the single terminal SCC of the state space.
A terminal SCC is an SCC of the state space where all successors of states in
the SCC belong to the SCC itself. This shows that, from the initial marking
it is always possible to reach a consistently configured state for the prefix, and
that when such a marking has been reached, the protocol entities will remain
in a consistently configured state. To verify that a consistently configured state
would eventually be reached, it was checked that the single terminal SCC was
the only non-trivial SCC. A trivial SCC is a SCC consisting of just a single
state. This showed that all cycles in the state space (which correspond to non-
terminating executions of the protocol) were contained in the single terminal
SCC, which (from above) contained only consistently configured states. The
reason why the protocol is not supposed to terminate in a consistently configured
state represented by a dead marking is that the gateway may, at any time, when
it is configured, send a router solicitation back to the edge router to have its
prefixes refreshed.

Increasing the number of prefizes. When the correctness of the protocol had been
established for a single prefix, the number of prefixes was increased. When there
is more than one prefix available it no longer holds that a marking will eventually
be reached where all prefixes are consistently configured. The reason is that with
more than one prefix, the edge router may at any time decide not to configure
the gateway with additional prefixes. Hence, a state where all prefixes have been
consistently configured might not eventually be reached. Instead, firstly, it was
verified that there was a single terminal SCC, all markings of which represent
states where all prefixes have been consistently configured. This shows that it is
always possible to reach such a marking, and when the protocol has consistently
configured all prefixes, the protocol entities will remain consistently configured.
Secondly, it was checked that all markings in each non-trivial SCC represented
markings where the protocol entities were consistently configured with a subset
of the prefixes available in the edge router. The properties above was checked
using a number of user-defined queries in the state space tool of CPN Tools.

Adding packet loss. The third step was to allow packet loss on the wireless link
between the edge router and the gateway. First, the case was considered in which
there is only a single prefix for distribution. The state space for this configuration
had 40 nodes and 81 arcs. Inspection of the state space report showed that there
was a single dead marking. This marking represented an undesired terminal
state where the prefix had been assigned by the edge router, but the gateway

Applications of CPNs for Functional Validation of Protocol Designs 101

[Gateway] [GWBuffer] [ERBuffer] [EdgeRouter]

UnsolicitedRA
UnsolicitedRA
UnsolicitedRA
UnsolicitedRA
! NoPrefixes
RS]
UnsolicitedRA
RS]
RS
s Assign:P1
Solicited RA [P1]
UnsolicitedRA
! NoPrefixes
RS
RS]
Solicited RA [P1]
RS]
! Assign (*B’
Solicited RA[]
Solicited RA [P1]
! (*A*) Update:P1
Solicited RA []
Solicited RA []
(*C*) Update:[]
I‘l‘l (- (- (-

Fig. 37. MSC showing an execution leading to an undesired terminal state

102 L.M. Kristensen and K.I.F. Simonsen

was not configured with the prefix. The source of the problem was located by
extracting a counter example and visualising it in a similar manner as shown in
Fig. B7 The problem was fixed by ensuring that the edge router would resend
an unsolicited RA to the gateway as long as it had prefixes assigned to the
gateway. The state space of the revised CPN model had 68 nodes and 160 arcs.
Inspection of the state space report showed that there were no dead markings
and no home markings. Investigation of the terminal SCCs showed that there
were two terminal SCCs, each containing 20 markings. The nodes in one of
them all represented states where the edge router and gateway were consistently
configured with the single prefix P1, whereas the nodes in the other terminal
SCC all represented states where the protocol entities were not consistently
configured. The markings in the undesired terminal SCC represent a livelock
in the protocol, i.e., if one of the markings in the undesired terminal SCC is
reached, it is no longer possible to reach a state where the protocol entities are
consistently configured with the prefix. The source of the livelock was related
to the control fields used in the router advertisements for refreshing prefixes
and their interpretation on the gateway. This was identified by obtaining the
MSC for a path leading from the initial marking to one of the markings in the
undesired terminal SCC. As a result, the processing of router advertisements in
the gateway was modified. The state space for the protocol with the modified
processing of router advertisements also had 68 nodes and 160 arcs. The state
space had a single terminal SCC containing 20 nodes, which all represented
states where the protocol entities were consistently configured with the single
prefix.

When packet loss is present, it is not immediately possible to verify that
the two protocol entities will eventually be consistently configured. The reason
is that any number of packets can be lost on the wireless link. Each of the
non-trivial SCCs was inspected using a user-defined query to investigate the
circumstances under which the protocol entities would not eventually be con-
sistently configured. This query checked that either all nodes in the non-trivial
SCC represented consistently configured states or none of the nodes in the SCC
represented a consistently configured state. For those non-trivial SCCs where no
node represented a consistently configured state, it was checked that all cycles
contained the occurrence of a transition corresponding to loss of a packet. Since
this was the case, it can be concluded that any failure to reach a consistently
configured states will be due to packet loss only. Hence, if finitely many pack-
ets are lost, a consistently configured state for some prefix will eventually be
reached.

Adding prefix expire. The fourth and final step in the analysis was to allow
prefixes to expire. The analysis was conducted first for a configuration where
the edge router had only a single prefix to distribute. The state space for this
configuration had 173 nodes and 513 arcs. The state space had a single dead
marking, and inspection of this dead marking showed that it represented a state
where the edge router has no further prefixes to distribute, it has no prefixes
recorded for the gateway, and the gateway is not configured with any prefix.

Applications of CPNs for Functional Validation of Protocol Designs 103

This marking is a desired terminating state of the protocol, as we expect pre-
fixes to eventually expire. Since the edge router has only finitely many prefixes to
distribute, the protocol should eventually terminate in such a state. The single
dead marking was also a home marking, meaning that the protocol can always
enter the expected terminal state. When prefixes can expire, it is possible that
the two protocol entities may never enter a consistently configured state. The
reason is that a prefix may expire in the edge router (although this is unlikely)
before the gateway has been successfully configured with that prefix. Hence, we
are only able to prove that for any marking where a prefix is still available in the
edge router, it is possible to reach a marking where the gateway and the edge
router are consistently configured with that prefix.

Table [J lists statistics for the size of the state space in the three verification
steps for different numbers of prefixes. The column ‘|P|” specifies the number
of prefixes. The columns ‘Nodes’ and ‘Arcs’ give the numbers of nodes and
arcs, respectively, in the state space. For the state spaces obtained in the first
verification step, it can be seen that 38 markings and 72 arcs are added for each
additional prefix. The reason for this is that ERDP proceeds in phases where
the edge router assigns prefixes to the gateway one at a time. Configuring the
gateway with an additional prefix follows exactly the same procedure as that
for the assignment of the first prefix. Once the state space had been generated,
the verification of properties could be done in a few seconds. It is also worth
observing that as the assumptions are relaxed, i.e., we move from one verification
step to the next, the sizes of the state spaces grow. This, combined with the
identification of errors in the protocol even in the simplest configuration, without
packet loss and without expiration of prefixes, shows the benefit of starting
state space exploration from the simplest configuration and gradually lifting
assumptions. Furthermore, the state explosion problem was not encountered
during the verification of ERDP, and the key properties of ERDP were verified
for the number of prefixes that were envisioned to appear in practise.

6.3 Lessons Learned and Perspectives

The project at Ericsson highlights the benefits of a formal modelling and vali-
dation approach. Furthermore, the project emphasised the benefits of the model
construction phase which is often underestimated (or not reported) in litera-
ture on protocol validation. As illustrated by the ERDP project, the modelling
phase itself lead to significant insight into the protocol design, and contributed
to a simpler and more complete protocol design. The construction of a CPN
model and subsequent state space exploration can be seen as a very thorough
and systematic way of reviewing the ERDP design specification. The project
showed that the process of constructing a CPN model based on the ERDP spec-
ification provided valuable input to the ERDP design, and the use of simulation
added further insight into the operation of the protocol. State space exploration,
starting with the simplest possible configuration of the protocol, identified ad-
ditional errors in the protocol. The results from state space exploration also

104 L.M. Kristensen and K.I.F. Simonsen

Table 3. State space statistics for the three verification steps

No loss/No expire Loss/No Expire Loss/Expire
|P| Nodes Arcs Nodes Arcs Nodes Arcs
1 34 49 68 160 173 531
2 72 121 172 425 714 2404
3 110 193 337 851 2147 7562
4 148 265 582 1489 5390 19516
5 186 337 926 2390 11907 43976
6 224 409 1388 3605 23905 89654
7 262 481 1987 5185 44550 169 169
8 300 553 2742 7181 78211 300072
9 338 625 3672 9644 130732 505992
10 376 697 4796 12625 209732 817903

demonstrate that errors are often present in the smallest configurations of a
protocol system.

Using an iterative process where both a conventional natural-language specifi-
cation and a CPN model were developed (as in this project) turned out to be an
effective way of integrating CPN modelling and validation into the development
of a protocol. In general, the combination of an executable formal model (such
as a CPN model) and a natural-language specification seems to be provide a
useful way to develop a protocol. One reason why both are required is that the
software engineers that are eventually going to implement the protocol (which
may be different from those that design the protocol) in many cases will not be
familiar with the CPN modelling language. Secondly, in many cases there are
important implementation elements of the protocol specification that are not
reflected in the CPN model, such as the layout of packets.

It can be argued whether or not the issues and errors discovered in the process
of modelling and conducting state space exploration would have been identified if
additional conventional reviews of the ERDP specification had been conducted.
Some of them probably would have been, but more subtle problems such as
the inconsistent configurations discovered during state space exploration would
probably not have been discovered until the first implementation of ERDP was
operational. The reason for this is that discovering these problems requires one
to consider subtle execution sequences of the protocol.

Overall, the application of CPNs in the development of ERDP was considered
a success for three main reasons. Firstly, it was demonstrated that the CPN
modelling language and supporting computer tools were powerful enough to
specify and verify a real-world protocol being developed in an industrial project,
and that integration into the conventional protocol development process is not
difficult. Secondly, the act of constructing the CPN model, executing it, and
discussing it led to the identification of several non-trivial design errors and

Applications of CPNs for Functional Validation of Protocol Designs 105

issues that, under normal circumstances, would not have been discovered until,
at best, the implementation phase. Finally, the effort of constructing the CPN
model and conducting state space exploration was represented by approximately
100 person-hours. This is a relatively small investment compared with the many
issues that were identified and resolved early as a consequence of constructing
and analysing the CPN model.

7 Related Work on CPN Protocol Validation

The four protocol examples presented in this paper constitute only a small subset
of the examples that have been published in the literature on the use of CPNs for
specification and validation of protocols - in particular in relation to protocols
developed in the context of IETF and other protocol standardisation bodies.

The Datagram Congestion Control Protocol (DCCP) developed by the IETF
has been investigated in [11]. DCCP is intended to provide an unreliable trans-
port service with congestion control mechanisms. The work in [11] was done in
parallel with the development of the emerging DCCP standard, and concentrated
on modelling and verification of the connection establishment and synchronisa-
tion procedures of DCCP. It resulted in the identification of several functional
errors in the protocol design, including discovery of deadlocks, non-progress be-
haviour (chatter), and problems with connection establishment in relation to
sequence number wraps. The formal validation resulted in the IETF working
group making small (but important) changes to the connection establishment
and synchronisation procedures of DCCP. The work also included the devel-
opment of a formal service specification for DCCP [33] and application of the
sweep-line method [105] for on-the-fly checking of the protocol conformance to
the developed service specification.

The classical Transmission Control Protocol (TCP) has also been modelled
and verified using CPNs [10]. Similar to the work on DCCP, this work concen-
trated on the connection establishment procedures. It resulted in verifying the
absence of deadlocks and livelocks in connection establishment, and a detailed
specification of the circumstances under which TCP connection establishment
may not be successful. Another example of transport layer protocol modelling
and validation can be found in [104] which considers the Stream Transmission
Control Protocol (SCTP).

The Internet Open Trading Protocol (IOTP) designed to provide an interop-
erability framework for Internet commerce was formally modelled and validated
using CPNs in [90-92]. IOTP is designed to handle common trading procedures
and encompass trading roles such as consumer, merchant, payment handler,
and delivery handler. IOTP is organised around a collection of eight baseline
transactions comnsisting of Purchase, Refund, Value exchange, Authentication,
Withdrawal, Deposit, Inquiry, and Ping. These transactions comprise a minimal
set of transactions for an Internet commerce protocol. A formal specification of
the service provided by IOTP was developed using CPN in [92]. The service

106 L.M. Kristensen and K.I.F. Simonsen

was specified in the form of a finite-state automaton labelled with service prim-
itives. The automaton was extracted from the state space of the CPN model
by identifying the binding elements corresponding to service primitives of the
protocol. A CPN model of the IOTP protocol itself was presented in |90, [91].
State space exploration focused on the termination properties and absence of
livelocks in the IOTP transactions. The use of state space exploration revealed
deficiencies related to termination of transactions. A verification of the IOTP
protocol CPN model 90, 191] against the formal service specification from [92]
was presented in [89]. Finite-state automata language comparison was used as
the criterion for conformance following the methodology of |9]. Application of
the sweep-line state space method on IOTP was investigated in [34] exploiting
an inherent progression from the start of an IOTP transaction to termination of
the transaction.

The Wireless Application Protocol (WAP) has been considered in [40, 41].
WAP is designed to provide Internet services to a wide range of hand-held de-
vices. The work of [40, 41] concentrates on the Wireless Transaction Protocol
(WTP) which is an important element of the WAP architecture and protocol
suite. The work in [40] presents a formal modelling of the WTP service and a
formal modelling of the WTP protocol. Checking the conformance of the WTP
protocol against the WTP service was done using finite-state automata lan-
guage comparison. This approach succeeded in detecting several inconsistencies
between the protocol and the service which was provided as input to the WAP
forum responsible for the development of WAP. The sweep-line method was used
in [41] to alleviate the state explosion problem and allow for the verification of
larger configurations of WTP. The application of the sweep-line method allowed
configurations with parameter settings of retransmission counters corresponding
to the recommended setting for GSM and IP network to be verified.

The Session Initiation Protocol (SIP) is a widely used protocol for the estab-
lishment of Internet multimedia session, and has been subject to formal mod-
elling and validation in [23, [77]. The INVITE transactions have been formally
analysed using state space exploration in |23, |77] leading to identification of
undesired terminating states of the protocol when operating over an unreli-
able communication medium. Security aspects of SIP have been investigated
in [78]. The work of |37] focuses on the formal modelling of a SIP-based pro-
tocol for multi-channel service oriented architectures. A formalisation of SIP
with the purpose of providing a framework model for present architectures in
mobile computing is presented in [36]. Another multimedia control protocol,
the Capability Exchange Signalling (CES) protocol, has been formally mod-
elled using CPNs and verified using state space exploration in [79]. The work
on the CES protocol led to the identification of protocol errors in presence of
sequence number wrap. Suggested changes were incorporated in a revised CPN
model, and it was formally verified showing that the discovered errors have been
eliminated.

The NEO protocol which is part of the distributed transactional object
database management system NEOPPOD was investigated using high-level Petri

Applications of CPNs for Functional Validation of Protocol Designs 107

Nets in |17]. The Coloane environment was used for the construction of the mod-
els, and verification was performed using the CPN-AMI and Helena tools. The
NEO protocol is used to coordinate data storage and retrieval in a decentralised
and distributed system where data can be stored on a number of data nodes
and data is accessed through the primary master node. The focus of [17] was
on the protocol used for the election of the primary master node. The model
of the election part of the NEO protocol consisted of eighteen modules. Since
there existed no specification document for the protocol, the Petri net model
was reverse-engineered from a prototype implementation. The validation process
which relied on the use of state spaces discovered two flaws in the implementa-
tion of the protocol. These were subsequently provided to the software engineers
responsible for the implementation of the protocol component.

The Resource Reservation Protocol (RSVP) was formally modelled and ver-
ified in |106, [107]. The modelling and verification concentrates on verifying the
absence of deadlocks and livelocks in relation to the setup, maintenance and path
release procedures of RSVP. In addition, a number of RSVP specific behavioural
properties were investigated which considered in detail the internal state of the
sender, router, and receiver protocol entities of the protocol. The main contribu-
tion of the work was the development of a formal specification of the RSVP path
procedures. Another example on the modelling of routing protocols can be found
in [76] which uses Mobile Petri Nets to construct a formal model of the Mobile
IP protocol. Mobile IP allows transport layer connections to be preserved when
mobile nodes change their point of attachment to the Internet. CPNs have also
recently been used for the verification of security protocols. Privacy enhancing
protocols were considered in [99], and |39] addresses the modelling and validation
of PANA Authentication and Authorisation Protocol. Examples of protocols for
which parametric verification has been pursued in the context of CPNs can be
found in 31, 132].

8 Conclusions and Outlook

Functional validation of protocol designs is one of the main application areas
of CPNs and supporting computer tools [28]. In this paper, we have surveyed a
selection of recent projects on modelling and functional validation of industry
relevant protocols. The examples demonstrate how the elements of protocols can
be modelled using CPNs, and they illustrate how a combination of simulation,
application-specific behavioural visualisation, and state space exploration is typ-
ically applied in protocol validation with CPNs. From a modelling perspective,
the protocol examples have ranged from models representing two (or few) peer
protocol entities (e.g., GAN, EDRP, and RIP) having an explicit representation
in the net structure, to parameterised models capable of modelling an arbitrary
number of peer protocol entities by setting a model parameter (e.g., DYMO).
The latter was based on constructing a folded model where the identity of the
protocol entities is encoded explicitly as part of the token colours. The CPN

108 L.M. Kristensen and K.I.F. Simonsen

models have also illustrated modelling at different protocols layer ranging from
models operating at a single protocol layer (e.g., DYMO and ERDP) to protocol
system design involving multiple protocol layers and protocols (e.g., GAN and
RIP). An important aspect of the examples is that the process of modelling and
conducting single step simulation is an important (but often underestimated)
activity in the validation of a protocol design.

The main technique available for functional verification of CPN models is
that of explicit state space exploration. The examples presented in this pa-
per show how basic state space exploration combined with the generation of a
state space report relying on a number of standard behavioural properties of
Petri Nets, provides a light-weight approach which in many cases is an impor-
tant step in verifying key properties of a protocol design. The main reason for
the wide spread application of state space exploration has been the presence
of mature computer tool support combined with the main advantages of state
space exploration in terms of being a highly systematic approach, being able to
provide counter examples, and allowing for a high degree of automation. The
compact modelling of protocols enabled by CPNs has, in many cases, had the
effect that the full state space can be explored for at least the smallest configu-
ration of the considered protocol. The GAN and ERDP examples presented in
this paper are concrete examples illustrating this. Practise have shown that the
primary capability offered by the advanced state space methods is the possibil-
ity of verifying larger configurations of the protocol - and in some cases [71] the
configurations of the system that are expected to occur in practise. The ERDP
example considered in this paper is another example of this. Hence, despite the
fact that explicit state space exploration methods requires one to conduct verifi-
cation relative to a particular configuration of the protocol, the current suite of
availably state space methods combined with the power of modern computing
platforms in many situations allows for the practical validation of industrial-sized
protocols.

While CPNs have been successfully applied to modelling and validating pro-
tocol designs, there has been relatively few attempts at using the constructed
CPN models in an automated or semi-automated manner as a basis for the ac-
tual implementation of protocols. Some simulation-based approaches were used
in [87] and [70] for generating server-side implementations. Here, the simulation
code for the CPN model generated by CPN Tools was extracted, and after un-
dergoing automatic modifications (e.g., linking the code to external libraries),
the generated simulation code is used as the system implementation. A lim-
itation of this approach is that the execution speed is affected because each
step in the execution of the program involves the computation and execution
of enabled transitions (as done by a CPN simulator) in order to determine the
next state. Secondly, the approach ties the target platform to that of the CPN
Tools simulator which may make the approach impractical for many application
domains due to resource consumption of the CPN simulator. The SML/NJ com-
piler used for the simulator in CPN Tools has a large memory footprint making
it ill-suited, e.g., for the domain of embedded systems. Some initial work on a

Applications of CPNs for Functional Validation of Protocol Designs 109

translation-based approach can be found in [73]. Here a restricted form of CPNs
was used for obtaining an Erlang implementation of the DYMO routing proto-
col. The approach in 73] relies on the use of Process-Partitioned CPNs which
enforces a detailed modelling of the protocol design which is very close to an
implementation level model. An area that will be important as part of efforts
in developing capabilities for automated code generation is the development of
CPN protocol modelling methodology on which only limited research has been
undertaken [18].

Acknowledgements. The authors acknowledge the contribution of Kristian
L. Espensen and Mads. K. Kjeldsen in the project on the DYMO protocol,
Paul Fleischer for his contribution in the GAN project, Michael Westergaard
and Peder Christian Ngrgaard for their contribution to the project on the RIP
protocol, and Kurt Jensen for his contributions in the ERDP project.

References

1. ISO/IEC 15437. Information technology. Enhancements to LOTOS (E-LOTOS)
(September 2001)

2. 3GPP. Digital Cellular Telecommunications System (Phase 24); Generic Ac-
cess to the A/Gb Interface; Stage 2. 3GPP TS 43.318 version 6.9.0 Release 6
(March 2007)

3. 3GPP. Website of 3GPP (May 2007), http://www.3gpp.org

4. Alur, R., Holzmann, G., Peled, D.: An analyzer for message sequence charts.
Software - Concepts and Tools 17(2), 70-77 (1996)

5. Ardis, M.A.: Formal Methods for Telecommunication System Requirements:
A Survey of Standardised Languages. Annals of Software Engineering 3 (1997)

6. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)

7. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools.
In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87-124. Springer, Heidelberg (2004)

8. Billington, J., Gallasch, G., Kristensen, L.M., Mailund, T.: Exploiting Equiv-
alence Reduction and the Sweep-Line Method for Detecting Terminal States.
IEEE Transactions on Systems, Man, and Cybernetics. Part A: Systems and
Humans 34(1), 23-38 (2004)

9. Billington, J., Gallasch, G.E., Han, B.: A Coloured Petri Net Approach to Proto-
col Verification. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concur-
rency and Petri Nets. LNCS, vol. 3098, pp. 210-290. Springer, Heidelberg (2004)

10. Billington, J., Han, B.: Modelling and Analysing the Functional Behaviour of
TCPs Connection Management Procedures. International Journal on Software
Tools for Technology Transfer 9(3-4), 269-304 (2007)

11. Billington, J., Vanit-Anunchai, S.: Coloured Petri Net Modelling of an Evolv-
ing Internet Protocol Standard: The Datagram Congestion Control Protocol.
Fundamenta Informaticae 88(3), 357-385 (2008)

12. Billington, J., Yuan, C.: On Modelling and Analysing the Dynamic MANET
On-Demand (DYMO) Routing Protocol. In: Jensen, K., Billington, J.,
Koutny, M. (eds.) Transactions on Petri Nets and Other Models of Concurrency
II1. LNCS, vol. 5800, pp. 98-126. Springer, Heidelberg (2009)

http://www.3gpp.org

110

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

L.M. Kristensen and K.I.F. Simonsen

Bochmann, G.: Finite state description of protocols. Computer Networks,
361-372 (1978)

Bolognesi, T., Brinksma, E.: Introduction to the ISO Specification Language
LOTOS. Computer Networks 14, 25-59 (1987)

Chakeres, 1.D., Perkins, C.E.: Dynamic MANET On-demand (DYMO) Routing.
Internet-Draft. Work in Progress (July 2007),
http://www.ietf.org/internet-drafts/draft-ietf-manet-dymo-10.txt
Chakeres, 1.D., Perkins, C.E.: Dynamic MANET On-demand (DYMO) Routing.
Internet-Draft. Work in Progress (November 2007),
http://www.ietf.org/internet-drafts/draft-ietf-manet-dymo-11.txt
Choppy, C., Dedova, A., Evangelista, S., Hong, S., Klai, K., Petrucci, L.:
The NEO Protocol for Large-Scale Distributed Database Systems: Modelling and
Initial Verification. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS,
vol. 6128, pp. 145-164. Springer, Heidelberg (2010)

Choppy, C., Petrucci, L., Reggio, G.: A Modelling Approach with Coloured Petri
Nets. In: Kordon, F.; Vardanega, T. (eds.) Ada-Europe 2008. LNCS, vol. 5026,
pp. 73-86. Springer, Heidelberg (2008)

Christensen, S., Kristensen, L.M., Mailund, T.: A Sweep-Line Method for State
Space Exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 450-464. Springer, Heidelberg (2001)

Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting Symmetries in Temporal
Logic Model Checking. Formal Methods in System Design 9, 77-104 (1996)
Comer, D.E.: Internetworking with TCP/IP vol. 1: Principles, Protocols, and
Architecture, 5th edn. Prentice-Hall (2005)

Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPV6) Specification.
RFC 2460 (December 1998)

Ding, L.G., Liu, L.: Modelling and Analysis of the INVITE Transaction of
the Session Initiation Protocol Using Coloured Petri Nets. In: van Hee, K.M.,
Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 132-151. Springer,
Heidelberg (2008)

Emerson, E.A., Sistla, A.P.: Symmetry and Model Checking. Formal Methods in
System Design 9, 105-131 (1996)

Espensen, K.L., Kjeldsen, M.K., Kristensen, L.M.: Modelling and Initial
Validation of the DYMO Routing Protocol for Mobile Ad-Hoc Networks. In:
van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 152-170.
Springer, Heidelberg (2008)

ETSI. ETSI ES 201 873-1: Methods for Testing and Specification; The Testing
and Test Control Notation version 3; Part 1: TTCN-3 Core Language
Evangelista, S., Westergaard, M., Kristensen, L.M.: The ComBack Method
Revisited: Caching Strategies and Extension with Delayed Duplicate Detection.
Transactions on Petri Nets and Other Models of Concurrency 3, 189-215 (2009)
Examples of Industrial Use of CPNs, http://cs.au.dk/cpnets/industrial-use/
Fehnker, A., van Glabbeek, R., Hofner, P., Mclver, A., Portmann, M., Tan, W.:
Modelling and Analysis of AODV in UPPAAL. In: Proc. of 1st Workshop on
Rigorous Protocol Engineering (2011)

Fleischer, P., Kristensen, L.M.: Modelling and Validation of Secure Connection
Establishment in a Generic Access Network Scenario. Fundamenta
Informaticae 94(3-4), 361-386 (2009)

Gallasch, G.E., Billington, J.: Using Parametric Automata for the Verification
of the Stop-and-Wait Class of Protocols. In: Peled, D.A., Tsay, Y.-K. (eds.)
ATVA 2005. LNCS, vol. 3707, pp. 457-473. Springer, Heidelberg (2005)

http://www.ietf.org/internet-drafts/draft-ietf-manet-dymo-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-manet-dymo-11.txt
http://cs.au.dk/cpnets/industrial-use/

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.
48.

49.

50.

Applications of CPNs for Functional Validation of Protocol Designs 111

Gallasch, G.E., Billington, J.: A Parametric State Space for the Analysis of the
Infinite Class of Stop-and-Wait Protocols. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 201-218. Springer, Heidelberg (2006)

Gallasch, G.E., Billington, J., Vanit-Anunchai, S., Kristensen, L.M.: Checking
Safety Properties On-the-fly with the Sweep-Line Method. International Journal
on Software Tools for Technology Transfer (STTT) 9(3-4), 371-392 (2007)
Gallasch, G.E., Ouyang, C., Billington, J., Kristensen, L.M.: Experimenting with
Progress Mappings for the Sweep-Line Analysis of the Internet Open Trading
Protocol. In: Proc. of 5th Workshop and Tutorial on Practical Use of Coloured
Petri Nets and CPN Tools (CPN 2004), pp. 19-38 (2004)

Gallasch, G.E., Han, B., Billington, J.: Sweep-Line Analysis of TCP Connection
Management. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785,
pp. 156-172. Springer, Heidelberg (2005)

Gehlot, V., Hayrapetyan, A.: A Formalized and Validated Executable Model of
the SIP-based Presence Protocol for Mobile Applications. In: Proceedings of the
45th Annual ACM Southeast Regional Conference, pp. 185-190. ACM (2007)
Gehlot, V., Hayrapetyan, A.: A CPN Model of a SIP-Based Dynamic Discovery
Protocol for Webservices in a Mobile Environment. In: Proc. of 7th Workshop
and Tutorial onPractical Use of Coloured Petri Nets and the CPN Tools, CPN
2006 (2006)

Genest, B., Muscholl, A., Peled, D.: Message sequence charts. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS,
vol. 3098, pp. 537-558. Springer, Heidelberg (2004)

Gordon, S.: Formal Analysis of PANA Authentication and Authorisation Protocol.
In: Proc. of 9th International Conference on Parallel and Distributed Computing,
Applications and Technologies, pp. 277-284. IEEE Computer Society (2008)
Gordon, S., Billington, J.: Analysing the WAP Class 2 Wireless Transaction
Protocol Using Coloured Petri Nets. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 207-226. Springer, Heidelberg (2000)
Gordon, S., Kristensen, L.M., Billington, J.: Verification of a Revised WAP
Wireless Transaction Protocol. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002.
LNCS, vol. 2360, pp. 182-202. Springer, Heidelberg (2002)

Grimstrup, P.: Interworking Description for IKEv2 Library. In: Ericsson Internal.
Document No. 155 10-FCP 101 4328 Uen (September 2006)

Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8(3), 231-274 (1987)

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International
(1985)

Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley (2004)

Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall
(1991)

The Internet Engineering Task Force (IETF), http://www.ietf.org

Ip, C.N., Dill, D.L.: Better Verification Through Symmetry. Formal Methods in
System Design 9, 41-75 (1996)

ISO9074. Information Processing Systems - Open Systems Interconnection:
ESTELLE (FOrmal Description Technique Based on an Extended State
Transition Model)

ISO89 ISO/IEC. Information Processing Systems - Open Systems
Interconnection: LOTOS, a Formal Description Technique Based on the
Temporal Ordering of Observational Behaviour. IS 8807 (February 1989)

http://www.ietf.org

112

51.
52.
53.
54.
55.
56.

57.

58.

59.

60.

61.

62.

63.

64.
65.
66.

67.

68.

69.

70.

71.

L.M. Kristensen and K.I.F. Simonsen

ITU-T. Z.120: Message Sequence Charts (MSC) (1996)

ITU-T. Z.109: SDL-2000 Combined with UML (2000)

ITU-T. X.680 to X.683: Abstract Syntax Notation One (2002)

ITU-T. X.692 - Encoding Control Notation (2002)

ITU-T. Z.100-Z.106: Specification and Description Language (SDL) (2010)
Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. vol. 1: Basic Concepts. Monographs in Theoretical Computer
Science. Springer (1992)

Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Analysis Methods. Monographs in Theoretical Computer Science, vol. 2.
Springer (1994)

Jensen, K.: Condensed State Spaces for Symmetrical Coloured Petri Nets. Formal
Methods in System Design 9, 7-40 (1996)

Jensen, K., Kristensen, L.M.: Coloured Petri Nets — Modelling and Validation of
Concurrent Systems. Springer (2009)

Jensen, K., Kristensen, L.M., Mailund, T.: The sweep-line state space exploration
method. Theoretical Computer Science 429, 169-179 (2012)

Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools
for Modelling and Validation of Concurrent Systems. International Journal on
Software Tools for Technology Transfer (STTT) 9(3-4), 213-254 (2007)
Jgrgensen, J.B., Kristensen, L.M.: Computer Aided Verification of Lamport’s Fast
Mutual Exclusion Algorithm Using Coloured Petri Nets and Occurrence Graphs
with Symmetries. IEEE Transactions on Parallel and Distributed Systems 10(7),
714-732 (1999)

Jgrgensen, J.B., Kristensen, L.M.: Verification of Coloured Petri Nets Using State
Spaces with Equivalence Classes. In: Petri Net Approaches for Modelling and
Validation, Lincoln Europa. LINCOM Studies in Computer Science, ch. 2, vol. 1,
pp. 17-34 (2003)

Kaufman, C.: Internet Key Exchange Protocol. RFC 4306 (December 2005)
Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301
(December 2005)

Kristensen, L.M.: A Perspective on Explicit State Space Exploration of Coloured
Petri Nets: Past, Present, and Future. In: Lilius, J., Penczek, W. (eds.) PETRI
NETS 2010. LNCS, vol. 6128, pp. 39-42. Springer, Heidelberg (2010)
Kristensen, L.M., Jensen, K.: Specification and Validation of an Edge Router
Discovery Protocol for Mobile Ad Hoc Networks. In: Ehrig, H., Damm, W., Desel,
J., GroBle-Rhode, M., Reif, W., Schnieder, E., Westkdmper, E. (eds.) INT 2004.
LNCS, vol. 3147, pp. 248-269. Springer, Heidelberg (2004)

Kristensen, L.M., Mailund, T.: A Generalised Sweep-Line Method for Safety
Properties. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391,
pp. 549-567. Springer, Heidelberg (2002)

Kristensen, L.M., Mailund, T.: Efficient Path Finding with the Sweep-Line Method
Using External Storage. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS,
vol. 2885, pp. 319-337. Springer, Heidelberg (2003)

Kristensen, L.M., Mechlenborg, P., Zhang, L., Mitchell, B., Gallasch, G.E.:
Model-based Development of COAST. STTT 10(1), 5-14 (2007)

Kristensen, L.M., Jgrgensen, J.B., Jensen, K.: Application of Coloured Petri Nets
in System Development. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN.
LNCS, vol. 3098, pp. 626-685. Springer, Heidelberg (2004)

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Applications of CPNs for Functional Validation of Protocol Designs 113

Kristensen, L.M., Valmari, A.: Finding Stubborn Sets of Coloured Petri Nets
Without Unfolding. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420,
pp. 104-123. Springer, Heidelberg (1998)

Kristensen, L.M., Westergaard, M.: Automatic Structure-Based Code Generation
from Coloured Petri Nets: A Proof of Concept. In: Kowalewski, S., Roveri, M.
(eds.) FMICS 2010. LNCS, vol. 6371, pp. 215-230. Springer, Heidelberg (2010)
Kristensen, L.M., Westergaard, M., Norgaard, P.C.: Model-Based Prototyping of
an Interoperability Protocol for Mobile Ad-Hoc Networks. In: Romijn, J.M.T.,
Smith, G.P., van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 266-286.
Springer, Heidelberg (2005)

Lai, R., Jirachiefpattana, A.: Communication Protocol Specification and
Verification. Kluwer Academic Publishers (1998)

Lakos, C.: Modelling Mobile IP with Mobile Petri Nets. Transactions on Petri
Nets and Other Models of Concurrency 5800, 127-158 (2009)

Liu, L.: Verification of the SIP Transaction Using Coloured Petri Nets. In: Mans,
B. (ed.) Thirty-Second Australasian Computer Science Conference (ACSC 2009),
Wellington, New Zealand. CRPIT, vol. 91, pp. 63-72. ACS (2009)

Liu, L.: Security Analysis of Session Initiation Protocol - A Methodology Based
on Coloured Petri Nets. In: Proc. of the 2010 International Cyber Resilience
Conference (2010)

Liu, L., Billington, J.: Verification of the Capability Exchange Signalling protocol.
STTT 9(3-4), 305-326 (2007)

Liu, M.T.: Protocol Engineering. Advances in Computers 29, 79-195 (1989)
Lorentsen, L., Kristensen, L.M.: Modelling and Analysis of a Danfoss Flowmeter
System Using Coloured Petri Nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN
2000. LNCS, vol. 1825, pp. 346-366. Springer, Heidelberg (2000)

IETF Mobile Ad-hoc Networks Discussion Archive,
http://wwwl.ietf.org/mail-archive/web/manet/current/index.html
Mailund, T.: Analysing infinite-state systems by combining equivalence reduction
and the sweep-line method. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002.
LNCS, vol. 2360, pp. 314-333. Springer, Heidelberg (2002)

Malik, R., Miihlfeld, R.: A case study in verification of uml statecharts:
the profisafe protocol. Universal Computer Science 9(2), 138-151 (2003)

Malkin, G.: RIP Version 2. RFC 4822 (February 2007)

Milner, R.: Communication and Concurrency. Prentice-Hall International (1989)
Mortensen, K.H.: Automatic Code Generation Method Based on Coloured Petri
Net Models Applied on an Access Control System. In: Nielsen, M., Simpson, D.
(eds.) ICATPN 2000. LNCS, vol. 1825, pp. 367-386. Springer, Heidelberg (2000)
Narten, T., Nordmark, E., Simpson, W.: Neighbor Discovery for IP Version 6
(IPv6), RFC 2461 (December 1998)

Ouyang, C., Billington, J.: On Verifying the Internet Open Trading Protocol. In:
Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2003. LNCS, vol. 2738,
pp. 292-302. Springer, Heidelberg (2003)

Ouyang, C., Billington, J.: Formal Analysis of the Internet Open Trading
Protocol. In: Nuifiez, M., Maamar, Z., Pelayo, F.L., Pousttchi, K., Rubio, F. (eds.)
FORTE 2004. LNCS, vol. 3236, pp. 1-15. Springer, Heidelberg (2004)

http://www1.ietf.org/mail-archive/web/manet/current/index.html

114

91.

92.

93.

94.
95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.
109.

L.M. Kristensen and K.I.F. Simonsen

Ouyang, C., Kristensen, ..M., Billington, J.: A Formal and Executable Specification
of the Internet Open Trading Protocol. In: Bauknecht, K., Tjoa, A.M., Quirchmayr,
G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 377-387. Springer, Heidelberg (2002)
Ouyang, C., Kristensen, L.M., Billington, J.: A Formal Service Specification for
the Internet Open Trading Protocol. In: Esparza, J., Lakos, C.A. (eds.) ICATPN
2002. LNCS, vol. 2360, pp. 352-373. Springer, Heidelberg (2002)

Petri, C.A.: Kommunikation mit Automaten. Bonn: Institut fiir Instrumentelle
Mathematik, Schriften des IIM Nr. 2 (1962)

Popovic, M.: Communication Protocol Engineering. CRC Press (2006)

Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S.,
Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets. In: van der Aalst, W.M.P., Best, E. (eds.)
ICATPN 2003. LNCS, vol. 2679, pp. 450-462. Springer, Heidelberg (2003),
http://www.cpntools.org

Ravn, A.P., Srba, J., Vighio, S.: Modelling and verification of web services business
activity protocol. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS,
vol. 6605, pp. 357-371. Springer, Heidelberg (2011)

Reisig, W.: Petri Nets - An Introduction. EATCS Monographs on Theoretical
Computer Science, vol. 4. Springer (1985)

Stern, U., Dill, D.L.: Improved Probabilistic Verification by Hash Compaction. In:
Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 206—224.
Springer, Heidelberg (1995)

Suriadi, S., Ouyang, C., Smith, J., Foo, E.: Modeling and Verification of Privacy
Enhancing Protocols. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS,
vol. 5885, pp. 127-146. Springer, Heidelberg (2009)

Ullman, J.D.: Elements of ML Programming. Prentice-Hall (1998)

Valmari, A.: A Stubborn Attack on State Explosion. In: Clarke, E., Kurshan,
R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 156-165. Springer, Heidelberg (1991)
Valmari, A.: Stubborn Sets of Coloured Petri Nets. In: Proc. of ICATPN 1991,
pp. 102-121 (1991)

Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 429-528. Springer, Heidelberg (1998)
Vanit-Anunchai, S.: Towards Formal Modelling and Analysis of SCTP Connection
Management. In: Proc. of CPN 2009, pp. 163-182 (2008)

Vanit-Anunchai, S., Billington, J., Gallasch, G.E.: Analysis of the Datagram
Congestion Control Protocols Connection Management Procedures Using the
Sweep-line Method. International Journal on Software Tools for Technology
Transfer 10(1), 29-56 (2008)

Villapol, M.E., Billington, J.: A Coloured Petri Net Approach to Formalising and
Analysing the Resource Reservation Protocol. CLEI Electron. J. 6(1) (2003)
Villapol, M.E., Billington, J.: Analysing Properties of the Resource
Reservation Protocol. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN
2003. LNCS, vol. 2679, pp. 377-396. Springer, Heidelberg (2003)

Vixie, P.: Dynamic Updates in the Domain Name System. RFC 2136 (April 1997)
Westergaard, M., Evangelista, S., Kristensen, L.M.: ASAP: An Extensible
Platform for State Space Analysis. In: Franceschinis, G., Wolf, K. (eds.)
PETRI NETS 2009. LNCS, vol. 5606, pp. 303-312. Springer, Heidelberg (2009),
http://www.daimi.au.dk/~ascoveco/download.html

http://www.cpntools.org
http://www.daimi.au.dk/~ascoveco/download.html

110.

111.

112.

113.

Applications of CPNs for Functional Validation of Protocol Designs 115

Westergaard, M., Kristensen, L.M., Brodal, G.S., Arge, L.A.: The ComBack
Method — Extending Hash Compaction with Backtracking. In: Kleijn, J.,
Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 445-464. Springer,
Heidelberg (2007)

Westergaard, M., Lassen, K.B.: The BRITNeY Suite Animation Tool. In:
Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024,
pp. 431-440. Springer, Heidelberg (2006)

Westergaard, M.: A Game-theoretic Approach to Behavioural Visualisation.
Electr. Notes Theor. Comput. Sci. 208, 113-129 (2008)

Wolper, P., Leroy, D.: Reliable Hashing without Collision Detection. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 59-70. Springer, Heidelberg
(1993)

	Applications of Coloured Petri Nets for Functional Validation of Protocol Designs

	1 Introduction
	2 Background: CPNs and Functional Protocol Validation
	2.1 Simulation and Behavioural Visualisation
	2.2 State Spaces and Verification
	2.3 Formal Specification Techniques for Protocols

	3 The DYMO Protocol
	3.1 MANETs and Operation of the DYMO Protocol
	3.2 CPN Model Overview and Message Modelling
	3.3 Modelling the DYMO Protocol Entities
	3.4 Modelling the DYMO Protocol Environment
	3.5 Lessons Learned and Perspectives

	4 The GAN Protocol Architecture
	4.1 GAN Secure Connection Establishment
	4.2 CPN Model of the GAN Protocol Architecture
	4.3 Verification of the GAN CPN Model
	4.4 Lessons Learned and Perspectives

	5 The Routing Interoperability Protocol
	5.1 CPN Model of the RIP Protocol
	5.2 Behavioural Visualisation of the RIP Protocol
	5.3 Lessons Learned and Perspectives

	6 The Edge Router Discovery Protocol
	6.1 CPN Model of the ERDP Protocol
	6.2 Verification of the ERDP CPN Model
	6.3 Lessons Learned and Perspectives

	7 Related Work on CPN Protocol Validation
	8 Conclusions and Outlook
	References

