
Discovering Petri Nets from Event Logs

Wil M.P. van der Aalst and Boudewijn F. van Dongen

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands

{W.M.P.v.d.Aalst,B.F.v.Dongen}@tue.nl

Abstract. As information systems are becoming more and more inter-
twined with the operational processes they support, multitudes of events
are recorded by todays information systems. The goal of process mining
is to use such event data to extract process related information, e.g.,
to automatically discover a process model by observing events recorded
by some system or to check the conformance of a given model by com-
paring it with reality. In this article, we focus on process discovery, i.e.,
extracting a process model from an event log. We focus on Petri nets as a
representation language, because of the concurrent and unstructured na-
ture of real-life processes. The goal is to introduce several approaches to
discover Petri nets from event data (notably the α-algorithm, state-based
regions, and language-based regions). Moreover, important requirements
for process discovery are discussed. For example, process mining is only
meaningful if one can deal with incompleteness (only a fraction of all
possible behavior is observed) and noise (one would like to abstract
from infrequent random behavior). These requirements reveal significant
challenges for future research in this domain.

Keywords: Process mining, Process discovery, Petri nets, Theory of
regions.

1 Introduction

Process mining provides a new means to improve processes in a variety of ap-
plication domains [2, 41]. There are two main drivers for this new technology.
On the one hand, more and more events are being recorded thus providing de-
tailed information about the history of processes. Despite the omnipresence of
event data, most organizations diagnose problems based on fiction rather than
facts. On the other hand, vendors of Business Process Management (BPM) and
Business Intelligence (BI) software have been promising miracles. Although BPM
and BI technologies received lots of attention, they did not live up to the expec-
tations raised by academics, consultants, and software vendors.

Process mining is an emerging discipline providing comprehensive sets of tools
to provide fact-based insights and to support process improvements [2, 7]. This
new discipline builds on process model-driven approaches and data mining. How-
ever, process mining is much more than an amalgamation of existing approaches.
For example, existing data mining techniques are too data-centric to provide a

K. Jensen et al. (Eds.): ToPNoC VII, LNCS 7480, pp. 372–422, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Discovering Petri Nets from Event Logs 373

comprehensive understanding of the end-to-end processes in an organization. BI
tools focus on simple dashboards and reporting rather than clear-cut business
process insights. BPM suites heavily rely on experts modeling idealized to-be
processes and do not help the stakeholders to understand the as-is processes.

Over the last decade event data has become readily available and process
mining techniques have matured. Moreover, process mining algorithms have
been implemented in various academic and commercial systems. Examples of
commercial systems that support process mining are: ARIS Process Perfor-
mance Manager by Software AG, Disco by Fluxicon, Enterprise Visualization
Suite by Businesscape, Interstage BPME by Fujitsu, Process Discovery Focus by
Iontas, Reflect|one by Pallas Athena, and Reflect by Futura Process Intelligence.
Today, there is an active group of researchers working on process mining and
it has become one of the “hot topics” in BPM research. Moreover, there is a
huge interest from industry in process mining. This is illustrated by the recently
released Process Mining Manifesto [41]. The manifesto is supported by 53 or-
ganizations and 77 process mining experts contributed to it. The manifesto has
been translated into a dozen languages (http://www.win.tue.nl/ieeetfpm/). The
active contributions from end-users, tool vendors, consultants, analysts, and re-
searchers illustrate the growing relevance of process mining as a bridge between
data mining and business process modeling. Moreover, more and more software
vendors started adding process mining functionality to their tools. The authors
have been involved in the development of the open-source process mining tool
ProM right from the start [11, 56, 57]. ProM is widely used all over the globe
and provides an easy starting point for practitioners, students, and academics.

Whereas it is easy to discover sequential processes, it is very challenging to
discover concurrent processes, especially in the context of noisy and incomplete
event logs. Given the concurrent nature of most real-life processes, Petri nets are
an obvious candidate to represent discovered processes. Moreover, most real-life
processes are not nicely block-structured, therefore, the graph based nature of
Petri nets is more suitable than notations that enforce more structure.

The article is based on a lecture given at the Advanced Course on Petri nets
in Rostock, Germany (September 2010). The practical relevance of process dis-
covery and the suitability of Petri net as a basic representation for concurrent
processes motivated us to write this tutorial.

Figure 1 illustrates the concept of process discovery using a small example.
The figure shows an abstraction of an event log. There are 1391 cases, i.e.,
process instances. Each case is described as a sequence of activities, i.e., a trace.
In this particular log there are 21 different traces. For example, trace 〈a, c, d, e, h〉
occurs 455 times, i.e., there are 455 cases for which this sequence of activities
was executed. The challenge is to discover a Petri net given such an event log.
A discovery algorithm such as the α-algorithm [9] is able to discover the Petri
net shown in Figure 1.

Process discovery is a challenging problem because one cannot assume that
all possible sequences are indeed present. Consider for example the event log
shown in Figure 1. If we randomly take 500 cases from the set of 1391 cases,

http://www.win.tue.nl/ieeetfpm/

374 W.M.P. van der Aalst and B.F. van Dongen

a
start register

request

b
examine
thoroughly

c
examine
casually

d
check ticket

decide

pay
compensation

reject
request

reinitiate
request

e

g

h

f

end

acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh

acdefdbeh

adbeg

acdefbdeh

acdefbdeg

455

191

177

144

111

82

56

47

38

33

14

trace

acdefdbeg

adcefcdeh

adcefdbeh

adcefbdeg

acdefbdefdbeg

adcefdbeg

adcefbdefbdeg

adcefdbefbdeh

adbefbdefdbeg

adcefdbefcdefdbeg

11

9

8

5

3

2

2

1

1

1

trace

Fig. 1. A Petri net discovered from an event log containing 1391 cases

we would like to discover “more or less” the same model. Note that there are
several traces that appear only once in the log. Many of these will disappear
when considering a log with only 500 cases. Also note that the process model
discovered by the α-algorithm allows for more traces than the ones depicted in
Figure 1, e.g., 〈a, d, c, e, f, d, b, e, f, c, d, e, h〉 is possible according to the process
model but does not occur in the event log. This illustrates that event logs tend
to be far from complete, i.e., only a small subset of all possible behavior can be
observed because the number of variations is larger than the number of instances
observed.

The process model in Figure 1 is rather simple. Real-life processes will consist
of dozens or even hundreds of different activities. Moreover, some behaviors
will be very infrequent compared to others. Such rare behaviors can be seen as
noise (e.g., exceptions). Typically, it is undesirable and also unfeasible to capture
frequent and infrequent behavior in a single diagram.

Discovering Petri Nets from Event Logs 375

Process discovery techniques need to be able to deal with noise and incom-
pleteness. This makes process mining very different from synthesis. Classical
synthesis techniques aim at creating a model that captures the given behavior
precisely. For example, classical language-based region techniques [14, 17, 19, 28,
42, 43, 45] distill a Petri net from a (possibly infinite) language, such that the
behavior of the Petri net is only minimally more than the given language. In
classical state-based region theory [13, 15, 23, 24, 26, 27, 35] on the other hand,
a transition system is used to synthesize a Petri net of which the behavior is
bisimilar with the given transition system. Intuitively two models are bisimilar
if they can match each other’s moves, i.e., they cannot be distinguished from
one another by an observer [36]. In terms of mining this implies that the näıvely
synthesized Petri net cannot generalize beyond the example traces seen.

Process discovery techniques need to balance four criteria: fitness (the discov-
ered model should allow for the behavior seen in the event log), precision (the
discovered model should not allow for behavior completely unrelated to what was
seen in the event log), generalization (the discovered model should generalize the
example behavior seen in the event log), and simplicity (the discovered model
should be as simple as possible). This makes process discovery a challenging and
highly relevant topic.

The remainder of this article is organized as follows. Section 2 introduces the
process mining spectrum showing that process discovery is an essential ingre-
dient for process analysis based on facts rather than fiction. Section 3 presents
preliminaries and formalizes the process discovery task. The α-algorithm is pre-
sented in Section 4. Section 5 discusses the main challenges related to process
mining. In Section 6, we compare process discovery with region theory in more
detail. This section shows that classical approaches cannot deal with partic-
ular requirements essential for process mining. Then, in sections 7 and 8, we
show how region theory can be adapted to deal with these requirements. Both
state-based regions and language-based regions are considered. All approaches
described in this article are supported by ProM, the leading open-source process
mining framework. ProM is described in Section 9. Section 10 ends this article
with some conclusions and challenges that remain.

2 Process Mining

Process mining is an important tool for modern organizations that need to man-
age non-trivial operational processes. On the one hand, there is an incredible
growth of event data [44]. On the other hand, processes and information need
to be aligned perfectly in order to meet requirements related to compliance, effi-
ciency, and customer service. Process mining is much broader than just control-
flow discovery, i.e., discovering a Petri net from a multi-set of traces. Therefore,
we start by providing an overview of the process mining spectrum.

Event logs can be used to conduct three types of process mining as shown in
Figure 2 [2, 7].

The first type of process mining is discovery. A discovery technique takes
an event log and produces a model without using any a-priori information.

376 W.M.P. van der Aalst and B.F. van Dongen

software
system

(process)
model

event
logs

models
analyzes

discovery

records
events, e.g.,
messages,
transactions,

etc.
specifies
configures
implements
analyzes

supports/
controls

extension

conformance

“world”

people machines

organizations
components

business
processes

Fig. 2. Positioning of the three main types of process mining: discovery, conformance,
and enhancement

An example is the α-algorithm [9] that will be described in Section 4. This
algorithm takes an event log and produces a Petri net explaining the behav-
ior recorded in the log. For example, given sufficient example executions of the
process shown in Figure 1, the α-algorithm is able to automatically construct
the Petri net without using any additional knowledge. If the event log contains
information about resources, one can also discover resource-related models, e.g.,
a social network showing how people work together in an organization.

The second type of process mining is conformance. Here, an existing process
model is compared with an event log of the same process. Conformance checking
can be used to check if reality, as recorded in the log, conforms to the model and
vice versa. For instance, there may be a process model indicating that purchase
orders of more than one million Euro require two checks. Analysis of the event log
will show whether this rule is followed or not. Another example is the checking of
the so-called “four-eyes” principle stating that particular activities should not be
executed by one and the same person. By scanning the event log using a model
specifying these requirements, one can discover potential cases of fraud. Hence,
conformance checking may be used to detect, locate and explain deviations,
and to measure the severity of these deviations. An example is the conformance
checking algorithm described in [51]. Given the model shown in Figure 1 and
a corresponding event log, this algorithm can quantify and diagnose deviations.
In [4] another approach based on creating alignments is presented. An alignment
is optimal if it relates the trace in the log to a most similar path in the model.
After creating optimal alignments, all behavior in the log can be related to the
model.

The third type of process mining is enhancement. Here, the idea is to extend
or improve an existing process model using information about the actual pro-
cess recorded in some event log. Whereas conformance checking measures the
alignment between model and reality, this third type of process mining aims at

Discovering Petri Nets from Event Logs 377

changing or extending the a-priori model. One type of enhancement is repair,
i.e., modifying the model to better reflect reality. For example, if two activities
are modeled sequentially but in reality can happen in any order, then the model
may be corrected to reflect this. Another type of enhancement is extension, i.e.,
adding a new perspective to the process model by cross-correlating it with the
log. An example is the extension of a process model with performance data. For
instance, Figure 1 can be extended with information about resources, decision
rules, quality metrics, etc.

The Petri net in Figure 1 only shows the control-flow. However, when extend-
ing process models, additional perspectives need to be added. Moreover, discov-
ery and conformance techniques are not limited to control-flow. For example,
one can discover a social network and check the validity of some organizational
model using an event log. Hence, orthogonal to the three types of mining (dis-
covery, conformance, and enhancement), different perspectives can be identified.
The organizational perspective focuses on information about resources hidden
in the log, i.e., which actors (e.g., people, systems, roles, and departments) are
involved and how are they related. The goal is to either structure the orga-
nization by classifying people in terms of roles and organizational units or to
show the social network. The time perspective is concerned with the timing and
frequency of events. When events bear timestamps it is possible to discover bot-
tlenecks, measure service levels, monitor the utilization of resources, and predict
the remaining processing time of running cases.

3 Process Discovery: Preliminaries and Purpose

In this section, we describe the goal of process discovery. In order to do this, we
present a particular format for logging events and a particular process modeling
language (i.e., Petri nets). Based on this we sketch various process discovery
approaches.

3.1 Event Logs

The goal of process mining is to extract knowledge about a particular (oper-
ational) process from event logs, i.e., process mining describes a family of a-
posteriori analysis techniques exploiting the information recorded in audit trails,
transaction logs, databases, etc. Typically, these approaches assume that it is
possible to sequentially record events such that each event refers to an activ-
ity (i.e., a well-defined step in the process) and is related to a particular case
(i.e., a process instance). Furthermore, some mining techniques use additional
information such as the performer or originator of the event (i.e., the person /
resource executing or initiating the activity), the timestamp of the event, or data
elements recorded with the event (e.g., the size of an order).

To clarify the notion of an event log consider Table 1 which shows a fragment
of some event log. Only two traces are shown, both containing four events. Each
event has a unique id and several properties. For example event 35654423 belongs

378 W.M.P. van der Aalst and B.F. van Dongen

Table 1. A fragment of some event log

case id event id properties
timestamp activity resource cost . . .

x123 35654423 30-12-2011:11.02 a John 300 . . .
x123 35654424 30-12-2011:11.06 b John 400 . . .
x123 35654425 30-12-2011:11.12 c John 100 . . .
x123 35654426 30-12-2011:11.18 d John 400 . . .

x128 35655526 30-12-2011:16.10 a Ann 300 . . .
x128 35655527 30-12-2011:16.14 c John 450 . . .
x128 35655528 30-12-2011:16.26 b Pete 350 . . .
x128 35655529 30-12-2011:16.36 d Ann 300 . . .

. .

to case x123 and is an instance of activity a that occurred on December 30th at
11.02, was executed by John, and cost 300 euros. The second trace (case x128)
starts with event 35655526 and also refers to an instance of activity a. The
information depicted in Table 1 is the typical event data that can be extracted
from today’s systems.

Systems store events in very different ways. Process-aware information sys-
tems (e.g., workflow management systems) provide dedicated audit trails. In
other systems, this information is typically scattered over several tables. For
example, in a hospital events related to a particular patient may be stored in
different tables and even different systems. For many applications of process
mining, one needs to extract event data from different sources, merge these
data, and convert the result into a suitable format. We advocate the use of the
so-called XES (eXtensible Event Stream) format that can be read directly by
ProM ([5,57]). XES is the successor of MXML. Based on many practical expe-
riences with MXML, the XES format has been made less restrictive and truly
extendible. In September 2010, the format was adopted by the IEEE Task Force
on Process Mining. The format is supported by tools such as ProM (as of ver-
sion 6), Nitro, XESame, and OpenXES. See www.xes-standard.org for detailed
information about the standard. XES is able to store the information shown in
Table 1. Most of this information is optional, i.e., if it is there, it can be used
for process mining, but it is not necessary for control-flow discovery.

In this article, we focus on control-flow discovery. Therefore, we only consider
the activity column in Table 1. This means that an event is linked to a case
(process instance) and an activity, and no further attributes are needed. Events
are ordered (per case), but do not need to have explicit timestamps. This allows
us to use the following simplified definition of an event log.

Definition 1 (Event, Trace, Event log). Let A be a set of activities. σ ∈ A∗

is a trace, i.e., a sequence of events. L ∈ IB(A∗) is an event log, i.e., a multi-set
of traces.

file:www.xes-standard.org

Discovering Petri Nets from Event Logs 379

The first four events in Table 1 form a trace 〈a, b, c, d〉. This trace represents the
path followed by case x123. The second case (x128) can be represented by the
trace 〈a, c, b, d〉. Note that there may be multiple cases that have the same trace.
Therefore, an event log is defined as a multi-set of traces.

A multi-set (also referred to as bag) is like a set where each element may
occur multiple times. For example, [horse, cow5, duck2] is the multi-set with eight
elements: one horse, five cows and two ducks. IB(X) is the set of multi-sets (bags)
over X . We assume the usual operators on multi-sets, e.g., X ∪Y is the union of
X and Y, X\Y is the difference between X and Y , x ∈ X tests if x appears in X ,
and X ≤ Y evaluates to true if X is contained in Y . For example, [horse , cow2]∪
[horse2, duck2] = [horse3, cow2, duck2], [horse3, cow4] \ [cow2] = [horse3, cow2],
[horse, cow2] ≤ [horse2, cow3], and [horse3, cow1] �≤ [horse2, cow2]. Note that
sets can be considered as bags having only one instance of every element. Hence,
we can mix sets and bags, e.g., {horse, cow} ∪ [horse2, cow3] = [horse3, cow4].

For practical applications of process mining it is essential to differentiate be-
tween traces that are infrequent or even unique (multiplicity of 1) and traces
that are frequent. Therefore, an event log is a multi-set of traces rather than
an ordinary set. However, in this article we focus on the foundations of process
discovery thereby often abstracting from noise and frequencies. See [2] for tech-
niques that take frequencies into account. This book also describes various case
studies showing the importance of multiplicities.

In the remainder, we will use the following example log: L1 = [〈a, b, c, d〉5,
〈a, c, b, d〉8, 〈a, e, d〉9]. L1 contains information about 22 cases; five cases following
trace 〈a, b, c, d〉, eight cases following trace 〈a, c, b, d〉, and nine cases following
trace 〈a, e, d〉. Note that such a simple representation can be extracted from
sources such as Table 1, MXML, XES, or any other format that links events to
cases and activities.

3.2 Petri Nets

The goal of process discovery is to distil a process model from some event log.
Here we use Petri nets [50] to represent such models. In fact, we extract a
subclass of Petri nets known as workflow nets (WF-nets) [1].

Definition 2. An Petri net is a tuple (P, T, F) where:

1. P is a finite set of places,

2. T is a finite set of transitions such that P ∩ T = ∅, and
3. F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called the flow relation.

An example Petri net is shown in Figure 3. This Petri net has six places repre-
sented by circles and four transitions represented by squares. Places may contain
tokens. For example, in Figure 3 both p1 and p6 contain one token, p3 contains
two tokens, and the other places are empty. The state, also called marking, is the
distribution of tokens over places. A marked Petri net is a pair (N,M), where
N = (P, T, F) is a Petri net and where M ∈ IB(P) is a bag over P denoting the

380 W.M.P. van der Aalst and B.F. van Dongen

t1

t2

p1 p2

t3

t4

p3

p5 p6

p4

Fig. 3. A Petri net with six places (p1, p2, p3, p4, p5, and p6) and four transitions (t1,
t2, t3, and t4)

marking of the net. The initial marking of the Petri net shown in Figure 3 is
[p1, p32, p6]. The set of all marked Petri nets is denoted N .

Let N = (P, T, F) be a Petri net. Elements of P ∪ T are called nodes. A node
x is an input node of another node y iff there is a directed arc from x to y (i.e.,
(x, y) ∈ F). Node x is an output node of y iff (y, x) ∈ F . For any x ∈ P ∪ T ,
•x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}. In Figure 3, •t3 = {p3, p6} and
t3• = {p5}.

The dynamic behavior of such a marked Petri net is defined by the so-called
firing rule. A transition is enabled if each of its input places contains a token. An
enabled transition can fire thereby consuming one token from each input place
and producing one token for each output place.

Definition 3 (Firing rule). Let (N,M) be a marked Petri net with N =
(P, T, F). Transition t ∈ T is enabled, denoted (N,M)[t〉, iff •t ≤ M . The firing
rule [〉 ⊆ N × T ×N is the smallest relation satisfying for any (N,M) ∈ N
and any t ∈ T , (N,M)[t〉 ⇒ (N,M) [t〉 (N, (M \ •t) ∪ t•).

In the marking shown in Figure 3, both t1 and t3 are enabled. The other two
transitions are not enabled because at least one of the input places is empty.
If t1 fires, one token is consumed (from p1) and two tokens are produced (one
for p2 and one for p3). Formally, (N, [p1, p32, p6]) [t1〉 (N, [p2, p33, p6]). So the
resulting marking is [p2, p33, p6]. If t3 fires in the initial state, two tokens are
consumed (one from p3 and one from p6) and one token is produced (for p5).
Formally, (N, [p1, p32, p6]) [t3〉 (N, [p1, p3, p5]).

Let (N,M0) with N = (P, T, F) be a marked P/T net. A sequence σ ∈ T ∗ is
called a firing sequence of (N,M0) iff, for some natural number n ∈ IN, there exist
markingsM1, . . . ,Mn and transitions t1, . . . , tn ∈ T such that σ = 〈t1 . . . tn〉 and,
for all i with 0 ≤ i < n, (N,Mi)[ti+1〉 and (N,Mi) [ti+1〉 (N,Mi+1).

Let (N,M0) be the marked Petri net shown in Figure 3, i.e.,M0 = [p1, p32, p6].
The empty sequence σ = 〈 〉 is enabled in (N,M0). The sequence σ = 〈t1, t3〉 is
also enabled and results in marking [p2, p32, p5]. Another possible firing sequence
is σ = 〈t3, t4, t3, t1, t4, t3, t2, t1〉. A marking M is reachable from the initial

Discovering Petri Nets from Event Logs 381

[p1,p32,p6] [p2,p33,p6]
t1

[p2,p32,p4,p6]

t2

[p1,p3,p4,p6]

t1

[p2,p3,p42,p6]

t2

[p1,p42,p6]

t1

[p2,p43,p6]

t2

[p2,p32,p5]

t3

[p1,p3,p5]

t1

[p2,p3,p4,p5]

t2

[p1,p4,p5]

t1

[p2,p42,p5]

t2

t3
t4

t4

t4

t4

t4

t3

t3

t3

Fig. 4. The reachability graph of the marked Petri net shown in Figure 3

marking M0 iff there exists a sequence of enabled transitions whose firing leads
from M0 to M . The set of reachable markings of (N,M0) is denoted [N,M0〉.

For the marked Petri net shown in Figure 3 there are 12 reachable states.
These states can be computed using the so-called reachability graph shown in
Figure 4. All nodes correspond to reachable markings and each arc corresponds
to the firing of a particular transition. Any path in the reachability graph corre-
sponds to a possible firing sequence. For example, using Figure 4 is is easy to see
that 〈t3, t4, t3, t1, t4, t3, t2, t1〉 is indeed possible and results in [p2, p3, p4, p5]. A
marked net may be unbounded, i.e., have an infinite number or reachable states.
In this case, the reachability graph is infinitely large, but one can still construct
the so-called coverability graph [50].

3.3 Workflow Nets

For process discovery, we look at processes that are instantiated multiple times,
i.e., the same process is executed for multiple cases. For example, the process
of handling insurance claims may be executed for thousands or even millions
of claims. Such processes have a clear starting point and a clear ending point.
Therefore, the following subclass of Petri nets (WF-nets) is most relevant for
process discovery.

Definition 4 (Workflow nets). Let N = (P, T, F) be a Petri net and t̄ a fresh
identifier not in P ∪ T . N is a workflow net (WF-net) iff:

1. object creation: P contains an input place i (also called source place) such
that •i = ∅,

382 W.M.P. van der Aalst and B.F. van Dongen

a

b

c

de

p2

end

p4

p3p1

start

Fig. 5. A workflow net with source place i = start and sink place o = end

2. object completion: P contains an output place o (also called sink place) such
that o• = ∅,

3. connectedness: N̄ = (P, T ∪{t̄}, F ∪{(o, t̄), (t̄, i)}) is strongly connected, i.e.,
there is a directed path between any pair of nodes in N̄ .

Clearly, Figure 3 is not a WF-net because a source and sink place are missing.
Figure 5 shows an example of a WF-net: •start = ∅, end• = ∅, and every node
is on a path from start to end .

The Petri net depicted in Figure 1 is another example of a WF-net. Not every
WF-net represents a correct process. For example, a process represented by a
WF-net may exhibit errors such as deadlocks, tasks which can never become ac-
tive, livelocks, garbage being left in the process after termination, etc. Therefore,
we define the following correctness criterion.

Definition 5 (Soundness). Let N = (P, T, F) be a WF-net with input place i
and output place o. N is sound iff:

1. safeness: (N, [i]) is safe, i.e., places cannot hold multiple tokens at the same
time,

2. proper completion: for any marking M ∈ [N, [i]〉, o ∈ M implies M = [o],

3. option to complete: for any marking M ∈ [N, [i]〉, [o] ∈ [N,M〉, and
4. absence of dead tasks: (N, [i]) contains no dead transitions (i.e., for any

t ∈ T , there is a firing sequence enabling t).

The WF-nets shown in figures 5 and 1 are sound. Soundness can be verified using
standard Petri-net-based analysis techniques. In fact soundness corresponds to
liveness and safeness of the corresponding short-circuited net [1]. This way effi-
cient algorithms and tools can be applied. An example of a tool tailored towards
the analysis of WF-nets is Woflan [55]. This functionality is also embedded in
our process mining tool ProM [5].

3.4 Problem Definition and Approaches

After introducing events logs and WF-nets, we can define the main goal of
process discovery.

Discovering Petri Nets from Event Logs 383

Definition 6 (Process discovery). Let L be an event log over A, i.e., L ∈
IB(A∗). A process discovery algorithm is a function γ that maps any log L onto
a Petri net γ(L) = (N,M). Ideally, N is a sound WF-net and all traces in L
correspond to possible firing sequences of (N,M).

The goal is to find a process model that can “replay” all cases recorded in the
log, i.e., all traces in the log are possible firing sequences of the discovered WF-
net. Assume that L1 = [〈a, b, c, d〉5, 〈a, c, b, d〉8, 〈a, e, d〉9]. In this case the WF-
net shown in Figure 5 is a good solution. All traces in L1 correspond to firing
sequences of the WF-net and vice versa. Throughout this article, we use L1 as
an example log. Note that it may be possible that some of the firing sequences of
the discovered WF-net do not appear in the log. This is acceptable as one cannot
assume that all possible sequences have been observed. For example, if there is
a loop, the number of possible firing sequences is infinite. Even if the model is
acyclic, the number of possible sequences may be enormous due to choices and
parallelism. Later in this article, we will discuss the quality of discovered models
in more detail.

Since the mid-nineties several groups have been working on techniques for
process mining [7, 9, 10, 25, 29, 32, 33, 58], i.e., discovering process models based
on observed events. In [6] an overview is given of the early work in this domain.
The idea to apply process mining in the context of workflow management sys-
tems was introduced in [10]. In parallel, Datta [29] looked at the discovery of
business process models. Cook et al. investigated similar issues in the context
of software engineering processes [25]. Herbst [40] was one of the first to tackle
more complicated processes, e.g., processes containing duplicate tasks.

Most of the classical approaches have problems dealing with concurrency.
The α-algorithm [9] is an example of a simple technique that takes concurrency
as a starting point. However, this simple algorithm has problems dealing with
complicated routing constructs and noise (like most of the other approaches
described in literature). In [32, 33] a more robust but less precise approach is
presented.

Recently, people started using the “theory of regions” to process discovery.
There are two approaches: state-based regions and language-based regions. State-
based regions can be used to convert a transition system into a Petri net [13,15,
23,24,26,27,35]. Language-based regions add places as long as it is still possible
to replay the log [14, 17, 19, 28, 42, 43].

More from a theoretical point of view, the process discovery problem is related
to the work discussed in [12, 37, 38, 49]. In these papers the limits of inductive
inference are explored. For example, in [38] it is shown that the computational
problem of finding a minimum finite-state acceptor compatible with given data
is NP-hard. Several of the more generic concepts discussed in these papers can
be translated to the domain of process mining. It is possible to interpret the
problem described in this article as an inductive inference problem specified in
terms of rules, a hypothesis space, examples, and criteria for successful inference.
The comparison with literature in this domain raises interesting questions for
process mining, e.g., how to deal with negative examples (i.e., suppose that

384 W.M.P. van der Aalst and B.F. van Dongen

besides log L there is a log L′ of traces that are not possible, e.g., added by
a domain expert). However, despite the relations with the work described in
[12,37,38,49] there are also many differences, e.g., we are mining at the net level
rather than sequential or lower level representations (e.g., Markov chains, finite
state machines, or regular expressions), tackle concurrency, and do not assume
negative examples or complete logs.

The above approaches assume that there is no noise or infrequent behav-
ior. For approaches dealing with these problems we refer to the work done by
Christian Günther [39], Ton Weijters [58], and Ana Karla Alves de Medeiros [47].

4 α-Algorithm

After introducing the process discovery problem and providing an overview of
approaches described in literature, we focus on the α-algorithm [9]. The α-
algorithm is not intended as a practical mining technique as it has problems with
noise, infrequent/incomplete behavior, and complex routing constructs. Never-
theless, it provides a good introduction into the topic. The α-algorithm is very
simple and many of its ideas have been embedded in more complex and robust
techniques. Moreover, it was the first algorithm to really address the discovery
of concurrency.

4.1 Basic Idea

The α-algorithm scans the event log for particular patterns. For example, if
activity a is followed by b but b is never followed by a, then it is assumed
that there is a causal dependency between a and b. To reflect this dependency,
the corresponding Petri net should have a place connecting a to b. We distin-
guish four log-based ordering relations that aim to capture relevant patterns in
the log.

Definition 7 (Log-based ordering relations). Let L be an event log over A,
i.e., L ∈ IB(A∗). Let a, b ∈ A:

– a >L b iff there is a trace σ = 〈t1, t2, t3, . . . tn〉 and i ∈ {1, . . . , n − 1} such
that σ ∈ L and ti = a and ti+1 = b,

– a →L b iff a >L b and b �>L a,

– a#Lb iff a �>L b and b �>L a, and

– a‖Lb iff a >L b and b >L a.

Consider for example L1 = [〈a, b, c, d〉5, 〈a, c, b, d〉8, 〈a, e, d〉9]. c >L1 d because d
directly follows c in trace 〈a, b, c, d〉. However, d �>L1 c because c never directly
follows d in any trace in the log.

>L1= {(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)} contains all pairs of
activities in a “directly follows” relation. c →L1 d because sometimes d di-
rectly follows c and never the other way around (c >L1 d and d �>L1 c).
→L1= {(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)} contains all pairs of activities in

Discovering Petri Nets from Event Logs 385

a b

(a) sequence pattern: a

a

b

c

(b) XOR-split pattern:
a a

a

b

c

(c) XOR-join pattern:
a

a

b

c

(d) AND-split pattern:
a a

a

b

c

(e) AND-join pattern:
a

Fig. 6. Typical process patterns and the footprints they leave in the event log

a “causality” relation. b‖L1c because b >L1 c and c >L1 b, i.e, sometimes c
follows b and sometimes the other way around. ‖L1 = {(b, c), (c, b)}. b#L1e
because b �>L1 e and e �>L1 b. #L1 = {(a, a), (a, d), (b, b), (b, e), (c, c), (c, e),
(d, a), (d, d), (e, b), (e, c), (e, e)}. Note that for any log L over A and x, y ∈ A:
x →L y, y →L x, x#Ly, or x‖Ly.

The log-based ordering relations can be used to discover patterns in the cor-
responding process model as is illustrated in Figure 6. If a and b are in sequence,
the log will show a >L b. If after a there is a choice between b and c, the log will
show a →L b, a →L c, and b#Lc because a can be followed by b and c, but b
will not be followed by c and vice versa. The logical counterpart of this so-called
XOR-split pattern is the XOR-join pattern as shown in Figure 6(b-c). If a →L c,
b →L c, and a#Lb, then this suggests that after the occurrence of either a or
b, c should happen. Figure 6(d-e) shows the so-called AND-split and AND-join
patterns. If a →L b, a →L c, and b‖Lc, then it appears that after a both b and
c can be executed in parallel (AND-split pattern). If a →L c, b →L c, and a‖Lb,
then it appears that c needs to synchronize a and b (AND-join pattern).

Figure 6 only shows simple patterns and does not present the additional con-
ditions needed to extract the patterns. However, the figure nicely illustrates the
basic idea.

Consider for example WF-net N2 depicted in Figure 7 and the log event log
L2 = [〈a, b, c, d, e, f, b, d, c, e, g〉, 〈a, b, d, c, e, g〉, 〈a, b, c, d, e, f, b, c, d, e, f, b, d, c,
e, g〉]. The α-algorithm constructs WF-net N2 based on L2. Note that the

386 W.M.P. van der Aalst and B.F. van Dongen

a b

c

d

e

p({a,f},{b})iL

p({b},{c})

p({b},{d})

p({c},{e})

p({d},{e})

g

oLp({e},{f,g})

f

Fig. 7. WF-net N2 derived from L2 = [〈a, b, c, d, e, f, b, d, c, e, g〉, 〈a, b, d, c, e, g〉,
〈a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g〉]

patterns in the model indeed match the log-based ordering relations extracted
from the event log. Consider for example the process fragment involving b, c, d,
and e. Obviously, this fragment can be constructed based on b →L2 c, b →L2 d,
c‖L2d, c →L2 e, and d →L2 e. The choice following e is revealed by e →L2 f ,
e →L2 g, and f#L2g. Etc.

Another example is shown in Figure 8. WF-net N3 can be derived from L3 =
[〈a, c, d〉45, 〈b, c, d〉42, 〈a, c, e〉38, 〈b, c, e〉22]. Note that here there are two start and
two end activities. These can be found easily by looking for the first and last
activities in traces.

4.2 Algorithm

After showing the basic idea and some examples, we describe the α-algorithm.

Definition 8 (α-algorithm). Let L be an event log over T . α(L) is defined as
follows.

1. TL = {t ∈ T | ∃σ∈L t ∈ σ},
2. TI = {t ∈ T | ∃σ∈L t = first(σ)},
3. TO = {t ∈ T | ∃σ∈L t = last(σ)},
4. XL = {(A,B) | A ⊆ TL ∧ A �= ∅ ∧ B ⊆ TL ∧ B �= ∅ ∧ ∀a∈A∀b∈B a →L

b ∧ ∀a1,a2∈A a1#La2 ∧ ∀b1,b2∈B b1#Lb2},
5. YL = {(A,B) ∈ XL | ∀(A′,B′)∈XL

A ⊆ A′ ∧B ⊆ B′ =⇒ (A,B) = (A′, B′)},

b

c

p({a,b},{c}) oL

a

iL e

d

p({c},{d,e})

Fig. 8. WF-net N3 derived from L3 = [〈a, c, d〉45, 〈b, c, d〉42, 〈a, c, e〉38, 〈b, c, e〉22]

Discovering Petri Nets from Event Logs 387

6. PL = {p(A,B) | (A,B) ∈ YL} ∪ {iL, oL},
7. FL = {(a, p(A,B)) | (A,B) ∈ YL ∧ a ∈ A} ∪ {(p(A,B), b) | (A,B) ∈ YL ∧ b ∈

B} ∪ {(iL, t) | t ∈ TI} ∪ {(t, oL) | t ∈ TO}, and
8. α(L) = (PL, TL, FL).

L is an event log over some set T of activities. In Step 1 it is checked which
activities do appear in the log (TL). These will correspond to the transitions of
the generated WF-net. TI is the set of start activities, i.e., all activities that
appear first in some trace (Step 2). TO is the set of end activities, i.e., all activ-
ities that appear last in some trace (Step 3). Steps 4 and 5 form the core of the
α-algorithm. The challenge is to find the places of the WF-net and their connec-
tions. We aim at constructing places named p(A,B) such that A is the set of input
transitions (•p(A,B) = A) and B is the set of output transitions (p(A,B)

• = B).
The basic idea for finding p(A,B) is shown in Figure 9. All elements of A should

have causal dependencies with all elements of B, i.e., for any (a, b) ∈ A × B:
a →L b. Moreover, the elements of A should never follow any of the other
elements, i.e., for any a1, a2 ∈ A: a1#La2. A similar requirement holds for B.

Let us consider L1 = [〈a, b, c, d〉5, 〈a, c, b, d〉8, 〈a, e, d〉9]. Clearly A = {a} and
B = {b, e} meet the requirements stated in Step 4. Also note that A′ = {a} and
B′ = {b} meet the same requirements. XL is the set of all such pairs that meet
the requirements just mentioned. In this case, XL1 = {({a}, {b}), ({a}, {c}),
({a}, {e}), ({a}, {b, e}), ({a}, {c, e}), ({b}, {d}), ({c}, {d}), ({e}, {d}),
({b, e}, {d}), ({c, e}, {d})}. If one would insert a place for any element in XL1

there would be too many places. Therefore, only the “maximal pairs” (A,B)
should be included. Note that for any pair (A,B) ∈ XL, non-empty set A′ ⊆ A,
and non-empty set B′ ⊆ B, it is implied that (A′, B′) ∈ XL. In Step 5 all non-
maximal pairs are removed. So YL1 = {({a}, {b, e}), ({a}, {c, e}), ({b, e}, {d}),
({c, e}, {d})}.

a1

...

a2

am

b1

b2

bn

p(A,B) ...

A={a1,a2, … am} B={b1,b2, … bn}

Fig. 9. Place p(A,B) connects the transitions in set A to the transitions in set B

388 W.M.P. van der Aalst and B.F. van Dongen

b

p({a},{e})

oL

a

iL c

e

f

d

p({e},{f})

p({b},{c,f})p({a,d},{b})

p({c},{d})

Fig. 10. WF-net N4 derived from L4 = [〈a, b, e, f〉2, 〈a, b, e, c, d, b, f〉3,
〈a, b, c, e, d, b, f〉2, 〈a, b, c, d, e, b, f〉4, 〈a, e, b, c, d, b, f〉3]

Every element of (A,B) ∈ YL corresponds to a place p(A,B) connecting tran-
sitions A to transitions B. In addition PL also contains a unique source place iL
and a unique sink place oL (cf. Step 6).

In Step 7 the arcs are generated. All start transitions in TI have iL as an
input place and all end transitions TO have oL as output place. All places p(A,B)

have A as input nodes and B as output nodes. The result is a Petri net α(L) =
(PL, TL, FL) that describes the behavior seen in event log L.

Thus far we presented three logs and three WF-nets. Clearly α(L2) = N2,
and α(L3) = N3. In figures 7 and 8 the places are named based on the sets YL2

and YL3 . Moreover, α(L1) = N1 modulo renaming of places (because different
place names are used in Figure 5). These examples show that the α-algorithm
is indeed able to discover WF-nets based event logs.

Figure 10 shows another example. WF-net N4 can be derived from L4 =
[〈a, b, e, f〉2, 〈a, b, e, c, d, b, f〉3, 〈a, b, c, e, d, b, f〉2, 〈a, b, c, d, e, b, f〉4, 〈a, e, b, c, d,
b, f〉3], i.e., α(L4) = N4.

The WF-net in Figure 1 is discovered when applying the α-algorithm to the
event log in the same figure.

4.3 Limitations

In [9] it was shown that the α-algorithm is able to discover a large class of
WF-nets if one assumes that the log is complete with respect to the log-based
ordering relation >L. This assumption implies that, for any event log L, a >L b
if a can be directly followed by b. We revisit the notion of completeness later in
this article.

Even if we assume that the log is complete, the α-algorithm has some
problems. There are many different WF-nets that have the same possible be-
havior, i.e., two models can be structurally different but trace equivalent. Con-
sider for example L5 = [〈a, c, e, g〉2, 〈a, e, c, g〉3, 〈b, d, f, g〉2, 〈b, f, d, g〉4]. α(L5) is
shown in Figure 11. Although the model is able to generate the observed be-
havior, the resulting WF-net is needlessly complex. Two of the input places
of g are redundant, i.e., they can be removed without changing the behavior.

Discovering Petri Nets from Event Logs 389

g

a

c

d

e

f
c

p1

p2

Fig. 11. WF-net N5 derived from L5 = [〈a, c, e, g〉2, 〈a, e, c, g〉3, 〈b, d, f, g〉2, 〈b, f, d, g〉4]

The places denoted as p1 and p2 are so-called implicit places and can be re-
moved without allowing for more traces. In fact, Figure 11 shows only one of
many possible trace equivalent WF-nets.

The original α-algorithm has problems dealing with short loops, i.e., loops of
length 1 or 2. This is illustrated by WF-net N6 in Figure 12 which shows the
result of applying the basic algorithm to L6 = [〈a, c〉2, 〈a, b, c〉3, 〈a, b, b, c〉2]. It is
easy to see that the model does not allow for 〈a, c〉 and 〈a, b, b, c〉. In fact, in N6,
transition b needs to be executed precisely once and there is an implicit place
connecting a and c. This problem can be addressed easily as shown in [46]. Using
an improved version of the α-algorithm one can discover the WF-net shown in
Figure 13.

A more difficult problem is the discovery of so-called non-local dependen-
cies resulting from non-free choice process constructs. An example is shown in
Figure 14. This net would be a good candidate after observing for example

a c

b

Fig. 12. Incorrect WF-net N6 derived from L6 = [〈a, c〉2, 〈a, b, c〉3, 〈a, b, b, c〉2]

a c

b

Fig. 13. WF-net N7 having a so-called “short-loop”

390 W.M.P. van der Aalst and B.F. van Dongen

b

c

a

e

dp1

p2

Fig. 14. WF-net N8 having a non-local dependency

L8 = [〈a, c, d〉45, 〈b, c, e〉42]. However, the α-algorithm will derive the WF-net
without the place labeled p1 and p2. Hence, α(L8) = N3 shown in Figure 8 al-
though the traces 〈a, c, e〉 and 〈b, c, d〉 do not appear in L8. Such problems can
be (partially) resolved using refined versions of the α-algorithm such as the one
presented in [59].

The above examples show that the α-algorithm is able to discover a large class
of models. The basic 8-line algorithm has some limitations when it comes to
particular process patterns (e.g., short-loops and non-local dependencies). Some
of these problems can be solved using various refinements. However, several more
fundamental problems remain as shown next.

5 Challenges

The α-algorithm was one of the first process discovery algorithms to adequately
capture concurrency. Today there are much better algorithms that overcome
the weaknesses of the α-algorithm. These are either variants of the α-algorithm
or algorithms that use a completely different approach, e.g., genetic mining or
synthesis based on regions [34]. Later we will describe some of these approaches.
However, first we discuss the main requirements for a good process discovery
algorithm.

To discover a suitable process model it is assumed that the event log contains
a representative sample of behavior. There are two related phenomena that may
make an event log less representative for the process being studied:

– Noise: the event log contains rare and infrequent behavior not representative
for the typical behavior of the process.

– Incompleteness: the event log contains too few events to be able to discover
some of the underlying control-flow structures.

Often we would like to abstract from noise when discovering a process. This
does not mean that noise is not relevant. In fact, the goal of conformance check-
ing is to identify exceptions and deviations. However, for process discovery it
makes no sense to include noisy behavior in the model as this will clutter the
diagram and has little predictive value. Whereas noise refers to the problem of
having “too much data” (describing rare behavior), completeness refers to the
problem of having “too little data”. To illustrate the relevance of completeness,

Discovering Petri Nets from Event Logs 391

consider a process consisting of 10 activities that can be executed in parallel
and a corresponding log that contains information about 10,000 cases. The total
number of possible interleavings in the model with 10 concurrent activities is
10! = 3,628,800. Hence, it is impossible that each interleaving is present in the
log as there are fewer cases (10,000) than potential traces (3,628,800). Even if
there are 3,628,800 cases in the log, it is extremely unlikely that all possible
variations are present. For the process in which 10 activities can be executed in
parallel, a local notion of completeness can reduce the required number of obser-
vations dramatically. For example, for the α-algorithm only 10× (10 − 1) = 90
rather than 3,628,800 different observations are needed to construct the model.

Completeness and noise refer to qualities of the event log and do not say much
about the quality of the discovered model. Determining the quality of a process
mining result is difficult and is characterized by many dimensions. As shown in
Figure 15, we identify four main quality dimensions: fitness, simplicity, precision,
and generalization [2, 4, 51].

A model with good fitness allows for the behavior seen in the event log. A
model has a perfect fitness if all traces in the log can be replayed by the model
from beginning to end. There are various ways of defining fitness. It can be
defined at the case level, e.g., the fraction of traces in the log that can be fully
replayed. It can also be defined at the event level, e.g., the fraction of events
in the log that are indeed possible according to the model [2, 4, 51]. Note that
we defined an event log to be a multi-set of traces rather than an ordinary set:
the frequencies of traces are important for determining fitness. If a trace cannot
be replayed by the model, then the significance of this problem depends on the
relative frequency.

The simplicity dimension in Figure 15 refers to Occam’s Razor, the principle
that states that “one should not increase, beyond what is necessary, the number
of entities required to explain anything”. Following this principle, we look for
the “simplest process model” that can explain what is observed in the event

process
discovery

fitness

precisiongeneralization

simplicity

“able to replay event log” “Occam’s razor”

“not overfitting the log” “not underfitting the log”

Fig. 15. Balancing the four quality dimensions: fitness, simplicity, precision, and
generalization [2]

392 W.M.P. van der Aalst and B.F. van Dongen

log. The complexity of the model could be defined by the number of nodes and
arcs in the underlying graph. Also more sophisticated metrics can be used, e.g.,
metrics that take the “structuredness” or “entropy” of the model into account.

Fitness and simplicity are obvious criteria. However, this is not sufficient as
will be illustrated using Figure 16. Assume that the four models that are shown
are discovered based on the event log also depicted in the figure. (Note that
this event log was already shown in Section 1.) There are 1391 cases. Of these
1391 cases, 455 followed the trace 〈a, c, d, e, h〉. The second most frequent trace
is 〈a, b, d, e, g〉 which was followed by 191 cases.

If we apply the α-algorithm to this event log, we obtain model N1 shown in
Figure 16. A comparison of the WF-net N1 and the log shows that this model is
quite good; it is simple and has a good fitness. WF-net N2 models only the most
frequent trace, i.e., it only allows for the sequence 〈a, c, d, e, h〉. Hence, none of
the other 1391−455 = 936 cases fits. WF-net N2 is simple but has a poor fitness.

Let us now consider WF-net N3, this is a variant of the so-called “flower
model” [2, 51], i.e., a model that allows for all known activities at any point in
time. Note that a Petri net without any places can replay any log and has a be-
havior similar to the “flower model” (but is not a WF-net). Figure 16 does not
show a pure “flower model”, but still allows for a diversity of behaviors. N3 cap-
tures the start and end activities well. However, the model does not put any con-
straints on the other activities. For example trace 〈a, b, b, b, b, b, b, f, f, f, f, f, g〉
is possible, whereas it seems unlikely that this trace is possible when looking
at the event log, i.e., the behavior is very different from any of the traces in
the log.

Extreme models such as the “flower model” (anything is possible) show the
need for an additional dimension: precision. A model is precise if it does not
allow for “too much” behavior. Clearly, the “flower model” lacks precision. A
model that is not precise is “underfitting”. Underfitting is the problem that the
model over-generalizes the example behavior in the log, i.e., the model allows
for behaviors very different from what was seen in the log.

WF-net N4 in Figure 16 reveals another potential problem. This model simply
enumerates the 21 different traces seen in the event log. Note that N4 is a so-
called labeled Petri net, i.e., multiple transitions can have the same label (there
are 21 transition with label a). The WF-net in Figure 16 is precise and has a
good fitness. However,N4 is also overly complex and is “overfitting”. WF-net N4

illustrates the need to generalize; one should not restrict behavior to the traces
seen in the log as these are just examples. Overfitting is the problem that a very
specific model is generated whereas it is obvious that the log only holds example
behavior, i.e., the model explains the particular sample log, but a next sample
log of the same process may produce a completely different process model. Recall
that logs are typically far from complete. Moreover, generalization can be used
to simplify models. WF-net N1 shown in Figure 16 allows for behavior not seen
in the log, e.g., 〈a, d, c, e, f, d, b, e, f, c, d, e, h〉. Any WF-net that restricts the
behavior to only seen cases will be much more complex and exclude behavior
which seems likely based on similar traces in the event log.

Discovering Petri Nets from Event Logs 393

a
start register

request

bexamine
thoroughly

cexamine
casually

d check
ticket

decide

pay
compensation

reject
request

reinitiate
requeste

g

hf
end

a
start register

request

c
examine
casually

d
check
ticket

decide reject
request

e h
end

N3 : fitness = +, precision = -, generalization = +, simplicity = +

N2 : fitness = -, precision = +, generalization = -, simplicity = +

a
start register

request

b
examine
thoroughly

c
examine
casually

d
check ticket

decide

pay
compensation

reject
request

reinitiate
request

e

g

h

f

end

N1 : fitness = +, precision = +, generalization = +, simplicity = +

a
start register

request

c
examine
casually

d
check
ticket

decide reject
request

e h
end

N4 : fitness = +, precision = +, generalization = -, simplicity = -

a
register
request

d
examine
casually

c
check
ticket

decide reject
request

e h

a c
examine
casually

d
check
ticket

decide

e g

a d
examine
casually

c
check
ticket

decide

e g

register
request

register
request

pay
compensation

pay
compensation

a
register
request

b d
check
ticket

decide reject
request

e h

a
register
request

d b
check
ticket

decide reject
request

e h

a b d
check
ticket

decide

e g
register
request

pay
compensation

examine
thoroughly

examine
thoroughly

examine
thoroughly

… (all 21 variants seen in the log)

acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh

acdefdbeh

adbeg

acdefbdeh

acdefbdeg

acdefdbeg

adcefcdeh

adcefdbeh

adcefbdeg

acdefbdefdbeg

adcefdbeg

adcefbdefbdeg

adcefdbefbdeh

adbefbdefdbeg

adcefdbefcdefdbeg

455

191

177

144

111

82

56

47

38

33

14

11

9

8

5

3

2

2

1

1

1

trace

1391

Fig. 16. Different Petri nets discovered for an event log containing 1391 cases

394 W.M.P. van der Aalst and B.F. van Dongen

For real-life event logs it is challenging to balance the four quality dimensions
shown in Figure 15. For instance, an oversimplified model is likely to have a
low fitness or lack of precision. Moreover, there is an obvious trade-off between
underfitting and overfitting [2, 4, 48, 51].

6 Process Discovery and the Theory of Regions

Problems similar to process discovery arise in other areas ranging from hardware
design and to controller synthesis of manufacturing systems. Often the so called
theory of regions is used to construct a Petri net from a behavioral specification
(e.g., a language or a state space), such that the behavior of this net corresponds
to the specified behavior (if such a net exists). The general question answered
by the theory of regions is: Given the specified behavior of a system, what is the
Petri net that represents this behavior?.

Two main types of region theory can be distinguished, namely state-based
region theory and language-based region theory. The state-based theory of regions
focusses on the synthesis of Petri nets from state-based models, where the state
space of the Petri net is bisimilar to the given state-based model. The language-
based region theory, considers a language over a finite alphabet as a behavioral
specification. Using the notion of regions, a Petri net is constructed, such that
all words in the language are firing sequences in that Petri net.

The aim of the theory of regions is to synthesize a precise model, with mini-
mal generalization, while keeping a maximal fitness. The classical approaches de-
scribed in this section (i.e., conventional state-based region theory and language
based region theory) do not put much emphasis on simplicity. Unlike algorithms
such as the heuristic miner [58], the genetic miner [47], and the fuzzy miner [39],
conventional region-based methods do not compromise on precision in favor of
simplicity or generalization.

In the remainder of this section, we introduce the main region theory concepts
and discuss the differences between synthesis and process discovery. In Section 7
and Section 8 we show how region theory can be used in the context of process
discovery.

6.1 State Based Region Theory

The state-based region theory [13, 15, 23, 24, 26, 27, 35] uses a transition system
as input, i.e., it attempts to construct a Petri net that is bisimilar to the transi-
tion system. Hence both are behaviorally equivalent and if the system exhibits
concurrency, the Petri net may be much smaller than the transition system.

Definition 9 (Transition system). TS = (S,E, T) defines a labeled tran-
sition system where S is the set of states, A is the set of visible activities
(i.e., activities recorded in event log), τ �∈ A is used to represent silent steps
(i.e., actions not recorded in event log), E = A ∪ {τ} is the set of transi-

tion labels, and T ⊆ S × E × S is the transition relation. We use s1
e→ s2

Discovering Petri Nets from Event Logs 395

s1 a s2 s3c

s5

b

s6c s7d

s4 s8d

e

b

Fig. 17. A transition system with 8 states, 5 labels, 1 initial state and 2 final states

to denote a transition from state s1 to s2 labeled with e. Furthermore, we say
that Ss = {s ∈ S | � ∃s′∈S,e∈E s′ e→ s} ⊆ S is the set of initial states, and

Se = {s ∈ S | � ∃s′∈S,e∈E s
e→ s′} ⊆ S is the set of final states.

In the transition system, a region corresponds to a set of states such that all
states have similarly labeled input and output edges. Figure 17 shows an example
of a transition system. In fact, this figure depicts the reachability graph of the
Petri net in Figure 5, where the states are anonymous, i.e., they do not contain
information about how many tokens are in a place.

Definition 10 (State region). Let TS = (S,E, T) be a transition system and
S′ ⊆ S a set of states. We say S′ is a region, if and only if for all e ∈ E one of
the following conditions holds:

1. all the transitions s1
e→ s2 enter S′, i.e., s1 /∈ S′ and s2 ∈ S′,

2. all the transitions s1
e→ s2 exit S′, i.e., s1 ∈ S′ and s2 /∈ S′,

3. all the transitions s1
e→ s2 do not cross S′, i.e., s1, s2 ∈ S′ or s1, s2 /∈ S′

Any transition system TS = (S,E, T) has two trivial regions: ∅ (the empty
region) and S (the region consisting of all states). Typically, only non-trivial
regions are considered. A region r′ is said to be a subregion of another region r
if r′ ⊂ r. A region r is minimal if there is no other region r′ which is a subregion
of r. Region r is a preregion of e if there is a transition labeled with e which
exits r. Region r is a postregion of e if there is a transition labeled with e which
enters r.

For Petri net synthesis, a region corresponds to a Petri net place and an event
corresponds to a Petri net transition. Thus, the main idea of the synthesis algo-
rithm is the following: for each event e in the transition system, a transition labeled
with e is generated in the Petri net. For each minimal region ri a place pi is gen-
erated. The flow relation of the Petri net is built the following way: e ∈ pi

• if ri is
a preregion of e and e ∈ •pi if ri is a postregion of e. Figure 18 shows the minimal
regions of the transition system of Figure 17 and the corresponding Petri net.

The first publications on the theory of regions only dealt with a special class
of transition systems called elementary transition systems. See [13, 15, 30] for

396 W.M.P. van der Aalst and B.F. van Dongen

s1
a

s2 s3
c

s5

b

s6
c

s7
d

s4 s8
d

e

b

a

b

c

de

p1

p2

p3

p4

p5

p6

Fig. 18. The transition system of Figure 17 is converted into a Petri net using the
“state regions”. The six regions correspond to places in the Petri net.

(classical
region
theory)

s1
a

s2 s4
d

s3

e
d

a d

e

p1 p2 p3

a d1

e

p1 p2 p4

d2

p3

(using
label

splitting)

Fig. 19. The transition system is not elementary. Therefore, the generated Petri net
using classical region theory is not equivalent (modulo bisimilarity). However, using
“label-splitting” an equivalent Petri net can be obtained.

Discovering Petri Nets from Event Logs 397

details. The class of elementary transition systems is very restricted. In practice,
most of the time, people need to deal with arbitrary transition systems that only
by coincidence fall into the class of elementary transition systems. In the papers
of Cortadella et al. [26, 27], a method for handling arbitrary transition systems
was presented. This approach uses labeled Petri nets, i.e., different transitions can
refer to the same event. (WF-net N4 in Figure 16 is an example of a labeled Petri
net, e.g., there are 21 transitions labeled a.) For this approach it has been shown
that the behavior (cf. reachability graph) of the synthesized Petri net is bisimilar
to the initial transition system even if the transition system is non-elementary.
More recently, in [23,24], an approach was presented where the constructed Petri
net is not necessarily safe, but bounded1. Again, the reachability graph of the
synthesized Petri net is bisimilar to the given transition system.

To illustrate the problem of non-elementary transition systems, consider
Figure 19. This transition system is not elementary. The problem is that there
are two states s2 and s3 that are identical in terms of regions, i.e., there is no
region such that one is part of it and the other is not. As a result, the constructed
Petri net on the left hand side of Figure 19 fails to construct a bisimilar Petri net.
However, using label-splitting as presented in [26,27], the Petri net on the right
hand side can be obtained. This Petri net has two transitions d1 and d2 corre-
sponding to activity d in the log. The splitting is based on the so-called notions
of excitation and generalized excitation region, see [26]. As shown in [26, 27] it
is always possible to construct an equivalent Petri net. However, label-splitting
may lead to larger Petri nets. In [21] the authors show how to obtain the most
precise model when label splitting is not allowed.

In state-based region theory, the aim is to construct a Petri net, such that
its behavior is bisimilar to the given transition system. In process discovery
however, we have a log as input, i.e., we have information about sequences of
transitions, but not about states. In Section 7, we show how we can identify state
information from event logs and then use state-based region theory for process
discovery. However, we first introduce language-based region theory.

6.2 Language Based Region Theory

In addition to state-based region theory, we also consider language-based region
theory [14,17,19,28,42,43]. In their survey paper [45], Mauser and Lorenz show
how for different classes of languages (step languages, regular languages and
(infinite) partial languages) a Petri net can be derived such that the resulting
net is the Petri net with the smallest behavior in which the words in the language
are possible firing sequences.

Given a prefix-closed language A over some non-empty, finite set of activities
A, the language-based theory of regions tries to find a finite Petri net N(A) in
which the transitions correspond to the elements in the set A and of which all
sequences in the language are firing sequences (fitness criterion). Furthermore,

1 A Petri net is safe if there can never be more than 1 token in any place. Boundedness
implies that there exists an upper bound for the number of tokens in any place.

398 W.M.P. van der Aalst and B.F. van Dongen

the Petri net should minimize the number of firing sequences not in the language
(precision criterion).

The Petri net N(A) = (∅, A, ∅) is a finite Petri net with infinitely many
firing sequences allowing for any sequence involving activities A. Such a model
is typically underfitting, i.e., allowing for more behavior than suggested by the
event log. Therefore, the behavior of this Petri net needs to be reduced so that
the Petri net still allows to reproduce all sequences in the language, but does
not allow for behavior unrelated to the examples seen in the event log. This is
achieved by adding places to the Petri net. The theory of regions provides a
method to identify these places, using language regions.

Definition 11 (Language Region). Let A be a set of activities. A region
of a prefix-closed language L over A is a triple (�x, �y, c) with �x, �y ∈ {0, 1}A and
c ∈ {0, 1}, such that for each non-empty sequence w = w′ ◦a ∈ L, w′ ∈ L, a ∈ A:

c+
∑

t∈A

(
�w′(t) · �x(t)− �w(t) · �y(t)

)
≥ 0

This can be rewritten into the inequation system:

c ·�1 +M ′ · �x−M · �y ≥ �0

where M and M ′ are two |L|×|A| matrices with M(w, t) = �w(t), and M ′(w, t) =
�w′(t), with w = w′ ◦ a. The set of all regions of a language is denoted by �(L)
and the region (�0,�0, 0) is called the trivial region.2

Consider a region r = (�x, �y, c) corresponding to some place pr. For any prefix

w = w′ ◦ a in L, region r satisfies c+
∑

t∈A

(
�w′(t) · �x(t)− �w(t) · �y(t)

)
≥ 0 where

c is the initial number of tokens in place pr,
∑

t∈A
�w′(t) · �x(t) is the number

of tokens produced for place pr just before firing a (note that w′ is the prefix
without including the last a), and

∑
t∈A �w(t) · �y(t) is the number of tokens

consumed from place pr after firing a (w is the concatenation of w′ and a). �w is
the Parikh vector of w, i.e., �w(t) is the number of times t appears in sequence
w. �x(t) is the number of tokens t produces for place pr. Transition t consumes
�y(t) tokens from place pr per firing. So, �w(t) · �y(t) is the total number of tokens
t consumes from place pr when executing w.

Figure 20 illustrates the language-based region concept using for a language
over four activities (|A| =4), i.e., each solution (�x, �y, c) of the inequation system
can be regarded in the context of a Petri net, where the region corresponds to
a feasible place with preset {t | t ∈ T, �x(t) ≥ 1} and postset {t | t ∈ T, �y(t) ≥
1}, and initially marked with c tokens. In this paper, we assume arc-weights
to be 0 or 1 as we aim at understandable models (i.e., �x, �y ∈ {0, 1}A). As
shown in [14,16,28,43] it is possible to generalize the above notions to arbitrary
arc-weights.

2 To reduce calculation time, the inequation system can be rewritten to the form
[�1;M ′;−M] · �r ≥ �0 which can be simplified by eliminating duplicate rows.

Discovering Petri Nets from Event Logs 399

t1 t2

t4t3

x1

x2

x3

x4

y1

y2

y3

y2

c

Fig. 20. Region for a language with four letters: t1, t2, t3, and t4

A place represented by a region can be added to a Petri net, without limiting
its behavior with respect to traces seen in the event log. Therefore, we call such
a place feasible.

Definition 12 (Feasible place). Let L be a prefix-closed language over A and
let N = ((P, T, F),M) be a marked Petri net with T = A and M ∈ IB(P). A
place p ∈ P is called feasible if and only if there exists a corresponding region
(�x, �y, c) ∈ �(L) such that M(p) = c, and �x(t) = 1 if and only if t ∈ •p, and
�y(t) = 1 if and only if t ∈ p•.

In [16,43] it was shown that any solution of the inequation system of Definition 11
can be added to a Petri net without influencing the ability of that Petri net
to replay the log. However, since there are infinitely many solutions of that
inequation system (assuming arc weights), there are infinite many feasible places
and the authors of [16,43] present two ways of finitely representing these places,
namely a basis representation [43] and a separating representation [16, 43].

6.3 Process Discovery vs. Region Theory

When comparing region theory—state-based or language based—with process
discovery, some important differences should be noted. First of all, in region
theory, the starting point is a full behavioral specification, either in the form of a
(possibly infinite) transition system, or a (possibly infinite) language. Hence, the
underlying assumption is that the input is complete and noise free and therefore
maximal fitness is assured.

Second, the aim of region theory is to provide a compact, exact representation
of that behavior in the form of a Petri net. If the net allows for more behavior
than specified, then this additional behavior can be proven to be minimal, hence
region theory provides precise results.

Finally, when region theory is directly applied in the context of process dis-
covery [16,21,53], the resulting Petri nets typically perform poorly with respect
to two of the four dimensions shown in Figure 15. The resulting models are
typically overfitting (lack of generalization) and are too difficult to comprehend

400 W.M.P. van der Aalst and B.F. van Dongen

(simplicity criterion). Therefore, in sections 7 and 8, we show how region the-
ory can be modified for process discovery. The key idea is to allow the algo-
rithms to generalize and relax on preciseness, with the aim of obtaining simpler
models.

7 Process Discovery Using State-Based Region Theory

In Section 2 we introduced the concept of control-flow discovery and discussed
the problems of existing approaches. In Section 6, we introduced region theory
and showed the main differences with control flow discovery. In this section, we
introduce a two-step approach to combine process discovery with state-based
region theory [8]. In the remainder, we elaborate on these two steps and discuss
challenges.

7.1 From Event Logs to Transition Systems

In the first step, we construct a transition system from the log, where we gener-
alize from the observed behavior. Furthermore, we “massage” the output, such
that the region theory used in the second step is more likely to produce a simple
model. In the second step, we use classical state-based region theory to obtain a
Petri net. This section describes the first and most important step. Depending
on the desired properties of the model and the characteristics of the log, the
algorithm can be tuned to provide a more simple and/or generic model.

The most important aspect of process discovery is deducing the states of the
operational process in the log. Most mining algorithms have an implicit notion of
state, i.e., activities are glued together in some process modeling language based
on an analysis of the log and the resulting model has a behavior that can be
represented as a transition system. In this section, we propose to define states
explicitly and start with the definition of a transition system.

In some cases, the state can be derived directly, e.g., each event encodes the
complete state by providing values for all relevant data attributes. However, in

trace: a b c d c d c d e f a g h h h i

past future

current state

past and future

Fig. 21. Three basic “ingredients” can be considered as a basis for calculating the
“process state”: (1) past, (2) future, and (3) past and future

Discovering Petri Nets from Event Logs 401

the event log we typically only see activities and not states. Hence, we need
to deduce the state information from the activities executed before and after a
given state. Based on this, there are basically three approaches to defining the
state of a partially executed case in a log:

– past, i.e., the state is constructed based on the history of a case,

– future, i.e., the state of a case is based on its future, or

– past and future, i.e., a combination of the previous two.

Figure 21 shows an example of a trace and the three different “ingredients”
that can be used to calculate state information. Given a concrete trace, i.e.,
the execution of a case from beginning to end, we can look at the state after

abcd
acbd
aed
abcd
abcd
aed
acbd
...

(b) transition system based on postfix

<>
a

<a> <a,e>
e

<a,e,d>
d

<a,b>

b

<a,b,c>
c

<a,b,c,d>
d

<a,c> <a,c,b>
b

<a,c,b,d>
d

c

<a,b,c,d>
a

<b,c,d>

<a,e,d> <e,d>

<a,c,b,d>

a

a
<c,b,d>

<d>
e

<c,d>

<b,d>

b

c

c

b

<>
d

<>
<a,b,c,d>

a <a>
<b,c,d>

<>
<a,e,d>

<a>
<e,d>

<>
<a,c,b,d>

a

a <a>
<c,b,d>

<a,e>
<d>

e

<a,b>
<c,d>

<a,c>
<b,d>

b

c

<a,e,d>
<>

d

<a,c,b>
<d>

b

<a,b,c>
<d>

c <a,b,c,d>
<>

d

<a,c,b,d>
<>

d

(c) transition system based on prefix and postfix

(a) transition system based on prefix

Fig. 22. Three transition systems derived from the log L1 = [〈a, b, c, d〉5, 〈a, c, b, d〉8,
〈a, e, d〉9]

402 W.M.P. van der Aalst and B.F. van Dongen

executing the first nine activities. This state can be represented by the prefix,
the postfix, or both.

To explain the basic idea of constructing a transition system from an event
log, consider Figure 22. If we just consider the prefix (i.e., the past), we get the
transition system shown in Figure 22(a). Note that the initial state is denoted
〈〉, i.e., the empty sequence. Starting from this initial state the first activity is
always a in each of the traces. Hence, there is one outgoing arc labeled a, and
the subsequent state is labeled 〈a〉. From this state, three transitions are possible
all resulting in different states, e.g., executing activity b results in state 〈a, b〉,
etc. Note that in Figure 22(a) there is one initial state and three final states.
Figure 22(b) shows the transition system based on postfixes. Here the state of
a case is determined by its future. This future is known because process mining
looks at the event log containing completed cases. Now there are three initial
states and one final state. Initial state 〈a, e, d〉 indicates that the next activity
will be a, followed by e and d. Note that the final state has label 〈〉 indicating
that no activities need to be executed. Figure 22(c) shows a transition system
based on both past and future. The node with label “〈a, b〉,〈c, d〉” denotes the
state where a and b have happened and c and d still need to occur. Note that
now there are three initial states and three final states.

The past of a case is a prefix of the complete trace. Similarly, the future of a
case is a postfix of the complete trace. This may be taken into account completely,
which leads to many different states and process models that may be too specific
(i.e., “overfitting” models). It is also possible to take less information into account
(e.g., just the last step in the process). This may result in “underfitting” models.
The challenge is to select an abstraction that balances between “overfitting” and
“underfitting”. Many abstractions are possible; see for example the systematic
treatment of abstractions in [8]. Here, we only highlight some of them.

Maximal horizon (h). The basis of the state calculation can be the complete
prefix (postfix) or a partial prefix (postfix).

Filter (F). The second abstraction is to filter the (partial) prefix and/or
postfix, i.e., activities in F ⊆ A are kept while activities A \ F are removed.

Maximum number of filtered events (m). The sequence resulting after fil-
tering may contain a variable number of elements. Again one can determine
a kind of horizon for this filtered sequence.

Sequence, bag, or set (q). The first three abstractions yield a sequence. The
fourth abstraction mechanism optionally removes the order or frequency
from the resulting trace.

Visible activities (V). The fifth abstraction is concerned with the transition
labels. Activities in V ⊆ A are shown explicitly on the arcs while the activ-
ities in A \ V are not shown.

Discovering Petri Nets from Event Logs 403

abcd
acbd
aed
abcd
abcd
aed
acbd
...

{} a {a} {a,c}c

{a,b}

b

{a,b,c}c {a,b,c,d}d

{a,e} {a,d,e}d

e

(a) transition system based on sets

b

<> a <a> <d>d

<e>
e

(b) transition system abstracting from b and c

d

Fig. 23. Two transition systems built on L1 using the following prefix abstractions:
(a) h = ∞, F = A (i.e., all activities), m = ∞, q = set , and V = A, and (b) h = ∞,
F = {a, d, e}, m = 1, q = seq , and V = {a, d, e}

Figure 23 illustrates the abstractions. In Figure 23(a) only the set abstraction
is used q = set . The result is that several states are merged (compare with
Figure 22(a)). In Figure 23(b) activities b and c are filtered out (i.e., F = {a, d, e}
and V = {a, d, e}). Moreover, only the last non-filtered event is considered for
constructing the state (i.e., m = 1). Note that the states in Figure 23(b) refer to
the last event in {a, d, e}. Therefore, there are four states: 〈a〉, 〈d〉, 〈e〉, and 〈〉.
It is interesting to consider the role of b and c. First of all, they are not consid-
ered for building the state (F = {a, d, e}). Second, they are also not visualized
(V = {a, d, e}), i.e., the labels are suppressed. The corresponding transitions are
collapsed into the unlabeled arc from 〈a〉 to 〈a〉. If V would have included b and
c, there would have been two such arcs labeled b respectively c.

The first four abstractions can be applied to the prefix, the postfix, or both.
In fact, different abstractions can be applied to the prefix and postfix. As a
result of these choices many different transitions systems can be generated. If
more rigorous abstractions are used, the number of states will be smaller and
the danger of “underfitting” is present. If, on the other hand, fewer abstractions
are used, the number of states may be larger resulting in an “overfitting” model.
An extreme case of overfitting was shown in Figure 22(c). At first this may seem
confusing; however, as indicated in the introduction it is important to provide a
repertoire of process discovery approaches. Depending on the desired degree of
generalization, suitable abstractions are selected and in this way the analyst can

404 W.M.P. van der Aalst and B.F. van Dongen

s1

s2 s3

s4

s1

s2 s3

s4

a1 a2

a2

a1 a2

a2 a1

(a) closing the “diamond”

s

(a) removing self-loops

a
s

Fig. 24. Two examples of modifications of the transition system to aid the construction
of the process model

balance between overfitting and underfitting, i.e., between generalization and
precision in a controlled way.

Using classical region theory, we can transform the transition system into a
process model. However, while we can now balance precision and generalization,
we did not focus on simplicity yet. Therefore, we make use of the inner workings
of state-based region theory to “massage” the transition system. This is intended
to “pave the path” for region theory. For example, one may remove all “self-
loops”, i.e., transitions of the form s

a→ s (cf. Figure 24(a)). The reason may
be that one is not interested in events that do not change the state or that
the synthesis algorithm in the second step cannot handle this. Another example
would be to close all “diamonds” as shown in Figure 24(b). If s1

a1→ s2, s1
a2→ s3,

and s2
a2→ s4, then s3

a1→ s4 is added. The reason for doing so may be that because
(1) both a1 and a2 are enabled in s1 and (2) after doing a1, activity a2 is still
enabled, it is assumed that a1 and a2 can be executed in parallel. Although the
sequence 〈a2, a1〉 was not observed, it is assumed that this is possible and hence

the transition system is extended by adding s3
a1→ s4.

7.2 From Transition Systems to Petri Nets

In the second step, the transition system is transformed into a Petri net using
the techniques described in [13,15,23,24,26,27,35]. In Section 6.1, we introduced
the basic idea of state-based regions. Therefore, we do not elaborate on this here.
The important thing to note is that there is range of techniques to convert a
transition system into a Petri net. These techniques typically only address two
of the four quality dimensions mentioned in Figure 15: fitness and precision.
The other two dimensions—simplicity and generalization—need to be addressed
when constructing the transition system or by imposing additional constraints
on the Petri net.

The goal of process mining is to present a model that can be interpreted eas-
ily by process analysts and end-users. Therefore, complex patterns should be
avoided. Region-based approaches have a tendency to introduce “smart places”,

Discovering Petri Nets from Event Logs 405

i.e., places that compactly serve multiple purposes. Such places have many con-
nections and may have non-local effects (i.e., the same place is used for different
purposes in different phases of the process). Therefore, it may be useful to guide
the generation of places such that they are easier to understand. This is fairly
straightforward in both state-based region theory and language-based region
theory. In [26, 27] it is shown that additional requirements can be added with
respect to the properties of the resulting net. For example, the net can be forced
to be free-choice, pure, etc. See [8] for examples.

The approach was already illustrated using Figure 18. Figure 25 shows some
more examples based on the transition systems in figures 22 and 23. These mod-
els where computed using the classical synthesis approach presented in [26, 27].
This approach applies label-splitting if needed. Note that all transition systems
were derived from event log L1 = [〈a, b, c, d〉5, 〈a, c, b, d〉8, 〈a, e, d〉9]. The Petri net
in Figure 25(a) is obtained by applying state-based region theory to the transi-
tion system in Figure 22(a). The same model is obtained when computing the
regions for the transition system in Figure 23(a). The Petri net in Figure 25(b)
is obtained when applying state-based region theory to the transition system in
Figure 22(b). Two things can be noted: (1) the multiple initial states in Fig-
ure 22(b) result in many initial tokens and source places, and (2) label splitting

a

b

c

de

a

b c

d

e

a

c b

a

b

c

d

e

a de

d

(a)

(b)

(c) (d)

a

b

c

d

e

Fig. 25. Various Petri nets derived for the transitions systems in figures 22 and 23 using
state-based regions. All models are based on event log L1 = [〈a, b, c, d〉5, 〈a, c, b, d〉8,
〈a, e, d〉9].

406 W.M.P. van der Aalst and B.F. van Dongen

is used (e.g., there are two a transitions) to allow for the multiple starting points.
The region-based approach synthesizes the model in Figure 25(c) for the tran-
sition system in Figure 22(c). Also this model suffers from the problem that
there are multiple initial states. In general, we suggest to avoid having multiple
initial states in the transition system to be synthesized. It is trivial to merge
the initial states or add a new artificial initial state before applying region-based
synthesis. Figure 25(d) was obtained from the transition system in Figure 23(b).
The Petri net shows that if we abstract from b and c, we obtain an unlabeled
transition indicating the state in which b and c would have occurred. This silent
transition is due to the self-loop in the transition system of Figure 23(b). Elim-
inating the self-loop using the strategy presented in Figure 24(a) would remove
the unlabeled transition in Figure 25(d).

7.3 Challenges

In this section, we have shown that by combining abstraction techniques and
region theory, a powerful process mining algorithm can be obtained. Through
several abstractions, we can obtain the desired level of precision and general-
ization, while by massaging the transition system, we can try to obtain simple
models. However, there are also some drawbacks of this approach.

It is far from trivial to select the “right” parameters for the abstractions.
Existing techniques and tools are sensitive to changes of parameter values, and
the result is often unpredictable. Hence, obtaining a suitable process model is a
matter of trial-and-error. Figure 26 shows, for example, the settings with which
we can obtain the desired model for log L6, i.e., the Petri net with a self-loop on
transition b. However, the model shown in Figure 27 illustrates that the wrong
settings may lead to an overfitting model.

Nonetheless, the state-based region approach is one of the few that can detect
long-term dependencies, as shown by Figure 28, which resulted from applying
the technique to log L8.

Furthermore, the major drawback of the approach outlined here is the com-
putational complexity. For larger logs, the resulting transition system may not
fit in main memory and second, the region theory used to obtain a Petri net has
a time complexity which is exponential in the size of the transition system.

a c

b

Fig. 26. Petri net obtained using region theory applied to log L6 = [〈a, c〉2, 〈a, b, c〉3,
〈a, b, b, c〉2] using the following settings: h = ∞, F = A (i.e., all activities), m = ∞,
q = set , and V = A and a post-processing step in which states with identical inflow or
outflow are merged

Discovering Petri Nets from Event Logs 407

8 Process Discovery Using Integer Linear Programming

In Section 7, we have presented a two-step approach to apply region theory in
the context of process mining. We focussed on obtaining a transition system
from an event log and used classical region theory to obtain a Petri net. In
this section, we do not consider the region theory as a black box, but instead,
we extend existing approaches to make them more applicable in the context of
process discovery, mainly by allowing the techniques to generalize from the log
and to produce simpler models.

Both a basis and the separating representations of regions presented in [16,43]
are based on the same principle, namely that a finite representation is provided
of the infinite set of places satisfying Definition 11. By doing so, the language-
based region theory ensures maximal preciseness and fitness, with little to no
generalization and no aim for simple models. Hence, only two of the four quality
dimensions of Figure 15 are considered.

For process discovery, we are aiming at simple, generalizing models. Hence,
we present an approach [60], where we only represent those places satisfying
Definition 11 that:

– each place expresses a causal dependency clearly visible in the log,

– no implicit places are included in the net, and

– places which are more expressive than others are favored, i.e., places with
minimal input transitions and maximal output transitions are favored.

In contrast to the state-based region approach, we do not try to influence gener-
alization and precision directly. Instead, we focus on model simplicity, by limiting
the number of places in the model (and allowing for varying this number). As
with the state-based approach, maximal fitness is guaranteed. In order to select
places satisfying Definition 11, we convert this equation into a Integer Linear
Programming (ILP) problem.

a

b

b

c

c

c

Fig. 27. Petri net obtained using region theory applied to log L6 using the following
parameters: h = ∞, F = A (i.e., all activities), m = ∞, q = multiset , and V = A

408 W.M.P. van der Aalst and B.F. van Dongen

b

c

a

e

d

Fig. 28. Petri net obtained using region theory applied to log L8 = [〈a, c, d〉45,
〈b, c, e〉42] using the following settings: h = ∞, F = A (i.e., all activities), m = ∞,
q = set , and V = A

8.1 Integer Linear Programming Representation

We quantify the expressiveness of places, in order to provide a target function,
necessary to translate the inequation system of Definition 11 into an Integer
Linear Programming (ILP) problem. In Section 8.2, we then use the result to
generate a Petri net in a step-by-step fashion. In Section 8.3, we provide insights
into the causal dependencies found in a log and how these can be used for finding
places.

To apply the language-based theory of regions in the field of process discovery,
we need to represent the event log as a prefix-closed language, i.e., by all the
traces present in the event log, and their prefixes. Recall from Definition 1 that
an event log is a finite bag of traces.

Definition 13 (Language of an event log). Let A be a set of activities.
Let L ∈ IB(A∗) be an event log over this set of activities. The language L that
represents this event log, uses alphabet A, and is defined by:

L = {σ ∈ A∗ | ∃σ′ ∈ L : σ ≤ σ′}
A trivial Petri net capable of reproducing a language is a net with only transi-
tions. This net is simple, can represent all traces, and hence has maximal fitness.
It also generalizes well, but the Petri net with only transitions is very imprecise
because anything is possible according to the model. To restrict the behavior
allowed by the Petri net, but not observed in the log, we start adding places
to that Petri net. As stated before, the places we add to the Petri net should
be as expressive as possible, which is the same as saying that such places have
a maximal postset and a minimal preset, i.e., it should not be possible to add
an output transition to or to remove an input transition from a place without
reducing the fitness of the resulting net.

Besides searching for regions that lead to places with maximum expressive-
ness, we also want to avoid adding implicit places to a model. Therefore, we will
search for “minimal regions” as introduced in [30]. Using the inequation system
of Definition 11 and the expressiveness of a place, we can define a target function
for our ILP problem to construct the places of a Petri net in a logical order [52].

The following target function is shown to be such that it favors minimal
regions which are maximally expressive [60]:

Discovering Petri Nets from Event Logs 409

Definition 14 (Target function). Let A be a set of activities. Let L ∈ IB(A∗)
be an event log and L the corresponding language. Furthermore, let M be the
matrix defined in Definition 11. We define the function τ : �(L) → IN by

τ((�x, �y, c)) = c+ �1 T (�1 · c+M · (�x− �y))

Combining this target function with the inequation system of Definition 11 yields
the following ILP problem:

Definition 15 (ILP formulation). Let A be a set of activities, let L ∈ IB(A∗)
be an event log, and let M and M ′ be the matrices as defined in Definition 11.
We define the ILP ILPL for event log L as:

Min c+ �1 T (�1 · c+M · (�x − �y)) Definition 14

s.t. c ·�1 +M ′ · �x−M · �y ≥ �0 Definition 11
�1 T · �x+ �1 T · �y ≥ 1 There should be at least one edge

�0 ≤ �x ≤ �1 x ∈ {0, 1}|T |
�0 ≤ �y ≤ �1 y ∈ {0, 1}|T |

0 ≤ c ≤ 1 c ∈ {0, 1}
This ILP problem provides the basis for our process discovery problem. How-
ever, an optimal solution to this ILP only provides a single feasible place with
a minimal value for the target function. Therefore, in the next section, we
show how this ILP problem can be used as a basis for constructing a Petri net
from a log.

8.2 Constructing Petri Nets Using ILP

In the previous subsection, we provided the basis for adding places to a Petri
net based on knowledge extracted from a log. In fact, the target function of
Definition 14 provides a partial order on all elements of the set �(L), i.e., the set
of all regions of a language. In this subsection, we show how to generate the first
n places of a Petri net, that is (1) able to reproduce a log under consideration
and (2) of which the places are as expressive as possible.

A trivial approach would be to add each found solution as a negative example
to the ILP problem, i.e., explicitly forbidding this solution. However, it is clear
that once a region r has been found and the corresponding feasible place is
added to the Petri net, we are no longer interested in regions r′ for which the
corresponding feasible place has more tokens, less outgoing arcs or more incoming
arcs, i.e., we are only interested in independent regions.

Definition 16 (Refining the ILP after each solution). Let A be a set of
activities, let L ∈ IB(A∗) be an event log, let M and M ′ be the matrices as defined
in Definition 11 and let ILP0

L be the corresponding ILP. Furthermore, for i ≥ 0
let region ri = (�xi, �yi, ci) be a minimal solution of ILP i

L. We define the refined
ILP as ILP i

L, with the extra constraint specifying that:

−ci · c+ �y T · (�1− �yi)− �x T · �xi ≥ −ci + 1− �1 T · �xi

410 W.M.P. van der Aalst and B.F. van Dongen

Note that for any solution r = (�x, �y, c) of ILP i
L: c < ci or there is a t ∈ A

such that �x(t) < �xi(t) or �y(t) > �yi(t). If this is not the case (i.e., c ≥ ci and
�x(t) ≥ �xi(t) and �y(t) ≤ �yi(t) for any t), then −ci ·c = −ci, −�x(t) · �xi(t) = −xi(t),
and �y(t) · �yi(t) = 0 �≥ 1. Hence, we find a contradiction with respect to the
extra constraint. As a result the new region r is forced to be sufficiently different
from ri.

The refinement operator presented above, basically defines an algorithm for
constructing the places of a Petri net that is capable of reproducing a given log.
The places are generated in an order which ensures that the most expressive
places are found first and that only places are added that have less tokens, less
outgoing arcs, or more incoming arcs. Furthermore, each solution of a refined
ILP is also a solution of the original ILP, since the new solution satisfies all
constraints of the initial ILP formulation, and some extra constraints. Hence, all
places constructed using this procedure are feasible places.

This procedure, can be used to continue adding places, thus making the model
more precise, while compromising on model complexity as shown by Figure 29.
The Petri net in Figure 29 allows for more behavior than the log L1 contains,
so in theory more places could still be added. Nonetheless, any new place would
be such that it has fewer output arcs, or more input arcs than the ones included
in this model. In the worst case, the total number of places introduced is expo-
nential in the number of transitions. Since there is no way to provide insights
into an upperbound for the number of places to generate, we propose a more
suitable approach, not using the refinement step of Definition 16. Instead, we
propose to guide the search for solutions (i.e. for places) using concepts from the
α-algorithm [9].

8.3 Using Log-Based Properties

Recall from the beginning of this section, that we are specifically interested
in places expressing explicit causal dependencies between transitions. In this

a

b

c d

e

Fig. 29. Petri net obtained using language-based region theory naively applied
to log L1

Discovering Petri Nets from Event Logs 411

subsection, we use the causal relations →L defined earlier in Definition 7 in
combination with the ILP of Definition 15 to construct a Petri net.

Causal dependencies between transitions are used by many process discovery
algorithms [6,9,31,58] and generally provide a good indication as to which tran-
sitions should be connected through places. Furthermore, extensive techniques
are available to derive causal dependencies between transitions using heuristic
approaches [9, 31]. However, it is not known whether the log is complete and
whether we covered all causal dependencies. Therefore, we restrict ourselves to
search for a Petri net such that if a causal dependency is not in the log, it is also
not in the net. In order to find a place expressing a specific causal dependency,
we extend the ILP presented in Definition 15.

Definition 17 (ILP for causal dependency). Let A be a set of activities,
let L ∈ IB(A∗) be an event log, let M and M ′ be the matrices as defined in
Definition 11 and let ILPL be the corresponding ILP. Furthermore, let t1, t2 ∈ A
and assume t1 →L t2. We define the refined ILP, ILP t1→t2

L as ILPL, with two
extra bounds specifying that:

�x(t1) = �y(t2) = 1

A solution of the optimization problem expresses the causal dependency t1 →L

t2, and restricts the behavior as much as possible. However, such a solution does
not have to exist, i.e., the ILP might be infeasible, in which case no place is added
to the Petri net being constructed. Nonetheless, by considering a separate ILP
for each causal dependency in the log, a Petri net can be constructed, in which
each place is as expressive as possible and expresses at least one dependency
derived from the log. With this approach, at most one place is generated for
each dependency and thus the upper bound of places in N(L) is the number of
causal dependencies, which is worst-case quadratic in the number of transitions.

The result of applying this log-based technique to our log L1 is shown in
Figure 30. This model is very close to the desired model, except that it does
not contain a final place. This is a general drawback of language-based region
theory: the focus is on the ability to reproduce prefixes of log traces rather than
termination in a well-defined final state.

a

b

c

de

Fig. 30. Petri net obtained using language-based region theory using log-based proper-
ties applied to log L1. Note that compared to earlier solutions the sink place denoting
termination is missing.

412 W.M.P. van der Aalst and B.F. van Dongen

Up to now, we did not impose any restriction on the structure of the resulting
Petri net. By adding constraints, several Petri net properties can be expressed,
thus resulting in elementary nets, pure nets, (extended) free-choice nets, state
machines and marked graphs [60]. This allows us to further simplify the resulting
Petri net. Note that this is similar to the refinement described in Section 7.2 for
state-based regions.

8.4 Challenges

In sections 7 and 8 we presented several ways to use region theory in the context
of process discovery in order to alleviate some of the problems of the α-algorithm.
First, we have shown how to we can balance precision and generalization while
constructing a transition system from a log. Then, by massaging the transition
system, we can somewhat improve the simplicity of the resulting models. When
using language-based region theory, we have shown that we can focus on the sim-
plicity of the resulting model. By incrementally introducing places, we can make
the resulting model more precise in a step-by-step fashion. Figures 31 and 32
show that we can discover models for the logs L6 and L8, but the long-term de-
pendency in L8 is not identified, due to the reliance on the causal dependencies
used in the α-algorithm. Furthermore, as discussed before, language-based re-
gions have problems making the final state explicit (i.e., sink places are missing
in figures 31 and 32).

Unfortunately, all region-based approaches are computationally challenging.
In the case of the language-based regions, finding a solution for each incremen-
tal ILP problem is of worst-case exponential time complexity. Furthermore, the

a c

b

Fig. 31. Petri net discovered for event log L6. The model was obtained using language-
based region theory guided by log-based properties.

b

c

a

e

d

Fig. 32. Petri net obtained using language-based region theory guided by log-based
properties applied to log L8 = [〈a, c, d〉45, 〈b, c, e〉42]. No sink place is created and the
long-term dependencies are not discovered because only short-term dependencies are
used to guide the discovery of places.

Discovering Petri Nets from Event Logs 413

common property of all region-based techniques is that the fitness of the dis-
covered net is guaranteed to be 100%, regardless of the log. This makes these
approaches very robust, but also sensitive to noise.

Thus far we only used toy examples to illustrate the different concepts. All
functionality has been embedded in the process discovery framework ProM,
which is capable of constructing nets for logs with thousands of cases refer-
ring to dozens of transitions. The techniques have been tested on many real-life
and synthetic event logs. However, a discussion of these experimental results is
outside the scope of this article. For this we refer to [2, 7, 39, 47, 53].

9 Tool Support

Both for process mining and region theory, it is essential that algorithms can be
put to the test in real life environments. Therefore, almost all work presented in
this article is implemented in freely available tools. For example, classical state-
based region theory is implemented in Petrify and Genet [22], while Rbminer [54]
applies this in a process discovery context. Some of the language-based region
theory is implemented in VIPTool [18].

The process mining algorithms presented in sections 4, 7 and 8 have all been
implemented in the ProM framework [11,56,57]. All algorithms discussed in this
article can be found the most recent version of ProM (version 6.0 and later).
ProM is a generic open-source framework for implementing process mining al-
gorithms in a standard environment.

Figure 33 shows the startup screen of ProM. Here, a log was opened for
analysis which is shown in the workspace. When selecting the log and clicking on
the action button, the user is taken to the action browser, where in Figure 34, the
α-miner is selected. The α-miner is an implementation of the work in Section 4.

In earlier versions of ProM, the actual process mining algorithms implemented
by plug-ins assumed the presence of a GUI. Most algorithms require parameters,

Fig. 33. ProM 6 Workspace; opening screen after loading a file

414 W.M.P. van der Aalst and B.F. van Dongen

Fig. 34. ProM 6 Action Browser; selecting the alpha-miner to discover a process model
from the loaded event log

and the plug-in would ask the user for these parameters using some GUI-based
dialog. Furthermore, some plug-ins displayed status information using progress
bars and such. Thus, the actual process mining algorithm and the use of the GUI
were intertwined. As a result, the algorithm could only be run in a GUI-aware
context, say on a local workstation. This way, it was impossible to effectively run
process mining experiments using a distributed infrastructure and/or in batch.

In ProM 6, the process mining algorithm and the GUI have been carefully
separated, and the concepts of contexts has been introduced. For a plug-in, the
context is the proxy for its environment, and the context determines what the
plug-in can do in its environment. A plug-in can only display a dialog or a
progress bar on the display if the context is GUI-aware. Typically, in ProM 6,
the implementation of an algorithm is split into a number of plug-ins: A plug-in
for every context. The actual process mining algorithm will be implemented in a
generic way, such that it can run in a general (GUI-unaware) context. This allows
the algorithm to be run in any context, even in a distributed context [20]. The
dialog for setting the required parameters is typically implemented in a GUI-
aware variant of the plug-in. Typically, this GUI-aware plug-in first displays the
parameter dialog, and when the user has provided the parameters and has closed
the dialog, it will simply run the generic plug-in using the provided parameters.

The major advantage of this is that the ProM framework may decide to have
the generic plug-in run on a different computer than the local workstation. Some
plug-ins may require lots of system resources (e.g., computing power, memory,
and disk space), like for example the genetic miner. Basically, the genetic miner
takes a model and a log, and then generates a number of alternative models
for the given log. The best of these alternative models are then taken as new
starting points for the genetic miner. The genetic miner repeats this until some
stop criterion has been reached, after which it returns the best model found so
far. Clearly, this miner might take considerable time (it may take hundreds of
iterations before it stops and the fitness calculation is very time-consuming for
large logs), and it may take considerable memory (the number of alternative

Discovering Petri Nets from Event Logs 415

Fig. 35. ProM 6 Package manager showing the packages relevant for the techniques
presented in this article

models may grow rapidly). For such an algorithm, it might be preferable to have
it run on a server which is more powerful than the local workstation. More-
over, genetic mining can be distributed in several ways [20]. For example, the
population can be partitioned over various nodes. Each subpopulation on a node
evolves independently for some time after which the nodes exchange individu-
als. Similarly, the event logs may be portioned over nodes thus speeding up the
fitness calculations.

Besides separating the functionality from the user interface, ProM 6 requires
functionality to be provided in packages. These packages each contain a collec-
tion of related algorithms, typically implemented by one research group. When
ProM is started for the first time, the package manager is opened as shown
in Figure 35. Here, for each known package, ProM shows who the author is,
what the current version is and whether or not this version is installed. The
work presented in this article, requires the following packages to be installed:
AlphaMiner, TransitionSystems and ILPMiner. The other packages shown are
automatically installed due to dependencies. Furthermore, the package Petrify
provides import and export functionality to and from the state-based region tool
Petrify.

The event log opened in Figure 33 is a log consisting of 1000 cases of a travel
agency. A customer registers, then purchases a bus ticket or a plane ticket while
at the same time he books one or more hotels. After the booking phase, the
trip costs are computed and the customer has to choose between two types of

416 W.M.P. van der Aalst and B.F. van Dongen

Fig. 36. Result of α-miner: the α-algorithm has problems dealing with the multiple
hotel bookings interleaved with other booking activities

insurance. After that, the total costs are calculated and the payment is com-
pleted. This is a rather simple example used to show the results of the three
algorithms.

The resulting Petri net after applying the α-algorithm to this log is shown in
Figure 36. The result after executing the transition system miner is shown in
Figure 37 and the result of the ILP miner is shown in 38. All three algorithms
provide a model that indeed models the given situation. The difficulty here is the
fact that the hotel booking is executed one or more times. The α-algorithm does
not connect this transition (thus enabling it continuously and destroying the
WF-net structure), while the transition system miner introduces two transitions
for this step, but it enforces that the second hotel can only be booked after the

Fig. 37. Result of TS Miner. Note that there are now two transitions referring to hotel
bookings (label splitting).

Discovering Petri Nets from Event Logs 417

Fig. 38. Result of ILP Miner. The model is able to replay the event log. However,
tokens may remain in the place following the hotel booking and bookings can take
place before the registration step.

bus or plane ticket is booked. The ILP miner allows for the hotel booking to
occur arbitrarily often, but at least once before the trip costs are calculated.

10 Conclusion

Process mining can be seen as the “missing link” between data mining and tradi-
tional model-driven BPM. The spectacular growth of event data is an important
enabler for process analysis based on real observations rather than hand-made
models only. We have applied ProM in over 100 organizations ranging from
municipalities and hospitals to financial institutions and manufacturers of high-
tech systems. This illustrates the applicability of the techniques described in this
article.

Process mining can be used to diagnose the actual processes. This is valuable
because in many organizationsmost stakeholders lack a correct, objective, and ac-
curate view on important operational processes. However, process mining is not
limited to the process discovery techniques mentioned in this article (see for ex-
ample [2]). Process mining can also be used to improve the discovered processes.
Conformance checking can be used for auditing and compliance. By replaying the
event log on a process model it is possible to quantify and visualize deviations.
Similar techniques can be used to detect bottlenecks and build predictive models.
Given the applicability of process mining, we encourage the reader to simply ap-
ply the techniques discussed. The event data needed to conduct such experiments
can be found in any non-trivial organization. The freely available open-source
process mining tool ProM can be downloaded from www.processmining.org and
supports all of the process mining techniques mentioned.

In this article we emphasized that four quality dimensions—fitness, simplicity,
precision, and generalization—need to be balanced [2]. Moreover, we zoomed

file:www.processmining.org

418 W.M.P. van der Aalst and B.F. van Dongen

in on region-based approaches. As shown, conventional state-based regions and
language-based regions focus on fitness and precision, while neglecting simplicity
and generalization. Fortunately, it is possible to modify these techniques to also
deal with the other two quality dimensions. State-based regions can be used
for process discovery tasks provided that the right abstraction is used when
constructing the transition system. Language-based regions can be mapped onto
an ILP problem where the target function and additional constraints are used
to obtain a simple and more general model.

Despite the applicability of process mining there are many interesting chal-
lenges; these illustrate that process mining is a young discipline. As discussed,
it is far from trivial to construct a process model based on event logs that are
incomplete and noisy. Unfortunately, there are still researchers and tool vendors
that assume logs to be complete and free of noise. Although heuristic mining,
genetic mining, and fuzzy mining provide case-hardened process discovery tech-
niques, many improvements are needed to construct truly intuitive models that
are able to explain the most likely/common behavior. Another challenge is to
deal with ever-growing datasets, i.e., it is not uncommon to have event logs with
millions of cases, billions of events, and thousands of activities [44]. In some cases
it is impossible to store all events and process models need to be discovered on-
the-fly. In other cases, there is a need to distribute process mining problems over
multiple computers. As discussed in [3] this can be done in various ways. There-
fore, there are many interesting problems for researchers with a background in
Petri nets and eager to analyze processes based on real event data rather than
unrealistic toy models.

Acknowledgments. The authors would like to thank all the people that
contributed to the development of ProM (www.processmining.org).

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Berlin (2011)

3. van der Aalst, W.M.P.: Distributed Process Discovery and Conformance Checking.
In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineer-
ing. LNCS, vol. 7212, pp. 1–25. Springer, Heidelberg (2012)

4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on
Process Models for Conformance Checking and Performance Analysis. WIREs Data
Mining and Knowledge Discovery 2(2), 182–192 (2012)

5. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de
Medeiros, A.K.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters,
A.J.M.M.: ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn,
J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer,
Heidelberg (2007)

Discovering Petri Nets from Event Logs 419

6. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering 47(2), 237–267 (2003)

7. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves
de Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business Process Mining: An
Industrial Application. Information Systems 32(5), 713–732 (2007)

8. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process Mining: A Two-Step Approach to Balance Between
Underfitting and Overfitting. Software and Systems Modeling 9(1), 87–111 (2010)

9. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering 16(9), 1128–1142 (2004)

10. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow
Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

11. van der Aalst, W.M.P., van Dongen, B., Günther, C.W., Rozinat, A., Verbeek, E.,
Weijters, T.: ProM: The Process Mining Toolkit. In: de Medeiros, A.K.A., Weber,
B. (eds.) Business Process Management Demonstration Track (BPMDemos 2009).
CEUR Workshop Proceedings, vol. 489, pp. 1–4. CEUR-WS.org (2009)

12. Angluin, D., Smith, C.H.: Inductive Inference: Theory and Methods. Computing
Surveys 15(3), 237–269 (1983)

13. Badouel, E., Bernardinello, L., Darondeau, P.: The Synthesis Problem for
Elementary Net Systems is NP-complete. Theoretical Computer Science 186(1-2),
107–134 (1997)

14. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial Algorithms for the
Synthesis of Bounded Nets. In: Mosses, P.D., Nielsen, M. (eds.) CAAP 1995, FASE
1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg
(1995)

15. Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G.
(eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

16. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on
Regions of Languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007)

17. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of Petri Nets from
Infinite Partial Languages. In: International Conference on Application of Con-
currency to System Design (ACSD 2008), pp. 170–179. IEEE Computer Society
(2008)

18. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of Petri Nets from
Scenarios with VipTool. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008.
LNCS, vol. 5062, pp. 388–398. Springer, Heidelberg (2008)

19. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of Petri Nets
from Term Based Representations of Infinite Partial Languages. Fundamenta
Informaticae 95(1), 187–217 (2009)

20. Bratosin, C., Sidorova, N., van der Aalst, W.M.P.: Distributed Genetic Process
Mining. In: Ishibuchi, H. (ed.) IEEE World Congress on Computational Intelligence
(WCCI 2010), Barcelona, Spain, pp. 1951–1958. IEEE (July 2010)

21. Carmona, J., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for
Discovering Petri Nets from Event Logs. In: Dumas, M., Reichert, M., Shan, M.-C.
(eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)

420 W.M.P. van der Aalst and B.F. van Dongen

22. Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: A Tool for the Synthesis and
Mining of Petri Nets. In: Application of Concurrency to System Design (ACSD
2009), pp. 181–185. IEEE Computer Society (2009)

23. Carmona, J., Cortadella, J., Kishinevsky, M.: New Region-Based Algorithms for
Deriving Bounded Petri Nets. IEEE Transactions on Computers 59(3), 371–384
(2010)

24. Carmona, J., Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L.,
Yakovlev, A.: A symbolic algorithm for the synthesis of bounded petri nets. In:
van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 92–111.
Springer, Heidelberg (2008)

25. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based
Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249
(1998)

26. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Synthesizing Petri
Nets from State-Based Models. In: Proceedings of the 1995 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD 1995), pp. 164–171. IEEE
Computer Society (1995)

27. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri Nets
from Finite Transition Systems. IEEE Transactions on Computers 47(8), 859–882
(1998)

28. Darondeau, P.: Deriving Unbounded Petri Nets from Formal Languages. In:
Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 533–548. Springer, Heidelberg (1998)

29. Datta, A.: Automating the Discovery of As-Is Business Process Models: Proba-
bilistic and Algorithmic Approaches. Information Systems Research 9(3), 275–301
(1998)

30. Desel, J., Reisig, W.: The Synthesis Problem of Petri Nets. Acta Informatica 33(4),
297–315 (1996)

31. van Dongen, B.F.: Process Mining and Verification. Phd thesis, Eindhoven Univer-
sity of Technology (2007)

32. van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase Process Mining: Building
Instance Graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER
2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)

33. van Dongen, B.F., van der Aalst, W.M.P.: Multi-Phase Mining: Aggregating
Instances Graphs into EPCs and Petri Nets. In: Marinescu, D. (ed.) Proceedings
of the Second International Workshop on Applications of Petri Nets to Coordina-
tion, Workflow and Business Process Management, pp. 35–58. Florida International
University, Miami (2005)

34. van Dongen, B.F., Alves de Medeiros, A.K., Wen, L.: Process Mining: Overview
and Outlook of Petri Net Discovery Algorithms. In: Jensen, K., van der Aalst,
W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 225–242. Springer, Heidelberg
(2009)

35. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures - Part 1 and Part 2.
Acta Informatica 27(4), 315–368 (1989)

36. van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimu-
lation Semantics. Journal of the ACM 43(3), 555–600 (1996)

37. Gold, E.M.: Language Identification in the Limit. Information and Control 10(5),
447–474 (1967)

38. Gold, E.M.: Complexity of Automaton Identification from Given Data. Information
and Control 37(3), 302–320 (1978)

Discovering Petri Nets from Event Logs 421

39. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplifi-
cation Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

40. Herbst, J.: A Machine Learning Approach to Workflow Management. In: Lopez de
Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194.
Springer, Heidelberg (2000)

41. van der Aalst, W., Adriansyah, A., de Medeiros, A.K.A., Arcieri, F., Baier, T.,
Blickle, T., Bose, J.C., van den Brand, P., Brandtjen, R., Buijs, J., Burattin, A.,
Carmona, J., Castellanos, M., Claes, J., Cook, J., Costantini, N., Curbera, F.,
Damiani, E., de Leoni, M., Delias, P., van Dongen, B.F., Dumas, M., Dustdar, S.,
Fahland, D., Ferreira, D.R., Gaaloul, W., van Geffen, F., Goel, S., Günther, C.,
Guzzo, A., Harmon, P., ter Hofstede, A., Hoogland, J., Ingvaldsen, J.E., Kato, K.,
Kuhn, R., Kumar, A., La Rosa, M., Maggi, F., Malerba, D., Mans, R.S., Manuel, A.,
McCreesh, M., Mello, P., Mendling, J., Montali, M., Motahari-Nezhad, H.R., zur
Muehlen, M., Munoz-Gama, J., Pontieri, L., Ribeiro, J., Rozinat, A., Seguel Pérez,
H., Seguel Pérez, R., Sepúlveda, M., Sinur, J., Soffer, P., Song, M., Sperduti, A.,
Stilo, G., Stoel, C., Swenson, K., Talamo, M., Tan, W., Turner, C., Vanthienen,
J., Varvaressos, G., Verbeek, E., Verdonk, M., Vigo, R., Wang, J., Weber, B.,
Weidlich, M., Weijters, T., Wen, L., Westergaard, M., Wynn, M.: Process Mining
Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011,
Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)

42. Lorenz, R.: Towards Synthesis of Petri Nets from General Partial Languages. In:
German Workshop on Algorithms and Tools for Petri Nets (AWPN 2008). CEUR
Workshop Proceedings, vol. 380, pp. 55–62. CEUR-WS.org (2008)

43. Lorenz, R., Juhás, G.: How to Synthesize Nets from Languages: A Survey. In:
Henderson, S.G., Biller, B., Hsieh, M., Shortle, J., Tew, J.D., Barton, R.R. (eds.)
Proceedings of the Wintersimulation Conference (WSC 2007), pp. 637–647. IEEE
Computer Society (2007)

44. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers,
A.: Big Data: The Next Frontier for Innovation, Competition, and Productivity.
McKinsey Global Institute (2011)

45. Mauser, S., Lorenz, R.: Variants of the Language Based Synthesis Problem for
Petri Nets. In: International Conference on Application of Concurrency to System
Design (ACSD 2009), pp. 89–98. IEEE Computer Society (2009)

46. de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.T.: Workflow
Mining: Current Status and Future Directions. In: Meersman, R., Schmidt, D.C.
(eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 389–406.
Springer, Heidelberg (2003)

47. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic
Process Mining: An Experimental Evaluation. Data Mining and Knowledge
Discovery 14(2), 245–304 (2007)

48. Munoz-Gama, J., Carmona, J.: Enhancing Precision in Process Conformance: Sta-
bility, Confidence and Severity. In: Chawla, N., King, I., Sperduti, A. (eds.) IEEE
Symposium on Computational Intelligence and Data Mining (CIDM 2011), Paris,
France. IEEE (April 2011)

49. Pitt, L.: Inductive Inference, DFAs, and Computational Complexity. In: Jantke,
K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidelberg (1989)

50. Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg
(1998)

51. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on
Monitoring Real Behavior. Information Systems 33(1), 64–95 (2008)

422 W.M.P. van der Aalst and B.F. van Dongen

52. Schrijver, A.: Theory of Linear and Integer programming. Wiley-Interscience (1986)
53. Solé, M., Carmona, J.: Process Mining from a Basis of State Regions. In: Lilius, J.,

Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer,
Heidelberg (2010)

54. Solé, M., Carmona, J.: Rbminer: A tool for discovering petri nets from transi-
tion systems. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252,
pp. 396–402. Springer, Heidelberg (2010)

55. Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing Workflow
Processes using Woflan. The Computer Journal 44(4), 246–279 (2001)

56. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
ProM 6: The Process Mining Toolkit. In: La Rosa, M. (ed.) Proc. of BPM Demon-
stration Track 2010. CEUR Workshop Proceedings, vol. 615, pp. 34–39 (2010)

57. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES,
XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP,
vol. 72, pp. 60–75. Springer, Heidelberg (2011)

58. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from
Event-Based Data using Little Thumb. Integrated Computer-Aided Engineer-
ing 10(2), 151–162 (2003)

59. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining Process Models
with Non-Free-Choice Constructs. Data Mining and Knowledge Discovery 15(2),
145–180 (2007)

60. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.:
Process Discovery using Integer Linear Programming. Fundamenta Informaticae 94,
387–412 (2010)

	Discovering Petri Nets from Event Logs
	1 Introduction
	2 Process Mining
	3 Process Discovery: Preliminaries and Purpose
	3.1 Event Logs
	3.2 Petri Nets
	3.3 Workflow Nets
	3.4 Problem Definition and Approaches

	4 α-Algorithm
	4.1 Basic Idea
	4.2 Algorithm
	4.3 Limitations

	5 Challenges
	6 Process Discovery and the Theory of Regions
	6.1 State Based Region Theory
	6.2 Language Based Region Theory
	6.3 Process Discovery vs. Region Theory

	7 Process Discovery Using State-Based Region Theory
	7.1 From Event Logs to Transition Systems
	7.2 From Transition Systems to Petri Nets
	7.3 Challenges

	8 Process Discovery Using Integer Linear Programming
	8.1 Integer Linear Programming Representation
	8.2 Constructing Petri Nets Using ILP
	8.3 Using Log-Based Properties
	8.4 Challenges

	9 Tool Support
	10 Conclusion
	References

