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Preface by Editor-in-Chief

The seventh issue of LNCS Transactions on Petri Nets and Other Models of
Concurrency (ToPNoC) contains material from the 5th International Summer
School “Advanced Course on Petri Nets”, held in September 2010 in Rostock,
Germany. It was edited by Wil van der Aalst, Gianfranco Balbo, Maciej Koutny,
and Karsten Wolf.

I would like to thank the four guest editors of this special issue: Wil van der
Aalst, Gianfranco Balbo, Maciej Koutny, and Karsten Wolf. Moreover, I would
like to thank all lecturers, reviewers, and the organizers of the advanced course,
without whom this issue of ToPNoC would not have been possible.

February 2013 Kurt Jensen
Editor-in-Chief

LNCS Transactions on Petri Nets and Other Models of Concurrency (ToPNoC)



LNCS Transactions on Petri Nets and Other

Models of Concurrency: Aims and Scope

ToPNoC aims to publish papers from all areas of Petri nets and other models
of concurrency ranging from theoretical work to tool support and industrial
applications. The foundation of Petri nets was laid by the pioneering work of
Carl Adam Petri and his colleagues in the early 1960s. Since then, an enormous
amount of material has been developed and published in journals and books and
presented at workshops and conferences.

The annual International Conference on Application and Theory of Petri
Nets and Concurrency started in 1980. The International Petri Net Bibliography
maintained by the Petri Net Newsletter contains close to 10,000 different entries,
and the International Petri Net Mailing List has 1,500 subscribers.

For more information on the International Petri Net community, see:
http://www.informatik.uni-hamburg.de/TGI/PetriNets/

All issues of ToPNoC are LNCS volumes. Hence they appear in all large
libraries and are also accessible in LNCS Online (electronically). It is possible to
subscribe to ToPNoC without subscribing to the rest of LNCS.

ToPNoC contains:

– revised versions of a selection of the best papers from workshops and tutorials
concerned with Petri nets and concurrency;

– special issues related to particular subareas (similar to those published in
the Advances in Petri Nets series);

– other papers invited for publication in ToPNoC; and
– papers submitted directly to ToPNoC by their authors.

Like all other journals, ToPNoC has an Editorial Board, which is responsible
for the quality of the journal. The members of the board assist in the reviewing
of papers submitted or invited for publication in ToPNoC. Moreover, they may
make recommendations concerning collections of papers for special issues. The
Editorial Board consists of prominent researchers within the Petri net community
and in related fields.

Topics

System design and verification using nets; analysis and synthesis, structure and
behavior of nets; relationships between net theory and other approaches; causal-
ity/partial order theory of concurrency; net-based semantical, logical and alge-
braic calculi; symbolic net representation (graphical or textual); computer tools
for nets; experience with using nets, case studies; educational issues related to
nets; higher level net models; timed and stochastic nets; and standardization of
nets.



VIII ToPNoC: Aims and Scope

Applications of nets to: biological systems, defence systems, e-commerce and
trading, embedded systems, environmental systems, flexible manufacturing sys-
tems, hardware structures, health and medical systems, office automation, oper-
ations research, performance evaluation, programming languages, protocols and
networks, railway networks, real-time systems, supervisory control, telecommu-
nications, and workflow.

For more information about ToPNoC, please see: www.springer.com/lncs/
topnoc

Submission of Manuscripts

Manuscripts should follow LNCS formatting guidelines, and should be submitted
as PDF or zipped PostScript files to ToPNoC@cs.au.dk. All queries should be
addressed to the same e-mail address.
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Preface

This volume contains material from the 5th International Summer School
“Advanced Course on Petri Nets,” held in September 2010 in Rostock, Ger-
many. It followed the tradition of previous advanced courses, held in Hamburg
(1978), Bad Honnef (1986), Schloss Dagstuhl (1996), and Eichstatt (2003). With
a long and rich history as a stronghold of the Hanseatic League, almost 600 years
of academic tradition, and as a touristic hotspot on the shores of the Baltic Sea,
Rostock was a worthy host of the 5th gathering.

Due to their low frequency, advanced courses on Petri nets typically serve as a
forum for important milestones in the area. In 2010, the program was compiled
by the course director, Karsten Wolf, and the Scientific Board of the course,
consisting of Wil van der Aalst (Eindhoven), Gianfranco Balbo (Turin), and
Maciej Koutny (Newcastle). In the first week of the course, introductory lectures
surveyed topics at the very core of Petri net research. In the second week, lectures
covered areas that have received particular attention during recent years. This
volume contains contributions from both weeks. Lecturers were invited based on
their impact on the particular topic.

Nine lecturers accepted our invitation to transform their course material into
a contribution to this volume. Naturally, the papers are more like surveys than
regular research papers. Each paper was peer reviewed by a scientific board
member and by a fellow author.

Deviating from the original structure of the course, this volume is grouped
into three sections.

The first section is concerned with the creation of Petri net models and
their validation. Van der Aalst et al. investigate the process of building complex
Petri net models. The other two papers share rich experience in using Petri net
models in particular domains. Kristensen and Simonsen discuss Petri net models
for protocol designs while van Hee et al. consider Petri net models for business
processes.

Papers in the second section address semantic issues and analysis methods.
Best and Wimmel survey the Petri net structure theory, a research area with
a long history. Koutny and Kleijn discuss issues arising in causality-based se-
mantics for certain extensions to Petri nets. Valmari studies systems of state
machines with variables, linking Petri nets to other formalisms.

The third section of this volume is devoted to the automatic synthesis of
Petri nets. Reisig surveys the basic concepts of Petri net synthesis from a given
transition system. Lorenz considers the generation of models from scenarios. Van
der Aalst and van Dongen introduce the rapidly evolving area of process mining.

Only a few weeks before the advanced course, Carl Adam Petri passed away.
This was intensely felt by lecturers and participants. In order to mark the



XII Preface

occasion, we invited G. Rozenberg, P.S. Thiagarajan, and W. Reisig to prepare
a text in memoriam Carl Adam Petri.

We would like to thank the participants of the 5th Advanced Course on Petri
Nets for the excellent atmosphere in the lectures and during the social events,
and all lecturers for having delivered high-quality presentations. We are grateful
to the authors and reviewers of this volume for meeting high scientific standards.
The scientific board did a splendid job in compiling an interesting program, and
the local team succeeded in running things smoothly.

The 5th Advanced Course on Petri Nets was supported by the Deutsche
Forschungsgemeinschaft (DFG) under grant WO 1466/14-1 and by Rostock Uni-
versity. Compilation of this volume was supported by the EasyChair system.

January 2013 Karsten Wolf
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In Memoriam: Carl Adam Petri

Wolfgang Reisig1, Grzegorz Rozenberg2,3, and P.S. Thiagarajan4

1 Department of Computer Science, Humboldt Universität zu Berlin, Germany
2 Leiden Institute of Advanced Computer Science,

Leiden University, The Netherlands
3 Department of Computer Science, University of Colorado at Boulder, USA

4 School of Computing, National University of Singapore

Carl Adam Petri was a visionary who founded an
extraordinarily fruitful domain of study in the field
of distributed discrete event systems. He was the
first computer scientist to identify concurrency as
a fundamental aspect of computing. He did so in
his seminal PhD thesis from 1962 where in fact
he outlined a whole new foundations for computer
science. He devoted the rest of his working life to
pursuing his ambitious and far reaching research
goals. Petri nets -the core model that arose out of
his thesis- have established themselves as a central
model of distributed systems. They possess a rich
theory, have been extended along multiple dimen-
sions and are used in an astonishingly wide variety
of domains.

Carl Adam passed away on July 2, 2010. His loss is felt deeply by friends and
colleagues around the world. As a tribute, this contribution briefly surveys C.
A. Petri’s scientific life and impact.

1 The Early Years

Carl Adam Petri was born in Leipzig in 1926. He completed his Abitur in 1944 at
the famous Thomasschule and was immediately drafted by the military. He was
fortunate to be taken a prisoner of war by the British and remained in England
until 1949. He then studied mathematics in Hannover and followed his teacher
Heinz Unger to Bonn University as a PhD student. After receiving his PhD
in 1962, he formed and managed the computer center of Bonn University. He
then founded the Institute for Information Systems Research at the “Gesellschaft
für Mathematik und Datenverarbeitung” (GMD) in Birlinghoven (currently a
member institution of the Fraunhofer society). He directed this institute until
1991. In 1973 he seriously considered an offer of a Full Professorship at the
University of Dortmund but in the end decided to decline.

Petri’s early years had a strong influence on his later choice of scientific prob-
lems to focus on and on his very individualistic approaches to studying these

K. Jensen et al. (Eds.): ToPNoC VII, LNCS 7480, pp. 1–5, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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problems. Petri’s father was a serious scholar. He had a PhD in mathematics
and had met Minkowski and Hilbert. He supported his son’s interest in science.
From a bookseller’s bankrupt estate, Carl Adam received two thick textbooks
on chemistry for his 12th birthday, which he worked through. His father also
arranged for him special permission for the unrestricted use of the Leipzig cen-
tral library where he delved into publications of Einstein and Heisenberg as a
high school student. Later, as a flak auxiliary in the air force, he watched as
his officers estimated the height, distance and speed of approaching aircraft by
simple means including visual judgment and hearing. From this point on, the
interplay between measurement and estimation and the inevitability of errors
and their systematic treatment became a life long interest and influenced much
of his scientific work.

2 Petri’s Scientific Agenda

Carl Adam launched his scientific career with his dissertation “Kommunikation
mit Automaten” (“Communication with Automata”), that he submitted to the
Science Faculty of Darmstadt Technical University in July, 1961. He defended
his thesis in June, 1962. [2].

This dissertation is a striking piece of work in multiple ways. From the open-
ing lines it is clear one is dealing with an original and bold talent willing to
challenge conventional wisdom. It lays out the case for a new theory of commu-
nication based on metric-free notions of time, space and causality. It argues for
the necessity for such a theory in terms of reliably constructing and using infor-
mation processing machines. Indeed from the very beginning, an implicit point
of departure is that digital computers ought to be viewed as not number crunch-
ing numerical tools but as devices for storing, transforming and transmitting
information. The ambiguous title of the dissertation which can be interpreted as
communication with automata or with the help of automata also highlights this
view ; and this was in 1962!

In order to cast the argument in a concrete setting Petri considers the problem
of computing a recursive function using a physical device that obeys the known
fundamental principles of physics. Since the amount of storage space needed for
the computation can not be known in advance, if one starts with a finite amount
of space then one will in general run out of space. However starting then the
computation all over again with a larger amount of storage does not solve the
problem due to the complexity of recursive functions. One will have to repeat this
over and over again without making any progress. In the time domain there is
an equally severe difficulty. Since only a bounded amount of information can be
stored in a bounded volume (at the atomic level Heisenberg’s uncertainty princi-
ple enforces this) in a synchronous architecture the clock pulses emanating from
the system’s central clock will have to travel longer and longer distances. Since
there is an upper bound on the velocity of signals propagating through physical
media (the special theory of relativity enforces a theoretical upper bound) this in
turn will entail repeatedly reducing the clock speed. The inexorable conclusion
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one reaches is that there can not be a synchronous computing system that can
carry out universal computations in an effective way while being embedded in
the known physical world.

Petri then offers an alternative approach based on organizing computations
through strictly local and asynchronous operations where one part of the system
can be extended as the need arises without disrupting the ongoing activities in
the rest of the system. Specifically a potentially unbounded stack is constructed
and since two such stacks can simulate the tape of a Turing machine one con-
cludes that the proposed approach yields a device that can carry out universal
computations while respecting fundamental physical principles.

We have described in some detail here just the technical core of this work.
The dissertation as a whole sketches more or less the complete landscape of Carl
Adam’s research for the rest of his working life. In subsequent work he developed
a number of formal notations for describing asynchronous distributed systems in-
cluding graphical representations, algebraic formulae and topological constructs.
He also coined the basic notions of Petri Nets, i.e. “places” and “transitions” to
describe local states and actions, respectively to emphasize the core principle
that states and changes of states must be represented and treated on an equal
footing. Behavioral notions such as conflict, concurrency, causality, confusion
and non-sequential processes also started to appear in his vocabulary.

Through the long years following his dissertation and nearly till the end Carl
Adam pursued the grand vision laid out in his dissertation. He worked mainly
alone but was always happy to explain the various parts of the theory he was
trying to construct. This was done enthusiastically and at great length using
beautiful examples while consuming endless cups of coffee and an unbroken chain
of cigarettes. At the same time he was delighted to see the growth of net theory,
especially its expanding application domains. He was an active and friendly
presence in workshops, conferences and courses related to Petri nets and he was
particularly keen to interact with students and young researchers.

3 The Evolution of the World of Petri Nets

The initial period of the Petri nets domain is somewhat hazy with independent
strands of work pursued by different groups including Petri’s group at GMD. To
illustrate one such strand, the software pioneer Tom DeMarco came across Petri
Nets at Bell Telephone Laboratories in the ESS-1 project that was developing
the world’s first commercial stored program telephone switch. DeMarco was a
member of the project’s simulation team. In his contribution to the volume on
“Software Pioneers” [1], he writes “Among the documents describing the simula-
tion was a giant diagram that Ms. Hoover (who led the team) called a Petri Net.
It was the first time I had ever seen such a diagram. It portrayed the system
being simulated as a network of sub-component nodes with information flows
connecting the nodes. In a rather elegant trick, some of the more complicated
nodes were themselves portrayed as Petri Nets....The one document that we
found ourselves using most was Erna’s Petri Net. It showed how all the pieces of
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the puzzle were related and how they were obliged to interact. The lower-level
network gave us a useful pigeon-holing scheme for information from the subsys-
tem specs. When all the elemental requirements from the spec had been slotted
by node, it was relatively easy to begin implementation. One of my colleagues,
Jut Kodner, observed that the diagram was a better spec than the spec”.

In a larger context, Anatol Holt played an influential role by recognizing the
fundamental nature of Petri nets and bringing it to the attention of number of
scientists in the US including Jack Dennis and his Computation Structures group
at MIT. Suhas Patil, one of Dennis’ PhD students saw the potential of Petri nets
to specify and analyze asynchronous switching circuits and starting from his
dissertation this became one of the early and very fruitful application domains
for Petri nets. It was also soon recognized that Petri nets (more specifically,
the version known as Place/Transition nets) constitute a very intriguing class of
infinite state systems and a rich body of work regarding their relation to formal
languages, decision problems and complexity classes began to be developed.

In Europe, the theory and applications of Petri nets grew at an increasing pace
with many active groups establishing themselves in Denmark, France, Germany,
Italy and Spain (to name a few). Equally important, the fact that concurrency
was a fundamental aspect of computing was being recognized with Robin Mil-
ner’s theory based on process algebras providing a major alternative impetus.
Fundamental theoretical developments such as Mazurkiewicz trace theory and
event structures as well as formal relationships between different models of con-
currency started to appear. From the applications standpoint a crucial develop-
ment was the formulation of related formalisms of Predicate/Transition nets and
Colored Petri nets in which the tokens representing the local states as Boolean
or integer-valued values were lifted in a coherent way to represent dynamic ex-
tensions of arbitrary multi-dimensional relations. This led to sustained research
efforts resulting in a variety of system design tools accompanied by analysis and
simulation methods.

As the applications of Petri nets grew so did the number of their variants with
each domain demanding its own extension -often minor but sometimes major- of
the basic formalism. Currently there are timed, stochastic, continuous and hybrid
extensions of Petri nets that are well established. A large community of computer
scientists and software engineers employ Petri Nets in a rich variety of settings.
Petri nets are also deployed in other branches of engineering. As Prof. Gottzein
in his laudatory speech (on the occasion of Carl Adam being awarded the 30th
Werner-von-Siemens-Ring) put it: “Petri Nets brought engineers a breakthrough
in their treatment of discretely controlled systems. Petri Nets are a key to solve
the design problem, as this is the first technique to allow for a unique description,
as well as powerful analysis of discrete control systems. Based on Petri Nets, it
is now possible to formulate system invariants for discrete systems”.

The field is active and constantly growing and what we have sketched here
is a very brief, selective and incomplete account. It is perhaps too early to as-
sess the full impact and influence of Carl Adam’s contributions. This is par-
ticularly so since he has left behind a body of work that contains a wealth of
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ideas and whose systematic development may well impact emerging alternative
computational paradigms such as quantum computing. Independent of such fu-
ture developments Petri’s fundamental contribution to the theory and applica-
tions of distributed computing will endure. As Robin Milner in his Turing award
lecture said: “Much of what I have been saying was already well understood in
the sixties by Carl Adam Petri, who pioneered the scientific modeling of discrete
concurrent systems. Petri’s work has a secure place at the root of concurrency
theory”.

4 What Will the Future Bring?

In his invited speech at the 26th International Conference on Application and
Theory of Petri Nets in Miami in June 2005, Petri appreciated the diversity
and the quality of applications of his theory. But he called for a substantial
expansion of the theory: Not in terms of additional Petri Net classes or more
sophisticated analysis algorithms but rather for reaching the aims outlined in
his dissertation. On this front, much remains to be explored! It may only be
a matter of time until breakthroughs in hardware technologies coupled with
vast demands of software will require the kind of net theory envisioned by Carl
Adam. For instance conservation principles for information processing analogous
to the conservation laws present in physics and chemistry may well be required
in the future -as Petri speculated- to design and construct software interfaces
connecting vast sources of dynamic data and applications that process such data.

The rapid rise of informatics has been driven mainly by technological advances
and the economic imperative. Given its fundamental nature and its all encom-
passing influence, a rigorous science of informatics is undeniably needed. Such a
science can evolve only by addressing the basic and far reaching questions raised
by visionaries like Carl Adam Petri.

5 Conclusion

We wish to end on a personal note. Carl Adam was shy, modest and gentle. He
had no guile or malice. He was a warm, gracious and entertaining host. He wore
his exceptional scholarship lightly and it was a delight to be in his company.
For those of us who got to know him well it was a priceless privilege.
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Strategies for Modeling Complex Processes

Using Colored Petri Nets

Wil M.P. van der Aalst, Christian Stahl, and Michael Westergaard

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands
{W.M.P.v.d.Aalst,C.Stahl,M.Westergaard}@tue.nl

Abstract. Colored Petri Nets (CPNs) extend the classical Petri net for-
malism with data, time, and hierarchy. These extensions make it possible
to model complex processes as CPNs without being forced to abstract
from relevant aspects. Moreover, CPNs are supported by CPN Tools—a
powerful toolset that supports the design and analysis of such processes.
The expressiveness of the CPN language enables different modeling ap-
proaches. Typically, the same process can be modeled in numerous ways.
As a result, inexperienced modelers may create CPNs that are unnec-
essarily convoluted and bulky. Using a running example and a set of
design patterns, we show how to solve typical design problems in terms
of CPNs. By following these guidelines, it is possible to create succinct,
but also comprehensible, models. In addition, we present some new fea-
tures supported by CPN Tools 3.0 (e.g., priorities and real time stamps)
and show how the software can be used for performance analysis (i.e.,
comparing design alternatives using simulation).

Keywords: Colored Petri nets, Design patterns, CPN Tools.

1 Introduction

Petri nets have been around for about half a century and have shown to be able
to model concurrent processes adequately. The basic formalism is simple and
enables powerful analysis techniques. However, it is not easy to model complex
processes in terms of classical Petri nets. Therefore, many extensions of the basic
formalism have been proposed in the literature [1,13,14,15,17,18,19,20,22,23,30].
In fact, hundreds of extensions have been proposed for classical Petri nets, and it
is impossible to name them all here. Some of the extensions proposed are rather
exotic and did not progress beyond a proposal on paper (i.e., no tool support
and no practical applications), whereas other extensions are widely supported
and frequently used. Despite the many proposals, there seems to be consensus
on the need for three types of extensions :

– The extension with data. In the classical Petri net, two tokens cannot be
distinguished. The only way to distinguish two tokens is to put them in
separate places. This is not practical for realistic applications as the model

K. Jensen et al. (Eds.): ToPNoC VII, LNCS 7480, pp. 6–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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quickly becomes extremely complex and potentially infinitely large. In fact,
for most practical applications of Petri nets, we would like the tokens to be
distinguishable and have particular characteristics (e.g., age, weight, price,
value, owner, or address). For a token modeling a car, we may want to
describe its brand, model, color, or license number. Therefore, we need to
add data to the basic model. Without this extension, Petri nets are like a
programming language without variables and parameters.

– The extension with hierarchy. No matter how expressive a modeling language
is, models tend to become large because in most applications there are many
entities that interact in a nontrivial manner. Therefore, a hierarchy concept
is needed to deal with this type of complexity. When designing a model one
would like to use a divide-and-conquer approach. Moreover, structuring a
model is essential when communicating design choices and analysis results
with stakeholders. Without hierarchy, Petri nets are like a programming
language lacking subroutines and subprocedures.

– The extension with time. Petri nets are often used to model processes where
time plays an important role. For example, activities take time or exception
handling is required after a timeout. These temporal aspects should be re-
flected in the model. Durations may be deterministic or stochastic. In the
latter case, the model typically also incorporates routing probabilities such
that performance analysis comes into reach. In many application domains it
is important to use models to predict response times, utilization, flow times,
and service levels.

Although there is consensus on the need to support data, hierarchy, and time for
practical applications of Petri nets, different proposals have been made. Some of
the differences between competing proposals are mainly syntactical; for example,
CPN Tools is using ML as an inscription language [19,24] whereas ExSpect is
using a dedicated functional language [3,15]. Other differences are more relevant;
for example, the hierarchy concept used in CPN Tools (transition refinement) is
very different from the nets-in-nets paradigm used by Renew [21,30].

Colored Petri Nets (CPNs) are the most widely used formalism incorporat-
ing data, hierarchy, and time [6,17,18,20,19]. Initially, CPNs were supported by
Design/CPN. Later, Design/CPN was replaced by CPN Tools.1 Currently, CPN
Tools is by far the most widely used Petri net tool. CPN Tools supports the
design of complex processes and the analysis of such processes using state-space
analysis and simulation.

Modeling complex processes in terms of CPNs is a nontrivial task. The ex-
pressiveness of the language allows for different styles of modeling; that is, the
same process can be modeled in different ways. Modeling is “an art rather than
a science”, but there are recurring modeling problems that can be solved by
applying design patterns.

The most well-known patterns collection in the IT domain is the set of
design patterns documented by Gamma, Helm, Johnson, and Vlissides [12].

1 See http://cpntools.org

http://cpntools.org
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This collection describes a set of problems and solutions frequently encoun-
tered in object-oriented software design. The success of the patterns described
in [12] triggered many patterns initiatives in the IT field, including the Workflow
Patterns Initiative [4,32]. The idea to use a patterns-based approach originates
from the work of the architect Christopher Alexander. In [7], he provided rules
and diagrams describing methods for constructing buildings. The goal of the
patterns documented by Alexander is to provide generic solutions for recurrent
problems in architectural design. The idea to use patterns for design problems in
the IT domain is appealing as is reflected by the different collections of patterns
[4,5,10,12,16,29,31,32]. Many of these collections focus on behavioral aspects as
these are most difficult to model and implement.

The idea to provide patterns for modeling in terms of CPNs was first proposed
in [26]. Based on expert opinions and an analysis of large collections of CPNs
(taken from papers and Web pages), 34 patterns were identified (see Appendix).
These patterns help to tackle particular problems. Each pattern is described
using a standard format including elements such as pattern name, intent, moti-
vation, problem description, solution, implementation considerations, examples,
and related patterns. In this paper, we explain the most important patterns using
a running example. Unlike in [25,26], we do not explicitly enumerate the patterns
nor will we use a strict format to present them. Instead, we use a tutorial-style
presentation showing how to address frequently recurring modeling problems.

For a detailed description of the CPN language we refer to [18,19]. Our goal
is not to describe the language but to focus on the way it can be used most effi-
ciently. This paper is based on lectures given by the authors during the 5th Sum-
mer School/Advanced Course on Petri nets (Rostock, September 2010). Hence,
the goal is not to present new scientific results, but to guide people using the
CPN language and CPN Tools. In addition, the paper presents recent extensions
of CPN Tools. As of CPN Tools 3.0, priorities and real time stamps are sup-
ported. We shall show that these extensions provide additional support when
tackling some of the most important design patterns.

In the last part of the paper, we focus on one particular analysis technique:
simulation. We shall show that the timing concept used by CPNs is compelling
and gives the designer full control over temporal aspects of the model. Moreover,
CPN Tools provides a powerful simulation environment. Using our running ex-
ample, we shall show that it is easy to compare different alternative models.

The remainder of this paper is organized as follows. Section 2 introduces the
basics of CPNs. The focus is on the extension with data, that is, colored tokens.
As a running example, we use a gas station that serves two types of customers.
The extension with hierarchy is described in Sect. 3. Subsequently, we use dif-
ferent variants of the gas station to explain four of the simple design patterns
(Sect. 4) and two of the more advanced design patterns (Sect. 5). The hierarchy
concept is used to structure these patterns while the patterns themselves focus
on the interplay between control-flow and data. Here, we also show how the pri-
ority concept of CPN Tools 3.0 can be used to simplify the realization of some of
the patterns. In Sect. 6, we shift our attention to modeling of time. We explain
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the time concept and highlight the new timing functionality of CPN Tools 3.0
(i.e., real time). Subsequently, Sect. 7 shows how the addition of stochastic ele-
ments can be used to simulate complex processes and analyze their performance.
Section 8 concludes the paper.

2 Colored Petri Nets: Basics

Colored Petri nets (CPNs) extend classical Petri nets with data, hierarchy, and
time. In this section we focus on the extension with data.

In a classical Petri net, tokens are indistinguishable (black), whereas in CPNs
tokens are distinguishable; tokens may have different colors such that they can
be differentiated. A colored token carries data attributes that characterize the
entity it represents. Note that we use the terms “color” and “data” interchange-
ably. This extension enables us to explicitly model concurrency using the power
of Petri nets but also to model sequential or data-processing systems using a
programming language, leading to much more compact and precise models, es-
pecially if several entities in a system behave in a similar manner. That way,
CPNs provide a modeling technique that enables us to model complex systems
in detail.

As a running example, we consider a gas station. We start with a simple
version, and, throughout the paper, we add more features. This will illustrate
how to construct a model by incrementally refining and extending it. Moreover,
it allows us to show various design patterns for CPNs.

In our example, cars arrive at the gas station, wait to be served or rejected if
the station is lacking capacity, and finally leave. We distinguish between regular
cars and taxis. Figure 1 shows the first version of a CPN model. In the rest of
this section, we explain this example in detail and use it to introduce the CPN
formalism. We do not give a formal definition of CPNs, but mention that one
such exists and can be found in, for instance, [18,19].

Like for classical Petri nets, the basic components of CPNs are places, transi-
tions, and arcs. A place serves as a placeholder for the entities in the system and
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Fig. 1. Simple CPN model of a gas station
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is represented by an ellipse. There are three places in Fig. 1: Next Car ID, Waiting,
and Done. A transition represents an action of the system. Graphically, a rect-
angle represents a transition. The CPN in Fig. 1 has five transitions: Taxi Arrive,
Regular Arrive, Serve, Reject, and Leave. Places and transitions are connected by
directed arcs, which describe how data flows when transitions are executed, but
we defer the exact description for a moment. An arc can only connect a place
to a transition or a transition to a place. An arc between two places or between
two transitions is not possible. So a CPN induces a bipartite directed graph with
places and transitions as nodes.

Each place has a type (also known as a color set or sort) that determines which
kind of tokens it may contain. This is comparable to how variables have a type
in (explicitly) typed languages and is used both to make it easier to understand
the model and to catch errors. In Fig. 1, place Next Car ID is of type INT and
the places Waiting and Done are of type CAR. This indicates that we can only
have integers in Next Car ID and only cars in the two remaining places. Types
are declared explicitly in the model using the language CPN-ML, which extends
Standard ML [24] with syntax for CPNs. In CPN-ML, the declarations of the
types INT and CAR are:

colset INT = int;

colset CAR = union Regular: INT + Taxi: INT;

The first line indicates that the type INT corresponds to the simple type int
(integer). Declarations allow us to give different names to simple types to make
the model more readable (e.g., defining a type ID if we were using integers as
identifiers). The second line specifies that CAR is a union type, which corresponds
to a datatype in Standard ML or a disjoint union in mathematics. The idea is
that we can have values that are either Regular cars or Taxis. Regular cars and
taxis have an associated integer, which we use to be able to distinguish each
individual car. Thus, the type CAR contains the values {Regular(0), Taxi(0),
Regular(1), Taxi(1), . . . }.

Aside from a type, each place also has a marking. A marking of a place is
a multiset of values over the type of the place. A multiset is like an ordinary
set (i.e., the order of elements does not matter), but the same element can
occur multiple times. A token is an element of such a marking; that is, it has
a value and resides in a place. In the example in Fig. 1, markings of places are
shown in a circle and a rectangle near the places, such as the circle containing 1
and the rectangle containing 1‘0 on place Next Car ID. The number in the circle
represents the total number of tokens in the place, and the text in the rectangle is
a textual representation of the multiset of tokens. In the example, place Next Car
ID contains exactly one token and the marking is written 1‘0. We use a backwards
apostrophe (‘) to separate the value of a token and the count of how many tokens
with that value is part of the marking. The marking in Fig. 1 consists of one
token with value 0. If a marking consists of tokens with different values, we
separate them with two pluses (++). This allows us to write a marking such as
2‘1++3‘5 to represent the multiset containing two tokens with value 1 and three
tokens with value 5. Another example of a marking is 1‘”Hello”++1‘”World” for
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a marking containing two tokens, one with value ”Hello” (i.e., the string Hello)
and one with value ”World”. Places without a marking shown contain an empty
multiset which is not shown explicitly. An assignment of markings to all places
is a marking of the net (or model).

We think of arcs as belonging to transitions, and separate them into input arcs
and output arcs. An input arc connects a place to a transition, and an output
arc connects a transition to a place. An arc has an inscription, i.e. an expression,
written in CPN-ML. Expressions are like expressions in programming languages
and may contain constants, functions, and all common arithmetic operators.
An expression may contain one or more free variables (i.e., it may be an open
expression). In Fig. 1, transition Regular Arrive has an input arc from place
Next Car ID with expression i and two output arcs—one to Next Car ID with
expression i+1 and one to Waiting with expression Regular(i). A place connected
to a transition using an input arc is an input place, and a place connected using
an output arc is an output place. In the example, Next Car ID is an input place of
transition Regular Arrive, and Next Car ID and Waiting are output places of the
same transition. A place can thus be an input and an output place of the same
transition. Variables must be declared to be of a certain type. In our example,
we have declared two variables:

var i: INT;

var c: CAR;

Variable i is of type INT and variable c of type CAR. An expression on an arc
must have the same type as the type of the place it is connected to or a multiset
of the place type; that is, when a value (of correct type) is assigned to all free
variables in an expression, it must evaluate to a multiset over or a single value
of the type of the place the arc is connected to.

A transition has a natural set of variables, namely the ones occurring on all
arcs belonging to it. Each of these variables can be assigned a value from the set
represented of its type. For example, the variable i can be assigned the value 0, 1,
or 37 as they are all integers. We refer to a transition along with an assignment
to each of its variables as a binding element (or binding for short). We denote
a binding element by the name of the transition and a list of assignments to
all its variables in braces. In our example, there are binding elements Regular
Arrive〈i=0〉, Regular Arrive〈i=37〉, Serve〈c=Taxi(23)〉, and many others. Note that
such potential bindings exist independent of a particular marking; that is, when
talking about binding elements we do not look at surrounding places, but only
consider the free variables of arcs surrounding the transition. We note that even
though variable i occurs on more than one arc connected with Regular Arrive,
we only write it once in a binding element. If the transition is clear from the
context, we may omit the name of the transition when talking about a binding
element.

Given a binding element, we can evaluate the expressions on all arcs belonging
to the transition. For example, given the binding element Regular Arrive〈i=0〉 in
Fig. 1, the expression i of the input arc from Next Car ID evaluates to 0, the
expression i+1 on the output arc to Next Car ID evaluates to 0+1=1, and the
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expression Regular(i) on the output arc to Waiting evaluates to Regular(0). For
the binding element Regular Arrive〈i=37〉, the same expressions evaluate to 37,
38, and Regular(37), respectively. As we only write each variable once, it has to
have the same value in all expressions surrounding a transition, but it can have
other values on other transitions. That means, the scope of a variable in a CPN
model is a transition, and information cannot be exchanged between transitions
directly. We can think of a transition as inducing a namespace for all variables
surrounding it.

Given a model with a marking and a binding, we say that the binding is
enabled if all input places contain at least the tokens specified by the evaluation
of the expression on the corresponding input arc in the binding. In Fig. 1, the
binding element Regular Arrive〈i=0〉 is enabled as the expression on the sole input
arc to the transition evaluates to 0, and the marking of Next Car ID contains a
token with value 0. The binding element Regular Arrive〈i=37〉 is not enabled in
the marking in Fig. 1 as Next Car ID does not contain a token with value 37.

A transition is enabled in a marking if there exists at least one binding element
which is enabled in the marking. In Fig. 1, we have two enabled transitions, Taxi
Arrive and Regular Arrive, as evidenced by the enabled binding elements Regular
Arrive〈i=0〉 and Taxi Arrive〈i=0〉. Enabled transitions are marked using a bold
outline. Figure 1 shows that in the initial marking both Regular Arrive and Taxi
Arrive are enabled. Each of them has one enabled binding: Regular Arrive〈i=0〉
and Taxi Arrive〈i=0〉.

If a binding element (or a transition) is enabled, it can occur or be executed .
This has the effect of removing all tokens from input places corresponding to
evaluations of expressions on input arcs and producing new tokens on output
places corresponding to evaluations of expressions on output arcs. In the exam-
ple, if binding element Regular Arrive〈i=0〉 occurs, we get a situation like the one
in Fig. 2. Compared to the situation in Fig. 1, only the marking has changed;
the net structure remains unchanged. When Regular Arrive〈i=0〉 occurs, it con-
sumes the token with value 0 from Next Car ID and produces a token with value
1 according to the arc expression i+1 in Next Car ID. In addition, it produces a
token with value Regular(0) in Waiting, and this place now contains exactly one
token with this value. Transitions Taxi Arrive and Regular Arrive remain enabled
in this marking, albeit the enabled bindings changed: Taxi Arrive〈i=1〉 and Regu-
lar Arrive〈i=1〉. Furthermore, transitions Reject and Serve are now enabled, both
in a binding 〈c=Regular(0)〉.

We look at the net structure of a model and its marking as separate things;
the marking of the model may change, but the net structure remains the same.
The marking of a model before we start simulation is the initial marking; for
example, in Fig. 1, only place Next Car ID contains a token; this token has value
0. The marking after executing Regular Arrive〈i=0〉 is depicted in Fig. 2. We refer
to such a marking as the current marking. Executing binding Taxi Arrive〈i=1〉
yields a new current marking shown in Fig. 3. Execution of a binding element
is a step. Transitions Taxi Arrive and Regular Arrive, thus, intuitively model that
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Fig. 2. Gas station model after executing binding element Regular Arrive〈i=0〉

a car of the given type arrives and queues up in Waiting. We use the token in
Next Car ID as a counter to number all cars arriving.
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Fig. 3. Gas station model after Regular Arrive and Taxi Arrive have been executed. As
shown, transition Serve is enabled in two bindings, 〈c=Regular(0)〉 and 〈c=Taxi(1)〉.

In Fig. 3, transition Serve is enabled in two bindings, 〈c=Regular(0)〉 and
〈c=Taxi(1)〉. These two bindings are shown in Fig. 3; the rectangle near the
transition shows that c has two possible values enabling Serve.

If we execute the transition in the binding Serve〈c=Taxi(1)〉, we obtain the sit-
uation in Fig. 4, where the Taxi(1) is removed from Waiting and a token with the
same value has been produced in Done. Intuitively, this models the serving of a
taxi at the gas station and moving it to a place where it is no longer waiting to be
served. Now, the taxi can leave (transition Leave is enabled), leading to a marking
similar to Fig. 2 except the marking of Next Car ID is 1‘2 instead of 1‘1.

Figures 1, 2, 3, and 4 show one possible sequence of steps. Executing enabled
bindings and thus moving from one marking to another is also known as the token
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Fig. 4. Gas station model after serving the taxi

game. This is the mechanism used when simulating the CPN. Note that whenever
a state has multiple enabled bindings, one needs to pick one of these bindings.

If we reconsider the marking in Fig. 3, we see that transition Reject has an
inscription in squared brackets to the left of it, namely [not (CAR.of Taxi c)]. This
is a guard . A guard defines an additional constraint that must be fulfilled before
a transition is enabled; that is, it is a Boolean expression that needs to evaluate
to true in addition to the earlier requirements. When a guard is not shown,
it implicitly always evaluates to true. A guard may also contain free variables,
and they are considered in the same way as free variables on arcs surrounding
a transition when considering bindings of the transition. In our example, the
guard uses a function, CAR.of Taxi, automatically defined for union types, which
returns whether the parameter given is a Taxi (regardless of the integer value).
Thus, the guard evaluates to true if the value of c is not Taxi. This models
that we do not wish to reject taxis, for example, because they bring a lot of
business. This semantics of a guard is also reflected in the enabled bindings of
transitions as shown in Fig. 5, where the binding Reject〈c=Regular(0)〉 is enabled,
but Reject〈c=Taxi(1)〉 is not, even though the token required is present.

3 Hierarchical Modeling

In this section, we present an approach to extend CPNs with hierarchy. This
approach makes it possible to reflect the hierarchical structure of the system
in the CPN model. Hierarchical CPNs simplify modeling, thus facilitating the
modeling of large and complicated systems. The idea is to decompose a system
into a set of modules. A module is a CPN with a set of interface places, and it
can be used to describe the internal structure of a substitution transition. By
showing the substitution transition at the higher level, we can abstract from the
inner structure of a module at the lower level.

First, we present hierarchical CPNs, as supported by CPN Tools and show how
hierarchical modeling can be used to refine our running example. Subsequent,
we sketch different approaches of hierarchical modeling.
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Fig. 5. Gas station model: Enabling of Reject is affected by its guard

3.1 Hierarchical CPNs

CPNs, as introduced in the previous section, are suitable to model the behavior
of complex systems. The concept of place types allows us to specify the flow of
data objects of any data type, and by using guards and arc inscriptions we can
manipulate these data objects. The weakness of “flat” CPNs is that they try to
capture the system behavior in one comprehensive net and do not represent the
hierarchical structure of a system. For example, the CPN in Fig. 1 models the
serving and rejecting of cars at the gas station but also how cars arrive and leave
the gas station. In other words, the CPN in Fig. 1 is unstructured.

For toy examples like the CPN modeling a gas station, this is not a problem.
If a CPN has only few places and transitions, we can lay out the net structure in
a way such that the individual parts of the system can be recognized. However,
if we model more complex systems such as a more refined version of the gas
station example, then the resulting CPN model could have hundreds of places
and transitions. Such models cannot be overseen and are, therefore, not suitable
for discussing design decisions or implementation details of a system.

In a CPN, we model the elements of a system as places, transitions, and
tokens. These elements do not allow us to structure a model. As a consequence,
modeling a system by using only places, transitions, and tokens is insufficient.
Concepts to abstract from parts of the model are necessary. To this end, models
are usually designed following a hierarchical approach. The idea is to have several
levels of abstraction of the system and to refine elements at higher levels into
more detailed elements at lower levels. That way, also the design of large and
complex systems becomes manageable, because designers usually concentrate on
a single aspect of a system and extend the model step by step. For example, if we
only want to know when a car is rejected at the gas station, then the information
of arriving and leaving cars is not relevant and should be abstracted from. We
illustrate the idea of hierarchical modeling by revisiting our running example
introduced in Fig. 1.

We structure the model in Fig. 1 by decomposing it into two modules: (1)
the gas station and (2) its environment. The gas station module represents the
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Fig. 6. CPN model of the gas station top module

functionality of the gas station—that is, the serving and rejecting of waiting cars,
as modeled by transitions Service and Reject. The environment module models
the arrival and leaving of the cars, as modeled by transitions Taxi Arrive, Regular
Arrive, and Leave. The interface between these two modules can be specified by
places Waiting and Done. We refer to such a place as a socket . Both socket places
are of type Car. A token in Waiting models a car waiting to be refueled, and a
token in Done models a car that has been refueled or rejected. Figure 6 shows
the corresponding CPN model of this top-level module. The double-lined rectan-
gles, which are labeled Environment and Gas Station, denote the two respective
modules in an abstract manner.

As already mentioned, a module is a CPN consisting of places, transitions,
arcs, and tokens. There are two kinds of transitions: elementary transitions and
substitution transitions . An elementary transition is an ordinary transition, as
introduced in the previous section. A substitution transition refers to a module.
It abstracts from the internal behavior of a module; that is, it considers a module
as a black box. Unlike a normal transition, a substitution transition may have
internal states and does not need to consume and produce tokens in one atomic
action. For example, depending on the underlying module, Gas Station may first
consume ten cars from place Waiting, before it produces a token to Done.

A module may contain any number of substitution transitions. These substi-
tution transitions refer to other modules that, in turn, may contain transitions
referring to other modules. There can be an arbitrary many levels as long as no
cycles are introduced in the inclusion graph; that is, a module may not (transi-
tively) contain itself as this would correspond to an infinitely large model when
we replace each substitution transition by the module it refers to.

The top-level module in Fig. 6 has two substitution transitions Gas Station
and Environment referring to modules Environment and GasStation, respectively,
as can be seen from the tag on the bottom of a substitution transition. Fig-
ure 7(left) shows the CPN modeling module Environment and Fig. 7(right) the
CPN modeling module GasStation.

Each of the two CPNs in Fig. 7 has two interface places: Waiting and Done.
We refer to such a place as a port. To be able to replace a substitution transition
by the CPN modeling the module it refers to, we need to relate each socket of
the substitution transition to a port of the CPN modeling the module. That
way, pairs of places—a port and a socket—are semantically merged into one
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Fig. 7. CPN models of the environment (left) and gas station module (right)

place. As an example, sockets Waiting and Done in Fig. 6 are merged with the
equally labeled ports in Fig. 7(right). On the level of a port, we specify the type
of connection; that is, a port has a type. In Fig. 7(right), the tag In on place
Waiting denotes that this port is of type input. Likewise, the tag Out on place
Done shows that this port is of type output. A port can also be of type input
and output. In this case, it is labeled I/O.

Replacing a substitution transition by the module it refers to is called the
flattening of a CPN. The semantics of the CPN in Fig. 6 corresponds to the flat
CPN in Fig. 1.

Another advantage of decomposing a system into modules is that it enables
us to reuse existing functionality. That is, the same module can be used several
times in a model if necessary. As a result, multiple substitution transitions may
refer to the same module. To cope with this, we distinguish between a module
definition and a module instance. Whereas a module definition serves as a speci-
fication of a CPN model, a module instance can be seen as an individual copy of
the module definition. For example, we could extend our model in Fig. 6 and con-
nect sockets Waiting and Done with an additional gas station, say Gas Station 1.
In this case, we have two substitution transitions, Gas Station and Gas Station 1,
both referring to the same module definition, GasStation. However, each substi-
tution transition would be replaced by an individual module instance—that is,
a separate copy of the CPN shown in Fig. 7(right).

Finally, we illustrate how hierarchical modeling simplifies the design and, in
particular, the refinement of a system. Consider the module of the gas station,
as depicted in Fig. 7(right). Cars are modeled as tokens in place Waiting and are
waiting to be served. In the current model, a car may be waiting to be served and
after a while be rejected. This is not desirable. Therefore, we extend the model
as follows: the gas station has some waiting space where cars are queueing. If
the gas station has too little capacity, arriving cars will be rejected. However,
once a car enters the queue at the gas station, it will be eventually served.

To modify the model, we only need to refine the CPN modeling the gas station
module (see Fig. 7(right)). Figure 8 shows the resulting model. An arriving car
is either rejected right away or put in the queue. As in the previous models, taxis
are not rejected. Place Queue models the queue at the gas station.
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Fig. 8. Improved CPN model of the gas station module

The advantage of hierarchical modeling is that we need only to refine the
module of the gas station. As the environment is not affected by the change, we
do not have to touch the respective model. This example shows that by using
hierarchical CPNs, designers can focus on single aspects of a model.

3.2 Approaches

There are two prominent approaches to obtain a hierarchical model for a system:
the top-down approach and the bottom-up approach.

In the top-down approach, we start at the highest level of abstraction. and
decompose the system into modules. Each module is considered as a black box,
and only the relationship between the modules, which is modeled as an interface,
is relevant. In subsequent steps, we can consider each module as a black box and
refine it into a set of submodules. We can repeat this procedure until we have
reached the desired degree of abstraction.

The bottom-up approach starts at the lowest level of abstraction and works in
the opposite direction as the top-down approach. At this level of abstraction, we
describe the elementary modules in detail. These modules are then composed to
form a compound module. This composition step is repeated until we reach the
highest level of abstraction at which the system is modeled as a single module.

Hierarchical development of systems is widely used, and all modern program-
ming languages offer facilities to support this approach. For example, function-
ality can be structured by developing a class hierarchy and by implementing
procedures to decompose complex functionality.

Hierarchical CPNs, as presented in this section, have been formalized in [18,19]
and implemented in CPN Tools. CPN Tools supports top-down and bottom-up
design. Another approach for defining modules is to specify the module interface
as a set of transitions. Flattening a hierarchical Petri net then corresponds to
fusing equally labeled interface transitions, an established concept in the Petri
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net literature. Whereas place fusion models asynchronous communication—that
is, sending a token by one module is not synchronized by receiving this to-
ken by another module—transition fusion models synchronous communication.
Synchronous communication is similar to invoking methods in object-oriented
programming and is the dominant composition approach in process algebraic
approaches [8,11]. Transition fusion is not supported by CPN Tools.

A different approach to introduce hierarchy in Petri nets is the nets-in-nets
paradigm proposed by Valk [30]. Whereas traditionally tokens are passive, tokens
in this paradigm can be active. One can think about such tokens as agents rather
than data containers. As an agent has behavior, the token modeling this agent
can represent a Petri net again. That way, the nets-in-nets paradigm supports
the modeling of hierarchy. The Renew tool [21] supports the modeling, execution,
and analysis of a particular instance of the nets-in-nets paradigm.

4 Simple CPN Patterns

In this section, we introduce some simple modeling patterns that can be used
frequently. The patterns make it possible to model constructs not natively pos-
sible using the CPN formalism. As indicated in the introduction, the idea to
provide patterns for modeling in terms of CPNs was first proposed in [26] where
34 patterns were identified. The patterns are briefly described in the Appendix
of the paper. Subsets of these patterns can also be found on the CPN Tools
Web page2 and in books such as [6,15,18,19]. However, these publications do not
explicitly identify and name these patterns.3

In this section, we look at patterns for bounding the number of tokens that
can be in a place at once, for imposing an order of how tokens are added to
and removed from places, for checking the number of tokens in a place, and for
folding equal or similar net structures into one generic copy. In the next section,
we present more advanced patterns to model more complex constructs that occur
less often.

Unlike in [25,26], we will not be using a strict format for describing the pat-
terns. Instead, we use examples based on the hierarchical gas station example
from Fig. 6 with the environment module from Fig. 7(left) and the gas station
module from Fig. 8. In our examples, we replace only the gas station module.

4.1 Bounded Places Using Complement Places

Figure 8 models the serving of a car as a single transition, Serve, indicating that
this action is instantaneous. As it actually takes some time to serve a customer,
this is an oversimplification. For this reason, we split this action into two ac-
tions: start serving and end serving. We then obtain the situation in Fig. 9(left).

2 See http://cpntools.org
3 Note that patterns refer to frequently recurring modeling problems and their solu-
tions. Therefore, patterns are always based on earlier work and not intended to be
original.

http://cpntools.org
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Fig. 9. CPN models of the gas station module with non-instantaneous serving of
customers (left), with only one pump (middle), and with bounded queue size (right)

Here, we have a transition Start Serving, moving a car from place Queue to Being
Served, and End Serving, moving a car from place Being Served to Done. The
model now reflects that serving a customer is not an instantaneous action, but
it introduces a new problem. Consider what happens if we have three cars in
Queue. Now, we can Start Serving all three of them. This does not really make
sense if the gas station has only one pump; rather, the cars should remain in
the queue until the pump is free, at which point we start serving the next one
in line. We thus need to bound the number of cars (tokens) that can be in place
Being Served at any point in time. Therefore, we look at modeling patterns to
limit the number of tokens in place Being Served.

The simplest way to bound the number of tokens in a place is to introduce
a complement place (or anti place). The idea is to ensure an invariant, namely
that the total number of tokens in this place and its complement place together
is a constant. A place, which can at most contain a predetermined number of
tokens, is bounded . A bounded place has a certain capacity. Bounded places are
related to the concept of safe places in low-level Petri nets.

In Fig. 9(middle), we have added a new place Free with type UNIT. The type
UNIT is declared to be:

colset UNIT = unit;

The unit type is a type which contains only one element, (), and simulates the
behavior of (black) tokens of classical Petri nets: tokens of this type are indistin-
guishable, so we only care about the number of tokens. Whenever we produce
a token in Being Served, we remove a token from Free, and vice versa. This en-
sures that the number of tokens in Being Served and Free remains unchanged
and hence that Being Served contains at most one token. We can think of this
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as consuming a right to produce a token in Being Served when we need it and
returning the right when we no longer need it (when we consume a token).

In general, we model a complement place for a place by mirroring all arcs
connected to the original place. That is, whenever there is an arc from a tran-
sition to the original place, we add an arc from the complement place to the
transition; and whenever there is an arc from the original place to a transition,
we add an arc from the transition to the complement place. The type of the
complement place can be UNIT, as in the example, or it can be another type
if we want to model a complement place for bounding multiple places or for
bounding tokens of a particular value. For example, assume that we need to
adapt in Fig. 9(middle) to model the situation that there are five pumps: two
diesel pumps, two petrol pumps, and one pump for electric cars. In this case,
the complement place initially has five tokens making sure that each pump can
only be used for one car at a time. If the pump for electric cars is busy while
the other four pumps are free, then it is impossible to serve another electric car.
This can be ensured by using a different type for place Free, for example,

colset Fuel = with diesel | petrol | electric;

Moreover, type CAR needs to be extended to indicate the type of fuel a car
requires and the arc inscriptions need to be adapted accordingly. However, the
principle is the same: We consume a token from the complement place whenever
we produce one token in the original place. Likewise, we produce a token in the
complement place whenever we consume one token from the original place. In
Fig. 9(middle), the transitions unconditionally produce/consume tokens in/from
the original place, so we do the same for the complement place. In more advanced
examples, we may produce/consume a varying number of tokens in/from the
original place depending on the binding of the transition; that is, we need to
make the expressions on arcs from/to the complement place reflect this.

The pattern to add a complement place to bound the number of tokens in
another place is used frequently. Consider for example, locking in databases,
kanbans in production systems, and message buffers in middleware.

4.2 Inhibitor Arcs Using Counter Places

A gas station needs to reject customers if it does not have the capacity to serve
them; otherwise, they are added to the queue. Our model does not reflect that, as
customers are rejected nondeterministically. Transition Reject should be enabled
only if the Queue is full. As a first attempt, we add a complement place, Capacity,
for place Queue and obtain the situation in Fig. 9(right). Now, the queue size
is limited to 2. At this point, we start unconditionally rejecting customers. The
model is still not correct, though, as we may also reject customers before the
limit is reached. We thus want to disable Reject if Capacity contains more than
zero tokens (i.e., if the queue is not full).

We can model such a condition in various ways. An arc that inhibits enabling
of a transition if a place contains more than a specified number of tokens is
an inhibitor arc. An inhibitor arc can in particular be used to test whether a
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Fig. 10. Two gas station modules which reject customers only when there is no capacity
for them

place contains zero tokens, which is also known as zero-testing. Some Petri net
formalisms contain inhibitor arcs natively, but for CPNs, this is not necessary,
as we can easily model them. The simplest way to model an inhibitor arc in
our example is to add an arc between Queue and Reject checking that Queue
contains two tokens, like in Fig. 10(left). This arc contains an arrowhead in
both directions. This is a shorthand for an arc in both directions with the same
expression. In CPN terminology, such an arc is called a double arc and in the
literature, it is also known as a test arc or read arc.4 The double arc between
Queue and Reject allows us to test that two tokens are present in Queue without
modifying them.

This solution works only for bounded places and is difficult to scale with the
bound of the place (as we need a variable for each token). Instead, we introduce
a general way of modeling inhibitor arcs here and another solution in Sect. 4.3.
The basic idea of the general solution is to introduce a counter place. This place
counts the number of tokens in a place. It is similar to a complement place, but
we store the number of tokens as an integer rather than indistinguishable tokens.

In Fig. 10(right), we have added a counter place Capacity Count counting the
number of tokens in Capacity. The type of Capacity Count is INT. This place is
similar to place Next Car ID used in Figs. 1 and 7(left). However, now we increase
the value whenever we add a token to Capacity (Enqueue) and decrease it when
we remove one (Start Serving). The double arc between Reject and Capacity Count
tests that the remaining capacity is 0; that is, cars are only rejected if no capacity
is left.

Place Capacity is redundant after adding Capacity Count. Recall that Capacity
was introduced as a complement place to bound the number of tokens in place
Queue. We can also bound the number of tokens in place Queue by inhibiting the
enabling of Enqueue when it contains more than one token—that is, by using a
guard.

4 There are subtle differences between test and read arcs depending on the exact
transition execution semantics; we will not elaborate on this in this paper.
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Fig. 11(left) shows the situation where Capacity is a counter place for place
Queue; that is, the value of the token in Capacity corresponds to the number
of tokens in Queue. Both Enqueue and Reject use this information to block if
needed; that is, the arcs between Capacity and Enqueue update Capacity and
serve as inhibitor arc. The guard added to Enqueue ensures that Enqueue is
only enabled if the number of tokens in Queue is less than MAX CAPACITY.
MAX CAPACITY is a constant defined in the declarations of the model as:

val MAX_CAPACITY = 2;

This declaration allows us to use a symbolic constant instead of writing the same
value in multiple places, which improves the readability of the model and makes
it easier to change the value of the constant if necessary. We have also added a
double arc between Capacity and Reject and an extra clause to the guard of Reject
checking that the value of the token is greater than or equal to MAX CAPACITY.
We use a comma (,) to separate clauses in the guard. This acts as a shorthand
for logical and (which in CPN-ML is written as andalso).

4.3 FIFO-Places Using Complement Places or Lists

Any variant of the gas station we have looked at until now (see Figs. 7–11) serves
cars in a random order. For most gas stations, this does not reflect reality; rather,
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most gas stations serve customers using a first-come, first-served policy, and we
want to make our model reflect this. A place from which tokens are removed in
the same order as they are added is a FIFO-place (first-in, first-out place).

Our first idea is to model each location of the queue explicitly using a com-
plement place to ensure that each location has at most one car. This is shown
in Fig. 11(right). The only new thing is that we have a double arc between each
location of the queue and transition Reject. These arcs test that every location
in the queue is filled before rejecting customers. We have used separate variables
for each double arc, as we are not requiring that each location contains the same
car (which in this model is impossible). Each car arriving at Waiting can only
enter the queue if the first spot is vacant. Likewise, a car in the first spot can
only progress if the second spot is vacant. So as soon as a car has entered the
queue, it is guaranteed to be served in the order it appeared. This is in contrast
to place Waiting where cars are not ordered.

The queue in Fig. 11(right) serves its purpose but has some problems. First,
the construction is not scalable. Compared to Fig. 11(left), where we could
change the capacity of the queue by just changing the value of a constant, we
have to add two places, a transition, and four arcs for each slot we want to
expand the queue with. Second, it seems a bit excessive that a car has to drive
through each spot in the queue explicitly even if it is the only car. Instead of
using the net structure to express what is essentially a data-structure, we—for
the first time in this paper—use that CPNs support list types. The idea is to
represent the cars in Queue as a queue rather than a multiset. In CPN-ML, a
queue is easiest modeled using a list.

Figure 12(left) shows an implementation of a queue using lists. It is easier
to compare this module with the one in Fig. 11(left) rather than the one in
Fig. 11(right). We have changed the type of Queue from CAR to CARS and use
some more elaborate expressions on the arcs around the place. The type of Queue
is a list of cars declared as:

colset CARS = list CAR;

Place Queue has an initial marking, 1‘[], indicating that the place contains a
single token, an empty list (which is written as [] in CPN-ML). Whenever we
produce a token in Queue in Fig. 11(left), we now, in Fig. 12(left), replace the
token in Queue with a new list consisting of the previous list with the new element
appended at the end. This is written as cs ˆˆ [c] in CPN-ML (i.e., append the
singleton list [c] to the end of list cs). We have also added an arc opposite the
original arc to get access to the previous value (cs). We need to introduce a
variable cs that is declared as:

var cs: CARS;

Where we previously removed an arbitrary token from Queue, we now take the
first element of the list and return the tail of the list to Queue. We do this by
using pattern matching, which is a powerful mechanism CPN-ML [19] inherits
from Standard ML [24]. The expression c::cs assigns the head of the list to c



Strategies for Modeling Complex Processes Using CPNs 25

and the tail to cs. A transition using such an expression on an input arc is only
enabled when the list on the corresponding place contains at least one element.

The list structure also enables an alternative realization of the inhibitor arc
pattern. As all tokens are inside a single data-structure, we can test the number of
tokens without maintaining a separate counter. We have eliminated Capacity and
changed the guards of Enqueue and Reject to refer to length cs, which returns the
number of elements in list cs. Thus, if we have imposed an ordering of elements
on a place, we can count the elements directly.

Another advantage of using the pattern in Fig. 12(left) is that we can use any
data structure to impose any ordering of elements. For instance, we can change
the inscription on the arc from Enqueue to Queue to c::cs to add the new car to
the head of list cs, thereby implementing a stack place from which tokens are
removed in last-in, first-out order. We can also implement priority queue places
by sorting the list according to a priority upon insertion. See [26] for concrete
examples.

Figure 12(left) (but also the other CPN models modeling a queue for the cars
waiting to be served) has the problem that tokens may be queueing in place
Waiting. When the queue has reached its maximal capacity and a taxi arrives
via port Waiting, then Enqueue and Reject are unable to handle the taxi. One
can handle this in different ways. However, in case of a stochastic arrival process,
it is impossible to ensure that there is a free position in the queue for taxis.

4.4 Folding Identical Net Structures

Most of the gas stations considered in this section (Figs. 9–12) had only one
pump. We can easily change that by increasing the number of tokens initially
in place Free, but only if we do not care which pump a customer uses. Now,
assume that we add an extra step after refueling for paying for the fuel, as seen
in the fragment in Fig. 12(right). This model does not preserve the information
for which pump the customer has to pay.

It is possible to retain the information about which pump was used by dupli-
cating the structure representing the pump and the payment procedure; a model
doing so is shown in Fig. 13(left). Now, depending on which pump we chose to
use initially, we have to execute either transition Pay 1 or Pay 2, thereby ensuring
that each car pays for the gas it actually refueled.

Naturally, duplicating net structure is rarely the best solution. If the focus of
the model is the geographical distribution of cars during a day, it may be a good
choice as we have a one-to-one correspondence between places of the model and
physical locations. Here, we are not interested in that, so it may be better to fold
the two paths in Fig. 13(left) into one, thereby avoiding copying and making it
easier to subsequently add more pumps or to change the behavior of all pumps
(e.g., we may want to keep the reservation of a pump until the customer has
paid, to make it even easier to match the pump and customer to the amount
of gas purchased). A folded version of the model in Fig. 13(left) is shown in
Fig. 13(right). In the remainder of this section, we explain folding using this
example.
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Folding means that we add to all places and expressions another component
representing the identifier of the folded value. In our example, we define a new
type, PUMP, and a variable of that type as:

colset PUMP = index pump with 1..2;

var p: PUMP;

An index type consists of a name (here pump) index by a set of integers (here
1..2); that is, allowed values of tokens in PUMP are {pump(1),pump(2)}. Consider
using index types when you mathematically would have used index values like
pump1, pump2. We then have to define types for all places we wish to fold (here
Being Served, Free, and Served). We define these types as Cartesian products
of the identifier used to fold and the original types. If the original type was
UNIT, there is no need to keep it in the Cartesian product and we can just
use the identifier type. We have replaced CAR on Being Served and Served with
CARxPUMP and UNIT on Free with PUMP. Type CARxPUMP is declared as:

colset CxP = product CAR * PUMP;

This is the syntax for declaring a Cartesian product of preexisting types. We
can also declare Cartesian products of more than two types by adding them at
the end. We use the naming convention of using the original types (or the first
letters) separated by a lowercase letter x, but sometimes it may be more useful
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the pump used. Two alternative modules are shown: with (left) and without (right)
replicated net structure.

to give it a more descriptive name if the product has a meaning in the domain
of the model. Changing the types of places also requires us to change the initial
marking; in our example, this is simple, as only Free has a nonempty initial
marking. We add an initial marking of 1‘pump(1)++1‘pump(2), specifying that
initially both pump(1) and pump(2) are free for use. We also have to update all
arc expressions. In Fig. 13(right), we just carry around the pump id and the
car id, changing all inscriptions consisting of c to (c, p)—a pair of a car and a
pump—and all inscriptions consisting of () to p, the id of the pump.

Figure 14 shows a fragment of a slightly modified version of the gas station,
illustrating that we now only have to change the behavior once to change it for
all pumps. In this version, a pump is occupied until a customer has paid. We
have executed some steps of the model; for example, car Regular(7) is currently
being served at pump(1), whereas car Regular(3) is done and is about to pay for
the fuel taken from pump(2). There is no available pump at this time (i.e., Free
contains no tokens), and car Regular(5) has been served and paid (or refused
service) and is now done.
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In the examples we have seen here, we have treated each customer equally
regardless of the pump they use, but we could also discriminate depending on the
pump they use—for example, by inspecting the pump in the guard—introducing
different paths depending on which pump a car uses. In fact, the entire model
can be seen as a folded model in which the same procedure is shared for all cars.
All cars are treated almost the same, except that taxis are never rejected, as
seen by the guard of transition Reject. When we have a finite number of objects
having the same behavior, such as the two pumps, it is convenient to share the
net structure among them to avoid net replication. When we have an unbounded
number of objects, such as all cars, it is not only convenient, but even necessary,
as we would (theoretically) have to replicate the net structure an infinite number
of times to be able to distinguish them.

5 Advanced Modeling Concepts

The patterns, we presented in the previous section, cover constructs that fre-
quently occur in models of systems and processes. In this section, we present two
additional patterns: message broadcast and region flush [25,26]. These patterns
are more advanced than the previously presented patterns and cover constructs
that occur less frequently in models. Before presenting these patterns, we intro-
duce the concept of prioritized transitions, as supported by CPN Tools version
3.0, and illustrate how this concept can simplify the modeling of systems.
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5.1 Extending Transitions with Priorities

A CPN may have a reachable marking in which several conflicting transitions
are enabled. We refer to this situation as a nondeterministic choice. The marking
in the gas station module shown in Fig. 15(left) is an example of a nondeter-
ministic choice. The token in place Waiting models a waiting, regular car. This
marking constitutes two enabled bindings, one enabling transition Enqueue and
the second enabling transition Reject. Which of these two transitions fires is not
predetermined. In reality, this would mean that an arriving car may be rejected
even though the queue is not full yet. Because this situation is not desirable, we
need to adjust the model such that in the situation shown in Fig. 15(left) always
transition Enqueue fires. Earlier, in Sect. 4.3, we resolved this problem by adding
an inhibitor arc between Queue and Reject (see Fig. 12(left)). In the following,
we present another solution by prioritizing the firing of transition Enqueue over
the firing of transition Reject.

Priority or prioritized transitions is supported in CPN Tools from version 3.0
and onwards. The modeler can assign a priority to each transition: P HIGH ,
P NORMAL, and P LOW . The default value is P NORMAL. Alternatively, it
is also possible to specify the priority of a transition as an integer, where 0
represents the highest priority and larger numbers lower priorities. The built-in
priorities, P HIGH, P NORMAL, and P LOW correspond to the integer values
100, 1,000, and 10,000, respectively. The semantics of the model are defined by
calculating first all enabled transitions ignoring priority and then considering
only transitions with the highest priority. If there are multiple enabled binding
elements having the highest priority, then one of them is nondeterministically
chosen.

Figure 15(right) results from Fig. 15(left) by assigning value P HIGH to tran-
sition Enqueue—all other transitions have the default value P NORMAL, which
is not explicitly shown in Fig. 15(right). As a result, only transition Enqueue is
enabled in the marking shown in Fig. 15(right), because transition Reject has a
lower priority than Enqueue.

The example illustrates the advantage of extending CPNs with priorities,
namely simplicity of the model. The interplay of priorities is a global property
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Fig. 15. CPN model without priority (left) and where Enqueue has a higher priority
than Reject (right)
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of a CPN; that is, assigning a priority to a single transitions may affect the
enabling of all other transitions. Therefore, it is possible that the resulting CPN
allows for undesired behavior. As an illustration, suppose we assign P LOW to
Reject and P NORMAL to all other transitions. Having the lowest priority of all
transitions, Reject can only fire if it is enabled (in the setting without priorities)
and no other transition is enabled. However, this is never the case, because the
environment module can continuously produce tokens in Waiting. As a result,
Reject is dead.

Priorities simplify the modeling, but they do not increase the expressiveness
of CPNs. Every CPN with priorities can also be modeled as a CPN without
priorities. In Fig. 15(right), we can remove the priority from transition Enqueue
if we use an inhibitor arc and extend the transition guard of Reject, as shown in
Fig. 12(left). In general, expressing priorities between transitions without using
the concept of transition priorities is nontrivial, in particular, if the transitions
have disjoint presets.

5.2 Message Broadcast

Sometimes we need to model sending of a message to an unknown number of
objects. Such a task is referred to as a message broadcast . It is particularly useful
for modeling systems where many participants interact with each other (e.g.,
interorganizational business processes) and for message protocols. We illustrate
this pattern with the following modification of the gas station. Suppose that
there is a promotion at the gas station and every car driver who has refueled
her car gets a voucher before paying for the gas. The difficulty is that we do not
know the number of car drivers. The promotor would go to each car driver and
hand over the voucher. Figure 16, which is an extension of Fig. 13(right), shows
how we can model such a broadcast as a CPN.

Firing transition Start starts the procedure. First, we identify all car drivers
who should receive a voucher. To this end, transition Read stores a copy of all
tokens of place Served in a list in place Receivers. Each list entry refers to one
car driver who will receive a voucher. The guard of transition Read ensures that
the same token cannot be added twice to the list. Observe that this construction
is independent from the number of tokens in place Served. By assigning a high
priority to transition Read, we can make sure that Begin Broadcast can only fire if
there are still tokens in place Served that have not been added to the list in place
Receivers. When the list is complete, Begin Broadcast fires and the broadcast
starts. Note that transition Pay cannot fire, because Pending is unmarked. Firing
Begin Broadcast produces the length of the car list cs in Pending. Furthermore,
as variable cs is a list of cars and Vouchers is of type CAR, cs is unfolded and
for each list entry a single token is produced in Vouchers; that is, CPN Tools
automatically converts the list cs into a multiset of tokens for place Vouchers.
Transition End Broadcast models the distribution of the vouchers to each car
driver. After all car drivers have received a voucher, there is a token with value
0 in place Pending, thus enabling Pay and Start. If Start fires again, then every
car driver receives a second voucher.
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Fig. 16. Broadcasting vouchers to all car drivers who refueled their cars

5.3 Region Flush

Suppose that the gas station attendant is eager to stop working in time. Every
day at 6 p.m. he serves only the cars that are being refueled; all cars in the queue
will not be served anymore and have to drive on. To model this as a CPN, we
must move all tokens from place Queue to place Done and also reset the value
of place Capacity to 0, thereby making sure that transition Start Serving does
not fire while tokens from Queue are moved to Done. This is trivial if we have
modeled the queue using lists as in Fig. 12(left). However, when modeling the
waiting cars in the queue as individual tokens, things become more involved.
Figure 17(top) extends the model in Fig. 11(left) with this functionality. Tran-
sition Close models the closing of the gas station. It removes the token from
place Capacity. This token is needed to learn the number of cars in the queue
and to prevent transitions Enqueue and Start Serving from firing. After the queue
has been flushed—that is, all cars have been moved to Done—transition Open
models the opening of the gas station by initializing place Capacity again.5 Only
then transitions Reject and Start Serving can become enabled. In case we need
to flush more than one place, we must copy the pattern accordingly.

Removing tokens from a part of a CPN is referred to as region flush. The idea
is to disable the transitions in the respective part (i.e., the region) of the CPN
while removing all tokens from the places in the region. Afterward, the region is
optionally reset.

5 When adding explicit time, we can model that the gas station opens again at a
particular time (e.g., 9 a.m. the next day). Transition Open is not supposed to fire
immediately after closing the gas station; this needs to be governed by the time
concept explained in the next section.
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Using the concept of prioritized transitions, as introduced in this section, we
can generalize the model of a region flush. The respective CPN model is shown
in Fig. 17(bottom). Transition Flush reads a Boolean false from place Open,
moves a car token from place Queue to place Done, and decrements the value of
Capacity. As only Flush has a high priority, it can fire until the queue is empty
without being in conflict with any other transition. Transitions Close and Open
model the closing and opening of the gas station. Close produces a Boolean false
in place Open. If there is at least one car in the queue, then Flush is enabled
(because of its priority). Only after the queue has been flushed, transition Open
can change the Boolean in place Open to true, modeling that the gas station
opens again.

The advantage of using the pattern with priority in Fig. 17(bottom) is that
it is independent of the presence of complement place Capacity. In contrast,
Fig. 17(top) relies on place Capacity as it requires knowledge about the number
of cars to be removed; otherwise, we would not know when we have moved all
waiting cars to place Done and, hence, when we can open the gas station. Place
Flush is connected to place Capacity to update this complement place; it is not
used to see how many cars need to be flushed.

In Fig. 17, only one place is flushed (place Queue). The construct needs to be
copied per place. This may become quite involved, therefore, workflow languages
such as YAWL support this natively (see the cancellation pattern in [4,32]).

6 Modeling Time

Time is an important aspect in many systems. Let us, for example, consider the
gas station obtained by combining the modules in Figs. 6, 7(left), and 13(right)
(shown together as Fig. 18). In this example, we have modeled the serving of
customers as two transitions, Start Serving and End Serving, indicating that the
action of serving is not instantaneous. However, serving customers is an atomic
action in the sense that neither the car nor the pump can be used for anything else
during the feat. It would be more elegant to model serving as an atomic action
which takes time. The action of paying for the gas should also take time. In
this section, we look at how CPNs enable us to model timed aspects of systems
and use this to extract information about the performance of the system. As
shown in the next section, one can do experiments with a timed system using
the model, thereby extracting performance data that can be used as input for
decisions regarding the modeled system. For example, simulation can be used
to find out whether it is better for a gas station to acquire extra pumps or to
reserve more capacity for the queue if the number of customers doubles. We also
look at the difference between real and integer time stamps and the interaction
between timed models and prioritized transitions.

6.1 Time Basics

In CPNs, time is introduced by assuming a global clock representing the current
model time. We assign a time stamp to each token. A time stamp on a token
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Fig. 18. Untimed gas station

indicates when the token can be consumed. A token can only be consumed if
its time stamp is less than or equal to the current model time. In a sense, a
token with a time stamp in the future (compared to the current model time)
can be regarded as a promise that, at some point in the future, a token will be
produced. Hence, one can think of time stamps as reversed expiry dates: tokens
with a time stamp x can be consumed at time x or later.

Figure 19(left) shows a timed version of the gas station from Fig. 18. We have
merged the two Serve transitions into a single one and added an annotation @+5
to transition Serve. This annotation specifies that executing the transition takes
5 units of time (i.e., firing is atomic, however, the tokens are produced with delay
of 5 time units). In the same way, we have added an annotation to Pay that states
that paying takes 2 time units. We also see that the current marking of Waiting,
Pumps, and Paying reflects time stamps, so that Regular(1) in Waiting is available
at time 0 (due to @0 after the token value). Furthermore, we now join tokens
with different values using +++ instead of ++. This is merely a technicality
due to typing. We see that Taxi(0) has been served by pump(2) (it is on Served)
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Fig. 19. Simple timed version of the gas station (left) and environment (right)

and that Taxi(2) is currently in line to be served.6 As pump(0) is available at
time 0, the current model time is 0, and Serve is enabled at this time. Pay is not
enabled at time 0, however, as the token in Served is not available until time 5.
In a sense, the tokens (i.e., (Taxi(0),pump(2)) in Served and pump(2) in Pumps)
have not been produced yet; we have only a promise that in the future (in 5 time
units) the tokens will be produced.

Each pump can serve at most one car every 5 time units; that is, the time-
related annotations specify that serving a customer takes time and during that
time the pump is not available.

We have to specify for each type whether it is timed or not (we allow tokens
without a time stamp, which is a shorthand for a token that is always available).
We specify that a type should include a time stamp by adding the keyword timed
at the end of the declaration. In our example:

colset CAR = union Regular: INT + Taxi: INT timed;

colset PUMP = index pump with 1..2 timed;

colset CxP = product CAR * PUMP timed;

The model of the environment in Fig. 18 does not take time into account and,
therefore, produces cars that all appear at time 0. This causes all cars to enqueue

6 Although there is a token referring to Taxi(0) in place Served, the service has not
been completed yet (in fact, it just started). This can be seen by comparing the time
stamp of the token in place Served (@5) with the current model time (0).
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at this point. Thus, time will never progress, as time only progresses when there
are no more enabled transitions at a given time stamp. We therefore need to make
the environment time-aware. We would like that cars arrive at a constant rate,
but that the rate is different for taxis and regular cars. We could add separate
counters for each of the transitions and use a construction similar to the one used
for Serve and Pump, but instead we choose to add separate places with a single
token limiting the rate of the transitions. We use a timed UNIT as type and
place a single token in each place, obtaining the environment in Fig. 19(right).
We have not added time annotations to the transitions, but rather to the output
arcs. This enables us to produce tokens that are available at different times. In
Fig. 19(right), we have just executed Regular Arrive at time 0, yielding a car
Regular(0) on Waiting which is available at time 0, and a token () on Regular
Rate which is available at time 8. In this way, we have modeled that arriving
takes no time, but the transitions can only occur at a specified rate. The rate
for regular cars is once every 8 time units, and the rate for taxis is once every
13 time units. The token in Next Car ID is untimed and does not influence the
enabling of any transitions as it is always available.

6.2 Embedding Time Stamps in Tokens

Place Queue in Fig. 19(left) always contains one token (the queue) and this
token is always available as the place is untimed. Hence, the @+5 annotation of
transition Serve does not apply to this place. In this particular situation, this
is just fine; time progresses only in-between subsequent arrivals and because
it takes time to serve a car. Although the untimed queue works well in this
situation, there are situations in which an untimed queue cannot express the
desired behavior—for example, if the transition Enqueue takes time or to model
more complex priority and resource allocation rules, where the next time stamp
needs to be computed based on the entire queue. Therefore, we would like to
make the tokens of the queue timed as well, but this is not possible, because
whereas we think of the queue as a list of tokens, the list is a single token and
can therefore have only one time stamp. To fix this, we need to embed the time
stamps of the tokens in the queue. We do not have access to the time stamp of a
token (it is either available or not), but we do have access to the current model
time, and can use that to embed time stamps in the elements of the queue,
obtaining the model in Fig. 20. The idea is to not just store cars in the list
representing the queue, but a pair of the car and the model time the car arrived;
that is, we define the types:

colset CxT = product CAR * STRING;

colset CARS = list CxT timed;

var t : STRING;

Now, CARS is timed. We want the time stamp of the list token modeling the
queue to be the minimum of all time stamps in the queue. If the queue contains
no cars, we assign the current time to the queue. We need to convert the model
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time to and from strings, as there is no type in CPN Tools that directly corre-
sponds to the type of the model time. For this purpose we define the following
function:

fun modelTime() = ModelTime.toString(ModelTime.time())

Moreover, we need to compute the time stamp of the queue. Therefore, we define
function unwrap time, which takes as list of cars and returns the same list, but
with a time stamp equal to the time stamp of the first car in the list.

fun unwrap_time([]) = [] @ (ModelTime.time())

| unwrap_time((c, t)::rest) =

((c, t)::rest) @ (ModelTime.maketime t)

fun append(cs, c) = unwrap_time(cs ^^ [(c, modelTime())])

Function append adds a new car to the end of the list together with its arrival
time converted to string format. Moreover, using unwrap time the time stamp of
the whole list is computed.

6.3 Ignoring Time Stamps of Tokens

After adding a time stamp to Queue, we need to make some minor changes
to other transitions surrounding it so they are not wrongly delayed. First, we
have changed Serve to no longer have a time inscription, but to instead only
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delay the pump and car moved to Served, as unwrap time takes care of delaying
the queue the correct amount. If we kept the time inscription, the time stamp
of the queue might also be delayed 5 time units, resulting in a car not being
served immediately even though a pump is available. Second, we have added
time inscriptions to the arcs from Queue to Enqueue and Reject. The inscription
uses MAXINT, which is a constant, declared as:

val MAXINT = Option.valOf (Int.maxInt)

An inscription on an input arc means that the token can be consumed the indi-
cated time units before it is really available, so consuming it MAXINT time units
before basically says to ignore the time stamp. This allows us to reject or enqueue
a car even though the queue is not currently available. Although transition Serve
needs to wait until the first car is available, the queue can be updated at any time.
In this situation, this is not required, but the example shows that we can have full
control over time even when objects are put in a list.

6.4 Real Time and Random Distributions

Until now we have used constant delays and rates on all transitions. This is not
realistic. Often we would rather know that something has an average delay or rate
and perhaps even a guess (or assumption) about how the values are distributed.
We thus wish to replace the delays and rates by values resulting from drawing a
random number using a given distribution. However, most random distributions
occurring in practice, especially randomly distributed times, are not integers. In
previous versions of CPN Tools, we would need to scale the random values to a
desired precision and convert the randomly drawn values to integers. But from
version 3.0 and onwards, CPN Tools supports using real time stamps. Changing
time stamps to be real values, we can create a new environment as in Fig. 21. We
have changed only the inscriptions on arcs indicating the rates. Rather than using
a constant value, we draw values from the exponential function, which randomly
samples values from a negative exponential distribution, which is appropriate
for modeling arrival rates. The exponential function is given a parameter λ, and
it draws values with a mean value of λ−1, which is why we write 1.0/13.0 rather
than 13.0. We use inscription @++ rather than the inscription @+. This is needed
when we want to make increments that are not integers. Figure 21 shows that
the tokens now have time stamps that are not integers.

We would naturally like to make an implementation of the gas station also
using randomly generated delays. Figure 22 shows an example. We have changed
the time inscription of Pay to randomly draw a value from the normal distribu-
tion with a mean value of 2 and a variance of 1.7 Transition Serve has become
a bit more complex, as we want the car and pump to complete at the same
time, so we cannot just add two calls to normal, as that would draw a random
value for each. Instead, we have added a code segment to Serve, which outputs

7 Note that the normal distribution is not a very suitable delay distribution as it may
generate negative values that are effectively treated as zero’s, thus shifting the mean.
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a variable d and draws a value from a normal distribution with mean 5 and
variance 2, converting it to a string (as variables cannot have type time). The
time inscriptions use variable d and convert it into a time stamp.

6.5 Time and Priorities

The interplay of priorities on transitions as explained in Sect. 5.1 and time as
explained earlier in this section is nontrivial, as they are both global properties.
The basic rule is that time takes precedence over priorities, so if a low-priority
transition is enabled at time 12, but a high-priority transition is enabled at
time 15, the low-priority transition will be executed first. The intuition of the
interplay of transition priorities and time is that simulation progresses along a
time-line. At each point in time, we evaluate which transitions are enabled and
execute the ones with the highest priority first. We then execute all transitions
enabled at the current model time in a highest priority first order until no more
transitions are enabled, at which point we increase the current model time and
start anew.

In the gas station example, if we combine the model in Fig. 15 with the one
in Fig. 19(left) (i.e., we add time stamps to the model in Fig. 15), we obtain the
model in Fig. 23. Here, Served is enabled even though there are enough tokens
for Enqueue to be enabled. The reason is that Regular(4) arrived at time 16, and
the current model time is 16, at which point Serve is enabled (if tokens were
enabled at the time, it would be enabled already at time 0 for pump(1) and
at time 13 for pump(2)). Enqueue is not enabled until time 26, when Taxi(5)
becomes available. So, even though Enqueue has high priority and all available
tokens, it is preempted by Serve, which is enabled earlier.
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6.6 Different Timing Concepts

Many different timing concepts have been introduced in the literature. Authors
associate time to transitions, places, or arcs. In most timed Petri net models, tran-
sitions determine time delays. In only a few models, time delays are associated to
places or arcs. Independent of the choice where to put the delay (i.e., transitions,
places, or arcs), several types of delays can be distinguished, for example, deter-
ministic (the delay is fixed), nondeterministic (the delay is a non-deterministic
choice over an interval [1,23]), and stochastic (the delay is sampled from some
probability distribution [22]). Even when the location of the delays and the type
of delay are determined, there are still many possibilities. Adding time to Petri
nets requires a redefinition of the enabling and firing rules. For example, when
time is associated to transitions and delays are stochastic, one can use preselec-
tion semantics (i.e., first the transition to be fired is selected and only then the
delay is determined) or race semantics (i.e., transitions are competing for tokens
and the transition that finishes first takes the tokens). In the later case one needs
to select a memory policy (age memory, enabling memory, or reset memory). This
illustrates there are many ways to add time to Petri nets.

Generalized Stochastic Petri Nets (GSPNs) [9] are probably the most widely
used Petri net model focusing on the time extension. This model allows for two
types of transitions: transitions that do not take time (immediate transitions)
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Fig. 23. Gas station with priorities and time stamps. The current time is 16

and transitions that have an enabling time that is sampled from a negative
exponential distribution. Due to the memoryless property of the exponential
distribution and the race semantics, it is possible to convert a GSPN into an
embedded Markov chain, thus allowing for all kinds of analysis [22].

Most of the timed Petri net models described in literature have been tailored
towards a particular analysis technique. Unfortunately, Petri net modeling lan-
guages using stochastic delays tend to impose restrictions to allow for Markovian
analysis. Most Petri net modeling languages using fixed times or time bound by
intervals also impose restrictions to allow for model checking.

CPNs aim at the modeling of large and complex processes. As shown in earlier
sections, this requires tokens to be colored. Places may have types that cannot
be enumerated (e.g., lists). In fact, Markovian analysis and model checking are
unrealistic for applications that use the patterns described earlier; the state
spaces of such models are simply too large to allow for exact analysis. Therefore,
we need to resort to simulation. As a result, we do not have to put any restrictions
on time and, therefore, we can select the most convenient and intuitive time
extension.

Since tokens already have a value, it is most natural to also attach time
stamps to tokens [1,15,18]. Since time inscriptions can be put on both input
and output arcs and it is possible to inspect the current time (see Fig. 22), the
designer has full control over the time in CPN Tools. Any of the timed Petri net
models described in literature can be emulated. However, performance analysis
is restricted to simulation.

7 Simulation

As indicated in the previous section, we need to resort to simulation to analyze
the performance of complex processes. Therefore, we focus on this type of analy-
sis. First, we position simulation in the broader spectrum of analysis techniques.
Then, we show how to construct simulation models and how to monitor them.
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Finally, we explain how to interpret the results and illustrate this by comparing
different redesigns for our running example.

7.1 Overview of Analysis Techniques

The idea of simulation is to take an executable model (e.g., a CPN) and let it
run several times. Each run can be seen as an experiment and corresponds to
a “random walk” in the state space of the model. Even if it is impossible to
construct the entire state space, it is possible to do such experiments; just “play
the token game” repeatedly. A model may allow for infinitely many scenarios,
that is, possible runs. Because only a finite number of scenarios can be executed,
only a fraction of the entire state space can be explored. Consequently, simulation
can, unlike verification, be applied to verify only the presence of errors and not
their absence.

Verification of CPNs is challenging. Because of the introduction of data and
time, the state space tends to be large, if not infinite. The only way to use model
checking techniques effectively, is to limit the use of data and time. Typically,
one needs to abstract from time and use types with a limited number of possible
values. We refer to other papers in this ToPNoC volume that focus on this topic
and that introduce techniques such as reachability graphs, coverability graphs,
unfoldings, invariants, siphons, and traps.

Simulation is widely used for performance analysis. Performance analysis tries
to make predictions about key performance indicators, such as response time and
flow time, and to detect possible bottlenecks. The goal is to understand the as-is
situation and to compare this with possible to-be situations.

Lion’s share of Petri net research has focused on model-based analysis; that is,
by analyzing a model, one hopes to be able to make meaningful statements about
an as-is or to-be situation. However, such analysis only makes sense if the model
reflects reality. Simulation results are irrelevant if the model has little in common
with reality. Therefore, we advocate the use of process mining techniques in case
event logs are available. Process mining [2] aims to discover process models from
example behavior captured in different data sources (e.g., databases, transaction
logs, and audit trails) and to relate existing models to such behavior. As shown
in [27], it is possible to discover CPNs from events logs. Such CPNs model the
control-flow of cases, resources, resource allocation, dataflow, routing probabili-
ties, and routing conditions. In the context of workflow management systems, it
is even possible to upload the current state of such a system into a CPN model
and conduct short-term simulation [28]. Unlike classical simulation approaches
that focus on steady-state behavior, the goal of short-term simulation is to make
predictions about the near future to answers questions such as “How many or-
ders will we have in the pipeline next week?”, “What is the expected average
response time tomorrow?”, and “What will be the average flow time by the end
of next week if I temporarily add two workers?”. The focus of short-term simu-
lation is on the transient behavior. This allows for a “fast forward button” into
the future.
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In the remainder of this section, we assume that we are able to create a CPN
model that adequately reflects reality. Moreover, we focus on the steady-state
behavior of processes. Nevertheless, we encourage the reader to consult [27,28] for
more information about the alignment between reality and simulation models.

7.2 Adding Stochastic Behavior to a CPN

In Sect. 6 we showed how to add time to models. In our running example, cars
are generated using a Poisson arrival process. This means that the time between
two subsequent arrivals is sampled from a negative-exponential probability dis-
tribution. In any situation where there is a large population of potential entities
that can generate requests (e.g., customers refueling their cars), a Poisson ar-
rival process is most natural. One can show that if these entities are in steady
state and independent, their behavior will always resemble a Poisson arrival pro-
cess. To model the time it takes to refuel a car, we also need to use a probability
distribution. Earlier, we used the normal distribution. CPN supports many prob-
ability distributions suitable for modeling time durations. Table 1 shows some
examples.

Table 1. Random distribution functions

Function Description

uniform(a:real,b:real):real For b > a, uniform(a,b) samples a value from a uniform
distribution with mean (a+ b)/2.

exponential(r:real):real For r > 0, exponential(r) samples a value from an expo-
nential distribution with mean 1/r.

erlang(n:int,r:real):real For n ≥ 1 and r > 0, erlang(n,r) samples a value from
an Erlang distribution; that is, the sum of n independent
exponentially distributed values with parameter r. The
expected value is n/r.

normal(n:real,v:real):real For v ≥ 0, normal(n,v) samples a value from a normal
distribution with mean n and variance v.

Let us now revisit our running example. Figure 24 shows another variant
of the gas station. At the highest level, we now distinguish between cars that
were served (place DoneS) and cars that were rejected (place DoneR). We use
a Poisson arrival process to generate cars. The mean time between subsequent
arrivals of taxis is 12 minutes. Regular cars arrive, on average, every 6 minutes.
Hence, on average, 5 + 10 = 15 cars arrive per hour. In our initial situation we
have only one pump; that is, FreePumps contains only one token. We split the
service transition into a StartServe and EndServe transition to explicitly show
when a pump is busy or free. Transition Pay is still atomic and is an “infinite
server”; that is, the transition takes time, but cars do not need to wait for one
another.
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Fig. 24. The initial CPN used for simulation. Taxis and regular cars arrive using a
Poisson process. The mean time in-between two taxis is 12 minutes. The mean time
in-between two regular cars is 6 minutes. The service time and the time it takes to pay
are sampled from a uniform distribution.

Figure 24 uses the following types:

colset STIME = string;

colset BCAR = product INT * STIME;

colset CAR = union Regular: BCAR + Taxi: BCAR timed;

colset CARS = list CAR;

colset PUMP = index pump with 1..1 timed;

colset CARxPUMP = product CAR * PUMP timed;

The types are self-explanatory, except for the addition of STIME. Every car has
a unique ID of type INT and a creation time of type STIME. We use function
modelTime defined earlier to inspect the global clock and convert the current
type to a string such that it can be stored in a token. The creation time of a car
has been added to measure flow times; that is, we measure the difference in time
between the moment a car leaves module Environment and when it returns.

Additional declarations used in Fig. 24 are:
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val MAX_CAPACITY = 3;

fun st(c) = uniform(2.0, 5.0);

fun pt(c) = uniform(1.0, 2.0);

val SL = 100000;

In our initial simulation model, we allow for 3 cars to queue. The time it takes to
refuel a car is between 2 and 5 minutes (uniform distribution). The time it takes
to pay is between 1 and 2 minutes (uniform distribution). For each simulation
run, we create 100,000 cars. This is reflected by parameter SL used in module
Environment.

7.3 Monitoring a CPN

Figure 24 only models the process we would like to analyze without modeling
the measurements required for analysis. However, to extract simulation results,
this is not sufficient; we need to indicate what kind of results should be collected
(e.g., flow times, utilization, costs). In general, we would like to avoid “polluting”
the model with extensions to collect statistics. This is why CPN Tools offers
the possibility to add monitors. The idea of a monitor is to collect data from
markings that are reached and bindings that are enabled during the simulation
runs. For example, a Marking size monitor counts the average number of tokens
in a place. In Fig. 24, we add two such monitors; one for place FreePumps and
one for Busy. The average number of tokens in Busy divided by the number of
pumps, indicates the average utilization of these pumps. To measure the average
number of cars queueing, we add a List length data collection monitor for place
Queue.

These monitors can be added without any effort. Just select the desired mon-
itor and attach it to the corresponding place.

Measuring the flow time requires a bit more effort. We added the creation
time of a car to the type CAR. In addition to an ID, a car also has a value of
type STIME indicating the time it was created by the Poisson arrival process in
module Environment. Transition LeaveS in module Environment consumes cars
that have been served (see Fig. 24). This transition fires the moment the car has
been refueled and payment has been completed. Hence, the difference between
the time LeaveS fires and the time stored in STIME field of the car token is
the flow time of a car. Obviously, we are interested in this duration. Later, we
explore various alternatives and analyze their effect on the average flow time of
cars that have been served. Using a Data collection monitor, we can measure
the flow time. This monitor simply stores measurements. In this case, we need
to specify that we are interested in the difference between the creation time
and current time. Subsequently, these measurements are used by CPN Tools to
calculate statistics such as average, variants, upper bounds, and lower bounds.

Cars that have not been served have a flow time of 0. Therefore, we do not
need to measure the flow time for such cars. However, we want to measure the
fraction of cars that is rejected. Again we use aData collection monitor. However,
now we do not measure the flow time, but measure whether a car was rejected
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(record a value 1) or not (record a value 0). Hence for each car we record 0 or 1.
By computing the average over these values, we know the fraction of cars that
was rejected in the simulation run.

7.4 Interpreting the Results

After extending the simulation model shown in Fig. 24 with monitors, we can
execute a simulation run in which 100,000 cars are generated (see parameter SL)
and inspect the simulation results. For a particular simulation run, we find that:

– The average length of the list token in Queue is 0.915835;
– The mean number of tokens in Busy is 0.802938;
– The mean number of tokens in FreePumps is 0.197062;
– The average flow time of served cars is 9.001130 minutes; and
– The fraction of cars rejected is 0.089430.

Hence, the utilization is approximately 80% and on average about one car is
waiting to be served. The average flow time is approximately 9 minutes and
about 9% of the cars is rejected.

Based on one simulation run, we cannot make any conclusions. In another
simulation run, the previous results could be different. Therefore, we need to
compute confidence intervals. By repeating the simulation experiment several
times, we can get an idea of the reliability of the results. Suppose that we repeat
the experiment 10 times and measure the flow time for each simulation run. If
the 10 values are close to one another, then we can be confident that the result
is reliable. If the 10 values are far apart, then this is an indication that more or
longer simulation runs are needed. Using standard statistical methods, one can
compute confidence intervals based on subruns. For an introduction to subruns
and confidence intervals in the context of CPNs, we refer to [6]. Here, we just
show the results.

If we compute confidence intervals based on 10 simulation runs in which
100,000 cars are generated (i.e., the behavior of 1,000,000 cars is analyzed),
then we get the following 90% confidence intervals:

– The average length of the list token in Queue is 0.900± 0.006; that is, with
90% confidence the average is between 0.894 and 0.906;

– The mean number of tokens in Busy is 0.798 ± 0.001; that is, with 90%
confidence utilization is between 0.797 and 0.799;

– The mean number of tokens in FreePumps is 0.201±0.001; that is, with 90%
confidence the mean number of free pumps is between 0.200 and 0.202;

– The average flow time of served cars is 8.945± 0.020 minutes; that is, with
90% confidence the average flow time is between 8.925 and 8.965; and

– The fraction of cars rejected is 0.088 ± 0.001; that is, with 90% confidence
we can conclude that between 8.7% and 8.9% of cars is not served.

Confidence intervals allow us to compare different alternatives. CPN Tools au-
tomatically calculates these intervals when the user uses the command:
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CPN’Replications.nreplications 10

To create more subruns, the parameter of this command can be modified. As
discussed in [6], there is a tradeoff between the number of subruns and the length
of each run.

7.5 Comparing Alternatives

After creating the CPN shown in Fig. 24 and adding the monitors, it is easy to
explore various alternative models and compare them. Table 2 shows the results
for the original model (i.e., Fig. 24) and three alternative models.

Table 2. Statistics of the original process and three redesigns (confidence interval of
90%)

Process average average average average fraction
queue number of number of flow of cars
length pumps free pumps busy time rejected

original 0.900 ± 0.006 0.201 ± 0.001 0.798 ± 0.001 8.945 ± 0.020 0.088 ± 0.001
extra places 1.732 ± 0.014 0.154 ± 0.001 0.846 ± 0.001 12.157 ± 0.050 0.032 ± 0.001
2nd pump 0.107 ± 0.001 1.129 ± 0.002 0.871 ± 0.002 5.431 ± 0.003 0.004 ± 0.001
faster pump 0.389 ± 0.002 0.401 ± 0.001 0.599 ± 0.001 5.541 ± 0.009 0.022 ± 0.001

In the original CPN, MAX CAPACITY was set to 3, indicating that at most
three cars can queue. If there are three cars in the queue and a fourth one arrives,
it is rejected (transition Reject fires). Table 2 shows what happens if three more
places are added; that is, MAX CAPACITY is set to 6 meaning that up to six
cars can queue. More cars are being served, but waiting times and the average
queue length get longer. The flow time increases from approx. 9 minutes to 12
minutes, whereas the percentage of rejected cars decreases to approx. 3%. As
the confidence intervals are narrow and non-overlapping, it is justified to make
such conclusions.

Instead of adding additional space to wait, we also consider adding an extra
pump. This can be done by adding another token to place FreePumps. This
change is costly, but has a positive effect on all performance indicators. As
Table 2 shows, the flow time drops to approx. 5 minutes and less than 0.5%
of cars are rejected.

The last row of Table 2 shows what happens if we replace the original pump
by a new one that is 30% faster. This alternative is realized by changing the
function that models the service time:

fun st(c) = uniform(1.4,3.5);

The flow time of this alternative is comparable to adding another pump, but
more cars are rejected (approx. 2%).
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Each of the three redesigns mentioned in Table 2 can be modeled in less than
a minute. This illustrates that simulation using CPN Tools allows for a quick
exploration of different alternatives.
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Fig. 25. Changes required to model that taxis have a dedicated pump, i.e., there are
two pumps, one for taxis and one for regular cars

To conclude this section, we look at three more redesigns that all distinguish
between regular cars and taxis. Figure 25 shows the adaptations needed to add
an extra pump such that the new pump is only used by taxis whereas the existing
pump is used for regular cars. The type PUMP has now two possible values P taxi
and P regular and initially there is one of each. The guard of StartServe ensures
that the pumps are used for serving the right type of cars.

Table 3 shows the simulation results. The performance is not as good as adding
an extra pump that can be used by any type of car. The flow time increases from
5.431 ± 0.003 to 6.800 ± 0.008 and the fraction of rejected cars increases from
0.004 ± 0.001 to 0.033 ± 0.001. There are two reasons for this. First of all, it
may be that there are three taxis waiting while the pump for regular cars is free;
that is, capacity is unused at times. Second, it may even be that the first car in
the row is “blocking” other cars that could be served. For example, consider the
scenario with two taxis and two regular cars. If one taxi is being served while
the other taxi is first in line, then the two regular cars get blocked even though
their pump is idle.

Table 3 shows results for all cars and results for taxis and regular cars sepa-
rately. Note that the waiting time of taxis is lower, because on average only 5
taxis arrive each hour, whereas on average 10 regular cars arrive each hour.

Next, we consider the situation where taxis have priority; that is, as long
as there are taxis waiting, regular cars are not served. This can be realized by
simply sorting the queue such that taxis are always in front of the queue. Table 4
shows the results. The overall flow time is comparable to the original situation.
However, taxis have, on average, shorter waiting times than regular cars.

The last redesign we consider, reserves the places in the queue for taxis. Taxis
can queue as long as there are free slots in the queue. However, regular cars



Strategies for Modeling Complex Processes Using CPNs 49

Table 3. Statistics for the redesign with a dedicated pump for taxis and a dedicated
pump for regular cars (confidence interval of 90%)

average average average average fraction
queue number of number of flow of cars
length pumps free pumps busy time rejected

all cars 0.435 ± 0.002 1.153 ± 0.001 0.847 ± 0.001 6.800 ± 0.008 0.033 ± 0.001
taxis 6.281 ± 0.010 0.033 ± 0.001
regular cars 7.058 ± 0.008 0.033 ± 0.001

Table 4. Statistics for the redesign with a single queue where taxis have priority
(confidence interval of 90%)

average average average average fraction
queue number of number of flow of cars
length pumps free pumps busy time rejected

all cars 0.900 ± 0.004 0.201 ± 0.001 0.798 ± 0.001 8.944 ± 0.014 0.088 ± 0.001
taxis 6.857 ± 0.007 0.088 ± 0.001
regular cars 9.988 ± 0.021 0.088 ± 0.001

can only enter the queue if no other cars are waiting. Hence, regular cars are
always rejected unless the queue is empty. Figure 26 shows how the model can
be adapted to realize this redesign. The guards of transitions Enqueue and Reject
are modified to enforce the new policy. Table 5 shows the results. Compared to
the original situation, the fraction of rejected cars increased from 0.088±0.001 to
0.200± 0.001; that is, approximately twice as many cars are rejected. However,
fewer taxis are rejected (only 0.005±0.001) and the flow time reduced decreased
for all cars (both taxis and regular cars).

The last three redesigns show that it is easy to use properties of the car when
defining policies. This demonstrates the power of CPNs compared to timed Petri
nets that do not incorporate data.
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Table 5. Statistics for the redesign in which regular cars can only queue if the queue
is empty (confidence interval of 90%)

average average average average fraction
queue number of number of flow of cars
length pumps free pumps busy time rejected

all cars 0.346 ± 0.001 0.300 ± 0.001 0.700 ± 0.001 6.730 ± 0.007 0.200 ± 0.001
taxis 7.475 ± 0.014 0.005 ± 0.001
regular cars 6.204 ± 0.003 0.297 ± 0.001

8 Conclusion

Colored Petri Nets (CPNs) enhance classical Petri nets with commonly agreed
upon extensions such as data, hierarchy, and time. The resulting modeling lan-
guage is highly expressive and is supported by CPN Tools, a powerful software
tool for the modeling and analysis of CPNs.

This paper used a running example to explain several design patterns for
modeling in terms of CPNs. These patterns guide users in modeling complex
processes that require interplay of control-flow and data-flow. We showed exam-
ples of simple patterns and more involved ones.

We also introduced the new features of CPN Tools. Version 3.0 supports
priorities and one can now use real values as time stamps. Moreover, the new
simulator is up to twice as fast and is now also supported on 64 bit platforms.
These improvements facilitate simulating complex processes. Using our running
example, we showed that it is easy to generate various alternative designs and
using simulation to compare them.

We hope that this paper will help students, researchers, system designers
and process analysts to make better models in less time. For a more in-depth
discussion on modeling in terms of CPNs, we refer to [6,19]. For the software
and examples, we refer to CPN Tools Web page http://cpntools.org.
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Appendix: CPN Patterns

In this paper, we used and described several CPN patterns without explicitly
enumerating them. This way we could focus on the running example and the
process of modeling in terms of CPNs. In this appendix, we list the patterns
described in [25,26]. This was the first systematic collection of design patterns
for CPNs. Note that this collection was based on constructs described in books
such as [6,15,18,19] and examples on the CPN Tools website.

1. ID Matching: to make identical information objects distinguishable. This
pattern is used in most CPN models shown in this paper. For example,
individual cars are distinguished using type CAR.

2. ID Manager : to ensure uniqueness of identifiers used for distinguishing iden-
tical objects. The places labeled Next Car ID in Figs. 1, 7(left), 19(right), 21,
and 24(right) are used to realize this pattern, i.e., each car gets a unique ID.

3. Aggregate Objects : to allow manipulation of a set of information objects as a
single entity. The queue pattern is a specialization of this pattern and used
in various versions of the gas station module (see below). Place Receivers in
Fig. 16 is another example implementing this pattern.

4. Queue: to allow manipulation of the queued objects in a strictly specified
order. The places labeled Queue in Figs. 12(left), 18(left), 19(left), 20, and
24(left) are used to realize this pattern, i.e., cars are put into a list to enforce
a particular order.

5. FIFO Queue: to allow manipulation of objects from the collection in a strictly
specified order such that an object which arrived first is consumed first. The
places labeled Queue in Figs. 12(left), 18(left), 19(left), 20, and 24(left) are
used to realize this pattern, i.e., cars are put into a list and when a pump
becomes available the car that queued first is taken.

6. LIFO Queue: to allowmanipulation of objects from the collection in a strictly
specified order, such that the mostly recently added object is retrieved first.
Most queues in this paper use a FIFO order. By taking the last element from
the list rather than the first, a FIFO queue can be converted into a LIFO
queue.

7. Random Queue: to allow manipulation of objects from the collection such
that objects are added to the queue in any order, and an arbitrary object is
consumed from it.

8. Priority Queue: to allow manipulation of objects from the collection in the
order of the objects’ priority. Table 4 shows simulation results for a CPN
model using this pattern.

9. Capacity Bounding: to prevent over-accumulation of objects in a certain
place. This was the main topic of Sect. 4.1. See place Being Served in Fig. 9
(middle) and place Queue in Fig. 9(right). Both places are bounded by a
complement place. The pattern is also used in Figs. 10, 11, 12, 13, 14, 17,
18(left), 19(left), 20, 24(left), and 25.
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10. Inhibitor Arc: to support “zero-testing” of places. Transition Reject in
Fig. 10(left) can only fire if place Queue contains two tokens and, hence,
all free places are taken. Fig. 10(right) models this more explicitly by adding
a place that counts the number of free places. In Fig. 26, regular cars can
only queue if no taxis are waiting.

11. Colored Inhibitor Arc: to support “non-containment” property of places.
12. Shared Database: to enable centralized storage of data shared between multi-

ple transitions, supporting different levels of data visibility (i.e. local, group,
or global).

13. Database Management : to specify the interface of accessing data, stored in
a shared database for read-only and modification purposes.

14. Copy Manager : to make data stored in the shared database available at
other locations for local use, while maintaining the consistency of data in all
places.

15. Lock Manager : to synchronize access to shared data by means of exclusive
locks. The fuel stations are shared resources that can only be used by one
car at a time. In Fig. 25 taxis and regular cars have a dedicated pump. This
can be seen as a form of locking.

16. Bi-Lock Manager : to synchronize access to shared data for reading and writ-
ing purposes by means of shared and exclusive locks.

17. Log Manager : to record the information about actual process execution by
means of a data log.

18. Blocking State-Independent Filter : to prevent data non-conforming to a cer-
tain property from passing through.

19. Blocking State-Dependent Filter : to prevent data non-conforming to a prop-
erty involving the state of an external data-structure, from passing through.
Transition Reject in many of the variants of the gas station module is only
allowing cars to queue if the queue is not full yet. Consider for example the
two variants shown in Fig. 10. Taxis that cannot enter the queue will not
be rejected; they are blocked until the queue is not fully occupied anymore.
This can be seen as a variant of this pattern.

20. Non-Blocking State-Independent Filter : to filter-out data fulfilling a certain
property while avoiding accumulation of non-conforming data in the filter
input place.

21. Non-Blocking State-Dependent Filter : to filter-out data non-conforming to
a property, involving the state of an external data-structure, while avoid-
ing accumulation of non-conforming data in the filter input. Consider for
example the two variants shown in Fig. 10. Regular cars that cannot enter
the queue are immediately rejected; as long as the queue is fully occupied,
regular cars are filtered out. This can be seen as a variant of this pattern.
Another example is Fig. 26 where regular cars can only queue if no taxis are
waiting.

22. Translator : to enable coordinated communication between two actors with
originally different data formats.

23. Asynchronous Transfer : to allow transportation of data from one location
to another, while avoiding the sender to block. The environment module in
Fig. 6 does not block while sending cars to the gas station module.
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24. Synchronous Transfer : to allow transportation of data from one location to
another, ensuring that an actor, which posted a request, is blocked until it
does not receive the requested information.

25. Rendezvous : allow multiple actors to broadcast and discover data objects
concurrently.

26. Asynchronous Router : to enable asynchronous transfer of data from a single
source to a dedicated target, providing loose coupling between the source
and targets connected to it.

27. Asynchronous Aggregator : to provide a holistic view of data, produced by
multiple unrelated sources through asynchronous data aggregation.

28. Broadcasting: to allow broadcasting of data from a single source to multiple
targets, while avoiding direct dependencies between them. Section 5.2 shows
how to realize a broadcast (see for instance Fig. 16).

29. Redundancy Manager : to prevent the transfer of duplicated data between
loosely-coupled actors who communicate asynchronously.

30. Data Distributor : to support parallel data processing by distributing data
between several independent actors.

31. Data Merger : to compose a single information object out of several smaller
ones when all parts required for composition become available.

32. Deterministic XOR-Split : to allow at most one transition out of several pos-
sible to execute, based on fulfillment of mutually excluding data conditions.
Transitions Enqueue and Reject in Fig. 24(left) form a deterministic XOR-
split.

33. Non-Deterministic XOR-Split : to allow any transition out of several possible,
but satisfying the same data condition, to execute. Transitions Serve and
Reject in Fig. 1 form a (partially) non-deterministic XOR-split; regular cars
can be served or rejected in a non-deterministic manner.

34. OR: to allow any number of tasks to be selected for execution based on the
fulfillment of a certain data condition.

Some of the patterns just mentioned (e.g., the Queue and Capacity-bounding
patterns) are used frequently in this paper, others are not used at all. The 34
patterns described in [25,26] focus on data management and communication.
This explains why several patterns are not used in our running example. Some
of the patterns presented in this paper are closer to the workflow patterns men-
tioned in Sect. 1 [4,32] rather than the original CPN patterns. For example,
the Region Flush pattern discussed in Sect. 5.3 is closely related to the Cancel
Region pattern in [4,32]. Moreover, compared to the original CPN patterns in
[25,26], we put more emphasis on time (see Sect. 6 and Sect. 7).
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Abstract. Communication protocols constitute central building blocks
in most modern IT systems as they define components, rules, and lan-
guages that make data communication possible. The development of cor-
rect protocols is a challenging engineering discipline, making modelling
and validation of protocol design an important application domain for
Coloured Petri Nets (CPNs). We illustrate the practical application of
CPNs for protocol validation by focusing on selected aspects of four re-
cent projects involving industrial-sized protocols. These projects demon-
strate how CPNs can be used to model protocol elements and improve
protocol specifications, how state space exploration can be used to verify
protocol properties, and how behavioural visualisation in combination
with a CPN model provides an effective way of rapidly constructing an
executable prototype of a protocol design.

1 Introduction

Communication protocols play an important role in most IT systems. A promi-
nent example is the vast amount of web applications that are in use today for,
e.g., online banking, shopping, government administration, and entertainment.
The services provided by these applications all rely on the protocols governing
the operation of the Internet. Other examples are telecommunication systems,
logistic systems with sensors and actuators, and control systems in vehicles.
All these systems rely heavily on communication and synchronisation between
concurrently executing software components and subsystems. As protocols are
to support still more complex services that are critical to both the operation of
companies and the everyday life of citizens, it is important that they are working
correctly already from the initial deployment.

Protocol engineering [80] typically involves a specification of the service that
the protocol is to provide. Through a synthesis or design step, a protocol design
is developed with the aim of providing the desired service. For protocol de-
sign, functional and performance validation can be conducted to investigate and
reason about the properties of the design. Functional validation focuses on the
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logical correctness of the protocol such as the absence of deadlocks and livelocks,
that a request is always followed by a response, or whether the proposed protocol
design provides the desired services. Performance validation is concerned with
quantitative properties such as delays, throughput, and response time. Even-
tually, the protocol design is implemented and may then be subject to further
testing.

Protocol design is in many cases a challenging task. One reason for this is
that the execution of a protocol can proceed in different ways, e.g., depending on
which messages are lost in transmission, the scheduling of the protocol entities,
the time at which events are received from the environment of the protocol,
and the execution path taken by the protocol entities. Another reason is that a
protocol by nature involves independently scheduled entities which makes testing
and reproduction of executions difficult. All this means that protocols often have
a very large number of possible executions. In this process, it is easy for a protocol
engineer to overlook important interaction patterns which may in turn lead to
gaps or malfunction of the protocol.

The specification of the protocol service and the protocol design is, in many
cases, based on natural language descriptions. One example of this is the Request
for Comments (RFC) documents published by the Internet Engineering Task
Force (IETF) [47]. Natural language specifications of protocols often have many
issues that needs to be resolved before a properly working implementation can
be obtained. One class of issues originates from the fact that such specifications
are inherently ambiguous making it difficult to achieve inter-operability between
independent implementations. Another source of issues to resolve is that the
specifications are often incomplete in that the behaviour of the protocol is not
described for all cases.

The challenges outlined above have made protocols a prominent application
domain for formal description techniques [46], including Petri Nets [93, 97]. In
this paper we concentrate on the use of Coloured Petri Nets (CPNs) [56, 59, 61]
for modelling and functional validation of protocol designs. Our purpose is to
provide an introduction to, and an overview of, how CPNs have been applied for
practical validation of protocol designs. We approach this by presenting selected
parts of CPN models and associated results originating from projects conducted
in an industrial context with industrial-sized protocols. More specifically, we
present in the core of this paper the application of the CPN modelling language,
tools, and techniques for functional validation of the following protocols:

The DYMO Routing Protocol. The Dynamic On-Demand Routing Protocol
for Mobile Ad-hoc Networks (DYMO) [15] is a routing protocol for mobile ad-
hoc networks being developed by the MANET working group of the IETF. The
DYMO case study is used to illustrate protocol modelling with CPNs and to
introduce the basic constructs of the CPN modelling language. Our presentation
is based on the CPN model constructed in a project on modelling and validating
DYMO [25].

The Generic Access Networks (GAN) Architecture. The GAN protocol
architecture [2] is developed by the 3rd Generation Partnership Project (3GPP)
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for accessing telephone services via Internet Protocol (IP) networks. The GAN
case study is used to introduce the basics of explicit state space exploration and
show how it can be used in a fully automatic manner as a first step in the
verification of a protocol design. The presentation is based on the project [30]
conducted at TietoEnator A/S to specify the detailed usage of protocol software
and services via specialisation of the GAN protocol architecture.

The Routing Interoperability Protocol (RIP). The RIP protocol devel-
oped at Ericsson Telebit A/S enables routing of IP packets between core IP
networks and mobile ad-hoc networks. The RIP case study is used to illustrate
how application-specific behavioural visualisation can be applied on top of CPN
models. In particular, how it can be used to obtain a first executable prototype
of the protocol design allowing for early experiments and for presentation to
customers and management with the aim of soliciting protocol design require-
ments. Our presentation is based on the project [74] conducted in cooperation
with Ericsson where CPN modelling was used to specify the operation of the
RIP protocol.

The Edge Router Discovery Protocol (ERDP). The ERDP protocol is
an IPv6-based protocol allowing edge routers to configure gateways in mobile
ad-hoc networks with IP address prefixes. The ERDP case study is used to il-
lustrate how the combined use of CPN modelling, state space exploration, and
behavioural visualisation all contributed to identify and resolve design issues and
errors during ERDP development. Our presentation is based on the project [67]
conducted at Ericsson Telebit A/S on the design of the ERDP protocol.

The rest of this paper is organised as follows. Section 2 provides a high-level
overview of CPNs and related techniques used for functional validation of pro-
tocol designs. Sections 3-6 then present the application of CPNs on the four
protocols introduced above. In Sect. 7 we survey related work where CPNs have
been used for protocol validation. Finally, Sect. 8 contains conclusions and out-
lines directions for future work. The reader is assumed to be familiar with the
basic ideas of Petri nets [97] and TCP/IP communication protocols [21]. The
reader is referred to [61] for a comprehensive introduction to CPNs, state space
exploration, and behavioural visualisation of CPN models.

2 Background: CPNs and Functional Protocol Validation

The CPN modelling language belongs to the family of High-level Petri Nets and
combine Petri Nets with the Standard ML (SML) programming language [100].
Petri Nets provide the foundation of the graphical notation and the semanti-
cal foundation for modelling concurrency, synchronisation, and communication.
The functional programming language SML provides primitives for representing
sequential aspects of protocols (such as data manipulation) and for creating com-
pact and parameterisable models. Formal modelling and validation with CPNs
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is supported by CPN Tools [95] which provides support for construction, sim-
ulation, functional and simulation-based performance analysis of CPN models.
The addition of data types and a high-level programming language offered by
CPN (in contrast to ordinary Petri nets) is highly important when constructing
Petri net models of protocols. As an example, with ordinary Petri nets each mes-
sage type exchanged between protocol entities need to be present with multiple
places, and data manipulation (e.g., comparison of data packet content such as
sequence numbers) needs to be modelled relying only on net structure resulting
in models that are difficult to comprehend.

The advantage of CPNs (and formal description techniques in general) is that
they are based on the construction of executable models that make it possible to
observe and experiment with the protocol design prior to implementation and
deployment using, e.g., simulation. This typically leads to more complete pro-
tocol specifications since the model will not be fully operational until all parts
of the protocol have been (at least abstractly) specified. Furthermore, the con-
struction of a formal and executable model helps identify and resolve ambiguities
that may be present in a natural language specification. Another advantage is
the support for model abstractions that makes it possible to specify the opera-
tion of the protocol without being concerned with implementation details such
as message layout. A model also makes it possible to explore larger scenarios of a
protocol system than what is in many cases practically possible in a laboratory.

2.1 Simulation and Behavioural Visualisation

During a protocol model construction phase it is common to use interactive sim-
ulation of the CPN protocol model to investigate the operation of the protocol
in detail. An interactive simulation is similar to single-step debugging and the
execution of the CPN model is viewed directly on its graphical representation
and provides a simple way of validating that the model operates as intended. In
an interactive simulation, the modeller is in charge and determines the next step
by selecting between the enabled events in the current state. Interactive simula-
tion is typically combined with the use of automatic simulation which is similar
to program execution and the purpose is to execute the CPN model without
detailed interaction and inspection. Automatic simulation is typically used for
testing purposes, and the modeller typically sets up appropriate breakpoints and
stop criteria.

Even though the CPN modelling language supports abstraction and hierarchi-
cal modules there can still be a significant amount of detail being presented with
this approach, and observing every single step either in an interactive simulation
or in a log file based on an automatic simulation is often too detailed a level of
observation when investigating the behaviour of a model. Furthermore, even if
the CPN model is executable, it still lacks the application- and domain-specific
appeal of a conventional software prototype. CPN Tools can use the BRIT-
NeY Suite animation framework [111] to create behavioural visualisation [112]
and interaction graphics on top of CPN models. The animation framework is a
stand-alone application, and CPN Tools invokes the primitives of the animation
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framework using remote procedure calls. The animation framework supports a
wide range of diagram types via a plug-in architecture that makes it possible to
visualise the execution of protocols using both standard diagrams (e.g., message
sequence charts) in addition to tailored, application-specific diagrams. In this
way it is possible to investigate the behaviour of a protocol design while over-
coming the limitations of interactive and automatic simulations. In this paper
we give some examples of both standard and application-specific diagrams. The
reader is referred to [111] for a comprehensive introduction to the animation
framework.

2.2 State Spaces and Verification

Verification of behavioural properties of protocols with CPNs [66] is supported
by explicit state space exploration [6]. In its simplest form this approach involves
computing a directed graph where the nodes corresponds to the set of reachable
states of the CPN model and the arcs represent occurrences of events causing
state changes. State spaces can be constructed fully automatically by the state
space tool in CPN Tools and guarantees complete coverage of all executions.
State space hence provides a highly systematic error-detection technique that
make it possible to automatically (i.e., algorithmically) check whether a protocol
has a formally stated desired property. In addition, state space methods have the
advantage that counter examples (error-traces) can be automatically synthesised
if the protocol does not satisfy a given property.

The main disadvantage of state space exploration is the inherent state explo-
sion problem [103], and a multitude of advanced state space methods have been
developed aimed at alleviating the inherent state explosion problem. Early work
on addressing state explosion in the context of CPNs concentrated on computer
tool support for, and initial experiments with, the equivalence [57], symmetry
[20, 24, 48, 58], and the stubborn set methods [102]. The symmetry and equiv-
alence methods rely on constructing a condensed state space where each node
represents an equivalence class of states and each arc represents an equivalence
class of events. The symmetry method has, e.g., been applied on a mutual ex-
clusion protocol [62] and an embedded systems protocol [81]. The equivalence
method has only been used on a small stop-and-wait protocol [63] due to the
obligation of providing a manual soundness proof for the user-provided equiva-
lence relation. The stubborn set method [101, 103] relies on analysing enabling
and disabling dependencies between events and use this to explore only a sub-
set of the events in each state encountered during state space exploration. The
rich SML-based inscription language which is fundamental building block of the
CPN modelling language, however, poses problems for the analysis of transition
dependencies in the context of CPNs [72] – unless relying on an unfolding of
the CPN model to the equivalent Place/Transition net. Hence, restrictions on
the modelling language are required to apply the stubborn set method without
relying on unfolding. Another widely used verification approach in the context
of CPNs is based is the methodology of [9]. A central component of this ap-
proach is an explicit modelling of both the protocol and its service, and the use



Applications of CPNs for Functional Validation of Protocol Designs 61

of finite-state automata language comparison as a criteria for checking that the
protocol conforms to the specified service. Recent work on addressing the state
explosion problem in the context of CPNs has concentrated on making more
economical use of memory resources when exploring the state space. Memory is
(in many cases) the limiting factor in state space exploration of CPN models due
to the large state vectors. This work resulted in the development of the sweep-
line method [19, 60] and the comback method [27, 110]. The sweep-line suite
of methods [8, 19, 68, 69, 83] is aimed at on-the-fly verification and exploits a
notion of progress found in many concurrent systems. Exploiting progress allows
for the deletion of states from memory during a progress-first traversal of the
state space. This in turn reduces peak memory usage. The sweep-line method
has been used [34, 35, 41, 105] for the verification of several industrial-sized pro-
tocols specified using the CPN modelling language. The comback method can be
viewed as an exploration-order independent storage mechanism based on hash
compaction [98, 113]. It allows the usually large state vectors of CPN models to
be stored in compact form, and the full state vector of a state is reconstructed
when needed for comparison with newly generated states. Unlike the classical
hash compaction method, the comback method guarantees full coverage of the
state space. The ASAP model checking platform [109] has support for a number
of these advanced state space methods – including methods developed outside
the context of CPNs.

2.3 Formal Specification Techniques for Protocols

CPNs and Petri Nets represents one approach to the formal specification and
verification of protocols. Historically, several non-Petri nets based languages tar-
geting protocol specification have been developed, in particular in relation to
telecommunication standardisation efforts [75, 94]. The Language of Temporal
Ordering Specification (LOTOS) [1, 14, 50] was developed as part of Interna-
tional Standardisation Organisation (ISO) efforts and linked to the development
of the Open Systems Interconnection (OSI) reference model. LOTOS is founded
on the Calculus of Communicating (CCS) [86] and add a data type compo-
nent to CCS based on algebraic specification. The Extended State Transition
Language (Estelle) [49] also originated from OSI standardisation efforts and is
based on extended finite state machines [13] combined with extensions to the
PASCAL programming language. The Specification and Description Language
(SDL) [55] has evolved in several generations since 1980 within the Interna-
tional Telecommunication Union - Telecommunication Sector (ITU-T). SDL is
based on communicating extended state machines and has in later versions been
equipped with a formal semantics [55] making it amendable for formal verifica-
tion. A Unified Modelling Language (UML) Profile [52] linking SDL and UML
also exists. A comparison of these classical specification languages can be found
in [5]. Estelle, SDL, and CPNs are all equipped with a language for modelling
data manipulation, but have a different theoretical foundations (extended state
machines versus Petri Nets). Another difference is that CPNs have very few (but
still powerful) modelling constructs in contrast to languages such as Estelle and
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SDL which have a large and complex set of language constructs to describe the
behaviour of protocol entities and their interaction. From this perspective, CPNs
provide a simpler and more lightweight approach to protocol modelling which
at the same time less implementation specific than, e.g., typical SDL protocol
specifications. In that respect, CPNs are close to languages like LOTOS that
focus more on abstract and implementation independent protocol specification.
Within ITU-T languages has also been developed related to protocol data rep-
resentation. The Abstract Syntax Notation One (ASN.1) [53] is a notation of
describing data structures carried in messages exchanges between protocol en-
tities. The Encoding Control Notation (ECN) [54] is a language for specifying
ASN.1 encoding rules. In terms of specification of data structures, the SML data
types for defining colour sets in CPNs provide similar capabilities as ASN.1. The
Testing and Test Control Notation 3 (TTCN-3) [26] is a language for writing
protocol test specification.

The Process Meta Language (Promela) language [46] providing the modelling
foundation of the SPIN tool [45] has been widely used for protocol design and
verification. Promela is based on Communication Sequential Processes (CSP)
[44] and is in contrast to CPNs, a textual modelling language with a different
theoretical foundation. In a UML context, state diagrams (charts) [43] are used
for modelling protocol modules (e.g., [84]), and message sequence charts (MSCs)
[51] (sequence diagrams in UML) are being used in particular for specifying pro-
tocols requirements that can later be used in protocol verification [4, 38]. MSCs
have also been used for protocol specification using higher-level control flow con-
structs. In contrast to MSCs which are action-oriented, then state charts and
CPNs are both state and action-oriented modelling formalisms. Timed automata
[7] as supported, e.g., by the UppAAl tool has also been used for the specifica-
tion and verification of protocols (e.g., [29, 96]). The UppAal models consists
of a network of network of communicating timed automata, and are specifically
suited for modelling and verifying protocol where continuous timing constraints
are essential. In comparison, the timed concepts provided by CPNs is a discrete
time concept of time. An example on the use of CPNs to model protocols with
time constraints can be found in [71].

3 The DYMO Protocol

Modelling a protocol involves developing a representation of the messages (or
packets) exchanged between the protocol entities , the procedure rules and in-
ternal state of the protocol entities guarding the processing of messages, and
developing a model of the environment in which the protocol is being executed.
The environment model typically encompass an abstract representation of the
communication medium (or channel) over which the protocol operates. The pri-
mary purpose of this section is to illustrate how these protocol elements can
be represented in the CPN modelling language using the Dynamic On-demand
Routing Protocol (DYMO) [15] for mobile ad-hoc networks as an example. This
section additionally shows how to construct compact parameterised CPN models
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where the number of protocol entities can easily be configured, and how com-
munication networks with a dynamic topology can be modelled.

3.1 MANETs and Operation of the DYMO Protocol

A mobile ad-hoc network (MANET) comprises a collection of mobile nodes, such
as laptops, personal digital assistants, and mobile phones, capable of establishing
a communication infrastructure for their common use. Ad-hoc networking differs
from conventional networks in that the nodes operate in a fully self-configuring,
autonomous and distributed manner, without any preexisting communication
infrastructure such as base stations and routers. Network layer and routing pro-
tocols for ad-hoc networking (including the DYMO protocol) are currently under
development by the IETF MANET working group.

The operation of the DYMO protocol consists of two parts: route discov-
ery and route maintenance. Route discovery is used to establish routes be-
tween nodes and begins with an originator node multi-casting a Route Request
(RREQ) message to all nodes in its immediate range. A RREQ message has a
sequence number to enable other nodes in the network to judge the freshness
of the route request. The ad-hoc network is then flooded with RREQs until the
request reaches the target node (provided that there exists a path from the orig-
inating node to the target node). The target node replies with a Route Reply
(RREP) message unicasted hop-by-hop back to the originator node. The route
discovery procedure is requested by the Internet Protocol (IP) layer on a node
when it receives an IP packet for transmission and does not have a route in its
routing table to the target node.

Figure 1(left) depicts the topology of a MANET consisting of six nodes num-
bered 1–6. An edge between two nodes indicates that the nodes are within direct
transmission range. In this case, we assume that all communication links are
symmetric. Figure 1(right) (to be discussed below) lists for each node the rout-
ing table entries created as a result of executing a routing discovery procedure
with node 1 as the originator node and node 6 as the target node. The routing
table entries in Fig. 1(right) are specified as a pair (target , nexthop). The second
column specifies the entries that are created as a result of a node receiving the
RREQ. The third column lists the entries created as a result of receiving the
corresponding RREP. When explaining the operation of the DYMO CPN model
below, we will use the scenario in Fig. 1 as a running example.

The message sequence chart (MSC) in Fig. 2 depicts one possible exchange
of messages in the DYMO protocol when the originating node 1 establishes
a route to target node 6 in the topology in Fig 1(left). Solid arcs represent
multi-cast transmission and dashed arcs represent unicast transmission. In the
MSC, node 1 multi-casts a RREQ which is received by nodes 2 and 3. When
receiving the RREQ from node 1, nodes 2 and 3 create an entry in their routing
table specifying a route back to the originator node 1. Since nodes 2 and 3 are
not the target of the RREQ they both multi-cast the received RREQ to their
neighbours (nodes 1, 4 and 5, and nodes 1 and 6, respectively). Node 1 discards
these messages as it was the originator of the RREQ. When nodes 4 and 5 receive
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Fig. 1. Example MANET topology (left) and routing table entries (right)
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Fig. 2. Message exchange scenario showing DYMO route discovery procedure

the RREQ they add an entry to their routing table specifying that the originator
node 1 can be reached via node 2. When node 6 receives the RREQ from node 3,
it discovers that it is the target node of the RREQ, adds an entry to its routing
table specifying that node 1 can be reached via node 3, and unicasts a RREP
back to node 3. When node 3 receives the RREP it adds an entry to its routing
table stating that node 6 is within direct range, and use its entry in the routing
table that was created when the RREQ was received to unicast the RREP to
node 1. Upon receiving the RREP from node 3, node 1 adds an entry to its
routing table specifying that node 6 can be reached using node 3 as the next
hop. The RREQ is also multi-casted by node 4, but when node 2 receives it
again, it will be discarded by node 2 because it has already processed the RREQ
message once. Node 5 also multi-casts the RREQ, but nodes 2 and 6 also discard
the RREQ message as it has already been received once. From Fig. 1(right) it can
be seen that upon completion of the route discovery procedure, a bidirectional
route has been discovered and established between node 1 and node 6 using node
3 as an intermediate hop.

The topology of a MANET changes over time because of the mobility of
the nodes. DYMO nodes therefore perform route maintenance where each node
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monitors the links to the nodes it is directly connected to. The DYMO protocol
has a mechanism to notify nodes about routes that become broken due to nodes
moving out of range of each other. This is done by sending Route Error (RERR)
messages which have the effect of informing nodes using the broken route that
a new route discovery is needed in order to reestablish a communication path.

3.2 CPN Model Overview and Message Modelling

The DYMO CPN model is a hierarchical model organised in 14modules . Figure 3
shows the module hierarchy of the CPN model. Each node in Fig. 3 corresponds
to amodule with System representing the top-level module of the CPN model. An
arc leading from one module to another indicates that the latter is a submodule
of the former. The model is organised into two main parts. The DYMOProtocol
module and its nine submodules model the DYMO protocol entities including the
internal state of the protocol entities and the procedure rules for receiving mes-
sages, internal processing, and sending of messages. The MobileWirelessNetwork
module and its two submodules model the environment for the DYMO protocol.
This includes the modelling of how messages are transmitted over a wireless link
and the modelling of how the mobility of the nodes affects the current topology
of the network. The division of the model into submodules reflects the structure
of the DYMO specification [16] and hence maintains a close structural relation-
ship between the natural language specification and the formal CPN model. The
CPN model does not capture the transmission of payload from the application
layer as the focus of the model is on the route establishment and maintenance
of the DYMO protocol.

The top-level module System is shown in Fig. 4 and is used to connect the
two main parts of the model. It corresponds to the System node in Fig. 3. The

System

DYMO Protocol Mobile Wireless Network

Wireless Packet Transmission

Mobility

Initiate Route Discovery

Receive Error Messages

Process Incoming Messages

Active Link Monitoring

Process RREQ

Process RERR

Process RREP

Receive Routing Messages 

Route Table Timeouts

Fig. 3. Module hierarchy for the DYMO CPN model
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Fig. 4. Top-level System module of the DYMO CPN model

module has two substitution transitions drawn as rectangles with double-line
borders. Each of the substitution transitions have an associated tag positioned
next to it specifying the name of the associated submodule. The DYMOProtocol
substitution transition has the DYMOProtocol module as its associated sub-
module, and the MobileWirelessNetwork substitution transition has the module
MobileWirelessNetwork as its associated submodule. In this model, the substitu-
tion transition has the same name as its associated submodule (but this is not
generally required).

The two socket places DYMOToNetwork and NetworkToDYMO connected to
the substitution transition DYMOProtocol are used to model the interaction
between the DYMO protocol and the MANET environment as represented by
the submodules of the MobileWirelessNetwork substitution transition. The socket
place LinkState is used to model the active link monitoring that nodes perform
to check which neighbour nodes are still reachable. When the DYMO protocol
module sends a message, it will appear as a token representing a network packet
on the socket place DYMOToNetwork. Similarly, a network packet to be received
by the DYMO protocol module will appear as a token on the NetworkToDYMO
socket place. Each of the socket places in Fig. 4 (places connected to a substitu-
tion transition) is associated with a port place in the submodule associated with
the substitution transition that the socket place is connected to. The association
between a socket and a port place has the effect that the port and the socket
places will always have identical markings (tokens). An arc leading to a socket
place from a substitution transition means that transitions on the submodule
associated with the substitution transitions will add tokens on this place. Anal-
ogously, an arc leading from a socket place to a substitution transition means
that transitions on the submodule will remove tokens from this place.
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The colour set (data types) of each place determining the kind of tokens that
can reside on the place is written below each place. The colour set declarations
used in Fig. 4 is provided in Fig. 5. A record colour set is used for representing
the packets transmitted over the wireless links. A NetworkPacket consists of
a source (field src), a destination (field dest), and some data (payload). The
DYMO messages are designed to be carried in User Datagram Protocol (UDP)
datagrams. This means that the network packets are abstract representations
of IP/UDP datagrams. The model abstracts from all fields in the IP and UDP
datagrams (except source and destination fields) as only these impact the DYMO
protocol logic. The source and destination of a network packet are modelled
by the IPAddr colour set. There are two kinds of IP addresses in the model:
UNICAST addresses and the LL MANET ROUTERSmulti-cast address. The multi-cast
address is used, e.g., in route discovery when a node is sending a RREQ to all
its neighbouring nodes. Unicast addresses are used as source of network packets
and, e.g., as destinations in RREP messages. A unicast address is represented
as an integer from the colour set Node. Hence, the model abstracts from real IP
addresses and identify nodes (communication interfaces) using integers in the
interval [1;N ] where N is a model parameter specifying the number of nodes in
the MANET.

(* --- Nodes and abstract IP/UDP messages --- *)

colset Node = int with 0 .. N;

colset IPAddr = union UNICAST : Node + LL_MANET_ROUTERS;

colset NetworkPacket = record src : IPAddr * dest : IPAddr *

data : DYMOMessage;

(* --- DYMO service --- *)

colset RouteRequest = record originator : Node * target : Node;

colset DYMORequest = union ROUTEREQUEST : RouteRequest;

colset RouteResponse = record originator : Node * target : Node *

status : BOOL;

colset DYMOResponse = union ROUTERESPONSE : RouteResponse;

Fig. 5. Colour set declarations for nodes, network packets, and DYMO service

The two places DYMORequest and DYMOResponse in Fig. 4 are used to in-
teract with the service provided by the DYMO protocol. A route discovery for a
specific destination is requested by putting a token on the DYMORequest place
and a DYMO response to a route discovery request is then provided by DYMO
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as a token via the DYMOResponse place. The colour sets DYMORequest (see
Fig. 5) specifies the identity of the originator node requesting the route and
the identity of the target node to which a route is to be discovered. Similarly, a
DYMOResponse message contains a specification of the originator, the target,
and a boolean status specifying whether the route discovery was successful.
The colour sets DYMORequest and DYMOResponse are defined as union types to
make it easy to later extend the model with additional requests and responses.
By setting the initial marking of the place DYMORequest, it can be controlled
which route discovery requests are to be made.

The small circles and associated boxes in Fig. 4 show the current marking of
the CPNmodel. The small circle positioned inside a place indicates the number of
tokens on the place in the current marking. In Fig. 4, there is a single token on the
place DYMORequest with colour ROUTEREQUEST({originator=1,target=6}) as
specified in the box positioned next to the small circle. This marking corresponds
to the DYMO protocol being requested to establish a route from node 1 to node
6 as considered in the scenario in Fig. 1.

3.3 Modelling the DYMO Protocol Entities

The top-level module for the DYMO protocol part of the CPN model is the
DYMOProtocol module shown in Fig. 6. The module has five substitution tran-
sitions modelling initiating route requests (substitution transition InitiateRoute-
Discovery), reception of RREQ and RREP messages (substitution transition
ReceiveRoutingMessages), the reception of RERRs (substitution transition Re-
ceiveErrorMessages), processing of incoming messages (substitution transition
ProcessIncomingMessages), and timer management associated with the routing
table entries (substitution transition RouteTableEntryTimeouts). The places DY-
MORequest, LinkState, and NetworkToDYMO are input port places of the module
as indicated by the In tag positioned next to them. Each of these places are asso-
ciated with the accordingly named socket places in Fig. 4. Similarly, the places
DYMOToNetwork and DYMOResponse are output port places as indicated by the
Out tag positioned next to them, and they are associated to the accordingly
named socket places in Fig. 4.

All submodules of the substitution transitions in Fig. 6 create and manipulate
DYMO messages which are represented by the colour sets defined in Fig. 7. The
definition of the colour sets used for modelling the DYMO messages is based on
a direct translation of the description of DYMO messages as found in the DYMO
specification [16]. In particular, the same names of message fields as in [16] have
been used. The model abstracts from the compact packet layout defined for the
DYMO protocol. This is done to ease the readability of the CPN model, and
since the packet layout is not important when considering only the functional
operation of the DYMO protocol.

The place RoutingTable and the place OwnSeqNum are used to model the rout-
ing table and the sequence number of nodes, respectively, that are maintained
as part of the internal state of each mobile node. In the marking depicted in
Fig. 6 both of these places contain a multi-set containing six tokens. Within the
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Fig. 6. The DYMOProtocol module

boxes specifying the colours of the individual tokens, ++ (pronounced and) is
used to denote union of multi-sets and ‘ (pronounced of) is used to specify the
coefficients (i.e., the number of occurrences of tokens with a given colour). The
colour set SeqNum used to represent the sequence number of a node was defined
above, and the colour set RouteTable is defined in Fig. 8. To allow each node to
have its own sequence number, we use the colour set NodexSeqNum. The marking
in Fig. 6 corresponds to a MANET with six mobile nodes. The first compo-
nent of each token on the place OwnSeqNum specifies the identity of a node and
the second component specifies the sequence number of the node. Initially, the
sequence number of all nodes is set to one. Similarly, it can be seen that the
routing table of each mobile node is empty as represented by the empty list ([])
specified for each node in the marking of RoutingTable.

The submodules of the DYMOProtocol module all need to access the routing
table and the sequence number maintained by each node. To reduce the num-
ber of arcs in the modules, the routing table and the sequence numbers have
been modelled using fusion sets . A fusion set allows a set of places in different
modules to be linked together into one compound place across the hierarchical
structure of the model. In this case, we have a fusion set OwnSeqNum (for linking
together places modelling the sequence number of each node) and a fusion set
RoutingTable (for linking the places modelling the routing table of each node).
The name of the fusion set which a place belongs to (if any) is written in a tag
positioned next to the place.
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colset SeqNum = int with 0 .. 65535;

colset NodexSeqNum = product Node * SeqNum;

colset NodexSeqNumList = list NodexSeqNum;

colset RERRMessage = record HopLimit : INT *

UnreachableNodes : NodexSeqNumList;

colset RoutingMessage = record TargetAddr : Node * OrigAddr : Nodes *

OrigSeqNum : SeqNum * HopLimit : INT *

Dist : INT;

colset DYMOMessage = union RREQ : RoutingMessage + RREP : RoutingMessage+

RERR : RERRMessage;

Fig. 7. Colour set declarations for DYMO messages

colset RouteTableEntry = record

Address : IPAddr * SeqNum : SeqNum *

NextHopAddress : IPAddr * Broken : BOOL *

Dist : INT;

colset RouteTable = list RouteTableEntry;

colset NodexRouteTable = product Node * RouteTable;

Fig. 8. Colour set declarations for routing table entries

Initiate Route Discovery Module. We consider the InitiateRouteDiscovery
module shown in Fig. 9 as a representative example of a submodule at the
most detailed level of the CPN model. This module specifies how the route
discovery procedure is initiated when a request for a route discovery arrives via
the DYMORequest input port. The rectangles in Fig. 9 are ordinary transitions
(i.e., non substitution transitions) which means that they can become enabled
and occur . In the marking shown in Fig. 9, a token corresponding to a request
for a route discovery originating at node 1 and targeting node 6 is present on
the DYMORequest place. In this marking, the transition ProcessRouteRequest is
enabled in the following binding:

〈rreq={originator=1,target=1}〉
which binds the variable rreq of colour set RouteRequest to the value in the
ROUTERREQUEST. Evaluating the input arc expression on the arc from DYMORe-
quest to ProcessRouteRequest results in a multi-set consisting of the single token
present on place DYMORequest. The effect of an occurrence of ProcessRequest
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Fig. 9. The Initiate Route Discovery module - initial marking

with the binding above in the marking in Fig. 9 is that the token on DYMORe-
quest is removed and a token is added to place Processing. The colour of the
token added to Processing is obtained by evaluating the arc expression on the
arc from ProcessRouteRequest to Processing in the binding from above:

(#originator rreq,0,rreq)

The SML operator #originator extracts the originator field in the value bound
to rreq. The marking resulting from the occurrence of ProcessRouteRequest is
shown in Fig. 10. A route request being processed is represented by a token on
Processing over the colour set NodexRCxRouteRequest which is a product type.
The first component of the token on Processing specifies the node processing the
route request (i.e., the originator), the second component specifies how many
times the RREQ has been retransmitted, and the third component specifies the
route request.

In the marking shown shown in Fig. 10, the transition CreateRREQ is enabled
with the binding:

〈rc=[],rreq={originator=1,target=1},rc=0,n=1,seqnum=1〉
The expression in square brackets positioned next to the CreateRREQ transition
is a guard specifying an additional boolean conditions (beyond the presence of
required tokens on input places) for the CreateRREQ transition to be enabled.
In this case, the guard specifies that for the transition to be enabled, a route
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Fig. 10. The Initiate Route Discovery module - after ProcessRouteRequest occurrence

must not already exist in the route table rt to the target node #target, and
the number of times rc the current route request has been retransmitted must
be less than the retransmission limit RREQ TRIES for RREQs. The SML function
hasRoute used in the guard is implemented as follows:

fun hasRoute (target, rt:RouteTable) =

List.exists (fn {Address, ...} => UNICAST(target) = Address) rt

and uses the predefined SML function List.exists to check whether an entry
in the route table rt leading to the target node already exists. This is a typical
example of how SML is used to represent (sequential) data manipulation.

The marking resulting from the occurrence of CreateRREQ is shown in Fig. 11.
When sending a RREQ, the sequence number of node 1 sending the request is
incremented by 1 and so is the counter specifying how many times the RREQ
has been transmitted. Furthermore, a token corresponding to a network packet
containing a RREQ message is produced on place DYMOToNetwork. The des-
tination of the packet is set to LL MANET ROUTERS since it must be sent to all
nodes within reach of node 1.

If a route becomes established (i.e., the originator receives a RREP for the
RREQ), the RouteEstablished transition becomes enabled and a token can be
put on place DYMOResponse indicating that the requested route has been suc-
cessfully established. If the retransmission limit for RREQs is reached (before a
RREP is received), the RREQ TRIES Reached transition becomes enabled and a
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Fig. 11. The Initiate Route Discovery module - after CreateRREQ occurrence

token can be put on place DYMOResponse indicating that the requested route
could not be established.

3.4 Modelling the DYMO Protocol Environment

The MobileWirelessNetworkmodule shown in Fig. 12 captures the mobile wireless
network that DYMO is designed to operate over. It consists of two parts: one part
modelling the transmission of network packets represented by the substitution
transition WirelessPacketTransmission, and one part representing the mobility of
the nodes represented by the Mobility substitution transition. The places DY-
MOToNetwork, NetworkToDYMO, and LinkState are associated to the similarly
named socket places in Fig. 4. The transmission of network packets is done rel-
ative to the current topology of the MANET which is explicitly represented via
the current marking of the Topology place. The topology is represented using
the colour set Topology defined in Fig. 13.

The idea is that each node has an adjacency list of nodes that it can reach in
one hop, i.e., its neighbouring nodes. The marking of place Topology in Fig. 12
corresponds to the topology in Fig. 1(left). This adjacency list is then consulted
when a network packet is being transmitted from a node to determine the set
of nodes that can receive the network packet. In this way, the dynamic topology
is modelled by the addition and removal of nodes from the adjacency lists. The
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Fig. 12. The Mobile Wireless Network

colset NodeList = list Node;

colset Topology = product Node * NodeList;

Fig. 13. Colour set declarations for topology modelling

place LinkState models that a node can be informed about the reachability of its
neighbouring nodes which is used in active link monitoring.

The WirelessPacketTransmission module models the actual transmission of
packets and is shown in Fig. 14. The module captures how network packets
are transmitted via the physical network from one node to the next. Packets are
transmitted over the network according to the function transmit on the arc from
the transition Transmit to the place NetworkToDYMO. When the Transmit tran-
sition occurs in a binding where the boolean variable success is set to true,
then all nodes within reach of the sending node will receive the packet. Oth-
erwise, no nodes will receive the packet. The transition Transmit is enabled in
the marking shown in Fig. 14 (left) and the marking resulting from a successful
transmission of the packet on DYMOToNetwork is shown in Fig. 14 (right). In
this case two tokens are added to place NetworkToDYMO corresponding to nodes
2 and 3 receiving the packet being multi-casted from node 1.

In a real network, a transmission could be received by any subset of the
neighbouring nodes (e.g., because of signal interference). Here it is only mod-
elled that either all of the neighbouring nodes receive the packet or none of the
nodes receive it. This is sufficient because the modelling of the dynamic topology
means that a node can move out of reach of the transmitting node immediately
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Fig. 14. Transmission of packets - before (left) and after (right) transmission

before the transmission occurs which has exactly the same effect as a signal
interference in that the node does not receive the packet. Hence, signal inter-
ference and similar phenomena imply that a node does not receive a packet is
in the model equivalent to the node moving out of reach of the transmitting
node.

3.5 Lessons Learned and Perspectives

The development of the DYMO CPN model was based on the natural language
specification provided in the Internet draft [15] specifying the DYMO protocol.
The modelling work was done when version 10 [15] was the most recent DYMO
specification. In the process of constructing the CPN model and simulating it,
several issues and ambiguities in the specification were discovered. The most
important ones are summarised in Table 1. These issues were submitted to the
IETF MANET Working Group mailing list [82] and issue 1 and 3-7 were ac-
knowledged by the DYMO developers and taken into account in the subsequent
version DYMO specification [16] (version 11). Issue 2 was not considered critical
as it causes route discovery to fail in scenarios which according to the experience
of the DYMO developers would seldom occur in practise.

The modelling conducted with the DYMO protocol illustrates that the con-
struction of a formal and executable model provides a very systematic and
comprehensive way of reviewing a protocol design document (such as the DYMO
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Table 1. DYMO CPN modelling [25]: issues identified in the modelling phase

Issue Description

1

When processing a routing message, a DYMO router may respond with a
RREQ flood, i.e., a RREQ addressed to the node itself, when it is target
for a RREQ message (cf. [15], Sect. 5.3.4). It was not clear from the specifi-
cation which information to put in the RREQ message, i.e., the originator
address, hop limit, and sequence number of the RREQ.

2

When judging the usefulness of routing information, the target node is not
considered. This means that a new request with a higher sequence num-
ber can make an older request for another node stale since the sequence
number in the old message is smaller than the sequence number found in
the routing table.

3

When creating a RREQ message the distance field in the message is set
to zero. This means that for a given node n an entry in the routing table
of a node n′ connected directly to n may have a distance to n which is 0.
Distance is a metric indicating the distance traversed before reaching n,
and the distance between two directly connected nodes should be one.

4
In the description of the data structure route table entry (cf. [15], Sect. 4.1)
it is suggested that the address field can contain more than one node. It
was not clear why this was the case.

5
When processing RERR messages (cf. [15], Sect. 5.5.4) it is not specified
whether the hop limit shall be decremented.

6
When retransmitting a RREQ message (cf. [15], Sect. 5.4), it was not
explicitly stated whether the node sequence number should be increased.

7

Version 10 of DYMO introduced the concept of distance instead of hop
count. Distance is a more general metric, but in the routing message pro-
cessing (cf. [16], Sect. 5.3.4) it is incremented by one. We believe it should
be up to the implementers how much distance is incremented depending
on the metric used.

Internet draft) and how it can contribute to increasing the quality of a proto-
col design specification. Similar conclusions can also be drawn from other case
studies where CPN modelling has been applied to protocols developed in the
context of IETF. A CPN model of the DYMO protocol has also been developed
in [12] where a considerably more compact CPN model of the DYMO protocol
directly targeting state space exploration was developed. A number of other is-
sues related to the functionality of the DYMO protocol were reported in [12].
In comparison to the CPN model in this section, the CPN model developed in
[12] provides a more abstract modelling approach that does not use an explicit
representation of MANET topology.
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4 The GAN Protocol Architecture

This section focuses on how standard behavioural properties of CPNs in combi-
nation with explicit state space exploration can be used to verify basic properties
of protocols. Furthermore, this section gives an example of how CPNs can be
used to model a system spanning multiple protocols and protocol layers. The
presentation is based on a project [30] in which CPN modelling and state space
exploration was used at TietoEnator Denmark in early phases of developing an
implementation corresponding to a particular instantiation [42] of the generic
GAN architecture [2] aimed at integrating IP and telephone services.

4.1 GAN Secure Connection Establishment

The Generic Access Network (GAN) [2] architecture specified by the 3rd Genera-
tion Partnership Project (3GPP) [3] allows access to common telephone services
such as SMS and voice-calls via IP networks. A central part of the GAN ar-
chitecture is the establishment of a secure connection between a mobile station
(e.g., a mobile phone) and a GAN controller through a security gateway. The
GAN architecture relies on standardised protocols such as Dynamic Host Con-
figuration Protocol (DHCP) for IP address configuration, IP Security (IPsec)
[65] for encryption and authentication, and Internet Key Exchange v2 (IKEv2)
protocol [64] for negotiation of IPsec parameters.

The purpose of the CPN model constructed in the project was two-fold.
Firstly, to define the scope of the protocol software to be developed by TietoE-
nator. More specifically, the aim was to determine which parts of the generic
GAN specification were to be included in the implementation to be developed
by TietoEnator. Secondly, to specify the detailed design and usage of the in-
volved protocol software components. The focus of the CPN model is on the
establishment of a secure tunnel and the initial GAN message exchanges since
this is where important details were not provided in the full GAN specification.
In particular, the full GAN specification [2] contained no clear specification of
the IKEv2 message exchange and the states that the protocol entities should
be in when establishing a GAN connection (at the time of the project in 2007).
Furthermore, the GAN specification only states that IKEv2 and IPSec are to be
used, and in which operating modes.

4.2 CPN Model of the GAN Protocol Architecture

The CPN model of the secure connection establishment consists of 31 modules
organised into four hierarchical levels. In the following, we present four selected
modules from the CPN model. Our purpose is to illustrate how the phases that
the protocol entities enter when establishing a GAN connection have been mod-
elled, and provide sufficient detail on the CPN model in order for the reader to
interpret the verification results presented later. A more in-depth presentation
of the CPN model can be found in [30].
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Fig. 15. Top-level module of the GAN model

Figure 15 shows the top-level module which is organised so that it mimics
the GAN network architecture. The substitution transition MobileStation repre-
sents the mobile station which is connecting to the telephone network via an IP
network. The place Wireless Network connected to MobileStation represents the
wireless network which connects the mobile station to a wireless router repre-
sented by the substitution transition WirelessRouter. The wireless router is an
arbitrary access point with routing functionality, and is connected to the Pro-
visioning Security Gateway, through NetworkB. As part of establishing a GAN
connection, an encrypted tunnel is established between the mobile station and
the security gateway. The encrypted tunnel is provided by the Encapsulating
Security Payload (ESP) mode of the IP security layer (IPSec) [65]. To provide
such an encrypted tunnel, both ends have to authenticate each other, and agree
on both an encryption algorithm and keys. This is achieved using the Internet
Key Exchange v2 (IKEv2) protocol [64]. The provisioning security gateway is
connected to the Provisioning GAN Controller via NetworkC. The GAN controllers
are connected to the telephone network and perform the relay of traffic to/from
the IP networks (NetworkC and the WirelessNetwork). This in turn allows mobile
stations to access the services on the telephone network. The places with thin
lines connected to the substitution transitions Provisioning Security Gateway and
Provisioning GAN Controller are used to provide configuration information to the
corresponding network nodes. The CPN model does not include modelling of
the telephone network as the scope of the CPN model covers the components
involved in establishing the connection with the GAN controller. Furthermore,
as the purpose of the model was to represent the protocol entities present on
each of the nodes in the network architecture, it sufficed that the model encom-
passed one mobile node, one wireless router, one provisioning security gateway,
and one provisioning GAN controller.

The basic exchange of messages in establishing a GAN connection to the
provisioning GAN controller involves three steps. The first step is for the mobile
station to acquire an IP address on the wireless network using DHCP. The
second phase is to create a secure tunnel to the provisioning security gateway.
Having established the secure tunnel, the third phase is for the mobile station
to open a secure connection to the GAN controller and register itself. Figure 16
(left) shows the IKEInitiator module of the mobile station and Fig. 16 (right)
shows the IKERespondermodule of the security gateway. These two peer modules
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model the second step of the GAN connection establishment concerned with
creating the secure tunnel. Incoming IP packets for the module arrive via the
ReceiveBuffer input port places. Outgoing IP packets are put in the SendBuffer
places. The states (phases) that the protocol entities goes through during the
IKE message exchange when establishing the secure tunnel are represented by
the places connecting the substitution transitions.

The state changes are represented by substitution transitions. The submod-
ules of the substitution transitions specify the processing rules for messages
during the individual phases. Figure 17 shows the Send IKE SA INIT Packet and
Handle SA INIT Request modules which are the submodules of the two top-most
substitution transitions in Fig 16. The Send IKE SA INIT Packet transition in
Fig. 17 (left) takes the IKE Initiator from the state Ready to Await IKE SA INIT
and sends an IKE message to the security gateway initialising the communica-
tion. The IP address of the security gateway is retrieved from the Ready place.
Figure 17 (right) shows how the IKE SA INIT packet is handled by the IKE
Responder. The guard of the HandleSA INIT Request transition ensures that
the transition is only enabled if the incoming packet (token) on IncomingIK-
ERequest represents a IKE SA INIT packet. In that case, it sends an IKE packet
back to the initiator as specified by the arc expression on the arc from Han-
dle SA INITRequest and the responder enters the Wait for EAP Auth state. The
submodules of the other substitution transitions in Fig. 16 are similar.

The establishment of a GAN connection involves multiple layers of the IP
network stack. DHCP (used to configure the mobile station) and GAN are ap-
plication layer protocols, IKE is a transport layer protocol, and IPSec belongs
to the network layer. As a consequence, the CPN model of GAN connection
spans multiple protocol layers. Furthermore, the protocol entities also access
and manipulate the routing table and a security policy database (SPD) which
is maintained at the IP network layer. The establishment of a GAN connection
accesses the routing table of a node in order to ensures that packets are put
into the secure tunnel, and extracted again at the other end. The SPD describes
what packets are allowed to be sent and received by the IP protocol stack, and is
also responsible for identifying which packets are to be tunnelled at the mobile
station and the security gateway. Each entry in the SPD contains the source and
destination addresses to use for matching packets, and an action to perform.
Modelled actions are bypass (which means allow packet to pass without tun-
nelling) and tunnel (the matched packet is to be sent through an ESP tunnel).
As we will see later, the content of the routing table and the SPD play an im-
portant role in validating the correctness of the GAN connection establishment.
It was therefore required to explicitly represent them in the CPN model.

4.3 Verification of the GAN CPN Model

The goal of applying state space exploration was to verify the completeness
of the design. This included verifying that all phases, steps, and messages in-
volved in establishing a secure GAN connection were covered by the design, and
the correctness of the connection establishment,i.e., that a GAN connection is
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Fig. 16. IKE initiator (left) and IKE responder (right) modules
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Fig. 17. Example of IKE initiator (left) and IKE responder (right) submodules

eventually established with the mobile station and the GAN controller being
properly synchronised. Verification of the key properties of the design for se-
cure connection establishment was done by state space exploration. The basic
idea underlying state space exploration is to compute all reachable states and
state changes of the CPN model and represent these as a directed graph, where
nodes represent markings and arcs represent occurring binding elements. State
spaces can be constructed fully automatically by the state space tool in CPN
Tools. Verification of the GAN scenario modelling by means of state spaces re-
lied on the use of the state space report that can be generated by CPN Tools.
The generation of a state space report for the smallest possible configuration
of a considered protocol is typically the first step performed when conducting
verification of a CPN model.

The state space report is divided into several sections. In the following we
present excepts from the individual sections and explain how they can be used
for the verification. Figure 18 shows the first part of the state space report for
the CPN model. This part provides some state space statistics specifying how
large the state space is. It can be seen that the state space consists of 3, 854 nodes
and 9, 225 arcs. The construction of the state space took 4 seconds. Statistics for
the strongly connected component graph (SCC-graph) are also specified. It has
3, 514 nodes and 8, 881 arcs, and was calculated in 2 seconds. The fact that there
are fewer nodes in the SCC-graph than in the state space implies that there are
non-trivial strongly connected components (SCCs), i.e., SCCs consisting of more
than a single state space node. This means that infinite executions exist and that
the GAN connection establishment may not terminate. We will investigate the
reasons for this at the end of this subsection.

The boundedness properties section of the state space report specifies how
many and which tokens a place may hold – when considering all reachable states
(markings). Figure 19 lists the best upper and best lower integer bounds for
selected places in the mobile station module. It can be seen that the first four
places modelling the states of the mobile station contain at most one token and
may contain zero tokens. Similarly, it can be seen that there is at most one token
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State Space Scc Graph

Nodes: 3,854 Nodes: 3,514

Arcs: 9,225 Arcs: 8,881

Secs: 4 Secs: 2

Fig. 18. State space report – statistics

Best Integer Bounds Upper Lower

Down 1 0

Ready 1 0

VIF open to Prov. SG 1 0

VIF Closed 1 0

Send Buffer 1 0

Receive Buffer 1 0

Network Buffer 1 0

Routing Table 1 0

Security Policy Database 1 1

Fig. 19. State space report – integer bounds

in the send, received, and network buffers. The place RoutingTable has a lower
integer bound of 0 and an upper integer bound of 1. The lower integer bound is
0 since in the initial marking there are no tokens on this place. During the start-
up procedure of the mobile station, a token representing a list of routing table
entries is put on this place. The place SecurityPolicyDatabase has a best upper
and a best lower integer bound of 1. This means that there is always exactly
one token present on this place. This is because the security policy database
is modelled as a single token being a list containing the current entries in the
security policy database.

The best upper multi-set bound of a place specifies for each colour in the colour
set of the place the maximal number of tokens that is present on this place with
the given colour in any reachable marking. This is specified as a multi-set, where
the coefficient of each value is the maximal number of tokens with the given
value. If the coefficient is zero, then the colour is omitted in the specification.
Figure 20 shows part of the state space report providing the upper multi-set
bounds for the security policy databases of the mobile station, wireless router,
security gateway, and the GAN controller. The upper multi-set bounds specify
the possible tokens that can reside on these places and by carefully inspecting
these bounds it was possible to validate that the possible entries in the security
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Mobile Station: Security Policy Database

1‘[{src=((0,0,0,0),0),dest=((0,0,0,0),0),

nl_info=PayloadList([PAYLOAD_DHCP]),policy=SpdBypass}]++

1‘[{src=((80,1,1,1),32),dest=((12,0,0,0),8),

nl_info=AnyNextLayer,policy=ESPTunnel(((190,1,1,1),(172,1,1,2)))},

{src=((190,1,1,1),0),dest=((0,0,0,0),0),

nl_info=AnyNextLayer,policy=SpdBypass}]++

1‘[{src=((190,1,1,1),0),dest=((0,0,0,0),0),

nl_info=AnyNextLayer,policy=SpdBypass}]

Wireless Router: Security Policy_Database

1‘[{src=((0,0,0,0),0),dest=((0,0,0,0),0),

nl_info=AnyNextLayer,policy=SpdBypass}]

Security Gateway: Security Policy Database

1‘[{src=((13,0,0,0),8),dest=((80,1,1,1),32),

nl_info=AnyNextLayer,policy=ESPTunnel(((172,1,1,2),(190,1,1,1)))},

{src=((0,0,0,0),0),dest=((0,0,0,0),0),

nl_info=AnyNextLayer,policy=SpdBypass}]

GAN Controller: Security Policy Database

1‘[{src=((0,0,0,0),0),dest=((0,0,0,0),0),

nl_info=AnyNextLayer,policy=SpdBypass}]

Fig. 20. State space report – best upper multi-set bounds

policy database were all as desired. Altogether, an inspection of the boundedness
properties helped significantly in increasing confidence in the correctness of the
design in terms of proper settings of the routing table and the security policy
database.

Figure 21 shows the part of the state space report specifying the home and
liveness properties . The home properties show that there exists a single home
marking, which is state number 3854. A home marking is a state which can be
reached from any reachable state. For the GAN scenario model this means that it
is impossible to have an execution sequence starting from the initial state (initial
marking) which cannot be extended to reach state 3854. The liveness properties
tell us that there is a single dead marking which is also state number 3854. A
dead marking is a state in which no transitions are enabled. This means that
the marking corresponding to node 3854 is both a home and a dead marking.

To obtain information about the marking corresponding to node number 3854,
the node number was transferred into the simulator of CPN Tools and displayed
graphically on the CPN model. It was then checked (by inspecting the markings
of the individual places) that the marking corresponded to the desired terminat-
ing state of the GAN connection establishment procedure, i.e., the state where
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Home Properties Liveness Properties

Home Markings: [3854] Dead Markings: [3854]

Fig. 21. State space report – home and liveness properties

the mobile station has obtained an IP address, has successfully communicated
with the provisioning GAN controller, all protocol modules are in a state cor-
responding to the GAN connection having been established, and the routing
tables and security databases contain the correct entries. The fact that state
3854 is the only dead marking tells us that the protocol as specified by the CPN
model is partially correct, i.e., if execution terminates we have the correct result.
Furthermore, because node 3854 is also a home marking it is always possible to
terminate the GAN connection establishment with the correct result.

The analysis above showed that it is always possible to terminate the GAN
connection establishment procedure correctly, but there is no guarantee that it
will eventually happen. The section of the state space report providing informa-
tion about fairness properties showed that the two transitions RejectDiscoveryRe-
quest and HandleGARCReject which are part of the GAN controller module were
impartial . This means that these two transitions occur infinitely often in any
infinite occurrence sequence. The two transition occurs if the GAN controller
decides to reject an incoming connection from a mobile station. Hence, if the
connection establishment procedure does not terminate in the single home and
dead marking identified, then it is because the GAN controller keeps rejecting
the connection.

4.4 Lessons Learned and Perspectives

The validation of secure connection establishment in the considered GAN sce-
nario is representative for how validation of protocols is typically performed
with CPN Tools – as it in practise involves a combination of both simulation
and state space exploration. As part of the construction of the GAN model, the
support for interactive simulation in CPN Tools was used to perform detailed
checks to ensure that the model behaviour was as desired. Even though the use
of interactive simulations (and simulation in general) cannot be used to prove
correct behaviour, it proved to be very useful in identifying situations related to
improper manipulations of the entries in the routing tables and security policy
database - or when additional detail not present in the GAN specification had
to be worked out and specified. Furthermore, interactive simulation was helpful
in identifying issues that led the GAN connection establishment procedure to
terminate prematurely, e.g., because a certain phase of the connection estab-
lishment was missing in the CPN model. These issues manifested themselves in
markings where the GAN connection had not yet been established, but where
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no transitions were enabled. This was in particular effective in making explicit
where further specification of the message exchanges were required.

The interactive simulation was in later phases replaced with automatic simu-
lation where a number of random executions of the CPN model were performed
with the purpose of checking whether the execution of the CPN model resulted
in a state in which the GAN connection was properly established. Eventually
state space exploration of the CPN model was conducted which succeeded in
establishing the key property that a GAN connection will eventually be estab-
lished provided that the GAN controller does not keep rejecting the connection
request. The verification conducted also illustrated the general observation that
in many cases, the use of basic state space exploration and the state space report
(i.e., investigating standard behavioural properties of Petri nets) are sufficient
in establishing key properties of a protocol design. In this case the state space
was small in size and could be generated in a few seconds without the use of
advanced state space exploration techniques.

5 The Routing Interoperability Protocol

The section show how a CPN model can be augmented with application-specific
behavioural visualisation reflecting the execution of the CPN model. This sec-
tion is based on a project conducted at Ericsson Telebit A/S addressing the
specification of the Routing Interoperability Protocol (RIP)1 for routing pack-
ets between IP core networks and mobile ad-hoc networks. The CPN model of
RIP augmented with behavioural visualisation was used as an early model-based
prototype of RIP. It allowed the protocol design to be discussed among protocol
engineers unfamiliar with CPNs, and it also enabled the protocol design to be
presented to customers with the purpose of soliciting requirements of the services
to be provided by the protocol.

5.1 CPN Model of the RIP Protocol

The main purpose of the routing interoperability protocol is to ensure that a
packet flow between a host in the core network and a mobile node in an ad-hoc
network is always relayed via one of the closest gateways that connect the core
network and the mobile ad-hoc network. Figure 22 shows the top level module
of the CPN model which reflects the network architecture that the RIP protocol
is designed to operate in. The network architecture consists of three parts: an
IPv6 core network represented by the CoreNetwork substitution transition (left)
and its submodules, a mobile ad-hoc network represented by the AdHocNetwork
substitution transition (right) and its submodules, and two gateways represented
by the substitution transitions Gateway1 and Gateway2. The basic idea in the
interoperability protocol is that the mobile nodes register the IPv6 address in
the Domain Name Server (DNS) server in the core network that corresponds to

1 RIP as discussed in this section should not be confused with the Routing Information
Protocol[85].
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Core
Network

1

1`(ROUTING,{src="3ffe:100:3:401::2
",dest="3ffe:100:3:401::1",cont=DNS
_REQ("AHN(3)")})

CmdxPacket

AdHoc
Network

2

1`(RECEIVE("AHN(3)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
,cont=GW_ADV(("3ffe:100:3:401::1","
3ffe:100:3:405::"))})++
1`(RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
,cont=GW_ADV(("3ffe:100:3:401::1","
3ffe:100:3:405::"))})

CmdxPacket

Config1
1

1`("3ffe:100:3:401::3","3ffe:100:3:4
05::1","3ffe:100:3:405::")

GWConfig

Config2
1

1`("3ffe:100:3:401::4","3ffe:100:3:4
06::1","3ffe:100:3:406::") GWConfig

Core
Network

CoreNetwork

AdHoc
Network

AdHocNetwork

Gateway1

Gateway

Gateway2

Gateway

gwassign_ip("gw1", "3ffe:100:3:401::3",
"3ffe:100:3:405::1","3ffe:100:3:405::")

wassign_ip("gw2", "3ffe:100:3:401::4",
ffe:100:3:406::1","3ffe:100:3:406::")

Fig. 22. The System module – top-level module of the CPN model

an IPv6 address prefix announced by the closest (preferred) gateway. Updates
to the DNS database managed by the DNS server rely on the Dynamic Domain
Name System Protocol [108].

The places CoreNetwork and AdHocNetwork are used for modelling the packets
in transit on the core network and ad-hoc network, respectively. Figure 22 depicts
a state in which there is one token on place CoreNetwork and two tokens on place
AdHocNetwork. As an example, place CoreNetwork contains one token with the
colour:

(RECEIVE("3ffe:100:3:401::1"), {src="3ffe:100:3:401::2",

dest="3ffe:100:3:401::1",cont=DNSREQ("AHN(3)")})

representing a DNS request (DNSREQ) in transit on the core network from a host
with source IPv6 address 3ffe:100:3:401::2 to a DNS server with destination
IPv6 address 3ffe:100:3:401::1. IPv6 addresses are 128-bit and by conven-
tion written in hexadecimal notation in groups of 16-bits separated by a colon
(:). Leading zeros are skipped within each group and a double colon (::) is a
shorthand for a sequence of zeros. Addresses consist of an address prefix and an
interface identifier .

The place AdHocNetwork contains two tokens representing gateway adver-
tisements in transit to nodes in the ad-hoc network. The gateways periodically
announce their presence to nodes in the mobile ad-hoc network by sending gate-
way advertisements containing an IPv6 address prefix . The two Config places
contain a token representing the configuration of the corresponding gateway.
It consists of the IPv6 address of the gateway interface connected to the core
network, the IPv6 address of the gateway interface connected to the ad-hoc net-
work, and the address prefix announced by the gateway. Address prefixes are
written in the form x/y where x is an IPv6 address and y is the length of the
prefix. The mobile nodes in the ad-hoc network configure IPv6 addresses based
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on the received gateway advertisements. In the marking depicted in Fig. 22,
Gateway1 is announcing the 64-bit address prefix 3ffe:100:3:405::/64 and Gate-
way2 is announcing the prefix 3ffe:100:4:406::/64. Each of the gateways has con-
figured an address on the interface to the ad-hoc network based on the prefix
they are announcing to the ad-hoc network. Gateway1 has configured the address
3ffe:100:3:405::1 and Gateway2 has configured the address 3ffe:100:3:406::1. The
gateways have also configured addresses on the interface to the core network
based on the 3ffe:100:3:401::/64 prefix of the core network.

Figure 23 lists the definitions of the colour sets used in the System module.
IP addresses, prefixes, and symbolic IP addresses are represented by colour sets
IPAdr, Prefix, and Symname all defined as the set of strings. The colour set
PacketCont and Packet are used for modelling the IP packets. The five different
kinds of packets used in RIP are modelled by the PacketCont colour set:

DNS REQ modelling a DNS request packet. It contains the symbolic IP address
to be resolved to a (numerical) IP address by a DNS server.

DNS REP modelling a DNS reply. It contains the symbolic IP address and the
resolved IP address.

DNS UPD modelling a DNS update. It contains the symbolic IP address to be
updated and the new IP address to be bound to the symbolic address.

GW ADV modelling the advertisements disseminated from the gateways. An ad-
vertisement contains the IP address of the gateway and the announced prefix.

colset Prefix = string; (* address prefixes *)

colset IPAdr = string; (* IP addresses *)

colset SymName = string; (* symbolic names *)

colset SymNamexIPAdr = product SymName * IPAdr;

colset IPAdrxPrefix = product IPAdr * Prefix;

colset PacketCont = union DNS_REQ : SymName + (* DNS Request *)

DNS_REP : SymNamexIPAdr + (* DNS Reply *)

DNS_UPD : SymNamexIPAdr + (* DNS Update *)

GW_ADV : IPAdrxPrefix + (* Advertisments *)

PACKET; (* Generic payload *)

colset Packet = record src : IPAdr * dest : IPAdr * cont : PacketCont;

colset Cmd = union ROUTING + RECEIVE : IPAdr +

FLOODING : IPAdr + GWAHNROUTING : IPAdr +

AHNGWROUTING : IPAdr;

colset CmdxPacket = product Cmd * Packet;

colset GWConfig = product IPAdr * IPAdr * Prefix;

Fig. 23. Colour set definitions used in the System module
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PACKET modelling generic payload packets belonging to packet flows between
hosts and the mobile nodes.

The colour set Packet models the packets as a record containing the source,
destination, and content. The actual payload (content) and layout of packets
are not essential for modelling the interoperability protocol and has therefore
been abstracted away. The colour set Cmd is used to control the operation of
the various modules in the CPN model. The colour set GWConfig models the
configuration information of the gateway.

The Core Network. Figure 24 shows the CoreNetwork module modelling the
core network. This module is the immediate submodule of the substitution tran-
sition CoreNetwork of the System module shown in Fig. 22. The port place
CoreNetwork is assigned to the CoreNetwork socket place in the System module
(see Fig. 22). The substitution transition Routing represents the routing mech-
anism in the core network. The substitution transition Host represents the host
on the core network, and the substitution transition DNS Server represents the
DNS server that maintains the DNS database.

The Mobile Ad-hoc Network. Figure 25 depicts the AdHocNetwork module
modelling the mobile ad-hoc network. The place Nodes is used to represent the
nodes in the mobile ad-hoc network. The place RoutingInformation is used to
represent the routing information in the ad-hoc network which is assumed to be
available via some routing protocol executed in the ad-hoc network. This routing
information enables among other things the nodes to determine the distance to
the reachable gateways. Detailed information about the colour of the token on
place RoutingInformation has been omitted.

Figure 26 lists the definition of the colour sets used in the AdHocNetwork
module. The colour set AHNConfig is used to model the configuration information
for the mobile ad-hoc nodes. Each ad-hoc node is represented by a token on place
Nodes and the colour of the tokens specifies the name of the node and a list of
configured IP addresses. Each configuration specifies the IP address configured,
and the IP address and prefix of the corresponding gateway. It is possible for

Core
Network

CmdxPacket

I/O

Host

Host

DNS
Server

DNSServer

Routing

CNRouting

Fig. 24. Core Network module – modelling the core network
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Fig. 25. AdHocNetwork module – modelling the ad-hoc network

(* --- ad-hoc nodes --- *)

color AHId = int with 1..5;

color AHNode = union AHN : AHId;

(* --- configuration information for ad-hoc nodes --- *)

color AHNIPConfig = product IPAdr * IPAdr * Prefix;

color AHNIPConfigs = list AHNIPConfig;

color AHNConfig = product AHNode * AHNIPConfigs;

Fig. 26. Colour definitions used in the AdHocNetwork module

a mobile ad-hoc node to configure an IP address for multiple gateways. The
mobile node must ensure that the DNS database always contains the IP address
corresponding to the preferred gateway . In the marking shown in Fig. 25, it
can be seen from the labels below the mobile nodes that Ad-hoc Node 3 and
Ad-hoc Node 4 have configured IP addresses based on the prefix announced by
Gateway1, whereas Ad-Hoc Node 5 has configured an IP address based on the
prefix announced by Gateway2. For an example, Ad-hoc Node 3 has configured
the address 3ffe:100:3:405::3.

There are four substitution transitions in the AdHocNetwork module corre-
sponding to the components of the ad-hoc network. The substitution transition
AHNodes represents the behaviour of the nodes in the mobile ad-hoc network.
The substitution transition Mobility models the mobility of nodes in the ad-hoc
network, i.e., that the nodes may move closer or further away from the gateways.
The substitution transition Routing represents the routing protocol executed in
the ad-hoc network. The purpose of the routing protocol in the context of the
RIP protocol is to provide the nodes with information about distances to the
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gateways. The routing is abstractly modelled in a similar way as the routing
mechanism in the core network and will not be discussed further in this paper.
The substitution transition Flooding models the dissemination of advertisements
from the gateways. A detailed presentation of this part of the model has been
omitted here. The complete CPN model of the RIP protocol is hierarchically
structured into 18 modules. A detailed presentation of the CPN model can be
found in [74].

5.2 Behavioural Visualisation of the RIP Protocol

In the routing interoperability project, the BRITNeY Suite animation framework
[111] was used to create an animation GUI on top of the CPN model. The
animation GUI allows a user to observe the execution of the constructed CPN
model using a graphical representation of the network architecture. The graphics
is updated by the underlying CPN model according to the execution of the
formally specified protocol, and the CPN model is also able to react to stimuli
provided by the user via the animation GUI.

Figure 27 shows a representative snapshot of the application-specific graphics
during the execution of the CPN model. The IP addresses configured by the
individual nodes are shown as labels below the nodes. For an example, Ad-hoc
Node 3 has configured two IP addresses: 3ffe:100:3:405:3 and 3ffe:100:3:406:3.
The convention is that the preferred IP address is the topmost address in the
list below the node. The entries in the DNS database are shown in the upper left
corner. It shows the entries for each of the three ad-hoc nodes. The two numbers
written at the top of each node are counters that provide information about
the number of packets on the incoming (left) and outgoing (right) interfaces
of the nodes. Transmissions of advertisements from the gateways are visualised
by green dots. Fig. 27 shows an example where Gateway2 is transmitting an
advertisement. Transmission of payload packets is visualised using red dots, and
DNS packets are visualised using blue dots.

In addition to observing feedback on the execution of the CPN model in the
animation GUI, it is also possible to provide input to the CPN model directly
via the animation GUI. The user can move the nodes in the ad-hoc network
thereby changing the distances to the two gateways. It is also possible to define
a packet flow from the host in the core network to one of the nodes in the mobile
ad-hoc network by clicking on the red square positioned next to each of the
ad-hoc nodes. The square will change its colour to green once the CPN model
has registered the flow. The flow can be stopped again by clicking on the (now
green) square next to the mobile ad-hoc node. Finally, it is possible to force the
transmission of an advertisement from a gateway by clicking on the gateway.

A more generic form of high-level graphical feedback in the form of MSCs was
also used in this project. Figure 28 shows an example of an MSC diagram based
on a simulation of the CPN model. The MSC shows a scenario where Ad-hoc
Node 3 makes a Move and discovers that Gateway 2 is now the closest gateway.
This causes it to send a DNS update to the DNS server. The last part of the
MSC shows the host initiating a packet flow to Ad-hoc Node 3. One benefit of
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Fig. 27. Snapshot of the interaction graphics

Fig. 28. Message sequence chart generated by the animation GUI
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using MSCs is that they provide an event-based view that records the execution
history. This is in contrast to the state-based view on the CPN model that one
obtains during an interactive simulation. The two forms of feedback therefore
complement each other and MSCs have been widely used in projects where CPNs
were applied to protocol design.

Graphical feedback from the execution of the CPN model is achieved by at-
taching code segments to the transitions in the CPN model. These code segments
are sequential pieces of code that are executed whenever the corresponding tran-
sition occurs in the simulation/execution of the CPN model. As an example
consider the CNRouting module in Fig. 29. The transition Route models the
routing of the packet on the core network. It uses the routing information on
place RoutingInformation to direct the packet to the proper gateway. The SML
function FindNextHop in the guard expression of the transition computes the IP
address of the next hop gateway using the routing information and destination
IP address of the packet. The Route transition has an attached code segment
which is executed whenever the transition occurs. The code segment invokes the
primitives in the animation package for animating the transmission of packets
in the core network.

Fig. 29. The CNRouting module – Routing in the core network

The CPN model receives input from the animation GUI by polling the an-
imation GUI for events. An event queue has been implemented between the
animation GUI and the CPN model. The code segment of transition Produce in
the Poll module shown in Fig. 30 polls the animation GUI for events at regular
intervals during the execution of the CPN model. Events are put into a list-token
representing an event queue on the place Events. The parts of the CPN model
that are to react on events from the animation GUI are linked via place fusion
to the Event place and are able to consume events from the event queue. The
occurrence of the transition Produce corresponds to a poll to the animation GUI
for events.

5.3 Lessons Learned and Perspectives

The CPN model combined with the animation GUI that was developed in the
RIP project served as an early model-based executable prototype. The domain
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Fig. 30. The Poll module – Polling the animation GUI for events

specific graphical user interface (the animation GUI) made it possible to explore
and demonstrate the design of the interoperability protocol with the underlying
formal model being transparent for the observer and the demonstrator. In par-
ticular, it made it possible for persons without knowledge of the CPN modelling
language to experiment with the proposed design. The use of an animation GUI
on top of the CPN model has the advantage that the behaviour observed by the
user is as defined by the underlying model that formally specifies the design. The
alternative would have been to implement a separate visualisation application
totally detached from the CPN model. This would have led to double represen-
tation of the dynamics of the interoperability protocol which could in turn lead
to inconsistencies between the two representation of the design.

Another advantage offered by the development of a model-based prototype
is ease of control compared to a physical prototype, in particular in the case of
mobile nodes and wireless communication where scenarios can be very difficult
to control and reproduce. The use of a model means that there is no need to
invest in physical equipment and there is no need to setup the actual physical
equipment early in the project. The use of a model also makes it possible to
investigate larger scenarios, e.g., scenarios that may not be feasible to investigate
with the available physical equipment. An additional general advantage of the
approach taken in the RIP project is that at an early stage of development,
the implementation details can be abstracted away and only the key part of
the design have to be specified in detail. As an example, the CPN model of the
interoperability protocol abstracted away the routing mechanisms in the core and
ad-hoc networks, and the mechanism used for distribution of advertisements.
Instead, the service assumed from these components for the interoperability
protocol to work was modelled. The possibility of making abstraction means
that it is possible to obtain an executable prototype without implementing all
the components.

6 The Edge Router Discovery Protocol

The previous sections have demonstrated how modelling, simulation, state space
exploration, and behavioural visualisation can be applied for validating the func-
tional design of protocols. This section summarises a project [67] conducted with
Ericsson Telebit A/S where a combination of the techniques introduced in the
previous sections were applied for the design of an Edge Router Discovery Pro-
tocol (ERDP). The CPN model of ERDP was developed in close cooperation
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with the protocol engineers at Ericsson Telebit A/S based on a natural-language
specification that would normally have served as a basis for the implementation
of the protocol. Simulation and MSCs were used in initial investigations of the
ERDP protocol behaviour. Then state space exploration was used to conduct a
formal verification of the key behavioural properties of ERDP. The aim of this
section is to show how modelling, simulation, visualisation, and state space ex-
ploration all can help to identify omissions and behavioural errors in a design,
and how they are typically used in conjunction in a protocol design process.

6.1 CPN Model of the ERDP Protocol

ERDP is based on the IPv6 Neighbour Discovery Protocol (NDP) [88] and sup-
ports edge routers residing on the boundary of an IP core network in configuring
gateways with an IPv6 address prefix. This address prefix can in turn be used by
mobile nodes in ad-hoc networks to configure global IPv6 unicast addresses and
obtain Internet access via the core network. Figure 31 shows the ERDP module
which is the top-level module of the CPN model. The substitution transition
Gateway represents the gateway, and the substitution transition EdgeRouter rep-
resents the edge router. The wireless communication link between the edge router
and the gateway is represented by the substitution transition GW ER Link. The
four socket places GWIn, GWOut, ERIn, and EROut model packet buffers between
the link layer and the gateway and edge router. Both the gateway (GW) and
the edge router (ER) have an incoming and an outgoing packet buffer.

All four places in Fig. 31 have the colour set IPv6Packet, used to model the
IPv6 packets exchanged between the edge routers and gateways. Since ERDP
is based on the IPv6 Neighbour Discovery Protocol, the packets are carried
as Internet Control Message Protocol (ICMP) packets. The definitions of the
colour sets for NDP, ICMP, and IPv6 packets were derived directly from RFC
2460 [22] by using record type constructors for representing fields within packets

GW_ER_Link GW_ER_Link

EdgeRouter

EdgeRouter

Gateway

Gateway

EROut

IPv6Packet

ERIn

IPv6Packet

GWOut

IPv6Packet

GWIn

IPv6Packet

Gateway EdgeRouter

GW_ER_Link

Fig. 31. Top-level module of the ERDP CPN model
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and union type constructors for representing the different kinds of packets (see
[67] for detail). It was considered important by the protocol engineers for later
implementation that the definition of the packets followed closely the structure
of IPv6 packets instead of a more abstract representation.

Figure 32 shows the EdgeRouter module. The port places ERIn and EROut are
related to the accordingly named socket places in the ERDPmodule (see Fig. 31).
The place Config models the configuration information associated with the edge
router, and the place PrefixCount models the number of prefixes still available in
the edge router for distribution to gateways. The place PrefixAssigned is used to
keep track of which prefixes are assigned to which gateways.

Figure 33 shows the declarations of the colour sets for the three places in
Fig. 32. The configuration information for the edge router (modelled by the
colour set ERConfig) is a record consisting of the IPv6 link-local address and
the link-layer address of the edge router. A list of pairs (colour set ERPrefixAs-
signed) consisting of a link-local address and a prefix is used to keep track of
which prefixes are assigned to which gateways. A counter modelled by the place
PrefixCount with the colour set PrefixCount is used to keep track of the number
of prefixes still available. When this counter reaches 0, the edge router has no
further prefixes available for distribution. The number of available prefixes can
be modified by changing the initial marking of the place PrefixCount, which is
set to 1 by default.

The substitution transition SendUnsolicitedRA (in Fig. 32) corresponds to the
multicasting of periodic unsolicited router advertisements (RAs) by the edge
router such that gateways can discover the presence of the edge router. When a
gateway receives an unsolicited RA, it responds with a unicast router solicitation
(RS). The substitution transition ProcessRS models the reception at the edge

Fig. 32. The EdgeRouter module
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colset LinkAddr = string;

colset ERConfig = record ll_er : IPv6Addr * (* link-local address *)

er_l2 : LinkAddr; (* link-addr (layer 2) *)

colset ERPrefixEntry = product IPv6Addr * IPv6Prefix;

colset ERPrefixAssigned = list ERPrefixEntry;

colset PrefixCount = int;

Fig. 33. Colour set definitions for edge routers

router of unicasted RSs from gateways, and the sending of a unicast RA to the
gateway in response. The substitution transition ERDiscardPrefixes models the
expiration of prefixes on the edge router side.

The marking shown in Fig. 32 has a single token on each of the three places
used to model the internal state of the edge router protocol entity. In the marking
shown, the token on the place PrefixAssigned with the colour [] corresponds to
the edge router not having assigned any prefixes to the gateways. The token on
the place PrefixCount with colour 1 indicates that the edge router has a single
prefix available for distribution. Finally, the colour of the token on the place
Config specifies the link-local and link addresses of the edge router. In this case
the edge router has the symbolic link-local address ER link-local address, and the
symbolic link-address ER link-addr.

Figure 34 depicts the SendUnsolicitedRA module which is the submodule
of the substitution transition SendUnsolicitedRA in Fig. 32. The transition
SendUnsolicitedRA models the sending of the periodic unsolicited router adver-
tisements. The variable erconfig is of type ERConfig, and the variable prefixleft is
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Fig. 34. Initial marking of the SendUnsolicitedRA module
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of type PrefixCount. The transition SendUnsolicitedRA is enabled only if the edge
router has prefixes available for distribution, i.e., prefixleft is greater than 0. This
is ensured by the function SendUnsolicitedRA in the guard of the transition.

Figure 35 depicts the marking of the SendUnsolicitedRA module after the oc-
currence of the transition SendUnsolicitedRA in the marking shown in Fig. 34.
An unsolicited router advertisement has been put in the outgoing buffer of
the edge router. It can be seen that the DestinationAddress is the address
all-nodes-multicast, the SourceAddress is ER link-local address, and
the LinkLayerAddress (in the options part) is ER link-addr.

Figure 36 shows the part of the GW ER Link module that models transmis-
sion of packets from the edge router to the gateway across the wireless link.
Transmission of packets from the gateway to the edge router is modelled simi-
larly. The port places GWIn and EROut are linked to the similarly named socket
places in Fig. 31. The transition ERtoGW models the successful transmission
of packets, whereas the transition LossERtoGW models the loss of packets. The
variable ipv6packet is of type IPv6Packet. A successful transmission of a packet
from the edge router to the gateway corresponds to moving the token modelling
the packet from the place EROut to GWIn. If the packet is lost, the token will
only be removed from the place EROut.

Wireless links, in general, have a lower bandwidth and higher error rate than
wired links. These characteristics have been abstracted away in the CPN model
since the purpose is to reason not about the performance of ERDP but rather
its logical correctness. Duplication and reordering of messages are not possi-
ble on typical one-hop wireless links, since the detection of duplicates and the
preservation of order are handled by the data-link layer. The modelling of the
wireless links does allow overtaking of packets, but this overtaking was elimi-
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Fig. 35. Module SendUnsolicitedRA, after occurrence of SendUnsolicitedRA
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Fig. 36. Part of the GW ER Link module

Table 2. ERDP project [67] – design issues identified in the modelling phase

Category Review 1 Review 2 Total

Errors in protocol specification/operation 2 7 9 issues
Incompleteness and ambiguity in specification 3 6 9 issues
Simplifications of protocol operation 2 0 2 issues
Additions to the protocol operation 4 0 4 issues

Total 11 13 24 issues

nated in the state space exploration phase where bounds were imposed on the
capacity of the input and output packet buffers.

The CPN model was developed as an integrated part of the development
of ERDP. The creation of the CPN model was done in cooperation with the
protocol engineers at Ericsson in parallel with the development of the ERDP
specification. Altogether 70 person-hours were spent on CPN modelling. Prior
to the development of the CPN model, the protocol engineers at Ericsson were
given a 6 hour course on CPNs that made them capable of reading CPN models.
This means that CPN models could be used actively in discussion related to the
design of the ERDP protocol. MSCs (to be illustrated shortly), integrated with
simulation were used in both review steps to investigate the behaviour of ERDP
in detail. The use of MSCs in the project was of particular relevance since it
presented the operation of the protocol in a form well known to the protocol
engineers. Altogether 24 design issues were identified during three iterations
on the CPN model. Table 2 categorises and enumerates the issues encountered
during two review phases (Review 1 and Review 2) of the protocol design. The
issues were identified in the process of constructing the CPN model, performing
single-step executions of the CPN model, and engaging in discussions of the CPN
model with the protocol engineers at Ericsson.

6.2 Verification of the ERDP CPN Model

State space exploration was conducted after the three iterations of modelling
as discussed in the previous section. The purpose of the state space exploration
was to conduct a more thorough investigation of the operation of ERDP, includ-
ing verification of its key properties. The key behavioural property of ERDP is
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proper configuration of the gateway with prefixes. This means that for a given
prefix and state where the gateway has not yet been configured with that prefix,
the protocol must be able to configure the gateway with that prefix. Further-
more, when the gateway has been configured with the prefix, the edge router
and the gateway should be consistently configured , i.e., the assignment of the
prefix must be recorded both in the gateway and in the edge router protocol
entity. Whether a marking represents a consistently configured state for a given
prefix can be checked by inspecting the marking of the place PrefixAssigned in
the edge router and the marking of the place Prefixes in the gateway.

Obtaining a finite state space. The first step towards state space exploration of
the CPN model was to obtain a finite state space. The CPN model as presented
above has an infinite state space, since an arbitrary number of tokens (packets)
can be put on the places modelling the packet buffers. As an example, the edge
router may initially send an arbitrary number of unsolicited router advertise-
ments. To obtain a finite state space, an upper integer bound of 1 was imposed
on each of the places GWIn, GWOut, ERIn, and EROut (see Fig. 31) which model
the packet buffers. This also prevents overtaking among the packets transmit-
ted across the wireless link. Furthermore, the number of packets simultaneously
present in the four input/output buffers was limited to 2. Technically, this was
done by using the branching options available in the CPN state space tool to pre-
vent the processing of enabled transitions whose occurrence in a given marking
would violate the imposed bounds on the buffer places.

No packet loss and prefix expire. The second step was to consider the simplest
possible configurations of ERDP, starting with a single prefix and assuming that
there is no packet loss on the wireless link and that prefixes do not expire. The
full state space for this configuration had 46 nodes and 65 arcs. Inspection of
the state space report showed that there was a single dead marking represented
by node 36. Inspection of this node showed that it represented a state where all
of the packet buffers were empty. However, the edge router and gateway were
inconsistently configured in this state in that the edge router had assigned the
prefix P1 (the single prefix), while the gateway was not configured with that pre-
fix. This was an error in the protocol. To locate the source of the problem, query
functions in the state space tool were used to obtain a counter example leading
from the node representing the initial marking to node 36. Figure 37 shows the
resulting error trace, visualised by means of an MSC. This MSC was generated
automatically from the extracted counter example. The column labelled GW-
Buffer represents the packet buffer between the gateway protocol entity and the
underlying protocol layers. Similarly, the ERBuffer column represents the packet
buffer in the edge router. The problem is that the edge router sends two unso-
licited RAs. The first one gets through and the gateway is configured with the
prefix, which can be seen from the event marked with *A* in the lower part of
the MSC. However, when the second RS, without any prefixes, is received by
the edge router (the event marked with *B*), the corresponding solicited RA
will not contain any prefixes. Because of the way the protocol was specified, the
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gateway will therefore update its list of prefixes to the empty list (the event
marked with *C*), and the gateway is no longer configured with a prefix.

To fix the error, the protocol was modified so that the edge router always
replies with the list of all prefixes that it has currently assigned to the gateway.
The state space for the modified protocol consisted of 34 nodes and 49 arcs,
and there were no dead markings in the state space. The state space report
specified that there were 11 home markings. Inspection of these 11 markings
showed that they all represented consistently configured states for the prefix
P1. The markings were contained in the single terminal SCC of the state space.
A terminal SCC is an SCC of the state space where all successors of states in
the SCC belong to the SCC itself. This shows that, from the initial marking
it is always possible to reach a consistently configured state for the prefix, and
that when such a marking has been reached, the protocol entities will remain
in a consistently configured state. To verify that a consistently configured state
would eventually be reached, it was checked that the single terminal SCC was
the only non-trivial SCC. A trivial SCC is a SCC consisting of just a single
state. This showed that all cycles in the state space (which correspond to non-
terminating executions of the protocol) were contained in the single terminal
SCC, which (from above) contained only consistently configured states. The
reason why the protocol is not supposed to terminate in a consistently configured
state represented by a dead marking is that the gateway may, at any time, when
it is configured, send a router solicitation back to the edge router to have its
prefixes refreshed.

Increasing the number of prefixes. When the correctness of the protocol had been
established for a single prefix, the number of prefixes was increased. When there
is more than one prefix available it no longer holds that a marking will eventually
be reached where all prefixes are consistently configured. The reason is that with
more than one prefix, the edge router may at any time decide not to configure
the gateway with additional prefixes. Hence, a state where all prefixes have been
consistently configured might not eventually be reached. Instead, firstly, it was
verified that there was a single terminal SCC, all markings of which represent
states where all prefixes have been consistently configured. This shows that it is
always possible to reach such a marking, and when the protocol has consistently
configured all prefixes, the protocol entities will remain consistently configured.
Secondly, it was checked that all markings in each non-trivial SCC represented
markings where the protocol entities were consistently configured with a subset
of the prefixes available in the edge router. The properties above was checked
using a number of user-defined queries in the state space tool of CPN Tools.

Adding packet loss. The third step was to allow packet loss on the wireless link
between the edge router and the gateway. First, the case was considered in which
there is only a single prefix for distribution. The state space for this configuration
had 40 nodes and 81 arcs. Inspection of the state space report showed that there
was a single dead marking. This marking represented an undesired terminal
state where the prefix had been assigned by the edge router, but the gateway
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Fig. 37. MSC showing an execution leading to an undesired terminal state
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was not configured with the prefix. The source of the problem was located by
extracting a counter example and visualising it in a similar manner as shown in
Fig. 37. The problem was fixed by ensuring that the edge router would resend
an unsolicited RA to the gateway as long as it had prefixes assigned to the
gateway. The state space of the revised CPN model had 68 nodes and 160 arcs.
Inspection of the state space report showed that there were no dead markings
and no home markings. Investigation of the terminal SCCs showed that there
were two terminal SCCs, each containing 20 markings. The nodes in one of
them all represented states where the edge router and gateway were consistently
configured with the single prefix P1, whereas the nodes in the other terminal
SCC all represented states where the protocol entities were not consistently
configured. The markings in the undesired terminal SCC represent a livelock
in the protocol, i.e., if one of the markings in the undesired terminal SCC is
reached, it is no longer possible to reach a state where the protocol entities are
consistently configured with the prefix. The source of the livelock was related
to the control fields used in the router advertisements for refreshing prefixes
and their interpretation on the gateway. This was identified by obtaining the
MSC for a path leading from the initial marking to one of the markings in the
undesired terminal SCC. As a result, the processing of router advertisements in
the gateway was modified. The state space for the protocol with the modified
processing of router advertisements also had 68 nodes and 160 arcs. The state
space had a single terminal SCC containing 20 nodes, which all represented
states where the protocol entities were consistently configured with the single
prefix.

When packet loss is present, it is not immediately possible to verify that
the two protocol entities will eventually be consistently configured. The reason
is that any number of packets can be lost on the wireless link. Each of the
non-trivial SCCs was inspected using a user-defined query to investigate the
circumstances under which the protocol entities would not eventually be con-
sistently configured. This query checked that either all nodes in the non-trivial
SCC represented consistently configured states or none of the nodes in the SCC
represented a consistently configured state. For those non-trivial SCCs where no
node represented a consistently configured state, it was checked that all cycles
contained the occurrence of a transition corresponding to loss of a packet. Since
this was the case, it can be concluded that any failure to reach a consistently
configured states will be due to packet loss only. Hence, if finitely many pack-
ets are lost, a consistently configured state for some prefix will eventually be
reached.

Adding prefix expire. The fourth and final step in the analysis was to allow
prefixes to expire. The analysis was conducted first for a configuration where
the edge router had only a single prefix to distribute. The state space for this
configuration had 173 nodes and 513 arcs. The state space had a single dead
marking, and inspection of this dead marking showed that it represented a state
where the edge router has no further prefixes to distribute, it has no prefixes
recorded for the gateway, and the gateway is not configured with any prefix.
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This marking is a desired terminating state of the protocol, as we expect pre-
fixes to eventually expire. Since the edge router has only finitely many prefixes to
distribute, the protocol should eventually terminate in such a state. The single
dead marking was also a home marking, meaning that the protocol can always
enter the expected terminal state. When prefixes can expire, it is possible that
the two protocol entities may never enter a consistently configured state. The
reason is that a prefix may expire in the edge router (although this is unlikely)
before the gateway has been successfully configured with that prefix. Hence, we
are only able to prove that for any marking where a prefix is still available in the
edge router, it is possible to reach a marking where the gateway and the edge
router are consistently configured with that prefix.

Table 3 lists statistics for the size of the state space in the three verification
steps for different numbers of prefixes. The column ‘|P|’ specifies the number
of prefixes. The columns ‘Nodes’ and ‘Arcs’ give the numbers of nodes and
arcs, respectively, in the state space. For the state spaces obtained in the first
verification step, it can be seen that 38 markings and 72 arcs are added for each
additional prefix. The reason for this is that ERDP proceeds in phases where
the edge router assigns prefixes to the gateway one at a time. Configuring the
gateway with an additional prefix follows exactly the same procedure as that
for the assignment of the first prefix. Once the state space had been generated,
the verification of properties could be done in a few seconds. It is also worth
observing that as the assumptions are relaxed, i.e., we move from one verification
step to the next, the sizes of the state spaces grow. This, combined with the
identification of errors in the protocol even in the simplest configuration, without
packet loss and without expiration of prefixes, shows the benefit of starting
state space exploration from the simplest configuration and gradually lifting
assumptions. Furthermore, the state explosion problem was not encountered
during the verification of ERDP, and the key properties of ERDP were verified
for the number of prefixes that were envisioned to appear in practise.

6.3 Lessons Learned and Perspectives

The project at Ericsson highlights the benefits of a formal modelling and vali-
dation approach. Furthermore, the project emphasised the benefits of the model
construction phase which is often underestimated (or not reported) in litera-
ture on protocol validation. As illustrated by the ERDP project, the modelling
phase itself lead to significant insight into the protocol design, and contributed
to a simpler and more complete protocol design. The construction of a CPN
model and subsequent state space exploration can be seen as a very thorough
and systematic way of reviewing the ERDP design specification. The project
showed that the process of constructing a CPN model based on the ERDP spec-
ification provided valuable input to the ERDP design, and the use of simulation
added further insight into the operation of the protocol. State space exploration,
starting with the simplest possible configuration of the protocol, identified ad-
ditional errors in the protocol. The results from state space exploration also
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Table 3. State space statistics for the three verification steps

No loss/No expire Loss/No Expire Loss/Expire
|P| Nodes Arcs Nodes Arcs Nodes Arcs

1 34 49 68 160 173 531
2 72 121 172 425 714 2 404
3 110 193 337 851 2 147 7 562
4 148 265 582 1 489 5 390 19 516
5 186 337 926 2 390 11 907 43 976

6 224 409 1 388 3 605 23 905 89 654
7 262 481 1 987 5 185 44 550 169 169
8 300 553 2 742 7 181 78 211 300 072
9 338 625 3 672 9 644 130 732 505 992

10 376 697 4 796 12 625 209 732 817 903

demonstrate that errors are often present in the smallest configurations of a
protocol system.

Using an iterative process where both a conventional natural-language specifi-
cation and a CPN model were developed (as in this project) turned out to be an
effective way of integrating CPN modelling and validation into the development
of a protocol. In general, the combination of an executable formal model (such
as a CPN model) and a natural-language specification seems to be provide a
useful way to develop a protocol. One reason why both are required is that the
software engineers that are eventually going to implement the protocol (which
may be different from those that design the protocol) in many cases will not be
familiar with the CPN modelling language. Secondly, in many cases there are
important implementation elements of the protocol specification that are not
reflected in the CPN model, such as the layout of packets.

It can be argued whether or not the issues and errors discovered in the process
of modelling and conducting state space exploration would have been identified if
additional conventional reviews of the ERDP specification had been conducted.
Some of them probably would have been, but more subtle problems such as
the inconsistent configurations discovered during state space exploration would
probably not have been discovered until the first implementation of ERDP was
operational. The reason for this is that discovering these problems requires one
to consider subtle execution sequences of the protocol.

Overall, the application of CPNs in the development of ERDP was considered
a success for three main reasons. Firstly, it was demonstrated that the CPN
modelling language and supporting computer tools were powerful enough to
specify and verify a real-world protocol being developed in an industrial project,
and that integration into the conventional protocol development process is not
difficult. Secondly, the act of constructing the CPN model, executing it, and
discussing it led to the identification of several non-trivial design errors and
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issues that, under normal circumstances, would not have been discovered until,
at best, the implementation phase. Finally, the effort of constructing the CPN
model and conducting state space exploration was represented by approximately
100 person-hours. This is a relatively small investment compared with the many
issues that were identified and resolved early as a consequence of constructing
and analysing the CPN model.

7 Related Work on CPN Protocol Validation

The four protocol examples presented in this paper constitute only a small subset
of the examples that have been published in the literature on the use of CPNs for
specification and validation of protocols - in particular in relation to protocols
developed in the context of IETF and other protocol standardisation bodies.

The Datagram Congestion Control Protocol (DCCP) developed by the IETF
has been investigated in [11]. DCCP is intended to provide an unreliable trans-
port service with congestion control mechanisms. The work in [11] was done in
parallel with the development of the emerging DCCP standard, and concentrated
on modelling and verification of the connection establishment and synchronisa-
tion procedures of DCCP. It resulted in the identification of several functional
errors in the protocol design, including discovery of deadlocks, non-progress be-
haviour (chatter), and problems with connection establishment in relation to
sequence number wraps. The formal validation resulted in the IETF working
group making small (but important) changes to the connection establishment
and synchronisation procedures of DCCP. The work also included the devel-
opment of a formal service specification for DCCP [33] and application of the
sweep-line method [105] for on-the-fly checking of the protocol conformance to
the developed service specification.

The classical Transmission Control Protocol (TCP) has also been modelled
and verified using CPNs [10]. Similar to the work on DCCP, this work concen-
trated on the connection establishment procedures. It resulted in verifying the
absence of deadlocks and livelocks in connection establishment, and a detailed
specification of the circumstances under which TCP connection establishment
may not be successful. Another example of transport layer protocol modelling
and validation can be found in [104] which considers the Stream Transmission
Control Protocol (SCTP).

The Internet Open Trading Protocol (IOTP) designed to provide an interop-
erability framework for Internet commerce was formally modelled and validated
using CPNs in [90–92]. IOTP is designed to handle common trading procedures
and encompass trading roles such as consumer, merchant, payment handler,
and delivery handler. IOTP is organised around a collection of eight baseline
transactions consisting of Purchase, Refund, Value exchange, Authentication,
Withdrawal, Deposit, Inquiry, and Ping. These transactions comprise a minimal
set of transactions for an Internet commerce protocol. A formal specification of
the service provided by IOTP was developed using CPN in [92]. The service
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was specified in the form of a finite-state automaton labelled with service prim-
itives. The automaton was extracted from the state space of the CPN model
by identifying the binding elements corresponding to service primitives of the
protocol. A CPN model of the IOTP protocol itself was presented in [90, 91].
State space exploration focused on the termination properties and absence of
livelocks in the IOTP transactions. The use of state space exploration revealed
deficiencies related to termination of transactions. A verification of the IOTP
protocol CPN model [90, 91] against the formal service specification from [92]
was presented in [89]. Finite-state automata language comparison was used as
the criterion for conformance following the methodology of [9]. Application of
the sweep-line state space method on IOTP was investigated in [34] exploiting
an inherent progression from the start of an IOTP transaction to termination of
the transaction.

The Wireless Application Protocol (WAP) has been considered in [40, 41].
WAP is designed to provide Internet services to a wide range of hand-held de-
vices. The work of [40, 41] concentrates on the Wireless Transaction Protocol
(WTP) which is an important element of the WAP architecture and protocol
suite. The work in [40] presents a formal modelling of the WTP service and a
formal modelling of the WTP protocol. Checking the conformance of the WTP
protocol against the WTP service was done using finite-state automata lan-
guage comparison. This approach succeeded in detecting several inconsistencies
between the protocol and the service which was provided as input to the WAP
forum responsible for the development of WAP. The sweep-line method was used
in [41] to alleviate the state explosion problem and allow for the verification of
larger configurations of WTP. The application of the sweep-line method allowed
configurations with parameter settings of retransmission counters corresponding
to the recommended setting for GSM and IP network to be verified.

The Session Initiation Protocol (SIP) is a widely used protocol for the estab-
lishment of Internet multimedia session, and has been subject to formal mod-
elling and validation in [23, 77]. The INVITE transactions have been formally
analysed using state space exploration in [23, 77] leading to identification of
undesired terminating states of the protocol when operating over an unreli-
able communication medium. Security aspects of SIP have been investigated
in [78]. The work of [37] focuses on the formal modelling of a SIP-based pro-
tocol for multi-channel service oriented architectures. A formalisation of SIP
with the purpose of providing a framework model for present architectures in
mobile computing is presented in [36]. Another multimedia control protocol,
the Capability Exchange Signalling (CES) protocol, has been formally mod-
elled using CPNs and verified using state space exploration in [79]. The work
on the CES protocol led to the identification of protocol errors in presence of
sequence number wrap. Suggested changes were incorporated in a revised CPN
model, and it was formally verified showing that the discovered errors have been
eliminated.

The NEO protocol which is part of the distributed transactional object
database management system NEOPPODwas investigated using high-level Petri
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Nets in [17]. The Coloane environment was used for the construction of the mod-
els, and verification was performed using the CPN-AMI and Helena tools. The
NEO protocol is used to coordinate data storage and retrieval in a decentralised
and distributed system where data can be stored on a number of data nodes
and data is accessed through the primary master node. The focus of [17] was
on the protocol used for the election of the primary master node. The model
of the election part of the NEO protocol consisted of eighteen modules. Since
there existed no specification document for the protocol, the Petri net model
was reverse-engineered from a prototype implementation. The validation process
which relied on the use of state spaces discovered two flaws in the implementa-
tion of the protocol. These were subsequently provided to the software engineers
responsible for the implementation of the protocol component.

The Resource Reservation Protocol (RSVP) was formally modelled and ver-
ified in [106, 107]. The modelling and verification concentrates on verifying the
absence of deadlocks and livelocks in relation to the setup, maintenance and path
release procedures of RSVP. In addition, a number of RSVP specific behavioural
properties were investigated which considered in detail the internal state of the
sender, router, and receiver protocol entities of the protocol. The main contribu-
tion of the work was the development of a formal specification of the RSVP path
procedures. Another example on the modelling of routing protocols can be found
in [76] which uses Mobile Petri Nets to construct a formal model of the Mobile
IP protocol. Mobile IP allows transport layer connections to be preserved when
mobile nodes change their point of attachment to the Internet. CPNs have also
recently been used for the verification of security protocols. Privacy enhancing
protocols were considered in [99], and [39] addresses the modelling and validation
of PANA Authentication and Authorisation Protocol. Examples of protocols for
which parametric verification has been pursued in the context of CPNs can be
found in [31, 32].

8 Conclusions and Outlook

Functional validation of protocol designs is one of the main application areas
of CPNs and supporting computer tools [28]. In this paper, we have surveyed a
selection of recent projects on modelling and functional validation of industry
relevant protocols. The examples demonstrate how the elements of protocols can
be modelled using CPNs, and they illustrate how a combination of simulation,
application-specific behavioural visualisation, and state space exploration is typ-
ically applied in protocol validation with CPNs. From a modelling perspective,
the protocol examples have ranged from models representing two (or few) peer
protocol entities (e.g., GAN, EDRP, and RIP) having an explicit representation
in the net structure, to parameterised models capable of modelling an arbitrary
number of peer protocol entities by setting a model parameter (e.g., DYMO).
The latter was based on constructing a folded model where the identity of the
protocol entities is encoded explicitly as part of the token colours. The CPN
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models have also illustrated modelling at different protocols layer ranging from
models operating at a single protocol layer (e.g., DYMO and ERDP) to protocol
system design involving multiple protocol layers and protocols (e.g., GAN and
RIP). An important aspect of the examples is that the process of modelling and
conducting single step simulation is an important (but often underestimated)
activity in the validation of a protocol design.

The main technique available for functional verification of CPN models is
that of explicit state space exploration. The examples presented in this pa-
per show how basic state space exploration combined with the generation of a
state space report relying on a number of standard behavioural properties of
Petri Nets, provides a light-weight approach which in many cases is an impor-
tant step in verifying key properties of a protocol design. The main reason for
the wide spread application of state space exploration has been the presence
of mature computer tool support combined with the main advantages of state
space exploration in terms of being a highly systematic approach, being able to
provide counter examples, and allowing for a high degree of automation. The
compact modelling of protocols enabled by CPNs has, in many cases, had the
effect that the full state space can be explored for at least the smallest configu-
ration of the considered protocol. The GAN and ERDP examples presented in
this paper are concrete examples illustrating this. Practise have shown that the
primary capability offered by the advanced state space methods is the possibil-
ity of verifying larger configurations of the protocol - and in some cases [71] the
configurations of the system that are expected to occur in practise. The ERDP
example considered in this paper is another example of this. Hence, despite the
fact that explicit state space exploration methods requires one to conduct verifi-
cation relative to a particular configuration of the protocol, the current suite of
availably state space methods combined with the power of modern computing
platforms in many situations allows for the practical validation of industrial-sized
protocols.

While CPNs have been successfully applied to modelling and validating pro-
tocol designs, there has been relatively few attempts at using the constructed
CPN models in an automated or semi-automated manner as a basis for the ac-
tual implementation of protocols. Some simulation-based approaches were used
in [87] and [70] for generating server-side implementations. Here, the simulation
code for the CPN model generated by CPN Tools was extracted, and after un-
dergoing automatic modifications (e.g., linking the code to external libraries),
the generated simulation code is used as the system implementation. A lim-
itation of this approach is that the execution speed is affected because each
step in the execution of the program involves the computation and execution
of enabled transitions (as done by a CPN simulator) in order to determine the
next state. Secondly, the approach ties the target platform to that of the CPN
Tools simulator which may make the approach impractical for many application
domains due to resource consumption of the CPN simulator. The SML/NJ com-
piler used for the simulator in CPN Tools has a large memory footprint making
it ill-suited, e.g., for the domain of embedded systems. Some initial work on a
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translation-based approach can be found in [73]. Here a restricted form of CPNs
was used for obtaining an Erlang implementation of the DYMO routing proto-
col. The approach in [73] relies on the use of Process-Partitioned CPNs which
enforces a detailed modelling of the protocol design which is very close to an
implementation level model. An area that will be important as part of efforts
in developing capabilities for automated code generation is the development of
CPN protocol modelling methodology on which only limited research has been
undertaken [18].
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Abstract. Business process modeling has become a standard activity
in many organizations. We start with going back into the history and
explain why this activity appeared and became of such importance for
organizations to achieve their business targets. We discuss the context in
which business process modeling takes place and give a comprehensive
overview of the techniques used in modeling. We consider bottom up
and top down approaches to modeling, also in the context of develop-
ing correct-by-construction models of business processes. The correctness
property we focus on is soundness, or weak termination, basically mean-
ing that at every moment of its execution, a process has an option to
continue along an execution path leading to termination, which is an im-
portant sanity check for business processes. Finally, we discuss analogies
between business processes and software services and their orchestrations
and argue the applicability of the described modeling techniques to the
world of services.

1 Introduction

The concept of a business process (BP) is as old as humanity. A BP is the set of
interdependent tasks and resources needed to produce some service or product.
On top of this set there are constraints or business rules that have to be met.
Business processes form the heart of organizations: they should make possible
that organizations can realize their goals. Although business processes always
have existed, the description, or modeling, of BPs started only recently. In the
twentieth century auditors and accountants started working on BP specifications
in their field and later it became a hot topic in quality management. In these
early days process descriptions were used for documentation, and for facilitating
communication between persons. As a result, these descriptions were informal,
often in a natural language enriched with some diagrams.

Around the year 1990 business processes became a hot topic in industry, as
people became aware of the fact that we were not fully exploiting the power
of computer systems. Information systems supporting business processes were
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data-oriented, meaning they were targeted in recording the status of objects
that played a role in business processes, in a database. Consequently, database
technology was the main technology at the beginning of the nineties. Moreover,
information systems were built to support existing business processes by au-
tomating their tasks by imitation of the human work by a computer. The papers
and books of Hammer and Champy [32, 33] gave very convincing examples of
inefficient use of computers and they advocated the re-engineering of business
processes before the development of supporting information systems. This was
also the first time that the term “engineering” was applied to business processes.
Indeed computers can process information in completely different ways from peo-
ple and it is logical to exploit these possibilities to make business processes more
effective and more efficient.

The awareness of the importance of business processes has triggered the in-
troduction of the concept of process-aware information systems. Information
systems became more than recorders of the status of objects—they started to
also focus on business-relevant events. The information systems became proac-
tive in the sense that they, for instance, started to control the right order of task
execution, keep track of deadlines and distribute the work between resources.

The most notable implementations of the concept of process-aware informa-
tion systems are workflow management systems, a class of generic components
for the construction of information systems. Workflowmanagement systems have
become the counterparts of database management systems. While a database
management system is configured by a database schema and a set of constraints,
a workflow management system is configured with a process model. A workflow
engine can be embedded in a larger information system the same way as database
engines can. From ca. 1995 up to around 2005, there was a strong focus on the
support of single business processes with workflow engines. After that, the in-
terest shifted to cooperating business processes, as encountered in supply chains
and in BP outsourcing.

One of the most recent forms of composition trend in the last decade is the
Service Oriented Computing (SOC) [14, 68]. In this paradigm for systems de-
velopment, closely related to the paradigm of Service Oriented Architecture
(SOA) [18, 68], systems are considered as components that deliver services to
each other, like businesses in a supply chain. Each component runs a process,
to orchestrate the service and in fact such a processes can be seen as a business
process. The business processes in the real world are in a way mirrored in the
components of the information systems. So here we also encounter the coopera-
tion of business processes, which generates new scientific challenges to develop
correct working systems.

The focus of this article is to give insight in the role of business processes, the
modeling of business processes and the use of these models in BP management.
Instead of presenting new theoretical results we try to give insight as well as
an overview of theoretical results. In Section 2 we study the context of business
processes, i.e. the world in which business processes play their role. Then in
Section 3, we study the modeling of business processes, in particular a bottom
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up and a top down approach, and we will analyse the correctness of BP models.
We only focus on a generic property: weak termination, which is the ability of
always being able to reach a final state. This turns out to be a very important
sanity check for business processes. We focus on correctness by construction
principles. Finally in Section 4, we move from business processes to services and
in particular to computerized services as we can find them in modern web-based
information systems. Services incorporate or emulate business processes. Services
cooperate with each other and so we have to study the cooperation of two or
more business processes which provides new challenges. We conclude the article
in Section 5.

2 Context

We start with the informal introduction of a set of related concepts from the
world in which BPs play their roles. Many of these concepts will be formalized
or modeled in the next section. However modeling always has to serve some
purpose. In order to do so, we first need to understand the context of the part
of the world we are modeling. This means that we have to classify the real world
entities, either abstract or physical, and map them to the concepts; see also [5].

2.1 Business Process Concepts

An organization is a system consisting of humans, machines, materials, build-
ings, data, knowledge, rules and other means, with a set of goals to be met.
Typical examples of organizations are companies, factories, hospitals, schools
and governmental institutions. We also consider business units or departments
within a larger organization as organizations, and similarly, we also consider
two or more cooperating organizations as one organization. Most organizations
have, as one of their main goals, the creation or delivery of (physical) products
or (abstract) services.

The creation of services and products is performed in business processes (BP).
A BP is a set of tasks with causal dependencies between tasks. The five basic
task ordering principles are

– Sequence pattern: putting tasks in a linear order;
– Or-split pattern: selecting one branch to execute;
– And-split patterns: all branches will be executed;
– Or-join patterns: one of the incoming branches should be ready in order to

continue; and
– And-join pattern: all incoming branches should be ready in order to continue.

As will be shown in the next section, these basic patterns are closely related to
the well-known four control flow constructs from programming:

– Sequence construct;
– Choice construct;
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– Iteration constructs, like “repeat until” and “while do”; and

– Parallel construct.

Actually we can make the above programming constructs with the five task
ordering patterns.

For the execution of tasks resources are required. Resources can either be
durable or consumable. The first kind is available again after execution of one or
more tasks, like a catalyst in a chemical process. Typical examples of this kind
are humans, machines, computer systems, tools, information and knowledge.
Consumable resources disappear during the task execution. Examples are energy,
money, materials, components and data. The results or output of a task can be
considered as resources for subsequent tasks or as final products or services. Two
kinds of durable resources are of particular importance: the humans as a resource,
called human resources, and information and knowledge, which we will call data
resources. Since human activities are sometimes replaced by computer systems,
we use the term agents as a generic term for human and system resources.

A BP is an abstract notion: no physical object exists that can be identified
as a BP. A BP has many different forms of appearance and different names,
depending on the context. For example, an administrative procedure for handling
claims in an insurance company is a BP, and a medical protocol to treat a form
of cancer describes another BP. Even a recipe for cooking or an algorithm for
computing can be seen as BPs. Thus, we consider any form of task structuring
in order to create a product or a service as a BP.

Tasks are viewed as atomic pieces of work. Atomic means that the task is
executed without breaks and that the agents and durable resources needed for
the execution are available at the beginning and are released at the end. We do
not consider the content of a task. Later we will see that task atomicity is a
view or a modeling decision which can be adjusted at a later stage of modeling:
a task can be substituted by another process, which becomes a subprocess of the
original process.

An important feature of a BP is that it can be repeated, meaning a BP has
multiple instances. An instance can be seen from two different view points: (1)
the entity that is in progress of being created, called a case, and (2) the process of
creation which can be seen as a project. We will use the term case for both views.
A case is at each moment in time in some state. In the initial state the process
is ready to start and in the final state the product or service is completed. The
state of a case is determined by (1) case conditions, that are true or false for
the case at that state and (2) case variables, data connected to the case. There
are two kinds of case variables: routing parameters used for routing through the
process and a case document, which is a file with all relevant data of the case.

It is possible to have parallel task executions for a case, which means that
concurrently different resources can be busy with different tasks for the same
case. Besides the concurrency within a single case, BPs can handle several cases
concurrently. However if two or more cases are executed concurrently, we assume
they are independent of each other: they do not influence each others final result.



120 K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf

Process Task

Case

Resource

Work-item Activity

a

d

b
c

e

f

g

h

Fig. 1. Business process concepts and their relations

Cases can share resources, which may influence the scheduling of tasks, re-
specting the task ordering requirements of the BP. Sharing of resources is often a
form of competition between the cases. In this context, it is useful to distinguish
the notions of a work item and an activity: a work item is the combination of a
task and a case, while an activity is the combination of a work item and resources.
A work item can be seen as a task instance while an activity is the execution of
a work item. Figure 1 shows the concepts in a BP and their relationship.

Besides the causal dependencies expressed by the task ordering principles,
there are often many more constraints on the execution of BPs. These con-
straints are called business rules and there are special languages to express them
(cf. [9,36,67]). An example of a business rule is the four-eyes-principle that says
that certain tasks in one case should not be executed by the same human re-
source. Such rules cannot be expressed by task ordering principles and have to
be guaranteed by using other means. It is of course very important to be able
to verify if certain BP satisfies a set of business rules.

BPs can be classified according to their function within the organization:

– Primary processes: they are dedicated to the primary goals of the organiza-
tion, namely the creation of the products and services using resources;

– Secondary processes, also called supporting or enabling processes: they are
dedicated to providing and maintaining the resources for the primary pro-
cesses as well as maintaining relationships with the customers and suppliers;
and

– Tertiary processes, also called management processes: they are dedicated
to the control of the organization as a whole and the coordination of the
primary and secondary processes.

Here we encounter again a dilemma: the chosen perspective determines the clas-
sification. For example, when a business unit of a department performs a sup-
porting process for the department, this supporting process can be a primary
process for the business unit. Similarly, a tertiary process of an organization can
be a primary process of a business unit. On the one hand this might be confus-
ing, on the other hand, it gives an opportunity to define clear goals, customers
and suppliers for all BPs. A typical example concerns authorization of human
resources, i.e. the process of delegation of rights to perform functions. On the one
hand this can be considered as a kind of special task within a primary process
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itself but it can also be seen as a secondary process, as it concerns (human)
resource management.

A subclass of the tertiary processes consists of so-called inter-organizational
BPs. These processes exchange information, resources and cases between differ-
ent, but cooperating organizations. In one organization the control can be hierar-
chical, which is normally not the case in cooperating independent organizations.
There, coordination is the key activity. Examples of inter-organizational BPs
occur in supply chains, where the BPs of the participating organizations work
together as co-makers. Another example is an electronic market place where
the coordination between supply and demand is organized by means of market
mechanisms. Here we enter the field of communicating BPs which is the topic of
Section 4.

2.2 Supporting Information Systems

Process aware information systems support organizations by means of three basic
functions: monitoring, planning and execution of tasks in BPs. The monitoring
concerns the recording of all events in the processes. This also enables providing
management information: not only the status of each of the cases, like running
or completed, but also aggregated information like the total number of cases
running currently, average processing time and waiting time of all cases.

The planning function of a process aware information system is more pro-
active, as it concerns the selection of tasks that are ready to be executed, the
allocation of resources for a task and preparation of the execution by transferring
the right data resources to the agents (human resources or computer systems).
More and more tasks of BPs are executed autonomously by information sys-
tems. Specifically in financial and governmental institutions where BPs consist
of information processing only, e.g. the transfer of money, granting a mortgage
or the registration of a marriage. This kind of BPs only require information pro-
cessing. Sometimes human judgement is essential, but in many situations there
are formalized rules for making decisions automatically.

In principle active databases (cf [69]) support these three functions. However,
the set of rules involved becomes very complex, so that people lose overview,
with an inconsistent set of rules as a consequence. This led to the development
of a new class of software components: workflow management systems [91], as a
counterpart of database management systems. Workflow management systems
are configured by means of a process model like a database management system
is configured by a database schema or an entity-relationship diagram. The term
“workflow” is often considered to be a synonym for “BP”.

An important component within a workflow management system is the work-
flow engine which takes care of the distribution of tasks over the agents. This
provides flexibility: if a BP has to be changed, only the process model has to
be adapted, without changing the rest of the information system. Another part
of the workflow management system concerns the authorization of human re-
sources. This function is similar to the authorization of users of databases. The
support for handling data resources is very limited in workflow management
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systems. Only some case parameters are considered and in particular used for
routing decisions. This has been a conscious design choice: workflow manage-
ment systems should only be concerned with the distribution of work and not
with the content. There is another class of information systems, called case han-
dling systems [13, 37], that combine workflow management with data handling.
There exists a standard architecture for worfklow management systems (cf [91]).
However most workflow management systems have their own process modeling
language, although there are some standards as well [66, 92].

In many organizations information systems are realized by means of standard
application packages like ERP-systems (Enterprise Resource Planning systems).
These systems are actually configurable information systems. In the past they
had support for a predefined set of possible BPs. Today there is a trend to
migrate from monolithic systems with a finite set of predefined options, to more
flexible component-based systems with one or more workflow engines inside.

Another, but related, trend in the world of information systems is called Ser-
vice Oriented Architecture (SOA). According to this paradigm, information sys-
tems are build as loosely coupled components that deliver services, using other
services. The “loose coupling” has three characteristics: (1) components com-
municate asynchronously by exchanging messages via ports, (2) only the port
protocols have to be known in order to couple components and (3) the coupling
can be done at runtime via a service broker, which is in fact dynamic binding
of services. Components within such a system have internally a process that
defines the service, called the orchestration of the service. An orchestration pro-
cess is actually a workflow and each delivery of a service is a case. For instance,
the Web Service Business Process Execution Language (WS-BPEL, [15]) is a
language belonging to the web technology family, to orchestrate components.

The cooperation between components is sometimes called the choreography.
There is a great analogy between BPs and service in a SOA. First, many BPs
are supported by or even replaced by a service component. Specifically in retail,
financial institutions and government we see that BPs involving the customers
are replaced by web services where the customer is in direct contact with the
information system of the organization without interference of employees unless
an exception occurs. In those cases, the original BPs are in a way simulated by
the service components. Secondly, service components in a SOA behave more
or less like independent business units in one organization. In particular the
tendency in organizations to outsource non-key sub-processes is mirrored in the
execution of a service by calling other service components for particular tasks.

2.3 Role of Models

Organizations are not isolated: they create products or deliver services to their
customers and obtain the resources needed from suppliers. Both suppliers and
consumers can be persons or organizations themselves. All persons or organi-
zations that have some interest in an organization are called stakeholders. Be-
side customers and suppliers, also employees (human resources), management,
share holders and in many cases the government (e.g., the tax department) are
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stakeholders. Stakeholders have different objectives within an organization.
Therefore, in modeling BPs, it is essential to know in advance for which
stakeholders a problem is being solved.

Modeling a system is a way of understanding the system. There is empirical
evidence that making a precise model of a complex entity, such as a BP, reveals
all kind of details that we are overlooking otherwise. Formalizing an informal
description and then constructing a new informal description from the formal-
ization results in a better description. There are plenty of reasons to document a
BP. For example as teaching material for new employees, for quality control and
for the development of supporting information systems. We distinguish two kind
of models: descriptive models, also called “as is” models, that describe how a
system or processes actually is, and normative models, also called “to be” mod-
els, that describe how the process should work. In fact, models exist for many
reasons:

1. to understand processes
2. to document processes
3. to analyse processes
4. to monitor and audit processes
5. to improve or optimize processes
6. to outsource processes
7. to construct or redesign processes
8. to execute processes

Models help to analyze processes. There are two kinds of analysis of BPs:

– to verify conformance, i.e. to check if a BP satisfies a set of business rules
(cf [36]);

– to determine the performance, i.e. to compute performance characteristics,
like the time or the number of resources needed to reach a certain state.

For conformance analysis we use general purpose model checking techniques
(e.g. [50, 89]) or dedicated techniques like structural analysis. Business rules
typically concern the ordering of tasks and the use of resources and combinations
of these. For performance analysis, simulation is the most used technique: the
process model is used as simulation model (e.g. [39, 72]).

Monitoring a process is recording an execution path, which may include sev-
eral cases of a BP in order to be able to reconstruct parts of the process. The
most important function of monitoring is to produce reports of the past, either
periodically, event-driven or just on demand. Auditing a process is checking if
an execution path of a BP satisfies a set of business rules. Whereas conformance
is checking the whole process, auditing is checking only the execution paths of
the process. Of course if we are sure that a certain process is executed, then it
is sufficient to check if all the business rules are satisfied, but if we are not sure
a “to be” BP is really executed, then we have to audit the runtime system.

Based on performance analysis one may try to improve the performance of a
BP by restructuring it or by reallocating resources. Optimization is improving
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until some optimality criterion is reached. In practice often the term optimization
is used in cases where it actually refers to improvement. The choice of a good
optimality criterion is far from easy and since stakeholders do not know the
optimal performance they are already satisfied if the performance has improved
significantly.

Outsourcing is a kind of restructuring a BP by isolating a subprocess and
replacing it by a process of another organization, called the supplier. This way,
organizations can put their efforts in their core business, while other organi-
zations can better perform in some tasks or sub-processes, because they have
specialized skills or they can exploit economy or scale effects. By outsourcing, a
particular kind of inter-organizational BP is created: the original BP is commu-
nicating with the subprocess of the supplier. This way, a supply chain is formed.

To construct a new BP or to redesigning an existing BP, one first makes a
model of the process. Then we analyse this model to verify conformance and
performance properties. After this, we create or implement the BP. Most of the
time, implementation of a new or changed BP within an organization involves
more details than the model expresses, like the location(s) where the process will
be executed, the durable resource to be used and training human resources. In
many cases implementation also involves the development of supporting infor-
mation systems. However, the model plays an essential role in these activities.

In the execution of a BP the model is used to determine the order of tasks,
the authorization of human resources, and the allocation of resources. Either
this is done by a supporting information system or by human activities. In the
first case the process model is used as a configuration parameter of the workflow
management system, in the second case as manual or handbook.

2.4 Modeling Languages and Tools

In the nineties, various industries developed different workflow management sys-
tems. As a workflow management system needs a process model as configuration
parameter, industry created many different languages to model BP. Most of these
languages have a graphical syntax. Although it looks easy to define such a lan-
guage, it turns out to be a difficult job, because of the dynamical semantics of
processes.

Before the nineties there were already process modeling languages, mostly
without formal semantics, like DFD (dataflow diagrams diagrams, cf [82]). How-
ever, these were not used for modeling of BPs. The most important examples of
industrial process formalisms are: EPCs (Event-driven Process Chains) (cf [53])
with supporting tool ARIS (cf [75]), BPEL (cf [15]), BPMN (cf [66]), and UML-
Activity Diagrams (cf [31]). The last three are industry standards. They all have
still flaws in they formal semantics, although new releases become better. BPEL
has no graphical representation.

Many of the industrial languages do not have formal semantics. Some have
only an operational semantics in the form of a simulation tool that can simu-
late the behavior of a given model. If a formal semantics exists, it is mostly in
terms of a (labeled) transition system or a (labeled) Petri net. Labeled transition
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systems provide interleaving semantics, which means that concurrency of tasks
is expressed as different possible orderings. Petri nets allow for partial order
semantics. Formal semantics are essential for analysis purposes.

There were already very good process formalisms available from academia: the
many types of Petri nets (cf [27,70,73]) and process algebras, e.g. CSP [48] and
CCS [62]. However these formalisms are general purpose process formalisms and
not tuned to BP, which means that direct support for some useful constructs like
an implicit Or-split and Or-join is missing. Process algebras have no graphical
syntax, and are difficult to understand by most practitioners. Petri nets, with
its diagram technique is a much better candidate and indeed some workflow
managements system (e.g. COSA [78] and YAWL [49]) are based on Petri nets.
There is also an ISO standard for Petri nets [47]. A special class of Petri nets was
developed, called workflow nets [1] and they are used frequently. The semantics
of UML-Activity Diagrams and BPMN are converging to Petri nets. In this
article we will use workflow nets for modeling BPs.

Many different software tools exist to support the modeling process. So we
have editors to develop and publish models (cf [23,30,39,57,72,75]), and tools to
analyze models, either by model checking, structural analysis (e.g. [4,50,76,87])
or simulation. Most modeling tools have simulation facilities (cf [39, 72]).

3 Modeling Business Processes

In the remainder we only consider Petri nets and in particular the class of work-
flow nets, to model BPs. For many purposes it is sufficient to consider classical
Petri nets, i.e. with “black” tokens. However sometimes it is important to have
the modeling power of colored Petri nets. For a formal definition of classical
Petri nets as used in this paper see Appendix A. For more information about
classical Petri nets, we refer the user to e.g. [73, 86]. For a formal definition of
colored Petri nets see [51]. Here we give an informal introduction only.

A classical Petri net is a triple (P, T, F ) where P is the set of places, T the
set of transitions and F a function, called the flow function, that assigns to
each pair of nodes of (P × T )∪ (T × P ) a natural number, possibly zero. There
is a graphical notation for Petri nets where places are displayed as circles and
transitions as rectangles. If F (x, y) > 0 for a pair of nodes (x, y) then we say
that there is a directed arc from x to y and F (x, y) is the arc weight. We say
that x is an input node for y and that y is an output node for x.

Places may contain tokens. A distribution of tokens over places is called a
state. In classical nets the state can be expressed as a function that assigns to
each place the number of tokens in that place; this function is called a marking
of the net. A transition is enabled if for all input places the number of tokens
in each input place is at least the arc weight. An enabled transition can fire. If
it fires, the marking changes: The number of tokens consumed from the input
places of the transition and the number of tokens produced to the output places
is defined by the weights of the corresponding arcs. Thus, when a transition fires,
the Petri net “moves” from one state to another. In this way, a labeled transition
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system is formed in which the Petri net transitions are the labels of the state
transitions and the markings are the states. We call this the reachability graph
of the Petri net. The combination of a Petri net and an initial marking is called
a Petri system of system for short.

Since classical Petri nets are not Turing complete (cf. [16]), we often need
more advanced features in modeling. For this purpose we introduce inhibitor
arcs and reset arcs. To do so, we add for each of the arc types a new relation, I
and H , respectively. The net depicted in Figure 2 has an inhibitor arc, denoted
by an arc with a bullet head, between transition F and place p, indicating that
transition F can only fire if place p is empty. The net has a reset arc, denoted by
a dashed line, between transition G and place p, thus firing transition G empties
place p.

In a colored Petri net (CPN) tokens have a value. Each place has an associ-
ated value type, also called a color set, and all tokens in a place have a value that
belongs to that type. Each arc has one variable and transitions have a precon-
dition, also called a guard, and a postcondition. A precondition is an expression
with the variables of the input arcs of the transition as the only free variables.
The post condition is an expression using the variables of the input arcs as well
as of the output arcs. Figure 3 depicts a transition in a colored Petri net with
its specification.

A transition in a colored Petri net is enabled if and only if for each input
place a token can be found such that the precondition substituted with the
actual values of the tokens is satisfied. An enabled transition may fire and if
it does the post condition is evaluated with the input variables bound to the
input tokens and then the output variables obtain a value. Tokens with these
values are produced for each output place. In CPN tools (see [72]) and with
CPNs as defined in [51] there is more freedom in modeling and more tokens
can be consumed or produced for one place in one firing. In fact arcs may have
expressions instead of only variables.

A

i

B

C

D

E

F

G

H
p f

Fig. 2. Workflow net with reset arc and inhibitor arc
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Fig. 3. Transition in a colored net

Token values are entities with one or more attributes, representing different
properties. These attributes can be used to express arbitrary data. We identify
two key attributes: token identity and time stamps that require a special treat-
ment (see [35]). In case of token identity, each token carries and identifier. The
precondition of each transition requires that all tokens consumed from the input
places should have the same identifier [43, 74]. The tokens produced will obtain
this same identifier.

The intuitive meaning of a time stamp of a token is the minimal time after
which the token may be consumed by some transition. The firing rule for tokens
with a time stamp is as follows. In order to determine which transition may fire
next, all combinations of input tokens are considered for all transitions and a
transition is selected for firing if its maximal time stamp of all its input tokens,
is minimal over all enabled transitions. This time is called the transition time
of the marking. We assume timed Petri nets to be eager, which means any
transition fires as soon as possible. The tokens produced when a transition fires,
obtain a time stamp which is the transition time plus some delay, depending on
the inscription of the specific output arcs. Also for colored Petri nets we allow
inhibitor arcs and reset arcs with the same semantics as for classical Petri nets.

In the remainder of this article, when we consider classical or colored Petri
nets we will assume they do not have inhibitor or reset arcs, unless we explicitly
require this.

3.1 Workflow Nets

For modeling convenience later, we start with a definition that generalizes the
classical definition of a workflow net. A workflow net is a Petri net with two
sets of special nodes: initial and final nodes. The first have no input nodes and
the last have no output nodes. In fact we only use two types: one where all the
special nodes are places and one where they all are transitions.

Definition 1 (Workflow net). A workflow net N is a 5-tuple (P , T , F , E,
C) where (P, T, F ) is a Petri net, E is the set of initial nodes and C is the set
of final nodes such that E,C ⊆ P or E,C ⊆ T , •E = C• = ∅, and all nodes
(P ∪ T ) of (P, T, F ) are on a directed path from a node in E to a node in C.

– If E,C ⊆ P we say N is a place-bordered WFN (WFN-s), also called a
multi workflow net.
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– If E,C ⊆ T we say N is a transition-bordered WFN (WFN-t).
– The completion N+ of a WFN-s is a WFN-s (see Figure 4(a))

N+ = ( P ∪ {i, f}, T ∪ {ti, tf},
F ∪ {(i, ti) �→ 1, (tf , f) �→ 1}
∪ {(ti, e) �→ 1 | e ∈ E} ∪ {(c, tf ) �→ 1 | c ∈ C},

{i}, {f} )

where i, f 
∈ P and ti, tf 
∈ T are fresh places and transitions, respectively.
– The completion N+ of a WFN-t is a WFN-s (see Figure 4(b))

N+ = ( P ∪ {i, f}, T ,
F ∪ {(i, e) �→ 1 | e ∈ E} ∪ {(c, f) �→ 1 | c ∈ C},
{i}, {f} )

where i, f 
∈ P are fresh places.

The completion transforms a WFN-s or a WFN-t into a WFN-s with a single
input place and a single output place, as displayed in Figure 4. Such a WFN-s is
a classical workflow net [1]. Actually the behavioral properties for WFN we will
consider later are expressed in terms of the completions, i.e., in terms of classical
workflow nets.

Definition 2 (Classical workflow net). A WFN-s N = (P, T, F,E,C) is a
classical workflow net (WFN) iff E = {i} and C = {f} for some i, f ∈ P .

– Its workflow system is defined by N = (N, [i], {[f ]}).
– Its closure is defined by N = (P, T ∪ {t∗}, F ∪ {((f, t∗), 1), ((t∗, i), 1)} where

t∗ 
∈ T is a fresh transition.
– Its fused closure is defined by N∗ = (P \ {f}, T, (F \ •f ×{f})∪ (•f ×{i})).

As in classical Petri nets, we identify three important workflow net classes (cf
[26]). These are: (1) free choice workflow nets (FC-WFN), where the underlying
Petri nets is a free choice net, (2) state machines workflow nets (S-WFN), where
the underlying Petri net is a state machine, also called S-net and marked graph
workflow nets (T-WFN) where the underlying Petri net is a marked graph, also
called T-net.

WFN-s
i f

ti tf

(a) WFN-s

WFN-t
i f

(b) WFN-t

Fig. 4. The completion of a WFN-s and WFN-t net
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In order to model resources we extend the definition of workflow nets with
resources. Resources are an additional set of places from which transitions can
consume and produce tokens representing the resources they need or deliver.

Definition 3 (Resource-constrained workflow net [40]). A Resource-con-
strained WFN (RCWFN) N is a 7-tuple (P,R, T, Fc, Fr, E, C) such that

– P ∩R = ∅, P are called the case places and R the resource places;
– Fc : (P × T ) ∪ (T × P )→ N and Fr : (R× T ) ∪ (T ×R)→ N;
– (P ∪R, T, Fc ∪ Fr) is a Petri net;
– (P, T, Fc, E, C) is a WFN and this net is called the production net of N .

So we have extended a WFN with an additional set of places, called resource
places, and in that context we call the other places case places, and similarly we
speak of resource tokens and case tokens.

3.2 Expressing Business Process Concepts

When modeling real life systems with Petri nets we always have to make a
choice between two paradigms: either we model (time consuming) activities by
transitions or by places. In the first choice the marking or state indicates a
situation of rest and the transitions model the activities that may lead to a
new state of rest. According to that paradigm, transitions are given names that
reflect actions like, “move” or “print” while places have names that express a
status, like “in stock” or “at home”. In this way, transitions are named with a
verb and places with a noun. According to the latter paradigm, transitions stand
for instantaneous events and places may reflect a status as well as an activity. A
place that represents an activity should have an input transition that represents
the start event and an output transition that represents the stop event. In this
section we will express the concepts of task, task ordering, case and resource in
terms of workflow nets.

Tasks and Their Ordering. A task represents an activity and so it can be
modeled in two ways: either a task is modeled as one transition or as a pair of
transitions, where the first one is the start event of the task and the second one
the stop event of the task (see Figure 5). Note that in classical Petri nets, time is
not modeled, but only the order of execution can be expressed. In colored Petri
nets time can be expressed using time stamps for tokens, which we will explain
later. Although it is not necessary, it is a best practice to let a task have only

Start production end production

production

Fig. 5. Activity modeled with a start and stop event
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one input place and one output place. In case of start and stop events: the start
event has one input and the stop event one output place.

The ordering of tasks, also called the causal dependencies of tasks, can be
expressed by adding a place in between the two tasks, i.e. between the two tran-
sitions if we model a task with one transition, and between the stop transition
of the first task and the start transition of the second task if we model according
to the latter paradigm. A place in between tasks can be seen as precondition of
the first task and a post-condition of the second task. In this way, places express
the causal dependency between tasks and transitions.

Not only places are used for task ordering. Transitions play a role as well.
For example, to express that two tasks can be executed in parallel, we need a
transition with one input and two output places, and similarly if a new task
can only start if two or more other tasks have completed, we need a transition
with one input place for each such task and one output place to the next task.
These transitions are called AND-split and AND-join, respectively. They are
not considered to express tasks but synchronization events. Figure 6 shows the
constructs. The five basic task ordering principles can be expressed in this way.
In fact, most of the control flow patterns [10] can be expressed. By ordering all
the tasks in this way we obtain a WFN.

Cases. A case is a complex entity. If we consider a classical WFN net with
only one token in its initial place, then that token represents the initial state of
the case. After each transition the state of the case is expressed by the marking
of the WFN. Note that this marking may have more than one token. Thus, in
general the state of a case is expressed by multiple tokens. If a marking is reached
with only a single token in the final place, then we say that the case is in its
final state. However, it is not always the case that the final state of a case is
reachable.

In case we have two or more tokens in the initial place of a classical WFN
we have to deal with batch processing. As with one case, the initial state of the
batch is a state in which all the tokens are in the initial place, and the final state
of the batch is the state in which all tokens are in the final place. Any other
marking reachable form the initial state is a state of the batch. An important
property of batch processing is that if we start with a batch of a certain number
of cases, we should reach a final state with the same number of cases.

(a) XOR (b) AND

Fig. 6. Split and join patterns
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In a batch, cases can influence each other. In fact, it is not possible to identify
the case to which a token belongs. An example of batch processing in which the
interference of cases is irrelevant, is the production of k identical objects. (The
workflow depicts the steps in the production, and each object is represented as
a case.) The production process consists of the acquisition of the parts and their
assembly. So, we have to order parts in multiples of k and as long as each final
product has the right number of parts, it does not matter for which product
(i.e., case) they were meant. We also consider situations in which we have an
unbounded stream of incoming cases that has to be handled. If we want to avoid
interference we can use colored Petri nets in which we only use the identity
attribute of the token value. Then, the batch has distinguishable cases and a
transition will never consume two tokens of different cases in one firing. In this
way, the cases are independent of each other.

Resources. The next concept we have to model are resources. As seen in
Section 2.1, we classify resources into durable resources and consumable re-
sources. Durable resources are the most important resources from a modeling
point of view. Consumable resources are often anonymous supplies. The only rea-
son to model consumable resources is to analyze the number of resources needed
in the execution of cases, which is a performance issue. Simulation of the process
can solve this problem. For each task we identify the amount of supplies needed.
We then simulate a large number of cases to determine the distribution of the
occurrences of the task, which in turn can be used to determine the resource
usage.

Durable resources, like human resources, are almost always identifiable and
have their own rules. For example, for human resources a separation of concerns
principle should often hold, like the four-eyes principle. Durable resources are
often part of a secondary business process. An important requirement is that
the durable resources obey a conservation law: after handling a case, the durable
resources should be available for a new case. With RCWFN (see Definition 3)
we are able to express these kind of properties.

Business Rules. Last, we consider the expression of business rules. In prac-
tice, the context of a BP defines the boundaries within which the BP should
be executed. These boundaries are defined by business rules. Often, it is diffi-
cult to verify whether a given WFN satisfies these rules. Business rules are often
expressed in some form of logic, like linear time logic (LTL, see [71]) or computa-
tion tree logic (CTL or CTL* see [22]). These logics lack expressing calculations.
Therefore, special languages exist to express calculation as well, like Presburger
logic or the Business Rules Language (BRL) [36].

For verification of business rules, two methods exist: (1) verification on the
level of the process model, i.e. the WFN and (2) verification on the level of a
process log, i.e. a set of case histories. The first is called conformance checking.
In the first situation we verify that all possible cases satisfy the business rule.
To check this, the reachability graph of the Petri net is constructed and model
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checking is applied. In many situations it is possible to use methods that exploit
the Petri nets structure to speed up the verification process, like in LoLA [76].
This applies for business rules that can be expressed in LTL or CTL.

The latter method is called auditing. In auditing, it is easier to check complex
rules, as the rule should only hold for the finite set of executed cases [7, 9, 20,
36]. However, the claim is weaker than in conformance checking: we only show
absense of violations in the past. As evaluation is done on a finite set of case
histories, rules expressed in Presburger logic or BRL can be evaluated.

3.3 Soundness of Workflow Nets

We often require BPs or WFNs to satisfy a set of business rules, depending
on the particular context. There is one rule (with some variants) that business
processes should always satisfy, independent of the context. This property is
called soundness. Soundness is a general purpose sanity check for workflows.
Intuitively it says that once a workflow has started it should always be able to
stop without leaving “garbage” in the net. It is obvious that all processes should
have this property.

There are many forms of soundness [6]. The main characteristic of most sound-
ness concepts is weak termination (see Appendix A) which states that from ev-
ery reachable state (marking) it is possible to reach a final state. The notion
of classical soundness, which is defined for classical WFNs, states three impor-
tant properties: (1) the workflow system should be weakly terminating, (2) the
workflow system should have the proper completion property: i.e., if we reach
a marking that contains the final marking, it is equal to the final marking and
(3) all transitions in the model should contribute to the business goals, i.e.,
each transition is occurring in at least one case. The last property can also be
expressed as quasi-liveness of the WFN. Quasi liveness is not for all forms of
soundness required, although it is obvious that in practice it is not useful to have
transitions in a process model that are never used.

For a classical WFN the second requirement is implied by the structure of
the WFN (cf [42]), although in the first definition of soundness it was required
(see [1]). The first requirement of soundness is the most essential [6]. Weak ter-
mination is actually the same problem as the home marking property: a marking
is a home marking if and only if it is reachable form every reachable mark-
ing, which is decidable for classical Petri nets [28]. In fact, the notion of clas-
sical soundness coincides with requiring the closure to be live and bounded. A
(transition-bordered) WFN-t or a (place-bordered) WFN-s is classical sound if
its completion is classical sound.

Theorem 4 (Classical soundness equals liveness and boundedness [1]).
Let N = (P, T, F, {i}, {f}) be a classical WFN. It is classical sound if and only
if the system (N, [i], {[f ]}) is live and bounded.

As this property is the oldest result in this field and the proof gives good insights,
we give a sketch of the proof.
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Proof. Suppose the closure N of a WFN N is live and bounded, but not classical
sound. Then the closing transition is live. Hence, a markingm and firing sequence
σ exist such that (N : [i]

σ−→ m) with m > [f ], i.e., m = m′ + [f ] with m′ > ∅.
Hence, the closing transition is enabled. Firing it results in marking m′ + [i].
Now we can repeat σ to obtain marking m′ + k.[i] for any k which contradicts
the boundedness.

Now suppose a WFN N is classical sound but its closure N is not live nor
bounded. Classical soundness implies that [f ] is the only marking reachable in
N from [i] with a token in f . Since the closing transition is only moving a token
from f to i, the set of reachable markings of N is the same as of N . Quasi
liveness is already required by definition, so the WFN should not be bounded.
This means that we have an infinite set of reachable markings. By Dickson’s
lemma there is an infinite sequence of reachable markings m1 ≤ m2 ≤ .... Thus,
m2 = m1 + m′ where m′ > 0. This would require the existence of some firing
sequence σ such that (N : m1

σ−→ [f ]). Hence, also (N : m2
σ−→ [f ] +m′) which

is a contradiction. �

The closure of a WFN is interesting in itself for modeling purposes, as it models a
repeatable process. Therefore we also call the closure of a WFN (classical) sound
if it is live and bounded. Classical soundness can be verified using inspection of
the reachability graph. We first have to determine if the reachability graph is
finite, which is easy to verify: either we do not find any new marking or we
encounter a marking that is containing an already found marking. In the latter
case the net is unbounded and due to Theorem 4, it cannot be sound. If the
reachability graph is finite, then we have to find for each state in the graph a
path to the final marking, which can be done in a clever way (cf [76, 87]). The
check for quasi liveness of the transitions can be performed in the same steps.
In the next section, construction methods are presented that guarantee classical
soundness.

A second important soundness notion is k-soundness. A WFN N is k-sound
if in the workflow system started with k tokens in the initial place, it is always
possible to reach a marking with only k tokens in the final place, i.e., the system
(N, [ik], {[fk]} should be weakly terminating. Note that quasi liveness is not
required for k-soundness, and proper completion is implied in the same way as
for classical soundness. If a WFN is 1-sound, we say the WFN is weakly sound.
Remark that k-soundness does not imply k + 1-soundness nor k − 1-soundness,
as the examples of Figures 7 and 8 show.

A WFN net is generalized sound if it is k-sound for all k ∈ N. The verification
of generalized soundness is much more difficult, as it needs a check for an infinite
number of k-values. In [42], it has been shown to be decidable together with an
algorithm for WFNs without inhibitor or reset arcs.

A transition-bordered or place-bordered WFN is k-sound (generalized sound)
if its completion is k-sound (generalized sound). Generalized soundness is in
particular important for stepwise refinement as construction method. While
k-soundness is important for the processing of batches of a given size, gener-
alized soundness is important for handling infinite streams of cases. Generalized
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Fig. 7. 1-sound WFN, but not 2-sound Fig. 8. 2-sound WFN, but not 1-sound

soundness states: all cases entered in the system will be handled, i.e., “what
comes in will go out”.

For the special classes of S-WFN and T-WFN it is proved that they are
generalized sound (see [41]) by their structure. Also for FC-WFN there is a
structural property: if a FC-WFN is 1-sound, then it is generalized sound (cf
[46]). In the next section we will encounter more classes of WFNs that are
generalized sound. We summarize these results:

Theorem 5 (Additional soundness properties). Let N = (P, T, F, {i}, {f})
be a classical WFN.

– Generalized soundness is decidable
– S-WFN are generalized sound
– T-WFN are generalized sound
– If a FC-WFN is 1-sound, then it is generalized sound

In literature, many different variations of soundness exist, like up-to-k-sound,
easy sound, relaxed sound and lazy sound. We will discuss them briefly, for details
see [6]. A WFN is up-to-k-sound if and only if it is l-sound for all 0 < l ≤ k. A
WFN is easy sound if and only if it is possible that one case in isolation reaches
the final marking. It is easy to verify (see [85]) that if a WFN is k-sound and
easy sound, then it is up-to-k-sound. If we let a first case be handled in isolation,
which is allowed by the easy soundness, then the other k − 1 should be handled
properly since the WFN is k-sound. A WFN is relaxed sound if and only if for
each transition t there is a marking m reachable from an initial marking with
one token in the initial place, in which t is enabled and if t fires the final marking
should be reachable. Note that in a relaxed sound WFN transitions cannot be
dead. There are algorithms to transform relaxed sound WFN into classical sound
WFN (see [25]). Lazy soundness, considers the one case situation and requires
that it must be always possible to reach a marking in which the final place has
exactly one token, but there may be more tokens left (i.e., a relaxation of the
proper completion property).

Up to now, we considered WFN with classical Petri net semantics, but we
can also consider them with colored Petri net semantics. This gives all kind of
interesting anomalies: since WFN without coloring can be sound while the col-
ored version is unsound and vice versa, as is shown by the examples in Figure 9.
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(b) Adding data makes the WFN sound

Fig. 9. Soundness and data

Although the classical WFN of Figure 9(a) is sound, adding data makes the net
unsound, as no reachable marking exist such that B is enabled in that marking.
On the other hand, some behavior of the classical WFN is excluded by the data,
as shown in Figure 9(b).

Similar anomalies can be created when considering time: a WFN with clas-
sical net semantics that is sound can be not sound in a timed semantics and
vice versa. This means that we should be careful when we want to generalize
soundness results for classical Petri nets to colored versions see [77]. When we
consider only case identities then it is easier, because of the firing condition
that only tokens with the same identity can be consumed and that the pro-
duced case tokens have the same identity as the consumed ones. This restricts
the behavior, and in fact if a WFN is 1-sound in the classical sense then it is
generalized sound if we consider case identities, since these identities make the
cases independent of each other. The assumption of identifiable cases is quite
natural in BP.

The last notion of soundness that we consider, is soundness for RCWFN:
resource constrained soundness or rc-soundness. The intuition of soundness for
RCWFNs is that the cases are handled as usual, which means that it is always
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possible to reach the final marking (the marking with exactly k case tokens in
the final place), if started with k cases. As we use the identity attribute, we can
reformulate this requirement: the production workflow net should be 1-sound.
Additionally there are (durable) resources needed to perform certain tasks, which
means that transitions may consume and produce tokens for resource places.
There are three important requirements: (1) when the production net reaches
the final state, the resource places should have exactly the same amount of
resources as at the beginning, (2) the total number of resources of any kind
should not increase during the execution, and (3) if the system works properly
in this sense that for a certain amount of resources per kind, then it should also
work properly if we increase the number of resources of one or more kinds. Since
k is an arbitrary number, we require these properties for all k ∈ N. We give a
formal definition:

Definition 6 (Resource constrained soundness). Let N = (P,R, T, Fc, Fr,
{i}, {f}) be a RCWFN with initial marking [ik] + r where k ∈ N and r ∈ NR is
a marking of the resource places only.

– N is (k,r)-rc-sound if for all m reachable from [ik] + r, it holds that mR ≤ r
and marking [fk] + r is reachable.

– N is k-rc-sound if there is an r ∈ NR such that N is (k, r′)-rc-sound for all
r′ ≥ r.

– N is rc-sound if it is k-rc-sound for all k ∈ N.

Note that if a RCWFN is sound then its production WFN is generalized sound
(see [40]). For RCWFN in this form not many results are known. However for the
variant with case identities, rc-soundness is decidable and there is an algorithm
to verify it. Note that we only put identities to the case tokens, which make the
cases independent of each other. If a RCWFN with case identities is sound then
the production WFN is 1-sound. Note that the most simple form of resource
modeling is when we model a task with start and stop event like in Figure 10(a)
where there are one or more resource tokens dedicated for this task. It is easy to
verify that any WFN where we model tasks with only one transition is branching
bisimilar with the net where this transition is replaced by one of the constructs
of Figure 10 when the end transitions receive the name of the task and the start
transitions are silent. In this way, we can rely on the verification of (generalized)
soundness of the nets without resources and one transition per task to verify
rc-soundness of an RCWFN with this structure.

Up to now we did not consider inhibitor arcs or rest arcs. The verification
of soundness properties when a WFN has inhibitor arcs or reset arcs is much
more difficult, many questions are not decidable (see [6]). However, in the case
when a WFN can always reach markings that are larger than the final marking
in which only the final place is marked, the net can be made sound in a “brute
force” way by adding a transition labeled � that empties all places except the
final place, as illustrated in Figure 11(a). Of course this is not the best way of
making models!
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Fig. 11. Inhibitor arcs (bullet headed arc) and reset arcs (dashed line) repair soundness

Inhibitor arcs can also play a useful role. First note that inhibitor arcs only
restrict the behavior of a system. They can destroy soundness of classical Petri
nets as well as make unsound classical Petri nets sound. Consider a WFN N with
inhibitor arcs and let the WFN N ′ be obtained from N by deleting the inhibitor
arcs. IfN ′ is bounded then N is also bounded and then we are able, by analysis of
the reachability graph, to verify soundness of N . On the other hand, as inhibitor
arcs only restrict behavior, it is also possible that unbounded nets become sound,
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as illustrated in the example of Figure 11(b). In fact, this workflow models an
important pattern to split a running case in separate instances, which in the end
are combined again.

3.4 Construction Methods

Verification is an a posteriori approach: given a model, it checks whether prop-
erties like soundness hold. Although for classical Petri nets these properties are
decidable, it is a very time consuming task. Therefore, we present in this sec-
tion a construction method that preserves soundness: applying a rule from this
method on a sound net results again in a sound net. This way, correctness of the
model is guaranteed, provided that the initial model was sound.

We start with a class of WFNs that are generalized sound by their structure.
First, note that a WFN consisting of a single place is generalized sound. Based
on this observation, we can build a class of well-handled nets, called Jackson
nets [36]. These nets are constructed with five refinement rules, as depicted in
Figure 12.

The first rule (R1) is sequential transition split, which is shown in Figure 12(a).
Given a place p in a WFN, we can split it into two new places p1 and p2 such that
all the input transitions of p become input transitions of p1, and, likewise, all
output transitions of p become output transitions of p2. We then add transition
t such that place p1 is the input place of t, and place p2 is the output place of t.
It is easy to verify that the refined net is generalized sound again.

The second rule (R2) is the dual of the first rule: instead of expanding a place,
a transition is refined. Given a transition t in a WFN, we can split it into two
new transitions t1 and t2 with a place in between such that the input places of t
become the input places of transition t1, place p becomes the only output place
of t1 and the only input place of transition t2, and all output places of t in the

p
t

p1 p2

(a) R1: Sequential place split

p
t t1 t2

(b) R2: Sequential transition split

p

t

p

(c) R3: Loop addition

p

p1

p2

(d) R4: AND split

t1

t2

(e) R5: OR split

Fig. 12. Refinement rules for Jackson nets
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original net become the output places of transition t2. The rule is depicted in
Figure 12(b). We call this rule the sequential transition split.

To add loops in a WFN, the third rule (R3) allows to connect a new transition
to an existing place in the WFN, such that this place is both the only input place
and only output place of the newly added transition (see Figure 12(c)). Again, it
is simple to prove that this refinement rule preserves generalized soundness. The
fourth and fifth rule duplicate nodes in the WFN such that we can express AND
and OR splits, respectively. The fourth rule duplicates a place (Figure 12(d)),
which allows for parallelism, the fifth rule duplicates a transition (Figure 12(e)),
which allows for choice.

Definition 7 (Jackson net). A WFN is called a Jackson net iff it can be con-
structed from the singleton WFN ({i}, ∅, ∅, {i}, {i}) by applying the refinement
rules R1,...,R5.

Theorem 8 (Jackson nets are generalized sound [36]). Let N be a Jackson
net. Then it is generalized sound.

These rules are closely related to the rules of Murata [65]. In fact, when only
considering refinement on nodes with a single input node and a single output
node, these rules coincide. Only the rule that adds a place loop is omitted, as
this rule requires the initial marking to be changed.

The nets in the class of Jackson nets are all well-formed [2], i.e., every AND
split is complemented with an AND joint, and similarly for OR splits and joins.
Often, this class of nets is too restrictive for modeling BP. We therefore introduce
another class of workflow nets that are guaranteed to be generalized sound.

As any generalized sound net is bounded, there is an upper bound on the
number of tokens in any marking reachable from the initial marking. When we
refine a place by a WFN, then it should be sound for any number of tokens on
the initial place of the net. Hence, if the WFN is generalized sound, we can safely
refine the place with the WFN such that the refined net is generalized sound
again (WP refinement, Figure 13(a)), as proven in [41]. A similar argument holds
for the refinement of a transition by a WFN-t with a single initial node and a
single final node (WT refinement Figure 13(b)).

Two important subclasses of WFN have been proven to be generalized sound
by their structure: S-WFN and acyclic T-WFN-t with a single initial node and
a single final place [41]. With these results we build a new subclass that is
generalized sound by construction, which we call ST-nets. Both S-WFN and T-
WFN-t are subclasses of the ST-nets. Given an ST-net, any place may be refined

N
p

(a) WP: refinement of a place by a WFN-s

Nt

(b) WT: refinement of a transition by a
WFN-t

Fig. 13. Place and transition refinement by a generalized WFN
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by a place-bordered ST-net, and every transition may be refined by a transition-
bordered ST-net. Both refinements preserve generalized soundness. Hence, any
ST-net is generalized sound [41].

Definition 9 (ST-nets). The class of ST-nets ST is recursively defined by:

– if N is an S-WFN, then N ∈ ST ;
– if N is an acyclic T-WFN-t with a single initial and final node, then N ∈ ST ;
– if N,W ∈ ST such that W is a WFN, and let p ∈ PN be a place of N . Then

N �p W ∈ ST ;
– if N,W ∈ ST such that W is a WFN-t, and let t ∈ PN be a transition of

N . Then N �t W ∈ ST ;

where N �n W denotes the refinement of node n by W .

Theorem 10. Let N be an ST-net. Then it is generalized sound.

It is often the case that an activity can be performed in different ways, e.g.
by using different resources. To do so, we model the activity as a transition-
bordered workflow net. Each initial transition represents a possible execution
of the activity. We then refine the transition representing this activity by the
transition-bordered workflow net. If both the original net and the refining net
are generalized sound, the refined net is sound as well, which can be proven in
a simple but elegant way.

Theorem 11. Let N be a k-sound bordered WFN for some k ∈ N. Let W be
a generalized sound WFN-t. Then the refined net N �t W in which transition
t ∈ TN is refined by W is k-sound.

Proof. First, we refine transition t (Figure 14(a)) using the sequential place
split such that we get two transitions t1 and t2, and a place p in between
(Figure 14(b)). The resulting net is k-sound. We now refine this new place by

t

(a) Transition t

t1 t2
p

(b) Sequential transition split

t1 t2N

(c) Refinement with W+

N

(d) Place substitution of [19]

Fig. 14. Steps in the proof of Theorem 11
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the net W+ (Figure 14(c)). By Theorem 9 of [41], the resulting net is k-sound.
Places i and f of W+ can be reduced using the “place substitution” rule of [19],
which results in the net N �t W (Figure 14(d)). As the reduction rule preserves
k-soundness, net N �t W is k-sound. �

Note that the class of Jackson nets is not included in the class of ST-nets, and
vice versa, as shown in Figure 15. These examples show that Jackson nets exist
that are not an ST-net, and likewise, ST-nets exist that are not a Jackson net.
However, the two rules, R1 and R2 are special cases of the rules WP and WT,
respectively. This way, we are able to construct a new class of nets that are
generalized sound by their structure.

Definition 12 (ST+-Nets). The class of ST+-Nets ST + is recursively
defined by:

– if N is an S-WFN, then N ∈ ST +;
– if N is an acyclic T-WFN-t with a single initial node and a single final node,

then N ∈ ST +;
– if N,W ∈ ST + such that W is a WFN, and p ∈ PN a place of N . Then

N �p W ∈ ST +;
– if N,W ∈ ST + such that W is a WFN-t, and t ∈ PN a transition of N .

Then N �t W ∈ ST +;
– if N ∈ ST + and M can be constructed using rules R3,...,R5, then M ∈ ST +.

Theorem 13. Let N be an ST+-net. Then it is generalized sound.

Not all constructs needed in modeling BP can be expressed using an ST-net or
a Jackson net. To guide the modeler, many patterns for modeling BP have been
identified. In [10] many workflow patterns are collected based on best practices.
Most of the patterns concern the control flow. We have seen already some of
them. A special construct is needed for handling the multiple instance patterns,
which allow for choosing the number of instances executed at runtime. One way
is to model these patterns by using the splitter pattern as shown in Figure 11(b).
This pattern allows to execute the activity multiple times, without specifying an
upper bound at design time. It is easy to see that although the places between
split and join are unbounded, the pattern is weakly terminating, i.e., placing a
token in the initial place of the pattern always leads to only a single token in
the final place, while all other places are empty.

(a) Jackson net, but not ST (b) ST net, but not Jackson

Fig. 15. Not all Jackson nets are ST-nets and vice versa
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4 Modeling Cooperating Business Processes

Most organizations are divided into more or less autonomous cooperating busi-
ness units. Each business unit can be seen as an organization. These business
units cooperate to achieve the common goals of the larger organization. To realize
this, the business units need to communicate. They need information from other
business units to reach their goals, or on demand they can deliver requested in-
formation so that other units can accomplish their goals. As a consequence, this
communication also needs to be reflected in the BPs of the different cooperating
business units.

A second trend in the last decade is that organizations focus more and more
on their core activities, while outsourcing all other activities. As a consequence,
organizations form partnerships to achieve common goals. These organizations
together form a larger organization. Again, communication is a key factor in
realizing the common business goals of the larger organization. In the mean
time, each organization still has its own business goals, that need to be achieved
as well.

4.1 Service Oriented Approaches

Business units within an organization, or organizations in a cooperation can be
seen as components of a larger system. A component offers services via its inter-
faces, and in order to deliver its services, it needs services of other components.
This way, a component has two roles: a service provider and a service consumer.
From a business oriented view, a component sells services, and in order to meet
its commitments, it buys services of other components. In this way, a tree of
components is built up to deliver a service.

Software systems have a similar component-based structure. Many different
definitions exist for components. We adopt the definition of [84], which defines a
component as a unit of composition with contractually specified interfaces and
explicit context dependencies only. This definition shows two important aspects
of a component: first, a component is a subsystem implementing a set of coherent
functionalities. Its interfaces to the outside are listed explicitly in a contract, i.e.,
it defines how other components can access its functionality via its interfaces.
Secondly, a component should be as independent as possible. A component may
need other components, but these dependencies are known in advance, and they
are only accessed via the specified interfaces. Note that the dependencies are on
a service level, rather than defining which specific components are needed.

Current paradigms like service oriented computing (SOC) and service ori-
ented architectures (SOA) [3,14,68] enable this business oriented view in system
construction. The main principle behind SOC is to aggregate services to service
compositions to implement a BP. SOA is a technology to design and execute ser-
vices according to the SOC paradigm. In SOA, the network of communicating
services is built at runtime, and no service knows the whole network at any point
in time. An important concept in SOA is the service broker : a trusted third party
where all components publish the services they provide (step 1 in Figure 16).
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Fig. 16. SOA principle: a provider publishes it services at a broker (1). A consumer
uses the broker to find a service (2) and binds to it (3).

A component that needs a service, queries the broker to find a service. The bro-
ker returns a list of possible components that deliver the requested service (step
2), after which the consumer binds to one of these components (step 3) and start
communicating.

Many different formalisms and techniques exist in industry to support the
modeling of service oriented paradigms. Current techniques are almost all web
focused. On a low level, the Simple Object Access Protocol (SOAP) [63] defines
the structure of the messages sent between components. To describe the interface
of a component, the Web Service Description Language (WSDL) [21] is used. It
defines the different types of messages the service can send and receive.

Each component has its own internal process to orchestrate its services: it
defines the order in which messages are sent and received by the component.
One of the main languages to model the service orchestration in a component is
the Web Service Business Process Execution Language (WS-BPEL) [15]. Mod-
eling techniques for component interaction should support the dynamics of the
network formed by the components, called a choreography. One of the main in-
dustry standards to model this is the Web Service Choreography Language (WS-
CDL) [52]. In WS-CDL, one models the possible interaction patterns between so
called parties. An organization implements a party, such that it exactly mimics
the behavior defined in the interaction patterns. In this article, organizations
can be seen as software components and vice versa.

4.2 Modeling Interaction With Petri Nets

Communication between organizations is message driven: an organization
requests a service provided by another organization, and eventually, this orga-
nization delivers it. Petri nets are well suited to model message driven commu-
nication: places in the Petri net serve as message buffers, from which messages
are read in random order. An organization can deliver multiple services, each
service can be seen as an interface to the outside. An interface consists of places



144 K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf

that are either input places for the service, i.e., requesting messages, or output
places for the service: i.e., sending messages. We do not allow for places in the
interface that are both input and output, as such a place can be interpreted as
a shared variable, which is not allowed in asynchronous communication. We call
such a Petri net with interfaces an open net [58, 60].

In modeling cooperating business processes, places resemble status, activity,
and message buffers. The business processes of each organization (or business
unit) are modeled as a WFN with interface places. As business processes are
repeatable, we model a component by the fused closure of the WFN. The fused
initial place and final place is called the idle place. If a component needs a
service of another component, the corresponding interfaces are connected. As a
consequence, to compose two components to model their interaction, they should
only share some interfaces, and these interfaces should be their complements. In
the composition, the interface places are fused and become internal places of
the newly created component. The interfaces of the components that are not
connected become the interfaces of the newly composed component.

As an example, consider the open net N in Figure 17. This net has three
interfaces: G, H and J . Interface G consists of three output places, a,c and d, and
two input places: b and e. Net M has a similar port G, with two output places, b
and e, and three input places, a, c and d. Interface G of M is the complement of
interface G ofN . Hence, the two nets are composable with respect to interfaceG.
In the composition, the interface places of the two components are fused based
on their name and become internal places of the new component. For example,
place a of N is fused with place a of M , i.e., in the composition with respect
to interface G, denoted by N ⊕G M , place a has the input transitions of N

G J
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iN=fN
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d
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Fig. 17. Two components that share an interface
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and output transitions of M . The newly created component has two interfaces,
namely those of N : interface H and J . In practice, it is useful to have a rename
operator in order to give places that should be fused the same name.

Many similar notions for modeling component based systems using Petri nets
exist [34,54,55]. Also the Petri Net Markup Language (PNML) [47] has a module
concept with interfaces. In [24], the authors propose to model choreography using
Interaction Petri nets, which is a special class of Petri nets, where transitions
are labeled with the source and target component, and the message type being
sent. For each of the components, a Petri net with an interface is extracted.
The interaction Petri net is then realizable if the composition of the behavioral
interfaces is branching bisimilar related with the interaction Petri net.

4.3 Verification Methods

An important behavioral property for components is that its internal behavior
should be correct: disregarding the interface, the component should be weakly
terminating. Verification of asynchronously communicating components is known
to be a hard problem. Because of the high degree of concurrency in such systems,
model checking a complete system often becomes infeasible. A second problem is
that the complete system is usually not known. Only at runtime components de-
cide to cooperate. Therefore, compositional verification is needed to check these
systems on conformance: given that each component is correct, and each pair
of connected components satisfy some conditions, we want to conclude that the
whole system is correct.

Just requiring each composition of connected pairs of components to be sound
is not sufficient to guarantee the correctness of the composition, as shown in
Figure 18. In this example, both A ⊕ B and B ⊕ C are sound. However the
composition A⊕B⊕C has a deadlock, since this composition introduces a cyclic
dependency over the three components: after firing transition v, the system is in
deadlock.

v

t

u

B

A C

G H

Fig. 18. The composition of three components
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Behaviorally, communicating components can be seen as partners that to-
gether try to reach some desired state. A component cannot communicate with
every partner that has the same interface. There are additional requirements
on the environment based on the internal process of a component. The operat-
ing guideline [58] of a component is an automaton that represents all partners
in a finite manner. Wolf [90] shows that if a service has a partner, a most-
permissive partner exists, i.e., a partner exists such that all partners simulate this
partner.

Given a service R, to check whether some service P is a partner, it should
“follow” the operating guideline, i.e., partner P should simulate the operating
guideline of R. However, this condition is not sufficient [90]. Therefore, each state
in the operating guideline is annotated with a boolean expression stating which
messages should be sent and received in each state. However, the operating
guideline is currently only defined for deadlock-freedom. In [81] the authors
present an extension to test whether all transitions are covered.

Within a system, if a component S is replaced by some other component T , the
system should still function, i.e., the system should not notice the replacement.
Formally, this means that every partner of S should also be a partner of T . We
call this relation the accordance pre-order [64, 80]: T accords with S if every
partner of S is a partner of T . The operating guideline can be used to decide
whether a component accords to another component. In this way, the accordance
pre-order can be used to decide substitutability of services.

In the setting where the network of communicating components is restricted
to acyclic graphs, i.e., each component only communicate with a “parent” com-
ponent, the parent component “buys” services from a child components. The
accordance relation for livelock-freedom is sufficient to compositionally verify
the network. However, a solution to decide accordance for weak termination is
not available [79]. In [61], the authors prove that for general open nets the ques-
tion whether a component has a partner is undecidable. Current research results
(cf. [59, 80, 90]) are based on a message bound.

In [8,88], the authors search for a sufficient condition to conclude weak termi-
nation based on an extra condition on the communication between each pair of
communicating components. They identify several communication patterns that
are sufficient for compositional verification of soundness. The basic communica-
tion pattern defined is the identical communication pattern. Given a composition
of three components A, B and C, such that the composition of A and B and
of B and C is sound, and A and C are disjoint, then C cannot hamper B, i.e.
the composition B⊕C should mimic every firing sequence B can execute. Thus,
for every firing sequence σ in B leading to its final marking, a firing sequence
σ̃ should exist in the composition B ⊕ C that leads to the final marking of the
composition, and the projection of σ̃ on the transitions of component B should
be equal to σ. This way, component A does not notice whether it is communicat-
ing to component B or to the composition B ⊕ C. The notion is closely related
to simulation.
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4.4 Construction Methods

Although compositional verification of asynchronously communicating compo-
nents is possible, it still is a very time consuming activity. For SOA-based ar-
chitectures, i.e., in which it is unknown which components the component to be
designed will cooperate with, verification needs to be done at runtime by the bro-
ker. In SOC based architectures, i.e., the components with which the component
to be designed is known beforehand, construction methods exist that guarantee
correctness criteria like (generalized) soundness. In this section we discuss two
approaches to guarantee soundness. These construction methods allow for the
construction of general networks of communicating components.

Reordering Communication. The first approach is based on public and pri-
vate views of a model [11]. One first models the whole BP, and verifies soundness
of the constructed WFN. Then, the WFN is divided in public views for each of
the parties involved in the BP. This public view serves as a contract between the
different parties. Each party implements its public view as a private view. If the
private view accords to the public view, i.e., each partner of the public view is
a partner of the private view, then the system composed of all the private views
will be sound as well.

Like for WFN, rules exist for the refinement from a public view to a private
view. The refinement rules defined in [36] for Jackson nets and the refinement
rules WP and WT can be used as long as no communicating transitions, i.e.,
transitions that are connected to an interface, are involved. For the communi-
cating transitions, [11] provides reordering rules that preserve accordance (see
Figure 19), enabling the specialization of a public view to a private view. An
overview of patterns can be found in [12].

The first two rules show that a sequence of only sending transition (Fig-
ure 19(a)) or only receiving transitions (Figure 19(b)) may be refined in any
order, as such a sequence can be mapped on a single transition that sends (re-
ceives) all messages at once. The third reordering rule (Figure 19(c)) shows that
if first a sequence of receiving transitions occur followed by a sequence of send-
ing transitions, the whole sequence can be replaced by a single transition. The
last refinement rule (Figure 19(d)) shows that a sequence of sending transitions
followed by a sequence of receiving transitions can be replaced by two parallel
branches one for the sending transitions and one for the receiving transitions.
In [56], the authors show that these rules can be applied to WS-BPEL, slightly
relaxing the relation between abstract and executable WS-BPEL processes.

Refinement Rules. The rules presented in [11] show that accordance is pre-
served under the reordering rules. However, these rules do not extend the be-
havior of the components. In the remainder of this section, we will present three
refinement rules that extend the behavior of a network of communicating com-
ponents [44,88]: The first rule refines a single component, the second rule refines
the communication between two components, and the last rule introduces a new
component in the network.
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Fig. 19. Reordering communication

Within a business process modeled as a Petri net, a place can resemble both
an activity or a state. The place refinement defined in Section 3.4 allows us to
refine a place with another WFN that is generalized sound. As for open nets
the concept of generalized soundness is not defined, we require the place that
will be refined to be safe: if the place is safe, it may be refined by an open net
whose inner structure is a WFN. The resulting net has both the interfaces of the
original net as well as the interfaces of the refining net, as shown in Figure 20.

This definition of place refinement propagates the ports of the refining com-
ponent to the original component. At a first glance, this definition seems to
contradict the paradigm of information hiding. However, the definition allows
for the refinement of a component by a composed component, as long as this
composition remains a workflow component. This way, the ports remain invisible
to the environment of the original component.

In the refinement of a system of asynchronously communicating components,
different components can contain places that together represent a single pro-
cedure. To refine the system with the actual procedure, which mostly includes
communication between the different components, these places need to be simul-
taneously refined by the actual procedure.

Not every subset of places in such a system can be refined while preserving
soundness. First, a marking in the system should exist in which all places to be
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Fig. 20. Refinement of place p in N by component M

refined are marked. Second, such a place can only become marked again after all
other places to be refined have been marked, i.e., when refining these places by
rule R1 (Figure 12(a)) the synchronic distance [83] of the newly added transitions
should be 1. Thirdly, from any marking reachable a path exists that ensures that
all places to be refined are marked before one of these places become unmarked
again.

Figure 21 depicts a May/Exit transition system that expresses the three con-
ditions. Solid transitions are exit transitions, and from every state in the system
it should be possible to reach the final marking using only exit transitions. Each
state is annotated by two sets of places: the set of places that has been marked in
the current cycle and the set of places that already have become unmarked. The
transitions p and q in this system are mapped onto the transitions in the preset
of the places p and q, respectively, and the transitions p′ and q′ are mapped onto
the transitions in the preset of the places p and q, respectively. All other tran-
sitions are mapped to the silent transition. If every firing sequence in the Petri
net can be replayed in the May/Exit transition system, and for each marking a
firing sequence to the final marking exist using only the solid transitions of the
May/Exit transition system, then the places p and q are synchronizable [38,45].

Refinement of a set of places by an actual procedure can be seen as the refine-
ment by a communication protocol between the components. A communication
protocol is a set of open nets whose inner structure is a WFN, and each open
net has at most one interface for each of the other open nets in the protocol,
and no other interfaces exist. In this way, a communication protocol models the
cooperation between the different parties.

Using the concept of synchronizable places and the communication protocol,
we can define a refinement rule for the communication between components.
Given a system of communicating components, a set of synchronizable places and
a communication protocol between as many parties as there are synchronizable
places. In the refinement, we refine each synchronizable place with a party from
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Fig. 22. Refinement of synchronizable places p and q with α = {p �→ C, q �→ D}: place
p is refined by C and place q simultaneously by D

the communication protocol. If the communication protocol is sound, the refined
net is sound again.

Whereas the previous two rules focused on the extension of existing com-
ponents, these rules do not allow for expansion of the network by adding new
components. With the next rule, it is possible to connect new components in a
system such that the system remains sound. The rule is based on the principle
of outsourcing.

Consider Figure 23. For example, if place p has the meaning that when a
token resides in it, “an item is produced”, and the decision is taken to outsource
the production activity, we can add two transitions: a “start producing item”
and a “finish producing item”. Then the start transition initiates the component
producing the item, and the finish transition fires if the item is produced. In this
way, we create a new interface for outsourcing the activity, which allows us to
connect it to a new component. In fact, we replace place p by a communication
protocol between two parties: the existing component and a new component.
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Fig. 23. Extending the composition with a new coupled component

The new component is formed by taking the fused closure of the open net in the
communication protocol. If every firing sequence from the idle state of the new
component back to this idle state starts with receiving a message and ends with
sending a message, then the refinement preserves soundness.

4.5 Communication Protocols

The last two refinement rules presented in the previous section are based on
sound communication protocols. Two special subclasses of WFNs are the class
of acyclic marked graphs and the class of state machines. These nets are gener-
alized sound by their structure [41]. In this section, we will discuss a subclass
of communication protocols based on these classes of WFNs that are sound by
their structure. We focus here on sound communication protocols between two
parties.

Soundness of a communication protocol means that all parties should always
be able to reach their final marking, and no messages are pending in the inter-
faces. Every communication protocol is a WFN-s net. As the completion of a
WFN-s is bisimilar to that WFN-s when hiding the initial and final transitions,
soundness of the WFN implies soundness of the communication protocol.

As proven in [41], acyclic marked graphs are generalized sound and safe by
their structure. Now let us consider an open net whose inner structure is a
T-WFN, and each interface place is connected to exactly one transition, then
the composition of two of these nets is again a marked graph. Hence, if the
composition is acyclic, the WFN of the communication protocol is sound, and
thus also the communication protocol. As a result, the class of communication
protocols whose inner structure is an acyclic marked graph are sound by their
structure. We name this class AT-nets.

As communication protocols are also asynchronously communicating systems,
we can apply the refinement rules of the previous section on them. However,
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as the refinement over components requires synchronizability of the places to
be refined, we still need to check which pairs of places are synchronizable. In
an acyclic marked graph, every place will be marked exactly once. Hence, if a
marking exists in which two places are marked at the same time, these places
are synchronizable. For this subclass of communication protocols, we can express
this as a graph property: two places are synchronizable if there does not exist a
directed path between the two places. Hence, the set of all synchronizable places
can be computed from the structure of the Petri net.

A second class of WFNs that is generalized sound by structure is the class of
state machine WFNs. Consider an open net whose inner structure is a S-WFN.
Then unlike the composition of open nets whose inner structure is T-WFN, the
composition of two of these open nets is not a state machine. Composing two
state machines introduces concurrency; it is very simple to compose two open
nets with an inner S-WFN structure resulting in a composition that is not sound.

For example, consider the example of Figure 24(a). In this net, first component
A makes a decision, then component B makes a decision. As both decisions are
independent, if B makes the wrong choice, the composition reaches a deadlock.
A solution to overcome this problem is to only connect isomorphic open nets
with an inner S-WFN structure such that the interface places are determined by
the isomorphism relation, and transitions in conflict either all send or receive.
However, as Figure 24(b) shows, this is not sufficient. Also the direction of the
communication matters: any loop should contain at least one sending and one
receiving transition, otherwise the composition can become unbounded.

These observations show that compositions of open net with an inner
S-WFN structure should “agree” on the isomorphism: each transition should
only communicate with its isomorphic counter part, all transitions in conflict

A

B

iA

iB

fB fB

(a) Decisions should be “in
sync”

A B

G

a

b

c

d

iA iB

fA fB

(b) Direction of communication is
important

Fig. 24. unsound compositions of state machine components
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either all send a message or all receive a message, and each loop contains at
least one sending and one receiving transition. We call this set of communication
protocols IS-nets.

Markings of such a composition have a special property: as each of the compo-
nents is an S-WFN, any marking in the composition can be split into a marked
place of the first component, a marked place of the second component and some
interface places are marked. As each loop contains both a sending and a receiv-
ing transition, the composition is safe: no interface place can contain more than
one token. Therefore, if the composition agrees on the isomorphism, it is always
possible to reach a marking in which the interface places are empty, and, if this is
the case, the only marked places are their isomorphic counter parts. As a result,
if the composition of two isomorphic open nets with an inner S-WFN structure
agrees on the isomorphism, it is both safe and sound. A direct consequence of
this property is that each pair of a place and its isomorphic counterpart is also
synchronizable.

Based on the class of AT-nets and IS-nets, we recursively define a larger class of
sound and safe communication protocols called ATIS-nets. Using the refinement
rule over components, we can refine any two synchronizable places by a sound
and safe communication protocol. Hence, if we refine two synchronizable places
in an ATIS net with an ATIS net, the result is sound and safe again.

5 Conclusions

We have shown how relevant aspects of business processes can be modeled with
Petri nets and explained why soundness, or weak termination, is an important
sanity check for process modeling. We have presented a number of model con-
struction rules allowing to develop sound by construction business processes.
Some of these rules are refinement rules, where a node of a Petri net gets re-
fined by another Petri net, or composition rules, where the original nets become
subnets of the composed net. These construction rules can be combined with
workflow patterns, which in fact define best practices.

Besides single business processes we also considered the modeling of coop-
erating, communicating, business processes. This topic is especially important
since in practice, business processes seldom operate in isolation. We extended
the construction rules for single business processes to construction rules for sets
of communicating business processes. Since communicating business processes
can be transformed into one big business process, the construction methods for
communicating business processes can be used for modeling of single business
processes as well.

Business processes do not only occur in physical organizations but also in soft-
ware systems. If software systems are developed according to the paradigm of
service oriented computing, then components that deliver services to each other
form a direct analogy with cooperating organizations. Each component has an
internal orchestration process, which is in fact a business processes, while sets
of communicating components are in fact communicating business processes.
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The whole system can be considered as one organization and all the compo-
nents as business units. So the theory developed in this paper can be applied to
component-based software systems as well.

Acknowledgements. The authors would like to thank Christian Stahl for the
useful discussions and his valuable comments on cooperating business processes.

A Basic Notations

Let S be a set. The powerset of S is denoted by P(S) = {S′ | S′ ⊆ S}. We use
|S| for the number of elements in S. Two sets U and V are disjoint if U ∩V = ∅.
We denote the cartesian product of two sets S and T by S × T . On a cartesian
product we define two projection functions π1 : S × T → S and π2 : S × T → T
such that π1((s, t)) = s and π2((s, t)) = t for all (s, t) ∈ S × T . We lift the
projection function to sets in the standard way.

A bag m over S is a function m : S → N, where N = {0, 1, . . .} denotes the set
of natural numbers. We denote e.g. the bag m with an element a occurring once,
b occurring three times and c occurring twice by m = [a, b3, c2]. The set of all
bags over S is denoted by NS . Sets can be seen as a special kind of bag where all
elements occur only once; we interpret sets in this way whenever we use them in
operations on bags. We use + and − for the sum and difference of two bags, and
=, <, >, ≤, ≥ for the comparison of two bags, which are defined in a standard
way. The projection of a bag m ∈ NS on elements of a set U ⊆ S, is denoted
by m|U , and is defined by m|U (u) = m(u) for all u ∈ U and m|U (u) = 0 for all
u ∈ S \ U .

A sequence over S of length n ∈ N is a function σ : {1, . . . , n} → S. If
n > 0 and σ(i) = ai for i ∈ {1, . . . , n}, we write σ = 〈a1, . . . , an〉. The length
of a sequence is denoted by |σ|. The sequence of length 0 is called the empty
sequence, and is denoted by ε. The set of all finite sequences over S is denoted
by S∗. Let ν, γ ∈ S∗ be two sequences. Concatenation, denoted by σ = ν; γ is
defined as σ : {1, . . . , |ν| + |γ|} → S, such that for 1 ≤ i ≤ |ν|: σ(i) = ν(i), and
for |ν| + 1 ≤ i ≤ |ν| + |γ|: σ(i) = γ(i − |ν|). Projection of a sequence σ ∈ S∗

on elements of a set U ⊆ S, denoted by σ|U , is inductively defined by ε|U = ε
and (〈a〉;σ)|U = 〈a〉;σ|U if a ∈ U and (〈a〉;σ)|U = σ|U otherwise. The Parikh

vector of a sequence σ, denoted by −→σ is inductively defined by −→ε = ∅ and−−−→
〈a〉;σ = [a] +−→σ for all a ∈ S.

If we give a tuple a name, we subscript the elements with the name of the
tuple, e.g. for N = (A,B,C) we refer to its elements by AN , BN , and CN . If the
context is clear, we omit the subscript.

Labeled Transition Systems. A labeled transition system (LTS) is a 5-tuple
(S,A,−→, si, Ω) where
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– S is a set of states ;
– A is a set of actions ;
– −→ ⊆ S × (A ∪ {τ}) × S is a transition relation, where τ 
∈ A is the silent

action [17];
– si ∈ S is the initial state; and
– Ω ⊆ S is the set of final states, also called accepting states.

Let L = (S,A,−→, si, Ω) be an LTS. For s, s′ ∈ S and a ∈ A ∪ {τ}, we write

(L : s
a−→ s′) iff (s, a, s′) ∈−→. If (L : s

a−→ s′), we say that state s′ is
reachable from s by an action labeled a. A state s ∈ S is called a deadlock
if no action a ∈ A ∪ {τ} and state s′ ∈ S exist such that (L : s

a−→ s′).
We define =⇒ as the smallest relation such that (L : s =⇒ s′) if s = s′ or

∃s′′ ∈ S : (L : s =⇒ s′′ τ−→ s′). As a notational convention, we may write
τ

=⇒
for =⇒. For a ∈ A we define

a
=⇒ as the smallest relation such that (L : s

a
=⇒ s′)

if ∃s1, s2 ∈ S : (L : s =⇒ s1
a−→ s2 =⇒ s′). We lift the notations of actions to

sequences. For the empty sequence ε, we have (L : s
ε−→ s′) iff (L : s =⇒ s′). A

sequence σ ∈ A∗ of length n > 0 is a firing sequence from s0, sn ∈ S, denoted

by (L : s0
σ−→ sn) if states sj−1, sj ∈ S exist such that (L : sj−1

σ(j)
=⇒ sj) for all

1 ≤ j ≤ n. If a firing sequence σ exists such that (L : s
σ−→ s′) we say that s′ is

reachable from s. The set of all reachable states from s are the states from the
set R(L, s) = {s′ | ∃σ ∈ A∗ : (L : s

σ−→ s′)}.
An LTS L = (S,A,−→, si, Ω) is weakly terminating if Ω ∩R(L, s) 
= ∅ for all

states s ∈ R(L, si), i.e. from every state reachable from the initial state some
final marking can be reached.

Definition 14 (Hiding). Let L = (S,A,−→, si, Ω) be an LTS. Let H ⊆ A.
We define the operation τH on an LTS by τH(L) = (S,A\H,−→′, si, Ω), where
for m,m′ ∈ S and a ∈ A we have (m, a,m′) ∈−→′ if and only if (m, a,m′) ∈−→
and a 
∈ H and (m, τ,m′) ∈−→′ if and only if (m, τ,m′) ∈−→ or (m, a,m′) ∈−→
and a ∈ H.

An LTS L′ delay simulates an LTS L if in every two related states, each action
L can do, LTS L′ can perform as well, possibly after some silent steps. If both
L′ simulates L and L simulates L′ with simulation relations R and R−1, we say
L and L′ are delay bisimilar.

Definition 15 (Delay (bi)simulation). Let L = (S,A,→, si, Ω) and L′ =
(S′,A′,→′, s′i, Ω

′) be two LTSs. The relation Q ⊆ S × S′ is a delay simulation,
denoted by L �Q L′, if:

1. siQs′i;
2. ∀s1, s2 ∈ S, a ∈ A∪ {τ}, s′1 ∈ S′ : ((L : s1

a−→ s2)∧ s1 Qs′1) =⇒ (∃s′2 ∈ S′ :
(L′ : s′1

a
=⇒ s′2) ∧ s2 Qs′2); and

3. ∀s′ ∈ S′, sf ∈ Ω : sf Qs′ =⇒ s′ ∈ Ω.

If both Q and Q−1 are delay simulations, Q is a delay bisimulation denoted by
L �Q L′.
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In the remainder, if we use the term (bi)simulation, we refer to delay (bi)simu-
lation. For a more elaborate overview of simulation relations, we refer the reader
to [29].

Petri Nets. A Petri net N is a 3-tuple (P, T, F ) where (1) P and T are two
disjoint sets of places and transitions respectively; (2) F : (P ×T )∪(T ×P )→ N

is the flow function. The elements from the set P ∪ T are called the nodes of
N . A pair (n1, n2) ∈ (P × T ) ∪ (T × P ) is called an arc if F (n1, n2) > 0.
Places are depicted as circles, transitions as squares. For each pair (n1, n2) ∈
(P × T ) ∪ (T × P ) such that F (n1, n2) > 0, an arc is drawn from n1 to n2.
Two Petri nets N = (P, T, F ) and N ′ = (P ′, T ′, F ′) are disjoint if and only
if (P ∪ T ) ∩ (P ′ ∪ T ′) = ∅. Let N = (P, T, F ) be a Petri net. Given a node
n ∈ (P ∪ T ), we define its preset •

N n = {n′ | F (n′, n) > 0}, and its postset
n•
N = {n′ | F (n, n′) > 0}. We lift the notation of preset and postset to sets and

sequences. Given a set U ⊆ (P ∪ T ), •
N U =

⋃
n∈U

•
N n and U•

N =
⋃

n∈U n•
N .

The preset of a sequence σ ∈ T ∗ is the set of all places that occur in a preset
of a transition in σ, i.e., •

N σ = {p | ∃1 ≤ i ≤ |σ| : p ∈ •
N σ(i)}. Likewise, the

postset of σ is the set of all places that occur in a postset of a transition in σ,
i.e., σ•

N = {p | ∃1 ≤ i ≤ |σ| : p ∈ σ(i)
•
N}. If the context is clear, we omit the N

in the subscript.
Let N = (P, T, F ) be a Petri net. A marking of N is a bag m ∈ NP , where

m(p) denotes the number of tokens in place p ∈ P . If m(p) > 0, place p ∈ P
is called marked in marking m. A Petri net N with corresponding marking m
is written as (N,m) and is called a marked Petri net. A system N is a 3-tuple
((P, T, F ),m0, Ω) where ((P, T, F ),m0) is a marked Petri net and Ω ⊆ NP is a
set of final markings.

The semantics of a system N = ((P, T, F ),m0, Ω) is defined by an LTS
S(N ) = (NP , T,→ ,m0, Ω) where (m, t,m′) ∈−→ iff F (p, t) ≤ m(p) andm′(p) =
m(p) − F (p, t) + F (t, p) for all p ∈ P , m,m′ ∈ NP and t ∈ T . We write

(N : m
t−→ m′) as a shorthand notation for (S(N ) : m

t−→ m′) and R(N ,m)
for R(S(N ),m).

Let N = ((P, T, F ),m0, Ω) be a system. Place p is k-bounded in N for some
k ∈ N, if m(p) ≤ k for any marking m ∈ R(N ,m0). If all places are k-bounded,
we say that the system is k-bounded. A system is bounded if there exists a k ∈ N

such that the system is k-bounded. A transition t ∈ T is live in N if for all
markings m ∈ R(N ,m0) a σ ∈ T ∗ and m′ ∈ NP exist such that (N : m

σ−→ m′)
and (N : m′ t−→). If all transitions of a system are live, the system is called
live. A transition t ∈ T is quasi-live in N if there exists a reachable marking

m ∈ R(N ,m0) such that (N : m
t−→). If all transitions in the system are

quasi-live, the system is called quasi-live.
Weak termination of a system corresponds to weak termination of the corre-

sponding transition system.
A Petri net N = (P, T, F ) is a marked graph if |•t| ≤ 1 and |t•| ≤ 1 for

all transitions t ∈ T . It is a state machine if |•p| ≤ 1 and |p•| ≤ 1 for all
places p ∈ P .
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Abstract. The aim of this tutorial is to give a concise, but nonetheless
not too narrow, overview of definitions and results pertaining centrally
to Petri net structure theory. The Petri net model considered in these
notes are the classical place/transition nets, as they have been defined
in the First Advanced Course held in 1979 and originate back to the
late Sixties. Structure theory asks what behavioural properties of a Petri
net can be derived from its structural properties. Other aspects of Petri
nets are neglected to a large extent in the present notes, such as various
extensions and generalisations of central notions and results, as well as
almost all algorithmic and complexity-theoretic consequences that ac-
company the structure-theoretic results. Because full proofs can easily
be retrieved from the literature, they are not given, unless they are small
and perhaps somewhat characteristic for Petri net oriented reasoning.
Proof ideas are often sketched, however, and the sharpness of various
results is accentuated by means of examples and counterexamples. A list
for further reading is also provided.

1 First Steps in Petri Nets

We all may remember a lecture in Theoretical Computer Science in which Finite
Automata were introduced. Finite Automata may be used to represent regular
languages. Other classes of languages were also introduced and analysed. This
was done for good reasons. For instance, compiler construction is grounded on
a variety of language types.

However, we may also view formal languages from a more system-oriented
perspective. If we interpret every letter as an atomic activity, then the words of
a language describe the sequences of actions that are feasible. For instance, the
evolutions permitted in some industrial production process could be described
in this way. The atomic actions could perhaps be ascribed to the activities of
various machines involved in the process. This idea can be exploited both for
the simulation and for the validation of a production process in its planning
stage, before it is actually implemented. Much money can be saved if design
errors are detected and corrected in this way, well before the physical realisation
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of a production process. However, it must be realised that in general, and in
particular in such processes, more than just one activity can be executed in
parallel. Such parallelism (or concurrency) cannot be described either by a formal
language or by a finite automaton, at least not in the form in which they are
usually taught in a beginners’ course. Problems concerning parallelism cannot
be handled just by using words built as sequences of the letters of an alphabet.

In the beginning of the Sixties of the last century, Carl Adam Petri became
aware of this lack of descriptive power of the traditional finite automata model,
and of its bias towards sequential rather than concurrent execution. His dis-
sertation, which he completed in the year 1962, was fundamentally concerned
with redressing this balance. The idea behind Petri nets (as they were called
some years later) is to modify some of the concepts behind finite automata.
Most fundamentally, in his view, states are thought to be structured and may
consist of smaller parts (called local states). Transitions may affect certain local
states but may leave other local states unchanged or unaffected. Local states are
represented in Petri nets by means of places while state transitions are again
simply called transitions. It is this principle of locality, together with the duality
between states and transitions, which underlies the very definition of a Petri net.

1.1 Basic Definitions

We shall use standard, though not always unique, mathematical notation.
For instance, f : X → Y and f ∈ Y X both denote the fact that f is a function
from X to Y .

Definition 1. Petri net
A Petri net is a triple (S, T, F ) consisting of

– a countable set S of places and a countable set T of transitions with S ∩ T =
∅,

– and a mapping F : (S × T ) ∪ (T × S) → N which defines arcs (also called
arrows, or edges) between places and transitions. F (s, t) defines the number
of arcs from s to t. Analogously, F (t, s) defines the number of arcs from
t to s.

In the following, we will almost exclusively consider finite Petri nets, that is,
Petri nets in which both the set of places and the set of transitions are finite.
For such nets, we often use finite sets of indices as follows: S = {s1, . . . , s|S|}
and T = {t1, . . . , t|T |}. Sometimes transitions are simply denoted {a, b, c, . . .}.
This is to be understood such that a is t1, b is t2, etc.

In the graphical representation of a Petri net, we draw every place as a circle
and every transition as a box (normally square, and in general, rectangular).
Furthermore, we draw exactly F (si, tj) arcs from the ith place si to the jth
transition tj , and F (tj , si) arcs from the jth transition tj to the ith place si.

Places and transitions are enumerated for reasons of convenience, but in
general, any naming is allowed. Enumerations are helpful for an alternative
representation of the arcs in the calculus of matrices. In this representation,
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we replace the mapping F by two |S| × |T |-matrices F,B ∈ NS×T . The value
Bi,j in the ith row and jth column is, by definition, the number of arcs from si
to tj , and the value Fi,j is, by definition, the number of arcs from tj to si. We
will also occasionally write F(s) or F(s, .) for the ‘sth row’ in F, given s ∈ S,
F(t) or F(., t) for the ‘tth column’, given t ∈ T , and F(s, t) for the entry in row
s and column t of F. B and F are called backward matrix and forward matrix,
respectively. This is to be understood from the point of view of transitions: arcs
emanating from a transition (i.e. ‘forward arcs’, as seen from this transition)
are described by the forward matrix. Looking backward from a transition, one
encounters its incoming arcs which are described in the backward matrix. As we
will see later, these matrices allow linear algebra to be applied.

We introduce a number of elementary concepts.

Definition 2. Preset, postset, and related notions
Let (S, T, F ) be a Petri net. For x ∈ S∪T , we call •x = {y ∈ S∪T | F (y, x) ≥ 1}
and x• = {y ∈ S ∪ T | F (x, y) ≥ 1} the preset (postset, respectively) of x.
Generalising this, we define •X =

⋃
x∈X

•x and X• =
⋃

x∈X x•, for X ⊆ S ∪ T .
An element x ∈ S ∪ T satisfying •x ∪ x• = ∅ is called isolated. If there are arcs
in both directions between a place s and a transition t, i.e. if F (s, t) ≥ 1 ≤
F (t, s), then this situation is called a loop or a self-loop. A loop is called simple
if F (s, t) = 1 = F (t, s). A net is pure if there are no self-loops, and plain if there
are no multiple arcs, that is, if the function F returns 0 or 1, but no number
greater than 1.

Definition 3. States and markings
Let N = (S, T, F ) be a Petri net. The state set of N is defined to be N

S , that
is, the set of all functions from S to N. This is to be understood as the set of all
potential states of N , of which the actually possible states – to be defined later
– are a subset. A function M : S → N is called a state, or a marking, of N . If
M(si) = m then we say that ‘place si carries m tokens (in the state M)’. We
often write states as column vectors, indexed by places.

Graphically, we represent tokens as solid dots within a place.
Using the matrix representation of arcs, the Petri net shown in Figure 1 can

be described by the quadruple (S, T,B,F) and the state M with

S={s1, s2, s3}, T ={t1, t2, t3}, B =

⎛
⎜⎜⎜⎜⎝

t1 t2 t3

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎠

s1

s2

s3

, F=

⎛
⎜⎜⎜⎜⎝

t1 t2 t3

1 0 1

0 0 0

1 2 0

⎞
⎟⎟⎟⎟⎠

s1

s2

s3

, M=

⎛
⎝

0

1

2

⎞
⎠

s1

s2

s3

We have •s1 = {t1, t3}, s1
• = {t1}, •s2 = ∅, s2

• = {t2}, •s3 = {t1, t2},
s3

• = {t3}, •t1 = {s1}, t1• = {s1, s3}, •t2 = {s2}, t2• = {s3}, •t3 = {s3},
t3

• = {s1}. The function F can also be written down, but this would be rather
circumstantial, compared with the graphical representation.

This Petri net has a loop between s1 and t1, as well as a multiple arc leading
from t2 to s3; in other words, we have F (t2, s3) > 1. A multiple arc will often be
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•

••

t1

t2

t3

s1

s2

s3

•

••

2

t1

t2

t3

s1

s2

s3

Fig. 1. Two representations of the same Petri net

represented as a plain arc together with some natural number which is inscribed
at it. This number denotes the multiplicity of the arc. If the multiplicity is 1,
we simply omit the number. A loop may also be represented by a simple arc
with two arrow heads leading in both directions. (However, this representation
can be problematic in small figures where loops could easily be mistaken for
plain arcs.)

Definition 4. Petri net with an initial marking
An initial Petri net N is defined to be a tuple N = (S, T,B,F,M0), or
N = (S, T, F,M0), where

– (S, T,B,F) (respectively, (S, T, F )) is a Petri net;
– M0 ∈ NS is an initial state.

We also denote a Petri net N = (S, T, F ) with initial state M0 by (N,M0). The
initial state is also called initial marking or starting state.

In the following, we will call an initial Petri net simply a Petri net, if it is clear
from the context that we are talking about an initially marked net. Also, we often
use the word system in an informal way when talking about an initially marked
net. Typically, the starting state is included in the graphical representation of
a net by means of tokens (solid dots) on the places. In Figure 1, for example,
M = (0 1 2)T is the starting state. The notation T means ‘transposed’ and
shows, in this case, that the marking is viewed as a column vector.

Sometimes it is desirable to ignore certain parts of a Petri net, for instance a
set of transitions and/or places, together with all arcs connected to them. This
leads to the notion of a subnet.

Definition 5. Subnet
Let N = (S, T, F,M0) be a Petri net and let S′ ⊆ S as well as T ′ ⊆ T .
The subnet induced by S′ and T ′ is denoted by N(S′, T ′) and defined by

N(S′, T ′) = (S′, T ′, F |(S′×T ′)∪(T ′×S′),M0|S′).
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Generally, the vertical bar denotes the restriction of the domain of a set or func-
tion to the set given in its index. In this particular case, we have F |(S′×T ′)∪(T ′×S′)
= F ∩ (((S′ × T ′) ∪ (T ′ × S′))× N).

The idea is that in N(S′, T ′), the part of the net defined by S′ and T ′ is left
intact, while all elements of S \S′ and T \T ′ are neglected. The definition of F ′

means that all arcs between elements of S′ and T ′ (including their multiplicities)
are just inherited from N to N(S′, T ′). All other arcs, that is, arcs with at least
one endpoint in S \ S′ or in T \ T ′, are ignored. The definition of M0|S′ means
that places in S′ carry exactly as many tokens in N(S′, T ′) as they do in N .
Places in S \ S′ and all tokens on them are ignored.

In Figure 1, the subnet induced by S′ = {s1} and T ′ = {t1, t2, t3} consists of
one place, s1, with zero tokens, three arcs (two of which form a loop), and three
transitions (one of which, viz. t2, is isolated).

1.2 Firing Transitions

We now describe the dynamics, i.e. the behaviour, of initially marked nets. This
will be defined in analogy to the successive execution of state transitions in a finite
automaton. In Petri nets, this process is called firing or executing transitions.

Definition 6. The transition rule of Petri nets
Let N = (S, T,B,F) be a Petri net, let M ∈ N

S be a state of N , and let t ∈ T be
a transition of N . We call t M -activated (or enabled, firable, executable in state
M), if M ≥ B(t) (that is, ∀s ∈ S : M(s) ≥ Bs,t = F (s, t)).
A transition t fires in state M to state M ′ (or is executed in state M , leading to
state M ′, or simply leads from M to M ′) if:

– M ≥ B(t) (that is, t is activated in M), and
– M ′ = M − B(t) + F(t).

This rule is called the transition (or firing) rule, and it is the basic behavioural
(state change) rule for Petri nets. Formally, the fact that t is firable in M and

leads from M to M ′ is denoted by M [t〉M ′ or by M
t−→ M ′.

Informally, when a transition fires, it consumes tokens from every place of its
preset (whence there needs to be at least one token on every such place just
prior to firing) and produces tokens on every place of its postset. The number
of tokens consumed and produced are calculated according to the multiplicity
of arcs around the transition. More precisely, if a place s has an outgoing arc of
multiplicity k towards t, then every single firing of t needs at least k tokens on
s and consumes exactly k tokens from s. Similarly, if t is connected to a place s′

of its postset by an arc of multiplicity k, then every single firing of t produces
exactly k tokens on s′, which are added to the already existing ones. In the case
of self-loops, tokens are first taken from a place and later reproduced. That is,
if F (s′′, t) = k > 0 and F (t, s′′) = m, k tokens on s′′ are necessary for firing t.
When firing t, we might think of it as the k tokens being removed from s′′ first,
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and then, in a second step, m tokens being added to s′′ again. In the special case
of a simple loop (k = m = 1), the effect of firing is that the number of tokens on
such a place is neither decreased nor increased, because the single token that is
taken away by firing, is put back by the same firing.

As an example, let us reconsider the Petri net from Figure 1. We have, on the
one hand, that

(0 1 2)T [t2〉(0 0 4)T and (0 1 2)T [t3〉(1 1 1)T.

On the other hand, firing t1 in state (0 1 2)T is not possible, since there
is no token on s1. We may also fire from other states. For instance, we have
(7 3 5)T [t1〉(7 3 6)T and (2 1 0)T [t2〉(2 0 2)T.

Of course, it is usually possible to execute a sequence of transitions, one after
another, instead of just one of them. This naturally leads to two interesting
questions:

– How can the set of states that are reachable from the initial state through
such sequences be characterised?

– How can the set of firable sequences be characterised?

As we will see, these two questions are of a rather different nature. Moreover,
the answers to both of them are non-trivial.

Definition 7. Firing sequence
Let N = (S, T, F,M0) be a Petri net. We define inductively: ∀t ∈ T, σ ∈ T ∗:

M [ε〉M ′ if M = M ′

M [σt〉M ′ if ∃M ′′ ∈ N
S : M [σ〉M ′′ [t〉M ′,

where M [σ〉M ′′ [t〉M ′ is a shorthand notation for M [σ〉M ′′ ∧M ′′ [t〉M ′ and ε is
the empty sequence.
We read M [σ〉M ′ as ‘σ fires from M to M ′’, or ‘σ is executed from M and

leads to M ′’, or, more simply, ‘σ leads from M to M ′’. Here also, M
σ−→ M ′ is

synonymous to M [σ〉M ′.

M [σ〉 :⇐⇒ ∃M ′ ∈ N
S : M [σ〉M ′.

A sequence σ ∈ T ∗ is called a firing sequence or an execution (sequence) from
M (or executable/firable at M), denoted by M [σ〉, if there is some marking M ′

with M [σ〉M ′.
Further, we call E(M) = {M ′ | ∃σ ∈ T ∗: M [σ〉M ′} the reachability set (or the
state space) of M , and E(N) := E(M0) is the reachability set of N . Alternatively,
we also write [M〉 instead of E(M).

In Figure 1, we have the following firing sequences: σ1 = t3t3t1t3t2t3t3, or σ2 =
t3t1t1t1t1t3, amongst others. More precisely, we have (0 1 2)T

σ1−→ (5 0 0)T

and (0 1 2)T
σ2−→ (2 1 4)T. By contrast, σ3 = t3t3t1t3t3t2t3 is not firable from

M0 = (0 1 2)T, since the fourth instance of t3 cannot be executed.
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The reachability set, E(M0), of this example is as follows:

{(0 1 2)T, (0 0 4)T} ∪ {(i j k)T | i ≥ 1 ∧ j ≤ 1 ∧ i+ 2j + k ≥ 4}. (1)

The reachability set does not have to be representable so smoothly, even if the
given Petri net is small.

Firing enjoys several basic properties that one should know about. The state
reached after firing a transition depends only on the previous state, rather than
on the (possibly large) history by which this state has been reached; this property
is called memorylessness or local determinacy of firing. If a transition can be
fired in some state, then it can also be fired in every ‘larger’ state (where larger
means that no place contains less tokens and at least one place more tokens);
this property is called the monotonicity of firing. If two transitions can be fired
in arbitrary order, then the resulting marking after firing both does not depend
on their ordering; this is called the commutativity of firing. More formally, we
have:

Lemma 1. Properties of firing
Transition firing is
– locally determined, i.e. ∀t ∈ T ∀M,M ′,M ′′ ∈ NS: (M [t〉M ′ ∧M [t〉M ′′ ⇒

M ′=M ′′),
– monotonic, i.e. ∀M,M ′,M ′′ ∈ N

S ∀t ∈ T : (M [t〉M ′ =⇒ (M + M ′′) [t〉
(M ′ +M ′′)),

– and commutative, i.e. if M,M1,M2,M3,M4 are states and t, t′ are tran-
sitions with M [t〉M1 [t

′〉M2 and M [t′〉M3 [t〉M4, then M2 = M4.

Proof: Local determinacy: We have M ′ = M − B(t) + F(t) = M ′′.
Monotonicity: M ≥ B(t) entails M +M ′′ ≥ B(t) +M ′′ ≥ B(t) and M ′ +M ′′ =
M − B(t) + F(t) +M ′′ = (M +M ′′)− B(t) + F(t).
Commutativity: M2 = M1 − B(t′) + F(t′) = M − B(t) + F(t) − B(t′) + F(t′) =
M − B(t′) + F(t′)− B(t) + F(t) = M3 − B(t) + F(t) = M4.

It is important to note that commutativity does not mean that t′t is firable
whenever tt′ is. Thus, the above concept of commutativity is not exactly the
same as that used frequently in mathematics. Mathematical commutativity is
not normally satisfied in Petri net firings. More precisely, the following properties
are not normally satisfied:

– persistency, i.e. ∀t, t′ ∈ T ∀M ∈ NS : (t 
= t′ ∧M [t〉 ∧M [t′〉 =⇒M [tt′〉).
– confluence, i.e. ∀M,M ′,M ′′ ∈ NS ∀σ, σ′ ∈ T ∗: (M [σ〉M ′ ∧M [σ′〉M ′′ =⇒
∃M̂ ∈ NS ∃σ′′, σ′′′ ∈ T ∗: (M ′ [σ′′〉M̂ ∧M ′′ [σ′′′〉M̂)).

Both properties can be disproved by the following simple Petri net:

S={s1, s2, s3}, T ={t1, t2}, F ={(s1, t1), (s1, t2), (t1, s2), (t2, s3)} andM(s1)=1,M(s2)=M(s3)=0.

(2)
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Persistency means that an activated transition cannot be de-activated by other
transitions. In general, however, it is possible for some transition to de-activate
another one; such a situation is called a conflict. In (2), for example, t2 is ac-
tivated in marking M . However, firing t1 de-activates t2 (as well as t1 itself).
In section 4, persistency and the absence of conflicts will be investigated more
closely.

Confluence means that executions drifting apart in a net can be brought
together again. In general, however, this may not be the case. In (2), the markings
M1 and M2 reached after firing t1 and t2 from M , respectively, have no common
successor marking. For example, if t2 denoted an erroneous exection, then there
would be no way of ‘correcting’ the error by reaching a state that could also
have been reached after t1.

1.3 Graphs and Multigraphs

The graphical representation of a Petri net indicates that it can be understood
as a graph in the mathematical sense. In this section, we recall some notions
pertaining to (multi-)graphs in general.

A graph is a structure (X,E) where E ⊆ X ×X . An element of X is called
a vertex, or a node. An element e = (x, y) ∈ E is called an arc, or an edge, or
sometimes also an arrow, leading from x to y. An arc-labelled graph is a structure
(X,L,E) where E ⊆ X × L×X . For e = (x, �, y) ∈ E, � is also called the label
(or the inscription) of the arc e from x to y. A multigraph is a structure (X,E)
where E is a multiset of pairs from X ×X . Thus, we may have several arrows
in parallel from one node to another one. Likewise, a labelled multigraph is a
structure (X,L,E) where E is a multiset of triples from X × L×X .

A subgraph of a (multi-)graph with vertex set X is a graph with vertex set
X ′ ⊆ X and (labelled) arcs restricted to those between nodes in X ′. By a
(directed) path we mean a directed sequence of edges, such that the endpoint of
one edge is the beginning of the next one. A path is a cycle if its starting vertex
equals its end vertex. The length of a path is the number of edges in it. A special
case is just a single node without any edge (called a path of length 0). A path is
called simple or elementary if no vertex appears twice in it, except possibly the
very beginning and the very end, in which case it is called a simple cycle or an
elementary cycle.

A (multi-)graph G is called strongly connected if for any two nodes x and y,
there is a directed path from x to y. G is called weakly connected if for any two
nodes x, y, there is some sequence of arrows (not necessarily pointing in the same
direction) from x to y.G is called covered by (directed) cycles if for any arrow from
x to y, there is a directed path from y to x. It is clear that if a graph is strongly
connected, then it is also weakly connected and covered by cycles. Conversely,
if a graph is covered by cycles and weakly connected, then it is also strongly
connected. A strongly connected component (weakly connected component) of a
graph G is a maximal subset X of vertices such that the subgraph G′ with vertex
set X is strongly (weakly) connected.
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1.4 The Reachability Graph

In this section, we investigate the set of states of a Petri net (S, T, F,M0) that can
be reached during its execution(s). The concept of reachability set has already
been introduced. It comprises all states that can be reached after the execution of
arbitrary firing sequences, including the initial state which is reached after ‘firing’
the empty sequence. This set can be provided with some structure. Instead of
just recording the reachable states, we may also record a relation between them,
namely the information which transition has to be fired in order to get from one
state to another one. In this way, we obtain the reachability graph.

Definition 8. The reachability graph
Let N = (S, T, F ) be a Petri net, let M ∈ NS and let E(M) be the reachability
set of M in N . The reachability graph RG(N,M) is defined to be an arc-labelled
graph (E(M), E) with the following set of arcs:

E = {(M1, t,M2) | M1 ∈ E(M) ∧ M1 [t〉M2}.

If N = (S, T, F,M0) is a Petri net with an initial marking, then the reachability
graph of N , RG(N), is defined to be RG(N) = RG(N,M0).

The reachability graph is always weakly, but not necessarily strongly, connected.
Ignoring the arc labelling, it is also a multigraph, becauseM1 [t〉M2 andM1 [t

′〉M2

does not necessarily imply t = t′. Thus there may be two or more arrows leading
from M1 to M2.

Let us consider two examples. The Petri net shown in Figure 2 is a modifica-
tion of the net shown previously in Figure 1. The loop between s1 and t1 was
replaced by a single arc. The modified net has the reachability graph shown in
Figure 3. It has two strongly connected components and three edges that are
not covered by cycles.

If we designate (0 1 2)T as a start state and define some additional ”ac-
cepting” states, the Petri net can be viewed as an automaton that accepts the

•

••

2

t1

t2

t3

s1

s2

s3

Fig. 2. A modification of Figure 1
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(0 1 2)T (1 1 1)T (2 1 0)T

(0 0 4)T (1 0 3)T (2 0 2)T (3 0 1)T (4 0 0)T

t3

t1

t3

t1
t2 t2 t2

t1

t3

t1

t3

t1

t3

t1

t3

Fig. 3. The reachability graph of the Petri net shown in Figure 2; the initial marking
is (0 1 2)T

language of all firing sequences ending in such an accepting state. With these
additions we can study Petri net languages; such a study is, however, beyond
the scope of the present notes. Suffice it here to say that Petri nets can accept
non-regular languages, while, e.g., all languages of finite automata are regular.
Consequently, while the reachability graph in our example looks quite similar
to such finite automata, there must also be some Petri nets whose reachability
graphs cannot be viewed that way. This is indeed the case.

Consider the net which was originally shown in Figure 1. It has a loop (instead
of just a single arc) between s1 and t1, and its reachability graph RG(N,M0)
with M0 = (0 1 2)T is shown in Figure 4. This reachability graph is infinite
and can thus not be included fully in the Figure. Its representation in Figure 4
ends at some arbitrarily chosen (sufficiently early) point. The targets of the arcs
at the bottom of the figure are not shown explicitly. This graph has infinitely
many strongly connected components (each node being one).

An infinitely large reachabilibity graph is, of course, not a finite automaton.
Also, in an infinite graph, the task of searching whether a given state is reach-
able is burdensome. Nevertheless, we may discover quickly that in our example,

(0 1 2)T (1 1 1)T (2 1 0)T

(0 0 4)T (1 0 3)T (2 0 2)T (3 0 1)T (4 0 0)T

(1 1 2)T (2 1 1)T (3 1 0)T

(1 0 4)T (2 0 3)T (3 0 2)T (4 0 1)T (5 0 0)T

t3 t3

t2 t2 t2

t1 t1t3 t3 t3
t3

t1

t1 t1

t1
t3 t3

t2 t2 t2

t1 t1 t1
t3 t3 t3

t3

t1 t1 t1 t1 t1

Fig. 4. Part of the reachability graph of the net shown in Figure 1; the initial state is
(0 1 2)T
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for instance, state (1 0 9)T is reachable while state (0 0 9)T is not. It suffices to
examine the systematic structure of the graph in order to answer this or similar
questions. In general, however, reachability graphs are much more complex, and
the question whether a given state is reachable is very hard to answer. In fact,
it has been an open question for several years whether or not this question is
decidable. We cite the known result next.

Theorem 1. Reachability is decidable
The reachability problem, defined by

RP = { (N,M,M ′) | N = (S, T, F ) is a Petri net, M,M ′ ∈ N
S, and M ′ ∈ E(M) },

is decidable.

1.5 Boundedness, Safeness, Liveness, Deadlock-Freeness, and
Reversibility

The reachability graph reveals more information than just the set of reachable
states. We discuss some interesting and relevant properties that can be inferred
from the reachability graph.

Definition 9. Boundedness and safeness
Let N = (S, T, F,M0) be a Petri net. A place s ∈ S is called safe if M(s) ≤ 1
whenever σ is a firing sequence and M is a state with M0 [σ〉M ; s is called m-
bounded (for m ∈ N), if M0 [σ〉M always entails M(s) ≤ m. Place s is bounded if
it is m-bounded, for some m ∈ N, otherwise it is unbounded.

A Petri net N = (S, T, F,M0) is called safe (bounded) if all places s ∈ S are
safe (bounded, respectively). N is called m-bounded, for some m ∈ N, if every
place s ∈ S is m-bounded. N is called unbounded if it contains an unbounded
place.

The safeness (m-boundedness) of N can be deduced by inspecting the reacha-
bility graph RG(N). Similarly, the safeness (m-boundedness) of any place can
be deduced by inspection. We simply need to check all states which occur in
RG(N). This is practical only if RG(N) is finite (and is, even then, likely to be
extremely time-consuming).

Definition 10. Liveness, deadlock-freeness, and reversibility
Let N = (S, T, F,M0) be a Petri net.

– A transition t ∈ T is called singly live or not dead, if there is a firing sequence
σ with M0 [σt〉.

– A transition t is called weakly live, if there is an infinite word w ∈ T∞ such
that t occurs infinitely often in w and M0 [w〉 (meaning that M0 [σ〉 holds for
every finite prefix σ of w).
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– A transition t is called live or strongly live, if for every reachable marking
M ∈ E(M0), there is some firing sequence σ with M [σt〉.

– A transition t is called reversible, if for every reachable marking M ∈ E(M0),
if M [t〉M ′, then M ∈ E(M ′).

The Petri net N is called (singly / weakly / strongly) live or reversible, if every
transition in the net is (singly / weakly / strongly) live or reversible, respectively.
N is called dead if N contains no singly live transition. A reachable marking
M ∈ E(M0) is called a deadlock if no transition is activated at M . N is called
deadlock-free if there is no marking M ∈ E(M0) which is a deadlock.

It is easy to check on the reachability graph whether or not a transition is singly
live. If it contains some arc (M, t,M ′), then every path fromM0 toM determines
a firing sequence σ with M0 [σ〉M , and in state M we have M [t〉. That is, t is
singly live if and only if such an arc occurs in the reachability graph.

If the reachability graph is finite, then it is not hard to check whether a given
transition t is weakly live. If it is, then it can be fired arbitrarily often, and since
the reachability graph is finite, it must contain a cycle with an arc of the form
(M, t,M ′). Conversely, if the reachability graph contains such a cycle, then t is
weakly live, since we can fire into the cycle, and then along the cycle arbitrarily
often.

Checking strong liveness of a transition t is not so easy, but it can also, in
principle, be done on the reachability graph. For every marking M contained
in it, it must be checked whether a path leads from M to an arc inscribed by
t. For a finite reachability graph this means every terminal strongly connected
component (i.e., with no arcs going out to other such components) must contain
an edge labelled t.

Checking deadlock-freeness can be done by examining the reachability graph
for vertices which have no output arc. The net is deadlock-free if and only if
such vertices are absent.

Reversibility can be checked on the reachability graph as well. Recall that the
reachability graph is always weakly connected. For a transition t to be reversible,
each edge labelled with t must lie on some cycle (or equivalently, within some
strongly connected component) of the reachability graph, and for the whole net
to be reversible, the entire reachability graph must be strongly connected. Con-
versely, if the reachability graph is strongly connected, then the net is reversible.
Note that this holds even if the initial marking is a deadlock.

The considerations of this section are subsumed as follows:

Corollary 1. Properties that can be checked on the reachability graph
If the reachability graph of a Petri net N = (S, T, F,M0) is finite, then there
exist terminating algorithms which decide the following properties:
– whether a place is safe;
– whether a place is m-bounded;
– whether a place is bounded;
– whether a transition is dead (i.e., not singly live);
– whether a transition is weakly live;
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– whether a transition is strongly live;
– whether a transition is reversible;
– and whether the net N is safe (m-bounded, bounded, dead, singly live,

weakly live, live, deadlock-free, or reversible).

1.6 Coverability Graphs

What happens if the reachability graph is not finite? Then none of the above
questions can be solved efficiently using the reachability graph. Given that the
reachability graph may be infinite and therefore unmanageable, does there per-
haps exist a similar construction which always leads to a finite structure from
which at least some interesting information about safeness, boundedness and
liveness can be inferred? Such a structure has indeed been invented. It is called
the coverability graph. Such a graph (indeed, a number of such graphs with simi-
lar properties, all of them finite) can be associated with a Petri net. If the latter
is bounded, the coverability graphs defined in the literature would normally
coincide with the unique reachability graph.

Some information is lost if the Petri net is unbounded, since coverability
graphs are finite. However, the coverability graph(s) can still be used for some,
but not all, analysis of the net. For instance, the question whether a net is
bounded, can be decided on the coverability graph, as can the question which, if
any, places are unbounded. As another example, however, the question whether a
transition (or the entire net) is live, or weakly live, cannot be decided on the cov-
erability graph only. For weak liveness it is sufficient to additionally know the full
Petri net structure which might be partially hidden in the coverability graph. For
liveness we know that it is at least as hard as the reachability problem. The latter
is EXPSPACE-hard, and no upper complexity bounds are known at the present
time. The reachability problem can also not be decided on the coverability graph,
but there exist constructions using sequences of generalised coverability graphs
to solve this problem. Further details about coverability graphs are beyond the
scope of this tutorial.

1.7 Structural Boundedness, Structural Liveness, and
Well-Formedness

In this section, we define two notions that are related to boundedness and live-
ness, but pertain to nets without markings, rather than to net systems as before.
Hence there is in general no single reachability graph on which they could be
checked. We introduce these properties by means of Figures 5 to 7.

Consider the system shown on the left-hand side of Figure 5. It is 2-bounded
but not safe. It is also not live. Its reachability graph is shown on the right-hand
side of the figure. The system shown in Figure 6 is unbounded. However, it is
live. The system shown in Figure 7 is safe (i.e., 1-bounded) as well as live, but it
is not reversible. The reachability graph of this net is shown on the right-hand
side of Figure 7. (In order to avoid writing long vectors, the reachable markings
were written in a short-hand notation. They are represented as strings of place
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names, where a place appears as often as there are tokens on it.) The graph is
composed of two separate strongly connected components, one containing just
M0 = s2s5 and the other containing all other markings.

Definition 11. Structural boundedness, structural liveness, and well-formedness
A net N = (S, T, F ) is called

– structurally bounded, if for all markingsM , the system(S, T, F,M)is bounded;
– structurally live, if there is some markingM such that the system (S, T, F,M)

is live;
– well-formed, if there is some marking M such that the system (S, T, F,M)

is bounded and live.

A marking M of a net (S, T, F ) is called live (bounded) if the system (S, T, F,M)
is live (bounded).

Note that there is a significant difference between the notions of structural
boundedness and structural liveness: while in the first case, boundedness must
hold for all possible initial markings, in the second case it is sufficient that there
exists some initial marking for which liveness holds.

If we omit the three tokens from the net shown on the left-hand side of Figure
5, then we get a net which is not structurally live. To see this, we actually have
to investigate not just the initial marking which is shown in the figure, but any
other initial marking as well, that is, we need to consider an infinite number of
reachability graphs and check that none of them belongs to a live net. Indeed, let
an arbitrary initial marking be given and consider a maximal sequence that arises
by choosing b instead of a whenever both are enabled. It is easy to see that such
a sequence always leads to a deadlock, and thus, the net is not live. On the other
hand, the net is structurally bounded. To see this, we again need an argument
showing that the net is not only bounded for the marking shown in the figure, but

c

a b

s1

s2 s3

M0 (1 1 1)T

(0 2 1)T (2 0 0)T (0 1 2)T

(1 1 0)T (1 0 1)T

(0 2 0)T
(0 1 1)T

(0 0 2)T

(1 0 0)T

(0 1 0)T (0 0 1)T

a
c

b

c
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c

a

b a

b

c

a

b

Fig. 5. Neglecting the tokens: structurally bounded, but not structurally live
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a
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s1 s2
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· · · · · ·
· · ·

M0 (0 0 1)T

(1 1 0)T

(0 1 1)T (1 0 1)T

(1 2 0)T (0 0 2)T (2 1 0)T

(0 2 1)T

(1 1 1)T
(2 0 1)T

a
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a c
b

a

b c
a

b c

Fig. 6. Neglecting the token: structurally live, but not structurally bounded

for all other possible initial markings as well. In fact, this follows easily from the
fact that for any arbitrary initial marking, the overall number of tokens of this
net can never increase. Finally, this net is not well-formed, because it has no live
marking and, a fortiori, no bounded and live marking.

The net shown on the left-hand side of Figure 6 (neglecting the token) is
structurally live. To see this, it suffices to exhibit a live marking; for instance, the
marking shown in the figure is indeed live. The net is, however, not structurally
bounded. To see this, it suffices to exhibit a non-bounded marking; for instance,
the marking shown in the figure is not bounded. The net is not well-formed,
either, because its only bounded marking (which is the empty – i.e., token-free
– marking) fails to be live.

The net shown on the left-hand side of Figure 7 (neglecting the two tokens)
is well-formed. To see this, it suffices to exhibit a live and bounded marking; for
instance, the marking shown in the figure is both live and bounded. It follows
that the net is structurally live. It is not clear, at this point, whether the net is
also structurally bounded. Later, we will prove that this is indeed the case.

s1

s2 s3 s4 s5

s6 s7

t1 t2

t3 t4 t5 t6

t7

M0 s2s5

s5s6 s2s7

s6s7

s4s7
s1

s3s6

s4s5 s2s3

t3 t6

t6 t3

t7
t5 t4

t2 t1t6

t5

t3

t4

Fig. 7. Neglecting the tokens: structurally bounded and structurally live
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1.8 Bibliographical Remarks and Further Reading

Petri nets were conceived in [Pet62] and brought into the form presented in these
notes, called the place/transition nets, by several research teams, prominent
amongst whom were Hartmann Genrich, Amir Pnueli, et al. [CHEP71, GL73].
Around the same time, a closely related model, the vector addition systems, was
put forward and investigated by Richard Karp and others [KM69]. The notion of
a coverability tree was defined in [KM69] to serve as the basis for an algorithm to
decide boundedness. Both models have sparked several interesting developments
and led to famous results, such as the decidability of reachability which was
proved independently by Ernst Mayr in his dissertation [May80, May84] and by
Rao Kosaraju [Kos82]. This particular result was made more widely accessible
through a new proof by Jean-Luc Lambert [Lam92], by further work by Jérôme
Leroux [Ler09], and to a German-speaking audience, by a textbook by Lutz
Priese and Harro Wimmel [PW03]. The proof ideas which were contained in
these works have proved useful in obtaining further results, such as described in
[Wim04] and in [HMW10]. Even before reachability was known to be decidable,
a number of properties had been shown to be reducible to reachability [Hac74].

The notions of liveness and boundedness originated, to our knowledge, from
the early work cited above [KM69, CHEP71, GL73]. Soon after these publica-
tions, Leslie Lamport coined the terminology of liveness versus safety properties
in connection with program verification [Lam77]. He later said that he used these
terms based on a slight misunderstanding of the similar terms coming from Petri
net theory [Lam]. As readers proficient in verification will surely be aware of,
they have since led a very meaningful and independent scientific life as well.

There are several textbooks and overview articles on place/transition nets,
e.g. by Wolfgang Reisig [Rei85], James Lyle Peterson [Pet81] and Tadao Murata
[Mur89]. The reader is also referred to the bibliography entries mentioned in
http://www.informatik.uni-hamburg.de/TGI/PetriNets/bibliographies/

2 Linear-Algebraic Structure of Petri Nets

Both a Petri net N and its reachability graph RG(N) are mathematical struc-
tures known as (multi-)graphs. However, the graph-theoretical structure of N
bears no apparent relationship to the graph-theoretical structure of RG(N). It
may be the case that N is a very complicated graph and that RG(N) is ex-
tremely simple, but it may also be the case that RG(N) is very complex even
though N looks rather innocent.

Normally, there is a large discrepancy between the size of N and the size
of RG(N). While N is of the order of a computer program’s size (which may
vary between a few and several hundreds of millions of lines), RG(N) is often
exponentially larger than N . Therefore, it has long been one of the objectives
of net theory to be able to deduce some properties of RG(N) from properties
of N itself. It is particularly interesting to find results that would allow one to
check properties such as those of Corollary 1 (e.g., boundedness, or liveness)
by checking the structure of the net only, without constructing the reachability

http://www.informatik.uni-hamburg.de/TGI/PetriNets/bibliographies/
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graph (or the coverability graph). This idea has been known by the name of
structure theory, or the structural analysis, of Petri nets.

Structure theory will be investigated from different points of view.
In the present section, we will exploit the linear-algebraic structure of N in

order to deduce properties of its behaviour under a given initial marking. In
section 3, by contrast, we will exploit the graph-theoretical structure of N for
the same purpose. The final section 4 reveals some connections between net
properties that are defined partly structurally and partly behaviourally. In most
cases, the objective is to use static properties of the netN , i.e., properties that can
be ‘read off’ its structure, in order to deduce dynamic properties, i.e. properties
such as boundedness or liveness or the absence of conflicts.

2.1 Incidence Matrix, Marking Equation, Marking Inequality, and
Realisability

The incidence matrix of a Petri net is derived from the two matrices F and B, and
it forms the basis for linear-algebraic manipulations of Petri nets. An example
is shown in Figure 8.

Definition 12. Incidence matrix
Let N = (S, T, F ) be a net. The incidence matrix, or connectivity matrix, of N
is defined as the function C : S × T → Z with C = F − B .

If C has no rows, or no columns, or both, linear algebra cannot rea-
sonably be expected to work. Therefore, we will assume that there is
at least one transition and at least one place in the nets we consider.

Incidence matrices do not capture loops. In general, N cannot be reconstructed
uniquely from C, because some information about loops is lost. For example, con-
sider the net which consists only of a place s and a transition t, without any arrows.

a b c d e

s1

s2

s3

s4

s5

s6

C a b c d e

s1 1 −1 −1 0 0

s2 −1 1 1 0 0

s3 0 0 1 −1 0

s4 0 0 −1 1 0

s5 0 0 0 −1 1

s6 0 0 0 1 −1

Fig. 8. An unmarked net (l.h.s.) and its incidence matrix (r.h.s.)
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This net has exactly the same incidence matrix as the net that consists of s and t
and has two additional arrows, one from s to t and another one from t to s.

Using the incidence matrix, the marking reached after a firable sequence can
be computed linear-algebraically. To see how this can be done, we need to define
Parikh vectors.

Definition 13. Parikh vector
Let τ = t1 . . . tk ∈ T ∗ be a sequence of transitions from T . Let #(t, τ) denote
the number of times transition t occurs in τ . The Parikh vector or occurrence
count vector of τ is defined as a (column) T-vector (that is, a T -based column
vector) P(τ) ∈ NT which contains, at entry t, the occurrence count #(t, τ).

For example, for four transitions {t1, t2, t3, t4},

P(ε) = (0 0 0 0)T, P(t2) = (0 1 0 0)T, and P(t1t2t4t2t3t4) = (1 2 1 2)T.

Comparing Definition 12 with the firing rule (section 1), it can be seen that an
entry C(s, t) indicates how the token count on s changes through the firing of
t. That is, if M1 [t〉M2, then M2 = M1 + C · P(t) (= M1 + (F − B)(P(t))).
For example, consider the net shown in Figure 9. The initial marking can be
represented as a column vector M0 = (1 0 0 2 1 0)T. Transition c can fire, and we
easily check that indeed,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
1
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
2
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M0

+

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 0 0
−1 1 1 0 0
0 0 1 −1 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
C

·

⎛
⎜⎜⎜⎜⎝

0
0
1
0
0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
P(c)

This idea can be generalised as follows.

••

a b c d e

s1

s2

s3

s4

s5

s6

Fig. 9. The net of Figure 8 with an initial marking M0
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Lemma 2. Firing lemma and marking equation
If M1[τ〉M2, then M2 = M1 + C · P(τ).

Proof: The claim follows easily by induction on the length of τ .
The term marking equation refers to the conclusion

M2 = M1 + C · P(τ)

of the lemma.
For example, τ = cabda is a firing sequence in the net shown in Figure 9. If

we want to calculate the marking M reached after this sequence, we may use
Lemma 2 as follows:⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
2
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M0

+

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 0 0
−1 1 1 0 0
0 0 1 −1 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
C

·

⎛
⎜⎜⎜⎜⎝

2
1
1
1
0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
P(cabda)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
2
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M

The lemma states that the validity of the marking equation is a necessary con-
dition for a given sequence of transitions leading to a certain marking. Stated
differently, if the marking equation is not satisfied for a given vector of transi-
tion counts, then there is no firing sequence having this vector as a Parikh vector
reaching the goal marking.

The marking equation is not, in general, a sufficient condition for firability.
That is, M2 = M1 + C · y and y ≥ 0 do not necessarily entail M1 [τ〉M2 for
some firing sequence τ with P(τ) = y. As a counterexample, we may consider
Figure 10 where the initial marking is empty, i.e. equal to (0 0)T.

The above may be expressed in a slightly different way. If M [τ〉 and y = P(τ),
then the two inequalities

0 ≤ y and 0 ≤ M + C · y

are satisfied. This is called the marking inequality. A T-vector y ∈ NT is called
realisable from some markingM if there is a firing sequenceM [τ〉 with P(τ) = y.

t1t2

s1

s2

C t1 t2

s1 −1 1

s2 1 −1

P(t1t2)
T 1 1

Fig. 10. A system in which (0 0)T = (0 0)T + C·P(t1t2) but τ = t1t2 is not firable
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If some arbitrary integer-valued vector y satisfies the marking inequality, it is
still not guaranteed to be realisable.

2.2 Transposition Lemmata

Apart from the componentwise comparisons of vectors,

M ≥M ′ ⇐⇒ ∀k : M(k) ≥M ′(k)
and M > M ′ ⇐⇒ M ≥M ′ ∧M 
= M ′,

we will also need the following concept of strict comparison.

Definition 14. Strictly greater
Let k ∈ N and let M,M ′ ∈ Zk be vectors over Z. Then M is called strictly
greater than M ′ (in symbols: M � M ′) if M(i) > M ′(i) for all i ∈ {1, . . . , k}.
The notion of strictly less is defined analogously.

A vectorM is called nonnegative if M ≥ 0, semipositive if M > 0, and positive
if M � 0, where 0 denotes the null vector.

For example, a Parikh vector is always nonnegative. Some entries may be 0 if
the corresponding transition does not occur in the sequence on which the vector
is based. However, Parikh vector entries are never negative.

We exploit a useful principle which is sometimes known in Linear Algebra
by the name of transposition principle or alternation principle and which goes
back to Gordan [Gor1873], Farkas [Far1902] and others. The following lemma
explicates this principle. There are several versions of this lemma, but in the
present notes we use only this one.

Lemma 3. A transposition lemma
Let A be a matrix with rational entries (that is, entries from the set of
rational numbers). Then exactly one of the following statements is valid:
(i) There exists a (rational) vector x with x � 0 and AT · x ≤ 0. Here, AT

denotes the transposed matrix of A.
(ii) There exists a (rational) vector y ≥ 0 with A · y > 0.

Proof: It is easy to see that (i) and (ii) cannot be true at the same time. This is
because (i) ∧ (ii) entails

0 ≥ yT ·AT · x > 0,

which is a contradiction. The first inequality comes from y ≥ 0 (ii) and from
AT · x ≤ 0 (i), if the middle product is associated as yT · (AT · x). The second
inequality comes from x � 0 (i) and A · y > 0 (ii), if the product is associated
as (yT ·AT) · x.

The proof that (i) ∨ (ii) holds true is non-trivial; the interested reader is
referred to [Schr86].

This lemma can easily be lifted to integers for the vectors x and y
(whichever exists).
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2.3 Structural Boundedness, Infinite Executions, and Dickson’s
Lemma

This section contains some small examples involving linear-algebraic arguments,
including a typical application of the transposition principle. First, we give an
elementary linear-algebraic characterisation of structural boundedness. Then, we
characterise the existence of infinite firing sequences linear-algebraically.

Proposition 1. Characterisation of structural boundedness
Let N be a net and let C be the incidence matrix of N . The following
statements are equivalent:
(A) N = (S, T, F ) is structurally bounded.
(B) There exists a vector x ∈ N

|S| with x� 0 and CT · x ≤ 0.

Proof: (A)⇒(B) can be shown by contraposition. Assume ¬(B), i.e., there is
no vector x as in (B). By Lemma 3, there is some vector y ∈ N|T | with C ·y > 0.
We choose some marking M which guarantees that a firing sequence τ with
P(τ) = y is firable from it, for instance the following:

M(s) =
∑
t∈s•

(F (s, t) · y(t)), for s ∈ S.

Let M ′ be defined by M [τ〉M ′. The firing lemma yields

M ′ = ( by Lemma 2 ) M+C ·P(τ ) = ( by P(τ )=y ) M+C ·y >( by C · y > 0 ) M.

Furthermore, from M ′ > M we deduce the existence of a place r with M ′(r) >
M(r). Since τ can be fired arbitrarily often from M ′ because of M ′ > M , at
least the place r is unbounded. Hence ¬(A) holds.

To show (B)⇒(A), we choose x such that property (B) is satisfied. Let M1

be an arbitrary marking of N and let M1 [τ〉M2 with an arbitrary firing sequence
τ . Using (B) we get:

xT ·M2 = xT · (M1 + C · p(τ)) = xT ·M1 + xT · (C · p(τ)) ≤ xT ·M1

where the first equality follows from the firing lemma and the last inequality
from (B). For s ∈ S,

x(s)M2(s) ≤ ( by x ≥ 0 )
∑
r∈S

x(r)M2(r) = xT ·M2 ≤ ( by the above ) xT ·M1.

Therefore, (xT ·M1)/x(s) is an upper bound for the number of tokens on an
arbitrary place s in M2, depending neither on M2 nor on τ . Therefore, place s is
bounded. Since the above is true for arbitrary M1 and for arbitrary s, Property
(A) is satisfied.

In order to characterise the existence of a marking from which an infinite se-
quence of transitions can be fired, we exploit a lemma which is useful in several
other circumstances as well.



Structure Theory of Petri Nets 183

Lemma 4. Dickson’s lemma
Let n ∈ N and let x1, x2, x3, . . . be an infinite sequence of vectors in Nn.
Then there are indices i1 < i2 < i3 < . . . with

xi1 ≤ xi2 ≤ xi3 ≤ . . .

Proof: Consider the case that n = 1. Then the sequence of vectors is simply a se-
quence of natural numbers. If one of them occurs infinitely often in the sequence,
we are done, since the corresponding subsequence is (weakly) monotonically in-
creasing. Otherwise we choose i1 as the last occurrence of the minimum, i2 as
the subsequently last occurrence of the (new) minimum, and so on.

The case that n > 1 can be dealt with by induction and componentwise
consideration. From an infinite sequence of vectors with n components, we first
choose an infinite subsequence that is (weakly) monotonically increasing with
respect to components 1 to n − 1. This can be done by induction hypothesis.
From this subsequence, we then choose another subsequence which (weakly)
increases with respect to the last (nth) component. This can be done as in
the case that n = 1. The resulting sub-subsequence is (weakly) monotonically
increasing with respect to all n components.

The lemma can be applied to the sequence of markings occurring in an infinite
firing sequence, as follows.

Proposition 2. Existence of an infinite firing sequence
For an unmarked net N , there is some marking M0 such that an infinite
firing sequence from M0 exists, if and only if the system of inequalities C ·y ≥
0, y > 0 has a solution.

Proof: (⇒): Let M0 be a marking of N with M0 [t1〉M1 [t2〉M2 [t3〉 . . . By Lemma
4, there exist indices i < j with Mi ≤ Mj and Mi [ti+1 . . . tj〉Mj. The vector
y defined by y = P(ti+1 . . . tj) solves the system of inequalities given in the
proposition, since: y ≥ 0, because y is a Parikh vector; y 
= 0, because i < j; and
C · y ≥ 0 by Mj = Mi + C · y (firing lemma) and by Mj ≥Mi.

(⇐): Let y be a solution of the system of inequalities given in the lemma. As
in the proof of Proposition 1, we can find a ‘sufficiently large’ marking M that
activates a firing sequence σ with P(σ) = y. Let M ′ be the marking defined by
M [σ〉M ′. By the firing lemma, M ′ = M + C·y, whence, by C · y ≥ 0, we have
M ≤ M ′. Hence σ can be iterated indefinitely, and σσσ . . . is firable from M .
Moreover, σσσ . . . is an infinite sequence since σ 
= ε because of y 
= 0.

2.4 S-Invariants and T-Invariants

In the previous section, vectors x (Proposition 1) and y (Proposition 2) satisfied
some inequalities, CT · x ≤ 0 and C · y ≥ 0, respectively. The special case that
these inequalities become actual equalities, viz. CT · x = 0 and C · y = 0, is of
particular importance:
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Definition 15. Place invariants and transition invariants
A vector x ∈ Z|S| is called S-invariant or place invariant, if CT · x = 0.
A semipositive S-invariant x is minimal if there is no S-invariant x′ with 0 <
x′ < x.

A vector y ∈ Z|T | is called T-invariant or transition invariant, if C · y = 0.
Minimality is defined similarly as for S-invariants.

The semipositive, the positive, and the minimal invariants will turn out to be of
primary interest.

As an example, consider Figure 11. x1 is a minimal semipositive S-invariant.
x2 is a non-semipositive S-invariant. x3 is a semipositive S-invariant which arises
from another semipositive S-invariant, namely (0, 0, 1, 1, 0, 0)T, by multiplication
with 2; thus, it is not minimal. x3 is also the sum of x1 and x2. y1 and y2 are
minimal semipositive T-invariants.

The following lemma follows directly from the firing lemma.

Lemma 5. Basic properties of S- and T-invariants
Let x be an S-invariant ofN and letM1,M2 be markings ofN withM1 [τ〉M2,
for some sequence τ . Then xT ·M1 = xT ·M2.
Let M be a marking of N with M [τ〉M for some sequence τ . Then P(τ) is
a T-invariant of N .
Conversely, if M [τ〉 and P(τ) is a T-invariant of N , then M [τ〉M .

Informally, the first part of this lemma states that the x-weighted marking on
any S-invariant x is constant. In particular, if a net has a positive S-invariant,
then it is necessarily structurally bounded. The second part of the lemma states
that any reproduction sequence generates a T-invariant. In particular, any repro-
duction sequence containing every transition at least once, generates a positive
T-invariant. A weak converse also holds true: if P(τ) is a T-invariant, then
M [τ〉M for any marking M enabling τ .

a b c d e

s1

s2

s3

s4

s5

s6

C a b c d e x1 x2 x3

1 1 −1 −1 0 0 1 −1 0

2 −1 1 1 0 0 1 −1 0

3 0 0 1 −1 0 0 2 2

4 0 0 −1 1 0 0 2 2

5 0 0 0 −1 1 0 0 0

6 0 0 0 1 −1 0 0 0

yT
1 1 1 0 0 0

yT
2 1 0 1 1 1

Fig. 11. The example of Figure 8, with some S- and T-invariants
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2.5 Positive S-Invariants and T-Invariants

A positive S-invariant, that is, one which assigns a number ≥ 1 to every place,
is said to cover the net. Similarly, a positive T-invariant is said to cover a net.
As these properties occur frequently, often in connection with well-formedness,
we abbreviate them as follows:

(PS): The net under consideration is covered by a positive S-invariant.
(PT): The net under consideration is covered by a positive T-invariant.
(WF): The net under consideration is well-formed, i.e., it has a live and

bounded marking.

(WF) is stronger than (PT), because of the following lemma. However, (WF) is
not stronger than (PS), since there are Petri nets satisfying (WF) but not (PS).
Finding an example is left as an exercise to the reader. (This is not entirely
trivial.)

Proposition 3. On the existence of positive T-invariants
Let N be a well-formed Petri net. Then N has a positive T-invariant.

Proof: Let M be a live and bounded marking of N . By liveness, there exists an
infinite firing sequence τ = τ1τ2τ3 . . . such that every sequence τi contains all
transitions of N . Define markings Mi by M [τ1 . . . τi〉Mi. By boundedness, not
all markings Mi can be different. Hence there are two indices k, j with k < j and
Mk = Mj. The subsequence Mk [τk+1 . . . τj〉Mj is repetitive, as it reproduces the
marking Mk=Mj. Thus, P(τk+1 . . . τj) is a T-invariant by the second part of
Lemma 5, which is positive since τk+1 . . . τj has the nonempty suffix τj and thus
contains at all transitions, by definition of τj .
If (PS) and (PT) are true for some net, then there are repercussions on its
graph-theoretical structure.

Proposition 4. Cycle-coveredness of nets covered by positive S- and T-invariants

Let N be a Petri net satisfying (PS) and (PT). Then N is covered by cycles.

Proof: (Sketch.) Let N = (S, T, F ) and choose x such that CT·x = 0 and x� 0,
and y such that C·y = 0 and y � 0. Consider an arrow (u, v) in F . We want to
prove that there is a directed path from v to u.

First Case: u ∈ S and v ∈ T .
The basic proof idea is to restrict y to transitions ‘after’ v. Let y′ : T → N be
defined as follows:

y′(t) = y(t) if a directed (possibly empty) path leads from v to t in N,

y′(t) = 0 for all other transitions t.

It is then possible to show that (i) y′ is a T-invariant, and (ii) some input
transition w ∈ •u satisfies y′(w) > 0. By the definition of y′, a directed path
leads in N from v to w, and therefore also from v to u.
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Second Case: u ∈ T and v ∈ S.
Consider the dual net Nd = (T, S, F ), in which places and transitions are ex-
changed but arrows are retained. The incidence matrix of Nd is −CT. Hence x
is a positive T-invariant and y is a positive S-invariant of Nd, and the second
case is reducible to the first case.

Corollary 2. Strong connectedness of nets covered by positive S- and T-invariants

Let N be a weakly connected Petri net containing a positive S-invariant and
a positive T-invariant.
Then N is strongly connected.

2.6 Rank, Conflict Clusters, and Sets of Presets

There are some interesting connections between the structural liveness of a Petri
net and the rank of its incidence matrix C. The column rank (row rank) of C
is defined as the maximal number of linearly independent column (row, respec-
tively) vectors in C. Since, as is known from your favourite course on Linear
Algebra, the column rank and the row rank of any matrix C are identical, the
rank of C is simply defined as one of them, say the column rank. The rank of a
Petri net N is defined as the rank of its incidence matrix.

In the remaining part of this section, we will assume that N is weakly
connected and plain, that is, the function F does not yield values greater
than 1 (or, equivalently, the matrices B and F have values in the set
{0, 1}).

A first observation is that the rank of C is less than |T |, the number of transitions,
provided that N is covered by a positive T-invariant. This is simply because
C · y = 0 and y � 0 just means that some positive linear combination of the
columns of C equals 0, which means that its columns are linearly dependent and
the rank of C cannot exceed |T | − 1. We may combine this observation with
Proposition 3, to see that any well-formed net has column rank ≤ |T | − 1.

As a special case, consider a simple directed cycle and a function which assigns
the number 1 to every transition of the cycle, as shown on the left-hand side of
Figure 12. This is already a positive T-invariant, and the column rank of the

s1 s2

s3

t1

t2t3

s1 s2

t1

t2t3

Fig. 12. A simple cycle (l.h.s.) and a modification (r.h.s.)
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net actually equals |T |− 1. Suppose now that we change such a cycle slightly by
putting two successive transitions into conflict rather than sequence, as depicted
on the right-hand side of Figure 12. Then, in some reproducing firing sequence,
either one or the other can be chosen. In this way, we get two semi-positive,
non-positive T-invariants. Their sum is a positive T-invariant covering the net
with column rank |T | − 2. There is one place less in the net (compared to the
left hand side of Fig. 12), leading to less potential conflicts between transitions.
Thus, one might be led to suspect a connection between the rank of a net and its
‘degree of conflict’. The notions of a conflict cluster and of a preset, as follows,
are designed to make this suspicion more precise. Informally, both play a role in
capturing the ‘degree of conflict’ of a net.

Definition 16. Conflict clusters, and the set of presets
Let N = (S, T, F ) be a plain Petri net.

Fot t, t′ ∈ T , let t ∼0 t′ if •t ∩ •t′ 
= ∅ (i.e., if there is a potential conflict
between t and t′). Let ∼ ⊆ T ×T be the reflexive and transitive closure of ∼0. A
conflict cluster of N is defined as an equivalence class of the equivalence relation
generated by ∼ . The set of all conflict clusters of N is denoted by CCN .

The set of all non-empty presets of N is defined as PRESETSN = {•t | t ∈
T ∧ •t 
= ∅}.

Notice that in the simple cycle on the left-hand side of Figure 12, the relation
∼0 is the identity relation, and we have three conflict clusters. Also, there are
three presets. The net has rank 2 = |T |−1 overall. On the right-hand side of
Figure 12, however, ∼0 is not the identity since we have t2 ∼0 t3. In all, there
are two conflict clusters, as well as two presets. The rank of the net’s matrix is
1 = |T |−2.

2.7 Sufficient and Necessary Conditions for Structural Liveness

Theorem 2. Sufficient condition for the existence of a live marking
Assume that N is a weakly connected, plain net covered by a positive S-invariant
and a positive T-invariant.
If the rank of C is strictly less than |CCN |, then there exists a live marking of N .

Proof: (Sketch.)
The proof may be done by contraposition. Supposing that no live marking of N
exists, the column rank of C is shown to be ≥ |CCN |. The proof proceeds in sev-
eral steps, starting with a suitably chosen non-live marking M1 and constructing
exactly |CCN | linearly independent column vectors contained in C.

First, we consider an initial marking M1 such that all places of all conflict
clusters are marked with some token. By assumption, M1 is not live. Using this,
and also the strong connectedness obtained by Corollary 2, it may be shown
that a firing sequence M1[τ〉M2 exists, such that in M2, every conflict cluster
contains a transition with an unmarked input place. (This argument is invalid if
there are arc weights greater than 1.) Linearly independent entries in C can be
then constructed as follows. The sequence τ is scanned backwards, such that for
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K3

K4 K5

K1 K2

t1

t2 t3 t4

t7

t5

t6

s1 s2

s3 s4 s5 s6

s7

C t1 t2 t3 t4 t5 t6 t7

s1 1 −1 −1 0 0 0 0

s2 1 0 0 −1 −1 0 0

s3 0 1 0 0 0 −1 0

s4 0 0 1 0 0 0 −1

s5 0 0 0 1 0 −1 0

s6 0 0 0 0 1 0 −1

s7 −1 0 0 0 0 1 1

Fig. 13. A non-structurally-live net, its conflict clusters (l.h.s.), and its incidence
matrix (r.h.s.)

every conflict cluster, the last transition in τ is recorded. It can be shown that
the corresponding entries in C are linearly independent, and since τ contains
at least one transition from every conflict cluster, the number of transitions so
obtained equals |CCN |.

Consider, for example, the Petri net shown on the left-hand side of Figure 13 and
its incidence matrix, shown on the right-hand side. The net is plain, and it satisfies
both (PS) and (PT), the verification of which is left to the reader. It has 5 conflict
clusters, also shown on the left-hand side of the figure. There exists no livemarking
for this net. The theorem claims that the rank of C should be ≥ 5, and indeed,
it actually equals 5. For instance, the first five columns are linearly independent,
while the remaining two columns can be linearly combined from them.

M1

t1

t2 t3 t4

t7

t5

t6

s1 s2

s3 s4 s5 s6

s7

t1t2t2t6t1t2t7t1t2t5t5t5t5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

︸ ︷︷ ︸

τ

M2

t1

t2 t3 t4

t7

t5

t6

s1 s2

s3 s4 s5 s6

s7

Fig. 14. M1 [τ〉M2, and in M2, every conflict cluster contains a transition with an
unmarked preplace



Structure Theory of Petri Nets 189

V1s1

s2 s3 s4

s7

s5

s6

t1 t2

t3 t4 t5 t6

t7

C t1 t2 t3 t4 t5 t6 t7

s1 −1 −1 0 0 0 0 1

s2 1 0 −1 0 0 0 0

s3 1 0 0 −1 0 0 0

s4 0 1 0 0 −1 0 0

s5 0 1 0 0 0 −1 0

s6 0 0 1 0 1 0 −1

s7 0 0 0 1 0 1 −1

Fig. 15. A structurally live net, its set of presets (l.h.s.), and its incidence matrix
(r.h.s.)

To trace the constructions in the proof, we may consider a markingM1 putting
exactly one token on each place, such as shown on the left-hand side of Figure
14. This guarantees that every place in every conflict cluster has a token. A
marking M2, reachable from M1, such that every transition in every conflict
cluster has at least one unmarked input place is shown on the right-hand side of
Figure 14, and a firing sequence τ with M1 [τ〉M2 is also shown. In the final step
of the proof, the following transitions are recorded, in this order: t5 (for K5),
then t2 (for K4), and then, similarly, t1, t7, t6. The corresponding entries in C
are linearly independent.

r1

r2

s1

s2 s3 s4

s7

s5

s6

t1 t2

t3 t4 t5 t6

t7

C t1 t2 t3 t4 t5 t6 t7

s1 −1 −1 0 0 0 0 1

s2 1 0 −1 0 0 0 0

s3 1 0 0 −1 0 0 0

s4 0 1 0 0 −1 0 0

s5 0 1 0 0 0 −1 0

s6 0 0 1 0 1 0 −1

s7 0 0 0 1 0 1 −1

r1 1 −1 0 0 0 0 0

r2 −1 1 0 0 0 0 0

Fig. 16. The net of Figure 15 with a regulation circuit {t1, r1, t2, r2} (l.h.s.), and its
incidence matrix (r.h.s.)
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Theorem 3. Necessary condition for the existence of a live marking
Assume thatN is a weakly connected, plain net covered by a positive S-invariant.
If there exists a live marking of N , then the rank of C is strictly less than
|PRESETSN |.

Proof: (Sketch.)
Let N be a net which has a live marking and is covered by a positive S-invariant.
By Proposition 3, there exists a positive T-invariant. Thus, N satisfies (PT).

If the number m = |PRESETSN | is 0, then no transition has any input
place. Since there are at least one transition and one place and the net is weakly
connected, there is some transition without any input place but with some output
place. Such a net cannot satisfy (PS). Hence 1 ≤ m ≤ |T |, where m = |T | in
case no two transitions have a common preset. The theorem can be proved by
induction on |T | −m ≥ 0.

Base: Suppose m = |T |. Because N satisfies (PT), the rank of C is less than
|T | = |PRESETSN |.
Step: Suppose m < |T |. Then there exist at least two transitions with the same
preset. Let U with |U | ≥ 2 be some set of transitions all of which have the same
preset. (For instance, consider U = {t1, t2} on the left-hand side of Figure 15.)
Define N [U ] as N , augmented with a regulation circuit through the transitions of
U (such as shown on the left-hand side of Figure 16, cf. r1 and r2). The following
can be observed:

1) N [U ] satisfies (PS) and is structurally live. To show structural liveness of
N [U ], a live marking of N can be augmented by sufficiently many tokens on
the places of the regulation circuit; an upper limit for the number of such
tokens can be derived from (PS).

2) |PRESETSN [U ]| = |PRESETSN |+ |U |− 1 > |PRESETSN | by properties of
N [U ] and by |U | ≥ 2.

Because of the inequality in 2), the induction hypothesis can be applied to N [U ],
entailing

(rank of N [U ]) ≤ |PRESETSN |+ |U | − 2. (3)

It can moreover be shown that (rank of N) + |U | − 1 ≤ (rank of N [U ]), which
can be combined with (3), yielding (rank of N) ≤ |PRESETSN | − 1 and ending
the inductive proof.

As an example, see Figure 15 which shows on its left-hand side the dual of the
previous example. This net is also plain and satisfies (PS). It is structurally live
as well; a live and bounded (even safe) marking of it has already been shown in
Figure 7. The theorem claims that the number of presets should be larger than
the rank of the incidence matrix. Indeed, the number of presets is 6, while the
rank of the incidence matrix is 5, just as before.

To trace the inductive proof, we may consider the set U = {t1, t2} in Figure
15. Then N [U ] is shown on the left-hand side of Figure 16, and its incidence



Structure Theory of Petri Nets 191

matrix on the right-hand side of Figure 16 has rank 6. The inequalities claimed
in the proof can thus be verified.

To see that weak connectedness is required as a precondition of this theorem,
consider the net consisting of an isolated place, an isolated transition, and any
marking. Such a net has a positive S-invariant and is live, but its rank is 0 and the
number of presets is also 0, so the inequality claimed in the theorem fails to hold.

2.8 Bibliographical Remarks and Further Reading

The use of the incidence matrix, of S- and T-invariants, and of Dickson’s and
Farkas’ lemma date back to early work in [KM69, CHEP71, GL73] and also to
work by Kurt Lautenbach [Lau73]. Often in the literature, ‘Dickson’s lemma’
denotes a statement which may be more general or slightly different from the
one we used. Innocent as it might seem, Dickson’s lemma can also be viewed as
a (very restricted) special case of one of the most famous new results in graph
theory, the graph minor theorem, cf. [Die10].

The connections between the rank of the incidence matrix and structural
liveness were discovered for free-choice nets – to be defined in the next sec-
tion – by a group around Manuel Silva in Zaragoza [CCS91]. In the context of
free-choice Petri nets, these results are also contained – with improved proofs – in
the textbook by Jörg Desel and Javier Esparza [DE95]. In this section, we have
presented them independently of the free-choice property, and this presentation
is due to Jörg Desel [Des92, Des98].

3 Graph-Theoretical Structure of Petri Nets

Graph-theoretically speaking, a Petri net is a bipartite directed multigraph. The
term ‘bipartite’ refers to the fact that the set of nodes is divided into two disjoint
sets, places and transitions, such that arcs connect nodes from one set with nodes
of the other set, but never two nodes of the same set. The term ‘multigraph’
refers to the possible non-plainness of a Petri net, in the sense that there may be
several arcs in the same direction between two nodes. In the remainder of this
tutorial, we will neglect such multiplicities, however:

Henceforth, all Petri nets considered in definitions or in results, will be
assumed to be plain.

In the language of graph theory, this means that we consider bipartite digraphs.
This section is devoted to exhibiting a few results by which the graph-theoretical
structure of such a bipartite digraph (called a Petri net N) can be related to
properties of the reachability graph of N .

In Petri net literature, one finds various constructions for turning non-plain
Petri nets into ‘behaviourally equivalent’ plain ones. These constructions usually
involve new places, new transitions and new tokens. In each individual case,
however, it has to be checked whether the properties one is interested in are
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stable with respect to such transformations, or whether definitions and results
one wishes to apply can be transferred easily from the plain to the non-plain
case. For the definitions and results described in this and in the next section,
such considerations can be non-trivial.

3.1 Some Simple Observations

Let us start our considerations with isolated places (i.e., places s such that
•s = ∅ = s•) and isolated transitions (i.e., transitions t such that •t = ∅ = t•).
An isolated place neither loses any of the tokens it has initially, nor does it gain
any new tokens. Therefore, it impacts neither on liveness nor on boundedness
properties, and we might as well (and will) exclude such places. An isolated
transition can occur indefinitely often, neither needing any input tokens nor
producing any output tokens. As such, it also has no effect on (strong or weak)
liveness or on boundedness and we will exclude isolated transitions from consid-
eration as well:

Henceforth, all Petri nets considered will have no isolated places and no
isolated transitions.

Next, we consider places and transitions with mixed empty and non-empty pre-
or postsets. A place s with •s 
= ∅ = s• destroys either liveness or boundedness,
because if the transitions in •s are live, then s is most certainly not bounded.
A place s with •s = ∅ 
= s• destroys liveness, because the transitions in s• can
fire at most as many times as there are tokens on s initially. A transition t with
•t 
= ∅ = t• destroys either liveness or boundedness, because it is not live, unless
unboundedly many tokens can be assembled on the places in •t. A transition t
with •t = ∅ 
= t• destroys boundedness, because it can fire indefinitely often in
isolation, putting unboundedly many tokens on every place in t•.

These observations can, in fact, be extended to the following, which is a coun-
terpart of Proposition 4:

Proposition 5. Cycle-coveredness of well-formed nets
Let N be a well-formed plain Petri net. Then N is covered by cycles.

Proof: (Sketch.)
Let (u, v) be some arc in N .
If u ∈ T , then v ∈ S. If there was no path from v to u, then liveness would

allow the part of the net which does not depend on v to fire sufficiently many
times in order to put arbitrarily many tokens on v, contradicting boundedness.

If u ∈ S, then v ∈ T . If there was no path from v to u, then the liveness of
v could only be guaranteed if arbitrarily many tokens could be assembled on u,
again prompting a contradiction.

Corollary 3. Strong connectedness of well-formed nets
LetN be a weakly connected, well-formed plain Petri net. ThenN is strongly
connected.
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Weak connectedness is not, usually, a strong requirement. For example, if a
net is not weakly connected, one may analyse its weakly connected components
separately. Sometimes, however, it is useful to consider non-weakly-connected
substructures of an otherwise, weakly or strongly, connected net.

3.2 S-Nets, T-Nets, and Free-Choice Nets

Using the graph-theoretical structure of a Petri net, it is possible to define re-
strictive, but meaningful Petri net classes. Such classes can be useful in practice,
but also in theory, since problems which are hard in general can sometimes be
made more tractable by studying them in one of the restricted net classes first.
We shall analyse problems such as liveness and boundedness for a range of struc-
turally restricted classes of Petri nets.

S-nets forbid synchronisation and ‘splitting’ as shown on the left-hand side
of Figure 17. T-nets prevent ‘merging’ and conflicts as shown on the right-hand
side of Figure 17.

Definition 17. S-nets and T-nets
A plain net N = (S, T, F ) is called an S-net if ∀t ∈ T : |•t| ≤ 1 ≥ |t•|.
A plain marked net N = (S, T, F,M0) is an S-system if (S, T, F ) is an S-net.
A plain net N = (S, T, F ) is called a T-net if ∀s ∈ S : |•s| ≤ 1 ≥ |s•|.
A plain marked net N = (S, T, F,M0) is a T-system if (S, T, F ) is a T-net.

T-systems satisfy a basic token conservation property. For a marking M and a
place set S′ ⊆ S, let

M(S′) =
∑
s∈S′

M(s),

and for a cycle (that is, a simple, closed path) γ, let

M(γ) = M(S′), where S′ is the set of places on γ.

We say that S′ is token-empty (token-free) or marked, depending on whether
M(S′) = 0 or M(S′) > 0.

Lemma 6. Elementary property of T-systems
Let N = (S, T, F,M0) be a T-system and let M ∈ [M0〉. For every cycle γ
of (S, T, F ), M(γ) = M0(γ).

synchronisation (join) splitting (fork) backward conflict (merge) conflict (branch)

Fig. 17. Forbidden structures: S-nets (l.h.s.) and T-nets (r.h.s.)
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a b

Fig. 18. Forbidden structure in FC-nets

Proof: Consider a cycle γ and the effect of firing a transition t. If t lies on γ,
firing t moves exactly one token on γ. If t does not lie on γ, firing t does not
affect the tokens on γ.

Note that whilst Definition 17 could be applied verbatim to non-plain nets, this
is not necessarily meaningful. In particular, Lemma 6 would no longer be true.

Next, we will define a class of nets that encompasses both S-nets and T-nets
called free-choice nets (or FC-nets, for short). FC-nets can be viewed as a ‘small-
est common generalisation’ of S-nets and T-nets. In FC-nets, all structures shown
in Figure 17 are allowed, but a combination of two of them, such as shown in
Figure 18, is disallowed.

Definition 18. Free-choice nets (FC-nets)
A plain net N = (S, T, F ) is called an FC-net if

∀t1, t2 ∈ T : •t1 ∩ •t2 
= ∅ ⇒ •t1 = •t2. (4)

A plain marked net N = (S, T, F,M0) is an FC-system if (S, T, F ) is an FC-net.

The free-choice property is not satisfied in Figure 18, since •a ∩ •b 
= ∅ and
•a 
= •b. Originally, the class of free-choice nets was defined more restrictively.
A (plain) net (S, T, F ) was called free-choice if

∀t1, t2 ∈ T : •t1 ∩ •t2 
= ∅ ⇒ |•t1| = |•t2| = 1. (5)

The class of nets defined in 18 was originally called extended free-choice. Since
most important properties and results either hold for both classes or are easily
transferred from one to the other, we feel justified in ignoring this distinction for
the time being. When we explicitly refer to the class defined by (5) (and this will
occur only once, in section 3.7), then we speak of fc-nets rather than FC-nets.

Every free-choice net satisfies the following property which is symmetric to
its defining property (4):

s1
• ∩ s2

• 
= ∅ ⇒ s1
• = s2

• (6)

In fact, (6) is equivalent to (4) and could have been used as an alternative
definition of the FC-property.

The nomenclature ‘free choice’ can be explained in the following way. Suppose
that in a free-choice net, some marking M activates a transition t. By (4), all
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transitions in the conflict cluster (•t)• of t are activated, and one may freely
choose between firing any of them.

Another interesting property of a free-choice net N is that, unless there are
transitions t with •t = ∅, its conflict clusters CCN and its presets PRESETSN

are in 1-1 correspondence with each other. For a conflict cluster U ∈ CCN , the
set •U is well-defined because any two transitions in U have the same presets by
(4), and if it is nonempty, then it is a preset in PRESETSN . Conversely, for any
preset R ∈ PRESETSN , the set R• is well-defined by (6), and it is a conflict
cluster. Moreover, U = (•U)• and R = •(R•) for clusters U with •U 
= ∅ and
for presets R, which means that the correspondence is indeed one-to-one, unless
there are transitions with empty presets.

If (PS) holds for an FC-net, or if it is well-formed, transitions t with •t = ∅
are absent, and then the pleasant property |CCN | = |PRESETSN | is valid.
Theorems 2 and 3 can therefore be combined for FC-nets as follows:

Corollary 4. Characterisation of the existence of a live marking in FC-nets
Let N be a weakly connected plain FC-net satisfying (PS) and (PT).
N has a live marking if and only if its rank is strictly less than |CCN |.

All S-nets and all T-nets are free-choice nets. Therefore, the last corollary also
applies to such nets. The reader is encouraged to verify and simplify it separately
for S-nets and for T-nets. However, the class of FC-nets is larger than the union of
the classes of S-nets and T-nets. In the previous sections, several FC-nets which
are neither S-nets nor T-nets were exhibited, such as, for example, in Figures 13
and 15.

3.3 A Liveness Criterion for FC-Systems

Corollary 4 gives a structural criterion for the existence of a live marking in an
unmarked FC-net. Next, we characterise the circumstances under which a given
marking is live in an FC-system. The characterisation uses two graph-theoretical
structures that can meaningfully be defined for any Petri net, siphons and traps.

Definition 19. Siphons and traps
Let N = (S, T, F ) be a plain Petri net. A set D ⊆ S is called siphon or d-set if
•D ⊆ D•.
A set Q ⊆ S is called trap or t-set if Q• ⊆ •Q.

According to this definition, the empty set ∅ ⊆ S is both a siphon and a trap.
Moreover, it is not difficult to see that the union of two siphons (traps) is also
a siphon (a trap, respectively). This property is, however, not valid for the
intersection.

Lemma 7. Elementary properties of siphons and traps
Let D be a siphon, let M(D) = 0 and let M ′ ∈ [M〉. Then M ′(D) = 0.
Let Q be a trap, let M(Q) > 0 and let M ′ ∈ [M〉. Then M ′(Q) > 0.
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Proof: Assume M [t〉M ′ with M(D)=0 and M ′(D)>0. Then necessarily t ∈ •D.
By •D ⊆ D•, also t ∈ D•, contradicting M [t〉 ∧M(D)=0. Thus if D is token-
empty, D remains token-empty.

Assume M [t〉M ′ with M(Q)>0 and M ′(Q)=0. Then necessarily t ∈ Q•. By
Q• ⊆ •Q, also t ∈ •Q, contradicting M [t〉 ∧M ′(Q)=0. Thus once Q is marked,
Q remains marked.

This lemma can be applied in a special circumstance. Consider a net with ini-
tial marking M0 which has some siphon D, and inside D, some trap Q with
M0(Q)>0. By Lemma 7, such a siphon D can never be completely emptied
of tokens. It turns out that for FC-nets, liveness is already guaranteed if this
condition holds for every siphon D 
= ∅:

Theorem 4. The Commoner/Hack Criterion CHC
Let N = (S, T, F,M0) be a free-choice system. The following two properties

are equivalent:

(i) For all siphons D⊆ S with D 	= ∅ there is a trap Q⊆ D such that M0(Q) > 0
}
CHC

(ii) N is live

Proof: (Sketch.)
(i)⇒(ii) can be proved by contraposition. Suppose that M0 is not live. Then
there are t ∈ T and M ∈ [M0〉 such that t is dead at M . By the FC property,
it can easily be shown that there is a place s ∈ •t which is token-empty at all
markings reachable from M . Then every transition in •s is also dead at M . By
a backtracking (i.e., repeating this argument), a siphon which is token-empty at
M can be constructed. The siphon constructed by this algorithm cannot contain
a trap which is marked at M0, because such a trap could not have been emptied
of tokens completely. That is, CHC fails to hold.

(ii)⇒(i) can be proved by contradiction. Suppose that N = (S, T, F,M0) is
an FC-system which does not satisfy the Commoner/Hack Criterion CHC and,
at the same time, is live. We deduce a contradiction.

Because of ¬CHC, there exists a siphon D 
= ∅ which does not contain a
trap marked at M0. In particular, the (set-theoretically) largest trap Q in D is
unmarked at M0; note that Q always exists because ∅ is a trap, and that it is
unique because the union of two traps is again a trap. It may be the case that
q = ∅.

For the contradiction, we wish to show that this particular siphon D can
be made completely free of tokens, because it is then that all of its output
transitions (and there is at least one, due to the absence of isolated places) are
dead, contradicting liveness. In this respect, the setD\Q is of critical importance,
because it could contain tokens and it might be possible to move some of them
onto Q. Once Q has a token, the chance of obtaining token-emptiness of D
is obliterated. We need to show that starting from M0, we can find some firing
sequence which removes all tokens from D\Q without, at the same time, putting
any tokens on Q. This is done by means of allocations.
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An allocation is essentially a conflict resolution rule, picking exactly one tran-
sition out of a conflict cluster. If the transitions of the cluster are all enabled
simultaneously, firing according to an allocation means that the allocated tran-
sition will be chosen, rather than any other. Now for the proof, it can be shown
that there exists an allocation α which keeps removing tokens fromD\Q without
continually putting tokens back there, and also not onto Q. Firing according to
α will eventually make D \Q token-free while keeping Q token-free. Eventually,
both Q and D \ Q are empty, and a token-free nonempty siphon with at least
one output transition is obtained, contradicting the liveness of N .

Note that Condition CHC mentions only the initial marking and the two graph-
theoretical structures of trap and siphon. In particular, it does not refer to the
reachability set [M0〉 or to the reachability graph of N . When property CHC is
tested algorithmically, it suffices to consider only the minimal siphons and in each
of them, the maximal trap. Still, in the worst case there may be exponentially
many minimal siphons.

The next examples demonstrate that the premise of free-choiceness cannot be
omitted in any of the two directions of the liveness theorem. The left-hand side
of Figure 19 presents a non-FC-system satisfying condition CHC but failing to
be live. Note, that this system is deadlock-free, though, a property that holds
for all systems satisfying CHC in general, even if they are non-FC-systems. The
right-hand side of Figure 19 shows a non-FC-system which is live but fails to
satisfy condition CHC. To see this, note that {s1, s2, s3, s4} is a siphon which
does not contain any marked trap. The free-choice property is violated at place
s4 and its output transitions.

The reader is invited to check what becomes of CHC in the special cases of
S-systems. For T-systems, one has the following result:

Theorem 5. Liveness and realisability of Parikh vectors in T-systems
Let N = (S, T, F,M0) be a plain T-system. The following are equivalent:

a) N is live;
b) all places s ∈ S satisfy •s 
= ∅ and all (elementary) cycles carry at least one

token under M0;

t1

t2

t3

s1 s2

s1

s2 s3

s4

Fig. 19. Non-free-choice counterexamples to Theorem 4(⇒) and 4(⇐), respectively
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c) all places s ∈ S satisfy •s 
= ∅ and the Parikh vector 1 is realisable, that
is, there is some firing sequence τ such that M0 [τ〉M and every transition
occurs exactly once in τ .

Proof: (Sketch.)
In a T-system, minimal siphons are either singletons {s} for a place s ∈ S with
•s = ∅, or elementary cycles. The former cannot contain any trap because of the
absence of isolated places, and the maximal trap in an elementary cycle is the
cycle itself. Thus condition b) is exactly what CHC reduces to for T-systems, and
the equivalence between a) and b) turns out to be the counterpart of Theorem
4 for T-systems.

c)⇒b): If 1 is realisable, there can be no token-free cycles.
a)⇒c): If a place s ∈ S satisfies •s = ∅, consider t ∈ s•. This transition exists

due to the absence of isolated places. Then t can fire at most M0(s) times, i.e.,
there is some reachable marking at which t is dead.

The firability of 1 can be shown by induction on the number of transitions.
If T = {t}, liveness implies that t can be fired once from M0. Suppose |T | > 1
and t ∈ T such that M0[t〉. Then N can be transformed into another live T-
system N ′ by erasing t and ‘merging’ input places and output places of t in an
appropriate way. By induction hypothesis, a suitable firing sequence τ ′ exists in
N ′. Then τ = tτ ′ is a suitable firing sequence in N .

3.4 A Boundedness Criterion, and Some Coverability Results, for
Live FC-Systems

In the previous section, an exact liveness criterion for FC-systems was described.
In this section, this discussion is extended by presenting an exact characterisation
of the boundedness of a live FC-net. We still assume all nets to be plain, and more
graph-theoretical concepts are needed. In particular, we define two particular
kinds of subnets.

Definition 20. S-components and T-components
Let N = (S, T, F ) be a plain net and let N1 be the subnet N(S1, T1) for some
S1 ⊆ S and T1 ⊆ T .

N1 is called an S-component of N if T1 = •S1 ∪ S•
1 (taking the preset and the

postset in N) and ∀t ∈ T1 : |•t ∩ S1| ≤ 1 ≥ |t• ∩ S1|.
N1 is called a T-component of N if S1 = •T1 ∪ T •

1

and ∀s ∈ S1 : |•s ∩ T1| ≤ 1 ≥ |s• ∩ T1|.

N1 is called strongly connected (inside N) if N1 is strongly connected (as a
separate net).

On the left-hand side of Figure 20, a net N is shown. The right-hand side of
the figure shows three of its subnets, N1, N

′
1 and N ′′

1 . N1 is a (non-strongly-
connected) T-component but not an S-component. N ′

1 is a strongly connected
S-component, but not a T-component, since the property S1 = •T1 ∪ T •

1 , is
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N N1 N ′

1 N ′′

1

Fig. 20. Sample S- and T-components

violated in N . N ′′
1 is another strongly connected S-component. In N there are

no strongly connected T-components.
Let N1, with place set S1, be a strongly connected S-component of (S, T, F ).

It is easy to verify that the S-vector having a 1 at places in S1 and a 0 at places in
S\S1 is an S-invariant. Similarly, every strongly connected T-component defines
a binary T-invariant with entries in {0, 1}. In the following, unless specified
otherwise, we consider only strongly connected S- and T-components.

Theorem 6. Covering by S-components, and a boundedness criterion for live
FC-systems

Let N = (S, T, F,M0) be a (plain) live FC-system and let s ∈ S.

(1) A place s is m-bounded (m ∈ N, m ≥ 1) if and only if there exists a strongly
connected S-component (S1, T1, F1) with s ∈ S1 and M0(S1) ≤ m.

(2) There exists a marking M ∈ [M0〉 satisfying M(s) = m (m ≥ 1) if and only
if M0(S1) ≥ m is true for all strongly connected S-components (S1, T1, F1)
with s ∈ S1.

In both (1) and (2), one of the two directions is easy to prove, using the properties
of S-components and their derived S-invariants. The nontrivial part of (1) states
that the boundedness of s entails the existence of an S-component covering s.
The nontrivial part of (2) states that the least bound for the number of tokens
on s that can be derived from the S-components can actually be realised by some
firing, that is, that there exists a reachable marking placing as many tokens on
s as are allowed by the S-components covering s.

As a corollary, it follows that a live FC-system is m-bounded if and only if it
is covered by a set of strongly connected S-components with m or less tokens.
Consider, as an example, Figure 21. The initial marking shown on the left-hand
side is live, and the system is also safe. According to the proposition, it should
therefore be covered by strongly connected S-components carrying one token
each. There exist two such S-components. One of them is shown in the middle
of the figure, the other one is symmetrical.

The strongly connected S-components of a T-system are precisely its simple
cycles. Hence a live T-system is m-bounded if and only if there exists a covering
by simple cycles which carry m or less tokens. For example, in Figure 22, places
s1 and s6 are on an S-component with 2 tokens, and they are, moreover, not on
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s1

s2 s3 s4 s5

s6 s7

t1 t2

t3 t4 t5 t6

t7

s1

s2 s3 s4 s5

s6 s7

t1 t2

t3 t4 t5 t6

t7

s1

s2 s3 s4 s5

s6 s7

t1 t2

t3 t4 t5 t6

t7

Fig. 21. An initially marked FC-net (l.h.s.); an S-component (middle); a T-component
(r.h.s.)

t1 t2

t3 t4

s1

s2 s3 s4 s5

s6

Fig. 22. A 2-bounded T-System

any other (strongly connected) S-component. Hence by Theorem 6 (part (2)⇐),
there must be some firing sequence putting two tokens on s1, and another firing
sequence putting two tokens on s6. Indeed, t1t4t3t1 results in two tokens on s1,
while t1t4t2t4 results in two tokens on s6.

Well-formed FC-systems also satisfy a T-component covering property, as
follows.

Theorem 7. Covering by T-components
A live and bounded FC-systemN is covered by strongly connected T-components.
Moreover, for every strongly connected T-component N1 in the cover, there ex-
ists a reachable marking M such that M , restricted to N1, is a live and bounded
marking of N1 (as a separate net).

As an example, consider Figure 21. The net is covered by two strongly connected
T-components, and one of them is shown inbold on the right-hand side of the figure.

There are various ways in which Theorems 6 and 7 can be proved. One can
show that in a well-formed FC-net, minimal semipositive S-invariants, minimal
nonempty siphons and strongly connected S-components essentially agree with
each other and that every place is contained in one of them. One can also make
a connection between minimal semipositive T-invariants, minimal reproduction
sequences and strongly connected T-components. Alternatively, one can prove
one from the other theorem using the duality principle explained in the next
section (which would then, in turn, need an independent proof).
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3.5 Well-Formedness Criteria, the Duality Theorem, and Net
Reductions

The coverability theorems of the previous section and Corollary 4 yield an exact
condition for well-formedness, as follows.

Corollary 5. Well-formedness criterion for FC-nets
For a plain, weakly connected FC-net N , the following are equivalent:
(i) N is well-formed
(ii) N satisfies (PS) and (PT), and the rank of its incidence matrix is
≤ |CCN | − 1.

This corollary directly leads to the following duality theorem. Let the reverse of a
net N be obtained by changing the directions of all arcs, the dual by exchanging
places and transitions, and the reverse-dual by changing directions of all arcs as
well as exchanging places and transitions. For example, consider the two nets
shown in Figures 13 and 15 which are reproduced in Figure 23. These nets are
duals and reverses of each other, and both are self-reverse-dual.

Corollary 6. Duality theorem for FC-nets
A plain, weakly connected net is a well-formed FC-net if and only if its
reverse-dual is a well-formed FC-net.

Proof: The FC property and conditions (PS),(PT) are invariant with respect to
reverse-duality. Moreover, the rank of C (i.e. of N) equals the rank of CT (i.e.
of the reverse-dual of N), and the number of clusters is the same in N and in
its reverse-dual. The claim then follows with Corollary 5.

An almost fully graph-oriented way of characterising well-formed FC-nets
can be achieved by net reductions. Only three rules are needed. Suppose in
the following that (S, T, F ) is a plain and weakly connected net.

Fig. 23. The nets shown in Figure 15 (l.h.s.) and Figure 13 (r.h.s.)
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Fig. 24. A sample Petri net reduction

ST-reduction: Suppose s ∈ S and t ∈ T such that •s 
= ∅, t• 
= ∅, s• = {t},
•t = {s}, and (•s× t•) ∩ F = ∅. Then omit s and t and all arrows around s
and t, while introducing a new arrow from every u ∈ •s to every r ∈ t•.

S-reduction: Suppose a place s is nonnegatively linearly dependent on a set of
other places. Then omit s, along with all arrows around it.

T-reduction: Suppose a transition t is nonnegatively linearly dependent on a
set of other transitions. Then omit t, along with all arrows around it.

A simple example is shown in Figure 24. Rules are applied in this example as
follows:

(a) to (b): S-reduction and T-reduction. The vector for place s2 is 1× the
vector for place s1, whence s2 depends linearly and nonnegatively on s1.
Similarly, transition c is 1× transition b. (In this case, the two places and
the two transitions actually duplicate each other, which amounts to a special
case of the S- (and T-, respectively) reduction rule.)

(b) to (c): ST-reduction with s and b
(c) to (d): ST-reduction with s1 and t.

Note that at the end (in Figure 24(d)), a loop consisting of a single place and a
single transition is obtained. Call this net the loop net.

Theorem 8. Reduction theorem for FC-nets
A plain, weakly connected FC-net is well-formed if and only if it can be reduced
to the loop net by the three reduction rules defined above.

3.6 Home States in Free-Choice Nets

The initial marking in Figure 21 is live and safe, but cannot be reproduced by any
nonempty firing sequence. As soon as one of the initially activated transitions
t3 or t6 occur, the initial marking is no longer reachable. The property of being
reachable from arbitrary reachable markings is called the home state property.
In Figure 21, the initial marking is not a home state.
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Definition 21. Home state
Let N = (S, T, F,M0) be a marked net. A marking M ∈ [M0〉 is called home
state or home marking if for all M ′ ∈ [M0〉, M ∈ [M ′〉 holds true.

There are various ways of convincing oneself that M0, in Figure 21, is not a home
state. One possibility is to construct the reachability graph (which is actually
depicted on the right-hand side of Figure 7). This graph has a unique ‘last’
strongly connected component, but M0 is not contained in it. In fact, only M0

is not contained in it, so that all reachable markings except M0 are home states.
Another possibility is to use a trap of the net, as follows. Consider in particular

the trap Q = {s1, s3, s4, s6, s7} (cf. Figure 21). Q is token-free initially. However,
both t3 and t6 put a token on Q, and by the trap property, Lemma 7, Q can
never again become empty of tokens. Hence M0 cannot possibly be a home state.
In general:

If there is a nonempty trap which is token-empty in some marking M
and the net is live, then M cannot be a home state.

For live and bounded FC-nets, the converse is also true.

Theorem 9. Trap theorem for FC-nets
Let N = (S, T, F,M0) be a live and bounded FC-system.

M0 is a home state if and only if all traps Q 
= ∅ satisfy M0(Q) > 0.

Proof: (Sketch.)
Proving (⇒) is easy; the proof was already sketched.
(⇐):

Note first that a marking may be live and safe even if every strongly connected
T-component contains a token-free cycle, that is, even if no T-component is live
when seen as a separate T-system. This is indeed the case in Figure 21. The T-
component shown there has the token-free cycle {s1, t1, s3, t4, s7, t7}. The other
strongly connected T-component also has a token-free cycle.

If a strongly connected T-component has no token-free cycle, we call it ac-
tivated. Taken in isolation, an activated T-component is a live T-system, to
which Theorem 5 applies. Inside an FC-system, transitions of an activated T-
component can always be chosen by the free choice property in favour of others
that would effect token loss on it. It is known that every marking of a strongly
connected, live T-system is a home state. Therefore, if t lies inside an activated
T-component in a live FC-net, and if M [t〉M ′, then M ∈ [M ′〉; that is, the firing
of t can be reversed. This argument extends inductively to firing sequences. If, in
a firing sequence M0 [t1〉M1 [t2〉M2 . . .Mn−1 [tn〉Mn, every transition ti is inside
some activated T-component, then M0 ∈ [Mn〉.

Now suppose that M0 [t〉M . We want to prove that M0 ∈ [M〉.
If t is inside some strongly connected T-component which is activated at M0,

then by the argument just given, M0 ∈ [M〉, and we are done.
However, there might not be any activated T-components containing t. We

show that nevertheless, M0 can be reached from M as follows:
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t=t1

t2

t3

t4

t5

︸ ︷︷ ︸

Nt

︸ ︷︷ ︸

Ni

M0[t1〉M

M [t4t3t2t3t1t2t5〉M0

Fig. 25. An FC-system whose initial state is a home state; transition t is not inside an
activated T-component

– Start with some initially activated strongly connected T-component Ni.
From the fact that all nonempty traps are marked initially, it can be proved
that an initially activated, strongly connected T-component exists.

– Using the covering theorem, pick any T-component Nt containing t.
– Now execute activated T-component(s) as much as possible, but without

firing either t or any other transition in its conflict cluster. Do this in such
a way that tokens are ‘moved towards’ Nt. This can be achieved by a suit-
able allocation, as in the liveness theorem. Say, M0 [τ〉M̃0 with a maximal
sequence τ satisfying this property. It can be shown that this can be done in
such a way that at M̃0, Nt is activated and t is still enabled. Thus M0 [τt〉
and also M0 [tτ〉.

– Let M0 [τ〉M̃0 [t〉M̃ and also M0 [t〉M [τ〉M̃ . Then M̃ [τ ′〉M0 with some se-
quence τ ′, because both τ and the subsequent firing of t can be reversed
(for they all take place within activated T-components). But then also

M0 [t〉M [τ〉M̃ [τ ′〉M0, showing that M0 ∈ [M〉.
An example explaining this proof is shown in Figure 25. Suppose M0[t1〉M . We
want to show that M0 can be reached from M . Transition t = t1 is inside the
T-component Nt shown in the figure, but Nt is not activated. However, there is
another, initially activated, T-component Ni whose transitions can be executed
in a reversible way. A maximal sequence activating Nt and not containing t
itself is τ = t4t3 which can be fired from M0 and also from M (note that t3 was
chosen rather than t5). The sequence τ

′ constructed in the last step of the proof
is τ ′ = t2t3t1t2t5. Hence M0 can be reached from M by t4t3t2t3t1t2t5. Note how
τ ′ ‘undoes’ first t, by t2t3; then t3, by t1t2; and then t4, by t5.

Corollary 7. Confluence
Let N = (S, T, F,M0) be a live and bounded FC-system and let M1,M2 ∈
[M0〉.
Then [M1〉 ∩ [M2〉 
= ∅.
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Fig. 26. A live and 2-bounded net without home states (l.h.s.); its reachability graph
(r.h.s.)

Corollary 8. Existence of home states
Let N = (S, T, F,M0) be a live and bounded FC-system. There exists a home
state M ∈ [M0〉.

A firing sequence containing every transition at least once necessarily generates
a home state, since every trap Q 
= ∅ has at least one incoming transition. Such
a firing sequence exists by liveness. The free-choice property is important. If it
is omitted, we can find counterexamples such as the one shown in Figure 26.

The next result about blocking markings shows that it is in general possible
to find home states, even without necessarily firing all transitions.

Definition 22. Blocking marking
Let N be a plain net with initial marking M0 and let K ∈ CCN be a conflict
cluster. A blocking marking for K is a marking MK ∈ [M0〉 such that every
transition in K is enabled by MK and no other transitions are enabled by MK .

Theorem 10. Existence and uniqueness of blocking markings
Let N = (S, T, F,M0) be a plain, live and bounded FC-net and let K ∈ CCN .

There exists a unique blocking marking MK ∈ E(M0) associated with K.

Proof: (Sketch.)
Consider the net which remains if the T-component shown in bold on the right-
hand side of Figure 21 is erased. Note that it is an acyclic T-system with a unique
starting transition, t2 (‘starting’ is meant in the sense of the flow relation). It
so happens that one can always find a minimal cover of N with some strongly
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connected T-components in such a way that taking away a carefully chosen one
of them makes this is true in general.

Let tin be the starting transition of such a subnet. It can be shown that in any
blocking marking for the cluster of tin , there exists a token-free path from tin to
any other transition in the subnet. If such a situation is given in some T-system,
then it can be shown that the marking is unique (on the subnet). This yields a
lever in order to prove the theorem (in particular, the uniqueness of the blocking
marking) by induction on the number of T-components in a minimal strongly
connected T-component covering of N .

Existence and uniqueness of a blocking marking implies that any such marking
is a home state. Thus, in a weakly connected FC-system, a home state can be
reached by the following procedure: (a) fix some enabled transition t (then by
the FC property, all transitions of the cluster (•t)• of t are enabled); (b) fire
transitions in T \(•t)• until it is no longer possible.

3.7 Realisability and Reachability Analysis

In section 2.1, it was emphasised that the marking equation or the marking
inequality are necessary, but not sufficient for realisability or reachability. In the
present section, this predicament will be discussed in more detail. It will be seen
that nevertheless, under certain conditions, one may get some sort of converse
of the firing lemma (Lemma 2).

Before starting the discussion, let us reconsider the non-structurally-live and
non-structurally-bounded nets from section 1.7, reproduced here in Figure 27(a)
and (b). Consider some elementary directed cycle in a Petri net. Any elementary
directed path which starts at some place of the cycle and ends at some transition
of the cycle but does not touch the cycle at any point in between is called a PT-
handle (for this cycle). The notion of TP-handle is defined symmetrically. Note
that there exist PT-handles in Figure 27(a) and TP-handles in 27(b).

Intuitively, a PT-handle is detrimental for liveness, because some tokens needed
for firing the cycle’s transitions could ‘get lost’ on it, such as in Figure 27(a).
TP-handles, on the other hand, seem to be detrimental for boundedness, because
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Fig. 27. Handle examples
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tokens not needed for a cycle’s liveness may be produced indefinitely, such as in
Figure 27(b). However, one should be careful because not every PT-handle or
TP-handle leads to non-liveness or to non-boundedness. The systems shown in
Figure 27(c) and (d) contain handles, but they are perfectly live and bounded
(even safe) FC-systems. Note that (c) is also an fc-system while (d) is not.

In order to state a realisability theorem, we need to define subnets generated
by T-vectors. Let y ∈ NT be any semipositive T-vector and consider the support
of y, which is defined as supp(y) = {t ∈ T | y(t) > 0}. The subnet generated by
y, Ny, is defined as the subnet N(Ty, Sy) where Ty = supp(y) and Sy is the set
of all places which are either input or output places of supp(y). For example, the
subnet generated by the T-vector (2, 0, 1) is shown in bold in Figure 27(a).

Theorem 11. First realisability criterion
Let N = (S, T, F ) be a plain, pure net without PT-handles and let y ∈ NT be

a semipositive T-vector.
Then y is realisable from a marking M if and only if M + C·y ≥ 0 and Ny

has no token-free (under M , restricted to Ny) nonempty siphons.

Proof: (Sketch.)
The problematic direction is (⇐). This can be proved (a) for FC-nets where
every place has at most two output transitions, then (b) for arbitrary FC-nets
by reducing them to (a), and finally (c) for arbitrary nets by reducing them to
FC-nets.

Part (c) of the proof relies on a construction replacing every arc from a place
to a transition by a sequence arc-transition-arc-place-arc. Such a construction
transforms every net into an FC-net; it works for the present purpose, but not
for all purposes, as it may, e.g., introduce new deadlocks.

In Figure 27(a) with an initial token on s1, the vector (1 1 1) is not realisable
even though it satisfies the marking inequality M0 + C·y ≥ 0 and there are no
(nonempty) token-free siphons. This shows that the premise of there not being
any PT-handles is necessary for the theorem to hold. By duality (more precisely:
considering the reverse net), the following theorem is a corollary:

Theorem 12. Second realisability criterion
Let N = (S, T, F ) be a plain, pure net without TP-handles and let y ∈ NT be

a semipositive T-vector.
Then y is realisable from a marking M if and only if M + C·y ≥ 0 and Ny

has no token-free (under M + C·y, restricted to Ny) nonempty traps.

Both theorems can be turned into exact reachability criteria for nets with-
out PT-handles or nets without TP-handles. Such a class is given by live and
bounded fc-systems, since it is known that such nets do not have TP-handles.
Consider Figure 27(d). It shows a live and bounded FC-system with TP-handles.
A systematic transformation of it into an fc-system would just insert between a
conflict cluster U and its preset •U a single transition followed by a single place,
provided that |•U | ≥ 2. The result for Figure 27(d) is shown in part (e) of the
figure. The TP-handles have disappeared.
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The reachability criterion for live and bounded fc-systems can be formulated
as follows:

– Given: a live and bounded fc-system (S, T, F,M0) and a marking M ∈ NS .
– Solve, if possible, the following system of linear (in)equations for the un-

known vector y:

y ∈ NT

M0 + C·y = M

under the further constraint that Ny has no token-free trap under M .
– If this is possible, M ∈ [M0〉, otherwise M 
∈ [M0〉.

The correctness of this procedure follows from Theorem 12. The theorems are
applicable to other classes of systems as well.

3.8 Bibliographical Remarks and Further Reading

T-systems have traditionally been called marked graphs [CHEP71] or synchroni-
sation graphs [GL73]. The definitive book on the structure theory of free-choice
systems is [DE95], by Jörg Desel and Javier Esparza, which contains several of
the results and arguments described in this section, such as the Commoner/Hack
liveness theorem [Hac72], the home state theorems [BV84, BDE92], the cover-
ability and duality theorems, and the reduction theorem. Since the publication
of this meritorious piece of work, further structural results in a similar vein have
been discovered, e.g.: [Esp98] (NP-completeness of reachability in live and safe
FC-systems); the blocking theorem described in section 3.6 [GHM03, Weh10];
general reachability criteria as described in section 3.7, which are due to Hideki
Yamasaki, Jeng S. Huang and Tadao Murata [YHM01], with related results in
[LR94, MM98, YY03]; and the proof, by Joachim Wehler [Weh09], of an old
conjecture on a subclass of free-choice systems by Hartmann Genrich and P.S.
Thiagarajan [GT84], making a connection to the almost equally old notion of
frozen tokens [BM85]; not to mention many generalisations and extensions of
these results, e.g. by the active research group around Manuel Silva [RTS98]. The
literature also offers generalisations of definitions and results for arc-weighted T-
systems [TCCS92] and for arc-weighted FC-systems [TS96].

4 Conflict Structure of Petri Nets

In a T-system, tokens cannot be removed from a place but by the – unique, if
any – output transition of such a place. This implies what at the end of section
1.2 has somewhat loosely been called the absence of conflicts, or persistency.
Symmetrically, in S-systems, transitions cannot be hindered from firing except
by the – unique, if existing – input place of such a transition. This can loosely
be called the absence of synchronisation, or communication-freeness.

Both notions, the absence of conflicts and the absence of synchronisation,
give rise to a variety of structural constraints that partially overlap with those
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considered in the previous sections. For example, we might relax the notion of a
T-system by requiring only |s•| ≤ 1 or |s•| = 1, but not necessarily also |•s| ≤ 1,
for all s ∈ S. Such a class of nets might be called place-output-nonbranching.
Symmetrically, we might relax the notion of an S-system by requiring only |•t| ≤
1 or |•t| = 1, not necessarily also |t•| ≤ 1, for all t ∈ T . Such a class of nets
might be called transition-input-nonbranching.

In the present section, we shall concentrate on restrictions related to persis-
tency and to the absence of conflicts. Amongst others, we examine the class of
place-output-nonbranching Petri nets, just called output-nonbranching nets, for
short. Symmetrical restrictions related to the absence of synchronisation will not
be examined in detail.

In the last part of the paper, a property known as separability is studied. This
property indicates that a system can be viewed as a superimposition of inde-
pendent subsystems, and it is a desirable feature in some applications. It turns
out that in persistent systems, some (partly structural) conditions guaranteeing
separability can be given.

We continue to assume that every net is plain.

4.1 A Hierarchy of Petri Nets without Conflicts

There is a surprising variety of classes of nets, all of which could (more or less)
be called ‘conflict-free’. By historical developments, the privilege of bearing the
actual name, ‘conflict-free nets’, has been bestowed onto one of these classes.
The next definition introduces this class, as well as several related ones.

Definition 23. Output-nonbranching, conflict-free, and persistent nets
Let N = (S, T, F,M0) be a net with an initial marking.

– N is called output-nonbranching (ON) if all places s satisfy |s•| ≤ 1.
– N is called conflict-free (CF) if all places s satisfy |s•| > 1⇒ s• ⊆ •s.
– N is called behaviourally conflict-free (BCF) if for any two transitions t, t′ ∈

T with t 
= t′ and for every M ∈ E(M0), if M [t〉 and M [t′〉 then •t∩ •t′ = ∅.
– N is called binary-conflict-free (BiCF) if for any two transitions t, t′ ∈ T with

t 
= t′ and for every M ∈ E(M0), if M [t〉 and M [t′〉 then ∀s ∈ S : M(s) ≥
F (s, t)+F (s, t′).

– A transition t ∈ T is called persistent, if for every reachable marking M ∈
E(M0), and for every transition t′ ∈ T with t 
= t′, if M [t〉 and M [t′〉 then
M [tt′〉 and M [t′t〉. N is called persistent if every transition is persistent.

– A transition t ∈ T is called weakly persistent, if for every reachable marking
M ∈ E(M0) and for every sequence σ ∈ T ∗, if M [t〉 and M [σt〉 then M [tσ′〉
for some permutation σ′ of σ. N is called weakly persistent if every transition
is weakly persistent.

Whether a net is output-nonbranching or conflict-free depends only on its struc-
ture. These properties can be checked without necessarily constructing the reach-
ability graph. The other properties can be detected on the reachability graph.
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Fig. 28. Illustration of persistency (l.h.s.); a non-persistent net and its reachability
graph (r.h.s.)

For instance, behavioural conflict-freeness can be checked as follows. Whenever a
vertex is encountered from which two or more arcs labelled t and t′, respectively,
emanate, we check any pair of such arcs for the property •t ∩ •t′ = ∅, which
can be read off the net. In order to check the persistency of a transition t, it is
sufficient to check the property indicated in Figure 28, for every transition t′ 
= t
and for every vertex M in the reachability graph.

The BiCF condition, ∀s ∈ S : M(s) ≥ F (s, t)+F (s, t′), indicates that t and
t′ are concurrently enabled. We shall therefore use the shorthand M [{t, t′}〉 in
order to denote ∀s ∈ S : M(s) ≥ F (s, t)+F (s, t′). The difference between BCF
and BiCF (and persistency) can be seen on Figure 29.

From Definition 23, one gets the hierarchy shown in Figure 30. Thus, the class
of T-systems is the smallest class under consideration while the class of weakly
persistent systems is the largest class (i.e., all others lie inside). Actually, it is
hard to call the class of weakly persistent systems ‘conflict-free’ since it contains
systems that clearly exhibit conflicts in the intuitive sense, such as the one on the
right-hand side of Figure 28. Nevertheless, as we will show in the next section,
weakly persistent systems do enjoy some properties normally associated with
persistent and conflict-free systems.

Proof sketch of the implications shown in Figure 30:
Every T-system is also ON: this follows directly from the definitions.
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Fig. 29. A net which is persistent and BiCF but not BCF (l.h.s.), and its reachability
graph (r.h.s.)
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Fig. 30. A hierarchy of conflict-free and persistent Petri nets

Every ON system is CF: the CF condition is trivially true for ON systems.
Every CF system is persistent: if •t ∩ •t′ 
= ∅ and t 
= t′, then for any s ∈
•t ∩ •t′, |s•| > 1. Then by the CF condition, both t ∈ •s and t′ ∈ •s, so that
the occurrence of either of them cannot disable the other one. (Note that this
argument is invalid if arc weights can be greater than 1.)
Every ON system is BCF: for ON systems, t 
= t′ already suffices to imply
•t ∩ •t′ = ∅.
Every BCF system is BiCF: suppose that M enables both t and t′ with t 
= t′; by
the BCF property, •t ∩ •t′ = ∅, and then, M [{t, t′}〉 is necessarily true because
of M [t〉 and M [t′〉.
Every BiCF system is persistent: M [{t, t′}〉 implies that both M [tt′〉 and M [t′t〉.
Every persistent system is weakly persistent: this follows from Keller’s theorem,
to be stated below.

Some of the implications of Figure 30 can be reversed under (relatively) weak
conditions. They were described in the figure by short arrows. Implications indi-
cated by long arrows cannot be reversed so nicely. To see this, we examine more
closely the case that M [tt′〉 and M [t′t〉 for some marking M and two transitions
t 
= t′. Because of its shape in the reachability graph, such a situation is called
a diamond. A diamond comes in two varieties. If t 
= t′ and M [{t, t′}〉, then it
is called a concurrent diamond. (Note that both M [tt′〉 and M [t′t〉 are implied
by M [{t, t′}〉). If t 
= t′ and M [tt′〉 and M [t′t〉 but ¬M [{t, t′}〉, then the dia-
mond is called a conflicting diamond. Figure 31 shows the difference. Self-loops
are necessary for the existence of conflicting diamonds. If a Petri net is free of
self-loops, all diamonds are concurrent.

The next proposition shows that properties ON and CF are essentially equiv-
alent to each other, and both properties are also close to T-systems. More-
over, property BiCF is almost equivalent to persistency, except for the difference

a b

a b

b a

concurrent diamond

a b

a b

b a

conflicting diamond

Fig. 31. A concurrent diamond (l.h.s.) and a conflicting diamond (r.h.s.)
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between the two types of diamonds just explained. In particular, in self-loop-free
Petri nets, BiCF is the same as persistency.

Proposition 6. Some relationships between classes of systems without conflicts

1. For every CF net N with initial marking M0, an ON net N ′ with initial
marking M ′

0 can be constructed such that the two reachability graphs
are isomorphic.

2. Every live and bounded ON system is a T-System.
3. A net is BiCF if and only if it is persistent and there is no conflicting

diamond.

Proof: To prove 1., consider an arbitrary place s with |s•| > 1. By the CF
property, s• ⊆ •s, that is, s is a side condition for every output transition in s•.
Replace s by |s•| new places which are marked and connected as s, except that a
side condition connects it to only one (not all) of the |s•| output transitions. The
reachability graph of this new net is isomorphic to the old one. The construction
can be repeated until there are no more places s with |s•| > 1.

To prove 2., let N = (S, T, F,M0) be a live and bounded ON system. By
Proposition 5, every weakly connected component of N is strongly connected.
Since N is an ON net, it is also an FC-net. Thus it is covered by S-components
by Theorem 6, and hence, also structurally bounded because it is covered by a
positive S-invariant. By Proposition 1 and Farkas’ lemma (Lemma 3), there is,
therefore, no vector y ∈ N|T | with C · y > 0. Because N is an ON net and is
covered by cycles, C · y ≥ 0 where y is the all-ones T-vector 1. Suppose, for a
contradiction, that N is not a T-net. Then C ·y 
= 0, because there is at least one
place with more than one input transition, contradicting the fact, just proved,
that no such y exists.

To prove 3.(⇒), we have already seen that BiCF implies persistency. BiCF
also implies the absence of conflicting diamonds: if there is such a diamond with
M , t and t′, then the BiCF property is violated with the same transitions at
the same marking. To prove 3.(⇐), assume M [t〉 and M [t′〉 with t 
= t′. By
persistency, we get the diamond M [tt′〉 and M [t′t〉. By the absence of conflicting
diamonds, this is a concurrent diamond; thus M [{t, t′}〉.
It is perhaps illuminating to compare this Petri net hierarchy with the one defined
in the previous section. T-systems (marked graphs) and ON-nets are both free-
choice and persistent. But Proposition 6 notwithstanding, there exist CF nets
in the sense of Definition 23 which are not FC in the sense of Definition 18, and
conversely. The same is true for BCF nets. In fact, S-systems are free-choice but,
in general, not even persistent. An example can be found on the right-hand side
of Figure 28. Persistent nets are considerably less well-behaved than T-systems.
For instance, even if they are strongly connected, there may be reproducing T-
vectors which are different from multiples of 1 (as an example, see Figure 33
below). While in a T-system, every live marking is a home state, there exist live
and bounded persistent systems whose initial marking is not a home state. The
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net shown in Figure 16 can be turned into an example by putting tokens on s2,
s5 and r1.

4.2 Weak Persistency and Semilinearity

Some times, the reachability set of a Petri net has a semilinear representation.

Definition 24. Semilinear sets
A set W ⊆ Nn is called linear if there are vectors b, p1, . . . , p� ∈ Nn (with � ∈ N)
such that

W = {b+
�∑

i=1

ni·pi |ni ∈ N}.

A set W ⊆ Nn is called semilinear if it is the finite union of linear sets.

The vectors named b are the bases, and the vectors named p are the periods.
For instance, the reachability set in Equation (1) of section 1.2 has a semilinear

representation as follows:

{ (0 1 2)T } ∪ { (0 0 4)T }
∪ { (1 0 3)T + n1·(0 0 1)T | n1 ∈ N } ∪ { (2 0 2)T + n1·(0 0 1)T | n1 ∈ N }
∪ { (3 0 1)T + n1·(0 0 1)T | n1 ∈ N } ∪ { (4 0 0)T + n1·(1 0 0)T + n2·(0 0 1)T | n1, n2 ∈ N }
∪ { (1 1 1)T + n1·(0 0 1)T | n1 ∈ N } ∪ { (2 1 0)T + n1·(1 0 0)T + n2·(0 0 1)T | n1, n2 ∈ N }

with eight bases and two periods combined in appropriate ways. In general,
however, there is no such easy representation of the reachability set, since it is
known that there exist nets whose reachability sets are not semilinear.

One of the seminal results about persistent nets (and later also weakly persis-
tent nets) is that they always have semilinear reachability sets. Even more, weak
persistency is decidable, and if the decision is positive, the semilinear reachability
set can be constructed.

For the proof a simple conclusion needs to be drawn from the definition of
weak persistency. If for some weakly persistent net N = (S, T, F,M0) there
are σ, σ′ ∈ T ∗ with M [σ〉, M [σ′〉 and P(σ) ≥ P(σ′) there is also some σ′′

with M [σ′σ′′〉 and P(σ) = P(σ′σ′′). This follows directly by induction over the
length of σ′. For persistent nets this conclusion can be strengthened; this will be
discussed in the next section.

Theorem 13. Weak persistency is decidable
Let N = (S, T, F,M0) be a Petri net. It is decidable if N is weakly persistent.

Furthermore, weakly persistent nets have semilinear reachability sets.

Proof: (Sketch.) Construct a set EM of extended markings (x,M) ∈ NT × NS

whereM0 [σ〉M with P(σ) = x holds. The construction of EM starts with EM =
{(0,M0)}, then consecutively some (x+1·t,M ′) is added to EM if (x,M) ∈ EM
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and M [t〉M ′. Take some stage k where EMk = {(x1,M1), . . . , (xk,Mk)} ⊆ EM
has been computed so far. Define nonnegative difference sets Di for 1 ≤ i ≤ k by

Di = {(xj − xi,Mj −Mi) | 1 ≤ j ≤ k, Mj ≥Mi}.

Then,

Sk =
⋃

1≤i≤k

{
(xi,Mi) +

∑
d∈Di

ndd
∣∣∣ nd ∈ N

}

is a semilinear set whose projection on the second component approaches E(M0)
from below with increasing k. Two decidable formulae can be built using Sk,
formula A checking if for all (x,M) ∈ Sk with M [t〉M ′ also (x+1·t,M ′) ∈ Sk. If
so, Sk is complete (Sk = EM) and its projection to the markings is the set E(M0)
which is also semilinear. Formula B checks if for any pair (x,M), (x′,M ′) ∈ Sk

with x ≤ x′ no transition t ∈ T with x(t) < x′(t) is enabled. This would
contradict the above conclusion from weak persistency. If N is weakly persistent
it can be shown that the number of different sets Di is finite even for k → ∞,
i.e. for the complete set EM = limk→∞ Sk. The set of all (xi,Mi) with the same
Di may be infinite, but the minimal elements of this set suffice when building
limk→∞ Sk and by Dickson’s Lemma there are only finitely many of those. We
can conclude EM is semilinear then, so at some finite stage k either formula A or
B must hold, deciding if N is weakly persistent or not. If N is weakly persistent,
its reachability set is the projection of the final Sk to its second component.

Weakly persistent nets share with persistent nets the property of having semi-
linear reachability sets. However, they do not share the property of, intuitively,
being ‘nets without conflict’. Consider the net shown on the right-hand side of
Figure 28. This net is weakly persistent, but it exhibits a conflict between a and
b in its initial state.

4.3 Keller’s Theorem

A seminal result about persistent Petri nets (which does not hold for weakly
persistent nets in general) is based on the notion of the residue of a sequence τ of
transitions with respect to another sequence σ, denoted by τ−• σ. By definition,
τ−• σ is what is left of τ after cancelling successively all symbols from σ (if
possible), read from left to right. Formally, τ−• σ can be defined by induction on
the length of σ:

τ−• ε = τ

τ−• t =

{
τ , if there is no transition t in τ
the sequence obtained by erasing the leftmost t in τ , otherwise

τ−• (tσ) = (τ−• t)−• σ.

We now formalise that two firing sequences are permutations of each other from
a marking. Two sequences σ ∈ T ∗ and σ′ ∈ T ∗ are said to arise from each other
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by a transposition from M if both are activated at M and if they are the same,
except for the order of an adjacent pair of transitions, thus:

M [σ〉 and M [σ′〉 and σ = t1 . . . tktt
′ . . . tn and σ′ = t1 . . . tkt

′t . . . tn.

Essentially, this means that σ and σ′ are the same except for some (not neces-
sarily concurrent) diamond reached after t1 . . . tk. Two sequences σ and σ′ are
said to be permutations of each other from M (written σ ≡M σ′) if they are
both activated at M and if they arise out of each other through a sequence of
transpositions from M .

Theorem 14. Keller’s theorem
Let (S, T, F,M0) be a persistent Petri net. Let τ and σ be two firing sequences

activated at some reachable state M ∈ E(M0). Then τ(σ−• τ) and σ(τ−• σ) are
also activated from M , and τ(σ−• τ) ≡M σ(τ−• σ). Furthermore, the marking
reached after τ(σ−• τ) equals the marking reached after σ(τ−• σ).

Proof: (Sketch.) By induction on the length of τ . If τ = ε, both τ(σ−• τ) and
σ(τ−• σ) are equal to σ, and the result follows directly from the premise that σ
is activated at M , the definition of ≡M , and persistency. If τ = tτ ′, two cases
can be distinguished: σ does not contain t or σ contains t, i.e., P(σ)(t) = 0
or P(σ)(t) > 0, respectively. In either case, after some manipulations involving
permutations of sequences in persistent nets, the induction hypothesis yields the
desired result.

Note that part of this theorem is a confluence statement. That is, if M0 [σ〉M
and M0 [τ〉M ′, then E(M) ∩ E(M ′) 
= ∅. The other part of the theorem asserts
that Parikh vectors of sequences leading to a common successor marking of two
reachable markings can actually be computed explicitly, using residues.

Using Keller’s theorem, we can easily prove that persistency implies weak
persistency. Suppose that N is persistent and that some reachable marking M
enables both t and σt. By Keller’s theorem, M also enables t((σt)−• t). But
σ′ = (σt)−• t has the same Parikh vector as σ by the definition of −• . Hence both
M [σt〉 and M [tσ′〉, with P(σt) = P(tσ′). Again by Keller’s theorem, σt ≡M tσ′.
Thus N is also weakly persistent.

4.4 Cycle Decompositions, k-Nets, and Separability

In this section, several recent results about persistent Petri nets will be described.
Theorem 14, in combination with other structural Petri net techniques, is used
all over their proofs. We will not sketch these proofs, but illustrate the properties
of the definitions and the statements of the results by means of examples.

For the next result, we introduce the concept of a smallest cycle. Consider
Figure 29. The reachability graph shown on the right-hand side has a cycle
M0[abcd〉M0 which is elementary in the sense of section 1.3. However, there is
also a non-empty cycle M0[ac〉M0 which has a smaller Parikh vector. Note that
both P(abcd) and P(ac) are T-invariants, by Lemma 5, showing that the former
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is not a minimal one. Inspired by this example, call a cycle in the reachability
graph, starting at some marking M , smallest (around M) if there is no non-
empty cycle around M which has a smaller Parikh vector. Thus, every smallest
cycle is elementary, but the converse need not be true. Smallest cycles correspond
to minimal T-invariants.

Theorem 15. Decomposing cycles of bounded, reversible, and persistent nets
Let N = (S, T, F,M0) be a bounded, reversible, and persistent Petri net.

There exists a finite set {X1, . . . , Xn} of semipositive T-invariants such that
they are transition-disjoint and every cycle M [ρ〉M in the reachability graph of
N can be decomposed, up to permutations, to some sequence

M [ρ1〉M [ρ2〉M . . . [ρn〉M
of cycles with all Parikh vectors P(ρi) in {X1, . . . , Xn}. Moreover, {X1, . . . , Xn}
can be chosen as the set of Parikh vectors of smallest cycles through any fixed
reachable marking of N .

To appreciate the relevance of transition-disjointness, reconsider Figure 29. The
reachability graph shown there has two transition-disjoint cycles, (ac)∗ and (bd)∗,
which are executable from M0. They correspond to two realisable, minimal,
transition-disjoint T-invariants, (1 0 1 0)T and (0 1 0 1)T. From every state and
for each one of these T-invariants, a cycle can be executed which has it as
a Parikh vector. By contrast, consider the right-hand side of Figure 28. The
reachability graph also has two cycles, (ac)∗ and (bc)∗. However, they are not
transition-disjoint, because c belongs to both.

In essence, in a bounded, reversible, persistent Petri net, realisable minimal
T-invariants describe ‘independent’ repetitive behaviours, and this observation
can be extended: Suppose that X1, . . . , Xn are as in the previous theorem. Then
there are n bounded, persistent and reversible nets N1, . . . , Nn, such that each
net Ni has exactly one minimal realisable T-invariant Xi and the reachability
graph of N is isomorphic to the reachability graph of the place-disjoint union of
the nets N1, . . . , Nn.

As a consequence, the case in which a persistent net has exactly one minimal
realisable T-invariant X is of special interest and needs to be scrutinized. It may
still be the case that (unlike in a connected T-system, cf. Theorem 5) such a
T-invariant is not a multiple of 1. However, there are special conditions under
which this is indeed the case, called k-multiply marked nets, or k-nets for short.

Let N be a net and let k ≥ 1 be some positive integer number. For a marking
M , the k-multiple marking k·M is defined by (k·M)(s) = k·(M(s)) for every
place s. The net k·N is the same as the net N except that the initial marking
k·M0 replaces the initial markingM0 ofN . The net k·N is called a k-net. It turns
out that initial k-markings k·M0 have particularly pleasant properties (partly
generalising those of Theorem 5) provided that k ≥ 2.

Theorem 16. Smallest cycles in k·N have Parikh vector 1 if k ≥ 2
Let k ≥ 2 and let (N, k·M0) be a plain, bounded, reversible and persistent

k-net with exactly one minimal realisable T-invariant X . Then X ≤ 1 and for
any transition t, X(t) = 0 if and only if t is dead at k·M0.
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a b

2

2

a b

2

2

Fig. 32. A non-plain Petri net (l.h.s.) and its 2-multiple (r.h.s.) with minimal realisable
T-invariant (1 2)T

Plainness is important for Theorem 16 to hold. In Figure 32, all smallest cycles
of the net on the right-hand side have Parikh vector X = P(abb), but X > 1,
contrary to the conclusion of Theorem 16.

The statement made in Theorem 16 would not hold under the weaker assump-
tion that N instead of k·N is persistent. For instance, let k = 2 and consider
Figure 33. On the left-hand side, X = (a �→ 1, b �→ 1, c �→ 2) = (1 1 2)T is
the unique minimal realisable T-invariant, and it can be realised by the firing
sequence M0[acbc〉M0. Note that X 
≤ 1. On the right-hand side, X is also the
unique minimal realisable T-invariant, so that the conclusion of Theorem 16 is
not true for this net. However, also one of the conditions of Theorem 16 is not
satisfied, since the net is not persistent: executing a in the initial marking leads
to a marking in which both a and b are enabled although their shared input
place s carries only one token, hence producing a true conflict and destroying
persistency. Thus, both requirements that k·N be persistent and that k ≥ 2 are
crucial for Theorem 16 to hold.

Next, we define an operation on transition sequences, called the shuffle or
arbitrary interleaving. Intuitively, one may imagine some pack of cards to be
divided into two halves and the second half be merged into the first. Instead
of cards we may think of transitions, while the two half-packs correspond to
sequences. Shuffling two sequences leaves the order of transitions stemming from

s

a b c

s

a b c

Fig. 33. A persistent Petri net (l.h.s.) and its non-persistent 2-multiple (r.h.s.)
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one of the sequences unchanged. If two letters are not from the same sequence,
however, we cannot predict their order in the resulting sequence.

Formally, the shuffle of two sequences v and w is a set of sequences written as
v �⊥w. As an example, let v = ab and w = cbd. Then

v �⊥w = {abcbd, acbbd, acbdb, cabbd, cabdb, cbabd, cbadb, cbdab}.

The shuffle can be extended canonically to sets of sequences. In general, it is
associative and commutative.

Using shuffle, we define separability. This notion arises naturally in the context
of k-nets.

Definition 25. Weak and strong separability
Let k ≥ 1 and let (N, k·M) be any net with an initial k-marking k·M .

A firing sequence k·M [σ〉 is weakly k-separable from k·M (or just weakly
separable if k and M are understood from the context) if there exist k sequences
σ1, . . . , σk such that

(∀j, 1≤j≤k : M [σj〉 in (N,M)) and (

k∑
j=1

P(σj)) = P(σ). (7)

A firing sequence k·M [σ〉 is strongly k-separable from k·M if there exist k se-
quences σ1, . . . , σk such that

(∀j, 1≤j≤k : M [σj〉 in (N,M)) and σ ∈ σ1 �⊥ . . . �⊥σk. (8)

A k-net is weakly (strongly) separable if every sequence firable in its initial
marking is weakly (strongly) separable from this k-marking.

Separability can be useful in verifying Petri nets. If some k-net k·N is separable,
then it is sufficient to verify N rather than k·N because, as a rule, properties of
the latter can easily be deduced from properties of the former. This can increase
efficiency considerably if k is large, because the reachability graph of k·N could
be much larger than that of N .

As an example, consider the two nets in Figure 34. On the left-hand side, a
2-marking is shown, where the set of tokens was split evenly into a hollow part
and a solid part. The hollow tokens constitute M0, and the solid tokens also
constitute M0. Thus, the whole marking is 2·M0. Consider the firing sequence

2·M0 [t1t2tt1t2〉.

This sequence can actually be fired in M0, using only one of the two sorts of
tokens, either just the hollow ones or just the solid ones. Hence 2·M0 [ t1t2tt1t2︸ ︷︷ ︸

σ

〉

is strongly 2-separable by M0 [ t1t2tt1t2︸ ︷︷ ︸
σ1

〉 and M0 [ ε︸︷︷︸
σ2

〉. Consider the slightly

longer firing sequence

2·M0 [t1t2tt1t2t〉.
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t1

t2 t

t1

t2

t

Fig. 34. Two 2-nets with hollow and solid tokens; separable (l.h.s.) and not separable
(r.h.s.)

This sequence cannot be fired using only hollow tokens or only solid tokens, that
is, we have ¬M0 [t1t2tt1t2t〉. If we try to ‘prolong’ the existing separation, we will
fail, because t alone is not firable from M0. Nevertheless, 2·M0 [t1t2tt1t2t〉 can be
strongly 2-separated byM0 [t1t2t〉 andM0 [t1t2t〉, since t1t2tt1t2t ∈ (t1t2t�⊥ t1t2t).
Intuitively, this corresponds to using hollow tokens for the first half and solid
tokens for the second half of t1t2tt1t2t (or the other way round).

Consider the net on the right-hand side of Figure 34. It again shows a 2-
marking, and we have 2·M0 [t1tt2t〉. But no matter what kinds of tokens are
used in order to fire t1tt2, the resulting marking activates t with mixed types of
tokens, both a hollow one and a solid one. Formally, there are no two sequences
σ1 and σ2 satisfying M0 [σ1〉 and M0 [σ2〉 and t1tt2t ∈ (σ1 �⊥σ2). This shows that
t1tt2t is not strongly 2-separable. There are not even two sequences σ1 and σ2

satisfying M0 [σ1〉 and M0 [σ2〉 and P(σ1) + P(σ2) = P(t1tt2t). Thus, t1tt2t is
not even weakly separable.

t1

t2t3

t4

t5

a

b c

Fig. 35. Live, 2-bounded and not 2-separable (l.h.s.); weakly but not strongly separable
(r.h.s.)
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Figure 35(l.h.s.) depicts a 2-marking 2·M which is live and bounded but
not 2-separable. The reader is encouraged to find a non-separable firing se-
quence 2·M [σ〉. The 2-net shown on the right-hand side of Figure 35 is not
strongly 2-separable from the indicated marking 2·M since 2·M [aacbbc〉 cannot
be obtained by shuffling two firing sequences from M . However, this 2-net is
weakly 2-separable from 2·M . In particular, P(aacbbc) = P(abc) + P(abc), and
clearly, M [abc〉. This 2-net is neither reversible nor persistent; e.g., 2·M [acab〉
and 2·M [acac〉 but acacb cannot be fired from 2·M .

Separability cannot easily be checked directly on the reachability graph, be-
cause it is necessary to find a method for capturing all (possibly infinitely many)
paths in the reachability graph of a k-marked net (N, k·M) and check them
against k paths of k copies of the reachability graph of (N,M).

Nevertheless, both weak and strong separability can be deduced for persistent
Petri nets under some further premises.

Theorem 17. Weak and strong separability
Let N be plain. Let k ≥ 1 and let k·N , with initial marking k·M0, be bounded,

reversible, and persistent. If k·N has only one minimal realisable T-invariant,
then (N, k·M0) is weakly and strongly k-separable.

The proof of this result works roughly as follows. For k = 1, nothing has to
be proved because every net is trivially 1-separable. For k ≥ 2, Theorem 16 is
exploited in an essential way. As a next step, weak separability is proved. Finally,
in order to prove strong separability, the property of weak separability is used.
All parts of this proof (except the case k = 1) are non-trivial.

Reversibility, plainness and persistency are important for Theorem 17 to hold.
Figure 34 shows on the right-hand side a plain, bounded, non-reversible, persis-
tent Petri net with a 2-marking 2·M0 such that the firing sequence 2·M0[t1tt2t〉
is not weakly 2-separable. The right-hand side of Figure 32 displays a non-plain,
bounded, reversible, persistent 2-net with a 2-marking 2·M0 in which the firing
sequence 2·M0[a〉 cannot be separated for obvious reasons. The net shown on
the left-hand side of Figure 35 is not persistent but live, bounded, reversible and
FC, showing that persistency cannot be omitted and that Theorem 17 does not
hold for live and bounded FC-nets.

With the help of Theorem 15, Theorem 17 can be extended to bounded,
reversible and persistent nets with several incomparable (mutually
transition-disjoint) realisable T-invariants:

Theorem 18. Strong separability for general bounded, reversible and persistent
k-nets

Let N be plain. Let k ≥ 1 and let k·N , with initial marking k·M0, be bounded,
reversible, and persistent. Then (N, k·M0) is weakly and strongly separable.

4.5 Bibliographical Remarks and Further Reading

The class of (place-)output-nonbranching nets is intimately related to system
classes also known as context-free processes [CHS95] or basic process algebra
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(BPA) [BW90]. The class of transition-input-nonbranching nets, also known as
communication-free nets [Esp97], is intimately related to system classes other-
wise known as basic parallel processes (BPP) [CHS93]. The class of conflict-free
Petri nets has been introduced in [LR78] and studied, amongst others, in [HR89].
The class of BiCF nets has been studied in [GGS11].

Sections 4.2 and 4.3 are based on [LR78, Gra80, Yam81, HI92] and on [Kel75].
The class of persistent Petri nets has been studied from different perspectives
and extended in various ways; see, e.g., [BO09]. A net with non-semilinear reach-
ability graph can be found in [LR78]. In the context of workflow systems, (weak)
separability was introduced in [HSV03] for Petri nets, as follows:

For business applications, separability is important because it formalises the

idea of independent cases... If we associate to each firing the consumption

of some resource, like money or energy, then separability implies that the

consumption of a batch of cases equals the sum of the individual consumptions.

In the area of security kernels, a related concept has been known for some time,
cf. the seminal paper [Rus82]. The results quoted in section 4.4 are based on
[BDW07, BD09, BD11]. Figure 35(l.h.s.) is due to Karsten Wolf.

Acknowledgements. The authors are grateful to two reviewers for their
comments.

References

[BW90] Baeten, J.C.M., Weijland, W.P.: Process algebra. In: Cambridge Tracts in
Theoretical Computer Science, vol. 18. Cambridge University Press (1990)
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Abstract. The causal semantics of standard net classes like Elementary Net Sys-
tems and Place/Transition Nets, is typically expressed in terms of partially or-
dered sets of transition occurrences. In each such partial order, causally related
occurrences are ordered while concurrent transition occurrences remain unor-
dered. Partial order semantics can, in particular, support model checking by effi-
cient verification techniques based on net unfoldings.

To enhance the modelling power of standard net classes, one can introduce
different forms of ‘testing’ using, for example, inhibitor arcs. However, the causal
semantics of such extended nets can often no longer be described solely in terms
of partial orders. In this paper, we explain what modifications to the partial order
semantics are needed in order to provide a satisfactory treatment for nets with
activator, inhibitor and mutex arcs. On the technical side, the proposed solution
is based on causal structures which enrich partial orders with additional order
relations corresponding to other aspects of causality. With EN-systems as our
starting point, we discuss how their extensions can be treated using these richer
notions of causality.

Keywords: elementary net systems, activator arcs, inhibitor arcs, mutex arcs,
semantical framework, step sequences, processes, causality semantics.

1 Introduction

In order to be able to verify complex, distributed systems, i.e., to guarantee correctness
of their behaviour, one has to understand the relations between concurrently ongoing
operations. This involves, in particular, providing appropriate mathematical abstractions
to capture the operational properties of such systems.

Petri nets are a system model related to state machines and similar, sequential, be-
haviour defining devices. However, the states of Petri nets are distributed (over so-
called places) and also their actions (transitions, in Petri net terms) occur purely locally.
Whether or not a transition can occur, depends only those components (places) of the
state to which it is directly related. Moreover, when it occurs, it affects only neighbour-
ing places. Hence, each transition occurrence (an event) leads to a local change of state.
All this induces local interactions between transition occurrences making it possible
to extract from a run of a Petri net, the essential causal relationships between events.
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These local interactions can be derived from so-called processes, i.e., labelled acyclic
nets representing the unfolding of a net corresponding to a single execution (with all
choices and conflicts resolved). Abstracting from the places leads to a causal semantics
expressed in terms of partially ordered sets of occurrences of transitions: causally re-
lated events are ordered, while concurrent events remain unordered. Each such partial
order describes the causal structure of a single concurrent history or run of the system
and as such represents several — closely related — (step) sequences of (simultaneously
occurring) transitions, each of them being a possible observation of that run. The stan-
dard net classes of Elementary Net Systems (or EN-systems) and Place/Transition Nets
(or PT-nets) are typical examples of this approach [1,27].

As an example, consider Figure 1(a) depicting an EN-system with three step se-
quences involving the executions of transitions a, b and c, viz. σ1 = {a, b}{c}, σ2 =
{a}{b}{c} and σ3 = {b}{a}{c}. They can be seen as observations of a single history
underpinned by a causal partial order in which a and b are unordered and both a and b
precede c.

Consistency between the different levels of abstraction at which one captures the
concurrency in the behaviour can be established within a generic approach (the seman-
tical framework of [19]) aimed at fitting together systems (i.e., nets from a certain class
of Petri nets), abstract causal orders and individual observations.

Partial order semantics as just described can support efficient verification techniques.
Rather than exploring the full state space of a system constructed from sequential obser-
vations, one uses unfoldings, see [4] for a general description of this approach. The idea
behind the resulting more efficient algorithms is to exploit the concurrency (unordered-
ness) in the behaviour to alleviate the state space explosion problem. For Petri nets,
unfoldings and nonsequential net processes provide a truly concurrent semantics with
partial orders as a succinct representation of related observations. Unfoldings based on
the branching processes from [3] in which also all choices are modelled, are the basis
for efficient verification algorithms [5,18,23].

(a)

c d

a b

(b)

c d

a b

(c)

c d

a b

(d)

c d

a b

Fig. 1. An EN-system (a); an EN-system with an inhibitor arc joining the output place of transition
b with transition a implying that a cannot be fired if the output place of b is not empty (b); an
EN-system with an activator arc joining the input place of transition b with transition a implying
that a can be fired provided that the input place of b is not empty (c); and an EN-system with
a mutex arc between transitions a and b implying that the two transitions cannot be fired in the
same step (d)
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To enhance the modelling power of the standard net classes one can introduce dif-
ferent forms of ‘testing’, for example, testing for the absence of a token using inhibitor
arcs. This may imply that the causal semantics of such extended Petri net models can
no longer be described solely in terms of partial orders.

Figure 1(b) depicts an EN-system with an inhibitor arc. Such an arc between a place
and a transition indicates that the place has to be empty for the transition to be able to
fire. Hence this net has only two step sequences involving transitions a, b and c, namely
σ1 = {a, b}{c} and σ2 = {a}{b}{c}. This is because a can occur before b or simulta-
neously with b but ‘not later than’ b (weak causality). These two step sequences can be
seen as belonging to the abstract causal history underpinned not by causal partial orders
but rather by causality structures introduced in [14] — called stratified order structures
— based on causal partial orders and, in addition, weak causal partial orders. Another
form of testing is portrayed by the net in Figure 1(c) which depicts an EN-system with
an activator arc. Activator arcs (see, e.g., [24]) are closely related to inhibitor arcs. Such
a ‘testing’ arc between a place and a transition means that the place has to be non-empty
for the transition to be able to fire. As a result, both step sequences and abstract causal
histories of this net are exactly the same as in the previous example.

Yet another example, in Figure 1(d), depicts an EN-system with a mutex arc. Such
an arc means that the two connected transitions may occur in any order but not simul-
taneously (commutativity). Hence this net has two step sequences involving transitions
a, b and c, namely σ2 = {a}{b}{c} and σ3 = {b}{a}{c}. They belong to an abstract
history underpinned by causality structures introduced in [7,10] — called generalised
stratified order structures — based on causal partial orders together with weak causal
partial orders and, in addition, a commutativity relation which tells what pairs of events
cannot belong to the same step.

In this paper, we explain what modifications to the partial order semantics are needed
in order to provide a satisfactory treatment for nets with inhibitor, activator and mutex
arcs. The model which we extend with these new types of arcs are Elementary Net sys-
tems [27]. This model is the basic class of Petri nets and is particularly suited for the
study of fundamental properties of concurrent systems. In particular, EN-systems are the
typical concurrency model in which event independence, simultaneity, and unordered-
ness amount to basically the same semantical phenomenon, making partial orders ex-
actly the right abstract model for their behaviour. We will discuss how the extended
classes of EN-systems can be treated with the richer notions of causal semantics using
the generic approach provided by the semantical framework of [19]. Finally, we will
bring Place/Transition Nets into our discussion and reflect upon similarities and differ-
ences with the EN-systems approach. As a tutorial survey, this paper provides no proofs,
but rather provides ‘facts’ with references for proofs and more background information,
given per (sub)section.

2 Preliminaries

Composing two functions f : X → 2Y and g : Y → 2Z is defined by g ◦ f(x) =⋃
y∈f(x) g(y), for all x ∈ X . Restricting function f to a subset Z of X is denoted by

f |Z . Similarly, the restriction of a binary relation R ⊆ X × Y to a subset Z of X × Y
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is denoted by R|Z . We may use the infix notation xR y to denote that (x, y) ∈ R. The
composition R ◦ Q of two relations R ⊆ X × Y and Q ⊆ Y × Z comprises all pairs
(x, z) in X × Z for which there is y in Y such that (x, y) ∈ R and (y, z) ∈ Q. We
assume the following notions and notations:

– R−1 = {(y, x) | (x, y) ∈ R}. (reverse)
– R0 = idX = {(x, x) | x ∈ X}. (identity)
– Rn = Rn−1 ◦R. (n-th power, n ≥ 1).
– R+ = R1 ∪R2 ∪ . . . . (transitive closure)
– R∗ = R0 ∪R+. (reflexive transitive closure)
– Rsym = R0 ∪R−1. (symmetric closure)
– R is symmetric, reflexive, irreflexive, transitive if, respectively,
R = R−1 , idX ⊆ R , idX ∩R = ∅ , R ◦R ⊆ R.

– R is acyclic if R+ is irreflexive.

A relational structure is a tuple rs = (X,Q1, . . . , Qn) where X is a finite set called
domain, and the Qi’s are binary relations on X (we can select components using the
subscript rs , e.g., Xrs ). For relational structures with the same domain and arity, rs
and rs ′, we write rs ⊆ rs ′ if the subset inclusion holds component-wise. The intersec-
tion

⋂
R of a set R of relational structures with the same arity and domain is defined

component-wise.
A sequence over a finite set X is a finite string x1 . . . xn of symbols xi from X . A

step over X is a non-empty subset of X , and a step sequence over X is a finite string
X1 . . .Xn of steps. A step sequence is singular if the Xi’s are mutually disjoint. The
empty (step) sequence, corresponding to the case n = 0, is denoted by λ. As singleton
sets can be identified with their only elements, sequences can be regarded as special
step sequences. Moreover, the set brackets of singleton sets will be omitted.

A labelling � of a set X is a function from X to a set of labels �(X), and a labelled
set is a pair (X, �) where X is a set and � is a labelling of X . The labelling is extended
to finite sequences of elements xi of X by �(x1 . . . xn) = �(x1) . . . �(xn), and to fi-
nite sequences of subsets Xi of X by �(X1 . . .Xn) = �(X1) . . . �(Xn). To make the
labelling explicit, we will sometimes denote a labelled step sequence by (σ, �). We will
also use φ(σ, �) = �(σ) when we want to ‘forget’ about the underlying elements but
rather focus on the step sequence �(σ) over �(X).

We assume throughout that all sets in this paper are labelled sets, with the
default labelling simply being the identity function. If the actual labelling is
irrelevant for a particular definition or result, it may be omitted. Moreover,
whenever it is stated that two domains are the same, we implicitly assume that
their labellings are identical.

3 Causal Partial Orders and Order Structures

To capture the intrinsic causal relationships between events occurring in a concurrent
system history, one normally resorts to using a suitable ordering relation. In its ba-
sic form, such a relation is a partial order (reflecting the generally accepted view that
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causality is transitive and acyclic). However, for systems with a complex structure, par-
tial orders may need to be extended to more expressive order structures which support
additional relations between events, such as weak causality. We will present two kinds
of such extended order structures.

When using (causal) ordering relations in the treatment of concurrent histories, there
are two crucial issues which need to be satisfactorily addressed. The first is the relation-
ship with their associated executions or observations, typically captured by sequences
or step sequences of events. To be meaningful, an ordering relation should be a faith-
ful abstraction of a set of executions in the sense that each of these corresponds to the
given order (should be allowed as an execution). Moreover, there should be an unam-
biguous way of deriving an ordering relation from a set of observations, by capturing all
essential causal orderings between events while ignoring coincidental ordering in any
concrete observation. We will refer to such a property as Abstraction. The second issue
is related to the way ordering relations are derived. Intuitively, an overall causal order-
ing relation should be built up from smaller, more direct local, causal ordering relations
by applying some notion of transitivity. We will refer to such an operation as Closure.

3.1 Partial Orders

A partially ordered set (or poset) po = (X,≺) is a relational structure comprising
a finite set X and an irreflexive and transitive binary relation ≺ on X . Two distinct
elements x, y of X are unordered, x � y, if neither x ≺ y nor y ≺ x. We denote a ≺� b
if a ≺ b or a � b.

Intersecting posets to filter out their common ordering is a sound operation yielding
a new poset.

Fact 1 (poset intersection). IfPO is a non-empty set of posets with a common domain,
then

⋂
PO is a poset with the same domain.

A poset po is total (or linear) if all pairs of distinct elements of X are ordered, and
stratified (or weak) if �∪idX is an equivalence relation. Note that all total posets are
also stratified. If a poset represents a history of a concurrent system, then x ≺ y means
that x can only be observed before y, while x � y means that x and y can be observed in
any order, even simultaneously. In Figure 2, tpo0 is a total poset and spo0 is a stratified
poset.

tpo0: total

az1

bz2

az3

cz4

spo0: stratified

az1

b z2 az3

cz4

po0: neither total
nor stratified

az1

b z2 az3

c z4

sos0: SO-structure

az1

b z2 az3

c z4

gsos0: GSO-structure

az1

b z2 az3

c z4

Fig. 2. Hasse diagrams of posets and order structures showing also the labels (a, b and c) of their
elements. Solid arcs represent ≺, dashed arcs represent �, and solid edges represent �.
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To formulate the Abstraction property for posets, we first need to make it clear which
executions correspond to a given (causal) poset po. A total poset tpo is a linearisation of
po if po ⊆ tpo, while a stratified poset spo is a stratification of po if po ⊆ spo. (That is,
po is a faithful abstraction of tpo and spo.) We denote this respectively by tpo ∈ lin(po)
and spo ∈ strat(po). In Figure 2, tpo0 ∈ lin(po0) and spo0 ∈ strat(po0). Conversely,
po captures all essential orderings present in its linearisations or stratifications, respec-
tively.

Fact 2 (poset abstraction [28]). For every poset po, lin(po) 
= ∅ and

po =
⋂

lin(po) .

The above fact, known as Szpilrajn’s Theorem, implies that a poset is uniquely deter-
mined by the intersection of its linearisations. The same holds for stratifications.

Fact 3 (poset abstraction [15]). For every poset po, strat(po) 
= ∅ and

po =
⋂

strat(po) .

The Poset Closure property described next is simple and indeed standard, but it is still
a good idea to state it explicitly as we will soon generalise it to more complicated order
structures.

A pre-poset is a relational structure � = (X,≺) such that ≺+ is irreflexive. In such
a case, its po-closure is defined as �po = (X,≺+). Intuitively,≺ indicates which of the
executed actions are directly causally related and �po provides a full account of both
direct and indirect (derived) causality between events. Therefore, we require that ≺ be
acyclic, i.e., ≺+ is irreflexive. Then its transitive closure yields the overall causality
relationship.

Fact 4 (poset closure). For every pre-poset �, �po is a poset.

As already mentioned, individual executions of a concurrent system are often repre-
sented by sequences of events or sequences of sets of simultaneously occurring events
(step sequences). Both are language theoretic rather than order theoretic notions, but
there is a straightforward way to move between these two representations. Given a
stratified poset spo = (X,≺), there is a unique enumeration X1, . . . , Xk of the equiv-
alence classes of the relation �∪idX such that x ≺ y, for all x ∈ Xi and y ∈ Xj and
i < j. We then associate with spo the singular step sequence steps(spo) = X1 . . .Xk.
Conversely, if σ = X1 . . . Xk (k ≥ 0) is a singular step sequence, then

spo(σ) =
(⋃

i

Xi,
⋃
i<j

Xi ×Xj

)

is the stratified poset associated with σ. In Figure 2,

steps(tpo0) = z1z2z3z4 spo(z1z2z3z4) = tpo0

steps(spo0) = z1{z2, z3}z4 spo(z1{z2, z3}z4) = spo0 .
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Fact 5 (posets and step sequences). spo = spo(steps(spo)), for every stratified poset
spo, and σ = steps(spo(σ)), for every singular step sequence σ.

Hence we can identify each stratified poset spo with steps(spo) or, equivalently, identify
each singular step sequence σ with spo(σ). This also applies to labelled stratified posets
and labelled singular step sequences.

3.2 Stratified Order Structures

Posets capture an ‘earlier than’ relationship between the elements of their domains.
Their first extension we consider consists in introducing the concept of a weaker —
‘not later than’ — relationship.

A stratified order structure (or SO-structure) sos = (X,≺,�) comprises two binary
relations,≺ (causality) and � (weak causality, in diagrams represented by dashed arcs,
see Figure 2) on a finite set X such that, for all x, y, z ∈ X :

S1 : x 
� x S3 : x � y � z ∧ x 
= z =⇒ x � z

S2 : x ≺ y =⇒ x � y S4 : x � y ≺ z ∨ x ≺ y � z =⇒ x ≺ z .

Intuitively, ≺ represents the ‘earlier than’ relationship in X , and � the ‘not later than’
relationship. Note that ≺ is a partial order, and x ≺ y implies y 
� x. It is easily
seen that if spo is a stratified poset, then the relational structure defined by sos(spo) =

(Xspo ,≺spo ,≺�spo) is an SO-structure.
Again, intersecting SO-structures to filter out their common orderings is a sound

operation yielding a new SO-structure.

Fact 6 (sos intersection). If SOS is a non-empty set of SO-structures with a common
domain, then

⋂
SOS is an SO-structure with the same domain.

To formulate the Abstraction property for SO-structures, we first need to define execu-
tions corresponding to a given SO-structure sos . A stratified poset spo is an extension
of sos if sos ⊆ sos(spo). (Thus sos is a faithful abstraction of spo.) We denote this by
spo ∈ ext(sos). In Figure 2, tpo0, spo0 ∈ ext(sos0).

Fact 7 (sos abstraction). For every SO-structure sos , ext(sos) 
= ∅ and

sos =
⋂

sos(ext(sos)) .

The Closure property for SO-structures generalises the notion of po-closure introduced
for posets. A pre-SO-structure is a relational structure � = (X,≺,�) such that the
relation γ ◦ ≺ ◦ γ is irreflexive, where γ = (≺ ∪�)∗. Then its so-closure is:

�so = (X, γ ◦ ≺ ◦ γ, γ \ idX) .

Note that in a pre-SO-structure � there are no x0, x1, . . . , xn = x0 such that x0 ≺ x1

and, for all 0 < i < n, xi ≺ xi+1 or xi � xi+1. This can be regarded as a counterpart
of the acyclicity required of pre-posets.

Fact 8 (sos closure). For every pre-SO-structure �, �so is an SO-structure.

Stratified order structures were independently introduced in [6] and [12]. Their theory
has been presented in [15], and they have been used, for example, to model inhibitor
and priority systems, asynchronous races and synthesis problems (see, e.g., [17]).
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3.3 Generalised Stratified Order Structures

The second extension of causal posets introduces a representation of ‘non-simultaneity’.
A generalised SO-structure (or GSO-structure) gsos = (X,�,�) comprises two ir-

reflexive relations, � (commutativity, which is symmetric) and � (weak causality, as
before) on X such that (X,� ∩ �,�) is an SO-structure. Note that commutativity
represents the ‘earlier than or later than, but never simultaneous’ relationship. Accord-
ingly, � ∩ � represents the ‘earlier than’ relationship, and so it is required that to-
gether with � it forms an SO-structure. In fact, one could have defined GSO-structures
as gsos = (X,≺,�,�) making them a direct generalisation of SO-structures. How-
ever, it is always the case that≺ is the same as the intersection of � and �, and so it can
be omitted. It is easily seen that if spo is a stratified poset, then the relational structure
gsos(spo) = (Xspo ,≺sym

spo ,≺
�
spo) is a GSO-structure.

Also in this case, intersecting GSO-structures to filter out their common orderings is
a sound operation yielding a new GSO-structure.

Fact 9 (gsos intersection). If GSOS is a non-empty set of GSO-structures with a com-
mon domain, then

⋂
GSOS is an GSO-structure with the same domain.

To formulate the Abstraction property for GSO-structures, we need to define which ex-
ecutions would correspond to a given GSO-structure gsos . A stratified poset spo is an
extension of gsos if gsos ⊆ gsos(spo). (Thus gsos is a faithful abstraction of spo.) We
denote this by spo ∈ ext(gsos). In Figure 2, spo0 ∈ ext(gsos0). We then obtain that
GSO-structures are fully determined by their extensions.

Fact 10 (gsos abstraction). For every GSO-structure gsos , ext(gsos) 
= ∅ and

gsos =
⋂

gsos(ext(gsos)) .

The Closure property for GSO-structures generalises the notion of so-closure introduced
for SO-structures. A pre-GSO-structure is a relational structure � = (X,≺,�,�) based
on local relationships between events such that the relation αsym ∪βsym∪� is irreflex-
ive and symmetric, where

α = γ ◦ ≺ ◦ γ and β = �∗ ◦ (� ∩�∗) ◦�∗ and γ = (≺ ∪�)∗ .

In such a case, its gso-closure is defined as �gso = (X,αsym∪βsym∪�, γ \ idX). Note
that � relates events that cannot be executed simultaneously.

Fact 11 (gsos closure). For every pre-GSO-structure �, �gso is a GSO-structure.

Generalised SO-structures were introduced in [7] to represent the most general con-
current histories in the approach of [13]. They were investigated in [10], and used to
provide nets comprising mutex arcs with a causal semantics in [21].
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4 Elementary Net Systems

All net models considered in this paper have a net as their underlying structure.
A net N = (P, T, F ) comprises disjoint finite sets of nodes, P and T , called respec-

tively places and transitions, and the flow relation F ⊆ (T ×P )∪ (P ×T ). A marking
of N is a set of places. In diagrams, places (local states) are represented by circles,
transitions (actions) by rectangles, the flow relation by directed arcs, and a marking
(global state) by tokens (small black dots) drawn inside places. The inputs and outputs
of a node x are the sets •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}; moreover,
•x• = •x ∪ x•. It is assumed that •t 
= ∅ 
= t•, for every transition t. The dot-notation
extends to sets X of nodes in the usual way, e.g., •X =

⋃
{•x | x ∈ X}.

EN 0

p7

p1

p2

p3

p4

p5

p6

f cm a g u

Fig. 3. EN-system model of a producer/consumer system

Figure 3 shows a net model of a system consisting of a producer, a buffer of capacity
one, and a consumer. The producer can execute: m (making an item), a (adding a new
item to the buffer), and f (failing to add an item). The consumer can execute: g (getting
an item), u (using the item), and c (completing the work). The buffer executes cyclically
the a and g actions. The three components operate independently with shared actions
being executed jointly. Figure 3 also shows an (initial) marking M = {p1, p4, p5}.

Net executions can be captured by sequences of steps of transitions. A step of a net
is a set U of transitions such that •t• ∩ •v• = ∅, for all t 
= v ∈ U . It is enabled at a
marking M if •U ⊆ M and U• ∩M = ∅. In such a case, the execution of U leads to
marking M ′ = (M\•U) ∪ U•. We denote this by M [U〉M ′.

A step sequence from a marking M to a marking M ′ is a sequence σ = U1 . . . Un

(n ≥ 0) of non-empty steps Ui such that M [U1〉M1, . . . ,Mn−1[Un〉M ′, for some
M1, . . . ,Mn−1. We denote this by M [σ〉M ′, and call M ′ reachable from M . When all
steps Ui are singletons, σ is a firing sequence. For the net in Figure 3, we have:

{p2, p3, p6} [m〉 {p1, p3, p6} {p1, p4, p5} [a{m, g}{a, c}m〉 {p1, p3, p7}
{p2, p3, p6} [{m, c}〉 {p1, p3, p7} {p1, p4, p5} [amgacm〉 {p1, p3, p7} .

An EN-system is a tuple EN = (P, T, F,Minit ) such that (P, T, F ) is its underlying
net, and Minit is an initial marking. Moreover, steps(EN ) and fseq(EN ) comprise
respectively all the step sequences and all firing sequences from the initial marking
Minit . Figure 3 depicts an EN-system with steps(EN 0) = {λ, a, ag, am, a{g,m}, . . .}
and fseq(EN 0) = {λ, a, ag, am, agm, amg, . . .}.

The reachability graph rg(EN ) = (V,A) of EN has V as its set of vertices and A
as its set of labelled arcs. V consists of all markings reachable from the initial marking
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Minit , and A is given as A = {(M,U,M ′) | M ∈ V ∧ M [U〉M ′}. Similarly, the
sequential reachability graph rgseq(EN ) = (V ′, A′) of EN has V ′ as its set of vertices
and A′ as its set of labelled arcs. V ′ consists of all markings reachable from the initial
marking Minit through firing sequences, and A′ is given as A′ = {(M, t,M ′) | M ∈
V ′∧M [t〉M ′}. It can be seen that although, in general, rgseq(EN ) is a proper subgraph
of rg(EN ), their vertices are the same.

The EN-system in Figure 3 is contact-free which means that, for all markings M
reachable from Minit and transitions t, •t ⊆M implies t• ∩M = ∅. Contact-freeness
can always be enforced without influencing the step sequence behaviour, by comple-
menting (all or some) places p using fresh places p̃ satisfying •p = p̃•, p• = •p̃, and
declaring that p̃ ∈ Minit iff p /∈ Minit . For example, in Figure 3, p4 = p̃3. In what
follows, all EN-systems as well as their extensions are assumed to be contact-free.

Reachability Graphs and Structure

Strong connections between structure and behaviour have been for a long time a rich
source of analytical techniques for Petri nets. These connections are particularly direct
in the case of EN-systems. To start with, at a marking M , we say that two transitions, t
and v, are:

– independent, if they are both enabled and the execution of one does not disable the
other. In EN-systems, being independent is equivalent to saying that {t, v} is a step
enabled at M . This is illustrated in Figure 4(a) for t = f and v = g.

– in conflict, if they are both enabled and the execution of one disables the other. In
EN-systems, being in conflict is equivalent to saying that {t, v} is not a step enabled
at M . This is illustrated in Figure 4(b) for t = a and v = f .

– causally related, if one is enabled and its execution makes the other enabled. This
is illustrated in Figure 4(c) for t = m and v = f .

(a)

{p1, p3, p5}
f g

g f

{f, g}

(b)

{p1, p4, p5}
a f

(c)

{p2, p3, p5}

m

f

Fig. 4. Independence, conflict and causality in the reachability graph rg(EN 0)

The above relationships are behavioural, in the sense that they refer explicitly to exe-
cutability at markings. There is, however, an alternative characterisation, where we say
that two transitions, t and v, are structurally:

– independent, if •t• ∩ •v• = ∅; for example, f and g in EN 0.
– in conflict, if •t ∩ •v 
= ∅ or t• ∩ v• 
= ∅; for example, f and a in EN 0.
– causally related, if t• ∩ •v 
= ∅ or v• ∩ •t 
= ∅; for example, m and f in EN 0.
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We then obtain a direct connection between the behavioural and structural characteri-
sations of three fundamental relationships between transitions in EN-systems.

Fact 12 (structure vs. behaviour). In EN-systems, behavioural independence, conflict
and causality respectively imply structural independence, conflict and causality.

In other words, transitions which are structurally independent will never be in conflict
or causally related whatever the current marking. Similar remarks hold for conflict and
causality.

Another observation concerns the relationship between simultaneity and unordered-
ness in the behaviour of EN-systems. We can formulate the general property that

Simultaneity ⇐⇒ Unorderedness

by which we mean that it is always the case that

M [{t, v}〉M ′ ⇐⇒ M [tv〉M ′ ∧M [vt〉M ′ .

5 Fitting Nets and Order Structures

Given the execution semantics of EN-systems, we could now turn to the development of
a causality semantics in terms of occurrence nets and associated causal posets. However,
since we aim at a systematic presentation of causality semantics for different net classes,
it pays off to develop first a general scheme for doing this. As a result, one can then
simplify the formal treatment and also appreciate common properties shared across a
range of net classes.

The operational and causality semantics of a class of Petri nets PN can be presented
within a common scheme introduced in [19] (see also [17]) and reproduced here as
Figure 5 where N is a net from PN and:

– EX are executions (or observations) of nets in PN.
– LAN are labelled acyclic nets, each representing a concurrent history.
– LEX are labelled executions of nets in LAN.
– LCS are labelled causal structures (e.g., order structures) capturing causality rela-

tionships between executed actions.

In this paper, EX will be step sequences, and LEX labelled singular step sequences.
However, LAN and LCS will depend on the chosen class of nets PN.

The maps in Figure 5 relate the semantical views captured by EX, LAN, LEX and
LCS:

– ω returns a set of executions, defining the operational semantics of N .
– α returns a set of labelled acyclic nets, defining the axiomatic process semantics

of N .
– πN returns, for each execution of N , a non-empty set of labelled acyclic nets, defin-

ing the operational process semantics of N .
– λ returns a set of labelled executions for each process of N , and after applying φ

to such a labelled execution one obtains an execution of N .
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N ∈ PN LAN

EX LEX

LCS

α

ω πN

φ

λ

ε
ı

κ

Fig. 5. Semantical framework for a class of Petri nets PN. The bold arcs indicate mappings to
powersets and the dashed arc indicates a partial function.

– κ associates a labelled causal structure with each process of N .
– ε and ı allow one to go back and forth between labelled causal structures and the

sets of their labelled executions.

The semantical framework provided by the schema indicates how the different seman-
tical views should agree. According to the rectangle on the left, the Petri net defines
processes satisfying certain axioms and, moreover, all labelled acyclic nets satisfying
these axioms can be derived from the executions of the Petri net. Also, the labelled
executions of the processes correspond to the executions of the original Petri net. In
the triangle on the right, the labelled acyclic nets from LAN, the causal structures from
LCS and the labelled executions from LEX are related. The order structure defined
by a labelled acyclic net can be obtained by combining its executions and, conversely,
the stratified extensions of the order structure defined by a labelled acyclic net are the
(labelled) executions of that net. Thus the abstract relations between the actions in the
labelled causal structures associated with the Petri net will be consistent with its chosen
operational semantics.

To demonstrate that these different semantical views agree as captured through this
semantical framework, it is sufficient to establish a series of results called aims. As
there exist four simple requirements (called properties) guaranteeing these aims, one
can concentrate on defining the semantical domains and maps appearing in Figure 5
and proving these properties.

Property 1 (soundness of mappings). The mapsω, α, λ, φ, πN |ω(N), κ, ε and ı|λ(LAN)
are total. Moreover, ω, α, λ, πN |ω(N) and ε always return non-empty sets.

Property 2 (consistency). For all ξ ∈ EX and LN ∈ LAN,

ξ ∈ ω(N)
LN ∈ πN (ξ)

}
iff

{
LN ∈ α(N)
ξ ∈ φ(λ(LN )) .

Property 3 (representation). ı ◦ ε = idLCS.

Property 4 (fitting). λ = ε ◦ κ.

The above four properties imply that the axiomatic (defined through α) and operational
(defined through πN ◦ ω) process semantics of nets in PN are in full agreement. Also,
the operational semantics of N (defined through ω) coincides with the operational se-
mantics of the processes of N (defined through φ ◦ λ ◦ α). Finally, the causality in a
process of N (defined through κ) coincides with the causality structure implied by its
operational semantics (through ı ◦ λ). That is, we have the following.
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Aim 1 α = πN ◦ ω.

Aim 2 ω = φ ◦ λ ◦ α.

Aim 3 κ = ı ◦ λ.

As a consequence, the operational semantics of the Petri net N and the set of labelled
causal structures associated with it are related by ω = φ ◦ ε ◦ κ ◦ α.

6 Semantical Framework for EN-Systems

Some of the notions needed to specialise the general concepts of the semantical frame-
work for EN-systems have already been introduced. We will now present the missing
ones, starting with the definition of a class of labelled acyclic nets capturing the causal-
ity semantics of EN-systems.

An occurrence net is a tuple ON = (P ′, T ′, F ′, �) such that (P ′, T ′, F ′) is its un-
derlying net1 and � is a labelling for P ′ ∪ T ′. Moreover, it is assumed that |•p| ≤ 1
and |p•| ≤ 1, for every place p, and �ON = (T ′, (F ′ ◦ F ′)|T ′×T ′) is a pre-poset (in
other words, F ′ is acyclic). The default initial MON

init and final MON
fin markings respec-

tively consist of all places without inputs and outputs. Figure 6 shows an occurrence net
labelled by places and transitions of the EN-system EN 0 of Figure 3, with the default
initial and final markings {b1, b2, b3} and {b6, b9, b10}.

p1b1

p4b2

p5b3

p3 b4

p2

b5

p4 b6

p6

b7

p1

b8

p5 b9

p2 b10a

e1
m

e2

f

e3

g

e4

u
e5

Fig. 6. An occurrence net ON 0 (labels are shown inside the nodes)

Note that, due to the acyclicity of the flow relation and the lack of multiple inputs
(or outputs) of places, each transition in T ′ appears exactly once in any step sequence σ
satisfying MON

init [σ〉MON
fin . In particular, such a step sequence is singular, and so spo(σ)

is a well-defined stratified poset.
The behaviour of an occurrence net ON is captured by the set steps(ON ) of labelled

step sequences, comprising all pairs (σ, �|T ′ ) such that σ is a step sequence from the
default initial marking of ON to the default final marking. For each such labelled step
sequence, φ(σ, �|T ′ ) = �(σ). Moreover, fseq(ON ) are the labelled firing sequences of
ON , i.e., all the labelled step sequences (σ, �|T ′) such that σ is a sequence of singleton
steps. For the occurrence net of Figure 6, we have a{m, g}{f, u} ∈ φ(steps(ON 0)) as
well as amgfu ∈ φ(fseq(ON 0)).

1 The dot-notations, markings, etc, for ON are as those defined for (P ′, T ′, F ′).
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Fact 13 (labelled executions). steps(ON ) 
= ∅ and fseq(ON ) 
= ∅, for every occur-
rence net ON .

For an occurrence net ON , �ON is a pre-poset representing the direct causal relation-
ships between its transitions. Hence, by Fact 4, po(ON ) = �poON is the induced poset
representing all, direct and indirect, causal dependencies between the transitions in T ′.
For the occurrence net of Figure 6, we have that e1 causes e2 directly, but there is only
an indirect causal link from e1 to e3. Also, there are no causal links between e3 and
e5 which means that they are independent. This and other relationships can be read out
from the diagram of the pre-poset �ON 0

shown in Figure 7.

a

e1
m

e2

f

e3

g

e4

u
e5

Fig. 7. Pre-poset 
ON0 for the occurrence net ON 0

To define processes of an EN-system, we need to provide an axiomatic characterisa-
tion of occurrence nets consistent with the structure of this EN-system. A process of an
EN-system EN is an occurrence net ON with the labelling � which:

– labels places of ON with places of EN .
– labels transitions of ON with transitions of EN .
– is injective on MON

init and �(MON
init ) = Minit .

– is injective on •t and t• and, moreover, �(•t) = •�(t) and �(t•) = �(t)•, for every
transition t of ON .

We denote this by ON ∈ proc(EN ). For example, ON 0 ∈ proc(EN 0), where EN 0

and ON 0 are the nets in Figures 3 and 6.

Fact 14 (injective labelling). The labelling � of ON ∈ proc(EN ) is injective on any
marking reachable from the default initial marking. It is also injective on any individual
step appearing in the step sequences of steps(ON ) 
= ∅.

The only missing component of the semantical framework for EN-systems is now the
mapping returning processes derived from individual step sequences.

The occurrence net procEN (σ) generated by a step sequence σ = U1 . . . Un of EN
is the last element in the sequence ON 0, . . . ,ON n, where each ON k is an occurrence
net (Pk, Tk, Fk, �k) constructed in the following way.

Step 0 P0 = {p1 | p ∈Minit} and T0 = F0 = ∅.
Step k Given ON k−1, the nodes and arcs of ON k are:
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Pk = Pk−1 ∪ {p1+�p | p ∈ U•
k}

Tk = Tk−1 ∪ {t1+�t | t ∈ Uk}
Fk = Fk−1 ∪ {(p�p, t1+�t) | t ∈ Uk ∧ p ∈ •t}

∪ {(t1+�t, p1+�p) | t ∈ Uk ∧ p ∈ t•} ,

where the label of each node xi is set to be x, and  x denotes the number of the
nodes of ON k−1 labelled by x.

The above construction is illustrated in Figure 8 for the EN-system EN 0 of Figure 3.
The resulting occurrence net is isomorphic to ON 0 of Figure 6 which, as we already
noted, is a process of EN 0.

ON 0p1

p11

p4

p14

p5

p15

ON 1p1

p11
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p12
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p14
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p5

p15

a
a1

ON 2p1
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p2

p12
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p21

p4
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p4

p24

p5

p15
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a
a1 m
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g
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ON 3p1
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p2

p12
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p2

p22

p4

p14
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p24
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Fig. 8. Process procEN0
(σ) = ON 3 generated for EN 0 and step sequence σ = a{m, g}{f, u}

We will now explain how the four semantical properties can be established for EN-
systems and their step sequence semantics (the treatment for firing sequences is almost
the same). Referring to the notation used in Figure 5, we have the following, where EN
is an EN-system, ON an occurrence net, (σ, �) a labelled step sequence, po a poset, and
Σ a set of labelled singular step sequences with the same domain:
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PN are EN-systems EX are step sequences
LAN are occurrence nets LEX are labelled singular step sequences
LCS are labelled posets

ω(EN ) is steps(EN ) α(EN ) is proc(EN )
λ(ON ) is steps(ON ) πEN (σ) is procEN (σ)
φ(σ, �) is �(σ) κ(ON ) is po(ON )
ε(po) is steps(strat(po)) ı(Σ) is

⋂
spo(Σ).

Properties 1–4 hold for EN-systems [19,27]. Below EN is an EN-system and σ its fir-
ing sequence, ON is an occurrence net, po is a poset, and Σ is a set of singular step
sequences with the same domain. (Note that Fact 17 follows from Facts 3 and 5.)

Fact 15. steps(EN ), proc(EN ), steps(ON ) and steps(strat(po)) are non-empty sets.
Moreover, po(ON ) and

⋂
spo(Σ) are posets, and procEN (σ) is an occurrence net.

Fact 16. procEN (σ) is a process of EN . Moreover, if ON is a process of EN and
σ′ ∈ φ(steps(ON )), then σ′ ∈ steps(EN ) and ON = procEN (σ′).

Fact 17. po =
⋂
spo(steps(strat(po))).

Fact 18. steps(ON ) = steps(strat(po(ON ))).

Hence we can claim the semantical aims for EN-systems and step sequences.

Fact 19. Let EN be an EN-system, and ON be an occurrence net.

proc(EN ) = procEN (steps(EN ))

steps(EN ) = φ(steps(proc(EN )))

po(ON ) =
⋂
spo(steps(ON )) .

7 EN-Systems with Activator Arcs

This section extends the treatment of concurrency to nets with activator arcs. Consider
again the EN-system of Figure 3 and add an activator arc from place p4 to transition c
with a small black circle as arrowhead. In the resulting net ENA0 shown in Figure 9, c
can only be enabled if there is a token in place p4. However, the execution of transition
c does not consume the token in place p4.

An elementary net system with activator arcs (or ENA-system) is a tuple ENA =
(P, T, F,Act ,Minit ) such that und(ENA) = (P, T, F,Minit ) is its underlying EN-
system, and Act ⊆ P × T is a set of activator arcs. Notions and notations relating to
ENA are inherited from und(ENA). Moreover, �t denotes the set of all the places p
where the presence of a token is necessary to enable a transition t, i.e., (p, t) ∈ Act .
The behaviour of ENA is also derived from that of und(ENA) after assuming that
a step of transitions U is enabled at a marking M in ENA if it is enabled at M in
und(ENA) and �U ⊆ M , where �U =

⋃
t∈U

�t. The marking resulting from the
execution of such a U is exactly the same as it would be in und(ENA). For the ENA-
system of Figure 9, we have thatM [{a, c}〉M ′ andM [ca〉M ′, whereM = {p1, p4, p6}
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ENA0

p7

p1

p2

p3

p4

p5

p6

cm a g uf

Fig. 9. An ENA-system modelling a second version of the producer/consumer system

and M ′ = {p2, p3, p7}. However, M [ac〉M ′ does not hold because after executing
transition a, a token is removed from the activator place p4 of transition c.

Reachability Graphs of ENA-Systems

Reachability in ENA-systems depends on the chosen execution semantics: sequences or
step sequences. Taking, as an example the ENA-system in Figure 10(a), we may observe
that Minit [{t, v}〉{p3, p4}, but there is no firing sequenceσ such that Minit [σ〉{p3, p4}.

Another observation concerns the relationship between simultaneity and unordered-
ness in the behaviour of ENA-systems. Whereas in the case of EN-systems we have the
general property that Simultaneity⇐⇒ Unorderedness we now have

Simultaneity ⇐= Unorderedness

by which we mean that it is always the case that

M [{t, v}〉M ′ ⇐= M [tv〉M ′ ∧M [vt〉M ′ .

Figure 10(b, c) shows that the reverse implication does not hold.

(a)

p1

p3

p2

p4

t v

(b)

t v

(c)

v t

v

{t, v}

Fig. 10. Two ENA-systems and the reachability graph of the second one

Semantical Framework for ENA-Systems

The causality semantics for ENA-systems will be developed by instantiating the seman-
tical framework, similarly as in the case of EN-systems. The labelled causal structures
employed are SO-structures, while executions remain to be (labelled singular) step se-
quences. To define processes we extend occurrence nets to include activator arcs.
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An activator occurrence net (or AO-net) AON = (P ′, T ′, F ′,Act ′, �) is a tuple such
that und(AON ) = (P ′, T ′, F ′, �) is its underlying occurrence net, and Act ′ ⊆ P ′×T ′

is a set of activator arcs. It is assumed that �AON = (T ′,≺loc,�loc, �|T ′), where

≺loc = (F ′ ◦ F ′)|T ′×T ′ ∪ (F ′ ◦Act ′) and �loc = (Act ′)−1 ◦ F ′

is a pre-SO-structure (see Figure 11). We then define sos(AON ) = �soAON to be the
SO-structure induced by AON .

(a) t v (b) t v (c) t v

Fig. 11. Two cases (a, b) defining t ≺loc v, and one case (c) defining t �loc v

The step sequences steps(AON ) of an AO-net AON are defined as for und(AON ),
except that the enabling condition takes into account activator arcs.

Fact 20 (labelled executions). steps(AON ) 
= ∅, for every AO-net ON .

Note that it may happen that fseq(AON ) = ∅ even though steps(AON ) 
= ∅. Take, for
example, the AO-net AON 1 in Figure 12(a) for which steps(AON 1) = {{t, v, w}z}
and fseq(AON 1) = ∅ as executing at the default initial marking any transition in
{t, v, w} means that one of the remaining two transitions will never be enabled, and so
the default final marking cannot be reached.

(a)

z

t

v

w (b)

z

t

v

w

Fig. 12. An AO-net AON 1 (a), and a failed attempt to extend it to an AMO-net (b)

An AO-net represents a concurrent run of a system and has to avoid circularity. In-
tuitively, ≺loc stands for causal precedence (the first transition has to produce a token
for consumption or testing by the second transition) and �loc for weak causal prece-
dence (the first transition cannot happen after the second one, since the latter consumes
a token which activates the former). Figure 13 shows an AO-net AON 0 labelled by
places and transitions of the ENA-system ENA0 of Figure 9. Its default initial mark-
ing is {b1, b2, b3}, and its default final marking is {b9, b10, b11}. Note that transition e5
weakly precedes transition e4, i.e., e5 �loc e4. Moreover, we have that a{m, g}{a, c}
and a{m, g}ca belong to φ(steps(AON 0)), but a{m, g}ac does not.
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Fig. 13. An activator occurrence net AON 0

Processes of an ENA-system are similar to those of the underlying EN-system
extended with an appropriate treatment of activator arcs. A process of ENA is an AO-
net AON such that und(AON ) is a process of und(ENA) and, in addition, � is in-
jective on �t and �(�t) = ��(t), for every transition t of AON . We denote this by
AON ∈ proc(ENA).

Process generation from a given step sequence is also based on that introduced for
EN-systems. The AO-net procENA(σ) generated by a step sequence σ = U1 . . . Un

of ENA is the last element in the sequence AON 0, . . . ,AON n where each AON k =
(Pk, Tk, Fk,Actk, �k) is an AO-net with the components constructed as in the definition
for procund(ENA)(σ), and the following additions (see Figure 14):

Step 0 Act0 = ∅.
Step k Actk = Actk−1 ∪ {(p�p, t1+�t) | t ∈ U ∧ p ∈ �t}.
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p23
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p17

a
a1 m

m1

a
a2

g

g1

c
c1

Fig. 14. Process procENA0
(σ) generated for ENA0 and step sequence σ = a{g,m}{a, c}

We will now show that the semantical properties formulated in Section 5 can be
established for ENA-systems and their step sequences. Referring to the notation used
in Figure 5, we have the following, where ENA is an ENA-system, AON an AO-net,
(σ, �) a labelled step sequence, sos an SO-structure, and Σ a set of labelled singular
step sequences with the same domain:
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PN are ENA-systems EX are step sequences
LAN are AO-nets LEX are labelled singular step sequences
LCS are labelled SO-structures

ω(ENA) is steps(ENA) α(ENA) is proc(ENA)
λ(AON ) is steps(AON ) πENA(σ) is procENA(σ)
φ(σ, �) is �(σ) κ(AON ) is sos(AON )
ε(sos) is steps(ext(sos)) ı(Σ) is

⋂
sos(spo(Σ)).

It can be shown that Properties 1–4 hold. Below ENA is an ENA-system and σ its step
sequence, AON is an AO-net, sos is an SO-structure, and Σ is a set of singular step
sequences with the same domain. (Note that Fact 23 follows from Facts 5 and 7.)

Fact 21. steps(ENA), proc(ENA), steps(AON ) and steps(ext(sos)) are non-empty
sets. Moreover, sos(AON ) and

⋂
sos(spo(Σ)) are SO-structures, and procENA(σ) is

an AO-net.

Fact 22. procENA(σ) is a process of ENA. Moreover, if AON is a process of ENA
and σ′ ∈ φ(steps(AON )), then σ′ ∈ steps(ENA) and AON = procENA(σ

′).

Fact 23. sos =
⋂
sos(steps(ext(sos))).

Fact 24. steps(AON ) = steps(ext(sos(AON ))).

Hence we can claim the semantical aims for ENA-systems.

Fact 25. Let ENA be an ENA-system, and AON be an AO-net.

proc(ENA) = procENA(steps(ENA))

steps(ENA) = φ(steps(proc(ENA)))

sos(AON ) =
⋂
sos(steps(AON )) .

EN-Systems with Inhibitor Arcs

It is easy to extend the treatment presented above for ENA-systems to EN-systems with
inhibitor arcs. Consider again the EN-system of Figure 3 and add to it an inhibitor arc
linking place p3 and transition c. This yields the net system ENI 0 shown in Figure 15.
(Inhibitor arcs are drawn with small open circles as arrowheads.) Adding such an arc
means that c cannot be enabled when the buffer is non-empty (a token in place p3
signifies that the buffer contains an item).

An elementary net system with inhibitor arcs (or ENI-system) is a tuple ENI =
(P, T, F, Inh,Minit ) such that und(ENI ) = (P, T, F,Minit ) is its underlying EN-
system, and Inh ⊆ P × T is a set of inhibitor arcs. Notions and notations relating
to ENI are inherited from und(ENI ). The behaviour of ENI is also derived from that
of und(ENI ): a step of transitions U is enabled at a marking M of ENI if it is enabled
at M in und(ENI ) and {p | ∃t ∈ U : (p, t) ∈ Inh} ∩M = ∅. The marking resulting
from the execution of such a U is exactly the same as in und(ENI ).

Intuitively, the testing for the presence of tokens using activator arcs in ENA-systems
has been replaced by testing for their absence using inhibitor arcs in ENI-systems.
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Fig. 15. An ENI-system modelling a third version of the producer/consumer system

In fact, the latter can be faithfully simulated by the former in the case of EN-systems
(i.e., they have isomorphic reachability graphs). All we need to assume is that every
inhibitor place p has a complement place p̃ satisfying •p = p̃• and •p̃ = p•. Processes
of ENI-systems are similar to those of EN-systems with the inhibitor arcs of the system
represented by activator arcs which rather than testing for the absence of tokens are used
to test for the presence of tokens in complement places. Hence, we assume that each
place p of ENI adjacent to an inhibitor arc has a complement place p̃ in the underlying
EN-system. Then, each inhibitor arc (p, t) can be replaced by an equivalent activator
arc (p̃, t). Since adding complement places is harmless, we can consider the causality
treatment of ENI-systems as being obtained through the corresponding ENA-systems.
Note that ENI 0 in Figure 15 corresponds in this way to ENA0 in Figure 9.

8 ENA-Systems with Mutex Arcs

We now extend ENA-systems with mutex arcs prohibiting certain pairs of transitions
from occurring simultaneously (i.e., in the same step). Mutex arcs were introduced
in [11], and their causality semantics was developed in [21].

Consider Figure 16 which shows another variant of the producer/consumer scheme.
In this case, the consumer is allowed to complete (transition c), but never at the same
time as the producer makes an item (transition m). Other than that, there are no restric-
tions on the executions of transitions c and m. To model such a scenario we use a mutex
arc between c and m (depicted as an undirected edge). Note that mutex arcs are relating
transitions in a direct way. This should not be regarded as an unusual feature as, for
example, Petri nets with priorities also impose direct relations between transitions.

An elementary net system with activator and mutex arcs (or ENAM-system) is a tuple
ENAM = (P, T, F,Act ,Mtx ,Minit ) such that und(ENAM ) = (P, T, F,Act ,Minit )
is the ENA-system underlying ENAM and Mtx ⊆ T × T is a symmetric irreflexive
relation specifying the mutex arcs of ENAM . Where possible, we retain the definitions
introduced for ENAM-systems. The notion of a step now changes however. A step of
ENAM is a non-empty set U of transitions such that U is a step of und(ENAM ) and
Mtx ∩ (U × U) = ∅. With this modified notion of a step, the remaining definitions
pertaining to the dynamic aspects of an ENAM-system are the same as for the underlying
ENA-system.
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Fig. 16. An ENAM-system modelling a fourth version of the producer/consumer system

For the ENAM-system of Figure 16, we haveM [cm〉M ′ as well as M [mc〉M ′, where
M = {p2, p4, p6} and M ′ = {p1, p4, p7}. However, M [{c,m}〉M ′ which holds now
for the underlying ENA-system does not hold as c and m cannot belong to the same step.

Reachability Graphs of ENAM-Systems

Reachability in ENAM-systems, like in ENA-systems, is affected by the choice of the
execution semantics. This is, however, due to the presence of activator arcs, rather than
mutex arcs. For an ENAM-system without any activator arcs, the same sets of markings
are reachable under the step sequence and firing sequence semantics.

Another observation concerns the relationship between simultaneity and unordered-
ness in the behaviour of ENAM-systems. Whereas ENA-systems satisfy the relationship
Simultaneity⇐= Unorderedness, this no longer holds for ENAM-systems, as illustrated
in Figure 17.

(a)

t v

(b)

t v

v t

Fig. 17. An ENAM-system without activator arcs and its reachability graph

Semantical Framework for ENAM-Systems

Causality semantics for ENAM-systems will be developed similarly as for EN-systems
and ENA-systems. The labelled causal structures employed are GSO-structures, while
executions remain to be step sequences. To define processes we extend AO-nets to in-
clude mutex arcs. An activator mutex occurrence net (or AMO-net) is a tuple AMON =
(P ′, T ′, F ′,Act ′,Mtx ′, �) such that und(AMON ) = (P ′, T ′, F ′,Act ′, �) is the AO-net
underlying AMON and Mtx ′ ⊆ T ′ × T ′ is a symmetric irreflexive relation specifying
a set of mutex arcs. Moreover, it is assumed that

�AMON = (T ′,≺loc,�loc,Mtx ′) ,
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where ≺loc and �loc are defined as for und(AMON ), is a pre-GSO-structure. We then
define gsos(AMON ) = �gsoAMON to be the GSO-structure induced by AMON . The step
sequences steps(AMON ) of AMON are defined as for und(AMON ), except that the
definition of a step takes into account mutex arcs. The default initial and final markings
of AMON , as well as its step sequence executions are defined as for und(AMON ).

The way �AMON deals with the mutex arcs is illustrated in Figure 12(b). We have
there three transitions satisfying t �loc v �loc w �loc t. Hence, in any execution
involving all these transitions, they have to belong to the same step. This, however, is
inconsistent with a mutex arc between v and w, and �AMON fails to be a pre-GSO-
structure as (t, t) belongs to �∗

loc ◦ (Mtx ′∩ �∗
loc) ◦�∗

loc .
Processes of an ENAM-system are similar to those of the underlying ENA-system

extended with appropriate treatment of mutex arcs. A process of ENAM is an AMO-
net AMON such that und(AMON ) is a process of und(ENAM ) and, in addition,
Mtx ′ = {(t, v) | (�(t), �(v)) ∈ Mtx}. We denote this by AMON ∈ proc(ENA).

Process generation from a given step sequence is also based on that introduced for
EN-systems. The AO-net procENA(σ) generated by a step sequence σ = U1 . . . Un

of ENAM is the last element in the sequence AMON 0, . . . ,AMON n, where each
AMON k = (Pk, Tk, Fk,Actk,Mtxk, �k) is an AMO-net with the components con-
structed as in the definition for procund(ENAM )(σ) and, in addition:

Mtxk = {(e, f) ∈ Tk × Tk | (�k(e), �k(f)) ∈ Mtx} .

p1

p4

p5

p3

p2

p4

p6

p1

p7

a m

g c

Fig. 18. An AMO-net AMON 0

Figure 18 depicts an AMO-net labelled with places and transitions of the ENAM-system
of Figure 16. We have that both agcm and agmc belong to φ(steps(AMON 0)), how-
ever, ag{m, c} does not. The AMON-net shown in Figure 18 is a process of the ENAM-
system of Figure 16 with φ(steps(AMON 0)) = {agmc, agcm}. Figure 19 shows the
result of applying the process construction to the ENAM-system of Figure 16 and one
of its step sequences. Note that the resulting AMO-net is isomorphic to that shown in
Figure 18.

The way in which mutex arcs are added in the process construction means that some
may be superfluous. For instance, the transitions they join may be causally related.
Analysing paths in the AMO-net would make it possible to eliminate such redundant
mutex arcs. This, however, would be against the locality principle which is central to the
process approach as it would compromise the local causes and effects in the definition
and construction of process nets.
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Fig. 19. Process procENAM0
(σ) generated for ENAM 0 and step sequence σ = {a}{g}{m}{c}

The semantical properties formulated in Section 5 can be established also for ENAM-
systems. Referring to the notation used in Figure 5, we have the following, where
ENAM is an ENAM-system, AMON an AMO-net, (σ, �) a labelled step sequence, gsos
a GSO-structure, and Σ a set of labelled singular step sequences with the same domain:

PN are ENAM-systems EX are step sequences
LAN are AMO-nets LEX are labelled singular
LCS are labelled GSO-structures step sequences

ω(ENAM ) is steps(ENAM ) α(ENAM ) is proc(ENAM )
λ(AMON ) is steps(AMON ) πENAM (σ) is procENAM (σ)
φ(σ, �) is �(σ) κ(AMON ) is gsos(AMON )
ε(gsos) is steps(ext(gsos)) ı(Σ) is

⋂
gsos(spo(Σ)).

It can be shown that Properties 1–4 hold. Below ENAM is an ENAM-system and σ
its step sequence, AMON is an AMO-net, gsos is an SO-structure, and Σ is a set of
singular step sequences with the same domain. (Note that Fact 28 follows from Facts 5
and 10.)

Fact 26. steps(ENAM ), proc(ENAM ), steps(AMON ) and steps(ext(gsos)) are non-
empty sets. Moreover, gsos(AMON ) and

⋂
gsos(spo(Σ)) are GSO-structures, and

procENAM (σ) is an AMO-net.

Fact 27. procENAM (σ) is a process of ENAM . Moreover, if AMON is a process
of ENAM and σ′ ∈ φ(steps(AMON )), then σ′ ∈ steps(ENAM ) and AMON =
procENAM (σ′).

Fact 28. gsos =
⋂
gsos(steps(ext(gsos))).

Fact 29. steps(AMON ) = steps(ext(gsos(AMON ))).

Hence we can claim the semantical aims for ENAM-systems.

Fact 30. Let ENAM be an ENAM-system, and AMON be an AMO-net.

proc(ENAM ) = procENAM (steps(ENAM ))

steps(ENAM ) = φ(steps(proc(ENAM )))

gsos(AMON ) =
⋂
gsos(steps(AMON )) .
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9 Place/Transition Nets

Place/Transition nets [26] (or PT-nets) are the basic class of Petri nets suited for the
study of systems in which multiplicity of resources matters.

A PT-net is a tuple PT = (P, T, F,Minit ) such that (P, T, F ) is its underlying net,
and Minit is the initial marking of PT , where a marking in this case is any multiset
of places, i.e., a mapping M : P → N = {0, 1, 2, . . .}. Most notions concerning
the structure and graphical representation of PT-nets are the same as for EN-systems
except that a marking M is represented by displaying M(p) tokens in each place p.
More important changes concern the execution semantics which extends that defined
for EN-systems.

A step U of PT is any multiset of transitions, i.e., U : T → N. Such a step is enabled
at a marking M if, for every place p, the current marking M provides enough input
tokens for each occurrence of a transition in U , thus M(p) ≥

∑
t∈p• U(t). Executing

an enabled step leads to the marking M ′ such that, for every place p,

M ′(p) = M(p)−
∑
t∈p•

U(t) +
∑
t∈•p

U(t) .

We denote this, as before, by M [U〉M ′. The notions of firing sequence, step sequence,
marking reachability and reachability graph, are then defined similarly as in the case of
EN-systems. Figure 20 depicts three PT-nets such that:

fseq(PT 0) = {. . . , amamamam, . . .}
Minit [gu{g, a}{u,m}am〉Minit (in PT 1)

steps(PT 2) = {. . . , a{g, g}mama{u, u}{g, g}, . . .} .

As in the case of EN-systems, marking reachability in PT-nets does not depend on
whether one uses firing sequences or step sequences. This follows from the fact that
if U and U ′ are two steps satisfying M [U + U ′〉M ′ then M [UU ′〉M ′, where U + U ′

is the multiset sum of U and U ′. As a consequence, every step of transitions occur-
ring at a marking can be split into any sequence of subsets forming a partition of
this set, and each such step sequence leads to the same marking as the original step.
However, the reverse implication does not, in general, hold. For example, if one takes
the PT-net in Figure 23(a), then we have Minit [ab〉{p2, p4} and Minit [ba〉{p2, p4} but
Minit [{a, b}〉{p2, p4} is not a valid execution. Moreover, the relation between transi-
tion occurrences is not structural, but depends on the current marking: with two tokens
in p5 in Figure 23(a), the transitions a and b would be concurrently, i.e., as a step,
enabled.

As before, processes formalise the idea of a concurrent run. Interestingly, occurrence
nets provide the basis for the process definition of PT-nets in the same way as they did
for EN-systems. We only need to take into account the potential multiplicity of tokens
in PT-nets. This is done by giving each occurrence of a token its own place in the
occurrence nets. A process of a PT-net PT is an occurrence net ON with labelling �
which:
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Fig. 20. PT-nets modelling three final versions of the producer/consumer system: PT 0 with an
unbounded buffer (the number of tokens in place p3 can grow unboundedly); PT 1 with a two-
place buffer (the number of tokens in place p3 can be at most two); and PT 2 with an unbounded
buffer and two consumers (represented by the two tokens in place p5)

– labels places of ON with places of PT .
– labels transitions of ON with transitions of PT .
– labels exactly Minit (p) places of MON

init with p, for every place p of PT .
– is injective on •t and t• and, moreover, �(•t) = •�(t) and �(t•) = �(t)•, for every

transition t of ON .

We denote this by ON ∈ proc(PT ). The occurrence net ON in Figure 21 is a process
of PT-net PT 2 in Figure 20.

The main difference with definition of processes of EN-systems is that now the la-
belling of a process is not required to be injective on the default initial marking which
is meant to represent the initial marking. In general, Fact 14 does not hold for processes
of PT-nets. For example, the process in Figure 21 allows the following sequence of
executions:

{q1, q2, q3, q4}[t1〉{q2, q3, q4, q5, q6}[{t2, t3}〉{q5, q7, q8} ,
with �(q7) = �(q8) = p6 and �(t2) = �(t3) = g.

Defining a process for a given step sequence σ of a PT-net PT is a straightforward
extension of the construction for EN-systems. An occurrence net generated by a step
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Fig. 21. A process ON of the PT-net PT 2 in Figure 20

sequence σ = U1 . . . Un of PT is the last element in the sequence ON 0, . . . ,ON n,
where each ON k is an occurrence net (Pk, Tk, Fk, �k) constructed in the following
way.

Step 0 P0 = {pi | p ∈ P ∧ 1 ≤ i ≤Minit (p)} and T0 = F0 = ∅.
Step k Given ON k−1, the nodes of ON k are given by:

Pk = Pk−1 ∪ {pi+�p | p ∈ P ∧ 1 ≤ i ≤
∑

t∈•p Uk(t)}
Tk = Tk−1 ∪ {ti+�t | t ∈ T ∧ 1 ≤ i ≤ Uk(t)} ,

where again the label of each node xi is set to be x, and x denotes the number of
the nodes of ON k−1 labelled by x.
To define the arcs, we proceed as follows. For every e = ti ∈ Tk \Tk−1, we choose
two sets of conditions, Ine ⊆ M

ONk−1

fin and Oute ⊆ Pk \ Pk−1, such that Ine

comprises a distinct condition pm for each place p ∈ •t while Oute comprises a
distinct condition ql for each place q ∈ t•. Moreover, for any e 
= f ∈ Tk \ Tk−1,
Ine ∩ Inf = ∅ and Oute ∩Outf = ∅. Then:

Fk = Fk−1 ∪
⋃

e∈Tk\Tk−1

(Ine × {e}) ∪ ({e} ×Oute) .

We denote this by ON n ∈ procPT (σ).
Note that since there may be more than one choice of suitable Ine’s, in general, more

than one process can be constructed for a given step sequence σ. The above construction
is illustrated in Figure 22 for PT-net PT 2 of Figure 20. The resulting occurrence net is
isomorphic to ON of Figure 21 which, as we already noted, is a process of PT 2.

The detailed development of the process semantics of PT-nets can be carried out
along the same lines as was done for EN-systems earlier in this paper, with some
straightforward modification resulting from the multiset — rather than set — nature
of markings and executed steps. It is also possible to extend the treatment of PT-nets
to include weighted arcs and (weighted) activator and inhibitor nets, using AO-nets as a
process model, following what was done for ENA-systems and ENI-systems (see, e.g.,
[19,20]).
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Fig. 22. Deriving a process for PT 2 and its step sequence σ = {a, g}g

Mutex Arcs and Self-Loops

In PT-nets, in contrast to EN-systems, mutex arcs can be represented by self-loops con-
nected to a place marked with a single token, as shown in Figure 23(a, b). From a mod-
elling perspective, there appears to be no real difference. Semantically, however, the
differences can be significant as mutex arcs represent concurrent histories in a more
compact way. This could have an impact on net unfoldings used for model check-
ing. For example, the single process in Figure 23(c) derived for the representation
of Figure 23(b) has to be replaced by two processes derived for the representation of
Figure 23(a) depicted in Figure 23(d).
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Fig. 23. Mutex arcs can lead to more condensed process semantics than self-loops

10 Concluding Remarks

This paper is an introduction to the many issues fundamental to understanding con-
current behaviour. Here we have concerned ourselves with different forms of causality
induced by extensions to the basic structure of Petri nets and leading to relational struc-
tures extending the classical partial order approach. There are several strands of related
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research which have not been described here. For instance, we have not considered the
modelling of conflicts between enabled transitions. Our processes and their abstractions
(partial orders) model concurrent runs in which conflicts have already been resolved.
Branching processes of Petri nets [3] model all possible choices and lead to a single un-
folding representing all runs of the net model. They are actually the basis for efficient
verification techniques [5,18,23]. If, in addition, one abstracts from state information
and only considers relations between events, the result is the more abstract model of
event structures [9,25,29], that can be used to study fundamental concepts of concur-
rency in a model-independent way. As far as we are aware, event structures have not yet
been enriched with weak causality and commutativity relationships, and we consider
such extensions a relevant, and indeed exciting, topic of future research in this area.

Finally, an abstraction not considered here at all, usually referred to as trace the-
ory [2] initiated in [22], allows one to group together sequential observations on the
basis of reordering of concurrent (independent) events. The resulting model of trace
monoid captures precisely the semantical treatment of EN-systems outlined in this pa-
per. For the extended models of ENI/ENA-systems, one needs to use the extended model
of comtraces introduced in [14]. The last extension of EN-systems considered here, i.e.,
ENAM-systems, calls for the even more elaborate model of generalised comtraces [16].
It should then not come as a surprise that PT-nets require a different kind of extensions
of the basic trace monoid, initiated through the work on local traces of [8]. An exten-
sive account of the intrinsic relationships between various concurrency monoids and
different net classes can be found in [11].
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Abstract. This tutorial is an introduction to compositionality and ex-
ternally observable behaviour. To make it easier to understand system
descriptions, traditional process-algebraic languages have been replaced
by state machines represented as annotated directed graphs. Emphasis
is on a novel way of treating local variables, and on the Chaos-Free Fail-
ures Divergences semantics. Even so, big themes that are not tied to
any particular semantics are pointed out where possible. Other semantic
models are introduced briefly. Most important verification methods fa-
cilitated by compositionality are mentioned with pointers to literature.
Mathematical details are given less attention but not left out altogether.
Throughout the tutorial, important principles are summarized in framed
pieces of text.

1 Introduction

External behaviour, or externally observable behaviour, is the behaviour of an
entity as seen at its interface, without seeing inside the entity or its other inter-
faces. For instance, when withdrawing cash from an automated teller machine
(ATM), the user enters her bank card into the slot, types something, gets or does
not get money, and gets the card back, and later she sees from the statement
that the balance of her account has reduced accordingly. The user does not see
the telecommunication between the ATM and the central computer of the bank,
and she does not see that the computer checked whether her account had enough
money. For another instance, a C++ program sees the C++ standard library
std::map as something to which (key, value)-pairs can be added, accessed via the
key, and removed, but the program does not see the red/black-tree operations
that take place inside.

Computer science and software engineering favour abstraction and the de-
scription of things in implementation-independent ways. In the case of data
structures, this desire has led to the development of abstract data types and
specification methods for them, such as algebraic data types. Things become
much more difficult with concurrent systems (we will see in Sect. 5.7 that non-
determinism is the culprit). This has led to the development of hundreds of
different notions of external behaviour of concurrent systems. Fortunately, there
are many common ideas and unifying themes. This tutorial is an introduction

K. Jensen et al. (Eds.): ToPNoC VII, LNCS 7480, pp. 255–299, 2013.
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to central insights in theories of the externally observable behaviour of concur-
rent systems. Many of the presented ideas are very well-known, but we will also
discuss some that seem less well-known.

Every theory and every tutorial has its limits. This one concentrates on in-
terleaving concurrency and lacks the aspects of real-time and probabilities. One
might also complain that only the process-algebraic view is presented. However,
this is because there seem to be no alternatives: the vast majority of articles
on the external behaviour of concurrent systems are either openly or implicitly
based on process-algebraic ideas. It seems to the present author that although
the process-algebraic languages are definitely artificial and can be replaced by
other notations (as we will do), at the semantic level process algebras have found
something universally valid. On the other hand, although the theory of recursive
process expressions has received a lot of attention in the literature, it is essen-
tially absent from this tutorial. This is because it is not needed for discussing
compositionality and external behaviour. It is also quite difficult.

There are many extensive treatments on process algebras, including
[13,20,23,25]. Also the present author has published two tutorials [30,34] and
touched the topic in [32]. It is reasonable to ask whether the world needs yet
another one. After reading many papers and submissions over the years, it seems
to the present author that many researchers try to re-invent results in the field,
without realizing that a lot exists already. Perhaps this is because external be-
haviour, and its close friend compositional analysis, are very natural and de-
sirable goals; but much of the literature on process algebras seems, at the first
sight, to present hard theories with a narrow scope instead of material that the
reader could apply to her own situation.

This suggests that there is a need for a tutorial that presents the big picture or
roadmap in an easily accessible way, without unnecessarily requiring its readers
to dwell in tricky details that process-algebraic theories abound. (This does not
mean that tricky details could be avoided altogether.) This tutorial tries to be
such. The readers will decide whether it succeeds.

Writing this tutorial also gave the chance to discuss some ideas that have re-
ceived little attention although the present author believes that they are funda-
mental. Finally, the treatment of local variables of state machines in this tutorial
has not been published before, excluding some sketchy preliminary versions. It
is largely similar to well-known approaches, but uses so-called “data manipula-
tion relations” to separate semantics from syntax. It is therefore given a lot of
attention, while material that can be found in earlier tutorials is discussed more
briefly.

Big themes in a research field tend to become apparent gradually. Often there
is no well-defined first paper, where some idea has first been presented in a clear
form. For instance, after many enough papers it has just become more or less
common knowledge that alphabet-based synchronization is “the” fundamental
notion of parallel composition, because it is simple and (as we will see in Sect. 4)
universal in the sense that other common parallel composition operators can be
constructed from it, but not always vice versa. For this reason, this tutorial does
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ci
co

w〈N〉
g〈N〉
nm
lc

ATM

Sq〈N〉
Sdone

Rq〈N〉
Rdone

Ry〈N〉
Rno

Sy〈N〉
Sno

CH1

CH2

r〈N〉
ucBANK

Fig. 1. A simplified cash dispenser system

not contain many references. Some of the given references point to recommended
further reading and not necessarily to the original publications.

Section 2 presents the formalism that we will use for describing concurrent
systems: state machines with local variables. It also presents a running example
that will be used throughout this tutorial. The behaviour of a state machine is
the topic of Sect. 3. The section also covers what it means for two behaviours
to be equivalent at a detailed level. In Sect. 4 we will discuss the composition
of a system from interacting state machines and the behaviour of the result.
Behaviour at an abstract level is a central topic in process algebras. It is dis-
cussed in Sect. 5. The most well-known semantic models are introduced and
CFFD-semantics is discussed in more detail. The section also briefly introduces
verification techniques related to compositionality. Section 6 comments on the
state of the art. Throughout the tutorial, important principles are informally
summarized in boxes.

2 State Machines

In this tutorial, systems are presented as collections of interacting state machines.
In this section we concentrate on individual state machines. We first illustrate
them with the aid of an example system and then present a formal definition. In
the meantime, we also comment on subtleties in the operation of the example
system. Finally, we briefly introduce an issue that is of secondary importance
for this tutorial but very important in the verification of concurrent systems in
general: state propositions.

2.1 A Cash Dispenser System

Our example system is a simple cash dispenser system. Let us first discuss its
overall design and operation. The system is shown in Fig. 1. It consists of an auto-
mated teller machine (ATM), a bank computer, and telecommunication channels
between them. It models how a user can withdraw money and how that affects
the balance of her account. To keep the example simple, we only model one user
and account, and leave out many details such as user authentication.

Let N = {0, 1, 2, . . .} denote the set of natural numbers. The operation starts
when the user puts in her bank card (ci for card in). Then she types the amount
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ci w?x Sq!x

Ry?x

cog!x

Sdone

Rno

nm

co lc

x x

x
[z > b]→

Sno
Rq?z

[z ≤ b]→
Sy!z

Rdone

r!z

b := b− z

uc

b

b, z b, z

b, z

Fig. 2. The ATM and BANK state machines

of money she wants to withdraw (w〈N〉). The amount is represented as a natural
number parameter of w. Such parameters are called event parameters in this
tutorial. Event parameters are thus the values that are communicated between
state machines and/or the environment of the system during an event.

ATM sends the bank a query whether the user can withdraw that much money
(Sq〈N〉). CH1 either delivers the query to the bank (Rq〈N〉) or loses it. The bank
computer checks the balance of the account and sends back the answer “yes” or
“no” via CH2. The yes-answer carries a number indicating the amount of money
for a reason that we will explain in Sect. 2.3. Also CH2 may lose messages.

Depending on the answer, ATM either gives the money to the user (g〈N〉) or
replies that the user does not have enough money (nm). To prepare for losses of
messages, ATM has a timeout mechanism that may make it abort the transaction
and tell the user that connection was lost (lc). In any case, ATM gives the user the
card back (co). If ATM gave the user the money, it informs the bank by sending
the message “done”. When the bank receives it, it reduces the balance of the
account accordingly (r〈N〉). If the bank waits for “done” in vain, a timer triggers
and makes the bank record that the outcome of the transaction is uncertain
(uc) and someone must go to the real physical ATM to check its transcript. The
rationale of these details will be discussed in Sect. 2.3.

2.2 State Machines of the Cash Dispenser System

Figure 2 shows the ATM and BANK state machines. Our notion of a state
machine is pretty much like a coloured Petri net with precisely one token and,
consequently, precisely one input and output arc for each Petri net transition.
The states (drawn as circles or ovals) correspond to Petri net places and the
transitions (arrows) correspond to Petri net transitions and arcs. Together they
show when the ci, w〈20〉, etc., events can take place. The initial state is indicated
with a short arrow that does not start at a state. It corresponds to the Petri net
place where the only token is initially.

Figure 1 has w〈N〉, because it does not tell who decides the amount of money
that is withdrawn, while Fig. 2 has w?x to indicate that ATM is ready for just
any amount, and that amount will be stored in variable x of the next state.
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Sq?x

Rq!x

τ

Sdone

Rdone

τ
x

Sy?x

Ry!x

τ

Sno

Rno

τ
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Fig. 3. The CH1 and CH2 state machines

The execution of a transition is called event. In an event the former syntax is
used and N has been replaced by a natural number, like in w〈20〉. In the case
of g!x the amount of money is determined by ATM and is, of course, the same
as the value of x in the preceding state. In terms of coloured Petri nets, roughly
speaking, in the case of ! the variable is present in the inscription of the input
arc of the Petri net transition, while ? corresponds to the output arc. We will
discuss ! and ? in more detail in Sect. 4.1.

The variable x only exists in some states. This is not fundamental, because
we could extend the type of x by an additional value “undefined” and let x have
that value in the remaining states, or we could just let x keep its most recent
value when its value does not matter. On the other hand, drawing x into only
some states makes it explicit when the value of x is and is not significant. This
helps sometimes understanding systems. The issue is similar to a coloured Petri
net token having some data component in some places and not having it in some
other places. We will explain in Sect. 2.3 why x is not present in the start state
of the lc-transition.

BANK has two variables, b for the balance and z for temporary storage. The
notation [z > b]→ indicates that the transition is possible only if z > b, that is,
the user asked for more money than her bank account has. Such conditions are
called guards, and they correspond to guards in coloured Petri nets. Obviously
b := b − z models the updating of the balance. In coloured Petri nets, the same
effect is obtained by specifying the value of a component of an outgoing token
with a function on the output arc.

Figure 3 shows the channels. Here our notation is not optimal, because we had
to draw the same theme twice in CH1, once for q〈N〉 and once for done. However,
this is notational inconvenience and not important for our goal that emphasizes
semantics. The label τ is a special label that denotes that the execution of the
transition is not directly observable by anything outside CH1. We say that τ is
the invisible action. Here τ -transitions model losses of messages. CH2 is similar.
It could be made from CH1 with the renaming operator of Sect. 4.3.

The examples demonstrate that state machines may have local variables and
sequential computation with them. There are no shared variables in our formal-
ism. This does not imply loss of generality, because one can represent shared
variables as state machines with local variables. Indeed, CH1 and CH2 are ex-
amples of this. We will see an even more direct example in Fig. 7.

Interaction and communication between state machines belongs to Sect. 4.1,
but the basic principle must be told here to be able to discuss the behaviour of
the cash dispenser system as a whole. We say that ci, w, and so on are gates.
Every state machine has an associated set of gates, and many state machines
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may share the same gate. In Fig. 1, the gates of the cash dispenser system are
shown by lines and their labels (excluding the “〈N〉”-parts).

To execute a transition whose label is or starts with a gate name, all state
machines that are connected to that gate must execute a transition with that
gate name simultaneously, and the numbers and values of event parameters
must match. For instance, if ATM wants to execute Sq〈10〉, then also CH1 must
execute Sq〈10〉. If CH1 is not ready to execute it, then ATM cannot execute it
either. On the other hand, if a transition is labelled with τ , then it is executed
by that state machine alone.

In terms of coloured Petri nets, this resembles the fusion of transitions that
have the same gate name, except that τ -transitions are not fused. Furthermore,
fusion is made in all combinations where precisely one transition with the given
gate name is picked from each participating state machine. So, if A has two
a-transitions, B has four, and C has three, then there are 2 · 4 · 3 = 24 fused a-
transitions. Finally, event parameters do not have a direct counterpart, although
similar effects may be obtained by using the same coloured Petri net variable
name in more than one fused transition.

The set of gates of a state machine must contain all gates referred to by
the transitions of the state machine, and it may contain more. The presence of
unused gates in the set of gates is significant, because it prevents the neighbour
state machines from executing transitions with those gate names. One may argue
whether this is an undesirable feature of the theory, but at least it is so difficult
to change that it is better to leave it like that. This is because if the set of gates
were defined as the set of used gates, one could cheat by adding an extra, always
disabled transition with any desired gate name. It is more transparent to allow
the user put extra gates to the set of gates if she wishes.

2.3 Remarks about the Behaviour of the Cash Dispenser System

We already discussed the two main sequences of events of the cash dispenser
system: successful withdrawal of money and failure because of not having enough
money. We also pointed out that messages may be lost, but ATM recovers from
that by executing lc and BANK recovers with uc. The latter deserves a comment.

Ideally, we would like BANK to always get the right idea about whether the
money was given to the user. Unfortunately, sending “yes” to ATM does not
guarantee that the money is given, because “yes” may be lost in the channel,
causing ATM to report loss of connection and not give the money. The “done”
message prevents BANK from incorrectly reasoning that the money is given,
but introduces the possibility of the opposite type of error, that is, incorrectly
reasoning that the money was not given. It is common knowledge in telecom-
munication that in this kind of a situation, wrong conclusions cannot be fully
avoided if a protocol that always eventually terminates is used. Wrong conclu-
sions can be fully avoided if BANK may ask ATM about the outcome again and
again until it receives an answer, but that may lead to a never-ending sequence
of messages.
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Fortunately, we can rule out one of the two types of wrong conclusions. We
chose to prevent the one where ATM does not give the money but the account
is charged. Furthermore, when the system gives the money without charging
the account, the warning uc is always issued, so the people in the bank can
go to the physical ATM, check the situation, and fix the balance afterwards.
Unfortunately, there will also be false uc alarms.

Another subtle issue is the presence of the amount in the “yes” message
and its absence in the start state of the lc-transition of ATM. Their purpose
is to prevent the following and similar sequences of events. The user starts a
transaction. The BANK computer is busy, and sends “yes” so slowly that the
timer in ATM triggers and ATM executes lc before the “yes” arrives. The user
reads the reply by ATM carelessly and thinks that she tried to withdraw too
much money. Therefore, after getting the card back, she puts the card in again
and types a new, smaller amount to withdraw. ATM sends the corresponding
query, but it is lost. Next the delayed “yes” message arrives. If it lacked the
amount information, ATM would interpret it as a “yes” to the new amount.
So it gives the card and money, and sends “done”. BANK receives “done” and
charges the original amount from the account, which is different from what was
given to the user.

So the purpose of the presence of the amount in the “yes” messages is to
guarantee that the given amount is always the same as the charged amount (if
it is charged). The start state of the lc-transition does not need the amount,
because it is picked from the “yes” message.

The subtleties discussed above may make the reader wonder whether we have
ruled out all errors. We have not, but fortunately there are verification tools.

2.4 Formal Definition of State Machines

In this subsection we will define state machines formally. To avoid having to
define the language used in the guards and assignments of transitions, and to
get a much more general theory than allowed by the simple notation that we
have discussed, we will introduce abstract data manipulation relations. The !-, ?-,
[· · ·]→-, and :=-notation will be interpreted as a handy practical representation
for a subset of the data manipulation relations, useful for presenting examples.

Each state machine has the set of types used by it, denoted with Θ. Formally,
a type is just a nonempty set. For instance, the set of natural numbers is a
commonly used type. Each variable of each state has a type from Θ.

It would seem natural to give a type also to each event parameter of each
transition, and we often do so in examples. However, it will become evident in
Sect. 4 that it is better that the formal definition does not pay attention to
the internal structure of the labels of events. Therefore, labels of events will be
formalized as arbitrary symbols called actions, and types will not be needed for
that. We have already mentioned that the invisible action τ has a special role.
The remaining actions are visible. The set of them will be called the alphabet
and denoted with Σ. We stipulate that τ /∈ Σ.
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For instance, the alphabet of BANK could usually in practice be chosen as
{ r〈0〉, r〈1〉, r〈2〉, . . . , uc,Rq〈0〉,Rq〈1〉, . . . ,Rdone, Sy〈0〉, Sy〈1〉, . . . , Sno}. However,
this relies on the assumption that all transitions of all state machines have the
correct number and types of event parameters. To see what might go wrong if
this does not hold, assume that there is also a state machine that represents the
user of the cash dispenser system. The user can execute g〈20〉, that is, get 20
units of money, only when ATM is ready for that. However, if g〈20.5〉 is in the
alphabet of the user but not in the alphabets of the other state machines, then
the user can get 20.5 units of money any time at will! Therefore, in the presence
of event parameters, the precise alphabet of a state machine is Γ × U∗, where
Γ denotes the set of gates and U denotes the set of all data values used by the
system.

Referring to the names of variables in the formal definition would be clumsy.
Therefore, for each state s, we assume that its variables are listed in some order
and rely on their positions in this order. The types of the variables of s can now
be specified as a Cartesian product T (s) of types. For instance, if s has variables
n, b, and x of types int, bool, and float, and if we choose to list them in this
order, then T (s) = int×bool×float. To handle states that have no variables,
we denote the empty list of variable values with 〈〉. Thus, if s has no variables,
then T (s) = {〈〉}. With Θ× we denote the set of all finite Cartesian products
of types, that is, the set of all T1 × · · · × Tn where n is a natural number and
Ti ∈ Θ for 1 ≤ i ≤ n. So T (s) ∈ Θ×, and {〈〉} is the element of Θ× that results
from n = 0.

Of course, the state machine has a set of states S and an initial state ŝ. The
initial values of the variables of the initial state are listed by v̂. So v̂ ∈ T (ŝ). In
some applications, more than one initial state or more than one possible initial
value for a variable would be useful, but we do not present that possibility in
our formal definition, to avoid making it more complex.

The most complicated part is the set Δ of transitions. Each transition is a
tuple (s,R, s′), where s is the start state and s′ is the end state of the transition.
R is the data manipulation relation and will be discussed next.

Let v1, . . . , vn denote the values of the variables of s before executing the
transition. Similarly, let w1, . . . , wm be the values of the variables of s′ after the
transition. So 〈v1, . . . , vn〉 ∈ T (s) and 〈w1, . . . , wm〉 ∈ T (s′). Let a be the action,
that is, the label of the event. When the ?-, etc., notation is used, a is the gate
name together with the values of the event parameters. The purpose of R is to
express the dependency between v1, . . . , vn, a, and w1, . . . , wm. For instance,
in the case of a!(v2 + 1)?w5, R must say that a = a〈p1, p2〉, where p1 = v2 + 1
and w5 := p2. If the transition also has the guard [v1 
= 1]→ and the assignment
w4 := 2v1, then R must also reflect their effect.

A natural first idea would be to let R be a collection of partial functions of the
gate name, v1, . . . , vn, and those event parameters that are specified with ?. The
functions would yield the values of all wi and the remaining event parameters.
They would be partial because of guards. However, sometimes modellers need
nondeterministic operations, like the assignment of a random value to a variable.
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Furthermore, some process-algebraic languages also feature conditions that test
the inputted values. Adding these facilities to partial functions would make the
formalism complicated. It is easier — and also more general — to let R be an
arbitrary relation.

Therefore, R is defined as a relation on T (s) × (Σ ∪ {τ}) × T (s′). Assume
that the state machine is in state s, and the values of the variables of s are
v1, . . . , vn. The state machine is ready to execute the transition with event
name a to state s′ yielding its variables the values w1, . . . , wm if and only
if R(v1, . . . , vn, a, w1, . . . , wm) holds. To avoid clumsy formulas, we abbreviate
v1, . . . , vn and w1, . . . , wm to v̄ and w̄. There may be many a and w̄ with which
R(v̄, a, w̄) holds with the current values of the vi. Most importantly, ?w5 at event
parameter position 2 allows many values for the second event parameter and w5,
as long as they both have the same value. The transition may thus have many
instances. Many instances of the same transition is the same thing as many
bindings of a coloured Petri net transition.

The same behaviour can often be expressed as one transition or as many alter-
native transitions between the same states. That is, the transitions (s,R1, s

′) and
(s,R2, s

′) yield together the same behaviour as the transition (s, (R1 ∨R2), s
′).

For instance, the bottommost transition of BANK could be replaced by two
transitions labelled [z < b]→ Sy!z and [z = b]→ Sy!b. It is not significant whether
some behaviour is represented by one or more transitions.

We say that a data manipulation relation R is empty if and only if R = ∅,
that is, R ⇔ False. A transition with an empty R is never enabled. It could as
well be removed from the state machine.

When expressing data manipulation relations mathematically using variable
names, there is a problem: the previous and the next state may have a variable
with the same name. For instance, each state of BANK has a variable called b.
Therefore, to make it explicit whether we mean a v̄-variable or a w̄-variable, we
write : after the name of the latter. The effect of the topmost transition of BANK
on b can thus be written as b− z = b:, or, equivalently, b: = b− z. Considering :
as a separate token we can use spaces differently and write b := b − z. This
looks familiar and has the expected meaning. This is why we chose : as the
“afterwards” specifier. In many other notations, the “afterwards” specifier is ′,
like in b′ = b− z.

It is common that a variable inherits its value from a variable with the same
name in the previous state. This could be expressed as x: = x, or as x := x.
However, having to write and read a lot of that would be clumsy. Therefore, the
?-, etc., notation has an implicit assumption that if the value of a variable is not
specified with ? or :=, and if also the previous state has a variable with the same
name, then the variable gets the value of its namesake.

We are ready to present the formal definition.

Definition 1. A state machine is a tuple (S,Θ, T , Σ,Δ, ŝ, v̂), where S is a set;
Θ is a set of nonempty sets; T is a function from S to Θ×; ŝ ∈ S; v̂ ∈ T (ŝ); Σ
is a set such that τ /∈ Σ; and Δ is a set of tuples of the form (s,R, s′), where
s ∈ S, s′ ∈ S, and R ⊆ T (s)× (Σ ∪ {τ})× T (s′).
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In the sequel, we will have to talk about the reachable part of a state machine.
It means the state machine induced by the states and transitions to which there
are paths from the initial state. It is obvious that only the reachable part is
relevant for the behaviour of the state machine. However, the reachable part
is only an upper approximation to the relevant part, because, for instance, the
guard of some transition may be equivalent to False. The precise relevant part
is not necessarily easy to recognize. For instance, adding the guard [z = b+ 1]→
to the rightmost transition of BANK would make the top right corner state of
BANK irrelevant, but that is not immediately obvious.

Definition 2. The reachable part of a state machine (S,Θ, T , Σ,Δ, ŝ, v̂) is the
state machine (S′, Θ, T ′, Σ,Δ′, ŝ, v̂), where T ′ is the restriction of T to S′, and
S′ and Δ′ are the smallest sets such that

– ŝ ∈ S′, and
– if s ∈ S′ and (s,R, s′) ∈ Δ, then s′ ∈ S′ and (s,R, s′) ∈ Δ′.

We will see in later sections that data manipulation relations are handy for the
development of the theory. They liberate the concurrency part of the theory al-
most completely from concrete syntax and similar issues. They are usually natu-
rally obtained from inscriptions written in languages for sequential computation.
Their idea is more or less implicitly present in many concurrency formalisms,
including coloured Petri nets. The following observation is at least implicitly
known by many researchers. It is worth emphasizing.

Data manipulation relations are a handy way of combining the language
for sequential computation to the theory of the behaviour of concurrent
systems.

2.5 State Propositions

Many concurrency formalisms (especially temporal logics) associate logical
propositions to states, such as “light is on” or “execution is in a critical section”.
They are called state propositions. We chose not to have state propositions in
our definition, again to avoid complexity. However, we will comment on them in
a couple of places.

In the absence of variables, they could be defined by associating to the state
machine a set Π of state propositions, and a function val : S → 2Π so that
val(s) is the set of state propositions that hold on s. In the presence of variables
the definition becomes more complicated, because also their values may affect
the truth value of a state proposition.

3 Concrete Behaviour

In this section we define the behaviour of a single state machine and demonstrate
that it is essentially a state machine without variables. We also introduce bisim-
ilarity and justify that it is a good notion for two behaviours to be equivalent at
a detailed level.
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Rq〈1〉 Rq〈2〉

Sy〈1〉
Sy〈2〉

Rdone Rdone

r〈1〉
r〈2〉

uc uc Rq〈1〉 Rq〈2〉

Sy〈1〉

Rdone

r〈1〉

uc

Sno

Rq〈1〉 Rq〈2〉

Sno Sno

2

2, 1

2, 2

2, 1

2, 2

2, 1

2, 2

1

1, 1

1, 2

1, 1

1, 1 0

0, 1

0, 2

Fig. 4. BANK unfolded assuming that the types of b and z are {0, 1, 2} and {1, 2}, and
initially b = 2

3.1 Formal Definition of Behaviour: Unfolding

Mathematically, the behaviour of a state machine or system of state machines
is represented as a labelled transition system, abbreviated LTS.

Definition 3. A labelled transition system is a tuple (S,Σ,Δ, ŝ), where S is a
set, Σ is a set such that τ /∈ Σ, Δ ⊆ S × (Σ ∪ {τ})× S, and ŝ ∈ S.

The reachable part of an LTS (S,Σ,Δ, ŝ) is the LTS (S′, Σ,Δ′, ŝ), where S′

and Δ′ are the smallest sets such that

– ŝ ∈ S′, and
– if s ∈ S′ and (s, a, s′) ∈ Δ, then s′ ∈ S′ and (s, a, s′) ∈ Δ′.

If Δ is obvious from the context, then (s, a, s′) ∈ Δ can also be written as
s−a→ s′.

The definition is thus otherwise the same as the definition of state machines,
but there are no Θ, T , and v̂ components, and the elements of Δ have an a
component instead of the R component. The components of the LTS have the
same names as with state machines, that is, ŝ is the initial state, and so on.

The behaviour of a state machine is obtained by unfolding. It resembles the
unfolding of a coloured Petri net to a place/transition net, and similar operations
are found also elsewhere in theoretical computer science. The states of the result
could be represented as (s, v̄), where s is a state of the state machine and v̄ is the
values of the variables of s. To avoid confusion with other tuple notation, we write
s〈v̄〉 instead. We also treat s and s〈〉 as synonyms. If the same s is encountered
with different variable values v̄ and v̄′, then the result will have different states
s〈v̄〉 and s〈v̄′〉. The initial state of the result is ŝ〈v̂〉. Only those s〈v̄〉 are included
in the result that may be reached by executing the state machine starting at the
initial state.

Figure 4 shows the behaviour of BANK with the types of variables replaced
by so small sets that the figure can be drawn. To help reading, the states are
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labelled with the v̄ — that is, the values of b or b, z. For instance, the three end
states of Rdone-transitions originate from the same state of BANK.

Let s〈v̄〉 be a state in the behaviour and (s,R, s′) a transition of the state ma-
chine. It generates a transition from s〈v̄〉 to s′〈w̄〉 with action a to the behaviour
if and only if R(v̄, a, w̄) holds. This transition is written as (s〈v̄〉, a, s′〈w̄〉) or
s〈v̄〉−a→ s′〈w̄〉. If there are event parameters and we want to show them, we
write the transition as (s〈v̄〉, a〈p̄〉, s′〈w̄〉) or s〈v̄〉−a〈p̄〉→ s′〈w̄〉, where p̄ denotes
the event parameters.

For instance, the Sy-transition of BANK is enabled only if z ≤ b, so corre-
sponding transitions start in Fig. 4 at those end states of Rq-transitions that
are labelled with “2, 1”, “2, 2”, and “1, 1”, but not at those labelled with “1, 2”,
“0, 1”, and “0, 2”. The transitions are labelled with Sy〈1〉 and Sy〈2〉.

Let us define the unfolding formally.

Definition 4. Let M = (S,Θ, T , Σ,Δ, ŝ, v̂) be a state machine. Its behaviour
B(M) is the reachable part of the LTS (S′, Σ,Δ′, ŝ′), where

– S′ = { s〈v̄〉 | s ∈ S ∧ v̄ ∈ T (s) };
– Δ′ = { (s〈v̄〉, a, s′〈w̄〉) | ∃R : R(v̄, a, w̄) ∧ (s,R, s′) ∈ Δ }; and
– ŝ′ = ŝ〈v̂〉.

It follows almost immediately from the definitions that if a state machine has
no variables, it is essentially its own behaviour. The biggest difference is that
while the state machine formalism allows to represent a set of transitions in one
bunch as (s,R, s′), the LTS formalism requires to present each of the transitions
individually. In the absence of variables we can let Θ = ∅. For convenience, we
denote also the void T and v̂ with ∅.

Proposition 5. Let (S, ∅, ∅, Σ,Δ, ŝ, ∅) be a state machine without variables.
Its behaviour is isomorphic to the reachable part of (S,Σ,Δ′, ŝ), where Δ′ =
{ (s, a, s′) | ∃R : R(a) ∧ (s,R, s′) ∈ Δ }.

Proof. In the absence of variables, v̂ and each v̄ collapse to the empty list of
values. The states of the behaviour are thus of the form s〈〉, where s is a state
of the state machine. In particular, ŝ′ = ŝ〈〉. The data manipulation relations
only have a-components. Therefore, the transition (s,R, s′) introduces precisely
the transitions (s〈〉, a, s′〈〉) to the behaviour, where R(a) holds. Finally, also the
definition of behaviour has restriction to the reachable part. �

We also want to demonstrate that the behaviour of any state machine (possibly
with variables) is essentially a state machine without variables. By definition, it
is an LTS. It suffices to show that for each LTS, there is a state machine without
variables whose behaviour is isomorphic to the reachable part of the LTS. We do
that next. In the construction, a separate state machine transition is made from
each LTS transition. The data manipulation relation of that transition is {a},
that is, the relation R such that R(a) holds and R(x) does not hold if x 
= a.
The correctness of the proposition is obvious.
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Proposition 6. Let (S,Σ,Δ, ŝ) be an LTS. Its reachable part is isomorphic to
the behaviour of the state machine (S, ∅, ∅, Σ,Δ′, ŝ, ∅), where Δ′ = { (s, {a}, s′) |
(s, a, s′) ∈ Δ }.

So the behaviours of state machines can be treated as state machines. This
unification of state machines with their behaviours gives the theory a lot of
power that we will enjoy in later sections.

The behaviour of a state machine is essentially a state machine with-
out variables, and the behaviour of a state machine without variables is
essentially the state machine itself.

3.2 Equivalence of Detailed Behaviours

From the point of view of externally observable behaviour, labels of events (i.e.,
actions) are important, but names of states are not. If one wants to look at prop-
erties of states during verification, then one must either use the state propositions
of Sect. 2.5, or reason the necessary properties from visible events. One may, for
instance, introduce the actions enter and leave to verify that two state machines
are not in their critical sections at the same time. We already utilised the in-
significance of state names in the previous subsection, by considering two LTSs
essentially the same if there is an isomorphism between their states.

However, isomorphism often fails to unify intuitively obvious instances of
“same behaviour”. For instance, consider Fig. 4. It seems clear that fusing the
two states at bottom right corner (the start states of Sno-transitions) does not
change the externally observable behaviour. Isomorphism cannot reflect that, be-
cause isomorphic LTSs always have the same number of states, and state fusion
changes the number of states.

Bisimilarity is an equivalence notion that is much better than isomorphism
in unifying intuitively equivalent behaviours, while it still avoids unifying be-
haviours when it should not unify. It is strictly weaker than isomorphism, that
is, isomorphic LTSs are always bisimilar, but bisimilar LTSs are not always iso-
morphic. Many researchers consider bisimilarity as the notion of “same behaviour
at the detailed level”. On the other hand, from the point of view of externally
observable behaviour, the detailed level is much less important than the abstract
level that we will discuss in Sect. 5. Therefore, bisimilarity is not a goal in itself
but only a useful technical tool on the way to the real goal. However, it is a tool
that one must master to understand concurrency.

Bisimilarity is sometimes called strong bisimilarity, to distinguish it from
“weak bisimilarity” that we will meet in Sect. 5.6.

Bisimilarity is defined between states. It could be defined between the sets
of states of two LTSs, but it is more flexible to define it between the states
of a single LTS, and apply it to two LTSs by first combining them into one
LTS by taking their disjoint union. Intuitively, taking the disjoint union simply
means drawing the two LTSs on the same sheet of paper and pretending that
they are two isolated regions of the same LTS (whose initial state is chosen
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arbitrarily). The formal definition of disjoint union is well-known and we skip it.
Two LTSs are bisimilar if and only if their initial states are and they have the
same alphabet.

To discuss the basic idea of bisimilarity, consider two bisimilar states s1 and
s2. An essential phenomenon in concurrency is nondeterminism, that is, a state
may have more than one output transition with the same action. The goal of the
definition of bisimilarity is to guarantee that whatever output transitions a state
has, the bisimilar state is able to simulate. That is, for each output transition
s1−a→ s′1 of s1, s2 must have an output transition with the same action a and,
furthermore, the futures after the original and simulating transitions must be
somehow the same. Let s2−a→ s′2 be that transition. The equivalence of futures
is ensured by building the definition so that also s′1 and s′2 will be bisimilar. Of
course, it is also required that whatever output transitions s2 has, s1 must be able
to simulate. However, it is not required that the mapping between transitions
and their simulating transitions is one-to-one; that is, a transition may simulate
and be simulated by many transitions.

The description above is not precise enough to qualify as a definition of bisim-
ilarity. For instance, the description would allow us to declare that s1 and s2
are bisimilar if and only if s1 = s2, which would obviously be against our goal.
Therefore, the formal definition of bisimilarity relies on the auxiliary notion of
bisimulation. Bisimulation is any relation on states that satisfies the above de-
scription. It can be proven that there is a unique weakest bisimulation (it is the
union of all bisimulations). This unique weakest bisimulation is the bisimilarity.

Definition 7. Let (S,Σ,Δ, ŝ) be an LTS. The relation “∼” ⊆ S×S is a bisim-
ulation, if and only if for every s1 ∈ S, s2 ∈ S, s ∈ S, and a ∈ Σ ∪ {τ} such
that s1 ∼ s2 the following hold:

– If s1−a→ s, then there is s′ ∈ S such that s2−a→ s′ and s ∼ s′.
– If s2−a→ s, then there is s′ ∈ S such that s1−a→ s′ and s′ ∼ s.

We say that s1 ∈ S and s2 ∈ S are bisimilar, if and only if there is a bisimulation
“∼” such that s1 ∼ s2.

We say that the LTSs (S1, Σ1, Δ1, ŝ1) and (S2, Σ2, Δ2, ŝ2) are bisimilar if and
only if Σ1 = Σ2, and ŝ1 and ŝ2 are bisimilar in the disjoint union of the LTSs.

The definition of the bisimilarity of LTSs requires that their alphabets must be
the same. This is because the alphabet determines whether the state machine
may prevent other state machines from executing transitions, as was discussed
in Sect. 2.2. It is thus essential from the point of view of neighbour LTSs.

If the formalism is extended with multiple initial states, then the condition
that ŝ1 and ŝ2 are bisimilar must be replaced with the following condition: every
initial state of the first LTS has a bisimilar initial state in the second LTS,
and vice versa. If the formalism is extended with state propositions, then the
requirement must be added that bisimilar states give the same truth values to
state propositions. For simplicity, we will not take these extensions into account
in the subsequent discussion.
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The following result could be easily proven with induction. It says that the
notion of simulation of single transitions given by the definition of bisimilarity
extends to arbitrary sequences of transitions.

Proposition 8. Let “∼” denote bisimilarity. If s0−a1→ s1−a2→ · · · −an→ sn
and s0 ∼ s′0, then there are s′1, s′2, . . . , s′n such that s1 ∼ s′1, s2 ∼ s′2, . . . ,
sn ∼ s′n and s′0−a1→ s′1−a2→ · · · −an→ s′n. A similar result holds for infinite
sequences s0−a1→ s1−a2→ · · ·.

It is not difficult to prove that bisimilarity indeed is an equivalence. To prove
that two states are bisimilar, it suffices to present a bisimulation that relates
them. Bisimulations are not necessarily equivalences. In particular, the empty
relation (the one where s1 ∼ s2 never holds, no matter what s1 and s2 are) is a
bisimulation. When checking whether two LTSs are bisimilar, only the reachable
parts matter, because, so to speak, the empty relation can be used elsewhere.
The empty relation cannot be used in the reachable parts because of the require-
ment that ŝ1 ∼ ŝ2. From this, Proposition 8 implies that the relation must be
nonempty throughout the reachable parts.

For any given finite LTS, there is a unique (modulo isomorphism) smallest
bisimilar LTS. It can be found by leaving out the unreachable parts and fusing
equivalent states in the reachable part. This can be done (at least in a mathe-
matical sense) also to infinite LTSs, but the result cannot be called “smallest”,
because it is not a well-defined concept with infinite objects. The fusion opera-
tion is defined below. The Δ′-part of the definition goes through all transitions
in Δ, but it would suffice to take one state in each [[s]] and go through just their
output transitions. This is because the definition of bisimilarity guarantees that
if one state in an equivalence class has an a-transition to an equivalence class,
then every state in the former equivalence class has an a-transition to the latter
equivalence class.

Definition 9. Let (S,Σ,Δ, ŝ) be an LTS, and let “∼” denote bisimilarity. Its
quotient modulo bisimilarity is the LTS (S′, Σ,Δ′, ŝ′), where

– [[s]] = { s′ | s ∼ s′ },
– S′ = { [[s]] | s ∈ S },
– Δ′ = { ([[s]], a, [[s′]]) | (s, a, s′) ∈ Δ }, and
– ŝ′ = [[ŝ]].

In the case of finite LTSs, the above construction can be done in O(|S| +
|Δ| log |S|) time [35]. (The algorithm in [8] has been influential but does not
meet this time bound.) This is fast enough for almost all practical purposes.
The construction can also be used for checking whether two states or LTSs are
bisimilar. This is a big difference from isomorphism, which is believed not to be
checkable in worst-case polynomial time.

Bisimilarity is a most appropriate notion of “same behaviour” at the
detailed level of behaviour.
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4 Putting State Machines Together

In this section we discuss how a system is put together from state machines.
We introduce three operators for that and then combine them into one flexible
operator. We discuss how the behaviour of the system is determined as a function
of the behaviours of its parts, and point out that the same behaviour can also be
obtained by first putting the state machines together. Then we comment on the
notions of input and output, and mention some other operators used in process
algebras.

4.1 Parallel Composition

Many different parallel composition operators have been defined in the literature.
The most suitable for our purpose can be called alphabet-based synchronization.
We define it first for LTSs.

The operator works as we discussed towards the end of Sect. 2.2. Each state
of the result is a tuple consisting of the states of the components. So the joint
LTS keeps track of the states of the component LTSs. The joint LTS executes a
transition labelled with τ when precisely one of the component LTSs executes
a τ -transition. If a 
= τ , the joint LTS executes an a-transition when precisely
those component LTSs execute simultaneously an a-transition which have a in
their alphabets. The components that do not participate the execution stay in
their current states. The result is restricted to the reachable part, because the
unreachable part is often big and, as we have pointed out, it is irrelevant for the
behaviour.

Definition 10. Let Li = (Si, Σi, Δi, ŝi) be LTSs for 1 ≤ i ≤ n. Their parallel
composition L1 || · · · || Ln is the reachable part of the LTS (S,Σ,Δ, ŝ), where

– S = S1 × · · · × Sn;
– Σ = Σ1 ∪ · · · ∪Σn;
– if (s1, . . . , sn) ∈ S and there is 1 ≤ j ≤ n such that for every 1 ≤ i ≤ n

• either i = j and (si, τ, s
′
i) ∈ Δi

• or i 
= j and s′i = si,

then ((s1, . . . , sn), τ, (s
′
1, . . . , s

′
n)) ∈ Δ;

– if a ∈ Σ, (s1, . . . , sn) ∈ S, and for every 1 ≤ i ≤ n

• either a ∈ Σi and (si, a, s
′
i) ∈ Δi

• or a /∈ Σi and s′i = si,

then ((s1, . . . , sn), a, (s
′
1, . . . , s

′
n)) ∈ Δ;

– Δ has no other elements; and
– ŝ = (ŝ1, . . . , ŝn).

If the ordering of the components is changed (e.g., from L1 ||L2 to L2 ||L1), the
names of states change accordingly (from (s1, s2) to (s2, s1)), but the result is
isomorphic to the original. Therefore, it is appropriate to say that || is commu-
tative. It is also associative, because (L1 ||L2) ||L3 differs from L1 ||(L2 ||L3) and
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even from L1 ||L2 ||L3 only by the names of states: ((s1, s2), s3) vs. (s1, (s2, s3))
vs. (s1, s2, s3).

With ||, the alphabets determine synchronization. A widely used alternative
is to list the synchronizing actions in the operator, e.g., L1 |[a, b]| L2. In this
example, if c 
= a and c 
= b, then c-transitions of L1 and L2 do not synchronize,
even if both L1 and L2 can execute them. Obviously L1 || L2 is obtained as
L1 |[a1, . . . , an]|L2, where {a1, . . . , an} is the intersection of the alphabets of L1

and L2. On the other hand, |[· · ·]| can be easily built from || and the renaming
operator of Sect. 4.3. So, from the point of view of expressivity, it does not
matter which one we choose. However, |[· · ·]| is not associative, which makes its
mathematics more complicated and may also confuse users.

The widely used CCS parallel composition operator | does not allow more
than two components to synchronize to the same event. (CCS is Calculus of
Communicating Systems [20].) It is a significant disadvantage compared to ||.
Using the ideas in Sect. 4.4, | can be easily constructed from || and the operators
in Sect. 4.2 and 4.3. On the other hand, it is far from obvious how to construct
|| from | and the other operators of CCS and this tutorial. There is also a
complexity-theoretic sense [36] in which || is simpler than |[· · ·]| and |.

Bisimilarity is a congruence with respect to ||. That is, if Li and L′
i are

bisimilar for 1 ≤ i ≤ n, then L1 || · · · || Ln is bisimilar to L′
1 || · · · || L′

n. The
importance of the congruence property will be discussed in Sect. 5.2. Bisimilarity
is a congruence also with respect to the variants that we briefly discussed above,
the operators that will be discussed in the remainder of this section, and, indeed,
with respect to almost all operators that have been suggested in the process
algebra literature.

Let M be a state machine and B(M) its behaviour. We could now define the
behaviour of a parallel composition of state machines as the parallel composi-
tion of the behaviours of the state machines: B(M1) || · · · || B(Mn). However,
computing the behaviours is often very expensive, as it involves unfolding. So
we would like to be able to compute a state machine M1 || · · · ||Mn such that
B(M1 || · · · ||Mn) = B(M1) || · · · || B(Mn). To do that, we must first discuss the
joint effect of data manipulation relations of parallel state machines.

For example, assume that there are three state machines, and they have tran-
sitions labelled with [n > 0]→ a!n?n, [i ≤ 3]→ a!i?j, and a?k!0, respectively.
The inscriptions in the first parameter position imply that i and n must have
the same value, and that value will be stored into k. It is also the value of the
first event parameter, which we denote with p1. The guards imply that the value
must be 1, 2, or 3. The inscriptions in the second parameter position imply that
the value of the second event parameter p2 is 0, and n and j will be 0. Assuming
that there are no other variables, the individual data manipulation relations are
n = p1 > 0 ∧ n := p2, i = p1 ≤ 3 ∧ i := i ∧ j := p2, and k := p1 ∧ p2 = 0. The
joint relation is 0 < n = i = p1 ≤ 3 ∧ p2 = 0 ∧ n := 0 ∧ i := i ∧ j := 0 ∧ k := n.

When formalizing the joint effect, we must make it precise how variables and
actions are treated in the conjunction of data manipulation relations. Variables
of different state machines must be treated as different variables even if they have
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the same name, but actions must be shared. Not necessarily all state machines
participate in a transition. We must specify that those who do not, do not
change the values of their variables. For that purpose, for each list of variables
we define the identity relation I(v̄, a, w̄) ⇔ w̄ = v̄, that is, the variable values
stay the same and the action does not matter. By (R1 ∧ · · · ∧ Rn)(a) we mean
the relation R(v̄1, . . . , v̄n, a, w̄1, . . . , w̄n)⇔ R1(v̄1, a, w̄1) ∧ · · · ∧Rn(v̄n, a, w̄n).

We can now define M1 || · · · ||Mn.

Definition 11. Let Mi = (Si, Θi, Ti, Σi, Δi, ŝi, v̂i) be state machines for 1 ≤
i ≤ n. Their parallel composition M1 || · · · ||Mn is the reachable part of the
state machine (S,Θ, T , Σ,Δ, ŝ, v̂), where

– S = S1 × · · · × Sn;
– Θ = Θ1 ∪ · · · ∪Θn;
– T (s) = T1(s1)× · · · × Tn(sn) for every s = (s1, . . . , sn) ∈ S;
– Σ = Σ1 ∪ · · · ∪Σn;
– Ii is the identity relation for the variables of si;
– if (s1, . . . , sn) ∈ S and there is 1 ≤ j ≤ n such that for every 1 ≤ i ≤ n

• either i = j, (si, Ri, s
′
i) ∈ Δi, and ∃v̄i, w̄i : Ri(v̄i, τ, w̄i)

• or i 
= j, Ri ⇔ Ii, and s′i = si,
then ((s1, . . . , sn), (R1 ∧ · · · ∧Rn)(τ), (s

′
1, . . . , s

′
n)) ∈ Δ;

– if a ∈ Σ, (s1, . . . , sn) ∈ S, and for every 1 ≤ i ≤ n
• either a ∈ Σi, (si, Ri, s

′
i) ∈ Δi, and ∃v̄i, w̄i : Ri(v̄i, a, w̄i)

• or a /∈ Σi, Ri ⇔ Ii, and s′i = si,
then ((s1, . . . , sn), (R1 ∧ · · · ∧Rn)(a), (s

′
1, . . . , s

′
n)) ∈ Δ;

– Δ has no other elements;
– ŝ = (ŝ1, . . . , ŝn); and
– v̂ = (v̂1, . . . , v̂n).

The purpose of the conditions ∃v̄i, w̄i : Ri(v̄i, τ, w̄i) and ∃v̄i, w̄i : Ri(v̄i, a, w̄i) is
to avoid creating transitions with obviously empty data manipulation relations.
Without them, the definition would, for instance, create a dead τ -transition from
the ci-transition of ATM. If the conditions are too difficult to check precisely in
a practical situation, then one may use an upper approximation and accept that
the result may have extra dead transitions. For instance, one may generate all
transitions where the gate names match.

Figure 5 shows the parallel composition of a modified ATM and BANK. To
get a readable figure, the channels have been left out, and ATM and BANK
interact directly. Losses of messages in the channels are modelled by additional
transitions in ATM and BANK that read the incoming message but do not
change the state nor the values of local variables. To keep the figure readable,
the balance variable b has been removed.

The horizontal and vertical arrows correspond to transitions that either ATM
or BANK executes alone, and so does the arrow labelled with nm. There are
only four transitions in which both participate simultaneously. In two of them,
labelled q!x z := x and y!z x := z, data is passed, which is shown by the
assignment in the inscription of the arrow. The data manipulation relations of
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co ci w?x q!x

lc

co ci w?x q!x

lc

co g!x

done

co ci w?x q!x

lc

co g!x

done

co ci w?x q!x

lc

q!x
z := x

done

nm

r!z r!z r!z r!z r!z

y!z y!z y!z y!z
y!z

uc uc uc uc uc uc uc ucno no no no no

y!z x := z

no

z z z x, z z

x x x

z z z x, z z x, z x, z z

z z z x, z z

Fig. 5. The parallel composition of ATM and BANK with variable b removed and
channels replaced by direct synchronization that can lose messages

the synchronizing q-transitions are p1 = x and z := p1. Their conjunction is
equivalent to p1 = x∧ z := x. In the figure, this is represented by !x and z := x.

We are ready to show that Definition 11 produces what it should.

Proposition 12. B(M1 || · · · ||Mn) and B(M1) || · · · || B(Mn) are isomorphic.

Proof. The states of B(M1 || · · · ||Mn) are of the form (s1, . . . , sn)〈v̄1, . . . , v̄n〉,
while the states of B(M1) || · · · || B(Mn) are of the form (s1〈v̄1〉, . . . , sn〈v̄n〉). In
both ways of computing the result, τ implies that precisely one state machine
participates. In both ways, if a 
= τ , each a-transition is participated by precisely
those state machines which have a in their alphabets. In both ways, the state
machines that do not participate keep their states and variable values. In both
ways, the state machines that do participate change their states similarly, and
change their variable values according to their data manipulation relations. In
both ways, the result is restricted to the reachable part. �

Of course, it would be possible to define an operation that both puts the state
machines together and unfolds the result. Such an operation corresponds to
traditional state space construction. It is an advantage of process algebras that
the behaviour need not be constructed in one big step but it can be constructed
in many sub-steps, and there is freedom in the order of the sub-steps. We will
see in Sect. 5.8 that useful things can be done between the sub-steps. It would
not be possible, if the behaviour had to be computed in one big batch.

The behaviour of a parallel composition is the parallel composition of
the behaviours of its components. It can be computed in one big batch
or divided to parallel composition and unfolding steps in many different
ways.
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τ

τ

τ

τ

uc

g〈x〉 τ

r〈x〉 uc r〈y〉

uc

τ

τ

g〈y〉
x x y

y

Fig. 6. The user’s money view to the simplified cash dispenser system in Fig. 5

4.2 Hiding

The hiding operator converts visible actions to invisible. With it one can choose
a view to a system. The behaviour of the system can be projected to the chosen
view with techniques discussed in Sect. 5.

Figure 6 shows the projection of Fig. 5 to the view of the user’s money. The
view was chosen by leaving g, r, and uc visible, and hiding everything else. The
figure has been produced manually but, excluding the variables x and y, it is
the same as an automatically generated figure with the data type restricted to
a singleton set. Most details of the figure cannot be explained before discussing
the theory in Sect. 5.4, but some observations can be made already now. For
instance, every “reduce balance” transition (r) is preceded by a “give money”
transition (g) with the same amount. So the system never charges the balance
without giving the money.

If the channels in Fig. 3 are used, then new phenomena emerge. For instance,
the system can charge a wrong amount of money from the account! The following
sequence of events leads to the error. The user tries to withdraw x units of
money. The transaction progresses successfully up to Sy〈x〉, but then both ATM
and BANK give up and return to their initial states. While doing so, BANK
executes uc. The user tries again with a new amount y. After executing Sq〈y〉,
ATM gets the “yes”-answer that was left over in CH2 from the previous attempt,
and gives the user x units of money with g〈x〉. BANK reads the second query
by executing Rq〈y〉 and replies “yes” to it. ATM sends “done”. BANK receives
it and reduces y units of money from the account.

Instead of fixing the cash dispenser system, we continue discussing the theory.
The definition of the hiding operator on LTSs is simple. The hidden actions are
removed from the alphabet, because they become internal to the LTS. This makes
it possible to use their names as action names in other parts of the system.

Definition 13. Let L = (S,Σ,Δ, ŝ) be an LTS, and A be a set. The result of
hiding A in L is the LTS L \A = (S,Σ′, Δ′, ŝ), where

– Σ′ = Σ \A;
– if (s, a, s′) ∈ Δ and a /∈ A, then (s, a, s′) ∈ Δ′;
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– if (s, a, s′) ∈ Δ and a ∈ A, then (s, τ, s′) ∈ Δ′; and
– Δ′ has no other elements.

It might seem natural to require that A ⊆ Σ. However, extra elements in A do
not affect the result (even τ ∈ A is harmless), and the operator is easier to use
if one need not ensure that A indeed is a subset of Σ. So we do not make the
requirement.

In the definition of the hiding operator of state machines, hiding must be
defined for the data manipulation relations, because the same relation may in-
duce transitions with both hidden and unhidden actions. The first part of the
definition of R \A keeps transitions with unhidden actions, and the second part
generates τ -transitions from transitions with hidden actions.

Definition 14. Let M = (S,Θ, T , Σ,Δ, ŝ, v̂) be a state machine, and A be a set.
The result of hiding A in M is the state machine M \A = (S,Θ, T , Σ′, Δ′, ŝ, v̂),
where

– Σ′ = Σ \A;
– (R \A)(v̄, a, w̄)⇔ a /∈ A ∧R(v̄, a, w̄) ∨ a = τ ∧ ∃b ∈ A : R(v̄, b, w̄); and
– Δ′ = { (s,R \A, s′) | (s,R, s′) ∈ Δ }.

Also hiding has the property that it does not matter whether it is done before
or after unfolding, that is, B(M \ A) = B(M) \ A. (This time “=” is equality
and not just isomorphism.)

A number of properties obviously hold, such as

– (M \A) \B = M \ (A ∪B).
– If A ∩Σ2 = ∅, then (M1 \A) ||M2 = (M1 ||M2) \A.

4.3 Relational Renaming

Renaming means changing gate names or actions. As such, it makes it possible
to specify a state machine once and use it in more than one place. For instance,
one may specify the dining philosophers’ system by specifying a single dining
philosopher with actions take left, take right, release left, and release right and a
single chop stick with actions take and release, and taking several copies of them,
renaming the actions to take 1, take 2, and so on.

Simple renaming and || suffice for the philosophers’ system, but they run
into trouble in the following kind of a situation. There are many servers and
even more clients. Any server can serve any client. When a client needs service,
it sends a general call that precisely one free server synchronizes to, but that
server can be any of the free servers. If no server is free, the call transition is
blocked. We want the outside world to see which client and server synchronized.

This situation can be modelled with a more general form of renaming, where
one may map a single action to more than one action. It is called multiple
renaming or relational renaming. We skip the definition for LTSs and only show
the definition for state machines.
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Definition 15. Let M = (S,Θ, T , Σ,Δ, ŝ, v̂) be a state machine. A renaming
relation for M is any set Φ of pairs such that the domain of Φ is precisely Σ,
that is, { a | ∃b : (a, b) ∈ Φ } = Σ, and τ is not in the range of Φ, that is,
¬∃a : (a, τ) ∈ Φ. The result of applying Φ to M is the state machine MΦ =
(S,Θ, T , Σ′, Δ′, ŝ, v̂), where

– Σ′ = { b | ∃a : (a, b) ∈ Φ };
– (RΦ)(v̄, b, w̄)⇔ ∃a : (a, b) ∈ Φ ∧R(v̄, a, w̄) ∨ b = τ ∧R(v̄, τ, w̄); and
– Δ′ = { (s,RΦ, s′) | (s,R, s′) ∈ Δ }.

The purpose of the restriction on the domain of Φ is to simplify the theory
by ruling out unnecessary special cases. Without it, one could remove some
transitions altogether by leaving their action a without a pair (a, b) ∈ Φ; and
one could add extra members to Σ′ by having (a, b) ∈ Φ such that a /∈ Σ.
The restriction does not imply loss of generality, because one can have the same
effects with ||. Let stopA be the state machine with one state, no variables, no
transitions, and the alphabet A. One can remove the a-transitions ofM for every
a ∈ A by writing (M || stopA) \ A. One can add B to the alphabet by writing
M || stopB\Σ .

The client–server example can now be modelled as

CΦ1 || · · · || CΦn || SΦ′
1 || · · · || SΦ′

m ,

where

– C runs in a loop s1−call→ s2−reply→ s1;
– S runs in a loop s1−call?i→ s2〈i〉−reply!i→ s1;
– Φi,j = { (call, call〈i, j〉), (reply, reply〈i, j〉) };
– Φi = Φi,1 ∪ · · · ∪ Φi,m;
– Φ′

i,j = { (call〈i〉, call〈i, j〉), (reply〈i〉, reply〈i, j〉) }; and
– Φ′

j = Φ′
1,j ∪ · · · ∪ Φ′

n,j .

The variable i in the server makes it reply to the right client. Φi adds the identity
i of the client to its actions. It also takes one copy of each action for each server,
so that the client can synchronize with any server. Φ′

j adds the identity of the
server to its actions.

4.4 Synchronization Rules

With the operators introduced this far, one can write complicated expressions
such as ((M1Φ1 ||M2Φ2) \ A) ||M3. However, intuitively each transition of any
such system consists of some state machines participating via some actions,
other state machines not participating, and the result having some action. The
resulting action may be τ even if none of the original actions is, but if any of the
original actions is τ , then only that state machine participates, and the resulting
action is τ .

We now make this idea precise. Let - be a symbol that is not in any alphabet.
It will denote that the state machine does not participate the transition. (We
could have used τ for that purpose but felt it confusing, because not participating
is not the same thing as participating via a τ -transition.)
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Definition 16. Let Mi = (Si, Θi, Ti, Σi, Δi, ŝi, v̂i) be state machines for 1 ≤
i ≤ n. Let Σ be a set such that τ /∈ Σ. A synchronization rule for them is a tuple
r = (a1, . . . , an; a), where a ∈ Σ ∪ {τ} and ai ∈ Σi ∪ {-} for 1 ≤ i ≤ n, and at
least one ai 
= -. We let r[0] = a and r[i] = ai for 1 ≤ i ≤ n.

Let Y be a set of synchronization rules for M1, . . . , Mn, and Σ. Then
Y(M1, . . . ,Mn) is the reachable part of the state machine (S,Θ, T , Σ,Δ, ŝ, v̂),
where

– S = S1 × · · · × Sn;
– Θ = Θ1 ∪ · · · ∪Θn;
– T (s) = T1(s1)× · · · × Tn(sn) for every s = (s1, . . . , sn) ∈ S;
– Ii is the identity relation for the variables of si;
– if (s1, . . . , sn) ∈ S and there is 1 ≤ j ≤ n such that for every 1 ≤ i ≤ n

• either i = j, (si, Ri, s
′
i) ∈ Δi, and ∃v̄i, w̄i : Ri(v̄i, τ, w̄i)

• or i 
= j, Ri ⇔ Ii, and s′i = si,
then ((s1, . . . , sn), (R1 ∧ · · · ∧Rn)(τ), (s

′
1, . . . , s

′
n)) ∈ Δ;

– if (a1, . . . , an; a) ∈ Y, (s1, . . . , sn) ∈ S, and for every 1 ≤ i ≤ n
• either ai ∈ Σi, (si, Ri, s

′
i) ∈ Δi, and ∃v̄i, w̄i : Ri(v̄i, ai, w̄i)

• or ai = -, Ri ⇔ Ii, and s′i = si,
then ((s1, . . . , sn), R, (s′1, . . . , s

′
n)) ∈ Δ, where R(v̄1, . . . , v̄n, a, w̄1, . . . , w̄n)⇔

R1(v̄1, a1, w̄1) ∧ · · · ∧R(v̄n, an, w̄n);
– Δ has no other elements;
– ŝ = (ŝ1, . . . , ŝn); and
– v̂ = (v̂1, . . . , v̂n).

This definition is not much more difficult to understand than the previous ones,
and it makes it possible to specify arbitrary synchronization patterns. Most,
or perhaps all, major parallel composition operators in process algebras can be
constructed with synchronization rules.

Synchronization rules can also be used to represent local variables as parallel
state machines. For instance, Fig. 7 shows how the variable z of BANK could
be replaced by a state machine that is synchronized with the rest of BANK. In
this example, b of BANK-MAIN is kept as a local variable. z := 0 specifies the
initial value of z. b: refers to the afterwards value of b. So, e.g., [z > b:]→ big?b
means that big〈j〉 is available with those values of j that satisfy z > j. The
third rule and the inscriptions of the transitions say that at most has two event
parameters, the first carrying the current value of z and the second carrying
the same or bigger value; this latter value is also the event parameter of Sy of
BANK-MAIN and thus equal to b; and the outside world sees Sy with the value
of z.

This implementation of BANK is not isomorphic to Fig. 2. The difference is
that while BANK-MAIN is in its initial state, z has no value in Fig. 2, but in
Fig. 7 it keeps its previous value. This difference does not affect the behaviour
significantly, because the value of z in the initial state is not used and is over-
written by the next transition. Indeed, the two models of BANK are bisimilar.

The example has a synchronization rule for each possible combination of event
parameter values for each gate. There are thus infinitely many rules. This is not
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z := 0
get?z

[z > b:]→ big?b

[z ≤ b:]→ at most!z?b

give!z
z

Sno!b
Rq

Sy!b

Rdone

r?z

b := b− z:

uc

b

b b

b

( get〈i〉 , Rq ; Rq〈i〉 ) for i ∈ N

( big〈j〉 , Sno〈j〉 ; Sno ) for j ∈ N

( at most〈i, j〉 , Sy〈j〉 ; Sy〈i〉 ) for i ∈ N and j ∈ N

( - , uc ; uc )
( - , Rdone ; Rdone )
( give〈i〉 , r〈i〉 ; r〈i〉 ) for i ∈ N

Fig. 7. BANK made of Z and BANK-MAIN state machines with synchronization rules

a problem for developing theoretical results. In a practical situation, one can use
suitable notation for representing rules in bunches. Indeed, Fig. 7 has only six
such bunches.

Analogously to earlier operators, we should prove that B(Y(M1, . . . ,Mn)) is
isomorphic to Y(B(M1), . . . ,B(Mn)). Instead of doing that directly, we will get
the result for free from another result: the effect of synchronization rules can be
built from the other operators discussed so far. This implies that synchronization
rules can be considered shorthand notation, and it suffices to develop the theory
for the other operators.

Proposition 17. Let Mi = (Si, Θi, Ti, Σi, Δi, ŝi, v̂i) be state machines for 1 ≤
i ≤ n. Let Σ be a set such that τ /∈ Σ, and let Y be a set of synchronization
rules for them. Then Y(M1, . . . ,Mn) =(((

(M1 || stopA1
) \A1

)
Φ1 || · · · ||

(
(Mn || stopAn

) \An

)
Φn

)
\A
)
Φ || stopB ,

where

– Ai = { a ∈ Σi | ¬∃r ∈ Y : a = r[i] } for 1 ≤ i ≤ n;
– Φi = { (a, r) | a ∈ Σi ∧ r ∈ Y ∧ a = r[i] } for 1 ≤ i ≤ n;
– A = { r ∈ Y | r[0] = τ };
– Φ = { (r, a) | r ∈ Y ∧ a = r[0] 
= τ }; and
– B = { a ∈ Σ | ¬∃r ∈ Y : a = r[0] }.

Proof. The part using Ai removes those non-τ -transitions of Mi that have no
matching rule. Φi renames the remaining non-τ -transitions of Mi so that || syn-
chronizes transitions that match the same rule. Then \A ensures that the final
name is τ if the rule requires so. Φ fixes the final names that must not be τ , and
stopB adds to Σ the elements that are still missing. �
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Together with the modelling of channels as state machines in the cash dispenser
system, the results and examples in this subsection justify the following informal
claims (however, please see also Sect. 5.3).

All communication between state machines can be expressed in terms
of ||, hiding, and relational renaming. Synchronization rules are a handy
shorthand notation for that.

Use of a local or shared variable is essentially parallel composition with
a state machine that directly represents the variable.

Earlier versions of synchronization rules were presented in [1,17].

4.5 Input and Output

In the ?-, etc., notation, ? denotes input and ! output. If transitions labelled a!x
and a?y synchronize, then it is appropriate to say that the former is an output
and the latter input transition. The one who outputs determines the value of the
event parameter, and the one who inputs is ready for just any value. The one
who inputs usually stores the value in a variable, but this should not be seen as
a fundamental property of input, because one may cheat by storing the value to
a variable that is not used later.

The roles of input and output are not clear at the level of transitions, but
are still at the level of individual event parameters, when transitions labelled
a!1?x and a?y!3 synchronize. The situation may be unclear even if there is only
one event parameter, like with [n: ≥ 0]→ a?n and [i: < 1]→ a?i. Here the first
transition determines that the value is at least 0 and the second that it is less
than 1. So it is 0. However, neither transition determines the value alone, so
neither can be called output. An even more confusing example is [x := x]→ a?x,
because, although it seems to read the afterwards value of x from the event
parameter, the guard forces the value to be the same as the original value. So it
means precisely the same as a!x.

In conclusion, process algebras allow forms of interaction where the notions
of input and output do not make sense. Some interaction patterns may be very
hard to implement in practice, especially in a distributed setting, but it is better
to allow them in the theory than to rule out useful forms of interaction.

Input and output are roles in interaction. Often interaction can be un-
derstood in terms of input and output, but not always.

4.6 Other Operators

Process-algebraic languages (such as [3,13,20]) have other operators in addition
to variants of what we have already discussed. In this subsection we briefly
discuss the most common. They are not necessary for most of the rest of this
tutorial, but are central in many other writings on process algebras. In Sect. 5.3
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they will be used to demonstrate that despite their great modelling power, syn-
chronization rules do not cover all reasonable ways of building systems.

Action prefix a;P (also written as a.P and a→ P ) means a system that first
executes an a-transition and then behaves like P .

There are variants of the choice operator with somewhat different meanings.
P Q, also written as P + Q, has initially the capability of behaving like P
and like Q. Its first transition is either an initial transition of P or of Q, and
then it continues like P or Q according to with whose transition it started. The
environment does not directly see whether P or Q was chosen. Of course, if the
action of the initial transition is visible and only used by Q, then it is possible to
reason thatQ was chosen. As an example of the variants of the choice operator, in
nondeterministic choice  the choice is done silently even if the initial transitions
have different actions.

The interrupt operator P Q is otherwise like choice, but Q has the ability
to start until P has terminated successfully. Successful termination is indicated
by executing a transition with a special action that has been reserved for this
purpose. When Q has started, P cannot continue. A divergence is an infinite
sequence of invisible events. It corresponds to a livelock. Of the operators that
we have discussed, interrupt is the only one that can, roughly speaking, stop a
divergence.

We used graphs to specify individual state machines, but many process-
algebraic languages express everything in terms of textual expressions. Cyclic
behaviour is specified by letting expressions call themselves recursively. In this
setting, choice operators are the main means of specifying branching behaviour.
For instance, BANK can be specified with the following expression.

BANK(b) = Rq?z; ( [z > b]→ Sno; BANK(b)
[z ≤ b]→ Sy!z; ( uc; BANK(b)

Rdone; r!z; BANK(b − z)
)

)

This way of specifying systems makes it easy to model some situations that can-
not be modelled easily or at all with our state machine formalism, like on-the-fly
creation of new state machines. However, recursion complicates significantly the
development of semantic theories like the ones in Sect. 5. As a consequence,
some theories give unintuitive meanings to expressions like P = τ ;P . Further-
more, modellers of systems may find the notation cryptic and laborious to use.
The present author believes that this is one of the reasons why process-algebraic
methods have received much less attention than they deserve.

5 Abstract Behaviour

The detailed behaviour of a system with many hidden actions has typically few
visible transitions and many τ -transitions. It cannot be drawn as a readable
picture because of the many τ -transitions. In this section we discuss theories of
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τ

τ

τ

τ

uc

g〈1〉 τ

r〈1〉 uc r〈1〉

uc

τ

τ

g〈1〉

g〈1〉
uc

g〈1〉

r〈1〉

uc r〈1〉

uc
g〈1〉

uc

Fig. 8. The CFFD- and trace semantics version of the user’s money view in Fig. 6
restricted to data type {1}

abstract behaviour, with which one can get rid of most τ -transitions and produce
pictures such as Fig. 6. There are numerous such theories, so we concentrate on
one and briefly mention some others. As a by-product we get a proof that the
interrupt operator is fundamental instead of a shorthand. We also study the
notion of determinism in the context of abstract behaviour. Finally we mention
some verification techniques that exploit abstract behaviour.

5.1 Trace Semantics

A trace of an LTS is the sequence of visible actions that is obtained from any
finite path that starts in the initial state. For instance, both LTSs in Fig. 8 have
the traces ε, g〈1〉, uc, g〈1〉 r〈1〉, g〈1〉 uc, uc uc, uc g〈1〉, g〈1〉 r〈1〉 g〈1〉, and so on. ε
denotes the empty sequence of visible actions. It is a trace of every LTS. A trace
of a system is a trace of its behaviour. Figure 8 left has been made from Fig. 6
by restricting the type of x and y to {1}.

To make it easier to talk about traces and related things, let s=σ⇒ s′ denote
that there is a path from s to s′ such that its sequence of visible actions is σ. By
s=σ⇒ we mean the same thing but do not mention the end state of the path.
With this notation, the set of traces of L = (S,Σ,Δ, ŝ) is Tr(L) = {σ | ŝ=σ⇒}.

The trace semantics of L is the pair (Σ(L),Tr(L)), whereΣ(L) is the alphabet
of L. Two systems are trace equivalent if and only if they have the same trace
semantics, that is, the same alphabet and the same set of traces, that is, Σ(L) =
Σ(L′) ∧ Tr(L) = Tr(L′). Every semantics induces an equivalence — L � L′ if
and only if they have the same semantics. On the other hand, the equivalence
classes of any equivalence can be thought of as a semantics. Therefore, we will
sometimes use the words “semantics” and “equivalence” interchangeably.

The set of traces of a finite LTS is essentially the same thing as the lan-
guage accepted by a finite automaton whose every state is a final state. As a
consequence, well-known algorithms from automata theory can be used for ma-
nipulating finite LTSs so that the trace semantics is preserved. One may, for
instance, construct the smallest deterministic LTS that has the same trace se-
mantics as a given finite LTS. Figure 8 right shows the result of doing that to
Fig. 8 left.
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When we say that an equivalence � preserves a property we mean that for
every L and L′, L � L′ implies that L and L′ give the same value to the property.
For instance, if � preserves deadlocks and L � L′, then either none or both of
L and L′ may deadlock.

The major drawback of the trace equivalence is that it does not preserve
deadlocks and livelocks. In those applications where this does not matter, trace
semantics is excellent. What the trace equivalence preserves is called stuttering-
insensitive safety properties. Safety properties are the properties whose violation
can be detected after a finite execution, without knowing the future. Deadlock
and livelock cannot be detected so, because if an external observer who only
sees the visible events did not see anything happen, she does not know whether
that was because she did not wait long enough or because nothing is going to
ever happen. She cannot assume that if something is going to happen, it will
happen in, say, 1000 time units, because there may be 1001 τ -events before the
next visible event.

Stuttering-insensitive means that the number of τ -events before a visible event
or deadlock does not matter. Bisimilarity is not stuttering-insensitive, but all
semantics in this section are. Indeed, the usefulness of the abstract semantics
comes from throwing away unnecessary information, and the number of τ -events
is almost always unnecessary information.

Trace equivalence can preserve any stuttering-insensitive safety property, and
does not preserve deadlock-freedom. Temporal logic researchers sometimes clas-
sify deadlock-freedom as a stuttering-insensitive safety property [19, p. 309]. We
have a paradox!

Deadlock-freedom is expressed in temporal logics as �(E1 ∨ · · · ∨En), where
� means “always”, and the Ei are equivalent to the enabling conditions of the
atomic statements of the system. The formula can also be modelled in trace
semantics. However, if one more statement is added to the system but not to
the formula, the formula is still meaningful, but does not any more express
deadlock-freedom. We see that classification of deadlock-freedom as a safety
property assumes that the program code of the system is available, to know
which formula expresses deadlock-freedom. Process algebra researchers do not
make that assumption, so they can model the formula but cannot know if it
expresses deadlock-freedom.

State propositions can be taken into account in traces by adding val (ŝ) to
the semantics and replacing the actions by pairs 〈a, P 〉, where a ∈ Σ ∪ {τ}
and P ⊆ Π [11]. P lists the propositions whose truth values change during the
transition. The pair 〈τ, ∅〉 plays the role of the invisible action. In this formalism,
a trace is a sequence of pairs 〈a, P 〉, where a 
= τ or P 
= ∅.

5.2 Stable Failures

A deadlock-preserving equivalence is obtained by extending the trace semantics
with the set of stable failures. We say that a state refuses a set A of actions,
if none of its output transitions is labelled with an element from A. Thus a
deadlock is a state that refuses Σ ∪ {τ}, where Σ is the alphabet of the system.
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Fig. 9. Showing that stable failures are necessary to preserve deadlocks

A stable failure is a pair (σ,A), where σ is a trace and A ⊆ Σ. The system has
(σ,A) as its stable failure if and only if it has an execution whose trace is σ and
that ends in a state that refuses A ∪ {τ}. The set of stable failures of L is thus

SFail(L) = { (σ,A) | ∃s : ŝ=σ⇒ s ∧ A ⊆ Σ(L) ∧ ∀a ∈ A ∪ {τ} : ¬(s−a→) } .

Here s−a→ means that there is an s′ such that s−a→ s′.
The motivation for this complicated-looking notion is that its presence in the

semantics either explicitly or implicitly is necessary to preserve deadlocks, if we
use ||. Let σ = a1a2 · · · an ∈ Σ(L)∗ and A = {b1, . . . , bm} ⊆ Σ(L). Consider the
LTS Lσ

A in Fig. 9 with the alphabet Σ(L). If L || Lσ
A has executed some other

trace than σ, then τ is enabled. If σ has been executed and L can execute τ
or any of b1, . . . , bm, then that action is enabled. Otherwise nothing is enabled.
So L || Lσ

A deadlocks if and only if both execute σ and then L refuses τ and
b1, . . . , bm. That is possible if and only if (σ,A) is a stable failure of L.

We mentioned in Sect. 4.1 that an equivalence � is a congruence with respect
to an operator f for putting state machines or behaviours together, if and only
if for every L1, . . . , Ln, L

′
1, . . . , L

′
n we have that L1 � L′

1, . . . , Ln � L′
n imply

f(L1, . . . , Ln) � f(L′
1, . . . , L

′
n). Let L1 � L2, where � preserves deadlocks and

the alphabet, and is a congruence with respect to ||. Because it is a congruence,
L1 ||Lσ

A � L2 ||Lσ
A. Then (σ,A) ∈ SFail (L1) if and only if L1 ||Lσ

A has a deadlock
if and only if L2 || Lσ

A has a deadlock if and only if (σ,A) ∈ SFail(L2). We have
proven the following.

Proposition 18. Any congruence with respect to || that preserves the alphabet
and deadlocks also preserves stable failures.

This, actually simple, result is from [28]. The semantics consisting of the alphabet
and stable failures (but not traces) is a congruence with respect to ||, hiding, rela-
tional renaming, and action prefix. If also the choice operator is used, then the
so-called “initial stability” bit that we will discuss a bit later must be added to the
semantics, to retain the congruence property. If, furthermore, the interrupt oper-
ator is used, then also traces must be added to the semantics. These emphasize
that the congruence property is sensitive to the set of operators in use.

The discussion above can be summarized by saying that even if we could di-
rectly observe only deadlocks, we could get information on stable failures and
perhaps also other things by putting the system to a suitable environment, and
observing the deadlocks of the result. The semantic model consisting of the
alphabet, traces, and deadlocks is not fully abstract, because we could get ad-
ditional information about the system by using it as a component in a bigger
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Fig. 10. Illustrating a congruence problem with failures

system. On the other hand, assuming that only ||, hiding, relational renaming,
and action prefix are allowed for connecting the system to its environment, the
semantic model consisting of the alphabet and stable failures is fully abstract: it
contains precisely the information that we can get by putting the system under
test in a suitable environment and then observing deadlocks.

Many advanced process-algebraic verification methods are based on replacing
components of a system by equivalent components that are better suited for con-
tinuing the verification. For instance, an LTS may be replaced by a smaller but
equivalent LTS. The correctness of this relies on the assumption that the equiva-
lence in use is a congruence, implying that the semantics of the system as a whole
does not change in the replacement. Therefore, the congruence property is central.

When ¬(s−τ→) and a ∈ Σ, then s=a⇒ and s−a→ mean the same. As a
consequence, stable failures can be defined equivalently as

{ (σ,A) | ∃s : ŝ=σ⇒ s ∧ A ⊆ Σ ∧ ∀a ∈ A : ¬(s=a⇒) ∧ ¬(s−τ→) } .

Historically there was great interest in failures, defined as

{ (σ,A) | ∃s : ŝ=σ⇒ s ∧ A ⊆ Σ ∧ ∀a ∈ A : ¬(s=a⇒) } .

This line of research ran into trouble because of the congruence problem that is
illustrated in Fig. 10. The LTSs in the figure have the same alphabet, traces, and
failures. However, if a is hidden in both, then (ε, {b}) becomes a failure of the
one on the right but not of the other. The semantics consisting of the alphabet,
traces, and failures is thus not a congruence with respect to hiding.

This is why failures had to be replaced by stable failures. A state is called
stable if and only if it cannot execute τ . The difference of failures and stable
failures is that in the latter, the state after the trace must be stable.

The desire that the equivalence must be a congruence has led to numerous
small variants of equivalences. For instance, the semantics consisting of the al-
phabet, traces, and stable failures stops from being a congruence when the choice
operator is employed. This problem can be solved simply by adding one bit to
the semantics, known as the initial stability bit. It tells whether the initial state
is stable, that is, whether ¬(ŝ−τ→).

The congruence property is sensitive to the set of operators in use. This
is one reason why there are so many semantic models in process algebras.

Information on stable failures can be taken into account in algorithms by at-
taching to each relevant state a set of minimal acceptance sets. An acceptance
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set is the complement, with respect to the alphabet, of a set that the state re-
fuses. Acceptance sets carry the same information as refused sets but tend to be
smaller. All stable failures represented by a non-minimal acceptance set are also
represented by their smaller acceptance sets, so storing non-minimal acceptance
sets would be pointless.

5.3 On Building Operators from Other Operators

Often in computer science, an operator can be thought of as just an abbreviation
of an expression written without using it, while another operator genuinely adds
to the expressivity of the language. For instance, if the propositional operators
∧ and ¬ are available, then ∨ is obtained as ϕ ∨ η ⇔ ¬(¬ϕ ∧ ¬η), but if only ∧
and ∨ are available, then ¬ cannot be constructed. In Sect. 4 we demonstrated
that ||, hiding, and relational renaming suffice to represent both all forms of
communication and the use of local or shared variables. However, this does not
imply that all reasonable operators or all reasonable ways of building systems
could be built from them. This subsection is devoted to this issue.

First we have to discuss what do we mean by representing an operator as a
function of other operators. We use the interrupt operator as an example. If
f is built from other operators than , and if f(L1, L2) is isomorphic to L1 L2

for every LTSs L1 and L2, then it is clear that L1 L2 can be built from the
other operators. Intuition might suggest that it is not possible, and we will soon
see that it is indeed the case.

However, requiring isomorphism is usually unnecessarily strict. For instance,
if we are only interested in the trace semantics, then it suffices that f(L1, L2) has
the same trace semantics as L1 L2. Indeed, such an f can be constructed only
using || and relational renaming. For simplicity, we ignore the issue of successful
termination, although taking it into account would not be difficult.

Let Σ1 and Σ2 be the alphabets of L1 and L2, respectively. For 1 ≤ i ≤ 2, let
Φi rename each a ∈ Σi to (a, i). The alphabets of L1Φ1 and L2Φ2 are disjoint.
Let Σ be their union. Let Φ rename each (a, 1) and each (a, 2) in Σ to a. Let
L be the LTS who has two states ŝL and sL, whose alphabet is Σ, and whose
transitions are { (ŝL, (a, 1), ŝL) | a ∈ Σ1 } ∪ { (ŝL, (a, 2), sL) | a ∈ Σ2 } ∪
{ (sL, (a, 2), sL) | a ∈ Σ2 }. Each visible transition of (L1Φ1 ||L2Φ2 ||L)Φ consists
of a visible transition of L and either L1 or L2 (but not both). Clearly L always
allows L2 to execute visible transitions. On the other hand, L allows L1 to
execute visible transitions only as long as L2 has not executed any.

We see that (L1Φ1 || L2Φ2 || L)Φ behaves otherwise like L1 L2, except that
it is not the starting of L2 but the first visible transition of L2 that stops L1

from executing visible transitions, and nothing stops L1 from executing invis-
ible transitions. However, these differences do not affect the traces. Therefore,
Σ((L1Φ1 ||L2Φ2 ||L)Φ) = Σ(L1 L2) and Tr((L1Φ1 ||L2Φ2 ||L)Φ) = Tr(L1 L2).

On the other hand, we will now show that if the equivalence preserves the
alphabet and stable failures, then there is no function f such that f(L1, L2) is
equivalent to L1 L2 and f can be built from only ||, hiding, relational renaming,
and action prefix. Such equivalences include isomorphism and bisimilarity. They
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also include the CFFD-equivalence and the divergence-preserving variants of
weak and branching bisimilarity mentioned later in this section.

Proposition 19. Let � be an equivalence that preserves the alphabet and stable
failures. There is no function f that can be built from only parallel composition,
hiding, relational renaming, and action prefix, such that L1 L2 � f(L1, L2) for
every LTSs L1 and L2. A similar result holds if also the choice operator may be
used in building f and � also preserves initial stability.

Proof. Assume that f exists. Let ≈ be defined by L ≈ L′ if and only if Σ(L) =
Σ(L′) and SFail (L) = SFail(L′). With the choice operator, ≈ also requires that
the initial state of either none or both of L and L′ is stable. By [28], ≈ is a
congruence with respect to the mentioned operators. Therefore, if L1 ≈ L′

1 and
L2 ≈ L′

2, then L1 L2 � f(L1, L2) ≈ f(L′
1, L

′
2) � L′

1 L′
2, yielding L1 L2 ≈

L′
1 L′

2. This means that ≈ is a congruence with respect to , which is in
contradiction with [28]. �

Proposition 18 lets us to state the above result as follows: the interrupt operator
cannot be built from other common process-algebraic operators, if the semantics
in use preserves the alphabet and deadlocks and is a congruence with respect to
||. However, we saw that with the trace semantics it was possible. We conclude
that whether or not an operator can be built from other operators depends on
the semantics in use. We also conclude the following:

Despite the great expressive power of ||, hiding, and relational renaming,
they cannot model all useful ways of building systems.

5.4 CFFD-Semantics

Information on livelocks can be added to the semantics in the form of divergence
traces. We say that state s diverges if and only if an infinite sequence of τ -events
can be started at s. A divergence trace is a trace that ends in a diverging state.
For instance, all traces of Fig. 8 left are divergence traces. The set of divergence
traces is denoted with DivTr(L).

When divergence traces are added, then also something else must be done to
the semantics to maintain the congruence property. One possibility is to add the
infinite traces InfTr(L). They are the infinite sequences of visible actions that
arise from infinite executions that start at the initial state. The resulting seman-
tics is called Chaos-free failures divergences semantics or CFFD-semantics [40].
We will explain the odd name soon.

The definition of CFFD-semantics as usually presented in the literature lacks
the trace component. This is because it can be derived from other components:
Tr(L) = DivTr(L) ∪ { σ | (σ, ∅) ∈ SFail (L) }. So it is implicitly present even if
it is not explicitly mentioned. If the LTSs are finite, also infinite traces can be
left out for a similar reason. On the other hand, the initial stability bit must
be added if the choice or interrupt operator is used. This is why variants of the
CFFD-semantics have been presented in the literature.
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An alternative way of solving the congruence problem caused by divergence
traces is to only consider minimal divergence traces and ignore everything after
them. A divergence trace is minimal if and only if none of its proper prefixes
is a divergence trace. This is called catastrophic divergence, and a process that
diverges initially is sometimes called chaos.

This solution arises naturally from the mathematics used for giving a mean-
ing to recursive process definitions of the kind in Sect. 4.6. It was chosen as the
main semantics of the well-known theory of Communicating Sequential Processes
(CSP) [13,23,25]. Unfortunately, it implies that, for instance, the LTS in Fig. 8
left is equivalent to chaos. Thus no information on its behaviour other than that
it diverges initially is preserved. This is a big drawback in many applications.
Therefore, when CFFD-semantics was invented, its name was chosen to empha-
size the similarity to CSP and the absence of chaos. Also CSP researchers admit
that it would be nice to see beyond divergence [24].

Figure 8 left has been produced using CFFD-semantics. So the information
that it gives on the deadlocks and livelocks of the system is real. There are no
deadlocks, but sometimes the system can be in a state where it only can execute
g〈1〉 or uc, and sometimes only g〈1〉 is possible. For instance, we can reason
from the figure that if the user refuses to take the money, BANK will eventually
execute uc if it has not done that already. This is because according to Fig. 2,
ATM cannot send the “done” message before the user has taken the money.
The many livelocks in Fig. 8 arise from the possibility of the user trying again
and again, repeatedly getting loss of connection. If a yes-answer gets through to
ATM, then ATM must execute the g〈1〉-transition to continue, which is seen in
Fig. 8 as commitment to g〈1〉 perhaps together with uc.

Readers of the figures produced with CFFD-semantics — the present author
included — are sometimes confused by questions like the following. Absence
of livelock implies that ATM is in its “yes”-branch. From there, all paths to
livelocks go via the g〈1〉-transition. There is no livelock in the centre state of
Fig. 8 but there is in the bottom middle state, and the transition linking these
two states is labelled by uc and not g〈1〉. What went wrong in the reasoning?

The answer to this question is that CFFD-semantics does not preserve infor-
mation about deadlocks and livelocks in other states of an execution than the
last. Therefore, deadlocks and livelocks must only be analysed at the end states
of executions, not during intermediate states. If the execution ends at the bot-
tom middle state, then one must read deadlocks and livelocks only there, not in
the centre state of the figure.

It would be possible to draw an LTS from which deadlock and livelock infor-
mation could be read also in the middle of an execution. However, it would be
bigger than the one in Fig. 8 left. There is a trade-off.

The more information is preserved, the bigger are the resulting LTSs.

This principle works both when choosing the set of visible actions and when
choosing the semantics.
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A variant of CFFD-semantics called NDFD- or nondivergent failures diver-
gences semantics [14,33] is the weakest congruence that preserves all stuttering-
insensitive properties expressible in classical linear temporal logic [19]. It does
not preserve deadlocks, except when the congruence requirement forces it to do
so. CFFD-semantics preserves the same and also deadlocks. This makes it useful
for many but not all applications.

CFFD- and NDFD-semantics suffer from the same problem as process-alge-
braic methods in general: it is difficult to express so-called fairness assumptions
that are used in temporal logics to guarantee progress.With fairness assumptions
one could, for instance, remove livelocks in Fig. 8 left. Promising ideas towards
solving this drawback were presented in [21,22], but, unfortunately, nobody has
continued that research.

5.5 CFFD-Preorder

A preorder is a reflexive and transitive binary relation. A precongruence with re-
spect to f is a preorder � such that if L1 � L′

1, . . . , Ln � L′
n, then f(L1, . . . , Ln)

� f(L′
1, . . . , L

′
n). Every preorder induces an equivalence and every precongru-

ence induces a congruence by L � L′ ⇔ L � L′ ∧ L′ � L. A precongruence
that induces CFFD-equivalence is obtained by L � L′ ⇔ Σ(L) = Σ(L′) ∧
SFail(L) ⊆ SFail(L′) ∧DivTr (L) ⊆ DivTr (L′) ∧ InfTr(L) ⊆ InfTr(L′). We call
it CFFD-preorder. The reason for requiring equality of alphabets instead of the
subset relation is too technical to be discussed here [33].

Let � denote CFFD-preorder. If L � L′, then whatever trace, stable failure,
divergence trace, or infinite trace L can do, also L′ can do, but not necessarily
vice versa. In particular, if L′ cannot do anything wrong — cannot execute a
wrong visible action, cannot deadlock when it is not allowed to, and cannot
livelock when it is not allowed to — then also L cannot do anything wrong.
So correctness of L′ implies the correctness of every L that satisfies L � L′.
Indeed, there is a theorem saying that if L′ satisfies a stuttering-insensitive
linear temporal logic formula and L � L′, then also L satisfies the formula [33].

This implies that we need not know the components of a system precisely
when verifying the correctness of the system. Instead, if we have many possible
alternatives for a component, it suffices that we use those among them that are
the biggest in CFFD-preorder. This is particularly important when also the users
of the system are modelled. Sometimes the correctness of a system depends on
the users to obey some rules. It is often easy to model the CFFD-biggest user
that obeys the rules. If the system works correctly with it, then it works correctly
with all users that obey the rules.

This also means that often verification does not consist of checking whether
the system is equivalent to the specification but whether the system is at most
the specification. Systems are often allowed to be better than their specifications.
If we buy a fifo queue with capacity 3 and get a fifo queue with capacity 4 for the
same price, we do not mind, although it is not equivalent to the specification.

Checking CFFD-equivalence of two LTSs is PSPACE-complete. Checking
CFFD-preorder is PSPACE-complete in the size of the specification LTS but
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polynomial time in the size of the system LTS. This is fortunate, because the
system LTS is usually a parallel composition of components and thus much bigger
than the specification LTS. Similar remarks apply to trace semantics, CSP, and
linear temporal logic. In Sect. 5.6 we will see that all these semantics are called
“linear time”.

Verification of linear-time properties is typically polynomial time in the
size of the state space of the system and PSPACE-complete in the size
of the state space of the specification.

To get a feeling of CFFD-preorder, let us discuss its extreme elements. For every
alphabet Σ, there is a maximum element, that is, L′ such that every L with the
same alphabet satisfies L � L′. It has an initial state s1 and another state s2,
and the transitions s1−τ→ s2, s1−τ→ s1, and s1−a→ s1 for every a ∈ Σ. Its
traces are Σ∗, all traces are divergence traces, and (σ,Σ) is a stable failure for
every trace σ. Also its set of infinite traces is maximal.

On the other hand, there is no minimum element. The LTS that has no tran-
sitions has no divergence traces, while the LTS that has a τ -transition from its
initial state to itself but no other transitions has no stable failures. Thus a mini-
mum element must have no divergence traces and no stable failures. However, ε
is a trace of every LTS, so each LTS has the divergence trace ε or the stable fail-
ure (ε, ∅). According to the above-mentioned theorem about CFFD-preorder and
linear temporal logic, a minimum element would satisfy all satisfiable stuttering-
insensitive formulas. It would thus satisfy all satisfiable specifications. It would
be a single system that is good for everything! It is a sign of the healthiness of
our theory that such a system does not exist.

With trace preorder, the LTS that has no transitions is a minimum element.
Indeed, it satisfies all specifications that can be formulated in trace semantics.
Trace semantics only preserves stuttering-insensitive safety properties. Safety
properties require that the system must never do anything wrong. The LTS that
has no transitions does not ever do anything wrong, because it does not ever
do anything. We see that a specification formalism is not complete unless it
can specify that the system must do something. Trace preorder cannot do that,
but CFFD-preorder can, by disallowing divergence traces and stable failures
appropriately.

Although CFFD-preorder has no minimum element, it has minimal elements.
It is useful to know that if σ is a trace, then it is a divergence trace or (σ, ∅) is
a stable failure or both. If (σ, ∅) is a stable failure, then, for every visible action
a, σa is a trace or (σ, {a}) is a stable failure or both. Minimal elements are
obtained by avoiding the option “both” and by restricting divergence traces to
the minimal ones. We skip the proof (infinite traces cause some trouble).

Proposition 20. An LTS L is CFFD-minimal if and only if for every σ ∈
Tr(L) either

– (σ, ∅) /∈ SFail(L) and for every a ∈ Σ(L), σa /∈ Tr(L); or
– σ /∈ DivTr(L) and for every a ∈ Σ(L), σa /∈ Tr(L) or (σ, {a}) /∈ SFail(L).
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That is, if L livelocks immediately after some trace σ, then it cannot do anything
else nor refuse anything after σ; and if it does not livelock immediately after σ,
then, for each visible action a, it can execute a as the next visible action after
either no or every way of executing σ. An important theme here is that if L
can do or refuse something after one way of executing a trace, then it can do
or refuse the same after every way of executing the same trace. In other words,
CFFD-minimal systems are deterministic.

This statement is not a theorem but an intuitive statement, because we have
not made it precise what deterministic means, but rely on intuition. The clas-
sical definition used in automata theory does not apply, because, for instance,
it declares nondeterministic the LTS s1←a− ŝ−a→ s2. We will return to this
issue in Sect. 5.7. There we can also tackle the opposite question, that is, are all
deterministic systems CFFD-minimal.

Roughly speaking, the smaller a system is in CFFD-preorder, the more
deterministic it is, and vice versa.

We did not model the user in the cash dispenser system. The unmodelled user
corresponds to the LTS that has one state, a transition for each a ∈ Σ from that
state to itself, and nothing else. Proposition 20 implies that this user is not the
most general reasonable user. It is CFFD-minimal and thus only represents itself
in verification. The most general reasonable user of the cash dispenser system can
be modelled as an LTS with three states and the transitions ŝ−ci→ s1, ŝ−a→ ŝ
for a ∈ Σ \ {ci}, ŝ−τ→ s2, s1−co→ ŝ, and s1−a→ s1 for a ∈ Σ \ {co}, where Σ
consists of ci, co, nm, lc, and w〈i〉 and g〈i〉 for every i ∈ N. This differs from the
unmodelled user in that it can deadlock when the card is not in, modelling the
possibility of the user going away and never again trying to withdraw money.
The model involves the assumption that the user will not go away while the card
is in.

For reasoning about the progress properties of the system from the point of
view of the user, it is a good idea to make ci and co visible and the remaining
actions invisible. With the unmodelled user, this produces the two-state LTS
where ci and co alternate. With the model of the user described above, a deadlock
is added to the initial state of the previous result. From these it is clear that the
system does not livelock, and it deadlocks only when the user goes away while
the card is not in.

The modelling of components and the interpretation of the resulting pictures
when using CFFD-semantics was discussed in detail in [38].

A specification of a system or an assumption about its component must
often be nondeterministic, to leave enough room for different valid im-
plementations and users.

Often preorders are more appropriate than equivalences for comparing
systems against specifications.
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Fig. 11. Two CFFD-equivalent but not observation equivalent LTSs

5.6 Weak and Branching Bisimilarity

A famous abstract equivalence that is not based on sets of traces or failures is
the observation equivalence of CCS, also known as weak bisimilarity [20]. Its
definition resembles the definition of bisimilarity, but uses the = · · ·⇒-relation.
Every visible action, possibly preceded and followed by invisible actions, must be
simulated by a visible action, possibly preceded and followed by invisible actions.
Also every (possibly empty) sequence of invisible actions must be simulated by
a (possibly empty) sequence of invisible actions.

Definition 21. Let (S,Σ,Δ, ŝ) be an LTS. The relation “�” ⊆ S×S is a weak
bisimulation, if and only if for every s1 ∈ S, s2 ∈ S, s ∈ S, and a ∈ Σ ∪ {ε}
such that s1 � s2 the following hold:

– If s1 =a⇒ s, then there is s′ ∈ S such that s2 =a⇒ s′ and s � s′.
– If s2 =a⇒ s, then there is s′ ∈ S such that s1 =a⇒ s′ and s′ � s.

Two LTSs are observation equivalent if and only if they have the same alphabet
and their disjoint union has a weak bisimulation such that the initial states
simulate each other.

The choice and interrupt operators cause a congruence problem also to observa-
tion equivalence, so a variant known as observation congruence has been defined.
Another variant is obtained by making the equivalence sensitive to livelocks, by
requiring that if s1 � s2, then either neither or both of s1 and s2 diverge. This
equivalence is strictly stronger than CFFD-equivalence.

Observation equivalence is a branching time concept, while CFFD-equivalence
is linear time. That is, individual executions and properties of their end states
suffice for checking CFFD-equivalence, while observation equivalence requires
a tree-like structure (or graph). Figure 11 left shows a professor who silently
chooses between coffee and tea, and then enters a cafeteria and takes what she
chose. The one on the right is otherwise similar, but makes the choice after
entering the cafeteria (but without ensuring that both are available). They are
CFFD-equivalent but not observation equivalent.

In Definition 21, the first and last state of the simulating execution must
simulate the first and last state of the simulated execution, but the interme-
diate states need not simulate any states. In branching bisimilarity [41], also
the intermediate states must simulate states along the simulated sequence. It
is strictly stronger than observation equivalence. In its extension that takes di-
vergences into account, it does not suffice that diverging states are simulated



292 A. Valmari

by diverging states. Instead, each infinite sequence of invisible actions must
be simulated by an infinite sequence of invisible actions. The resulting equiv-
alence preserves [5] stuttering-insensitive computation tree logic [6] similarly to
how CFFD-equivalence preserves classical stuttering-insensitive linear temporal
logic.

5.7 Operational Determinism

“Deterministic” has an established definition in automata theory. A direct trans-
lation of the definition to LTSs is that an LTS (S,Σ,Δ, ŝ) is deterministic if and
only if it has no τ -transitions, and for every a ∈ Σ, s ∈ S, s1 ∈ S, and s2 ∈ S,
if s−a→ s1 and s−a→ s2, then s1 = s2. This definition is not useful in process
algebras, because it deems very few LTSs deterministic, and determinism is not
preserved by bisimilarity. For instance, the LTSs ŝ−a→ s1 and s1←a− ŝ−a→ s2
are bisimilar but only the former is deterministic.

Motivated by the discussion in Sect. 5.5, we could define that an LTS is
deterministic if and only if it is CFFD-minimal. This is similar to the definition
in CSP [23], except that there divergence is treated differently. However, we
would like the definition not be tied to any particular semantics. Furthermore,
we would like the definition to deem deterministic as many LTSs as possible,
because we will soon present a proposition whose usefulness benefits from that.
The following notion [10] is suitable.

Definition 22. LTS (S,Σ,Δ, ŝ) is operationally deterministic, if and only if
for every σ ∈ Σ∗, s1 ∈ S, and s2 ∈ S, if ŝ=σ⇒ s1 and ŝ=σ⇒ s2, then the
following hold:

– for every a ∈ Σ, if s1 =a⇒, then s2 =a⇒; and
– if s1 diverges, then s2 diverges.

CFFD-minimal LTSs are precisely the LTSs that are operationally deterministic
and satisfy the following condition: for every σ ∈ DivTr(L) and a ∈ Σ, σa /∈
Tr(L). That is, Proposition 20 requires that after executing a divergence trace,
the LTS cannot do anything else than diverge; but Definition 22 does not require
so.

Now we can state a proposition about operationally deterministic LTSs. Again,
we skip the proof [10].

Proposition 23. If LTSs L and L′ are operationally deterministic, Σ(L) =
Σ(L′), Tr(L) = Tr(L′), and DivTr(L) = DivTr(L′), then L and L′ are branch-
ing bisimilar, divergence-preserving branching bisimilar, observation equivalent,
divergence-preserving observation equivalent, CFFD-equivalent, NDFD-equiva-
lent, and CSP-equivalent.

This result has the practical application that if an LTS is operationally determin-
istic (and that can be tested very efficiently), then it can be processed with any
algorithm that preserves the alphabet, traces, divergence traces, and operational
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determinism, and the result is valid in each of the mentioned semantics. It has
also the philosophical message that a multitude of semantics in process algebras
collapses if systems are operationally deterministic. A similar result for semantics
that ignore divergences, that does not assume that DivTr(L) = DivTr(L′), was
developed in [7,42]. Unfortunately, to make the collapse also cover congruences
with respect to the choice operator, something extra is needed. For instance,
the requirement that ŝ is stable may be added to the formulation of operational
determinism.

That there are so many different semantics in process algebras is largely
because operational nondeterminism is an important feature in concur-
rency. For instance, if all systems were operationally deterministic, the
distinction between linear time and branching time would disappear.

5.8 Verification Techniques

In this subsection we mention some verification techniques that are related to
the theory in this section. Detailed information can be found in the cited sources,
and in many cases also in the tutorials [30,32,34].

A basic method is compositional LTS construction. It means putting some
components of the system together, reducing their joint behaviour, putting the
result together with the reduced behaviour of a neighbouring subsystem and so
on, until a reduced behaviour of the system as a whole is obtained. The semantics
that is used must be a congruence with respect to the operators used in building
the system. The first explicit mentionings of this idea are perhaps in [27,18], but
the idea is so obviously built into process-algebraic theories that it has certainly
been known before that.

Reducing the behaviour means applying some algorithm to the LTS that
produces an equivalent but (hopefully) smaller LTS. With bisimilarity-based
equivalences, there is a unique smallest equivalent LTS, and it can be found in
polynomial time [15]. With trace- and failure-based equivalences, smallest equiv-
alent LTSs are not necessarily unique, and finding one is PSPACE-hard. The
problem is a generalization of the problem of finding a minimal (not necessarily
deterministic) finite automaton that accepts the same language as a given finite
automaton.

Fortunately, it is not necessary to find a minimal LTS, it suffices that it is
equivalent and small. So one can use heuristic algorithms that run in polynomial
time. Furthermore, algorithms based on the well-known determinization and
minimization algorithms of finite automata have been extended to the failure
semantics world, and they have been reported to run reasonably well in practice,
e.g., [4,23,39]. Please see [29] for more comments on the relative efficiency of
verification using bisimulation-based vs. failure-based semantics.

Stubborn set methods save effort during the computation of parallel composi-
tion by leaving out orderings of events that have the same effect as other orderings
that are not left out. This type ofmethods are also called “partial order”. Stubborn
set methods for the major process-algebraic semantics were presented in [31].
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Independently of the semantics, compositional LTS construction suffers from
the spurious behaviour problem. That is, the behaviour of a subsystem may
be much bigger than the behaviour of the system as a whole. This is because
systems often obey invariants that strongly restrict the possible combinations of
local states of the components, but, in isolation, subsystems do not necessarily
obey them. Consider a fifo queue of capacity k that can store two different
messages. In isolation it has 1 + 2 + 22 + · · ·+ 2k = 2k+1 − 1 states. When the
same queue is in the well-known alternating bit protocol [2], there can be at most
one place where successive messages are different. This reduces the number of
possible states to k2+k+1 (one empty queue, 2k with only one type of messages,
and 2 · 12k(k − 1) with two message types).

The spurious behaviour problem was pointed out and a solution for observation
equivalence was presented in [9]. A general solution that applies to many seman-
tics was presented in [16]. A key idea in these solutions is an interface specification,
also known as interface process. It represents an assumption about the behaviour
of the subsystem when it is within the system as a whole. For instance, one may
represent the assumption that there is at most one place in the queue where suc-
cessive messages are different. If the assumption is incorrect, then that is detected
at the end of compositional LTS construction. Independently of whether it is cor-
rect, the interface process reduces the LTS of the subsystem. Interface processes
require the addition of the notion of “undefined” to the semantics, but [16] shows
how it can be done with very little need to rewrite tools.

If the result of compositional LTS construction is small, it can be analysed
visually, like we did for Fig. 6 and 8. If it is small or big, one can compare it to
a reference LTS with an equivalence or preorder checking algorithm. Preorder
checking has the advantage that it can be done on-the-fly, that is, simultaneously
with the computation of the behaviour of the system. This is a big advantage,
because incorrect systems tend to have lots of spurious behaviour that the cor-
responding correct systems do not have. With on-the-fly verification, the com-
putation may be terminated when the first counter-example has been found, so
that most of the spurious behaviour will not be computed. Preorder checking is
the major verification method with the FDR (Failures-Divergences Refinement)
tool [23]. A CFFD-preorder version of this idea was presented in [12].

Some systems contain many identical components. Sometimes the behaviour
of a subsystem with n + 1 components turns out equivalent to the behaviour
with n components. (The probability of this happening can be increased with
interface processes.) Then a simple induction argument yields that the behaviour
of the system is the same for all numbers of the replicated components starting
from n. Particularly intriguing applications of this idea were presented in [37],
such as proving that the behaviour of a protocol is independent of the (finite)
maximum number of times that it may re-transmit a message before giving
up. The idea can also be used with precongruences: if L � L′ and f(L′,K) �
L′, then f(L,K) � f(L′,K) � L′, yielding f(f(L,K),K) � f(L′,K) � L′

and f(· · · f(f(f(L,K),K),K) · · · ,K) � L′ for any number of K-components.
Outside process algebras, the idea has been presented in [43], among others.
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In [26] it was pointed out that the notion of determinism is related to computer
security. Consider a system with a trusted user and an untrusted user. The
untrusted user must get no information about the behaviour of the trusted user.
This holds, if the untrusted user’s view to the system is deterministic. We already
pointed out that there is a fast algorithm for checking determinism.

6 Conclusions

Compositionality at the structural level is routine in computer science and soft-
ware engineering. There are modules, classes, and other kinds of units, and they
can be nested. There are hierarchical Petri nets. The situation with composi-
tionality of concurrent systems at the semantic level is confusing. On one hand,
the idea is natural and it seems that it attracts many researchers. On the other
hand, many widely valid basic facts have been found by process algebra research
well before the year 2000, but seem little known.

The present author believes that one, but not the only, reason why process-
algebraic results have failed to break through is that process-algebraic languages
are cryptic and lead to cryptic fixed-point theories of semantics.

In this tutorial we have tried to make it clear that the semantic models are
not tied to the cryptic languages, but apply to concurrent systems in general.
We replaced recursion-based definitions of individual processes by state ma-
chines. For composing the system from its components, a small and natural set
of operators was employed, and it was shown that in the end there are just
synchronization patterns where some components do not participate, each one
who participates does that by executing a modeller-chosen visible action, and
the result has a modeller-chosen (not necessarily visible) action. Synchronous
communication may seem unnatural and restricted, but we pointed out that it
is the raw material from which all kinds of communication could be constructed.
On the other hand, our formalism does not cover all reasonable ways of building
systems, such as on-the-fly creation and abortion of processes.

The absence of event parameters from the definition of LTSs does not make
the semantic theory incapable of processing them. It is just that the semantic
theory is insensitive to event parameters, so it is easiest and most general to treat
actions as arbitrary symbols. The user may assume any internal structure for
actions (as long as τ remains invisible). For instance, when modelling transition
fusion of coloured Petri nets, it may be useful to assume that actions contain
tuples of data values.

Another reason for the lack of use of process-algebraic semantic models is
that as such, compositional LTS construction often fails because of the spurious
behaviour problem. People may have tried the basic form of compositional LTS
construction, got disappointed, and rejected process algebras.

Again, this issue is not specific to process algebras but inherent in the com-
positional construction of behaviours. Interface processes help a lot, but they
require making and modelling guesses about the behaviours of subsystems. So
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their use is not fully automatic, reducing their attraction. Furthermore, it may
be that the wide applicability of interface processes is not widely known. In
any case, more case studies are needed to find out if interface processes are a
sufficient solution.

It seems to the present author that current verification methods can process
nontrivial systems, so the methods are useful, but they can process systems of
industrial size only occasionally, so the methods do not meet the needs and are
thus not used a lot. This holds for both process-algebraic compositional methods
and verification methods in general.

In this tutorial we concentrated on the CFFD semantics. The reason is that
often either it or a closely related semantics is very good for a task. If livelocks
are not interesting but deadlocks are, throw divergences and infinite traces away
but keep traces and stable failures. If deadlocks are not interesting but livelocks
are, throw stable failures away but keep the rest. The main semantics of CSP can
be used if it does not matter that there divergence is catastrophic. If branching-
time properties are needed, then CFFD and CSP cannot be used, but some
variant of weak or branching bisimilarity may be suitable.

We pointed out that use of a variable is essentially the same thing as parallel
composition with it, and unfolding a variable can be postponed until the com-
ponents of the system have been put together. They can often be put together
in a stepwise manner in many different orderings. These open up possibilities
for new research, to develop verification methods that apply to systems with
variables but do not suffer from the effect that unfolding has to the size of the
state space. Such methods must be capable of combining data manipulation steps
from successive transitions, to liberate τ -transitions from data manipulation and
thus make it possible to remove them in reductions. Also management of vari-
able names is necessary, because data moves from one component to another, so
names of local variables within components are not helpful in projected views.
This problem was solved manually when drawing Fig. 6.

Because of networked systems and multi-core processors, today there is more
need than ever to teach students basic facts about concurrency. In particular, it
is important to make them realize how things may go wrong. Perhaps projected
views such as in Fig. 6 and 8 can be used for that purpose.

Acknowledgements. The comments by the anonymous reviewers helped to
improve this tutorial.
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The Synthesis Problem

Wolfgang Reisig

Humboldt-Universität zu Berlin

Abstract. Synthesis refers to the problems of constructing a distributed
system model from the sequential observation of its behaviour. This con-
tribution suggests Petri nets as an adequate framework for solving the
synthesis problem. The theory of regions is paramount in this context.

We present the basics of region theory and synthesis construction, and
apply it to two case studies.

Introduction

A system is often modeled by a description of its observable behaviour, that is
in the framework of global states and steps. To implement a system, it is often
more convenient to identify local state components and actions whose cause
and effect are limited to a few state components. This observation causes the
synthesis problem , i.e. the problem to synthesize a system with local state and
local action components from the description of its globally observed behaviour.

In technical terms, given a state machine, i.e. an arc labelled graph G without
any assumptions about its nodes, the problem is to synthesize a Petri net N with
a reachability graph isomorphic to G.

In intuitive terms, the problem is to squeeze concurrency out of sequential ob-
servations, i.e. to identify local state components within amorphic global states.

In the framework of Petri nets, this problem can be solved by the help of
region theory. In fact, region theory belongs to the ”crown jewels” of Petri nets.
It provides strong indications that the basic concepts of Petri nets have been
chosen most adequately to cope with current systems.

This paper has three parts: The first one sets the stage, with the illuminating
example of the light/fan system, and a detailed explanation of the synthesis
problem in general. The second part presents the theory of regions, which is
the basis for all solutions of the synthesis problem. Solutions in the classes of
1-bounded Petri nets with loops allowed, are discussed in detail. The third part,
finally, considers two case studies: The above mentioned light/fan system, and
the well known counter flow pipeline processor, CFPP.

1 Layout of the Synthesis Problem

1.1 An Illuminating Example: The Light/Fan System

The reader is probably familiar with the common connection between lighting
and air ventilation in (windowless) bathrooms: If the light is switched on while

K. Jensen et al. (Eds.): ToPNoC VII, LNCS 7480, pp. 300–313, 2013.
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Fig. 1. The light/fan system as a state automaton

the fan is off, the latter will start as well after a while. If the light is then switched
off, the fan will continue running for some time. If the fan is off and the light is
first switched on and then quickly switched off again, the fan will not start at
all. If the fan is running and the light is switched off and then quickly switched
on again, the fan will continue running without interruption.

Traditionally, systems are often modeled as state automata: A state automa-
ton consists of states and steps. One state is the initial state. Every step trans-
forms one state into another and thereby executes an action. Several steps may
quite well execute one and the same action. Technically, a state automaton can
be described as a directed graph; with states as nodes and steps as labeled edges.

Figure 1 shows the behavior of the light/fan system as a state automaton Z.
It has four global states and four actions, two of which (switch light on and switch
light off) can occur in two states each.

Figure 2 shows the system as a Petri net N . It has four places describing the
local states as well as four transitions, one for each action of the system.

The representation as a Petri net clearly describes the cause and effect of each
action. switch light off, for example, can only occur if the light is on. The current
state of the fan is irrelevant for this action. The fan itself, however, only starts
if it is not running and the light is on at the same time.

It is easy to determine that the Petri net N has the exact same behavior as
the state automaton Z: One constructs the reachability graph of N and asserts
that it is identical to Z.

1.2 The General Question of the Synthesis Problem

Each state of the light/fan state automaton in Fig. 1 is labeled with two con-
ditions. These conditions form places in Fig. 2. In general, however, there is no
information on the states of a state automaton Z. It is abstract , as in Fig. 3.
Every edge of such an automaton is labeled with an action. The same action
may occur on more than one edge (this applies to a and b in Fig. 3).
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Fig. 2. The light/fan system as a Petri net

The synthesis problem for any (abstract) state automaton Z asks for a dis-
tributed system V that behaves exactly like Z. Instead of global, only local states
may appear in V . Every action appearing in Z has to be described completely
and unambiguously through its effect on a few local states in V . Here we con-
centrate on Petri nets as candidates for V . A Petri net N behaves like Z iff its
reachability graph G is isomorphic to Z. G is isomorphic to Z if every node k of
G maps to exactly one node k′ of Z such that:

– the initial marking of G is mapped to the initial state of Z,

– h
t−→ k is a step in G iff h′ t−→ k′ is an edge in Z.

Summarized: A Petri net N solves the synthesis problem for a given (abstract)
state automaton Z if the reachability graph G of N is isomorphic to Z.

In this contribution we are behind methods to construct solutions N for the
synthesis problem of given state automata Z. Those methods decisively depend
on the class of nets which we conceive as candidates for N . The simplest method
constructs 1-bounded, loop free nets. It succeeds, for example, for the automaton
in Fig. 3, but not for the automaton L in Fig. 4. Slightly more involved is a
method to construct 1-bounded nets that may include loops. It succeeds, for
example, in Fig. 4 for L, but not for R. (In fact, the synthesis problem of R has
no Petri net solution at all). In this contribution we stick to the construction of
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Fig. 3. state automaton Z1
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State automaton L State automaton R

Fig. 4. The synthesis problem of L is solvable, the one of R is not solvable

1-bounded solutions that may involve loops. Methods to construct n-bounded,
unbounded, arc weighted, etc. solutions are behind the scope of this contribution.

2 Regions and the Synthesis of Petri Nets

2.1 Regions of State Automata

Here we define the technical construct of regions of state automata, Z. Intuitively
formulated, a subset R of nodes is a region of Z if R ”harmonizes” with the labels
of the arcs that reach or leave R. In formal terms, let

π : h
t−→ k

be an edge of Z (”t-edge”). We define:

R receives π, if h 
∈ R and k ∈ R
R dispatches π, if h ∈ R and k 
∈ R
R contains π, if h ∈ R and k ∈ R

Figure 5 outlines this definition. As a region, R ”harmonizes” with the labels
of Z.

R is a region of Z if for each edge label t of Z:

– R receives either each or no t-edge and
– R dispatches either each or no t-edge.
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Fig. 5. Received, dispatched, and contained edges
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regions of Z1 no regions of Z1

Fig. 6. Three regions of the state automaton Z1: R1 and R2 are minimal, R3 is not

A region R of Z is minimal if no proper subset of R is a region of Z.
Figure 6 shows examples and counterexamples of regions of the state

automaton Z1 in Fig. 3. Furthermore, Fig. 7 shows the minimal regions of Z1.

2.2 The Regions of a Reachability Graph

Figure 8 shows a 1-bounded Petri net N together with its reachability graph
G. As a shorthand, each marking M of G is written p or pq, representing the
places p and q that carry a token. For each place p of N , let p̂ denote the set of
markings of G, with p carrying a token. One immediately observes:

Each p̂ is a minimal region of G, (2.1)

and vice versa:

Each minimal region of G is p̂ for some place p of N. (2.2)

It is easy to see that both properties (2.1) and (2.2) hold for each live,
1-bounded Petri net N , because for each transition t and each place p of N
holds:
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Fig. 7. The minimal regions of Z1
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Fig. 8. A Petri net and its reachability graph with its four minimal regions Â, . . . , Ê

t ∈ •p in N iff p̂ receives t in G, (2.3)

t ∈ p• in N iff p̂ dispatches t in G. (2.4)

Solutions to the synthesis problem just exploit this observation: Given a state
automaton Z, construct a place for each minimal region of Z, and a transition t
for each arc label. Then link places and transitions according to (2.3) and (2.4).

2.3 The Petri Net of a State Automaton

As indicated above, each state automaton Z is assigned a Petri net N according
to the following procedure:

– the minimal regions p of Z are the places of N ;
– the edge labels t occurring in Z are the transitions of N ;
– if the region p receives the t-edges of Z, then (t, p) is an arc of N ;
– if the region p dispatches the t-edges of Z, then (p, t) is an arc of N ;
– if the region p contains all the t-edges of Z, then (t, p) and (p, t) are arcs of

N ;
– if the initial state of Z lies within a region p of Z, the place p of N holds

initially a token.

The state automaton Z1 in Fig. 3 with its minimal regions as depicted in Fig. 7
yields the petri net of Fig. 8.

As a further example, the state automaton L in Fig. 4 has four regions. One
of them contains the only - hence all - a edges. That’s why the Petri net NL of
L, depicted in Fig. 9, contains a loop between place A and transition a.

2.4 The Synthesis Theorem

We are now ready to state the core result of this contribution: If the synthesis
problem of a state automaton is solvable, then the assigned Petri net is a solution.
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Fig. 9. Petri net NL of L

Theorem 1 (synthesis theorem). If the synthesis problem for a state au-
tomaton Z can be solved by a 1-bounded Petri net, then the assigned Petri net
of Z is a solution.

With this, it is possible to solve the general synthesis problem: One constructs the
assigned Petri net N of a given state automaton Z and from this the reachability
graph G of N . If Z and G are isomorphic, N obviously solves the synthesis
problem for Z. Otherwise, the synthesis problem for Z cannot be solved by any
1-bounded Petri net.

Proof of this Theorem is not too difficult: It is obvious that each edge label
of Z becomes a transition of the solution N of the synthesis problem of Z.
Furthermore, each region of Z is obviously a candidate for a place of N . A place
p corresponding to a non-minimal region is redundant: Skipping redundant places
retains the structure of the reachability graph. Further details on this proof can
be found in [1].

As a variant, one may be interested in loop free, 1-bounded solutions only.
Then one just refrains from constructing edges (t, p) and (p, t) in case the region
p contains the edge label t. For some cases (including e.g. the state automaton
L of Fig. 4) the resulting net’s reachability graph is not isomorphic to Z, hence
the net does not solve the synthesis problem of Z.

The above procedure also fails for the the state automaton Z2 of Fig. 10.
In fact, Z2 has no 1-bounded solution. But Z2 has a 2-bounded solution, also
shown in Fig. 10. A synthesis procedure to construct such (and much more
general) solutions can be found in the literature (cf. [1]).


 




state automaton Z2 2-bounded solution

Fig. 10. A synthesis problem with a 2-bounded solution
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3 Case Studies

Section 3.1 solves the synthesis problem of the light/fan system as discussed in
Sect. 1.1. The rest of this part discusses the synthesis of a concurrent model for
the well-known counter flow pipeline processor CFPP.

3.1 The Synthesis Problem for the Light/Fan State Automaton

To simplify the argumentation, we use an abridged version of the denotations of
the light/fan system, as shown in Fig. 11.
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minimal regions:
{A,B}, {A,D}, {B,C}, {C,D}

Fig. 11. Abridgment of Fig. 1

This state automaton has four minimal regions. According to the procedure
explained above, the system net in Fig. 12 is constructed.


����





��	�

�

�

�


��	�
����

Fig. 12. Solution to the synthesis problem for the state automaton in Fig. 11

The construction of its reachability graph G is left to the reader, as well as
the ascertainment that G is isomorphic to Fig. 11. With this, Fig. 12 solves the
synthesis problem for the state automaton in Fig. 11. Changing the abridged
denotations in Fig. 12 back to their longer versions, in fact, results in the system
net shown in Fig. 2.



308 W. Reisig

3.2 The Counterflow Pipeline Processor (CFPP): The Problem

The Sprout counterflow pipeline processor is a well-known, complex asynchronous
hardware architecture. It utilizes as sequence P = M1 . . .Mk of consecutively
linked modules, as outlined in Fig. 13.

Data packets d1, . . . , dn flow from the left, that is via M1, into P . The com-
puted data packets e1, . . . , en leave P on the right, via Mk. Vice versa, instruc-
tions flow from the right into P and leave P via M1. All modules work according
to the same pattern. A module Mi can receive data packets from its left neigh-
bor Mi−1 and give out instructions to it. To its right neighbor Mi+1, it can give
out data packets and receive instructions from it. The modules communicate
synchronously: Mi can give out a data packet to Mi+1 as Mi+1 receives it. In
analogy, Mi gives out an instruction to Mi−1 as Mi−1 receives it.

Figure 14 shows the behavior of an ”inner” module Mi(i = 2, . . . , k − 1) as a
state automaton.

Initially, Mi can receive a data packet d (from Mi−1) and and instruction f
(from Mi+1). When Mi has received both – in arbitrary order – it is ready for
computation and applies f to d. Mi can then – in arbitrary order – give out the
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Fig. 13. Assembly of the CFPP from modules Mi
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Fig. 14. A CFPP module as state automaton
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A = { 2, 4, 5 }, B = { 3, 4, 5 },
C = { 1, 3, 6 }, D = { 1, 2, 6 },
E = { 1, 3, 5 }, F = { 2, 4, 6 },
G = { 5, 1, 2 }, H = { 3, 4, 6 }

Fig. 15. The 8 minimal regions A, . . . ,H of a CFPP module

newly computed data packet and the instruction to Mi+1 and Mi−1 respectively.
Mi does not store anything then, reorganizes itself and returns to its initial state.

Of particular interest are the two states (top and bottom in Fig. 14) in which
Mi stores either only a data packet or only an instruction: Mi can give out the
unprocessed data packet to Mi+1, or respectively the unused instruction toMi−1.

The module M1 on the left edge of the CFPP architecture essentially behaves
like an inner module.However, it only gives out an instruction fi to the environ-
ment after fi has been applied to the last data packet dn. In analogy, the module
Mk on the right edge only gives out a data packet ei to the environment after
the last instruction fm has been applied to ei. We do not explicitly model those
two modules.

An architecture with k modules can process a stream d1, . . . , dn of data
packets and a stream f1, . . . , fm of instructions if and only if n and m are
not both greater than k: In that case, the data packets or instructions can
all be stored simultaneously inside the modules. A CFPP can compensate for
the different durations of instructions only if k is greater than either n or m.
For further details we refer to [8].

3.3 The Synthesis Problem for the CFPP

The state automaton in Fig. 14 uses six different actions, four of which can occur
in two states each. We now ask for the pre-, post- and side conditions of their
occurrences and thus for the local states that organize a CFPP module. For
this purpose, we solve the synthesis problem for the state automaton of Fig. 14.
Using the denotations in Fig. 15, its eight minimal regions generate the Petri net
N shown in Fig. 16. Its reachability graph is isomorphic to the state automaton
in Fig. 14. Therefore, N solves the synthesis problem for the CFPP.



310 W. Reisig

�

�

'




�

	

	

�

� � (

�

�

�

Fig. 16. The solution to the synthesis problem for the CFPP

3.4 Structural Simplification of a Module

The structure of the Petri net N in Fig. 16 can be simplified. At first, we derive
for this:

A+ H+ E+ D = 2 place invariant

E+ F = 1 place invariant

−B− D = −1 place invariant

−2E ≤ 0 canonical inequality of E

The combination of these yields:

A+ F+ H− B ≤ 2.

From this follows for each reachable marking that marks A, F and H, that it also
marks B. This renders the loop between B and c redundant.

The argumentation about the loop between C and f is analogous. With this,
Fig. 17 shows the final version of a CFPP module.

3.5 The Model of the CFPP

To form the CFPP P as a sequence M1 . . .Mk of modules, k instances of the
module in Fig. 17 have to be combined. It is rather simple to combine a module
Mi with its right neighbor Mi+1: The transition e of Mi is identified with the
transition a of Mi+1 and, in analogy, b of Mi with d of Mi+1. Figure 18 outlines
this construction.
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Fig. 17. Final version of a module

Fig. 18. Combination of modules Mi and Mi+1 of the CFPP
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Fig. 19. Module of the CFPP
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Further Reading

The solution to the synthesis problem belongs to those success stories in the field
of Petri nets that asserted themselves only slowly. By now, however, it belongs
– in various versions – to the standard repertoire of most Petri net analysis
tools.

Already in the late 1970s, Carl Adam Petri knew that is is possible to back
calculate any 1-bounded Petri net N from its reachability graph G: A state set
A of G forms a place in N if either all or no edges of G that have the same
label either start or end in A. He did not consider that particularly interesting,
because n places of N would result in 2n nodes in G and thus 22

n

state sets –
an unmanageable situation.

In the mid-1980s, Ehrenfeucht and Rozenberg [4] solved the synthesis problem
for loop-free, 1-bounded Petri nets as an example of use for their ”2-Theory”.
For this, they use all the regions of G for the construction of a system net. It was
not until 1993 that Bernardinello [1] confirmed the assumption that the minimal
regions suffice. Only with this, region theory became usable in practice. By using
only the minimal regions, nets of manageable sizes are constructed.

Many authors took part in generalizing the 1-boundedness in Theorem 1
to more general Petri nets and in including even inhibitor edges. With this,
the synthesis problem of much more general state automata becomes solvable.
The most important authors include Baudouel, Bergenthum, Busi, Cordella,
Darondeau, Desel, Gunther, Hoagens, Juhas, Kishinevsky, Kleijn, Kontratyev,
Lavagno, Lorenz, Mauser, Mukund, Pietkiewicz-Koutny, Pinna, Thiagarajan,
van der Aalst and Yakovlev. An overview of these developments can be found
in [5]. Also very interesting for practical purposes is a weakening of the criteria
for the solution to the synthesis problem: A system net N solves a weak syn-
thesis problem for a state automaton Z if the reachability graph G of N is not
necessarily isomorphic to Z, but if G and Z are bisimular or fulfill some other
simulation relation. In [2], for instance, only a bisimulation is required between
the state automaton Z and the reachability graph of the synthesized net N .
Additionally, the transitions of N may be labeled. With this, one action of Z
can be implemented by several transitions of N . Lastly, it is possible to require
special characteristics of N , for instance the free-choice characteristic. [7] solves
the synthesis problem for other, liberal simulation relations and also takes dis-
tributed runs into account. Numerous software tools for the analysis of Petri
nets offer a synthesis module, for instance the tool Petrify [3].

Put intuitively, the synthesis problem seeks to construct a distributed
system from the observance of its sequential behavior. The fact that this is
possible marks Petri nets as a ”very natural modeling technique” for distributed
systems.
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Abstract. Synthesis of Petri nets from behavioral descriptions has important ap-
plications in the design of systems in different application areas. In this paper we
present a survey on the technique of region based synthesis of Petri nets from
languages. Each word in a given language specifies one run of the searched Petri
net, i.e. represents one observable scenario of the system.

We concentrate on recent developments for languages of different kinds of
causal structures (such as partial orders and stratified order structures). Causal
structures represent causal relationships between events of one run. Expressible
causal relationships are for example direct and indirect causal dependency, con-
currency and synchronicity of events.

Concerning infinite languages, several possibilities of a finite representation
are discussed. As the goal of synthesis, place/transition nets and inhibitor nets as
well as several restrictions of these net classes are used. The presented framework
integrates all classical results on sequential languages.

Keywords: Synthesis, Region Theory, Petri Net, Causal Semantics, Partial
Language, Partial Order, Stratified Order Structure.

1 Introduction

Synthesis of Petri nets from behavioral descriptions has been a successful line of re-
search since the 1990s. There is a rich body of nontrivial theoretical results and there
are important applications in industry, in particular in hardware design [9,19], in con-
trol of manufacturing systems [33] and recently also in process mining [32,31,4,17] and
workflow design [12,6].

The synthesis problem is the problem to construct, for a given behavioral specifica-
tion, a Petri net such that the behavior of this net coincides with the specified behavior
(if such a net exists). There are many different methods which are presented in litera-
ture to solve this problem. They differ mainly in the Petri net class and the model for

� Supported by the German Research Council, project SYNOPS 2008 - 2012.

K. Jensen et al. (Eds.): ToPNoC VII, LNCS 7480, pp. 314–371, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Models from Scenarios 315

the behavioral specification considered. All these methods are based on one common
theoretical concept, the notion of a region of the given behavioral specification.

In this paper, we present an overview of region-based synthesis methods, which re-
gard languages as behavioral specifications, where each word in a given language spec-
ifies one run of the searched Petri net. Classical results consider sequential languages
representing sequential runs of Petri nets. Recent developments examine languages of
different kinds of causal structures (such as partial orders and stratified order structures)
representing non-sequential runs. Such causal structures are able to represent different
causal relationships between events of one run, such as for example direct and indirect
causal dependency, concurrency and synchronicity.

In the following we describe the general approach of region based synthesis from
languages. Denote the set of runs of a Petri net N by L(N). It depends on the Petri
net class and the considered net semantics, which kind of runs are considered in L(N).
Formally the synthesis problem w.r.t. different Petri net classes and different language
types is:

Given: A prefix-closed language L over a finite alphabet of transition names T .
Searched: A Petri net N with set of transitions T and L(N) = L.

This means, we search for an exact solution of the problem. Such an exact a solution
may not exist, i.e. not each language L is a net language.

The classical idea of region-based synthesis is as follows: First consider the net N
having an empty set of places but all transitions occurring as labels in L. This net
generates each execution in L (i.e. L ⊆ L(N)), because there are no places restricting
transition occurrences. But it generates much more executions. Since we are interested
in an exact solution, we restrict L(N) by adding places.

There are places p, which restrict the set of executions too much in the sense that
L \ L(N) 
= ∅, if p together with adjacent weighted arcs is added to N . Such places
are called non-feasible (w.r.t. L). We only add so called feasible places p satisfying
L ⊆ L(N), if p is added to N (Figure 1). The idea of region-based synthesis is to add
all feasible places to N . The resulting net Nsat is called the saturated feasible net. Nsat

has by construction the following very nice property:

(min) L(Nsat) is the smallest net language satisfying L ⊆ L(Nsat).

Fig. 1. The place p1 is feasible, the place p2 is not feasible w.r.t. the language L =
{a, b, ab, ba, abb, bab} (b is no execution of the net shown in the middle). The place p3 is feasible
w.r.t. L for each integer n ∈ N
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This is clear, since L(Nsat) could only be further restricted by adding non-feasible
places. The property (min) directly implies that there is an exact solution of the syn-
thesis problem if and only if Nsat is such an exact solution. Moreover, if there is no
exact solution, Nsat is the best approximation to such a solution ”from above”.

Unfortunately, this result is only of theoretical value, since the set of feasible places
is in general infinite (Figure 1). Therefore, for a practical solution, a finite subset of the
set of all feasible places is defined, such that the net Nfin defined by this finite subset
fulfills L(Nfin) = L(Nsat). Such a net Nfin is called finite representation of Nsat. In
order to construct such a finite representation, in an intermediate step a feasible place is
defined through a so called region of the given language L, where the set of all regions
equals the set of non-negative integral solutions of an appropriate linear system of the
form AL · x ≤ bL.

The described approach is common to all known region-based synthesis methods
(see Figure 2), where different notions of regions and of finite representations Nfin

are used. There are two types of definitions of regions and two types of definitions of
finite representations, whose four combinations cover all known region-based synthesis
methods. All these combinations can be applied to almost each Petri net class and each
language type (leading to different nets Nfin having the same behavior).

Summarizing, the form of the synthesis problem and the solution method can be
varied along the following lines: Petri net class, language type, region type and finite
representation type. This paper presents a common framework for all these variations
based on a combination of and extending the publications [27], [26] and [7].

The organisation of the paper is as follows: In the first part we develop a basic frame-
work considering the synthesis of place/transition nets from finite and from simple
infinite languages of labelled partial orders, using both region types and both finite rep-
resentation types. For the finite specification of infinite languages a simple term based
notation is used. In the second part we extend and generalize the basic framework along
several lines:

– We consider the synthesis of inhibitor nets from finite and from simple infinite
languages of labelled stratified order structures.

– We discuss synthesis from languages of non-transitive order structures.

Language L Petri net N with
L⊆L(N), L(N) minimal

Regions
(finite repr.)

Feasible places
(finite repr.)

Fig. 2. The approach of region-based synthesis
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– We examine the synthesis of nets of restricted net classes.
– We suggest several possibilities for a finite representation of more general infinite

languages.

We do not consider labelled Petri nets (this is another line of research), and nets with in-
visible (internal) transitions or high level Petri nets (these are future topics of research).

This paper only gives a technical overview. Case studies and issues from practise are
out of scope of this paper.

2 Basic Framework

In this section we present all main concepts by means of the synthesis of place/transition
Petri nets from languages of labelled partial orders.

2.1 Mathematical Preliminiaries

In this subsection we present necessary notions and definitions including labelled partial
orders, place/transition Petri nets and runs of place/transition Petri nets.

Basic Notions. By N0 we denote the set of nonnegative integers, byN the set of positive
integers.

Given a function f from X to Y and a subset Z of X we write f |Z to denote the
restriction of f to the set Z .

Given a finite set X , the symbol |X | denotes the cardinality of X . The set of all
subsets of X is denoted by P(X).

The set of all multisets over a set X is the set NX of all functions f : X → N.
Addition + on multisets is defined by (m+m′)(x) = m(x) +m′(x). The relation ≤
between multiset is defined through m ≤ m′ ⇐⇒ ∃m′′(m+m′′ = m′). We define x ∈
m if m(x) > 0. A multiset is finite, if

∑
x∈X m(x) is finite. A set A ⊆ X is identified

with the multiset m satisfying m(x) = 1 ⇐⇒ x ∈ A ∧m(x) = 0 ⇐⇒ x 
∈ A. The
support of a multiset m ist the set set(m) = {x | x ∈ m}. If X is finite, a multiset m
we also write in the form of an |X |-tuple (m(x)x)x∈X . For example, the finite multiset
m over {a, b, c} defined by m(a) = 1 and m(b) = 2 we denote by (1a, 2b, 0c). A
multiset m satisfying m(a) > 0 for exactly one element a we call singleton multiset
and denote it by m(a)a. The multiset m satisfying ∀x ∈ X : m(x) = 0 we call empty
multiset and denote it by ε.

Let X,T be sets and l : X → T be a labelling function assigning to each x ∈ X
a label l(x) from T . Such a labelling function can be lifted to subsets Y ⊆ X in the
following way: l(Y ) is the multiset over T given by l(Y )(t) = |l−1(t) ∩ Y |.

Given a binary relationR ⊆ X×Y and a binary relation S ⊆ Y ×Z for sets X,Y, Z ,
then their composition is defined by R ◦S = {(x, z) | ∃y((x, y) ∈ R∧ (y, z) ∈ S)} ⊆
X × Z . For a binary relation R ⊆ X × X over a set X , we denote R1 = R and
Rn = R ◦Rn−1 for n ≥ 2. The symbol R+ denotes the transitive closure

⋃
n∈N

Rn of
R and the symbol R∗ denotes the reflexive transitive closure R+ ∪ {(x, x) | x ∈ X} of
R. We also write aRb to denote (a, b) ∈ R.



318 R. Lorenz, J. Desel, and G. Juhás

Let A be a finite set of characters. A (classical) language over A is a (possibly
infinite) set of finite sequences of characters from A. For a language L and w ∈ L, |w|a
denotes the number of a’s occurring in w (for example |aba|a = 2). A (concurrent) step
over A is a multiset over A. A step language over A is a (possibly infinite) set of finite
sequences of steps over A. For a sequence of steps w = α1 . . . αm, |w|a =

∑m
i=1 αi(a)

denotes the number of a’s occurring in w (for example |(1a, 0b)(0a, 2b)|b = 2).

Partial Orders. A directed graph is a pair G = (V,→), where V is a finite set of
nodes and →⊆ V × V is a binary relation over V, called the set of edges (all graphs
considered in this paper are finite). The set of nodes of a directed graphG is also denoted
by V (G). The preset of a node v ∈ V is the set •v = {u | u → v}. The postset of a
node v ∈ V is the set v• = {u | v → u}. The preset of a subset W ⊆ V is the set
•W =

⋃
w∈W

•w. The postset of a subset W ⊆ V is the set W • =
⋃

w∈W w• . A path
is a sequence of (not necessarily distinct) nodes v1 . . . vn (n > 1) such that vi → vi+1

for i = 1, . . . , n − 1. A path v1 . . . vn is a cycle, if v1 = vn. A directed graph is
called acyclic, if it has no cycles. The set of maximal nodes of an acyclic directed graph
G = (V,→) is the set Max(G) = {v | v• = ∅}, the set of its minimal nodes is the
set Min(G) = {v | •v = ∅}. An acyclic directed graph (V,→′) is an extension of an
acyclic directed graph (V,→) if→⊆→′. An acyclic directed graph (V ′,→) is a prefix
of an acyclic directed graph (V,→) if V ′ ⊆ V and (v′ ∈ V ′) ∧ (v → v′)⇒ (v ∈ V ′).
An acyclic directed graph (V ′,→) is a sub-graph of an acyclic directed graph (V,→)
if V ′ = U \W for prefixes (U,→) and (W,→). Then (W,→) is called prefix of the
sub-graph (V ′,→).

A partial order over a set V is a binary relation <⊆ V × V which is irreflexive
(∀v ∈ V : v 
< v) and transitive (<=<+). We associate a finite partial order < over V
with the directed graph (V,<).

Two nodes v, v′ ∈ V of a partial order (V,<) are called independent if v 
< v′ and
v′ 
< v. By co< ⊆ V × V we denote the set of all pairs of independent nodes of V .
A co-set is a subset C ⊆ V fulfilling ∀x, y ∈ C : x co< y. A cut is a maximal co-set
w.r.t. set inclusion. For a co-set C of a partial order (V,<) and a node v ∈ V \ C we
write v < C, if v < s for an element s ∈ C and v co< C, if v co< s for all elements
s ∈ C. The sets Max(po) and Min(po) are cuts.

The skeleton of a finite partial order po = (V,<) is the minimal relation ≺⊆<
satisfying ≺+=<.

Graphically, nodes of partial orders are drawn as small squares and the relatrion
by (drawn-through) arrows between nodes. Figure 3 shows an example partial order po.
The nodes v1 and v2 as well as v3 and v2 are independent. It holdsMax(po) = {v2, v3}
and Min(po) = {v1, v2}.

Place/Transition Petri Nets. A net is a 3-tuple N = (P, T, F ), where P is a finite set
of places, T is a finite set of transitions disjoint fromP andF ⊆ (P×T )∪(T×P ) is the
flow relation. A marking of a net assigns to each place p ∈ P a number m(p) ∈ N0, i.e.
a marking is a multiset over P . A marked net is a net N = (P, T, F ) together with an
initial marking m0. Graphically, places are drawn as circles, transitions as squares and
the flow relation as arrows between places and transitions. A marking m is illustrated
by drawing m(p) tokens inside place p.
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Fig. 3. Example of a partial order and a prefix and two extensions of this partial order

Definition 1 (Place/Transition Petri Net). A place/transition Petri net (PT-net) is a 4-
tuple N = (P, T, F,W ), where (P, T, F ) is a net and W : (P × T ) ∪ (T × P )→ N0

is a weight function satisfying W (x, y) > 0⇔ (x, y) ∈ F .

Graphically, the number W (x, y) is assigned to an arrow from x to y, if W (x, y) > 1
(that means, W (x, y) = 1 for arrows (x, y) without assigned weight). Figure 4 shows a
marked PT-net with P = {p1, p2, p3}, T = {a, b}, m0(p1) = m0(p2) = 1, m0(p3) =
0 and W (p1, a) = W (a, p2) = W (p2, b) = W (b, p3) = 1.

We introduce the following multisets of places:

– •t(p) = W (p, t) and t• (p) = W (t, p) for transitions t.
– •τ(p) =

∑
t∈T τ(t) •t(p) and τ• (p) =

∑
t∈T τ(t)t• (p) for multisets of transi-

tions τ .

The definition of executions of PT-nets depends on the occurrence rule of transitions,
stating in which markings a transition (or a multiset of transitions) can occur and how
these markings are changed by its occurrence.

Definition 2 (Occurrence Rule). A transition t ∈ T can occur in a marking m, if
m ≥ •t. A multiset of transitions τ can occur in m, if m ≥ •τ .

If a transition t occurs in a marking m, the resulting marking m′ is defined by m′ =
m− •t + t• . If a multiset of transitions τ occurs in m, then the resulting marking m′

is defined by m′ = m− •τ + τ• . We write m
t−→ m′ (m

τ−→ m′) to denote that t (τ )
can occur in m and that its occurrence leads to m′.

The numberW (p, t) represents the number of tokens consumed from p by an occurrence
of t and the number W (t, p) represents the number of tokens produced in p by an
occurrence of t.

The occurrence of a multiset of transitions τ in a marking m means, that all transi-
tions in τ occur in parallel.

The notion of execution depends on the chosen net semantics. In the following defi-
nition we consider sequential semantics and step semantics. Causal semantics is defined
in the next subsection.

Definition 3 (Execution). A sequential execution in m of a PT-net is a finite sequence

of transitions σ = t1 . . . tn such that there are markings m1, . . . ,mn satisfying m
t1−→

m1
t2−→ . . .

tn−→ mn.
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A step execution in m of a PT-net is a finite sequence of multisets of transitions
σ = τ1 . . . τn such that there are markings m1, . . . ,mn satisfying m

τ1−→ m1
τ2−→

. . .
τn−→ mn.

We write m
σ−→ mn to denote the occurrence of such executions σ.

Each sequential execution is also a step execution. The markings which can be reached
from the initial marking via sequential executions (resp. step executions) are called
reachable.

The PT-net shown in Figure 4 has the sequential executions a, b, ab, ba, abb, bab and
the additional step execution (1a, 1b)(0a, 1b), (1a, 0b)(0a, 2b) in the initial marking.

If τ is a multiset of transitions which can occur in a marking m and τ = t1+ . . .+ tn
for transitions t1, . . . , tn, then t1 . . . tn is a sequential execution in m, i.e. the transitions
in τ can occur in m in arbitrary sequential order.

Finally, we recall process semantics of PT-nets.

Definition 4 (Occurrence Net). An occurrence net is a net O = (B,E,G) satisfying:

– B and E are finite and disjoint sets.
– G ⊆ (B × E) ∪ (E ×B).
– (B ∪ E,G) is a directed acyclic graph.
– ∀b ∈ B(| •b| ≤ 1 ∧ |b• | ≤ 1).

The elements of B are called conditions and the elements of E are called events. The
relation G is called flow relation.

Since an occurrence net can be identified with an acyclic directed graph, we use no-
tations introduced for acyclic directed graphs also for occurrence nets. A slice of an
occurrence net is a cut consisting solely of conditions.

In a process, the events of an occurrence net are interpreted as transition occurrences
of a PT-net. Conditions represent tokens in places.

Definition 5 (Process). Let N = (P, T, F,W,m0) be a marked PT-net. A process of
N is a pair K = (O, ρ), where O = (B,E,G) is an occurrence net and ρ : B ∪ E →
P ∪ T is a labelling function, satisfying

– ρ(B) ⊆ P and ρ(E) ⊆ T .
– ∀e ∈ E : ρ( •e) = •ρ(e) ∧ ρ(e• ) = ρ(e)• .
– ρ(Min(O)) = m0.

In a process of a PT-net, two transition occurrences are directly causally dependent if
one transition occurrence e′ consumes tokens which are produced by the other transition
occurrence e. Such a situation is called token flow between transition occurrences and
can be directly observed in a process via e• ∩ •e′ 
= ∅. Figure 4 shows a process of a
PT-net, where names of conditions are omitted. The names of events are shown inside,
the labels of events and conditions outside of the graphical object. In this process, v1
and v3 are directly causally dependent.

For each slice C of a process, ρ(C) is a reachable marking of the net. On the
other hand, for each reachable marking m there is a slice C in some process such that
ρ(C) = m.
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Fig. 4. Example of a PT-net and one of its processes

2.2 Causal Semantics

We use partial orders labelled by transition names to represent single (non-sequential)
runs of PT-nets. The nodes of a partial order represent transition occurrences and its
arrows an ”earlier than”-relation between transition ocurrences in the sense that one
transition occurrence can be observed earlier than another transition occurrence. If there
are no arrows between two transition occurrences, then these transition occurrences
are independend and are called concurrent. Concurrent transition occurrences can be
observed in arbitrary sequential order and in parallel. This interpretation of arrows is
called occurrence interpretation.

Definition 6 (Labelled Partial Order). A labelled partial order (LPO) over T is a
3-tuple (V,<, l), where (V,<) is a partial order and l : V → T is a labelling
function on V .

We only consider LPOs up to isomorphism, i.e. only the labelling of events is of interest,
but not the event names. Formally, two LPOs (V,<, l) and (V ′, <′, l′) are isomorphic,
if there is a renaming function I : V → V ′ satisfying l(v) = l′(I(v)) and v < w ⇔
I(v) <′ I(w).

A linear order is an LPO (V,<, l) where < is a total order, i.e. there is no indepen-
dence between transition occurrences: ∀u, v ∈ V : u < v ∨ v < u. Linear orders
represent sequential executions of Petri nets in the obvious way. For example, the LPO
lpo4 shown in Figure 5 is linear and represents the sequential execution abb.

A stepwise linear LPO is an LPO (V,<, l) where the relation co< is transitive. The
maximal sets of independent transition occurrences are called steps. The steps of a
stepwise linear LPOs are linearly ordered. Thus, stepwise linear LPOs represent step
executions of Petri nets. For example, the LPO lpo1 shown in Figure 5 is not stepwise
linear, while the LPOs lpo2 (representing the step execution (1a, 1b)(0a, 1b)) and lpo3
(representing the step execution (1a, 0b)(0a, 2b)) are stepwise linear.
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The set of step-linearizations of an LPO is the set of stepwise linear LPOs which are
extensions of this LPO. For example, the LPOs lpo2 and lpo3 shown in Figure 5 are
step linearizations of lpo1.

Definition 7 (LPO-run). Let N = (P, T, F,W,m0) be a PT-net. An LPO (V,<, l) is a
LPO-run of N if there is a process K = (O, ρ), O = (B,E,G), of N such that (V,<)
is an extension of (E, {(e, f) | e• ∩ •f 
= ∅}) and l = ρ|E .

An LPO-run lpo of N is said to be minimal, if there exists no other LPO-run lpo′ of
N such that lpo is an extension of lpo′.

Note that (E, {(e, f) | e• ∩ •f 
= ∅}) is an acyclic directed graph representing all direct
causal dependencies between transition occurrences of a process of the net. This means,
along the ”earlier than”-relations between transition occurrences of an LPO-run token
flow is allowed, but not required. Figure 5 shows a PT-net together with some of its
LPO-runs. Note that the LPO-run lpo1 exactly represents all direct causal dependencies
between transition occurrences of a process of the net (which is shown in Figure 4).
Moreover, lpo1 is minimal, since a second occurrence of b must be preceeded by an
occurrence of a.

From the definition follows that extensions of LPO-runs also are LPO-runs. This
means, the set of all LPO-runs can be deduced from the set of minimal LPO-runs.

There are two alternative but equivalent definitions of LPO-runs in literature:

– An LPO lpo = (V,<, l) is an LPO-run of a PT-net N if and only if each step-
linearization of lpo is a step execution of N . This means, LPO-runs are consistent
with the step semantics of PT-nets.

– An LPO lpo = (V,<, l) is an LPO-run if and only if for each cut C of lpo and each
place p there holds:

m0(p) +
∑
v<C

(W (l(v), p)−W (p, l(v))) ≥
∑
v∈C

W (p, l(v)).

Fig. 5. A PT-net with four of its LPO-runs. The LPOs lpo2, lpo3 and lpo4 are step linearizations
of lpo1. The LPO-run lpo1 is minimal. The LPO lpo4 is linear.
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This means, after the occurrence of each prefix of lpo there are enough tokens
for the occurrence of the multiset of transitions occurrences directly following the
prefix.

In figures we often omit transitive arrows of LPOs for a clearer presentation.

2.3 Regions of Finite Languages

The formal problem statement, which we consider from now, is:

Given: A prefix-closed and extension-closed finite language L of LPOs over a finite
alphabet of transition names T .

Searched: A PT-net N with set of transitions T such that all LPOs in L are LPO-runs
of N and N has a minimal number of additional LPO-runs.

As explained in the introduction, for the computation of places of N so-called regions
are defined. In this subsection we define two different types of PT-net regions of fi-
nite languages of LPOs as non-negative integral solutions of appropriate linear systems
of the form AL · x ≤ bL. For these definitions and in examples we only consider
those LPOs from L, which are not extensions or prefixes of other LPOs from L. If
a place is feasible w.r.t. these LPOs, then this place is feasible w.r.t. L, since the set
of LPO-runs of a PT-net is prefix- and extension-closed. Throughout the rest of this
subsection we use the language shown in Figure 6 as a running example. It is enough
to consider the LPOs lpo1 and lpo2, since the other LPOs are prefixes or extensions
of lpo1.

Transition-Regions. A (PT-net) transition-region r directly defines the parameters
of a place pr of PT-nets, i.e. it determines the numbers m0(pr) and W (pr, t) and
W (t, pr) for each t ∈ T . If T = {t1, . . . , tn}, then r is given as a (2n + 1)-tuple

Fig. 6. Running example language
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r = (r0, . . . , r2n) of non-negative integers. Its components define these numbers via
m0(pr) = r0, W (pr, ti) = ri and W (ti, pr) = rn+i for i ∈ {1, . . . , n}. In the running
example, denote t1 = a, t2 = b and t3 = c.

Since a region r is intended to define a feasible place pr, it is required to satisfy a
property (f)L ensuring that pr is feasible w.r.t. L. Remember that pr is feasible w.r.t. L
if the net resulting from adding pr still generates at least L. For this, the property (f)L
formalizes that for each cut of events there are enough tokens in pr for the occurrence
of the corresponding step of transitions after the occurrence of the prefix preceeding the
cut (which can be the empty prefix). For example, in the running example the transition
step (1a, 1b) must be able to occur after the empty prefix, i.e. in the initial marking
(see Figure 7). This means, pr has to satisfy m0(pr) ≥ W (pr, a) + W (pr, b), i.e.
r0 ≥ r1 + r2.

The definition of (f)L for a finite language L of LPOs and PT-nets is as follows: For
each lpo = (V,<, l) ∈ L and for each cut C of lpo we require

r0 +
n∑

i=1

l(V ′)(ti)(rn+i − ri)−
n∑

i=1

l(C)(ti)ri ≥ 0,

where V ′ = {v ∈ V | v < C}. This is the case if and only if (for each lpo ∈ L and for
each cut C of lpo) alpo,C · r ≤ 0 for alpo,C = (aC,0, . . . , aC,2n) defined by:

aC,j =

⎧⎨
⎩
−1 if j = 0,
l(V ′ ∪ C)(tj) if j ∈ {1, . . . , n},
−l(V ′)(tj−n) if j ∈ {n+ 1, . . . , 2n}.

For the cut C corrsponding to the transition step (1a, 1b) in the running example we
require r0 − r1 − r2 ≥ 0. This is the case if and only if alpo1,C · r ≤ 0 for

alpo1,C = (−1, 1, 1, 0, 0, 0, 0).

Definition 8 (Transition-Region). A tuple r as above is called a transition-region if it
satisfies (f)L.

Theorem 1 ([27]). A tuple r satisfies (f)L if and only if pr is feasible w.r.t. L.

Fig. 7. All cuts of the LPOs lpo1 and lpo2 together with their preceeding prefixes
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Let AL be the matrix consisting of all rows alpo,C for LPOs lpo ∈ L and cuts C
of lpo. Since L is assumed to be finite, AL is finite. Thus, the set of all regions can
be computed as the set of all integral solutions of the homogenous linear inequation
system AL · x ≤ 0. In the running example, AL looks as follows (compare Figure 7):⎛

⎝−1 1 1 0 0 0 0
−1 1 2 0 −1 0 0
−1 0 0 1 0 0 0

⎞
⎠

Solutions are for example r = (1, 1, 0, 1, 0, 0, 0) with corresponding place p1, r =
(1, 0, 1, 1, 1, 0, 0) with corresponding place p2 and r = (0, 0, 0, 0, 0, 1, 0) with corre-
sponding place p3 in Figure 8.

Theorem 2 ([27]). If L is finite then there is a finite matrix AL such that the set of
transition-regions is the set of solutions of the linear inequation system AL · x ≤ 0.

Token Flow Regions. A token flow-region r defines a place pr indirectly by deter-
mining the token flow w.r.t. this place between transition occurrences in LPOs from L,
i.e. by directly determining the number of tokens produced by a transition occurrence
which are consumed by a subsequent transition occurrence in an LPO specified in L.

Such numbers are assigned to the arrows between transition occurrences of LPOs.
Moreover, for each transition occurrence the number of tokens consumed from the ini-
tial marking and the number of tokens which are produced but not further consumed by
other transition occurrences are considered. Finally, there may be tokens in the initial
marking which are not consumed by any transition occurrence of an LPO.

If W =
⋃

(V,<,l)∈L V is the set of nodes of LPOs in L and E =
⋃

(V,<,l)∈L < is
the set of arrows of LPOs in L, then a (PT-net) token flow-region r is given as a tuple
r = (ri)i∈W×{in,out}∪E∪L of non-negative integers. Its components define

– the number of tokens an event v ∈W consumes from the initial marking by rv,in,
– the number of tokens produced by an event v and not consumed by a subsequent

event by rv,out,

Fig. 8. Some solution places for the example language
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Fig. 9. Illustration of token flow regions for the running example

– the number of tokens produced by an event v and consumed by an event w for
e = (v, w) ∈ E by re,

– the number of tokens in the initial marking, which are not consumed by any subse-
quent event of an LPO lpo ∈ L by rlpo.

Figure 9 illustrates all these numbers for the running example. For example, ru,in rep-
resents the number of tokens, this occurrence of transition a consumes from the initial
marking of the represented place. The number r(u,w) represented the number of tokens,
which are produced by transition a in the represented place and then consumed by the
following transition occurrence of b. The number ru,out represents the number of to-
kens, this occurrence of transition a produces in the the represented place and which
are not consumed by further transitions. For the running example, we denote

r = (rlpo1, rlpo2, ru,in, rv,in, rw,in, rx,in, ru,out, rv,out, rw,out, rx,out, r(u,w)).

A token-flow region r defines a PT-net-place pr as follows:

– m0(pr) = rlpo +
∑

v∈V rv,in for some LPO lpo = (V,<, l) ∈ L – the sum is
called initial token flow of lpo. The initial token flow of lpo1 equals rlpo1 + ru,in +
rv,in + rw,in.

– W (pr, t) = rv,in +
∑

e=(u,v)∈E re for some LPO lpo = (V,<, l) ∈ L and v ∈ V

with l(v) = t – the sum is called intoken flow of v. The intoken flow event w is
r(u,w) + rw,in.

– W (t, pr) = rv,out +
∑

e=(v,u)∈E re for some LPO lpo = (V,<, l) ∈ L and v ∈ V

with l(v) = t – the sum is called outtoken flow of v. The outtoken flow event u
computes r(u,w) + ru,out.

This construction is still dependent on the choice of lpo = (V,<, l) ∈ L and v ∈ V ,
thus pr is not uniquely defined. Therefore, we require r to fulfill a property (wd)L
which makes pr defined independently from the choice of lpo = (V,<, l) ∈ L and
v ∈ V . The property (wd)L states the following:



Models from Scenarios 327

– The initial token flows of different LPOs are equal:

rlpo +
∑
v∈V

rv,in = rlpo′ +
∑
v′∈V ′

rv′,in

for LPOs lpo = (V,<, l), lpo′ = (V ′, <′, l′) from L. This property can be ex-
pressed as a linear equation system AL,a · r = 0 as follows:
Let L = {lpo1, lpo2, . . . , lpon} and lpok = (Vk, <k, lk). Then, for each k ≥ 2, the
matrix AL,a has a row ak = (ak,i)i∈W×{in,out}∪E∪L defined by

ak,i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if i = (v, in) for v ∈ Vk,
1 if i = lpok,
−1 if i = (v′, in) for v′ ∈ Vk−1

−1 if i = lpok−1,
0 else.

For example, the two LPOs of the running example shown in Figure 9 should have
the same initial token flow, i.e. we require

rlpo1 + ru,in + rv,in + rw,in = rlpo2 + rx,in.

This is satisfied if and only if a2 · r = 0 for

a2 = (−1, 1,−1,−1,−1, 1, 0, 0, 0, 0, 0).

– The intoken flows of equally labelled events are equal:

rv,in +
∑

e=(u,v)∈<

re = rv′,in +
∑

e=(u,v′)∈<′
re

for v ∈ V , v′ ∈ V ′, (V,<, l), (V ′, <′, l′) ∈ L and l(v) = l′(v′). This prop-
erty can be expressed as a linear equation system AL,b · r = 0 as follows: Let
Wt = {v ∈ W | l(v) = t} = {vt1, vt2, . . . , vtn} be the set of all t-labeled
events for t ∈ T . Then, for each t and each k ≥ 2, the matrix AL,b has a row
bt
k = (btk,i)i∈W×{in,out}∪E∪L defined by

bt
k,i =

⎧⎨
⎩

1 if i = (vtk, in) ∨ i = (u, vtk),
−1 if i = (vtk−1, in) ∨ i = (u, vtk−1)
0 else.

For example, the two occurrences v and w of transition b shown in Figure 9 should
have the same intoken flow, i.e. we require

rv,in = rw,in + r(u,w).

If we denote vb1 = v and vb2 = w, this is satisfied if and only if bb
2 · r = 0 for

bb
2 = (0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 1).
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– The outtoken flows of equally labeled events are equal:

rv,out +
∑

e=(v,u)∈<

re = rv′,out +
∑

e=(v′,u)∈<′
re

for v ∈ V , v′ ∈ V ′, (V,<, l), (V ′, <′, l′) ∈ L and l(v) = l′(v′). This property can
be expressed as a linear equation system AL,c · r = 0 as follows: For each t and
each k ≥ 2 the matrix AL,c has a row ctk = (ctk,i)i∈W×{in,out}∪E∪L defined by

ctk,i =

⎧⎨
⎩

1 if i = (vtk, out) ∨ i = (vtk, u),
−1 if i = (vtk−1, out) ∨ i = (vtk−1, u)
0 else.

For example, the two occurrences v and w of transition b shown in Figure 9 should
have the same outtoken flow, i.e. we require

rv,out = rw,out.

If we denote vb1 = v and vb2 = w, this is satisfied if and only if cb2 · r = 0 for

cb2 = (0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0).

It can be shown that the place pr is feasible w.r.t. L by construction (it is possible to
construct a process of the synthesized net directly from token flows).

Definition 9 (Token Flow-Region). A tuple r as above is called a token flow-region if
it satisfies (wd)L .

For the property (wd)L the following theorem holds for PT-net places [5]:

Theorem 3. A tuple r satisfies (wd)L if and only if pr is feasible w.r.t. L.

Let AL be the matrix consisting of all rows from the matrices AL,a, AL,b and AL,c.
Since L is assumed to be finite, AL is finite. Thus, the set of all token flow-regions
can be computed as the set of all integral solutions of the homogenous linear equation
system AL · x = 0. If we denote vb1 = v and vb2 = w, AL looks as follows for the
running example (the matrices AL,a, AL,b and AL,c each consist exactly of the one
row already shown): ⎛

⎝−1 1 −1 −1 −1 1 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 1 0 0

⎞
⎠

Figure 10 shows a solution. This solution represents the place p2 from Figure 8.

Theorem 4 ([5,27]). If L is finite then there is a finite matrix AL such that the set of
token flow-regions is the set of solutions of the linear equation system AL · x = 0.
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Fig. 10. Illustration of the token flow region r = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1)

2.4 Finite Representations

As shown in the last paragraph, the set of regions can be computed as the set of non-
negative integer solutions of a homogenuous equation ot inequation system. Such sys-
tems have an infinite set of solutions. In this subsection we present two possibilities to
finitely represent this set of solutions.

Separating Representation. One idea to derive a finite representation is to separate
behavior specified in L from behavior not specified in L by a finite set of regions.
For this, one defines a finite set of executions Lc with L ∩ Lc = ∅ satisfying that
L(N) ∩ Lc = ∅ =⇒ L(N) = L for each net N . Then for each w ∈ Lc one tries to
find a region r(w) such that w is not an execution of the net having the place pr(w), i.e.
a region which separates L from w. The elements of Lc are called wrong continuations.
If such a region exists, then the corresponding place is added to the net Nsep called
separating representation of Nsat.

There is an exact solution of the synthesis problem if and only if for each w ∈ Lc

there is such a region r(w). In case L is a net language (of the considered net class), it
holds L(Nsep) = L(Nsat) = L, i.e Nsep is a possible solution.

If L is not a net language, Lc does not have in general the property L(Nsat) =
L(Nsep). One common approach is to define a wrong continuation w as an LPO ex-
tending an LPO of L by one event. If there is no place separating L from such a wrong
continuation w, this does not mean that there are no places separating L from further
”continuations” of w. In order to achieve L(Nsat) = L(Nsep), also all continuations of
wrong continuations which cannot be separated from L must be considered. In general,
there is no finite set Lc with L∩Lc = ∅ satisfying L(Nsat) = L(Nsep) [10]. Thus, the
separating representation is not necessarily the best approximation to a solution of the
synthesis problem generating L.

In the following we construct a finite set Lc. Remember that lpo ∈ L is a run of a
net N if and only if each step linearization of lpo is a step execution of N . Denote by
Lstep the set of step linearizations of LPOs in L. In order to define wrong continuations
we extend elements from Lstep by one event as follows:
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Definition 10 (Wrong Continuation of LPO-languages). Let σ = α1 . . . αn−1αn ∈
Lstep and t ∈ T such that wσ,t = α1 . . . αn−1(αn + t) 
∈ Lstep, where αn is allowed
to be the empty step. Then wσ,t is called wrong continuation of L.

We call α1 . . . αn−1 the prefix andαn+t the follower step of the wrong continuation.

The following table lists Lstep together all wrong continuations of the running example
(multisets are denoted as sums of singleton multisets):

(a+ b)bε (a+ b)ba abbε abba babε baba
(a+ b)bb abbb babb
(a+ b)bc abbc babc

a(2b)ε a(2b)a (a+ b)ε (a+ b)a abε aba
a(2b)b (a+ b)c abc
a(2b)c

baε baa (a+ b)b (a+ b)(b + a) abbε ab(b+ a)
bac (a+ b)(2b) ab(2b)

(a+ b)(b + c) ab(b+ c)
bab ba(b+ a) aε aa ab a(b+ a)

ba(2b) ac a(b+ c)
ba(b+ c)

a(2b) a(2b+ a) bε bb ba b(2a)
a(3b) bc b(a+ b)
a(2b+ c) b(a+ c)

cε ca εε εa ε(2a)
cb ε(a+ c)
cc

εb ε(2b) εc ε(c+ a) ε(a+ b) ε(2a+ b)
ε(b+ c) ε(c+ b) ε(a+ 2b)

ε(2c) ε(a+ b+ c)

To prohibit a wrong continuation, one needs to find a feasible place p such that after
occurrence of its prefix there are not enough tokens in p to fire its follower step. A
a prefix of wrong continuations corresponds to a prefix (V ′, <, l) of an LPO lpo =
(V,<, l) ∈ L, which is stepwise linearized by α1 . . . αn−1. A follower step of such
a prefix can be constructed by taking a subset S of its direct successors {v ∈ V \
V ′ | u < v =⇒ u ∈ V ′} and add a labelled event z parallel to this subset. That
means, wrong continuations can be represented on the level of LPOs, where wrong
continuations having the same follower step and whose prefixes stepwise linearize the
same LPO-prefix need not be distinguished. Figure 11 shows some representations of
wrong continuations of the running example.

Since the follower marking after the occurrence of (V ′, <, l) only depends on the
number of occurrences of each transition in V ′, but not on their ordering, it is enough to
represent (V ′, <, l) by the multiset l(V ′). Altogether, the set of all wrong continuations
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Fig. 11. Some wrong continuations on the level of LPOs

can be constructed as the set of all pairs of multisets (l(V ′), l(S∪{z})), where (V ′, <, l)
is a prefix of some LPO in L, S is a subset of direct successors of (V ′, <, l) and z is an
additional labelled event. For example, the wrong continuations shown in Figure 11 are
represented in the form (a+2b, a), (a+ b, a), (a+ b, a+ b), (ε, 2c) (from left to right).

With these notations and the notations from the previous subsection we directly de-
duce the following statements for transition regions and token flow regions.

If r is a transition region, T = {t1, . . . , tn}, C = S ∪ {z} and l(z) = t then wσ,t is
not a step execution w.r.t. pr if and only if

r0 +

n∑
i=1

l(V ′)(ti)(rn+i − ri)−
n∑

i=1

l(C)(ti)ri < 0.

This is the case if and only if d(wσ,t) · r < 0 for d(wσ,t) = (d0, . . . , d2n) defined by:

dj =

⎧⎨
⎩

1 if j = 0,
−l(V ′ ∪C)(tj) if j ∈ {1, . . . , n},
l(V ′)(tj−n) if j ∈ {n+ 1, . . . , 2n}.

For example, for the left most wrong continuation in Figure 11 we require r0 + ((r4 −
r1) + 2(r5 − r2))− (r1) < 0 (remember t1 = a, t2 = b and t3 = c). This is the case if
and only if d(wσ,t) · r < 0 for

d(wσ,t) = (1,−2,−2, 0, 1, 2, 0).

The region
r = (1, 1, 0, 1, 0, 0, 0)

(corresponding to place p1 in Figure 8) is a solution which prohibits this wrong
continuation.

If r is a token flow region, then the number of tokens in the place pr after the occur-
rence of a prefix (V ′, <, l) of some LPO lpo = (V,<, l)) equals the initial token flow
of lpo minus the sum of intoken flows of events in V ′ plus the sum of outtoken flows of
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events in V ′. This sum needs to be smaller than the sum of intoken flows of events in
C. Formally, if vt an arbitrary event with label t then wσ,t is not a step execution w.r.t.
pr if and only if

rlpo +
∑

u∈V \(V ′∪S)

ru,in +
∑
v∈V ′

rv,out +
∑

v∈V ′, u∈V \(V ′∪S)

rv,u

− (r(vt,in) +
∑
u<vt

r(u,vt)) < 0.

This is the case if and only if d(wσ,t) · r < 0 for d(wext(t)) = (di)i∈W×{in,out}∪E∪L

defined by:

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = lpo,
1 if i = (u, in) ∧ u ∈ V \ (V ′ ∪ S) ∧ u 
= vt,
1 if i = (v, out) ∧ v ∈ V ′,
1 if i = (v, u) ∧ v ∈ V ′ ∧ u ∈ V \ (V ′ ∪ S) ∧ u 
= vt,
−1 if i = (vt, in) ∧ vt 
∈ V \ (V ′ ∪ S),
−1 if i = (u, vt) ∧ vt 
∈ V \ (V ′ ∪ S),
0 else.

For example, for the right most wrong continuation in Figure 11 we require rlpo1 +
ru,in+rw,in−rv,in < 0 (we use the notations from Figure 9 and V ′ = ∅ and S = {v})
This is the case if and only if d(wσ,t) · r < 0 for

d(wσ,t) = (1, 0, 1,−1, 1, 0, 0, 0, 0, 0, 0).

The region
r = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1)

(illustrated in Figure 10 and corresponding to place p2 in Figure 8) is a solution which
prohibits this wrong continuation.

Summarizing, a region separating L from some wrong continuation w is computed
as a solution of an adequate homogenuous linear inequation system. Such a system
consists of the equations/inequations given by AL defining regions and an additional
row d(w) which is defined in such a way that d(w) · r < 0 if and only if w is not
an execution of the net having the place pr. There are effective algorithms to compute
a non-negative integer solution of the resulting system. One example is the simplex
algorithm, which allows to compute a solution of such a system which addionally mini-
mizes or maximizes a given linear target function. Such a target function may be used to
compute simple places. This is of high importance in practise where the derived system
model should be as clear and compact as possible. For example, the places p2 and p6 in
Figure 8 both prohibit the most right wrong continuation from Figure 11, but place p2
is much more simple and intuitive.

Definition 11 (Linear Target Function of LPO-languages). A linear target function
(of an LPO-language) is a function of the form T (r) = m · r for regions r, where m is
the vector defining T .
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It is possbile to define m in such a way that the sum of initial marking and arc weight
on incoming and outgoing edges w.r.t. pr is minimized when T is minimized.

If r is a transition region and T = {t1, . . . , tn}, then m is defined through

m = (1, . . . , 1),

because m · r =
∑2n

i=0 miri = m0(pr) +
∑n

i=1(W (pr, ti) +W (ti, pr)).
If r is a token flow region, then the initial marking of pr can be computed as the initial

token flow of some LPO in L and the arc weights on incoming and outgoing edges w.r.t.
pr can be computed as intoken and outtoken flows of some events v1, . . . , vn satisfying
l(vj) = tj (we omit a formal definition here). In the running example m can be defined
through

m = (0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1),

because m0(pr) = rlpo2 + rx,in, W (pr, a) = ru,in, W (pr, b) = rv,in, W (pr, c) =
rx,in, W (a, pr) = ru,out + ru,w, W (b, pr) = rv,out and W (c, pr) = rx,out.

Definition 12 (Minimal Places). Given a target function T , a feasible place is called
minimal w.r.t. a wrong continuation, if it minimizes T among all feasible places pro-
hibiting the wrong continuation.

Figure 12 illustrates that a wrong continuation may be prohibited by several different
feasible places. The target function T has different values for these places. The smaller
the value of T is, the more simple is the place.

On the other side, Figure 12 shows that a feasible place may prohibit several wrong
continuations. Sometimes, a place prohibits all wrong continuations another place pro-
hibits. Such places are more expressive in the sense that, that less places of this kind are
needed to prohibit all wrong continuations.

Definition 13 (Expressive Places). A feasible place p is called more expressive than
second feasible place p′, if the set of wrong continuations prohibited by p′ is contained
in the set of wrong continuations prohibited by p.

Fig. 12. Left side: Some feasible places together with some of the wrong continuations they
prohibit. Right side: A solution
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A place which is more expressive than another place is not minimal w.r.t. some wrong
continuations. This means, it is necessary to find a trade-off between simple (minimal)
and expressive places.

Since feasible places in general prohibit more than one wrong contintuation, Nsep is
constructed as follows:

1. Compute a sequence of all wrong continuations.
2. For each wrong continuation w (considered in the given order):

a. If w is prohibited by a previously computed place, skip w.
b. If w is not prohibited by a previously computed place, then compute and add a

place prohibiting w (if possible.

The above considerations imply that it depends on the considered order of wrong
continuations, which places are computed. On the right side of Figure 12 a possible so-
lution is shown. It is advantageous to choose an order such that more expressive places
are computed first. There are several methods for constructing an appropriate order of
wrong continuations.

In general, the number of wrong continuations is exponential in the number of nodes
in L (first step of the algorithm). Since feasible places often prohibit more than one
wrong continuation, the number of computed places is usually much smaller. For step
2a. we need to test for every previously computed place, whether it solves the inequation
system. The simplex algorithm for solving step 2b. needs worst case exponential time
(there are other worts case polynomial algorithms, but probabilistic and experimental
results show that the Simplex algorithm has a significantly faster average runtime).

Basis Representation. For systems of the form AL · r = 0 or AL · r ≤ 0 there is a
so called basis representation of the set of all non-negative solutions. This means there
are non-negative basis-solutions y1, . . . ,yn such that each solution x is a non-negative
linear combination of y1, . . . ,yn, i.e.

x =

n∑
i=1

λiyi

for real numbersλ1, . . . , λn ≥ 0. In the case that all values in AL are integral (this is the
case here) also the values of y1, . . . ,yn can be chosen integral. If pi is the place defined
by yi and Nbasis is the net containing exactly the places p1, . . . , pn, then L(Nbasis) =
L(Nsat) [5]. This means Nbasis is also the best approximation to a solution of the
synthesis problem generating L but Nbasis is moreover finite. Nbasis is called basis
representation of Nsat.

In the worst case n can be exponential in the number of rows of AL, but in practice
it is often small. There are effective algorithms to compute minimal basis solutions
y1, . . . ,yn, where a solution y = (y1, . . . , yk) is minimal, if there is no other solution
z = (z1, . . . , zk) satisfying (∀i : zi ≤ yi) ∧ (∃j : zj < yj). Figure 13 shows Nbasis

for the running example language. Observe that there are basis places which do not
restrict the behavior of the net (filled with grey color). They are special cases of so
called implicit places.
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Fig. 13. The basis representation of the running example

Definition 14 (Implicit Place). A place of a PT-net is called implicit, it the modified
net without this place has the same set of executions.

The are polynomial methods to detect some of the implicit places of a net which can be
applied in a postprocessing phase to the synthesized net. An easy example are places
whiich are dominated by one another place (w.r.t. the behavioral restriction).

Definition 15 (Dominating Place). A place p′ dominates another place p, if for some
λ > 0:

– λm0(p) ≥ λm0(p
′),

– λW (t, p) ≥ λW (t, p′) and λW (p, t) ≤ λW (p′, t) for all transitions t.

Dependent on the initial marking and the arc weights, a maximal number for λ can
be determined. Then places can be compared pairwise. Advanced methods are able to
detect places which are dominated by positive linear combinations of other places. Such
places are implicit, too.

Since from the construction it is not clear whether Nbasis is an exact solution of the
synthesis problem, it is finally necessary to test whether L(Nbasis) = L or not. One
possibility of such an equality test is to test whether no w ∈ Lc (Lc was defined in
the last paragraph) is an execution of Nbasis. There are polynomial algoritms testing
whether an LPO is an execution of a PT-net [25], but Lc in general contains exponential
many LPOs in the number of nodes in L.

Discussion. Experiments in the first phase of the project SYNOPS showed that the
so called separation representation produces Petri nets which are simpler and more
compact, especially having less places [5]. It turned out that in the presence of much
concurrency the use of the basis representation of token flow regions is most efficient
(including an equality test), whereas in the case of low concurrency and much nonde-
terminism the use of the separation representation of transition regions ist advantageous
(concerning runtime).
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2.5 Regions of Infinite Languages

In this subsection we generalize the presented framework to inifinite LPO-languages.
In order to finitely represent such languages we introduce a term based representa-
tion extending regular expressions. A term is built from a given finite set of LPOs
through operators for iteration, parallel composition, sequential composition and union.
The parallel composition operation represents concurrent LPOs. By the iteration oper-
ation infinite sets of LPOs can be constructed. For a term α we denote by L(α) the
LPO-language represented by α.

The formal problem statement, which we consider from now, is:

Given: A term α over a finite alphabet of transition names T .
Searched: A PT-net N with set of transitions T such that all LPOs in L(α) are

LPO-runs of N and N has a minimal number of additional LPO-runs.

As in the finite case, we will define transition regions and token flow regions of L(α) as
non-negative integral solutions of appropriate linear systems of the form Aα · x ≤ bα.
Throughout the rest of this subsection we use the language shown in Figure 14 as a
running example, where zero, one and two iterations of the action b are shown and
prefixes and extensions are omitted.

LPO-terms. Let A be a finite set of LPOs. For A ∈ A we write A = (VA, <A, lA).
We denote by λ = (∅, ∅, ∅) the empty LPO. LPOs consisting only of one single event
we denote by the label of this event.

Definition 16 (LPO-term). The set of LPO-terms over a finite set of LPOsA is induc-
tively defined as follows:

– The elements A ∈ A and λ are LPO-terms.
– Let α1 and α2 be LPO-terms. Then
• α1;α2 (sequential composition),
• α1 + α2 (union),
• (α1)

∗ (iteration),
• α1 ‖ α2 (parallel composition)

are LPO-terms.

Fig. 14. Infinite example language, represented by a term
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In the running example shown in Figure 14 A = {a, b, c} consists of three single event
LPOs. If each LPO in A is single event LPO, an LPO-term defines a so called series
rational sp-language [22,23].

We assign to an arbitrary LPO-term α a possibly infinite prefix and extension closed
LPO-language L(α). The language L(α is defined as the prefix and extension clo-
sure of an appropriate LPO-language K(α). In order to construct K(α), we define the
sequential composition of LPOs A,B ∈ A by

AB = (VA ∪ VB , <A ∪ <B ∪(VA × VB), lA ∪ lB),

the parallel composition of LPOs A,B ∈ A by

A ‖ B = (VA ∪ VB , <A ∪ <B, lA ∪ lB),

and the n-th iteration of an LPO A ∈ A by

An = An−1A

for n ∈ N+ (we can assume that A,B have disjoint sets of nodes).

Definition 17 (LPO-language of an LPO-term). We define inductively:

– K(λ) = {λ} and K(A) = {A} for A ∈ A,
– Let α1 and α2 be LPO-terms. Then:
• K(α1 + α2) = K(α1) ∪K(α2),
• K(α1;α2) = {A1A2 | A1 ∈ K(α1), A2 ∈ K(α2)},
• K((α1)

∗) = {A1 . . . An | A1, . . . , An ∈ K(α1)} ∪ {λ},
• K(α1 ‖ α2) = {A1 ‖ A2 | A1 ∈ K(α1), A2 ∈ K(α2)}.

Some of the the LPOs in K(α) from the example LPO-term shown in Figure 14 are
c, a, ab, abb, . . . , a ‖ b, a ‖ b2, . . . , (ab) ‖ b, (ab) ‖ b2, . . ..

In the second part of this paper, LPO-languages which cannot be generated by LPO-
terms are discussed. This means, LPO-languages generated by LPO-terms (over finite
sets of LPOs) form a certain class of LPO-languages.

Regions of LPO-Terms. We now describe a technique to represent the infinite set
K(α) by two finite sets of LPOs R(α) and I(α). Regions will be defined w.r.t. these
finite sets.

An LPO A can occur arbitrarily often consecutively in a certain marking m if and
only if it consumes in every place at most as many tokens as it produces in this place
(then an occurrence of A does not reduce the number of tokens in this place). Conse-
quently, if A can occur iterated in m, then another LPO B can occur after the occurrence
of An for each n ∈ N if and only if it can occur in m, since an occurrence of A does
not reduce the number of tokens in a place. This principle can be used to define the two
finite sets R(α) and I(α).

For an LPO-term α the set R(α) is the set of, roughly speaking, all LPOs containing
each iterated part ofα at most once. The running example term ((a; b∗) ‖ b∗)+c contains
to iterated b-labelled events, thus R(((a; b∗) ‖ b∗) + c) = {a, ab, a ‖ b, (ab) ‖ b, c}.



338 R. Lorenz, J. Desel, and G. Juhás

We call in R(α) the representation set. The first idea for the definition of regions is to
ensure that the place defined by a region is feasible w.r.t. the representation set, i.e. we
require that a transition region satisfies the property (f)R(α) and a token flow regions
satsfies the property (wd)R(α) as defined for finite LPO-languages.

It remains to ensure that certain LPOs can occur iterated w.r.t. the place defined by
a region. The set I(α) consist of, roughly speaking, all LPOs associated to iterated
subterms of α. The running example term ((a; b∗) ‖ b∗) + c contains to iterated b-
labelled events, thus I(((a; b∗) ‖ b∗) + c) = {b}. We call I(α) the iteration set. We
will introduce an additional property (i)α of regions which ensures that the LPOs in
I(α) produce at least as many tokens as they consume in the place defined by a region.
This implies that the place defined by a region is feasible w.r.t. K(α).

Definition 18 (Representation/Iteration set). The representation set R(α) and the it-
eration set I(α) of an LPO-term α are defined inductively as follows (α1 and α2 are
LPO-terms):

R(λ) = {λ} I(λ) = ∅
R(A) = {A} for A ∈ A I(A) = ∅ for A ∈ A
R(α1 + α2) = R(α1) ∪R(α2) I(α1 + α2) = I(α1) ∪ I(α2)
R(α1;α2) = {A1A2 | A1 ∈ R(α1), A2 ∈ R(α2)} I(α1;α2) = I(α1) ∪ I(α2)
R((α1)

∗) = R(α1) ∪ {λ} I((α1)
∗) = I(α1) ∪R(α1)

R(α1 ‖ α2) = {A1 ‖ A2 | A1 ∈ R(α1), A2 ∈ R(α2)} I(α1 ‖ α2) = I(α1) ∪ I(α2)

This approach generalizes the ideas in [10] where the authors define regions by two
finite sets representing a regular expression.

The requirement, that every LPO in I(α) produces at least as many tokens as it
consumes in a place p, corresponds to the requirement, that the sum of tokens produced
by all events of an LPO in I(α) exceeds the sum of tokens consumed by all events. For
lpo = (V,<, l) and some place p we define

Prod(lpo, p) :=
∑

t∈l(V )

l(V )(t)(W (t, p) −W (p, t)).

A region r, i.e. property (i)α, is defined in such a way that Prod(lpo, pr) ≥ 0 for each
LPO lpo ∈ I(α). For the running example LPO-term we require W (b, pr) −W (pr, b)
≥ 0.

The definition of (i)α for transition regions of LPO-termsα and PT-nets is as follows,
where a (PT-net) transition-region r = (r0, . . . , r2n) directly defines the parameters of
a place pr of PT-nets via m0(pr) = r0, W (pr, ti) = ri and W (ti, pr) = rn+i, if
T = {t1, . . . , tn} is the set of transition names occurring in LPOs from K(α). For each
lpo = (V,<, l) ∈ I(α) we require

n∑
i=1

l(V )(ti)(rn+i − ri) ≥ 0.
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This is the case if and only if (for each lpo ∈ I(α)) ilpo · r ≤ 0 for ilpo = (i0, . . . , i2n)
defined by:

ij =

⎧⎨
⎩

0 if j = 0,
l(V )(tj) if j ∈ {1, . . . , n},
−l(V )(tj−n) if j ∈ {n+ 1, . . . , 2n}.

In the running example, denote t1 = a, t2 = b and t3 = c. For the LPO b ∈ I(α) in the
running example we require r5 − r2 ≥ 0. This is the case if and only if ib · r ≤ 0 for

ib = (0, 0, 1, 0, 0,−1, 0).

Definition 19 (Transition-Region of LPO-term). We call a tuple r a transition-region
of an LPO-term α if it satisfies (f)R(α) and (i)α.

With these definitions and notions the following theorem holds:

Theorem 5. A tuple r satisfies (f)R(α) and (i)α if and only if pr is feasible w.r.t. K(α).

Let Aα be the matrix consisting of all rows of AR(α) and all rows ilpo for LPOs lpo ∈
I(α). Then the set of all regions can be computed as the set of all integral solutions
of the homogenous linear inequation system Aα · x ≤ 0. In the running example, Aα

looks as follows (the set R(α) can be represented by the finite example language from
the subsection on finite languages):⎛

⎜⎜⎝
−1 1 1 0 0 0 0
−1 1 2 0 −1 0 0
−1 0 0 1 0 0 0
0 0 1 0 0 −1 0

⎞
⎟⎟⎠

Solutions are for example r = (1, 1, 0, 1, 0, 0, 0) with corresponding place p1,
r = (1, 0, 1, 1, 1, 1, 0) and r = (0, 0, 0, 0, 0, 1, 0) with corresponding place p3 of the
PT-net shown in Figure 15.

Theorem 6. If α is an LPO-term then there is a finite matrix Aα such that the set of
transition-regions is the set of solutions of the linear inequation system Aα · x ≤ 0.

The previous theorems are proven in [7] for token flow regions and easily carry over to
transition regions.

If
W =

⋃
(V,<,l)∈R(α)

V

is the set of nodes of LPOs in R(α) and

E =
⋃

(V,<,l)∈R(α)

<

is the set of arrows of LPOs in R(α), then a (PT-net) token flow-region r of an LPO-
term α is given as a tuple r = (ri)i∈W×{in,out}∪E∪L of non-negative integers. Its
components are interpreted and define places as for finite languages.
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Fig. 15. Some solution places for the example LPO-term

The definition of (i)α for token flow regions of LPO-terms α and PT-nets is as
follows: For each lpo ∈ I(α) we require∑

v∈Vlpo

(rv,out +
∑

e=(v,u)∈<

re − rv,in −
∑

e=(u,v)∈<

re) ≥ 0,

where (Vlpo, <, l) is a sub-LPO of some LPO (V,<, l) ∈ R(α) which is isomorphic
to lpo. This is the case if and only if ilpo · r ≤ 0 for ilpo = (ij)j∈W×{in,out}∪E∪L

defined by:

ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if j = (v, in) for v ∈ Vlpo,
1 if j = (u, v) for v ∈ Vlpo, u ∈ V \ Vlpo,
−1 if i = (v, out) for v ∈ Vlpo,
−1 if j = (v, u) for v ∈ Vlpo, u ∈ V \ Vlpo,
0 else.

In the running example, it is enough to consider the LPOs lpo1 = (ab) ‖ b and lpo2 = c
from R(α), since the other LPOs are prefixes of lpo1. Thus, R(α) can be treatened in
the same way as the finite example language from the section on finite languages. As
before, we denote

r = (rlpo1, rlpo2, ru,in, rv,in, rw,in, rx,in, ru,out, rv,out, rw,out, rx,out, r(u,w)),

where the events u, v, w and x are shown in Figure 9. If we represented the iterated
LPO b ∈ I((a; b∗) ‖ b∗) by the event v, then we require

rv,in − rv,out ≤ 0.

This is satisfied if and only if ib · r = 0 for

ib = (0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0).
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Definition 20 (Token Flow-Region of LPO-term). A tuple r as above is called a token
flow-region of an LPO-term α if it satisfies (wd)R(α) and (i)α.

With these definitions and notions the following theorem holds:

Theorem 7. A tuple r satisfies (wd)R(α) and (i)α if and only if pr is feasible w.r.t.
K(α).

Let AL be the matrix consisting of all rows from the matrices AL,a, AL,b and AL,c.
Since L is assumed to be finite, AL is finite. Thus, the set of all token flow-regions
can be computed as the set of all integral solutions of the homogenous linear equation
system AL · x = 0. If we denote vb1 = v and vb2 = w, AL looks as follows for the
running example (the matrices AL,a, AL,b and AL,c each consist exactly of the one
row already shown):

Let AI(α) be the matrix consisting of all rows ilpo for LPOs lpo ∈ I(α). The set of
all regions can be computed as the set of all integral solutions of the homogenous linear
inequation system AR(α) ·x = 0 and AI(α) ·x ≤ 0. In the running example, the matrix
of this system looks as follows:⎛

⎜⎜⎝
−1 1 −1 −1 −1 1 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 1 0 0
0 0 0 1 0 0 0 −1 0 0 0

⎞
⎟⎟⎠

Figure 16 shows a solution. This solution represents the place p2 from Figure 15.

Theorem 8 ([7]). If α is an LPO-term then there is a finite matrix Aα such that the set
of token flow-regions is the set of solutions of the linear inequation system Aα · x ≤ 0.

Finite Representation. As in the case of finite languages, the set of regions of an
LPO-term is defined as the set of positive integral solutions of a homogenuous linear
inequation system. Thus, it has a finite basis representation. Figure 17 shows the basis
representation for the running example term.

Fig. 16. Illustration of the token flow region r = (0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1)
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Fig. 17. The basis representation of the running example. The iterated transition b does not
decrease the number of tokens in places

In order to compute a finite separation representation we need to finitely represent
the infinite set of wrong continuationsK(α)c. The next definition proposes such a finite
representation:

Definition 21 (Wrong Continuation of LPO-term). Let α be an LPO-term and let
σ = β1 . . . βn−1βn ∈ R(α)step and t ∈ T such that wσ,t = β1 . . . βn−1(βn + t) 
∈
K(α)step, where βn is allowed to be the empty step. Then wσ,t is called wrong contin-
uation of α.

We call β1 . . . βn−1 the prefix and βn+t the follower step of the wrong continuation.

Note that this finite set of wrong continuations is usually a proper subset of R(α)c

because of the requirement wσ,t 
∈ K(α)step. For the running example term α =
((a; b∗) ‖ b∗) + c, R(α)c is listed in the subsection on finite languages, where (for
example) bb ∈ R(α)c is not a wrong continuation of α.

For each wrong continuation w of α we search for a place pr not only prohibiting
w, but also an infinite set of wrong continuations I(w) ⊆ K(α)c. The idea is that, if
the prefix of w contains the prefix of a sub-LPO (of some LPO in R(α)) which can be
iterated, then the follower step must be prohibited by pr also after all finite iterations
of this sub-LPO. In other words, I(w) contains all wrong continuations from K(α)c

which can be constructed from w by inserting iterations of sub-LPOs into the prefix
of w. For example, I(b(2a)) = {bn(2a) | n ∈ N}. The left side of Figure 18 shows
example places.

A place pr prohibits each wrong continuations in I(w) (for some wrong continuation
w), if and only if the following two properties are satisfied:

– pr prohibits w.
– If the prefix of w contains the prefix of a sub-LPO which can be iterated, then the

occurrence of this sub-LPO does not increase the number of tokens in pr.

The first property can be encoded as a homogenuous linear inequation as in the case
of finite languages. Together with the defining property of regions of LPO-terms, the
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Fig. 18. Left Side: Place p2 prohibits b(2a) but not bb(2a); Place p1 prohibits each wrong con-
tinuation of the form bn(2a) for n ∈ N. Right side: The separation representation of the example
LPO-term.

second property implies that after the occurrence of such a sub-LPO the number of
tokens in pr is the same as before the occurrence. This can be ensured by requiring

Prod(lpo, pr) = 0

for each sub-LPO lpo whose prefix is prefix of the prefix of w and which can be
iterated. The corresponding defining linear inequation system for transition-regions
and token flow-regions can be constructed in an analoguous way as for the property
Prod(lpo, pr) ≥ 0 of regions of LPO-terms. For the running example LPO-term and
the wrong continuation b(2a) we have I(b(2a)) = {b} and require Prod(b, pr) =
W (b, pr)−W (pr, b) = 0.

It remains to determine the term of an iterated sub-LPO. Of course, each sub-LPO
which is isomorphic to an LPO in I(α) is a candidat. But the follower marking after the
occurrence of some sub-LPO (V ′, <, l) only depends on the multiset L(V ′), i.e. on the
number of occurrences of each transition in the sub-LPO.

Definition 22 (Iterated sub-LPO). We say that a sub-LPO (V ′, <′, l′) of an LPO in
R(α) can be iterated, if l′(V ′) = l(V ) for an LPO (V,<, l) ∈ I(α).

The right side of Figure 18 shows the separation representation for the example LPO-
term. Note that the wrong continuations of the form bnc cannot be prohibited (compare
also Figure 17 showing the basis representation). The reason is that bn as well as c can
occur in the initial state and bn does not decrease the number of tokens in places. Note
that it is possible to consider more general Petri net classes, as for example inhibitor
nets, which allow to prohibit bnc.

2.6 Speeding Up Synthesis for Finite Languages

If a finite language of LPOs contains finite iterations of sub-LPOs, then the technique
from the previous subsection can be used to reduce the runtime for computing the
separation representation. In the following we will illustrate this by an example.
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Fig. 19. PT-net synthesized from L = {aN ‖ bN}

Consider the familiy of LPOs (an ‖ bn) (n ∈ N). The number of wrong continua-
tions of the language L = {(an ‖ bn)} (for some fixed n) grows quadratically with n.
For a fixed N the wrong continuations are of the form (aj ‖ bi)(2a), (aj ‖ bi)(2b),
(aj ‖ bi)(2a + b) and (aj ‖ bi)(2b + a) for 0 ≤ i, j ≤ N − 1, (aN ‖ bi)a,
(aN ‖ bi)(2b) and (aN ‖ bi)(2b + a) for 0 ≤ i ≤ N − 1, (aj ‖ bN )b, (aj ‖ bN)(2a)
and (aj ‖ bN )(2a+ b) for 0 ≤ j ≤ N − 1, and (aN ‖ bN )a and (aN ‖ bN )b.

Instead of considering all these wrong continuations we can equivalently

– first compute the wrong continuations of the LPO-term (a∗ ‖ b∗), which are only
those of a ‖ b (iterations only occur once in the representation set. The correspond-
ing separation representation prohibits all wrong continuations of L = {(aN ‖
bN )} except (aN ‖ bi)a for 0 ≤ i ≤ N − 1, (aj ‖ bN )b for 0 ≤ j ≤ N − 1, and
(aN ‖ bN)a and (aN ‖ bN)b.

– second add the remaining wrong continuations, which are not yet prohibited.

Figure 19 shows the PT-net synthesized with this technique. The white places allow
arbitrary iterations and prohibit the first kind of wrong continuations. The grey places
restrict the length of LPO-runs and prohibit the second kind of wronf continuations.

The technique significantly reduces the number of wrong continuations we need to
consider.

2.7 Concluding Remarks

The presented synthesis theory for LPO-languages was developed within the last years.
In earlier years, the synthesis problem already was solved for finite and regular lan-
guages over single action names. As already mentioned, such languages are a special
case of LPO-languages as considered in this paper.

The technique of computing the separation representation of the set of PT-net tran-
sition regions as presented in this paper coincides with the earlier developed technique
for this special case [10,2,3]. In these early publications a parametric definition of
Petri nets, which can be instantiated with different concrete net classes like elementary
nets or inhibitor nets, was considered. In the second part of this paper we extend the
presented framework to several of these other net classes.
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In [16] PT-net transition-regions for trace languages (step languages) are introduced.
The authors do not consider the subclasses of finite or regular step languages and there-
fore only define an infinite separating representation (involving infinite many
constraints)

Token flow regions and the basis representation were developed later in the context
of LPO-languages.

There are many other publications considering (step) transition systems instead of
languages as behavioral model (e.g., [14,15,28,29,8,30,11]). These approaches are re-
stricted to transition-regions and separating representations.

3 Extensions and Generilizations

In this second part of the paper we extend and generalize the framework presented in
the first part in the following directions:

– We consider the synthesis of inhibitor nets from finite and from simple infinite
languages of labelled stratified order structures.

– We discuss synthesis from languages of non-transitive order structures.
– We examine the synthesis of nets of restricted net classes.
– We suggest several possibilities for a finite representation of more general infinite

languages.

For a clear presentation we do not combine these generalizations to common definitions
of regions and finite representations. Instead we consider each generilization separately
and give some hints on how to combine different concepts in each subsection.

3.1 Inhibitor Nets

As examples in the first part of this paper illutrated, not always the given LPO-language
can be exactly represented by a PT-net. In such cases, it is possible to consider more
general Petri net classes in order find a better representation. One of the most general
Petri net classes are inhibitor nets, which are as powerful as Turing machines for lan-
guages over single action names. In this subsection we extend the concept of regions to
inhibitor nets.

Stratified Order Structures. Partial orders are used in the first part of this paper to
represent causal dependencies between transition occurrences of PT-nets. When con-
sidering inhibitor nets, we need finer causal structures, so called relational structures
[18]. A relational structure (rel-structure) is a triple S = (V,≺,�), where V is a finite
set (of nodes) and ≺ ⊆ V × V and � ⊆ V × V are binary relations on V . The no-
tions of preset and postset are only used w.r.t. the relation ≺. A rel-structure S is called
acyclic if

(≺ ∪�)∗ ◦ ≺ ◦ (≺ ∪�)∗

is irreflexive. Similar to the notion of the transitive closure of a binary relation the
transitive closure S+ of a rel-structure S = (V,≺,�) is defined by

S+ = (V,≺S+ ,�S+) = (V, (≺ ∪�)∗ ◦ ≺ ◦ (≺ ∪�)∗, (≺ ∪�)∗ \ idV ).
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An extension of an acyclic rel-structure (V,≺,�) is an acyclic rel-structure (V,≺′,�′)
satisfying ≺⊆≺′ ∧ �⊆�′. A prefix of an acyclic rel-structure (V,≺,�) is an acyclic
rel-structure (V ′,≺,�) with V ′ ⊆ V satisfying (v′ ∈ V ′)∧(v(� ∪ ≺)v′)⇒ (v ∈ V ′).

A rel-structure S = (V,≺,�) is called stratified order structure (so-structure) if the
following conditions are satisfied for all u, v, w ∈ V :

– u 
� u.
– u ≺ v =⇒ u � v.
– u � v � w ∧ u 
= w =⇒ u � w (weak transitivity).
– u � v ≺ w ∨ u ≺ v � w =⇒ u ≺ w (strong mixed transitivity).

(V,≺) is a partial order. Thus a partial order can always be interpreted as an so-structure
with � = ≺. The transitive closure S+ of a rel-structure S is an so-structure if and
only if S is acyclic (for this and further results see [18]). Later on, we will interpret the
relation ≺ as an ”earlier than”-relation between events and the relation � as an ”not
later than”-relation between events.

Two nodes v, v′ ∈ V of an so-structure (V,≺,�) are called independent if v 
� v′

and v′ 
� v. Co-sets, cuts, minimal and maximal events are defined w.r.t. the partial
order ≺.

The skeleton of an so-structure (V,≺,�) is the rel-structure (V,≺′,�′) with ≺′⊆≺
minimal, �′⊆� minimal and (V,≺′,�′)+ = (V,≺,�).

Graphically, ”earlier than”-relation is drawn by drawn-through arrows and the ”not
later than”-relation by dotted arrows between events. For a clear illustration, often tran-
sitiv arrows are not drawn. Figure 20 shows an example so-structure, where the nodes
v2 and v3 are in ”not later than”-relation and the nodes v1 and v2 as well as v1 and v3
are in ”earlier than”-relation.

Semantics of Inhibitor Nets. Inhibitor nets are PT-nets extended by read arcs testing
places for absence of tokens.

Definition 23 (Inhibitor Net). An inhibitor net (PTI-net) N = (P, T, F,W, I) consists
of a PT-net (P, T, F,W ) and a mapping I : P × T → N0 ∪ {∞} called inhibitor
function.

We denote Und(N) = (P, T, F,W ) the PT-net underlying N .

Fig. 20. An so-structure with a prefix and two extensions
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The inhibitor function specifies upper bounds for the number of tokens allowed in a
place for the occurrence of a transition.

Graphically, the number I(p, t) is assigned to an arrow from p to t which has a circle
as arrowhead, where in the case I(p, t) =∞ no arrow is drawn and in the case I(p, t) =
0 only the arrow is drawn. Figure 22 shows a marked PTI-net with I(p5, b) = 0 and
I =∞ in all other cases.

We introduce the following multiset of places:

– −t(p) = I(p, t) for transitions t.
– −τ(p) = min({−t(p) | t ∈ τ}) for multisets of transitions τ .

There are two different semantics of inhibitor nets. We only consider the a-priori se-
mantics here, because it leads to more general causal semantics. For the so called
a-postepriori semantics of inhibitor nets, causal semantics is based on LPOs as for
PT-nets.

Definition 24 (A-Priori Occurrence Rule). A multiset of transitions τ can occur in m,
if m ≥ •τ and m ≤ −τ .

The notion of m
τ−→ m′ is defined as for PT-nets.

The notions of sequential executions and step executions are deduced from the occur-
rence rule as for PT-nets.

The PTI-net shown in Figure 22 has the sequential executions a, c, ac, ab, abc and
the additional step execution (1a, 0b, 1c), (1a, 0b, 0c)(0a, 1b, 1c) in the initial marking.

Finally, we recall process semantics of PTI-nets. The problem of defining processes
for PTI-nets is that the absence of tokens in a place – this is tested by inhibitor arcs
– cannot be directly represented in an occurrence net. This is solved by introducing
local extra conditions and read arcs – also called activator arcs – connected to these
conditions. These extra conditions are introduced ”on demand” to directly represent
dependencies of events caused by the presence of an inhibitor arc in the net. The con-
ditions are artificial conditions without a reference to inhibitor weights or places of the
net. They only focus on the dependencies that result from inhibitor tests. Thus, activator
arcs represent local information regarding the lack of tokens in a place.

The process definition is based on the usual notion of occurrence nets extended by ac-
tivator arcs. These occurrence nets are (labeled) acyclic nets with non-branching condi-
tions whose underlying causal relationship between events is described by so-structures
(similar to partial orders describing causal relationships between events of PT-net pro-
cesses). In the following definition B represents the finite set of conditions, E the finite
set of events, R the flow relation and Act the set of activator arcs of the occurrence net.

Definition 25 (Activator Occurrence Net [21]). An activator occurrence net (ao-net)
is a five-tuple AON = (B,E,R,Act) satisfying:

– B and E are finite disjoint sets.
– R ⊆ (B × E) ∪ (E ×B) and Act ⊆ B × E.
– The rel-structure S(AON) = (E,≺loc,�loc, l|E) = (E, (R ◦ R)|E×E ∪ (R ◦
Act), (Act−1 ◦R) \ idE , l|E) is acyclic.

– ∀b ∈ B(| •b| ≤ 1 ∧ |b• | ≤ 1.
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Fig. 21. Generation of the orders ≺loc (drawn-through arrow) and �loc (dotted arrow) in ao-nets.
Activator arcs have a filled cirlce as arrowhead.

For x ∈ E and X ⊆ E we denote x+ = {y | (y, x) ∈ Act} and X+ =
⋃

x∈X x+.

Note that this definition is a conservative extension of standard occurrence nets by read
arcs. The relations ≺loc and �loc represent the local information about causal relation-
ships between events. Figure 21 shows their construction rule.

Since an activator occurrence net can be identified with an acyclic directed graph, we
can use notations introduced for acyclic directed graphs. For the definition of processes
we need the notions of weak configurations and weak slices for ao-nets (there is also
the notion of strong slices which we do not need in this paper). A set of events D ⊆ E
is called a weak configuration of AON , if e ∈ D and f(≺loc∪�loc)

+e implies f ∈ D.
A weak slice of AON is a maximal (w.r.t. set inclusion) set of conditions S ⊆ B which
are R◦(≺loc∪�loc)

∗◦R-independent.WSL(AON) denotes the set of all weak slices.
Each weak slice is of the form SC = (C• ∪Min(AON)) \ •C for a weak config-

uration C [21]. For a weak slice S there is always a finite sequence of steps of ≺+
loc-

independent events τ1 . . . τn with S
τ1−→ S1

τ2−→ . . .
τn−→ Max(AON). This means

weak slices represent reachable markings which allow to complete a given process.
Now we are prepared to define processes of PTI-nets as in [20]. The mentioned

artificial conditions in such processes are labeled by the special symbol �. They are
introduced in two kinds of situations:

– A transition t ∈ T tests a place in the pre- or post-multiset of another transition
w ∈ T for absence of tokens, i.e. I(p, t) 
= ∞ and •w(p) + w• (p) 
= 0 for some
p ∈ P . Then occurrences f of w and e of t in a process must eventually be ordered
via a �-condition intended either to ensure that tokens are consumed earlier than
the test occurs ( •w(p) 
= 0) or to ensure that tokens are produced not later than the
test occurs (w• (p) 
= 0). Such situations are abbreviated by w � t.

– A transiton z testing some place for absense of tokens occurs concurrently to tran-
sitions t consuming and w producing tokens in this place, i.e. I(p, z) 
= ∞ and
p ∈ •t∩w• for some p ∈ P . Then occurrences f of w and e of t in a process must
eventually be ordered via a �-condition intended to ensure that tokens are con-
sumed not later than produced in order to restrict the maximal number of tokens in
the place according to the inhibitor weight.

In both situations the two occurrences f and e are adjacent to a common �-condition
representing the described causal dependency of f and e. This means there exists a �-
labeled condition b such that (b, e) ∈ Act and b ∈ ( •f ∪ f• ). This is abbreviated by
f �• e.
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Fig. 22. A PTI-net and one of its processes

Definition 26 (Complete activator process [20]). Let N = (P, T, F,W, I,m0) be a
PTI-net. A complete activator process (ca-process) of N is an ao-net AON = (B %
B̃, E,R,Act) together with a labelling function l : B % B̃ ∪ E → P ∪ T ∪ {�}
satisfying:

(Cond1) l(B) ⊆ P , l(E) ⊆ T and l(B̃) = {�}.
(Cond2) B̃ = {b | ∃e ∈ E((b, e) ∈ Act)}.
(Cond3) m0 = l(Min(AON) ∩B).
(Cond4) For all e ∈ E: •l(e) = l( •e ∩B) and l(e)• = l(e• ∩B).
(Cond5) For all b ∈ B̃, there are unique g, h ∈ E such that one of the following

properties hold:
– •b ∪ b• = {g}, (b, h) ∈ Act and l(g) � l(h).
– b• = {g}, (b, h) ∈ Act and additionally •l(h) ∩ l(g)• ∩ −z 
= ∅ for some

z ∈ T .
(Cond6) For all e, f ∈ E: if f �• e then there is exactly one c ∈ B̃ such that f �• e

through c.
(Cond7) For all e ∈ E and S ∈ WSL(AON): if •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S

then l(S ∩B) ≤ −l(e).

Figure 22 shows a process of a PTI-net, where names of conditions are omitted. The
names of events are shown inside, the labels of events and conditions outside of the
graphical object. There is one condition from B̃, which is filled by grey color. Observe
that transition b tests the post-set c• of c for absence of tokens, i.e. c � b. This is
reflected in the process by v3 �• v2. The right side of the Figure shows the acyclic
rel-structure underlying the process.

The requirements (Cond1), (Cond3), (Cond4) represent common features of
processes well-known from PT-nets. They ensure that ca-processes constitute a con-
servative extension of standard PT-net processes. This means, the set of processes of
Und(N) can be derived from the set of ca-processes by omitting the �-labeled
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conditions (omitting the �-conditions from a ca-processAON leads to the so called un-
derlying process Und(AON) ofAON ). IfN has no inhibitor arcs (thusN = Und(N)),
ca-processes coincide with standard processes.

The properties (Cond2) and (Cond5) together with the rule (Cond6) – describing
when �-conditions have to be inserted – constitute the structure of the �-conditions.
The requirement (Cond7) expresses that in the weak slices of AON the inhibitor con-
straints of the PTI-net have to be properly reflected. That means, for events enabled in a
certain weak slice of AON the respective transitions are also enabled in the respective
marking in the PTI-net N .

If AON is a process of a PTI-netN then the underlying causal relationsships between
events S(AON)+ form an so-structure, because S(AON) is an acyclic rel-structure.
This means, we can represent single (non-sequential) runs of PTI-nets by so-structures
labelled by transition names. Such labelled so-structure extend LPOs by adding a sec-
ond causal relation between transition occurrences which is interpreted as a ”not later
than”-relation. This relation represents the situation that two transition occurrences can
be observed simultaneously and as a sequence in one order (but not the other order).
In this model of runs, we can distinguish concurrency from synchronicity. Synchronic-
ity means that transiton occurrences can be observed only simultaneously, but not as a
sequence in any order. If two transition occurrences are in symmetric ”not later than”-
relation, then they are synchronous.

Definition 27 (Labelled SO-Structure). A labelled so-structure (LSO) over T is a 4-
tuple (V,≺,�, l), where (V,≺,�) is an so-structure and l : V → T is a labelling
function on V .

We only consider LSOs up to isomorphism, i.e. only the labelling of events is of inter-
est, but not the event names. Formally, two LSOs (V,≺,�, l) and (V ′,≺′,�′, l′) are
isomorphic, if there is a renaming function I : V → V ′ satisfying l(v) = l′(I(v)),
v ≺ w ⇔ I(v) ≺′ I(w) and v � w ⇔ I(v) �′ I(w).

As a special kind of LSOs we consider linear LSOs. A linear LSO is an LSO
satisfying co≺ =� \ ≺, This means, the relation � \ ≺ is symmetric and defines
synchronous transition occurrences. The maximal sets of synchronous transition occur-
rences are called synchronous steps. The synchronous steps of a linear LSO are linearly
ordered w.r.t. the ”earlier than”-relation. Linear LSOs cannot be extended and represent
(synchronous) step executions of PTI-nets.

The set of step linearizations of an LSO is the set of linear LSOs which are extensions
of this LSO. For example, lso1 shown in Figure 23 is not linear, since two events are in
asymetric ”not later than”-relation. The LSOs lso2 and lso3 are step-linearizations of
lso1, where

– lso2 represents the step execution (1a, 0b, 0c)(0a, 1b, 0c)(0a, 0b, 1c),
– lso3 represents the step execution (1a, 0b, 0c)(0a, 1b, 1c).

Definition 28 (LSO-run). An LSO (V,≺,�, l) is an LSO-run of a PTI-net N if there
is a ca-process AON of N such that (V,≺,�, l) is an extension of S(AON).

An LSO-run lso is said to be minimal, if there exists no other LSO-run lso′ of N
such that lso is an extension of lso′.
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Fig. 23. A PTI-net with four of its LSO-runs. The LSOs lso2 and lso3 are step-linearizations of
lso1. The LSO-runs lso1 and lso4 are minimal.

Figure 23 shows a PTI-net together with some of its LSO-runs. Note that the LSO-
run lso1 exactly represents all causal dependencies between transition occurrences of
a process of the net (which is shown in Figure 22). Moreover, lso1 is minimal, since b
may not occur simultaneously with a and may not occur after c.

From the definition follows that extensions of LSO-runs also are LSO-runs. This
means, the set of all LSO-runs can be deduced from the set of minimal LSO-runs.

We show in [20] that an LSO lso = (V,≺,�, l) is an LSO-run of a PTI-net N
if and only if each step-linearization of lso is a step execution of N . Equivalently,
lso is an LSO-run if and only if for each cut C of lso and each place p of N =
(P, T, F,W, I,m0) there holds:

m0(p) +
∑
v<C

(W (l(v), p)−W (p, l(v))) ≥
∑
v∈C

W (p, l(v))

and
m0(p) +

∑
v<C

(W (l(v), p)−W (p, l(v))) ≤ I(p, t)

for each t ∈ l(C).
We often omit transitive arrows of LSOs for a clearer presentation.

Regions of PTI-Nets. The formal problem statement, which we consider from now, is:

Given: A prefix-closed and extension-closed finite language L of LSOs over a finite
alphabet of transition names T .

Searched: A PTI-net N with set of transitions T such that all LSOs in L are LSO-runs
of N and N has a minimal number of additional LPO-runs.

As for PT-nets and LPOs, we define transition regions and token flow regions of PTI-
nets as as non-negative integral solutions of appropriate linear systems of the form



352 R. Lorenz, J. Desel, and G. Juhás

Fig. 24. Running example language (prefixes and extensions are not shown)

AL · x ≤ bL. As in the case of LPOs, it is enough to consider only those LSOs from
L, which are not extensions or prefixes of other LSOs from L. Throughout the rest of
this subsection we use the language represented by the LSOs shown in Figure 24 as a
running example.

A (PTI-net) transition-region r directly defines the parameters of a place pr of PTI-
nets, i.e. it determines the numbers m0(pr), W (pr, t) and W (t, pr) for each t ∈ T
(PT-net part), and I(pr, t) for each t ∈ T . If T = {t1, . . . , tn}, then r is given as a
(3n+ 1)-tuple r = (r0, . . . , r3n) of non-negative integers. Its components define these
numbers via m0(pr) = r0, W (pr, ti) = ri, W (ti, pr) = rn+i and I(pr, ti) = rn+2i

for i ∈ {1, . . . , n}. In the running example, denote t1 = a, t2 = b and t3 = c.
Since a region r is intended to define a feasible place pr, it is required to satisfy a

property (f)L ensuring that pr is feasible w.r.t. L. Remember that pr is feasible w.r.t. L
if the net resulting from adding pr still generates at least L. For this, the property (f)L
formalizes that

– (as in the PT-net case) for each cut of events there are at least as much tokens in
pr as consumed by the occurrence of the corresponding step of transitions after the
occurrence of the prefix preceeding the cut (PT-net constraint).

– additionally for each cut of events there are at most as much tokens in pr as required
by inhibitor tests of transitions in the corresponding step of transitions after the
occurrence of the prefix preceeding the cut (inhibitor constraint).

In the running example transition step (1b, 1c) of lso1 must be able to occur after one
occurrence of a. This means, pr has to satisfy

– m0(pr)−W (pr, a) +W (a, pr) ≥W (pr, b) +W (pr, c),
– m0(pr)−W (pr, a) +W (a, pr) ≤ I(pr, b),
– m0(pr)−W (pr, a) +W (a, pr) ≤ I(pr, c),

i.e. r0 − r1 + r4 ≥ r2 + r3, r0 − r1 + r4 ≤ r8 and r0 − r1 + r4 ≤ r9.
The property (f)L for a finite language L of LSOs and PTI-nets contains all

PT-net constraints and additionally the following inhibitor constraint: For each
lso = (V,<,�, l) ∈ L, for each cut C of lso and for each t = tk ∈ l(C):
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r0 +

n∑
i=1

l(V ′)(ti)(rn+i − ri)− r2n+k ≤ 0,

where V ′ = {v ∈ V | v ≺ C}. This is the case if and only if blso,C,t · r ≤ 0 for the
vector blso,C,t = (bC,t,0, . . . , bC,t,3n) defined by

bC,t,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if j = 0,
−l(V ′)(tj) if j ∈ {1, . . . , n},
l(V ′)(tj−n) if n+ 1 ≤ j ≤ 2n,
−1 if j = 2n+ k,
0 else

For the cut C corrsponding to the transition step (1b, 1c) of lso1 in the running example
we require r0 − r1 + r4 ≤ r8 and r0 − r1 + r4 ≤ r9. This is the case if and only if
blso1,C,b · r ≤ 0 and blso1,C,c · r ≤ 0 for

blso1,C,b = (1,−1, 0, 0, 1, 0, 0, 0,−1, 0),

blso1,C,c = (1,−1, 0, 0, 1, 0, 0, 0, 0,−1).

Definition 29 (Transition-Region). A tuple r as above is called a transition-region if
it satisfies (f)L.

For the defined property (f)L the following theorem holds [27]:

Theorem 9. A tuple r satisfies (f)L if and only if pr is feasible w.r.t. L.

Let AL be the matrix consisting of all rows also,C (PT-net constraints) and blso,C,t

for LSOs lso = (V,<,�, l) ∈ L, cuts C of lso and transitions t ∈ l(C). Since L is
assumed to be finite, AL is finite. Thus, the set of all regions can be computed as the
set of all integral solutions of the homogenous linear inequation system AL · x ≤ 0.

Note that we never compute the inhibitor weight∞ representing the case that there
is no inhibitor restriction. This is not necessary in the case of a finite LSO-language,
since each feasible place is bounded (for each feasible place p there is an upper b ∈ N

such that m(p) ≤ b for all reachable markings m). In this case, an inhibitor weight
exceeding the bound for the number of tokens in a place is equivalent to ∞, i.e. does
not restrict the behavior. After the computation of a feasible place, it can be simplified
by replacing such useless inhibitor weights by the value∞.

All places of the PTI-net from Figure 22 are solutions for the running example
language. For example, the region r2 = (0, 0, 1, 0, 1, 0, 0, 1, 1, 1) defines p2 and the
region r5 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 1) defines p5 (these regions still contain the use-
less inhibitor value 1 which can be replaced by∞, since the corresponding places are
1-bounded).

Theorem 10 ([27]). If L is finite then there is a finite matrix AL such that the set of
transition-regions is the set of solutions of the linear inequation system AL · x ≤ 0.
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A token flow-region r defines a place pr indirectly by determining the token flow w.r.t.
this place between transition occurrences in LSOs from L, i.e. by directly determining
the number of tokens produced by a transition occurrence which are consumed by a
subsequent transition occurrence in an LSO specified in L. Such numbers are assigned
to the ”earlier than”-arrows between transition occurrences of LSOs. As for LPOs, for
each transition occurrence the number of tokens consumed from the initial marking,
the number of tokens which are produced but not further consumed by other transition
occurrences and the number of tokens in the initial marking which are not consumed by
any transition occurrence of an LSO are considered.

Since inhibitor values cannot be represented by token flows, we define them directly
in the same way as for transition regions. If W =

⋃
(V,≺,�,l)∈L V is the set of nodes of

LSOs in L and E =
⋃

(V,≺,�,l)∈L ≺ is the set of ”earlier than”-arrows of LSOs in L,
then a (PTI-net) token flow-region r is given as a tuple r = (ri)i∈W×{in,out}∪E∪L∪T

of non-negative integers. The components ri with i ∈ W × {in, out} ∪ E ∪ L are
interpreted as in the PT-net case and I(pr, t) = rt for t ∈ T . Initial marking and the
weight function w.r.t. pr are defined as in the PT-net case.

Since a region r is intended to define a feasible place pr, it is required to satisfy a
property (wd)L ensuring that pr is feasible w.r.t. L. The property (wd)L for PTI-nets
and LSOs requires addionally to the PT-net constraints that the marking reached after
the occurrence of some prefix of an LSO in L does not exceed the inhibitor constraints
of transition occurrences subsequent to this prefix, i.e. for each lso = (V,≺,�, l) ∈ L,
for each cut C of lso and for each t ∈ l(C):

rlso +
∑

v∈V \V ′
rv,in +

∑
v′∈V ′, v∈V \V ′

r(v′,v) +
∑

v′∈V ′
rv′,out − rt ≤ 0,

where V ′ = {v ∈ V | v ≺ C}. This is the case it and only if AL,d · r ≤ 0, where for
each t and each cut C of an LSO lso ∈ L with t ∈ l(C) and V ′ = {v ∈ V | v ≺ C}
the matrix AL,d has a row dC,t = (dC,t,i)i∈W×{in,out}∪E∪L∪T defined by

dn,t,i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if i = lso,
1 if i = (v, in) ∧ v ∈ V \ V ′,
1 if i = (v′, v) ∧ v′ ∈ V ′ ∧ v ∈ V \ V ′,
1 if i = (v′, out) ∧ v′ ∈ V ′,
−1 if i = t
0 else.

Definition 30 (Token Flow-Region). A tuple r as above is called a token flow-region
if it satisfies (wd)L .

For the property (wd)L the following theorem holds for PTI-net places:

Theorem 11 ([5]). A tuple r satisfies (wd)L if and only if pr is feasible w.r.t. L.

Let AL be the matrix consisting of all rows from the matrices AL,a, AL,b, AL,c (PT-
net constraints) and AL,d (inhibitor constraint). Since L is assumed to be finite, AL is
finite. Thus, the set of all token flow-regions can be computed as the set of all integral
solutions of the homogenous linear equation system AL · x = 0.
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Fig. 25. Illustration of a PTI-net token flow region

All places of the PTI-net from Figure 22 are solutions for the running example lan-
guage. Figure 10 shows a token flow region representing the place p5 from Figure 22.
Inhibitor weights are annotated to additional arcs having a circle as arrowhead. Again,
useless inhibitor weights exceeding a place bound can be replaced by the value∞. Ob-
serve that the token flow leaving the prefix consisting of the occurrence of a of lso1
equals 0 such that the inhibitor constraint for the subsequent occurrence of b is fulfilled.

Theorem 12 ([5,27]). If L is finite then there is a finite matrix AL such that the set of
token flow-regions is the set of solutions of the linear equation system AL · x = 0.

Finite Representations of PTI-Net Regions. As in the case of PT-nets and LPO-
languages, the set of PTI-net regions of an LSO-language is defined as the set of positive
integral solutions of a homogenuous linear inequation system. Thus, it has a finite basis
representation. Many places of this basis represenation are relatively complex, since
there is an inhibitor arc connection to every transition. As argued in the last paragraph,
these inhibitor weight may be useless. In this case a place can be simplified by replacing
the useless inhibitor weight by the value∞. As in the case of PT-nets, many basis places
are implicit and can be omitted and in some cases there are easy strategies to compute
them. Figure 27 shows some implicit places for the running example in grey color. A
detailed examination is a topic of future research.

In order to compute a finite separation representation we need to compute the set
Lc of wrong continuations of an LSO-language L. As for LPO-languages we denote
by Lstep the set of step linearizations of LSOs in L. We need to consider two kinds of
wrong continuations: Wrong continuations of an analoguous form as in the LPO-case
and wrong continuations representing situations where steps of transitions cannot be
sequentialized in any order.

Definition 31 (Wrong Continuation of an LSO-language). A wrong flow continua-
tion of an LSO-language L is a sequence of transition steps of the form wσ,t
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Fig. 26. Some basis solution places for the running example. Iimplicit places are filled with grey
color.

= α1 . . . αn−1(αn + t) 
∈ Lstep for σ = α1 . . . αn−1αn ∈ Lstep and t ∈ T , where we
call α1 . . . αn−1 the prefix and αn + t the follower step of the wrong continuation.

A wrong inhibitor continuation of an LSO-language L is a sequence of transition
steps of the form wσ,β1,β2 = α1 . . . αn−1β1β2 
∈ Lstep for β1 + β2 ≤ αn and σ =
α1 . . . αn−1αn ∈ Lstep, where we call α1 . . . αn−1β1 the prefix and β2 the follower
step of the wrong continuation.

Some of the wrong flow continuations of the running example are (2a), b, 2c (all having
an empty prefix) and one wrong inhibitor continuation of the running example is acb
(since a(b+ c) ∈ Lstep), where multisets are denoted as sums of singleton multisets.

As in the case of LPO-languages, we represent a wrong flow continuation by a pair of
multisets (l(V ′), l(S∪{z})), where (V ′,≺,�, l) is a prefix of an LSO in L representing
the prefix of the wrong flow continuation,S is a subset of direct successors of (V ′,≺,�
, l) and z is an additional labelled event, where S and z together represent the follower
step of the wrong flow continuation.

A wrong inhibitor continuation α1 . . . αn−1β1β2 we represent by a pair of multi-
sets (l(V ′ ∪ B1), l(B2)), where (V ′,≺,�, l) is a prefix of an LSO in L representing
α1 . . . αn−1, B1 is a subset of direct successors of this prefix representing β1 and B2 is
a subset of direct successors of this prefix representing β2.

To prohibit a wrong flow continuation, one needs to find a feasible place p such that
one of the following constraints is fulfilled:

– PT-net constraint: After occurrence of its prefix there are not as much tokens in p
as its follower step consumes.

– Inhibitor constraint: After occurrence of its prefix there are more tokens in p as
allowed by the inhibitor constraint of the additional event in the follower step. Note
that this constraint only can be fulfilled, if the label of the additional event does not
occur twice in the follower step.

To prohibit a wrong inhibitor continuationα1 . . . αn−1β1β2, one needs to find a feasible
place p such that the following inhibitor constraint is fulfilled: After occurrence of its
prefix there are more tokens in p as allowed by the inhibitor constraints of the events
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Fig. 27. Illustration of the wrong inhibitor continuation acb

in the follower step. Note that, since α1 . . . αn−1αn ∈ Lstep and β1 + β2 ≤ αn, after
occurrence of α1 . . . αn−1β1 there are always at least as many tokens in a place p as β2

consumes.
The PT-net constraint can be expressed as a linear inequality as in the case of

LPO-languages and PT-nets. In the following we show, that also the inhibitor constraints
of a wrong continuation can represented by a linear inequality.

If r is a transition region, T = {t1, . . . , tn} and l(z) = tk then pr satisfies the
inhibitor constraint for a wrong flow continuation if and only if

r0 +

n∑
i=1

l(V ′)(ti)(rn+i − ri)− r2n+k > 0.

This is the case if and only if d(wσ,tk) · r < 0 for d(wσ,tk) = (d0, . . . , d3n)
defined by:

dj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if j = 0,
l(V ′)(tj) if j ∈ {1, . . . , n},
−l(V ′)(tj−n) if n+ 1 ≤ j ≤ 2n,
1 if j = 2n+ k,
0 else

Similarly, if r is a transition region and T = {t1, . . . , tn} then pr satisfies the inhibitor
constraint for a wrong inhibitor continuation if and only if, for each k with tk ∈ β2,
d(wσ,tk) · r < 0 for d(wσ,tk) = (d0, . . . , d3n) defined as for wrong flow continuations.
For example, for the wrong inhibitor continuation acb we require −r0 + ((r1 − r4) +
2(r3 − r6)) + (r8) < 0 (remember t1 = a, t2 = b and t3 = c). This is the case if and
only if d(wσ,t) · r < 0 for

d(wσ,t) = (−1, 1, 0, 1,−1, 0,−1, 0, 1, 0).

The region
r = (0, 0, 0, 0, 0, 0, 1, 1, 0, 1)
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(corresponding to place p5 in Figure 22 after replacing useless inhibitor weights by∞)
is a solution which prohibits this wrong continuation.

If r is a token flow region and l(z) = t then pr satisfies the inhibitor constraint if and
only if

rlso +
∑
u	∈V ′

ru,in +
∑
v∈V ′

rv,out +
∑

v∈V ′, u	∈V ′
rv,u − rt > 0.

This is the case if and only if d(wσ,t) · r < 0 for d(wσ,t) = (di)i∈W×{in,out}∪E∪L∪T

defined by:

di =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1 if i = lso,
−1 if i = (u, in) ∧ u 
∈ V ′,
−1 if i = (v, out) ∧ v ∈ V ′,
−1 if i = (v, u) ∧ v ∈ V ′ ∧ u 
∈ V ′,
1 if i = t,
0 else.

Similarly, if r is a token flow region then pr satisfies the inhibitor constraint if and only
if, for t ∈ β2, d(wσ,t) · r < 0 for d(wσ,t) = (di)i∈W×{in,out}∪E∪L∪T defined as
for wrong flow continuations. The token flow region shown in Figure 25 prohibits the
wrong continuation acb.

One possible strategy for computing a token flow regions prohibiting a wrong flow
continuation is:

– First try to find a solution using the PT-net constraint.
– If there is no solution using the PT-net constraint, then try to find a solution using

the inhibitor constraint.

In order to compute a token flow region prohibiting a wrong inhibitor continuation,
there is only to possibility to use the inhibitor constraint. For example, the wrong con-
tinuation acb cannot be prohibited by a place satisfying the PT-net constraint, since
a(b+ c) ∈ Lstep.

There are techniques for computing simple places, as for example:

– If the PT-net constraint is used, all inhibitor weights can be chosen as the value
∞. A target function can be used to minimize initial marking and weight on flow
arrows as in the case of LPO-languages.

– If the inhibitor constraint is used, through an appropriate target function the in-
hibitor weight associated to forbidden transitions can be chosen minimal (all other
inhibitor weights can be chosen as the value∞).

– The number of wrong inhibitor continuations α1 . . . αn−1β1β2 can be reduced by
considering only singleton multisets β1 and β2 (since bigger multisets always con-
tain such a singleton).

Infinite LSO-Languages. It is possible to extend the presented framework to infinite
LSO-languages along the same lines as in the case of LPO-languages. The idea is to
use LPO-terms extended by a term-based representation of ”not later than”-relations.
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To represent ”not later than”-relations between events we introduce a new composition
operator < for weak sequential composition. Synchronous composition between events
will be expressed by a new operator <>.

Since a term like (a; b) <> (c; d) cannot be interpreted in a meaningful way, we do
not apply <> to arbitrary terms, but only to single action names. On the other hand, <
can be applied to arbitrary terms: Writing α < β for terms α, β means that all events in
α are in ”not later than”-relation to all events in β.

We do not introduce an operator for the iteration of the operator < for the same
reason we do not consider iteration of the operator ‖: Such iteration operators allow to
specify runs with arbitrary large multisets of synchronous resp. independent transition
occurrences in the same state of the system (a state of the system can be identified with
each prefix of a specified run). Such a behavior cannot be produced through Petri net
models.

Let A be a finite set of LSOs. For A ∈ A we write A = (VA,≺A,�A, lA). We
denote by λ = (∅, ∅, ∅, ∅) the empty LSO. LSOs consisting only of one single event we
denote by the label of this event.

Definition 32 (LSO-term). The set of LSO-terms over a finite set of LSOsA is induc-
tively defined as follows:

– Each singleton LSO from A is a synchronous step.
– If s1 and s2 are synchronous steps, then s1 <> s2 is a synchronous step.
– The elements A ∈ A, all synchronous steps and λ are LSO-terms.
– Let α1 and α2 be LSO-terms. Then
• α1;α2 (sequential composition),
• α1 < α2 (weak sequential composition),
• α1 + α2 (union),
• (α1)

∗ (iteration),
• α1 ‖ α2 (parallel composition)

are LSO-terms.

In the following we consider the running example LSO-term c∗; (a < b). Figure 28
illustrates the LSO-language generated by this term.

We assign to an arbitrary LSO-term α a possibly infinite prefix and extension closed
LSO-language L(α). The language L(α) is defined as the prefix and extension closure
of an appropriate LSO-language K(α). In order to construct K(α), we define the weak
sequential composition of two LSOs A and B by

A < B = (VA ∪ VB, <A ∪ <B ∪(VA \Max(A)× VB) ∪ (VA × VB \Min(B)),

�A ∪ �B ∪(VA × VB), lA ∪ lB).

Sequential composition, parallel composition and iteration of LSOs is defined w.r.t. ≺
as for LPOs. We identify synchronous steps with LSOs as follows: If sA = (VA,≺A

,�A, lA) and sB = (VB,≺B,�B, lB) are synchronous steps then

sA <> sB = (VA ∪ VB , ∅,�A ∪ �B ∪(VA × VB) ∪ (VB × VA), lA ∪ lB).
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Fig. 28. Infinite LSO-language, represented by an LSO-term

Definition 33 (LSO-language of an LSO-term). We define inductively:

– K(λ) = {λ}, K(A) = {A} for A ∈ A and K(s) = s for synchronous steps s.
– Let α1 and α2 be LSO-terms. Then:
• K(α1 + α2) = K(α1) ∪K(α2),
• K(α1;α2) = {A1A2 | A1 ∈ K(α1), A2 ∈ K(α2)},
• K(α1 < α2) = {A1 < A2 | A1 ∈ K(α1), A2 ∈ K(α2)},
• K((α1)

∗) = {A1 . . . An | A1, . . . , An ∈ K(α1)} ∪ {λ},
• K(α1 ‖ α2) = {A1 ‖ A2 | A1 ∈ K(α1), A2 ∈ K(α2)}.

Some of the LSOs in K(c∗; (a < b)) are a < b, c; (a < b) and c2; (a < b).
Since the additional operations do not introduce side effects to iterations, K(α) can

be finitely represented by a representation set R(α) and an iteration set I(α) in an
analoguous way as in the case of LPO-terms:

Definition 34 (Representation/Iteration Set of LSO-terms). The representation set
R(α) and the iteration set I(α) of an LSO-term α are defined inductively as follows
(α1 and α2 are LSO-terms, S denotes the set of synchronous steps):

R(λ) = {λ} I(λ) = ∅
R(A) = {A} for A ∈ A I(A) = ∅ for A ∈ A
R(s) = {s} for s ∈ S I(s) = ∅ for s ∈ S
R(α1 + α2) = R(α1) ∪R(α2) I(α1 + α2) = I(α1) ∪ I(α2)
R(α1;α2) = {AB | A ∈ R(α1), B ∈ R(α2)} I(α1;α2) = I(α1) ∪ I(α2)
R(α1 < α2) = {A < B | A ∈ R(α1), B ∈ R(α2)} I(α1 < α2) = I(α1) ∪ I(α2)
R((α1)

∗) = R(α1) ∪ {λ} I((α1)
∗) = I(α1) ∪R(α1)

R(α1 ‖ α2) = {A ‖ B | A ∈ R(α1), B ∈ R(α2)} I(α1 ‖ α2) = I(α1) ∪ I(α2)

In the running example, R(c∗; (a < b)) = {a < b, c; (a < b)}) and I(c∗;
(a < b)) = {c}.
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Fig. 29. A non-feasible place

We start to characterize the set of feasible places of L(α) analoguously as for LPO-
terms by defining regions r of LSO-terms as regions w.r.t. the finite set R(α) satisfying
the additional property

Prod(lso, pr) :=
∑

t∈l(V )

l(V )(t)(W (t, pr)−W (pr, t)) ≥ 0.

for all LSOs lso = (V,≺,�, l) ∈ I(α). In the running example this means (W (c, pr)−
W (pr, c)) ≥ 0.

But the set of places corresponding to such regions still contains places which are
not feasible. For example, the place shown in Figure 29 is feasible w.r.t. R(c∗; (a < b)),
but prohibits c2; (a < b), because iterations of c add tokens to a place with an inhibitor
restriction w.r.t. a. The general situation is a place p with the following properties:

– There is an LSO lso ∈ I(α) with Prod(lso, p) > 0 (in the example lso = c).
– There is an event v of an LSO in (V,≺,�, l) ∈ R(α) such that:
• I(p, l(v)) <∞ (in the example I(p, a) <∞).
• The prefix of a sub-LSO isomorphic to lso is prefix of the prefix of a cut con-

taining v (the empty prefix in the example).

If these properties are satisfied, p is not feasible because the iteration of lso arbitrar-
ily increases the number of tokens in p such that in the end the occurrence of l(v) is
prohibited by I(p, l(v)) < ∞. Obviously, we can construct a feasible place from p by
changing I(p, l(v)) into the value ∞ in each such situation. If we do this for all such
places p, we get the set of all places which are feasible w.r.t. L(α). Some of these places
can be simplyfied by replacing useless inhibitor weights by the value∞ as in the finite
case, if the place is bounded and the inhibitor weight exceeds the place bound. Bounded
places p can be easily found, since they are characterized by Prod(lso, p) = 0 for all
LSOs lso ∈ I(α).
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Since the set of regions again can be defined as the set of solutions of a linear
homogenuous inequation system, it is possible to generate a basis representation.
Basis places which are not feasible can be turned into feasible places and simplified as
described above.

It is also possible to compute a finite separation representation using the following
definition of wrong continuations which combines ideas from wrong continuations of
LPO-terms and finite LSO-languages.

Definition 35 (Wrong Continuation of LSO-term). Let α be an LPO-term and let
σ = β1 . . . βn−1βn ∈ R(α)step and t ∈ T such that wσ,t = β1 . . . βn−1(βn + t) 
∈
K(α)step, where βn is allowed to be the empty step. Then wσ,t is called wrong flow
continuation of α. We call β1 . . . βn−1 the prefix and βn + t the follower step of the
wrong flow continuation.

A wrong inhibitor continuation of an LSO-term α is a sequence of transition steps
of the form wσ,β1,β2 = α1 . . . αn−1β1β2 
∈ R(α)step for β1 + β2 ≤ αn and σ =
α1 . . . αn−1αn ∈ R(α)step, where we call α1 . . . αn−1β1 the prefix and β2 the follower
step of the wrong inhibitor continuation.

In the example, some wrong flow continuations are (a + b)a, c(a + b)b, 2c and some
wrong inhibitor continuations are ba, cba. As for finite LSO-languages, wrong flow con-
tinuations can be forbidden using a PT-net constraint or an inhibitor constraint, wrong
inhibitor continuations can be only forbidden using an inhibitor constraint. If the PT-
net constraint is used, all inhibitor weights can be chosen to be∞ and for some iterated
LSOs lso we require Prod(lso, pr) = 0 as in the case of LPO-terms. If the inhibitor
constraint w.r.t. an event v is used, we also require Prod(lso, pr) = 0 for some iterated
LSOs lso, namely if the prefix of a sub-LSO isomorphic to lso is prefix of the prefix of
a cut containing an event with label l(v) (as argued above).

Each LPO-term is a special case of an LSO-term. This means, if the synthesis prob-
lem of LPO-term has no exact PT-net solution, then can try find an exact PTI-net so-
lution using the extended techniques from this paragraph. For example, consider the
LPO-term ((a; b∗) ‖ b∗) + c from the subsection on LPO-terms. As discribed, it is not
possible to prohibit wrong continuations of the form bnc by a PT-net place. As illus-
trated in Figure 30 it is possible to prohibit these wrong continuations by a PTI-net
place.

3.2 Non-transitive Causal Structures

It is possible to specify the set of runs of a Petri net by non-transitive causal structures
like labelled acyclic directed graphs (for PT-nets) or labelled acyclic rel-structures (for
PTI-nets). In the following we only consider labelled acyclic directed graphs in more
detail. All definitions and results can be extended and generalized to labelled acyclic
rel-structures along the same lines as before for LPOs and LSOs.

Acyclic directed graphs labelled by transition names can be used to represent the
direct causal dependencies between transition occurrences underlying processes. This
means, we require a token flow between transition occurrences along each specified
arrow.
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Fig. 30. The grey PTI-net place prohibits executions of the form bnc

Definition 36 (Labelled Acyclic Directed Graph). A labelled acyclic directed graph
(LDAG) over T is a 3-tuple (V,→, l), where (V,→) is an acyclic directed graph and
l : V → T is a labelling function on V .

As LPOs, we only consider LDAGs up to isomorphism.

Definition 37 (LDAG-run). An LDAG (V,→, l) is a LDAG-run of a PT-net N =
(P, T, F,W,m0) if there is a process K = (O, ρ), O = (B,E,G), of N such that
(V,→) = (E, {(e, f) | e• ∩ •f 
= ∅}) and l = ρ|E .

An LDAG-run ldag of N is said to be minimal, if there exists no other LDAG-run
ldag′ of N such that ldag is an extension of ldag′.

From the definition follows that extensions of LDAG-runs in general are no LDAG-runs
(see Figure 31).

The formal synthesis problem statement, which we consider here, is:

Given: A language L of LDAGs over a finite alphabet of transition names T .
Searched: A PT-net N with set of transitions T such that all LDAGs in L are LDAG-

runs of N and N has a minimal number of additional minimal LDAG-runs.

Fig. 31. For the PT-net without the grey place, ldag is an LDAG-run, but ldag+ is not an LDAG-
run. For the PT-net with the grey place, ldag+ is an LDAG-run, but ldag is not.
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On the one side, it is not clear how to define transition regions for LDAG-languages,
since direct causal dependencies can be expressed by the components of transition
regions.

On the other side, a token flow region contains components directly representing all
direct causal dependencies within a specified run. This means, we can define token flow
regions of LDAG-languages in an analoguous way as for LPO-languages. If between
two transition occurrences there is no arrow specified, then no token flow is possible
between these transition occurrences (compare ldag and the PT-net without the grey
place in Figure 31). If between two transition occurrences there is an arrow specified,
then always a token flow region with positive token flow along this edge can be found
(compare ldag+ and the PT-net with the grey place in Figure 31).

The basis representation of the set of token flow regions of an LDAG-language is
defined as for LPO-languages. By construction, the basis representation generates all
specified LDAG-runs.

In order to define a separating representation of an LDAG-language L, observe that
if an LDAG ldag is an LDAG-run of a PT-net, then its transitive closure ldag+ is an
LPO-run of the PT-net. This means conversely, if ldag+ is not an LPO-run, then ldag
is not an LDAG-run. Thus, each wrong continuation of L+ = {ldag+ | ldag ∈ L}
is also a wrong continuation of L. The computation of the separating representation is
analoguous as in the case of LPOs by representing wrong continuations on the level
of LDAGs. It remains to ensure that for each specified arrow there is a place such that
there is token flow along this arrow w.r.t. this place, if this is not yet the case. Such
places can be computed by token flow regions through requiring a positive token flow
on such an arrow edge through an appropriate homogenuous linear inequation. For
example, consider ldag+ from Figure 31: The white places of the shown PT-net sep-
arate all wrong continuations (2b), a, bb, b(2a), ba(2b), baa, babb, baba, while the grey
place ensures the direct causal dependency between the two occurrences of transition b
specified by the transitive edge in ldag+.

In order to define inifinite LDAG-languages, LDAG-terms can be defined analogu-
osly as LPO-terms. The only difference concerns the definition of sequential composi-
tion AB of LDAGs A = (VA,→A, lA) and B = (VB ,→B, lB) used for the generation
of the language of an LDAG-term. Since LDAGs represent only direct causal dependen-
cies between transition occurrences, the sequential composition only introduces such
direct causal dependencies between maximal events of the first and minimal events of
the second LDAG:

AB = (VA ∪ VB, <A ∪ <B ∪(Max(A) ×Min(B), lA ∪ lB).

3.3 Restricted Net Classes

In this subsection we discuss the synthesis of nets from several restricted net classes.
In principle, each restriction which can be encoded as a finite set of linear inequations
over the components of regions can be integrated into the defintion of regions. This
way, regions can represent places of restricted net classes. In the following paragraphs
we briefly suggest several such restrictions.
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Some of the restrictions leed to non-homogenuous linear inequations of the form
B · x ≤ b with b 
= 0. In these cases, the set of solutions has no basis representation,
i.e. the separation representation must be computed.

Bounds for Place Markings. For finite languages, each prefix of a specified causal
structure represents a reachable marking. The number of tokens in a place reached after
occurrence of such a prefix can be expressed as a linear sum of components of transition
regions and token flow regions. Thus a bound restricting the number of tokens in all
places can be introduced by a set of non-homogenuous linear inequations (for each
prefix a linear inequation must be added).

For infinite languages, all prefixes of the finite representation set need to be consid-
ered. Additionally, iterated parts may not increase the number of tokens in a place.

Using these ideas, places of bounded PT-nets and bounded PTI-nets can be
computed.

Bounds for Flow Weights. Also flow weigths can be can be expressed as a linear sum
of components of transition regions and token flow regions:

– Transition regions have components directly representing flow weights.
– For token flow regions, the intoken flows and outtoken flows represent flow weights.

This means, a bound restricting all flow weights can be introduced by a set of non-
homogenuous linear inequations.

Using the bound 1 for markings and flow weights, it is possible to compute places of
elementary nets.

Bounds for Inhibitor Weights. Analoguously to flow weights, inhibitor weights can
be bounded, because they are directly represented by components of transition regions
and token flow regions.

Using the bound 0 for inhibitor weights, it is possible to compute places of simple
inhibitor nets.

Final Markings. A final marking is a marking reached after occurrence of a complete
specified causal structure. It is possible to introduce combinations of the following use-
ful restrictions for final markings by sets of linear inequations:

– All final markings of some subset of specified causal structures are equal
(homogenuous linear inequations).

– The final marking of some causal structure is bounded (non-homogenuous linear
inequations).

– The final marking of some causal structure equals a fixed number.

For infinite languages, in the second and third case, all final markigs of the finite rep-
resentation set need to be considered. Additionally, iterated parts may not increase the
number of tokens in a place.
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Initial Markings. It is possible to introduce combinations of the following useful re-
strictions for initial markings by sets of linear inequations:

– The initial marking of all places is bounded (non-homogenuous linear inequations).
– The initial marking of all places is a fixed number.

It is possible to compute intermediate places of sound workflow nets by requiring that
all initial and final markings equal the number 0.

3.4 More on Infinite Languages

LPO-terms (and LSO-terms) only represent a small class of LPO-languages. In the
following we show several examples of languages which cannot be represented by LPO-
terms and discuss possibilities to generalize LPO-terms in order to cover some of these
examples.

Figure 33 shows a simple example of a PT-net-language which cannot be represented
by an LPO-term. The reason for this is that by the iteration operator it is not possible to
append LPOs to a part of a previous LPO, but only to the whole LPO.

Therefore generalized LPO-terms, allowing to iteratively append LPOs only to parts
of previous LPOs, are introduced in [7]. These parts, which we call interfaces, are given
by prefixes containing maximal events of the LPO. In the example, the LPO a; (b ‖ c)
is iterated only w.r.t. its prefix a; b. This can be expressed by operators ;X and ∗X for
sequential composition and iteration w.r.t. an interface X .

Figure 33 shows a simple safe Petri net, whose LPO-language even cannot be rep-
resented by such generalized LPO-terms. This is because for no choice of an iterated
part there is a prefix of the iterated part, such that all subsequent events causally depend
on all events from this prefix. Instead, different subsequent events depend on different
prefixes.

One possibility to further generalize interfaces is to specify direct causal dependen-
cies between events of the previous LPO and events of the subsequent LPO by pairs of
multisets of action names.

The PT-net-language in the last example then can be represented by the term ((a ‖
c);X (d ‖ b))∗Y with

Fig. 32. A PT-net whose set of LPO-runs cannot be represented by an LPO-term
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Fig. 33. A PT-net whose set of runs cannot be represented by a generalized LPO-term.

– an interface set X = {(a, b + d), (a + c, b)} defining which events of the second
LPO are directly causally dependent on which events of the previous LPO.

– and an interface set Y = {(d + b, a), (b, a + c)} defining which events of the
subsequent occurrence of the iterated LPO are directly causally dependent on which
events of the previous occurrence of the iterated LPO.

In general an interface X = {(A1, B1), . . . , (Ak, Bk)} is interpreted as follows: If an
LPO (V,<, l) = lpo1;X lpo2 is constructed from a sequential composition of two LPOs
lpo1 and lpo2 w.r.t. this interface, then it satisfies the following properties:

– If v is a maximal event of lpo1 with l(v) ∈
⋃

iAi and W ′ is the set of its direct
successor events in lpo2, then l(W ′) ≤ Bi for some Bi with l(v) ∈ Ai.

– If w is a minimal event of lpo2 with l(w) ∈
⋃

iBi and V ′ is the set of its direct
predecessor events in lpo1, then l(V ′) = Ai for some maximal multiset Ai among
A1, . . . , An with l(w) ∈ Bi.

Consider the interface X in the previous example:

– An occurrence of a can be directly followed by at most one occurrence of b and
one occurrence of d, since (a, b+ d) ∈ X and b < b+ d.

– An occurrence of b exactly directly causally depends on one occurrence of a and
one occurrence of c, since (a+ c, b) ∈ X and a < a+ c.

Analoguous properties must hold for iterations w.r.t. interfaces.
Figure 34 shows that in presence of several equally labelled events there are several

possibilities to sequentially compose LPOs w.r.t. to a given interface.
Note that the interfaces X = {(a, b+ d), (a+ c, b)} and X ′ = {(a, b), (a, d), (c, b)}

have a different interpretation. According to X ′, an occurrence of a is not allowed to
have two direct successors. Instead, alternatively action b or action d can occur directly
after a. Moreover, an occurrence of b directly causally depends on an occurrence of a
or an occurrence of c, but not on both occurrences.

This approach is very flexible and intuitive, since only direct causal dependencies
between actions need to be specified and also multiple direct causal dependencies can
be considered (for example, the interface {(2b, a)} specufies that a directly causally



368 R. Lorenz, J. Desel, and G. Juhás

Fig. 34. Two instantiations of an interface

depends on two occurrences of b). It allows to construct arbitrary LPOs from single
action names.

Moreover, it can also be applied to LSOs, as illustrated by Figure 35.
On the other side, as Figure 34 illustrates, the set of possible instantiations of an

interface may be complex and difficult to predict from the syntax. Another formulation,
which is more clear and restrictive, is to specify interfaces directly through LPOs.

For all mentioned generilizations through interfaces, the notions of transition region
and token flow region can be adapted in such a way that they are characterized as so-
lutions of an appropriate homogenuous linear inequations system and such that it is
possible to compute a basis representation and a separation representation.

As for LPO-terms and LSO-terms, a finite representation set and a finite iteration set
represent the language generated by term with interfaces.

The representation set is defined as for LPO-terms and LSO-terms, where sequential
composition is defined w.r.t. a given interface. We define

R(α1;X α2) = {A;xB | A ∈ R(α1), B ∈ R(α2), x ∈ R(A,B,X)},

where R(A,B,X) is the set of instantiations of X w.r.t. A and B (as described above
and illustrated in Figure 34 - we omit a formal definition here) and

A;x B = (VA ∪ VB, <A ∪ <B ∪x, lA ∪ lB)

in the case LPO-terms with interfaces (this definition can be extended to LSO-terms
with interfaces in a straightforward way).

Fig. 35. Some LSOs which cannot be constructed from sinlge action names by LSO-terms
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Fig. 36. A double iteration with some co-sets of events, which are considered for the definition of
regions

In order to reflect interface connections, the iteration set is not defined from single
iterations, but double iterations:

I(α∗X) = {A;xB | A,B ∈ R(α), x ∈ R(A,B,X)} ∪ I(α).

For each double iteration A;x B we require that B can occur solely consuming tokens
produced by A. This means that each co-set of A;x B containing events from B can oc-
cur after the occurrence of its prefix in A;x B. This can be encoded by linear inequations
in the usual way, where ”initial markings” of double iterations are chosen consistent
with markings reached after prefixes of corresponding iterated parts in R(α). Figure 36
illustrates some of the considered co-sets for the example shown in Figure 32.

4 Conclusion

In this paper we gave a survey on region based synthesis of Petri nets from languages.
We considered place/transition nets (PT-nets), inhibitor nets (PTI-nets) and several re-
strictions of these net classes on the one side, and languages of labelled partial orders,
labelled stratified orders, labelled acyclic graphs and labelled relational structures on
the other side. The presented framework includes synthesis from finite languages and
several classes of infinite languages finitely represented in term based notations and
integrates all classical results on sequential languages.

Most of the results are combinations and reformulations of results from [27], [26]
and [7]. There are some easy new adaptions of techniques for token flow regions to
transition regions as the synthesis of PT-nets from transition regions of LPO-terms.
New developments, which are not yet published, are:

– Computation of the separation representation of regions of LPO-terms.
– Computation of the separation representation of regions of finite LSO-languages.
– Definition of LSO-terms and synthesis from LSO-terms.
– Synthesis from non-transitive causal structures.
– Synthesis of nets from terms with general interfaces.

There is tool support for several of the presented techniques:
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– The graphical Petri net editor VIPtool [13] supports business process modelling
and synthesis and has also verification and simulation capabilities.

– The command line tool Synops [24] supports the term-based construction of partial
languages and the synthesis of Petri nets from partial languages.
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Abstract. As information systems are becoming more and more inter-
twined with the operational processes they support, multitudes of events
are recorded by todays information systems. The goal of process mining
is to use such event data to extract process related information, e.g.,
to automatically discover a process model by observing events recorded
by some system or to check the conformance of a given model by com-
paring it with reality. In this article, we focus on process discovery, i.e.,
extracting a process model from an event log. We focus on Petri nets as a
representation language, because of the concurrent and unstructured na-
ture of real-life processes. The goal is to introduce several approaches to
discover Petri nets from event data (notably the α-algorithm, state-based
regions, and language-based regions). Moreover, important requirements
for process discovery are discussed. For example, process mining is only
meaningful if one can deal with incompleteness (only a fraction of all
possible behavior is observed) and noise (one would like to abstract
from infrequent random behavior). These requirements reveal significant
challenges for future research in this domain.

Keywords: Process mining, Process discovery, Petri nets, Theory of
regions.

1 Introduction

Process mining provides a new means to improve processes in a variety of ap-
plication domains [2, 41]. There are two main drivers for this new technology.
On the one hand, more and more events are being recorded thus providing de-
tailed information about the history of processes. Despite the omnipresence of
event data, most organizations diagnose problems based on fiction rather than
facts. On the other hand, vendors of Business Process Management (BPM) and
Business Intelligence (BI) software have been promising miracles. Although BPM
and BI technologies received lots of attention, they did not live up to the expec-
tations raised by academics, consultants, and software vendors.

Process mining is an emerging discipline providing comprehensive sets of tools
to provide fact-based insights and to support process improvements [2, 7]. This
new discipline builds on process model-driven approaches and data mining. How-
ever, process mining is much more than an amalgamation of existing approaches.
For example, existing data mining techniques are too data-centric to provide a
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comprehensive understanding of the end-to-end processes in an organization. BI
tools focus on simple dashboards and reporting rather than clear-cut business
process insights. BPM suites heavily rely on experts modeling idealized to-be
processes and do not help the stakeholders to understand the as-is processes.

Over the last decade event data has become readily available and process
mining techniques have matured. Moreover, process mining algorithms have
been implemented in various academic and commercial systems. Examples of
commercial systems that support process mining are: ARIS Process Perfor-
mance Manager by Software AG, Disco by Fluxicon, Enterprise Visualization
Suite by Businesscape, Interstage BPME by Fujitsu, Process Discovery Focus by
Iontas, Reflect|one by Pallas Athena, and Reflect by Futura Process Intelligence.
Today, there is an active group of researchers working on process mining and
it has become one of the “hot topics” in BPM research. Moreover, there is a
huge interest from industry in process mining. This is illustrated by the recently
released Process Mining Manifesto [41]. The manifesto is supported by 53 or-
ganizations and 77 process mining experts contributed to it. The manifesto has
been translated into a dozen languages (http://www.win.tue.nl/ieeetfpm/). The
active contributions from end-users, tool vendors, consultants, analysts, and re-
searchers illustrate the growing relevance of process mining as a bridge between
data mining and business process modeling. Moreover, more and more software
vendors started adding process mining functionality to their tools. The authors
have been involved in the development of the open-source process mining tool
ProM right from the start [11, 56, 57]. ProM is widely used all over the globe
and provides an easy starting point for practitioners, students, and academics.

Whereas it is easy to discover sequential processes, it is very challenging to
discover concurrent processes, especially in the context of noisy and incomplete
event logs. Given the concurrent nature of most real-life processes, Petri nets are
an obvious candidate to represent discovered processes. Moreover, most real-life
processes are not nicely block-structured, therefore, the graph based nature of
Petri nets is more suitable than notations that enforce more structure.

The article is based on a lecture given at the Advanced Course on Petri nets
in Rostock, Germany (September 2010). The practical relevance of process dis-
covery and the suitability of Petri net as a basic representation for concurrent
processes motivated us to write this tutorial.

Figure 1 illustrates the concept of process discovery using a small example.
The figure shows an abstraction of an event log. There are 1391 cases, i.e.,
process instances. Each case is described as a sequence of activities, i.e., a trace.
In this particular log there are 21 different traces. For example, trace 〈a, c, d, e, h〉
occurs 455 times, i.e., there are 455 cases for which this sequence of activities
was executed. The challenge is to discover a Petri net given such an event log.
A discovery algorithm such as the α-algorithm [9] is able to discover the Petri
net shown in Figure 1.

Process discovery is a challenging problem because one cannot assume that
all possible sequences are indeed present. Consider for example the event log
shown in Figure 1. If we randomly take 500 cases from the set of 1391 cases,

http://www.win.tue.nl/ieeetfpm/
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Fig. 1. A Petri net discovered from an event log containing 1391 cases

we would like to discover “more or less” the same model. Note that there are
several traces that appear only once in the log. Many of these will disappear
when considering a log with only 500 cases. Also note that the process model
discovered by the α-algorithm allows for more traces than the ones depicted in
Figure 1, e.g., 〈a, d, c, e, f, d, b, e, f, c, d, e, h〉 is possible according to the process
model but does not occur in the event log. This illustrates that event logs tend
to be far from complete, i.e., only a small subset of all possible behavior can be
observed because the number of variations is larger than the number of instances
observed.

The process model in Figure 1 is rather simple. Real-life processes will consist
of dozens or even hundreds of different activities. Moreover, some behaviors
will be very infrequent compared to others. Such rare behaviors can be seen as
noise (e.g., exceptions). Typically, it is undesirable and also unfeasible to capture
frequent and infrequent behavior in a single diagram.
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Process discovery techniques need to be able to deal with noise and incom-
pleteness. This makes process mining very different from synthesis. Classical
synthesis techniques aim at creating a model that captures the given behavior
precisely. For example, classical language-based region techniques [14, 17, 19, 28,
42, 43, 45] distill a Petri net from a (possibly infinite) language, such that the
behavior of the Petri net is only minimally more than the given language. In
classical state-based region theory [13, 15, 23, 24, 26, 27, 35] on the other hand,
a transition system is used to synthesize a Petri net of which the behavior is
bisimilar with the given transition system. Intuitively two models are bisimilar
if they can match each other’s moves, i.e., they cannot be distinguished from
one another by an observer [36]. In terms of mining this implies that the näıvely
synthesized Petri net cannot generalize beyond the example traces seen.

Process discovery techniques need to balance four criteria: fitness (the discov-
ered model should allow for the behavior seen in the event log), precision (the
discovered model should not allow for behavior completely unrelated to what was
seen in the event log), generalization (the discovered model should generalize the
example behavior seen in the event log), and simplicity (the discovered model
should be as simple as possible). This makes process discovery a challenging and
highly relevant topic.

The remainder of this article is organized as follows. Section 2 introduces the
process mining spectrum showing that process discovery is an essential ingre-
dient for process analysis based on facts rather than fiction. Section 3 presents
preliminaries and formalizes the process discovery task. The α-algorithm is pre-
sented in Section 4. Section 5 discusses the main challenges related to process
mining. In Section 6, we compare process discovery with region theory in more
detail. This section shows that classical approaches cannot deal with partic-
ular requirements essential for process mining. Then, in sections 7 and 8, we
show how region theory can be adapted to deal with these requirements. Both
state-based regions and language-based regions are considered. All approaches
described in this article are supported by ProM, the leading open-source process
mining framework. ProM is described in Section 9. Section 10 ends this article
with some conclusions and challenges that remain.

2 Process Mining

Process mining is an important tool for modern organizations that need to man-
age non-trivial operational processes. On the one hand, there is an incredible
growth of event data [44]. On the other hand, processes and information need
to be aligned perfectly in order to meet requirements related to compliance, effi-
ciency, and customer service. Process mining is much broader than just control-
flow discovery, i.e., discovering a Petri net from a multi-set of traces. Therefore,
we start by providing an overview of the process mining spectrum.

Event logs can be used to conduct three types of process mining as shown in
Figure 2 [2, 7].

The first type of process mining is discovery. A discovery technique takes
an event log and produces a model without using any a-priori information.
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Fig. 2. Positioning of the three main types of process mining: discovery, conformance,
and enhancement

An example is the α-algorithm [9] that will be described in Section 4. This
algorithm takes an event log and produces a Petri net explaining the behav-
ior recorded in the log. For example, given sufficient example executions of the
process shown in Figure 1, the α-algorithm is able to automatically construct
the Petri net without using any additional knowledge. If the event log contains
information about resources, one can also discover resource-related models, e.g.,
a social network showing how people work together in an organization.

The second type of process mining is conformance. Here, an existing process
model is compared with an event log of the same process. Conformance checking
can be used to check if reality, as recorded in the log, conforms to the model and
vice versa. For instance, there may be a process model indicating that purchase
orders of more than one million Euro require two checks. Analysis of the event log
will show whether this rule is followed or not. Another example is the checking of
the so-called “four-eyes” principle stating that particular activities should not be
executed by one and the same person. By scanning the event log using a model
specifying these requirements, one can discover potential cases of fraud. Hence,
conformance checking may be used to detect, locate and explain deviations,
and to measure the severity of these deviations. An example is the conformance
checking algorithm described in [51]. Given the model shown in Figure 1 and
a corresponding event log, this algorithm can quantify and diagnose deviations.
In [4] another approach based on creating alignments is presented. An alignment
is optimal if it relates the trace in the log to a most similar path in the model.
After creating optimal alignments, all behavior in the log can be related to the
model.

The third type of process mining is enhancement. Here, the idea is to extend
or improve an existing process model using information about the actual pro-
cess recorded in some event log. Whereas conformance checking measures the
alignment between model and reality, this third type of process mining aims at
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changing or extending the a-priori model. One type of enhancement is repair,
i.e., modifying the model to better reflect reality. For example, if two activities
are modeled sequentially but in reality can happen in any order, then the model
may be corrected to reflect this. Another type of enhancement is extension, i.e.,
adding a new perspective to the process model by cross-correlating it with the
log. An example is the extension of a process model with performance data. For
instance, Figure 1 can be extended with information about resources, decision
rules, quality metrics, etc.

The Petri net in Figure 1 only shows the control-flow. However, when extend-
ing process models, additional perspectives need to be added. Moreover, discov-
ery and conformance techniques are not limited to control-flow. For example,
one can discover a social network and check the validity of some organizational
model using an event log. Hence, orthogonal to the three types of mining (dis-
covery, conformance, and enhancement), different perspectives can be identified.
The organizational perspective focuses on information about resources hidden
in the log, i.e., which actors (e.g., people, systems, roles, and departments) are
involved and how are they related. The goal is to either structure the orga-
nization by classifying people in terms of roles and organizational units or to
show the social network. The time perspective is concerned with the timing and
frequency of events. When events bear timestamps it is possible to discover bot-
tlenecks, measure service levels, monitor the utilization of resources, and predict
the remaining processing time of running cases.

3 Process Discovery: Preliminaries and Purpose

In this section, we describe the goal of process discovery. In order to do this, we
present a particular format for logging events and a particular process modeling
language (i.e., Petri nets). Based on this we sketch various process discovery
approaches.

3.1 Event Logs

The goal of process mining is to extract knowledge about a particular (oper-
ational) process from event logs, i.e., process mining describes a family of a-
posteriori analysis techniques exploiting the information recorded in audit trails,
transaction logs, databases, etc. Typically, these approaches assume that it is
possible to sequentially record events such that each event refers to an activ-
ity (i.e., a well-defined step in the process) and is related to a particular case
(i.e., a process instance). Furthermore, some mining techniques use additional
information such as the performer or originator of the event (i.e., the person /
resource executing or initiating the activity), the timestamp of the event, or data
elements recorded with the event (e.g., the size of an order).

To clarify the notion of an event log consider Table 1 which shows a fragment
of some event log. Only two traces are shown, both containing four events. Each
event has a unique id and several properties. For example event 35654423 belongs
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Table 1. A fragment of some event log

case id event id properties
timestamp activity resource cost . . .

x123 35654423 30-12-2011:11.02 a John 300 . . .
x123 35654424 30-12-2011:11.06 b John 400 . . .
x123 35654425 30-12-2011:11.12 c John 100 . . .
x123 35654426 30-12-2011:11.18 d John 400 . . .

x128 35655526 30-12-2011:16.10 a Ann 300 . . .
x128 35655527 30-12-2011:16.14 c John 450 . . .
x128 35655528 30-12-2011:16.26 b Pete 350 . . .
x128 35655529 30-12-2011:16.36 d Ann 300 . . .

. . . . . . . . . . . . . . . . . . . . .

to case x123 and is an instance of activity a that occurred on December 30th at
11.02, was executed by John, and cost 300 euros. The second trace (case x128)
starts with event 35655526 and also refers to an instance of activity a. The
information depicted in Table 1 is the typical event data that can be extracted
from today’s systems.

Systems store events in very different ways. Process-aware information sys-
tems (e.g., workflow management systems) provide dedicated audit trails. In
other systems, this information is typically scattered over several tables. For
example, in a hospital events related to a particular patient may be stored in
different tables and even different systems. For many applications of process
mining, one needs to extract event data from different sources, merge these
data, and convert the result into a suitable format. We advocate the use of the
so-called XES (eXtensible Event Stream) format that can be read directly by
ProM ( [5,57]). XES is the successor of MXML. Based on many practical expe-
riences with MXML, the XES format has been made less restrictive and truly
extendible. In September 2010, the format was adopted by the IEEE Task Force
on Process Mining. The format is supported by tools such as ProM (as of ver-
sion 6), Nitro, XESame, and OpenXES. See www.xes-standard.org for detailed
information about the standard. XES is able to store the information shown in
Table 1. Most of this information is optional, i.e., if it is there, it can be used
for process mining, but it is not necessary for control-flow discovery.

In this article, we focus on control-flow discovery. Therefore, we only consider
the activity column in Table 1. This means that an event is linked to a case
(process instance) and an activity, and no further attributes are needed. Events
are ordered (per case), but do not need to have explicit timestamps. This allows
us to use the following simplified definition of an event log.

Definition 1 (Event, Trace, Event log). Let A be a set of activities. σ ∈ A∗

is a trace, i.e., a sequence of events. L ∈ IB(A∗) is an event log, i.e., a multi-set
of traces.

file:www.xes-standard.org
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The first four events in Table 1 form a trace 〈a, b, c, d〉. This trace represents the
path followed by case x123. The second case (x128) can be represented by the
trace 〈a, c, b, d〉. Note that there may be multiple cases that have the same trace.
Therefore, an event log is defined as a multi-set of traces.

A multi-set (also referred to as bag) is like a set where each element may
occur multiple times. For example, [horse, cow5, duck2] is the multi-set with eight
elements: one horse, five cows and two ducks. IB(X) is the set of multi-sets (bags)
over X . We assume the usual operators on multi-sets, e.g., X ∪Y is the union of
X and Y, X\Y is the difference between X and Y , x ∈ X tests if x appears in X ,
and X ≤ Y evaluates to true if X is contained in Y . For example, [horse , cow2]∪
[horse2, duck2] = [horse3, cow2, duck2], [horse3, cow4] \ [cow2] = [horse3, cow2],
[horse, cow2] ≤ [horse2, cow3], and [horse3, cow1] 
≤ [horse2, cow2]. Note that
sets can be considered as bags having only one instance of every element. Hence,
we can mix sets and bags, e.g., {horse, cow} ∪ [horse2, cow3] = [horse3, cow4].

For practical applications of process mining it is essential to differentiate be-
tween traces that are infrequent or even unique (multiplicity of 1) and traces
that are frequent. Therefore, an event log is a multi-set of traces rather than
an ordinary set. However, in this article we focus on the foundations of process
discovery thereby often abstracting from noise and frequencies. See [2] for tech-
niques that take frequencies into account. This book also describes various case
studies showing the importance of multiplicities.

In the remainder, we will use the following example log: L1 = [〈a, b, c, d〉5,
〈a, c, b, d〉8, 〈a, e, d〉9]. L1 contains information about 22 cases; five cases following
trace 〈a, b, c, d〉, eight cases following trace 〈a, c, b, d〉, and nine cases following
trace 〈a, e, d〉. Note that such a simple representation can be extracted from
sources such as Table 1, MXML, XES, or any other format that links events to
cases and activities.

3.2 Petri Nets

The goal of process discovery is to distil a process model from some event log.
Here we use Petri nets [50] to represent such models. In fact, we extract a
subclass of Petri nets known as workflow nets (WF-nets) [1].

Definition 2. An Petri net is a tuple (P, T, F ) where:

1. P is a finite set of places,

2. T is a finite set of transitions such that P ∩ T = ∅, and
3. F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs, called the flow relation.

An example Petri net is shown in Figure 3. This Petri net has six places repre-
sented by circles and four transitions represented by squares. Places may contain
tokens. For example, in Figure 3 both p1 and p6 contain one token, p3 contains
two tokens, and the other places are empty. The state, also called marking, is the
distribution of tokens over places. A marked Petri net is a pair (N,M), where
N = (P, T, F ) is a Petri net and where M ∈ IB(P ) is a bag over P denoting the
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Fig. 3. A Petri net with six places (p1, p2, p3, p4, p5, and p6) and four transitions (t1,
t2, t3, and t4)

marking of the net. The initial marking of the Petri net shown in Figure 3 is
[p1, p32, p6]. The set of all marked Petri nets is denoted N .

Let N = (P, T, F ) be a Petri net. Elements of P ∪ T are called nodes. A node
x is an input node of another node y iff there is a directed arc from x to y (i.e.,
(x, y) ∈ F ). Node x is an output node of y iff (y, x) ∈ F . For any x ∈ P ∪ T ,
•x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}. In Figure 3, •t3 = {p3, p6} and
t3• = {p5}.

The dynamic behavior of such a marked Petri net is defined by the so-called
firing rule. A transition is enabled if each of its input places contains a token. An
enabled transition can fire thereby consuming one token from each input place
and producing one token for each output place.

Definition 3 (Firing rule). Let (N,M) be a marked Petri net with N =
(P, T, F ). Transition t ∈ T is enabled, denoted (N,M)[t〉, iff •t ≤M . The firing
rule [ 〉 ⊆ N × T ×N is the smallest relation satisfying for any (N,M) ∈ N
and any t ∈ T , (N,M)[t〉 ⇒ (N,M) [t〉 (N, (M \ •t) ∪ t•).

In the marking shown in Figure 3, both t1 and t3 are enabled. The other two
transitions are not enabled because at least one of the input places is empty.
If t1 fires, one token is consumed (from p1) and two tokens are produced (one
for p2 and one for p3). Formally, (N, [p1, p32, p6]) [t1〉 (N, [p2, p33, p6]). So the
resulting marking is [p2, p33, p6]. If t3 fires in the initial state, two tokens are
consumed (one from p3 and one from p6) and one token is produced (for p5).
Formally, (N, [p1, p32, p6]) [t3〉 (N, [p1, p3, p5]).

Let (N,M0) with N = (P, T, F ) be a marked P/T net. A sequence σ ∈ T ∗ is
called a firing sequence of (N,M0) iff, for some natural number n ∈ IN, there exist
markingsM1, . . . ,Mn and transitions t1, . . . , tn ∈ T such that σ = 〈t1 . . . tn〉 and,
for all i with 0 ≤ i < n, (N,Mi)[ti+1〉 and (N,Mi) [ti+1〉 (N,Mi+1).

Let (N,M0) be the marked Petri net shown in Figure 3, i.e.,M0 = [p1, p32, p6].
The empty sequence σ = 〈 〉 is enabled in (N,M0). The sequence σ = 〈t1, t3〉 is
also enabled and results in marking [p2, p32, p5]. Another possible firing sequence
is σ = 〈t3, t4, t3, t1, t4, t3, t2, t1〉. A marking M is reachable from the initial
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Fig. 4. The reachability graph of the marked Petri net shown in Figure 3

marking M0 iff there exists a sequence of enabled transitions whose firing leads
from M0 to M . The set of reachable markings of (N,M0) is denoted [N,M0〉.

For the marked Petri net shown in Figure 3 there are 12 reachable states.
These states can be computed using the so-called reachability graph shown in
Figure 4. All nodes correspond to reachable markings and each arc corresponds
to the firing of a particular transition. Any path in the reachability graph corre-
sponds to a possible firing sequence. For example, using Figure 4 is is easy to see
that 〈t3, t4, t3, t1, t4, t3, t2, t1〉 is indeed possible and results in [p2, p3, p4, p5]. A
marked net may be unbounded, i.e., have an infinite number or reachable states.
In this case, the reachability graph is infinitely large, but one can still construct
the so-called coverability graph [50].

3.3 Workflow Nets

For process discovery, we look at processes that are instantiated multiple times,
i.e., the same process is executed for multiple cases. For example, the process
of handling insurance claims may be executed for thousands or even millions
of claims. Such processes have a clear starting point and a clear ending point.
Therefore, the following subclass of Petri nets (WF-nets) is most relevant for
process discovery.

Definition 4 (Workflow nets). Let N = (P, T, F ) be a Petri net and t̄ a fresh
identifier not in P ∪ T . N is a workflow net (WF-net) iff:

1. object creation: P contains an input place i (also called source place) such
that •i = ∅,
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Fig. 5. A workflow net with source place i = start and sink place o = end

2. object completion: P contains an output place o (also called sink place) such
that o• = ∅,

3. connectedness: N̄ = (P, T ∪{t̄}, F ∪{(o, t̄), (t̄, i)}) is strongly connected, i.e.,
there is a directed path between any pair of nodes in N̄ .

Clearly, Figure 3 is not a WF-net because a source and sink place are missing.
Figure 5 shows an example of a WF-net: •start = ∅, end• = ∅, and every node
is on a path from start to end .

The Petri net depicted in Figure 1 is another example of a WF-net. Not every
WF-net represents a correct process. For example, a process represented by a
WF-net may exhibit errors such as deadlocks, tasks which can never become ac-
tive, livelocks, garbage being left in the process after termination, etc. Therefore,
we define the following correctness criterion.

Definition 5 (Soundness). Let N = (P, T, F ) be a WF-net with input place i
and output place o. N is sound iff:

1. safeness: (N, [i]) is safe, i.e., places cannot hold multiple tokens at the same
time,

2. proper completion: for any marking M ∈ [N, [i]〉, o ∈M implies M = [o],

3. option to complete: for any marking M ∈ [N, [i]〉, [o] ∈ [N,M〉, and
4. absence of dead tasks: (N, [i]) contains no dead transitions (i.e., for any

t ∈ T , there is a firing sequence enabling t).

The WF-nets shown in figures 5 and 1 are sound. Soundness can be verified using
standard Petri-net-based analysis techniques. In fact soundness corresponds to
liveness and safeness of the corresponding short-circuited net [1]. This way effi-
cient algorithms and tools can be applied. An example of a tool tailored towards
the analysis of WF-nets is Woflan [55]. This functionality is also embedded in
our process mining tool ProM [5].

3.4 Problem Definition and Approaches

After introducing events logs and WF-nets, we can define the main goal of
process discovery.
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Definition 6 (Process discovery). Let L be an event log over A, i.e., L ∈
IB(A∗). A process discovery algorithm is a function γ that maps any log L onto
a Petri net γ(L) = (N,M). Ideally, N is a sound WF-net and all traces in L
correspond to possible firing sequences of (N,M).

The goal is to find a process model that can “replay” all cases recorded in the
log, i.e., all traces in the log are possible firing sequences of the discovered WF-
net. Assume that L1 = [〈a, b, c, d〉5, 〈a, c, b, d〉8, 〈a, e, d〉9]. In this case the WF-
net shown in Figure 5 is a good solution. All traces in L1 correspond to firing
sequences of the WF-net and vice versa. Throughout this article, we use L1 as
an example log. Note that it may be possible that some of the firing sequences of
the discovered WF-net do not appear in the log. This is acceptable as one cannot
assume that all possible sequences have been observed. For example, if there is
a loop, the number of possible firing sequences is infinite. Even if the model is
acyclic, the number of possible sequences may be enormous due to choices and
parallelism. Later in this article, we will discuss the quality of discovered models
in more detail.

Since the mid-nineties several groups have been working on techniques for
process mining [7, 9, 10, 25, 29, 32, 33, 58], i.e., discovering process models based
on observed events. In [6] an overview is given of the early work in this domain.
The idea to apply process mining in the context of workflow management sys-
tems was introduced in [10]. In parallel, Datta [29] looked at the discovery of
business process models. Cook et al. investigated similar issues in the context
of software engineering processes [25]. Herbst [40] was one of the first to tackle
more complicated processes, e.g., processes containing duplicate tasks.

Most of the classical approaches have problems dealing with concurrency.
The α-algorithm [9] is an example of a simple technique that takes concurrency
as a starting point. However, this simple algorithm has problems dealing with
complicated routing constructs and noise (like most of the other approaches
described in literature). In [32, 33] a more robust but less precise approach is
presented.

Recently, people started using the “theory of regions” to process discovery.
There are two approaches: state-based regions and language-based regions. State-
based regions can be used to convert a transition system into a Petri net [13,15,
23,24,26,27,35]. Language-based regions add places as long as it is still possible
to replay the log [14, 17, 19, 28, 42, 43].

More from a theoretical point of view, the process discovery problem is related
to the work discussed in [12, 37, 38, 49]. In these papers the limits of inductive
inference are explored. For example, in [38] it is shown that the computational
problem of finding a minimum finite-state acceptor compatible with given data
is NP-hard. Several of the more generic concepts discussed in these papers can
be translated to the domain of process mining. It is possible to interpret the
problem described in this article as an inductive inference problem specified in
terms of rules, a hypothesis space, examples, and criteria for successful inference.
The comparison with literature in this domain raises interesting questions for
process mining, e.g., how to deal with negative examples (i.e., suppose that



384 W.M.P. van der Aalst and B.F. van Dongen

besides log L there is a log L′ of traces that are not possible, e.g., added by
a domain expert). However, despite the relations with the work described in
[12,37,38,49] there are also many differences, e.g., we are mining at the net level
rather than sequential or lower level representations (e.g., Markov chains, finite
state machines, or regular expressions), tackle concurrency, and do not assume
negative examples or complete logs.

The above approaches assume that there is no noise or infrequent behav-
ior. For approaches dealing with these problems we refer to the work done by
Christian Günther [39], Ton Weijters [58], and Ana Karla Alves de Medeiros [47].

4 α-Algorithm

After introducing the process discovery problem and providing an overview of
approaches described in literature, we focus on the α-algorithm [9]. The α-
algorithm is not intended as a practical mining technique as it has problems with
noise, infrequent/incomplete behavior, and complex routing constructs. Never-
theless, it provides a good introduction into the topic. The α-algorithm is very
simple and many of its ideas have been embedded in more complex and robust
techniques. Moreover, it was the first algorithm to really address the discovery
of concurrency.

4.1 Basic Idea

The α-algorithm scans the event log for particular patterns. For example, if
activity a is followed by b but b is never followed by a, then it is assumed
that there is a causal dependency between a and b. To reflect this dependency,
the corresponding Petri net should have a place connecting a to b. We distin-
guish four log-based ordering relations that aim to capture relevant patterns in
the log.

Definition 7 (Log-based ordering relations). Let L be an event log over A,
i.e., L ∈ IB(A∗). Let a, b ∈ A:

– a >L b iff there is a trace σ = 〈t1, t2, t3, . . . tn〉 and i ∈ {1, . . . , n − 1} such
that σ ∈ L and ti = a and ti+1 = b,

– a→L b iff a >L b and b 
>L a,

– a#Lb iff a 
>L b and b 
>L a, and

– a‖Lb iff a >L b and b >L a.

Consider for example L1 = [〈a, b, c, d〉5, 〈a, c, b, d〉8, 〈a, e, d〉9]. c >L1 d because d
directly follows c in trace 〈a, b, c, d〉. However, d 
>L1 c because c never directly
follows d in any trace in the log.

>L1= {(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)} contains all pairs of
activities in a “directly follows” relation. c →L1 d because sometimes d di-
rectly follows c and never the other way around (c >L1 d and d 
>L1 c).
→L1= {(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)} contains all pairs of activities in
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a b

(a) sequence pattern: a

a

b

c

(b) XOR-split pattern:
a a

a

b

c

(c) XOR-join pattern:
a

a

b

c

(d) AND-split pattern:
a a

a

b

c

(e) AND-join pattern:
a

Fig. 6. Typical process patterns and the footprints they leave in the event log

a “causality” relation. b‖L1c because b >L1 c and c >L1 b, i.e, sometimes c
follows b and sometimes the other way around. ‖L1 = {(b, c), (c, b)}. b#L1e
because b 
>L1 e and e 
>L1 b. #L1 = {(a, a), (a, d), (b, b), (b, e), (c, c), (c, e),
(d, a), (d, d), (e, b), (e, c), (e, e)}. Note that for any log L over A and x, y ∈ A:
x→L y, y →L x, x#Ly, or x‖Ly.

The log-based ordering relations can be used to discover patterns in the cor-
responding process model as is illustrated in Figure 6. If a and b are in sequence,
the log will show a >L b. If after a there is a choice between b and c, the log will
show a →L b, a →L c, and b#Lc because a can be followed by b and c, but b
will not be followed by c and vice versa. The logical counterpart of this so-called
XOR-split pattern is the XOR-join pattern as shown in Figure 6(b-c). If a→L c,
b →L c, and a#Lb, then this suggests that after the occurrence of either a or
b, c should happen. Figure 6(d-e) shows the so-called AND-split and AND-join
patterns. If a →L b, a →L c, and b‖Lc, then it appears that after a both b and
c can be executed in parallel (AND-split pattern). If a→L c, b→L c, and a‖Lb,
then it appears that c needs to synchronize a and b (AND-join pattern).

Figure 6 only shows simple patterns and does not present the additional con-
ditions needed to extract the patterns. However, the figure nicely illustrates the
basic idea.

Consider for example WF-net N2 depicted in Figure 7 and the log event log
L2 = [〈a, b, c, d, e, f, b, d, c, e, g〉, 〈a, b, d, c, e, g〉, 〈a, b, c, d, e, f, b, c, d, e, f, b, d, c,
e, g〉]. The α-algorithm constructs WF-net N2 based on L2. Note that the
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a b

c

d

e

p({a,f},{b})iL

p({b},{c})

p({b},{d})

p({c},{e})

p({d},{e})

g

oLp({e},{f,g})

f

Fig. 7. WF-net N2 derived from L2 = [〈a, b, c, d, e, f, b, d, c, e, g〉, 〈a, b, d, c, e, g〉,
〈a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g〉]

patterns in the model indeed match the log-based ordering relations extracted
from the event log. Consider for example the process fragment involving b, c, d,
and e. Obviously, this fragment can be constructed based on b→L2 c, b→L2 d,
c‖L2d, c →L2 e, and d →L2 e. The choice following e is revealed by e →L2 f ,
e→L2 g, and f#L2g. Etc.

Another example is shown in Figure 8. WF-net N3 can be derived from L3 =
[〈a, c, d〉45, 〈b, c, d〉42, 〈a, c, e〉38, 〈b, c, e〉22]. Note that here there are two start and
two end activities. These can be found easily by looking for the first and last
activities in traces.

4.2 Algorithm

After showing the basic idea and some examples, we describe the α-algorithm.

Definition 8 (α-algorithm). Let L be an event log over T . α(L) is defined as
follows.

1. TL = {t ∈ T | ∃σ∈L t ∈ σ},
2. TI = {t ∈ T | ∃σ∈L t = first(σ)},
3. TO = {t ∈ T | ∃σ∈L t = last(σ)},
4. XL = {(A,B) | A ⊆ TL ∧ A 
= ∅ ∧ B ⊆ TL ∧ B 
= ∅ ∧ ∀a∈A∀b∈B a→L

b ∧ ∀a1,a2∈A a1#La2 ∧ ∀b1,b2∈B b1#Lb2},
5. YL = {(A,B) ∈ XL | ∀(A′,B′)∈XL

A ⊆ A′ ∧B ⊆ B′ =⇒ (A,B) = (A′, B′)},

b

c

p({a,b},{c}) oL

a

iL e

d

p({c},{d,e})

Fig. 8. WF-net N3 derived from L3 = [〈a, c, d〉45, 〈b, c, d〉42, 〈a, c, e〉38, 〈b, c, e〉22]
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6. PL = {p(A,B) | (A,B) ∈ YL} ∪ {iL, oL},
7. FL = {(a, p(A,B)) | (A,B) ∈ YL ∧ a ∈ A} ∪ {(p(A,B), b) | (A,B) ∈ YL ∧ b ∈

B} ∪ {(iL, t) | t ∈ TI} ∪ {(t, oL) | t ∈ TO}, and
8. α(L) = (PL, TL, FL).

L is an event log over some set T of activities. In Step 1 it is checked which
activities do appear in the log (TL). These will correspond to the transitions of
the generated WF-net. TI is the set of start activities, i.e., all activities that
appear first in some trace (Step 2). TO is the set of end activities, i.e., all activ-
ities that appear last in some trace (Step 3). Steps 4 and 5 form the core of the
α-algorithm. The challenge is to find the places of the WF-net and their connec-
tions. We aim at constructing places named p(A,B) such that A is the set of input
transitions (•p(A,B) = A) and B is the set of output transitions (p(A,B)

• = B).
The basic idea for finding p(A,B) is shown in Figure 9. All elements of A should

have causal dependencies with all elements of B, i.e., for any (a, b) ∈ A × B:
a →L b. Moreover, the elements of A should never follow any of the other
elements, i.e., for any a1, a2 ∈ A: a1#La2. A similar requirement holds for B.

Let us consider L1 = [〈a, b, c, d〉5, 〈a, c, b, d〉8, 〈a, e, d〉9]. Clearly A = {a} and
B = {b, e} meet the requirements stated in Step 4. Also note that A′ = {a} and
B′ = {b} meet the same requirements. XL is the set of all such pairs that meet
the requirements just mentioned. In this case, XL1 = {({a}, {b}), ({a}, {c}),
({a}, {e}), ({a}, {b, e}), ({a}, {c, e}), ({b}, {d}), ({c}, {d}), ({e}, {d}),
({b, e}, {d}), ({c, e}, {d})}. If one would insert a place for any element in XL1

there would be too many places. Therefore, only the “maximal pairs” (A,B)
should be included. Note that for any pair (A,B) ∈ XL, non-empty set A′ ⊆ A,
and non-empty set B′ ⊆ B, it is implied that (A′, B′) ∈ XL. In Step 5 all non-
maximal pairs are removed. So YL1 = {({a}, {b, e}), ({a}, {c, e}), ({b, e}, {d}),
({c, e}, {d})}.

a1

...

a2

am

b1

b2

bn

p(A,B) ...

A={a1,a2, … am} B={b1,b2, … bn}

Fig. 9. Place p(A,B) connects the transitions in set A to the transitions in set B
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b

p({a},{e})

oL

a

iL c

e

f

d

p({e},{f})

p({b},{c,f})p({a,d},{b})

p({c},{d})

Fig. 10. WF-net N4 derived from L4 = [〈a, b, e, f〉2, 〈a, b, e, c, d, b, f〉3,
〈a, b, c, e, d, b, f〉2, 〈a, b, c, d, e, b, f〉4, 〈a, e, b, c, d, b, f〉3]

Every element of (A,B) ∈ YL corresponds to a place p(A,B) connecting tran-
sitions A to transitions B. In addition PL also contains a unique source place iL
and a unique sink place oL (cf. Step 6).

In Step 7 the arcs are generated. All start transitions in TI have iL as an
input place and all end transitions TO have oL as output place. All places p(A,B)

have A as input nodes and B as output nodes. The result is a Petri net α(L) =
(PL, TL, FL) that describes the behavior seen in event log L.

Thus far we presented three logs and three WF-nets. Clearly α(L2) = N2,
and α(L3) = N3. In figures 7 and 8 the places are named based on the sets YL2

and YL3 . Moreover, α(L1) = N1 modulo renaming of places (because different
place names are used in Figure 5). These examples show that the α-algorithm
is indeed able to discover WF-nets based event logs.

Figure 10 shows another example. WF-net N4 can be derived from L4 =
[〈a, b, e, f〉2, 〈a, b, e, c, d, b, f〉3, 〈a, b, c, e, d, b, f〉2, 〈a, b, c, d, e, b, f〉4, 〈a, e, b, c, d,
b, f〉3], i.e., α(L4) = N4.

The WF-net in Figure 1 is discovered when applying the α-algorithm to the
event log in the same figure.

4.3 Limitations

In [9] it was shown that the α-algorithm is able to discover a large class of
WF-nets if one assumes that the log is complete with respect to the log-based
ordering relation >L. This assumption implies that, for any event log L, a >L b
if a can be directly followed by b. We revisit the notion of completeness later in
this article.

Even if we assume that the log is complete, the α-algorithm has some
problems. There are many different WF-nets that have the same possible be-
havior, i.e., two models can be structurally different but trace equivalent. Con-
sider for example L5 = [〈a, c, e, g〉2, 〈a, e, c, g〉3, 〈b, d, f, g〉2, 〈b, f, d, g〉4]. α(L5) is
shown in Figure 11. Although the model is able to generate the observed be-
havior, the resulting WF-net is needlessly complex. Two of the input places
of g are redundant, i.e., they can be removed without changing the behavior.
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g

a

c

d

e

f
c

p1

p2

Fig. 11. WF-net N5 derived from L5 = [〈a, c, e, g〉2, 〈a, e, c, g〉3, 〈b, d, f, g〉2, 〈b, f, d, g〉4]

The places denoted as p1 and p2 are so-called implicit places and can be re-
moved without allowing for more traces. In fact, Figure 11 shows only one of
many possible trace equivalent WF-nets.

The original α-algorithm has problems dealing with short loops, i.e., loops of
length 1 or 2. This is illustrated by WF-net N6 in Figure 12 which shows the
result of applying the basic algorithm to L6 = [〈a, c〉2, 〈a, b, c〉3, 〈a, b, b, c〉2]. It is
easy to see that the model does not allow for 〈a, c〉 and 〈a, b, b, c〉. In fact, in N6,
transition b needs to be executed precisely once and there is an implicit place
connecting a and c. This problem can be addressed easily as shown in [46]. Using
an improved version of the α-algorithm one can discover the WF-net shown in
Figure 13.

A more difficult problem is the discovery of so-called non-local dependen-
cies resulting from non-free choice process constructs. An example is shown in
Figure 14. This net would be a good candidate after observing for example

a c

b

Fig. 12. Incorrect WF-net N6 derived from L6 = [〈a, c〉2, 〈a, b, c〉3, 〈a, b, b, c〉2]

a c

b

Fig. 13. WF-net N7 having a so-called “short-loop”
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b

c

a

e

dp1

p2

Fig. 14. WF-net N8 having a non-local dependency

L8 = [〈a, c, d〉45, 〈b, c, e〉42]. However, the α-algorithm will derive the WF-net
without the place labeled p1 and p2. Hence, α(L8) = N3 shown in Figure 8 al-
though the traces 〈a, c, e〉 and 〈b, c, d〉 do not appear in L8. Such problems can
be (partially) resolved using refined versions of the α-algorithm such as the one
presented in [59].

The above examples show that the α-algorithm is able to discover a large class
of models. The basic 8-line algorithm has some limitations when it comes to
particular process patterns (e.g., short-loops and non-local dependencies). Some
of these problems can be solved using various refinements. However, several more
fundamental problems remain as shown next.

5 Challenges

The α-algorithm was one of the first process discovery algorithms to adequately
capture concurrency. Today there are much better algorithms that overcome
the weaknesses of the α-algorithm. These are either variants of the α-algorithm
or algorithms that use a completely different approach, e.g., genetic mining or
synthesis based on regions [34]. Later we will describe some of these approaches.
However, first we discuss the main requirements for a good process discovery
algorithm.

To discover a suitable process model it is assumed that the event log contains
a representative sample of behavior. There are two related phenomena that may
make an event log less representative for the process being studied:

– Noise: the event log contains rare and infrequent behavior not representative
for the typical behavior of the process.

– Incompleteness: the event log contains too few events to be able to discover
some of the underlying control-flow structures.

Often we would like to abstract from noise when discovering a process. This
does not mean that noise is not relevant. In fact, the goal of conformance check-
ing is to identify exceptions and deviations. However, for process discovery it
makes no sense to include noisy behavior in the model as this will clutter the
diagram and has little predictive value. Whereas noise refers to the problem of
having “too much data” (describing rare behavior), completeness refers to the
problem of having “too little data”. To illustrate the relevance of completeness,
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consider a process consisting of 10 activities that can be executed in parallel
and a corresponding log that contains information about 10,000 cases. The total
number of possible interleavings in the model with 10 concurrent activities is
10! = 3,628,800. Hence, it is impossible that each interleaving is present in the
log as there are fewer cases (10,000) than potential traces (3,628,800). Even if
there are 3,628,800 cases in the log, it is extremely unlikely that all possible
variations are present. For the process in which 10 activities can be executed in
parallel, a local notion of completeness can reduce the required number of obser-
vations dramatically. For example, for the α-algorithm only 10× (10 − 1) = 90
rather than 3,628,800 different observations are needed to construct the model.

Completeness and noise refer to qualities of the event log and do not say much
about the quality of the discovered model. Determining the quality of a process
mining result is difficult and is characterized by many dimensions. As shown in
Figure 15, we identify four main quality dimensions: fitness, simplicity, precision,
and generalization [2, 4, 51].

A model with good fitness allows for the behavior seen in the event log. A
model has a perfect fitness if all traces in the log can be replayed by the model
from beginning to end. There are various ways of defining fitness. It can be
defined at the case level, e.g., the fraction of traces in the log that can be fully
replayed. It can also be defined at the event level, e.g., the fraction of events
in the log that are indeed possible according to the model [2, 4, 51]. Note that
we defined an event log to be a multi-set of traces rather than an ordinary set:
the frequencies of traces are important for determining fitness. If a trace cannot
be replayed by the model, then the significance of this problem depends on the
relative frequency.

The simplicity dimension in Figure 15 refers to Occam’s Razor, the principle
that states that “one should not increase, beyond what is necessary, the number
of entities required to explain anything”. Following this principle, we look for
the “simplest process model” that can explain what is observed in the event

process 
discovery

fitness

precisiongeneralization

simplicity

“able to replay event log” “Occam’s razor”

“not overfitting the log” “not underfitting the log”

Fig. 15. Balancing the four quality dimensions: fitness, simplicity, precision, and
generalization [2]
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log. The complexity of the model could be defined by the number of nodes and
arcs in the underlying graph. Also more sophisticated metrics can be used, e.g.,
metrics that take the “structuredness” or “entropy” of the model into account.

Fitness and simplicity are obvious criteria. However, this is not sufficient as
will be illustrated using Figure 16. Assume that the four models that are shown
are discovered based on the event log also depicted in the figure. (Note that
this event log was already shown in Section 1.) There are 1391 cases. Of these
1391 cases, 455 followed the trace 〈a, c, d, e, h〉. The second most frequent trace
is 〈a, b, d, e, g〉 which was followed by 191 cases.

If we apply the α-algorithm to this event log, we obtain model N1 shown in
Figure 16. A comparison of the WF-net N1 and the log shows that this model is
quite good; it is simple and has a good fitness. WF-net N2 models only the most
frequent trace, i.e., it only allows for the sequence 〈a, c, d, e, h〉. Hence, none of
the other 1391−455 = 936 cases fits. WF-net N2 is simple but has a poor fitness.

Let us now consider WF-net N3, this is a variant of the so-called “flower
model” [2, 51], i.e., a model that allows for all known activities at any point in
time. Note that a Petri net without any places can replay any log and has a be-
havior similar to the “flower model” (but is not a WF-net). Figure 16 does not
show a pure “flower model”, but still allows for a diversity of behaviors. N3 cap-
tures the start and end activities well. However, the model does not put any con-
straints on the other activities. For example trace 〈a, b, b, b, b, b, b, f, f, f, f, f, g〉
is possible, whereas it seems unlikely that this trace is possible when looking
at the event log, i.e., the behavior is very different from any of the traces in
the log.

Extreme models such as the “flower model” (anything is possible) show the
need for an additional dimension: precision. A model is precise if it does not
allow for “too much” behavior. Clearly, the “flower model” lacks precision. A
model that is not precise is “underfitting”. Underfitting is the problem that the
model over-generalizes the example behavior in the log, i.e., the model allows
for behaviors very different from what was seen in the log.

WF-net N4 in Figure 16 reveals another potential problem. This model simply
enumerates the 21 different traces seen in the event log. Note that N4 is a so-
called labeled Petri net, i.e., multiple transitions can have the same label (there
are 21 transition with label a). The WF-net in Figure 16 is precise and has a
good fitness. However,N4 is also overly complex and is “overfitting”. WF-net N4

illustrates the need to generalize; one should not restrict behavior to the traces
seen in the log as these are just examples. Overfitting is the problem that a very
specific model is generated whereas it is obvious that the log only holds example
behavior, i.e., the model explains the particular sample log, but a next sample
log of the same process may produce a completely different process model. Recall
that logs are typically far from complete. Moreover, generalization can be used
to simplify models. WF-net N1 shown in Figure 16 allows for behavior not seen
in the log, e.g., 〈a, d, c, e, f, d, b, e, f, c, d, e, h〉. Any WF-net that restricts the
behavior to only seen cases will be much more complex and exclude behavior
which seems likely based on similar traces in the event log.
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Fig. 16. Different Petri nets discovered for an event log containing 1391 cases
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For real-life event logs it is challenging to balance the four quality dimensions
shown in Figure 15. For instance, an oversimplified model is likely to have a
low fitness or lack of precision. Moreover, there is an obvious trade-off between
underfitting and overfitting [2, 4, 48, 51].

6 Process Discovery and the Theory of Regions

Problems similar to process discovery arise in other areas ranging from hardware
design and to controller synthesis of manufacturing systems. Often the so called
theory of regions is used to construct a Petri net from a behavioral specification
(e.g., a language or a state space), such that the behavior of this net corresponds
to the specified behavior (if such a net exists). The general question answered
by the theory of regions is: Given the specified behavior of a system, what is the
Petri net that represents this behavior?.

Two main types of region theory can be distinguished, namely state-based
region theory and language-based region theory. The state-based theory of regions
focusses on the synthesis of Petri nets from state-based models, where the state
space of the Petri net is bisimilar to the given state-based model. The language-
based region theory, considers a language over a finite alphabet as a behavioral
specification. Using the notion of regions, a Petri net is constructed, such that
all words in the language are firing sequences in that Petri net.

The aim of the theory of regions is to synthesize a precise model, with mini-
mal generalization, while keeping a maximal fitness. The classical approaches de-
scribed in this section (i.e., conventional state-based region theory and language
based region theory) do not put much emphasis on simplicity. Unlike algorithms
such as the heuristic miner [58], the genetic miner [47], and the fuzzy miner [39],
conventional region-based methods do not compromise on precision in favor of
simplicity or generalization.

In the remainder of this section, we introduce the main region theory concepts
and discuss the differences between synthesis and process discovery. In Section 7
and Section 8 we show how region theory can be used in the context of process
discovery.

6.1 State Based Region Theory

The state-based region theory [13, 15, 23, 24, 26, 27, 35] uses a transition system
as input, i.e., it attempts to construct a Petri net that is bisimilar to the transi-
tion system. Hence both are behaviorally equivalent and if the system exhibits
concurrency, the Petri net may be much smaller than the transition system.

Definition 9 (Transition system). TS = (S,E, T ) defines a labeled tran-
sition system where S is the set of states, A is the set of visible activities
(i.e., activities recorded in event log), τ 
∈ A is used to represent silent steps
(i.e., actions not recorded in event log), E = A ∪ {τ} is the set of transi-

tion labels, and T ⊆ S × E × S is the transition relation. We use s1
e→ s2



Discovering Petri Nets from Event Logs 395

s1 a s2 s3c

s5

b

s6c s7d

s4 s8d

e

b

Fig. 17. A transition system with 8 states, 5 labels, 1 initial state and 2 final states

to denote a transition from state s1 to s2 labeled with e. Furthermore, we say
that Ss = {s ∈ S | 
 ∃s′∈S,e∈E s′ e→ s} ⊆ S is the set of initial states, and

Se = {s ∈ S | 
 ∃s′∈S,e∈E s
e→ s′} ⊆ S is the set of final states.

In the transition system, a region corresponds to a set of states such that all
states have similarly labeled input and output edges. Figure 17 shows an example
of a transition system. In fact, this figure depicts the reachability graph of the
Petri net in Figure 5, where the states are anonymous, i.e., they do not contain
information about how many tokens are in a place.

Definition 10 (State region). Let TS = (S,E, T ) be a transition system and
S′ ⊆ S a set of states. We say S′ is a region, if and only if for all e ∈ E one of
the following conditions holds:

1. all the transitions s1
e→ s2 enter S′, i.e., s1 /∈ S′ and s2 ∈ S′,

2. all the transitions s1
e→ s2 exit S′, i.e., s1 ∈ S′ and s2 /∈ S′,

3. all the transitions s1
e→ s2 do not cross S′, i.e., s1, s2 ∈ S′ or s1, s2 /∈ S′

Any transition system TS = (S,E, T ) has two trivial regions: ∅ (the empty
region) and S (the region consisting of all states). Typically, only non-trivial
regions are considered. A region r′ is said to be a subregion of another region r
if r′ ⊂ r. A region r is minimal if there is no other region r′ which is a subregion
of r. Region r is a preregion of e if there is a transition labeled with e which
exits r. Region r is a postregion of e if there is a transition labeled with e which
enters r.

For Petri net synthesis, a region corresponds to a Petri net place and an event
corresponds to a Petri net transition. Thus, the main idea of the synthesis algo-
rithm is the following: for each event e in the transition system, a transition labeled
with e is generated in the Petri net. For each minimal region ri a place pi is gen-
erated. The flow relation of the Petri net is built the following way: e ∈ pi

• if ri is
a preregion of e and e ∈ •pi if ri is a postregion of e. Figure 18 shows the minimal
regions of the transition system of Figure 17 and the corresponding Petri net.

The first publications on the theory of regions only dealt with a special class
of transition systems called elementary transition systems. See [13, 15, 30] for
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Fig. 18. The transition system of Figure 17 is converted into a Petri net using the
“state regions”. The six regions correspond to places in the Petri net.

(classical
region
theory)

s1
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s2 s4
d

s3

e
d

a d

e

p1 p2 p3

a d1

e

p1 p2 p4

d2

p3

(using
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splitting)

Fig. 19. The transition system is not elementary. Therefore, the generated Petri net
using classical region theory is not equivalent (modulo bisimilarity). However, using
“label-splitting” an equivalent Petri net can be obtained.
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details. The class of elementary transition systems is very restricted. In practice,
most of the time, people need to deal with arbitrary transition systems that only
by coincidence fall into the class of elementary transition systems. In the papers
of Cortadella et al. [26, 27], a method for handling arbitrary transition systems
was presented. This approach uses labeled Petri nets, i.e., different transitions can
refer to the same event. (WF-net N4 in Figure 16 is an example of a labeled Petri
net, e.g., there are 21 transitions labeled a.) For this approach it has been shown
that the behavior (cf. reachability graph) of the synthesized Petri net is bisimilar
to the initial transition system even if the transition system is non-elementary.
More recently, in [23,24], an approach was presented where the constructed Petri
net is not necessarily safe, but bounded1. Again, the reachability graph of the
synthesized Petri net is bisimilar to the given transition system.

To illustrate the problem of non-elementary transition systems, consider
Figure 19. This transition system is not elementary. The problem is that there
are two states s2 and s3 that are identical in terms of regions, i.e., there is no
region such that one is part of it and the other is not. As a result, the constructed
Petri net on the left hand side of Figure 19 fails to construct a bisimilar Petri net.
However, using label-splitting as presented in [26,27], the Petri net on the right
hand side can be obtained. This Petri net has two transitions d1 and d2 corre-
sponding to activity d in the log. The splitting is based on the so-called notions
of excitation and generalized excitation region, see [26]. As shown in [26, 27] it
is always possible to construct an equivalent Petri net. However, label-splitting
may lead to larger Petri nets. In [21] the authors show how to obtain the most
precise model when label splitting is not allowed.

In state-based region theory, the aim is to construct a Petri net, such that
its behavior is bisimilar to the given transition system. In process discovery
however, we have a log as input, i.e., we have information about sequences of
transitions, but not about states. In Section 7, we show how we can identify state
information from event logs and then use state-based region theory for process
discovery. However, we first introduce language-based region theory.

6.2 Language Based Region Theory

In addition to state-based region theory, we also consider language-based region
theory [14,17,19,28,42,43]. In their survey paper [45], Mauser and Lorenz show
how for different classes of languages (step languages, regular languages and
(infinite) partial languages) a Petri net can be derived such that the resulting
net is the Petri net with the smallest behavior in which the words in the language
are possible firing sequences.

Given a prefix-closed language A over some non-empty, finite set of activities
A, the language-based theory of regions tries to find a finite Petri net N(A) in
which the transitions correspond to the elements in the set A and of which all
sequences in the language are firing sequences (fitness criterion). Furthermore,

1 A Petri net is safe if there can never be more than 1 token in any place. Boundedness
implies that there exists an upper bound for the number of tokens in any place.
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the Petri net should minimize the number of firing sequences not in the language
(precision criterion).

The Petri net N(A) = (∅, A, ∅) is a finite Petri net with infinitely many
firing sequences allowing for any sequence involving activities A. Such a model
is typically underfitting, i.e., allowing for more behavior than suggested by the
event log. Therefore, the behavior of this Petri net needs to be reduced so that
the Petri net still allows to reproduce all sequences in the language, but does
not allow for behavior unrelated to the examples seen in the event log. This is
achieved by adding places to the Petri net. The theory of regions provides a
method to identify these places, using language regions.

Definition 11 (Language Region). Let A be a set of activities. A region
of a prefix-closed language L over A is a triple (�x, �y, c) with �x, �y ∈ {0, 1}A and
c ∈ {0, 1}, such that for each non-empty sequence w = w′ ◦a ∈ L, w′ ∈ L, a ∈ A:

c+
∑
t∈A

(
�w′(t) · �x(t)− �w(t) · �y(t)

)
≥ 0

This can be rewritten into the inequation system:

c ·�1 +M ′ · �x−M · �y ≥ �0

where M and M ′ are two |L|×|A| matrices with M(w, t) = �w(t), and M ′(w, t) =
�w′(t), with w = w′ ◦ a. The set of all regions of a language is denoted by '(L)
and the region (�0,�0, 0) is called the trivial region.2

Consider a region r = (�x, �y, c) corresponding to some place pr. For any prefix

w = w′ ◦ a in L, region r satisfies c+
∑

t∈A

(
�w′(t) · �x(t)− �w(t) · �y(t)

)
≥ 0 where

c is the initial number of tokens in place pr,
∑

t∈A
�w′(t) · �x(t) is the number

of tokens produced for place pr just before firing a (note that w′ is the prefix
without including the last a), and

∑
t∈A �w(t) · �y(t) is the number of tokens

consumed from place pr after firing a (w is the concatenation of w′ and a). �w is
the Parikh vector of w, i.e., �w(t) is the number of times t appears in sequence
w. �x(t) is the number of tokens t produces for place pr. Transition t consumes
�y(t) tokens from place pr per firing. So, �w(t) · �y(t) is the total number of tokens
t consumes from place pr when executing w.

Figure 20 illustrates the language-based region concept using for a language
over four activities (|A| =4), i.e., each solution (�x, �y, c) of the inequation system
can be regarded in the context of a Petri net, where the region corresponds to
a feasible place with preset {t | t ∈ T, �x(t) ≥ 1} and postset {t | t ∈ T, �y(t) ≥
1}, and initially marked with c tokens. In this paper, we assume arc-weights
to be 0 or 1 as we aim at understandable models (i.e., �x, �y ∈ {0, 1}A). As
shown in [14,16,28,43] it is possible to generalize the above notions to arbitrary
arc-weights.

2 To reduce calculation time, the inequation system can be rewritten to the form
[�1;M ′;−M ] · �r ≥ �0 which can be simplified by eliminating duplicate rows.
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Fig. 20. Region for a language with four letters: t1, t2, t3, and t4

A place represented by a region can be added to a Petri net, without limiting
its behavior with respect to traces seen in the event log. Therefore, we call such
a place feasible.

Definition 12 (Feasible place). Let L be a prefix-closed language over A and
let N = ((P, T, F ),M) be a marked Petri net with T = A and M ∈ IB(P ). A
place p ∈ P is called feasible if and only if there exists a corresponding region
(�x, �y, c) ∈ '(L) such that M(p) = c, and �x(t) = 1 if and only if t ∈ •p, and
�y(t) = 1 if and only if t ∈ p•.

In [16,43] it was shown that any solution of the inequation system of Definition 11
can be added to a Petri net without influencing the ability of that Petri net
to replay the log. However, since there are infinitely many solutions of that
inequation system (assuming arc weights), there are infinite many feasible places
and the authors of [16,43] present two ways of finitely representing these places,
namely a basis representation [43] and a separating representation [16, 43].

6.3 Process Discovery vs. Region Theory

When comparing region theory—state-based or language based—with process
discovery, some important differences should be noted. First of all, in region
theory, the starting point is a full behavioral specification, either in the form of a
(possibly infinite) transition system, or a (possibly infinite) language. Hence, the
underlying assumption is that the input is complete and noise free and therefore
maximal fitness is assured.

Second, the aim of region theory is to provide a compact, exact representation
of that behavior in the form of a Petri net. If the net allows for more behavior
than specified, then this additional behavior can be proven to be minimal, hence
region theory provides precise results.

Finally, when region theory is directly applied in the context of process dis-
covery [16,21,53], the resulting Petri nets typically perform poorly with respect
to two of the four dimensions shown in Figure 15. The resulting models are
typically overfitting (lack of generalization) and are too difficult to comprehend
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(simplicity criterion). Therefore, in sections 7 and 8, we show how region the-
ory can be modified for process discovery. The key idea is to allow the algo-
rithms to generalize and relax on preciseness, with the aim of obtaining simpler
models.

7 Process Discovery Using State-Based Region Theory

In Section 2 we introduced the concept of control-flow discovery and discussed
the problems of existing approaches. In Section 6, we introduced region theory
and showed the main differences with control flow discovery. In this section, we
introduce a two-step approach to combine process discovery with state-based
region theory [8]. In the remainder, we elaborate on these two steps and discuss
challenges.

7.1 From Event Logs to Transition Systems

In the first step, we construct a transition system from the log, where we gener-
alize from the observed behavior. Furthermore, we “massage” the output, such
that the region theory used in the second step is more likely to produce a simple
model. In the second step, we use classical state-based region theory to obtain a
Petri net. This section describes the first and most important step. Depending
on the desired properties of the model and the characteristics of the log, the
algorithm can be tuned to provide a more simple and/or generic model.

The most important aspect of process discovery is deducing the states of the
operational process in the log. Most mining algorithms have an implicit notion of
state, i.e., activities are glued together in some process modeling language based
on an analysis of the log and the resulting model has a behavior that can be
represented as a transition system. In this section, we propose to define states
explicitly and start with the definition of a transition system.

In some cases, the state can be derived directly, e.g., each event encodes the
complete state by providing values for all relevant data attributes. However, in

trace: a b c d c d c d e f a g h h h i

past future

current state

past and future

Fig. 21. Three basic “ingredients” can be considered as a basis for calculating the
“process state”: (1) past, (2) future, and (3) past and future
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the event log we typically only see activities and not states. Hence, we need
to deduce the state information from the activities executed before and after a
given state. Based on this, there are basically three approaches to defining the
state of a partially executed case in a log:

– past, i.e., the state is constructed based on the history of a case,

– future, i.e., the state of a case is based on its future, or

– past and future, i.e., a combination of the previous two.

Figure 21 shows an example of a trace and the three different “ingredients”
that can be used to calculate state information. Given a concrete trace, i.e.,
the execution of a case from beginning to end, we can look at the state after
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Fig. 22. Three transition systems derived from the log L1 = [〈a, b, c, d〉5, 〈a, c, b, d〉8,
〈a, e, d〉9]
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executing the first nine activities. This state can be represented by the prefix,
the postfix, or both.

To explain the basic idea of constructing a transition system from an event
log, consider Figure 22. If we just consider the prefix (i.e., the past), we get the
transition system shown in Figure 22(a). Note that the initial state is denoted
〈〉, i.e., the empty sequence. Starting from this initial state the first activity is
always a in each of the traces. Hence, there is one outgoing arc labeled a, and
the subsequent state is labeled 〈a〉. From this state, three transitions are possible
all resulting in different states, e.g., executing activity b results in state 〈a, b〉,
etc. Note that in Figure 22(a) there is one initial state and three final states.
Figure 22(b) shows the transition system based on postfixes. Here the state of
a case is determined by its future. This future is known because process mining
looks at the event log containing completed cases. Now there are three initial
states and one final state. Initial state 〈a, e, d〉 indicates that the next activity
will be a, followed by e and d. Note that the final state has label 〈〉 indicating
that no activities need to be executed. Figure 22(c) shows a transition system
based on both past and future. The node with label “〈a, b〉,〈c, d〉” denotes the
state where a and b have happened and c and d still need to occur. Note that
now there are three initial states and three final states.

The past of a case is a prefix of the complete trace. Similarly, the future of a
case is a postfix of the complete trace. This may be taken into account completely,
which leads to many different states and process models that may be too specific
(i.e., “overfitting” models). It is also possible to take less information into account
(e.g., just the last step in the process). This may result in “underfitting” models.
The challenge is to select an abstraction that balances between “overfitting” and
“underfitting”. Many abstractions are possible; see for example the systematic
treatment of abstractions in [8]. Here, we only highlight some of them.

Maximal horizon (h). The basis of the state calculation can be the complete
prefix (postfix) or a partial prefix (postfix).

Filter (F ). The second abstraction is to filter the (partial) prefix and/or
postfix, i.e., activities in F ⊆ A are kept while activities A \ F are removed.

Maximum number of filtered events (m). The sequence resulting after fil-
tering may contain a variable number of elements. Again one can determine
a kind of horizon for this filtered sequence.

Sequence, bag, or set (q). The first three abstractions yield a sequence. The
fourth abstraction mechanism optionally removes the order or frequency
from the resulting trace.

Visible activities (V ). The fifth abstraction is concerned with the transition
labels. Activities in V ⊆ A are shown explicitly on the arcs while the activ-
ities in A \ V are not shown.
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(a) transition system based on sets
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(b) transition system abstracting from b and c

d

Fig. 23. Two transition systems built on L1 using the following prefix abstractions:
(a) h = ∞, F = A (i.e., all activities), m = ∞, q = set , and V = A, and (b) h = ∞,
F = {a, d, e}, m = 1, q = seq , and V = {a, d, e}

Figure 23 illustrates the abstractions. In Figure 23(a) only the set abstraction
is used q = set . The result is that several states are merged (compare with
Figure 22(a)). In Figure 23(b) activities b and c are filtered out (i.e., F = {a, d, e}
and V = {a, d, e}). Moreover, only the last non-filtered event is considered for
constructing the state (i.e., m = 1). Note that the states in Figure 23(b) refer to
the last event in {a, d, e}. Therefore, there are four states: 〈a〉, 〈d〉, 〈e〉, and 〈〉.
It is interesting to consider the role of b and c. First of all, they are not consid-
ered for building the state (F = {a, d, e}). Second, they are also not visualized
(V = {a, d, e}), i.e., the labels are suppressed. The corresponding transitions are
collapsed into the unlabeled arc from 〈a〉 to 〈a〉. If V would have included b and
c, there would have been two such arcs labeled b respectively c.

The first four abstractions can be applied to the prefix, the postfix, or both.
In fact, different abstractions can be applied to the prefix and postfix. As a
result of these choices many different transitions systems can be generated. If
more rigorous abstractions are used, the number of states will be smaller and
the danger of “underfitting” is present. If, on the other hand, fewer abstractions
are used, the number of states may be larger resulting in an “overfitting” model.
An extreme case of overfitting was shown in Figure 22(c). At first this may seem
confusing; however, as indicated in the introduction it is important to provide a
repertoire of process discovery approaches. Depending on the desired degree of
generalization, suitable abstractions are selected and in this way the analyst can
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Fig. 24. Two examples of modifications of the transition system to aid the construction
of the process model

balance between overfitting and underfitting, i.e., between generalization and
precision in a controlled way.

Using classical region theory, we can transform the transition system into a
process model. However, while we can now balance precision and generalization,
we did not focus on simplicity yet. Therefore, we make use of the inner workings
of state-based region theory to “massage” the transition system. This is intended
to “pave the path” for region theory. For example, one may remove all “self-
loops”, i.e., transitions of the form s

a→ s (cf. Figure 24(a)). The reason may
be that one is not interested in events that do not change the state or that
the synthesis algorithm in the second step cannot handle this. Another example
would be to close all “diamonds” as shown in Figure 24(b). If s1

a1→ s2, s1
a2→ s3,

and s2
a2→ s4, then s3

a1→ s4 is added. The reason for doing so may be that because
(1) both a1 and a2 are enabled in s1 and (2) after doing a1, activity a2 is still
enabled, it is assumed that a1 and a2 can be executed in parallel. Although the
sequence 〈a2, a1〉 was not observed, it is assumed that this is possible and hence

the transition system is extended by adding s3
a1→ s4.

7.2 From Transition Systems to Petri Nets

In the second step, the transition system is transformed into a Petri net using
the techniques described in [13,15,23,24,26,27,35]. In Section 6.1, we introduced
the basic idea of state-based regions. Therefore, we do not elaborate on this here.
The important thing to note is that there is range of techniques to convert a
transition system into a Petri net. These techniques typically only address two
of the four quality dimensions mentioned in Figure 15: fitness and precision.
The other two dimensions—simplicity and generalization—need to be addressed
when constructing the transition system or by imposing additional constraints
on the Petri net.

The goal of process mining is to present a model that can be interpreted eas-
ily by process analysts and end-users. Therefore, complex patterns should be
avoided. Region-based approaches have a tendency to introduce “smart places”,
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i.e., places that compactly serve multiple purposes. Such places have many con-
nections and may have non-local effects (i.e., the same place is used for different
purposes in different phases of the process). Therefore, it may be useful to guide
the generation of places such that they are easier to understand. This is fairly
straightforward in both state-based region theory and language-based region
theory. In [26, 27] it is shown that additional requirements can be added with
respect to the properties of the resulting net. For example, the net can be forced
to be free-choice, pure, etc. See [8] for examples.

The approach was already illustrated using Figure 18. Figure 25 shows some
more examples based on the transition systems in figures 22 and 23. These mod-
els where computed using the classical synthesis approach presented in [26, 27].
This approach applies label-splitting if needed. Note that all transition systems
were derived from event log L1 = [〈a, b, c, d〉5, 〈a, c, b, d〉8, 〈a, e, d〉9]. The Petri net
in Figure 25(a) is obtained by applying state-based region theory to the transi-
tion system in Figure 22(a). The same model is obtained when computing the
regions for the transition system in Figure 23(a). The Petri net in Figure 25(b)
is obtained when applying state-based region theory to the transition system in
Figure 22(b). Two things can be noted: (1) the multiple initial states in Fig-
ure 22(b) result in many initial tokens and source places, and (2) label splitting
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Fig. 25. Various Petri nets derived for the transitions systems in figures 22 and 23 using
state-based regions. All models are based on event log L1 = [〈a, b, c, d〉5, 〈a, c, b, d〉8,
〈a, e, d〉9].
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is used (e.g., there are two a transitions) to allow for the multiple starting points.
The region-based approach synthesizes the model in Figure 25(c) for the tran-
sition system in Figure 22(c). Also this model suffers from the problem that
there are multiple initial states. In general, we suggest to avoid having multiple
initial states in the transition system to be synthesized. It is trivial to merge
the initial states or add a new artificial initial state before applying region-based
synthesis. Figure 25(d) was obtained from the transition system in Figure 23(b).
The Petri net shows that if we abstract from b and c, we obtain an unlabeled
transition indicating the state in which b and c would have occurred. This silent
transition is due to the self-loop in the transition system of Figure 23(b). Elim-
inating the self-loop using the strategy presented in Figure 24(a) would remove
the unlabeled transition in Figure 25(d).

7.3 Challenges

In this section, we have shown that by combining abstraction techniques and
region theory, a powerful process mining algorithm can be obtained. Through
several abstractions, we can obtain the desired level of precision and general-
ization, while by massaging the transition system, we can try to obtain simple
models. However, there are also some drawbacks of this approach.

It is far from trivial to select the “right” parameters for the abstractions.
Existing techniques and tools are sensitive to changes of parameter values, and
the result is often unpredictable. Hence, obtaining a suitable process model is a
matter of trial-and-error. Figure 26 shows, for example, the settings with which
we can obtain the desired model for log L6, i.e., the Petri net with a self-loop on
transition b. However, the model shown in Figure 27 illustrates that the wrong
settings may lead to an overfitting model.

Nonetheless, the state-based region approach is one of the few that can detect
long-term dependencies, as shown by Figure 28, which resulted from applying
the technique to log L8.

Furthermore, the major drawback of the approach outlined here is the com-
putational complexity. For larger logs, the resulting transition system may not
fit in main memory and second, the region theory used to obtain a Petri net has
a time complexity which is exponential in the size of the transition system.

a c

b

Fig. 26. Petri net obtained using region theory applied to log L6 = [〈a, c〉2, 〈a, b, c〉3,
〈a, b, b, c〉2] using the following settings: h = ∞, F = A (i.e., all activities), m = ∞,
q = set , and V = A and a post-processing step in which states with identical inflow or
outflow are merged
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8 Process Discovery Using Integer Linear Programming

In Section 7, we have presented a two-step approach to apply region theory in
the context of process mining. We focussed on obtaining a transition system
from an event log and used classical region theory to obtain a Petri net. In
this section, we do not consider the region theory as a black box, but instead,
we extend existing approaches to make them more applicable in the context of
process discovery, mainly by allowing the techniques to generalize from the log
and to produce simpler models.

Both a basis and the separating representations of regions presented in [16,43]
are based on the same principle, namely that a finite representation is provided
of the infinite set of places satisfying Definition 11. By doing so, the language-
based region theory ensures maximal preciseness and fitness, with little to no
generalization and no aim for simple models. Hence, only two of the four quality
dimensions of Figure 15 are considered.

For process discovery, we are aiming at simple, generalizing models. Hence,
we present an approach [60], where we only represent those places satisfying
Definition 11 that:

– each place expresses a causal dependency clearly visible in the log,

– no implicit places are included in the net, and

– places which are more expressive than others are favored, i.e., places with
minimal input transitions and maximal output transitions are favored.

In contrast to the state-based region approach, we do not try to influence gener-
alization and precision directly. Instead, we focus on model simplicity, by limiting
the number of places in the model (and allowing for varying this number). As
with the state-based approach, maximal fitness is guaranteed. In order to select
places satisfying Definition 11, we convert this equation into a Integer Linear
Programming (ILP) problem.

a

b

b

c

c

c

Fig. 27. Petri net obtained using region theory applied to log L6 using the following
parameters: h = ∞, F = A (i.e., all activities), m = ∞, q = multiset , and V = A
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b

c

a

e

d

Fig. 28. Petri net obtained using region theory applied to log L8 = [〈a, c, d〉45,
〈b, c, e〉42] using the following settings: h = ∞, F = A (i.e., all activities), m = ∞,
q = set , and V = A

8.1 Integer Linear Programming Representation

We quantify the expressiveness of places, in order to provide a target function,
necessary to translate the inequation system of Definition 11 into an Integer
Linear Programming (ILP) problem. In Section 8.2, we then use the result to
generate a Petri net in a step-by-step fashion. In Section 8.3, we provide insights
into the causal dependencies found in a log and how these can be used for finding
places.

To apply the language-based theory of regions in the field of process discovery,
we need to represent the event log as a prefix-closed language, i.e., by all the
traces present in the event log, and their prefixes. Recall from Definition 1 that
an event log is a finite bag of traces.

Definition 13 (Language of an event log). Let A be a set of activities.
Let L ∈ IB(A∗) be an event log over this set of activities. The language L that
represents this event log, uses alphabet A, and is defined by:

L = {σ ∈ A∗ | ∃σ′ ∈ L : σ ≤ σ′}

A trivial Petri net capable of reproducing a language is a net with only transi-
tions. This net is simple, can represent all traces, and hence has maximal fitness.
It also generalizes well, but the Petri net with only transitions is very imprecise
because anything is possible according to the model. To restrict the behavior
allowed by the Petri net, but not observed in the log, we start adding places
to that Petri net. As stated before, the places we add to the Petri net should
be as expressive as possible, which is the same as saying that such places have
a maximal postset and a minimal preset, i.e., it should not be possible to add
an output transition to or to remove an input transition from a place without
reducing the fitness of the resulting net.

Besides searching for regions that lead to places with maximum expressive-
ness, we also want to avoid adding implicit places to a model. Therefore, we will
search for “minimal regions” as introduced in [30]. Using the inequation system
of Definition 11 and the expressiveness of a place, we can define a target function
for our ILP problem to construct the places of a Petri net in a logical order [52].

The following target function is shown to be such that it favors minimal
regions which are maximally expressive [60]:
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Definition 14 (Target function). Let A be a set of activities. Let L ∈ IB(A∗)
be an event log and L the corresponding language. Furthermore, let M be the
matrix defined in Definition 11. We define the function τ : '(L)→ IN by

τ((�x, �y, c)) = c+ �1 T (�1 · c+M · (�x− �y))

Combining this target function with the inequation system of Definition 11 yields
the following ILP problem:

Definition 15 (ILP formulation). Let A be a set of activities, let L ∈ IB(A∗)
be an event log, and let M and M ′ be the matrices as defined in Definition 11.
We define the ILP ILPL for event log L as:

Min c+ �1 T (�1 · c+M · (�x − �y)) Definition 14

s.t. c ·�1 +M ′ · �x−M · �y ≥ �0 Definition 11
�1 T · �x+ �1 T · �y ≥ 1 There should be at least one edge

�0 ≤ �x ≤ �1 x ∈ {0, 1}|T |
�0 ≤ �y ≤ �1 y ∈ {0, 1}|T |

0 ≤ c ≤ 1 c ∈ {0, 1}

This ILP problem provides the basis for our process discovery problem. How-
ever, an optimal solution to this ILP only provides a single feasible place with
a minimal value for the target function. Therefore, in the next section, we
show how this ILP problem can be used as a basis for constructing a Petri net
from a log.

8.2 Constructing Petri Nets Using ILP

In the previous subsection, we provided the basis for adding places to a Petri
net based on knowledge extracted from a log. In fact, the target function of
Definition 14 provides a partial order on all elements of the set '(L), i.e., the set
of all regions of a language. In this subsection, we show how to generate the first
n places of a Petri net, that is (1) able to reproduce a log under consideration
and (2) of which the places are as expressive as possible.

A trivial approach would be to add each found solution as a negative example
to the ILP problem, i.e., explicitly forbidding this solution. However, it is clear
that once a region r has been found and the corresponding feasible place is
added to the Petri net, we are no longer interested in regions r′ for which the
corresponding feasible place has more tokens, less outgoing arcs or more incoming
arcs, i.e., we are only interested in independent regions.

Definition 16 (Refining the ILP after each solution). Let A be a set of
activities, let L ∈ IB(A∗) be an event log, let M and M ′ be the matrices as defined
in Definition 11 and let ILP0

L be the corresponding ILP. Furthermore, for i ≥ 0
let region ri = (�xi, �yi, ci) be a minimal solution of ILP i

L. We define the refined
ILP as ILP i

L, with the extra constraint specifying that:

−ci · c+ �y T · (�1− �yi)− �x T · �xi ≥ −ci + 1− �1 T · �xi
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Note that for any solution r = (�x, �y, c) of ILP i
L: c < ci or there is a t ∈ A

such that �x(t) < �xi(t) or �y(t) > �yi(t). If this is not the case (i.e., c ≥ ci and
�x(t) ≥ �xi(t) and �y(t) ≤ �yi(t) for any t), then −ci ·c = −ci, −�x(t) · �xi(t) = −xi(t),
and �y(t) · �yi(t) = 0 
≥ 1. Hence, we find a contradiction with respect to the
extra constraint. As a result the new region r is forced to be sufficiently different
from ri.

The refinement operator presented above, basically defines an algorithm for
constructing the places of a Petri net that is capable of reproducing a given log.
The places are generated in an order which ensures that the most expressive
places are found first and that only places are added that have less tokens, less
outgoing arcs, or more incoming arcs. Furthermore, each solution of a refined
ILP is also a solution of the original ILP, since the new solution satisfies all
constraints of the initial ILP formulation, and some extra constraints. Hence, all
places constructed using this procedure are feasible places.

This procedure, can be used to continue adding places, thus making the model
more precise, while compromising on model complexity as shown by Figure 29.
The Petri net in Figure 29 allows for more behavior than the log L1 contains,
so in theory more places could still be added. Nonetheless, any new place would
be such that it has fewer output arcs, or more input arcs than the ones included
in this model. In the worst case, the total number of places introduced is expo-
nential in the number of transitions. Since there is no way to provide insights
into an upperbound for the number of places to generate, we propose a more
suitable approach, not using the refinement step of Definition 16. Instead, we
propose to guide the search for solutions (i.e. for places) using concepts from the
α-algorithm [9].

8.3 Using Log-Based Properties

Recall from the beginning of this section, that we are specifically interested
in places expressing explicit causal dependencies between transitions. In this

a

b

c d

e

Fig. 29. Petri net obtained using language-based region theory naively applied
to log L1
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subsection, we use the causal relations →L defined earlier in Definition 7 in
combination with the ILP of Definition 15 to construct a Petri net.

Causal dependencies between transitions are used by many process discovery
algorithms [6,9,31,58] and generally provide a good indication as to which tran-
sitions should be connected through places. Furthermore, extensive techniques
are available to derive causal dependencies between transitions using heuristic
approaches [9, 31]. However, it is not known whether the log is complete and
whether we covered all causal dependencies. Therefore, we restrict ourselves to
search for a Petri net such that if a causal dependency is not in the log, it is also
not in the net. In order to find a place expressing a specific causal dependency,
we extend the ILP presented in Definition 15.

Definition 17 (ILP for causal dependency). Let A be a set of activities,
let L ∈ IB(A∗) be an event log, let M and M ′ be the matrices as defined in
Definition 11 and let ILPL be the corresponding ILP. Furthermore, let t1, t2 ∈ A
and assume t1 →L t2. We define the refined ILP, ILP t1→t2

L as ILPL, with two
extra bounds specifying that:

�x(t1) = �y(t2) = 1

A solution of the optimization problem expresses the causal dependency t1 →L

t2, and restricts the behavior as much as possible. However, such a solution does
not have to exist, i.e., the ILP might be infeasible, in which case no place is added
to the Petri net being constructed. Nonetheless, by considering a separate ILP
for each causal dependency in the log, a Petri net can be constructed, in which
each place is as expressive as possible and expresses at least one dependency
derived from the log. With this approach, at most one place is generated for
each dependency and thus the upper bound of places in N(L) is the number of
causal dependencies, which is worst-case quadratic in the number of transitions.

The result of applying this log-based technique to our log L1 is shown in
Figure 30. This model is very close to the desired model, except that it does
not contain a final place. This is a general drawback of language-based region
theory: the focus is on the ability to reproduce prefixes of log traces rather than
termination in a well-defined final state.

a

b

c

de

Fig. 30. Petri net obtained using language-based region theory using log-based proper-
ties applied to log L1. Note that compared to earlier solutions the sink place denoting
termination is missing.
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Up to now, we did not impose any restriction on the structure of the resulting
Petri net. By adding constraints, several Petri net properties can be expressed,
thus resulting in elementary nets, pure nets, (extended) free-choice nets, state
machines and marked graphs [60]. This allows us to further simplify the resulting
Petri net. Note that this is similar to the refinement described in Section 7.2 for
state-based regions.

8.4 Challenges

In sections 7 and 8 we presented several ways to use region theory in the context
of process discovery in order to alleviate some of the problems of the α-algorithm.
First, we have shown how to we can balance precision and generalization while
constructing a transition system from a log. Then, by massaging the transition
system, we can somewhat improve the simplicity of the resulting models. When
using language-based region theory, we have shown that we can focus on the sim-
plicity of the resulting model. By incrementally introducing places, we can make
the resulting model more precise in a step-by-step fashion. Figures 31 and 32
show that we can discover models for the logs L6 and L8, but the long-term de-
pendency in L8 is not identified, due to the reliance on the causal dependencies
used in the α-algorithm. Furthermore, as discussed before, language-based re-
gions have problems making the final state explicit (i.e., sink places are missing
in figures 31 and 32).

Unfortunately, all region-based approaches are computationally challenging.
In the case of the language-based regions, finding a solution for each incremen-
tal ILP problem is of worst-case exponential time complexity. Furthermore, the

a c

b

Fig. 31. Petri net discovered for event log L6. The model was obtained using language-
based region theory guided by log-based properties.

b

c

a

e

d

Fig. 32. Petri net obtained using language-based region theory guided by log-based
properties applied to log L8 = [〈a, c, d〉45, 〈b, c, e〉42]. No sink place is created and the
long-term dependencies are not discovered because only short-term dependencies are
used to guide the discovery of places.
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common property of all region-based techniques is that the fitness of the dis-
covered net is guaranteed to be 100%, regardless of the log. This makes these
approaches very robust, but also sensitive to noise.

Thus far we only used toy examples to illustrate the different concepts. All
functionality has been embedded in the process discovery framework ProM,
which is capable of constructing nets for logs with thousands of cases refer-
ring to dozens of transitions. The techniques have been tested on many real-life
and synthetic event logs. However, a discussion of these experimental results is
outside the scope of this article. For this we refer to [2, 7, 39, 47, 53].

9 Tool Support

Both for process mining and region theory, it is essential that algorithms can be
put to the test in real life environments. Therefore, almost all work presented in
this article is implemented in freely available tools. For example, classical state-
based region theory is implemented in Petrify and Genet [22], while Rbminer [54]
applies this in a process discovery context. Some of the language-based region
theory is implemented in VIPTool [18].

The process mining algorithms presented in sections 4, 7 and 8 have all been
implemented in the ProM framework [11,56,57]. All algorithms discussed in this
article can be found the most recent version of ProM (version 6.0 and later).
ProM is a generic open-source framework for implementing process mining al-
gorithms in a standard environment.

Figure 33 shows the startup screen of ProM. Here, a log was opened for
analysis which is shown in the workspace. When selecting the log and clicking on
the action button, the user is taken to the action browser, where in Figure 34, the
α-miner is selected. The α-miner is an implementation of the work in Section 4.

In earlier versions of ProM, the actual process mining algorithms implemented
by plug-ins assumed the presence of a GUI. Most algorithms require parameters,

Fig. 33. ProM 6 Workspace; opening screen after loading a file
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Fig. 34. ProM 6 Action Browser; selecting the alpha-miner to discover a process model
from the loaded event log

and the plug-in would ask the user for these parameters using some GUI-based
dialog. Furthermore, some plug-ins displayed status information using progress
bars and such. Thus, the actual process mining algorithm and the use of the GUI
were intertwined. As a result, the algorithm could only be run in a GUI-aware
context, say on a local workstation. This way, it was impossible to effectively run
process mining experiments using a distributed infrastructure and/or in batch.

In ProM 6, the process mining algorithm and the GUI have been carefully
separated, and the concepts of contexts has been introduced. For a plug-in, the
context is the proxy for its environment, and the context determines what the
plug-in can do in its environment. A plug-in can only display a dialog or a
progress bar on the display if the context is GUI-aware. Typically, in ProM 6,
the implementation of an algorithm is split into a number of plug-ins: A plug-in
for every context. The actual process mining algorithm will be implemented in a
generic way, such that it can run in a general (GUI-unaware) context. This allows
the algorithm to be run in any context, even in a distributed context [20]. The
dialog for setting the required parameters is typically implemented in a GUI-
aware variant of the plug-in. Typically, this GUI-aware plug-in first displays the
parameter dialog, and when the user has provided the parameters and has closed
the dialog, it will simply run the generic plug-in using the provided parameters.

The major advantage of this is that the ProM framework may decide to have
the generic plug-in run on a different computer than the local workstation. Some
plug-ins may require lots of system resources (e.g., computing power, memory,
and disk space), like for example the genetic miner. Basically, the genetic miner
takes a model and a log, and then generates a number of alternative models
for the given log. The best of these alternative models are then taken as new
starting points for the genetic miner. The genetic miner repeats this until some
stop criterion has been reached, after which it returns the best model found so
far. Clearly, this miner might take considerable time (it may take hundreds of
iterations before it stops and the fitness calculation is very time-consuming for
large logs), and it may take considerable memory (the number of alternative
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Fig. 35. ProM 6 Package manager showing the packages relevant for the techniques
presented in this article

models may grow rapidly). For such an algorithm, it might be preferable to have
it run on a server which is more powerful than the local workstation. More-
over, genetic mining can be distributed in several ways [20]. For example, the
population can be partitioned over various nodes. Each subpopulation on a node
evolves independently for some time after which the nodes exchange individu-
als. Similarly, the event logs may be portioned over nodes thus speeding up the
fitness calculations.

Besides separating the functionality from the user interface, ProM 6 requires
functionality to be provided in packages. These packages each contain a collec-
tion of related algorithms, typically implemented by one research group. When
ProM is started for the first time, the package manager is opened as shown
in Figure 35. Here, for each known package, ProM shows who the author is,
what the current version is and whether or not this version is installed. The
work presented in this article, requires the following packages to be installed:
AlphaMiner, TransitionSystems and ILPMiner. The other packages shown are
automatically installed due to dependencies. Furthermore, the package Petrify
provides import and export functionality to and from the state-based region tool
Petrify.

The event log opened in Figure 33 is a log consisting of 1000 cases of a travel
agency. A customer registers, then purchases a bus ticket or a plane ticket while
at the same time he books one or more hotels. After the booking phase, the
trip costs are computed and the customer has to choose between two types of
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Fig. 36. Result of α-miner: the α-algorithm has problems dealing with the multiple
hotel bookings interleaved with other booking activities

insurance. After that, the total costs are calculated and the payment is com-
pleted. This is a rather simple example used to show the results of the three
algorithms.

The resulting Petri net after applying the α-algorithm to this log is shown in
Figure 36. The result after executing the transition system miner is shown in
Figure 37 and the result of the ILP miner is shown in 38. All three algorithms
provide a model that indeed models the given situation. The difficulty here is the
fact that the hotel booking is executed one or more times. The α-algorithm does
not connect this transition (thus enabling it continuously and destroying the
WF-net structure), while the transition system miner introduces two transitions
for this step, but it enforces that the second hotel can only be booked after the

Fig. 37. Result of TS Miner. Note that there are now two transitions referring to hotel
bookings (label splitting).
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Fig. 38. Result of ILP Miner. The model is able to replay the event log. However,
tokens may remain in the place following the hotel booking and bookings can take
place before the registration step.

bus or plane ticket is booked. The ILP miner allows for the hotel booking to
occur arbitrarily often, but at least once before the trip costs are calculated.

10 Conclusion

Process mining can be seen as the “missing link” between data mining and tradi-
tional model-driven BPM. The spectacular growth of event data is an important
enabler for process analysis based on real observations rather than hand-made
models only. We have applied ProM in over 100 organizations ranging from
municipalities and hospitals to financial institutions and manufacturers of high-
tech systems. This illustrates the applicability of the techniques described in this
article.

Process mining can be used to diagnose the actual processes. This is valuable
because in many organizationsmost stakeholders lack a correct, objective, and ac-
curate view on important operational processes. However, process mining is not
limited to the process discovery techniques mentioned in this article (see for ex-
ample [2]). Process mining can also be used to improve the discovered processes.
Conformance checking can be used for auditing and compliance. By replaying the
event log on a process model it is possible to quantify and visualize deviations.
Similar techniques can be used to detect bottlenecks and build predictive models.
Given the applicability of process mining, we encourage the reader to simply ap-
ply the techniques discussed. The event data needed to conduct such experiments
can be found in any non-trivial organization. The freely available open-source
process mining tool ProM can be downloaded from www.processmining.org and
supports all of the process mining techniques mentioned.

In this article we emphasized that four quality dimensions—fitness, simplicity,
precision, and generalization—need to be balanced [2]. Moreover, we zoomed

file:www.processmining.org
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in on region-based approaches. As shown, conventional state-based regions and
language-based regions focus on fitness and precision, while neglecting simplicity
and generalization. Fortunately, it is possible to modify these techniques to also
deal with the other two quality dimensions. State-based regions can be used
for process discovery tasks provided that the right abstraction is used when
constructing the transition system. Language-based regions can be mapped onto
an ILP problem where the target function and additional constraints are used
to obtain a simple and more general model.

Despite the applicability of process mining there are many interesting chal-
lenges; these illustrate that process mining is a young discipline. As discussed,
it is far from trivial to construct a process model based on event logs that are
incomplete and noisy. Unfortunately, there are still researchers and tool vendors
that assume logs to be complete and free of noise. Although heuristic mining,
genetic mining, and fuzzy mining provide case-hardened process discovery tech-
niques, many improvements are needed to construct truly intuitive models that
are able to explain the most likely/common behavior. Another challenge is to
deal with ever-growing datasets, i.e., it is not uncommon to have event logs with
millions of cases, billions of events, and thousands of activities [44]. In some cases
it is impossible to store all events and process models need to be discovered on-
the-fly. In other cases, there is a need to distribute process mining problems over
multiple computers. As discussed in [3] this can be done in various ways. There-
fore, there are many interesting problems for researchers with a background in
Petri nets and eager to analyze processes based on real event data rather than
unrealistic toy models.

Acknowledgments. The authors would like to thank all the people that
contributed to the development of ProM (www.processmining.org).
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