
Chapter 12

Natural Landslides Which Impact Current

Regulating Services: Environmental

Preconditions and Modeling

Jörg Bendix, Claudia Dislich, Andreas Huth, Bernd Huwe, Mareike Ließ,

Boris Schröder, Boris Thies, Peter Vorpahl, Julia Wagemann,

and Wolfgang Wilcke

12.1 Introduction

Manifold interactions between the abiotic and the biotic environment doubtlessly

exist in the complex biodiversity hotspot of the Rio San Francisco valley. Hitherto,

it is not unveiled how the natural forest and its biodiversity which regulates

(regulating services) the local abiotic conditions (climate, water, soil) is subjected

to feedbacks regarding the preservation of species richness. Different hypotheses

how interactions and feedbacks between abiotic factors and biota contribute to

determine biodiversity are under discussion since decades. Widely accepted in the
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group of hypotheses regarding internal feedbacks controlling biodiversity is the

intermediate disturbance hypothesis (IDH) (Connell 1978; Molino and Sabatier

2001) which means that moderate disturbances are fostering the highest degree of

species richness. Roxburgh et al. (2004) stressed that the original specification of

the IDH requires patchy disturbances. Sheil and Burslem (2003) emphasized that

landslides are proven to be one important patchy disturbance type promoting

biodiversity above and below ground. It is meanwhile undisputed that landslides

are a major factor of natural disturbance in the mountain forest of the study area

(Wilcke et al. 2003, Chap. 1). While reducing the overall aboveground biomass,

landslides increase the spatial heterogeneity of biomass distribution and thus create

distinct habitat types (Dislich and Huth 2012). Particularly plant succession after a

landslide and the related above ground species pool of mosses, lichens, vascular

plants like orchids and pioneer tree species contribute to the high biodiversity of the

mountain rain forest and its resilience against natural disturbances (refer to Chap.

8). Below ground diversity and abundance (e.g., AM fungi) might be affected by

landslides, too (refer to Chap. 7).

Profound knowledge on physical interactions between abiotic factors and the

forest that are assumed to trigger landslides is mandatory for predicting landslide

occurrence probabilities and potential future changes.

The basic factors controlling landslide occurrence in the study area are geology

in terms of bedrock material, climate, and topography (Fig. 12.1).

While the geological substrate in the study area is nearly homogenous, the

topographic situation is highly variable. In this context, elevation, slope position,

steepness, and terrain curvature are the most important factors (Sect. 12.2.1,

Fig. 12.1a). Regarding climatic parameters, particularly the abundant rainfall

enhances the weight of vegetation and soil and reduces soil strength. Because

rainfall generally increases with terrain altitude (Chaps. 1, 19, and 24) elevation

is a good proxy for rainfall. High wind speed and resulting dynamic pressure

particularly at windward sides at higher altitudes transfer the dynamic stress of

trees into the tree root layer and thus are also expected to be important predictors to

assess landslide risks (Sect. 12.3.3, Fig. 12.1c). Soil conditions (thickness of the

organic and mineral soil layers, soil water logging conditions as indicated by

stagnic horizon occurrence probability) are suspected to play a major role and

should be considered for landslide prediction (Fig. 12.1b), too. Beyond physical

interactions, also chemical interactions might influence the risk for landslides. The

role of a specific abiotic–biotic interaction — the relation between soil nutrient

availability and fine litter production as a proxy for biomass production and thus

vegetation and organic layer weight (Fig. 12.1d) — is discussed in this chapter.

Nutrient availability in the soil as an important control of biomass production

(influencing the weight of the vegetation) and organic matter degradation

(influencing the weight of organic layers) is thus assumed to be an important

predictor for landslide probability.

To disentangle the processes responsible for landslide activity, spatial explicit

models as presented in this chapter are necessary, which are currently based solely

on topographical predictor variables (Sect. 12.2.1, Fig. 12.1a). For a future

improvement of the presented model, further spatial input data of relevant climatic
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and soil predictors as described above are required (Sects. 12.2.2–12.2.4). Most of

these data were not available when developing the model described in Sect. 12.2.1.

Consequently, this chapter is also devoted to exemplarily present methods to

regionalize point-based soil and climate data.

It should be stressed that landslides in a protected, unused pristine mountain forest

are not a direct ecosystem service (refer to Chap. 4). However, natural landslide

dynamics cause feedbacks to other abiotic and biotic ecosystem components which

give reason to expect impacts on several service levels as, e.g., regulation services.

On the landscape scale, naturally and anthropogenically induced landslides seem to

play a major role in sediment regulation of the catchment, being claimed to be

responsible for a quasi-continuous export of sediment loads independent on precipi-

tation peaks (refer to Chap. 9). On the smaller scale, nutrient regulation is clearly

affected by landslides. Nutrients are removed with the biomass and the organic layers

from the slide area but deposited and concentrated in its foot area (refer to Chap. 11).

Regarding carbon regulation, landslides are characterized by reduced tree growth on

the slides due to the poor nutrient conditions, thus diminishing aboveground carbon

stocks considerably (refer to Chap. 24).

12.2 Methods

12.2.1 The Statistical Landslide Model

Conditions leading to slope failure in the past are likely to cause landslides in the

future as well. Thus, inventories of past landslides combined with topographic

information and thematic maps of controlling factors are used to train statistical

Fig. 12.1 Overview on factors controlling landslide susceptibility in the study area. Arrows
indicate aspects covered by this chapter: The topographic control on landsliding (a), on soil

formation (b), on the distribution of local wind fields (c), and the dependence of organic matter

decomposition, organic layer mass, and biomass dynamics (d). Future model parameters written in

gray are developed and discussed in this chapter
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landslide models with multiple predictors. Univariate response curves of these

models can provide insights into driving factors of landslides if the following

preconditions are met: (1) The model quality (in terms of performance and calibra-

tion) is sufficient. (2) Consistency between mechanistic assumptions and training

data is maintained. (3) The chosen predictors are interpretable.

(1) Vorpahl et al. (2012) provided a unified framework to train, test and compare

different statistical methods. Applying this framework to eight different

methods from statistics and machine learning (i.e., generalized linear and

additive models, multivariate adaptive regression splines, artificial neural

networks, classification tree analysis, random forests, boosted regression

trees, and the maximum entropy method), they generated weighted model

ensembles.

(2) Vorpahl et al. (2012) maintained consistency between training data and mech-

anistic assumptions by using a subset of five historical landslide inventories of

the RBSF provided by Stoyan (2000) and confined their analysis to landslides

that occurred in an area free of anthropogenic interference (Fig. 12.2). Further-

more, they distinguished different functional units of landslides: i.e., initiation,

transport, and deposition zones. This distinction is of key importance for an

interpretation of univariate model response curves, since linkages between

model predictors and actual mechanisms in the distinct functional units differ.

(3) In a case study, Vorpahl et al. (2012) exclusively used terrain attributes derived

from a digital elevation model (DEM) as predictors: elevation above sea level

(ALT), slope angle, topographic wetness index (TWI), stream power index

(SPI), convergence index (CI), topographic position index (TPI) with two

different radii (100 m and 500 m), and the aspect. To model landslide initiation

as a phenomenon of abiotic–biotic interactions by assessing the importance of

abiotic and biotic predictor values in later applications of the method, spatial

parameter values as presented in the succeeding sections might be helpful.

12.2.2 Potential Model Parameter: Regionalization of Soil
Data

The spatially explicit prediction of histic and stagnic soil horizons is necessary as a

major precondition to understand the landslide dynamics in the study area.

Soil regionalization is based on the general concept (e.g., Jenny 1941) that soil

genesis and, hence, the soils’ distribution throughout the landscape mainly depend

on topography, among other parameters. Therefore, topographic parameters can be

used as predictors to develop digital maps of various soil attributes.

Soil horizons were assessed by 56 soil profiles and 315 auger sampling points.

Key topographical parameters were calculated based on the DEM and implemented

area wide as predictors in the software SAGA GIS. To collect a representative

dataset, sampling sites were selected according to a 24 terrain classes comprising
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sampling design along transects extending along side valley slopes (Liess

et al. 2009).

The regionalization as presented here is based on earlier attempts to predict these

horizons (Ließ 2011). In comparison to Ließ (2011), an improvement could be

achieved by focusing on (1) additional terrain parameter selection and by (2)

investigating the dependence on scale as well as (3) the performance of another

recursive partitioning method, Random Forest (RF) (Breiman 2001).

Fig. 12.2 (a) Landslide inventories created by evaluation of aerial photographs of five different

years (i.e., 1692, 1969, 1976, 1989, and 1998) by Brenning (2005) and landslide susceptibility

maps as produced by weighted model ensembles for (b) landslide initiation, (c) transport, and (d)

deposition zones (cf. Vorpahl et al. 2012)
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(1) Based on the investigations by Ließ (2011), predictors representing climate

(altitude, PISR), water accumulation (curvature, convergence, KRAarea),

water discharge (slope, KRAslope), the insulating effect of the heterogeneous

geomorphology with the ridge—side valley structure in particular (TRI,

normalized height, valley depth) and the wind effect (wind effect, aspect)

were selected to model the soil pattern of this area, all calculated by using

SAGA GIS (Table 12.1, Böhner et al. 2006).

(2) According to the assumptions of Ließ (2011) that the influence of certain

predictors on soil property development is scale dependent, Brown et al.

(2004) had reported this for the influence of curvature on soil texture, terrain

parameters were calculated for three different GIS raster grid cell sizes (10, 20,

30 m).

(3) Because RF shows a strong dependence on the used dataset used for model

development (Ließ et al. 2012), i.e., the terrain parameters used as predictors

with the soil parameter as response variable, 100-fold RF calculations of the

spatial water stagnation pattern as well as organic layer and stagnic horizon

thickness were carried out. For each of the 100 model runs, the used dataset was

varied by using 9/10 random Jackknife partitions data subsets of the complete

dataset. The 100 models’ prediction results were then averaged and displayed

as two maps: the mean prediction value of the particular soil parameter and its

prediction uncertainty which is represented by the coefficient of variation.

Cross validation is applied to the remaining 1/10 of the dataset, which was

not used to develop the RF models, for model evaluation.

Table 12.1 SAGA modules to calculate terrain parameters

Terrain parameter Module library Module

Altitude Terrain analysis—preprocessing Fill sinks (Planchon/Darboux, 2001)

Slope Terrain analysis—morphometry Slope, aspect, curvature

Aspect

Profile curvature

Plan curvature

Convergence index Terrain analysis—morphometry Convergence Index (search radius)

Normalized height Terrain analysis—morphometry Relative heights and slope positions

Valley depth

TRI Terrain analysis—morphometry Terrain Ruggedness Index

Wind effect Terrain analysis—morphometry Wind effect

KRAarea Terrain analysis—hydrology Catchment area (flow tracing)

KRAslope

SWI Terrain analysis—hydrology Saga Wetness Index

PISR Terrain analysis—lighting, visibility Potential incoming solar radiation—

direct insolation
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12.2.3 Potential Model Parameter: Regionalization of Wind
Data

Regionalization of meteorological point observations facilitates the analysis of

interactions between the abiotic environment and biosphere (e.g., Fries et al.

2009, 2012). Strong wind pressure to forest trees might be one reason fostering

landslides and shaping the tree line. Therefore, digital wind speed and dynamic

pressure maps are determined using the following procedure: (1) Statistical analysis

of wind speed observations using the Weibull density function. (2) Calculation of

digital wind speed maps by applying a sheltering factor—algorithm to a DEM. (3)

Validation of calculated wind speed using model-independent meteorological

stations. (4) Calculation of dynamic pressure maps based on the tropical standard

atmosphere and the generated wind speed maps.

(1) Point measurements of hourly wind speed data and the wind direction at 2 m

above surface level for a period of 8 years (1999–2006) for five meteorological

stations (Cerro, ECSF, El Trio, Paramo, TS1, Fig. 12.3) were analyzed regard-

ing mean and maximum wind speed. According to meteorological conventions

(e.g., Weisser 2003), mean and maximum wind speed per 45�-wind direction

class are derived from the Weibull density function (50 % and 95 % percentile),

where the parameters of the distribution are estimated by the maximum likeli-

hood method.

(2) Wind speed maps are calculated in three steps: First, data of the station Zamora

and the highest meteorological station (Paramo) are used to calculate a linear

decrease of average and maximum background wind speed with decreasing

terrain altitude. Second, the approach of Winstral and Marks (2002) is used to

derive the maximum upwind slope parameter which is a measure of topo-

graphic shelter or exposure relative to a particular wind direction. The finally

determined shelter factor is multiplied with the background wind speed for

every pixel, providing the digital wind speed maps for every wind direction

class.

(3) Wind speed is extracted for the grid points of the meteorological stations not

used for the regionalization and compared to the modeled data. For the most

stations (e.g., ECSF, Cerro), the correlation is significant and well-suited,

except for the station El Tiro which is known to be strongly influenced by

topographic venturi effects not considered by the regionalization method.

(4) Finally maps of average and maximum dynamic pressure are calculated from

the wind speed maps and average air density where the latter is derived by

blending the tropical standard atmosphere with the DEM.
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12.2.4 Soil Properties and Litterfall

Between 1998 and 2010 we collected data from 12 sites in the study area (one in

each of the microcatchments (MC) 1 and 3, three in each of MCs 3 and 5 and the

four control sites of Nutrient Manipulation Experiment (NUMEX, for locations see

Chap. 1, NUMEX is explained in Chap. 23). Monitoring in MC2 lasted for 12 years,

in MCs 1, 3, and 5 for 5 years and in NUMEX for 1 year. At each site, mass of

organic layer was determined once by measuring depth and densities of the organic

horizons (Oi, Oe, and Oa) and mass of fine litterfall was determined with three- to

sixfold replicated 0.3 � 0.3 m2 to 0.6 � 0.6 m2 large litter traps in at least monthly

resolution. Furthermore, free-draining litter lysimeters just below the organic layer

were used to collect litter leachate in weekly to fortnightly resolution in which

mineral N (NH4
+–N + NO3

�–N) concentrations were determined with a Continu-

ous Flow Analyzer and K, Na, Ca, and Mg concentrations with flame Atomic

Absorption Spectrometry.

12.3 Results and Discussion

12.3.1 Statistical Landslide Modeling

With the exception of classification tree analysis all techniques performed compar-

atively well while being outperformed by weighted model ensembles (refer to

Vorpahl et al. 2012 for details). As expected, models trained on different functional

units of landslides led to different model outcomes (Fig. 12.2).

Fig. 12.3 Univariate response curves (black lines) and predictor importance scores of weighted

ensembles of statistical models. Response quartile ranges are shaded in gray. The curves in each

column show the probability of observing a landslide initiation, transport or deposition zone as a

function of a single predictor variable, i.e., elevation above sea level (ALT), the convergence index

(CI), indicating small scale concavities (CI < 0) or convexities (CI > 0), the topographic wetness

index (TWI), the slope angle (Slope), the stream power index (SPI), the topographic position index

(TPI), describing the difference between local elevation and the mean elevation within two

different radii of 100 m (TPI.100) and 500 m (TPI.500), respectively, and the direction of the

steepest slope angle (Aspect) (Vorpahl et al. 2012)
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Univariate model response curves to changes in predictor values—also called

partial dependency plots (Fig. 12.3)—show that landslide deposition zones tend to

be located at valley bottoms, indicated by high values of SPI and TWI as well as by

negative values of CI and TPI.

Landslides follow the local topography by sliding along shallow ducts in the

slope as indicated by a maximum susceptibility for transport zones at slightly

negative values of CI and TPI. The response curve for initiation zones to changes

in slope indicated an increasing contribution up to ~52�. Even steeper slopes lead to
a decrease of landslide susceptibility. This can be attributed to the fact that on

extremely steep slopes the soil layer is usually thinner and hence insufficient for

landslide initiation.

Model response to elevation above sea level exposed an increasing landslide

initiation probability with elevation up to 2,400 m a.s.l. At higher elevations,

landslide initiation probability decreases. Rollenbeck (2006) reported an altitudinal

increase of average precipitation (from about 2,050 mm a�1 at 1,960 m a.s.l. up to

4,400 mm a�1 at 3,200 m a.s.l.) in the research area. If rainfall is an important

factor, this should hint towards a positive correlation between precipitation and

landslide susceptibility which contradicts the above finding. As additional factors at

the intersection from dense forest into the Páramo, lower standing biomass and

lower inclination may strongly reduce landslide formation. Furthermore, Bussmann

et al. (2008) gave a possible explanation for the decreasing landslide susceptibility

at higher elevations by a change in soil substrate from slightly metamorphosed

clayey/sandy sediments, originating from phyllites, at the lower and intermediate

elevations to a more quartzite rich substrate at higher elevations.

Other altitudinal gradients reported for the research area are related to vegeta-

tion. The decrease of average tree heights with higher elevations (Bräuning et al.

2008), for example, may cause a reduced contribution of plant biomass to slope

instability. Smaller trees are less capable of transferring wind forces into the ground

via a turning moment. Soethe et al. (2006a, b) as well as Leuschner et al. (2007)

reported an altitudinal change in tree root structure and in the ratio of aboveground

to belowground biomass. Thus an increase of root contribution to slope stability at

higher elevations can be additionally suspected.

12.3.2 Digital Soil Maps

To predict organic layer thickness, the models based on 20 or 30 m DEM resolution

performed better than those using 10 m. Regarding the prediction of the occurrence

of a stagnic color pattern, all models using 10 m resolution performed better or

equally well than those of lower resolution. Chaplot et al. (2000) found prediction

accuracy to be highly dependent on DEM resolution: Regarding the prediction of

hydromorphic features 10 m DEM resolution outperformed lower resolutions.

Compared to the median rxy resulting from CART methodology and a smaller

number of prediction parameters (Ließ 2011), model performance was now
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improved for all three predicted soil parameters: regarding stagnic horizon occur-

rence probability it was improved by 0.1 (0.6), regarding horizon thickness it was

doubled (0.36), and regarding organic layer thickness it was more than doubled

(0.47).

The digital soil map of the stagnic horizon occurrence probability is shown in

Fig. 12.4a, b. A low coefficient of variation (�10 % for >80 % of the area, see

Fig. 12.4b) shows that the dataset is well suited to model the stagnic properties

pattern within this area. The influence of the relative slope position on the occur-

rence probability is clearly visible: The exposed mountain ridges between 2,100

and 2,650 m a.s.l. display a very high probability of stagnic soil properties, >0.8,

which is decreasing down the side valley slopes to a probability of �0.4 (minimum

¼ 0.2). The flat platform-like areas on top of the ridges, display a particularly high

probability of >0.9. The areas below 2,100 and above 2,650 m a.s.l. are predicted

with an overall lower probability. Below 2,100 m a.s.l. the lower bulk density (Ließ

et al. 2011) and above 2,650 m a.s.l. the coarser soil texture (Ließ et al. 2012)

leads to a higher saturated hydraulic conductivity and therefore less chance for

the development of stagnic soil properties. For the development of the model to

predict stagnic horizon occurrence probability, all terrain parameters were included.

a b

dc

e f

Fig. 12.4 Mean stagnic horizon occurrence probability (a) and thickness (c) with coefficient of

variation (b, d) and mean organic layer thickness (e) with coefficient of variation (f) (Overlaid hill

shading with light source from north)
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This confirms the assumption that it is the complex pattern of climate (altitude, PISR),

water accumulation (curvature, convergence, KRAarea), water discharge (slope,

KRAslope), the insulating effect of the heterogeneous geomorphology with the

ridge—side valley structure in particular (TRI, normalized height, valley depth) as

well as the wind effect (wind effect, aspect) which lead to the distribution pattern of

stagnic soil properties within the investigation area.

The model to regionalize stagnic horizon thickness is less stable than the model

to predict the horizon’s occurrence probability. This is indicated by the higher

values of the coefficient of variation in Fig. 12.4d. Ließ (2011) describes similar

results. According to Park and Vlek (2002), soil attributes of which the vertical

distribution is strongly determined by pedogenesis or unknown factors are poorly

modeled by environmental variables. Accordingly, the frequent change of parent

material within one soil profile (Ließ et al. 2012) might be the reason why stagnic

horizon thickness cannot be explained by geomorphology alone. The thickest

stagnic layers >40 or even >60 cm are found along the mountain ridges, with

decreasing thickness while proceeding down side valley slopes.

The low uncertainty of the digital soil map of the organic layer (Fig. 12.4e, f)

indicates a stable model. The thickest organic layers are found on mid-slope

positions, decreasing towards the creeks and towards the crests. Furthermore, altitude

is not among the fivemost influential predictors of organic layer thickness and there is

no correlation between the occurrence of stagnic horizons and organic layer thick-

ness. This is unexpected because in previous work it was shown that the crests had

usually thicker organic layers than the valley bottom positions in the study area

(Wilcke et al. 2010) in line with reports from a similar forest in Puerto Rico (Silver

1994). Furthermore, studies in Costa Rica (Marrs et al. 1988; Grieve et al. 1990) and

at our study site in Ecuador (Schrumpf et al. 2001;Wilcke et al. 2008a, b) have shown

that organic layer thickness usually increases with increasing altitude because of

decreasing microbial turnover of organic matter with increasing altitude (Benner

et al. 2010). Table 10.1 shows a general trend towards increasing organic layer

thickness with altitude. However, the transect that was investigated covers a much

larger distance (30 km compared to c. 4 km), and spatial data coverage is therefore

limited. Taking a closer look, the results of Chap. 10 also do not describe any positive

correlation between organic layer thickness and altitude for the altitudinal range

between 1,890 and 3,060 m a.s.l. studied here. Finally, it is assumed that soil

waterlogging limits organic matter turnover (Schuur and Matson 2001; Roman

et al. 2010) which results in the expectation of a positive correlation between the

occurrence of waterlogging (as indicated by stagnic horizons) and organic layer

thickness. However, there is a considerable variation in organic layer thickness at

small scale (Wilcke et al. 2002, 2008b) illustrating that none of altitude, topographic

position, and waterlogging alone can explain the entire variability in organic layer

thickness.

A possible explanation for the seeming contradictions might be that our dataset

is representative for the whole study area and therefore also includes landslide sites

with incomplete organic layers which form an important part of the studied forest

area (Bussmann et al. 2008). Wilcke et al. (2003) have shown that the full
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regeneration of the organic layer only occurs at the time scale of a few decades. It

also seems likely that waterlogging favors the initiation of landslides because of the

associated high soil weight (Ließ et al. 2011). The results in the literature, in

contrast, usually refer to undisturbed old-growth forest sites. An alternative expla-

nation might be that litterfall rates are lower on crest sites than at lower topographic

positions associated with a smaller accumulation of organic matter on top of the

mineral soil. However, in Sect. 12.3.4 we show for a limited dataset of 12 study

sites that the decrease in litterfall rates is overcompensated by the decrease in

degradation rates resulting in even higher organic layer thickness at low litterfall

rates. We conclude that the relationships of altitude, topographic position, and

waterlogging with organic layer thickness might have to consider the state of

succession after landslide to explain and predict the spatial distribution of organic

layer thickness in the study area.

12.3.3 Digital Wind Maps

Figure 12.6a shows the calculated digital map of maximum wind speed which

reveals spatial structures comparable to the map of mean wind speed (not shown

here). Maximum wind speed increases with altitude but is locally modified by

topographic shelter effects towards the predominant wind direction. Obviously,

steep and narrow valleys and ravines breaching the Cordillera exhibit the lowest

wind speeds (partly close to calm) on a specific altitudinal level. It is striking that

especially the east-facing slopes without any protection by upstream topographic

structures exhibit severe wind speeds up to 17 m s�1. The reason is the all-year

dominating circulation from the east (Rollenbeck and Bendix 2011) impinging

particularly the eastern slopes of the Cordillera. The high wind speeds at relatively

low altitudes are a result of the Andean depression (Chap. 1) which allows the

easterlies to affect the upper mountain areas nearly unbridled. By blending the land

use classification of Göttlicher et al. (2009) with the digital maps of mean and

maximum dynamic pressure, the interaction of wind pressure and trees can be

assessed, e.g., for the tree line ecotone (Fig. 12.5b). The statistical evaluation

clearly reveals that the trees at the treeline of the eastern escarpment exhibit clearly

stronger mechanical exposure than on the western slopes where in the most

situations, wind dynamic pressure falls into the lowest category (mean < 5 N m�2;

maximum < 20 N m�2).

12.3.4 Chemical Interactions: Soil Nutrients and Litter

There were close positive correlations between nutrient concentrations in soil

solution and annual fine litterfall as proxy of biomass productivity and close

negative correlations between nutrient concentrations in soil solution and mass of
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a

b

Fig. 12.5 (a) Digital map of maximum wind speed [95 % percentile] determined as an

occurrence-weighted average of eight wind direction classes. (b) Mean and maximum dynamic

pressure depending on aspect along the tree line ecotone
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organic layer (Fig. 12.6). The effect of bases (K, Na, Ca, and Mg) is more

pronounced than that of N. Consequently, increased nutrient availability resulted

in increased fine litterfall production and—if litterfall is proportional to standing

biomass—increased weight of vegetation. The increased weight of vegetation is

counteracted by decreased weight of organic layer because of a faster turnover at

higher nutrient availability. Expressed in percent of the intercept the response of

litterfall is more pronounced (35 % for N and 139 % for bases) than that of mass of

organic layer (�11 and �49 %) suggesting that the standing biomass will more

strongly increase than the mass of the organic layer decrease if nutrient availability

improves. The latter can be expected for the near future because of increased

dryness enhancing release of nutrients from the organic matter by mineralization

and because of rising deposition of reactive nitrogen and possibly also of base

metals because of the shortening of the El Niño Southern Oscillation (ENSO) cycle

(see Chap. 11). This might imply that the total weight of vegetation plus organic

layer will increase in the near future in response to environmental change thereby

enhancing the risk of landslides.

Nutrient availability in the study area generally decreases with increasing

altitude and at the same altitude is different between valley bottom and ridge top

position (Wilcke et al. 2008b, 2010). Furthermore, the frequently occurring shallow

landslides in the study area remove the vegetation and the organic layer resulting in

nutrient loss which is only replenished during a few decades (Wilcke et al. 2003).

Fig. 12.6 Relationship between mean mineral N concentrations (NH4
+–N + NO3

�–N) in litter

leachate and (a) mean annual litterfall and (b) mass of the organic layer and between mean sum of

base metal concentrations (charge equivalents of K, Na, Ca, andMg) in litter leachate and (c) mean

annual litterfall and (d) mass of the organic layer. Mean nutrient concentrations in litter leachate

and mean annual litterfall was determined during 1–10 years depending on the specific site
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The latter effect is not included in the relationship between nutrient availability and

litterfall/mass of organic layer in Fig. 12.6 because all our measurements were

taken at old-growth forest sites which were not impacted by landslides in the last

decades. The high variability of altitude and topography in our study area results in

a high spatial variability of nutrient availability and thus also a high ability of

organic layer mass and standing forest biomass together determining the weight on

top of the mineral soil (Wilcke et al. 2002; Moser et al. 2008).

12.4 Conclusion

The presented statistical model ensembles revealed that the occurrence of

landslides is mainly controlled by factors related to the general position along a

slope (i.e., ridge, open slope, or valley). However, there is a clear contradiction

between the altitudinal gradient of rainfall (increasing with altitude) as an assumed

major trigger and landslide probability (decreasing with altitude above 2,400 m a.s.

l.). This indicates that more complex interactions control landslide activity in the

study area which can be explained with a model ensemble purely forced with

DEM-derived proxy predictors. Digital soil maps show a sandier soil texture and

lower soil water logging probability above 2,400 m a.s.l and hence provide a good

explanation. We further assume that variation in above and belowground biomass

mitigating dynamic wind pressure to the forest in the higher parts are major factors

causing these contradictory findings. Thus, it is necessary to provide further spatial

predictor maps related to geology, vegetation biomass, and climate. By additionally

considering predictors related to vegetation, soil and climate, statistical models will

allow for predicting potential future changes in landslide probability patterns.

Dynamic forest models like FORMIND can be used to further quantify effects on

the aboveground biomass production (Chap. 24).

Regarding maps of soil conditions, statistical models based on comprehensive

soil field surveys are applied to spatially predict organic layer and stagnic horizon

thickness as well as stagnic horizon occurrence probability. Forcing parameters are

solely derived from topographical analyses of the DEM. Even if the main influence

of the relative slope position as exposed mountain ridges and flat platform-like

areas on top of the ridges are the best predictors for the occurrence probability of

stagnic horizons, the results point out complex interactions of different factors

behind this. Particularly, the determination of the stagnic horizon thickness is less

stable, most likely due to unconsidered, non geomorphologic factors. For prediction

of organic layer thickness, the degree of succession after landslide might also play

an important role and should be considered besides the well established relationship

of waterlogging, topographic position, and altitude with organic layer thickness.

Digital maps of mean and maximum wind speeds as well as dynamic wind

pressures as additional potential forcing parameters were derived by means of field

observations of wind speed, data on air density, and a DEM by introducing a terrain

shelter factor. It could be shown that dynamic pressure to the forest generally
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increases with altitude but differs with exposition to the main wind direction.

Because easterly wind directions are predominant, the tree line ecotone on the

eastern slopes is affected by clearly higher wind stress.

Finally, it could be shown that interactions in the biogeochemical cycles might

be relevant for the risk of landslides. Nutrient availability in soil influenced litterfall

production positively and organic layer thickness negatively. An increased nutrient

availability in the future will most likely result in an increase of standing biomass,

thus, enhancing the risk of landslides in response to future environmental change.

Regarding ecosystem services, landslide dynamics will influence different ser-

vice levels. As emphasized in the introduction, landslides are most likely a precon-

dition for the high biological diversity in the mountain forest and thus, directly

related to the cultural services of the forest (Chap. 4). Because the forest structure

characterized by its high species richness properly regulates abiotic processes,

landslides indirectly contribute to the regulating services of the forest (Chap. 4)

too. On the scale of a single landslide, regulation of abiotic parameters changes

significantly. For instance, microclimate (temperature, humidity) regulation is

reduced in comparison to areas sheltered by tree canopies (Fries et al. 2009,

2012; Chap. 9). On this scale also sediment and nutrient regulation are affected.

While sediment and its nutrient is accumulated at the forest edges on the foot of the

slide, also slope wash of matter is higher in young landslides than under natural

forest (e.g., Larsen et al. 1999). On the scale of the forest as a mosaic of trees and

gap areas originating, e.g., from landslides, mass and energy fluxes to the atmo-

sphere are different than those of closed canopies (e.g., Zhang et al. 2007) which

means that landslides maintain the specific regulation of forest–atmosphere

interactions. Also the carbon regulation function of the mountain ecosystem is

determined by the landslide occurrence. Landslides increase carbon turnover and

change the forest composition towards a higher fraction of pioneer species—

however overall forest productivity may be reduced compared to old growth forest

without landslide disturbances due to the unfavourable environmental conditions on

landslide sites (Chap. 24).
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