
 123

LN
BI

P
14

6

Third Enterprise Engineering
Working Conference, EEWC 2013
Luxembourg, May 2013, Proceedings

Advances in
Enterprise Engineering VII

Henderik A. Proper
David Aveiro
Khaled Gaaloul (Eds.)

Lecture Notes
in Business Information Processing 146

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Henderik A. Proper
David Aveiro
Khaled Gaaloul (Eds.)

Advances in
Enterprise EngineeringVII

Third Enterprise Engineering
Working Conference, EEWC 2013
Luxembourg, May 13-14, 2013
Proceedings

13

Volume Editors

Henderik A. Proper
Public Research Centre - Henri Tudor
Luxembourg-Kirchberg, Luxembourg
E-mail: e.proper@acm.org

David Aveiro
University of Madeira
Funchal, Portugal
E-mail: daveiro@uma.pt

Khaled Gaaloul
Public Research Centre - Henri Tudor
Luxembourg-Kirchberg, Luxembourg
E-mail: khaled.gaaloul@tudor.lu

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-38116-4 e-ISBN 978-3-642-38117-1
DOI 10.1007/978-3-642-38117-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013936542

ACM Computing Classification (1998): J.1, H.3.5, H.4-5

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Enterprise engineering is an emerging discipline that studies enterprises from an
engineering perspective. Enterprises are studied as being purposely designed and
implemented systems. Enterprise engineering is rooted in both the organizational
sciences and the information system sciences. The rigorous integration of these
traditionally disjoint scientific areas has become possible after the recognition
that communication is a form of action. The operating principle of organizations
is that actors enter into and comply with commitments, and in doing so bring
about the business services of the enterprise. This important insight clarifies
the view that that enterprises belong to the category of social systems, i.e., its
active elements (actors) are social individuals (human beings). The unifying role
of human beings makes it possible to address problems in a holistic way, to
achieve unity and integration in bringing about any organizational change.

Also when regarding the implementation of organizations by means of modern
information technology (IT), enterprise engineering offers innovative ideas. In
a similar way as the ontological model of an organization is based on atomic
elements (namely, communicative acts), there is an ontological model for IT
applications. Such a model is based on a small set of atomic elements, such as
data elements and action elements. By constructing software in this way, the
combinatorial effects (i.e., the increasing effort it takes in the course of time to
bring about a particular change) in software engineering can be avoided.

The development of enterprise engineering requires the active involvement
of a variety of research institutes and a tight collaboration between them. This
is achieved by a continuously expanding network of universities and other insti-
tutes, called the CIAO! Network (www.ciaonetwork.org). Since 2005 this network
has organized the annual CIAO! Workshop, and since 2008 its proceedings have
been published as Advances in Enterprise Engineering in the Springer LNBIP
series. From 2011 on, this workshop was replaced by the Enterprise Engineering
Working Conference (EEWC). This book contains the proceedings of the third
EEWC, which was held in Luxembourg.

May 2013 Henderik A. Proper
David Aveiro

Khaled Gaaloul

Enterprise Engineering – The Manifesto

Introduction

This manifesto presents the focal topics and objectives of the emerging disci-
pline of enterprise engineering, as it is currently theorized and developed within
the CIAO! Network. There is close cooperation between the CIAO! Network
(www.ciaonetwork.org) and the Enterprise Engineering Institute (www.ee-
institute.com) for promoting the practical application of enterprise engineer-
ing. The manifesto comprises seven postulates, which collectively constitute the
enterprise engineering paradigm (EEP).

Motivation

The vast majority of strategic initiatives fail, meaning that enterprises are un-
able to gain success from their strategy. Abundant research indicates that the
key reason for strategic failures is the lack of coherence and consistency among
the various components of an enterprise. At the same time, the need to operate as
a unified and integrated whole is becoming increasingly important. These chal-
lenges are dominantly addressed from a functional or managerial perspective, as
advocated by management and organization science. Such knowledge is neces-
sary and sufficient for managing an enterprise, but it is inadequate for bringing
about changes. To do that, one needs to take a constructional or engineering
perspective. Both organizations and software systems are complex and prone
to entropy. This means that in the course of time, the costs of bringing about
similar changes increase in a way that is known as combinatorial explosion. Re-
garding (automated) information systems, this has been demonstrated; regard-
ing organizations, it is still a conjecture. Entropy can be reduced and managed
effectively through modular design based on atomic elements. The people in an
enterprise are collectively responsible for the operation (including management)
of the enterprise. In addition, they are collectively responsible for the evolution
of the enterprise (adapting to needs for change). These responsibilities can only
be borne if one has appropriate knowledge of the enterprise.

Mission

Addressing the afore-mentioned challenges requires a paradigm shift. It is the
mission of the discipline of enterprise engineering to develop new, appropriate
theories, models, methods and other artifacts for the analysis, design, imple-
mentation, and governance of enterprises by combining (relevant parts of) man-
agement and organization science, information systems science, and computer

VIII Preface

science. The ambition is to address (all) traditional topics in said disciplines
from the enterprise engineering paradigm. The result of our efforts should be
theoretically rigorous and practically relevant.

Postulates

Postulate 1

In order to perform optimally and to implement changes successfully, enterprises
must operate as a unified and integrated whole. Unity and integration can only
be achieved through deliberate enterprise development (comprising design, engi-
neering, and implementation) and governance.

Postulate 2

Enterprises are essentially social systems, of which the elements are human be-
ings in their role of social individuals, bestowed with appropriate authority and
bearing the corresponding responsibility. The operating principle of enterprises
is that these human beings enter into and comply with commitments regarding
the products (services) that they create (deliver). Commitments are the results
of coordination acts, which occur in universal patterns, called transactions.

Note. Human beings may be supported by technical artifacts of all kinds,
notably by ICT systems. Therefore, enterprises are often referred to as socio-
technical systems. However, only human beings are responsible and accountable
for what the supporting technical artifacts do.

Postulate 3

There are two distinct perspectives on enterprises (as on all systems): func-
tion and construction. All other perspectives are a subdivision of one of these.
Accordingly, there are two distinct kinds of models: black-box models and white-
box models. White-box models are objective; they regard the construction of a
system. Black-box models are subjective; they regard a function of a system.
Function is not a system property but a relationship between the system and
some stakeholder(s). Both perspectives are needed for developing enterprises.

Note. For convenience sake, we talk about the business of an enterprise when
taking the function perspective of the customer, and about its organization when
taking the construction perspective.

Postulate 4

In order to manage the complexity of a system (and to reduce and manage its
entropy), one must start the constructional design of the system with its ontolog-
ical model. This is a fully implementation-independent model of the construction
and the operation of the system. Moreover, an ontological model has a modular

Preface IX

structure and its elements are (ontologically) atomic. For enterprises the meta-
model of such models is called enterprise ontology. For information systems the
meta model is called information system ontology.

Note. At any moment in the lifetime of a system, there is only one ontological
model, capturing its actual construction, though abstracted from its implemen-
tation. The ontological model of a system is comprehensive and concise, and
extremely stable.

Postulate 5

It is an ethical necessity for bestowing authorities on the people in an enterprise,
and having them bear the corresponding responsibility, that these people are
able to internalize the (relevant parts of the) ontological model of the enterprise,
and to constantly validate the correspondence of the model with the operational
reality.

Note. It is a duty of enterprise engineers to provide the means to the people
in an enterprise to internalize its ontological model.

Postulate 6

To ensure that an enterprise operates in compliance with its strategic concerns,
these concerns must be transformed into generic functional and constructional
normative principles, which guide the (re-)development of the enterprise, in ad-
dition to the applicable specific requirements. A coherent, consistent, and hi-
erarchically ordered set of such principles for a particular class of systems is
called an architecture. The collective architectures of an enterprise are called its
enterprise architecture.

Note. The term “architecture” is often used (also) for a model that is the
outcome of a design process, during which some architecture is applied. We do
not recommend this homonymous use of the word.

Postulate 7

For achieving and maintaining unity and integration in the (re-)development and
operation of an enterprise, organizational measures are needed, collectively called
governance. The organizational competence to take and apply these measures on
a continuous basis is called enterprise governance.

May 2013 Jan L.G. Dietz

Organization

EEWC 2013 was the Third Working Conference resulting from a series of suc-
cessful CIAO! Workshops over the years, the EEWC 2011 and the EEWC 2012.
These events were aimed at addressing the challenges that modern and com-
plex enterprises are facing in a rapidly changing world. The participants in these
events share the belief that dealing with these challenges requires rigorous and
scientific solutions, focusing on the design and engineering of enterprises.

This conviction led to the idea of annually organizing an international work-
ing conference on the topic of enterprise engineering, in order to bring together
all stakeholders interested in making enterprise engineering a reality. This means
that not only scientists are invited, but also practitioners. Next, it also means
that the conference is aimed at active participation, discussion, and exchange
of ideas in order to stimulate future cooperation among the participants. This
makes EEWC a working conference contributing to the further development of
enterprise engineering as a mature discipline.

The organization of EEWC 2013 and the peer review of the contributions to
EEWC 2013 were accomplished by an outstanding international team of experts
in the fields of enterprise engineering.

Advisory Board

Jan L.G. Dietz Delft University of Technology,
The Netherlands

Antonia Albani University of St. Gallen, Switzerland

General Chair

Henderik A. Proper Public Research Centre - Henri Tudor,
Luxembourg

Radboud University Nijmegen,
The Netherlands

Program Chair

David Aveiro University of Madeira, Madeira Interactive
Technologies Institute and Center for
Organizational Design and Engineering -
INESC INOV Lisbon, Portugal

XII Organization

Organizing Chair

Khaled Gaaloul Public Research Centre - Henri Tudor,
Luxembourg

Program Commitee

Bernhard Bauer University of Augsburg, Germany
Birgit Hofreiter Vienna University of Technology, Austria
Christian Huemer Vienna University of Technology, Austria
Dai Senoo Tokyo Institute of Technology, Japan
Eduard Babkin Higher School of Economics, Nizhny Novgorod,

Russia
Emmanuel Hostria Rockwell Automation, USA
Eric Dubois Public Research Centre - Henri Tudor,

Luxembourg
Florian Matthes Technical University of Munich, Germany
Gil Regev École Polytechnique Fédérale de Lausanne

(EPFL), Itecor, Switzerland
Graham McLeod University of Cape Town, South Africa
Hans Mulder University of Antwerp, Belgium
Jan Hoogervorst Sogeti Netherlands, The Netherlands
Jan Verelst University of Antwerp, Belgium
Joaquim Filipe School of Technology of Setúbal, Portugal
Jorge Sanz IBM Research at Almaden, California, USA
José Tribolet INESC and Technical University of Lisbon,

Portugal
Joseph Barjis Delft University of Technology,

The Netherlands
Junichi Iijima Tokyo Institute of Technology, Japan
Marielba Zacarias University of Algarve, Portugal
Martin Op ’t Land Capgemini, The Netherlands

Antwerp Management School, Belgium
Natalia Aseeva Higher School of Economics, Nizhny Novgorod,

Russia
Olga Khvostova Higher School of Economics, Nizhny Novgorod,

Russia
Paul Johanesson Stockholm University, Sweden
Peter Loos University of Saarland, Germany
Pnina Soffer Haifa University, Israel
Remigijus Gustas Karlstad University, Sweden
Robert Lagerström KTH - Royal Institute of Technology, Sweden
Robert Winter University of St. Gallen, Switzerland

Organization XIII

Rony Flatscher Vienna University of Economics and Business
Administration, Austria

Sanetake Nagayoshi Tokyo Institute of Technology, Japan
Stijn Hoppenbrouwers HAN University of Applied Sciences,

The Netherlands
Ulrich Frank University of Duisburg-Essen, Germany

Table of Contents

Value Orientation

Value-Oriented Solution Development Process: Uncovering the
Rationale behind Organization Components . 1

João Pombinho, David Aveiro, and José Tribolet

Enterprise Change

Towards Developing a Model-Based Decision Support Method for
Enterprise Restructuring . 17

Eduard Babkin and Alexey Sergeev

Exploring Organizational Implementation Fundamentals 28
Martin Op ’t Land and Marien Krouwel

A Case Study on Enterprise Transformation in a Medium-Size Japanese
IT Service Provider: Business Process Change from the Ontological
Perspective . 43

Sanetake Nagayoshi

Explaining with Mechanisms and Its Impact on Organisational
Diagnosis . 58

Roland Ettema, Federica Russo, and Philip Huysmans

Transformation of Multi-level Systems – Theoretical Grounding and
Consequences for Enterprise Architecture Management 73

Ralf Abraham, José Tribolet, and Robert Winter

Requirements Engineering and Entropy issues

Identifying Combinatorial Effects in Requirements Engineering 88
Jan Verelst, Alberto Rodrigues Silva, Herwig Mannaert,
David Almeida Ferreira, and Philip Huysmans

Understanding Entropy Generation during the Execution of Business
Process Instantiations: An Illustration from Cost Accounting 103

Peter De Bruyn, Philip Huysmans, Herwig Mannaert, and
Jan Verelst

Author Index . 119

H.A. Proper, D. Aveiro, and K. Gaaloul (Eds.): EEWC 2013, LNBIP 146, pp. 1–16, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Value-Oriented Solution Development Process:
Uncovering the Rationale

behind Organization Components

João Pombinho1,2, David Aveiro3, and José Tribolet1,2

1 CODE - Center for Organizational Design & Engineering, INESC INOV,
Rua Alves Redol 9, Lisbon, Portugal

2 Department of Information Systems and Computer Science, Instituto Superior Técnico
Technical University of Lisbon, Portugal

3 Exact Sciences and Engineering Centre, University of Madeira, Funchal, Madeira, Portugal
jpombinho@acm.org, daveiro@uma.pt, jose.tribolet@inesc.pt

Abstract. Although significant progresses have been made in recent years re-
garding the goals of Enterprise Engineering, we find that the rationale behind
every component of an organization is still not systematically and clearly speci-
fied. Indeed, state of the art approaches to enterprise development processes do
not explicitly incorporate an essential dimension of analysis: value. This state of
affairs does not warrant a leading role in enterprise alignment.

We propose to address this issue by specifying a value-aware system devel-
opment process and a system development organization. To this end, we began
by applying DEMO to model the system development organization. Further-
more, the original Generic System Development Process (GSDP) was mod-
elled, and improvement points identified. Our main contribution is a revision of
the GSDP, combined with research on value modelling and enterprise architec-
ture that explicitly includes the teleological part of the system development
process.

The explicitation of the development process focusing on the value dimen-
sion, contributes to providing traceability and clarifying the rationale of each
organizational artefact. We believe that modelling this rationale systematically
will improve reactive and proactive change management through increased self-
awareness, improved scenario specification, objective evaluation and well-
grounded system development decisions.

Keywords: DEMO, GSDP, Value Modelling, e3Value, Solution Development.

1 Introduction

Business complexity and environmental change pace coupled with increasing ICT
support exponentially increases the entropy of business systems. The mechanisms
humans use to manage the complexity inherent to these systems and their dynamics
pose various challenges, as they are not based on transversal, coherent and concise
models. At the same time, cost reduction through effective reuse, reengineering and

2 J. Pombinho, D. Aveiro, and J. Tribolet

innovation being heavily demanded features from enterprises and their supporting
systems. Laudon notes that enterprise performance is optimized when both technology
and the organization mutually adjust to one another until a satisfactory fit is obtained
[1]. However, studies indicate as much as 90 percent of organizations fail to succeed
in applying their strategies [2].

Misalignment between the business and its support systems is frequently appointed
as a reason of these failures [1, 3]. Aligning Business and IT is a widely known chal-
lenge in enterprises as the developer of a system is mostly concerned with its function
and construction, while its sponsor is concerned about its purpose, i.e., the system’s
contribution. Also, the business vision of a system and its implementation by support-
ing systems is not modelled in a way that adequately supports the development and
evolution of a system and its positioning in a value network. A paradigm shift in the
way of modelling and developing systems must occur so that they can be increasingly
developed considering their dynamic context and formally addressing the rationale
behind value network establishment and system/subsystem bonding.

Formally integrating the notion of purpose into system development activities re-
quires addressing both the teleological and ontological perspectives in an integrated,
bidirectional way [4]. However, Engineering approaches are generally focused solely
on the ontological perspective [5]. By Enterprise Engineering is meant the whole body
of knowledge regarding the development, implementation, and operation of enterprises
[6]. DEMO has a particularly relevant role in this area both as ontology and as a
method. The Generic System Development Process (GSDP) is specified in DEMO’s
TAO-theory as the process by which a system is designed and implemented from the
specifications of its using systems. The GSDP is systematically defined, clarifying
normally ambiguous concepts like architecture, design, engineering and implementa-
tion. However, it lacks in instantiation and practical demonstration of usefulness.

This paper addresses the mentioned challenges by combining enterprise engineer-
ing and value modelling and is structured as follows: section 2 presents related work
and the problem at hand. Section 3 introduces a practical scenario that will be used for
reference through the paper. In section 4, we present our solution proposal and a more
detailed instantiation of the method, with localized analysis. The paper closes with
contribution summary and conclusions.

2 Related Work and Problem Statement

2.1 Related Work

In this section we introduce the enterprise engineering (EE) discipline and enterprise
ontology and DEMO, a theory and method of EE. Next, we present e3Value, an ap-
proach to value modelling.

2.1.1 Enterprise Ontology and DEMO
Enterprise ontology [6] includes a sound theory and a method for supporting enterprise
engineering. It goes beyond traditional function (black-box) perspective aiming
at changing organizations based on the construction (white-box) perspective.

 Value-Oriented Solution Development Process 3

Organizations are considered as systems composed of social actors and their interac-
tions in terms of social commitments regarding the production of business facts.

From the Transaction Axiom of Enterprise Ontology, we find that actors perform
two kinds of acts. By performing production acts (P-acts), the actors contribute to
bringing about and delivering services to the environment. By performing coordination
acts (C-acts), actors enter into and comply with commitments. An actor role is defined
as a particular, atomic ‘amount’ of authority, viz. the authority needed to perform pre-
cisely one kind of production act. P-acts and C-acts occur in generic recurrent patterns,
called transactions. Every transaction process is some path through this complete pat-
tern, and every business process in every organization is a connected collection of such
transaction processes [6].

From the Distinction Axiom of Enterprise Ontology’s PSI-theory, we find that we
can divide all acts of an organization in 3 categories - ontological, infological and data-
logical, respectively related with the 3 human abilities: performa (deciding, judging,
etc.), informa (deducing, reasoning, computing, etc.) and forma (storing, transmitting,
etc.). By applying both axioms, Enterprise Ontology’s Design and Engineering Meth-
odology for Organizations (DEMO) is able to produce concise, coherent and complete
models with a dramatic reduction of complexity.

Unlike other approaches, DEMO makes a very strict distinction between teleology,
concerning system function and behaviour – the black-box perspective – and ontology,
about its construction and operation – the white-box perspective [7]. These perspec-
tives are embodied in the Generic System Development Process (GSDP), represented
in Figure 1. It begins with the need by a system, the Using System (US), of a support-
ing system, called the Object System (OS).

Fig. 1. Generic System Development Process [6]

From the white-box model of the US, one determines the functional requirements
for the OS (function design), formulated in terms of the construction and operation of
the US. Next, specifications for the construction and operation of the OS are devised,
in terms of a white-box model (construction design). The US may also provide con-
structional (non-functional) requirements. Choices are then made with each transition
from the top-level white-box model towards the implementation model. However,
nothing is prescribed about the rationale behind these choices. System design deci-
sions, either implicit or explicit, remain solely, and certainly not forever, in the minds

4 J. Pombinho, D. Aveiro, and J. Tribolet

of the participants in the process. The sheer complexity can quickly cross the limits of
unsupported human handling. It may then become short of impossible to know the
rationale of past decisions, its impacts and dependencies in designing the to-be.

2.1.2 Developing Organizations with Control and G.O.D Sub-organizations
Aveiro took a step towards instantiating the GSDP by applying DEMO to specify the
models of the sub-organizations responsible for handling change caused by excep-
tions. In the control sub-organization [8], the viability of a system is specified by a set
of measures and respective viability norms that can be periodically checked against
the operational status. If such norms are violated, a dysfunction handling mechanism
is triggered. If the exception that causes the dysfunction to the norm is expected, solu-
tions that have previously been identified in anticipation are applied and evaluated for
solving the problem. If the cause is unexpected, an organizational engineering process
(OEP) must be started, that occurs in the scope of another sub-organization, the
G.O.D. organization [9], responsible for specifying and implementing change that
will solve or circumvent the unexpected exception causing a dysfunction. The solu-
tion may be new organizational components (e.g., new norms, new actors, processes
and rules, etc.) or just (re-)allocation of human or IT resources.

2.1.3 Value Modelling – e3Value
There are many classifications of organizations, according to their composition and
objectives, including: private, public, political, business, educational, healthcare, non-
profit, etc. All organizations have in common bringing about value to their
environment, either directly or indirectly, so value is an unifying concept. Also, Value
Modelling was selected as it is increasingly recognized that the concept of value
assists in improving stakeholder communication, particularly Business and IT [10].

e3Value [11] is part of e3family, a set of ontological approaches for modelling
networked value constellations. It is directed towards e-commerce and analyses the
creation, exchange and consumption of economically valuable objects in a multi-actor
network. In e3Value, an Actor is perceived by his or her environment as an economi-
cally independent entity, exchanging Value Objects. An enterprise is modelled as an
actor in a value network, where the demand and offer market concepts are a natural
consequence of the economic context of Value Objects.

As will be presented in section 4, we propose applying e3Value to improve system
and subsystem value modelling: inside the boundaries of organizations, as opposed to
applying it solely to e-commerce relations between formal organizations.

2.2 Problem Statement

Looking at previous efforts on formalizing organization development, one question
that comes to mind is: what are the criteria for generating new organizational compo-
nents? In [12] generic acts of monitoring, diagnosis and recovery are used to specify
the rationale behind change. But such categorization is quite generic and does not
explicitly capture an essential dimension of analysis: value. As an example, we can
think of a viability norm as the minimal number of movie loans per month at a video

 Value-Oriented Solution Development Process 5

store. In practice, this is an economic condition for having minimal profit required for
sustained survival and growth of Watch-it business, the generic and main value condi-
tion for the company. However, if only a “local” perspective is taken during viability
norms specification, global, combined effects of these and other value drivers are
missed. Still, broader rules can be applied and the combined effect of drivers can be
calculated and set as a wider rule. But even so, the very structure of the organization
and the reasoning behind these rules may not be precisely captured.

We hypothesize that these rules are set during the implementation of not only reac-
tive (the focus of GOD) but also proactive and evolutive changes of the organization.
Such rules must not only conform to but justify its structure as there is a bidirectional
relationship between value conditions, value network and the organizational structure
as well as the resources needed to “implement and run it”.

During a system development process, the designed system/subsystem relations are
a result of choices between different solutions for intermediate and possibly intercon-
nected sub-problems. Such sub-solutions can and should be modelled as individual
system development efforts, preserving the modularity that allows for rigorous model-
ling and tracing of the rationale behind these intermediate choices. By defining a for-
mal model of the development process, the relations between systems and
sub-systems can be made explicit as problem/solution pairs, thereby explicitating the
nature of these relations and flattening the system structure, while preserving rational
structure as it will be explained in section 4.2.

In order to clarify our solution proposal to these issues, we chose to model the sys-
tem development organization. It seemed appropriate to apply DEMO to the GSDP
itself, as a system development organization, and defining its own ontological model.
The results were then combined with previous research on value modelling [4, 13].

In the following sections we explore the reasoning just presented and research re-
sults in two phases. The first, intended as a formalization of the GSDP as defined in
[6]. The second phase is a revision of the GSDP to include the teleological part of a
given system development process.

3 Unimedia Case: Remote Internet Customer Support

Unimedia is a quadruple-play operator (television, internet, fixed voice and mobile
voice) with a large customer base. Customers may have a combination of services and
some services require customer premises equipments (CPE). These equipments
amount to a relevant part of customer support, particularly for the internet service.
The remote customer support organization is described by the following narrative:

In the case there is a perceived malfunction by the customer, she can contact the call
center directly to identify and solve the issue. After calling the support number, her
call is handled by an Interactive Voice Response (IVR) system. IVR allows customers
to interact with the company via telephone keypad or by speech, so they can service
their own inquiries by following the predefined process or, eventually, get redirected
to a human operator. The client identifies by dialling the national ID number. Addi-
tional identification information can be requested for cross-check later in the call if

6 J. Pombinho, D. Aveiro, and J. Tribolet

there are relevant actions to be taken. Following, a diagnosis process is carried on.
The diagnosis can be at customer side (e.g. check the modem lights) or at the provider
side (e.g. check service provisioning status). After a diagnosis is established, a solu-
tion is attempted. Again, the solution can be at the customer side (e.g. reset device) or
at the provider side (e.g. force firmware update). The call ends after reaching a solu-
tion or, if it is not successful, by requesting field service.

Fig. 2. Unimedia Remote Internet Support Actor Transaction Diagram (ATD)

Following the alignment process described in [14], an extension to the Transaction
Result Table (TRT) was proposed, including the concepts of Value Object (VO) and
Value Transaction. The resulting value model is shown in Figure 3.

Table 1. TRT extended with Value Object and Value Transaction

 REMOTE INTERNET SUPPORT ORGANIZATION

CA01

support
requester

solve problem

T01

problem solver

A01

specify diagnosis

T03

observe provider
side symptoms

T05

observe customer
side symptoms

T04

iden�fy customer

T02

apply provider side
solu�on

T07

provider side
symptom
observer

A05

diagnosis
specifier

A03

provider side
solu�on
applier

A07

execute field
service

T08

CA02

field service
executor

apply customer
side solu�on

T06

 Value-Oriented Solution Development Process 7

Fig. 3. Value model for Remote Internet Support scenario

The description of the process and benefits of aligning value and ontological mod-
els exceeds the scope of this paper and is presented in [13, 14]. Still, a brief example
of contributions from both sides follows.

Some clarifications resulting from aligning ontology models based on value were
the explicitation of value activities. For instance, as part of getting free remote cus-
tomer support, the customer must provide “eyes & hands” to get support eligibility,
which is the VO. Actually this is company policy but was missing from the narrative
and was identified due to the notion of economic reciprocity from e3value – the trans-
actions must have at least an inbound value port and an outbound value port. Also,
note that CS symptom and CS action are relevant VOs because they are intermediate
results for their respective solution chains: diagnose problem and solve problem.

On the opposite direction, the main contribution of ontological analysis is that so-
cial interaction theory and, particularly, the transactional pattern allow checking the
value model for completeness and consistency. One example is testing the value ob-
ject exchange over the complete transactional pattern, with possible impacts on (re-)
specification of value objects and interfaces, e.g., what happens if a customer declines
performance of local diagnosis?

4 Improving the GSDP - Introducing Purpose and Value

4.1 Applying DEMO Methodology to the GSDP

We define a solution to a problem as the production of a determined result, which
generally involves investment of resources (time, money, effort, etc.) by the Object
System (OS) and generates value for some stakeholder, the Using System (US). By
asking the solution requester to define the construction of the US and its value model,
additional insight can be derived from its specification. This insight can change the

8 J. Pombinho, D. Aveiro, and J. Tribolet

problem or dissolve it altogether. However, the entry point of the GSDP, i.e., the ori-
gin of the system development request, is not sufficiently clear in the original model.
To overcome this issue, we defined the Solution Development Organization (SDO),
presented in Figure 4.

In our view, the description originally provided for the GSDP was not ontologi-
cally complete and some adjustments were in order to obtain a coherent model of the
SDO. Particularly, we defined a recurrent provide solution transaction (N+1) as a new
solution development cycle where the current OS assumes the role of US and a new
OS is being developed so that its function serves the construction of the US. This
transaction is represented by the link between A03 and T01 and is crucial for explicit
multi-cycle solution development, i.e., function/construction alternation.

Fig. 4. Solution Development Organization – ATD

The process begins with an external request to provide a solution. In this case, Un-
imedia’s Head of Customer Support requests a solution for reducing costs, following
a decision by the board that their internet support costs are to be reduced by at least
20%. The solution manager asks the requester to specify the Using System value
model, which is critical to identify rational solutions. In this case, the requester
produces a value model, showing that the largest costs come from the calls that get
redirected to human operators. The solution manager then requests that the solution
development manager specifies a solution list to produce the result requested, in the
context of the US value model. The specify results transaction is the creative step of

 SOLUTION DEVELOPMENT ORGANIZATION

CA01

solu�on
requester

provide solu�on

T01

solu�on
manager

A01

solu�on
development

manager

A03

specify solu�on list

T03

specify result

T04

select solu�on

T09

implement solu�on

T10

specify OS value
model

T05

specify US value
model

T02

value manager

A11

manage run�me
value model

T11

specify OS
construc�onal

model

T07

specify OS
func�onal model

T06

specify OS
implementa�on

model

T08

implementer

A10

engineer

A08

construc�onal
designer

A07

func�onal
designer

A06

value designer

A05

result specifier

A04

 Value-Oriented Solution Development Process 9

this process, where different ways of producing the required result (solution) are iden-
tified. For instance, one idea would be to recruit cheaper operators; another would be
that the less calls were redirected to the human operators. For each result, the value
model and functional model are specified in sequence. Next, the constructional model
is built, where transactions and actors are specified. In this case, the result would be to
lower the number of redirections to expensive human operators by 20%.

If there is a dependency in producing the result, then another solution development
process is triggered, with the solution development manager requesting a solution for
that problem. The current OS is repositioned, assuming the role of US in the new
development cycle. For instance, the dependency can be to find a solution to provide
additional checks and redirections to avoid costly human operators whenever possi-
ble. Such a request would be made by the level 1 solution provider to level 2 provid-
ers. For each crossing of these levels, a new GSDP iteration takes place. Along each
single thread of a solution chain, the alternation between each pair of levels is de-
scribed by Dietz and Hoogervorst as function/construction alternation [6]. A set of
such iterations is commonly performed implicitly inside a single GSDP, and thereby
kept from being adequately modelled by the explicit application of functional,
constructional and architectural principles.

When the set of known solutions is considered satisfying by the solution manager,
it requires that the solution requester elects a solution from the presented alternatives.
The elected solution is implemented and its value proposal is periodically monitored
by the value manager. If an inconsistency is found, the provide solution transaction is
invoked to address the gap, presented as an economic viability problem.

4.2 The Method at Work: Value-Driven Cost Reduction

We now present the method inherent to the solution development organization. This
generic method applies to both a bootstrapping setting or to an ongoing change.

Fig. 5. VoSDP - Method for practical application

Establish Problem
• Specify Value Model
• Specify Ontological

Model
Define Solution Scenarios
• Result
• Value Model
• Ontological Model
• Iterate and Align

Select Solution
Scenario

• Compare Value Models

Implement Solution
• Implement organization
• Assign subjects to actors

Evaluate Solution
• Validate runtime Value Model
• Identify gaps

10 J. Pombinho, D. Aveiro, and J. Tribolet

I - Establish Problem

Revisiting our example, let us begin with the initial request. The fact that the investors
are the requester means they must come into play explicitly in the value model. The
first step is to represent the as-is set. Due to space limitations, a simplified generic
value model of a private, for-profit enterprise is presented in Figure 6.

Fig. 6. Generic value model of IT-enabled for-profit enterprise

Considering the value model in Figure 6, the request can be reformulated as im-
proving the investor balance (the real sought-after result). In this simple model, the
equation for an annual period is: – –
The result can be attained by reducing the expenditure or finding alternative ways of
generating value, such as increasing revenue (relating with the customer actor) or
decreasing support costs (relating with the IT actor). Somewhat surprisingly, as we
are about to see, the choice was increasing investment and IT OPEX costs.

II - Define Solution Scenarios

After clarifying the problem, the solution manager starts a solution development cycle
that returns a list of possible solutions in a reasonable period of time. Please note that
modelling the value of the solution development process itself and, therefore, obtain-
ing a consolidated value model that takes into account return on modelling effort
(ROME) can be done by using the same methodology but exceeds this paper’s scope.

One obvious solution, which is exists in most situations, is to leave everything as it
is. By default, this represents the baseline scenario. The solution development man-
ager is to identify additional scenarios and begins as a mostly creative endeavour of
identifying results/value objects that make up the following nodes on the value chain
for obtaining the original result. In our example, it is necessary to know the cost struc-
ture of the business actor from Figure 6. For simplicity and space economy, let us
consider that Figure 2 is a complete model of the business actor. In this case, it turns
out that the problem solver stands out by a large margin while analyzing the transac-
tional costs of the actors (part of the e3Value model). The fact that the ontological
model of the organization does not allow concluding this is no surprise as it abstracts

 Value-Oriented Solution Development Process 11

implementation. On the other hand, the value model also has an invariant perspective
but it is complemented with selected implementation-level constructs. In this perspec-
tive, it is possible to include parameters that are implementation-level value estimates.

Returning to the example, the transactional costs of the problem solver are mostly
due to the time the human agent spends in 1) initial call handling, i.e., identifying the
customer and 2) filtering away exceptions to normal diagnosis.

ORGANIZATION A

CA01

support
requester

provide solution

T01

observe customer
side symptoms

T04

identify customer

T02

execute field
service

T08

CA02

field service
executor

CUSTOMER IDENTIFIER
ORGANIZATION

SUPPORT CONTEXT
IDENTIFIER ORGANIZATION

identify customer

T12

identify support
context

T13

US (N) OS (N)

US (N+1) OS (N+1)

Fig. 7. Recursive SDP cycles for addressing identified problems

As represented in Figure 7, two (layer 2) system development processes (SDP) are
started by the solution development manager (layer 1) with the request of reducing
human operator time by each of the conditions mentioned above. The value model is
already clarified, as it previously existed at an adequate detail level to specify the
problem scope in a way that can be related to the ontological model.

The problem related to condition 1 can be solved by using existing CRM services
to identify a customer by a set of keyed-in data that is sent to the IVR system via
Dual-Tone Multi-Frequency (DMTF).

The problem related to condition 2 can be solved by using existing services that,
based on the customer address and portfolio, can identify situations that constitute
exceptions to the scope of the remote internet support system. For instance, Service
Management ticketing system services can identify if there is a common problem in
the geographical area of the customer service address/cell, e.g., a power blackout or a
cut backbone. In these cases, there is no added value in handling the call to a human
operator, so an automated vocal message that describes the situation and provides
expected resolution time allows ending the call without resorting to a human agent.

Note that, in the case of condition 1, the identify customer transaction already ex-
ists and, despite being executed by the customer it is still problematic. The issue is in
the complexity of the accept phase of the transaction pattern. By splitting the initiat-
ing actor of the transaction, it is now possible to allocate different subjects that can

12 J. Pombinho, D. Aveiro, and J. Tribolet

execute more efficiently. It can be argued that these solutions are simple automations
and do not change the construction, being solely implementation choices. We are
aware that these conditions are of infological nature but to implement each solution, it
is necessary to add an actor to the construction. This actor has its own business with
service levels and responsibilities, which is the same as saying we are dealing with a
US and OS both at the B-level so it is a matter of relativity, as discussed in [4].

III - Select and Implement

In order to rationally select solutions scenarios, objective criteria must be defined. To
this end, using e3Value it is possible to assign valuation formulas to value object
transfers through value ports. There are two types of value objects: 1) money objects,
when the amount transferred can be objectively stated and observed; and 2) non-
money objects: the value is subjective, meaning actors can disagree about the amount
of economic units they assign it.

While non-money objects can be important for design and impacts analysis, there
should be an effort to monetize costs/benefits to allow financial analysis. The tech-
niques and theory for doing so are out of the scope of this paper. Nevertheless, it is
worth noting that, seemingly, the value model creation by itself is a step forward cre-
ating consensus and improving objectivity.

Besides the valuation of individual transactions on each value port, e3Value de-
fines the concept of expenses which contribute to the economic viability analysis but
are not explicitly modelled as value exchanges (e.g., employee costs).

• Variable expenses – occur multiple times per value model, depending on the
transaction volume and are assigned to value ports, being useful for model-
ling operational expenditure (OPEX);

• Fixed expenses – occur only once per period, e.g. monthly wages, used for
simplification, also useful for modelling OPEX;

• Investments – a particular fixed expense, occurring only once per time series
(scenario) and therefore useful for modelling capital expenditure (CAPEX).

e3Value allows specifying value model components using specific attributes that
make the profitability sheets directly derivable from the model. Table 2 and Table 3
represent simplified annual profitability sheets for both scenarios, where value port
details have been excluded.

Table 2. Profitability sheet for scenario A

 Value-Oriented Solution Development Process 13

Table 3. Profitability sheet for scenario B

For the sake of illustration of the concepts of this paper, we chose to represent only

the cost stream, assuming stable customer revenue. Out of the 1,5M customers, based
on historical data we considered that 900K have internet services and they call for
support 1,2 times/year on average. We assume the implementation of the new actors
has a CAPEX of 30 K' and OPEX of 2,4 K', allocated in halves to each. After im-

plementation, the number of calls handled by problem solver has reduced by 15% and
the average support call duration for this actor lowered from 10 to 8 minutes because
of effectively reduced support scope due to early context clarification.

In this particular situation, the option is clear after comparison of the value models.
Selecting scenario B is relatively straightforward, as there is an interesting business
case versus scenario A. Scenario B represents an investment with a payback of 6
months and, onwards, a positive impact of 5,7 K'/month versus scenario A. It is

noteworthy that the existence and relevance of an investor actor is formally required
because it is included in overall value model. Obviously, there may be different sce-
narios and additional analysis with impact on their definition may be called for,
resulting in additional iterations. For instance, the investor may try to find better solu-
tions to invest his money and get payback in less than 6 months.

In this example we left out using time series, a concept that directly addresses the
time variable and establishes value models for specific consecutive time periods. This
view is useful not only for business case specification over time but also to align ex-
pected value production with solution architecture and construction roadmaps.

The relevant aspect of implementation we want to make clear, besides its techni-
calities, is that the implementation of the artefacts is also accompanied by putting the
business model itself into operation (production environment). We refer to this as a
live business model, in opposition of using it solely for evaluation and decision pur-
poses early in the process. This means that the value model is now an artefact which
is controlled by a specific actor, value manager. The value manager compares opera-
tional reality to the specification in the model and may decide to request the problem
solving organization to address a potential gap. While the detailed specification of
how this comparison is carried through is out of the scope of this article, it is relevant
to note that it is enabled by the existence of specific constructs to model value.

14 J. Pombinho, D. Aveiro, and J. Tribolet

IV - Evaluation

Evaluation happens both at the implementation review of a project and continuously
at runtime, in the spirit of the live business model concept. The exhaustive description
and analysis of this phase exceeds the scope of this paper, but it can be concluded that
the explicitation of the development process and the intermediate deliverables pro-
duced contribute to the availability and objectivity of evaluation mechanisms. In our
example, if the implementation of the services that provide information for identify-
ing support context is consistently unreliable, the projected benefits may not be
achieved and may even have negative results because of mistaken call redirections.
The advantage of having a business case integrated with the ontological and imple-
mentation models is that it is now possible to estimate the critical values that put
economic viability at stake and monitor them in anticipation via trend analysis.

Evaluation can also lead to exploring alternative ways that were not selected but
that were considered at an earlier phase of the solution development process. Leverag-
ing the prospective solutions concept presented earlier lets us, e.g., return to the origi-
nal solution request and the idea of increasing revenue. One way of contributing to
this value stream is by reusing the automated IVR-based solution just developed as a
channel for up selling/cross-selling. This repositions the customer care organization
from a cost center to a value center. The opportunity of having the customer in-line
can be taken advantage of by creating a discounted offer for these situations, to be
presented automatically (relatively inexpensive) and/or redirect the call to a sales
operator (more costly; more effective?). To explore this path, a new GSDP cycle is in
sight. Only after successful solving the customer problem, of course!

5 Conclusion

We found that in order to capture the rationale behind organizational artefacts, we
need additional constructs to those DEMO currently provides. The contributions of
this paper can be summarized as redesigning the GSDP and the corresponding SDO
for supporting multiple cycles and extending it with value concepts. Alternating
Value/Function/Construction in successive cycles was found relevant and applicable.

As explained on section 3, the main contribution of ontological analysis to the
match with value modelling is that social interaction theory and, particularly, the
transactional pattern, allows checking the value model for completeness and consis-
tency. Conversely, by integrating value modelling with ontological modelling we can
anticipate decisions based on projected implementation viability and leave a formal
trace of the decision rationale. Moreover, we exemplified how the resources used in
the implementation of the system may relevantly restrict the ontology of the system:
1) there are ontological subsystems purely constructed by some value condition and
2) the value specification must be part of the production world. Very frequently, parts
of the construction depicted in the ontological model depend on value constraints at
implementation level and to strive for fully implementation independent models
would be either unfeasible or a simplistic approach with unuseful models as a

 Value-Oriented Solution Development Process 15

result. Therefore, we see ontological models not as implementation independent, but
rather implementation abstracted.

The benefits from these contributions go beyond the simple support system auto-
mation and rest on the capacity to model the essentials of the businesses involved in
their commonalities and differentiators. Each variation point of a business area places
demands on the construction of the organization providing these services. These ser-
vices are valued distinctly by different customer types and this value should be ac-
tively managed in articulation with the construction. In turn, they allow exploring
synergies through reutilization of solutions and increased insight given by explicitat-
ing the intermediate artefacts of the solution development process.

For all scenarios considered, even if the solution development step is not com-
pleted for some reason, e.g., lack of investment capability or analysis time, every
deliverable is kept in association with the problem specification. While this is some-
how obvious for complex deliverables, such as value models, even a simple enumera-
tion of results in a hypothetical chain, with generalization or specialization of the
value objects, represents prospective solutions that can be revisited later on.

As it can be seen from the example, there is no magic bullet regarding creative so-
lution hypothesizing. As a practical observation and clarification, our method allows
domains experts to be involved by the responsible actors in both the solution devel-
opment and selection transactions. Some mechanisms based on knowledge about
prospective or used solutions, for instance generalization/specialization of value ob-
jects may be used as a starting point. Still, there is no greater ambition than to provide
useful tools for the human mind to do its job.

References

1. Laudon, K.C., Laudon, J.P.: Management Information Systems: Managing the Digital
Firm. Prentice Hall (2011)

2. Kaplan, R.S., Norton, D.P.: Strategy Maps: Converting Intangible Assets Into Tangible
Outcomes. Harvard Business School Press, Boston (2004)

3. Henderson, J.C., Venkatraman, N.: Strategic alignment: leveraging information technology
for transforming organizations 32(1), 4–16 (1993)

4. Pombinho, J., Aveiro, D., Tribolet, J.: Towards Objective Business Modeling in Enterprise
Engineering – Defining Function, Value and Purpose. In: Albani, A., Aveiro, D., Barjis, J.
(eds.) EEWC 2012. LNBIP, vol. 110, pp. 93–107. Springer, Heidelberg (2012)

5. Op ’t Land, M., Pombinho, J.: Strengthening the Foundations Underlying the Enterprise
Engineering Manifesto. In: Albani, A., Aveiro, D., Barjis, J. (eds.) EEWC 2012. LNBIP,
vol. 110, pp. 1–14. Springer, Heidelberg (2012)

6. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer (2006)
7. Dietz, J.L.G.: Architecture - Building strategy into design. Netherlands Architecture Fo-

rum, Academic Service - SDU, The Hague, The Netherlands (2008)
8. Aveiro, D., Silva, A.R., Tribolet, J.: Control Organization: A DEMO Based Specification

and Extension. In: Albani, A., Dietz, J.L.G., Verelst, J. (eds.) EEWC 2011. LNBIP,
vol. 79, pp. 16–30. Springer, Heidelberg (2011)

16 J. Pombinho, D. Aveiro, and J. Tribolet

9. Aveiro, D., Silva, A.R., Tribolet, J.: Extending the Design and Engineering Methodology
for Organizations with the Generation Operationalization and Discontinuation Organiza-
tion. In: Winter, R., Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 226–
241. Springer, Heidelberg (2010)

10. Cameron, B., Leaver, S., Worthington, B.: Value-Based Communication Boosts Business’
Perception of IT. Forrester Research (2009)

11. Gordijn, J.: Value-based requirements Engineering: Exploring innovatie e-commerce
ideas. Vrije Universiteit Amsterdam, Amsterdam (2002)

12. Aveiro, D.: G.O.D. (Generation, Operationalization & Discontinuation) and Control
(sub)organizations: A DEMO-based approach for continuous real-time management of or-
ganizational change caused by exceptions. UTL, Lisboa (2010)

13. Pombinho, J., Tribolet, J.: Modeling the Value of a System’s Production – Matching
DEMO and e3Value. In: 6th International Workshop on Value Modeling and Business On-
tology, Vienna, Austria (2012)

14. Pombinho, J., Aveiro, D., Tribolet, J.: Business Service Definition in Enterprise Engineer-
ing - A Value-oriented Approach. In: 4th Workshop on Service Oriented Enterprise Archi-
tecture for Enterprise Engineering, Beijing, China (2012)

H.A. Proper, D. Aveiro, and K. Gaaloul (Eds.): EEWC 2013, LNBIP 146, pp. 17–27, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Towards Developing a Model-Based Decision Support
Method for Enterprise Restructuring

Eduard Babkin and Alexey Sergeev

National Research University – Higher School of Economics
Dept. of Information Systems and Technologies,

Bol. Pecherskaya 25,
603155 Nizhny Novgorod, Russia

eababkin@hse.ru, aisergeev@yahoo.com

Abstract. In modern world enterprises need to be agile in their operation and
structure to react to changes quickly. One of the open questions here is how to
develop the enterprise, or, to be more precise, if enterprise needs to be
developed, and if yes, in which way. In this research we are focusing on the
case when enterprise stakeholders understand the need of enterprise
development, have ideas for that, and they need decision support method to
understand if enterprise restructuring is likely to be successful and cost
effective. Another covered topic is how to choose the best option for
restructuring from variety provided. In this paper we describe the developed
decision support method which combines DEMO methodology and transaction
costs theory for quantitative costs estimation. To make this method applicable
and reproducible we proposed few enhancements to DEMO notation.

Keywords: DEMO methodology, transaction cost theory, decision support,
enterprise restructuring.

1 Introduction

In modern world enterprises should react to changes quickly, be agile and increase
velocity in their actions [4, 5]. Enterprises should evolve to secure their position in the
market, to take new opportunities. One of the problems here is how to define which
changes are necessary to apply to the structure of the enterprise, to its business
functions and operations. To be more precise, often enterprise needs to restructure
itself - either to split itself into parts or to merge with another company.

Several works were done [8, 9] which apply principles of Enterprise Engineering
[5], Enterprise Ontology and DEMO [2, 3] to rigorous studies of structural changes
during enterprise splitting or merging. However there is still a lack of quantitative
methods which facilitate comprehensive and objective evaluation of several
alternatives possible for reengineering of enterprise structure.

The goal of this research is to develop a reusable method of decision support for
defining the best solution for splitting or merging of the enterprise. The idea is to use
combination of DEMO methodology and transaction costs theory to build a uniform

18 E. Babkin and A. Sergeev

quantitative method to be used by enterprise decision makers to choose the best
option for splitting or merging from the variety identified. Comparing to other
methods, the method proposed in this work is the quantitative one, which means more
practical relevance for enterprises. To add to this, it introduces a usage of combination
of DEMO methodology and transaction costs theory, which have never been done
before.

The research is based on the empirical observations and data available from the
real-life case of a local car service company. In that case the company owners need a
reliable decision support method for choosing a direction of further business
development. As for the options, they see one way of splitting the enterprise and three
ways of creating new department within its structure. All this led to two separate
cases which needed to be worked out:

• Enterprise structure simplification. It includes spin-off of some departments
into separate legal entities to mitigate risks and costs, closing some
departments as unprofitable and non-relevant, and closing some
departments with vital functions to enter into a contract with another
company which will fulfil these functions to decrease costs and increase
overall business operations efficiency.

• Enterprise structure complication. It includes merging with another
company, and opening new department with new business functions.

To provide a reliable decision tool for stakeholders of the case we apply principles of
Enterprise Ontology and DEMO modelling together with developments of transaction
costs theory. As a result we came up with the proposal on how to enhance DEMO
notation and developed a method of costs estimation for changes of enterprise
structure. Our method consists of the set of actions which should be taken in order to
estimate the ease and costs of enterprise structure changes. This method is supposed
to be used in consulting by experienced enterprise modellers. To add to this, our
method can be programmed into software application to automate and simplify the
process of enterprise structure modelling and costs estimation.

In this article Section 2 describes the details of the case and the business context.
Section 3 shows the theoretical background for our research by briefly describing
DEMO methodology and transaction costs theory. Section 4 describes our proposals
to extend the notation of DEMO in order to include key principles of transaction costs
theory and costs estimation. In Section 5 our method of extended DEMO modelling
and decision making is presented. Section 6 contains practical results of application of
the proposed methods in the case of the car company. In the conclusion we outline
major results and open issues for further research.

2 Business Context

Car service company “TSS-Auto” is a small business enterprise employing 22 people.
It operates as a fully separate legal entity not dependant from any bigger company.
Services provided to customers include car repair, regular car maintenance (obligatory
by Russian law), colour matching and colouration, selling of car lubricants.

Towards Developing a Model-Based Decision Support Method for Enterprise Restructuring 19

Owners of a company requested help in choosing a way on how to develop their
enterprise any further. The reason for this lies in the situation when the core business
of a company could not be grown any further due to several constraints like lack of
experienced workforce, tough competition, and some others. So the owners decided to
optimize their costs and/or find the ways to enter into supplemental / accompanying
business. In other words, they needed a reusable method of decision support for
defining best solution for splitting or merging of the enterprise. They came with a set
of different thoughts about possible changes in the enterprise.

A meeting with enterprise owners was set in order to list all the possibilities for
company change, rank them and choose few most realizable from owners’ point of
view. The list included:

- Excluding car wash from the functions of the company. While this is the vital
function of the company (because one cannot start repairing or colouring the
car before it washed), owners are thinking about excluding this due to high
costs. The root cause for this lies in the fact that there are no water plumbing
exists to the company building. It means that company has to buy water
separately and deliver it to the premises, so it causes the high costs and poor
quality of car wash. The idea is to find a partner which locates close to the
company building and will be able to wash cars regularly. This case obviously
means enterprise structure simplification by closing one of the functions.

- Taking functions of car insurance agent. Car service is dealing with many
customers’ cars and has connections to insurance companies (servicing its
customers), so adding function of car insurance agent should be easy. But
company owners want to understand how it will map into current enterprise
structure and what the estimated costs for this action are. Choosing this way of
developments means enterprise structure complication by adding new function
/ department.

- Starting to sell auto parts directly to customers (which may mean becoming an
official / certified dealer for some of the auto parts manufacturer). Currently
company sells parts to customers indirectly – only then they are included into
repairing process. The idea is to start selling parts directly to customers, when
they can walk into some kind of shop and buy parts without requirement to
repair car in this car service. This change may be very serious actually,
because it requires creating new business relations to parts manufacturers,
hiring new people, etc. The request was to estimate costs and ease of
integration of this change into enterprise structure. Therefore, it means
enterprise structure complication.

- Starting to sell used cars. Whilst this business is close to car service for some
extent (some cars are ‘fully’ crashed, so many car owners are glad to sell it for
parts or for repairing and future reselling; both can be easier and more
effectively done by car service itself), it is also risky and money-consuming.
That is why company owners wanted to be as much informed as possible
about consequences of this change. It lies into the enterprise structure
complication case.

20 E. Babkin and A. Sergeev

Although the stakeholders do not consider directly an opportunity of merging with
another company such variant of actions should be included to the set of feasible
decisions. We will cover this topic in the theory part, and our proposed method should
be relevant for this case as well, but we cannot check it due to requirements from real
business case.

3 Theory Basis

Our research is based on two principal foundations, namely DEMO Enterprise
modelling and transaction costs theory (TCT).

DEMO (Design & Engineering Methodology for Organizations) is a methodology
for the design, engineering, and implementation of organizations and networks of
organizations. The entering into and complying with commitments is the operational
principle for each organization. These commitments are established in the
communication between social individuals, i.e. human beings [1].

In DEMO the basic pattern of a business transaction is composed of the following
three phases. An actagenic phase during which a client requests a fact from the
supplier agent. The action execution which will generate the required fact. A
factagenic phase, which leads the client to accept the results reported.

Basic transactions can be composed to account for complex transactions. The
DEMO methodology gives the analyst an understanding of the business processes of
the organization, as well as the agents involved. The analysis of models built on the
methodology of DEMO allows the company to obtain detailed understanding of the
processes of governance and cooperation and serves as a basis for business
reengineering and information infrastructure development, consistent with the
business requirements.

DEMO models are very compact and take no more than a sheet of paper. Analyst
does not need any special tools, in some cases a pen and paper is enough.

Each DEMO model has practical importance and useful for the analysis of the
whole organization. The analyst can build all five DEMO models for each business
process, but the study found out that the process model, the action model and the state
model do not bring appreciable benefits in terms of our research.

The interaction model (IAM) is the most compact ontological model. It shows area
of responsibility of actors and the transactions that are important in terms of business
operation. That is why we choose IAM for the modelling of the case in our research.
All the cases of DEMO usage are shown in the next sections of this paper.

One of the features of our decision support method described further is the usage of
transaction costs theory (TCT) for enterprise restructuring and operation costs
estimation. In economics and related disciplines, a transaction cost is a cost incurred
in making an economic exchange (in other words, it is the cost of participating in a
market). Usually transaction costs are divided into three rather broad categories [6, 7]:

1. Search and information costs. As included in the name of this type of costs,
they are related to searching, obtaining and using information. For example,
price or market research can be included here, as well as costs incurred in

Towards Developing a Model-Based Decision Support Method for Enterprise Restructuring 21

determining if some good has required quality, available for order, has the
acceptable price, etc.

2. Bargaining costs. These are the costs required to come to an agreement with
the other party (parties) to the transaction, creating an appropriate contract
form, etc. It may include bills for business meals with partners, payments to
lawyers for contract form preparations, and so on.

3. Policing and enforcement costs. These are the costs of making sure the other
party is following the terms of the contract, and in case of any violation it
includes taking appropriate actions. This type of costs includes monitoring of
work processes (if they are in accordance to the contract), all fees associated
with lawsuits, etc.

Literature related to transaction costs theory highlighting many examples of
transaction costs types which may occur during enterprise operation. Also needs to be
said that some types of transactions costs can be typical for selected country, business
segment of enterprise operation, period of economic cycle, etc. However, there is still
an open question how to estimate transaction costs correctly. Further in this paper we
propose ways on how we can guarantee our transaction costs estimation.

4 Integration of DEMO and TCT in the Proposed Method

To be effective and accepted by company stakeholders the developed decision support
method should radically simplify estimation of costs for enterprise restructuring and
future operations in case new functions were included. Overall, we assume that we
need to estimate cost of restructuring itself (using theory of transaction costs), and
then costs of operation of new enterprise structure (to understand if it is better than
initial one in the long term).

From that point of view DEMO is good for separating transactions and actor roles
for execution of each transaction. Therefore it provides good background for
separation of costs of each transaction and using transaction costs theory at the same
time.

The labour cost is a big part of cost-of-production, so as the first step of developing
our new method of decision support we propose to estimate changes within actor role
and function role enterprise structure using the following table which we call “Actor-
Function Role Table”:

Table 1. Actor-Function Role Table

 Number of
employees

Average
salary

Actor_role_1 Actor_role_2 Actor_role_3

Function_role_1 2 23000 30% 70%
Function_role_2 3 36000 100%
Function_role_3 6 18500 10% 90%
Total cost 2*23000*0.3=13800 119100 132100

22 E. Babkin and A. Sergeev

Under “Function role” we understand employees’ roles as mentioned in their job
contract or as understood under their job responsibilities. Under “Actor role” we
understand actor roles as per DEMO methodology. As DEMO focuses on
construction of the enterprise, we need to elaborate more on the link between function
roles and actor roles as we understand it. Obviously, each employee has its function
role as described in its job contract or as understood by job responsibilities. At the
same time, each employee is fulfilling certain actor roles (either ontological,
infological or datalogical), and, as based on our experience, employees with the same
function roles are fulfilling the same actor roles. To add to this, each function role
usually matches few different actor roles. Based on this, we can find out the
percentage of work time each function role spends fulfilling certain actor role. It helps
to estimate costs in terms of employees’ salaries associated with each actor role.

Number of employees shows the number of people having certain function role,
whose average salary is mentioned in the next column.

Using this table we are able to calculate costs of each actor role in the organization
(for a period of a month, for example). Creating this table for the enterprise structure
before and after change is applied; we can compare the labour costs.

As the next step, we are able to estimate cost of each transaction (either
ontological, infological or datalogical) combining cost-of-production and transaction
costs theories. As a result of the exploration, we came with the following table to be
filled in (we call it “Transaction Cost Table”):

Table 2. Transaction Cost Table

Cost name Cost estimation
Cost of production (materials, electricity,
etc)

Can be calculated easily

Different kinds of transaction costs,
applicable for current situation

Probability/risk estimation in money
equivalent

Similar to that, using the theory of transaction costs, we can estimate costs of

changing enterprise structure (we call this “Restructuring Cost Table”):

Table 3. Restructuring Cost Table

Cost name Cost estimation
Hiring new people
Firing people
Payment to lawyer for creating contract
… + different kinds of transaction costs,
applicable for current situation

Towards Developing a Model-Based Decision Support Method for Enterprise Restructuring 23

During our research we observed two typical patterns in enterprise restructuring.
The first one is that after restructuring affecting many transactions and actor roles

(many transactions and actor roles are eliminated or otherwise – added) usually one
new transaction appears – “keeping enterprise operation in accordance to DEMO
model”. It means that after restructuring time and efforts need to be invested in
constant monitoring of how enterprise operates in relation to created DEMO model,
and some corrective actions sometimes need to be taken in order to correct actors’
behaviour and keep everything as planned.

The second pattern is the fact that when transaction is moved from inside
enterprise to enterprise border (which means that now collaboration between external
and internal actors is needed), many new risks, and therefore transaction costs
immediately appear, like risks of lawsuits (and as a result payments to lawyers as a
costs), risk of losing a partner (and therefore costs of searching for new partners), etc.

As a guarantee of the correctness of costs estimation in both types of tables above,
we can propose the following methods:

1. Costs are first estimated by 2 groups of experts separately, and then costs
estimations are compared. For the cases of contradictions both groups of
experts are working together in order to reach a consensus.

2. Using statistics data for the area of business operation of the enterprise in
order to get costs estimations using theory of mathematical statistics. The main
drawback of this approach is that not all the required data may exist or to be
publicly open for usage.

3. Using imitating modelling techniques for creating and running enterprise
model to estimate its behaviour and possible costs.

Car service

18000Rub500Rub

33000Rub7000Rub

198000Rub

Fig. 1. Example of enhanced ATD

24 E. Babkin and A. Sergeev

Methods proposed above can be used altogether in any combinations. In current
research we used combination of the methods 1 and 2.

After fulfilling all the tables above, we can map this info to Actor Transaction
Diagram or Organization Construction Diagram. To each actor role on the diagram
we put estimated costs of operation (per month/year), to each transaction we add
estimated costs of operation as well. To the organization border we add costs of
enterprise restructuring. Example (fragment of ATD):

This enhanced diagram explicitly shows costs associated with the changes to the
enterprise structure. Comparing diagrams for each change can be done much easier
and for less time.

5 Modelling Method

Based on our research, we propose a reproducible method for choosing the best way
of developing the enterprise – either simplification or complication of its structure.

Step 1. Company owners, management or analysts propose options on how it is
possible to change the enterprise from their point of view. This call should be made
from business side as the subject matter experts. As a result of this step we expect to
get the list of possible changes to the enterprise. Based on our experience,
brainstorming is the best technique to be used by company representatives to come up
with the ideas for changes. As a criterion for success we propose having the list of
possible changes to enterprise structure agreed by all stakeholders

Step 2. Meeting with stakeholders and subject matter experts to rank all
possibilities and choose only few of them for further development. People invited to
this meeting may be different from those who were proposing changes on the Step 1.
The main goal of the meeting is to discuss ease of implementation, opportunities and
outcomes associated with each possible change to focus modelling efforts only on
those changes which are the most relevant according to enterprise representatives. As
a result of this meeting we expect to define very limited list of structure changes to be
modelled. As a criterion of success we understand the short list of possible changes
agreed by all company stakeholders and business modellers.

Step 3. Ontological (and, potentially, infological and datalogical – depending on
the level of company requirements) model of the current enterprise structure is
created using DEMO methodology. As a result of this step we have Actor Transaction
Diagram (or Organization Construction Diagram) created for current enterprise
structure. This diagram needs to be verified with enterprise stakeholders. A success
criterion for this step is the diagram (either ATD or OCD) fully created and agreed
with enterprise stakeholders.

Step 4. The same models of enterprise are created for each potential structure
change. It means that on this step we need to create the same diagrams (either ATD or
OCD) for each potential enterprise structure after changes applied. Again, it needs to
be verified from business perspective with enterprise stakeholders. A success criterion
is the same as on the previous step.

Step 5. Applying extensions of DEMO model proposed in Section 3. On this step
we are supposed to estimate costs of restructuring of the enterprise and costs of
transactions after changes applied. As described in Section 3, the idea is to create

Towards Developing a Model-Based Decision Support Method for Enterprise Restructuring 25

comprehensive lists of possible costs including developments of transaction costs
theory. After such lists are created for both restructuring itself and for each
transaction which was affected by the change, next step will be to estimate all costs
that possible. Obviously, some costs can be estimated only by subject matter experts,
but the main goal of this step is to simplify costs estimation for enterprise
stakeholders as much as possible. A success criterion for this step is the completeness
of each list of costs, which means that no or minimum of cost types will be added to
the lists on the Step 6. Also, as a criterion of success for this step we propose
estimation of as many costs as possible before presenting to company stakeholders.

Step 6. Presenting results to company stakeholders and subject matter experts so
they can finalise costs estimation. On this step enterprise stakeholders and subject
matter experts are supposed to fill the gaps in the costs estimation to get the final
picture of costs associated with each change. As a result we get the final enhanced
ATD or OCD diagrams (as per Section 3) for each change. As a success criterion for
this step we propose having these diagrams fully ready for comparison on next step.

Step 7. Comparing initial enterprise structure and costs, and each enterprise
structure after change to choose the best solution based on ease and of implementation
and cost of future operation. Using enhanced ATD or OCD, we can compare initial
enterprise structure and each structure after change to understand all costs associated
with changes. It should lead to understanding which enterprise restructuring will be
affordable in current circumstances, will lead to reasonable addition to costs of
operation comparing to profits planned by enterprise stakeholders. As a result of this
step, the best way of changes and course of actions should be defined together by
company stakeholders and enterprise modellers to be implemented on the next step.
As a success criterion we propose the ease and comprehensiveness of comparison of
each case of changes.

Step 8. Implementation of the solution chosen under control of enterprise modeller
to keep all the changes as per planned enterprise structure. The participation of
enterprise modeller is needed to keep all changes within planned enterprise structure
to keep costs close to estimations. As a result of this step changes should be
implemented. A success criterion is to have final enterprise structure the same as
planned, and final costs as close to estimation as possible.

6 Application

In our case we achieved several practical results. Following our method, on Step 1
company representatives provided 9 ways of changing enterprise structure. Each
possible change was discussed and agreed by company stakeholders internally, and
then presented to researchers. On Step 2, during the meeting with enterprise
stakeholders, we chose 4 changes to be modelled (as described in Section 2). All four
possible ways of changes were agreed between company stakeholders and
researchers. On step 3 we created ontological model of the enterprise expressed in
Actor Transaction Diagram, which was verified by company owners. Enterprise
stakeholders were not requesting creation of infological and datalogical models in this
case. On step 4 we created four ATD diagrams for each potential structure change.
During this step we noticed that in case of enterprise structure complication it is easier

26 E. Babkin and A. Sergeev

to imagine that we are merging two enterprises. For example, in case of adding
functions of car insurance agent, it was easier to consider car insurance agent as a
separate enterprise first, create its ontological model expressed in ATD, and then
merge its ATD with initial ATD diagram of our enterprise adding necessary changes.
After that ATD diagrams were verified with company representatives. On Step 5 we
applied proposed enhancements to DEMO notation. Taking into account rather small
number of employees in the company under consideration, it was easy to fill Actor-
Function Role Table. Next we were able to fill Transaction Cost Table and
Restructuring Cost Table, except estimating few types of costs which required
knowledge of subject matter experts.

As the next step we are planning a meeting with company stakeholders to present
the results of our modelling and costs estimation efforts.

During our work on this case we noticed that many actions can be simplified and
automated by software tool. As such, this tool can include templates for proposed
enhancements to DEMO notation and the comprehensive list of transaction costs as
proposed in literature (so modeller can just choose applicable types of costs).

7 Conclusion

A new method of decision support during re-engineering of enterprise structure was
presented. This method combines DEMO and transactions costs theory for objective
quantitative evaluation of several alternatives during splitting or merging small or
medium enterprises in a complex business context. Applicability of the method
proposed was demonstrated in the case of real car company which faces business
challenges and needs re-engineering.

The proposed method has several positive features such as using DEMO
methodology for enterprise structure modelling, which consumes around 90% less
time comparing to other methods [1,2]. To add to this, our method is easily
reproducible and can be applied regardless business segment of the enterprise.

In comparison with other approaches (such as [3]) our original method uses
quantitative metrics to estimate enterprise restructuring and future operation costs,
which leads to better understanding by enterprise stakeholders and more accurate
planning of changes.

During development of the method the original notation of DEMO was modified in
order to include developed Actor-Function Role Table, Transaction Costs Table and
Restructuring Cost Table and was enhanced by modifying Actor Transaction Diagram
(or Organization Construction Diagram). It helps to graphically represent all the
changes and costs associated with enterprise restructuring.

As a way for future development of proposed method we consider developing
software tool which will help to automate and simplify the method application. It will
not also reduce enterprise modeller’s time for creating DEMO diagrams and
estimations costs, but will also give an opportunity to enterprise stakeholders to use
this tool in future by their own and not to involve 3rd-party enterprise modeller.

This work was supported by National Program of Research and Development
(State Contract # 14.514.11.4065).

Towards Developing a Model-Based Decision Support Method for Enterprise Restructuring 27

References

1. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg (2006)
ISBN-10 3-540-29169-5

2. Op ’t Land, M., Dietz, J.L.G.: Benefits of Enterprise Ontology in Governing Complex
Enterprise Transformations. In: Albani, A., Aveiro, D., Barjis, J. (eds.) EEWC 2012.
LNBIP, vol. 110, pp. 77–92. Springer, Heidelberg (2012)

3. Op ’t Land, M.: Towards Evidence Based Splitting of Organizations. In: Ralyté, J.,
Brinkkemper, S., Henderson-Sellers, B. (eds.) Situational Method Engineering:
Fundamentals and Experiences. IFIP, vol. 244, pp. 328–342. Springer, Boston (2007)

4. Op ’t Land, M.: Applying Architecture and Ontology to the Splitting and Allying of
Enterprises: Problem Definition and Research Approach. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM Workshops 2006. LNCS, vol. 4278, pp. 1419–1428. Springer,
Heidelberg (2006)

5. Op ’t Land, M., Proper, E., Waage, M., Cloo, J., Steghuis, C.: Enterprise Architecture, ch.
2. Springer (2009)

6. Commons, J.R.: Institutional Economics. American Economic Review 21, 648–657 (1931)
7. Cheung, S.N.S.: Economic organization and transaction costs. In: The New Palgrave: A

Dictionary of Economics, vol. 2, pp. 55–58 (1987)
8. Harmsen, F., Proper, H.A.E., Kok, N.: Informed governance of enterprise transformations.

In: Proper, E., Harmsen, F., Dietz, J.L.G. (eds.) PRET 2009. LNBIP, vol. 28, pp. 155–180.
Springer, Heidelberg (2009)

9. Proper, H.A., Op ’t Land, M.: Lines in the water: The line of reasoning in an enterprise
engineering case study from the public sector. In: Harmsen, F., Proper, E., Schalkwijk, F.,
Barjis, J., Overbeek, S. (eds.) PRET 2010. LNBIP, vol. 69, pp. 193–216. Springer,
Heidelberg (2010)

Exploring Organizational Implementation

Fundamentals

Martin Op ’t Land1,2,3 and Marien Krouwel1,4

1 Capgemini Netherlands, P.O. Box 2575, 3500 GN Utrecht, The Netherlands
{Martin.OptLand,Marien.Krouwel}@capgemini.com

2 Antwerp Management School, Sint-Jacobsmarkt 9-13, 2000 Antwerp, Belgium
3 Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

4 University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium

Abstract. To survive and even thrive on environmental and internal
change, organizations have to be agile. Though change occurs in orga-
nizational essence, such as products and services delivered, most of the
time change deals with different organizational implementations, such
as sourcing, order of working and distribution of tasks. To informedly
decide upon such organizational implementations, a systematic overview
of organization implementation variables is required, which is currently
not available. We drafted a list of organization implementation variables
from literature, and tested it against two different organization imple-
mentation descriptions of OMG’s EU-Rent case, using the DEMO model
for this fictitious car rental company as its implementation independent
essence. We found a list of 20 of such variables from literature, which was
extended in the two tests by another 10 variables. Using these variables in
Enterprise Engineering enables traceability in governing enterprise trans-
formations; moreover, we expect many of them to have the potential to
be generically supported by IT, thus enabling agile IT.

Keywords: DEMO, Agile Enterprise Engineering, Enterprise Ontology.

1 Introduction

As strategic and operating conditions become increasingly turbulent due to fac-
tors such as hyper-competition, increasing demands from customers, regulatory
changes, and technological advancements, the ability to change becomes an im-
portant determinant of firm success [1]. This ability is generally referred to as
agility, e.g., as summarized by Oosterhout [2]: “Business agility is the ability
of an organization to swiftly change businesses and business processes beyond
the normal level of flexibility to effectively manage highly uncertain and unex-
pected but potentially consequential internal and external events, based on the
capabilities to sense, respond and learn.”

Though change – as a consequence of external and internal events – occurs in
organizational essence, such as products and services delivered, most of the time
change deals with different implementations [3]. Typical organizational imple-
mentation choices include sourcing, order of working and distribution of tasks.

H.A. Proper, D. Aveiro, and K. Gaaloul (Eds.): EEWC 2013, LNBIP 146, pp. 28–42, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Exploring Organizational Implementation Fundamentals 29

To informedly decide upon such organizational implementations, a systematic
overview of organization implementation variables is required, which is currently
not available. Research in the agility domain appears to focus on black-box
variables – such as the type of events triggering change [4] or the measurement
of agility [5] – or on the transformation processes needed to bring about the
change [6]. Research in the agility domain about white-box variables is until
now restricted to the IT domain; e.g., Normalized Systems theory [7] proposes a
“Set of Anticipated Changes” for IT systems in terms of the (detailed) function
of an IT system, such as an additional data field or an additional trigger element.

We drafted a list of organization implementation variables from literature,
and tested it against two different organization implementation descriptions of
OMG’s EU-Rent case [8]. For this fictitious car rental company, we used its
DEMO model [9] as its implementation independent essence, since it remains
the same as long as the products and services of an enterprise stay the same.

We found a list of 20 of such variables from literature, which was extended in
the two tests by another 10 variables. Examples of these variables include (a) the
choice to combine or split actor roles in the work of an employee, (b) to apply
delegation and separation of functions, and (c) to apply a fixed order of working
in a process or allow steering of that order by the individual employee.

Explicitly using these variables in Enterprise Engineering enables traceabil-
ity in governing enterprise transformations. Also we expect many of them to
have the potential to be generically supported by IT, thus enabling agile IT.
For instance, when the choice how to combine or split actor roles in the work of
an employee (ad a) can be registered explicitly and in one place, all connected
software applications can use this information to change their – e.g., GUI and
security – behavior accordingly, potentially without the need for this software
to be reprogrammed when this choice is changing. Since changing (also orga-
nizational) implementation variables tend to have combinatorial effects [7], the
future potential for wider validation and application of this list is significant.

The remainder of this paper is structured as follows. Section 2 elaborates the
problem statement: what do we understand by implementation and agility, and
why is it relevant to find organization implementation variables. Section 3 de-
scribes the draft list of organization implementation variables from literature,
which is then tested in Section 4, using the two different organizational imple-
mentations of the EU-Rent case. Finally, Section 5 provides the conclusions as
well as directions for further research.

2 Problem Statement

In this section we will first introduce some definitions by explaining the Generic
System Development Process (GSDP) as defined by Dietz (Fig. 1). After that,
we will present our findings on existing literature about agility, events and
implementation.

30 M. Op ’t Land and M. Krouwel

2.1 Enterprises and Generic System Development Process

We define enterprise as a goal-oriented cooperative. The organization of an en-
terprise is a heterogeneous system, constituted as the layered integration of three
aspect systems, namely the Business (B) system, the Informational (I) system and
the Documental (D) system [10, p115]. The production of these systems concern
(B) original acts (material and immaterial), such as deciding, judging and creat-
ing, (I) informational acts, such as remembering, recalling and computing and (D)
documental acts, such as storing, retrieving, transmitting and copying.

Fig. 1. Generic System Development Process [11]

Any development process concerns two systems involved, the Object Sys-
tem (OS), and the Using System (US). The OS is the system to be developed;
the US is the system that will use the services (the functionality) offered by the
OS once it is operational. The development of the OS consists of a design, an en-
gineering, and an implementation phase. The design phase comprises a function
design and construction design. Function design, the first phase in the design
of the OS, starts from the construction of the US and ends with the function
of the OS. Function design delivers the requirements of the OS, or a black-box
model of the OS. This black-box model clarifies the behavior of the OS in terms
of (functional) relationships between input and output of the OS. This function
model of the OS does not contain any information about the construction of
the OS. Construction design, the second phase in the design of the OS, starts
with the specified function of the OS and ends with the construction of the OS.
Construction design bridges the mental gap between function and construction,
which means establishing a correspondence between systems of different cate-
gories: the category of the US (where the function of the OS is defined), and the
category of the OS. Construction design delivers an ontology, the highest level
white-box model of the OS. This white-box model clarifies the internal construc-
tion and operation of the system in terms of collaboration between its elements

Exploring Organizational Implementation Fundamentals 31

to deliver products to its environment. By an ontology or ontological model of
a system we understand a model of its construction that is completely indepen-
dent of the way in which it is realized and implemented. The engineering1 of
a system is the process in which a number of white-box models are produced,
such that every model is fully derivable from the previous one and the available
specifications. Engineering starts from the ontological model, produces a set of
subsequently more detailed white-box models and ends with the implementation
model. By implementation is understood the assignment of technological means
to the elements in the implementation model, so that the system can be put into
operation. By technology we understand the technological means by which a
system is implemented. A wide range of technological means is available, includ-
ing human beings and organizational entities, ICT artifacts (e.g., phone, email,
computer programs), and mechanical means. By implementation variables we
mean the dimensions in which organizational implementation choices are made.

As an enterprise consists of three integrated layers, it can be developed by
applying the GSDP three times [12]:

1. first the US is the (many times: commercial) environment in which the en-
terprise is going to be operational, and the OS is the B-organization of which
the functional model contains the services that the enterprise will deliver to
its customers [10, p77];

2. then the US is the B-organization, and the OS is the I-organization of which
the functional model contains the information services (e.g. reason, com-
pute, remember, reproduce) that the I-organization will deliver to the B-
organization [10, p114];

3. finally the US is the I-organization, and the OS is the D-organization of
which the functional model contains the documental services (e.g. store,
retrieve, copy, destroy, transmit) that the D-organization will deliver to the
I-organization [10, p114].

By applying GSDP for the enterprise as a whole (so three times), it is now
possible to systematically categorize impact of change. Change in environment
can be responded to by choices in function, which in turn will influence con-
struction on both ontological and implementation level. Similarly, changes in
the B-organization generally will influence the I- and D-organization, and the
other way around. We illustrate this by some examples of changes in a law:

– a law stating that one organization cannot provide both banking and insur-
ance services, affects the B-functional model;

– a law stating rules for granting a subsidy affects the business rules, i.e., the
B-ontological model;

– a law stating reporting obligations affects the way of providing information
and/or saving of data, i.e., the I-functional and D-functional model;

– a law stating the channels offered affects at least the implementation.

1 Engineering is meant here in the narrow sense of the term, contrary to its general
use in civic engineering, electrical engineering, mechanical engineering, etc.

32 M. Op ’t Land and M. Krouwel

Although one is obliged to adhere to legislation, law often leaves freedom of
choice. For example, if law states one must at least provide a non-digital chan-
nel, one is still free to choose between telephone and physical service desk (or
both). So, the change in law is an event in the environment, possibly but not
necessarily responded to by an organization with a change in the function and/or
construction of the organization.

2.2 Agility, Events and Implementation

To thrive in an environment of continuous and often unanticipated change, an
enterprise needs to be agile [5]. Oosterhout [2] summarizes several definitions of
agility as “the ability of an organization to swiftly change businesses and busi-
ness processes beyond the normal level of flexibility to effectively manage highly
uncertain and unexpected but potentially consequential internal and external
events, based on the capabilities to sense, respond and learn.” The question
then arises what these kinds of events are.

Using the perspectives of the Enterprise Engineering Framework (EEF) [13],
we categorized several event classifications found in literature (Table 1). As lit-
erature does not explicitly mention whether Technology and Resources deal with
an available or a chosen implementation, we split EEF’s original Context per-
spective in Context (environment & demand) and Context (supply), and po-
sitioned Technology/Resources (available) in the Context (supply) perspective.
Likewise, we made a distinction between Customer needs, which is in the Context
(demand perspective, and the choice of an enterprise to answer these needs with
certain Products and services (supply), residing in the Function perspective. So
in the event classes from literature

– 8 concern changes in the context of the organization, and can be reason for
change in any aspect of the organization;

– 2 concern changes in the function of the organization, representing the
choices in response to the context;

– 3 concern changes in the ontology of the organization, and
– 5 concern the implementation of the organization – 3 for parties and people

and 2 for ICT.

Remarkably, no events specific for the informational or documental organization
are discerned.

Common definitions of agility emphasize the contextual and functional per-
spective. Sarkis [5] focuses on metrics for agility – such as acquisition time,
demand change cost and amount of capable workers on certain equipment – just
as Tsourveloudis et al. [15], which propose a set of quantitative agility parame-
ters for calculating the overall agility of an enterprise. Van Oosterhout [2, p216]
asks for more research to analyze different types of business agility needs, also
because he expects that building IT platforms which support all these types of
business agility needs will be very expensive. So, all definitions of agility found
(including [16], [4], [6]) are mostly black-box or functional, i.e., they agree that

Exploring Organizational Implementation Fundamentals 33

Table 1. Categorization of event classifications in EEF’s perspectives (adapted)

Context (environment & demand)

Catastrophic [2]
Social/legal [2,4,5]
Business network [2]
Competition [2,4]
Customer needs [2,4,5]

Function
Products and services (supply) [5]
Quality of Service (QoS) [14]

C
o
n
st
ru
ct
io
n Ontology

Processes (business rules) [5]
Technology (methods) [4]
Internal change [2,4]

Implementation
Parties and People

Resources [5]
Processes (responsibility) [5]
Internal change [2,4]

ICT and other means
Technology [2,4,5]
Internal change [2,4]

Context (supply)
Parties and People

(available) Resources [5]
Social (workforce expectations) [4]

ICT and other means (available) Technology [2,4,5]

one should be able to change; they do not tell, white-box or constructional, in
what respect an organization should be able to change.

Directed searches for organization implementation (variables) did not yield
anything useful. On top of earlier mentioned literature, Google Scholar searches
(in English and Dutch) were performed with the terms organization(al) imple-
mentation, organization(al) change, organization(al) aspects, organization(al)
dimensions, organization(al) design, and (organization(al)) implementation
aspects.

The only frameworks that seem to deal with organization implementation,
using other terminology however, are the COPAFILTH2 framework [17,19] and
Hoogervorsts Framework for Enterprise Engineering [18], summarized in Table 2.
Half of the aspects mentioned still concern the environment or functional per-
spective of the organization, the other half concerns the level of construction,
of which 3 categories deal with organizational implementation. In each of these
categories some examples are mentioned, however no exhaustive list is provided.

So, our broad research question is to have a complete list of organization
implementation variables. In this paper we will create a first set of such variables.

2.3 Approach

We will first categorize the variables found in literature in the system types of
EEF [13]. Secondly, we will test (deductive step) the completeness of these vari-
ables against two different organization implementation descriptions of OMG’s

2 Translation of Dutch COPAFIJTH.

34 M. Op ’t Land and M. Krouwel

Table 2. Categorization of COPAFILTH [17] and Framework for Enterprise Engineer-
ing [18] in EEF (adapted)

Business Informational Documental

Context (environment & demand)
Commerce/Business (demand) [17,18]

Legal [17]

Function

Commerce/Business (products and
services) [17,18]

Organization (flexibility) [17,18]
Administrative (management) [17]

Finance [17]
Technology (quality and flexibility [17],

security [18])
Information (supply,

quality) [17,18]

C
o
n
st
ru
ct
io
n

Ontology
Administrative (structure) [17]

Information
(need) [17,18]

Information (structure) [18]

Im
p
le
m
en

ta
ti
o
n

Parties and People
Organization (structure and culture [17],
culture and processes and employees [18])

Personnel [17]
Administrative (order) [17]

ICT and other means

Technology [17,18]
Organization (technology, means) [18]

Housing [17]
Information
(gathering,
storage,

distribution)
[18]

Context (supply)
Parties and People Business (suppliers, partners) [18]
ICT and other means

EU-Rent case [8], and possibly extend the list (inductive step). In this paper
we will not elaborate the motives to give these variables a certain value – e.g.,
choose for a specific organizational split [20] – or the coherence of these variables
– e.g., more ICT could influence the amount of personnel; we stop at the level
of identifying the variables.

3 Variables from Literature

Table 3 summarizes the organization implementation variables as found in our
literature search (see subsection 2.2). Recent research in Adaptive Case Man-
agement (ACM) [21, 23] elicits the following nuances in these variables.

– some business rules are optional, others are mandatory; it should be possible
to document the (lack of) complying to these rules in an execution trace;

Exploring Organizational Implementation Fundamentals 35

Table 3. Organization implementation variables in EEF (adapted)

Business Informational Documental

C
o
n
st
ru
ct
io
n

Ontology
Actor roles, transaction kinds, information

links [10,17,18]a

Business rules [5,10], methods [4]

Im
p
le
m
en

ta
ti
o
n

Parties and People

Organization structure [17]
Departments

Functionary typesb [17]
Delegation [5]

Separation of functionc [17]
Order of working [17,18]

Assignment of tasksd [5, 17]
#Full-time Equivalent (FTE) [5]
Skills and competences [5,17]

Sourcing [2,5]
Language support
Data structuree [18]

ICT and other means

Locations of offices [17]

Equipment and infrastructuref [2, 4,5,17,18]
WFMS and execution trace [21]

Degree of automation [17]
IT Integration level [5,17]

External data sources [22]
D(B)MS, CMS
Channelsg [17]

a In the Informational world these concern information needed for B-actors, manage-
ment information, term monitoring, reporting, etc.

b including mapping of actor roles (responsibility) to functionary types
c e.g. splitting of different steps over different functionary types/persons, or 4-eye
principle

d top-down, self-regulatory, priorities, teams or individuals
e non-structured – e.g., tape (audio/video), (Word, Excel) documents – or structured
– e.g., database, XML

f Including Man-Machine Interface and GUI
g web/email, phone/sms, paper, . . .

– some organization implementation variables get their value at the very last
moment, even when the process is running; e.g.,
• which process steps should be performed next in the dealing with this
specific case – the so-called dynamic working plan as opposed to a fixed
work flow,

• who (which person, team, department or even external organization) is
going to perform a certain process step, and

• what source of data is sufficient to perform a certain task – e.g., a salary-
statement or a bank statement to establish credibility.

36 M. Op ’t Land and M. Krouwel

4 Validation

In this section we will present the organization implementation variable analysis
of two different organization implementation descriptions of OMG’s EU-Rent
case [8] which will then be compared to the variables found earlier (Table 3).
The ontology of the B-organization of this case is presented in Fig. 2. A reading
guide for this model can be found in [9].

Fig. 2. OCD and TPT of Rent-A-Car (adapted from [24])

The first analysis was performed on the Rent-A-Car description [24] (descr. 1).
Below, we will show per sentence the organization implementation variable(s)
found. For the length of this paper, we cannot present the complete description
but summarized the findings in Table 4. The results of the second analysis,
performed on the Mini EU-Rent Business Model [25] (descr. 2), can be found in
the same table.

Rent-A-Car (or RAC for short) is a company that rents cars to persons,
both private ones and representatives of legal bodies, like companies.

Exploring Organizational Implementation Fundamentals 37

This line states that “Rent-A-Car is a company” but it could also have been
a network of companies, carrying the same name and embodied in different
legal entities. We conclude as implementation variable the embodiment of the
ontological model by organizational and legal entities (V1).

It was founded by the twin brothers Janno and Ties back in the eighties.

Contextual sentence, no implementation variables.

They started to hire out their own (two) cars, and they were among the
first companies that allowed cars to be dropped-off in a different location
than they were picked-up.

From this we find the need for a transportation function between locations which
will influence the ontological model of the B-organization. However, no imple-
mentation variables are found in this sentence.

To this end, Janno and Ties had made agreements with students in sev-
eral cities.

We read students are hired to perform some task. So we have an implementation
variable regarding the employees in the organization (V2).

For a small amount of money, a student would await the arrival of a
rented car, e.g. at an airport, and drive it back to the office of RAC,
after which the student would go home by public transport.

From this line we read several things. First, the drop-off location could be any-
where (airport departure hall 3, town center, . . .) and not necessarily a RAC
office. This implies that the state and accept of the drop-off can happen at any
location. For that, the locations of performing certain acts must be defined. Sec-
ondly, students are authorized to accept the drop-off, so there is an assignment
between employees and act types (during some time frame), and, as the student
is not the requester of the drop-off, there is some form of delegation. This implies
the students need the relevant information to be available on location, need the
right competences to perform this type of task, and possibly need facilities to
record the data created. In summary, we found the following implementation
variables.

V3: Denotation (syntax) and accuracy of entity types;
V4: Workplace;
V5: Cross-reference which act type can be performed on which location;
V6: Cross-reference which employee is allowed to perform which type of act;
V7: Delegation of act types from functionary type to other functionary type;
V8: Competences/certification.

From the variables regarding employees, location and assignment of tasks (in-
cluding delegation), the need for information and data recording per employee
and per location can be determined. When employees perform different type of
acts (possibly involving different transaction kinds), one possibly wants to com-
bine the I- and D-functions to support these acts in one information product.

38 M. Op ’t Land and M. Krouwel

For example, a student is allowed to perform both drop-offs (accept), pick-ups
(state) and transports. If he gets his tasks for a day presented in three lists, he
will have to sort out in which order he has to perform his tasks. If he gets this
information presented in some Google Maps overview with time tables, in which
he can also confirm the end of performing a task, he will better be able to plan
the order of performing his tasks.

Currently, RAC operates from over fifty geographically dispersed branches
in Europe.

Obviously, again there is the implementation variable about workplace and which
type of act is performed at which location – e.g., pick-up can only be done at
branches near airports, while drop-off can be done at any branch. However,
several questions then arise:

– Who is the addressee of a coordination act (C-act, e.g., request, promise)
that is directed to RAC, e.g. the request for rental start? Is it the legal entity
RAC, is it a specific branch, or is it an employee at some branch?

– Can a customer request a contract at branch A while the pick-up is done at
branch B? Can branch A promise a car rental while the pick-up is done at
branch B?

– And if it is necessary for branches to share data, will data be stored locally,
centralized or in the cloud?

– Will offices be supported by IT locally (with possibly different systems),
shared (using the same systems but locally), or centralized?

From this we summarized the following implementation variables:

V9: Specificity of C-act addressee;
V10: The extent to which the execution of acts within one event, is restricted

to the location at which the event is triggered;
V11: Location of data storage (local, centralized, cloud);
V12: Applications, including at which locations.

Many cities have a branch, some even several, and there are branches
located near all airports. One of the branches is the original office where
Janno and Ties started and where both are still around. Being mechanical
engineer by education, they have kept loving to drive and maintain cars,
even since they are the managing directors of a million euro company.

Context, no implementation variables.

The head of the front office of the home branch is Chiara.

First, we recognize the notion of departments (front office) and organizational
hierarchy. Secondly, we see the notion of functionary type (head of front office),
the fulfillment of functionary types by employees (Chiara is head of front office),
and the location an employee works at. A question that remains is which type
of acts this employee or functionary type performs. We believe the functionary
type is the level between employees and actor roles, meaning that V6 must be
discarded.

Exploring Organizational Implementation Fundamentals 39

V13: Departments (clustered by e.g. responsibility, competence, market, . . .);
V14: Organizational hierarchy;
V15: Functionary types;
V16: Cross-reference employee/functionary type (replacing V6);
V17: Cross-reference employee/workplace;
V18: Cross-reference functionary type/act type.

There are two more desk officers working in this department.

First, we see an amount of FTE for the functionary type desk officer. Second,
the question arises how these persons work together. The variables are:

V19: Amount of FTE (per department, functionary type, location, . . .);
V20: Per act, way of fulfilling actor role (sequentially, concurrently, or collec-

tively [10, p.125]);
V21: Separation of function.

Customer orders are placed through several channels: walk-in, telephone,
fax, and e-mail. Walk-in customers are usually people who want to rent
a car immediately. Through the other channels one makes in general
advance reservations.

V22: Channels, including degree of integration and availability per C-act and
workplace.

These can be made up to 200 days in advance.

This is a business rule and is thus present in the ontological model.

In all cases, an electronic rental form is filled out by one of the desk
employees, as input to RACES (RAC Information System).

V23: Medium of entering data (writing, typing, voice)

Note that it is the desk employee who registers the request, delegated by the
customer, and the promise. Other variables found are:

V24: Medium of gathering data (ask, search on the internet, get from central
registrations (external data source), . . .);

V25: Medium of saving data (digitally, paper, human brain, . . .);
V26: Medium of receiving information (sound, image, text, . . .);
V27: Rules for assigning people to tasks;
V28: Order of working;
V29: Language support.

Comparing Table 4 and Table 3, we conclude that our analysis did not re-
veal many new elementary implementation variables, but mostly implementa-
tion variables regarding the coherence between the (elementary) variables from
Table 3. For example, the notions “Functionary type” and “Assignment of tasks”
were made specific and complemented in cross-references such as employee X
functionary type, functionary type X act type, and functionary type X location.
Also, all variables and categories from the earlier tables, except for Sourcing,
were found in these case descriptions, confirming existing literature.

40 M. Op ’t Land and M. Krouwel

Table 4. Full list of implementation variables found in EU-Rent case

Business Informational Documental descr.

P
a
rt
ie
s
a
n
d
p
eo
p
le

Organization structure: organizational/legal entity 1,2
Employees and Sourcing 1

Delegation 1,2
Competences/certification 1
Addressee specificityNEW 1

Departments 1,2
Organizational structure 1,2

Functionary types 1,2
X-ref employee/functionary typeNEW 1

X-ref functionary type/act typeNEW 1
#FTE 1

Way of fulfilling actor roleNEW 1
Separation of function 1

Order of working 1,2
Assignment of tasks 1

Language support 2

IC
T

a
n
d
o
th
er

m
ea
n
s Workplaces (including locations of offices) 1,2

Equipment (including infrastructure) 1

X-ref workplace/act typeNEW 1
Event location restrictionsNEW 1,2

Applications (including WFMS, D(BMS), . . .) 1
X-ref employee/workplaceNEW 1

Media (entering, gathering, saving,
receiving)NEW

1

Channels 1
DenotationNEW 1

5 Conclusions and Future Research

Our ideal was to formulate a list of anticipated changes for which agility is en-
sured, just like the theory for Normalized Systems [7] did for automated IT
systems. This would contribute to uniformity and standardization in the compe-
tence of Enterprise Engineers, thus enabling traceability in governing enterprise
transformations. Also, where an ontological model gives already a solid starting
point for cross-organizationally usable IT applications [22], using the explicit
knowledge of organizational implementation variables in an IT platform could
turn this into an actual cross-organizationally running IT application. How far
have we come with such a list?

First of all, we noticed that our analysis (Section 4) did not reveal new
categories, compared to the literature (Section 3), but did reveal implementa-
tion variables regarding the coherence between existing variables. For exam-
ple, the notion Housing (or location) was made specific and complemented in
a cross-reference employee X location, act type X location and event location

Exploring Organizational Implementation Fundamentals 41

restrictions. Also, the variables and categories from literature were found in and
confirmed by the case descriptions.

To have these variables explicit and operationalized offers opportunities for
building IT flexibility in a platform. In the example of the student, who is now
only allowed to perform drop-offs (accept) and pick-ups (state), it would be
possible to present all his tasks related to that in some Google Maps overview
with time tables, in which he can also confirm the end of performing a task.
Suppose one day RAC decides to allow students to do transports as well, and
the IT knows the notion of functionary type X act type etc., then all connected
software applications can use this information to change their – e.g., GUI and
security – behavior accordingly, potentially without the need for this software to
be reprogrammed. Since changing (also organizational) implementation variables
tend to have combinatorial effects [7], the future potential for wider validation
and application of this list is significant.

We realize this is a modest start on the way to a complete list of organization
implementation variables. Therefore we propose the following future research:

– repeat the procedure from Section 4 for real-life observations or procedure
descriptions from large organizations;

– add rigor to each variable found: what exactly is its meaning, and why is
this variable positioned in a certain EEF-cell;

– validate with existing IT systems to what extent these variables are explicit,
and for the implicit variables, where they hinder organizational flexibility;

– elaborate a model for coordination and work flows, including the assignment
of subjects to actor roles or functionary types, the assignment of tasks to
subjects, and the prioritizing and scheduling of tasks;

– explore functional / constructional gaps, e.g. Quality of Human Services
(QoHS) and Quality of Automated Services (QoAS) as functional with re-
spect to Resourcing and IT support respectively.

References

1. Overby, E., Bharadwaj, A., Sambamurthy, V.: Enterprise agility and the enabling
role of information technology. Eur. J. Inf. Syst. 15, 120–131 (2006)

2. van Oosterhout, M.P.A.: Business Agility and Information Technology in Service
Organizations. PhD thesis, Erasmus University Rotterdam (June 2010)

3. Dietz, J.L.G., Hoogervorst, J.A.P.: Enterprise Ontology and Enterprise Architec-
ture – how to let them evolve into effective complementary notions. GEAO Journal
of Enterprise Architecture 1 (2007)

4. Conboy, K., Fitzgerald, B.: Toward a Conceptual Framework of Agile Methods: A
Study of Agility in Different Disciplines. In: Proceedings of the 2004 ACM Work-
shop on Interdisciplinary Software Engineering Research, WISER 2004, pp. 37–44.
ACM, New York (2004)

5. Sarkis, J.: Benchmarking for agility. Benchmarking: An International Journal 8(2),
88–107 (2001)

6. Seo, D., La Paz, A.I.: Exploring the Dark Side of IS in Achieving Organizational
Agility. Commun. ACM 51(11), 136–139 (2008)

42 M. Op ’t Land and M. Krouwel

7. Mannaert, H., Verelst, J.: Normalized Systems: Re-creating Information Technol-
ogy Based on Laws for Software Evolvability, Koppa, Kermt, Belgium (2009)

8. Object Management Group: Business Motivation Model (BMM) Specification,
V1.1. OMG Available Specification OMG Document Number: formal/2010-05-01
(May 2010), http://www.omg.org/spec/BMM/1.1/PDF/

9. Op ’t Land, M., Dietz, J.L.G.: Benefits of Enterprise Ontology in Governing Com-
plex Enterprise Transformations. In: Albani, A., Aveiro, D., Barjis, J. (eds.) EEWC
2012. LNBIP, vol. 110, pp. 77–92. Springer, Heidelberg (2012)

10. Dietz, J.L.G.: Enterprise Ontology – Theory and methodology. Springer (2006)
11. Dietz, J.L.G.: Architecture: Building strategy into design. Sdu Uitgevers bv, The

Hague, The Netherlands (2008)
12. van Dipten, E., Mulder, J.B.F.: Basic Enterprise Engineering Map. Informatie 10,

54–61 (2011)
13. Op ’t Land, M., Proper, H.A.: Impact of Principles on Enterprise Engineering.

In: Österle, H., Schelp, J., Winter, R. (eds.) Proceedings of the 15th European
Conference on Information Systems, pp. 1965–1976 (2007)

14. Op ’t Land, M., Pombinho, J.: Strengthening the Foundations Underlying the En-
terprise Engineering Manifesto. In: Albani, A., Aveiro, D., Barjis, J. (eds.) EEWC
2012. LNBIP, vol. 110, pp. 1–14. Springer, Heidelberg (2012)

15. Tsourveloudis, N.C., Valavanis, K.P.: On the Measurement of Enterprise Agility.
Journal of Intelligent and Robotic Systems (33), 329–342 (2002)

16. Sherehiy, B., Karwowski, W., Layer, J.K.: A review of enterprise agility: Concepts,
frameworks, and attributes. International Journal of Industrial Ergonomics 37(5),
445–460 (2007)

17. BIZZdesign: Handboek Business Process Engineering. Academic version 7.1 (in
Dutch) edn. BIZZdesign B.V. Academy Publishers (2009)

18. Hoogervorst, J.A.P.: A framework for enterprise engineering. International Journal
of Internet and Enterprise Management 7(1), 5–40 (2011)

19. de Bruin, B., Verschut, A., Wierstra, E.: Systematic Analysis of Business Processes.
Knowledge & Process Management 7(2), 87–96 (2000)

20. Op ’t Land, M.: Applying Architecture and Ontology to the Splitting and Allying
of Enterprises. PhD thesis, Delft University of Technology (2008)

21. Rychkova, I.: Towards Automated Support for Case Management Processes with
Declarative Configurable Specifications. In: La Rosa, M., Soffer, P. (eds.) BPM
Workshops 2012. LNBIP, vol. 132, pp. 65–76. Springer, Heidelberg (2013)

22. Krouwel, M., Op ’t Land, M.: Using Enterprise Ontology as a basis for Re-
quirements for Cross-Organizationally Usable Applications. In: Figueiredo, A.D.,
Ramos, I., Trauth, E. (eds.) Proceedings of the 7th Mediterranean Conference on
Information Systems 2012 (MCIS 2012). MCIS Proceedings, University of Minho,
Portugal, AIS Electronic Library (AISeL), Paper 23 (2012)

23. Scheithauer, G., Hellmann, S.: Analysis and Documentation of Knowledge-
Intensive Processes. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012.
LNBIP, vol. 132, pp. 3–11. Springer, Heidelberg (2013)

24. Dietz, J.L.G.: The Essence of Organization - an introduction to Enterprise Engi-
neering. Sapio (2013), to be published @ http://www.demo.nl

25. Schacher, M.: Mini EU-Rent: Business Model. Technical Report v23.06.2008,
KnowGravity (2008),
http://www.knowgravity.com/pdf-e/Mini%20EU-Rent%20BU.pdf

http://www.omg.org/spec/BMM/1.1/PDF/
http://www.demo.nl
http://www.knowgravity.com/pdf-e/Mini%20EU-Rent%20BU.pdf

H.A. Proper, D. Aveiro, and K. Gaaloul (Eds.): EEWC 2013, LNBIP 146, pp. 43–57, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Case Study on Enterprise Transformation
in a Medium-Size Japanese IT Service Provider:

Business Process Change
from the Ontological Perspective

Sanetake Nagayoshi

Department of Industrial Engineering and Management,
Graduate School of Decision Science and Technology, Tokyo Institute of Technology

2-12-1, Ookayama, Meguro-Ku, Tokyo, 152-8550, Japan
nagayoshi.s.aa@m.titech.ac.jp

Abstract. Organizational change and transformation is an important research
topic that attracts the attention of many researchers and practitioners in
organization research. This paper describes several case studies of applying
DEMO in enterprise transformation. The enterprise transformation of divisions
in Company A is analyzed to examine the relationship between Product-Market
Growth Grid and business process change from the ontological perspective. The
results indicate that (1) it is not always necessary to change the ontological level
of business process in market development, (2) it is necessary to change the
ontological level of business process in product development, and (3) it is
necessary to reengineer the ontological level of business process in
diversification. The generalizability of these results can be ascertained with
more studies in future.

Keywords: Business Process Change, Enterprise Transformation, Product-
Market Grid, Ontological View, DEMO.

1 Introduction

Organizational change and transformation is an important research topic that has
attracted the attention of many researchers and practitioners in organization research.
Traditionally, organizational change and transformation mainly focuses on the change
in organizations’ structures and practices. However, as organizations increasingly face
changes in the economical, geopolitical, contextual, and technological aspects,
discourses on organizational transformation has begun to draw from many other
disciplines and various perspectives. For example, studies of technology-led
organizational transformation obtain insights from both information systems and
organization research. As a result, a plethora of studies has evolved in this arena, with
emphasis on the use of process-based research and rhetoric approaches in
understanding how and why organizations change and transform.

44 S. Nagayoshi

The objective of this paper is to describe business process change based on case
studies of enterprise transformation from the ontological perspective. In this paper,
the relationship between market diversification (in the Product-Market Growth Grid)
[1] (Figure 1) and business process change from the ontological perspective is
analyzed and discussed, and the business process diagrams based on DEMO (Design
and Engineering Methodology for Organization) are described [2].

Fig. 1. Product-Market Grid [1]

The remainder of this paper is organized as follows: First, related studies are
reviewed in section 2. The research method of this study is described in section 3. Next,
five cases of transformation in a Japanese IT service provider are introduced in section
4. Then, the cases are analyzed in section 5 and discussed in section 6. Finally, the
limitations of this study and implications for future research are described in section 7.

2 Literature Review

Enterprises increasingly need to consider and pursue fundamental change, such as
upgrading current business and innovating in terms of expansion, M&A, and
globalization, in order to maintain or gain competitive advantage. To distinguish from
traditional routine changes, fundamental change is referred to as enterprise
transformation [3].

2.1 Business Process Change

Enterprise transformation is enabled by “work process change”, which requires the
“allocating of attention and resource” so that an enterprise can anticipate and adapt to
changes with their resources to yield improvement [3]. Enterprise transformation is a
more innovative and strategic change that influences multiple aspects of an
organization, including routine, organization structure, human capital, and marketing
strategy. Compared with low-level changes, it is more difficult to model and manage
[4] [5]. Miles, Snow, Meyer and Coleman [6] proposed a theoretical framework that
deals with alternative ways in which organizations define their product-market
domains (strategy) and construct mechanisms (structures and processes) to pursue the

A Case Study on Enterprise Transformation in a Medium-Size Japanese IT Service Provider 45

strategies. Hamel and Prahalad [7] examined why many companies disbanded or
dramatically downsized their strategic planning departments. This led to focus on the
concept of “business process re-engineering” proposed by researchers such as
Hammer and Champy [8], which involves deep redesign of business processes. The
concept was popular during the 1990s as a reaction to recession, during which
companies needed to downsize and better apply information technology [9] [10] [11].
Business process reengineering seeks to achieve dramatic performance improvement
by radically redesigning an organization and its takes precedence over information
systems development which has focused mainly on automating and supporting
existing organizational procedures [12].

Mintzberg et al. [13] pointed out that Wernerfelt [14] proposed the Resource-based
Theory, although Wernerfelt [15] himself maintains that his ideas were not popular
until Prahalad and Hamel [16] developed the concept of dynamic capabilities. Firms
can be thought of as collections or accretions of resources, which are heterogeneously
distributed and persist over time. When firms possess resources that are valuable, rare,
inimitable, and non-substitutable, they can achieve sustainable competitive advantage
[17] in a turbulent environment.

Nagayoshi, Liu and Iijima [18] argued that exception handling in business
processes can be classified into eight patterns from the language actor perspective,
which can trigger enterprise transformation.

2.2 Business Rule Management

Ansoff [1] and Drucker [19] believe that planning is an integral part of a well-
managed company. Andrews [20] discussed the functions of general management,
particularly the role of the chief executive and senior vice-presidents. He believed that
in addition to maintaining surveillance over the actual attainment of results formally
or informally planned, the general manager should be expected to make, or at least
preside over, the process of creating policy decisions that will affect future results.

Different research streams have emerged to provide various insights ranging from
business rule authoring, engineering, rule mining, and many others. A business rule
refers to ‘‘a statement that defines or constrains some aspect of the business. This
must be a term or fact (described as a structural assertion), a constraint (described as
an action assertion), or a derivation. It is ‘atomic’ in that it cannot be broken down or
decomposed further into more detailed business rules. If reduced any further, there
would be loss of important information about the business.” Halle [21] defined the
business rule approach to systems development as one that ‘‘allows the business to
automate its own intelligent logic better, as well as to introduce change from within
itself and learn better and faster to reach its goals.’’

Maglio, Srinivasan, Kreulen and Spohrer [22] mentioned that we can view
business rule management from a service science perspective, where service systems
are defined as ‘‘value-creation networks composed of people, technology and
organizations.’’

46 S. Nagayoshi

2.3 Organization Learning

Enterprise transformation is related to organization learning, which is a process of
detecting and correcting errors [23] to improve an organization’s value creation
capabilities.

Other knowledge management processes such as SECI [24], along with cultural
changes and structural changes, can increase an enterprise’s “readiness for
transformation”. They are therefore likely to enable a successful transformation.

Slater and Narver [25] described the processes through which organizations
develop and use new knowledge to improve performance.

Liu, Nagayoshi and Iijima [26] discussed how enterprise transformation, business
process change, and organization learning affect each other. They identified
“readiness” to be an important factor for successful enterprise transformation. This
factor could be affected by organization learning, organizational culture, and
organizational structure. Liu, Nagayoshi and Iijima [26] also provided a promising
way of analyzing enterprise transformation or innovation-related problems at the
ontological level from an engineering perspective, which can greatly reduce the
complexity of problems while significantly enhancing effectiveness and efficiency.

2.4 Marketing Strategy

Marketing strategy also interacts with enterprise transformation.
Product-Market Growth Grid [1] is a widely adopted framework that

conceptualizes market diversification, which is a kind of marketing strategy. It
includes market penetration, market development, product development, and
diversification.

The framework is intuitive and some longitudinal descriptive studies, such as that
by Miller and Friesen [27], have provided some qualitative evidence for aspects of the
framework. Greiner’s model [28] provides some causal explanation by hypothesizing
that growth occurs in relatively stable phases, interspersed with “crises”. During a
crisis, an organization either successfully adapts or fails. In this sense, crises may be
seen as necessary catalysts of learning and further growth.

Although enterprise transformation is interpreted from various points of view
nowadays, “how” and “why” enterprises change and transform remain critical
research topics. Accordingly, this paper examines marketing strategy to explain
“why” organizations change and business processes change to describe “how”
organizations change.

Also, to the best of my knowledge, there has been a lack of academic studies on
how enterprise transformation, marketing strategy, and business processes at the
ontological perspective affect each other.

3 Research Method

3.1 Engineering Perspective

Given the complexity of change, several researchers have argued that enterprise
transformation should be considered from the modular and system perspectives rather

A Case Study on Enterprise Transformation in a Medium-Size Japanese IT Service Provider 47

than the workflow perspective. After a business is conceptualized and modularized,
similar businesses can be managed using the same dominant logic [29]. This can help
to reduce the complexity of change and improve analyzability. Op’t Land and Dietz
[5] suggested that DEMO (Design and Engineering Methodology for Organization)
[2], an enterprise ontology, can be used for modeling enterprise transformation while
greatly reducing the return on modeling effect (ROME).

DEMO is an enterprise ontology used to describe the essential structure of an
enterprise without getting into implementation details. It includes four aspect
models: Construction Model, Process Model, Action Model, and State Model [2]. The
interaction model (IAM) is included in the construction model, as shown in Figure 2
and it aims to describe the construction of an enterprise by defining:

- Transaction: A sequence of acts between two actor roles, including
communication loop acts (request, promise, state, and accept) and production acts.

- Actor Role: An actor role is defined in terms of responsibility, authority, and
capability. As shown in Figure 2, A01 is an actor role which initiates the
transaction T02, and A02 is the actor role that executes the transaction (T02).

Fig. 2. ATD (Actor Transaction Diagram)

- Transaction and Result Table: As shown in Table 1, each transaction has a
result which expresses how the transaction changes the state of a given context.

Table 1. TRT (Transaction Result Table)

Transaction Result
T02 Prepare R02 Pizza P is prepared

By using the DEMO IAM model, the main structure of an organization as well as
how its main business is conducted, who is involeved, what responsibilities they take,
and what the results are can be clarified totally without getting into implementation
details.

Several studies have applied DEMO. Aveiro [30] discussed how to automatically
detect and address dysfunctions in exception handling using DEMO from an
engineering viewpoint. Further, Nagayoshi, Liu & Iijima[18] developed patterns for
exception handling, considering not just routine changes but also structural changes
and action rule changes. From the value creation viewpoint, Pombinho[31] linked the
construction of an enterprise with the concept of value to examine “whether we do the
right thing” by analyzing the value stream.

DEMO IAM is used as an enterprise transformation description method in this
paper, because it describes the essential structure of an enterprise without too much
details.

48 S. Nagayoshi

3.2 Qualitative Research

Adopting the engineering perspective, a qualitative study was conducted. The case
study was based on four interviews with several managers of “Company A” from
April to June 2012:

- First Interview: Director of Company A,

- Second Interview: CEO and technical director of Company A,

- Third Interview: Sales manager and technology manager from the second
solution division,

- Fourth Interview: Sales manager and technology manager from the first solution
division.

Each interview lasted for 2 to 3 hours. The interviews are analyzed and the results are
described in the following sections. To ensure the accuracy of interpretations, the
results were reviewed by the director of Company A.

4 Case Studies

Company A is a Japanese IT service provider founded in 1969 as a software provider.
After a long period of growth, the company designed and developed several well-
known application packages in the early 1980’s. One of them is an accounting system
for the local government. It was awarded for being an “outstanding information
system”. “First division” of the company provides system integration services mainly
for the local government in Japan by implementing their own software packages.

 Company A expanded its businesses into system integration from the late 1980’s.
In the business, Company A takes the role of a sub-constructor and dispatches work to
users’ companies according to primary constructors’ solutions. Primary constructors’
generate solutions by identifying and analyzing customer requirements.

With the evolution of new technology (cloud computing, concrete secure
technology, etc.) and keen competition in information technology, Company A had to
identify new business opportunities to enhance their competitiveness. The
transformation inside Company A includes the following five transformations in the
business logic of the following solution divisions:

- First Division: First division made one business logic change, which was to
transform from a software package provider to an application service provider
(software as a service type of business).

- Second Division: Second division made two business logic changes. They were
(1) delivery change from a passive-type business to an active-type business, and
(2) organizational change to conduct the active-type business.

A Case Study on Enterprise Transformation in a Medium-Size Japanese IT Service Provider 49

- Third Division: Company A acquired a business of application software package
for managing IT security from an existing company. The package had various
functions such as single sign-on, authentication with IC card and secure printing.
Company A reorganized the third division for the new software package business.
The division made two business logic changes: (1) When “Third Division”
started the new business, the software package was modified to serve their own
existing customers, and (2) Based on the new software package, the division
found new market opportunities and new customers in other industries.

The five transformations are described in the following sections. The description for
each case of transformation is based on DEMO IAM. Each case is analyzed from the
construction change aspect.

5 Case Analysis

5.1 First Division

A. From a software package provider to an application service provider
(software as a service type of business). This is a transformation in the First
Division of Company A, which had focused on “providing software package with
installation” before the transformation.

Providing support to the local government was a traditional business of the First
Division of Company A. As a package provider, their main targets were small and
medium cities and towns in Japan, which helped to distinguish Company A from the
other e-government IT service providers.

For Company A to be competitive, it needed to transform from being a package
provider to a service provider.

Company A made the first step by successfully providing application service to
“regional government D”. Primary challenges, transformations and solutions were
identified as follows.

The original construction model of the First Division as a provider of software
package with installation is shown in Figure 3.

In order to provide application services, it was necessary to consider risk control.
In the transformed business, sales persons need to estimate costs and risks for
providing a service before proposing the service to customers. As a service provider,
Company A needs to consider the risks and keep them under control. Therefore, a
new transaction T11 was added, as shown in Figure 4.

There were also some changes to transaction T05. T05 was no longer initiated by
the order completer. Instead, it was initiated by the product manager, so that a “work
plan” could be made before an order was received. T04 and T07 remained the same
but the action rules changed. For transaction T04, Company A supplied a service to
customers instead of shipping the software package to customers. Accordingly, the
rule of T07 “payment” changes from being based on the price of a software package
to charging customers for services.

50 S. Nagayoshi

Company A

potential
custmer

00CA

contracted
customer

00CA

sales

01T

transaction

type

03T

contract
dealer

01A

order completer

04T

payment

07T

order
completer

04A

recuirement

analysis

08T

proposal

09T

estimate

10T

requireme
t analyzer

08A

proposal
designer

09A

cost
estimator

10A

plan work

05T
work

planner

05A

task completion

06T

worker

06A

project
manager

02A

sub-contract

02T sub-
contracto

r

02CA

Fig. 3. ATD before in First Division Fig. 4. ATD after in First Division

5.2 Second Division

B-(1). From a passive-type business to an active-type business. Before
transformation, Company A mainly played the role of a sub-constructor. The primary
constructors were the ones who had the “know-how” knowledge to provide solutions
for fulfilling customers’ requirements. Sub-constructor only focused on dispatching
skilled workers (who have different unit prices depending on their skill levels) to
customers to support software development according to primary constructors’
requirements. In this type of business, a sub-constructor does not need to have much
knowledge about a customer’s business. Also, it is not necessary to manage the
schedule and risk of a software development project as these are the responsibilities of
the primary constructor. The revenue from dispatching workers was calculated by
multiplying unit price and work hour. The construction model of this business is
shown in Figure 5.

Company A conducted this type of business for about 10 years. “Company B” was
one of the biggest customers of Company A, which was one of the biggest Japanese
IT infrastructure and systems integrators. Company A accumulated plenty of
experience not only in software development but also in different business sectors,
especially in billing systems. These had driven its transformation from being a
“sub-constructor” to a “primary constructor”.

As a primary constructor, Company A provided another type of contract choice -
Request for Proposal. In the transformed business, Company A was responsible for
delivering the final solution while controlling for time, quality, and fixed cost.

A Case Study on Enterprise Transformation in a Medium-Size Japanese IT Service Provider 51

The whole solution included: requirement analysis, architecture design, software
development, and testing.

The construction model of the transformed business is shown in Figure 6.

Company A

potential
custmer

00CA

contracted
customer

00CA primary
constructor

01CA

sales

00T

contract

03T

order comletion

08T

payment

09T

contract
dealer

01A

sub-contract

sales

01T

sub-contract

02T

order
completer

04Asub-order

completion

04T

sub payment

07T

work
planner

05A

work plan

05T

task completion

06T

worker

06A

 Fig. 5. ATD Sub Constructor Fig. 6. ATD Prime Contractor

The first success of this new business is “Project C” in year 2009.
“Company C” was a traditional distributor in Japan. In 2009, Company C planned

to offer a new service product and they needed an effective billing solution to support
the new service product. Company A was chosen as the solution provider. This
project lasted from October 2010 to October 2011.

Based on interviews of the project manager and the chief sales person in the
Second Division, we identified several changes as discussed next.

As shown in Figure 5, Company A did not need to propose solutions in its old
business. The sales person who played the actor role “A01” passively sold human
resources in terms of skilled workers dispatched to customers. Based on primary
constructor’s requirements, sales person provided information about their staff and
made contract with a customer by counting the number of workers by hour. Clearly,
transactions T00, T03, T06, and T09 were not within the business of Company A
before the transformation.

After the transformation, T00, T03, T06, and T09 in Figure 5 became part of the
business of Company A. A proposal group rather than a sales person was involved in
the sales process. As shown in Figure 6, three new transactions (T08, T09, and T10)
are added as sub-transactions of transaction T01, which indicates that Company A
needs to analyze customers’ requirements, make proposals to customers, and estimate
costs in order to complete “pre-sales”. A sales process is complete and a contract can
be made only when all these transactions are finished.

52 S. Nagayoshi

The actor roles (i.e., A08, A09, and A10) corresponding to each transaction also
changed in terms of the requirements for capability, responsibility, and authority. A
proposal group includes:

 A pre-sales person who plays the role of A08 as a “requirement analyzer”,
with strong capability to understand customers’ requirements.

 A pre-sales person who plays the role of A10 as a “cost estimator”, with the
responsibility of estimating costs and negotiating prices with customers
based on the proposed solution.

 Consulting staff who plays the role of A09 as a “proposal designer”, with the
capability of understanding technical details as well as designing and
proposing solutions to customers.

In the old business of Company A, the primary constructor or the customer must
control the cost, quality, and schedule of a project. However, in the new business, all
these responsibilities lie with Company A. In Figure 6, although transactions T01,
T04, T05, T06, and T07 have similar construction with those in Figure 5, the action
rules for the corresponding actor roles had changed. For project management, the
content of T05 “work plan” expanded to include items such as cost control and
quality control.

As a primary constructor, Company A also delegate work to sub-constructors
according to their work plan. Thereforel, transaction T02 “sub-construction” can be
initiated by a project manager in Company A.

B-(2). Organizational change to conduct primary-constructor-type business. To
conduct the new business, it is necessary for pre-sales persons playing the actor roles
of A08 and A10 to acquire additional communication skills, proposal skills, and
“know-how” knowledge. Company A did not have such skills and knowledge in its
old business. However, as it became a subsidiary company of a large IT service
provider, Company A was able to hire several experienced sales persons with relevant
pre-sales skills and knowledge. This helped the sales persons in Company A to obtain
more skills and knowledge about pre-sales.

A “proposal group” was also formed in Company A. It included pre-sales persons,
managers, and consultants who played the actor roles of A01, A08, A09, and A10.
The “proposal group” works closely with customers to understand their business and
requirements and proposes suitable solutions. The group needs to carefully estimate
and manage costs, risks, and schedule. When a proposal is accepted by a customer,
the analysis and design process will continue until the delivered solution is
acknowledged by the customer.

Project management became a big challenge for managers in the Second Division.
They had to acquire the ability to manage projects through practical experience and
on-the-job training.

However, from the construction-change point of view, the ATD for primary-
constructor-type business is the same ATD in figure 6.

A Case Study on Enterprise Transformation in a Medium-Size Japanese IT Service Provider 53

5.3 Third Division

C-(1). Software package modification to start a new software package business.
Before acquiring the new application software for managing IT security and forming
the Third Division, Company A had several application software packages. The
business processes for the old business is described in ATD in Figure 7. After
acquiring the new application software, the Third Division needed to modify it
according to the brand image of Company A and to cater to the needs of their existing
customers. The business processes for the modification and sales are described in
ATD in Figure 8.

Comparing Figure 7 and Figure 8, it can be observed that the transactions T10,
T11, T12 and T13 and actor roles CA01, A09, A10, and A11 in the sale of application
software are similar. However, it was necessary for Company A to add some
important activities such as market investigation, market requirement analysis, cost
estimation, risk assessment, decision making for investment, and modification in
order to sell the new application software. These additional transactions and actor
roles are shown as T01-T08 and A01-A08 respectively in Figure 8.

C-(2). Applying the software package to a new market. As many industries had
strong need for IT security, the Third Division had the opportunity to expand its
market. Since IT security requirements are similar in most industries, the Third
Division was able to sell the new software to many industries without much
modification.

However, from the construction-change point of view, the ATD for selling the
new software package to the new customer in the new industry markets is the same
ATD in figure 7.

Fig. 7. ATD Sub-Constructor Fig. 8. ATD Primary Constructor

54 S. Nagayoshi

6 Discussion

The cases of enterprise transformation in Company A can be classified into three
categories based on the Product-Market Growth Grid [1].

Case A in the First Division is a kind of product development, in which a software
package provider develops into an application service provider to serve the local
governments in Japan.

Case B-(1) in the Second Division is a kind of diversification. For the product
aspect, Company A transformed from a sub-constructor providing worker dispatching
services to a primary constructor providing systems integration services. For the
market aspect, Company A transformed from serving customers such as system
integrators to serving new customers in the distribution industry.

Case B-(2) in the Second Division is a kind of market development, which
involves providing existing system integration service as a primary constructor not
only to the current customers in the distribution industry but also to other new
industries.

Case C-(1) in the Third Division is a kind of product development, in which
Company A acquired an application package from another company and modified it
in order to provide IT security services to existing customers.

Case C-(2) in the Third Division is a kind of market development, which involves
providing existing (acquired and modified) application software for managing IT
security not only to the existing customers but also new customers in other industries.

These transformations are illustrated in Figure 9.

Current Products New Proucts

Market

Penetration

Market

Development

Product

Development

Diversification

Fig. 9. Transformations in "Company A"

Next, these transformations will be considered along with the business process
changes in each case, which were described in ATDs in the previous section.

In the cases of product development like Case A and Case C-(1), the
transformations involved business process changes. Examples include the additional

A Case Study on Enterprise Transformation in a Medium-Size Japanese IT Service Provider 55

internal transactions and internal (elementary) actor roles as described in Figure 3 and
4 for Case A and in Figure 7 and 8 for Case C-(1).

In the cases of market development like Case B-(2) and C-(2), the transformations
involved few business process changes.

In the case of diversification like B-(1), the transformation involved structural
business process changes. For example, internal transaction and internal (elementary)
actor roles were added, and external transaction and external (composite) actor roles
were not only added but also eliminated as described in Figure 5 and 6.

Conclusion. According to the case studies in Company A, it is observed that (1) it is
not always necessary to change the ontological level of business processes in the case
of market development, (2) it is necessary to change the ontological level of business
processes in the case of product development, and (3) it is necessary to reengineer the
ontological level of business ontological processes in the case of diversification.

When a company intends to sell its existing products to new customers, change in
business processes may not be necessary, because the company only needs to know
customer information such as implicit and/or explicit customer needs and sometimes
industry-specific knowledge. This requires substantial changes in employee behavior,
company culture, and information systems which are not observable at the ontological
level. This suggests that an ontological-level analysis may miss out some important
changes. When a company intends to deal with new products and/or services, it often
needs to change business processes because production and/or service delivery is
directly related with business processes.

7 Conclusion

In this paper, enterprise transformations in Company A were analyzed based on the
marketing diversification aspect of the Product-Market Growth Grid [1] and
ontological business process changes. This study demonstrates real-world examples
of applying DEMO to study transformations. The key findings are:

(1) It is not always necessary to change the ontological level of business processes in
the case of market development,

(2) It is necessary to change the ontological level of business processes in the case of
product development, and

(3) It is necessary to reengineer the ontological level of business ontological processes
in the case of diversification.

These results suggest that it is fruitful for academic researchers to dedicate themselves
to further study the relationship between the marketing diversification aspect of the
Product-Market Growth Grid [1] and business process changes.

This paper did not discuss market penetration. Changes in business processes are
not expected except when an organization aims to improve business processes.
However, further evidence is needed to support this.

56 S. Nagayoshi

This study is mainly qualitative and it is necessary to collect more quantitative
evidence to further support the findings. To this end, it is also necessary to develop
quantitative indicators. More studies are needed to generalize the findings beyond this
study.

Acknowledgement. The author thanks the CEO, the director, the senior manager, the
sales managers and the technology managers in Company A, who kindly dedicated
time to my research work. I could not achieve my work without their generous
cooperation.

References

1. Ansoff, I.: Corporate Strategy. McGraw-Hill, New York (1965)
2. Dietz, J.: Enterprise Ontology: Theory and Methodology. Springer-Verlag New York Inc.,

New York (2006)
3. Rouse, W.B.: A theory of enterprise transformation. Systems Engineering 8(4) (2005)
4. Op ’t Land, M., Proper, E., Waage, M., Cloo, J., Steghuis, C.: Enterprise architecture:

Creating value by informed governance. Springer (2009)
5. Op ’t Land, M., Dietz, J.L.G.: Benefits of enterprise ontology in governing complex

enterprise transformations. In: Albani, A., Aveiro, D., Barjis, J. (eds.) EEWC 2012.
LNBIP, vol. 110, pp. 77–92. Springer, Heidelberg (2012)

6. Miles, R., Snow, C., Meyer, A., Coleman Jr., H.: Organizational Strategy, Structure, and
Process. The Academy of Management Review 3(3), 546–562 (1978)

7. Hamel, G., Prahalad, C.K.: Thinking differently. Business Quarterly 59(4), 22–35 (1995)
8. Hammer, M., Champy, J.: Re-engineering the Corporation: A Manifesto for a Business

Revolution. Harper, New York (1993)
9. Davenport, T.H., Short, J.E.: The new industrial engineering: Information technology and

business process redesign. Sloan Management Review 31(4), 11–27 (1990)
10. Cole, R.: Reengineering the corporation: A review essay. Quality Management

Journal 1(4), 77–85 (1994)
11. Mumford, E.: New treatments or old remedies: Is business process reengineering really

socio-technical design? Journal of Strategic Information Systems 3(4), 313–326 (1994)
12. Guha, S., Kettinger, W., Teng, J.: Business Process Reengineering: Building a

Comprehensive Methodology. Information Systems Management 10(3), 13–22 (1993)
13. Mintzberg, H., Ahlstrand, B., Lampel, J.: Strategy Safari: A Guided Tour through the

Wilds of Strategic Management. Prentice-Hall, New York (1998)
14. Wernerfelt, B.: A resource-based view of the firm. Strategic Management Journal 5(2),

171–180 (1984)
15. Wernerfelt, B.: The resource-based view of the firm: ten years after. Strategic Management

Journal 16(3), 171–174 (1995)
16. Prahalad, C.K., Hamel, G.: The core competence of the corporation. Harvard Business

Review 68(3), 79–91 (1990)
17. Teece, D.J., Pisano, G., Shuen, A.: Dynamic capabilities and strategic management.

Strategic Management Journal 18(7), 509–533 (1997)
18. Nagayoshi, S., Liu, Y., Iijima, J.: A study of the patterns for reducing exceptions and

improving business process flexibility. In: Albani, A., Aveiro, D., Barjis, J. (eds.) EEWC
2012. LNBIP, vol. 110, pp. 61–76. Springer, Heidelberg (2012)

A Case Study on Enterprise Transformation in a Medium-Size Japanese IT Service Provider 57

19. Drucker, P.: Long-range planning. Management Science 13(2), 238–249 (1959)
20. Andrews, K.R.: The Concept of Corporate Strategy. Dow Jones-Irwin, Homewood (1987)
21. von Halle, B.: Business Rules Applied: Building Better Systems Using the Business Rules

Approach. John Wiley & Sons, Inc., New York (2002)
22. Maglio, P., Srinivasan, Kreulen, J.T., Spohrer, J.: Service systems, service scientists,

SSME and innovation. Communications of the ACM 49(7), 81–85 (2006)
23. Fiol, C.M., Lyles, M.A.: Organizational learning. The Academy of Management

Review 10(4), 803–813 (1985)
24. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies

Create the Dynamics of Innovation. Oxford University Press, New York (1995)
25. Slater, S.F., Narver, J.C.: Market Orientation and the Learning Organization. Journal of

Marketing 59(3), 63–74 (1995)
26. Liu, Y., Nagayoshi, S., Iijima, J.: Innovative Transformation In a Knowledge Intensive

Industry: A Case Study of an Organizational Learning Based Enterprise. In: International
Conference on Inclusive Innovation and Innovative Management (2012)

27. Miller, A., Friesen, P.: A longitudinal study of the corporate life cycle. Management
Science 30, 1161–1183 (1984)

28. Greiner, L.E.: Evolution and revolution as organizations grow. Harvard Business Review
(July/August 1972)

29. Bettis, R.A., Prahalad, C.K.: The Dominant logic: retrospective and extension. Strategic
Management (16) (1995)

30. Aveiro, D.S.: G.O.D. (Generation, Operationalization & Discontinuation) and Control
(sub)organizations: A DEMO based approach for continuous real-time management of
organizational change caused by exceptions. UTL, Lisbon (2010)

31. Pombinho, J., Tribolet, J.: Service system design and engineering – A value-oriented
approach based on DEMO. In: Snene, M. (ed.) IESS 2012. LNBIP, vol. 103, pp. 243–257.
Springer, Heidelberg (2012)

Explaining with Mechanisms
and Its Impact on Organisational Diagnosis

Roland Ettema1, Federica Russo2, and Philip Huysmans3

1 TU Delft, Jaffalaan 5, 2628 BX Delft, Netherlands
roland.ettema@gmail.com

2 Center Leo Apostel, VU Brussel, Krijgskundestraat 33, B-1160 Brussels, Belgium
ferusso@vub.ac.be

3 University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium
philip.huysmans@ua.ac.be

Abstract. Lean Six Sigma (LSS) is the leading approach in organiza-
tional diagnosis. This approach is largely based on the analysis of corre-
lations (e.g., Multivariate Analysis (MANOVA)), which constitutes the
main source of information to establish the causes of dysfunction and to
indicate possible interventions to restore good functioning. In this pa-
per, we argue that causal mechanisms (CMs) should also be integrated
into LSS for organizational diagnosis (OD). We borrow the concept of
CM from the field of causality in the sciences. CMs have the potential
to improve diagnostic practice because they reveal the structure and the
functioning of an organization, and thus indicate more clearly how to
intervene in order to restore good functioning. While the LSS movement
has been enormously successful in advancing our diagnostic practices,
further improvement is possible once causal mechanisms are brought into
the picture.

Keywords: Organizational Diagnosis, Causal Mechanism, Lean Six Sigma,
ArchiMate, Enterprise Ontology.

1 Introduction

Organization Diagnostics (OD) is the field of study that deals with finding expla-
nations for quality problems in business processes [13, 1, 26, 25, 2]. It is derived
from the fields of quality analysis and industrial statistics. The objective of OD
is to gain insight into the possible causes of a quality problem on the basis of
observing and analyzing statistical data. In other words, statistical correlations
are used to diagnose organizational problems. Recently, authors from the social
sciences argued that explaining a certain phenomenon using a causal mechanism
(CM) makes the explanation more intelligible and understandable [6, 5, 21, 20].
However, this claim has neither been investigated in management science, nor
introduced in OD [13, 1, 26, 25, 2]. This article introduces the concept of causal
mechanism in organizational diagnosis by presenting a case study in which we
describe how OD works in practice and explore how the diagnostic process can

H.A. Proper, D. Aveiro, and K. Gaaloul (Eds.): EEWC 2013, LNBIP 146, pp. 58–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Explaining Quality Problems with Mechanisms 59

be improved by integrating evidence of mechanisms. From an academic perspec-
tive, this analysis aims to clarify whether the claim from social sciences and the
mechanisms literature (i.e., that explaining a phenomenon on the basis of CM
is more intelligible and understandable) also holds true in OD. From a practical
perspective, this analysis could lead to a more effective OD practice.

We start this paper by presenting how CMs are defined in the philosophy of
science and social sciences. CMs trace back to the pioneering works of Bechtel
[3] and Machamer, Darden and Craver [17], and were further improved by Illari
and Williamson [16]. While different definitions exist for CMs, it is widely ac-
cepted in different fields that an explanation based on CM contains the following
components: (1) a mechanism is responsible for a phenomenon; (2) mechanisms
consist of entities and activities; and (3) the organization and operational con-
ditions must be made explicit. To apply CMs in organizational diagnosis, these
three aspects must be addressed.

To assess the extent to which organizational diagnosis already adheres to
these aspects, we will describe in detail how an organizational diagnostic project
is performed. We expect to demonstrate that the current state of affairs in OD
fails to use CMs in their diagnosing results. We will, therefore, review a case
study in two stages. Firstly, we will analyze how the project was performed from
the perspective of CMs. Secondly, we will explore which elements could be added
to obtain a more complete specification of a CM.

This paper presents the results of the first stage of a larger research project,
aimed at answering two questions: (I) What are the consequences for OD if
the identification of CM is adopted as its primary objective? To answer this
question, an approach must be formulated which addresses the three aspects of
CM discussed in this paper. We will argue that the current approach of OD
(i.e., relying on statistical analysis and functional modelling) cannot adequately
describe the entities and activities of CMs, and that, therefore, the research
project should also find an answer to another question: (II) What ontology for
business processes can help determine the cause(s) of a quality problem?

The paper is organised as follows. in Section 2 we study the subject of CMs
and causality from the point of philosophy of sciences. In Section 3 we describe
an OD case study where experts endeavour to improve the quality of a business
process by applying statistics and functional modelling. In Section 4 a reflection
on the current state of affairs in OD is presented, built on the characterisation
of a CM from Section 3 and the case study description. Finally, in Section 5 we
present our conclusions and an outline for future research.

2 Explaining with Mechanisms

Explanation has a long tradition in philosophy of science. A notable character-
istic of this tradition has been to develop theories of explanation tailored to the
natural sciences, and especially physics. For instance, the deductive-nomological
(D-N) model developed by Hempel and Oppenheim [14] requires that, to explain
the occurrence of a phenomenon, it must be deduced from general laws of na-
ture and initial conditions. Later on, Salmon argued that the identification of

60 R. Ettema, F. Russo, and P. Huysmans

the basic (physical) processes provides the explanation of the phenomenon at
stake [22, 23]. Consequently, the D-N model was abandoned for a theory that
put causality prominently into the explanation, but still with physics as its main
scope of applicability. As a result, this account was considered unsatisfactory by
[17], because such processes do not fit biology or the social sciences [20]. Thus,
a ‘new turn’ in philosophy of explanation started, investigating the importance
of CM in explanatory practices.

Social scientists – like many other scientists – face the problem of explaining
correlations amongst variables of interest. As is well known, correlations are a fal-
lible source for causation of explanation, hence the need to ground explanations
on CMs [24]. Consider for example the relation between smoking and cancer.
While correlations between the two have been known for at least two hundred
years, it took a long time to conclusively establish a causal relation based on
a CM that was clearly identifiable, non-contingent, and stable across time and
populations [20, 21]. This search for CMs indicates that social scientists were
not satisfied with co-variation between variables only but were also interested
to reveal why and through what pathways the outcome was actually generated
[20, 18]. So, social scientists are not satisfied with a “black box" approach. After
two decades the debate on the right characterisation of a CM, based on Bechtel
and Richardson’s 1993 book [3], has once again been intensified by Machamer,
Darden and Craver’s thought-provoking 2000 paper [17]. In this paper, we will
adopt a definition from [16] that aims to provide an understanding of what is
common to CMs across several fields:

’ A mechanism for a phenomenon consists of entities and activities organized in such a
way that they are responsible for the phenomenon.’

(Illari and Williamson, 2011, p. 120)

This proposed consensus views a CM as consisting of entities and activities orga-
nized in such a way that they are responsible for the phenomenon. When applied,
explaining provides an intelligible answer to the question of why something hap-
pened and even more importantly how things work and how outcomes come
about. All in all, the overall prospects for explanations based on CMs appear
to be promising. In the following paragraphs we present the three elements and
introduce their meaning: responsible for the phenomenon, entities and activities,
and organization.

Firstly, the expression of being ‘responsible for an phenomenon’ in the above
characterisation contains three aspects. The first aspect is individuation; ‘re-
sponsible for an phenomenon’ means that to explain a phenomenon we need to
individuate the mechanism that causes it. A shared difficulty across the sciences
is that a phenomenon may be caused by different CMs. The second aspect is
diversity. ‘Responsible for an phenomenon’ refers to the diversity of things that
CMs do, i.e., a single CM can cause different phenomena.. The meaning of ‘di-
versity’ refers for example to the behaviour of a standard roulette wheel. The
wheel does not have different CMs for distributing the ball to pockets 16 and

Explaining Quality Problems with Mechanisms 61

17; instead the same CM produces the diversity of all 37 outcomes. The third
aspect is that CMs carry out activities, such as regulation or control, exhibit be-
haviours, such as growth, and maintain stable states. Therefore, the expression
‘responsible for an phenomenon’ for causal inference means that one regards in
CMs the importance, diversity and various forms of stability.

Secondly, a CM consists of entities and activities. Individuating a CM means
individuating the entities and activities it is composed of. Each functional com-
ponent in a CM has a preferred role in the production of a particular outcome.
In this sense, the function of entities is tied to the role they play in the over-
all organization within the CM. A CM shows a combination of the components
that jointly activate the CM, which, as a whole, produces the outcome or thing.
Craver in [7] presented this statement in a simplified form, as shown in Figure
1a: where M stands for ‘mechanism’ and Phi for ‘phenomenon. An entity that ef-
ficaciously engages in a productive activity acts as a cause (thus it is a difference
maker) and a CM’s activity to produce something (Φ) is explained by decompos-
ing and analyzing how its components, that is, entities (C1, C2, . . . , Cn) acting
in a certain way (λ1, λ2, . . . , λn), are relevant to Φ-ing. A CM should show that
a component cannot be isolated from the other components; rather, its contri-
bution to CM Φ-ing comes from its mode of operation, its size and force as well
as its relation to the other components. The same functional component, for
example, may have a different effect when it occurs in combination with other
components.

Fig. 1. Causal Mechanism adapted from Craver (2001)

Thirdly, in social research a CM producing a particular outcome rarely has a
linear or stable structure, see Fig. 1b. The outcome is often produced through
a complex system of functional components activating the CM to produce the
outcome. Altogether, this complexity imposes operational conditions and restric-
tions for the identification and postulation of CMs. Operational conditions are
important to detect since domain specific laws and entities explain nothing until
initial conditions are specified: Newton’s laws do not explain the movements of
the planets unless their initial positions and velocities are specified. This may
appear to be rather abstract but one needs to realise that employees of an organ-
isation apply business rules (laws) in their activities implicitly or explicitly and

62 R. Ettema, F. Russo, and P. Huysmans

we cannot predict how these activities will evolve unless we know something of
their current state. For example the intake before medical surgery is prescribed
in a protocol (e.g. check a persons identity, the surgery request and the actual
medical status) by which we can tell what happens next to person X with age Y
and request R. The concept of ‘organization behind causality’ is not only about
initial conditions but also about ongoing conditions that allow the entities and
activities to produce the phenomenon. ‘Ongoing’ is very important in this re-
spect as initial conditions for laws (e.g. states and business rules) matter only at
the beginning, while the organization behind causality matters throughout the
operation of a CM.

The above discussion was aimed at showing how CMs can provide new in-
sights for an account of explanation. By identifying the entities, the activities,
and their organisation, we particularly focus on the functioning of the CM. It
is the articulation of its functioning that provides the basis for a successful ex-
planation. It is worth noting that CM-based explanation by and large assumes
that what we describe is the functioning of ‘worldly’ CMs out there. The idea of
decomposing the black box – figuring out the functioning of the CM – presup-
poses a mild form of realism causing the authors in the CM literature to believe
i) that there is a box, and (ii) that it can be decomposed into smaller boxes.
We follow the ideas of authors [6, 16, 18, 24] that CMs should occupy a central
position in explanatory accounts. In Section 4, we elaborate on the relation be-
tween the decomposition mentioned here and the difference between functional
and constructional perspectives as discussed in the Enterprise Engineering (EE)
manifesto [12].

The idea to explain phenomenons by CMs can also be fruitfully applied to
organizational diagnosis. In other words, a business process is composed of en-
tities (departments or people) performing various types of activities. Their or-
ganisation causes the phenomenon we are interested it, be it the enterprise’s
typical behaviour or some kind of dysfunction. For example, the organization of
a flower shop can be interpreted in mechanistic terms: different social individ-
uals (entities) may work together and perform different roles (activities) in the
management of the shop. Once a dysfunction in the behaviour of an organization
is observed, we need to diagnose its origin or cause by identifying the point(s)
at which the functioning of the mechanism clashes. Therefore, we need to iden-
tify: (i) the phenomenon itself; (ii) the entities and activities involved and (iii)
a CM’s organisation and operation (the role-functions of the entities producing
the phenomenon) during diagnosis. In the next section, we present a case study
that was performed using the current state of the art in organizational diagnosis.
We will then analyze this case study to learn whether the current state of affairs
in OD succeeds in explaining modelled using CM’s.

3 Achieving a Mechanistic Explanation in OD

Thus far, we have focused on conceptions of a CM, without emphasizing how
CMs are discovered in OD. The following case study covers an attempt to

Explaining Quality Problems with Mechanisms 63

discover a CM. It illustrates that discovering a CM for a quality problem in
a business process turns out to be far from a trivial problem in practice and
presents the challenges of the current state of affairs of OD. The case study looks
at the pension fund Zwitserleven which manages the pension arrangements of all
its pension holders. In 2007 Zwitserleven decided to invest in a Lean Six Sigma
(LSS) project to improve the "Information Requests Handling" (IRH) business
process. The ambition of management was to reduce costs and increase customer
satisfaction. From the CM perspective advocated in the previous section, we can
reformulate this challenge as follows: "What is the CM that is responsible for
the high costs and low customer satisfaction in IRH?". In the next sections we
report our approach and we discuss the extent to which the performed analysis
succeed in meeting the challenge in our formulation.

3.1 Identifying the Phenomenon to Explain

In this case, Zwitserleven applied the Lean Six Sigma (LSS) approach whose
features are virtually all relevant tools and techniques that have been developed
in industrial statistics [8]. Initially LSS requires a more specific description of the
project goal by means of functional decomposition [8]. The CTQ-flowdown is the
activity in which the CTQ-Tree is generated [9]. In such a tree, the quality focus
(i.e., customer satisfaction) is specified by measurable quality variables which are
Critical to Quality, see Fig. 2. In this case, customer satisfaction was specified
by the quality variables: ‘CTQ2: Throughput’ and ‘CTQ3: Rework’. The CTQ-
tree template [read p. 47-p. 48 in 8] requires additional information on the
quality variables, e.g. its unit, its measurement protocol, its null measurement,
and its targeted value. This additional information is required to operationalise
its measurement. The result of the CTQ-flowdown for Zwitserleven is presented
in Fig. 2.

The CTQ-tree in Fig. 2 provides the necessary information to conduct the
null measurement, required for an understanding of the current situation. The
data of the null measurement consisted of 15295 information requests (IRs), the
workload (CTQ1) between June 2006 and June 2007, which were subjected to
statistical evaluation to better understand the IRH’s behaviour. A classification
of 13 types of IR’s was used to conduct a pareto analysis. The analysis results
showed that 6 out of 13 types identified created 80% of the workload (CTQ1),
and furthermore, that the average throughput (CTQ2) was 6 days with a highly
diverse distribution over all types. A histogram on CTQ2 showed that 29% of
the IR were handled in one day, 20% in two days and 51% in three days or over.
Rework (CTQ3) in this period (i.e., the percentage of IRs which were caused by
a former IR) was 15%. A histogram on CTQ3 showed that 80% of this rework
resided in four IR categories. Using this kind of analysis demarcates the prob-
lematic behaviour of business processes, but not the problematic phenomenon
to be explained.

The availability of this analysis led to a management decision to improve IRH
in one particular organisational department (CPA3). In the null measurement
CPA3 was responsible for handling 7956 IRs. For the duration of four months the

64 R. Ettema, F. Russo, and P. Huysmans

Layer 1:
Strategic focal

points

Layer 2:
Project objectives

Layer 3:
One-dimensional
variables (CTQs)

Layer 4:
Additive

constituents

Layer 5:
Measurements

Amount of

request

Time between

request and

answer

CTQ1:

Workload

CTQ2:

Throughput

Perceived

Response

Reduction Personnel Costs
Increase Customer

Satisfaction

Operational Costs

Linkage 1:
Action Planning

Linkage 2:
Decomposition into
dimensions

Linkage 3:
Decomposition into
additive constituents

Linkage 4:
Operational
Definitions

Benefits and Costs

Repeating

requests for

information

Internal

routing of

request

CTQ3:

Rework

Waiting

Time

CTQ 1: Workload CTQ2: Throughput CTQ 3: Rework

Per information request

category

Per information request category Per information request

category

Per request Per minute Per pension policy

Information request

category as registered in

SIEBEL CRM

Time between registering request and

registration of registering the

answering in SIEBEL CRM. A manual

sample of 20 cases to evaluate them

for processing time

Counts of second information

requests per pension policy

as registered in SIEBEL

CRM.

Null measurement on the
basis of 2006-2007

Null measurement on the basis of
2006-2007

A manual sample in CPA 3 with stop

watch

Null measurement on the
basis of 2006-2007

Targeting: Low as possible Targeting: Low as possible Targeting: Low as possible

Error Free

Fig. 2. CTQ Tree for Information Request Handling

project team was asked to assess and report monthly the quality level of CPA3.
In the first month the improvement cycle was set up, followed by three one-
month improvement cycles each. This period was considered to be sufficiently
long to provide a reasonable conclusion whether the estimated savings could be
achieved.

Fig. 3. Associations in IRH business process

Explaining Quality Problems with Mechanisms 65

The improvement cycle started with a brainstorm on the basis of a ishikawa/
fishbone diagram, a brainstorming technique asking: “which process variables
influence the identified quality variables?” [8]. The brainstorm resulted in the
identification of 30 process variables (e.g., ‘availability of employees’, ‘new pro-
motion activities’, ‘changes in regulations’). It was decided to observe 18 process
variables, by registering their values (including the values of the quality vari-
ables) each time an IR was received. The correlation strengths between all 18
process variables and the 3 quality variables were determined by statistical soft-
ware. The process variables with the most influence were filtered on the basis of
their strength of correlation, and presented in a table, see Fig. 3. All entries of
the table should be read as a tuple (e.g. <v1, v1.1>) of variables representing an
association between a quality variable and a process variable. The reader should
disregard the last two columns of this table since this information was added in
the second phase.

The LSS team used the associations (e.g. <v1, v1.1>) as presented in Fig. 3
as input for suggestions to improve the values of the quality variables. The idea
was to identify changes related to process variables (e.g. v1.1) in order to pos-
itively influence the CTQ (e.g. v1). During three months ideas were generated,
implemented and statistically evaluated. The number of ideas is represented in
the third column of Fig. 3. For example, one change was to start a pilot in which
customers were called outside office hours (v2.2) to reduce the throughput time
(v2). As a result more IR were handled within two days and customer satis-
faction increased in November and December. However, the positive effect on
V2 (CTQ2:Throughput) was temporary as calling pension holders outside office
hours created high costs and inefficiencies, and the pilot, therefore, was termi-
nated. To avoid such problems it was suggested to study the problem of IRH
more fundamentally by reframing the identified association(s) as phenomenon(s)
to be explained, and the next step was to identify the entities and activities in-
volved in these phenomena modelled.

3.2 Identifying Entities and Activities Involved

CM theory (as discussed in Section 2) suggests that the next step to identify
all entities and activities involved is the reframing of the identified associations
(see Fig. 3). The assumption here is that the phenomenon is mechanistically
produced. According to CM theory one should adopt the fallible, explanatory
heuristics (as opposed to algorithms) of decomposition and localization to identify
entities and activities [3]. in this theory decomposition refers to taking apart
or disintegrating a CM into either component parts or component operations,
and localization refers to mapping the component operations onto component
parts. In the case study it was decided – based on previous experience – to
apply the ArchiMate framework and its modelling language1 for localization
and decomposition.

1 The authoritative source is the description by The Open Group and available on
http://www.opengroup.org/archimate or as book see [19].

66 R. Ettema, F. Russo, and P. Huysmans

ArchiMate is based on the descriptive notion of architecture [15], which means
that an enterprise architecture in ArchiMate corresponds to a functional model of
the business processes in an enterprise. The ArchiMate framework [19, p.7] distin-
guishes three architectural layers: the business layer, the application layer, and the
technology layer. Furthermore, the ArchiMate framework consists of a horizontal
axis distinguishing three major aspects: the active structure, the behaviour, and
the passive structure of a system. Each layer has its own meta-model: the business
layer meta model, see [19, p.14], the application layer meta model, see [19, p.37],
and the technology layer meta model, see [19, p.47]. Each meta model explains
the core modelling concepts and the relationships between them. Each modelling
concept belongs exclusively to one of the three aspects. As a result, the modeler
chooses the system whose aspects prevail when representing a business process.

Decomposition with ArchiMate means looking for objects and artifacts of IRH
that designate instances of the meta model concepts as presented in [19, p.14],
positioning the identified entities within the ArchiMate framework and determin-
ing the relationships that exist according to the ArchiMate meta model. This was
conducted in this case for both the business and the application layer. The result
is a decomposition – a functional model – of IRH. Due to space limitations the
ArchiMate model presented in Fig. 4 is a reduced version of the real model. We
reduced its complexity to show that business objects were implemented in mul-
tiple data objects (e.g. the business object ‘information request’ is implemented
in 15 data objects assigned to 6 application components). We, furthermore, did
not present the application landscape in detail as the 42 information systems it
consists of are too complex to present in this paper. Nevertheless, it must be
taken into account since employees in IRH work with this application landscape.

Based on the functional decomposition of IRH, the ArchiMate model in Fig. 4,
project team members conducted a localisation step. The exercise – as described
in the theory of CM, see [3] – is one of mapping. Activities and entities are

a1.2

a1.1

a1.3

a2.1

a2.2a3.1a3.2

Fig. 4. ArchiMate model augmented with associations

Explaining Quality Problems with Mechanisms 67

paired on the basis of the relationship: "<Variable> is an aspect of <ArchiMate
Modelling Concept>". The result of this localisation step is the table represented
in Fig. 3. The table has, furthermore, been enhanced with information on the
value range of the variables, which information was helpful for understanding the
bandwidth of the behaviour studied. In the next phase the information captured
in the table in Fig. 3 was used to augment the ArchiMate model. The result of
this phase is presented in Fig. 4.

3.3 Identifying the Operation of the Mechanism

Since a CM is more than an aggregate of its parts, we must understand how en-
tities and activities are organized to produce the phenomenon, or the behaviour
of the system, read Sec. 2. The system that produces the behaviour of interest is
decomposed into entities and activities, and it is important to distinguish the in-
volvement of each part in the phenomenon in the next step. Inspired by Causal
Loops Diagramming (CLD) [21] the project team decided to augment the Archi-
Mate model with this type of diagram. The necessary information was already
available from the former phase, see Fig. 3. The team expected to understand from
augmentation how the involved entities and activities were organised and operated
from this knowledge to understand how process variables influence quality vari-
ables. The strategy to identify the organisation and operation of CMs was that the
involved entities and activities were ’traversed’ by an association (e.g. ctq1 and
a.1.1). The explanation was expected to reside in the ArchiMate model between
the endpoints of the association, and the idea was that the modelling concepts and
their relations would explain the operation of the CM.

In this case, the causal inference from correlation and a functional model was
blocked. No plausible CM could be identified from the ArchiMate model that con-
nected, for example, the rework of IR and its cause (e.g. <v3, v3.2>). It was not
plausible to state that rework is explained with the notion of an interaction be-
tween the activities of ’completing registration’ and ’completing request’ (see Fig
4). Firstly, the relationship of ’one activity triggers the other’ is a descriptive re-
lationship, that does not provide us with any information on the operation of a
business process. Secondly, ArchiMate does not recognise causality in its frame-
work since it does not provide us with any theory for interactions between active
elements and how these interactions cause change. One may argue that IRH was
not modelled in active elements (e.g. actors and roles, see ArchiMate Framework
[19, p.7]). We agreewith this point. However, even if the IRH wasmodelled with ac-
tive elements of the meta model of the business layer (read [19, p.14]) we would be
confronted with descriptive relationships (e.g. a <role> is assigned to <actor>),
not with causal relationships. Such relationships do not represent interactions be-
tween active elements nor do they explain how state changes happen in IRH. A
possible ArchiMate explanation for a CM connecting <v3, v3.2> was therefore
incompatible with what was known by the participants of the improvement brain-
storm meetings. These participants introduced 7 changes for <v3, v3.2> (see Fig.
3) mainly on the premise that social individuals (employees and pension holders)
interact and they cause changes that influence the rework rate. A gap seemed to

68 R. Ettema, F. Russo, and P. Huysmans

exist between the descriptive language and the causal knowledge that blocked causal
inference from a model representing the business process under investigation.

4 Reflection

In this section, we reflect on the way the organizational diagnosis was performed
in the case study using the theory of causal mechanisms. This reflection is based
on the fact that, in OD, a diagnostician attempts to describe the functioning (and
dysfunctioning) of an organization in causal terms. Such a causal description
must be contrasted to any correlations identified. It should be noted, however,
that the initial phases of the case study focused merely on identifying correlations
(e.g., the correlations in Fig. 3). Though these correlations are useful to isolate
the areas that are related to the phenomenon to be diagnosed, they are not
sufficient to provide a causal description of the phenomenon, and what is needed,
in fact, is an understanding of the organizational components that are to be
changed to remedy a problematic phenomenon. As discussed in Section 2, the
identification of a causal mechanism helps with this task. In the case study, an
ArchiMate model was used precisely for this purpose. In this section, we will
reflect on the ability of the ArchiMate approach to detect a CM.

In order to identify a mechanism, the underlying entities, activities and orga-
nization have to be uncovered, as discussed in Section 2. In an organizational
diagnosis context, the adequate entities and activities related to the organiza-
tional phenomenon must be identified by means of a decomposition technique,
after which we have to consider the organization of the entities and activities that
produce the phenomenon. For this, two different perspectives can be used accord-
ing to Enterprise Engineering: the functional perspective and the constructional
perspective [12]. The functional perspective describes how the system is used by a
certain stakeholder. Consequently, a functional model (or black-box model) used
in this perspective is by its very nature subjective: the model can differ for each
stakeholder. In other words, function is not a system property but a relationship
between a system and a stakeholder. In contrast, the constructional perspective
describes what a system is, in its ontological sense. A system is understood by its
construction and operation, irrespective of how the system is used by stakeholders.
A constructional model (or white-box model), therefore, can always be validated
from the actual construction and thus its nature is objective.

To design a constructional model, EE requires a description of the composi-
tion, environment, boundary and activity of the system [11], based on the generic
definition of a system [4]. The composition refers to the set of elements the sys-
tem consists of (i.e., the elements required in the CM definition). The activity
refers to the state changes caused by the system (i.e., the activities required in
the CM definition). The structure refers to the way the elements of the system
influence each other (i.e., the organization required in the CM definition). Con-
sequently, only a constructional (and not a functional) perspective is adequate
to uncover the relevant entities, activities and their organization for describing
a CM. Based on the case study in this paper, we argue that such a perspective

Explaining Quality Problems with Mechanisms 69

is currently lacking in organizational diagnosis. Three observations in the case
study support this argument.

A first observation is that only functional decomposition is typically used. On
a black-box model, functional decomposition can be applied to allow a focus on
a sub-part of the system. It is important to realize that a functional decompo-
sition only results in other models from a functional perspective. A fine-grained
functional decomposition is not the same as creating a constructional model,
since this perspective requires the elements described in the previous paragraph
(i.e., composition, environment, boundary and activity). Therefore, functional
decomposition does not allow us to identify causal mechanisms. Indeed, EE ar-
gues that a functional perspective is sufficient to control the behaviour of a
system, but not to change the system itself [10]. Similarly, CM authors describe
how Causal Loops Diagramming (CLD) can be used to specify associations be-
tween variables [20], but that such approaches are only able to understand the
behaviour of organizations, not to explain the observed phenomenon [6]. More-
over, Woodward argues that such approaches may even fall short when used
for predicting behaviour: “without constructional knowledge, it is not possible to
foresee the conditions under which those relations might change or fail to hold
altogether” [27]. The case study shows that current OD approaches rely heavily
on functional decomposition. As an example, we mention the CTQ-tree, which
decomposes goals into finer-grained elements, but does not attempt to define
the organizational components needed to fulfil the goals. These approaches are
insufficient to identify a causal mechanism.

A second observation is that no clear modelling concepts (i.e., entities and
activities) are used when elaborating on functional decomposition models such
as the CTQ-tree. In the case study, an ArchiMate model was used for this pur-
pose. While an explicit meta-model is presented in ArchiMate (e.g. the business
layer meta model [19, p.14]), it is clear in the case study, that this tends to ‘blur’
reality with ‘fictional’ modelling concepts. Many ArchiMate modelling concepts
and relationships are conceptual and not observable (see [19, p.14]), do not cor-
respond to real entities and activities or are too abstract to be useful for causal
inference. For example, modelling a “Customer File Management” as an [appli-
cation service] in Fig. 4 makes it very difficult to establish a direct relationship
with observations, as such a service does not exist in reality. Instead, a large
number of applications perform this service. Other examples are relationships
such as “triggers”, “realises” and “assigned to” which are used to indicate a kind
of activity without providing any details on how that activity is carried out.
Additional problems occur when the provisional status of the applied modelling
concepts and relationships disappear. Both examples show to what extent a func-
tional model can be detached from reality, and can lead to an incorrect diagnosis.
Adding such modelling concepts can easily result in “an illusion of understand-
ing” [6]. What is required instead is a meta-model that describes the adequate
entities and activities for the phenomenon under diagnosis. This meta-model is
adequate if it relies on an (inter)action-theory with activities caused by entities
in a business process as subject matter.

70 R. Ettema, F. Russo, and P. Huysmans

A third observation is that the use of inadequate modelling concepts idealizes
reality, instead of adequately describing it. This obstructs the correct identifica-
tion of a CM. By modelling a business process in the ArchiMate language one
implicitly assumes that a business process is a sequence of activities. This pre-
supposition is embedded in ArchiMate’s meta model (see the business layer meta
model in [19, p.14]), and has to be accepted implicitly by any modeller. Another
presupposition of ArchiMate is that every employee is allocated to some activ-
ity. Both presuppositions force the diagnostician to see a business process as a
properly organized system, while in reality, employees communicate and conduct
activities outside the organization as well. Again, this shows that diagnosticians
require a meta-model both to adequately describe the system producing the phe-
nomenon and to empirically validate said phenomenon. If not, what is actually
modelled is an idealized reality omitting important causal information. From the
analysis of the organization of the system, therefore, it must be evident which
entities and activities are to be included or excluded in a certain meta-model, as,
otherwise, a diagnostician cannot judge whether a model allows the detection of
the CM for a certain phenomenon.

Based on these observations, we argue that a constructional perspective with
a clearly defined meta-model must be integrated in organizational diagnosis
approaches. Approaches such as EE, which explicitly incorporate a construc-
tive perspective and separate it from behavioural observations, do not offer any
practical support on how to use both perspectives to find a CM. However, the
hypothetico-deductive methodology of causal models does provide a way to inte-
grate both perspectives. It involves three stages: (1) hypothesising, (2) building
the model, and (3) drawing conclusions on the empirical validity or invalidity of
the model [20]. The fact that in hypothetico-deductive methodology, behavioral
measurements belong to a “factual world”, while the constructional model be-
longs to an “interpretative world” is important for this reflection. Similarly, EE
argues that all behaviour is engendered by the construction [10]. Therefore, the
behaviour of a system as a CM can only be understood through an alternation
between the functional and the constructional perspective. Based on our reflec-
tion and supported by theories on CM and EE, we conclude that alternating
between function and construction is crucial for identifying the CM responsible
for a certain phenomenon. In future research we will, therefore, focus on the
construction of a method which enables such an alternation and adheres to EE
in order to detect a CM.

5 Contributions and Conclusion

Organizational diagnosis is a subfield in EE interested in finding effective proce-
dures for both the identification of dysfunctions in organizations and interventions
to improve organization performance. While the common practice of OD presents
some standard methods, for instance LSS, we argue that these can be greatly
improved if integrated with concepts coming from philosophies on causality. In
particular, CMs can enhance diagnostic procedure as they provide important in-
formation on the structure and functioning of an organization. We proceeded to

Explaining Quality Problems with Mechanisms 71

present the theories on CMs in order to establish a common understanding to be
applied in an exploratory case study. In this exploratory case study we enhanced
LSS with the functional modelling approach of ArchiMate, which is required in
order to move towards adopting the explanatory power of a CM. It was shown
that functional modelling – on the basis of ArchiMate – is not ideal to detect a
CM. We conclude that an ontological perspective on business processes is needed.

With this paper, we hope to open new paths for the professionals in OD. We
recognise that the integration of concepts coming from different fields may be dif-
ficult and will take time, but we believe that it will be a beneficial exercise. Indeed,
such exercise will be beneficial to both communities. On the one hand, the use of
CMs, as said before, can improve the intelligibility of the explanations from OD.
On the other hand, the ‘causality in the sciences’ literature has not investigated
the field of EE, so fruitful exchanges can be foreseen in this direction as well. Nev-
ertheless, one should note that within the school of EE a theory to capture the on-
tology of a business process does exist. CM can be revealed from such an ontology,
however, it was never used for diagnosis since EE is focussed on designing and en-
gineering business processes. Furthermore, the theory on the ontology for business
processes is operationalised in the DEMO2 approach, which includes a modeling
language. Effort should be invested to study the use of DEMO in a meaningful,
evidence-based way for OD. Most importantly, OD professionals must begin the
process of organizing and sharing what they know to inform and expand the knowl-
edge that will move OD towards an approach aiming for explaining by a CM.

To the extent that adopting CM as an explanatory power that goes beyond tra-
ditional statistical evidence, a CM driven OD approach represents a significant
change in management science and practice. We propose to achieve that change:
both philosophers on causality and scientists of management science will hopefully
realize that current diagnostic practices in management science are not working
(discrepancy); that evidence-based diagnosis on the basis of statistics is the cor-
rect path (appropriateness); that intelligible explanation requires an ontological
perspective (efficacy); that leaders in both fields are committed to change (prin-
cipal support); and that change is beneficial to themselves (valence). The authors
hope to encourage a change in practice by acknowledging the issues of discrep-
ancy that have emerged in OD literature and by shedding some light on both the
appropriateness and efficacy of explaining by CMs.

References

[1] Alderfer, C.P.: The Methodology of Organizational Diagnosis. Professional Psy-
chology 11(3), 459–468 (1980)

[2] Alderfer, C.P.: The Practice of Organizational Diagnosis: Theory and Methods,
1st edn. Oxford University Press, USA (2010)

[3] Bechtel, W., Richardson, R.C.: Discovering Complexity. Princeton University
Press (1993)

[4] Bunge, M.A.: Treatise on Basic Philosophy. Ontology II: A World of Systems,
vol. 4. Reidel, Boston (1979)

2 Design and Engineering Methodology for Organisations.

72 R. Ettema, F. Russo, and P. Huysmans

[5] Bunge, M.A.: How Does It Work?: The Search for Explanatory Mechanisms. Phi-
losophy of the Social Sciences 34(2), 182–210 (2004)

[6] Craver, C.F.: When mechanistic models explain. Synthese 153(3), 355–376 (2006)
[7] Craver, C.F.: Role Functions, Mechanisms, and Hierarchy. Philosophy of Sci-

ence 68(1), 53–74 (2001)
[8] de Koning, H.: Scientific Grounding of Lean Six Sigma’s Methodology. PhD thesis,

UVA Amsterdam (2007)
[9] de Koning, H., de Mast, J.: The CTQ flowdown as a conceptual model of project

objectives. Quality Management Journal 14(2), 19 (2007)
[10] Dietz, J.L.G., Hoogervorst, J.A.P.: The Principles of Enterprise Engineering. In:

Albani, A., Aveiro, D., Barjis, J. (eds.) EEWC 2012. LNBIP, vol. 110, pp. 15–30.
Springer, Heidelberg (2012)

[11] Dietz, J.L.G., Mulder, H.B.F.: Organizational transformation requires construc-
tional knowledge of business systems. In: HICSS 1998: Proceedings of the Thirty-
First Annual Hawaii International Conference on System Sciences, vol. 5, p. 365.
IEEE Computer Society, Washington, DC (1998)

[12] Dietz, J.L.G. (red.): Enterprise Engineering The Manifesto (2011),
http://www.ciaonetwork.org/publications/EEManifesto.pdf

[13] Harrison, M., Shirom, A.: Organizational diagnosis and assessment: Bridging the-
ory and practice. Sage (1998)

[14] Hempel, C.G., Oppenheim, P.: Studies in the logic of explanation. In: Hempel,
C.G. (ed.) Aspects of Scientific Explanation and Other Essays, pp. 245–282. Free
Press, New York (1965)

[15] Hoogervorst, J.A.P., Dietz, J.L.G.: Enterprise Architecture in Enterprise Engi-
neering. Information Systems Journal 3(1), 3–13 (2008)

[16] Illari, P.M., Williamson, J.: What is a mechanism? Thinking about mechanisms
across the sciences. European Journal for Philosophy of Science 2(1), 119–135
(2011)

[17] Machamer, P., Darden, L., Craver, C.F.: Thinking about mechanisms. Philosophy
of Science 67(1), 1–25 (2000)

[18] Mouchart, M., Russo, F.: Causal explanation: recursive decompositions and mech-
anisms. In: Illari, P.M., Russo, F., Williamson, J. (eds.) Causality in the Sciences,
pp. 317–337. Oxford University Press (2011)

[19] The Opengroup. ArchiMate 2.0 Specification. The Open Group (2012)
[20] Russo, F.: Causality and Causal Modelling in the Social Sciences: Measuring Vari-

ations. Methodos Series. Springer (2009)
[21] Russo, F.: Correlational Data, Causal Hypotheses, and Validity. Journal for Gen-

eral Philosophy of Science 42(1), 85–107 (2011)
[22] Salmon, W.C.: Four Decades of Scientific Explanation, vol. 3. University of Min-

nesota Press (1989)
[23] Salmon, W.C.: The Importance of Scientific Understanding. In: Causality and

Explanation, pp. 1–17. Oxford University Press (January 1998)
[24] Sankey, H.: Scientific Realism: An Elaboration and a Defence. Theoria A Journal

of Social and Political Theory 98, 35–54 (2001)
[25] Struss, P.: Fundamentals of model-based diagnosis of dynamic systems. In: Pro-

ceedings of the 15th International Joint Conference on Artificial Intelligence,
vol. 15, pp. 480–485. Lawrence Erlbaum Associates ltd. (1997)

[26] Wagner, C.: Problem solving and diagnosis. Omega 21(6), 645–656 (1993)
[27] Woodward, J.: Making Things Happen: A Theory of Causal Explanation. Oxford

University Press, USA (2005)

http://www.ciaonetwork.org/publications/EEManifesto.pdf

H.A. Proper, D. Aveiro, and K. Gaaloul (Eds.): EEWC 2013, LNBIP 146, pp. 73–87, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Transformation of Multi-level Systems – Theoretical
Grounding and Consequences

for Enterprise Architecture Management

Ralf Abraham1, José Tribolet2,3, and Robert Winter1

1 University of St. Gallen, Institute of Information Management,
Mueller-Friedberg-Strasse 8, 9000 St. Gallen, Switzerland

2 CODE, Center for Organizational Design & Engineering, INOV, Rua Alves Redol 9,
Lisbon, Portugal

3 Department of Information Systems and Computer Science, Instituto Superior Técnico,
Technical University of Lisbon, Portugal

{Ralf.Abraham,Robert.Winter}@unisg.ch,
Jose.Tribolet@inesc.pt

Abstract. In this paper, we investigate the support of enterprise architecture
management (EAM) for enterprise transformation. Conceptualizing enterprises
as systems, we draw on two theories that investigate static and dynamic system
aspects, respectively – the theory of hierarchical, multi-level systems and con-
trol theory. From the theory of hierarchical, multi-level systems, we first intro-
duce three orthogonal dimensions of hierarchy – layers, strata, and echelons.
We then position EAM as a cross-dimensional transformation support function
in this there-dimensional hierarchy space. Finally, we draw on control theory to
derive a model of control and feedback loops that enables a designed EAM
support of system-wide transformations. Using this model, we propose to ex-
tend the multi-level systems theory by a set of interlinked feedback loops as a
fourth dimension. A case study of transformation in the Portuguese air force
serves as an example illustrating the usefulness of the two theories for describ-
ing enterprise transformation.

Keywords: Enterprise Architecture Management, Control, Feedback, Multi-
Level Systems, Hierarchy.

1 Introduction

Increasing variety in their environment forces enterprises to change themselves at an
ever higher pace. Sources of variety in an enterprise’s environment include economic
pressures from competitors, as well as politically, socially or technologically-induced
changes. We understand enterprise transformation as designed and fundamental
change, in contrast to ad-hoc, routine change. Enterprise transformation is a purpose-
ful steering intervention into an enterprise’s evolution, in order to respond to per-
ceived opportunities, deficiencies or threats [1]. Despite the relevance of enterprise
transformation, a big number of these transformation efforts fail. Reports indicate

74 R. Abraham, J. Tribolet, and R. Winter

failure rates ranging from 70 to 90 per cent, across a broad range of domains [2].
These failures are often traced back to mistakes in strategy implementation and the
coordination of the actual transformation efforts. In order to successfully implement
enterprise transformation, Dietz and Hoogervorst [2] argue that a constructional,
white-box understanding of enterprises is required in addition to a functional, black-
box understanding.

One approach that is concerned with an understanding of enterprise construction is
enterprise architecture (EA). The purposeful design and change of EA according to
strategic goals is the concern of enterprise architecture management (EAM). By de-
fining principles to restrict design freedom (and thereby guiding design), one of the
core tasks of EAM is to coordinate enterprises transformation [3, 4, 5]. Since EA
focuses both on results (e.g., models) and activities (e.g., principles) in designing an
enterprise, we draw on two theories that focus on static and dynamic system aspects:
The theory of hierarchical, multi-level systems and control theory. When applied to
enterprises, the former theory is concerned with enterprise construction, and the latter
with enterprise transformation.

Within his theory of hierarchical, multi-level systems, Mesarovic [6] distinguishes
between three orthogonal notions of hierarchy: Strata, layers, and echelons. By fol-
lowing this explicit distinction, we are able to define the positioning of EAM in an
enterprise by analysing it from multiple hierarchy angles. We aim to show that in
order to support enterprise transformation, EAM must employ a more differentiated
understanding of hierarchy. To break down the resulting three-dimensional hierarchy
space (strata, layers, and echelons) to the specific purpose of describing enterprises,
we will provide three exemplary organizational design and engineering (ODE)
approaches that each focus on one dimension of hierarchy in particular. We then posi-
tion EAM in this framework and show how it cuts across these hierarchical
dimensions.

Having an understanding of the static aspects of enterprises and the positioning of
EAM, we describe an enterprise from a dynamic perspective as comprising three dif-
ferent kinds of feedback loops. We identify enterprise transformation as a special
instance of a feedback loop, as purposeful and designed change in contrast to both
permanent, evolutionary adaptation and sudden improvisation. The research questions
we address are the following:

1. How can a conceptualization of enterprises as hierarchical, multi-level systems im-
prove the effect of EAM for their transformation?

2. How can transformation be grounded on multi-level systems theory and control
theory?

The rest of this paper is organized as follows. Section 2 introduces the theory of hier-
archical, multi-level systems, basics of EAM and provides a framework of hierarchy
and a positioning of EAM. Section 3 discusses the concept of feedback loops. In sec-
tion 4, a case study of the Portuguese air force illustrates both theories applied to a
real organization. Section 5 discusses implications for EAM and offers a conceptuali-
zation of feedback loops as another dimension of hierarchy in Mesarovic’s [6] terms.

 Transformation of Multi-level Systems 75

Section 6 summarizes related work, before section 7 discusses limitations and pro-
vides a conclusion.

2 Framework of Hierarchy

2.1 Theory of Hierarchical, Multi-level Systems

To establish a framework for describing enterprises, we must first distinguish two
contexts of hierarchy: In a management context, hierarchy means a relationship of
authority and responsibility between higher and lower level units. This implies that
higher level units have authority to delegate tasks to lower level units (which are re-
quired to carry out these tasks), but they must at the same time bear responsibility for
their actions. Therefore, the concepts of authority and responsibility are inextricably
linked. By contrast, in an engineering context, hierarchy refers to a vertical decompo-
sition of a system into subsystems (i.e., a vertical arrangement of subsystems).

Hierarchy is primarily used in the latter context by Mesarovic [6] in his theory of
hierarchical, multi-level systems. Mesarovic distinguishes three orthogonal notions of
hierarchy to describe a system: Strata, layers, and echelons. Strata and layers refer to a
vertical decomposition of the system (i.e., a decomposition of the overall system into
subsystems), while echelons are a horizontal decomposition to coordinate and inte-
grate activities of various decision units. To refer to any of these notions, the generic
term ‘level’ is used. Fig. 1 is adapted from Mesarovic [6] and shows the three differ-
ent notions of hierarchy combined to describe an enterprise. Note that both strata and
layers can be used to decompose the entire system, but also to decompose the subsys-
tem that is under the control of a certain decision unit.

Fig. 1. Relationships of hierarchy notions in multi-level system (adapted from Mesarovic [6])

Stratum 1

DU
(controller)

DU
(controller)

DU
(controller)

DU
(controller)

DU
(controller)

DU
(controller)

DU
(controller)

Process

Layers: Decision problem

assignment

Control

Learning

Self-organization

Stratum 1.1

Stratum 1.2

Echelon 3

Echelon 1

Echelon 2

Strata: Model
assignment

Stratum 2

Stratum 3

Self-organization

Learning

Control

Coordination FeedbackArrows between Decision Units (DU) indicate:

76 R. Abraham, J. Tribolet, and R. Winter

Despite the differences between the three notions of levels, there are some impor-
tant commonalities: (1) Higher-level units are concerned with larger chunks of the
overall system than lower-level units. (2) Higher-level units are concerned with the
slower aspects of system behaviour; i.e. they are taking fewer decisions and intervene
into system behaviour less frequently. (3) Problem descriptions on higher levels
contain more uncertainty and are harder to formalize quantitatively than problem
descriptions on lower levels.

The first notion of hierarchy, strata, describes levels of problem description or ab-
straction. While a model on a higher stratum provides a better understanding of over-
all system behaviour, a model on a lower stratum provides a more detailed functional
explanation of individual system parts. What is considered as a whole system on a
lower stratum may form a subsystem on a higher stratum. Strata thus describe the
same entity on different levels of granularity. They may use a different form of mod-
elling on each level, to capture the model contents in a suitable way.

The second notion of hierarchy, layers, describes levels of decision complexity.
Since decision problems on lower layers can be expressed by more formal methods of
description in the strata dimension, more formal techniques can be used to solve these
problems. For example, in a manufacturing plant, a decision problem concerning
optimum production sequences may be addressed by numerical optimization tech-
niques (search layer), whereas decision problem on higher layers, such as which
products to offer and how to market them (self-organizing layer), rely on less formal
techniques such as heuristics. Layers reflect a hierarchy of goals, where the solution
of goals on a higher layer decreases uncertainty on underlying layers. Put another
way, lower layers need higher layers to limit their solution space – decisions made on
higher layers limit the degree of design freedom on lower layers.

The third notion of hierarchy, echelons, is specific to organizations. Mesarovic [6]
refers to echelons as a horizontal decomposition and calls the resulting system an
organizational hierarchy. The term “organizational hierarchy” implies the use of hier-
archy in the management context. On each echelon, there are one or more decision
units. These decision units may be individuals or groups of individuals (e.g., an indi-
vidual acting as project manager or an architecture board). As with the other notions
of hierarchy, higher echelons are concerned with larger system aspects than lower
echelons. The task of a given echelon may be represented by a stratified description of
the subsystem under its control (from the echelon’s perspective, this is the system,
whereas from the overall system’s perspective, this is a subsystem). Communication
between echelons takes the form of coordination and performance; higher echelons
coordinate lower echelons, whose performance can be interpreted as feedback to the
higher echelons. Coordination from higher-level units precedes feedback from lower-
level units. Consequently, success (achieving its goals) of higher echelons is
dependent on the performance of lower echelons

2.2 Enterprise Architecture Management

According to the ISO/IEC/IEEE Standard 42010, architecture is defined as “the fun-
damental organization of a system, embodied in its components, their relationships to

 Transformation of Multi-level Systems 77

each other and the environment, and the principles governing its design and evolu-
tion” [7]. This definition of architecture involves two aspects: The first part of the
definition forms a descriptive aspect, concerning the structure of the system’s build-
ing blocks and the relationships between them. The second part (“[…] the principles
[…]”) forms a prescriptive aspect, effectively restricting the design and evolution
space of the system under consideration. EAM is a continuous management process
concerned with establishing, maintaining and purposefully developing an enterprise’s
architecture [8, 9]. From the IEEE definition, architecture is concerned both with
results (descriptive aspect) as well as with guiding activities leading to these results
(prescriptive aspect). In terms of artifacts, EAM provides models on the current state
of an enterprise (as-is), the future state (to-be), as well as a transition plan on how to
get from the current to the future state.

Addressing the descriptive aspect of architecture, EAM is concerned with estab-
lishing transparency. Capturing the current state of EA and keeping this information
up-to-date is therefore seen as one of the EAM team’s core tasks [8, 10]. Concerning
the prescriptive aspect of architecture, EAM is concerned with maintaining consisten-
cy. Principles guide enterprise evolution by restricting design freedom [2] in order to
maintain consistency between the enterprise strategy and its implementation (i.e., the
actual EA). The management function of EAM is a good example to illustrate the
interplay between strata, layers, and echelons:

By focusing on a high level of abstraction (high stratum) in the descriptive aspect,
EAM is able to provide a holistic overview of the enterprise. In order to understand
individual aspects of an enterprise in greater detail (e.g., the technical infrastructure),
partial architectures have to be relied upon. This approach is referred to as "broad
instead of deep": EAM cuts across several decision layers in an enterprise and pro-
vides suitable models of each layers’ concerns on a high stratum. Examples of deci-
sion layers may be found in the business engineering framework [11], ranging from
strategy, organisation, alignment to software and infrastructure layers.

In the prescriptive aspect, EAM is concerned with restricting design freedom by
providing architectural principles. EAM principles support a layer notion of hierarchy
as described by Mesarovic: Decisions made on one layer restrict the search and solu-
tion space of lower layers. For example, a principle advocating the use of commercial
off-the-shelf software on the organisation layer narrows down the solution space on
the software layer by removing the option of in-house development (and the need to
select a particular programming language of platform).

Finally, echelons describe governance hierarchies – which organizational entities
have the right to make which decisions, and thus are able to influence the actions of
organizational entities on a lower echelon. The cascade of architectural principles can
therefore be seen as a representation of the organizational governance hierarchy: Who
has the right to govern whose decisions – which principle owners (organizational
units responsible for the formulation, justification and maintenance of a given
principle) may restrict the design freedom of other organizational units.

2.3 Framework of Hierarchy and Positioning of EAM

To create a framework for EAM positioning, we first consider three ODE approaches
that each illustrate one of the hierarchy notions previously discussed.

78 R. Abraham, J. Tribolet, and R. Winter

For the strata dimension, consider the architecture landscapes in the TOGAF
framework [12, p. 481]. TOGAF contains architectural views on the enterprise with
varying levels of granularity, namely strategic architecture describing a long-term,
highly aggregated view on the enterprise, segment architecture focusing on a more
detailed description of areas within the enterprise, and finally capability architecture
to describe operational competencies.

We illustrate the layer dimension using the aspect organizations found in DEMO
[13]. Enterprises are regarded on three different aspect organizations, namely the busi-
ness organization (B-Organization), the intellect organization (I-Organization) and the
document organization (D-Organization). These organizations form a hierarchy of deci-
sion layers, with higher layers setting a frame for lower layers and services from lower
layers supporting the operation of higher layers: A redesign of the B-Organization re-
sults in changes to the I- and D-Organization. Bottom-up, the D-organization supports
the I-Organization, which in turn supports the B-Organization.

The echelon dimension is exemplified by the total information systems manage-
ment (TISM) approach [14]. Management of information systems is broken down to
five levels. Strategic guidelines, IS framework, IS Project Portfolio, IS Project and IS
support. We will leave out IS support since this level focuses on local user support
only instead of enterprise-wide aspects.

Each of these echelons is represented by organizational actors carrying out as-
signed roles with authority and responsibility. Organisational actors may either be
individuals in roles or groups of individuals acting as boards. We shall call the area of
authority and responsibility of organizational actors their domain. For example, the
management board defines strategic guidelines, an architecture board defines the IS
framework (in Österle et al.’s [14] definition, an IS framework covers not only data
and functions of electronic information processing, but also the organizational dimen-
sion. This is in line with the notion of EAM extending beyond IT to also include busi-
ness aspects), a project portfolio management board sequences individual projects,
and finally project management teams carry out individual projects that generate new
or improve existing capabilities.

We position EAM as shown in Fig. 2 on the highest stratum, the strategic architec-
ture level. Lower strata are covered by detailed architectures such as segment or ca-
pability architectures. This is consistent with the idea that models on higher strata
provide an explanation of the overall system behaviour, while lower-level models
such as segment or capability architectures provide a more detailed functional
explanation of subsystems.

While all organizational actors take part in EA (by creating organizational reality
within their domain, where they enjoy freedom of action), the purposeful evolution of
EA (i.e., its management: EAM) is the main task of a specific echelon, the EAM
board. By using architectural principles to limit design freedom, EAM is a cross-layer
approach. When principles are operationalized as concrete standards, they are used to
guide enterprise design across all layers, ensuring that lower layers support higher
layers.

 Transformation of Multi-level Systems 79

Fig. 2. Positioning of EAM in three-dimensional hierarchy space

3 Feedback Loops

In order to describe dynamic aspects of a system, we turn to control theory and feed-
back loops [15]. Control is defined by Åström and Murray as “the use of algorithms
and feedback in engineered systems” [15]. Feedback is a key component in improving
a system’s robustness against uncertainty. A simple example would be a feedback
system to control the speed of a car, e.g. when cruise control is turned on. The actual
speed of the car is observed by a sensor, and if deviations are sensed, the flow of pet-
rol to the engine is regulated. Fig. 3 illustrates this example of a feedback loop with
an observer (Sense Speed), a modeller (Compute) and a controller (Actuate Throttle).

Fig. 3. Example of a feedback loop from Åström and Murray [15, p. 18]

By constantly observing system states and comparing observed data against system
goals, a controller component can compute corrective measures and then change sys-
tem variables to re-align to system goals. A feedback loop consists of an observer that
records environmental data, a modeller that interprets the data and calculates correc-
tive actions, and a controller that influences the system based on the input from the

IS Project

IS Project Portfolio

IS Framework

Strategic Guidelines

Capability Architecture
Segment Architecture

Strategic Architecture

B-Organization

I-Organization

D-Organization

La
ye

rs

EA
M

lo
w

hi
gh

80 R. Abraham, J. Tribolet, and R. Winter

modeller. Thus, the actual car speed can be kept as close to the desired speed as pos-
sible. The example also shows that a system being observable is necessary for the
system to be controllable: If the car speed cannot be sensed, it cannot be controlled.
However, being observable is not sufficient for being controllable: If only the sensor
worked, but not the components that compute speed adjustments and actuate the throt-
tle, the car would still be uncontrollable. Furthermore, not all observable variables are
also controllable.

In a complex system, there may be several feedback loops operating in parallel:
Next to the feedback loop concerned with the car’s speed, there are also several other
loops, e.g. for climate control, regulating the air condition in the passenger cabin.

Like a travelling car, an enterprise can also be considered a system in which sev-
eral feedback loops run in parallel. This theme of control is also central to one of the
understandings of management: That as the structuring, control and development of
productive social systems such as enterprises [14, p. 22]. Note that there are also other
understandings of management, such as the behavioural notion that focuses on getting
activities done by people. However, for the purpose of this paper, we will follow the
notion of management as a cyclic feedback loop that comprises the activities plan, do,
check, and act. Fig. 4 illustrates a hierarchical structure of three feedback loops.

Fig. 4. Feedback loops in enterprises

Management in general, and also management of EA, is mandated by the fact that
enterprises are never in stasis, but are constantly subjected to environmental turbu-
lences. Three dimensions of environmental turbulence are suggested [16, 17]: Fre-
quency, Amplitude, and Predictability. We consider an enterprise as having a certain

Enterprise State: All Enterprise Variables

Observable Variables

Controllable Variables

Feedback
Loop 3

Feedback
Loop 2

Feedback
Loop 1

Update Model

Capture New Model

Controller

Controller

Modeler Observer

Modeler

Modeler

Observer

Observer

Update Goals

Variable change Information flow Information Update

Organizational
Actor

O
pt

im
iz

at
io

n

Tr
an

sf
or

m
at

io
n

Im
pr

ov
is

at
io

n

 Transformation of Multi-level Systems 81

state at each moment in time, and consisting of a set of observable and a set of
controllable variables. Depending on the degree of environmental turbulence the
enterprise encounters, one or several of the following feedback loops are triggered.

Feedback loop 1 is the basic loop that runs continuously. It deals with on-going op-
timization, with running the business. Turbulences occur frequently, but with low
amplitude, and they are predictable. Based on existing models (e.g., architectural and
process models), deviations are observed by organizational actors and control meas-
ures are initiated. These models describe the enterprise on different strata. It is impor-
tant to note that all organizational actors run this first feedback loop within their own
domains. Taking the example of a car company, inventory management or production
sequencing on the assembly floor would be exemplary activities in feedback loop 1,
as would be running IT systems in the administrative departments. In feedback loop 1,
enterprises react to expected exceptions. This is also discussed as resilience by
Aveiro et al. [18].

Feedback loop 2 is triggered when unexpected exceptions or environmental turbu-
lences cause a change in models. In this case, turbulences occur less frequently than
in feedback loop 1, but they have higher amplitude. Still, they are predictable and thus
allow for initiating a planned, purposeful transformation. Therefore, enterprise trans-
formation takes place in this loop. Enterprises continue running their business (i.e.,
conducting daily operations within feedback loop 1), but they take additional meas-
ures to transform themselves: They enter feedback loop 2, formulate transformation
goals and initiate a series of projects that will eventually change the enterprise state
(Update Model / Update Goals). When transformation is complete, enterprises exit
feedback loop 2 and continue running feedback loop 1 which now operates on a new
enterprise. That is, at the end of feedback loop 2, enterprises have reconfigured their
operational resources to achieve a fit with the new environment [19]. They have also
updated their models to reflect this new environment. The development of a new
generation, fuel-saving engine would be a concrete example in a car company.

Feedback loop 3 is triggered when an enterprise is faced with environmental turbu-
lences that require immediate reactions. These turbulences are characterized by high
amplitude and virtually no predictability [20]. As opposed to feedback loop 2, envi-
ronmental change in this feedback loop is unpredictable and therefore requires quick,
improvisational actions that result in the capture of a new model [21]. Once an enter-
prise has made sense of the new situation (i.e., models and goals have been updated),
it goes back to feedback loops 2 and 1 in order to initiate the necessary transformation
projects and continue running its business.

After feedback loops 2 or 3 have handled unknown exceptions for the first time,
these exceptions are no longer unknown and can in the future be dealt with by a lower
feedback loop, e.g. by feedback loop 1. In other words, enterprises that have experi-
enced certain environmental turbulences may learn from these experiences if they are
able to add them to their pool of known exceptions [18, 19]. If enterprise goals were
never questioned, and enterprise models never updated, enterprises would be limited
to single-loop learning. A hierarchy of feedback loops allows for updating enterprise
goals and models and enables double-loop learning in organizations [22]: modifying
variables based on previous experiences.

82 R. Abraham, J. Tribolet, and R. Winter

The following example may illustrate the transitions between different feedback
loops and the potential for organizational learning: Consider a car company is hit by a
strike from one of its suppliers. It may try to respond to this situation within feedback
loop 1, by attempting to secure the required material from another source. If this fails,
it may enter feedback loop 2, starting negotiations with unions to reach a settlement.
If this also fails, it may enter feedback loop 3 and try to change its entire logistics
from just-in-time supply to in-stock supply. In this case, the company may no longer
be threatened by further exceptions of the same kind (strikes) – this kind of exception
is from now on included in the pool of known exceptions and can in the future be
dealt with by feedback loop 1.

4 Case Study: Transformation in the Portuguese Air Force

To give a practical example of feedback loops and different notions of hierarchy de-
scribing an enterprise transformation, we consider the example of the Portuguese air
force case study as reported by Páscoa and Tribolet [23]. This organization operates
different weapons systems that can be characterized by their degree of technological
advancement. In normal operating mode, the mission of the air force includes the
defence of the national airspace, air transport operations, as well as search and rescue
missions. Its core business process is flying. Being a non-profit organization depend-
ent on state funding, the Portuguese air force is developing a strategy map to maxi-
mize its core output – the number of flying hours – given a fixed annual budget. The
overall goal is broken down into individual objectives like improving drafting of
personnel, or providing more efficient aircraft maintenance processes.

Considering the strata notion of hierarchy, the Portuguese air force has developed a
number of models like an objectives model (providing a mapping of objectives to
business models), descriptions of business processes (e.g. flight operation, personnel
training, and public relations), or performance indicators and dashboards providing
information on various organizational subsystems (e.g., describing the number of
people involved with a specific weapon system or the number of missions performed
by given air craft or squadrons). Using this stratified description, several scenarios
(organizational configurations) can be described to identify the impact of possible
budget cuts.

On the layer dimension, a set of business rules and policies has been established in
order to guide the implementation of the overall goals. These policies and business
rules can be interpreted as architectural principles, allowing commanding units (the
organizational echelons) to restrict the design freedom of their subordinates.

From the dynamic point of view, on-going flight operations, search and rescue
missions, and defence readiness are controlled by feedback loop 1, representing the
air force’s daily business. The strategic initiatives leading to the formulation of
the objectives model relate to feedback loop 2. They represent a planned change of
the business, a new organizational configuration that is being designed (the equivalent
EA term would be a to-be model) and that eventually replaces the existing configura-
tion (the as-is model). In order to guide the change in organizational configurations,

 Transformation of Multi-level Systems 83

the Portuguese air force is developing a strategy map that represents the transition
path considered most feasible to reach the given goals and objectives. Feedback loop
3 would be entered if the organization was faced with extreme environmental
turbulences, such as a coup d’état.

The case study particularly points out the importance of organizational self-
awareness, i.e. the idea that in order to perform any kind of control, system variables
need to be observed. To this end, a wide array of indicators and dashboards has been
developed to provide live information on the organizational status. These indicators
cover different levels of description, i.e. the information contained in them describe
the overall system on different strata, from flight operations of individual squadrons
to overall organizational issues like budget availability for certain aircraft or technol-
ogy components. Concrete steps towards increasing organizational self-awareness
include the introduction of a formally agreed-upon terminology throughout the air
force, moving from paper-based to electronic document storage and retrieval in order
to increase dissemination and availability of information, uniform definition of roles
(qualification, authority and responsibility) across the organization, and the continu-
ing introduction of metrics. Metrics can be used to demonstrate to individual actors
their contribution to the overall goals and objectives of the air force, as well as to
observe more system variables and thus reduce the latency of the feedback loops.

5 Discussion

As discussed in section 3, the notion of feedback is central to both running the busi-
ness (feedback loop 1) and changing the business (feedback loop 2). Only when
system variables are observed can they be controlled. In the case of EAM, the archi-
tecture team may supply models to describe the system on different strata, but the
contents of these models are provided by all organizational actors. This is because
organizational actors must be provided with a degree of freedom to act within their
domains, otherwise an enterprise would lose the ability to react to exceptions. EAM
therefore depends on the existence and use of feedback channels that allow each or-
ganizational actor to act as observers, detecting model changes within their domain
and propagating this data into models. Therefore, model updating mechanisms are
central to EAM. If the observer or modeller part in any feedback loop fails, then the
system cannot be purposefully controlled or transformed. A concrete example of an
update mechanism is provided by Castela et al. [24].

In the case of EA principles, there is also interplay between coordination from
higher echelons to lower echelons, and feedback in the other direction. Existing EA
principles (i.e., principles based on existing models) can be used to run feedback loop
1. Known exceptions that might occur in this loop can be dealt with within existing
principles. However, when feedback loops 2 or 3 are entered, information must be fed
back in order to adapt principles to the new environmental situation. For example, a
principle in a bank stating that all development activities are to be performed using a
certain programming language works well as long as the environment remains stable
and the enterprise remains in feedback loop 1. However, when transformation occurs,

84 R. Abraham, J. Tribolet, and R. Winter

and a banking application has to be offered on mobile devices that cannot be sup-
ported by the existing programming language, these principles need to be adapted to
the new model [25]. While all organizational actors are responsible for adhering to
principles in their domain, they also need to challenge the validity of existing princi-
ples when the environment changes (i.e., when feedback loops 2 or 3 are triggered).
Therefore, organizational actors on all echelons take part in governance.

The application of control theory adds semantics to the understanding of the enter-
prise that is not covered by the original three dimensions of the hierarchical systems
theory. The commonalities between all notions of hierarchy identified in section 2
also hold for a hierarchy of feedback loops:

(1) Higher feedback loops are concerned with larger aspects of the overall system
than lower feedback loops. Feedback loop 1 deals with running the business. Many
instances of feedback loop 1 run in parallel, but each one is performed for smaller
chunks of the system. Feedback loops 2 and 3 are triggered by exceptions that con-
cern larger system aspects.

(2) Running frequency decreases from feedback loop 1 to feedback loop 3. While
feedback loop 1 runs permanently, feedback loops 2 and 3 are triggered by unknown
exceptions in the environment and therefore run less frequently. Feedback loop 3 is
triggered by unpredictable, sudden exceptions and requires improvisation. This occurs
less frequently than predictable exceptions leading to purposeful transformation in
feedback loop 2. The decrease in running frequency as one moves up in levels is also
emphasized by the fact that previously unknown exceptions are added to the pool of
known exceptions after they have successfully been handled.

(3) Problem descriptions on higher feedback loops are harder to formalize and con-
tain a greater degree of uncertainty than problem descriptions on lower feedback
loops. This is also consistent with the concept of rising environmental turbulence
triggering unexpected exceptions and therefore being addressed by higher feedback
loops.

We therefore conclude that feedback loops extend the three original dimensions of the
theory of hierarchical systems as a fourth dimension. This fourth dimension forms a
vertical, hierarchical decomposition of downward control and upward feedback flows
in the system, analogously to strata focusing on problem description and layers focus-
ing on goal decomposition. Higher levels in the strata dimension imply higher degrees
of abstraction. Higher levels in the layer dimension imply less formalized decision
goals. Higher levels in the feedback loop dimension imply a rising degree of envi-
ronmental turbulence that leads to the occurrence of new, unknown exceptions in the
enterprise. As a consequence, we formulate the following proposition:

P1: The three feedback loops specified in section 3 can be regarded as levels of an
additional hierarchy dimension in the sense of Mesarovic’s theory, with feedback
loop 1 occupying a lower level and feedback loop 3 a higher level.

The dimension of feedback loops is orthogonal to the other three dimensions, in that it
can be applied to the overall system or to certain subsystems, as can the other hierar-
chical notions of strata and layers [6]. Organizational actors as decision units on a

 Transformation of Multi-level Systems 85

given echelon run through this hierarchy of feedback loops to address problems in
their domain. In a similar fashion, they use a number of layers to break down their
decision problems into sub-goals and a number of strata or describe it on various lev-
els of abstraction. Feedback loops add dynamic aspects, describing an enterprise at
runtime that handles environmental influences. The original dimensions of hierarchy:
strata, layers, and echelons concern static system aspects. Compare feedback loops to
the governance hierarchy: While governance describes a static allocation of decision
rights, authority and responsibility, feedback loops show how different governance
entities interact and self-activate during different degrees of environmental turbu-
lence. Regarding both static and dynamic system aspects is consistent with a view on
EAM as not merely a passive, documentation-oriented exercise, but as an ODE ap-
proach that actively support and guides organizational design.

6 Related Work

Fundamental to the application of both the theory of hierarchical, multi-level systems
and control theory is the conceptualization of enterprises as dynamic systems. For
modeling static aspects of enterprises, modeling approaches such as DEMO focus
mostly on the stratum dimension of enterprises, and methods like UML lack a theoret-
ical foundation. As we are specifically interested in providing a clear distinction be-
tween different types of hierarchy, we chose the theory of hierarchical, multi-level
systems to describe the composition of an enterprise.

For modeling dynamic aspects of enterprises, there are several approaches: For ex-
ample, the Deming cycle [26], a four-step iterative management method, consisting of
the phases of plan-do-check-act. This cycle can also be seen as a sequence of feed-
back loops (observe-model-control).

The Dynamic capabilities framework [21, 27] emphasizes a reconfiguration of an
enterprise’s operational structure in order to achieve a better fit with the environment.
Dynamic capabilities such as business process management, research and develop-
ment, or EAM all emphasize planned, structured transformation (contrasted to
spontaneous, improvisational transformation), which is why maintaining a dynamic
capability in an enterprise is associated with additional effort [28].

Beer’s viable systems model (VSM) [29] describes autonomous systems that are
able to survive in a changing environment. It can be used to describe how enterprises
are affected by and react to environmental (i.e., market) dynamics. The VSM consists
of five levels, where the first three levels (primary activities, communication, and
control) are responsible for running the business, and the last two levels (environmen-
tal scanning and policy decisions) are responsible for changing the business.

We chose control theory because it provides the ability to model the connections
between running and changing the business – optimization versus transformation –
via multiple levels of connected feedback loops, and because of its fit with the theory
of hierarchical, multi-level systems.

86 R. Abraham, J. Tribolet, and R. Winter

7 Conclusion

In this paper, we have provided a theoretical grounding for enterprise transformation
on multi-level systems theory and control theory. We have also conceptualized a
multi-level structure of feedback loops that may be regarded as a fourth dimension of
hierarchy in addition to strata, layers and echelons. The concept of a fourth dimension
is a proposition that needs to be further researched; in particular, it needs to be con-
trasted against other possible dimensions of hierarchy. We have further illustrated the
importance of feedback channels using a concrete example of a transformation-
supporting management approach, namely EAM. The main limitation of this paper is
that it is mostly conceptual. The conceptualizations, especially the multi-level feed-
back loops and their EAM implications need to be further analysed and transformed
into useful innovative artefacts in future work. This could for example be performed
by case studies in active enterprise transformation projects, or by reviewing evidence
from past transformation. Nevertheless, this work provides a conceptual grounding of
enterprise transformation on two well-established theories that can be used to derive
requirements for concrete artefact construction.

Acknowledgement. We thank Antonia Albani for reviewing the manuscript and her
valuable comments. This work has been supported by the Swiss National Science
Foundation (SNSF).

References

1. Rouse, W.B.: A Theory of Enterprise Transformation. Systems Engineering 8(4), 279–295
(2005)

2. Dietz, J.L.G., Hoogervorst, J.A.P.: Enterprise ontology in enterprise engineering. In: Pro-
ceedings of the 2008 ACM Symposium on Applied Computing, Fortaleza, Ceara, Brazil
(2008)

3. Harmsen, F., Proper, H.A.E., Kok, N.: Informed Governance of Enterprise Transforma-
tions. In: Proper, E., Harmsen, F., Dietz, J.L.G. (eds.) PRET 2009. LNBIP, vol. 28, pp.
155–180. Springer, Heidelberg (2009)

4. Ross, J.W., Weill, P., Robertson, D.C.: Enterprise Architecture as Strategy. Creating a
Foundation for Business Execution. Harvard Business School Press, Boston (2006)

5. Tamm, T., Seddon, P.B., Shanks, G., Reynolds, P.: How Does Enterprise Architecture Add
Value to Organisations? Communications of the Association for Information Systems 28,
141–168 (2011)

6. Mesarovic, M.D.: Multilevel systems and concepts in process control. Proceedings of the
IEEE 58(1), 111–125 (1970)

7. ISO/IEC/IEEE: Systems and software engineering – Architecture description
(ISO/IEC/IEEE 42010:2011) (2011)

8. Radeke, F.: Toward Understanding Enterprise Architecture Management’s Role in Strateg-
ic Change: Antecedents, Processes, Outcomes. In: Proceedings of the 10th International
Conference on Wirtschaftsinformatik, WI 2011, pp. 497–507 (2011)

 Transformation of Multi-level Systems 87

9. Aier, S., Gleichauf, B., Winter, R.: Understanding Enterprise Architecture Management
Design – An Empirical Analysis. In: Proceedings of the 10th International Conference on
Wirtschaftsinformatik, WI 2011, pp. 645–654 (2011)

10. Strano, C., Rehmani, Q.: The Role of the Enterprise Architect. International Journal of In-
formation Systems and e-Business Management 5(4), 379–396 (2007)

11. Winter, R.: Organisational Design and Engineering - Proposal of a Conceptual Framework
and Comparison of Business Engineering with other Approaches. International Journal of
Organizational Design and Engineering 1(1&2), 126–147 (2010)

12. The Open Group: TOGAF Version 9.1 (2011)
13. Dietz, J.L.G.: Architecture. Building strategy into design. Academic Service, The Hague

(2008)
14. Österle, H., Brenner, W., Hilbers, K.: Total Information Systems Management - A Euro-

pean Approach. John Wiley & Sons, Chichester (1993)
15. Åström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engi-

neers. Princeton University Press (2008)
16. Wholey, D.R., Brittain, J.: Characterizing Environmental Variation. The Academy of

Management Journal 32(4), 867–882 (1989)
17. Child, J.: Organizational Structure, Environment and Performance: The Role of Strategic

Choice. Sociology 6(1), 1–22 (1972)
18. Aveiro, D., Silva, A.R., Tribolet, J.: Towards a G.O.D. Organization for Organizational

Self-Awareness. In: Albani, A., Dietz, J.L.G. (eds.) CIAO! 2010. LNBIP, vol. 49, pp. 16–
30. Springer, Heidelberg (2010)

19. Páscoa, C., Aveiro, D., Tribolet, J.: Organizational Configuration Actor Role Modeling
Using DEMO. In: Proper, E., Gaaloul, K., Harmsen, F., Wrycza, S. (eds.) PRET 2012.
LNBIP, vol. 120, pp. 18–47. Springer, Heidelberg (2012)

20. Eisenhardt, K.M., Martin, J.A.: Dynamic Capabilities: What are They? Strategic Manage-
ment Journal 21(10/11), 1105–1121 (2000)

21. Pavlou, P.A., El Sawy, O.A.: The “Third Hand”: IT-Enabled Competitive Advantage in
Turbulence Through Improvisational Capabilities. Information Systems Research 21(3),
443–471 (2010)

22. Argyris, C., Schön, D.A.: Organizational learning: A theory of action perspective. Addi-
son-Wesley, Reading (1978)

23. Páscoa, C., Tribolet, J.: Organizational and Design Engineering of the Operational and
Support Components of an Organization: The Portuguese Air Force Case Study. In: Harm-
sen, F., Proper, E., Schalkwijk, F., Barjis, J., Overbeek, S. (eds.) PRET 2010. LNBIP,
vol. 69, pp. 47–77. Springer, Heidelberg (2010)

24. Castela, N., Zacarias, M., Tribolet, J.: PROASIS: As-Is Business Process Model Mainten-
ance. In: Harmsen, F., Grahlmann, K., Proper, E. (eds.) PRET 2011. LNBIP, vol. 89, pp.
53–82. Springer, Heidelberg (2011)

25. Buckl, S., Matthes, F., Roth, S., Schulz, C., Schweda, C.M.: A Conceptual Framework for
Enterprise Architecture Design. In: Proper, E., Lankhorst, M.M., Schönherr, M., Barjis, J.,
Overbeek, S. (eds.) TEAR 2010. LNBIP, vol. 70, pp. 44–56. Springer, Heidelberg (2010)

26. Deming, W.E.: Out of the Crisis. MIT Press, Cambridge (1986)
27. Teece, D.J., Pisano, G., Shuen, A.: Dynamic Capabilities and Strategic Management. Stra-

tegic Management Journal 18(7), 509–533 (1997)
28. Zollo, M., Winter, S.G.: Deliberate Learning and the Evolution of Dynamic Capabilities.

Organization Science 13(3), 339–351 (2002)
29. Beer, S.: The Viable System Model: Its Provenance, Development, Methodology and Pa-

thology. The Journal of the Operational Research Society 35(1), 7–25 (1984)

H.A. Proper, D. Aveiro, and K. Gaaloul (Eds.): EEWC 2013, LNBIP 146, pp. 88–102, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Identifying Combinatorial Effects
in Requirements Engineering

Jan Verelst1, Alberto Rodrigues Silva2, Herwig Mannaert1,
David Almeida Ferreira2, and Philip Huysmans1

1 Normalized Systems Institute

Department of Management Information Systems
University of Antwerp

Antwerp, Belgium
2 Department of Computer Science and Engineering

IST & INESC-ID
Lisbon, Portugal

{jan.verelst,herwig.mannaert,philip.huysmans}@ua.ac.be,
{alberto.silva,david.ferreira}@inesc-id.pt

Abstract. There are several best practices and proposals that help to design and
develop software systems immune (to some extent) to combinatorial effects as
these systems evolve. Normalized Systems theory, considered at the software
architecture level, is one of such proposals. However, at the requirements engi-
neering (RE)-level, little research has been done regarding this issue. This paper
discusses examples related with this problem considering two distinct RE ab-
stract levels, namely at the business and system levels. The examples provided
follow the notations and techniques typical used to model the software system
at such levels, namely DEMO/EO, BPMN, and UML (Use Cases and Class di-
agrams). The analysis of these examples suggests that combinatorial effects
can be easily found at these different levels. This paper also proposes a re-
search agenda to further investigate this matter in terms of the effects of combi-
natorial effects, and envisions the mechanisms and solutions for dealing with
them. It is suggested that an artifact-based, domain-specific approach is best
suited to achieve highly agile enterprises and RE-processes in the future.

Keywords: Requirement engineering (RE), requirements specifications, com-
binatorial effects (CE), normalized systems.

1 Introduction

A software requirements specification is a document that describes multiple technical
concerns of a software system [1,2]. A requirements specification is used throughout
different stages of the project life-cycle, namely to help sharing the system vision
among the main stakeholders, as well as to facilitate their communication, the overall
project management, and system development processes. A good requirements speci-
fication provides several benefits, namely [7,19-24]: establishes the basis for agree-
ment between the customers and the suppliers on what the system is expected to do;

 Identifying Combinatorial Effects in Requirements Engineering 89

reduces development efforts; provides a basis for estimating costs and schedules;
provides a baseline for verification and validation; facilitates the system deployment;
and serves as a basis for future maintenance activities.

Over the past two decades, it has become clear that organizations are increasingly
facing more volatile environments. However, there are many indicators that organi-
zations typically find difficult to cope with these changes in terms of their information
systems. For example, the high percentage of challenged or even failed IT-projects
clearly illustrates this problem [28]. For better describing this situation, some au-
thors have even coined the term “software crisis”. However, change does not only
affect software, more specifically information systems. The respective requirements
specifications are affected as well. Moreover, requirements specifications are the
earliest documents in the systems development life cycle, and thus one of the first
artifacts to be affected by change. Therefore, requirements specifications should be
capable of dealing with change, namely taking preventive measures in terms of their
structure and content to avoid such changes from causing a ripple effect at subsequent
software development phases, such as software design and implementation.

Normalized Systems (NS) theory is especially concerned in studying the behavior
of modular structures, such as software architectures, under change [4,5]. From a
systems theoretic perspective, this theory has shown that evolvability and flexibility
are largely determined by the presence of combinatorial effects (CE). Such CEs can
be regarded as a kind of coupling and, more specifically, a ripple effect that is
independent from aspects such as programming languages, systems development
methodologies or frameworks used. Furthermore, CEs exhibit a highly harmful cha-
racteristic: these effects grow as the modular structure grows larger, which commonly
occurs in practice over time. According to these empirical observations, the behavior
of CE correlates with Lehman’s law of increasing complexity, which states that, as
maintenance is performed on a software system, its structure degrades and becomes
more complex, thus making it inflexible [6]. This way, the existence of CEs explains
why and how Lehman’s law occurs. Furthermore, NS theory suggests that studying
evolvability, as well controlling CE, is a highly complex endeavor, as CEs can occur
at many levels in information systems and software architectures, from high-level
effects at RE-level to very detailed effects at the implementation level. Usually, most
CEs can be found at the lower level, where the large amounts of (cross-cutting) con-
cerns make it difficult to avoid them.

In this paper, we report on our experiences focused on CEs at RE-level. Our re-
search was motivated by several goals. Firstly, RE is a crucial discipline to be per-
formed at the beginning of the systems development process. The existence of CEs
at RE-level indicates that these modular artifacts exhibit limited evolvability, regard-
less of the software systems derived from them. In general, this limited evolvability is
problematic because of the considerable effort involved in the RE process, as well as
the impact of its main delivery in terms of the remaining phases of the software de-
velopment process. Additionally, it also negatively influences the motivation and
ability of requirements engineers to update their artifacts over time, which can lead to
misalignments between the requirements specification and the software where these
changes were effectively applied. Given that requirements specifications are often the

90 J. Verelst et al.

basis for complementary technical documentation about the information system, as
well as part of legal documents surrounding the corresponding project (including RFP
or Project Contracts), several problems can result from CEs at RE-level.

Secondly, the concept of evolvability at RE-level is often overlooked. For example,
in object-oriented (OO) literature, it is sometimes assumed that RE is substantially
based on anthropomorphism, in the sense that making models about the problem
space mainly consists in passively identifying real world objects. This approach has
been argued by authors such as Simsion, who claim that data modeling should be
considered more a design activity than an analysis activity [27]. The presence of CEs
and coupling favors the latter perspective, and suggests that the RE-process entails
many more issues than following a passive, analysis-like identification of objects in
the real world. Indeed, NS theory suggests that studying evolvability is a complex,
multi-level approach that, in turn, suggests different and more complex approaches to
study the evolvability at RE-level are still needed.

The paper is organized as follows. Section 2 introduces the NS theory and the con-
structs and models commonly used in requirements specifications. Next, Section 3
provides examples of CEs using different notations and techniques, such as DEMO,
BPMN, and UML diagrams. In Section 4, we argue that these examples illustrate the
need for a systematic research agenda on the identification and control of CEs at RE-
level. Finally, Section 5 presents our conclusions.

2 Background

This section introduces the NS theory and the constructs and models usually used at
the requirements specifications level.

2.1 Normalized Systems Theory

Normalized Systems (NS) theory studies how modular structures behave under
change [4,5]. Initially, this theory was developed by studying change and evolvabili-
ty at the software architecture level, by applying concepts such as stability and entro-
py to the study of the modular structure of the software architecture. Considering the
application of systems theoretic stability to software architecture, stability implies that
a bounded input function should result in bounded output values, even as T→∞. In
software architecture, this means that a bounded set of changes should result in a
bounded amount of changes or impacts to the system, even for T→∞. The concept of
stability warrants that the amount of impacts caused by a change cannot be related to
the size of the system and, therefore, needs to remain constant over time as the system
grows. In other words, stability demands that the impact of a change is only depen-
dent on the nature of the change itself. If the amount of impacts is related to the size
of the system, a combinatorial effect (CE) occurs.

Research has shown that it is very difficult to prevent CEs when designing soft-
ware architectures. More specifically, it has been proven that CEs are introduced each
time one of four theorems is violated. The first theorem, separation of concerns ,

 Identifying Combinatorial Effects in Requirements Engineering 91

implies that every change driver or concern should be separated from other concerns.
Applying this principle prescribes that each module can only contain one submodular
task (which is defined as a change driver), but also that the implicit workflow should
be separated from functional submodular tasks. The second theorem, data version
transparency , implies that data should be communicated in a version transparent way
between components. This requires that this data can be changed (e.g., additional data
can be sent between components), without having an impact on the components and
their interfaces. The third theorem, action version transparency , implies that a com-
ponent can be upgraded without impacting the calling components. The fourth
theorem, separation of states, implies that actions or steps in a workflow should be
separated from each other in time by keeping state after every action or step. This
suggests an asynchronous and stateful way of calling other components.

The proofs of the theorems show that unless every theorem is adhered to at all
times during maintenance, the number of CEs will increase, making the software
more complex and less maintainable. This can only be avoided when software is de-
veloped in a highly controlled way, ensuring that none of these principles are violated
at any point in the development process during development or maintenance, which is
quite difficult to achieve in practice. A modular structure that is free from CE, is
called a Normalized System (NS). In order to achieve this, CEs should not be present
at compile time, deployment time, and run time in modular structures. Furthermore, it
has been shown that software architectures without CEs can be built by constructing
them as a set of instantiations of highly structured and loosely coupled design patterns
(called elements), which provide the core functionality of information systems and are
proven to be free of CE.

This approach allows considering these software patterns as reusable building
blocks, which can be aggregated using a mechanism called expansion to build infor-
mation systems based on these building blocks without introducing CE. This contri-
butes to realizing the vision of Doug McIlroy, who hoped for a future for software
engineering in which software would be assembled instead of programmed. It is im-
portant to note that such assembly requires modules which are purposefully designed
to prevent CE. Only when the absence of CEs in every pattern has been confirmed, it
is possible to reuse these patterns without consulting their internal construction.
Putting it in other words, only then can they be regarded as black boxes for usage in
information systems. The theorems and patterns are described in terms of modular
structures, which are independent of a given programming language or paradigm. As
a result, these theorems and patterns have a wide applicability. More importantly, this
shows that, in order to identify CE, and prescribe guidelines to prevent them, a mod-
ular structure in the domain under investigation needs to be made explicit, and the
reuse of the modules in a black-box way should be confirmed.

2.2 Constructs and Models in RE

Requirements specifications define a somehow rigorous set of statements that help
sharing a common vision between business stakeholders and the development team,
and facilitates the communication, negotiation and managing efforts among all

92 J. Verelst et al.

involved stakeholders. In general, requirements are specified in natural language due
to their higher expressiveness and ease of use [7]. However, the usage of uncon-
strained natural languages often presents some drawbacks such as ambiguity, incon-
sistency and incompleteness. To mitigate some of these problems, specifications in
natural language are typically complemented by some sort of controlled or semi-
formal language − usually graphical languages such as UML [8], SysML [9], i* [10]
or KAOS [11] −, which address different abstraction levels and concerns. Usually
requirements engineers consider two distinct abstraction levels when organizing and
specifying requirements: business level and system level. At the business level they
define the enterprise and business context, and also the purpose and general goals of
the system; while at the system level they have to further detail the concrete technical
requirements of the system.

The constructs considered at business level are commonly the terminology, the
business goals that the system should satisfy, and the stakeholders that are the sources
of these goals and requirements, but also business processes and business use cases.
There are in the community some languages that address the design of goal-oriented
models, namely i* and KAOS. There are also other approaches to describe the system
scope at this level, namely UML [8,12], BPMN [13], and RUP business modeling
[14]. Additionally, depending on the size and complexity of the systems in considera-
tion, enterprise engineering (EE) approaches can also be adopted at this level, for
example using languages such as DEMO [15] or Archimate [35].

On the other hand, the main models considered in requirements specifications at
the system level are context models, domain models, functional requirements models,
and quality-attributes models. Context models use constructs such as system, subsys-
tems, components, nodes, external actors, and respective relationships such as
communication, interoperation, decomposition or deployment. Some of the visual
languages that can be used to represent context models are SysML Block diagrams,
UML Deployment diagrams, Data Flow Diagrams (DFD) at the context level [18], or
even informal Block diagrams.

Domain models use constructs like entities or classes, and respective relationships
such as associations and generalizations, and help to capture the key concepts or in-
formation resources underlying the system. The common graphical languages used to
produce domain models are ER (Entity-Relationship) diagrams [18] or UML Class
diagrams.

Functional requirements models use constructs such as actors, functional require-
ments, use cases, scenarios or user stories. There are different approaches to specify
functional requirements. Most of these approaches recommend the use of textual spe-
cifications, written according to linguistic patterns properly enriched with predefined
metadata and classifiers, such as priority and risk levels, authors, or creation dates.
Other approaches recommend simple graphical representations such as UML Use
Case diagrams or SysML Requirements diagrams. Yet, others recommend hybrid
approaches by combining textual and graphical descriptions.

The concept of non-functional requirements (NFR) corresponds to high-level busi-
ness constraints, technical constraints, and quality attributes [16,17]. Usually business
constraints (e.g., a constraint related to the budget or the schedule of the project) are

 Identifying Combinatorial Effects in Requirements Engineering 93

business level NFR but not included in requirements specifications because they used
to be defined in other documents such as Project Charter and Project Plan documents.
On the other hand, technical requirements (e.g., a constraint related the use of a spe-
cific development tool, the use of a particular database management system, or the
adoption of a particular software development process) and quality attributes are con-
sidered system level NFR. Quality-attribute models use constructs like qualities,
metrics and utility values to specify transversal properties of the system, such as
maintainability, usability, performance, security, privacy or scalability. There are also
some approaches to specify these requirements, namely the quality-attributes scena-
rios [17], or simple lists of quality-attributes [21]. Although quality-attributes are not
difficult to be identified, they are hard to quantify in a verifiable manner. Since they
can have a huge impact on the overall cost of the solution, they must be properly con-
sidered at the software architecture level [17].

3 Identifying Combinatorial Effects at RE Level

In this section we provide some illustrative examples of CEs that exist at requirements
specifications based on the discussion of some notations and techniques commonly
used, namely based on DEMO/EO, BPMN, and UML (in particular based on its Use
Cases and Class diagrams). However, we start by discussing whether CEs can exist at
the enterprise level (real world level), irrespective from these RE techniques.

Table 1. Analysis of Languages used in RE regarding Modularity and Combinatorial Effects

Table 1 summarizes the key aspects discussed below. As referred in section 2.2,

requirements specifications can be defined at two distinct and complementary abstrac-
tion levels: business and system levels. The models produced at these abstraction
levels can be somehow classified as those used in MDE (Model Driven Engineering)
paradigm [36]. For example, considering the OMG MDA (Model Driven Architec-
ture) approach, they can be classified, respectively, as Computational Independent
Models (CIMs) and Platform Independent Model (PIMs). As it is expected, there are

Abstract
Levels

Approaches Languages Concepts Relationships Decomposition

Enterprise
Ontology DEMO

Service, Transaction,
Act, Actor Role

Communication,
Coordination,
Production

Services compounded
of transactions,
transactions
compounded of acts

Business
Processes BPMN Process, Resource

Control flow,
Data flow Process decomposition

UML Class
Diagrams Class

Association,
Generalization

Class aggregation and
composition

UML Use
Cases Diagrams Use Case, Actor Include, Extend -

… into Software Systems

OO System
Analysis

Business

System

from Real World …

94 J. Verelst et al.

not Platform Specific Models (PSMs) defined at the RE level. We start by discussing
the use of DEMO/EO and BPMN at the business level and then the UML (class and
use cases diagrams) at system level. However, we do understand that because UML
and (in somehow) DEMO are general-purpose modeling languages they could be used
at both abstract levels.

3.1 from the Real World…

In information systems literature, it is commonly assumed (at least to a certain extent)
that the information system should mirror the real world [26,27], which is also sug-
gested by the concept of anthropomorphism that is frequently cited in object oriented
literature. Together with communications theory-based approaches, such as DEMO,
this would suggest that the real world is first and foremost an area of human behavior,
which should therefore not predominantly be studied by theories based on computer
science and/or automation. We agree with this point of view. Nevertheless, in
modern society, human behavior increasingly takes place in highly structured,
process-based contexts. Therefore, we argue that it is relevant to study these aspects
of reality based on concepts such as modularity, while at the same time making an
abstraction from purely human and communication aspects.

Therefore, an initial area for applying NS theory is the real world being mirrored.
In other words, the first possibility is to investigate whether the real world itself
consists of modular structures that are inherently unstable from a system theoretic
perspective. To illustrate this, we take a simple example of a completely manual
information system (not automated at all) at a university where student marks have to
be rounded. Suppose the university has the policy of rounding exam marks “to the
nearest integer”. The university has the option to ask all professors to perform this
rounding (option 1), but also to ask the administrative exam secretariat to perform this
duty (option 2). Suppose now that the university policy changes: following option 1,
the change impacts the number of professors that have to be notified to change their
behavior, which is related to the size of the university, thus emphasizing a CE. In
option 2, only one actor needs to be notified (the exam secretariat), implying that just
1 (or a few) physical person(s) have to be notified, which is largely or fully indepen-
dent of the size of the organization. Therefore, option 2 has no (or only a negligible)
CE. We stress that this example focuses on a system with no automated processing
involved. Therefore, there is no combinatorial effect in the automation, but in ‘the
real world’.

A second example of a CE in the real world concerns the traditional versus virtual
mail distribution. In certain organizations, most employees are entitled to write (phys-
ical) letters to external stakeholders. However, the logo’s and letterheads of organiza-
tions are these days frequently changed, resulting in different paper and envelopes
being used, and in this scenario, impacts every (secretary of) letter authors. This
impact is dependent on the size of the organization, thus emphasizing another CE.
Increasingly, organization are virtualizing their letters, by having authors send elec-
tronic versions of their letters to an internal or external mail center, who prints them,
puts them in envelopes and dispatches them. In this second scenario, only one part of

 Identifying Combinatorial Effects in Requirements Engineering 95

the organization is affected by the change of a company logo and letterhead, and
therefore, no CE is present, or only an inconsequential one.

Both examples illustrate the existence of CE, without or prior to the use of RE
techniques or notations, suggesting that they exist in the “Real World”. Such CEs are
(in a certain sense) outside the scope of the requirements engineer, as it is up to the
business stakeholders to decide how to structure their organization and business
processes.

3.2 DEMO/EO

An approach to RE is to start from enterprise models in order to give a high-level
view of the business, and technical context of the system-of-interest. Among other
alternatives, DEMO [15] have been used to support this goal, as well as a starting
point for deriving use cases that describe the system functionality [29]. This is inter-
esting for our approach, since DEMO models may be considered to be appropriate for
analyzing CEs for the following reasons.

First, DEMO claims to create constructional models, instead of functional models.
Constructional models represent the actual components of which a system consists. In
contrast, functional models do not represent system components, but describe instead
how a stakeholder uses the system. Possibly, this distinction explains why in Section
3.4 no CE could be identified: functional models do not consider the (modular)
structure of a system, which was considered to be a prerequisite for identifying CEs in
Section 2. In contrast, modular discussions based on DEMO models have already
been described: for example Op’t Land [30] argues that cohesion and coupling be-
tween actors in DEMO models can be used to decide whether or not to keep organiza-
tional actors together when splitting organizations.

Second, DEMO explicitly considers organizational building blocks, and prescribes
rules for their aggregation. Acts are considered to be the basic building blocks (i.e.,
atoms), which are combined to create transactions (i.e., molecules). In order to deliver
services to the environment, collections of transactions are invoked (i.e., fibers). The
composition axiom structures how transactions can be interrelated. Transactions are
either (1) initiated externally, (2) enclosed, or (3) self-initiated. Therefore, the aggre-
gation of transactions needs to occur in certain ways. NS theory shows that CEs are
often introduced when aggregating such constructs, and that prescriptive guidelines
are required to show how building blocks can be aggregated without CE. Because
DEMO models have clearly defined building blocks and aggregation guidelines, an
analysis of the attention given to CEs on this level could be feasible. To the best of
our knowledge, it has not been researched yet whether eliminating CEs has been tak-
en into account in the DEMO guidelines.

Third, it is at least remarkable that certain concepts from NS theory are similar to
EO [31]. For example, consider the separation of states theorem. It states that “the
calling of an action entity by another action entity needs to exhibit state keeping in
normalized systems” [4]. Therefore, it prescribes how action elements can interact.
This impacts, for example, the workflow element, which aggregates action elements.
A workflow can reach different states by performing state transitions. A state

96 J. Verelst et al.

transition is realized by an action element. The successful completion of that action
element results in a defined life cycle state. The workflow specification determines
which state transitions can be made. Similarly, the state of a transaction in EO is de-
termined by the successful performance of acts. The result of such an act results in the
creation of a defined fact. Despite the different terminology, a clear resemblance be-
tween NS and EO emerges: state keeping is enforced in NS theory by defining states,
and in EO by creating facts. These NS states are the result of executing actions, whe-
reas the EO facts are the result of executing acts. The set of actions that can be per-
formed is determined by state transitions in NS, and occurrence laws in EO. While we
do not claim the adherence of DEMO models to the separation of states theorem, it is
remarkable that such similar concepts are implicitly used, specially considering the
different theoretical background of both approaches (i.e., language-action perspective
and systems theoretic stability, respectively).

Notwithstanding these arguments, it should be noted that many real world aspects
cannot be represented in DEMO models, since they are implementation-independent.
Consider for example the “round to the nearest integer” (example described above).
Using DEMO models, no difference between the two situations could be determined:
at most, the rounding is an action rule for a certain execution act. Who applies this
action rule is not modeled: the person fulfilling the executor actor role for this trans-
action (e.g., the examiner) can apply it, or it can be delegated (to the exam secreta-
riat). Therefore, certain CEs of the implementation in the real world will not be
visible in DEMO models.

3.3 BPMN

BPMN [13], like other notations (e.g., UML Activity diagrams), allows modeling
business processes and, hence modeling the business context of the system in consid-
eration. BPMN provides constructs such as process, task, role, resources, and so on,
and also relationships such as control- and data-flows. In BPMN, processes and tasks
can be considered and analyzed as modular structures. Research has already identified
CEs in business processes, and provided guidelines to prevent them [32]. As such,
changes to a certain process will only need to be applied in a single process model,
instead of in every model where the functionality of that process is needed.

For example, consider a payment process. A payment process constitutes a differ-
ent concern than the business process that handles, for instance, a purchase order.
Based on the separation of concerns principle, this functionality should therefore be
isolated in a dedicated process. If the payment functionality is modeled in every busi-
ness process requiring a payment, each of these processes would have to be able to
capture every possible change in the payment functionality. For example, when cash
payments are no longer allowed, or validating an e-banking transfer with a first-time
customer. However, if the payment concern is isolated in its dedicated business
process, only the dedicated payment process needs to be changed. All the fault han-
dling regarding transactions is included in this process. As a result, a reusable process
can be modeled. Any business process requiring a payment, can request an execution
of the payment process.

 Identifying Combinatorial Effects in Requirements Engineering 97

Based on the separation of concerns principle, a set of 25 guidelines has been pro-
posed to eliminate CEs in business process models. Each guideline starts from the
identification of a possible CE, and prescribes a solution to prevent that CE. As such,
these guidelines are less general than the NS theorems. Rather, these principles apply
the NS theorems on the business process model level. Although requirements are not
expressed using process models, these guidelines illustrate how CEs can be identified
and prevented at the business level of requirements specifications.

3.4 UML Use Cases

Use cases are highly popular, detailed and semi-formal descriptions of functional
requirements. By far, UML Use Cases diagrams are the most popular graphical repre-
sentations of the system from its functional point of view. These diagrams depict the
actors (i.e., end-users and external systems) that interact with the system through a
well-defined number of use cases. Use Cases are related among themselves through
include or extend relationships. In the end, use cases are described textually, and are
therefore typically situated close to the real world-level.

On one hand, use cases do have some modular characteristics, namely: (1) the
name of the use case can be considered a primitive form of interface; (2) pre- and
post-conditions can also be considered to delineate the functionality of the use case,
and therefore be considered part of the interface (more specifically, another use case
can treat this use case as a black box, providing the functionality described in the post
conditions); and (3) the workflow of the use case can be considered the content of the
module.

To a certain extent, this allows the identification of potential CE. For example, the
principle of separation of concerns can be applied to (groups of) steps in
the workflow. Typically, this principle is violated when several Use Cases describe
the same functionality, or even terminology in a redundant way. If such a redundancy
does not exist “in the real world”, but does exist in the Use Case, it is a CE at the Use
Case-level, caused by the text-based constructs used in Use Cases. Other constructs
may help to prevent such CE: for example, tagging parts of a workflow or individual
user interface requirements could be used, to provide a hypertext-like structure, which
supports the identification of the impact of certain CE, and perhaps even the reduction
of the number of impacts. Even though hypertext and tagging have limitations in
terms of coupling in modular structures, they at least provide a better structure than
plain text to judge the presence of CE.

However, textual descriptions have severe limitations in terms of CE. Use Cases
are usually too underspecified to allow thorough identification of CE. For example,
action version transparency, data version transparency, and separation of state theo-
rems can be applied to the module interface (describing when Use Cases call each
other). In Use Cases, however, this is difficult to judge because no interface parame-
ters are detailed. Also, Use Cases give virtually no guidance as to which concerns
should be separated, and therefore they are prone to scatter certain concerns over the
entire document. In turn, this can lead to mixing functional with non-functional con-
cerns, as well as mixing several non-functional concerns. For example, Use Case

98 J. Verelst et al.

documents could contain non-functional user interface details in many or every Use
Case (describing functional concerns). A change in the user interface requirements
may then require a very large number of updates across the entire document.

This under-specification and lack of guidance is typically pointed out as one of the
criticisms of EE (Enterprise Engineering) researchers, regarding Use Cases. Indeed,
identifying CEs can be done in a more precise way in EE-approaches, such as DEMO.

3.5 UML Object-Oriented Domain Models

As mentioned in the previous section, domain models capture the key concepts of the
system of interest. UML class models are the most popular notation for such domain
models. Such models depict the classes and their relationships, such as associations
and generalizations. Each class can both define data (attributes) and functions
(methods) properties.

Concerning data, redundant definition of attributes are well-documented examples
of CE, and the application of Codd’s normalization rules [34] eliminates many of
them. Concerning functions, the use of atomic data types in the interface of a me-
thod is a common violation of data version transparency. The CEs becomes clear
when changing the definition of the attribute, which subsequently has to be applied to
all redundant instances of the attribute. On the other hand, concerning the relation-
ships between classes, the use of “sync pipelines” is an example of a violation of
separation of state. This refers to a typical style in OO analysis, design and pro-
gramming where method A calls method B, which calls method C, which calls me-
thod Z… while method A is still waiting for a return value from B. Similarly, X
could call Y, who calls Z. In this case, the addition of one new error state in Z,
would impact every calling method, i.e. both Y (and probably X), and C (and proba-
bly A and B).

These CEs are very similar to those in OO programming, which have been docu-
mented in [4].

4 Discussion

This discussion reflects our experience in the field both in practice and research. On
one hand, we have more than 10 years’ experience specifying as well assessing and
auditing complex information systems based on different types of requirements speci-
fications and related documentation. On the other hand, we have also researched in
areas such as software architectures and system design (e.g., the Normalized Systems
theory and its application [4,5]), requirements specification languages (e.g., the Pro-
jectIT-RSL [23] or RSLingo approaches [24]), and the alignment between RE and
MDE fields [25]). The scope and contribution of this paper reflects this blended
experience.

The examples of CEs mentioned in the previous section are relatively straightfor-
ward, but they are sufficient to illustrate the omnipresence of instabilities in a domain
that is sometimes considered to be about "identification of objects in the real world”.

 Identifying Combinatorial Effects in Requirements Engineering 99

Indeed, these examples illustrate that both the real world (enterprise itself and respec-
tive information systems) and the “mechanisms and tools” we use to model them
(e.g., classes or informational entities, use cases, processes and workflows, enterprise
ontologies and communication acts) contain these instabilities. All of these CEs will
exhibit Lehman-like symptoms. Initially, when the system is small, they would
probably not be problematic, but over time their effects would grow and slowly but
surely increase the rigidity of requirements models and specifications (which are
sometimes used as the technical documentation of the information system, or a
component in a legal contract concerning the system).

As summarized in Table 1, the examples above illustrate the existence of CEs at
different abstraction levels, from the “real world” to enterprise-level and business
processes descriptions (such as DEMO and BPMN), to object-oriented UML
diagrams that have similar constructs as the implementation levels of information
systems. This suggests that the RE- and systems development process consists of
bridging a set of functional/constructive gaps, where every constructive level realizes
the functional requirements of the functional level above using its own constructs.

At every level of this set of functional/constructive gaps, a certain amount of control
of CEs should be striven for. On the one hand, it is clear that it is advantageous to
eliminate the CE, and that is what we advocate at the software level: maximal elimina-
tion of CE. However, we explicitly mention that this is not necessarily the case at
higher levels. For example, at the enterprise level, it seems quite probable that a certain
level of CEs can be tolerated (for example, an organization may decide to keep using
physical letter distribution over a virtual mail system), but in any case this decision
should then be taken in a conscious way. At the level of the RE-techniques, it seems
more certain that one should strive for full control of the extra CEs that are incurred.
For example, the coupling in text-based requirements specifications’ should be
investigated for additional CE, as well as coupling CEs in BPMN models [32].

It should be remarked that the examples shown above are relatively straightfor-
ward, and that an experienced RE-practitioner is probably currently able to deal with
most of these CEs in a heuristic way (based on experience). However, at the soft-
ware level with its high number of concerns and correspondingly complex modular
structures, heuristics have shown to be insufficient to control the large number of
highly complex CEs that are responsible for the symptoms of Lehman’s law. The
enterprise and its supporting information systems are widely assumed to become even
more complex in the future. This perspective may imply enterprises becoming larger
in terms of amounts of different products, markets and human resources, but also
relatively small enterprises can be faced with very high levels of complexity as they
are part of multi-actor value networks that grow in size and complexity.

As this process of complexity increase takes place, heuristics applied by individual
members of a RE-team will increasingly fall short in controlling coupling at the RE-
level, and the need for a systematic approach to dealing with CEs is increasingly
needed. Such a systematic approach should address minimally the following issues:

First, identification of CEs at each level, both in the constructs of the level and the
models built using these constructs (also other NS-related concepts such as entropy
should be considered at each level, but this is outside the scope of this paper).

100 J. Verelst et al.

Second, different mechanisms to achieve control of CE, such as the code genera-
tion or expansion mechanisms that was used at the software level [5], but perhaps
manual or semi-automated mechanisms are more appropriate at higher levels.

Third, appropriate levels of control of CE, and extent to which they need to be ap-
plied in different levels of circumstances. For example, as mentioned above,
possibly the higher levels should have higher tolerance-levels for CEs than more im-
plementation-oriented levels. It is also possible that different levels are required
depending on the sector the enterprise is situated in (for example, the types of changes
that occur at high frequency in a sector).

The combination of these three issues, suggests that a single abstract, domain-
independent approach in unlikely to achieve this ambitious goal of building the agile
enterprise of the future. It is more likely that domain-dependent approaches are
needed to focus fully on the subtle and complex issues surrounding coupling at all
different levels in a certain sector. This is similar to classical engineering where
reusable, domain-specific artifacts are constructed in sector like computer hardware
design, car manufacturing, etc. Coupling is in these approaches also addressed by
splitting the problem of car manufacturing in a series of sub-problems, i.e. design and
manufacturing of the engine, the dashboard etc. Such a domain-dependent approach
would mean that loosely coupled artifacts need to be developed in areas such as
finance, accounting, transport, human resources, or in subareas such as invoicing,
staffing, project management, mail distribution, payments, etc. All of these transver-
sal subareas contain highly complex coupling issues which can be addressed by de-
veloping artifacts such as invoice lines, address validators, credit checkers etc.
When these artifacts are developed using a modular structure which exhibits control
of coupling issues (such as a low number of CE), they can be aggregated into higher-
order structures such as an invoice. This example may be surprisingly uncompli-
cated, but at this point in time, there is no accurate description of the modular
structure of an invoice available in the scientific literature, which is (widely) used in
practice. On the contrary, invoices are currently still defined in practice in product-
dependent and/or heuristic way, with no explicit study or science-based control of
their modular structure.

Therefore, we believe that RE and EE would benefit from a piecemeal and induc-
tive research agenda that is allowed by these domain-specific and problem decompo-
sition approaches, in order to perhaps generalize to domain-independent techniques
and methodologies in the future. However, we remark that this approach contrasts
with the current mainstream in RE-literature, where there is a focus on large numbers
relatively domain-independent modeling languages (constructs), techniques, metho-
dologies and tools being proposed, with limited systematic study of the characteristics
of the artifacts that are constructed.

5 Conclusion

In this paper we have documented our experiences in looking for CEs at different
levels in the RE-process. The examples cover CEs at the RE level based on the

 Identifying Combinatorial Effects in Requirements Engineering 101

adoption of notations and techniques such as UML classes and use cases, DEMO/EO,
and BPMN models. The examples presented are relatively straightforward, but
enough to show the omnipresence of such instabilities in the RE levels. As a result,
we have described the need for a research agenda focusing on the systematic research
into CEs and related issues at the RE domain in order to build enterprises and their
information systems that are able to exhibit new levels of agility that will be required
in the future.

In this way, we support the call by Dietz et al. for the area of Enterprise Engineer-
ing to be developed [33]. The amount and complexity of issues that need to be solved
to achieve the next generation of truly agile enterprises both in the service and indus-
trial sector, both in the for-profit and not-for-profit sector, is such that a scientific
basis focusing on structural issues (including coupling) will be required.

References

[1] Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques, 1st edn.
Springer (2010)

[2] Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley
(1997)

[3] Tun, T.T., Trew, T., Jackson, M., Laney, R., Nuseibeh, B.: Specifying features of an
evolving software system. Software: Practice and Experience 39(11), 973–1002 (2009),
doi:10.1002/spe.923

[4] Mannaert, H., Verelst, J.: Normalized Systems: Re-creating Information Technology
Based on Laws for Software Evolvability. Koppa (2009)

[5] Mannaert, H., Verelst, J., Ven, K.: Towards evolvable software architectures based on
systems theoretic stability. Software Practice and Experience (2012)

[6] Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proceedings of the
IEEE 68(9), 1060–1076 (1980)

[7] Kovitz, B.: Practical Software Requirements: Manual of Content and Style. Manning
(1998)

[8] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley (2005)

[9] OMG, Object Management Group, Systems Modeling Language,
http://www.omgsysml.org

[10] Yu, E.: Modelling Strategic Relationships for Process Reengineering, PhD thesis, Uni-
versity of Toronto, Canada (1995)

[11] Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to
Software Specifications. Wiley (2009)

[12] Castela, N., Tribolet, J., Silva, A.R., Guerra, A.: Business Process Modeling with UML.
In: Proceedings of the International Conference on Enterprise Information Systems.
ICEIS Press (2001)

[13] OMG: Business process model and notation (bpmn), version 2.0. Tech. rep. OMG (2011)
[14] IBM Rational Method Composer and RUP on IBM Rational developerWorks,

http://www.ibm.com/developerworks/rational/~products/rup/
[15] Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer (2006)

102 J. Verelst et al.

[16] Chung, L., do Prado Leite, J.C.S.: On Non-Functional Requirements in Software Engi-
neering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual
Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 363–379. Springer, Hei-
delberg (2009)

[17] Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison
Wesley (2003)

[18] Weaver, P., Lambrou, N., Walkley, M.: Practical SSADM Version 4+, 2nd edn. Prentice
Hall (1998)

[19] IEEE, IEEE Std 830-1998 (Revision of IEEE Std 830-1993). IEEE Recommended Prac-
tice for Software Requirements Specifications (1998)

[20] Withall, S.: Software Requirements Patterns. Microsoft Press (2007)
[21] Robertson, S., Robertson, J.: Mastering the Requirements Process, 2nd edn. Addison-

Wesley (2006)
[22] Cockburn, A.: Writing Effective Use Cases. Addison-Wesley (2001)
[23] Videira, C., Ferreira, D., Silva, A.R.: A linguistic patterns approach for requirements

specification. In: Proc. 32nd Euromicro Conference on Software Engineering and Ad-
vanced Applications. IEEE Computer Society (2006)

[24] Ferreira, D., Silva, A.R.: RSLingo: An Information Extraction Approach toward Formal
Requirements Specifications. In: Proc. of the 2nd Int. Workshop on Model-Driven Re-
quirements Engineering (MoDRE 2012). IEEE Computer Society (2012)

[25] Silva, A.R., Saraiva, J., Ferreira, D., Silva, R., Videira, C.: Integration of RE and MDE
Paradigms: The ProjectIT Approach and Tools. IET Software Journal 1(6) (2007)

[26] Borgida, A.: Features of languages for the development of information systems at the
conceptual leve. IEEE Software, 63–72 (January 1985)

[27] Simsion, G., Witt, G.: Data Modeling Essentials, 3rd edn. Morgan Kaufmann (2004)
[28] Standish Group, The Standish Group Report: Chaos (1995)
[29] Shishkov, B., Dietz, J.L.G.: Deriving Use Cases From Business Processes, the Advan-

tages of Demo. In: Proceedings of ICEIS 2003, pp. 138–146 (2003)
[30] Op ’t Land, M.: Applying Architecture and Ontology to the Splitting and Allying of En-

terprises, PhD Thesis, Technical University Delft (NL) (2008)
[31] Huysmans, P.: On the Feasibility of Normalized Enterprises: Applying Normalized Sys-

tems Theory to the High-Level Design of Enterprises, PhD Thesis, University of Ant-
werp (2011)

[32] Van Nuffel, D.: Towards Designing Modular and Evolvable Business Processes. PhD
Thesis, University of Antwerp (2011)

[33] Dietz, J.L.G.: Enterprise Engineering Manifesto (2010),
http://www.ciaonetwork.org/publications/EEManifesto.pdf

[34] Codd, E.F.: A relational model of data for large shared data banks. Communications of
the ACM 13(6), 377–387 (1970)

[35] Lankhorst, M., et al.: Enterprise Architecture at Work - Modelling. Communication and
Analysis. Springer (2005)

[36] Stahl, T., Volter, M.: Model-Driven Software Development. Wiley (2005)

Understanding Entropy Generation during the

Execution of Business Process Instantiations:
An Illustration from Cost Accounting

Peter De Bruyn, Philip Huysmans, Herwig Mannaert, and Jan Verelst

Normalized Systems Institute (NSI)
Department of Management Information Systems

University of Antwerp
Antwerp, Belgium

{peter.debruyn,philip.huysmans,herwig.mannaert,jan.verelst}@ua.ac.be

Abstract. The instantiation and execution of business processes typi-
cally generates an enormous set of data, including financial- and
accounting-related information, based on different aggregation levels. As
a result, it can be very complex to draw conclusions from this data, such
as which steps in a business process are causing delays or, in an account-
ing context, which tasks are causing high costs. In this paper, we relate
this complexity generated through business process execution to the con-
cept of entropy, as defined in thermodynamics. More specifically, we show
how information aggregation seems to be at the core of this phenomenon.
We discuss six types of information aggregation dimensions which tend
to increase entropy (and hence, complexity) in a cost accounting context.
As entropy is generally controlled by adding structure to the considered
system, we propose a set of preliminary guidelines to control this entropy
based on insights from the Normalized Systems (NS) theory rationale.

Keywords: Entropy, Business process execution, Information aggrega-
tion, Cost accounting, Normalized Systems.

1 Introduction

In order to make appropriate business decisions, managers require accurate in-
formation of the organization. For example, cost accounting approaches accu-
mulate cost data to deliver precise information on the costs to design, produce
and deliver certain products or services. However, various authors argue that
even advanced cost accounting approaches (e.g., Activity-Based Costing) have
issues to adequately report on complex and changing product portfolios [1], es-
pecially when such products are produced by complex processes [2]. As a result,
it can be very complex to draw practical conclusions from this data, such as
which steps in a business process are causing delays or, in an accounting con-
text, which tasks are causing high costs. Also, a sound theoretical basis seems
required to develop a suitable approach. In engineering sciences, complexity is

H.A. Proper, D. Aveiro, and K. Gaaloul (Eds.): EEWC 2013, LNBIP 146, pp. 103–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

104 P. De Bruyn et al.

studied using the entropy concept. In this paper, we use entropy as defined in sta-
tistical thermodynamics to study the phenomenon of entropy generation during
the execution of business processes. We will start by elaborating on some basic
concepts related to the entropy concept in Section 2. Afterwards, we will show
in Section 3 that entropy generation during the execution of business processes
is due to the (uncontrolled or unconscious) aggregation of (cost) information
according to several possible aggregation dimensions. The relevance of this anal-
ysis for the design of cost accounting systems in practice, and the information
systems supporting these accounting systems will be discussed in Section 4.

It should be noticed that we are not the first to employ the concept of entropy
to study the complexity of financial and accounting related data. For instance,
Lev [3] proposed to analyze the design and information content of financial state-
ments from an entropy viewpoint. Also here, the author concluded that improved
decision making seems to be enabled by access to detailed, rather than aggre-
gated, information. Later on, other authors have elaborated on this approach
(see e.g., [4,5]). However, our approach seems to differ in several aspects. First,
whereas Lev and the follow-up studies started their analysis from entropy as de-
fined in information theory, we take the statistical thermodynamics perspective
as our starting point. Second, whereas the mentioned studies mainly focused on
financial reporting, our research is situated in a business process (i.e., managerial
or operational) context (e.g., to perform business process optimizations). Third,
our approach stresses more explicitly the importance of analyzing the run-time
behavior of organizational constructs to introduce the concept of entropy.

2 Theoretical Framework: Entropy

As we use the theoretical concept of entropy in this paper to analyze the complex-
ity generated through business process execution, we will introduce the necessary
entropy concepts and definitions in this section.

Entropy as expressed in the second law of thermodynamics is considered to
be a fundamental principle in traditional engineering sciences. While many ver-
sions exist, all approaches have basically the intent of expressing the (increasing)
amount of complexity, uncertainty (i.e., lack of information) and tendency of par-
ticles to interact (i.e., couple) within a system. In this paper, we will use the
perspective towards entropy as employed in statistical thermodynamics. Here,
entropy was defined by Boltzmann as proportional to the number of possible mi-
crostates (i.e., the whole of microscopic properties of the particles of a system)
consistent with a single macrostate (i.e., the whole of externally observable and
measurable properties of a system), i.e., the multiplicity [6].

This definition of entropy can be further clarified by the following example.
Consider a set of 100 coins, each of which is either heads up or tails up. Assuming
that the observer is only able to consider the general outcome in terms of the
total number of heads and tails, this information specifies the macrostate. The
set of microstates is then specified by the possible configurations of the facings of
each individual coin resulting in the observed macrostate. For the macrostate of

Understanding Entropy Generation during Business Process Execution 105

100 heads or 100 tails, there is exactly one possible configuration (i.e., all coins
are heads or all coins are tails respectively), so our knowledge about the system
is complete (i.e., multiplicity equals 1). At the opposite extreme, the macrostate
which gives us the least knowledge about the system consists of 50 heads and 50
tails in any order, for which there are 1092 possible microstates (i.e., multiplicity
equals 1092). It is clear that the entropy is extremely large in the latter case
because we have no knowledge of the internals of the system.

A common way of dealing with entropy, is to increase the structure or the
knowledge of the internals of the system. Consider again our coin example. The
entropy in this example can be reduced when we add structure to the studied
system. Suppose we would create —instead of 1 group with 100 coins— 10
groups of 10 coins, each with 5 heads and 5 tails. In this situation, multiplicity
would only amount to 2520 [7]. Consequently, the entropy for this system would
be much lower. Structure can be used to control entropy, in the sense that
by allowing less interaction between the constituting components before the
information is observed, a lower number of valid combinations is possible. This
leads to less uncertainty concerning the actual microstate configuration.

The mechanisms related to entropy reasoning have found their reflection in
many domains, including business and management topics. Even for the business
process management domain, some contributions can be found (see e.g., [8]).
However, an approach based on entropy as defined in statistical thermodynamics
for studying the complexity arising from the (cost) data generated by executing
business process instantiations, is, to the best of our knowledge, non-existing.

3 Entropy Generation and Aggregation Dimensions in a
Business Process Context

In this section, we will demonstrate how entropy generation in a business process
context can essentially be explained by considering the aggregation of informa-
tion during the execution of business process instantiations (i.e., considering the
run-time environment) according to several possible aggregation dimensions. In
order to do so, we will first discuss our conceptualization of a business pro-
cess instantiation space and the corresponding definition of microstates and
macrostates in such context. We then discuss a set of six possible (cost) in-
formation aggregation dimensions during the execution of business processes,
how we can see these aggregation dimensions as different degrees of entropy, and
explore how we can avoid this entropy generation.

3.1 The Run-Time Instantiation Space of a Business Process

Many (diagnostic) management decisions are typically related to the run-time
perspective of business processes, as properties like a realized throughput time
or the costs of specific instantiated products or services only exist in such run-
time perspective (and not in a merely design-time perspective). Therefore, we
need to define the necessary run-time instantiation space of business processes.

106 P. De Bruyn et al.

�
�
�
��
�
�
�
�	

�
�
�
�
�
�

������ ������

�����	

�����

������

Fig. 1. A general business process BP1 consisting out of five tasks

In order to do so, let us regard a business process as a flow which constitutes a
set of consecutive tasks (including selections, iterations, etc.) on an information
object (e.g., an invoice, the production of a car, etc.) with the intent to attain
a certain business goal. Consider for instance the exemplary business process as
depicted in Figure 1 (labeled “Business Process 1” or “BP1” further on). The
business process consists out of five tasks, of which tasks 3 and 4 are part of an
exclusive gateway, meaning that only one of them will be executed during each
instance:

BP1 = {t1, t2, t3, t4, t5}
Such business process might be imaginable for both industrial or more adminis-
trative purposes. For instance, in an industry context, the process of delivering
a certain product might consist of 5 tasks performing respectively: assuring the
client’s creditworthiness (i.e., task 1); analyzing whether the requested good is
still in stock (i.e., task 2); in case the product is in stock: retrievement of the
product out of stock (i.e., task 3); in case the product is not in stock: product
assembly (i.e., task 4); product shipping (i.e., task 5).

Each time a product is asked to be delivered , a new instance of the business
process is initiated and an instantiated information object (i.e., a specific product
delivery instance) passes through each step in the process. For the moment
making abstraction of the groupings depicted by the dotted lines, an example of
such business process instantiation space is provided in Figure 2.

As such, each business process instantiation BPi,j can be identified using the
index i to refer to the business process type (here only “1” as we consider only
one business process type) and index j to refer to the business process instance of
a particular business process type (here instances “1”, “2”, and “3” of business
process type “1”). At its turn, each business process instance contains a set
of instantiations of its constituting tasks tk,m. Again, each task instantiation
can then be identified using indexes k for the task type (here tasks “1” to “5”
contained in business process type BP1) and m for to the task instance. Hence,
the business process instantiation space in our example becomes:

⎧
⎨

⎩

BP1,1 = {t1,1, t2,1, t3,1, t5,1}
BP1,2 = {t1,2, t2,2, t4,1, t5,2}
BP1,3 = {t1,3, t2,3, t3,2, t5,3}

Understanding Entropy Generation during Business Process Execution 107

��
��
�
�
��
�
��
�
�
	

	�
�

�

��

�
��
��
�
�
��
�
��
�
�
	�
	�
�

�

��

�
��
�
��
�
��
�
��
�
�
	�
	�
�

�
�
�

�

���� ����

����

����

���� ����

����

����

���� ����

����

����

��������	
�����	�

��
��

� � �� �

�

Fig. 2. A set of business process instantiations of “Business Process 1” and 6 possible
information aggregation dimensions of the costs involved in each task instance

3.2 Interpreting Microstates and Macrostates

We discussed in Section 2 how entropy generation can essentially be traced to
the degree of interaction and coupling between the particles or modules making
up a system, during its lifetime. As such, for each modular system, entropy could
be studied. In previous work, we therefore already briefly argued that entropy
reasoning can be applied to organizational systems as well [9,10]. Accordingly,
macrostates and microstates should and can be defined in such framework.

Aiming to employ the thermodynamics analogy, the individual task instanti-
ations can be seen as the “particles” in the business process system. Whereas
in typical thermodynamics, properties as speed and position of the particles are
studied, its counterpart in the context of tasks would be typical properties like
the throughput time of an individual task instantiation in a process, its correct
or erroneous outcome, the costs and resource consumption of an individual task,
etc. Hence, the microstate in the defined instantiation space is given by the

108 P. De Bruyn et al.

union of the values of properties (e.g., costs) for each individual part (i.e., task
instantiation): {C(tk,m)}k,m. The macrostate of this space is the (aggregated)
information available for the observer, generally entailing unrecoverable loss of
information. Consequently, in a business process context, a macrostate could be
considered as referring to typical observable information of business processes
such as the total throughput or cycle time, quality or output measures, total
costs, resource consumption, etc.

As in traditional thermodynamics, entropy is also here conceived as being pro-
portional to the number of microstates consistent with a single macrostate (i.e.,
multiplicity Ω). In case we can now easily solve typical management questions
of the type “which task(s) was (were) responsible for the extremely large cost
or extremely long throughput time of a particular business process (instance)?”,
entropy can be considered to be low. In such case, the observable macrostate
(i.e., the extremely large cost or extremely long throughput time) can be related
to only one or a few microstates (i.e., the responsible task or tasks). In contrast,
when the answer to such questions is unclear (i.e., many tasks can possibly be
responsible for the observed macrostate), entropy is high. In such case, one could
argue that different pieces of information (i.e., the particles) “interact” or are
being “coupled” in front of the observer, trying to identify the origin of a (prob-
lematic) observation. As a consequence, also in business process context, entropy
can be seen as a measure for the lack of information one has on a system and
hence, uncertainty. Therefore —making abstraction of the possible costs entailed
in controlling occurring entropy— situations in which entropy is as low as pos-
sible, seem desirable. Based on these formalisms, we can now perform several
analyses regarding information aggregation and entropy generation.

3.3 Possible (Cost) Information Aggregation Dimensions during
Business Process Instantiation Execution

Typically, each of the steps (i.e., the instantiated tasks) in an instantiated busi-
ness process can be associated with some costs. Such costs may originate from
raw material consumption, electricity consumption, equipment usage, personnel
load, etc. The specifics of this cost structure might obviously vary significantly
from the product and process under consideration. For instance, in a more ad-
ministrative process, the major emphasis may be on personnel load. Alterna-
tively, typical industrial processes will probably have a focus on raw material,
electricity and equipment usage.

Regardless of the specific cost structure, each process owner might be inter-
ested in how much it costs to produce a set of products or deliver a set of services
for (for example) pricing and accounting purposes. In terms of efficiency opti-
mization, it might even be necessary for the business process owner to know a
more detailed breakdown of these costs and split them up according to each sep-
arate task for which the cost information is relevant (i.e., an “information unit”)
and according to individual product or service instances. For instance, in case
the process owner notices that a product (instance) has an extremely high cost,
his first concern would probably be to locate (i.e., diagnose) which task or tasks

Understanding Entropy Generation during Business Process Execution 109

were responsible for this high cost. Also in general process optimization efforts
such as Business Process Reengineering (BPR) or Total Quality Management
(TQM), such information might be highly valuable to purposefully direct one’s
attention for amelioration.

Nevertheless, both consciously and unconsciously, information regarding the
execution of (tasks of) business process instantiations is frequently aggregated at a
higher level than an individual instance of a task. This might be the case for several
(sometimes appropriate) reasons, including measuring difficulties or the inherent
costs or perceived overhead for registering the costs at this fine-grained level. Also,
these aggregations can frequently be considered to be relevant in a business situa-
tion. We highlight six of such possible information aggregation dimensions:

Aggregation Dimension 1. Information is gathered and recorded at its most
fine-grained level: for each individual instantiation of each business process
type, the costs per task instantiation on an individual information object
are recorded. For instance: the actor responsible for checking the complete-
ness of a damage cost reimbursement request at an insurance company (i.e.,
one task or “information unit”), records his time spending for checking and
completing each individual request in a spreadsheet. Indeed, the time (and
hence: costs) an actor invests in checking such completeness might vary from
very little time (e.g., a request which contains all relevant documents in the
proper way) to a lot of time (e.g., a request in which many information is
initially lacking) and might be dependent on both the instance level (i.e.,
the specific damage cost reimbursement request) and the business process
type level (i.e., more complex requests requiring typically more time to check
completeness). In fact, at this aggregation dimension, no aggregation or in-
teraction with any other “information units” occurs.

Aggregation Dimension 2. Information regarding two or more “information
units” k is aggregated within the scope of one single business process in-
stance j. Such situation might be the case when only the information (on
costs) for certain (major) phases in a production process is recorded. While
an organization might be convinced that recording the information at a more
fine-grained level seems unnecessary or not cost-effective, such aggregation
might also be of interest for (external) stakeholders of the company. Indeed,
in case of very complex business processes, one can imagine that clients or
certain actors at a higher management level might be primarily interested
in the mere “milestones” (e.g., “order received”, “order produced”, “order
shipped”) of a business process for monitoring purposes, instead of the pos-
sibly hundreds of more fine-grained states the product might be in during
its lifecycle.

Aggregation Dimension 3. In fact, this aggregation dimension is a more gen-
eral case of aggregation dimension 2. Here, cost information is aggregated
over all tasks k per business process instantiation j (e.g., for each product as-
sembled, a total assembly cost is available). Such aggregations are especially
useful for, for instance, customized price settings in which a company might
adopt the strategy to charge a client a price for a product or service based

110 P. De Bruyn et al.

on the cost-plus pricing principle (i.e., price = X % product instance cost,
where X ≥ 100). Also, especially in case a company produces high-value or
custom made products, this aggregation might be particularly valuable to
comply with reporting and bookkeeping standards or regulations.

Aggregation Dimension 4. This dimension considers the aggregation of costs
among all instances m of a particular task k within BPi. Such situations are
conceivable in case (when elaborating on the damage cost reimbursement
request business process) a specific operator is solely put in charge of checking
the completeness of damage cost reimbursement requests (i.e., task 1). In
such situation, the cost for employing this person is to be divided over all
task instances m of t1 of the considered business process type BPi. Also,
while the analysis of an instantiation space for multiple product or business
process types is out of scope for this paper, it is clear that this aggregation
dimension can further be generalized over multiple business process types in
case multiple business process types incorporate the same task tk.

Aggregation Dimension 5. In this aggregation dimension, the (cost) infor-
mation is aggregated according to the time elapsed. This means that costs
are aggregated as time goes by until the observer stops the “counter” at a
certain point in time t for further inspection. These aggregations primarily
seem to occur in industrial settings. For instance, at a manufacturing plant,
it seems reasonable to have cost information on, for example, electricity con-
sumption in this way. In doing so, a counter recording the electricity con-
sumed throughout time may offer an observer insight for the costs involved
at each point in time t which is desired. However, no explicit breakdown
according to tasks, instances, etc. is made.

Aggregation Dimension 6. Information regarding all (task) instances of the
considered business process type becomes aggregated. In this aggregation di-
mension, no distinction between separate tasks and business process instan-
tiations is made and solely the overall outgoing cash-flows and costs related
to the business process type are considered. While possibly present at other
aggregation dimensions as well, one can find typically at this aggregation
level many management-oriented KPI’s (Key Performance Indicators) and
accounting ratio’s related to the total revenue generation (per product type),
total costs (per product type), profitability (per product type), number of
items (per product type) sold, etc. Further, while the analysis of the instan-
tiation space for multiple product or business process types is out of scope
for this paper, it is again clear that aggregations taking into account several
product types can be realistic as well (e.g., total revenue, costs and profitabil-
ity over all product and business process types). Moreover, this aggregation
dimension can be considered as a special case of aggregation dimension 5,
when point in time t is chosen in such way that BPi has completed the
execution of all its instantiations j.

These aggregation dimensions are visually represented in Figure 2 by the group-
ings indicated by the dotted lines in which each aggregation dimension is at-
tached with a number equal to the enumeration provided above.

Understanding Entropy Generation during Business Process Execution 111

Table 1. Illustration of the interaction of the (cost) information of t1,1 with other
task instantiation information, according to the six proposed information aggregation
dimensions. For each aggregation dimension column, the x’s show with which informa-
tion, the (cost) information of t1,1 is aggregated.

business process task
cost (e)

aggregation dimension

instantiation instantiation (1) (2) (3) (4) (5) (6)

BP1,1

t1,1 17.2 x x x x x x
t2,1 5.6 x x x x
t3,1 5.2 x x
t5,1 4.6 x x

BP1,2

t1,2 5.1 x x x
t2,2 4.3 x
t4,1 4.8 x
t5,2 5.6 x

BP1,3

t1,4 4.8 x x x
t2,3 6.0 x
t3,2 4.4 x
t5,3 4.8 x

Aggregated cost (AC) 17.2 22.8 32.6 27.1 32.7 72.2
Expected cost (EC) 5 10 20 15 20 60

Relative deviation (RD) = AC−EC
EC

2.44 1.28 0.63 0.81 0.64 0.20

Further, Table 1 describes the instantiation space as depicted in Figure 2 in
an equivalent way: focusing on task instantiation t1,1, it lists for each aggrega-
tion dimension the different tasks (and hence information units) with which the
cost information would interact (i.e., would be aggregated) before it is externally
observed. The table also provides an exemplary cost overview per task instan-
tiation (i.e., microscopic), as well as the information available for the process
manager (i.e., the macroscopic“aggregated cost”) in case each of the presented
aggregation dimensions is considered. For instance, while in aggregation dimen-
sion 1 the cost information of task instantiation t1,1 (cost = 17.2) is recorded
individually (hence, aggregated cost = 17.2), this cost information is aggregated
with task instantiations t2,1 (cost = 5.6), t3,1 (cost = 5.2) and t5,1 (cost = 4.6) in
aggregation dimension 3 (hence, aggregated cost = 32.6). We made the assump-
tion that the expected value of the cost for each task instantiation is the same
and equal to 5 (i.e., EC(t1,1) = EC(t1,2) = . . . = EC(t5,3) = 5), as this makes
our further analysis regarding problem identifications (based on the respective
dimension) more straightforward for the considered example.

3.4 Understanding Business Process Entropy Generation by
Information Aggregation

As we stated earlier that entropy generation can essentially be traced to the de-
gree of interaction and coupling between the particles making up a system, the

112 P. De Bruyn et al.

Table 2. Illustration of multiplicities for each of the considered aggregation dimensions

multiplicity (Ω)

Example General

Aggregation dimension 1 1 1
Aggregation dimension 2 2 # combined information units k
Aggregation dimension 3 4 # tasks k in BPi

Aggregation dimension 4 3 # task instantiations m of tk
Aggregation dimension 5 4 # tasks tk,m executed at point in time t

Aggregation dimension 6 12

⎧
⎨

⎩

depending on # instantiations j of BPi,
tasks k and instantiations m in BPi,
(# business processes i in the repository)

different aggregation dimensions discussed in Section 3.3 each have a different
degree of entropy which can be calculated. In Table 2, the multiplicities (and
hence entropy) of the different aggregation dimensions are listed for both our
exemplary business process and its instantiation space (i.e., column “example”),
as well as the more general case for any considered business process type and its
instantiation space (i.e., column “general”) . The table starts from the assump-
tion that one observes a (problematic) macrostate (e.g., the costs for executing
our considered business process are too high) and one wants to detect which
individual task (or possibly which set of tasks) was responsible for this prob-
lematic situation. In case the macrostate is uniquely traceable to one individual
task (or set of tasks), multiplicity amounts to 1 and, hence, entropy is minimal.
When the macrostate is consistent with multiple microstates, entropy increases.
For instance, in aggregation dimension 2, when a problematic macrostate arises,
the observer is only able to trace the result back to the aggregation of task in-
stantiations t1,1 and t1,2. As such, the multiplicity is at least 2 as one is unable to
detect whether it is t1,1 and/or t1,2 which is responsible for the increased costs,
and entropy is higher than in the previous situation.

Generally speaking, the six aggregation dimensions were ordered in ascending
order of entropy. For instance, it is clear that aggregation dimension 1 provides
the most fine-grained cost information possible, its information units interact the
less with other cost information, and allows for unambiguous traceability from
a macrostate (e.g., total cost for all BPi,j) to one microstate (i.e., a properly
available cost for each individual task and its instantiations). Conversely, aggre-
gation dimension 6 is clearly the most coarse-grained aggregation imaginable as
it purely reflects the a macrostate by itself. Nevertheless, the strict order be-
tween aggregation dimensions 3 till 5 may be variable, according to the specific
values of parameters k, j, m and t.

The fact that the aggregation dimensions with a higher number, tend to have
a higher degree of entropy, has its implications for business process optimization
efforts as well. Considering for instance again Table 1, where the rows “Aggre-
gated cost”, “Expected cost” and “Relative deviation” constitute the observable

Understanding Entropy Generation during Business Process Execution 113

(i.e., macroscopic) information available for the process manager. We can see
from the detailed (i.e., microscopic) cost information that task instantiation t1,1
can be deemed problematic as it exceeds its expected cost by threefold. All other
task instantiations remain within an interval of maximum 20% deviation. Ana-
lyzing the situation of a process owner who is aiming to diagnose and solve any
excessive costs occurring in business process instantiations, we can notice two
effects.

First, as entropy increases, the relative deviation becomes smaller and hence,
the problem becomes less observable. Indeed, for aggregation dimension 1, the
relative deviation amounts to 2.44 and therefore clearly highlights that an irreg-
ular task execution has taken place. For aggregation dimension 6, the relative
deviation only amounts to 0.20 as the extreme value of t1,1 is compensated by
the “normal” costs of the other tasks, and might therefore not necessarily alert
the process owner that something has gone wrong.

Second, the traceability to the responsible task instantiation becomes more
difficult as entropy increases. Supposing that in each of the aggregation dimen-
sions, the process owner is aware that some irregularity has taken place, the
correct diagnosis becomes more difficult as entropy increases. Indeed, for aggre-
gation dimension 1, the values of the relative deviation unambiguously point
to task t1,1. In case of aggregation dimension 2, the attention of the observer
is caught by the relative deviation concerning tasks t1,1 and t1,2. While this
observation gives a clue to where the problem is situated, the observer should
still investigate to which of the two considered task instantiations, the error can
be attributed. However, in case of aggregation dimension 6, the observer is left
with no real indication as to where precisely in the full instantiation space the
problem can be situated. Therefore, he should scrutinize the operation of all task
instantiations of all considered business process instantiations to find out.

3.5 Controlling Business Process Entropy by Increasing the
Structure of the System

Generally speaking, entropy control in systems is attained by adding structure to
the system (i.e., including partitions to avoid interaction and coupling). Indeed,
as we discussed in the previous sections how entropy generation in business pro-
cess instantiations is originating in the aggregation of information, the control
and avoidance of this entropy generation seems to be situated in strictly parti-
tioning the cost information structure. We now present a couple of principles or
tentative guidelines in order to do so.

First, a number of states (i.e., “measuring points”) should be incorporated in
the design of the business process type such that relevant information aspects
(e.g., “electricity consumption”) are registered intermediately (i.e., regarding
each task instantiation). The introduction of these states can be done in several
ways: this might vary from asking actors who are executing the tasks to manually
write down some of the needed information, to a software system automatically
registering this information (e.g., by scanning batches or tracking the submission
of work results by employees).

114 P. De Bruyn et al.

Second, these states should not be introduced in the design in an arbitrary
way. Instead, a unique state should be introduced for each individual task (i.e.,
“information unit”), clearly separating the information regarding each of these
concerns. While aggregated information can indeed be useful in several business
situations for multiple stakeholders (cf. Section 4), it is important to record the
information in this stage at most basic and fine-grained level. In case information
at the aggregated level seems required at a later point in time, this information
should be deductible from the elementary information gathered previously.

Third, taking the run-time perspective of our entropy analysis into account, a
business process instantiation should be operating on only one information object
and each business process instance should be linked to the specific instance of the
information object it is operating on. This would allow ex-post analysis to take
into account the specific characteristics of each individual information object
(e.g., the size dimensions of the product to be manufactured or the specifics of
a damage cost reimbursement request) and the influence this might have on the
execution of a business process and its constituting tasks.

Finally, the information regarding a task instantiation should be linked to the
specific business process instantiation it was embedded in (and hence, combined
with guideline 3, linked to the information object it is operating on). When
analyzing the origins of the entropy generation for our six discussed aggregation
dimensions, one can easily find that the first two guidelines were violated in
aggregation dimensions 2, 3, 5 and 6. The last two guidelines were violated in
aggregation dimensions 4, 5 and 6. Consequently, consistently applying the four
guidelines described above should enable a business process owner to end up in
information aggregation dimension 1, exhibiting the lowest amount of entropy.

In fact, these guidelines can be directly derived from the Normalized Sys-
tems theory (NS) principles to control entropy generation during the run-time
execution of software primitives [11]. Future research should hence be aimed
at translating these general principles to more business-oriented and practical
guidelines to more unambiguously control entropy. The application of modu-
larity and NS reasoning to the organizational level, and the business process
level in particular, is not that far-fetched. Indeed, the feasibility of applying the
NS principles for attaining evolvability for the design-time implementation of
business processes has been demonstrated previously [12].

4 Discussion

In our analysis, we focused on business process analysis and optimizations in
a managerial and operational context, and motivated the need for fine-grained
data (i.e., of aggregation dimension 1) based on entropy. Nevertheless, other
business situations might require information at a different (i.e., more coarse-
grained) aggregation level. For instance, for the purposes of (external) financial
reporting or communication with several internal or external stakeholders (e.g.,
the board of directors) more aggregated information is obviously required. In
these situations, there is no need to have information at the level of task and

Understanding Entropy Generation during Business Process Execution 115

business process instantiations. Nevertheless, for certain purposes, fine-grained
information is needed and a business should be systematically engineered in order
to gather this data in a suitable way. Afterwards, this fine-grained information
can still be easily summarized into more coarse-grained overviews.

Second, within this managerial and operational context, our analysis was fo-
cused at the run-time complexity of business process instantiations (i.e., once
they are executed). The complexity generation in terms of entropy only becomes
visible when data is generated through the execution of business process and task
instances. While analysis at design-time can yield interesting research results as
well, we remark that run-time analysis is researched less frequent in-depth.

4.1 Impact on Cost Accounting (Information) Systems in Practice

The relevance of fine-grained information of run-time processes can be observed
in practical cost accounting designs. Consider two product varieties, which are
produced using the industrial process presented in Section 3.1. Product A is a
simple design, while product B is much more complex. While various tasks in
the processes for both product types might be the same, the assembly task (i.e.,
task 4) is more expensive for product B. If aggregation dimension 4 is used, the
distinction between the costs of the assembly tasks of both products cannot be
made anymore. Instead, a general cost for the assembly task will be recorded,
which is attributed evenly across products A and B. As a result, the cost of
product A is overestimated, while the cost of product B is underestimated. In
traditional cost accounting, which attributes costs based on volume-related mea-
sures (e.g., number of products produced), this is a valid approach. In literature,
these approaches have indeed been described as insufficient when a large diver-
sity of products is produced [13]. The entropy reasoning presented in this paper,
might offer one way to understand the origin of this criticism.

An approach which claims to offer better management insights for complex
business environments is Activity-Based Costing (ABC) [14]. ABC can be con-
sidered as a finer-grained way of performing cost accounting. More specifically,
it focuses on attributing indirect costs to products. This is in line with our ar-
gument for the need for fine-grained information. An essential and initial step in
the ABC approach is the identification of activities, which “are composed of the
aggregation of units of work or tasks” [2, p. 342]. This definition suggests that
ABC does not aim for aggregation dimension 1, since activities are defined as ag-
gregations of tasks. Consequently, some critiques on ABC might be understood
from the lack of fine-grained information as well.

The need for information at a fine-grained aggregation dimension can also im-
pact the application portfolio of an organization. This was observed in a project
in practice performed by one of the authors. In this project, an application was
required for budget allocation. Such an application was already purchased from
a software vendor, and was used to comply with legal financial reporting re-
quirements. In the accounting application, costs could be attributed to a certain
article. An article belongs to a certain activity, which is performed for a certain
service. As a result, an overview of all costs for a service can be generated, as well

116 P. De Bruyn et al.

as an overview for a certain type of activity (even for activities performed for
different services). However, an article consists of certain products, which belong
to certain domains. Budgets could be defined based on certain products as well.
Because information concerning domains and products could not be stored in
the accounting application, certain costs could not be attributed to the correct
budget. Therefore, a finer-grained cost structure was registered in a spreadsheet
document. As a result, every entry needed to be inserted twice, resulting in an
increased employee workload, and duplication of data, which is detrimental from
an information management viewpoint. This case illustrates why, even when in-
formation on a certain aggregation dimension is needed, requirements related to
the information granularity need to be explored in-depth.

4.2 Limitations

The approach of this paper is explorative. As a result, several limitations should
be taken into account. First, in this paper, we focused on the cost aspects of infor-
mation units. It was argued that finer levels of granularity allow better diagnosis
and traceability of issues related to these cost aspects. However, cost aspects
are only a single dimension to be considered as a driver for creating fine-grained
structures. In previous work, we identified various other dimensions which can
determine such a structure, including throughput time or quality/output mea-
sures [9,10]. Further research is required to see if a fine-grained structure based on
one dimension is identical to the structure when considering another dimension,
or if different structures would be created. Second, an assumption in this paper
was that the cost information related to an information unit could be observed
uniformly. However, different costs may be involved in a certain business process
task. For example, costs can be related to resources, employees, machine lock-
ing, etc. These different cost aspects have not been taken into account. Third,
we used simplified examples in order to clarify our discussion. For example, each
task in the business process was considered to cost around 5, which will not
be the case in a realistic business process. Nevertheless, the same aggregation
dimensions could be identified in that context. Detecting irregularities in pro-
cesses would only become harder, since deviations in relation to the expected
mean would need to be incorporated in the calculation. Fourth, we considered
the instantiation space of a single business process. In reality, multiple business
processes could be in scope when diagnosing a certain phenomenon. This would
result in an instantiation space containing business process instances of differ-
ent business process types and more complex aggregation dimensions could be
defined for combinations of instantiations of these different business processes.
In these cases, entropy would increase even more. Finally, as our rationale is
primarily based on theoretical reasoning, a set of case studies should be per-
formed in future research to further validate our claimed hypotheses. Also, the
trade-off in practice between more fine-grained cost information (exhibiting less
entropy) and the actual costs for assembling this information might constitute
an interesting avenue for further investigation.

Understanding Entropy Generation during Business Process Execution 117

5 Conclusion

In this paper, we explored how entropy is generated during the run-time execu-
tion of business processes. We focused on entropy generated through informa-
tion aggregation, which we described using six different aggregation dimensions.
Moreover, we discussed in-depth how this entropy generation impacts cost ac-
counting aspects, both in the design of cost accounting systems and their sup-
porting information systems.

Acknowledgment. P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

References

1. Kaplan, R.S., Anderson, S.R.: Time-driven activity-based costing. Harvard Busi-
ness Review 82(11), 131–138 (2004)

2. Drury, C.: Management and Cost Accounting. South-Western (2007)
3. Lev, B.: The aggregation problem in financial statements: An informational ap-

proach. Journal of Accounting Research 6(2), 247–261 (1968)
4. Ronen, J., Falk, G.: Accounting aggregation and the entropy measure: An experi-

mental approach. The Accounting Review 48(4), 696–717 (1973)
5. Abdel-Khalik, A.R.: The entropy law, accounting data, and relevance to decision-

making. The Accounting Review 49(2), 271–283 (1974)
6. Boltzmann, L.: Lectures on Gas Theory. Dover Publications (1995)
7. Wikipedia: Entropy (2013), http://en.wikipedia.org/wiki/Entropy
8. Jung, J.Y., Chin, C.H., Cardoso, J.: An entropy-based uncertainty measure of

process models. Information Processing Letters 111(3), 135–141 (2011)
9. De Bruyn, P., Huysmans, P., Oorts, G., Mannaert, H.: On the applicability of

the notion of entropy for business process analysis. In: Proceedings of the Second
International Symposium on Business Modeling and Sofware Design (BMSD), pp.
93–99 (2012)

10. De Bruyn, P., Mannaert, H.: On the generalization of normalized systems concepts
to the analysis and design of modules in systems and enterprise engineering. In-
ternational Journal on Advances in Systems and Measurements 5(3&4), 216–232
(2012)

11. Mannaert, H., De Bruyn, P., Verelst, J.: Exploring entropy in software systems:
towards a precise definition and design rules. In: Proceedings of the Seventh Inter-
national Conference on Systems (ICONS), pp. 93–99 (2012)

12. Van Nuffel, D.: Towards designing modular and evolvable business processes. PhD
thesis, University of Antwerp (2011)

13. Atkinson, A., Banker, R., Kaplan, R.: Management Accounting. The Robert S.
Kaplan Series in Management Accounting. Prentice Hall (2001)

14. Kaplan, R.S., Bruns, W.: Accounting and Management: A Field Study Perspective.
Harvard Business School Press (1987)

http://en.wikipedia.org/wiki/Entropy

Author Index

Abraham, Ralf 73
Aveiro, David 1

Babkin, Eduard 17

De Bruyn, Peter 103

Ettema, Roland 58

Ferreira, David Almeida 88

Huysmans, Philip 58, 88, 103

Krouwel, Marien 28

Mannaert, Herwig 88, 103

Nagayoshi, Sanetake 43

Op ’t Land, Martin 28

Pombinho, João 1

Russo, Federica 58

Sergeev, Alexey 17
Silva, Alberto Rodrigues 88

Tribolet, José 1, 73

Verelst, Jan 88, 103

Winter, Robert 73

	Preface
	Organization
	Table of Contents
	Value Orientation
	Value-Oriented Solution Development Process:Uncovering the Rationale behind Organization Components
	1 Introduction
	2 Related Work and Problem Statement
	2.1 Related Work
	2.2 Problem Statement

	3 Unimedia Case: Remote Internet Customer Support
	4 Improving the GSDP - Introducing Purpose and Value
	4.1 Applying DEMO Methodology to the GSDP
	4.2 The Method at Work: Value-Driven Cost Reduction

	5 Conclusion
	References

	Enterprise Change
	Towards Developing a Model-Based Decision SupportMethod for Enterprise Restructuring
	1 Introduction
	2 Business Context
	3 Theory Basis
	4 Integration of DEMO and TCT in the Proposed Method
	5 Modelling Method
	6 Application
	7 Conclusion
	References

	Exploring Organizational ImplementationFundamentals
	1 Introduction
	2 Problem Statement
	2.1 Enterprises and Generic System Development Process
	2.2 Agility, Events and Implementation
	2.3 Approach

	3 Variables from Literature
	4 Validation
	5 Conclusions and Future Research
	References

	A Case Study on Enterprise Transformation in a Medium-Size Japanese IT Service Provider: Business Process Change from the Ontological Perspective
	1 Introduction
	2 Literature Review
	2.1 Business Process Change
	2.2 Business Rule Management
	2.3 Organization Learning
	2.4 Marketing Strategy

	3 Research Method
	3.1 Engineering Perspective
	3.2 Qualitative Research

	4 Case Studies
	5 Case Analysis
	5.1 First Division
	5.2 Second Division
	5.3 Third Division

	6 Discussion
	7 Conclusion
	References

	Explaining with Mechanismsand Its Impact on Organisational Diagnosis
	1 Introduction
	2 Explaining with Mechanisms
	3 Achieving a Mechanistic Explanation in OD
	3.1 Identifying the Phenomenon to Explain
	3.2 Identifying Entities and Activities Involved
	3.3 Identifying the Operation of the Mechanism

	4 Reflection
	5 Contributions and Conclusion
	References

	Transformation of Multi-level Systems – TheoreticalGrounding and Consequences for Enterprise Architecture Management
	1 Introduction
	2 Framework of Hierarchy
	2.1 Theory of Hierarchical, Multi-level Systems
	2.2 Enterprise Architecture Management
	2.3 Framework of Hierarchy and Positioning of EAM

	3 Feedback Loops
	4 Case Study: Transformation in the Portuguese Air Force
	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Requirements Engineering and Entropy issues
	Identifying Combinatorial Effectsin Requirements Engineering
	1 Introduction
	2 Background
	2.1 Normalized Systems Theory
	2.2 Constructs and Models in RE

	3 Identifying Combinatorial Effects at RE Level
	3.1 from the Real World…
	3.2 DEMO/EO
	3.3 BPMN
	3.4 UML Use Cases
	3.5 UML Object-Oriented Domain Models

	4 Discussion
	5 Conclusion
	References

	Understanding Entropy Generation during theExecution of Business Process Instantiations: An Illustration from Cost Accounting
	1 Introduction
	2 Theoretical Framework: Entropy
	3 Entropy Generation and Aggregation Dimensions in aBusiness Process Context
	3.1 The Run-Time Instantiation Space of a Business Process
	3.2 Interpreting Microstates and Macrostates
	3.3 Possible (Cost) Information Aggregation Dimensions duringBusiness Process Instantiation Execution
	3.4 Understanding Business Process Entropy Generation byInformation Aggregation
	3.5 Controlling Business Process Entropy by Increasing theStructure of the System

	4 Discussion
	4.1 Impact on Cost Accounting (Information) Systems in Practice
	4.2 Limitations

	5 Conclusion
	References

	Author Index

