
Inferring Automata with State-Local Alphabet

Abstractions�

Malte Isberner1, Falk Howar2, and Bernhard Steffen1

1 Technical University of Dortmund, Germany
{malte.isberner,steffen}@cs.tu-dortmund.de

2 Carnegie Mellon University, USA
howar@cmu.edu

Abstract. A major hurdle for the application of automata learning to
realistic systems is the identification of an adequate alphabet: it must
be small enough, in particular finite, for the learning procedure to con-
verge in reasonable time, and it must be expressive enough to describe
the system at a level where its behavior is deterministic. In this paper,
we combine our automated alphabet abstraction approach, which refines
the global alphabet of the system to be learned on the fly during the
learning process, with the principle of state-local alphabets: rather than
determining a single global alphabet, we infer the optimal alphabet ab-
straction individually for each state. Our experimental results show that
this does not only lead to an increased comprehensibility of the learned
models, but also to a better performance of the learning process: indeed,
besides the drastic – yet foreseeable – reduction in terms of membership
queries, we also observed interesting cases where the number of equiva-
lence queries was reduced.

1 Introduction

The practical application of verification techniques such as model based
testing [4] or model checking [6] is often hampered by the lack of adequate
formal models. This is not the least a cause of the much propagated component-
based software design style, as most libraries only provide very partial—if any—
specifications of their components, rendering the system as a whole underspeci-
fied. As a way out of this dilemma, automata learning techniques [11] have been
proposed, allowing the automated construction of behavioral models from ac-
tual runtime behavior. This has successfully been employed in applications such
as Computer Telephony Integrated (CTI) systems [12,11], Web Services [20], or
protocol specifications [21]. A particularly fruitful application of automata learn-
ing can be found in the EC FP7 project Connect [17], where behavioral models
of networked systems are learned automatically, providing a basis for automated
on-the-fly connector synthesis.

� This work was partially supported by the European Union FET Project CON-
NECT: Emergent Connectors for Eternal Software Intensive Networked Systems
(http://connect-forever.eu/).

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 124–138, 2013.
� Springer-Verlag Berlin Heidelberg 2013

http://connect-forever.eu/

Inferring Automata with State-Local Alphabet Abstractions 125

q0

q1

q2

. . .

q4

q5

q6

q7

So
uth

Am
eri
ca

/ +
5

Oceania / +6

. . .

Argent
ina / 4

Brazil / 5

Austra
lia / 1

New Zealand / 4

(a)

q0 q1

a(x,y,z)[x = 0]/0

a(x,y,z)[x = 1]/0

a(x,y,z)[z = 1]/1

a(x,y,z)[z = 0]/0

(b)

Fig. 1. (a) Fragment of the Mealy machine for generating country calling codes, (b)
Mealy machine with binary action parameters

In all of the above scenarios, the learning algorithm relied on a kind of test
harness, which provides an abstraction on the often infinite set of potential in-
put actions, yielding a finite view of the system fine enough to guarantee a
deterministic behavior, a precondition for most learning approaches. For real
“black-box” systems, the true challenge for automata learning, these abstrac-
tions were usually determined in a laborious, manual trial and error process.
The AAR algorithm presented in [16] was the first to overcome this problem:
it fully automatically determines the coarsest refinement of a given abstraction
that guarantees a deterministic behavior on the fly during the learning process.

In this paper we combine the AAR approach with the principle of locality:
rather than determining one global alphabet, we fully automatically infer the
optimal alphabet abstraction individually for each state. The motivation for this
combination came from practical experience, in particular with learning Web
applications: here, the alphabet symbols typically correspond to the actions a
user can take, e.g., clicking on a link or submitting form data. An example (pat-
tern) illustrating the need for locality is sketched in Fig. 1 (a): for an arbitrary
country, it outputs the ITU country calling code (such as +1 for the US and
Canada). The country is specified in a hierarchical manner, by first entering the
continent and then the name of the country.

A more technical example is shown in Fig. 1 (b): here, actions are of form
a(x,y,z), with x,y,z ranging over the set {0,1}. The concrete input alphabet
hence needs to contain every combination of values for x,y, and z, leading to
23 = 8 different input symbols. The transitions are equipped with conditions
checking the values of certain parameters. Obviously, the number of transitions
is far lower than the size of the concrete input alphabet, as the effect of an input
symbol highly depends on the current state.

A global abstraction cannot capture the specific nature of those examples;
i.e., that the notion of a “valid” or “invalid” country (Fig. 1 (a)) depends on the
selected continent, or that depending on the state in Fig. 1 (b), it is the value of
either x or z that exposes differing behavior. A global abstraction needs to refine
every single local abstraction, not only leading to an increased complexity in
terms of queries, but also reducing the comprehensibility of the inferred model.

126 M. Isberner, F. Howar, and B. Steffen

In our experimental analysis, we show that local alphabet abstraction refine-
ment (LAAR) does not only work for systems as in Fig. 1, but also for quite
differently structured third party benchmarks. In order to explore its perfor-
mance, we compare the results of classical L∗ learning, AAR and LAAR for the
two examples displayed in Fig. 1, the first in its real-world instantiation, the
latter with a growing number of parameters. Additionally, we investigated its
application to a hierarchical file system navigator, and also three third-party
systems. The results (cf. Table 1 in Section 4 of this paper) are quite surprising,
as for some examples there was not only a decrease of membership queries, but
also a decrease of equivalence queries.

However, despite the impressive performance results one should not forget the
original intent of LAAR: to produce an improved and more concise abstract sys-
tem model. In our experiments, the reduction factor in the number of transitions
is between 4 and 10, reaching up to 500 for specific examples.

Related work. The algorithm presented in [16], which inferred alphabet abstrac-
tions at a global level, forms the basis of this paper’s work. Dealing with infinite
alphabets is also the aim of register automata learning [14], under the assump-
tion that symbols are parameterized with data values from an infinite domain,
and that the system behaves independently of concrete data values (i.e., permu-
tations on the data domain do not affect the behavior).

In [10], an L∗-based approach for inferring a labeled transition system that
represents an interface of a software component, classifying method execution
sequences as either legal, illegal, or unknown, was introduced. The alphabet
initially consists of arbitrary method invocations, and is refined subsequently
to include constraints on the method’s parameters. Similarly to AAR, this is
done on-the-fly during the learning process. However, a fully white-box scenario
is assumed, allowing to extract the precise guards from the component’s source
code. Unlike the approach in this paper, a homogeneous global alphabet is used.

In the context of assume-guarantee reasoning [7], active learning is employed
to learn assumptions. Alphabet refinement techniques [9,3] have been used to
potentially reduce the learning alphabet by starting with a smaller subset of
the interface alphabet. When a seemingly spurious counterexample is found, the
alphabet is extended heuristically in an additional counterexample analysis step.
In contrast to [16], no abstraction is assumed on single alphabet symbols, but
rather symbols not in the learning alphabet are hidden. This notion of refinement
is related to predicate abstraction [5,13], and thus differs from our notion, which
concerns the granularity of an abstraction. Except for the first one, all the works
mentioned have in common that they do not extend the ‘black box’ model to
the input alphabet, in contrast to our approach which describes classes of the
abstraction in terms of behavioral observations.

Outline. This paper is organized as follows. Section 2 establishes the formalisms
for modeling the kind of reactive systems our algorithm operates on, including a
formalism for abstraction. In Section 3, we present our main contribution, an al-
gorithm for inferring minimal abstract models of these systems. An experimental

Inferring Automata with State-Local Alphabet Abstractions 127

evaluation of this algorithm is presented in Section 4, and the final section con-
cludes the paper, also giving an outlook on our intended future work.

2 Modeling Reactive Systems

Reactive systems, i.e., systems which directly respond to user interaction by
producing output messages, form a large class of real-life systems, a prominent
example being web services. In this paper, we will constrain ourselves to de-
terministic systems with finite output alphabets and state spaces, also being
insensitive to real-time. For the exception of the finiteness of the input alpha-
bet, which we do not require, these systems can be modeled by a widely known
automaton model, and there exist well-studied learning algorithms for inferring
such systems.

Taking into account infinite input alphabets, we will in the following subsec-
tions introduce a suitable model for this kind of systems, as well as establishing
a formalism of abstraction that allows for finite representations of these models.

2.1 Mealy Machines

Mealy machines are a variant of automata which distinguish between an input
alphabet and an output alphabet. Characteristic for Mealy machines is that
inputs are always enabled (in other words, the transition function is totally
defined for all input symbols), and that their response to an input (sequence) is
uniquely determined (this property is called input determinism). Both properties
fit the requirements of a large class of (reactive) systems very well.

Let Σ be a set of input actions. By Σ∗ we denote the set of words over Σ, with
the usual notation |w| for the length of w. The empty word is denoted by ε. Let
then Σ+ = Σ∗ \ {ε} be the set of all words of nonzero length. The concatenation
of two words u and v is written as u · v or simply uv. In the remainder of this
paper we will need to distinguish between (possibly countably infinite) concrete
input actions, referred to as ΣC, and abstract (and finite) input actions, referred
to as ΣA. These indexes are applied to symbols and words in the same way.

As an extension of the well-known Mealy machine model, we now define a
countable Mealy machine (CMM) as M = 〈Q,q0,Σ,Ω,δ,λ〉, where Q is a finite
nonempty set of states, q0 ∈ Q is the initial state, Σ is an (at most) countable set
of input actions, Ω is a finite set of output actions, δ : Q×Σ → Q is the transition
function, and λ : Q×Σ → Ω is the output function.

Intuitively, a (countable) Mealy machine evolves through states q ∈ Q, and
whenever one applies an input symbol (or action) a ∈ Σ, the machine moves to a
new state according to δ(q,a) and produces an output according to λ(q,a).1The
semantics of a Mealy machine M can sufficiently be expressed in terms of a
function �M� : Σ+ → Ω mapping each word from Σ+ to an output symbol from
Ω, defined in the following way:

�M�(wa) =de f λ(δ∗(q0,w),a).

1 We will extend δ to words in the usual way: Let δ∗(q,ε) = q and δ∗(q,aw) =
δ∗(δ(q,a),w) for aw ∈ Σ+.

128 M. Isberner, F. Howar, and B. Steffen

2.2 Abstractions on Countable Mealy Machines

In this section, we will describe how abstractions can serve as a way of dealing
with the large (or even infinite) structure of a CMM in a more compact (finite)
manner. The key idea is that the effect of each input symbol can be described in
terms of the immediately produced output and the future behavior (the successor
state), both of which form finite classes.

Definition 1. For arbitrary sets ΣC (concrete domain) and ΣA (abstract do-
main), a surjective function α : ΣC → ΣA is called an abstraction. If ΣA is finite,
α is called a finite abstraction. The cardinality |α| of α is defined as |α|= |ΣA|.
A function γ : ΣA → ΣC is a concretization (wrt. α) if γ ◦α is the identity function
on ΣA. For aA ∈ΣA , γ(aA) is called the representative for aA (wrt. γ). For aC ∈ΣC,
the representative is ρ(aC) with ρ = α ◦ γ. �	
An abstraction α induces a partition Pα = {α−1(a) | a ∈ ΣA} on ΣC and therefore
also an equivalence relation. Two abstractions are said to be isomorphic if they
induce the same partition. Similarly, we adapt the concept of refinement in terms
of the induced partition.

For finitely describing CMMs we identify for each state q ∈ Q of the CMM
an abstraction αq, such that δ(q, ·) and λ(q, ·) both are invariant under the ap-
plication of ρq, regardless of the chosen concretization γq. Such an abstraction
is called a determinism-preserving abstraction (DPA). The following definition
introduces an automaton model which captures this kind of abstraction.

Definition 2. A (state-locally) abstract Mealy machine (AMM) M is defined
as M = 〈Q,q0,ΣC,Ω,A,Δ,Λ〉, where
– Q is a finite set of states,
– q0 ∈ Q is the initial state,
– ΣC is a countable set of concrete inputs,
– Ω is a finite set of outputs,
– A = {αq : ΣC → ΣA,q | q ∈ Q} is a set of local abstractions, where ΣA,q is some

(arbitrary) finite abstract domain,
– Δ = {δq : ΣA,q → Q | q ∈ Q} is a set of local transition functions and
– Λ = {λq : ΣA,q → Ω | q ∈ Q} is a set of local output functions.

An AMM evolves through states q ∈ Q by reading input symbols aC ∈ ΣC, pro-
ducing output symbols and moving to a successor state according to λq and δq

respectively, beforehand transforming the input symbol aC to an abstract symbol
aA = αq(aC). �	
A CMM M = 〈Q,q0,ΣC,Ω,δ,λ〉 can be derived from an AMM M =
〈Q,q0,ΣC,Ω,A,Δ,Λ〉 by defining δ(q,aC) = δq(αq(aC)) and λ(q,aC) = λq(αq(aC)).
The semantics of an AMM can therefore also be expressed in terms of a function
�M � : Σ+

C → Ω, and we can define a CMM M and an AMM M to be equivalent
iff �M� = �M �.

For each CMM M, there is a unique (up to isomorphism) minimal equivalent
AMM M . Here, minimal refers to both the number of states as well as the

Inferring Automata with State-Local Alphabet Abstractions 129

cardinality of each local abstraction |αq|. Considering the possibility to derive
a CMM from M , it is obvious that the same number of states as the minimal
CMM is both necessary and sufficient. For each state q∈ Q in the minimal CMM
M = 〈Q,q0,ΣC,δ,λ〉, we define the equivalence relation
q⊆ ΣC ×ΣC by

aC
q a′C :⇔ δ(q,aC) = δ(q,a′C)∧λ(q,aC) = λ(q,a′C).

The abstraction α∗
q corresponding to
q obviously is determinism-preserving.

Furthermore, if an abstraction αq does not refine α∗
q, there exist aC,a′C ∈ ΣC

such that αq(aC) = αq(a′C) but α∗
q(aC) �= α∗

q(a
′
C) and therefore aC �
q a′C. By the

definition of
q, αq cannot be determinism preserving.
The minimal AMM M of some system modeled by a CMM is the most con-

cise representation of this system: it only contains a single transition for each
distinguishable transition (wrt. either source or target state, or output symbol)
in the CMM. This qualifies the minimal AMM as the desired model in terms of
comprehensibility.

3 The Learning Algorithm

In this section we will present our main contribution: an active learning algorithm
that produces an abstract model of a system under learning (SUL) at the level
of an optimal local abstraction. Before describing the concepts of our algorithm,
we will briefly revisit the algorithm L∗

M [25,23], an adaptation of the classical L∗
algorithm [2] for Mealy machines.

3.1 L∗
M Revisited

Active automata learning algorithms infer models of unknown regular systems
under learning (SUL) for which initially only an input alphabet is known, using
two kinds of queries.

– Membership queries (MQ) test the reaction of the SUL to a specific input
(e.g., a word over the input alphabet).

– Equivalence queries (EQ) test whether an intermediate hypothesis correctly
models the SUL, and returns a counterexample in case it does not.

In principle, learning starts with a one state hypothesis automaton that treats
all words over the considered alphabet (of elementary observations) alike and
refines this automaton on the basis of query results iterating two steps: hypothesis
construction and hypothesis verification.

During hypothesis construction the dual way of how states of the unknown
SUL are characterized is central:

– by an incrementally growing prefix-closed set of words reaching each state
of the SUL exactly once. This set defines a spanning tree of the intermediate
hypothesis automata.

130 M. Isberner, F. Howar, and B. Steffen

– by their future behavior wrt. a dynamically growing set of ‘distinguishing’
suffixes from Σ+

C . This characterization is too coarse throughout the learning
process and will be refined continuously following the pattern of the well-
known Nerode congruence [19] (or [24] for Mealy machines).

This evolving characterization is established using membership queries. From
certain well-defined sets of prefixes and suffixes, hypothesis automata can be
constructed, which are then subjected to an equivalence query. In case the hy-
pothesis is not equivalent to the target system, a counterexample highlighting
some difference is returned and will be exploited to further refine the hypothesis.
If, on the other hand, ok is returned, learning can terminate.

At this point it should be mentioned that, in general, equivalence queries for
black box systems are undecidable. Realizing them for a concrete application
is very much dependent on the application scenario itself. As this is a matter
of research independent from the approach presented in this paper, we will not
discuss it here. For the most generic way of approximating equivalence queries
in black-box scenarios by means of membership queries, a quite efficient way is
discussed in [15].

The central data structure of the L∗
M algorithm is an observation table. An

observation table is a tuple 〈S p,L p,D,T 〉, where
– S p is a prefix-closed set of access sequences identifying states in the hypoth-

esis (‘short prefixes’),
– L p is a set of one-step futures identifying the transitions in the hypothesis

(‘long prefixes’); in the classical scenario L p is usually chosen as L p = S p ·
Σ\S p,

– D is a set of distinguishing suffixes used for distinguishing states, resp. for
matching the states reached by the words in L p against those identified by
words in S p (usually initialized with Σ for Mealy machines),

– T : (S p∪L p)→ (D → Ω) is a mapping assigning to each word in S p∪L p the
observable future behavior (wrt. D) of the corresponding (possibly unknown)
state in the SUL, i.e., T (u)(v) = �SUL�(uv).

An observation table is used to maintain the dual characterization of states dis-
cussed above. It is closed iff for every word u ∈ L p, there exists a corresponding
word u′ ∈ S p such that T (u) = T (u′). Intuitively, this guarantees that in a hy-
pothesis automaton all transitions have well-defined destinations. A table can
be closed by subsequently moving words u ∈ L p violating this condition to S p
and adjusting L p accordingly (e.g., by adding all words u ·Σ). An example of a
slightly extended observation table can be found in Fig. 2 (c): The rows in the
upper part correspond to words in S p, while those in the lower part correspond
to one-step futures from L p. The columns are labeled by suffixes in D, such that
each cell corresponds to a T (u)(v) for u ∈ S p∪L p,v ∈ D.

From a closed observation table, a hypothesis automaton H can be con-
structed to which an equivalence query may yield a counterexample exposing
a behavioral difference between the SUL and H . More precisely, a counterex-
ample exposes a state in the hypothesis whose future behavior wrt. some suffix

Inferring Automata with State-Local Alphabet Abstractions 131

v /∈ D differs from every state in the hypothesis (i.e., prefix in S p). This suf-
fix is added to the set D, resulting in an unclosed table and thus the creation
of additional states in a subsequent hypothesis. Both hypothesis construction
and counterexample handling are described in detail for our new algorithm in
Sections 3.3 and 3.4.

3.2 Alphabet Abstraction Refinement

In [16], an extension to L∗
M was presented, which combines active automata

learning with inferring a globally coarsest determinism-preserving abstraction
on the input alphabet. As in this paper, a pure black-box scenario was assumed:
abstraction classes were defined in terms of query outcomes, and the refinement
was triggered by counterexamples exposing non-determinism due to the current
abstraction.

The key technical idea was to introduce a middle congruence relation on con-
crete alphabet symbols: two symbols aC,a′C ∈ ΣC could be shown to be inequiva-
lent by a prefix p ∈Σ∗

C and a suffix d ∈ Σ∗
C such that �SUL�(paCd) �= �SUL�(pa′Cd).

In the context of the learning algorithm, the pair (p,d) could be used to clas-
sify arbitrary concrete symbols aC by looking at the result of a membership
query MQ(paCd). This resembles the general idea of active automata learning
to approximate the Nerode congruence [19] for separating words u,u′ ∈ S p using
suffixes v ∈ D such that �SUL�(uv) �= �SUL�(u′v).

In principle, the global AAR approach can be thought of as the combina-
tion of two relatively independent components: (i) a classical active learning
algorithm, supporting a dynamically growing input alphabet, and (ii) an alpha-
bet abstraction refinement module, which is triggered by otherwise inexplicable
counterexamples; i.e., words w = w1 . . .wn ∈ Σ∗

C, which cease to be counterexam-
ples when pointwisely transforming each wi to the corresponding representative
symbol.

Naturally, a global determinism-preserving abstraction is also determinism-
preserving when applied to each state locally. However, it was already sketched
in the introductory examples in Fig. 1 that this global perspective is not always
adequate. While it would be possible to coarsen each abstraction locally for each
state until reaching the respective coarsest DPA, our approach is to perform
the abstraction refinement locally from the starting point on. This is a consid-
erably more involved task: first, there no longer exists a homogeneous, global
input alphabet. When introducing new representative symbols, it is crucial to
pinpoint the exact state of which to extend the alphabet. Second, the approach
of transforming a counterexample into a representative word is bound to fail, as
the abstraction to choose depends on the corresponding state – an information
which can be erroneous as well. In combination, this calls for a much stronger in-
tegration of the alphabet abstraction refinement part with the existing learning
and counterexample handling algorithm.

Before laying our focus on the treatment of counterexamples in Sec. 3.4, we
will first introduce the data structure for managing abstractions, and show how
these are connected to the usual observation table.

132 M. Isberner, F. Howar, and B. Steffen

Definition 3. An abstraction tree T for a prefix u ∈ Σ∗
C is a tuple T = 〈u,r〉,

where r is the root node of a binary tree consisting of two kinds of nodes: (i) inner
nodes are labeled with a classifier 〈d,o〉 ∈ Σ∗

C ×Ω and have two child nodes, an
equals-child, and an other-child; (ii) leaves are labeled with a pair of concrete
and abstract inputs (aC,aA) ∈ ΣC ×ΣA.

An abstraction tree T is a special kind of a decision tree, realizing both an ab-
straction function αT as well as the representative function ρT (aC) as following,
for a concrete symbol aC ∈ ΣC: starting at the root of the tree, we choose at
each inner node labeled with 〈d,o〉 the equals-child if MQ(uaCd) = o, and the
other-child otherwise. This step directly reflects the middle congruence on al-
phabet symbols from [16], as mentioned above. The step is repeated until a leaf
(aR,aA) is reached. Then, aA = αT (aC) is the corresponding abstract symbol and
aR = γT (aA) = ρT (aC) its representative.

The corresponding abstraction can be refined by splitting leaves: We call a
tuple 〈aC,d,o〉 a witness (for the insufficiency of the abstraction) if �SUL�(uaRd) �=
�SUL�(uaCd) = o, i.e., it demonstrates a deviating behavior when concretizing aA

by aC instead of aR. Let (aR,aA) be the leaf found by the lookup operation for
aC, and let a′A be a new abstract symbol that does not yet appear anywhere else.
We replace the leaf by an inner node 〈d,o〉, which has the leaf (aC,a′A) as its
equals-child and the leaf (aR,aA) as its other-child.

For an abstraction tree T , we denote by ΣC(T) the set of representatives,
i.e., the set of all concrete symbols appearing at leaves, and by ΣA(T) the corre-
sponding abstract domain. The cardinality |T | is the total number of leaves in
the tree, it holds that |αT |= |T |.

Abstraction trees can always be initialized with a leaf (aC,aA) ∈ ΣC ×ΣA as
its rood node, where aC,aA are arbitrary concrete respectively abstract actions.
Of course, if prior knowledge about the semantics of the alphabet exists, a more
fine-grained initial abstraction can be used.

3.3 Modifications for Observation Tables

As in [16], the learning algorithm operates on a concrete level: the sets S p,L p
and D all form subsets of Σ∗

C. For constructing the set L p, we need to know the
local (representative) alphabet for each state corresponding to a prefix u ∈ S p.
We hence associate with each u ∈ S p a corresponding state-local abstraction
(tree) Tu = 〈u,ru〉. The set L p can then be defined as L p = {uaC | u ∈ S p,aC ∈
ΣC(Tu)} \S p.

For obvious reasons, the set D is not initialized with the full learning alpha-
bet, but rather with a finite arbitrary nonempty subset of Σ+

C . For determining
transition outputs in the hypothesis, L∗

M assumes that for each prefix u ∈ S p and
input a ∈ Σ there exists a table cell T (u)(a) containing the corresponding output.
As we cannot rely on this (as D is not guaranteed to contain all aC ∈ ΣC(Tu) for
every u ∈ S p), the output of each transition is stored separately by means of
an output table O : (S p∪L p) \ {ε}→ Ω. The additional |S p∪L p|− 1 MQs will
obviously neither change asymptotic query complexity nor will hamper practical
applicability. In Fig. 2 (c), the output is shown next to the respective row label.

Inferring Automata with State-Local Alphabet Abstractions 133

Closing tables. Since closing a previously unclosed observation table augments
the set S p, this also requires the introduction of a new local abstraction. Similar
to beginning with a one-state hypothesis for the automaton, as a new abstraction
we will initially use a maximally coarse one that treats all symbols from ΣC alike
(i.e., Tu = 〈u,(aC,aA)〉, where aC is an arbitrary concrete representative).

Hypothesis construction. The generation of an abstract Mealy machine
(cf. Def. 2) hypothesis H from a closed observation table 〈S p,L p,D,T 〉, ab-
straction trees Tu for every u ∈ S p and an output table O mostly resembles the
method for ordinaryMealy machines [24]: States are identified with words u∈ S p,
where ε corresponds to the initial state. Since the observation table is closed, it
follows that for each aC ∈ ΣC(Tu) there is uaC ∈ S p∪L p, and thus a word u′ ∈ S p
such that T (uaC) = T (u′). Transitions are then constructed by applying the local
abstraction αu on aC, thus δu(αu(aC)) = u′. Outputs are handled accordingly.

3.4 Handling Counterexamples

Once we have generated a hypothesis automaton H , an equivalence query will
either signal success or return a counterexample, i.e., a word c ∈ Σ+

C such that
�H �(c) �= �SUL�(c). In the classical scenario, a counterexample gives rise to at
least one new state by exposing future behavior that differs from all states cur-
rently present in the hypothesis. This splitting of states is done implicitly by aug-
menting the set D of distinguishing suffixes and consequently closing the table.
As a starting point for handling counterexamples, we use the approach described
in [22] and detailed in [24], not the original way proposed by Angluin [2].

When also inferring alphabet abstractions, the situation is different: the cause
of deviating behavior can also be an abstraction that is too coarse and thus im-
poses non-determinism. Accordingly, the treatment of counterexamples becomes
a much more complicated task. The following paragraphs will explain in detail
how a counterexample is processed.

Consider a counterexample c = c1 . . .cm ∈ Σ+
C . We decompose c into c = uaCv,

where u,v∈Σ∗
C and aC = ci ∈ΣC. Values for i range from 1 to m and are considered

in ascending order. The idea now is to transform the prefix u to the word leading
to the same state in H . This word is referred to as the access sequence of u
and denoted by �u�. For each decomposition c = uaCv, we determine the local
representative aR = ρ�u�(aC) and perform the following checks:

1. �SUL�(�u�aRv) �= �SUL�(�u�aCv): In the state reached via �u� in the SUL, aC

and aR may not be treated equivalently. Let o= �SUL�(�u�aCv), then 〈aC,v,o〉
is a witness for splitting the leaf labeled with the concrete symbol aR in the
abstraction tree T�u� . The word �u�aC is added to the set L p, introducing a
new transition in the hypothesis.

2. �SUL�(�u�aRv) �= �SUL�(�uaR�v): The future behavior wrt. v of the state
reached by �u�aR and �uaR� differs (this is the classical case). In the hypothe-
sis, these two words must lead to different states. The suffix v is added to the
set D, resulting in an unclosed table caused by T (�uaR�)(v) �= T (�u�aR)(v)
and thus the creation of a new state in the hypothesis.

134 M. Isberner, F. Howar, and B. Steffen

If none of the above cases applies, i is incremented and the steps described
above are repeated. Obviously, for i = 1 the initial counterexample c is consid-
ered, whereas after the last step c has been transformed into a word uaR fully
supported by the hypothesis. As c is a counterexample, both words lead to dif-
ferent outputs, guaranteeing that one of the above cases will eventually apply.
As a single counterexample may expose both an insufficient number of states
as well as an alphabet abstraction being too coarse, it usually is a good idea to
re-evaluate a counterexample after having updated the hypothesis.

3.5 Correctness and Complexity

The following theorem states that our algorithm is guaranteed to terminate after
a certain number of queries, and that it does so with an optimal result.

Theorem 1. If M is an optimal abstraction of SUL, the algorithm infers M
using O(t(n+ am)) = O(mk2n3) membership queries and at most n+ t = O(t) =
O(n2k) equivalence queries, where n = |Q|, k = |Ω|, t = ∑q∈Q |αq|, a = maxq∈Q |αq|
and m is the maximum length of a counterexample returned by an equivalence
query.

We will omit the proof of the complexity at this point, and only sketch the
idea for proving optimality. For this, we can resort to the optimality argument
from [2]: New states are introduced only when differing future behavior is ex-
plicitly discovered. This can be applied to the refinement level of the alphabet as
well: local alphabets are augmented only when necessary, hence the refinement
level of the minimal CMM is never exceeded. As long as the refinement level is
too coarse, however, counterexamples can be found.

3.6 An Example Run of the Algorithm

In order to give a better impression of how exactly the algorithm works, we
present an execution fragment of applying it to the system depicted in Fig. 1 (b).
In all contexts, we will use a(0,0,0) as the default concrete representative, hence
we initialize the data structure with S p = {ε},L p =D = {a(0,0,0)} and the only
abstraction tree Tε = 〈ε,(a(0,0,0),a1)〉. This leads to a trivial initial hypothe-
sis, consisting only of a single state and transition, outputting 0 on each input
symbol.

When conducting an equivalence query, a possible counterexample is c =
a(0,0,1)a(1,0,1)a(1,1,1), whose output 1 contradicts the hypothesis. We now
stepwisely transform this counterexample according to the process described
in Sec. 3.4. Substituting the representative a(0,0,0) for the first symbol does
not change the output, neither does replacing a(0,0,0) by its access sequence
�a(0,0,0)� = ε. After the first iteration of the loop, we transformed the coun-
terexample to a(1,0,1)a(1,1,1)/1. However, replacing a(1,0,1) with the stan-
dard representative a(0,0,0) changes the observed output behavior to 0. We
refine the abstraction tree Tε using the witness 〈a(1,0,1),a(1,1,1),1〉. The re-
sulting abstraction tree is shown in Fig. 2 (a), and a(1,0,1) is added to the local
alphabet of the state represented by ε and thus to L p.

Inferring Automata with State-Local Alphabet Abstractions 135

〈a(1,1,1),1〉

(a(1,0,1),a2) (a(0,0,0),a1)

equals other

(a)

q0 q1

a(0,0,0)/0

a(1,0,1)/0

a(0,0,0)/0

(b)

T a(0,0,0) a(1,1,1)

ε 0 0
a(1,0,1) / 0 0 1
a(0,0,0) / 0 0 0
a(1,0,1)a(0,0,0) / 0 0 0
a(1,0,1)a(1,1,1) / 1 0 1

(c)

Fig. 2. (a) Abstraction tree for ε after first refinement, (b) intermediate hypothesis
after two counterexample evaluations, (c) final observation table

Reevaluation shows that the counterexample still conflicts with our hypothe-
sis. Since the abstraction of ε has changed, we have to start transforming from the
beginning. a(0,0,1)a(1,1,1) produces 0 as last output, so the first symbol is still
replaced by a(0,0,0) and subsequently by ε. The remaining word a(1,0,1)a(1,1,1)
already starts with a representative symbol, but when substituting a(1,0,1) with
�a(1,0,1)�= ε, the output changes to 0. a(1,1,1) is added to D, leading to a new
state with access sequence a(1,0,1) being added to the hypothesis. The corre-
sponding abstraction tree is again initialized with the maximally coarse abstrac-
tion, using a(0,0,0) as a representative symbol. The intermediate hypothesis is
shown in Fig. 2 (b), the observation table at this point is the one shown in
Fig. 2 (c) without the last line.

A final reevaluation again exposes that we still have a counterexample.
A change in output from 1 to 0 is observed during the transformation
a(1,0,1)a(1,1,1) → a(1,0,1)a(0,0,0), leading to the abstraction Ta(1,0,1) being
refined using as a witness 〈a(1,1,1),ε,1〉, and we end up with a representa-
tive version of the final model. The corresponding observation table is shown in
Fig. 2 (c).

4 Experimental Results

We have implemented the algorithm outlined in the previous sections as part
of LearnLib2 [21] and conducted several experiments, the results of which are
depicted in Table 1. We compared our new algorithm with both the classical L∗

M
and the global AAR algorithm presented in [16]. In the case of infinite alphabets,
we restricted the domain to those symbols which have non-error semantics in at
least one state, as otherwise it would not have been possible to use L∗

M.
Besides taking into account the number of membership and equivalence

queries, we also considered the sizes of the abstractions: |ΣA| for global, |α| =
maxq∈Q |αq| for local AAR. A cache for avoiding multiple membership queries for
the same word was used in all experimental setups. Finally, we also recorded the
wallclock times (on a 2.5GHz Intel Core i5-2520M with 8GB RAM).

We considered the following example systems for our experiments: The coun-
try calling code (CCC) example, as displayed in Fig. 1, and a similar problem,

2 http://www.learnlib.de/

http://www.learnlib.de/

136 M. Isberner, F. Howar, and B. Steffen

Table 1. Results of the experimental evaluation. Lowest values are marked bold (com-
parison only between global and local AAR for EQ).

Example Size L∗M Global AAR Local AAR

|Q| |ΣC| # MQ # EQ Time # MQ # EQ Time |ΣA | # MQ # EQ Time |α|
CCC 204 200 320,200 1 51s 10,953 201 5m55s 196 2,600 204 22s 55
FHN1 95 88 190,122 3 28s 39,456 93 39s 36 3,798 99 4s 15
FHN2 310 262 7,391,946 9 58m0s 1,766,688 354 6h50m16s 258 50,371 417 7m30s 39
BV7 71 128 1,269,564 14 4m27s 175,458 146 2m00s 128 10,926 91 26s 2
BV8 84 256 5,994,280 24 25m51s 677,176 287 16m49s 256 25,168 116 1m43s 2
BV9 72 512 19,370,515 15 2h00m09s 890,475 535 53m48s 512 39,507 99 2m54s 2
BV10 75 1024 80,473,959 26 13h19m02s 2,795,183 1060 8h57m32s 1024 80,455 111 10m13s 2
Bio.Pass. 5 264 348,744 1 1m34s 2,052 14 4s 10 2,966 24 6s 6
Pots2 664 32 1,504,181 39 14m03s 1,483,594 96 16m28s 32 234,289 2,840 58m58s 7

Peterson3 1,328 57 8,775,306 43 3h21m48s > 8,000,0003 — > 4h30m — 590,786 3,986 5h45m36s 4

a file system hierarchy navigator (FHNi), modeling the navigation through a
directory structure, a model of the biometric passport (cf. [1]) and two rather
large models (Pots2 and Peterson3), distributed with the CADP tool set [8] and
the Concurrency Workbench [18]. Finally, we considered a series of automati-
cally generated automata (BVk) of the type sketched in Fig. 1 (b), with k binary
parameters.

The results underline the improvement in terms of efficiency: In all cases,
the number of membership queries could vastly be reduced, depending on the
concrete example by several orders of magnitude. For the systems with hierarchi-
cal structure, namely CCC and FHNi, there are major improvements regarding
the number of membership queries, the size of the abstraction as well as the
execution times, compared to both global AAR and L∗

M, while the number of
equivalence queries is only moderately increased in comparison to global AAR.
The biggest improvement could be observed for the BVk examples, where an
increase in two to three orders of magnitude in MQs, execution times as well as
conciseness of the model could be seen. While we expected local AAR to out-
perform the other two algorithms in terms of membership queries, we found it
surprising that, compared to global AAR, also the number of equivalence queries
was reduced significantly.

When looking at the remaining examples, which were not chosen with local
abstraction (Bio.Pass.) or even abstraction in general (Pots2 and Peterson3)
in mind, the results are still promising. Of all the considered examples, Pots2
is the only one were LAAR falls behind. While there is a reduction in terms
of membership queries by an order of magnitude, due to the computational
overhead, the execution time is much higher than for global AAR as well as L∗

M.
One should keep in mind, however, that we performed MQs by simulation, which
is extremely quick. The more time a single membership query takes, the more
does local AAR profit.

Particularly striking is the conciseness of the Peterson3 model inferred using
local abstractions: L∗

M produces a model with 57 outgoing transitions in each
state, where LAAR automatically infers a model where no state has more than
four outgoing transitions. Global AAR failed to learn this system, as it repeatedly
ran into out-of-memory-conditions.

3 Execution aborted due to out-of-memory-condition.

Inferring Automata with State-Local Alphabet Abstractions 137

5 Conclusions

We have presented an automata learning algorithm that infers a model of a
system at an abstract level, while in parallel inferring a set of state-local alphabet
abstractions just fine enough to preserve determinism. This allows us to handle
input alphabets of infinite cardinality for which no further information is known,
that is, they are – just like the system itself – treated in a ‘black box’ fashion.

By an experimental evaluation, we show that this not only leads to more con-
cise and thus more comprehensible models, but also is in the majority of cases a
significant improvement in terms of performance compared to our previous algo-
rithm, treating abstraction at a global level only. Moreover, in the case of finite
but large input alphabets, it compares very well to the classical L∗

M algorithm,
provided that a state-local perspective on alphabet abstraction is by any means
adequate considering the system’s behavior.

Currently, we are investigating the impact of LAAR by inferring models for
a variety of real-life web applications, and the generality of the local alphabet
abstraction for enhancing learning of richer automaton models, in particular
register automata [14].

References

1. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and Abstraction of the Biometric
Passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415,
pp. 673–686. Springer, Heidelberg (2010)

2. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 2(75), 87–106 (1987)

3. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated Assume-
Guarantee Reasoning by Abstraction Refinement. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)

4. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided Ab-
straction Refinement for Symbolic Model Checking. J. ACM 50(5), 752–794 (2003)

6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. Springer (1999)
7. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for

Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

8. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg
(2011)

9. Gheorghiu, M., Giannakopoulou, D., Păsăreanu, C.S.: Refining Interface Alphabets
for Compositional Verification. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 292–307. Springer, Heidelberg (2007)

10. Giannakopoulou, D., Rakamarić, Z., Raman, V.: Symbolic Learning of Compo-
nent Interfaces. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460,
pp. 248–264. Springer, Heidelberg (2012)

138 M. Isberner, F. Howar, and B. Steffen

11. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model Generation by Moderated
Regular Extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, pp. 80–95. Springer, Heidelberg (2002)

12. Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.-D.: Efficient Re-
gression Testing of CTI-systems: Testing a Complex Call-center Solution. Annual
Review of Comm., Int. Engineering Consortium (IEC) 55, 1033–1040 (2001)

13. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
2002, pp. 58–70. ACM, New York (2002)

14. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring Canonical Register Au-
tomata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 251–266. Springer, Heidelberg (2012)

15. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS: Lessons learned in the
ZULU challenge. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS,
vol. 6415, pp. 687–704. Springer, Heidelberg (2010)

16. Howar, F., Steffen, B., Merten, M.: Automata Learning with Automated Alphabet
Abstraction Refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011)

17. Issarny, V., Steffen, B., Jonsson, B., Blair, G.S., Grace, P., Kwiatkowska, M.Z.,
Calinescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT
Challenges: Towards Emergent Connectors for Eternal Networked Systems. In:
ICECCS, pp. 154–161 (2009)

18. Moller, F., Stevens, P.: Edinburgh Concurrency Workbench User Manual (Version
7.1), http://homepages.inf.ed.ac.uk/perdita/cwb/

19. Nerode, A.: Linear Automaton Transformations. Proceedings of the American
Mathematical Society 9(4), 541–544 (1958)

20. Raffelt, H., Margaria, T., Steffen, B., Merten, M.: Hybrid Test of Web Applications
with Webtest. In: TAV-WEB 2008, pp. 1–7. ACM, New York (2008)

21. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: A Framework for Extrap-
olating Behavioral Models. International Journal on Software Tools for Technology
Transfer (STTT) 11(5), 393–407 (2009)

22. Rivest, R.L., Schapire, R.E.: Inference of Finite Automata Using Homing Se-
quences. Inf. Comput. 103(2), 299–347 (1993)

23. Shahbaz, M., Groz, R.: Inferring Mealy Machines. In: Cavalcanti, A., Dams, D.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)

24. Steffen, B., Howar, F., Merten, M.: Introduction to Active Automata Learning
from a Practical Perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011)

25. Steffen, B., Margaria, T., Raffelt, H., Niese, O.: Efficient test-based model genera-
tion of legacy systems. In: HLDVT 2004, Sonoma (CA), USA, pp. 95–100. IEEE
Computer Society Press (November 2004)

http://homepages.inf.ed.ac.uk/perdita/cwb/

	Inferring Automata with State-Local AlphabetAbstractions
	1 Introduction
	2 Modeling Reactive Systems
	2.1 Mealy Machines
	2.2 Abstractions on Countable Mealy Machines

	3 The Learning Algorithm
	3.1 Lm Revisited
	3.2 Alphabet Abstraction Refinement
	3.3 Modifications for Observation Tables
	3.4 Handling Counterexamples
	3.5 Correctness and Complexity
	3.6 An Example Run of the Algorithm

	4 Experimental Results
	5 Conclusions
	References

