
Enclosing Temporal Evolution of Dynamical
Systems Using Numerical Methods�

Olivier Bouissou1, Alexandre Chapoutot2, and Adel Djoudi2

1 CEA Saclay Nano-INNOV Institut CARNOT, Gif-sur-Yvette, France
2 ENSTA ParisTech, Palaiseau, France

Abstract. Numerical methods are necessary to understand the behav-
iors of complex hybrid systems used to design control-command systems.
Especially, numerical integration methods are heavily used in simulation
to compute approximations of the solution of differential equations, in-
cluding non-linear and stiff solutions. Nevertheless, these methods only
produce approximate results and they should not be used in formal ver-
ification methods as is. We propose a systematic way to make explicit
Runge-Kutta integration method safe with respect to the mathemati-
cal solution. As side effect, we can hence compare different integration
schemes in order to pick the right one in different situations.

1 Introduction

Verification techniques for embedded, control-command systems usually involve
the modeling of the system using a hybrid automata-like formalism and then
the computation of the reachable states of the system [1,2]. To compute these
reachable states, one of the crucial points is the post operator for the continu-
ous trajectories which requires to compute over-approximations of trajectories
defined by ordinary differential equations (ODE in short). In the linear case (i.e.
when the differential equations are linear), this can be exactly and efficiently
solved using an efficient representation of convex sets as in [3]. For the non-
linear case, one cannot in general compute exactly the continuous trajectories
and approximation techniques such as hybridization [4,5] have been proposed.
This however may result in an explosion of the number of discrete jumps and
thus does not scale well to large, industrial systems.

In an industrial context, the validation of these systems (which differs to the
formal verification) usually involves the modeling of the system in a Simulink-
like formalism and then performing numerical simulations of the system to test
its behavior under some input scenarios [6,7]. Numerical simulation techniques
are very efficient and scale very well to large systems with many state variables.
Moreover, system designers are used to tune and use these simulations to have
good approximations of the system trajectories. Such simulations are however
of little help for the formal verification of hybrid systems.

� This work was partially supported by the ANR project CAFEIN.

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 108–123, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Enclosing Temporal Evolution of Dynamical Systems 109

In this article, we propose to use and adapt the numerical methods used in
tools as Matlab/Simulink to define a new post operator for continuous trajec-
tories. More formally, we define a way to transform any explicit Runge-Kutta
numerical method to solve ODE into a guaranteed manner that computes over-
approximations of the exact solution. We focus on explicit Runge-Kutta-like
methods as they are the most widely used methods to solve differential equa-
tions. For example, in the Matlab/Simulink tool, there are 13 integration meth-
ods, 8 of which are explicit Runge-Kutta methods. It is well known that each
method has its particularities and is suited for a particular kind of ODEs. So,
having a collection of numerical methods allows one to choose the best one for
solving its particular ODE. Our framework proposes different methods and thus
allows to efficiently and precisely solve different kinds of equations.

In the rest of this article, we give in Section 2 an overview of numerical
methods to solve ODEs, then in Section 3 we explain how we modified them to
enclose the solution of ODEs. Then, in Section 4, we present experimentation
that show the benefits of our approach compared to related work.

2 Numerical Integration

We now recall the principles of numerical integration of ordinary differential
equations. An ordinary differential equation (ODE) is a relation between a func-
tion y : IR → IRn and its derivative ẏ = dy

dt
, written as ẏ = f(t, y). An initial value

problem (IVP) is an ODE together with an initial condition and a final time:

ẏ = f(t, y) with y(0) = y0, y0 ∈ IRn and t ∈ [0, tend] . (1)

Example 1 (Running example). We use the following IVP as our running example:
⎧
⎨

⎩

ẏ = z

ż = z2 − 3

0.001 + y2

with

{
y(0) = 10

z(0) = 0

and we set the final time at tend = 50. We call this IVP the “oil-reservoir” problem,
this example comes from [8]. This IVP is particularly stiff around t = 35, while
its evolution elsewhere is slow, which makes it difficult to solve.

Solving the IVP means finding a continuous and differentiable function y∞ such
that y∞(0) = y0 and ∀t ∈ [0, tend], ẏ∞(t) = f

(
t, y∞(t)

)
. We do not address here the

problem of existence of the solution and we shall always assume that f : IR×IRn →
IRn is continuous in t and globally Lipschitz in y, so Equation 1 admits a unique
solution on IR [9]. We denote the solution of (1) with initial condition y0 at t = 0

as y(t; y0). Higher order differential equations can be translated into first-order
ODEs by introducing additional variables for the derivatives of y.

2.1 Approximate Solution

An exact solution of Equation 1 is rarely computable so that in practice, ap-
proximation algorithms are used. The goal of an approximation algorithm is to

110 O. Bouissou, A. Chapoutot, and A. Djoudi

30 31 32 33 34 35 36 37 38 39 40

−5

0

5

10
Euler method

Fixed step ODE23

Variable step ODE23

Fig. 1. Some numerical solutions of the oil-reservoir problem with different numerical
methods, zooming on t ∈ [30, 40]

compute a sequence of time instants 0 = t0 < t1 < · · · < tn = tend and a sequence
of values y0, . . . , yn such that ∀i ∈ [0, n], yi ≈ y(ti; y0). In this article, we focus on
single-step methods that only use yi and approximations of ẏ(t) to compute yi+1.

The simplest method is Euler’s method in which ti+1 = ti +h for some step-size
h and yi+1 = yi +h×f(ti, yi); so the derivative of y at time ti, f(ti, yi), is used as an
approximation of the derivative on the whole time interval to perform a linear
interpolation. This method is very simple and fast, but requires small step-sizes.
More advanced methods use a few intermediate computations to improve the
approximation of the derivative. For example, Bogacki-Shampine method (also
named ODE23) performs three evaluations of f and then a linear interpolation
from yn using a weighted sum of the three derivative approximations (h is the
chosen step-size):

k1 = f(tn, yn) (2a)
k2 = f(tn + (1/2)h, yn + (1/2)hk1) (2b)
k3 = f(tn + (3/4)h, yn + (3/4)hk2) (2c)

yn+1 = yn + h ((2/9)k1 + (1/3)k2 + (4/9)k3) (2d)

Example 2. If we consider the “oil-reservoir” problem of Example 1, Euler and
Bogacki-Shampine with a fixed step-size of 0.1 produce two very different solu-
tions, as plotted in Figure 1 in dotted and dashed lines. Note that Euler method
diverges around t = 35, where the dynamics of the solution is very stiff.

When the derivatives of the solution exhibit high variations, for example around
t = 35 for the “oil-reservoir” problem, it is important to adapt the step-size
h to ensure that the approximate solution does not deviate too far from the
exact solution. So called variable step-size methods use a second, more precise
interpolation that is used as a reference of the solution. The distance between
both interpolations is considered as the error made by the first interpolation.
For the Bogacki-Shampine method, the second interpolation is given by:

k4 = f(tn + h, xn+1) (3a)
zn+1 = xn + h ((7/24)k1 + (1/4)k2 + (1/3)k3 + (1/8)k4) (3b)

Then, ‖ yn+1 − zn+1 ‖ is the estimated error attached to the approximation point
yn+1 and is used to both validate the step from tn to tn+1 and adapt the step-size.

Enclosing Temporal Evolution of Dynamical Systems 111

d2 a21

d3 a31 a32

...
...

. . .
ds as1 as2 · · · as,s−1

w1 w2 · · · ws

w′
1 w′

2 · · · w′
s

(a) General form.

0
1
2

1
2

3
4

0 3
4

1 2
9

1
3

4
9

2
9

1
3

4
9

0
7
24

1
4

1
3

1
8

(b) Bogacki-Shampine table.

Fig. 2. Butcher table

Step-size control strategy is at the core of the performance of a numerical
integration algorithms, both in terms of precision (the step-size is reduced when
needed) and computation time (the step-size is increased when the solution
is flat). We will present in Section 3 our method for controlling the step-size
when performing guaranteed numerical integration. We refer to [9,10] for details
about the step-size strategy for numerical algorithms. On Figure 1, we show
the values of the approximated solution of the “oil-reservoir” problem for the
Bogacki-Shampine method with a variable step-size: it greatly differs from the
fixed step-size method, and it is actually very close to the actual solution (see
Section 4).

In this article, we only consider methods based on Runge-Kutta methods, ei-
ther fixed or variable step-size. All these methods can be described by a Butcher
table (see Figure 2(a)). The di represent the time instants of the intermediate
steps needed to compute the solution of ẏ = f(t, y) over the interval [tn, tn +h]. The
matrix made of the elements aij represents the weights used to approximate the
interval solution from the previous intermediate steps. The elements wi, w′

i (only
for variable step-size methods) represent the latest weights to approximate the
solution at time tn + hn with two methods of different orders. For example, the
Butcher table associated to Bogacki-Shampine is given at Figure 2(b). In con-
sequence the elements of the Butcher table give a unified description for all the
numerical integration methods members of the Rung-Kutta family. In the rest of
this article, we denote by Φ a numerical method described by such a Butcher ta-
ble: it relates two successive approximation points: ∀n ∈ IN, (tn+1, yn+1) = Φ(tn, yn).

2.2 Problems with Numerical Integration

Numerical integration only provides approximations of the solution of the IVP.
Even when using variable step-size methods, there is no guarantee that the
chosen method is close to the solution, we merely know that the smaller the
step-size is, the closer the approximations are to the solution. So, if we want to
use numerical methods in cases when an over-approximation of the trajectories
is needed, we need to compute error bounds y(tn; y0) − yn for all n ∈ IN.

112 O. Bouissou, A. Chapoutot, and A. Djoudi

Moreover, numerical integration only concerns IVP with a single initial value,
i.e. y0 ∈ IRn. In hybrid systems model verification, it is necessary to enclose all
the solutions of a differential equation starting from any point in a given set.
More formally, given an initial set S0 ⊆ IRn, we want to compute bounds on the
set of trajectories {y(t; y0) | y′ = f(t, y), y0 ∈ S0}. The method we develop in the
rest of the article encodes sets of values using affine arithmetic and compute
bounds on the solutions of the differential equations by computing bounds on
y(tn; y0) − yn whatever the initial value is within some set S0.

Finally, implementations of numerical methods very often suffer from the use
of floating-point numbers which explain why, even if theoretically a Runge-Kutta
method converges towards the solution when the step-size converges towards 0,
it is in practice not the case. Our method handles these errors in a safe way.

3 Guaranteed Integration

We present our solutions of the drawbacks associated to the numerical solutions
of IVP. Firstly, we present our approach to manipulate sets of values for handling
uncertainties. Secondly, we describe the method to bound the truncation error
introduced in numerical methods to provide guaranteed numerical integration.

3.1 Computing with Sets

The simplest and most common way to represent and manipulate sets of values
is interval arithmetic [11]. Nevertheless, this representation usually produces too
much over-approximated results in particular because of the dependency problem.

Example 3. Consider the ordinary differential equation ẋ(t) = −x solved with
the Euler’s method with an initial value ranging in the interval [0, 1] and with a
step-size of h = 0.5. For one step of integration, we have to compute
with interval arithmetic the expression e = x + h × (−x) which produces as a
result the interval [−0.5, 1]. Rewriting the expression e such that e′ = x(1 − h), we
obtain the interval [0, 0.5] which is the exact result. Unfortunately, we cannot in
general rewrite expressions with only one occurrence of each variable.

More generally, it can be shown that for most integration schemes the width of
the result can only grow if we interpret sets of values as intervals.

To avoid this problem we use an improvement over interval arithmetic named
affine arithmetic [12] which can track linear correlation between program vari-
ables. A set of values in this domain is represented by an affine form x̂ (also
called a zonotope), i.e. a formal expression of the form x̂ = α0 +

∑n
i=1 αiεi where

the coefficients αi are real numbers, α0 being called the center of the affine form,
and the εi are formal variables ranging over the interval [−1, 1]. Obviously, an
interval a = [a1, a2] can be seen as the affine form x̂ = α0 +α1ε with α0 = (a1 +a2)/2

and α1 = (a2 − a1)/2. Moreover, affine forms encode linear dependencies between
variables: if x ∈ [a1, a2] and y is such that y = 2x, then x will be represented by
the affine form x̂ above and y will be represented as ŷ = 2α0 + 2α1ε.

Enclosing Temporal Evolution of Dynamical Systems 113

Affine arithmetic extends usual operations on real numbers in the expected
way. For instance, the affine combination of two affine forms x̂ = α0 +

∑n
i=1 αiεi

and ŷ = β0 +
∑n

i=1 βiεi with a, b, c ∈ IR, is given by:

ax̂ + bŷ + c = (aα0 + bβ0 + c) +
n∑

i=1

(aαi + bβi)εi . (4)

However, unlike the addition, most operations create new noise symbols. Multi-
plication for example is defined by:

x̂ × ŷ = α0α1 +
n∑

i=1

(αiβ0 + α0βi)εi + νεn+1 (5)

where ν =
(∑n

i=1 |αi|
)× (∑n

i=1 |βi|
)

over-approximates the error between the linear
approximation of multiplication and multiplication itself. Other operations, like
sin, exp, are evaluated using their Taylor expansions. Note that the set-based
evaluation of an expression only consists in substituting all the mathematical
operators, like + or sin, by their counterpart in affine arithmetic. We will denote
by Aff(e) the evaluation of the expression e using affine arithmetic.

Example 4. Consider again e = x + h × (−x) with h = 0.5 and x = [0, 1] which is
associated to the affine form x̂ = 0.5 + 0.5ε1. Evaluating e with affine arithmetic
without rewriting the expression, we obtain [0, 0.5] as a result.

One of the main difficulties when implementing affine arithmetic using floating-
point numbers is to take into account the unavoidable numerical errors due to
the use of finite-precision representations for values (and thus rounding on oper-
ations). We use an approach based on computations of floating-point arithmetic
named error free transformations: the round-off error can be represented by a
floating-point number and hence it is possible to exactly compute it (we refer
to [13] for more details on such methods). For instance, in the case of addition,
the round-off error e generated by the sum s = a + b is given by (� stands for
floating-point operations): e = (a 	 (s 	 (s 	 a))) ⊕ (b 	 (s 	 a)) .

A second comment on the implementation is that an affine form x̂ could be
represented as an array of floats encoding the coefficients αi. However, since in
practice most of those coefficients are null, it is much more efficient to adopt
a sparse representation and encode it as a list of pairs (i, αi), sorted w.r.t. the
first component, containing only coefficients αi �= 0. Moreover, in order to limit
the growth of the number of noise symbols in affine forms, we gather during
simulation all the coefficients below a given threshold into a new noise symbol.

3.2 Enclosing the Truncation Error

We recall from Section 2 that a numerical integration method computes a se-
quence of approximations (tn, yn) of the solution y(t; y0) of the IVP defined in
Equation (1) such that yn ≈ y(tn; y0). Every numerical method member of the
Runge-Kutta family follows the condition order [9]. This condition states that

114 O. Bouissou, A. Chapoutot, and A. Djoudi

a method of this family is of order p iff the p + 1 first coefficients of the Taylor
expansion of the solution and the Taylor expansion of the numerical methods
are equal. Hence, at a time instant tn the Taylor expansion of the solution with
the Lagrange remainder states that ∃ξ ∈]tn, tn+1[such that:

y(tn+1; y0) = y(tn; y0) +

p∑

i=1

hi
n

i!
y(i)(tn; y0) +

hp+1
n

(p + 1)!
y(p+1)(ξ; y0)

= y(tn; y0) +

p∑

i=1

hi
n

i!
f(i−1) (tn, y(tn; y0)) +

hp+1
n

(p + 1)!
f(p) (ξ, y(ξ; y0)) .

(6)

In Equation (6), g(n) stands for the n-th derivative of function g w.r.t. time t

that is dng
dtn

and hn = tn+1 − tn is the step-size. Moreover, the general form of an
explicit s-stage Runge-Kutta formula, that is using s evaluations of f , is:

yn+1 = yn + h
s∑

i=1

biki , (7a)

k1 = f
(
tn, yn

)
, ki = f

(
tn + cih, yn + h

i−1∑

j=1

aijkj

)
, i = 2, 3, . . . , s . (7b)

The coefficients ci, aij and bi are those given in a Butcher table (see Section 2).
We define the function φ : IR → IRn by φ(t) = yn + ht

∑s
i=1 biki(t), ki(t) is defined

as Equation (7b) where h is ht = t − tn. The Taylor expansion around tn of the
numerical solution with a Lagrange remainder states that there exists η ∈]tn, tn+1[

such that:
yn+1 =

p∑

i=0

hi
n

i!

diφ

dti
(tn) +

hp+1
n

(p + 1)!

dp+1φ

dtp+1
(η) .

The truncation error measures the distance between the true solution and the
numerical solution and it is defined by y(tn; y0) − yn. If we express the trunca-
tion error with the Taylor expansions, the consequence of the condition order
is that the numerical integration makes an error proportional to the Lagrange
remainders. More precisely, the truncation error is defined by:

y(tn; y0) − yn =
hp+1

n

(p + 1)!

(

f(p) (ξ, y(ξ)) − dp+1φ

dtp+1
(η)

)

ξ ∈]tk, tk+1[and η ∈]tn, tn+1[.

(8)
The challenge to make Runge-Kutta integration schemes safe w.r.t. the true
solution of IVP is then to compute a bound of the result of Equation (8). In other
words we have to bound the value of f(p) (ξ, y(ξ; y0)) and the value of dp+1φ

dtp+1 (η).
The latter expression is straightforward to bound because the function φ only
depends on the value of the step-size h, and so does its (p + 1)-th derivative. The
bound is then obtain using the affine arithmetic by:

dp+1φ

dtp+1
(η) ∈ Aff

(
dp+1φ

dtp+1
([tn, tn+1])

)

. (9)

However, the expression f(p) (ξ, y(ξ; y0)) is not so easy to bound as it requires
to evaluate f for a particular value of the IVP solution y(ξ; y0) at a unknown

Enclosing Temporal Evolution of Dynamical Systems 115

time ξ ∈]tn, tn+1[. The solution used is the same as the one found in [14,15] and
it requires to bound the solution of IVP on the interval [tn, tn+1]. We briefly
recall the main mathematical tool used to bound the solution of IVP and we
refer to [14] for a complete presentation. We consider the space of continuously
differentiable functions C0([tn, tn+1], IRn) and the Picard-Lindelöf operator:

P (f ; tn; yn)(t) = yn +

∫ t

tn

f(s, y(s))ds . (10)

Note that this operator is associated to the integral form of Equation (1). So the
solution of this operator is also the solution of Equation (1).

The Picard-Lindelöf operator is used to check the contraction of the solution
on a integration step in order to prove the existence and the uniqueness of
the solution of Equation (1) as stated by the Banach’s fixed-point theorem.
Furthermore, this operator is used to compute an enclosure of the solution of IVP
over a time interval [tn, tn+1] using affine arithmetic. Affine arithmetic can be used
to compute a bound of integral expression such that:

∫ b
a f(x)dx ∈ (b−a)Aff(f([a, b]) .

Using an affine version of the Picard-Lindelöf operator, we can try to prove the
contraction of this operator by computing a post fixed-point over the interval
[tn, tn+1] that is we want to find a value z such that:

z ⊇ yn + [0, h]Aff (f([tn, tn+1], z)) . (11)

Note that Equation (11) is associated to an iterative process to compute z.
Starting from z0 being the interval hull of yn and yn+1, we define the sequence of
affine forms zk as zk+1 = yn +[0, h]Aff

(
f([tn, tn+1], zk)

)
and stop when we find k such

that zk+1 ⊆ zk. If we cannot find a post fixed-point in a given fixed number of
iterations, this may be the case that the step-size is too large. Then we reject the
integration step and keep going the simulation with a reduced step-size (usually
hn
2

). That is Equation (11) is also used to control the integration step-size.
Furthermore, the value z is also used as an enclosure of the solution of IVP

over the time interval [tn, tn+1]. We can hence bound the Lagrange remainder of
the true solution with z such that:

f(p) (ξ, y(ξ; y0)) ∈ Aff
(
f(p) ([tn, tn+1], z)

)
. (12)

Finally, using Equation (9) and Equation (12) we can prove Theorem 1 and thus
bound the distance between the approximation points of any explicit Runge-
Kutta method and any solution of the IVP.

Theorem 1. Let S0 ⊆ IRn be a set of initial states and let y0 be an affine form
such that S0 ⊆ y0. Let Φ be a numerical integration scheme and ΦAff be the
evaluation of Φ using affine arithmetic. Let (tn, yn) be a sequence of time instants
and affine forms defined by yn+1 = y′

n+1 +en+1 where (tn+1, y′
n+1) = ΦAff(tn, yn) and

en+1 is the truncation error as defined by Equation (8) and is evaluated using
Equations (9) and (12). Then, we have that ∀y′

0 ∈ S0: ∀n ∈ IN, y(tn; y′
0) ∈ yn .

Example 5. We present the main steps of our method on the system ẋ = x2 solved
with Heun’s method: xn+1 = xn + h/2(x2

n + (xn + hx2
n)2). First, if x(tn) ∈ x̂n, we let

116 O. Bouissou, A. Chapoutot, and A. Djoudi

x̂n+1 = x̂n +h/2(x̂2
n +(x̂n +hx̂2

n)2), evaluated using affine arithmetic. Next we bound
the truncation error x̂n+1 − x(tn+1). Heun’s method being of order 2 we need to
bound over [tn, tn+1] the third derivative of the problem and the third derivative
of the method w.r.t. time, i.e. we want to bound the expressions ...

x = 6x4 and
φ(3)(t) = 3x4

n with φ(t) = xn + (t − tn)/2(x2
n + (xn + (t − tn)x2

n)). For the latter, we
bound it with 3x̂4

n using affine arithmetic. For the former, we must bound x on the
whole interval [tn, tn+1] into an affine form ẑ and then we use 6ẑ4 as a bound of ...

x .
To compute ẑ, we use Equation (11) and iteratively compute a post-fixpoint of
ẑ = x̂n +[0, h]ẑ2. We start from the hull of x̂n and x̂n+1 and evaluate the expression
x̂n + [0, h]ẑ2 using affine arithmetic until we reach a post-fixpoint.

3.3 Step-Size Strategy

Our method automatically adapts the step-size in order to validate the existence
of the solution and improve the stability of the computed enclosure.

The iteration defined by Equation (11) successively computes sets zk until
zk+1 = yn + [0, h]Aff

(
f([tn, tn+1], zk)

) ⊆ zk. At this point, we know that IVP (1)
has a solution on [tn, tn+1] and that this solution remains in zk. As we assumed
that the IVP has a solution, there exists some h > 0 such that Picard iteration
converges. However, given some h, the iteration may diverge or take too long to
converge. So we fix a maximal number of iterations K, and if we do not converge
after K steps, the step is rejected and we set the step-size to h/2. As we start
from a good approximation of the fixpoint (the hull of the enclosure at tn and
the numerical approximation at tn+1), the iteration generally converges quickly.

Then, we let the user define two values, the absolute tolerance atol and the
relative tolerance rtol that defines the acceptable error at each integration step.
More formally, our method computes for each instant tn an error en which is the
distance between the true solution and the numerical approximation. We say
that the step from tn to tn+1 is accepted if en is such that: sup(en) ≤ err where
err = max

(
atol, rtol× max(sup(yn+1), sup(yn))

)
. If the step is not accepted, we set

the step-size to h/2 and restart from tn. If the step is accepted, the next step-size
is h′ = h

(
rtol/err

)1/(q+1), q being the order of the numerical method. So, the step-
size is automatically adapted so that the error introduced at each step converges
towards the user-defined tolerances. This is similar to what is done for variable
step-size numerical methods, except that we now use the guaranteed error to
accept and control the step-sizes. Note that we also transform fixed step-size
methods such as Euler or RK4 methods into variable step-size algorithms.

Finally, our implementation also offers another algorithm to adapt the step-
size: we use the PI algorithm from [15]. The main idea is the use a proportional-
integral controller scheme to adapt h to achieve the desired error err. This
algorithm makes the step-size more stable and thus reduces the number of re-
jected steps due to the Picard-Lindelöf iteration and in our experiments it showed
to be the best choice for controlling the step-size.

Enclosing Temporal Evolution of Dynamical Systems 117

4 Experiments

In this section we present the effectiveness of our approach to make every ex-
plicit Runge-Kutta method guaranteed through different examples mainly com-
ing from the DETEST problem set [16]. This set has been specifically defined
to test numerical integration methods on various kinds of problems classified
according linear/non-linear and non-stiff/stiff categories. We compare our ap-
proach against the VNODE (VNODE-LP version 0.3) software which imple-
ments the state of the art of guaranteed numerical integration methods based
on interval Taylor series [14]. Despite VNODE can handle high order Taylor
series we restrict our comparison to order 4 which is the highest order of the
Runge-Kutta methods we consider in this article. We use the following integra-
tion methods: Euler, Heun, Runge-Kutta 4 (RK4), Bogacki-Shampine (ode23),
Dormand-Prince (ode45) [10].

All the simulations were executed on a desktop (two 2.33GHz processors with
2Go of RAM) running Fedora Linux. The implementation was done in OCaml
using the GiNaC library [17] to symbolically compute derivatives. In the follow-
ing tables, we present: T the time (in seconds) required to simulate the problem
excluding time spent to compute derivatives and TT the total time (in seconds)
including time used to compute and compile derivatives1; Tol = rtol = atol the cho-
sen tolerance; Rej and Acc are respectively the number of rejected and accepted
steps; Evals is the number of function evaluations and Prec is the precision, taken
as the greatest width of the guaranteed enclosures calculated.

4.1 Oil-Reservoir Problem

We consider again the “oil-reservoir” problem introduced in Section 2 on which
we applied different guaranteed Runge-Kutta methods. In order to give a hint
on the kind of stiffness we deal with this example, in Figure 3(a) we give the
temporal evolution of the variable z around t = 35, where the derivative varies a
lot. We see that, even if the precision of the bounds decreases when the stiffness
is important, our method is precise enough to make the bounds contract when
the dynamics is simpler. In Figure 3(b) we give the step-size evolution of the
Heun’s method to emphasize the importance of the step-size control mechanism
presented in Section 3.3, even for initially fixed step-size integration scheme.

Next, we present in Table 1 the results of the application of different Runge-
Kutta methods on the “oil-reservoir” example. Note that VNODE is not able
to solve this problem, even with an order of 50: it is not able to go beyond 2

seconds of simulation. We remark in Table 1 that the execution time increases
with the chosen tolerance and the complexity of the Runge-Kutta method (num-
ber of rows in a Butcher table). Moreover, the precision varies with the chosen
tolerances and methods. We recall that the precision taken in this article is the

1 We distinguish both as in our implementation, we only need to compute the deriva-
tives once, if we want to re-integrate the same problem with other parameters or
from another starting point, we do not need to compute the derivatives again.

118 O. Bouissou, A. Chapoutot, and A. Djoudi

34.6 34.8 35 35.2 35.4
−25

−20

−15

−10

−5

lower bound
upper bound

(a) Bounds for z, for 34.5 ≤ t ≤ 35.5

0 10 20 30 40
0

1

2

3

4
·10−2

step size

(b) Step size evolution

Fig. 3. Oil-reservoir with guaranteed Heun’s method

Table 1. Simulation results on “oil-reservoir” problem

Meth Tol Acc Rej Evals T TT Prec Prec(tend)
Heun 10−6 2566 2561 10254 1.099 4.322 2.791 4.541 · 10−2

10−9 17626 36373 107998 8.878 12.101 1.438 · 10−2 3.971 · 10−3

10−12 220092 665081 1770346 141.848 145.071 7.579 · 10−5 7.579 · 10−5

ode23 10−6 2453 2449 14706 4.833 10.713 5.412 7.063 · 10−2

10−9 8320 16633 74859 23.015 26.538 0.107 1.891 · 10−2

10−12 45495 113940 478305 132.578 136.101 6.996 · 10−4 4.000 · 10−4

RK4 10−6 604 481 4340 0.909 38.646 1.413 4.824 · 10−2

10−9 1553 2031 14336 2.778 40.514 1.368 · 10−2 3.061 · 10−3

10−12 7224 14441 86660 15.409 53.145 3.683 · 10−5 3.683 · 10−5

ode45 10−6 1163 1177 16380 15.791 5653.939 7.772 1.729 · 10−1

10−9 1772 2316 28616 26.046 5642.939 1.002 6.619 · 10−2

10−12 7669 15330 160993 114.609 5731.502 2.787 · 10−5 2.787 · 10−5

greatest width of the guaranteed enclosures computed during the simulation. In
this example, the greatest width is computed around t = 35. In Table 1 the last
column gives the width of the solution enclosure at the end of the simulation,
which shows that we obtain precise results at t = 50 even if locally the error
increases.

4.2 Non-stiff Problems

DETEST Problem A3. We study the behaviors of the Heun’s method and the
RK4 method on the following problem, for a simulation time t ∈ [0, 20]:

ẏ = y cos(t) with y(0) = 1 . (13)

More precisely, we emphasize the importance of the choice of the numerical
methods in the trade-off of efficiency and precision even for this simple example.

Enclosing Temporal Evolution of Dynamical Systems 119

0 5 10 15 20

0

0.1

0.2

0.3

0.4
St

ep
si
ze

heun steps

rk4 steps

0 5 10 15 20

0

0.1

0.2

0.3

P
re

ci
si

on

heun

rk4

Fig. 4. Step-size (left) and precision (right) evolution for Problem A3 (Tol=10−3)

For this example, Heun’s method and RK4 method can solve Equation (13) more
efficiently than variable step-size methods as Bogacki-Shampine without loosing
too much precision. Figure 4, left, shows the step-size evolution of these two
methods. Note that the length of the step-size adapts to the dynamics of the
problem. Furthermore, the steps chosen by RK4 method are about four times
wider than those taken by the Heun’s method. This is explained by the order
of the method used (see Section 2). Furthermore, the precision evolution of the
two methods depicted in Figure 4, right, shows that RK4 method offers more
precise enclosures than Heun’s method.

DETEST Problem C3. In this case study we only consider RK4 method to show
the scalability of our approach. We solve for t ∈ [0, 2] and various values of n the
problem defined by:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ẏ1

ẏ2

ẏ3

...
ẏn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

. . .
0 0 · · · 0 1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y1

y2

y3

...
yn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with y(0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)

In particular, we solved this problem with n = {40, 80, 120, 140}. Table 2 shows the
time spent in simulation using RK4 method and the precision generated for each
dimension and each tolerance considered. Compared to VNODE with order 4 re-
sults of the RK4 method exhibits a linear time complexity, while VNODE spends
much more time to solve it. Indeed, VNODE uses standard interval arithmetic
so to limit the wrapping effect during the simulation it uses a technique based on
QR matrix decomposition (see [14]) which has a O(n3) complexity. Our solution
to fight the wrapping effect is the use affine arithmetic which prevents the use
of QR matrix decomposition then we have a better scalability without losing to
much precision. Note also that with high order, e.g. 40, VNODE is able to solve
this problem with only one integration step.

120 O. Bouissou, A. Chapoutot, and A. Djoudi

Table 2. Results for Problem C3

Dim Tol T Prec T VNODE Prec VNODE
40 10−3 0.378 7.381 · 10−4 0.9 4.404 · 10−4

10−6 1.064 1.284 · 10−5 7.46 2.175 · 10−07

10−9 4.628 2.530 · 10−8 72.28 3.517 · 10−11

80 10−3 0.959 1.886 · 10−3 6.92 4.404 · 10−4

10−6 2.551 1.432 · 10−5 58.89 2.175 · 10−07

10−9 10.641 2.295 · 10−8 565.57 3.517 · 10−11

120 10−3 1.49 1.753 · 10−3 23.21 4.404 · 10−4

10−6 4.297 1.386 · 10−5 196.56 2.175 · 10−07

10−9 17.782 2.446 · 10−8 2314.46 3.517 · 10−11

140 10−3 1.846 1.137 · 10−3 37.43 4.404 · 10−4

10−6 5.285 1.440 · 10−5 334.08 2.175 · 10−07

10−9 22.286 2.710 · 10−8 3904.96 3.517 · 10−11

Table 3. Results on Problem E2

Meth Tol Rej Acc Evals T Prec
Heun 10−3 38 11 98 0.013 6.451 · 10−4

10−6 130 129 518 0.036 2.073 · 10−5

10−9 1047 2092 6278 0.354 8.060 · 10−8

ode23 10−3 36 9 135 0.046 1.369 · 10−3

10−6 99 113 636 0.156 3.630 · 10−5

10−9 653 1580 6699 1.329 1.513 · 10−7

RK4 10−3 36 18 216 0.071 5.693 · 10−5

10−6 48 34 328 0.106 7.538 · 10−6

10−9 134 171 1220 0.371 1.592 · 10−8

VNODE 10−3 − − − 0 1.278 · 10−4

10−6 − − − 0.02 2.554 · 10−07

10−9 − − − 0.18 2.623 · 10−10

4.3 Stiff Problem

We consider for a simulation time t ∈ [0, 1] the DETEST Problem E2 defined by:

⎧
⎨

⎩

ẏ1 = y1

ẏ2 = 5(1 − y2
1)y2 − y1

with

⎧
⎨

⎩

y1(0) = 2

y2(0) = 0
.

We look at the behaviors of different explicit Runge-Kutta methods which are
known to behave not very well on such kind of problems. Table 3 gives the
result on this example. For the result of VNODE, we did not succeed to access
the information associated to columns Rej, Acc and Evals. Nevertheless, we note
that VNODE at order 4 is more efficient and precise in this example than Runge-
Kutta methods which already behave well.

Enclosing Temporal Evolution of Dynamical Systems 121

Fig. 5. Temporal evolution in (x, y)-space of the car ODE

4.4 Problem with Uncertainties

Finally, we show an example of a highly non-linear IVP, representing the move-
ment of a car in 2D space) with some initial uncertainty:

ẋ = v cos(δ) cos(θ) ẏ = v cos(δ) sin(θ) θ̇ = 0.2v sin(0.2t) .

We integrate it up to t = 30 with the initial values x(0) ∈ [0, 1], y(0) ∈ [0, 1], θ(0) = 0

and v ∈ [7, 7.1]. Figure 5 shows the evolution of the bounds on x and y with
time. This was computed using the RK4 method, with a tolerance of 10−8, in
15.6s, with v ∈ [7, 7.1]. We hence remark that our approach is efficient and robust
enough to handle uncertainties.

5 Conclusion

In this article, we presented a novel method to compute guaranteed bounds on
the solution of differential equations. This method is an extension of the previous
work of one of the authors [15]. The main advantages of this work is that it may
use various numerical methods to obtain the guaranteed bounds, so that we
can treat different kinds of equations (stiff or not, linear or not). Moreover, as
we use affine forms in order to enclose sets of values, we avoid the well known
wrapping effect which is present in [14]. This results in a more precise and
more effective method as we can make larger step-sizes. Remark that our tool
computes both over-approximations at discrete time stamps tn but also, using
the Picard-Lindelöf operator, over-approximations over each intervals [tn, tn+1].

To compute such over-approximations, various other tools exist. Developed
for the verification of hybrid systems, SpaceEx [3] handles linear differential
equations exactly using support functions and matrix exponentiation. However,
when facing non-linear equations, a hybridization [5] must be performed, which

122 O. Bouissou, A. Chapoutot, and A. Djoudi

can end in an explosion of the number of discrete states if the equation is stiff.
Compared to tools such as VNODE [14], ValenciaIVP [18] or [19], our method
relies on well-known numerical methods and can thus treat more differential
equations. For example, VNODE could not integrate the “oil-reservoir” problem.

As should be clear from our experimentation, the fact that we can use vari-
ous numerical methods is very interesting as each method is well adapted to a
specific kind of problems. So we are confident that by adding more and more
methods to our framework we will have a large enough collection to handle most
kinds of problems. Three challenges arise towards this goal. First, we want to
handle implicit methods in which yn+1 is defined via a fixpoint equation. These
methods are more stable than explicit ones and thus handle better stiff systems
and allow for larger step-sizes. Second, we will investigate multi-step methods
that use yn, yn−1, . . . , yn−k to compute yn+1 for some k > 0. Such methods are
more efficient than single-step methods as they require less evaluation of f , how-
ever bounding the error is much more complicated. Finally, we will study variable
order methods as in [8]. Such methods embed in one Butcher table various meth-
ods with different orders. Then, at each step, the best method is automatically
chosen. This method would allow us to efficiently change the order during the
integration process.

References

1. Guéguen, H., Lefebvre, M.A., Zaytoon, J., Nasri, O.: Safety verification and reach-
ability analysis for hybrid systems. Annual Reviews in Control 33(1), 25–36 (2009)

2. Alur, R.: Formal verification of hybrid systems. In: Conference on Embedded Soft-
ware, pp. 273–278. ACM (2011)

3. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

4. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-
linear systems. Acta Inf. 43(7), 451–476 (2007)

5. Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In:
Hybrid Systems: Computation and Control, pp. 11–20. ACM (2010)

6. Shenoy, R., McKay, B., Mosterman, P.J.: On simulation of simulink models for
model-based design. Handbook of Dynamic System Modeling (2007)

7. Conrad, M., Mosterman, P.J.: Model-based design using Simulink modeling, code
generation, verification, and validation. Formal Methods: Industrial Use from
Model to the Code, 159–178 (2012)

8. Cash, J.R., Karp, A.H.: A variable order Runge-Kutta method for ivp with rapidly
varying right-hand sides. ACM Trans. Math. Softw. 16(3), 201–222 (1990)

9. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I:
Nonstiff Problems, 2nd edn. Springer (2009)

10. Shampine, L.F., Gladwell, I., Thompson, S.: Solving ODEs with MATLAB. Cam-
bridge Univ. Press (2003)

11. Moore, R.: Interval Analysis. Prentice Hall (1966)
12. de Figueiredo, L.H., Stolfi, J.: Self-Validated Numerical Methods and Applications.

Brazilian Mathematics Colloquium monographs. IMPA/CNPq (1997)

Enclosing Temporal Evolution of Dynamical Systems 123

13. Muller, J.M., Brisebarre, N., De Dinechin, F., Jeannerod, C.P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhauser (2009)

14. Nedialkov, N., Jackson, K., Corliss, G.: Validated solutions of initial value problems
for ordinary differential equations. Appl. Math. and Comp. 105(1), 21–68 (1999)

15. Bouissou, O., Martel, M.: GRKLib: a Guaranteed Runge Kutta Library. In: Scien-
tific Computing, Computer Arithmetic and Validated Numerics (2006)

16. Enright, W.H., Pryce, J.D.: Two FORTRAN packages for assessing initial value
methods. ACM Transations on Mathematical Software 13(1), 1–27 (1987)

17. Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for
symbolic computation within the C++ programming language. J. Symb. Com-
put. 33(1), 1–12 (2002)

18. Rauh, A., Brill, M., Günther, C.: A novel interval arithmetic approach for solving
differential-algebraic equations with ValEncIA-IVP. Int. J. Appl. Math. Comput.
Sci. 19(3), 381–397 (2009)

19. Combastel, C.: A state bounding observer for uncertain non-linear continuous-time
systems based on zonotopes. In: Conference on Decision and Control. IEEE (2005)

	Enclosing Temporal Evolution of DynamicalSystems Using Numerical Methods
	1 Introduction
	2 Numerical Integration
	2.1 Approximate Solution
	2.2 Problems with Numerical Integration

	3 Guaranteed Integration
	3.1 Computing with Sets
	3.2 Enclosing the Truncation Error
	3.3 Step-Size Strategy

	4 Experiments
	4.1 Oil-Reservoir Problem
	4.2 Non-stiff Problems
	4.3 Stiff Problem
	4.4 Problem with Uncertainties

	5 Conclusion
	References

