
Automatically Detecting Inconsistencies

in Program Specifications

Aditi Tagore and Bruce W. Weide

Dept. of Computer Science and Engineering
The Ohio State University

Columbus, Ohio 43210, USA
{tagore.2,weide.1}@osu.edu

Abstract. A verification system relies on a programmer writing mathe-
matically precise descriptions of code. A specification that describes the
behavior of an operation and a loop invariant for iterative code are exam-
ples of such mathematical formalizations. Due to human errors, logical
defects may be introduced into these mathematical constructs. Tech-
niques to detect certain logical errors in program specifications, loop
invariants, and loop variants are described. Additionally, to make pro-
gram specifications more concise and to make it easier to create them,
RESOLVE has parameter modes: each formal parameter is annotated
with a mode that is related to the intended roles of the incoming and
outgoing values of that parameter. Methods to check whether the pro-
grammer has chosen a plausibly correct mode for each parameter are
also explained. The techniques described are lightweight and are applied
at an early stage in the verification process.

1 Introduction

The primary value of a formal verification system is to verify a program imple-
mentation against its specification and to report an implementation error if there
is one. The robustness of such a system depends as much on the programmer sup-
plying a correct specification for her program as it does on the theorem prover’s
ability to prove the verification conditions (VCs) generated from a proposed im-
plementation of that specification. However, inconsistencies in the specification
may be introduced during the software development process due to human er-
rors. In such scenarios, either an implementation may be declared as correct for
an incorrect specification, or it may not be possible to write a valid implemen-
tation at all. In a similar way, defects may occur when a programmer annotates
a loop with an invariant and a variant.

The idea described in this paper is used to detect certain errors at an early
stage in the formal verification process. Typically, errors are only detected in
a verification system when a VC cannot be proved by the theorem prover and
subsequently the VC is traced back to its origin in the program to identify
the error. We describe a lightweight method that checks consistency of certain
programming constructs before VCs are generated. Since the cost of detecting

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 261–275, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

262 A. Tagore and B.W. Weide

and fixing errors increases as software development reaches the later stages of
its life-cycle, eliminating errors early is widely regarded as a best practice in
software engineering.

Fig. 1. Types of correctness checks

Formal verification ensures that a program is behaviorally correct, i.e., it
matches its specification. It is far stonger than syntactic correctness of a pro-
gram, which is checked by an ordinary compiler. The techniques outlined here
lie between these two extremes. The consistency of program specifications and
loop annotations is accomplished with the help of a theorem prover (also used
for formal verification), but instead of proving an entire program to be correct,
we perform local checks on mathematical statements that do not depend on
the entire body of code. Additionally, we also illustrate methods to accomplish
consistency checks on the modes of operation parameters. These are syntactic
checks, but of a slightly different order than those that are normally carried out
by a compiler. This classification is shown in Figure 1.

Our specifications and their implementations are written in RESOLVE [1].
To detect logical inconsistencies in program specifications and their implementa-
tions, we use an SMT solver, Z3 [2], as a back-end prover. The example programs
are chosen from the RSRG software components library, some of which have been
suggested as software verification benchmarks [3]. Students in computer science
classes have been observed to make the kinds of errors that are mentioned in
this paper, as have the authors and other more experienced specifiers.

The contributions in this paper are three-fold:

– The conditions for admissibility of program specifications are formulated.
– Techniques to establish logical consistency of loop annotations (invariants

and variants) are developed.
– Methods for ascertaining that a programmer has supplied the correct modes

for the parameters of an operation are described.

A reader’s familiarity with formal specifications, pre- and post-conditions, and
loop invariants and variants is assumed. However, no prior knowledge of RE-
SOLVE or of the intricate mechanisms of Z3 is necessary. The ideas apply to
specifications and formal verification / theorem-proving technology in general.

Section 2 provides an overview of the types of defects considered. Sections
3,4 and 5 expound on the techniques for detecting such defects with examples.
Discussion and related work are presented in Section 6, with conclusions in
Section 7.

Automatically Detecting Inconsistencies in Program Specifications 263

2 Types of Specification Defects Detected

2.1 Defective Contracts

Fig. 2. Program Specifications

An operation (or method) specifica-
tion promises certain properties that
the implementer can assume at the
time of a call via the requires
clause (pre-condition) and, in turn,
demands that certain properties
hold upon return via the ensures
clause (post-condition). We first di-
vide specifications into two distinct
groups: those that are implementable
and those that are not. Unimple-
mentable specifications are, for our
(practical) purposes, considered in-
admissible. A specification with an
unsatisfiable post-condition is unim-
plementable and hence inadmissible. On the other hand, not all specifications
that are implementable are admissible1. Some of them may be trivially correct
and hence are inadmissible. This happens if the pre-condition is unsatisfiable.
This characterization is shown in Figure 2. In short, an inadmissible specifica-
tion is one that, for practical purposes, must have resulted from a specification
error. In Section 3 we discuss various techniques to detect these different types
of problems in specifications.

2.2 Defective Loop Annotations

Loop invariants and variants are important constructs needed to formally ver-
ify a program. Loop invariants are needed to reason about the loop, without
considering the loop iterations individually. Correspondingly, to prove the to-
tal correctness of programs, variants (called progress metrics in RESOLVE) are
used. A variant is usually a natural number that has a positive value before each
time the loop body is executed, and must be reduced in each iteration. Invariants
and variants are together used to prove total correctness of loops.

As mentioned earlier, there is a benefit to detecting defects in loop annota-
tions at an early stage, even before VCs are generated. In Section 4 we discuss
techniques to ensure admissibility of its constituent parts.

2.3 Inconsistent Parameter Modes

Each parameter of a RESOLVE operation is annotated with a mode in the
header of that operation. A programmer may fail to select parameter modes that

1 “Admissible” refers to a specification that does not contain any checkable defects,
not to one that “correctly formalizes the requirements”.

264 A. Tagore and B.W. Weide

are consistent with how the parameter values are utilized and changed in the
operation. In other words, the modes may not be consistent with the requires
and the ensures clause.

For example, the replaces mode indicates that the outgoing parameter
value is determined by the operation and that the incoming value is inconsequen-
tial. Thus the operation should not refer to the incoming value of the parameter.
Hence if the programmer uses a replaces mode when the incoming value of
the parameter appears in the pre- or post-condition, then she is alerted of this
anomaly.

A detailed explanation of the modes is presented in Section 5 where we also
discuss the methods we employ to detect modes that are inconsistent with the
specification of the operation.

3 Inconsistent Specifications

3.1 Methodology

A specification may be inadmissible for various reasons, as discussed in Sec-
tion 2.1. We perform a series of checks to identify those that are not admissible.
The following lists a taxonomy of defects that may occur in the specifications.

Contradiction in the Pre-condition: An implementation may be declared
as trivially correct if the pre-condition (say pre) is false. Logical contradictions
appearing in pre make it false and hence the post-condition (say post) is ir-
relevant. To avoid such default correctness, the requires clause is tested for
satisfiability.

Contradiction in the Post-condition: On the other hand, a specification
is unimplementable if post is false. A contradiction in post implies that it is
impossible to create an implementation that meets the specification. In this case
too, the ensures clause is tested for satisfiability.

Appropriateness of pre and post Together: Even when the requires and
ensures clauses are individually contradiction-free, they may still preclude an
implementation that satisfies the program specification.

procedure DecrementBy3 (updates x: Integer)
requires
x >= 3

ensures
x = #x - 3 and x > 0

Fig. 3. Proposed specification of DecrementBy3

As an example, consider the specification of a procedure DecrementBy3
shown in Figure 3. The parameter mode updates for the parameter x indicates
the value of this parameter may be changed by the operation. The # symbol in

Automatically Detecting Inconsistencies in Program Specifications 265

the ensures clause refers to the parameter at the time of the call; no # symbol
is used in the requires clause as it always refers to the incoming value. The
pre-condition of the procedure DecrementBy3 says that the incoming value of
x should be greater than or equal to 3. The post-condition of the procedure says
that the outgoing value of x is equal to 3 less than its incoming value (denoted
by #x) and that the outgoing value is positive.

The requires and ensures clauses are individually satisfiable: both are
true for #x = 4 and x = 1. Even so, a valid implementation (that is correct for
all the input values that satisfy the pre-condition) is still not possible, because
the input value #x = 3 satisfies the requires clause, but the outgoing value
of x must be 0 and that makes the second conjunct (x > 0) false, and hence
invalidates the ensures clause.

To detect logical inconsistencies in program specifications (e.g., the one in
Figure 3), we need to ascertain that for all possible values that can satisfy pre,
there exist values of the variables that satisfy post. So we check the validity of

∀x1, . . . , xn(pre =⇒ ∃y1, . . . , ym(post)) (1)

where (x1, . . . , xn) are the incoming values of the variables appearing in pre and
(y1, . . . , ym) are the outgoing values of the variables in post.

Thus the specification in Figure 3 is tested with the help of the formula

∀#x(#x >= 3 =⇒ ∃x(x = #x− 3 ∧ x > 0)) (2)

3.2 Example: A Divide Operation for Unbounded Integers

In RESOLVE, a contract contains the client-view of a software component
that describes a model of that component’s behavior. A realization module
contains operation bodies that implement the operations specified in the con-
tract. Consider the contract Divide for unbounded integers, i.e, integer values
without an upper or lower bound.

contract Divide enhances UnboundedIntegerFacility

procedure Divide (updates i: Integer, restores j: Integer,
replaces r: Integer)

ensures
#i = i * j + r and 0 < r and r < |j|

end Divide

Fig. 4. Proposed specification of Divide

In the Divide operation (shown in Figure 4), the incoming value of i (de-
noted by #i) is the dividend and the quotient is the outgoing value of i. Since
the value of the divisor j remains unchanged, its parameter mode is restores.

266 A. Tagore and B.W. Weide

The remainder from the division is returned in r. Since, the incoming value of
r is inconsequential, its parameter mode is replaces.

An important observation needs to be made about the variable j. The param-
eter mode of j is restores, which means the incoming and the outgoing values
are the same; it is equivalent to having j = #j as part of the ensures clause.
For simplicity, a programmer can leave such a clause out of the post-condition.
But while constructing the formula to check for validity, this additional conjunct
needs to be appended to the ensures clause. First, we check whether the pre-
condition (there isn’t one and hence by default is it considered to be true) and
post-condition are individually satisfiable; they are. Then, we construct formula
(3) to check for the admissibility of the specification.

∀#i,#j(true =⇒ ∃i, j, r((#i = i ∗ j + r) ∧ (0 < r) ∧ (r < |j|)∧ (j = #j)))
(3)

To test whether the specification is admissible, formula (3) is automatically
translated into Z3’s SMT2 input format and Z3 is invoked to prove it. Z3 deter-
mines that it is invalid. This gives a flag to the programmer that the specification
contains an error. When a formula is determined to be invalid, Z3 produces a
counter-example, i.e., values for which the formula does not hold. Here, it sug-
gests a value 0 for #j. As we know that j = #j, the last two conjucts of the
ensures clause in Figure 4 are reduced to 0 < r and r < 0. Since a conflict
arises, the programmer (we hope) sees that a value of 0 cannot be allowed for
the divisor j. Hence, this should be prevented by the requires clause.

requires
j /= 0

ensures
#i = i * j + r and 0 < r and r < |j|

Fig. 5. New proposed pre- and post-condition of Divide

The specification in Figure 4 is now corrected as shown in Figure 5, and it is
checked again:

∀#i,#j((#j �= 0) =⇒ ∃i, j, r((#i = i∗j+r)∧(0 < r)∧(r < |j|)∧(j = #j)))
(4)

Z3 declares this formula invalid as well and produces a counter-example where
#j = 1. On substituting this value, the last two conjucts of the ensures clause
are 0 < r and r < 1. The variable r cannot satisfy both these conjuncts at
the same time, since r is an integer. Hence, the programmer should realize at
this point, that the remainder from the Divide operation may be equal to 0.

Automatically Detecting Inconsistencies in Program Specifications 267

requires
j /= 0

ensures
#i = i * j + r and 0 <= r and r < |j|

Fig. 6. Correct Pre- and post-condition of Divide

Hence, the specification for Divide is updated one last time to the admissible
one in Figure 6.

3.3 Example: An Increment Operation for Bounded Integers

We next consider a contract for bounded integers, where two constants MIN
and MAX represent the minimum and the maximum bounds respectively. The
bounds are used with the restriction that MIN <= 0 and 0 < MAX. Figure 7
shows (some of) a proposed contract for the BoundedIntegerFacility.

contract
BoundedIntegerFacility

definition MIN: integer
satisfies restriction
MIN <= 0

definition MAX: integer
satisfies restriction
0 < MAX

math subtype INTEGERMODEL
is integer
exemplar i
constraint
MIN <= i and i <= MAX

type Integer is modeled
by INTEGERMODEL

exemplar i
initialization ensures
i = 0

procedure Increment
(updates i: Integer)
requires
i <= MAX
ensures
i = #i + 1
...

end BoundedIntegerFacility

Fig. 7. A proposed BoundedIntegerFacility contract

The specification of each operation that appears in this contract can be tested
for correctness using the method described in Section 3.1. However, a bounded
integer (say i) in this contract must satisfy MIN <= i < MAX that is intro-
duced by the constraint clause. Thus, to check the validity of each of the
operation specifications in this contract, formula (1) needs to be updated such
that the constraint clause (say constr) on the program variables (an abstract
invariant) is not violated. The constraint clause must hold for both the in-
coming and the outgoing parameter values and thus needs to be appended to

268 A. Tagore and B.W. Weide

both the requires and the ensures clauses. In addition, the restriction
clause (say restr) on the boundary values (i.e., MAX and MIN) must also be ac-
counted for in the formula in the same way as the constraint. The resultant
formula is shown in (5).

∀x1, . . . , xn((pre ∧ constr ∧ restr) =⇒ ∃y1, . . . , ym(post ∧ constr ∧ restr))
(5)

where (x1, . . . , xn) are the incoming values of the parameters appearing in
pre, constr and restr and (y1, . . . , ym) are the outgoing values of the parameters
in post, constr and restr .

The specification of the operation Increment, like all others, needs to be
tested for validity using the formula from (5). Substituting values, the formula
evaluates to

∀#i,MAX,MIN(((#i <= MAX) ∧ (#i <= MAX) ∧ (MIN <= #i)

∧ (0 < MAX) ∧ (MIN <= 0)) =⇒ ∃i((i = #i+ 1) ∧ (i <= MAX)

∧ (MIN <= i) ∧ (0 < MAX) ∧ (MIN <= 0))) (6)

Z3 concludes that the formula in (6) is invalid, and produces a counter-example
with a value 1 for each of the variables #i and MAX. Substituting these values
in the formula (6), the programmer notices that the ensures clause no longer
holds true, as the value of i becomes greater than MAX. This gives the program-
mer a clue that to keep the value of i within bounds, the value of #i should
have been less than MAX.

On correcting the requires clause of the specification, the resulting speci-
fication of Increment is tested for validity and Z3 determines it to be valid.

3.4 Example: A Halve Operation

Like many other languages for writing specifications, RESOLVE supports user-
defined mathematical functions and predicates. The procedure Halve in Fig-
ure 9 contains a user-defined predicate IS ODD, that is presented in Figure 8.
The ability to make up new definitions helps the specifier: instead of writing
out the expression for odd each time, she can condense it with the help of the
predicate. This also can help the prover [4].

To test the admissibility of the Halve specification, the formula to be checked
for validity is in (7).

∀#i(true =⇒ ∃i((IS ODD(#i) =⇒ #i = i + i)

∧ (¬IS ODD(#i) =⇒ #i = i+ i+ 1))) (7)

Z3 declares this as invalid and produces a value 0 for each of the variables #i
and i. Since 0 does not satisfy the IS ODD predicate, substituting the values
gives rise to the expression 0 = 0 + 0 + 1, which is impossible. At this point
the programmer realizes that the conditions are simply flipped and she updates
the specification to the correct one. The new check of the specification indicates
that it is admissible.

Automatically Detecting Inconsistencies in Program Specifications 269

definition IS_ODD(i: Integer)
: boolean

is
i mod 2 /= 0

Fig. 8. The predicate IS ODD

procedure Halve(
updates i: Integer)

ensures
if IS_ODD(#i) then
#i = i + i

else
#i = i + i + 1

Fig. 9. Proposed specification
for Halve

4 Consistency of Loop Annotations

In RESOLVE, a loop invariant for a while loop is introduced via a maintains
clause. This clause formalizes the relation between the variable values just before
the loop (prefixed with a #) and the variable values at any time the while loop
condition is checked (unadorned). Additionally, the progress metric (variant) of
a loop is stated in a decreases clause.

procedure Add (updates n: Natural, restores m: Natural)
variable k, z: Natural
loop
maintains n + m = #n + #m and k + m = #k + #m and z = 0
decreases m

while not AreEqual (m, z) do
Increment (n)
Increment (k)
Decrement (m)

end loop
m :=: k

end Add

Fig. 10. Procedure Add for UnboundedNaturalFacility

Figure 10 shows the code for operation Add for natural numbers. This pro-
cedure adds two natural numbers n and m and stores the result in n. The
body of this procedure makes calls to two other operations: Increment and
Decrement, which have been defined in the UnboundedNaturalFacility
contract. The primary data-movement operator in RESOLVE, :=:, swaps (ex-
changes) the values of its two operands, which must be simple variables. We
perform the following checks to ensure that the constituent parts of a loop are
admissible.

4.1 The Invariant and the Boolean Condition Are Contradiction-Free

If two or more conjuncts in the loop invariant (say inv) contradict each other,
then the invariant evaluates to false and the loop will never execute. For a

270 A. Tagore and B.W. Weide

similar reason, the boolean loop condition (say B) should not contain any con-
tradictions. Thus we first check to see that inv and B are individually satisfiable.

4.2 The Variant Is Positive Every Time the Loop Executes

In order for a loop to execute, the loop variant (say var) must (a) be positive
every time the loop body executes, and (b) decrease during every iteration of the
loop (we restrict attention to loop variants that are non-negative integers). We
perform consistency checks to see that case (a) holds. Since to prove the validity
of (b), the loop body needs to be involved, this is generated as a VC later in the
tool chain.

To ensure that case (a) holds, we check the validity of the following formula.

∀x1, . . . , xn(B ∧ inv =⇒ var > 0) (8)

where (x1, . . . , xn) are the variables that occur in the boolean condition, the
invariant and the variant. Applying this formula to check the validity of the
variant in Figure 10, the formula to be tested for validity is

∀m,#m,n,#n, k,#k, z(m �= z ∧ n+m = #n+#m∧
k +m = #k +#m ∧ z = 0 =⇒ m > 0) (9)

Here, since m and z are natural numbers, their values have to be at least 0 and
thus, the above formula is valid.

4.3 The Loop Invariant Is Valid Before the Loop Executes for the
First Time

Some fundamental properties of a loop invariant are that it holds (a) the first
time before entering the loop, and (b) at the end of each iteration of the loop. As
in the case of variants, to prove case (b), the loop body needs to be examined,
and thus a VC is generated later for this purpose. Here for case (a), we perform
a simple check of the logical consistency of the loop invariant before entering the
loop. We need to ensure that there exist some values of variables in the invariant
such that it is potentially true. Thus we check the validity of (10).

∃x1, . . . , xn(invinit) (10)

where invinit is the invariant with # symbols removed and (x1, . . . , xn) are
the variables in the invariant. By definition of #, before the loop executes for
the first time, each unadorned variable in the invariant has the same value as
the adorned version.

Application of this procedure to the invariant in Figure 10 results in

∃k, z, n,m(n+m = n+m ∧ k +m = k +m ∧ z = 0) (11)

The validity of formula (11) confirms that the loop invariant might be valid
at the beginning of the loop. A VC is generated later in the tool-chain to see
whether it is always valid at this point.

Automatically Detecting Inconsistencies in Program Specifications 271

5 Detecting Incorrect Parameter Modes

RESOLVE has multiple parameter modes: restores, updates, replaces
and clears. Although some of them have been mentioned in previous sections,
their meanings are consolidated in Table 1.

Table 1. Parameter modes

Parameter Mode Description

restores
The incoming and the outgoing values of the parameter

are the same

updates
The incoming and outgoing values of the parameter

are potentially different

replaces
The operation’s behavior does not depend on the

incoming value (a special case of updates)

clears
The outgoing value of the parameter is an initial
value of its type (a special case of updates)

The programmer supplies a mode for each parameter, as discussed in Sec-
tion 2.3. In our technique, syntactic checks are employed to give suggestions to
the programmer about the appropriate mode in case the way in which the pa-
rameter values in an operation are utilized are not consistent with the parameter
mode. In our method, we allow that there might be an error either in the pre- or
post-condition or in the parameter mode. In other words, we do not assume the
parameter mode or the body of the specification to be absolutely correct; instead
we make suggestions to assist the programmer write a correct specification when
these are not consistent with each other.

5.1 A Variable with Replaces Mode Appears in the Requires
Clause

If a variable occurs in the requires clause, the incoming value of the vari-
able is relevant to the operation’s behavior. But this cannot occur if the mode
is replaces. Thus if the incoming value of a variable annotated with the
replaces parameter mode is used in the requires or ensures clause, the
programmer is issued a warning message.

procedure Divide (updates i: Integer, replaces j: Integer,
replaces r: Integer)

requires
j /= 0

...

Fig. 11. Incorrect header of Divide

272 A. Tagore and B.W. Weide

As an example, consider the Divide procedure from Section 3.2. The value
of the divisor j remains unchanged, and thus the parameter mode should cor-
rectly be restores. Suppose instead, as shown in Figure 11, if the programmer
incorrectly uses the replaces mode, an error is detected, since the incoming
value of j is used in the requires clause to state that division by 0 is not
allowed.

5.2 Incoming Value of a Variable in the Post-condition

The incoming value of a variable (say x) may occur in the ensures clause if
and only if the parameter mode is updates or clears. For the restores
mode, since the incoming and outgoing values of the variables are the same, #x
should not appear in the ensures clause (because x should be used). Although
the value of the variable is changed with replaces mode, the ensures clause
cannot refer to the incoming value of the variable, since the incoming value is
supposed to be immaterial.

Thus, a warning is given to the programmer in the following two cases:

– She used the parameter mode updates or clears and yet did not use
#x in the post-condition. This could mean that either she wanted the mode
to be either restores or replaces or that she missed out an additional
conjunct in the ensures clause that refers to the incoming value of the
variable.

– She designated the mode to be restores or replaces and #x appeared
in the ensures clause.

procedure Add
(updates n: Natural,
restores m: Natural)

(a) The header of Add

ensures
n = n + m

(b) Incorrect post-condition

ensures
n = #n + #m

(c) Incorrect post-condition

ensures
n = #n + m

(d) Correct post-condition

Fig. 12. The Add operation

Figure 12 shows the contract for Add for natural numbers. The body of Add
operation was illustrated in Figure 10. The header for this procedure is shown
in (a). If the programmer writes the post-condition as shown in (b), an error
is detected since the parameter mode for n is declared as updates, yet the
incoming value #n does not appear in the post-condition. On the other hand, if

Automatically Detecting Inconsistencies in Program Specifications 273

the programmer writes the post-condition as in (c), an error is detected again
since the mode for m is restores, and yet the incoming value #m appears. The
correct post-condition is shown in (d).

5.3 Other Warnings

In addition to the errors listed above, warnings are given to the programmer
when the following anomalies are noticed:

– The clears parameter mode: When the parameter mode is clears,
typically the outgoing parameter value is not referenced in the post-condition
since the parameter value is reset to an initial value of its type.

For example, suppose a programmer declares the parameter mode of i to
be clears, and then adds a conjunct to the post-condition which says i =
0. This conjunct is unecessary, since the RESOLVE compiler automatically
adds the conjunct i = 0 to the post-condition when the parameter mode
of i is clears.

– The outgoing parameter equals a constant value in the post-
condition: If the mode of the variable is restores, then a conjunct i =
constant should not appear in the post-condition. Since the parameter
value is not changed by the operation, it is not meaningful to add a conjunct
stating that the outgoing value should be equal to a particular value. (It is
okay, of course, to say that some other variable is equal to this parameter.)

6 Discussion and Related Work

The examples of inconsistent specifications that are presented in Section 3 con-
cern integers. The method presented here to detect such inconsistencies can
also be applied for other datatypes such as arrays, stacks, queues, etc. However,
Z3 is frequently unable to determine a formula as valid / invalid if it contains
recursive definitions of datatypes. In addition, our primary admissibility-check
formula contains an alternation of quantifiers that automated solvers have trou-
ble with. It is expected that if provers become more adept at handling such
datatypes and quantifiers, a larger range of specifications can be automatically
checked for admissibility.

Validating program specifications has been previously described as generating
test-cases [5] and as symbolic execution [6, 7]. Both of these methods rely on
making the specifications executable. However, formal specifications are non-
executable mathematical statements, and to conform with this characteristic, our
technique uses a theorem prover to establish their validity. Heitmeyer, et.al [8]
describe a toolset to carry out syntactic and critical property checks like safety,
timing, etc., on specifications. In contrast, the analyses in this paper are more
general in that they do not depend only on certain properties of particular types
of specifications, but check for logical consistency of every program specification.
They are also more involved than mere syntactic checks (as depicted in Figure 1).

274 A. Tagore and B.W. Weide

Some program verifiers such as Dafny [9] are capable of detecting a subset
of inconsistent specifications that are described in this paper. Dafny is capable
of detecting a “division by zero” error in the ensures clause that states the
return value as i/j, i.e., it explicitly uses the divide operator, when a requires
clause stating that j �= 0 is missing. But, it does not detect a more involved
division by zero error such as the one present in the Divide specification shown
in Figure 4.

Ponsini et.al [10] describe a way of determining the correctness of loop in-
variants using constraint solvers. Their correctness proof closely follows Hoare
logic [11]. The admissibility checks presented in this paper are of a different
nature and are more comprehensive in that consistency of loop variants is also
considered.

7 Conclusions

In this paper, we developed methods to detect logical inconsistencies in pro-
gram specifications and errors in loop invariants and variants. Methods to help
the programmer annotate each parameter in operation headers with the correct
mode are also presented.

Most inconsistencies that are identified by our techniques are logical ones:
those that if present might cause an error during verification. By detecting them
early, we prevent the programmer from making more mistakes further along.
However, some of the inconsistencies (mentioned in Section 5.3) are warnings
and not errors, in that they do not cause the verification process to fail and yet
are better eliminated so that a better program specification is achieved.

In the future, we will contine to enhance our technique to detect logical incon-
sistencies in other specification constructs. We hope that others also implement
and extend this idea to create useful lightweight tools that help programmers by
leveraging formal specifications.

Acknowledgment. The authors are grateful for the suggestions of the members
of RSRG. This material is based upon work supported by the National Science
Foundation under Grants No. CCF-0811737, ECCS-0931669, and CCF-1162331.
Any opinions, findings, conclusions, or recommendations expressed here are those
of the authors and do not necessarily reflect the views of the National Science
Foundation.

References

1. Sitaraman, M., Weide, B.: Component-based software using RESOLVE. SIGSOFT
Softw. Eng. Notes 19, 21–63 (1994),
http://doi.acm.org/10.1145/190679.199221

2. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

http://doi.acm.org/10.1145/190679.199221

Automatically Detecting Inconsistencies in Program Specifications 275

3. Weide, B.W., et al.: Incremental benchmarks for software verification tools and
techniques. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295,
pp. 84–98. Springer, Heidelberg (2008)

4. Tagore, A., Zaccai, D., Weide, B.W.: Automatically proving thousands of verifi-
cation conditions using an SMT solver: An empirical study. In: Goodloe, A.E.,
Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 195–209. Springer, Heidelberg
(2012)

5. Kemmerer, R.: Testing formal specifications to detect design errors. IEEE Trans-
actions Software Engineering, 32–43 (1985)

6. Kneuper, R.: Symbolic execution as a tool for validation of specifications. PhD
thesis, University of Manchester (1989)

7. Bouquet, F., Dadeau, F., Legeard, B., Utting, M.: Symbolic animation of JML
specifications. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 75–90. Springer, Heidelberg (2005)

8. Heitmeyer, C., Kirby, J., Labaw, B., Bharadwaj, R.: SCR: A toolset for specify-
ing and analyzing software requirements. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 526–531. Springer, Heidelberg (1998)

9. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

10. Ponsini, O., Collavizza, H., Fedele, C., Michel, C., Rueher, M.: Automatic verifica-
tion of loop invariants. In: Proceedings of the 2010 IEEE International Conference
on Software Maintenance, ICSM 2010, pp. 1–5. IEEE Computer Society, Washing-
ton, DC (2010)

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580 (1969)

	Automatically Detecting Inconsistencies
in Program Specifications
	1 Introduction
	2 Types of Specification Defects Detected
	2.1 Defective Contracts
	2.2 Defective Loop Annotations
	2.3 Inconsistent Parameter Modes

	3 Inconsistent Specifications
	3.1 Methodology
	3.2 Example: A Divide Operation for Unbounded Integers
	3.3 Example: An Increment Operation for Bounded Integers
	3.4 Example: A Halve Operation

	4 Consistency of Loop Annotations
	4.1 The Invariant and the Boolean Condition Are Contradiction-Free
	4.2 The Variant Is Positive Every Time the Loop Executes
	4.3 The Loop Invariant Is Valid Before the Loop Executes for the First Time

	5 Detecting Incorrect Parameter Modes
	5.1 A Variable with Replaces Mode Appears in the Requires Clause

	5.2 Incoming Value of a Variable in the Post-condition
	5.3 Other Warnings

	6 Discussion and Related Work
	7 Conclusions
	References

