
Numerical Abstract Domain Using Support

Functions

Yassamine Seladji and Olivier Bouissou

CEA Saclay Nano-INNOV Institut CARNOT
91 191 Gif sur Yvette CEDEX, France

{yassamine.seladji,olivier.bouissou}@cea.fr

Abstract. An abstract interpretation based static analyzer depends on
the choice of both an abstract domain and a methodology to compute
fixpoints of monotonic functions. Abstract domains are almost always
representations of convex sets that must provide efficient algorithms to
perform both numerical and order-theoretic computations. In this paper,
we present a new abstract domain that uses support functions to rep-
resent convex sets. We define the order-theoretic operations and, using
a predefined set of directions, we define an efficient method to compute
the fixpoint of linear and non-linear programs. Experiments show the
efficiency and precision of our methods.

1 Introduction

Almost all static analysers rely on a method to efficiently compute numerical in-
variants. This is particularly true for highly numerical programs like digital filters
for which we are interested in computing a possibly tight over-approximation of
the range of values the variables can take. The theory of abstract interpretation
defines such invariants as the least fixpoint of a system of semantics equations
operating on elements of some abstract domain. The quality of the invariant then
depends on both the algorithm to compute the least fixpoint and the choice of
the abstract domain to encode sets of values.

For this second point, most domains over-approximate the sets of variables val-
ues by convex sets, very often using a (sub) polyhedral representation [6,14,9,15].
More recently, new domains were proposed that allow to encode non-convex
(even non-connected) sets [3,1] but these are convex sets in another space. So
it is clear that the static analyser efficiency relies on a precise and efficient
representation of convex sets, that allows for both numeric and order-theoretic
transformations. In this paper, we define a new abstract domain based on the
support function representation of a convex set and show that this domain allows
to efficiently and precisely compute numerical invariants.

Support function is a popular representation of convex sets for numerical
analysis [11]: a set S is represented as a function mapping each direction d
with the distance between the origin and the supporting hyperplane of S in the
direction d. Support functions offer a very compact and precise representation of

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 155–169, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

156 Y. Seladji and O. Bouissou

convex sets and allow for an exact computation of affine transformation of sets
(see Section 2). Support functions with finite supports were successfully used in
the hybrid systems analysis [10] to represent value sets or in our previous work
to speed up the convergence of the Kleene algorithm on general polyhedra [16].

In this article, we present a new abstract domain which is based on a sub-
polyhedral representation of convex sets using support functions with finite
supports. It allows for a compact representation of sets and we define efficient
algorithms to compute the fixpoint of affine and non-linear loops. This domain
is similar to the template domain [15] in that it depends on a fixed direction
set Δ ⊆ R

n (n: the space dimension) and bounds the convex sets in each Δ di-
rection. However, as it benefits from the algorithms on support functions, linear
operations are very efficient and do not depend on linear programming solvers.

This article is organized as follows. Section 2 gives some basic definitions and
results on support functions. Section 3 formally defines our abstract domain, in
particular the order-theoretic operations. Sections 4 and 5 show how to adapt
Kleene algorithm to our domain for linear and non-linear loops, respectively. For
the non-linear case, the notion of interval based support function is introduced
which allows to compute both an over- and under-approximation of the least
fixpoint. Section 6 concludes the article with some experimentation.

Notations. We put R∞ = R ∪ {−∞,+∞} and IR = {[a, b]|a ≤ b : a, b ∈ R∞}.
Given two vectors v, w ∈ R

n, let 〈v, w〉 ∈ R be the scalar product of u and w.
Let Bn be the unit sphere in R

n.

2 Support Function

In this section, we give the definition of the support function of a convex set and
give some usefull properties that show how a support function is modified by set
transformations. Given a convex set S ⊆ R

n, the support function of S, denoted
δS , is a functional representation of S, as stated by Definition 1 and Property 1.

Definition 1 ([11, Def. C.2.1.1]). Let S ⊆ R
n be a convex set. The support

function δS is defined by:

δS :

{
B
n → R∞

d
→ sup{〈x, d〉 : x ∈ S}

Property 1 ([11, Corollary. C.3.1.2]). Let S ⊆ R
n be a convex set and let

δS be its support function. Then, S =
⋂

d∈Bn

{
x ∈ R

n | 〈x, d〉 ≤ δS(d)
}

.

Property 1 states that a convex set is uniquely determined by its support func-
tion. Stated differently, any positively homogeneous function δ : B

n → R∞
determines exactly one convex set defined as the intersection of all hyperplanes{
x ∈ R

n | 〈x, d〉 ≤ δ(d)
}
for all d ∈ B

n. We recall that δ is positively homoge-
neous (of degree 1) if ∀d ∈ B

n, k ∈ R, δ(kd) ≤ kδ(d).

Numerical Abstract Domain Using Support Functions 157

d1

d2

d3

d4 d5

Fig. 1. Graphical representation of the support function of a convex set (in gray). The
dashed lines are the lines 〈x, d〉 = δS(d) for various directions d.

Figure 1 shows a convex set (in gray) and the value of its support function for
some directions d ∈ B

n. It should be clear from Property 1 and Figure 1 that it
holds that, for a given direction set Δ ⊆ B

n, S ⊆ ⋂
d∈Δ{x ∈ R

n|〈x, d〉 ≤ δS(d)}.
Note that ifΔ is a finite set, then SΔ =

⋂
d∈Δ{x ∈ R

n|〈x, d〉 ≤ δS(d)} is a convex
polyhedron [11, Def. A.4.2.5]. So, the restriction of a support function of a set S
over a finite domain Δ defines a convex polyhedron that over-approximates S.
The faces of this polyhedron have a pre-defined shape: they are orthogonal to
the chosen directions d ∈ Δ. This is the basic idea behind our abstract domain
based on support functions, see Section 3.

Support function computation. In the rest of this section, we show how the
support function of a convex set can be computed efficiently in some cases.
Obviously Definition 1 shows that the value of δS(d) for each d ∈ B

n can be
obtained using a convex optimization problem [2], if an appropriate description
of S is known. Property 2 below shows that we can compute efficiently the
support function of a transformation of S. In this property, we denote by:

– MS for a given matrix M ∈ R
n×m the set MS = {Mx|x ∈ S},

– S⊕S′ given two convex sets S and S′ the Minkowski sum of S and S′ defined
by S ⊕ S′ = {x+ x′ | x ∈ S, x′ ∈ S′},

– λS for λ ∈ R the set λS = {λx |x ∈ S}.
– S ∪ S′ the convex hull of convex sets S and S′ and S ∩ S′ their intersection.

Property 2 ([10, Prop. 3]). Let S, S′ be two convex sets. We have:

1. ∀M ∈ R
n×m, δMS(d) = δS(M

Td).
2. ∀λ ≥ 0, δλS(d) = λδS(d).
3. δS∪S′(d) = max(δS(d), δS′ (d)).
4. δS∩S′(d) ≤ min(δS(d), δS′(d)).
5. δS⊕S′(d) = δS(d) + δS′(d).

Note that all relations are exact, except for the computation of the support
function of the intersection for which we only have an over-approximation.

Another important case for which we can efficiently compute the support
function of a convex set S is when S is a convex polyhedron. Then, the convex
optimization problem of Definition 1 becomes a linear programming problem

158 Y. Seladji and O. Bouissou

r1

r2p1p2

p3

p4

d1

d2

Fig. 2. Support function of a convex polyhedron. In direction d1 the supremum is
realized by a generator, in direction d2 it is unbounded.

for which we have efficient algorithms (although linear programming may be
exponential in the worst case). Moreover, Property 3 below shows that a more
efficient method exists if the polyhedron is described by its generators.

Property 3 ([11, Ex. C.3.4.3]). Let P ⊆ R
n be a convex polyhedra generated

by the set of generators v1, . . . , vk and rays r1, . . . , rl. The support function δP
is defined by:

∀d ∈ B
n, δP(d) =

⎧
⎨

⎩

max
i∈[1,k]

〈vi, d〉 if ∀j ∈ [1, l], 〈rj , d〉 ≤ 0

+∞ otherwise
.

Property 3 shows that for a convex polyhedron P represented by its generator,
the support function δP in a direction d can be computed in linear time. The
condition ∀j ∈ [1, l], 〈rj , d〉 ≤ 0 in Property 3 allows us to efficiently detect when
the polyhedron supremum supx∈P〈x, d〉 is finite or not, as illustrated on Figure 2.

3 Abstract Domain

In this section, we formally define our abstract domain based on support func-
tions: we define both the order theoretic operations and the effect of an affine
and non-linear affectation. Our domain is an abstraction of convex polyhedra
over Rn, where n is the number of variables of the program being analyzed. We
denote by P the abstract domain of convex polyhedra over Rn.

3.1 Lattice Structure

Let Δ = {d1, . . . , dl} be a finite set of directions, i.e. Δ ⊆ B
n. Our abstract

domain P
�
Δ is parametrized by this set Δ and is defined in Definition 2.

Definition 2. Let Δ ⊆ B
n be the set of directions. We define P

�
Δ as the set of

all functions from Δ to R∞, i.e. P�
Δ = Δ → R∞. We denote ⊥Δ (resp. �Δ) the

function such that ∀d ∈ Δ, ⊥Δ(d) = −∞ (resp. �Δ(d) = +∞).

Numerical Abstract Domain Using Support Functions 159

x

y

x

y

Fig. 3. The geometrical representation of γΔ(Ω1) (left) and γΔ(Ω2) (right)

For each Ω ∈ P
�
Δ, we write Ω(d) the value of Ω in direction d ∈ Δ. Intuitively,

Ω is a support function with finite domain.
The abstraction and concretization functions of P�

Δ are given in Definition 3.

Definition 3. Let Δ ⊆ R
n be the set of directions. We define the concretizatiion

function γΔ : P�
Δ → P by:

∀Ω ∈ P
�
Δ, γΔ(Ω) =

⋂
d∈Δ

{x ∈ R
n | 〈x, d〉 ≤ Ω(d)} .

The abstraction function αΔ : P → P
�
Δ is defined by:

∀P ∈ P, αΔ(P) =

⎧⎨
⎩

⊥ if P = ∅
� if P = R

n

λd. δP(d) otherwise
.

Example 1. Let Δ ⊆ R
2 with Δ = {(−3, 5), (1, 3), (−1, 0), (0,−1)}. For the ab-

stract element Ω1 = {3, 4, 3, 2}1. The result of γΔ(Ω1) is given in Figure 3(left).
The right of the Figure 3 is the result of γΔ(Ω2), with Ω2 = {3, 3,+∞, 2}. In this
case, for d3 = (−1, 0), Ω2(d3) = +∞, which means that the resulting polyhedron
is unbounded in the direction d3.

Definition 3 shows that the concretization of an abstract element of P�
Δ is a poly-

hedron defined by the intersection of half-spaces, where each one is characterized
by its normal vector d ∈ Δ and the coefficient Ω(d). The abstraction function
on the other side is the restriction of the support function of the polyhedra on
the set of directions Δ. We next define the order, join and meet of P�

Δ and then
show that (αΔ, γΔ) is a Gallois connection.

Definition 4 (Order structure of P�
Δ). We define the inclusion operation �Δ

as ∀Ω1, Ω2 ∈ P
�
Δ, Ω1 �Δ Ω2 ⇐⇒ γΔ(Ω1) � γΔ(Ω2), where � is the inclusion

on P. The join �Δ and meet �Δ are defined by:

– ∀Ω1, Ω2 ∈ P
�
Δ, Ω1 �Δ Ω2 = λd. max(Ω1(d), Ω2(d));

– ∀Ω1, Ω2 ∈ P
�
Δ, Ω1 �Δ Ω2 = λd. min(Ω1(d), Ω2(d)).

1 We identify P
�
Δ = Δ → R∞ with R

|Δ|
∞ , so that Ω1 = {3, 4, 3, 2} is the function

mapping the first direction to 3, the second to 4,..

160 Y. Seladji and O. Bouissou

Note that the join operation is exact:

∀Ω1, Ω2 ∈ P
�
Δ, γΔ(Ω1 �Δ Ω2) = γΔ(Ω1) � γΔ(Ω2)

while the meet operation is over-approximated:

∀Ω1, Ω2 ∈ P
�
Δ, γΔ(Ω1 �Δ Ω2) ⊇ γΔ(Ω1) � γΔ(Ω2) .

Property 4. The function pair (αΔ, γΔ) form a Galois connection [5] between

P and P
�
Δ.

Proof. See our extended version [17]. �

Note that ∀Ω ∈ P
�
Δ, if Ω = αΔ(P), then P ⊆ γΔ(Ω), and the vertices of the

polyhedron P touch the faces of γΔ(Ω). This is stated in Proposition 5.

Property 5 ([10, Prop. 3]). Let P be a polyhedron and Ω ∈ P
�
Δ such that

Ω = αΔ(P). We have that, P ⊆ γΔ(Ω). This over approximation is tight as the
vertices of P touch the faces of γΔ(Ω).

3.2 Affine Transformations

We now explain how an element Ω ∈ P
�
Δ is modified by an affine transformation

of the form X = AX + b where X is the variable set of the program, A ∈ R
n×n

is a square matrix and b ∈ R
n is a vector. Let thus P0 be a polyhedron and

Ω0 = αΔ(P0) be the initial abstract state. Let also P1 = �X = AX + b�(P0)
be the polyhedron obtained after applying the affine transformation. Our goal is
to compute the best possible abstraction Ω1 of P1, without computing P1. Note
that, using the operation set defined in Section 2, we have that P1 = AP0 ⊕ b.
Thus, using Property 2 we have: ∀d ∈ Δ, δP1(d) = δAP0⊕b(d) = δAP0(d)+δb(d) =
δP0(A

T d) + 〈b, d〉 . So we define Ω1 as:

∀d ∈ Δ, Ω1(d) = δP0(A
Td) + 〈b, d〉. (1)

Note that Ω1 = αΔ(P1), while P1 ⊆ γΔ(Ω1). However, we do not need compute
P1, we only need to evaluate δP0 on directions ATd, which can be done efficiently
if P0 is described using generators, as stated by Proposition 3. Moreover, Propo-
sition 5 ensures that P1 vertices touch γΔ(Ω1) faces. The precision of γΔ(Ω1)
depends strongly on the chosenΔ: more directions we have more precise Ω1 is.

3.3 Non-linear Transformations

We now deal with non-linear transformation, i.e. we want to apply the trans-
formation X = f(X), where f : Rn → R

n is non-linear. We use the notion of
linearisation presented in [13] to abstract the transformation into an interval lin-
ear form. Interval linear forms are given by i+

∑n
k=1 ikXk, where ∀k ∈ [1, n], Xk

is a program variable and i, ik ∈ IR. For example, the expression X1 ×X2 can
be transformed into i1 ×X2 where i1 is the interval concretization of X1. After

Numerical Abstract Domain Using Support Functions 161

the linearisation process, the transformation X = f(X) can be abstracted by
X = AX + b, where A ∈ I

n×n
R

and b ∈ I
n
R
.

As for Section 3.2, we want to compute Ω ∈ P
�
Δ, which is an abstraction of

P1 = �X = AX + b�(P0) (the semantics of interval linear forms is given in [13]).
We cannot use Equation 1 directly because ∀d ∈ Δ, AT d is an interval vector
and δP0 is only defined on R

n. To deal with that, we introduce the notion of
interval based support function. In the rest of this article, ∀i ∈ IR, i represents
the upper bound of i and i its lower bound.

Let P be a polyhedron represented by its generators v1, . . . , vk and rays
r1, . . . , rl. We define the function σP by:

σP :

⎧⎪⎪⎨
⎪⎪⎩

I
n
R
→ R

d
→
⎧⎨
⎩

max
i∈[1,k]

〈vi,d〉 if ∀j ∈ [1, l], 〈rj,d〉∩]0,+∞[= ∅
+∞ otherwise

.

In the same way, we define ιP by:

ιP :

{
I
n
R
→ R

d
→ maxi∈[1,k] 〈vi,d〉 .

Property 6 shows that δP, the support function of P, can be approximated using
ιP and σP. We call this approximation interval based support function.

Property 6 (Interval based support function). Let P be a polyhedron and
δP be its support function. Let d ∈ I

n
R
be an interval vector, representing a set of

possible directions. We have that:

∀d ∈ d, ιP(d) ≤ δP(d) ≤ σP(d)

Proof. On the one hand, we have that ∃v ∈ P s.t. ιP(d) = 〈v,d〉 = b. So,

(∀d ∈ d), δP(d) ≥ 〈v, d〉 ≥ b. (2)

On the other hand, we have that ∃v ∈ P s.t. σP(d) = 〈v,d〉 = b′. So,

∀d ∈ d, ∃vi ∈ P s.t. δP(d) = 〈vi, d〉 ≤ 〈vi,d〉 ≤ b′. (3)

Thus from Equations 2 and 3, we have that: b ≤ δP(d) ≤ b′. �

Let us now define Ω, abstraction of P1. We know that, for all d ∈ Δ and for
all d′ ∈ ATd, δP0(d

′) ≤ σP0(A
Td). We have, ∀d ∈ Δ, δP1(d) = δAP0⊕b(d), so

δP1(d) ≤ σAP0(d) + 〈b, d〉. So we define Ω as

∀d ∈ Δ, Ω(d) = σP0(A
Td) + 〈b, d〉 . (4)

Note that in this case, Ω is an over-approximation of δP1 , i.e. αΔ(P1) �Δ Ω. In
the same way, we can use ιP to under approximate δP1 , i.e. we have that:

∀d ∈ Δ, δP(d) ≥ ιP0(A
T d) + 〈b, d〉 .

This under-approximation can be combined with the over-approximation to eval-
uate the precision of Ω.

162 Y. Seladji and O. Bouissou

4 Fixpoint Computation for Affine Loops

In this section, we present a specialization of Kleene algorithm to compute the
fixpoint of an affine loop using our domain P

�
Δ. We consider loops of the form:

while(C)

X=AX+b;

We suppose that A is a real matrix, b may be a set of values, given as a polyhedra
Pb, and C is a guard. Such loops include for example linear filters in which Pb

represents the possible values of the new input at each loop iteration. We assume
that the program variables lie initially in the polyhedra P0.

4.1 Loops without Guards

We first consider the case where the loop is not conditioned by a guard, i.e.
C is true. We want to compute an over-approximation in P

�
Δ of P∞, the loop

invariant defined as the least fixpoint of the equation P = P0�
(
AP+Pb

)
. Usually,

P∞ is defined as the limit of the Kleene iterates given by Pi = Pi−1�(APi−1+Pb).
Property 7 defines the abstract element Ωi at each iteration and shows that

for all d ∈ Δ,Ωi(d) = δPi(d). Thus, we have that Ωi = αΔ(Pi), which means

that Ωi is the best abstraction of Pi in P�
Δ.

Property 7. Let Pi be the polyhedron obtained in the ith iteration using poly-
hedra abstract domain, then

δPi(d) = Ωi(d) = max
(
δP0(d), max

j∈[1,i]

(
δP0(A

Tjd) +

j∑

k=1

δPb
(AT (k−1)d)

))
(5)

Proof. The proof runs by induction on i. We begin by i = 1. ∀d ∈ Δ, we have,
using Property 2, that δP1(d) = δP0∪AP0+Pb

(d) = max
(
δP0(d), δP0(A

Td) + δPb
(d)

)
.

Let now i ≥ 1 such that Equation (5) is true.
Then, we have, ∀d ∈ Δ: δPi+1 = δPi�(APi+Pb)(d) = max

(
δPi(d), δPi(A

Td) + δPb
(d)

)
.

Now, we have that:

δPi(A
T d) = max

(
δP0(A

Td), max
j∈[1,i]

(
δP0(A

TjATd) +

j∑

k=1

δPb
(AT (k−1)ATd)

))

= max
(
δP0(A

Td), max
j∈[1,i]

(
δP0(A

T (j+1)d) +

j∑

k=1

δPb
(ATkd)

))

= max
(
δP0(A

Td), max
j∈[2,i+1]

(
δP0(A

T (j)d) +

j∑

k=2

δPb
(AT (k−1)d)

))

We can deduce with a case analysis that:

δPi(A
Td) + δPb

(d) = max
j∈[1,i+1]

(
δP0(A

Tjd) +

j∑

k=1

δPb
(AT (k−1)d)

)

From that we deduce Equation 5 for i+ 1. �

Numerical Abstract Domain Using Support Functions 163

Algorithm 1. Kleene Algorithm using support function

Input: Δ ⊂ R
n, set of l directions

Input: P0, The initial polyhedron
Input: A ∈ R

n×n, b ∈ R
n

1: D = Δ
2: Ω = δP0(Δ)
3: repeat
4: Ω′ = Ω
5: for all i = 0, . . . , (l − 1) do
6: Θ[i] = Θ[i] + δPb

(D[i])
7: D[i] = ATD[i]
8: Υ [i] = δP0(D[i]) +Θ[i]
9: Ω[i] = max(Ω[i], Υ [i])
10: end for
11: until Ω
Δ Ω′

Property 7 defines a normal form of Ωi i.e. Ωi = αΔ(γΔ(Ωi)). From that, we
have that �Δ can be performed in linear time, such that:

∀Ω1, Ω2 ∈ P
�
Δ, Ω1 �Δ Ω2 ⇐⇒ ∀d ∈ Δ,Ω1(d) ≤ Ω2(d).

In Algorithm 1, the computation of the abstract element Ω depends on the
computation of δP0 , Θ and D. We know that P0 represents the polyhedron of
the initial condition of the analysed program, so its representation, in general,
is quite simple. In particular, the number of its generators is usually small. This
means that the computation of δP0 does not require LP solvers. So, what changes
in each iteration is the direction set in which δP0 is computed. Thus, Algorithm 1
has a polynomial complexity in the number of iteration and linear in the number
of directions in Δ. In addition, its result is as accurate as possible: at each iterate,
we have that Ωi = αΔ(Pi). So Ω∞ = αΔ(P∞), with Ω∞ is the fixpoint obtained
in our analysis and P∞ is the one obtained using polyhedra domain. Note that,
γΔ(Ω∞) can have redundant constraints i.e. ∃d ∈ Δ s.t. γΔ\{d}(Ω∞) = γΔ(Ω∞).
However, γΔ(Ω∞) can be used for another analysis, so a redundancy removal
method is needed. The one defined on polyhedra domain is time consuming,
so we want to develop an efficient redundancy removal method based on our
domain, which is the subject of our ongoing work.

Remark 1. 1) Like in the standard Kleene algorithm, Algorithm 1 does not
guarantee the termination of the analysis. To handle this problem, we can use
a widening operator on support functions which is very easy to define: if the
support function in a given direction increases, we set it to +∞. Of course using
threshold [12] can help to limit this over-approximation. Another solution to
speed-up the convergence is the use of the acceleration method presented in our
previous work [16]. For that, we construct for each d ∈ Δ the numerical sequence
Sd = (Ωi(d))i∈N, and then use acceleration methods to compute its limit.

2) Our results are more precise than those obtained using template domain [4]
with the chosen direction set Δ as a TCM [16, Sect. 5.1]. The difference is

164 Y. Seladji and O. Bouissou

that, in P
�
Δ the analysis is done with the precision of the polyhedra domain and

the over-approximation is done only, at the end, in the concretization function.
When with template domain, all the analysis is done in a less expressive domain.

4.2 Loops with Linear Guard

We now consider the case when the loop has a guard of the form 〈X, c〉 ≤ l, with
c ∈ R

n and l ∈ R. Let H be the half space H = {x ∈ R
n|〈x, c〉 ≤ l}. In this case,

the polyhedra Pi is defined as: Pi+1 = Pi ∪
(
(AiPi ⊕ Pb) ∩H

)
. ∀d ∈ Δ, we have

δPi+1(d) = δPi∪((Ai+1Pi⊕Pb)∩H)(d) so:

δPi+1(d) ≤ max(δPi(d),min(δPi(A
T d) + δPb

(d), δH(d)))

Note that δH(d) = l if d = λc for some λ ≥ 0 and δH(d) = +∞ otherwise. We
thus distinguish two cases: d = λc with (λ ≥ 0) or � ∃λ ≥ 0, d = λc. Let us
thus put Δ1 = {d ∈ Δ|d = λc, λ ≥ 0}, and Δ2 = Δ \ Δ1, if Δ1 is empty we
put Δ1 = {c}. Note that Δ is defined such that its elements are not two per

two parallel i.e. ∀d ∈ Δ, �d
′ ∈ Δ\{d} : d = λ.d

′
(λ ≥ 0). So, the cardinality of

Δ1 is 1. For the fixpoint computation, we separate the two cases. If d ∈ Δ2, as
δH(d) = +∞, we have the same relation between δPi+1 and δPi as for the case
of loops without guards, so Ωi(d) defined as in Property 7.
Now, for d ∈ Δ1, we put Ωi(d) = max(δγΔ(Ωi−1)(d),min(δγΔ(Ωi−1)(A

Td)+δPb
(d), l))

which is an over approximation of δPi(d):

δPi(d) = δPi−1∪((APi−1⊕Pb)∩H)(d)

≤ max(δPi−1(d),min(δPi−1(A
Td) + δPb

(d), δH(d)))

≤ max(δγΔ(Ωi−1)(d),min(δγΔ(Ωi−1)(A
T d) + δPb

(d), l))

≤ Ωi(d)

To compute Ωi(d), we use δγΔ(Ωi−1)(d) and δγΔ(Ωi−1)(A
T d), which are obtained

using linear programming. This does not affect a lot our method efficiency, be-
cause it is applied at most for one direction in Δ. So, in the case of affine loops
with linear guard 〈X, c〉 ≤ l, we use Algorithm 1 but distinguish when d ∈ Δ1

from d ∈ Δ2.Then, we have that αΔ(Pi) �Δ Ωi such that the Pi vertices touch
γΔ(Ωi) faces, except for the face of γΔ(Ωi) whose normal vector belongs to Δ1.

5 Fixpoint Computation for Non-linear Loops

Let us now handle the case of non-linear loop, i.e. we consider a loop whose body
is X = f(X), f being a (possibly) non-linear function of the program variables.
We again compute over-approximations of Pi, the Kleene algorithm iterates over
the polyhedra domain. Basically, we apply, at each iteration, a linearisation of
the function f and then use the interval based support function to compute Ωi.

Let us denote AiX+b = L(f,Ωi) the interval linear form produced by lineari-
sation of f when the value of variables X are in γΔ(Ωi). Note that this means
that the matrix A of Algorithm 1 is now an interval matrix which may change

Numerical Abstract Domain Using Support Functions 165

from one iteration to the other. We compute Ai using techniques from [13],
which requires that we have bounds on variables Xk ∈ X . Such bounds are very
easy to get in our case: we assume that in Δ we added each direction ±Xk, for
every variable Xk. Then, the bounds on Xk are given by Ωi(Xk) and Ωi(−Xk)

2.
To compute Ωi+1 from Ωi, we will thus: first compute Ai using the linearisa-

tion process, and then apply the interval linear transformation AiX + b to Ωi.
Using functions σ and ι defined in Section 3.3, we can have bounds for Ωi+1.
In the polyhedra abstract domain, let Pi be the polyhedron obtained in the ith

Kleene iteration. Property 8 below shows that we can compute bounds on δPi .

Property 8. Let d ∈ Δ. For all i ∈ N, we define di
� =

∏i
k=1 A

T
k d and :

Ψi =
i−1∑

k=1

σPb
(

i∏

q=k+1

AT
q d) + δPb

(d), Ψi =
i−1∑

k=1

ιPb
(

i∏

q=k+1

AT
q d) + δPb

(d) .

We have that:
⎧
⎨

⎩

δPi(d) ≥ max
(
δP0(d),maxj∈[1,i]

(
ιP0(dj

�) + Ψj

))

δPi(d) ≤ max
(
δP0(d),maxj∈[1,i]

(
σP0(dj

�) + Ψj

))

Proof. We do not give the whole proof as it is technical and long, but rather
show how it runs for i = 1, 2. The general case is then a generalization of this.

Case i = 1. We know that P1 = P0 �A1P0 + Pb. This means that

P1 = P0 �
(⊔
A1∈A1

A1P0 + Pb

)
.

The property of σ proves that ∀A1 ∈ A1, we have δA1P1(d) ≤ σP0(A
T
1 d), and

equivalently for ι. This proves the property for i = 1.

Case i = 2. We notice that P2 = P0 � (A1P0 + Pb) � (A2A1P0 +A2Pb + Pb).
And then, for all d ∈ Δ:

∀A1 ∈ A1, A2 ∈ A2, δA2A1P0+A2Pb
(d) = δP0(A

T
1 A

T
2 d) + δPb

(AT
2 d)

≤ σP0(A1
TA2

Td) + σPb
(A2

T d)

We equivalently get the lower bound using the ι function, and using the fact
that δS∪S′(d) = max(δS(d), δS′(d)), we get the result for i = 2. �

Let Δ ⊆ R
n be a set of directions. Property 8 allows us to define the abstract

element Ωi ∈ P�
Δ as given in Definition 5.

Definition 5. Let di
� and Ψi be defined as in Property 8. The abstract element

Ωi ∈ P�
Δ obtained in the ith Kleene iteration is given by:

∀d ∈ Δ, Ωi(d) = max
(
δP0(d), max

j∈[1,i]

(
σP0(d

�
j) + Ψj

))

2 We let Xk denote the vector of Bn with a 1 in the dimension corresponding to Xk.

166 Y. Seladji and O. Bouissou

We have that Pi ⊆ γΔ(Ωi), so Ωi of Definition 5 is sound. Note that we are no-
longer guaranteed to have the best abstraction, i.e. we only have αΔ(Pi) �Δ Ωi

(compared to the linear case in which we had an equality). We can also compute
an under-approximation of the fixpoint using the lower bound of Property 8.
We can modify Algorithm 1 for non-linear loops. Due to lack of place, we can
not present this new algorithm (see the extended version [17]). We here explain
the main differences with Algorithm 1 and why the complexity is increased. The
main difference is that we now need to keep track of the list of all matrices∏i

k=1 Ak and
∏i

q=k+1 Aq. This list, called θ in the algorithm, is used as follows:

1. we extend it at the beginning of each iteration by computing the linearisation
matrix Ai+1 and multiplying each term of the list by Ai+1.

2. we iterate on it to compute Ψ and thus the upper bound of Ω(d).

The θ list length at iteration i is i, so we must make i call to σP0 or σPb
at

iteration i, which makes the complexity of this algorithm quadratic in the number
of generators of P0 and Pb, while the algorithm for the linear case is linear.

Now let us extend this method to loops with non-linear guard. Again, we
linearize at each iteration the guard and thus get a guard of the form 〈X,Ci〉 ≤ L,
where Ci ∈ I

n
R
and L ∈ IR. In this case, Ci changes in each iteration. To compute

Ωi ∈ P�
Δ, we distinguish two cases, ∀d ∈ Δ:

– If d /∈ Ci then Property 8 is used to compute Ωi(d).
– If d ∈ Ci, Ωi(d) = max(δγΔ(Ωi−1)(d),min(σγΔ(Ωi−1)(A

T
i d) + 〈b, d〉, L)) .

Here more than one direction in each iteration may belong to Ci, so we may
need to perform many calls to a linear programming solver to compute Ωi.

Remark 2. To analyse programs with floating point numbers, we can use the
same technique as in the octagon domain with floating point [13]. The idea is to
use the interval analysis and so we can use the interval based support function.

6 Experimentation

To show the efficiency of our abstract domain, we use it to analyze different
numerical programs. The implementation is done using the PPL3. The experi-
mentation was done on a computer with 4 2.0GHz processors and 8Gb of RAM.
The linear programs that we analyze are digital filters 4 of order 2 to 10, to show
the impact of the number of variables on the efficiency of the analysis. These
filters are taken from the tests of Filter Verification Framework [7]. Note that
Kleene iteration using the polyhedra abstract domain without widening fails
to analyze these programs, i.e. the analysis does not terminate. So to compare
our results, we use polyhedra abstract domain with widening with delay (15
iterations). The table of Figure 4 shows that our domain, using the octagonal

3 Parma Polyhedra Library : http://bugseng.com/products/ppl/
4 Programs are at http://www.lix.polytechnique.fr/~bouissou/filters/

http://bugseng.com/products/ppl/
http://www.lix.polytechnique.fr/~bouissou/filters/

Numerical Abstract Domain Using Support Functions 167

Program Polyhedra P
�
Δ

Name |V | t(s) Bounded t(s) Iteration |yn|
lp iir 9600 2 6 0.12 No 0.023 47 19.16
lp iir 9600 4 10 TO - 0.186 100 2.96
lp iir 9600 4 elliptic 10 TO - 0.471 276 3.74
lp iir 9600 6 elliptic 14 TO - 3.636 702 4.89
bs iir 9600 12000 10 chebyshev 22 TO - 53.986 2391 7.93
non linear ODE 3 TO - 0.059 13 8.047

Fig. 4. Results of analysis obtained using different methods

begin

while (0<=10) do

xn = 0.5 *x - y - 2.5;

yn = 0.9 *y + 10;

x = xn; y = yn;

done;

end
8 directions

200 directions

Fig. 5. A simple program (left) and the obtained post-fixpoints (right)

direction set and without widening, allows us to obtain a good fixpoint quickly,
when the analysis using polyhedra abstract domain returns � in the best cases.
The column |yn| is the width of the bounding box for the output of the filter, it
is computed as |yn| = |Ω(yn)−Ω(−yn)|, where Ω is the obtained post-fixpoint.
|V | is the number of variables, columns labeled t are the execution time (in sec-
onds), the value TO meaning that the execution took more than 10 minutes,
the column “Bounded” tells whether the polyhedra analysis could compute a
bounded post-fixpoint. For most programs the analysis with widening did not
terminate before the time-out. Note that increasing the delay did not help in
getting a bounded fixpoint for the polyhedra domain. Note also that we did
not use thresholds for the widening because our programs contain infinite loops,
which means without guard, so it is hard to define relevant thresholds statically.
This table thus shows the efficiency of our algorithm for linear loops. Remember
that the computed post-fixpoint is also precise: it is the abstraction, in P

�
Δ, of

the least fixpoint obtained with polyhedra domain.
For the experimentation, we took also a non-linear program, which represents

the Euler scheme to solve a non-linear ODE given by the formulas:

x1 = x1 + dt× (−(1 + γ × x2
2)× x1)

x2 = x2 + dt× (−0.5× x2 × (1− γ × x2
1) + 2× x3)

x3 = x3 + dt× (−(1− γ × x1)× 2x2 − 0.5× x3)

where dt = 0.01, γ = 0.1 and the initial variables values are in [−2, 2]. Its analysis
using polyhedra5 could not give a result in a reasonable time.

5 Using INTERPROC analyser
http://pop-art.inrialpes.fr/interproc/interprocwebf.cgi

http://pop-art.inrialpes.fr/interproc/interprocwebf.cgi

168 Y. Seladji and O. Bouissou

We know that the precision of our analysis result depends strongly on the
chosen direction set. To show that, we analyse the program given in the left of
Figure 5 using P

�
Δ1

and P
�
Δ2

, s.t. Δ1 and Δ2 represent, respectively, set of 8
and 200 random directions. We display on Figure 5 (right) our analysis result
(in white) and the polyhedron obtained using Kleene iteration on the polyhedra
domain (filled in gray). Note that, the polyhedron is obtained after 200 iterations
and is not the least fixpoint in the polyhedra domain, which is contained in the
white polyhedron obtained with our method. Execution time using Δ1 is 0.046s
and 3.15s usingΔ2, which shows our method scalability in the directions number.

Finally, as mentionned in Section 4, our algorithm combines easily with widen-
ing: we just set Ωi(d) = +∞ if Ωi(d) > Ωi−1(d). Using this widening, we can
compute post-fixpoints of unbounded programs. For example, the simple trans-
lation x = x + 1 ∧ y = y + 1 starting from x ∈ [0, 1] and y ∈ [0, 1], we could
compute the fixpoint x ≥ 0 ∧ y ≥ 0 ∧−y ≥ x− 1 ∧ y ≤ x+ 1 in 3 iterations.

7 Conclusion

In this article, we showed a new abstract domain that uses support functions to
represent convex sets. Depending on the chosen set of directions, our domain P�

Δ

holds an over-approximation of the support functions of the set in each direction.
Clearly, both the definition and the order defined in our domain are the same
as for the template abstract domain. However, the linear assignments are very
different as we can always rely on the support function of the initial polyhedron
which is easily computed. Using this technique, we showed that our domain is
very precise: for a loop, the ith iterate is the best abstraction in P�

Δ of the ith

iterate one would have computed using the polyhedra domain.
As already stated, the precision of our domain depends on the relevancy of

the used direction set. Our analysis, in most cases, is not time consuming, so
we can get a precise post-fixpoint using a large number N of random directions.
The problem is that the resulting polyhedron contains a lot of constraints, and
is thus hard to be, eventually, re-used as an entry of another analysis. We plan
to develop a minimization method, that allows us to keep only K ≤ N relevant
directions. For that, we are looking to apply pruning methods developed in [8],
which allow to keep K linear functions from a set of N templates in order to best
approximate the value function of an optimal control problem. We believe that
the use of support functions to represent a polyhedron will allow us to use efficient
methods to compute the importance of one constraint of the polyhedron, which
is an apriori to the algorithm of [8]. Clearly, the choice of random directions is
not optimal, so we are also interested in adapting the techniques of parametrized
templates used in [4] to define the set of directions we use. In this way, we believe
we could change it during the analysis and thus gain in precision. These ideas
are the subject of our ongoing works.

Acknowledgement. We want to thank A. Adjé, E. Goubault and the anony-
mous reviewers for their helpful comments, and precious advices.

Numerical Abstract Domain Using Support Functions 169

References

1. Allamigeon, X., Gaubert, S., Goubault, É.: Inferring Min and Max Invariants Using
Max-plus Polyhedra. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079,
pp. 189–204. Springer, Heidelberg (2008)

2. Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization.
Athena Scientific Series in Optimization and Neural Computation. Athena Scien-
tific (2003)

3. Chen, L., Miné, A., Wang, J., Cousot, P.: Interval polyhedra: An abstract domain
to infer interval linear relationships. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS,
vol. 5673, pp. 309–325. Springer, Heidelberg (2009)

4. Colón, M.A., Sankaranarayanan, S.: Generalizing the template polyhedral domain.
In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 176–195. Springer, Heidel-
berg (2011)

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages
(POPL 1977), pp. 238–252. ACM Press (1977)

6. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Conference Record of the Fifth ACM Symposium on Principles
of Programming Languages (POPL 1978), pp. 84–97. ACM Press (1978)

7. Cox, A., Sankaranarayanan, S., Chang, B.-Y.E.: A bit too precise? Bounded verifi-
cation of quantized digital filters. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 33–47. Springer, Heidelberg (2012)

8. Gaubert, S., McEneaney, W.M., Qu, Z.: Curse of dimensionality reduction in max-
plus based approximation methods: Theoretical estimates and improved pruning
algorithms. In: CDC-ECE (2011)

9. Goubault, E., Putot, S.: Perturbed affine arithmetic for invariant computation in
numerical program analysis. CoRR, abs/0807.2961 (2008)

10. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540–554. Springer, Heidelberg (2009)

11. Hiriart-Urrut, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer
(2004)

12. Lakhdar-Chaouch, L., Jeannet, B., Girault, A.: Widening with thresholds for pro-
grams with complex control graphs. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA
2011. LNCS, vol. 6996, pp. 492–502. Springer, Heidelberg (2011)

13. Miné, A.: Weakly relational numerical abstract domains. PhD thesis, École Poly-
technique (2004), http://www.di.ens.fr/~mine/these/these-color.pdf

14. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
19 (2006)

15. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear sys-
tems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

16. Seladji, Y., Bouissou, O.: Fixpoint computation in the polyhedra abstract domain
using convex and numerical analysis tools. In: Giacobazzi, R., Berdine, J., Mas-
troeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 149–168. Springer, Heidelberg
(2013)

17. Seladji, Y., Bouissou, O.: Numerical abstract domain using support functions
(extended version) (2013), http://www.lix.polytechnique.fr/~bouissou/pdf/

publications/NFM13 extended.pdf

http://www.di.ens.fr/~mine/these/these-color.pdf
http://www.lix.polytechnique.fr/~bouissou/pdf/publications/NFM13_extended.pdf
http://www.lix.polytechnique.fr/~bouissou/pdf/publications/NFM13_extended.pdf

	Numerical Abstract Domain Using Support
Functions
	1 Introduction
	2 Support Function
	3 Abstract Domain
	3.1 Lattice Structure
	3.2 Affine Transformations
	3.3 Non-linear Transformations

	4 Fixpoint Computation for Affine Loops
	4.1 Loops without Guards
	4.2 Loops with Linear Guard

	5 Fixpoint Computation for Non-linear Loops
	6 Experimentation
	7 Conclusion
	References

