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Preface

The NASA Formal Methods Symposium is a forum for theoreticians and prac-
titioners from academia, industry, and government, with the goals of identifying
challenges and providing solutions to achieving assurance in mission- and safety-
critical systems. Within NASA, for example, such systems include autonomous
robots, separation assurance algorithms for aircraft, next-generation air trans-
portation (NextGen), and autonomous rendezvous and docking for spacecraft.
Moreover, emerging paradigms such as code generation and safety cases are
bringing with them new challenges and opportunities. The focus of the sympo-
sium is on formal techniques, their theory, current capabilities and limitations, as
well as their application to aerospace, robotics, and other safety-critical systems.

The NASA Formal Methods Symposium is an annual event that was created
to highlight the state of the art in formal methods, both in theory and practice.
This volume contains the papers presented at NFM 2013, the 5th NASA Formal
Methods Symposium held during May 14–16, 2013, in Moffett Field. Previous
symposia were held in Norfolk, VA (LNCS 7226), Pasadena, CA (LNCS 6617),
Washington, DC, and Moffett Field, CA. There were two categories of papers
solicited in the call for papers of the symposium. The first category consists of
regular papers describing fully developed work and complete results or case stud-
ies, and the second category consists of short papers describing tools, experience
reports, and work in progress or preliminary results. The NFM 2013 Symposium
received 99 submissions: 75 regular papers and 24 short papers. Each submission
underwent a rigorous review process and received at least three reviews; most
submissions, however, received four reviews. After a lengthy discussion phase, a
total of 37 papers were accepted to be included in the proceedings out of which
28 are regular papers and 9 are short papers.

In addition to the refereed papers, the symposium features three keynotes
and two invited talks. The keynotes were presented by Kenneth McMillan from
Microsoft Research on “The Importance of Generalization in Automated Proof,”
John Rushby from SRI International on “The Challenge of High-Assurance Soft-
ware,” and Alex Aiken from Stanford University on “Using Learning Techniques
in Invariant Inference.” In addition to keynotes, the symposium featured two
invited talks by Rajeev Joshi from the Jet Propulsion Laboratory on “Managing
Data for Curiosity, Fun and Profit” and Michael DeWalt from FAA on “Certifi-
cation Challenges when Using Formal Methods, Including Needs and Issues.”

The Organizing Committee would like to thank NASA for sponsoring the
symposium, the members of the NFM Steering Committee for providing valuable
advice and support, and the members of the Program Committee and the ex-
ternal reviewers for their dedication in reviewing submissions and helping shape
a strong program for NFM 2013. We are grateful to the authors for choosing to
submit their work to NFM 2013 and the invited speakers for sharing their work
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and insights. Special thanks go to Lester Barrows whose picture of the shuttle
flying over Hangar One was used in the NFM publicity poster. Finally, organiz-
ing this symposium and putting together the proceedings was greatly facilitated
by the use of EasyChair.

March 2013 Guillaume Brat
Neha Rungta
Arnaud Venet
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The Challenge of High-Assurance Software�

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue

Menlo Park, CA 94025 USA

It is difficult to build complex systems that (almost) never go (badly) wrong,
yet this is what we expect of airplanes and pacemakers and the phone system.
In essence, we have to anticipate everything that could fail or go wrong, develop
countermeasures, and then provide compelling evidence that we have done all
this correctly.

I outline some of the intellectual challenges in construction of suitable evi-
dence, particularly as applied to software. I introduce the idea of “possibly per-
fect” software and its associated“probability of perfection”and describe how this
relates to correctness and reliability. I sketch some approaches to estimating a
probability of perfection and touch on alternative proposals such as those based
on “eliminative induction.”

I then describe epistemic and logic uncertainties in high-assurance software
and speculate on the relation between these and the notion of resilience.

Much of this material is based on joint work with Bev Littlewood and others
at City University UK, some of which is described a recent paper [1].

Reference

1. Littlewood, B., Rushby, J.: Reasoning about the reliability of diverse two-channel
systems in which one channel is “possibly perfect”. IEEE Transactions on Software
Engineering 38, 1178–1194 (2012)

* This work was supported by NASA contract NNA10DE79C and by DARPA under
contract FA8750-12-C-0284 with AFRL. The content is solely the responsibility of
the author and does not necessarily represent the official views of NASA or DARPA.



Using Learning Techniques in Invariant Inference

Alex Aiken

Stanford University

Arguably the hardest problem in automatic program verification is designing
appropriate techniques for discovering loop invariants (or, more generally, recur-
sive procedures). Certainly, if invariants are known, the rest of the verification
problem becomes easier. This talk presents a family of invariant inference tech-
niques based on using test cases to generate an underapproximation of program
behavior and then using machine learning algorithms to generalize the underap-
proximation to an invariant. These techniques are simpler, much more efficient,
and appear to be more robust than previous approaches to the problem. If time
permits, some open problems will also be discussed.



The Importance of Generalization

in Automated Proof

Kenneth L. McMillan1 and Aws Albarghouthi2

1Microsoft Research
2University of Toronto

Generalization from cases is a widely used strategy in automated deduction. That
is, in proving a theorem, we consider a variety of special cases. From the proof of
a special case, we derive a fact that covers this case, and hopefully a large space
of additional cases. The canonical example of this approach is conflict learning
in a Boolean satisfiability (SAT) solver. In such a solver, we select a special case
by deciding the values of certain Boolean variables. If we obtain a refutation of
this case using a simple proof system called unit resolution, then we derive a
new fact from this proof (a conflict clause) that rules out our particular set of
decisions. This generalization can be viewed as a logical interpolant derived from
the proof. Many other types of provers, including SAT module theories (SMT)
solvers and model checkers for hardware and software, use similar strategies to
focus deduction on relevant facts.

The difficulty with generalization is that there are so many possible gener-
alizations we can make of any given case. Different proofs and proof systems
will produce different generalizations, and many can typically be derived from
the same proof. A relevant generalization may result in rapid convergence of the
overall proof, while an irrelevant one may lead to explosion of the proof search,
or even divergence (for example, in the case of inductive proofs).

Some weak heuristics have emerged to aid in this decision. For example, in
a SAT solver, one seeks a generalization that is locally useful in guiding the
model search (the selection of the next case). In other problems (such as SMT),
we prefer stronger to weaker deductions. In inductive proofs (for example in
model checkers) we may prefer simpler generalizations as more likely to avoid a
divergence of inductive hypotheses.

These tactics suffer from a common weakness, however. They try to generalize
from a single case, a highly under-constrained problem. A less myopic approach
would be to revise one’s generalizations in consideration of additional cases, as
one would do in empirical reasoning. As additional cases are encountered, we
might search for the simplest deduction that covers all or a large subset of the
cases. A requirement of simplicity can force us to discover the underlying trend
or pattern in the cases (that is, to avoid “over-fitting” the data).

Does the benefit of reconsidering past generalizations outweigh the cost? We
will consider a simple approach that can infer common generalizations of multiple
cases in linear arithmetic. This provides a means of inferring inductive invariants
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of numeric programs that is more robust than existing techniques. Moreover,
there are problems on which modern SMT solvers suffer from an explosion of
cases due to a failure to generalize effectively. On such problems, a structured
approach that clusters similar cases can produce exponential speed-up.

The idea of generalizing from the proof of a single case may seem an extreme
point of view, yet most modern approaches to decision problems and model
checking problem rely on it in some way. Stepping back from this position, we
might ask what can be done to help our reasoning tools see the bigger picture,
what heuristics are needed, and what the costs and benefits might be.



Managing Data for Curiosity, Fun and Profit

Rajeev Joshi

Jet Propulsion Laboratory,
California Institute of Technology,

Pasadena, CA
rajeev.joshi@jpl.nasa.gov

Abstract. Since its dramatic landing on Mars on the night of Aug 5,
2012, the Curiosity Rover has been busy exploring Gale crater, looking
for evidence of past habitable environments. To accomplish its ambitious
scientific goal, Curosity is armed with a suite of sophisticated instru-
ments, including cameras capable of 720p high definition stereo video, a
gigawatt laser, a radiation detector, a weather monitoring station, and a
sample delivery system that can drill into rocks and deliver the resulting
powder to instruments that can determine its chemical composition.
As a result, Curiosity is a rover capable of gathering large amounts of
both scientific data (with results of experiments commanded by the sci-
ence team) and engineering data (with critical information about rover
health). This data volume is too large to be sent directly to Earth via Cu-
riosity’s high-gain antenna (whose bandwidth is measured in hundreds of
bits per second). Instead, most of the data acquired by the rover must be
relayed to Earth via two orbiting spacecraft. Curiosity achieves this by
autonomously engaging in “communication windows” with the orbiters,
often by waking itself up in the middle of the night to avail itself of a
passing overflight.
The asynchronous nature of relay communications necessitates on-board
software for reliably storing data captured by multiple scientific experi-
ments, for processing requests from Earth to reprioritize, retransmit and
delete data, and for autonomously selecting, retrieving and packaging
data for orbiters in time for communication windows. These functions
are implemented in rover flight software by a collection of modules called
the data management subsystem, which includes filesystems for volatile
(RAM) and non-volatile (flash) memory, an on-the-fly compression en-
gine, and a mini-database for cataloging and retrieving data.
In this talk, we describe the challenges involved in designing and im-
plementing Curiosity’s data management subsystem, and the important
role played by formal methods in the design and testing of this software.
We also discuss ongoing work on building tools based on formal methods
for analyzing spacecraft telemetry for early anomaly detection during
mission operations.



Certification Challenges When Using Formal

Methods, Including Needs and Issues

Mike DeWalt

Federal Aviation Administration

The application of formal methods to aviation is a promising field. RTCA and
EUROCAE have produced a supplement to DO-178C which provides guidelines
on evaluating projects that implement formal methods. Formal methods require
an extensive use of mathematics and complex tools. Obtaining confidence in
these tools through qualification and reviewing formal methods proposals re-
quires a skill set which has not been incubated within the FAA. This presen-
tation will detail the issues and challenges of using formal methods in a civil
certification environment.
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Session 8: Theorem Proving

Formal Stability Analysis of Optical Resonators . . . . . . . . . . . . . . . . . . . . . . 368
Umair Siddique, Vincent Aravantinos, and Sofiène Tahar

Formal Verification of Nonlinear Inequalities with Taylor Interval
Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Alexey Solovyev and Thomas C. Hales

Verifying a Privacy CA Remote Attestation Protocol . . . . . . . . . . . . . . . . . 398
Brigid Halling and Perry Alexander

Formalization of Infinite Dimension Linear Spaces with Application
to Quantum Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Mohamed Yousri Mahmoud, Vincent Aravantinos, and Sofiène Tahar

Short Papers

Formal Verification of a Parameterized Data Aggregation Protocol . . . . . 428
Sergio Feo-Arenis and Bernd Westphal

OnTrack: An Open Tooling Environment for Railway Verification . . . . . . 435
Phillip James, Matthew Trumble, Helen Treharne,
Markus Roggenbach, and Steve Schneider

Verification of Numerical Programs: From Real Numbers to Floating
Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Alwyn E. Goodloe, César Muñoz, Florent Kirchner, and
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Improved State Space Reductions for LTL

Model Checking of C and C++ Programs�

Petr Ročkai��, Jǐŕı Barnat, and Luboš Brim

Faculty of Informatics, Masaryk University
Brno, Czech Republic

{xrockai,barnat,brim}@fi.muni.cz

Abstract. In this paper, we present substantial improvements in effi-
ciency of explicit-state LTL model checking of C & C++ programs, build-
ing on [2], including improvements to state representation and to state
space reduction techniques. The improved state representation allows to
easily exploit symmetries in heap configurations of the program, espe-
cially in programs with interleaved heap allocations. Finally, we present
a major improvement through a semi-dynamic proviso for partial-order
reduction, based on eager local searches constrained through control-flow
loop detection.

1 Introduction

In [2] we have presented an approach to explicit-state LTL model checking of C
and C++ programs that make use of POSIX thread APIs for shared-memory
parallelism / multi-threading. While the initial implementation already showed
promise, it also had multiple shortcomings. We have presented a reduction tech-
nique (τ -reduction) that allowed us to successfully model-check small examples,
on a scale that would enable model checking of moderately complex unit tests.
Nevertheless, the overall performance was unsatisfactory for day-to-day use, due
to large state spaces and inefficient interpretation.

The basic approach we follow is to use a C or a C++ compiler with an
LLVM-based back-end, such as Clang or GCC/dragonegg to produce, possibly
optimised, LLVM bitcode file [17,18]. Using a modified LLVM interpreter, we
then load the bitcode into our parallel LTL model checker DiVinE [3]. We have
designed a set of traps that let us create and manage threads, atomicity and a
dynamic heap, and on top of these traps, we built a POSIX-compatible thread
API.

One of the key advantages of model checking over more traditional verification
methods is that it will account for arbitrary thread interleaving, a phenomenon
that is very hard to capture in both testing and theorem proving or symbolic

� This work has been partially supported by the Czech Science Foundation grant No.
GAP202/11/0312.

�� Petr Ročkai has been partially supported by Red Hat, Inc. and is a holder of Brno
PhD Talent financial aid provided by Brno City Municipality.

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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model checking. At the same time, unexpected interleavings are a major source
of bugs in multi-threaded programs and thus it is extremely desirable to have
a tool to help with verification of such programs. Finally, the requirement to
deal with an exponential number of interleavings is one of the main problems in
implementing a feasible model checker. In addition to systematic exploration of
thread interleavings, many model checkers include checking for more elaborate
properties than simple safety statements: in case of DiVinE, this entails full
LTL−X specification [4].

In our original approach, the proposed τ -reduction allowed us to somewhat
restrict thread interleaving without impairing the faithfulness of the model check-
ing process, yielding manageable state spaces for small programs or moderate
unit tests. As outlined above, though, this reduction is still not strong enough
to facilitate seamless, practical use of a model checker as an integral part of
programming effort.

In this paper we identify two major causes of state space inflation in parallel
programs and propose more efficient solutions. The first is control flow interleav-
ing, which we discuss in Section 2, the second is memory heap layout, detailed
in Section 3. We also take a closer look at the implementation of the interpreter
and model checker in Section 5, and finally, we evaluate the new implementation
in Section 6, with focus on the reductions described in this paper.

The main contribution of this paper is the combined strength of the newly
suggested state space reductions. Using the proposed methods, model checking
with DiVinE no longer suffers from the very fine-grained nature of LLVM bit-
code. Consequently, regular programming languages, such as C or C++, may
be directly used as the modelling language for the model checker, without a
prohibitive impact on the size of the state space. The net effect is that the
expensive and expert task of manually creating accurate system models can be
skipped, turning model checking into a much more accessible method of software
verification.

2 Control Flow

The graph induced by a single execution of a deterministic program is a linear
sequence of states, with no branching: each state has (at most) one successor.
Each “edge” of this induced graph represents a single instruction and each node
corresponds to a snapshot of the machine state visible to the program (registers
and mapped memory). In a sequential program, this “trace” is identical every
time the program is executed with a given input. Without loss of generality, we
can assume that input (and any interaction with the environment) is part of
the program1 (an assumption which is actually true in many interesting cases,
notably various automated test cases, whether unit, functional or integration).

Generally, a trace that only has single instruction on each edge is more detailed
than is useful. A chain of states can be collapsed if they are not relevant for

1 There are other ways to efficiently deal with open-ended inputs and interactivity,
most notably symbolic methods. We will discuss these in Section 8 on future work.
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analysis, forming a compound edge which represents an arbitrary instruction
block. This technique is known as path compression [24,15].

However, while any single execution may yield a sequential trace, in parallel
programs, the trace may be different every time the program is executed, due
to non-determinism inherent in how instructions are scheduled by individual
CPUs or cores, and a time-sharing, asynchronous nature of the entire system.
This non-determinism is reflected in explicit-state model checkers by introducing
branching into the execution trace (which is called a state space in this context),
thereby encoding all possible interleavings. In any given state, the system makes
a non-deterministic choice on which thread is executed next, creating a single
successor state for each active thread. The number of states in the state space
is exponential in the number of different threads.

While there are cases where different interleavings produce different end re-
sults, there are also many cases where the exact ordering of instructions is ir-
relevant: different interleavings will yield the same end state. Such confluent
executions are redundant and only one of each equivalent set needs to be ex-
plored. This idea is at the heart of a class of techniques known as partial-order
reductions [20].

In a state space (as opposed to a trace), path reduction can only straight-
forwardly apply to trace-like sequences of states, where each state has exactly
one successor. However, such sub-traces do not naturally occur in state spaces
of multi-threaded programs, since almost all states will have multiple successors
caused by interleaving. Nevertheless, when a partial order reduction is applied,
we choose a single execution among a set of many possible, replacing a diamond-
like structure with a trace-like structure. This new trace-like structure is in turn
amenable to path reduction, further reducing the number of intermediate states.

Both these reductions can be approximated statically, and one example of
such an approximation is the τ -reduction [2]. While its static nature makes τ -
reduction extremely simple and easy to implement, it also somewhat limits its
effectiveness. In this paper, we introduce a more efficient, semi-dynamic approx-
imation.

2.1 τ+reduction

A simple way to approximate both partial order reduction and path compression
is to keep a single thread running as long as cycle and observability criteria
are met. In τ -reduction, the observability criterion states that an instruction
is observable iff it affects content of shared memory: this approach is inherited
without change by τ+reduction. The difference lies in the cycle check. In τ -
reduction, any branching (jumping) instruction is treated as possibly closing a
control flow cycle, forcing an intermediate state to be generated. However, if
we defer the cycle check, we can do much better. Especially in optimised code,
branching easily dominates memory access, and the static proviso becomes a
major source of inefficiency. In lieu of a simple static check for a branching
instruction, we can dynamically detect control-flow loops at successor generation
time.
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The control location of a thread is kept using a “program counter”, a 4-byte
integer value that uniquely identifies a specific instruction. Clearly, any actual
loop in the program will traverse a single control location twice – hence, it will
also encounter the same program counter value. With this in mind, we keep a set
of program counter values that we traversed while looking for a successor. Only
when an actual control flow loop closes, we interrupt the execution and generate
a new state. Each time a successor is generated, the visited set is cleared.

While this is still an approximation, since the (unobservable) loop may finish
in finite number of iterations, it is very cheap to compute. Keeping track of full
system configurations – an approach that would achieve a better reduction for
data-dependent loops with no memory access – would be much more computa-
tionally expensive. We reckon that tracking the comparably minuscule program
counter value is a viable compromise.

From the model checking perspective, τ+reduction deals with successor states
and state spaces, replacing diamonds and chains with one-step transitions. This
view is useful for arguing correctness and when thinking in terms of systematic
exploration. However, from the point of view of a single execution trace or from
the point of view of the program being executed, this view is less appropriate.
Therefore, we formulate an alternative, equivalent view of the reduction in terms
of interleaving (also called interruption) points.

We define an interleaving point as a place “in-between” two instructions in the
program text, where a context-switch (rescheduling) of threads (from the point of
view of the program) might happen. When building an unreduced state space,
an interleaving point is inserted between each pair of instructions. This intu-
itively captures what happens in a real CPU, whether a single core time-sharing
multiple threads, or an actual multi-core unit. However, as outlined above, not
all interleavings cause observable differences in behaviour of the program. τ -
reductions then act by removing some of these interleaving points. τ -reduction
simply inserts an interleaving point right before each store and each branching
instruction, statically.

On the other hand, τ+reduction, as a semi-dynamic technique, acts on the
program as it is being executed. First, interleaving points are inserted before
all store instructions, just as with τ -reduction. Then, more are created and
removed on the fly: whenever a thread closes a control flow loop, an interleaving
point is inserted just before the first instruction that would have been repeated.
After the re-scheduling happens, this interleaving point is then dropped again,
since a non-looping execution might pass through it at other times. Apart from
technical requirement of the model checker that each step is finite, these loop-
related interleaving points are intuitively required to avoid delaying other threads
indefinitely.

3 Heap

Most non-trivial programs nowadays use dynamic memory, also called a “heap”.
This memory is allocated on demand using function calls (usually malloc and
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its variants and free) provided by the runtime. The heap allows transparent
re-use of memory that is no longer needed, without the requirement to allocate
and de-allocate in first in / last out order like with the C stack.

We can consider a heap to be an oriented graph, with nodes representing in-
dividual objects and arrows representing pointers. A heap object is a result of
a single allocation, it is internally always contiguous, but there is no guaran-
tee on the actual layout of multiple objects in memory. In addition to pointers
originating inside heap objects, there may be pointers in stack frames and regis-
ters pointing into heap objects (these are known as “root” pointers). While the
exact heap layout is irrelevant with regards to program behaviour (bar pointer
manipulation or indexing bugs), it affects the actual bit-level representation of
a program state.

3.1 Heap Symmetry

This introduces a degree of symmetry into the state space of a program, where
multiple distinct states may only differ in heap layout. Since the behaviour of
the program is not affected by this difference, we obtain multiple mirror copies
of a subset of the state space. This can be extremely wasteful, and is most
pronounced when multiple threads are using the heap (which is a common case).
Whenever allocations can become interleaved, two symmetric successor states
arise, differing only in the ordering of the two heap objects in the physical address
space. It is very desirable to detect and exploit this symmetry to reduce the state
space.

There are two main ways to implement symmetry reduction. One is based on
a modified state comparison function, which detects symmetric situations and
makes any two symmetric states equal. The major downside of this approach
is that it precludes use of hash tables – the structure of choice in explicit-state
model checking. The other option is canonisation: a technique where each state
is transformed to obtain a canonic representative of each symmetry class. This
way, all symmetric states are represented by the same bit vector, and standard
equality and hashing can be used.

On the flip side, detecting symmetric heap configurations is much easier than
constructing a canonic representative. This is especially true for programs with
explicit (manual) memory management. In some programming languages2, the
heap is subject to automatic garbage collection, and while LLVM has optional
garbage collection support, it is not used when compiling C or C++ programs.
If exact collection is used [16], all pointers must be tracked by the runtime, espe-
cially if using a copying (or more generally, moving) collector. If this information
is available, it can be used to implement heap canonisation. In fact, a slightly
modified single-generation copying garbage collector will produce a canonic heap
layout after every collection cycle.

Opposite to languages with automatic memory management, languages like
C and C++ require memory to be explicitly free-d to allow memory re-use

2 Or, more exactly, programs, since garbage collection can be implemented for specific
programs even in languages without intrinsic garbage collection support.
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and avoid resource leaks. However, this also means that the C runtime puts
very little constraint on how pointers can be manipulated, since correct memory
management is the responsibility of the program, not the system. Unfortunately,
this makes it impossible to retrofit garbage collection (and analogically, heap
canonisation) to these languages while retaining full generality. In theory, it
is legal for a C program to save pointers to a file and read them back later
for further use, or to store them bit-flipped in memory or even xor’d together
as in a xor-linked list. Such obscured pointers are however extremely rare in
actual programs, and we can make them illegal. Basically, addition is the only
reasonable operation to do on an (integer-casted) pointer value; an error can
be raised when attempting any other manipulation. In most circumstances, a
non-additive operation on a pointer would indicate a bug in the program.

Finally, in a controlled environment (i.e. when each instruction can be freely
instrumented), obscured pointers are the only major obstacle in implementing
heap canonisation. Therefore, restricting those, it becomes possible to fully track
heap pointers throughout the program, and based on this information, compute a
canonic heap representation, adjusting all pointers accordingly. The actual layout
we chose is based on DFS pre-order, with root pointers forming the initial search
stack, global variables first, then deepest frame of the first thread and traversing
stacks upwards first, then threads from the lowest thread-id to the highest.

3.2 Tracking Pointers

Hence, the remaining problem to solve is exact pointer tracking. While approxi-
mate solutions for C and C++ exist, these so-called conservative approaches [16]
cannot be used for implementing heap reorganisation. A conservative collector
will, in a nutshell, treat any bit-pattern as a pointer as long as it corresponds
to a valid memory location. Since in a typical program, the heap size is much
smaller than the address space and the heap is usually located near its end, this
only introduces a small amount of harmless error for a mark&sweep collector,
where in the worst case, some garbage is retained. However, a conservative col-
lector must not alter pointers, since it could accidentally alter an integral value
that has no relation to the heap, simply having the same bit pattern as a valid
pointer.

This means that for successfully tracking pointers, we must use a tagging
scheme, where an integer can never be constructed to resemble a pointer and
vice versa. On one hand, shrinking pointers by one or two tag bits is not a
problem – the address space of the model checker itself is a limiting factor, not
the size of a pointer. On the other, it is not feasible to shrink integral types, as
this would wreak havoc with established semantics of integer arithmetic3. Hence,
we cannot easily prevent an integer from mimicking a bit pattern of a pointer.
An alternative is to keep tagging information out of band, in a separate image of

3 This scheme has been adopted in early garbage-collected runtimes, like that of LISP,
where all scalars would reserve tagging bits and integer size would not match the
machine word size. However, this approach is not feasible in low-level languages.
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the address space. This is possible since we can instrument any and all memory
access with updates to this tag space at the interpreter level.

All the tracked pointers are created in heap allocations, and their pointer
status is preserved throughout their lifetime. We use a special pointer represen-
tation, where the heap object and offset into that object are kept apart and
manipulated separately. This prevents pointers from overflowing into a neigh-
bouring heap object (this would be a programming error, and must be detected)
and makes pointer arithmetic safe and supported. Since programs may not make
any assumptions about the bit content of heap pointers, they cannot be legally
hijacked for integer constants. Therefore, we can safely rewrite the tracked point-
ers, without the risk of accidentally altering integral values, or missing actual
valid pointers.

Finally, a simple yet efficient optimisation can further reduce the tracking
overhead: since we can require and enforce alignment constraints on pointer
values, any pointer value will start at a 4-divisible address, thus only requiring
a single tracking bit per 4 bytes of memory.

4 Store Visibility

The availability of exact pointer tracking (coming from the implementation
of heap symmetry reduction) offers an opportunity to further improve on
τ+reduction. In its general form, τ+reduction operates mainly on the notion
of “observability”: an instruction’s effect is a cause for an interleaving point
whenever this effect might have been observed by another thread. The main
source of observability is writing to (shared) memory: in the thread-based pro-
gramming model, all memory is implicitly available to all threads. However, it
should be noted that in order for a thread to observe a memory write, it must
be in possession of a pointer to that memory location.

Therefore, if a memory location has been allocated from the heap by a thread,
but the pointer to this heap object is never provided to another thread, this
memory location is essentially private to the allocating thread (this most impor-
tantly affects alloca-obtained memory, see also Section 5.1, although private
heap-allocated structures are common as well). Since the layout of heap objects
cannot be effectively predicted by the program being verified, it cannot “con-
struct” pointers to objects out of thin air, and they must be explicitly shared by
the allocating thread.

Since writes to such “private” heap objects cannot be observed by other
threads, we can mark the corresponding store instructions as unobservable for
the purposes of τ+reduction, again substantially improving its already very good
efficiency.

In order to effectively identify the relevant store instructions, we trace the
root set excluding the currently executing thread. If the heap object that is being
written to is not encountered in this manner, then the write is invisible, since
no other thread can read the corresponding memory location. Since we use trac-
ing, this remains true after any combination of loads or pointer manipulation.
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The only action that would make the store observable would be a different
store in the same thread, writing a pointer to the relevant object into a pre-
existing, already shared memory location. However, since this must happen in
the same thread, the change caused by first in such a sequence of stores can
never be observed, and the later store will properly cause an interruption point
to be inserted.

5 Implementation

In addition to the new reductions detailed in previous two sections, we have im-
plemented a completely new LLVM bitcode interpreter since [2]. The interpreter
itself is a component very important for both robustness and performance of
the model checking solution. The previous version of the interpreter was based
on the code provided by LLVM itself, with a number of modifications to hook
it into the model checking framework. However, this approach had a few disad-
vantages. First, the interpreter was never built for performance: registers were
implemented as arbitrary-precision integers with large space overhead and reg-
ister files as red-black trees, with cache performance suffering as a consequence.

An explicit-state model checker based on a virtual machine (like our LLVM
interpreter), needs to be able to take snapshots of the machine’s entire state
in order to be able to explore the configuration graph (the state space). These
snapshots should be compact and ideally stored as continuous, hashable blocks
of memory. In the original interpreter, the states needed to be unpacked into
internal data structures and repacked every time a new snapshot was made.
On the other hand, the current version takes a different approach, using the
compact state representation directly to execute instructions, avoiding expen-
sive unpack/repack operations. Moreover, since most of the data required by
the interpreter is packed close together in memory, its cache performance has
improved substantially.

5.1 Machine State Vector

A running program on a contemporary commodity computer normally has access
to a number of resources. The most important, apart from the CPU itself, is a
bulk of random access memory that is traditionally divided into text (program),
data, stack and heap. Most systems today, with only a handful of specialised ex-
ceptions, do not allow the text of a running program to be modified. In DiVinE,
we treat it as constant. Apart from the program text, part of the data region
of memory is constant and never modified by the program. This usually entails
message strings and numeric constants used in the program. These two sections
(text and constant data) are stored only once for each instance of the inter-
preter. The remainder is stored as a compact machine state vector, with layout
illustrated by Figure 1.
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global flags assert: pc | what | tid global memory

heap bitmap jumptable object object

tid 0 pc + registers pc + registers pc + registers

tid 1 pc + registers pc + registers

Fig. 1. A state vector with 2 threads, global data and an assertion violation

Out of the items in a machine state vector, the register stack needs special
attention. Real machines (as opposed to virtual) have a limited set of registers,
but a (comparatively) unlimited amount of memory. The “stack” in a C program
consists of mapped memory and is used for many purposes: saving registers
across function calls, storing return addresses and return values, and storing
“automatic” local variables. All of this is organised into frames, and each frame
on the C stack corresponds to a single entry into a C function.

Contrary to this, the LLVM virtual machine has an unlimited register file.
When generating actual executable code, these virtual registers are allocated
to machine registers and code for managing register spills (into the C stack) is
inserted. However, at the level of LLVM instructions, access to the C stack is
provided through the alloca instruction and is needed because values stored in
registers have no address, and therefore cannot be passed by reference4.

In our interpreter, we have a structure analogous to C frames, but our frames
are not located in memory: they only contain register values and are not address-
able (from the point of view of the code being executed). Since LLVM gives no
guarantees about layout of memory coming from multiple alloca instructions,
we allocate alloca memory from heap, which in our case is managed automat-
ically. Therefore pointers to alloca memory go out of scope when their owner
function returns and the heap memory is freed.5

5.2 Library Substitution and Masking

Moreover, an important aspect of the software model checking enterprise is API
compatibility. In previous versions, we provided a relatively ad-hoc implemen-
tation of POSIX threading API, spread over the interpreter itself, but partially
implemented in a C header file to be included in user code. Our new approach

4 Moreover, until recently, LLVM registers could not hold non-scalar values and those
had to be stored in alloca or heap memory.

5 A future revision of the interpreter will release the memory when its owning frame
disappears, preventing programs to invoke undefined behaviour. The current version
will fail to raise an error in this scenario, since the allocated memory is not specifically
bound to its frame.
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makes a much cleaner separation between “system space” (the interpreter itself
and whatever built-in functions – traps – it provides) and “user space” (the user
code to be checked and any libraries it links, some possibly provided by DiVinE

as replacements for system libraries). Moreover, the separation within user-space
is improved as well, since the implementation details of the DiVinE-provided li-
brary substitutions no longer leak into the user-supplied code, but are instead
linked in at the LLVM level.

Essentially, DiVinE supplies replacements or partial replacements of sys-
tem libraries, like libc and libpthread. These replacements are slated to
become “drop-in” replacements for their system counterparts, shielding the
program under verification from the uncontrolled outside environment. Even-
tually, such substitution libraries could provide I/O facilities implemented
using non-deterministic choice. While this is in principle possible today, a purely-
explicit-state representation is ill-suited for verifying programs with significant
input-induced branching, especially on large domains.

The user/system-space separation is facilitated by a new tech-
nique, implemented through three new traps: divine interrupt mask,
divine interrupt unmask and divine interrupt. These traps expose a

low-level interface to atomicity control, making user-space implementation of
library functionality much more feasible. When interrupt masking is in effect,
the running thread must not be interrupted by any other thread, until after
the masking is lifted. Moreover, the masking is bound to stack frames, which
means that there is no danger of leaking the masking into user code, since a
ret instruction to an originally unmasked function will automatically cause an
unmask.

The advantage of explicit atomicity control is twofold: first, it makes library
implementation much easier by avoiding the usual pitfalls of writing thread-
safe code. Second, it substantially reduces the model checking overhead, since
atomicized code is much cheaper to execute, as no intermediate states need to
be created. This effect is exponential, since every interleaving point in a library
function essentially multiplies the number of states stored during its execution.

5.3 Traps

Apart from the three traps mentioned in previous section, there is a trap,
divine choice which implements non-deterministic choice, and a small set

of traps falling into three categories:

1. memory management:
– divine malloc – obtain fresh memory from the heap,
– divine free – force invalidation of all pointers to an area of memory,

2. thread management:
– divine new thread – create a new thread, with a supplied function as

an entry point and a pointer-sized argument
– divine get tid – obtain an identifier of the calling thread,
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Table 1. Number of reachable states in different models under various reductions.
The C++ models apparently expose a bug in the old version of the interpreter, hence
the numbers are not available. OOM means that the model checker ran out of available
memory (16GB).

old interpreter new with heap reduction
model ∅ τ ∅ τ τ+ all

peters.c, -O0 OOM 1316162 294193 2181 596 212
peters.c, -O1 148301 11877 33227 491 286 278
peters.c, -O2 89702 6035 21122 443 268 260

pe.bug.c, -O0 OOM 1106757 235272 1617 735 281
pe.bug.c, -O1 221681 19053 49691 613 440 432
pe.bug.c, -O2 188064 14155 43536 613 440 432

fifo.cpp, -O0 fails fails 559364 22126 1723 108
fifo.cpp, -O1 fails fails 104642 3926 43 26
fifo.cpp, -O2 fails fails 83898 2660 148 143

ring.cpp, -O0 fails fails 2502517 75498 13075 935
ring.cpp, -O1 fails fails 713743 14157 1461 1405
ring.cpp, -O2 fails fails 1439424 22735 2121 2065

global.c, -O0 3517 997 451 84 65 26
global.c, -O1 915 179 316 54 30 30
global.c, -O2 887 160 316 54 30 30

3. and property specification:
– divine assert – ensure that a value is non-zero
– divine ap – insert an atomic proposition for LTL model checking.

These traps are generally not meant to be used directly in user code, since they
have no counterparts in standard system libraries. Instead, they can be used
in support code (whether supplied by DiVinE or by the user), which is then
linked into the executable before verification. Linking to a different version of
the support code (normally, this would entail standard system libraries) will
then yield an executable program, directly derived from the verified bitcode file.

5.4 POSIX Threads

We have implemented a substantial subset of the POSIX threading API, in-
cluding thread management (creation, joining, detaching), mutual exclusion
(“fast” and recursive mutexes), condition signalling and thread-local storage. To
achieve smooth interoperability, DiVinE provides a compile --llvm subcom-
mand, which invokes clang to produce bitcode for verification Since currently
DiVinE provides its own pthread.h (the interface is not binary-compatible to
glibc pthreads – some pthread types are shorter in the DiVinE implemen-
tation), divine compile --llvm will provide the correct #include paths and
link the program with substitution libraries. This makes producing a verification-
ready bitcode file a very easy, single-step operation.

6 Evaluation

To evaluate the actual improvements coming from the proposed reductions, we
have taken a small number of example multi-threaded C and C++ programs
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Table 2. Counterexample lengths for various reductions. The shorter “new, τ” coun-
terexamples are due to better pthreads implementation based on masking.

pe.bug.c, -O0 pe.bug.c, -O1 global.c, -O0 global.c, -O1

old, τ 172 -- 193 77 59 n/a
new, τ 54 37 21 19

new, τ+ 40 31 18 16
new, τ, store 26 20 12 12

new, τ+, store 12 12 9 9

and compared state space sizes (see Table 1) using different options, starting
with the old interpreter with no reductions, and with τ -reduction (this was the
state of the art at the time of [2]). With the new interpreter, we have made
4 measurements, using heap reduction only, heap and τ -reduction, heap and
τ+reduction and finally all reductions including store visibility. We have used
the following example programs:

– peterson.c: a C implementation of Peterson’s mutual exclusion,
– peterson.bug.c: the same, but with a bug,
– fifo.cpp: lock-free first-in, first-out inter-thread queue,
– ring.cpp: a lock-free inter-thread ring buffer,
– global.c: a race condition when incrementing a shared variable.

While the increased complexity of reductions has non-negligible impact on
throughput in terms of states visited per second, this deterioration is much slower
than the drop in overall state count. Taking peterson.cwith -O1 on a Intel Core
2 Duo P8600 @ 2.4GHz, the throughput ranged from 2650 states/s with no reduc-
tions to 780 states/s with all reductions (3.5-fold loss in performance, compared
to 530-fold reduction, for 150-fold gain in overall verification speed).

6.1 Counterexamples

A side benefit of the reductions is manifested in counterexample traces. Since
the model checker produces a trace consisting of individual states, its length
is inversely proportional to length of individual steps. This effect is especially
due to the more aggressive τ+reduction6 and due to introduction of masking in
pthread support code. A τ -reduced counterexample trace for the buggy version
peterson.c spanned several pages, and was very tedious to follow for a human.
The τ+reduced version is much shorter and substantially more transparent to
users. To put this in a more objective perspective, we have taken 3 sample
counterexamples from each of the “buggy” models and summarised the numbers
in Table 2.

7 Related Work

Model checking of programs at the level of the source code has been so far
pursued in two major research directions. In the first branch, automated code

6 Symmetric states are very unlikely to appear in a single counterexample, so the
contribution of symmetry reduction to this effect is negligible.
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extractors were used to replace the error-prone process of manual modelling.
Tools such as Feaver [11] or Bandera [8] were introduced to extract C or Java
code, respectively, into models to be used as an input for a model checker. The
SLAM Toolkit [1] applies the CEGAR approach [6] on top of Boolean programs
extracted automatically from a C program source file.

In the other branch, techniques allowing direct analyses of the program source
files were examined. Pioneered by VeriSoft [10], model checkers begun to be able
to accept C program files as input. While VeriSoft is a state-less model checker,
SATABS [7] is a tool performing CEGAR verification of multi-threaded ANSI
C programs. Other model checking tools capable of analyzing C programs went
into the direction of bounded model checking. While CBMC [5], or F-Soft [14]
tools were limited to analysis of sequential programs, TCBMC [21] introduced
a bounded model checking approach for POSIX-thread C programs with two
threads.

An obvious disadvantage of an interpreter that should be able to read all
possible constructs of a high-level programming language such as C or C++, is
its structural complexity. Consequently, the model checking tools that directly
interpret some high-level programming language, are typically limited to just a
subset of it. A possible solution to the problem is to build the tool on top of an
intermediate representation language. Recently, the intermediate representation
as defined in the LLVM project [17] became rather popular in this respect.
Regarding model checking, there are, however, only two tools built on top of
the LLVM project. These are, to our best knowledge, the LLBMC tool [19] and
DiVinE [2], the former offering SMT-based bounded model checking and the
latter enumerative LTL model checking of LLVM bitcode, respectively. Besides
LLVM bitcode, Java intermediate representation is used heavily for analysis of
Java programs, see Java PathFinder [23].

The key problem of model checking is the state space explosion. When speak-
ing of model checking of the LLVM bitcode, the problem is even more painful
as the input language of the model checker is very fine-grained. In this paper we
opted to fight this problem using a combination of symmetry [22,13] and partial
order reduction [20].

The problem of unnecessary state space explosion in explicit state model
checking due to dynamically allocated entities has been observed and studied
before. Symmetry reduction has been applied to model checking of object-based
programs that manipulate dynamically created objects. In particular, linear-time
heuristic to define canonical representative of a symmetry equivalence class has
been presented in [12].

An approach to dynamic partial order reduction somewhat related to our
own has been implemented in the VeriSoft state-less model checker [9]. This
approach was based on initially exploring an arbitrary interleaving of the various
concurrent processes/threads, and dynamically tracking interactions between
these to identify backtracking points where alternative paths in the state space
need to be explored.
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8 Conclusions and Future Work

In our previous work, we have established a baseline which allowed verification
of simple C and C++ programs. Most importantly, these programs required no
modifications (compared to their form intended for normal execution), in order
to be verified.

In this paper, we introduced techniques that significantly move the boundary
on feasible verification of such programs. The property-preserving reductions
make verification of real-world, multi-threaded C and C++ programs possible
and compelling. While we focus on safety verification, in form of assertion state-
ments, invalid memory access or mutex-safety – properties that are easily acces-
sible to everyday programmers without specific verification knowledge – we also
provide first-class LTL verification for more expert treatment of mission-critical
systems.

There are multiple extensions planned in future revisions. A major class of
programs is currently mostly unsuitable for our current approach to verification:
open systems with data inputs over non-trivial domains will quickly cause the
state space to explode beyond verification capacity of current hardware. There-
fore, a semi-symbolic approach for such open-ended programs is required, and
at the same time would break a new ground for model checking: programs that
employ both multi-threading and data processing are currently out of reach for
both explicit-state and symbolic-state tools.

Apart from this, most of the planned future work consists of improvements
in the implementation and increasing the coverage of library substitutions to
further reduce overhead in verifying new programs. Case-studies from verifying
real-world multi-threaded applications are forthcoming as well.
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Abstract. Regular Model Checking is a popular verification technique
where large and even infinite sets of program configurations can be en-
coded symbolically by finite automata. Thereby, the handling of regular
sets of initial and bad configurations often imposes a serious restriction
in practical applications. We present two new algorithms both utilizing
modern solver technologies and automata learning. The first one works in
a CEGAR-like fashion by iteratively refining an abstraction of the reach-
able state space using counterexamples, while the second one is based
on Angluin’s prominent learning algorithm. We show the feasibility and
competitiveness of our approaches on different benchmarks and compare
them to other established tools.

1 Introduction

Model Checking is a prominent technique designed for the verification of safety-
critical systems [1,2]. Combined with the feature of counterexample generation,
this may not only help to show the defectiveness of a system but also to identify
and correct its errors. Classic model checking is based on a rigorous exploration
of state spaces, which leads to serious problems considering the large size of
models for real world scenarios. Hence, for large or even infinite systems, feasible
abstraction techniques or finite representations are needed.

One natural approach to overcome this problem is to encode states of a system,
e. g., configurations of a program, as finite words and symbolically describe such
systems by regular languages. Regular Model Checking [3] refers to a technique
where the set of the program’s initial configurations is given as a regular set
while the program’s transitions are defined in terms of a finite state transducer.
Additionally, a regular set of bad configurations is considered that describes con-
figurations of the program that must not occur during the program’s execution.
Although the regular sets and the transducer need to be devised manually from
the system in question, Regular Model Checking has been applied to many prac-
tical examples with infinite state-spaces [4,5,6]. In [4], the authors also describe
for some examples how a concrete system can be transformed into a Regular
Model Checking instance.
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Tools for Regular Model Checking such as T(o)rmc [5], Faster [6], and
Lever [7] compute regular sets that either encode the exact set of reachable
configurations or overapproximate them. If such a set having an empty intersec-
tion with the bad configurations is identified, it is called a proof and serves as
a witness that the program is correct. Note, that the problem of Regular Model
Checking is undecidable in general. Thus, corresponding tools are necessarily
based on semi-algorithms, i.e., algorithms that are not guaranteed to terminate
on every input, but find a solution if one exists. Nonetheless, there is a large
number of practical applications where good results are achieved (see, e.g., [5]
and [6]).

A major drawback of all of these tools is that the computations are very
expensive if the automata defining the sets of initial and bad configurations
become large. Take, for instance, tools such as T(o)rmc and Faster. They start
with a DFA for the initial configurations, successively iterate the transducer, and
then apply widening or acceleration to extrapolate infinite behavior. However,
if the initial DFA is large, the performance of these approaches is often poor.

In this paper, we overcome this problem by combining advantages of state-of-
the-art SAT and SMT solvers with automata learning techniques. Intuitively, our
approach is a combination of two existing methods. The first is a SAT and SMT-
based method for Regular Model Checking, which has recently been introduced
in [8]. The second is an automata learning technique as described, e.g., in [9,10].

The fundamental idea of our approach is to abstract from the exact sets of
initial and bad configurations by sampling them. More precisely, our approach
works by generating a proof from a sample S = (S+, S−) containing finite (and
small) approximations of the sets of initial and bad configurations. Using the
sample sets, we compute a DFA that is consistent with these sets and inductive,
i.e., closed, with respect to the transducer by means of SAT or SMT solvers
(cf. Section 3). The resulting DFA contains at least the configurations reachable
from S+ via the transitions defined by the transducer and does not contain any
configurations in S−. If all original initial configurations and no bad configura-
tions are contained, the DFA is a proof. If this is not the case, the respective
approximation has to be refined and the process is iterated.

We propose two algorithms here that differ in the strategy to sample and refine
sets of program configurations. Both are based on the popular learning frame-
work introduced by Angluin [11], in which a regular language is learned in inter-
action with a so-called teacher that possesses knowledge about the language in
question. The first algorithm (cf. Section 4.2) straightforwardly follows the idea
of the CEGAR framework [12]: if the abstraction of either the initial or the bad
configurations is too coarse to compute a satisfactory proof, a counterexample is
given by the teacher and the abstraction is refined accordingly. The second one
(cf. Section 4.3) follows a more elaborated procedure based on Angluin’s learning
algorithm [11], where additional queries ask whether individual configurations
belong to a proof. These queries refine the abstraction further and remove the
need of generating a new automaton at every step. Before we present our learning
algorithms, Section 4.1 describes how an appropriate teacher can be built.
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Our approach has several advantages. First, the canonical usage of established
learning algorithms offers an effective way to sample and refine the abstraction
of the program. Second, our technique is applicable even if the sets of initial
and bad configurations are no longer regular—as long as an appropriate teacher
can be constructed (e.g., for visibly or deterministic context free languages). Fi-
nally, learning algorithms typically produce small results, which highly increases
the practical applicability of our approach. We demonstrate the latter claim in
Section 5 by comparing a prototype of our approach to established tools.

2 Preliminaries

Finite Automata and Transducers. An alphabet Σ is a finite, non-empty set. A
word w = a0 . . . an is a finite sequence of symbols ai ∈ Σ for i = 0, . . . , n; in
particular, the empty word ε is the empty sequence. The concatenation of two
words u = a0 . . . an and v = b0 . . . bm is the word u · v = uv = a0 . . . anb0 . . . bm.
If u = vw for u, v, w ∈ Σ∗, we call v a prefix and w a suffix of u.

The set Σ∗ is the set of all (finite) words over the alphabet Σ. A subset
L ⊆ Σ∗ is called a language. For a language L ⊆ Σ∗, let the set of all prefixes of
words in L be Pref (L) = {u ∈ Σ∗ | ∃v ∈ Σ∗ : uv ∈ L}.

A (nondeterministic) finite automaton (NFA) is a tuple A = (Q,Σ, q0, Δ, F )
consisting of a finite, non-empty set Q of states, an input alphabet Σ, an initial
state q0 ∈ Q, a transition relation Δ ⊆ Q × Σ × Q, and a set F ⊆ Q of final
states. A run of an NFA A on a word u = a0 . . . an from a state q ∈ Q is a
sequence ρ = q0 . . . qn+1 such that q0 = q and (qi, ai, qi+1) ∈ Δ for i = 0, . . . , n;

as abbreviation we write A : q0
u−→ qn+1. A word u is accepted by A if A : q0

u−→ q

with q ∈ F . The language L(A) = {u ∈ Σ∗ | A : q0
u−→ q, q ∈ F} is the language

of all words accepted by A. A language L is called regular if there exists an NFA
A such that L = L(A). To measure the “complexity” of NFAs, we define the
size of an NFA as |Q|, i.e., the number of its states.

A deterministic finite automaton (DFA) is an NFA where for all p ∈ Q and
a ∈ Σ there exists a unique q ∈ Q with (p, a, q) ∈ Δ. In the case of DFAs, we
substitute the transition relation Δ with a transition function δ : Q×Σ → Q.

A (finite-state) transducer T is a special NFA working over the alphabet
(Σ ∪ {ε})× (Σ ∪ {ε}) with transitions of the form (p, (a, b), q), (p, (a, ε), q), and
(p, (ε, b), q). A transducer reads pairs of words and moves from state p to state

q on reading (u, v) ∈ Σ∗ × Σ∗, denoted by T : p
(u,q)−−−→ q, if a sequence of transi-

tions exists whose labels yield the pair (u, v) when concatenated componentwise.
Rather than a regular language, a transducer accepts (or defines) a relation

R(T ) ⊆ Σ∗ × Σ∗ where R(T ) = {(u, v) | T : q0
(u,v)−−−→ q, q ∈ F}. A relation

R ⊆ Σ∗×Σ∗ is called rational if there exists a transducer T such that R = R(T ).
For a relation R ⊆ Σ∗ ×Σ∗ let R∗ denote the reflexive and transitive closure

of R. Moreover, for a language L ⊆ Σ∗ let R(L) be the image of L under R
defined by R(L) = {v ∈ Σ∗ | ∃u ∈ L : (u, v) ∈ R}. Finally, if R(L) ⊆ L holds,
we call L a regular invariant or inductive (with respect to R). Analogously, if
R(L(A)) ⊆ L(A) for some NFA (or DFA) A, we call A inductive.



Regular Model Checking Using Solver Technologies and Automata Learning 19

Regular Model Checking. In Regular Model Checking, a program P = (I, T )
consists of a regular set I ⊆ Σ∗ of initial configurations over an a priori fixed
alphabet Σ and a rational relation T ⊆ Σ∗×Σ∗ defining the transitions. Regular
Model Checking now asks whether there exists a path along the transitions from
some initial configuration into a given regular set B ⊆ Σ∗ of bad configurations,
which must never be reached. In other words, we are interested in answering
the decision problem “Given a program P = (I, T ) and a regular set B ⊆ Σ∗.
Does T ∗(I) ∩ B = ∅ hold?”. If the intersection is non-empty, we know that
the program is erroneous. Note that Regular Model Checking is undecidable
in general as rational relations are powerful enough to encode computations
of Turing machines. Thus, the algorithms presented here are necessarily semi-
algorithms.

A well-established approach to solve the Regular Model Checking problem
used, e.g., by T(o)rmc [5] or Lever [7] is to compute so-called proofs. Formally,
a proof is a regular set P ⊆ Σ∗ such that I ⊆ P , B ∩ P = ∅, and T (P ) ⊆ P ;
for convenience, we also call an NFA (or DFA) A a proof if L(A) is a proof.
Note that any proof contains at least the set of reachable configurations and is,
therefore, sufficient to prove a program correct. The advantage of computing a
proof rather than the set of reachable configurations is that a proof might exists
even if the set of reachable states itself is not regular.

Logics. In the remainder of this paper, we use both the propositional logic
over Boolean variables and the quantifier-free logic over the integers with un-
interpreted functions. Formulas, denoted by ϕ or—if the free variables are of
interest—ϕ(x1, . . . , xn), are defined in the usual way. Moreover, a model of a
formula ϕ(x1, . . . , xn) is a mapping M : {x1, . . . , xn} → D1 × . . . ×Dn that as-
signs to each variable xi a value from the domain Di of xi such that ϕ evaluates
to true. Moreover, if ϕ contains uninterpreted functions, then the model has
to provide an interpretation of these functions. If M is a model of ϕ, we write
M |= ϕ.

Formulas defined in propositional logic can be solved by SAT solvers, and for-
mulas defined in quantifier-free logic over the integers with uninterpreted func-
tions can be solved by SAT-modulo-theories solvers (SMT), which is a generaliza-
tion of the classical propositional satisfiability problem (SAT). Compared to SAT
problems, in an SMT formula atomic propositions may be replaced by atoms of
a given theory, in our case uninterpreted functions. Several tools for solving SAT
and SMT formulae are available, e.g., GlucosER and Z3, respectively.

3 Inferring Inductive DFAs from Finite Samples

In this section, we present a solver-based approach to compute inductive DFAs
from a finite sample of initial and bad configurations of a program. Remember
that the procedure of our Regular Model Checking approach works roughly as
follows: we provide a procedure to compute a DFA that is consistent with a
finite sample and inductive with respect to a given transducer. Starting with
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an empty sample, we use automata learning techniques to extend the sample,
and compute a consistent and inductive DFA after each extension. This process
continues until enough information has been learned and the computed DFA is
a proof.

Our solver-based approach is a novel combination of techniques presented in
[13] and [8], which both work in a slightly different setting. For the reader’s
convenience, however, we recap some principles of these techniques here.

Let us first fix the definitions of samples and consistency, which we already
used informally above. A sample is a pair S = (S+, S−) consisting of two disjoint
and finite sets S+, S− ⊆ Σ∗ over the same alphabet Σ. Intuitively, the set S+

contains words that have to be accepted by an automaton whereas the set S−
contains such words that have to be rejected. A NFA (or DFA) A is said to be
consistent with a sample S if it accepts all words in S+ and rejects all words in
S−, i.e., if S+ ⊆ L(A) and S− ∩ L(A) = ∅.

In the following, let a sample S and a transducer T over a common alphabet
Σ be given. We compute a consistent and inductive DFA by constructing (and
solving) logical formulas ϕS,T

n that depend on the sample S, the transducer T ,
and a natural number n > 0. A formula ϕS,T

n will have the following properties:

– ϕS,T
n is satisfiable if and only if there exists a DFA A with n states such that

A is consistent with S and inductive with respect to T .
– If M |= ϕS,T

n , then we can use M to derive a DFA AM that is consistent
with S and inductive with respect to T .

Using these properties, a straightforward algorithm to find a DFA consistent
with S and inductive with respect to T is depicted in Algorithm 1. The idea
is to increase the value of n until ϕS,T

n becomes satisfiable. If a consistent and
inductive DFA exists, the process terminates eventually, and AM is such a DFA.
However, such a DFA does not always exist, e.g., in the simple case that a
configuration in S− is reachable via the transitions from configurations in S+.

Algorithm 1. Computing minimal consistent and inductive DFAs

Input : a sample S and a transducer T over a common alphabet Σ.

n := 0;
repeat

n := n+ 1;

Construct and solve ϕS,T
n ;

until ϕS,T
n is satisfiable (with model M);

Construct and return AM;

Note that Algorithm 1 does not only compute a DFA that is consistent with S
and inductive with respect to T but a smallest such DFA in terms of the number
of states. Although this fact is not important here, it will be crucial for proving
the termination of the algorithms we will present in Section 4. Also note that a
binary search is a more efficient way to find the minimal value for n such that
ϕS,T
n is satisfiable. Let us sum up by stating the main result of this section.
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Theorem 1. Let a sample S and a transducer T over a common alphabet Σ
be given. If a DFA consistent with S and inductive with respect to T exists, say
with k states, then Algorithm 1 terminates after at most k steps. Moreover, AM

is a smallest DFA that is consistent with S and inductive with respect to T .

Proof (of Theorem 1). The proof is straightforward and relies on the fact that
ϕS,T
n has indeed the desired properties (cf. Lemma 3 on page 23). Let a sample

S and a transducer T be given. Suppose that a DFA consistent with S and
inductive with respect to T exists, say with k states. Then, the formula ϕS,T

n is
satisfiable for all n ≥ k. Moreover, if M |= ϕS,T

n , then AM is a DFA with n states
that is consistent with S and inductive with respect to T . Since we increase n
by one in every iteration, we eventually find the smallest value for which ϕS,T

n

is satisfiable (after at most k steps) and, hence, a smallest DFA. 
�

In the remainder of this section, we will implement the formula ϕS,T
n in two

different logics: propositional Boolean logic, and the quantifier free fragment of
Presburger arithmetic with uninterpreted functions. We will present the imple-
mentation in propositional Boolean logic in detail, but only sketch the imple-
mentation in Presburger arithmetic as the general idea is similar.

Finally, note that the application of SAT and SMT solvers in this setting is
justified as already the special case of finding a minimal DFA that is consistent
with a sample is computationally hard—in this case, the transducer defines the
identity relation. To be more precise, Gold [14] showed that the corresponding
decision problem “Given a sample S and a natural number k. Does a DFA with
k states consistent with S exist?” is NP-complete. Moreover, there exist highly-
optimized logic solvers that can solve even large problems efficiently.

SAT-based Approach. Next, we present a formula in propositional Boolean logic
that encodes a DFA with a fixed number n > 1 of states that is consistent
with a given sample S = (S+, S−) and inductive with respect to a transducer
T = (QT , (Σ ∪ {ε})2, qT0 , ΔT , F T ). The state set of the resulting DFA will be
Q = {q0, . . . , qn−1} with initial state q0. To encode a DFA, we make a simple
observation: if we fix the set of states, the initial state (e.g., as above), and
the input alphabet Σ, then every DFA is uniquely determined by its transition
function δ and final states F . Our encoding exploits this fact and uses Boolean
variables dp,a,q and fq with p, q ∈ Q and a ∈ Σ. Their meaning is that if dp,a,q
is true, then δ(p, a) = q. Analogously, if fq is true, then it means that q ∈ F .
Note that this idea is used in [13], although not stated in this explicit form.

To make sure that the variables dp,a,q in fact encode a transition function of
a DFA, we impose the following constraints.

¬dp,a,q ∨ ¬dp,a,q′ p, q, q′ ∈ Q, q = q′, a ∈ Σ (1)∨
q∈Q

dp,a,q p ∈ Q, a ∈ Σ (2)

Constraints of type (1) make sure that the variables dp,a,q encode a deterministic
function whereas constraints of type (2) enforce the function to be complete.
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Now, let ϕDFA
n (d, f) be the conjunction of these constraints where d is the

vector of all variables dp,a,q and f is the vector of all variables fq. From a
model M |= ϕDFA

n (d, f), we can derive a DFA AM = ({q0, . . . , qn−1}, Σ, q0, δ, F )
in a straightforward manner: we set δ(p, a) = q for the unique q such that
M(dp,a,q) = true and q ∈ F if and only if M(fq) = true.

To guarantee that AM is consistent with S and inductive with respect to T ,
we impose further constraints on the formula ϕDFA

n . We do so by introducing
two auxiliary formulas ϕS

n as well as ϕT
n , whose meaning is the following:

– If M |= ϕDFA
n ∧ ϕS

n , then S+ ⊆ L(AM) and S− ∩ L(AM) = ∅.
– If M |= ϕDFA

n ∧ ϕT
n , then R(T )(L(AM)) ⊆ L(AM).

It is not hard to see that if M |= ϕDFA
n ∧ ϕS

n ∧ ϕT
n , then AM is consistent

with S and inductive with respect to T . When presenting both formulas in the
following, we will describe their influence on the resulting DFA AM rather than
on the variables dp,a,q and fq. We thereby implicitly assume that the formulas
are satisfiable.

Let us begin by describing the formula ϕS
n , which originally was proposed by

Heule and Verwer [13]. The general idea is to consider runs of the DFA AM on
words from S and their prefixes. To this end, we introduce auxiliary variables
xu,q for u ∈ Pref (S+ ∪ S−) and q ∈ Q. The meaning of these variables is that if
AM reaches state q after reading a word u ∈ Pref (S+ ∪ S−), then xu,q is set to
true. To establish this, we use the following constraints.

xε,q0 (3)

(xu,p ∧ dp,a,q) → xua,q ua ∈ Pref (S+ ∪ S−), a ∈ Σ, p, q ∈ Q (4)

xu,q → fq u ∈ S+, q ∈ Q (5)

xu,q → ¬fq u ∈ S−, q ∈ Q (6)

Constraint (3) ensures that the variable xε,q0 is set to true since A : q0
ε−→

q0 holds by definition for every DFA A. Constraints of type (4) describe how
the run of AM on some input develops: if AM reaches state p after reading u
and δ(p, a) = q, then AM will reach state q after reading ua. Constraints of
type (5) and (6) assure that words from S+ and S− are accepted and rejected,
respectively.

Let ϕS
n(d, f , x) be the conjunction of constraints(3) to (6) where d and f are

as above and x is the vector of all variables xu,q. Then, we obtain the following.

Lemma 1 (Consistency with S, [13]). Let S = (S+, S−) be a sample and
M |= ϕDFA

n (d, f) ∧ ϕS
n(d, f, x) for some n ∈ N. Then, AM is consistent with S,

i.e., S+ ⊆ L(AM) and S− ∩ L(AM) = ∅.

Lemma 1 can be proved by an induction over the length of the words from the
sample. For further details we refer to [13].

The formula ϕT
n has recently been introduced also in the context of Regular

Model Checking [8]. The basic idea is to keep track of the parallel behavior of
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the transducer T and the DFA AM. More precisely, we need to establish that if
a pair (u, v) of words is accepted by T and u ∈ L(AM), then v ∈ L(AM) holds,
too. To this end, we introduce new auxiliary variables yq,q′,q′′ with q, q

′′ ∈ Q and

q′ ∈ QT . Their meaning is that T : qT0
(u,v)−−−→ q′, AM : q0

u−→ q, and AM : q0
v−→ q′′,

then yq,q′,q′′ is set to true. The condition stated intuitively above can then be
expressed using the following constraints.

yq0,qT0 ,q0 (7)

(yp,p′,p′′ ∧ dp,a,q ∧ dp′′,b,q′′) → yq,q′,q′′ (p′, (a, b), q′) ∈ ΔT , a, b ∈ Σ,

p, p′′, q, q′′ ∈ Q, p′, q′ ∈ QT (8)

(yp,p′,p′′ ∧ dp,a,q) → yq,q′,p′′ (p′, (a, ε), q′) ∈ ΔT , a ∈ Σ,

p, p′′, q ∈ Q, p′, q′ ∈ QT (9)

(yp,p′,p′′ ∧ dp′′,b,q′′) → yp,q′,q′′ (p′, (ε, b), q′) ∈ ΔT , b ∈ Σ,

p, q, q′′ ∈ Q, p′, q′ ∈ QT (10)

(yq,q′,q′′ ∧ fq) → fq′′ q, q′′ ∈ Q, q′ ∈ F T (11)

Constraint (7) makes sure that yq0,qT0 ,q0 is set to true since T : qT0
ε−→ qT0 and

AM : q0
ε−→ q0 holds by definition of runs. Moreover, constraints of the types (8)

to (10) describe how the parallel behavior of T and AM develops depending on
the type of T ’s transitions. This is done in a similar manner as the constraints (4)
of the formula ϕS

n . Finally, constraints of type (11) state that if (u, v) is accepted
by T and u is accepted by AM, then v has to be accepted by AM, too.

Let ϕT
n (d, f , y) be the conjunction of constraints (7) to (11) where d and f

are as above and y is the vector of all variables yq,q′q,′′ . Then, we obtain the
following lemma.

Lemma 2 (Inductivity with respect to T , [8]). Let T be a finite state
transducer and M |= ϕDFA

n (d, f) ∧ ϕT
n (d, f, y) for some n ∈ N. Then, AM is

inductive with respect to T , i.e., R(T )(L(AM)) ⊆ L(AM).

The proof of Lemma 2 uses an induction similar to the proof of Lemma 1. This
time, however, the induction is over the number of T ’s transition used on a run.
We refer to [8] further details. Let us now sum up.

Lemma 3. Let S be a sample and T a transducer over a common alphabet Σ,
n ∈ N, and

ϕS,T
n (d, f, x, y) = ϕDFA

n (d, f) ∧ ϕS
n(d, f, x) ∧ ϕT

n (d, f , y).

Then, ϕS,T
n (d, f , x, y) is satisfiable if and only if there exists a DFA with n states

that is consistent with S and inductive with respect to T .

Proof (of Lemma 3). The direction from left to right is a straightforward appli-
cation of Lemma 1 and Lemma 2. Let ϕS,T

n be satisfiable and M |= ϕS,T
n . Then,

AM is a DFA with n states, consistent with S, and inductive with respect to T .
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For the reverse direction, suppose that there exists a DFA A = (Q,Σ, q0, δ, F )
with n states that is consistent with S and inductive with respect to T . Based on
A, we can find a model M for the formula ϕS,T

n (d, f , x, y): let M(dp,a,q) = true

if and only if δ(p, a) = q and M(fq) = true if and only if q ∈ F . The values of
M(xu,q) and M(yq,q′,q′′) can then be derived accordingly. 
�

Finally, note that ϕS,T
n can easily be turned into conjunctive normal form for a

SAT solver. In total, the formula comprises O(n2|Σ|+n|Pref (S+∪S−)|+n2|QT |)
variables and O(n3|Σ|+ n2|Pref (S+ ∪ S−)|+ n4|ΔT |+ n2|F T |) clauses.
SMT-based Approach. We now sketch the the implementation of ϕS,T

n in SMT
logic. To this end, we assume without loss of generality that all automata have
a special format: the set of states is Q = {0, . . . , n − 1}, q0 = 0, and the input
alphabet is Σ = {0, . . . ,m− 1}.

Our approach is to encode the automaton directly into the formula utilizing
two uninterpreted functions d : N×N → N and f : N → {0, 1} where d represents
the transitions and f the final states. Moreover, we use two additional uninter-
preted functions x : N → N and y : N × N × N → {0, 1}, which have the same
meaning as the variables xu,q and yq,q′q,′′ in the SAT-based approach.

Uninterpreted functions allow us to formulate constraints 3 to 11 of the pre-
vious section in a convenient manner. Constraints 8, for instance, can be ex-
pressed as y(i, i′, i′′) → y(d(i, a), j′, d(i′′, b)) where i, i′′ ∈ Q, i′, j′ ∈ QT , and
(i′, (a, b), j′) ∈ ΔT . As the SMT implementation is analogous to the implemen-
tation in Boolean propositional logic, we skip the details here and refer to [8]
for a more detailed description. However, let us mention that ϕS,T

n comprises
O(n|Σ|+ |Pref (S+ ∪ S−)|+ n2(|ΔT |+ |F T |)) constraints.

4 Learning-Based Regular Model Checking

This section presents two algorithms based on algorithmic learning and solver
technologies (introduced in the previous section) to compute proofs in Regular
Model Checking. In contrast to most existing approaches, our idea is to learn a
proof rather than to compute one in a constructive manner.

The learning framework we use was originally introduced by Angluin [11]. In
this setting, a learner learns a regular target language L ⊆ Σ∗ over an a priori
fixed alphabet Σ in interaction with a teacher. To do so, the learner can pose two
different types of queries: membership and equivalence queries. On a membership
query, the learner queries whether a word w ∈ Σ∗ belongs to the target language.
The teacher answer either w ∈ L or w ∈ L. On an equivalence query, the learner
conjectures a regular language, typically given as a DFA A, and the teacher
checks if L(A) = L. If this is the case, he returns “yes”. Otherwise, he returns a
counterexample w ∈ L(A) ⇔ w ∈ L as a witness that L(A) and L are different.

Clearly, in our setting we cannot build a teacher that can answer arbitrary
membership queries as this would mean to already solve the Regular Model
Checking problem. Moreover, answering equivalence queries is possible, but there
seems to be no way of finding counterexamples. Thus, we move to a slightly differ-
ent learning scenario in which answering queries is possible: we allow the teacher
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to answer “don’t know”, denoted by ?, to membership queries, and we will only
conjecture DFAs on equivalence queries that are inductive with respect to the
transducer. This way, the teacher only needs to check whether the proposed
conjecture classifies the initial and bad configurations correctly.

Employing learning techniques in an Angluin-like learning scenario is in gen-
eral a two-step process. First, we need to construct a teacher that is able to
answer membership and equivalence queries (cf. Section 4.1). Second, we have
to develop a learning algorithm that learns from this teacher. For the latter task,
we will present two algorithms. The first (cf. Section 4.2) follows the principles
of the successful CEGAR approach [12]. The second (cf. Section 4.3) is based on
Angluin’s prominent algorithm for learning regular languages [11].

Both algorithms share the same fundamental idea. The learner supposes that
the teacher knows a proof and asks the teacher if configurations belong to the
proof or not. The problem is, that the teacher does not know a proof. However,
he can clearly answer queries if the configuration in question belongs to the set
of initial or bad configurations. If this is not the case, he simply returns “don’t
know”. Once a learner has gathered enough information, he conjectures an in-
ductive DFA consistent with the information obtained so far. To answer this
equivalence query, the teacher only needs to check whether the conjecture classi-
fies the initial and bad configurations correctly since we assume any conjecture
to be inductive. If the check fails, the teacher can easily find a counterexample.

A similar scenario called learning from inexperienced teachers was investigated
in [9] and subsequently in [10]. In [10], also the general idea of a CEGAR-style
and Angluin-style learner have been discussed. Note, however, that the inex-
perienced teacher setting is simpler and does not involve computing inductive
automata.

4.1 An Inexperienced Teacher for Regular Model Checking

Implementing a teacher for our setting is simple. On a membership query w ∈ Σ∗,
the teacher returns “yes” if w ∈ I, “no” if w ∈ B, and “?” in any other case.

On an equivalence query with an DFA A, the teacher checks whether I ⊆ L(A)
and B∩L(A) = ∅ holds and returns “yes” if so. If this is not the case, he returns
a counterexample w ∈ I and w ∈ L(A), or w ∈ B∩L(A). Note that this check is
in fact enough to ensure that A is a proof since we assume that every conjecture
provided on an equivalence query is inductive with respect to the transducer T .
Furthermore, note that all these checks are decidable for regular languages.

4.2 The CEGAR-Style Learner

The CEGAR-style learner (sketched as Algorithm 2) maintains a sample S =
(S+, S−) as finite abstraction of the (potentially infinite) sets of initial and bad
configurations. In every iteration, the learner computes a minimal DFA A con-
sistent with S and inductive with respect to T using one of the techniques
introduced in Section 3 in a black-box fashion. The DFA A is then conjectured
on an equivalence query. If the teacher replies “yes”, the process terminates.
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If the teacher returns a counterexample w, we refine our abstraction. As a coun-
terexample either satisfies w ∈ I and w ∈ L(A), or w ∈ B ∩ L(A), we add w
to S+ in the first case and w to S− in the latter case. This excludes a spurious
behavior of further conjectures on w. Then, we continue with the next iteration.

Algorithm 2. The CEGAR-style learner

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

S A

“no” “yes”

L(A) is a proofAdd counterexample to S

Algorithm 2 follows the CEGAR approach in the following sense. The DFA A
produced from the sample in every iteration is an abstraction of the reachable
part of the program. In the beginning, the sample contains only a few words
and our algorithm will produce very coarse abstractions. An equivalence check
with the abstraction reveals if a proof has been found. If this is not the case,
counterexamples are used to refine the abstraction until a proof can be identified.

We can now state the main result of this section.

Theorem 2. Let P = (I, T ) be a program and B a regular set of bad config-
urations with B ∩ I = ∅. If a proof that P is correct with respect to B exists,
Algorithm 2 terminates and returns a (smallest) proof.

Proof (of Theorem 2). Due to the nature of equivalence queries, we know that
the result of Algorithm 2 is in fact a proof once the algorithm terminates. Thus,
it is enough to prove the termination of Algorithm 2 if a proof exists.

To this end, suppose that a proof exists, say with k states. We observe that
Algorithm 2 never conjectures the same DFA twice and that the size of the
conjectures increases monotonically. This can be seen as follows. Assume that
the conjecture Ai of iteration i has ni states and the conjecture Ai+1 of iteration
i+1 has ni+1 < ni states. Since the sample of iteration i+1 results from the one
of iteration i by adding one word to S+ or S−, Ai+1 is necessarily consistent with
the sample of iteration i, but has fewer states than Ai. This is a contradiction
to the fact that we only produce minimal DFAs.

A second observation is that every proof is consistent with the samples pro-
duced by Algorithm 2 as the sample contains only counterexamples for which the
teacher told us their classification; in particular, this holds for any smallest proof.
Moreover, since Algorithm 1 always returns a smallest consistent and inductive
DFA, it will eventually find a smallest proof as a solution once S+ and S− are
large enough to rule out any smaller consistent and inductive DFA—regardless
of the concrete choice of elements in S+ and S−. 
�
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4.3 The Angluin-Style Learner

Our Angluin-style learning algorithm is an extension of the CEGAR-style learner.
Like Angluin’s algorithm, it accelerates the learning process by additionally pos-
ing membership queries to gather further information before constructing a con-
jecture. Our general idea is to lift well-established querying techniques provided
by Angluin’s algorithm to our setting. Hence, when presenting the Angluin-style
learner below, we assume a basic understanding of Angluin’s algorithm [11].

Our Angluin-style learner, sketched as Algorithm 3, is an adaptation of a learn-
ing algorithm proposed by Grinchtein, Leucker, and Piterman [9]. The learner
maintains a prefix-closed set R ⊆ Σ∗ and a set S ⊆ Σ∗ of words. Moreover, the
learner organizes the learned data in a so-called table T : (R∪R·Σ)·S → {0, 1, ?},
which it fills by posing membership queries; the value of T (u) is the answer to a
membership query on u. The words from R are candidates for identifying states
of a conjecture, and the words from S are used to distinguish such states. Using
this intuition, we define two words r, r′ ∈ R ∪ R · Σ to be equivalent (i.e., to
potentially represent the same state), denoted by r ≈ r′, if they cannot be dis-
tinguished by words from S, i.e., T (rs) =? and T (r′s) =? implies T (rs) = T (r′s)
for all s ∈ S. In other words, r and r′ are equivalent, if the ?-entries in the table
can be resolved in such a way that T (rs) = T (r′s) holds for all s ∈ S.

Algorithm 3. The Angluin-style learner

Angluin’s
algorithm using
weak closedness
and consistency

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

Membership queries

S
A

“no” “yes”

L(A) is a proofAdd counterexample

Our Angluin-style learner works like Angluin’s algorithm, which makes the
table closed and consistent in every iteration. Since we need to handle ?-entries,
we switch to a weak notion of closedness and consistency as introduced in [9]:

– A table T is weakly closed if for r ∈ R and a ∈ Σ there exists an r′ ∈ R such
that ra ≈ r′. If this is not satisfied, the algorithm adds ra to R.

– A table T is weakly consistent if r ≈ r′ implies ra ≈ r′a for r, r′ ∈ R, a ∈ Σ.
If T is not weakly consistent, then there exists an s ∈ S such that T (ras) =?,
T (r′as) =?, and T (ras) = T (r′as), and the algorithm adds as to S.

Once T is weakly closed and weakly consistent, the Angluin-style learner turns
the table into a sample S = (S+, S−) where S+ = {rs | r ∈ R, s ∈ S, T (rs) =
1} and S− = {rs | r ∈ R, s ∈ S, T (rs) = 0}. Then, it applies one of the
approaches of Section 3 as a black-box to derive a smallest DFA A consistent
with S and inductive with respect to T and submits A to an equivalence query.
If the teacher replies “yes”, the learning terminates. Otherwise, the algorithm
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adds the returned counterexample and all of its prefixes to R and continues with
the next iteration.

The following theorem states the correctness of Algorithm 3. The proof is
similar to the proof of Theorem 2 and, hence, skipped here.

Theorem 3. Let P = (I, T ) be a program and B a regular set of bad config-
urations with B ∩ I = ∅. If a proof that P is correct with respect to B exists,
Algorithm 3 terminates and returns a (smallest) proof.

5 Related Work and Experiments

Related Work. We are aware of three established tools for Regular Model Check-
ing: T(o)rmc, Faster, and Lever. T(o)rmc iterates the given transducer and
tries to identify differences between the iterations. These differences are extrap-
olated using widening, which approximates the limit of an infinite iteration of
the transducer. The drawback of this method is that the bad configurations are
not taken into account during the computation. If the the result is not disjoint
to the bad configurations, the process has to be restarted with additional user
input, which requires expert knowledge about the problem at hand. Moreover,
T(o)rmc requires DFAs as input whereas our approach also works with NFAs,
which can be exponentially smaller than equivalent DFAs.

Faster computes the exact set of reachable configurations using acceleration,
i.e., by computating in-the-limit effects of iterating cycles. This might lead to
non-termination if the set of reachable configurations is not regular. In contrast,
our learners always find a proof if one exists. Moreover, Faster is originally
designed for integer linear systems over Presburger formulas, which are internally
translated into a Regular Model Checking problem. Thus, we can compare our
approaches only on examples that are expressible as integer linear systems.

The Lever tool uses Angluin’s learning algorithm to learn proofs. The main
difference from our approach lies in the fact that Lever does not learn a proof
directly, but a set of configurations that is augmented with distance information.
These distance information encode how often the transducer has to be applied to
reach a given configuration. The problem here is that these augmented sets are
often not regular although a proof exists. Then, in contrast to our approaches,
Lever is not guaranteed to terminate. Unfortunately, Lever is no longer pub-
licly available, and, hence, were not able to compare it to our approaches.

Experiments. To assess the performance of our learning algorithms, we im-
plemented a C++ prototype of both the CEGAR-style and the Angluin-style
learner. The implementation uses the libalf automaton learning library as well
as the GlucosER SAT solver and the Z3 SMT solver. We used two different
benchmarks suits: integer linear systems and examples in which the size of the
DFAs specifying initial and bad configurations were successively enlarged. For
all experiments, we used a PC with an Intel Q9550 CPU and 4GB of RAM (at
most 500MB were ever used) running Linux.
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The first benchmark suit contains integer linear systems available at the
Faster and T(o)rmc websites. Table 1 shows results for Faster, T(o)rmc

1,
our CEGAR-style approach (CEGAR), and our Angluin-style approach(Angluin)
on a simple petri net, the Berkeley cache coherence protocol, the Synapse cache
coherence protocol, a lift protocol, the M.E.S.I. Cache Coherence Protocol and
several more. Due to space constraints, we can provide only a selection of our
results. However, all experiments showed the same qualitative results. Table 1

Table 1. Results for integer linear systems

Experiment Angluin CEGAR T(o)rmc Faster

Glucoser Z3 Glucoser Z3

petri net 0.12 0.15 0.11 0.11 0.02 1.13
berkeley 0.62 0.92 1.29 1.45 4.23 0.03
synapse 0.04 0.07 0.06 0.16 0.19 0.03

lift 0.01 0.01 0.01 0.02 5.54 0.15
mesi 0.58 2.64 1.55 6.24 5.52 0.04

shows the running
times in seconds.
Faster performs best
on these examples,
with the exception of
petri net, where we
had to pick Faster-
specific parameters by
hand. On most ex-
amples, T(o)rmc is
outperformed by the
other tools.

The second benchmark suite demonstrates the advantages of our tool when
confronted with large automata for initial and bad configurations. The suite
contains examples of a modulo-counter and the well-known token ring protocol
where we successively increased the size of the input automata. Table 2 shows
the results together with the sizes of both initial and bad automata. In these
experiments, we also compared ourselves to the mere SAT-based approach of [8].
“TO” indicates a timeout after 300 seconds and “–” indicates that the experiment
could not be performed as we were not able to generate new benchmarks. We
observe that T(o)rmc is clearly outperfomed by the CEGAR-style learner on
the token-ring benchmark, but the solver-only method is the fastest. The best
algorithm for the modulo-counter is the Angluin-style learner using GlucosER.

In total, we observe two things. First, our experiments show that we can han-
dle problem instances specified for tools such as T(o)rmc and Faster with
competitive running times. Second, we observe that there is no superior algo-
rithm. In particular, there are examples where the CEGAR-style outperforms
the Angluin-style learner and vice versa, but both clearly beat T(o)rmc and
the solver-only approach on the second benchmark suite. For the benchmarks at
hand the implementations using the GlucosER SAT solver were always slightly
faster than the one using the Z3 SMT solver. Note, however, that this might be
different for larger instances as the size of the generated formulas grows faster
for SAT than for SMT formulas. Moreover, note that our implementation is only
an early prototype whereas T(o)rmc and Faster are highly optimized tools.

1 Please note that the 64-bit version of T(o)rmc did not work properly. The 32-bit
version partly worked but suffered from severe memory access violation and leaks.
For some benchmarks, T(o)rmc crashed and we were not able to obtain a result.
Furthermore, it was not possible to generate new benchmarks for T(o)rmc.
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Table 2. Results for Modulo counter and Token-ring

Experiment Size Angluin CEGAR Solver only T(o)rmc

init / bad Glucoser Z3 Glucoser Z3 Glucoser

Token-ring 50 / 3 1.23 1.52 0.07 0.14 0.02 0.31
150 / 3 132.70 137.74 0.95 1.11 0.04 6.78
250 / 3 TO TO 4.13 3.43 0.04 31.57
350 / 3 TO TO 11.02 13.53 0.04 89.66
450 / 3 TO TO 24.65 24.90 0.04 203.36

Modulo counter 14 / 125 0.29 0.41 0.75 1.03 0.24 –
14 / 156 0.58 0.99 1.75 2.09 0.29 –
34 / 187 1.13 3.52 4.04 6.48 1.29 –
34 / 218 2.49 20.42 6.45 47.84 27.49 –
82 / 249 21.27 100.48 45.23 178.59 TO –

6 Conclusion and Future Work

We presented two new algorithms for Regular Model Checking that combine
off-the-shelf SAT and SMT solver technologies with automata learning. Our pro-
totype implementation turned out to be competitive to Faster and T(o)rmc,
especially for large input automata. Moreover, our approaches work out-of-the-
box, do not require expert knowledge, and always find a proof if one exist.

As future work we would like to investigate the applicability of nonregular
sets of initial and bad configurations that still allow answering membership and
equivalence queries, e.g., visibly or deterministic context-free languages. Another
interesting field of further research is to use nondeterministic rather than deter-
ministic automata as representation of proofs. This will increase the size of the
formula ϕS,T

n on the one hand, but might yield an exponentially smaller result
on the other hand. Furthermore, we will consider an incremental SAT approach,
where clauses learnt during the solving process are reused in order to avoid
complete restarts of the solver.
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Abstract. Until recently, the preferred method of livelock detection was
via LTL model checking, which imposes complex constraints on partial
order reduction (por), limiting its performance and parallelization. The
introduction of the dfsfifo algorithm by Faragó et al. showed that live-
locks can theoretically be detected faster, simpler, and with stronger por.

For the first time, we implement dfsfifo and compare it to the LTL
approach by experiments on four established case studies. They show the
improvements over the LTL approach: dfsfifo is up to 3.2 times faster,
and it makes por up to 5 times better than with spin’s ndfs.

Additionally, we propose a parallel version of dfsfifo, which demon-
strates the efficient combination of parallelization and por. We prove
parallel dfsfifo correct and show why it provides stronger guarantees on
parallel scalability and por compared to LTL-based methods. Experi-
mentally, we establish almost ideal linear parallel scalability and por
close to the por for safety checks: easily an order of magnitude bet-
ter than for LTL.

1 Introduction

Context. In the automata-theoretic approach to model checking [27], the be-
havior of a system-under-verification is modeled, along with a property that it is
expected to adhere to, in some concise specification language. This model M is
then unfolded to yield a state space automaton AM (cf. Def. 1). Safety properties,
e.g. deadlocks and invariants, can be checked directly on the states in AM as they
represent all configurations of M. This check can be done during the unfolding,
on-the-fly, saving resources when a property violation is detected early on.

For more complicated properties, like liveness properties [1], AM is inter-
preted as an ω-automaton whose language L(AM) represents all infinite execu-
tions of the system. A property ϕ, expressed in linear temporal logic (LTL), is
likewise translated to a Büchi or ω-automaton A¬ϕ representing all undesired
infinite executions. The intersected language L(AM) ∩ L(A¬ϕ) now consists of
all counterexample traces, and is empty if and only if the system is correct with
respect to the property. The emptiness check is reduced to the graph problem of

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 32–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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finding cycles with designated accepting states in the cross product AM ⊗A¬ϕ

(cf. Sec. 2). The nested depth-first search (ndfs) algorithm [6] solves it in time
linear to the size of the product and on-the-fly as well.

Motivation. The model checking approach is limited by the so-called state space
explosion problem [1], which states that AM is exponential in the components of
the system, and A¬ϕ exponential in the size of ϕ. Luckily, several remedies exist
to this problem: patience, specialization and state space reduction techniques.

State space reduction via partial order reduction (por) prunes AM by avoiding
irrelevant interleavings of local components in M [16,26]: only a sufficient subset
of successors, the ample set, is considered in each state (cf. Sec. 2). For safety
properties, the ample set can be computed locally on each state. For liveness
properties, however, an additional condition, the cycle proviso, is needed to avoid
the so-called ignoring problem [9]. por can yield exponential reductions.

Patience also pays of exponentially as Moore’s law stipulates that the number
of transistors available in CPUs and memory doubles every 18 months [22]. Due
to this effect, model checking capabilities have increased from handling a few
thousand states to covering billions of states recently (this paper and [5]). While
this trend happily continues to increase memory sizes, it recently stopped be-
nefitting the sequential performance of CPUs because physical limitations were
reached. Instead, the available parallelism on the chips is rapidly increasing. So,
for runtime to benefit from Moore’s law, we must parallelize our algorithms.

Specialization towards certain subclasses of liveness properties, finally, can
also help to solve them more efficiently. For instance, a limitation to the CTL
and the weak-LTL fragments was shown to be efficiently parallelizable [25,3]. In
this paper, we limit the discourse to livelock properties, an important subclass
(used in about half of the case studies of 1 and a third of [24]) that investi-
gates starvation, occurring if an infinite run does not make progress infinitely
often. The definition of progress is up to the system designer and could for in-
stance refer to an increase of a counter or access to a shared resource. The spin

model checker allows the user to specify progress statements inside the specifi-
cation of the model [12], which are then represented in the model by the state
label ‘progress’ and referenced by the predefined progress LTL property [15]. Un-
til 1996, spin used a specific livelock verification algorithm. Section 6 of [15]
states that it was replaced by LTL model checking due to its incompatibility
with por.

Problem. LTL model checking can likely not be parallelized efficiently. The
current state-of-the-art reveals that parallel cycle detection algorithms either
raise the worst-case complexity to L2 [3] or to L · P [8], where L is the size of
the LTL cross product and P the number of processors. Moreover, its additional
constraints on por severely limit its reduction capabilities, even if implemented
with great care (see models allocation, cs and p2p in Table 1 in the appendix of
[9]). Last but not least, these constraints also limit the parallelization of por [2].

1 promela database: http://www.albertolluch.com/research/promelamodels.

http://www.albertolluch.com/research/promelamodels
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We want to investigate whether better results can be obtained for livelocks, for
which recently an efficient algorithm was proposed by Faragó et al. [11]: dfsfifo.
In theory, it has additional advantages over the LTL approach:
1. It uses the progress labels in the model directly without the definition of an

LTL property; avoiding the calculation of a larger cross product.
2. It requires only one pass over the state space, while the ndfs algorithm,

typically used for liveness properties, requires two.
3. It eliminates the need for the expensive cycle proviso with por. Not only is

the cycle proviso a highly limiting factor in state space reduction [9], it also
complicates the parallelization of the problem [2].

4. It finds the shortest counterexample with respect to progress.
But dfsfifo is yet to be implemented and evaluated experimentally, so its prac-
tical performance is unknown. Additionally, a few hypotheses stand unproven:
1. The algorithm’s strategy to delay progress as much as possible, may also be

a good heuristic for finding livelocks early, making it more on-the-fly.
2. Its por performance might be close to that of safety checks, because the cycle

proviso is no longer required [11], and the visibility proviso (see Table 1) is
also positively influenced by the postponing of progress.

3. The use of progress transitions instead of progress states is possible, seman-
tically more accurate, and can yield better partial order reductions.

Furthermore, no parallelization exists for the dfsfifo algorithm.

Contributions. We implemented the dfsfifo algorithm in the LTSmin [21,5],
with both progress states and transitions. For the latter, we extended theory,
algorithms, proofs, models and implementation. We compare the runtime and
por performance to that of LTL approaches using ndfs. For dfsfifo, we also
investigate the effect of using progress transitions instead of states on por.

Additionally, we present a parallel livelock algorithm based on dfsfifo, to-
gether with a proof of correctness. While the algorithm builds on previous effi-
cient parallelizations of the ndfs algorithm [8,17,19], we show that it has stronger
guarantees for parallel scalability due to the nature of the underlying dfsfifo al-
gorithm. At the same time, it retains all the benefits of the original dfsfifo
algorithm. This entails the redundancy of the cycle proviso, hence allowing for
parallel por with almost the same reductions as for safety checks.

Our experiments confirm the theoretical expectations: using dfsfifo on four
case studies, we observed up to 3.2 times faster runtimes than with the use of
an LTL property and the ndfs algorithm, even compared to measurements with
the spin model checker. But we also confirm all hypotheses of Faragó et al.: the
algorithm is more on-the-fly, and por performance is closer to that of safety
checks than the LTL approach, making it up to 5 times more effective than por

in spin. Our parallel version of the algorithm can work with por and features the
expected linear scalability. Its combination with por easily outperforms other
parallel approaches [3].

Overview. In Sec. 2, we recapitulate the intricacies of livelock detection via LTL
and via non-progress detection, as well as por. In Sec. 3, we introduce dfsfifo
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for progress transitions with greater detail and formality than in [11], as well as
its combination with por. Thereafter, in Sec. 4, we provide a parallel version
of dfsfifo with a proof of correctness, implementation considerations, and an
analysis on its scalability. Sec. 5 presents the experimental evaluation, compar-
ing dfsfifo’s (por) performance and scalability against the (parallel) LTL algo-
rithms in spin [13,15], DiVinE [2,3], and LTSmin [5,21]. We conclude in Sec. 6.

2 Preliminaries

Model Checking of Safety Properties. Explicit-state model checking algo-
rithms construct AM on-the-fly starting from the initial state s0, and recursively
applying the next-state function post to discover all reachable states RM. This
only requires storing states (no transitions). As soon as a counterexample is dis-
covered, the exploration can terminate early, saving resources. To reason about
these algorithms, it is however easier to consider AM structurally as a graph.

Definition 1 (State Space Automaton). An automaton is a quintuple AM =
(SM, s0, Σ, TM, L), with SM a finite set of states, s0 ∈ SM an initial state, Σ
a finite set of action labels, TM : SM × Σ → SM the transition relation, and
L : SM → 2AP a state labeling function, over a set of atomic propositions AP .

We also use the recursive application of the transition relation T : s π−→+s′ iff
π is a path in AM from s to s′, or s π−→∗s′ if possibly s = s′. We treat a path π
dually as a sequence of states and a sequence of actions, depending on the context.
We omit the subscript M whenever it is clear from the context.

Now, we can define: the reachable states RM = {s ∈ SM | s0 →∗ s}, the function
post : SM → 2Σ , such that post(s) = {α ∈ Σ | ∃s′ ∈ SM : (s, α, s′) ∈ TM}
and α(s) as the unique next-state for s, α if α ∈ post(s), i.e. the state t with
(s, α, t) ∈ TM. Note that a state s ∈ S comprises the variable valuations and
process counters in M. Hence, we can use any proposition over these values as
an atomic proposition representing a state label. For example, we may write
progress ≡ Peterson0 = CS to have progress ∈ L(s) iff s represents a state where
process instance 0 of Peterson is in its critical section CS. Or we can write
error ≡ N > 1 to express the mutual exclusion property, with N the number of
processes in CS. These state labels can then be used to check safety properties
using reachability, e.g., an invariant ‘¬error ′ to check mutual exclusion in M.

LTL Model Checking. For an LTL property, the property ϕ is transformed to
an ω-automaton A¬ϕ as detailed in [27]. Structurally, the ω-automaton extends a
normal automaton (Def. 1) with dedicated accepting states (see Def. 2). Seman-
tically, these accepting states mark those cycles that are part of the ω-regular
language L(A¬ϕ) as defined in Def. 3.

To check correctness of M with respect to a property ϕ, the cross product of
A¬ϕ with the state space AM is calculated: AM×ϕ = AM ⊗A¬ϕ. The states of
SM×ϕ are formed by tuples (s, s′) with s ∈ SM and s′ ∈ S¬ϕ, with (s, s′) ∈ F
iff s′ ∈ F¬ϕ. Hence, the number of possible states |SM×ϕ| equals |SM| · |S¬ϕ|,
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whereas the number of reachable states |RM×ϕ| may be smaller. The transitions
in TM×ϕ are formed by synchronizing the transition labels of A¬ϕ with the state
labels in AM. For an exact definition of TM×ϕ, we refer to [1].

Definition 2 (Accepting states). The set of accepting states F corresponds
to those states with a label accept ∈ AP : F = {s ∈ S | accept ∈ L(s)}.

Definition 3 (Accepting run). A lasso-formed path s0 v−→∗s w−→+s in A, with
s ∈ F , constitutes an accepting run, part of the language of A: vwω ∈ L(A).

As explained in Sec. 1, the whole procedure of finding counterexamples to ϕ
for M is now reduced to the graph problem of finding accepting runs in AM×ϕ.
This can be solved by the nested depth-first search (ndfs) algorithm, which does
at most two explorations of all states RM×ϕ. Since AM×ϕ can be constructed
on-the-fly, ndfs saves resources when a counterexample is found early on.

Livelock Detection. Livelocks form a specific, but important subset of the live-
ness properties and can be expressed as the progress LTL property: �♦progress,
which states that on each infinite run, progress needs to be encountered infinitely
often. As the LTL approach synchronizes the state labels of AM (see Def. 3), it
requires that progress is defined on states as in Def. 4.

Definition 4 (Progress states). The set of progress states SP corresponds to
those states with a state label progress ∈ AP : SP = {s ∈ S | progress ∈ L(s)}.

Definition 5 (Non-progress cycle). A reachable cycle π in AM is a non-
progress cycle (NPcycle) iff it contains no progress P.

We define NP as a set of states: NP = {s ∈ SM | ∃π : s π−→+s∧ π ∩P = ∅}.

Theorem 1. Under P = SP , AM contains a NPcycle iff the crossproduct with
the progress property AM×�♦progress contains an accepting cycle.

Livelocks can however also be detected directly on AM if we consider for a
moment that a counterexample to a livelock is formed by an infinite run that
lacks progress P , with P = SP . By proving absence of such non-progress cycles
(Def. 5), we do essentially the same as via the progress LTL property, as Th. 1
shows (see [15] for the proof and details). This insight led to the proposal of
dedicates algorithms in [15,11] (cf. dfsfifo in Sec. 3), requiring |RM| time units
to prove livelock freedom. The automaton A¬�♦progress consists of exactly two
states [15], hence |RM| · 2 ≤ |RM×ϕ|. This, combined with the revisits of the
ndfs algorithm, makes the LTL approach up to 4 times as costly as dfsfifo.

Partial Order Reduction. To achieve the reduction as discussed in the in-
troduction, por replaces the post with an ample function, which computes a
sufficient subset of post to explore only relevant interleavings w.r.t the prop-
erty [16].

For deadlock detection, ample only needs to fulfill the emptiness proviso
and dependency proviso (Table 1). The provisos can be deduced locally from s,
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Table 1. por provisos for the LTL model checking of M with a property ϕ

C0 emptiness ample(s) = ∅ ⇔ post(s) = ∅
C1 dependency No action α �∈ ample(s) that is dependent on another β ∈ ample(s),

i.e. (α, β) ∈ D, can be executed in the original AM after reaching
the state s and before some action in ample(s) is executed.

C2 visibility ample(s) �= post(s) =⇒ ∀α ∈ ample(s) : α is invisible, which
means that α does not change a state label referred to by ϕ.

C3 cycle For a cycle π in AM, ∃s ∈ π : post(s) = ample(s).
C3’ cycle (impl.) ample(s) �= post(s)⇒ �α ∈ ample(s) s.t. α(s) is on the dfs stack.

post(s), and dependency relations D ⊆ ΣM × ΣM that can be statically over-
estimated from M, e.g. (α, β) ∈ D if α writes to those variables that β uses as
guard [23]. For a precise definition of D consult [16,26].

In general, the model checking of an LTL property (or invariant) ϕ requires
two additional provisos to hold: the visibility proviso ensures that traces included
in A¬ϕ are not pruned from AM, the cycle proviso prevents the so-called ignor-
ing problem [9]. The strong variant C3 (stronger than A4 in [1, Sec. 8.2.2]) is
already hard to enforce, so often an even stronger condition, e.g. C3’, is imple-
mented. While visibility can still be checked locally, the cycle proviso is a global
property, that complicates parallelization [2]. Moreover, the ndfs algorithm re-
visits states, which might cause different ample sets for the same states, because
the procedure is non-deterministic [15]. To avoid any resulting redundant explo-
rations, additional bookkeeping is needed to ensure a deterministic ample set.

3 Progress Transitions and dfsfifo for Non-progress

In the current section, we refine the definition of progress to include transitions.
We then present a new version of dfsfifo, an efficient algorithm for non-progress
detection by Faragó et al. [11], which supports this broader definition. We also
discuss implementation considerations and the combination with por.

s1

s2

s3

α

Progress Transitions. As argued in [11], progress is more naturally
defined on transitions (Def. 6) than on states. After all, the action itself,
e.g. the increase of a counter in M, constitutes the actual progress. This
becomes clear considering the semantical difference between progress
transitions and progress states for livelock detection: The figure on the
right shows an automaton with SP = {s1} and T P = {(s2, α, s1)}.
Thus the cycle s2 ↔ s3 exhibits only fake progress when progress states are used
(P = SP ): the action performing the progress, α, is never taken. With progress
transitions (P = T P), only s2 ↔ s3 can be detected as NPcycle. While fake
progress cycles could be hidden by enforcing strong (A-)fairness [1], Spin’s weak
(A-)fairness [12] is insufficient [11]. But enforcing any kind of fairness is costly [1].

Definition 6 (Progress transitions/actions). We define progress transitions
as: T P = {(s, α, s′) ∈ T | α ∈ ΣP}, with ΣP ⊆ Σ a set of progress actions.
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Algorithm 1. dfsfifo for progress transitions and progress states

1: procedure dfs-fifo(s0)
2: F := {s0} 	Frontier queue
3: V := ∅ 	Visited set
4: S := ∅ 	Stack
5: repeat
6: s := some s ∈ F
7: if s �∈ V then
8: dfs(s)
9: F := F \ {s}

10: until F = ∅
11: report progress ensured

12: procedure dfs(s)
13: S := S ∪ {s}
14: for all t := α(s) s.t. α ∈ post(s) do
15: if t ∈ S ∧ α, t �∈ P then
16: report NPcycle
17: if t �∈ V then
18: if α, t �∈ P then
19: dfs(t)
20: else if t �∈ F then
21: F := F ∪ {t}
22: V := V ∪ {s}
23: S := S \ {s}

Theorem 2. dfsfifo ensures: R∩NP = ∅ ⇔ dfs-fifo(s0) = report NPcycle

dfsfifo. Alg. 1 shows an adaptation of dfsfifo that supports the definition of
progress on both states and transitions (actions), so P = SP ∪ΣP . Intuitively,
the algorithm works by delaying progress as long as possible using a bfs and
searching for NPcycles in between progress using a dfs. The correctness of this
adapted algorithm follows from Th. 2, which is implied by Th. 4 with P = 1.

The FIFO queue F holds progress states, or immediate successors of progress
transitions (which we will collectively refer to as after-progress states), with the
exception of the initial state s0. The outer dfs-fifo loop handles all after-progress
states in breadth-first order. The dfs procedure, starting from a state in F then
explores states up to progress, storing visited states in the set V (l.22), and after-
progress states in F (l.21). The stack of this search is maintained in a set S (l.13
and l.23) to detect cycles at l.16. All states t ∈ S and their connecting transitions
are non-progress by l.18, except for possibly the starting state from F . next page−→
The cycle-closing transition s α−→t might also be a progress transition. Therefore,
l.15 performs an additional check α, t ∈ P . Furthermore, an after-progress state
s ∈ SP added to F , might be reached later via a non-progress path and added
to V . Hence, we discard visited states in dfs-fifo at l.7.

Implementation. An efficient implementation of Alg. 1 stores F and V in
one hash table (using a bit to distinguish the two) for fast inclusion checks,
while F is also maintained as a queue F q. S can be stored in a separate hash
table as |S| � |R|. Counterexamples can be reconstructed if for each state
a pointer to one of its predecessors is stored [20]. Faragó et al. showed two
alternatives [11], which are also compatible with lossy hashing [4].

Table 2. por visibility provisos for dfsfifo

C2S ample(s) = post(s) =⇒ s ∈ SP

C2T ample(s) = post(s) =⇒ ∀α ∈ ample(s) : α ∈ ΣP
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Combination with por. While the four-fold performance increase of dfsfifo
compared to LTL (Sec. 2) is a modest gain, the algorithm provides even more
potential as it relaxes conditions on por, which, after all, might yield exponential
gains. In contrast to the LTL method using ndfs, dfsfifo does not revisit states,
simplifying the ample implementation. Moreover, Lemma 1 shows that dfsfifo
does not require the cycle proviso using a visibility proviso from Table 2.

Lemma 1. Under P = SP , C2S implies C3. Under P = ΣP , C2T implies C3.

Proof. If dfsfifo with por traverses a cycle C which makes progress, i.e. ∃s ∈
C : s ∈ SP ∨ ample(s)∩C ∩ΣP = ∅, C2S/ C2T guarantees full expansion of s,
thus fulfilling C3. If dfsfifo traverses a NPcycle, it terminates at l.16. 
�

Theorem 3. Th. 2 still holds for dfsfifo with C0, C1, C2S/ C2T .

Proof. Lemma 1 shows that if the C0, C1 and C2S/ C2T hold, so does C3.
Furthermore, C0, C1 and C2S/ C2T are independent of the path leading to s,
so ample(s) with dfsfifo retains stutter equivalence related to progress [14, p.6].
Therefore, the reduced state space has a NPcycle iff the original has one. 
�

4 A Parallel Livelock Algorithm Based on dfsfifo

Alg. 2 presents a parallel version of dfsfifo. The algorithm does not differ much
from Alg. 1: the dfs procedure remains largely the same, and only dfs-fifo is split
into parallel fifo procedures handling states from the FIFO queue F concurrently.
The technique to parallelize the dfs(s, i) calls is based on successful multi-core
ndfs algorithms [17,19,8]. Each worker thread i ∈ 1..P uses a local stack Si,
while V and F are shared (below, we show how an efficient implementation can
partially localize F ). The stacks may overlap (see l.2 and l.9), but eventually
diverge because we use a randomized next-state function: post i (see l.15).

Proof of Correctness. Th. 4 proves correctness of Alg. 2. We show that the
propositions below hold after initialization of Alg. 2, and inductively that they

Algorithm 2 . Parallel dfsfifo (pdfsfifo)
1: procedure dfs-fifo(s0, P )
2: F := {s0} 	Frontier queue
3: V := ∅ 	Visited set
4: Si := ∅ for all i ∈ 1..P 	Stacks
5: fifo(1) ‖ . . . ‖ fifo(P )
6: report progress ensured
7: procedure fifo(i)
8: while F �= ∅ do
9: s := some s ∈ F

10: if s �∈ V then
11: dfs(s, i)
12: F := F \ {s}

13: procedure dfs(s, i)
14: Si := Si ∪ {s}
15: for all t := α(s) s.t. α ∈ post i(s) do
16: if t ∈ Si ∧ α, t �∈ P then
17: report NPcycle
18: if t �∈ V then
19: if α, t �∈ P then
20: dfs(t, i)
21: else if t �∈ F then
22: F := F ∪ {t}
23: V := V ∪ {s}
24: Si := Si \ {s}
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are maintained by execution of each statement in the algorithm, considering
only the lines that influence the proposition. Rather than restricting progress to
either transitions or states, we prove the algorithm correct under P = SP ∪T P .
Hence, the dual interpretation of paths (see Def. 1) is used now and then. Note
that a call to report terminates the algorithm and the callee does not return.

Lemma 2. Upon return of dfs(s, i), s is visited: s ∈ V .

Proof. l.23 of dfs(s, i) adds s to V . 
�

Lemma 3. Invariantly, all direct successors of a visited state v are visited or in F :
∀v ∈ V, α ∈ post(v) : α(v) ∈ V ∪ F .

Proof. After initialization, the invariant holds trivially, as V is empty. V is only
modified at l.23, where s is added after all its immediate successors t are consid-
ered at l.16–22: If t ∈ V ∪F , we are done. Otherwise, dfs(s, i) terminates at l.17
or t is added to V at l.20 (Lemma 2) or to F at l.22. States are removed from
F at l.12, but only after being added to V at l.11 (Lemma 2). 
�

Corollary 1. Lemma 3 holds also for a state v ∈ V in dfs(v, i) just before l.23.

Lemma 4. Invariantly, all paths from a visited state v to a state f ∈ F \ V
contain progress: ∀π, v ∈ V, f ∈ F \ V : v π−→f =⇒ P ∩ π = ∅.

Proof. After initialization of the sets V and F , the lemma is trivially true. These
sets are modified at l.12, l.22, and l.23 (omitting the trivial case):

l.22 Let i be the first worker thread to add a state t to F in dfs(s, i) at l.22. If
some other worker j adds t to V , the invariant holds trivially, so we consider
t ∈ V . By l.19, all paths v →∗ s → t contain progress. By contradiction,
we show that all other paths that do not contain s also contain progress:
Assume that there is a v ∈ V such that v π−→+t and P∩π = ∅. By induction
on the length of the path π and Lemma 3, we obtain either t ∈ V , a
contradiction, t ∈ F \V , contradicting the assumption that worker i is first,
or another f = t with f ∈ F \V , for which the induction hypothesis holds.

l.23 Assume towards a contradiction that i is the first worker thread to add a
state s to V at l.23 of dfs(s, i). So, we have s ∈ V before l.23. By Cor. 1, for
all immediate successors t of s, i.e. for all t = α(s) such that α ∈ post(s),
we have t ∈ V or t ∈ F \ V . In the first case, since s = t, the induction
hypothesis holds for t. In the second case, if t = s, the invariant trivially
holds after l.23, and if t = s, we have α, t ∈ P , since otherwise t ∈ V by l.19
and l.20 (Lemma 2). Thus the invariant holds for all paths s →+ f . 
�

Remark 1. Note that a state s ∈ F might at any time be also added to V by
some other worker thread in two cases: (1) s ∈ SP , i.e. it was reached via a
progress transition (see l.19), but is reachable via some other non-progress path,
or (2) another worker thread j takes s from F at l.9 and completes dfs(s, j).

Lemma 5. Invariantly, visited states do not lie on NPcycles: V ∩ NP = ∅.
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Proof. Initially, V = ∅ and the lemma holds trivially. Let i be the first worker
thread to add s to V in dfs(s, i) at l.23. So we have s ∈ V just after l.23 of
dfs(s, i). Assume towards a contradiction that s ∈ NP . Then there is a NPcycle
s → t →+ s with s = t since otherwise l.17 would have reported a NPcycle.
Now by Lemma 3, t ∈ V ∪ F . By the induction hypothesis, t ∈ V , so t ∈ F \ V .
Lemma 4 contradicts s → t making no progress. 
�

Lemma 6. Upon return of dfs-fifo, all reachable states are visited: R ⊆ V .

Proof. After dfs-fifo(s0, P ), F = ∅ by l.8. By l.2, l.11 and Lemma 2, s0 ∈ V . So
by Lemma 3, R ⊆ V . 
�

Lemma 7. dfs-fifo terminates and reports an NPcycle or progress ensured.

Proof. Upon return of a call dfs(s, i) for some s ∈ F at l.11, s has been added
to V (Lemma 2), removed from F at l.12, and will never be added to F again.
Hence the set V grows monotonically, but is bounded, and eventually F = ∅.
Thus eventually all dfs calls terminate, and dfs-fifo(s0, P ) terminates too. 
�

Lemma 8. Invariantly, the states in Si form a path without progress except for
the first state: Si = ∅ or Si = π ∩ S for some s π−→∗s′ and π ∩ P ⊆ {s1}.
Proof. By induction over the recursive dfs(s, i) calls, we obtain π. At l.20, we
have α, t ∈ P , but at l.11 we may have s ∈ SP (by l.19 and l.22). 
�
Theorem 4. pdfsfifo ensures:R∩NP = ∅⇔dfs-fifo(s0, P ) = report NPcycle

Proof. We split the equivalence into two cases:
⇐: We have a cycle: s α−→t π−→s s.t. ({α} ∪ π) ∩ P = ∅ by l.16 and Lemma 8.
⇒: Assume that dfs-fifo(s0, P ) = NPcycle ∧ R ∩ NP = ∅. However, at l.6,

R ⊆ V by Lemma 6 and Lemma 7, hence R∩NP = ∅ by Lemma 5. 
�

Implementation. For a scaling implementation, the hash table storing F and V
(see Sec. 3) is maintained in shared memory using a lockless design [20,18].
Storing also the queue F q in shared memory, however, would seriously impede
scalability due to contention (recall that F is maintained as both hash table and
queue F q). Our more efficient implementation splits F q into P local queues F q

i ,
such that F ⊆

⋃
i∈1..P F

q
i (Remark 1 explains the ⊆).

To implement load balancing, one could relax the constraint at l.21 to s ∈ F q,
so that after-progress states end up on multiple local queues. Provided that AM
is connected enough, which it usually is in model checking, this would provide
good work distribution already. On the other hand, the total size of all queues
F q
i would grow proportional to P , wasting a lot of memory on many cores.

1: procedure fifo(i)
2: F q

i := {s0}
3: while steal(F q

i ) do
4: F q

i := F q
i \ {s}

5: if s �∈ V then
6: dfs(s, i)

Therefore, we instead opted to add explicit load bal-
ancing via work stealing. The code on the left illus-
trates this. Iff the local queue F q

i is empty, the steal
function grabs states from another random queue F q

j

and adds them to F q
i , returning false iff it detects

termination. Inspection of Lemma 3 and Lemma 7
shows that removing s from F is not necessary.
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The proofs show that correctness of pdfsfifo does not require F to be in
strict FIFO order (as l.9 does not enforce any order). To optimize for scalability,
we enforce a strict bfs order via synchronizations2 between the bfs levels only
optionally3. As trade-off, counterexamples are no longer guaranteed to be the
shortest with respect to progress, and the size of F may increase (see Remark 1).

s

tu v

Analysis of Scalability. Experiments with multi-core ndfs [8]
demonstrated that these parallelization techniques make the
state-of-the-art for LTL model checking. Because of the bfs

nature of dfsfifo, we can expect even better speedups. More-
over, in [17], additional synchronization was needed to prevent workers from
early backtracking; a situation in which two workers exclude a third from part
of the state space. The figure on the right illustrates this: Worker 1 can visit s,
v, t and u, and then halt. Worker 2 can visit s, u, t and v and backtrack over
v. If now Worker 1 resumes and backtracks over u, both v and u are in V . A
third worker will be excluded from visiting t, which might lead to a large part
of the state space. Lemma 3 shows that this is impossible for pdfsfifo as the
successors of visited states are either visited or in F (treated in efficient parallel
bfs), but never do successors lie solely on the stack Si (as in cndfs).

5 Experimental Evaluation

In the current section, we benchmark the performance of dfsfifo, and its combi-
nation with por, using both progress states and progress transitions. We com-
pare the results against the LTL approach with progress property using, inter
alia, spin [12]. We also investigate the scalability of pdfsfifo, and compare the
results against the multi-core ndfs algorithm cndfs, the state-of-the-art for
parallel LTL [8,5], and the piggyback algorithm in spin (PB). Finally, we in-
vestigate the combination of pdfsfifo and por, and compare the results with
owcty [3], which uses a topological sort to implement paralel LTL and por [2].

We implemented pdfsfifo (Alg. 2 with work stealing and both strict3/non-
strict BFS order) in LTSmin [21] 2.0.4 LTSmin has a frontend for promela,
called spins [12], and one for the DVE language, allowing fair comparison [21,5]
against spin 6.2.3 and DiVinE 2.5.2 [3]. To ensure similar state counts, we turned
off control-flow optimizations in spins/spin, because spin has a more powerful
optimizer, which can be, but is not yet implemented in spins. Only the GIOP
model (described below) still yields a larger state count in spins/LTSmin than
in spin. We still include it as it nicely features the benefits of dfsfifo over ndfs.

We benchmarked on a 48-core machine (a four-way AMD Opteron 6168) with
128GB of main memory, and considered 4 publicly available1

promela models
with progress labels, and adapted spins to interpret the labels as either progress
states, as in spin, or progress transitions. leadert is the efficient leader election

2 Parallel bfs algorithms, with and without synchronization, are described in [7].
3 The command line option --strict turns on strict pdfsfifo in LTSmin.
4 LTSmin is open source, available at: http://fmt.cs.utwente.nl/tools/ltsmin.

http://fmt.cs.utwente.nl/tools/ltsmin
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Table 3. Runtimes (sec) of (sequential) dfs, dfsfifo, ndfs in spin and LTSmin

LTSmin spin
|R| |Rltl| Tdfs Tdfsfifo Tndfs |R| |Rltl| Tdfs Tndfs

leadert 4.5E7 198% 153.7 233.2 753.6 4.5E7 198% 304.0 1,390.0
garp 1.2E8 150% 377.1 591.2 969.2 1.2E8 146% 1,370.0 2,050.0
giop 2.7E9 oom 21,301.4 43,154.3 oom 8.4E7 181% 1,780.0 4,830.0
i-prot 1.4E7 140% 28.4 41.4 70.6 1.4E7 145% 63.3 103.0

protocol Atiming [10]. The Group Address Registration Protocol (GARP) is a
datalink-level multicast protocol for a bridged LAN. General Inter-Orb Protocol
(GIOP) models service oriented architectures. The model i-Protocol represents
the gnu implementation of this protocol. We use a different leader election proto-
col (leaderDKR) from [24] for comparison against DiVinE. For all these models,
the livelock property holds under P = SP and P = T P .5

Performance. In theory, dfsfifo can be up to four times as fast as using
the progress LTL formula and ndfs. To verify this, we compare dfsfifo to ndfs

in LTSmin and spin. In LTSmin, we used the command line: prom2lts-mc --
state=tree -s28 --strategy=[dfsfifo/ndfs] [model], which replaces the shared table (for
F and V ) by a tree table for state compression [18]. In spin, we used compres-
sion as well (collapse [12]): cc -O2 -DNP -DNOFAIR -DNOREDUCE -DNOBOUNDCHECK

-DCOLLAPSE -o pan pan.c, and pan -m100000 -l -w28, avoiding table resizes and
overhead. In both tools, we also ran dfs reachability with similar commands.
We write oom for runs that overflow the main memory.

Table 3 shows the results: As expected, |Rltl| is 1.5 to 2 times larger than
|R| for both spin and LTSmin; GIOP fits in memory for dfsfifo but the LTL
cross-product overflows (ndfs). Tndfs is about 1.5 to 4 times larger than Tdfs
for spin, 2 to 5 times larger for LTSmin (cf. Section 2). Tdfsfifo is 1.5 to 2 times
larger than Tdfs, likely caused by its set inclusion tests on S and F . Tndfs is 1.6
to 3.2 times larger than Tdfsfifo .

Parallel Scalability. To compare the parallel algorithms in LTSmin, we use
the options --threads=P --strategy=[dfsfifo/cndfs], where P is the number of worker
threads. In spin, we use -DBFS_PAR, which also turns on lossy state hashing [13],
and run the pan binary with an option -uP . This turns on a parallel, linear-time,
but incomplete, cycle detection algorithm called piggyback (PB) [13]. It might also
be unsound due its combination with lossy hashing [4]. Fig. 1 shows the obtained
speedups: As expected, reachability [20] and pdfsfifo scale almost ideally, while
cndfs exhibits sub-linear scalability, even though it is the fastest parallel LTL so-
lution [8]. PB also scales sub-linearly. Since LTSmin sequentially competes with
spin (Table 4, except for GIOP), scalability can be compared.

Parallel Memory Use. We expected few state duplication in F on local queues
(see Remark 1). To verify this, we measured the total size of all local queues and
hash tables using counters for strict3 and non-strict pdfsfifo, and cndfs. Table 4
shows QP =

∑
i∈1..P |F q

i |+ |Si| averaged over 5 runs: Non-strict pdfsfifo shows

5 Models that we modified are available at http://doiop.com/leader4DFSFIFO.

http://doiop.com/leader4DFSFIFO
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Fig. 1. Speedups of dfs, pdfsfifo and cndfs in LTSmin, and piggyback in spin

Table 4. Runtimes (sec) / queue sizes of the parallel algorithms: dfs, pdfsfifo and
cndfs in LTSmin, and PB in spin

dfs pdfsfifo cndfs PB pdfsstrictfifo pdfsnon-strict
fifo cndfs

T1 T48 T1 T48 T1 T48 T1 Tmin Q1 Q48 Q1 Q48 Q1 Q48

leadert 153.7 3.8 233.2 5.7 925.7 51.4 228.0 25.9 1.0E6 1.2E6 1.2E6 1.4E6 2.7E6 3.6E7
garp 377.1 8.8 591.2 13.1 1061.0 58.6 1180.0 70.9 1.9E7 2.0E7 1.9E7 5.3E6 5.5E6 6.5E7
giop 2.1E4 463.3 4.3E4 9.7E2 oom oom 1.2E3 57.8 1.1E9 8.4E8 1.1E9 8.4E8 oom oom
i-prot 28.4 0.7 41.4 1.1 75.9 3.7 86.2 17.7 1.0E6 1.1E6 1.0E6 1.3E6 8.3E5 1.0E7

little difference from the strict variant, and Q48 is at most 20% larger than
Q1 for all pdfsfifo. Due to the randomness of the parallel runs, we even have
Q48 < Q1 in many cases. Revisits occurred at most 2.6% using 48 cores. In
the case of cndfs, the combined stacks typically grow because of the larger
dfs searches. Accordingly, we found that pdfsfifo’s total memory use with 48
cores was between 87% and 125% compared to sequential dfs. In the worst case,
pdfsfifo (with tree compression) used 52% of the memory use of PB (collapse
compression and lossy hashing) [18,5] – GIOP excluded as its state counts differ.

por Performance. LTSmin’s por implementation (option --por) is based on
stubborn sets [26], described in [23], and is competitive to spin’s [5]. We extended
it with the alternative provisos for dfsfifo: C2S and C2T . Table 5 shows the
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Table 5. por (%) for dfsTfifo, dfsSfifo, dfs and ndfs in spin and LTSmin

LTSmin spin
dfs dfsTfifo dfsSfifo ndfs dfs ndfsspin

leadert 0.32% 0.49% 99.99% 99.99% 0.03% 1.15%
garp 1.90% 2.18% 4.29% 16.92% 10.56% 12.73%
giop 1.86% 1.86% 3.77% oom 1.60% 2.42%
i-prot 16.14% 31.83% 100.00% 100.00% 24.01% 41.37%

Table 6. por and speedups for leaderDKR using pdfsfifo, cndfs and owcty

N Alg. |R| |T | T1 T48 U |Rpor| |T por| T por
1 T por

48 Upor

9 cndfs 3.6E7 2.3E8 502.6 12.0 41.8 27.9% 0.1% 211.8 n/a n/a
9 pdfsfifo 3.6E7 2.3E8 583.6 14.3 40.8 1.5% 0.0% 12.9 3.6 3.5
9 owcty 3.6E7 2.3E8 498.7 51.9 9.6 12.6% 0.0% 578.4 35.7 16.2

10 cndfs 2.4E8 1.7E9 —30’ 90.7 —30’ 19.3% 5.4% 1102.7 n/a n/a
10 pdfsfifo 2.4E8 1.7E9 —30’ 109.3 —30’ 0.7% 0.1% 35.0 2.5 14.0
10 owcty 2.4E8 1.7E9 —30’ 663.1 —30’ 8.7% 2.2% —30’ 156.3 —30’
11 pdfsfifo —30’ —30’ —30’ —30’ —30’ 5.1E6 7.1E6 109.8 5.3 20.7
11 owcty —30’ —30’ —30’ —30’ —30’ 9.3E7 1.7E8 —30’ 1036.5 —30’
12 pdfsfifo —30’ —30’ —30’ —30’ —30’ 1.6E7 2.2E7 369.1 11.2 33.0
13 pdfsfifo —30’ —30’ —30’ —30’ —30’ 6.6E7 9.2E7 1640.5 38.1 43.0
14 pdfsfifo —30’ —30’ —30’ —30’ —30’ 2.0E8 2.9E8 —30’ 120.3 —30’
15 pdfsfifo —30’ —30’ —30’ —30’ —30’ 8.4E8 1.2E9 —30’ 527.5 —30’

relative number of states, using the different algorithms in both tools: For all
models, both LTSmin and spin are able to obtain reductions of multiple orders
of magnitude using their dfs algorithms. We also observe that much of this
benefit disappears when using the ndfs LTL algorithm due to the cycle proviso,
although spin often performs much better than LTSmin in this respect. Also
dfsfifo with progress states (column dfs

S
fifo), performs poorly: apparently, the

C2S proviso is so restrictive that many states are fully expanded. But dfsfifo
with progress transitions (column dfs

T
fifo) retains dfs’s impressive por with at

most a factor 2 difference.

Scalability of Parallelism and por. We created multiple instances of the
leaderDKR models by varying the number of nodes N and expressed the progress
LTL property in DiVinE. We start DiVinE’s state-of-the-art parallel LTL-por

algorithm, owcty, by: divine owcty [model] -wP -i30 -p. With the options described
above, we turned on por in LTSmin and ran pdfsfifo, and cndfs, for compar-
ison. We limited each run to half an hour (—30’ indicates a timeout). Piggyback
reported contradictory memory usage and far fewer states (e.g. <1%) compared
to dfs with por, although it must meet more provisos. Thus we did not compare
against piggyback and suspect a bug.

Table 6 shows that pdfsfifo and por complement each other rather well:
Without por (left half of the table) the almost ideal speedup (U = T1

T48
=

40.8) allows to explore one model more: N ≤ 10 instead of only N = 9. When
enabling por (right half of the table), we see again multiple orders of magnitude
reductions, while parallel scalability reduces to U = 3.5 for N = 9, because of
the small size of the reduced state space (|Rpor|). When increasing the model
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size to N = 13 the speedup grows again to an almost ideal level (U = 43). With
por, the parallelism allows us to explore two more models within half an hour,
i.e., N ≤ 15. While owcty and ndfs also show this effect, it is less pronounced
due to their cycle proviso, allowing N ≤ 11 for owcty and N ≤ 9 for ndfs.

As livelocks are disjoint from the class of weak LTL properties, owcty could
become non-linear [3], but it required only one iteration for leaderDKR.

As pdfsfifo revisits states, the random next-state function could theoretically
weaken por (as for ndfs, see Sec. 2). But for all our 5 models, this did not occur.

cndfs pdfsTfifo cndfs pdfsTfifo
T1 T48 T1 T48 C1 C48 C1 C48

shallow —30’ 7 12 4 —30’ 16 16 16
deep 16

(once
—30’

)
2 —30’ 451 577 499 —30’ 51

On-the-Fly Performance. We cre-
ated a leader election protocol with
early (shallow) and another with late
(deep) injected NPcycles (see 5, [10]).
The table on the right shows the average runtime in seconds (T ) and counterex-
ample length (C) over five runs. Since pdfsfifo finds shortest counterexamples3,
it outperforms cndfs for shallow (more relevant in practice) and pays a penalty
for deep. Both algorithms benefit greatly from massive parallelism (see also [19]).

6 Conclusions
We showed, in theory and in practice, that model checking livelocks, an impor-
tant subset of liveness properties, can be made more efficient by specializing on
it. For our pdfsfifo implementation with progress transitions, por becomes sig-
nificantly stronger (cf. Table 5), parallelization has linear speedup (cf. Fig. 1),
and both can be combined efficiently (cf. Table 6).

Acknowledgements. We thank colleagues Mark Timmer, Mads Chr. Olesen,
Christoph Scheben and Tom van Dijk for their useful comments on this paper.
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Abstract. Human-human communication is critical to safe operations in do-
mains such as air transportation where airlines develop and train pilots on
communication procedures with the goal to ensure that they check that verbal
air traffic clearances are correctly heard and executed. Such communication pro-
tocols should be designed to be robust to miscommunication. However, they can
fail in ways unanticipated by designers. In this work, we present a method for
modeling human-human communication protocols using the Enhanced Operator
Function Model with Communications (EOFMC), a task analytic modeling for-
malism that can be interpreted by a model checker. We describe how miscommu-
nications can be generated from instantiated EOFMC models of human-human
communication protocols. Using an air transportation example, we show how
model checking can be used to evaluate if a given protocol will ensure successful
communication. Avenues of future research are explored.

Keywords: Task analysis, Human-human communication, Air traffic control,
Formal methods, Model checking, Human error.

1 Introduction

Human-human communication is critical to the safe operations of many complex sys-
tems. For example, until the Data Communication Integrated Services (DCIS) contract
is fully implemented [25], voice communications will continue to be the primary mech-
anism for air traffic control clearances in the United States [1]. In many work do-
mains, institutions develop human-human communication protocols to support safer
operations. In air transportation, for example, the pilot/controller communication loop,
using readbacks and other confirmation behaviors, is designed to support safety and re-
dundancy of pilot/controller communications [32]. However miscommunications con-
tinue to impact the safety of complex systems. The Aviation Safety Reporting System
(ASRS) data base, for example, identifies problems including incorrect communica-
tions, incomplete or absent communications, and correct but late communications [35].
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c© Springer-Verlag Berlin Heidelberg 2013



Evaluating Human Communication Protocols with Model Checking 49

Further, Jones [32] has identified a number of air transportation accidents where mis-
communication played a significant role.

As miscommunications continue, institutions will try to enhance human-human com-
munication protocols. Thus having methods to verify such protocols can improve safety.
There is a long tradition of formal methods being used to describe and formally verify
machine communication protocols [2, 8, 19, 22, 38, 42] including the injection of com-
munication faults or errors into the models [21, 41]. While human-human communi-
cation protocols could be modeled using these traditional formal methods approaches,
human-human communication, which can include verbal statements, gestures, and re-
lated actions, is different from machine communication. Human communications are
actions [3] that occur as part of the participants’ larger tasks (i.e., goal directed norma-
tive behaviors to accomplish system goals [34]).

Few researchers have used formal methods to evaluate human-human communica-
tion protocols. Hörl and Aichernig [29, 30] developed a formal model of the system
pilots and air traffic controllers use to communicate. However, rather than perform for-
mal verification, they used automated test case generation to develop scenarios to guide
human subject testing. Thus, Hörl and Aichernig avoided having to explicitly model
and evaluate protocols with a task by having the actual tests provide that context. Oth-
ers have investigated how task analytic models can be incorporated into formal models
and evaluated with formal verification (see [17] for a review). Only Paternò et al. [37]
and Bass et al. [4] treat human-human communication as actions [4] within a larger
set of coordinated communication and task relevant activities. With the Enhanced Op-
erator Function Model with Communications (EOFMC), Bass et al. [4] introduced an
innovative means of representing goal directed behaviors requiring human-human com-
munication and coordination as shared task structures between human operators. If a
task goal is only associated with a given human operator, he or she can have separate,
unshared tasks. This allows the activities associated with a given communication pro-
tocol to be contained in a separate task structure that can be analyzed on its own or
with other modeled tasks. However, neither of the approaches presented in [37] and [4]
have investigated how miscommunications could result in the failure of human-human
communication protocols.

1.1 Objectives

Methods are needed to support formal evaluation of human-human communication
protocols, including potential miscommunications. In this work, we describe a novel
approach that allows an analyst to model human-human communication protocols in
the context of a task analytic modeling formalism and to use formal verification with
model checking to evaluate whether or not the protocol will always ensure that a cor-
rect communication will occur, even with miscommunication. In the following sections,
we describe our method and its implementation. We present EOMFC, the task analytic
modeling formalism we use for modeling protocols; the process that is used to translate
instantiated EOFMCs into the input language of a model checker; and the modification
to the translation process that allows the formal representation to be capable of gener-
ating miscommunications. We also present an air traffic control application to illustrate
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Fig. 1. Human-human communication protocol analysis method

how our method can discover problems with safety critical, human-human communica-
tion protocols. Finally, we discuss our results and outline avenues of future research.

2 Method

The method in Fig. 1 was extended from [11, 15] to allow an analyst to evaluate whether
or not a human-human communication protocol will accomplish its goals for up to
a specified number of miscommunications. An analyst starts by creating a human-
human communication protocol in a task analytic modeling formalism. The result is
run through a translation process which produces a representation of the protocol in
the input language of a model checker. This version of the model includes the maxi-
mum number of miscommunications that the analyst wants in the verification process.
The analyst also creates a specification which asserts desirable properties about the
communication protocol in a formal specification language such as a temporal logic.
Model checking performs formal verification, checking whether the formal model of
the communication protocol adheres to the specification [19]. Model checking produces
a verification report either confirming that the model adheres to the specification or a
counterexample, illustrating how the specification was violated.

2.1 Human-Human Communication Protocol Modeling

To model human-human communication protocols, we use the Enhanced Operator Func-
tion Model with Communications [4] (an extension of the Enhanced Operator Function
Model (EOFM) [9, 10, 18]). EOFMCs, with their formal semantics, are task analytic
modeling formalisms capable of representing multiple human operators and human-
human communication as part of a larger task model. They allow communication pro-
tocols to be modeled as shared task structures on their own or with other tasks.

EOFMC models groups of human operators engaging in shared activities as an in-
put/output system. Inputs may come from the human-device interface, environment,
and/or mission goals. Output variables are human actions. The operators’ task models
describe how human actions may be generated and how the values of local variables
change based on input and local variables (representing perceptual or cognitive pro-
cessing, task behavior, and inner group coordination and communication). All variables
are defined in terms of constants, user defined types, and basic types.
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Tasks in an instantiated EOFMC are represented as a hierarchy of goal directed ac-
tivities and actions. Each task descends from a top level activity (there can be many
tasks in a given instantiated EOFMC). Tasks can either belong to one human operator,
or they can be shared between human operators. A shared task is associated with two
or more associates, and a subset of associates for the general task is identified for each
activity. Thus, it is explicit which human operators are participating in which activity.

Activities can have preconditions, repeat conditions, and completion conditions.
These are represented by Boolean expressions written in terms of input, output, and
local variables as well as constants. They specify what must be true before an activity
can execute (precondition), when it can execute again (repeat condition), and what is
true when it has completed execution (completion condition).

Actions occur at the bottom of the task hierarchy. They can assume several forms:
(a) they can be observable, singular ways the human operator can interact with the envi-
ronment; (b) they can represent a cognitive or perceptual act, where a value is assigned
to a local variable; (c) they can represent human-human communications, where a com-
municator performs a communication action and the information conveyed (which will
have a defined type) is stored in recipient local variables.

A decomposition operator specifies the temporal relationships between and the car-
dinality of the decomposed activities or actions (when they can execute relative to each
other and how many can execute). EOFMC supports ten different decomposition oper-
ators [4]. Herein, only the following are used:

1. and par – all activities or action in the decomposition must execute (in any order)
and their execution can overlap;

2. ord – all activities or actions in the decomposition must execute in order; and

3. com – all of the actions in a decomposition must execute synchronously, where one
human operator must perform a communication action and at least one other human
operator must be the recipient of that communication.

The structure of an instantiated EOFMC can be represented visually as a tree-like graph
(such as Fig. 5 on page 56) where actions are depicted by rectangular nodes and activi-
ties by rounded rectangle nodes. Conditions are connected to the activity they modify:
a precondition is represented by a yellow, downward pointing triangle connected to
the right side of the activity; a completioncondition is presented as a magenta, upward
pointing triangle connected to the left of the activity; and a repeatcondition is conveyed
as a recursive arrow attached to the top of the activity. These standard colors are used
to distinguish condition shapes from each other and other task structures. Decomposi-
tions are arrows, labeled with the decomposition operator, extending below an activity
pointing to a large rounded rectangle with the decomposed activities or actions.

By exploiting the shared activity and communication action feature of EOFMC,
human-human communication protocols can be modeled as shared task activities. Hu-
man communication actions can represent human-human communication. However,
other actions model the way that the human operator interacts with other elements of
the work environment. Thus a human-human communication protocol can represent the
human-human communication procedure and the human operator responses.
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2.2 EOFMC Formal Semantics and Translation

EOFMC has formal semantics which specify how an instantiated EOFMC model ex-
ecutes. Each activity or action has one of three execution states: waiting to execute
(Ready), executing (Executing), and done (Done). An activity or action transitions be-
tween states based on its current state; its start condition (StartCondition – when it can
start executing based on the state of its immediate parent, its parent’s decomposition op-
erator, and the execution state of its siblings); its end condition (EndCondition – when
it can stop executing based on the state of its immediate children in the hierarchy and its
decomposition operators); its reset condition (Reset – when it can revert to Ready based
on the execution state of its parents); and, for an activity, its strategic knowledge (the
Precondition, RepeatCondition, and CompletionCondition). See [18] for more details.

Instantiated EOFMC task models can be translated into the language of the Symbolic
Analysis Laboratory (SAL) [20] (in this case using a java program) using the EOFMC
formal semantics in virtually the same manner as EOFMs [18]. The major difference
between EOFMC and EOFM translation is how communications are handled – how
actions in a com decomposition (not present in EOFM) transition out of the ready state.
In the EOFMC translation, when the StartCondition of a human communication action
is satisfied: all variables representing actions in the associated com decomposition are
set to Done; the variable representing the communication value is set to the value being
communicated; and the local variables human operators use to receive the communica-
tion are set to the communicated value (Fig. 2 shows the SAL notation).

The translated EOFMC can be integrated into a larger system model using a defined
architecture and coordination protocol [12, 18]. Formal verifications are performed us-
ing SAL’s Symbolic Model Checker (SAL-SMC). Any produced counterexamples can
be visualized and evaluated using EOFMC’s visual notation (extended from [13]).

[]StartCondition -->

HumanComAction’ = Done;

ComActionValue’ = ComValue;

LocalVariableAction1’ = Done;

LocalVariable1’ = ComActionValue’;

...

LocalVariableActionN’ = Done;

LocalVariableValueN’ = ComActionValue’;

Fig. 2. Pattern of code generated to represent a human-human communication in the SAL
code (see [20]) created from translating an instantiated EOFMC. []StartCondition -->

represents a nondeterministic guarded transition. An apostrophe appended to a variable in-
dicates that the variable’s value in the next state is being assigned and/or referenced. A
com decomposition will contain a human communication action HumanComAction and N lo-
cal variable actions LocalVariableAction1–LocalVariableActionN, where N is a pos-
itive integer. Each action has an associated variable containing a value. ComActionValue

represents the value being communicated by the human communication action and
LocalVariableValue1–LocalVariableValueN represent the values associated with local
variable actions LocalVariableAction1–LocalVariableActionN respectively.
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2.3 Miscommunication Generation

There are many reasons why human-human miscommunication can occur (see [24]).
From an engineering and design perspective, a miscommunication can be viewed as an
“action failure,” where the communicator does not communicate the correct informa-
tion; a ”misperception,” where the recipient of the communication does not correctly
receive the communicated information; or both [43]. To support miscommunication
generation, the translator was modified to include an additional optional transition for
each original communication transition (Fig. 3).

[]StartCondition AND (ComErrorCount < ComErrorMax) -->

HumanComAction’ = Done;

ComActionValue’ IN {x: CommunicationType | TRUE};

LocalVariableAction1’ = Done;

LocalVariable1’ IN {x: CommunicationType | TRUE};

...

LocalVariableActionN’ = Done;

LocalVariableN’ IN {x: CommunicationType | TRUE};

ComErrorCount’ = IF ComActionValue’ <> ComValue

OR LocalVariable1’ <> ComValue

OR ...

OR LocalVariableN’ <> ComValue

THEN ComErrorCount + 1

ELSE ComErrorCount ENDIF;

Fig. 3. Pattern of code generated to represent a human-human miscommunication in the SAL
code created from translating an instantiated EOFMC. Notation is as described in Fig. 2 with
several additions. First, IN is used to indicate that the variable to the left of it can assume any
value in the set to the right. Second, {x: CommunicationType | TRUE} indicates a set con-
taining all the elements defined in type of the communication value (CommunicationType).
Further, ComErrorCount represents the total number of miscommunications that have occurred
and ComErrorMax represents the total number of miscommunications that are allowed to occur.
Finally, the IF ... THEN ... ELSE ... ENDIF statement only allows ComErrorCount to be
incremented if a miscommunication has occurred.

In these transitions, in every case where the communicated value would have nor-
matively been assigned to a variable, the variable can assume any value that can be
communicated through the associated communication action. Thus, not only can the
communicator improperly communicate the information, but each of the recipients can
improperly receive it. Additionally, to give analysts control over the total number of mis-
communications, the method has a constant maximum (ComErrorMax) and a counter
(ComErrorCount) to track the number of miscommunications. The transition ensures
that a miscommunication transition can only occur if maximum has not been reached.

3 Application

To illustrate how our approach can model a safety critical human-human communi-
cation protocol, we construct an instantiated EOFMC model for an aircraft heading
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change in an air transportation example and we use our method to evaluate whether or
not it is robust for up to one miscommunication. This example has three human opera-
tors, two pilots (a pilot flying and a pilot monitoring) and an air traffic controller. In the
scenario, an air traffic controller wants to clear the aircraft to a new heading.

Both the pilots and the air traffic controller have push-to-talk switches which they
press down when they want to verbally communicate information to each other over the
radio. They can release this switch to end communication.

With respect to the aircraft, the Autopilot Flight Director System consists of Flight
Control Computers and the Mode Control Panel (MCP). The MCP provides control
of the Autopilot (A/P), Flight Director, and the Autothrottle System. When the A/P
is engaged, the MCP sends commands to the aircraft pitch and roll servos to operate
the aircraft flight control surfaces. Herein the MCP is used to activate heading changes.
The Heading (HDG)/Tracking (TRK) window of the MCP displays the selected heading
or track (Fig. 4). The 3 digit numeric display provides the current desired heading in
compass degrees (between 0 and 359). Below the HDG window is the heading select
knob. Changes in the heading are achieved by rotating and pulling the knob. Pulling the
knob tells the autopilot to use the pilot selected value and engages the HDG mode.

The following describes a communication protocol designed to ensure that this head-
ing is correctly communicated from the air traffic controller to the two pilots:

1. The air traffic controller contacts the pilots and gives them a new heading clearance.
2. The pilot monitoring re-contacts air traffic control and repeats the heading.
3. If the heading read back to the air traffic controller is not the heading that the air

traffic controller intended, then this process needs to be repeated (starting at step 1)
until the correct heading is read back.

4. Next, the pilot flying goes through the process of entering the new heading.
5. Before engaging the new heading, the pilot monitoring points at the heading win-

dow and reads off the entered heading.
6. If the heading read back by the pilot monitoring does not match the heading that

the pilot monitoring hears from air traffic control, he must then repeat the process
for entering and confirming the heading (going back to step 4).

7. The pilot engages the entered heading.

We next show how we can instantiate this protocol in an EOFMC and use formal veri-
fication to prove whether it will always ensure that the correct heading is engaged.
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Fig. 4. Heading control and display
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3.1 Modeling

This communication protocol was implemented as an instantiated EOFMC (Fig. 5).
This model has three human operators: the air traffic controller (ATCo), the pilot flying
(PF), and the pilot monitoring (PM). The entire process starts when the air traffic con-
troller presses his push-to-talk switch. Then, the controller communicates the heading
(lATCoSelectedClearance1) to the pilots (via the hATCoTalk human communication
action), such as “AC1 Heading 070 for spacing.” Both pilots remember this heading
(stored in the local variables lPFHeadingFromATCo and lPMHeadingFromATCo for
the PF and PM respectively). The ATCo releases the switch. Next, the PM presses his
switch. The PM then repeats/communicates the heading that he heard (in this example,
“AC1 Heading 070”), where both the ATCo and PF hear and remember the heading.
The PM releases the switch. This entire process must repeat if the heading the ATCo
hears from the PM does not match the heading he wanted to communicate (lATCSelect-
edClearance = lATCHeadingHeardFromPilots). It completes otherwise.

Once the heading has been communicated, the pilots collaborate to set the new head-
ing (aSetNewHeading). This process involves selecting and confirming the heading
(aChangeAndConfirm) and then executing the new heading (aExecuteTheChange). The
selection and confirmation process starts with the PF pushing and rotating the heading
select knob to the heading heard from the ATCo and then pulling the knob. The PM
verifies that the PF has dialed the correct heading and confirms the heading selection
by pointing to the heading selection in the window and stating the entered heading.
Here, two communications occur in parallel (indicated by the and par decomposition
operator associated with aConfirmTheChange): the PM points at the heading window
(aPointAtHeadingWindow) and he speaks the heading that was entered (aSayTheHead-
ing). Both are perceived by the PF. This process must repeat if the heading the PF
perceived from the ATCo does not match the heading spoken by the PM (lPFHead-
ingFromPM = lPFHeadingFromATCo). Once the heading is confirmed, the PF presses
the heading select (hold) button to execute the heading change.

3.2 Translation

The instantiated EOFMC was translated into SAL using the automated translator. The
original model contained 144 lines of XML code. The translated model contained 404
lines of SAL code. This model was composed with one representing the heading change
window, where the heading can be changed when the pilot rotates the heading knob.
These two model were composed together to create the full system model. The system
model was then used to create two different versions: one where the maximum num-
ber of miscommunications (ComErrorMax) was set to zero and one where it was set
to one.

1 Note that in this example, all headings are modeled abstractly as either being CorrectHeading,
if it matches the heading clearance the ATCo intended to communicate, or IncorrectHeading,
if it does not.
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3.3 Specification and Verification

The purpose of the communication protocol is to ensure that the pilots set the aircraft
heading to that intended by the air traffic controller. Thus, we can formulate this into
linear temporal logic (the specification logic used by SAL) as follows:

G

(
(aChangeHeading= Done)
→ (iHeadingWindowHeading= lATCSelectedClearance)

)
(1)

This specification was checked against the two versions of the formal model using
SAL’s symbolic model checker (sal-smc) on a workstation with 16 gigabytes of RAM,
a 3.0 gigahertz dual-core Intel Xeon processor, and the Ubuntu 9.04 desktop.

The first model (ComErrorMax = 0), verified to true in 2.52 seconds (total execution
time) having visited 559 states.2. The second model (ComErrorMax = 1) returned a
counterexample after 3.2 seconds (total execution time) having visited 3726 states.

3.4 Failure Diagnosis

To help diagnose why this failure occurred, the counterexample was visualized using
the technique described in [13]. This revealed the following failure sequence:

– The air traffic controller, wanting to clear the aircraft to a new heading (Correct-
Heading), presses the switch to talk.

– The air traffic controller issues a clearance to CorrectHeading. However, a mis-
communication occurs and the pilot flying thinks he heard IncorrectHeading.

– The air traffic controller releases the switch.
– The pilot monitoring presses his switch to talk.
– The pilot monitoring repeats back the heading he heard from the air traffic con-

troller without a miscommunication occurring.
– The pilot monitoring releases the switch to talk.
– Since the correct heading was heard by the pilot monitoring, the air traffic con-

troller allows the activity for communicating the heading (aCommunicateAndCon-
firmHeading) to complete its execution.

– The pilots begin collaborating to enter the heading from the air traffic controller.
– The pilot flying performs the activity for changing the heading: he presses the head-

ing select knob, sets the dial to the heading he heard from the air traffic controller
(IncorrectHeading), and pulls the heading select knob.

– The pilot monitoring then pointed at the heading display and read off the heading
entered (IncorrectHeading) to the pilot flying.

– Because the heading just heard from the pilot monitoring (lPFHeadingFromPM2)
matches the heading the pilot flying heard from air traffic control (lPFHeadingFro-
mATC), the pilot flying engages the new heading.

Thus, although specifically designed to protect against miscommunication, the pre-
sented communication protocol does in fact allow an incorrect heading to be engaged.

2 Note that an additional verification was conducted using the specification
F(aChangeHeading = Done) to ensure that (1) was not true do to vacuity.
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4 Discussion and Future Work

Human-human communication protocols can be critical to the safe operation of a sys-
tem, and can fail in unexpected ways. Herein, we have introduced a method that allows
human-human communication protocols to be evaluated with model checking. Because
human communications during coordinated activities can include actions for communi-
cating both verbal and non-verbal information and result in non-communication human
actions, this work considers human communication as part of human task behavior.
We used EOFMC to represent communication protocols as shared task behaviors that
include synchronous verbal communications, gestures, activities and low level actions
as well as asynchronous human behaviors associated with the communication. We de-
scribed the EOFMC modeling language, its formal semantics, and the process used
to translate the formal models into a model checking language. We introduced a new
method for automatically generating miscommunications between human operators and
showed how these could be automatically included in the translated representation of
an instantiated EOFMC communication protocol. We also presented an air traffic con-
trol application to demonstrate how this method could be used to find problems in a
human-human communication protocol for a safety critical system.

While the method has shown itself to be successful here, there are still a number of
places for improvement and future development. These are discussed below.

4.1 Design Interventions and Additional Analyses

The failure discovered in the presented human-human communication protocol appears
to occur because the protocol does not give the two pilots a means of reconciling differ-
ences between the headings they heard from air traffic control. Thus, potential solutions
should support both coordinated error detection and recovery. There may be a number
of ways to accomplish this. Two possible approaches are highlighted here. Firstly, if
there is any disagreement between what the two pilots heard from the air traffic con-
troller, then they could consult the air traffic controller to reconcile the disagreement.
However, doing this could add additional work to the already busy air traffic controller
(a potentially undesirable strategy). Alternatively, the pilots could reconcile among each
other to determine what the original air traffic controller’s clearance was. To determine
which of these solutions is most effective, they would need to be encoded into new
human-human communication protocols and evaluated with our presented method. Fu-
ture work should perform these analyses.

Further, the analyses presented here only considered a maximum of one miscom-
munication. Ideally, a human-human communication protocol would be robust to more
than just one. Thus, future work should investigate whether candidate protocols are
robust for ComErrorMax > 1.

4.2 Scalability

The more than six times increase in state space size observed in the model checking of
the model with no miscommunications (ComErrorMax = 0) and the one with up to one
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miscommunication (ComErrorMax = 1) suggests that there could be scalability prob-
lems with the presented method. Further, scalability assessments of formal verification
analyses that have included task analytic models suggest that the state space size can in-
crease exponentially with the size of the task model [16]. These factors could limit what
types of human-human communication protocols our method could be used to evaluate
and/or the maximum number of miscommunications that could be considered in a given
verification. Future work should evaluate how this method scales, identify what factors
most influence its scalability, and determine what types of human-human communica-
tion protocols can be evaluated using it without running into scalability problems.

4.3 Other Modeling Formalisms

SAL was used in this work because EOFM, the base task analytic modeling formalism,
uses SAL. This made it easy to adapt the existing translation tools for use in EOFMC.
However, it is possible that other formal tools could prove to be better suited to this
particular application. For example, Communicating Sequential Processes (CSP) [26]
natively models communication protocols and thus may be better suited to this work.
Other formal modeling languages and tools could conceivably help address the scala-
bility concerns discussed above. Other formal modeling infrastructures should be con-
sidered in future work.

4.4 Miscommunication Extensions

When generating miscommunications using our method, all of the ways that a miscom-
munication could manifest are considered to be equally probable. However, in reality,
certain miscommunications will be more likely than others [24]. For example, it is much
more likely that a heading clearance will be misheard as a similarly sounding heading
as opposed to one that sounds nothing like the actual heading. Similarly, the target of a
human’s pointing communication would be more likely to be misinterpreted as some-
thing in the target’s periphery rather than something further away. Thus, there could
potentially be a number of miscommunications our method considers that analysts may
not find probable enough to be worth including. Eliminating unlikely miscommunica-
tions could help improve the scalability of the method while improving its utility. Future
work should attempt to extend the method to include this feature.

4.5 Other Erroneous Human Behavior Considerations

Miscommunication is only one type of erroneous human behavior that could impact the
success of the task associated with a human-human communication protocol. For ex-
ample, even when a human operator is aware of how to properly perform a task, failures
of memory, attention, or human coordination can cause him or her to perform actions
or activities incorrectly [7, 28, 40]. Related work has investigated how to generate erro-
neous human behavior in task analytic models and evaluate its impact on systems using
model checking [14, 16]. Thus, it should be possible to evaluate how robust human-
human communication protocols are to these other types of erroneous human behavior.
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Further, the types of erroneous behaviors that have been included in task analytic
models and evaluated formally have almost exclusively focused on the behavior of a
single human operator [6, 14, 16, 23, 36]. Human-human communication protocols can
have each of the human operators doing specific elements of a task on his or her own,
but also requires coordinated behavior between the different human participants. To
date, no work has focused on how to model problems with human-human coordination.
Future work should investigate this subject.

4.6 Comparison to Simulation Models

A number of environments and cognitive architectures exist that allow human behavior
and human-human communication to be evaluated using simulation [5, 27, 31, 33, 39].
Future work should compare our method with these, determine what the tradeoffs are
between them, and investigate possible avenues of synergy.
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Abstract. Wi-Fi Protected Setup is an attempt to simplify configu-
ration of security settings for Wi-Fi networks. It offers, among other
methods, Push-Button Configuration (PBC) for devices with a limited
user-interface. There are however some security issues in PBC. A
solution to these issues was proposed in the form of Tamper-Evident
Pairing (TEP).

TEP is based on the Tamper-Evident Announcement (TEA), in which
a device engaging in the key agreement not only sends a payload contain-
ing its Diffie-Hellmann public key, but also sends a hash of this payload
in a special, trustedly secure manner. The idea is that thanks to the
special way in which the hash is sent, the receiver can tell whether or
not the hash was altered by an adversary and if necessary reject it.

Several parameters needed for implementation of TEP have been left
unspecified by its authors. Verification of TEA using the Spin model-
checker has revealed that the value of these parameters is critical for the
security of the protocol. The implementation decision can break the re-
sistance of TEP against man-in-the-middle attacks. We give appropriate
values for these parameters and show how model-checking was applied
to retrieve these values.

Keywords: Security, Model-checking, Spin, Wi-Fi Protected Setup,
Tamper-Evident Pairing.

1 Introduction

Security protocols aim at securing communications over networks that are pub-
licly accessible. Depending on the application, they are supposed to ensure se-
curity properties such as authentication, integrity or confidentiality even when
the network is accessible by malicious users, who may intercept and/or adapt
existing, and send new messages. While the specification of such protocols is usu-
ally short and rather natural, designing a secure protocol is notoriously difficult.
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Flaws are often found several years later. One of the sources for the vulnerabil-
ity of such protocols is that their specification is often (deliberately) incomplete.
There are several reasons for the omission of certain details by the designer.
For instance, a protocol may depend on properties of the hardware on which it
is used. It also leaves some room for the implementer of the protocol to make
implementation-dependent choices. The problem with these unspecified param-
eters is that it can be very hard to analyze the effects of specific choices on the
correctness of the protocol itself. Mostly this is due to the fact that the pro-
tocol is specified in such a way that both designer and implementer are either
convinced that the correctness is not influenced by the concrete values of these
parameters, or they assume that theses values are chosen within certain (not
explicitly specified) boundaries.

During the last two decades, formal methods have demonstrated their use-
fulness when designing and analyzing security protocols. They indeed provide
rigorous frameworks and techniques that allow to discover new flaws. For exam-
ple, the ProVerif tool [4] and the AVISPA platform [1] are both dedicated tools
for automatically analyzing security properties. More general purpose model-
checkers, such as Spin [9] and Uppaal [3], are also successfully applied to verify
desired properties of protocol specifications. While this model-checking process
often reveals errors, the absence of errors does in general not imply correctness
of the protocol.

Secure wireless communication is a challenging problem due to the inherently
shared nature of the wireless medium. For wireless home networks, the so-called
Wi-Fi Protected Setup was designed to provide a standard for easy establishment
of a secure connection between a wireless device with a possibly limited interface
(e.g. a webcam or a printer) and a wireless access point. The wireless device, once
connected to the access point, gets not only internet connectivity, but also access
to shared files and content on the network. The standard provides several options
for configuring security settings (referred to as pairing or imprinting). The most
prominent ones are PIN and Push-Button Configuration. The PIN method has
been shown to be vulnerable to brute-force attacks; see [25]. This method and
its weaknesses are briefly discussed in Section 5. To establish a secure connection
using the Push-Button method, the user presses a button on each device within
a certain time-frame, and the devices start broadcasting their Diffie-Hellman
public keys [6], which are used to agree on the encryption key to protect future
communication. In [8] the authors argue that this protocol only protects against
passive adversaries. Since the key exchange messages are not authenticated, the
protocol is vulnerable to an active man-in-the-middle (MITM) attack. To protect
key establishment against these MITM attacks, [8] presents a method called
Tamper-Evident Pairing (TEP), that provides simple and secure Wi-Fi pairing
without requiring an out-of-band communication channel (a medium, differing
from the communication channel that is used for transmitting normal data).
The essence of their method is that the chip-sets used in Wi-Fi devices offer the
possibility not only to transmit data, but also to sense the medium to detect
whether or not information is communicated. The correctness of the proposed
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protocol is based on the assumption that an adversary can only change or corrupt
data on the medium but not completely remove the data. The TEP protocol is
specified in a semi-formal way; its correctness is proven manually (i.e. on paper;
not formally using e.g. a theorem prover). However, in the protocol itself some
parameters are used that are not fully specified.

In this paper we investigate the TEP protocol in order to determine whether
its correctness depends on the values chosen for the unspecified parameters. In
other words, we analyze the protocol by varying the values of these parameters
in order to find out if there exists a combination for which correctness is no
longer guaranteed. Our analysis is done by using the Spin model-checker. We
have modeled the essential part of the protocol (known as the Temper-Evident
Announcement), and used this model to hunt for potentially dangerous combi-
nations of parameters, which indeed appeared to exist. The next step was to
explore the vulnerability boundaries, by deriving a closed predicate relating the
parameters to eachother and providing a safety criterion. The derivation of this
predicate, and the verification of the resulting safety criterion, was done by us-
ing the model-checker. The contribution of our work is twofold. First, it reveals
a vulnerability of a protocol that was ‘proven to be correct’. And secondly, it
shows how model-checking can be used, not only to track down bugs, but also
to establish side-conditions that are essential for the protocol to work properly.

2 Tamper-Evident Pairing

The Wi-Fi Alliance has set the Wi-Fi Protected Setup (WPS) standard in [27].
The standard provides several options for simple configuration of security set-
tings for Wi-Fi networks (pairing). One of them is Push-Button Configura-
tion (PBC), where two devices (enrollee and registrar) are paired by pressing a
(possibly virtual) button on each of the devices within a time-out period of two
minutes. Security of this method is enclosed in the fact that the user needs phys-
ical access to both devices. However, in [8], three vulnerabilities are described
creating opportunity for man-in-the-middle attacks:

1. Collision: An attacker can create a collision with the enrollee’s message and
send his own message immediately after.

2. Capture Effect: An attacker can transmit a message at a much higher
power than the enrollee. Capture effects were first described in [26].

3. Timing Control: an attacker can occupy the medium, prohibiting the en-
rollee from sending his message, and send his own message in-between.

Gollakota et al also provide an innovative solution to the PBC security prob-
lems in [8]. Their alternative pairing protocol is named Tamper-Evident Pair-
ing (TEP). It is based on the fact that Wi-Fi devices can not only receive packets,
but also simply measure the energy on the channel, as part of the 802.11 stan-
dard requirements. This provides the opportunity to encode a bit of information
as a time-slot where energy is present or absent on the wireless medium. Under
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the assumption that an attacker does not have the ability to remove energy from
the medium, this means that an attacker cannot turn an on-slot into an off-slot.

Let us start by explicating the attacker model, i.e. the assumptions about
the adversary that we are securing the protocol against. The presence of an
active adversary is assumed, who is trying to launch a MITM attack. She has
the following capabilities:

Overwrite Data Packets. The adversary can use any of the three vulnerabil-
ities listed above to overwrite data packets.

Introduce Energy on the Channel. The adversary can introduce energy on
the channel. Energy cannot be eliminated from the wireless medium.

2.1 The Tamper-Evident Announcement

To facilitate TEP, Gollakota et al introduce the Tamper-Evident Announce-
ment (TEA) primitive, which is sent in both directions: enrollee to registrar
and vice-versa. The structure of a TEA is given in Fig. 1. It starts with the
so-called synchronization packet. This an exceptionally long packet, filled with
random data. It is detected by the receiver by measuring a burst of energy on
the medium of at least its length (so in a manner similar to the on-off slots).
Because this packet is exceptionally long, this uniquely identifies a TEA.
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Fig. 1. The structure of a Tamper-Evident Announcement (TEA)

The synchronization packet is followed by the payload of the TEA, which
contains the Diffie-Hellman public key [6] of the sender. Then, a CTS-to-self
packet is sent. This message is part of the IEEE 802.11 specification and requests
all other Wi-Fi devices not to transmit during a certain time period, here the
time needed for the remainder of the TEA.

Finally, a hash of the payload is sent by either transmitting or refraining from
transmitting during a series of so-called on-off slots. An attacker cannot change
an on-slot into an off-slot, because she cannot remove energy from the medium,
but she might still do the opposite. To be able to detect this as well, a specially
crafted bit-balancing algorithm is applied to the 128-bit hash, prolonging it to
142 bits (71 zeros and 71 ones). Now, when an off-slot is changed into an on-
slot, the balance between on and off slots is disturbed, making the tampering
detectable. The 142-bit bit-balanced hash is preceded by two bits representing
the direction of the TEA (enrollee to registrar or vice-versa). So, in total, 144
slots are sent.



Using Model-Checking to Reveal a Vulnerability of Tamper-Evident Pairing 67

2.2 Receiving the Slots

The sender sends out the 144 slots, which take 40 μs each, back-to-back. On the
receiver-side the slots are received by measuring energy on the wireless medium.
The receiver iteratively measures the energy on the medium, during so-called
sensing windows of 20 μs. The total number of measurements m during the
sensing window is stored, as well as the number of measurements e during which
there was energy on the medium. If the fractional occupancy, given by e/m, is
above a certain threshold then the medium is considered occupied during this
particular sensing window.
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Fig. 2. Sending and receiving the slots of a 4-bit hash. The even sensing windows have
the higher variance here. Therefore, those represent the received hash. Clock skew is
shown in blue on the left.

The length of a sensing window is half the slot-length. The reason for this
is that now either all the even sensing windows or all the odd sensing windows
fall entirely within a slot, i.e. do not cross slot-boundaries, shown in Fig. 2,
where the even sensing windows all fall entirely within one of the 40 μs slots.
Note that the figure shows the ideal case, where measurements are exact. In
reality the measurements will be less than perfect, which motivates the use of a
threshold. The use of this special method of receiving the slots is motivated by
the fact that there may be a slight clock-skew. This is shown in Fig. 2 on the
lower-left.

After all the measurements are done and after applying the threshold, the
receiver verifies that either the even or the odd sensing windows have an equal
number of zeros and ones1, and that those match a calculated hash of the payload
packet. If this is not the case, then the receiver aborts the pairing process.

1 Actually, the variance of all the even sensing window measurements and that of all
the odd sensing window measurements is calculated. The sensing windows with the
higher variance will be the correct ones, since on and off slots are balanced. It is
however not clear to us what the advantage of this approach is over simply selecting
the sensing windows in which the on-off slots are balanced.
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3 Modeling the Tamper-Evident Announcement in Spin

We use the same attacker model as the authors of [8], listed in Sect. 2. Given
that an adversary can replace the payload packet, we will try to verify that
she cannot adapt the bits of the hash that are received without being detected.
Namely, if the attacker manages to send her own payload and adapt the hash
such that it matches her payload and contains an equal number of zeros and
ones, she can initiate a MITM attack. The payload packet itself is therefore not
part of the model. We will only model the sending of the bit-balanced hash. The
direction bits (i.e. the first two slots) are also not modeled. Gollakota et al. give
an informal proof of the security of TEP in [8]. Effectively, we are challenging
Proposition 7.2 of their proof.

We have used Spin [9] for the verification of the model. This section con-
tains some illustrative simplified fragments from the model only. The full model
(including results) can be downloaded from http://www.cs.ru.nl/R.Kersten/

publications/nfm/.

3.1 Model Parameters

The model has a series of parameters that are described in this section.

Hash Length. The length of the bit-balanced hash to send. All possible hashes
of this length that are bit-balanced are tried (the balancing algorithm itself
is not part of the model).

Number of Measurements per Sensing Window. The number of measure-
ments in each sensing window depends on the Wi-Fi hardware on which the
protocol is implemented. The length of the window is 20 μs. During each
window, the hardware logs the total number of clock-ticks, as well as the
number of clock-ticks during which there was energy on the wireless medium.
The number of measurements during each sensing window is thus variable.
In the model though, the number of measurements is fixed and given by a
parameter. The reason for this is that a variable number of measurements
would highly enlarge the state-space, the number of measurements is not
something that an adversary can influence and that we believe it will be
fairly constant in practice. A programmer implementing the protocol could
measure or calculate the average number of measurements during a sensing
window and use a “safe” approximation (a little lower) in the formula. In
our model, the sender puts energy on the wireless medium for the number
of clock-ticks it takes to do the measurements for two sensing windows (the
sensing window has half the length of an on-off slot). This means that one
measurement is the unit for a clock-tick.

Sensing Window Threshold. As explained in Sect. 2.2, bits are received by
measuring the fractional occupancy during a sensing window. It is deter-
mined whether or not the medium was occupied in a sensing window by

http://www.cs.ru.nl/R.Kersten/publications/nfm/
http://www.cs.ru.nl/R.Kersten/publications/nfm/
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checking if the fractional occupancy is above a certain threshold. The value
of this threshold is not defined in [8], although it influences the measure-
ments heavily. Since the number of measurements during a sensing window
is constant in the model, we can omit the calculation of the fractional occu-
pancy. This means that also the threshold should now be modeled, not as
a number between 0 and 1, but as a number between 0 and the number of
sensing window measurements and that its unit is clock-ticks (the medium
was occupied during e ticks of the discrete clock). If the number of mea-
surements (clock-ticks) in a sensing window where there was energy on the
medium exceeds the threshold, then a one is stored for this sensing window.

Skew. The reason for the use of pairs of sensing windows for receiving the slots
is that there may be an inherent clock skew. It is stated in [8] that this
inherent clock skew may be up to 10 μs, i.e. half the sensing window length.
By using pairs of sensing windows, either the even or the odd windows are
guaranteed not to cross slot-boundaries. Furthermore, it is stated in [8] that
to detect a TEA it is sufficient to detect a burst of energy “at least as
long as the synchronization packet”. It is not specified which is the exact
synchronization point: the beginning or the end of the energy pulse. Neither
is the maximum length of an energy burst that signifies a synchronization
packet. The difference with the given length of 19ms introduces an extra
skew. Since an adversary can introduce energy to the wireless medium, she
can prolong the synchronization packet and introduce extra skew (the sign
of this skew depends on the choice of synchronization point). The model
variable skew is the total of the inherent clock skew and this attacker skew.
Like the number of measurements and the threshold, its unit is also clock-
ticks. We only consider positive skew (forward in time) in our model.

These parameters to the model are henceforth referred to as hash length,
sw measurements, threshold and skew, respectively.

3.2 Clock Implementation

Timing is essential to modeling the TEA. However, Spin has no inherent notion
of time. Luckily, in this case the exact scheduling and execution speed are not
important, as the only interaction between the sender and receiver processes is
sending energy to and reading the energy-level from the wireless medium. The
receiver observes the value of the wireless medium once per clock cycle, the
sender updates it at most once.

Due to these properties we can implement a discrete clock in Promela (the
modeling language used by Spin), without the need to use specialized model-
checkers with native clock support. We introduce a separate clock process, which
waits until all processes using a clock are finished with a clock cycle (Listing 1,
line 17), before signaling them to continue. Processes are signaled to continue
by flipping the Boolean clock (line 23). Processes can only continue with the next
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clock cycle if this variable differs from their local variable localclock (line 10),
which is also flipped after each clock-tick (line 11). Our clock implementation
also supports processes which do not use a clock. A clock-tick in the model
corresponds to a measurement taken by the receiver. To avoid the situation that
the receiver executes before the sender, we implemented explicit turns for the
processes, so the sender always executes first after a clock-tick. The process with
the lowest process identifier is always executed first (line 7). We can introduce
skew by letting one of the processes wait a number of clock-ticks before starting.

1 byte wait ing = 0 ;
2 bool c lock = fa l se ;
3 #define useClock ( ) bool l o c a l c l o c k = fa l se ;
4
5 inl ine waitTicks ( procID , numberOfTicks) {
6 byte t i c k ;
7 f o r ( t i c k : 0 . . ( numberOfTicks−1)) {
8 wait ing++;
9 atomic {

10 l o c a l c l o c k != c lock ;
11 l o c a l c l o c k = c lock ;
12 wait ing == procID ;
13 }
14 }
15 }
16
17 proctype c lockProc ( ) {
18 end :
19 do
20 : : atomic {
21 wait ing ==NUMBER OF CLOCK PROCESSES;
22 wait ing = 0 ;
23 c lock = ! c lock ;
24 }
25 od ;
26 }

Listing 1. Modeling the clock. The useClock and waitTicks functions must be
used in processes that use the clock.

3.3 Model Processes

The model begins with a routine that generates all possible hashes of the given
length non-deterministically. It then starts four processes:

Clock. A simple clock process is used to control the other processes. The clock
process is described in Sect. 3.2.
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Sender. The sender process first initializes and starts the clock. It then itera-
tively sends a bit of the generated hash (by putting energy on the medium,
or not), waits for 2 · sw measurements clock-ticks, then sends the next bit.
When finished sending, the sender must keep the clock ticking, because the
receiver process might still be running.

1 proctype sender ( ) {
2 useClock ( ) ;
3 waitTicks (0 , 1 ) ;
4 byte i ;
5 f o r ( i : 0 . . (HASH LENGTH−1)) {
6 mediumSender = get ( i ) ; // send s l o t
7 waitTicks (0 , SWMEASUREMENTS∗2 ) ;
8 }
9 doneWithClock ( 0 ) ;

10 }

Listing 2. Sender model

Receiver. The receiver also begins with initializing and starting the clock. It
then introduces clock skew by waiting more skew ticks. Then, it measures
energy on the medium sw measurements times (once each clock-tick) and
stores the received bit for each sensing window (one if e is above threshold).
Note that the wireless medium consists of two bits: one that is set by the
legitimate sender and one that is set by the adversary. The receiver reads
energy if either bit is set. Once measurements for all sensing windows are
done, the checkHash() function verifies if either the even or the odd sensing
windows have an equal number of on and off slots.

1 r e c e i v e r ( ) {
2 useClock ( ) ;
3 waitTicks (1 , SKEW+1);
4 short sw ;
5 f o r ( sw : 0 . . (HASH LENGTH∗2−1)) {
6 byte e = 0 , t i c k s = 0 ;
7 f o r ( t i c k s : 0 . . (SWMEASUREMENTS−1)) {
8 e = e + (mediumSender | | mediumAdversary ) ;
9 waitTicks (1 , 1 ) ;

10 }
11 s t o r e (sw , e>THRESHOLD) ;
12 }
13 checkHash ( ) ;
14 }

Listing 3. Receiver model

Adversary. The adversary is modeled as a simple process that increases the
energy on the medium, then decreases it again. Because processes may be
interleaved in any possible way, this verifies all scenarios.
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1 proctype adversary ( ) {
2 end :
3 do
4 : : mediumAdversary = 1 ;
5 mediumAdversary = 0 ;
6 od
7 }

Listing 4. Adversary model

4 Model-Checking Results

Verification of the model means stating the assertion that either the received
hash is equal to the sent hash or it is not equal, but the tampering by the
adversary is detected (because the number of ones in the hash is unequal to the
number of zeros). It is thus a search for a counter-example.

The expectation was that we might be able to find such a counter-example, but
that the freedom with which an adversary could modify the received hash would
be limited, probably to just the first or last bit. Model-checking indeed generated
a counter-example. Moreover, experimentation with different assertions turned
out that the adversary actually has more freedom in modifying the hash than
expected. This vulnerability is described in Sect. 4.1. After the vulnerability was
discovered, we executed a large series of Spin runs to discover what the exact
conditions are that enable such an attack. The results are given in Sect. 4.2.

4.1 Revealed Vulnerability in the TEA

Model-checking the TEA model using Spin generated a counter-example to the
assertion that a hash that was modified by an adversary will not be accepted by
the receiver. A scenario similar to the one for which this counter-example was
found is shown in Fig. 3.

Figure 3 shows the case where no adversary is active. Here, the even sensing
windows still have the higher variance (1001 versus 0010). Thus, those are chosen
as the correct slots and the hash 1001 is received, which is equal to the sent hash.

In Fig. 4 a scenario is shown in which an adversary actively introduces energy
on the wireless medium. The energy that is introduced by the attacker is shown as
a dotted blue line. She manages to trick the receiver into choosing the odd sensing
windows and consequently receive a modified hash: 1010. Experimentation with
modified assertions has confirmed our conjecture that an adversary can use this
tactic to change any 1 bit in the hash to a 0, if and only if it is immediately
followed by a 0. Since the hash is bit-balanced, it consists of 50% zeros and 50%
ones. Of the latter category, half are followed by 0 bits on average. This means
that an adversary can change on average 75% of the hash.
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Fig. 3. Scenario in which TEP is vulnerable, for a 4-bit hash. The synchronization
packet is prolonged to create a skew that is larger than the half the sensing window.
The hash is still received correctly here.
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Fig. 4. The attack found by model checking, for a 4-bit hash. The adversary introduces
energy to the medium to change the received hash to 1010.

4.2 Varying the Values of the Model Parameters

After discovering the vulnerability described in the previous section, we wanted
to investigate what the exact circumstances are in which the vulnerability oc-
curs. We therefore ran the Spin model-checker for many different values of the
parameters hash length, sw measurements, threshold and skew2. Some of the
results are shown in Table 1. As it turns out, the length of the hash has no influ-
ence on the occurrence of the vulnerability, so this is omitted from the results.
Remember that the unit for all three parameters in the table is clock-ticks.

2 In order to run the Spin model-checker for various values of defined parameters, we
have implemented a small wrapper in the form a of C program. This wrapper can
be obtained from http://www.open.ou.nl/bvg/spinbatch/.

http://www.open.ou.nl/bvg/spinbatch/
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Table 1. Model-checking results. Pluses indicate that the proposition is not broken.
Minuses indicate the occurrence of the vulnerability.

threshold = 3
skew

0 1 2 3 4 5 6 7 8 9 10

4 + - - - - - - - - - -
5 + + - - - - - - - - -
6 + + + - - - - - - - -

sw meas. 7 + + + + - - - - - - -
8 + + + + + - - - - - -
9 + + + + + + - - - - -
10 + + + + + + + - - - -

(a) Results for threshold = 3

threshold = 5
skew

0 1 2 3 4 5 6 7 8 9 10

6 + - - - - - - - - - -
7 + + - - - - - - - - -

sw meas. 8 + + + - - - - - - - -
9 + + + + - - - - - - -
10 + + + + + - - - - - -

(b) Results for threshold = 5

threshold = 7
skew

0 1 2 3 4 5 6 7 8 9 10

8 + - - - - - - - - - -
sw meas. 9 + + - - - - - - - - -

10 + + + - - - - - - - -

(c) Results for threshold = 7

threshold = 9
skew

0 1 2 3 4 5 6 7 8 9 10

sw meas. 10 + - - - - - - - - - -

(d) Results for threshold = 9

It is obvious from Table 1 that the following predicate determines the possi-
bility of an attack:

skew ≥ sw measurements− threshold (1)

In Fig. 4, a threshold of 0.5 is used, which is represented by a value for threshold
of 1

2 · sw measurements in the model. If the skew is large enough to move a
number of threshold measurements of the even windows over the sensing win-
dow boundary, then an adversary might change the received hash. We have
model-checked the predicate for all combinations of sw measurements 1–10,
threshold 1–10 and skew 1–10.

5 Related Work

Before the Spin model on which this article is based was made, a simple model of
the TEA and TEP in UPPAAL was made by Drijvers [7]. UPPAAL is a tool with
which properties about systems modeled as networks of timed automata can be
verified [3]. Because of the simple nature of this model, it did not include clock
skew and therefore did not reveal the vulnerability that was later found using
Spin. Apart from the TEA, Drijvers made a separate model of the overlying TEP,
with which – under the assumption that the TEA is secure – no problems were
identified. Since TEP was already successfully model-checked using UPPAAL
and, contrary to the TEA model, not in a highly abstract form (it is much
simpler), we chose not to repeat the modeling for Spin.
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In [5] a method is proposed for modeling a discrete clock in Promela, without
the need to alter Spin. Instead of an alternating Boolean, time is modeled as
an integer which negatively impacts the state space explosion. Just as with
our approach a separate clock is introduced, which waits until all the other
processes are finished, before increasing the discrete clock variable. This waiting
is modeled with a native feature of Promela, which only continues if no other
state-transition can be made (the timeout keyword). Therefore, all the processes
are implicitly using the modeled clock. Because of our general adversary process,
this restriction is too severe for us.

Many approaches to pairing wireless devices are described in the literature.
A comparison of various wireless pairing protocols is given in [24]. Often, a
trusted out-of-band channel is used to transfer (the hash of) an encryption key,
e.g. a human [10], direct electrical contact [23], Near-Field Communication [17],
(ultra)sound [16], laser [18], visual/barcodes [20], et cetera. A nice overview is
given in [11]. Another, slightly out-dated, overview is given in [22]. In TEP, a
hash of the key is communicated in a trustedly secure manner in-band.

When using the PIN method that Wi-Fi Protected Setup provides, one of the
devices displays an eight-digit authentication code, which the user then needs
to enter on the other device. This method thus requires a screen and some sort
of input device. The PIN method has been shown to be vulnerable to feasible
brute-force attacks by Viehböck in [25]. The reason for this is that last digit is
actually a check-sum of the first seven digits (i.e. there are only seven digits to
verify) and, moreover, that the PIN is verified in two steps. The result of the
verification of the first four digits is sent back to the enrollee, which may then
send three more digits if this result was positive. This reduces the number of
codes to try in a brute-force attack from 107 to 104 + 103. A successful attack
can be executed in approximately two hours on average. CERT-CC has urged
users to disable the WPS feature on their wireless access points in response to
this vulnerability3. A security and usability analysis of Wi-Fi Protected Setup,
as well as Bluetooth Simple Pairing, which is similar, is given in [12].

Approaches to model-checking security protocols are described in [13] and [2].
In [14], a series of XSS and SQL injection attacks is detected using model-
checking. Model-checking and theorem proving of security properties are dis-
cussed in [15]. In [19], security issues that arise from combining hosts in a
network are investigated using model-checking. An entire Linux distribution is
model-checked against security violations in [21].

6 Conclusions

The effects of a number of decisions to be made when implementing Tamper-
Evident Pairing have been studied. In particular, the sending of a hash by using
on-off slots – in which energy is present or absent on the wireless medium –
was modeled. The values of several essential parameters of the protocol have not
been adequately specified. Model checking proved to be very effective both in

3 http://www.kb.cert.org/vuls/id/723755

http://www.kb.cert.org/vuls/id/723755
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uncovering a serious vulnerability for certain values of these parameters and in
finding a predicate on the parameters indicating for which values the vulnerabil-
ity is present. An adversary aiming to initiate a man-in-the-middle attack can
thus evidently tamper with the received hash.

Future work could include extending the model to cover more of the TEA and
investigate the feasibility of exploiting the found vulnerability. Furthermore, a
full formal proof that the found vulnerability cannot occur when the predicate
is not satisfied would be very valuable.
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Abstract. Synthetic biology focuses on the re-engineering of living or-
ganisms for useful purposes while DNA computing targets the construc-
tion of therapeutics and computational circuits directly from DNA
strands. The complexity of biological systems is a major engineering
challenge and their modeling relies on a number of diverse formalisms.
Moreover, many applications are “mission-critical” (e.g. as recognized
by NASA’s Synthetic Biology Initiative) and require robustness which
is difficult to obtain. The ability to formally specify desired behavior
and perform automated computational analysis of system models can
help address these challenges, but today there are no unifying scalable
analysis frameworks capable of dealing with this complexity.

In this work, we study pertinent problems and modeling formalisms
for DNA computing and synthetic biology and describe how they can
be formalized and encoded to allow analysis using Satisfiability Modulo
Theories (SMT). This work highlights biological engineering as a domain
that can benefit extensively from the application of formal methods. It
provides a step towards the use of such methods in computational design
frameworks for biology and is part of a more general effort towards the
formalization of biology and the study of biological computation.

1 Introduction

Significant progress in molecular and cellular biology and breakthroughs in ex-
perimental methods have raised hopes that the engineering of biological systems
can serve for technological and medical applications, with a tremendous promise
ranging from the sustainable production of biofuels and other materials [31] to
the development of “smart” therapeutics [4]. Among the different approaches
towards such molecular programming, DNA computation (the construction of
computational circuits directly from DNA strands) and synthetic biology (the
re-engineering of genetic networks within organisms) have emerged as promising
directions with a number of experimental studies demonstrating their feasibil-
ity [22,23]. Recently, NASA has acknowledged the importance of this domain
by creating the Synthetic Biology Initiative1 [17] designed to “harness biology
in reliable, robust, engineered systems to support NASA’s exploration and sci-
ence missions, to improve life on Earth, and to help shape NASA’s future”.

1 http://syntheticbiology.arc.nasa.gov/

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 78–92, 2013.
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More generally, the engineering of biological systems can lead to a better under-
standing of biological computation (the computational processes within living
organisms) with the goal of addressing some of the following questions: What do
cells compute? How do they perform such computation? and In what ways can
the computation be modified or engineered? which is the focus here.

Biological complexity presents a major engineering challenge, especially since
many relevant applications can be considered as “mission-critical”, while robust-
ness is hard to engineer. Computational modeling currently focuses on using
simulation to help address these challenges by allowing in silico experiments,
however simulation alone is often not sufficient to uncover design flaws. For
such applications, foundational computer-aided design technologies that allow
desired behavior to be specified formally and analyzed automatically are needed.
However, unifying analysis frameworks capable of dealing with the biological
complexity and the diverse modeling formalisms used in the field are currently
missing. Inspired by the study and engineering of other computational systems
such as computer hardware and software, the application of formal methods has
already attracted attention in the context of biology. In this work, we take a Sat-
isfiability Modulo Theories (SMT)-based approach, utilizing transition systems
as a uniform representation for biological models, and enabling efficient analysis
for important properties of DNA computing and synthetic biology. Using theories
richer than Boolean logic as in SMT offers a more natural framework by allow-
ing higher-level problem descriptions and enhanced expressive power, provided
that (efficient) automatic reasoning procedures are available. Such decision pro-
cedures are being developed actively [1] and are implemented in modern solvers
such as Z3 [8] where, for certain applications, SMT-based methods outperform
simpler theories [28], while their model-generation capabilities are important for
the problems we consider. The richness of SMT accommodates analysis proce-
dures to address a diverse set of biological questions and leads to a framework
that is expressive (can capture a variety of formalisms and specifications), scal-
able (can handle models of practical interest) and extensible (additional models
and analysis procedures can be integrated).

The main goals of this paper are (1) to study the pertinent modeling for-
malisms and problems for DNA computing and synthetic biology as representa-
tive biological engineering disciplines, formalize them, and describe how they can
be encoded to allow analysis using SMT-based methods; (2) to exploit domain-
specific knowledge in order to identify properties of these systems to help improve
the scalability of analysis methods; (3) to present results from the application
of these methods on challenging examples beyond what was possible using pre-
vious analysis approaches; and (4) to explore the utility of a general framework
for analyzing biological computation.

2 Preliminaries and Notation

We denote a finite set as S = {s0, . . . , sN} where |S| = N + 1 is the number of
elements in S. We use S = {(s0, n0), . . . , (sN , nN )} to denote a finite multiset
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where each pair (si, ni) denotes an element si and its multiplicity ni with ni > 0.
Given a multiset S we use s ∈ S when the multiplicity of s is not important and
S(s) to indicate the multiplicity of s when s ∈ S and 0 otherwise. The union
of multisets (S

⊎
S′) as well as the multiplication of a multiset by a scalar (nS)

are used according to their standard definitions.

3 DNA Computation

In the field of chemistry, mathematical theories such as mass-action kinetics have
been developed to describe chemical reaction systems and predict their dynam-
ical properties[12]. In molecular programming, the long term vision is to study
the inverse problem where chemical and molecular systems are engineered with
the goal of obtaining specific behavior of molecular events. The use of DNA as
a chemical substrate has attracted attention, partially due to the availability
of experimental techniques, as well as the predictability of chemical properties
such as Watson-Crick pairing (the complementarity of the G-C and A-T base
pairs which dictates the binding of DNA sequences). These properties have been
exploited as early as in [3] where a strategy for computing a Hamiltonian path
in a graph using DNA is described. DNA strand displacement (DSD) [25] is a
particular DNA computation framework which, in principle, can be used to im-
plement arbitrary computational procedures [14] and allows the use of DNA as
a universal substrate for chemical reaction networks [27]. The feasibility of ex-
perimentally constructing large DNA computing circuits has been demonstrated
recently [23]. Even so, the manual engineering of DNA circuits is challenging
due to the parallel interactions of a large number of individual DNA species.
To address these challenges, tools enabling the computational design and simu-
lation of complex DNA circuits have been developed [16]. Here, we present an
SMT-based approach for the analysis of these systems.

3.1 DNA Strand Displacement (DSD) Circuits

In a DSD circuit, a network of chemical reactions is constructed from DNA
species (see Fig. 1), designed to interact according to DNA base-pairing rules.
The DSD language [20] formalizes the notion of DNA species and the possible
reactions between them. Briefly, a DNA species consists of a number of strands
(individual DNA sequences)2. For example, in Fig. 1-A species s0 consists of the
single strand ŝ0 while species s3 consists of strands ŝ1, ŝ2, and ŝ3 (all strands
are listed in Fig. 1-D).

We are interested in studying the dynamics of a DSD circuit with single-
molecule resolution by tracking how the amounts of species change as reactions
take place, currently abstracting from the exact reaction kinetics (see Sec. 6 for
additional discussion). A state of the system therefore describes the amount of
molecules from each species present (Fig. 1-B). The initial state defined as part

2 In the DSD language, strands are further subdivided into domains (e.g. t and x0 in
strand ŝ0 in Fig. 1-D) but for the current presentation this structure is not important.
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Fig. 1. A DSD circuit consisting of eight DNA species (S = {s0, . . . , s7}) and four
reactions (R = {r0, . . . , r3}) represented graphically in (A). The state space of the
system is shown in (B) where the multiplicity for each species is given in parenthesis
and no further reactions are possible in the highlighted states (q6 and q7). The melting
of a species and all species from a state (as discussed in Sec. 1.2) is illustrated in (C)
and (D), respectively. Each strand from (D) represents a single DNA sequence.

of a DSD program (q0 in Fig. 1-B), together with the rules of the DSD language,
allows the automatic generation of possible reactions and species in the system
[16]. We treat a DSD circuit as the pair (S,R) where S is a set of species andR is
a set of reactions3. A reaction r ∈ R is a pair of multisets r = (Rr, Pr) describing
the reactants and products of r, where for (s, n) ∈ Rr (resp. (s, n) ∈ Pr), s ∈ S
is a species and n is the stoichiometry indicating how many molecules of s are
consumed (resp. produced) through reaction r. To formalize the behavior of a
DSD circuit, we construct the transition system T = (Q, q0, T ) where Q is the
set of states, q ∈ Q is a multiset of species (q(s) indicates how many molecules of
s are available in q), q0 ∈ Q is the initial state4, and T ⊆ Q×Q is the transition
relation. Reaction r is enabled in q, if there are enough molecules of its reactants

enabled(r, q) ↔
∧
s∈S

q(s) ≥ Rr(s) (1)

The transition relation T is defined as

T (q, q′) ↔
∨

r∈R[enabled(r, q) ∧
∧

s∈S q
′(s) = q(s)−Rr(s) + Pr(s)].

3 Reversible reactions are treated as two non-reversible ones (e.g. r0, r1 in Fig. 1-A).
4 We assume that the system is initialized in a single state (which is the case for DSD
circuits we consider in this paper), although the methods can be generalized.
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The definition of T aims to capture the firing of a single enabled reaction per
transition. Still, in some special cases multiple reactions can fire in a time step
(e.g. A → C and A + B → C + B) but this does not affect the structure of T
and its subsequent analysis.

We assume that the set of species is finite and can be generated a priory (see
discussion in Sec. 6). To enable the SMT-based analysis of DSD circuits, we rep-
resent the set of states of a transition system T using an integer encoding where
Q ⊆ N|S| and the transition relation as a function T : N|S|×N|S| → B. In Sec. 3.2
we prove that for a subset of DSD models the number of molecules of each species
cannot exceed some upper bound N which can be computed from the species’
structures5- this allows a finite representation of T and can help our analysis.
Finite transition systems can be encoded naturally as logical formulas [5]. As an
alternative to the integer representation, we encode the amount of species s ∈ S
as a bit-vector of size �lg(N+1)�, leading to Q ⊆ BN̂ , N̂ = |S|�lg(N+1)� where
q(s) ∈ B�lg(N+1)� amounts to a bit-vector extraction and the transition relation

is encoded as a function T : BN̂ ×BN̂ → B. Note that, although T is finite when
species bounds are available, an explicit state-space representation of Q is often
unfeasible to compute for realistic DSD circuits.

3.2 Constraints Generation

Naturally occurring chemical reaction networks are often subjected to constraints
such as mass-conservation. In this section, we show that the known structure of
species in a DSD circuit allows us to directly compute such constraints, which
we exploit in our analysis. Intuitively, the individual strands from which all
species in the system are composed are preserved and their total amounts remain
unchanged. In the following, we exploit this conservation of strands property.

Let ŝ denote a single strand where it is possible that ŝ ∈ S. Given a species
s ∈ S, we use the function melt(s) to compute the multiset of strands that s
is composed of (Fig. 1-C). The application of melt can be thought of as the
“melting” of a species by increasing the temperature to dissociate all individual
DNA strands. The function melt() can be extended to operate on a multiset of
species (Fig. 1-D), such as a state q ∈ Q

melt(q) �
⊎
s∈S

q(s)melt(s) (2)

Proposition 1. The conservation of strands allows us to restrict the set of
states reachable in T to a subset Q̂ ⊆ Q, for which the strands multiset is an
invariant

∀q, q′ ∈ Q̂,melt(q) = melt(q′) (3)

Corollary 1. The invariant multiset M0 can be computed from the initial state

∀q ∈ Q̂,melt(q) = M0 where M0 = melt(q0) (4)

5 As an additional optimization, separate bounds for each species can be computed.
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The following constraints account for the conservation of strands

∀q ∈ Q̂,
∧
ŝ∈Ŝ

[∑
s∈S

q(s)Ms(ŝ) = M0(ŝ)

]
(5)

where Ms = melt(s) denotes the multiset of strands for species s, Ms(ŝ) denotes
the multiplicity of strand ŝ in the composition of species s, and Ŝ = {ŝ | ∃s ∈
S, ŝ ∈ melt(s)} denotes the set of all individual strands in the system. In prac-
tice, Eqn. (5) is translated into constraints that might be challenging to solve.
However, they can be simplified to obtain upper bounds on the multiplicities of
individual species by constructing Q̂′ ⊆ Q, where in general Q̂ ⊆ Q̂′ (i.e. Q̂′ is
an over-approximation of the states satisfying the conservation of strands invari-
ant). Let Ns = min{�M0(ŝ)/Ms(ŝ)� | ŝ ∈ Ms} denote the maximal number of
molecules of species s as restricted by its least abundant strand. Then

∀q ∈ Q̂′,
∧
s∈S

q(s) ≤ Ns (6)

We encode the constraints from Eqns. (5) and (6) using functions invariant :
Q → B where, for a state q ∈ Q, invariant(q) iff q ∈ Q̂, and bounds : Q → B
where bounds(q) iff q ∈ Q̂′ (the exact definition of these functions depends on the
encoding ofQ). In the following section, we will use these functions as constraints
that will allow us to study the existence of states with certain properties6. The
upper bounds from Eqn. (6) can also serve to determine the required bit-vector
size for the encoding from Sec. 3.1 (i.e. N = max{Ns | s ∈ S}), while using the
individual species bounds can lead to smaller encodings.

Example 1. For the DSD circuit from Fig. 1 the following constraints were gen-
erated: s0+ s4+2s5 = 2, s2+ s3+ s4+ s6 = 4, s3+ s4+ s5 = 2, s1+ s3+ s7 = 2,
and s6+s7 = 2. From these, the following species bounds were obtained: s0 ≤ 2,
s1 ≤ 2, s2 ≤ 4, s3 ≤ 2, s4 ≤ 2, s5 ≤ 1, s6 ≤ 2, and s7 ≤ 2.

3.3 Analysis of DNA Computation

To illustrate our method and discuss the formalization of properties relevant to
DNA computation, we study a family of transducer circuits. Here, a transducer
is a simple computational device constructed from DNA, which is intended to
convert all molecules of a certain (input) species to a different (output) species
through a set of chemical reactions [15]. A number of transducers can be con-
nected in series (where the output of one circuit is the input for the next),
which allows us to study systems of different size but with similar behavior. For
these circuits, computation terminates when a state is reached where no further
reactions are possible (this is also the case for the example from Fig. 1). As
an additional requirement, certain reactive species denoted by Sr ⊆ S must be

6 For the bit-vector state encoding described in Sec. 3.1, the preclusion of overflows
must be included as part of the constraints from Eqn. (5).
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fully consumed throughout the computation but for some system designs this is
not always the case [15]. We distinguish between “good” and “bad” termination
states depending on the presence of reactive species and express the property of
interest using standard temporal logic operators [21] as

AG(¬bad) ∧ EF (good).

Formally, for a state q ∈ Q, we define

good(q) ↔
∧
r∈R

¬enabled(r, q) ∧
∧
s∈Sr

s ∈ q

bad(q) ↔
∧
r∈R

¬enabled(r, q) ∧
∨
s∈Sr

s ∈ q.

Using the constraints derived in Sec. 3.2, the feasibility of “good” and “bad”
termination states can be analyzed. We search for a state qg (resp. qb) where

good(qg) ∧ invariant(qg) (7)

bad(qb) ∧ invariant(qb) (8)

When an unsatisfiable result is obtained for the formula from Eqn. (7) (resp.
Eqn. (8)), the existence of a “good” (resp. “bad”) state can be ruled out, and
otherwise, a specific termination state qg (resp. qb) can be extracted from the
model generated by the SMT solver. The constraints derived in Sec. 3.2 over-
approximate the reachable states of a DSD circuit, which can only allow us to
show that no reachable states with certain properties (e.g. “good” or “bad”
states) exists. Identifying states qg or qb through this procedure, on the other
hand, does not guarantee their reachability. To complete the analysis, we test the
reachability of “good” and “bad” states using Bounded Model Checking (BMC)
[5]. A “bad” state is reachable through K reactions or less if a trace q0, . . . , qK
can be identified where q0 is the initial state and

K∨
k=0

bad(qk) ∧
K−1∧
k=0

[T (qk, qk+1) ∨ bad(qk)] (9)

while a similar procedure is used to search for reachable “good” states. If (9) is
unsatisfiable, a “bad” (“good”) state is not reachable by executing K reactions
or less but increasing K might lead to the identification of such states.

Besides increasing the number of transducers, system complexity can also be
controlled by including multiple copies of the circuit [15], which amounts to
changing the number of molecules available in the initial state (e.g. q′0 = mq0
for a system with m copies), while the set of species and reactions remain the
same. This can make analysis more challenging as the length of computation
traces increases. Once a reachable “bad” state qb is identified in a system, we
show that such a state is also reachable for multiple copy systems by proving
that no reactions are enabled in state q′ = mqb. State q

′ can be reached in a
multi-copy system if each sub-system was to independently reach state qb.
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Fig. 2. Computation times for the identification of traces of lengths up to K = 100 in
the flawed transducer circuits such that a “good” state (left panel) or a “bad” state
(right panel) is reached (note the difference in scales). BitVec‘ and BitVec (resp. Int‘
and Int) indicate a bit-vector (resp. integer) encoding with or without the additional
constraints from Sec. 3.2 asserted for each state q0, . . . , qK−1 in (9).

We applied the procedure described in this section to DSD circuits consisting
of between n = 2, . . . , 10 transducers in series where all transducers were based
on one of two different designs (a flawed and a corrected one). These circuits
were found to include |S| = 14n+ 4 species and |R| = 8n reactions and, when
the bit-vector encoding was used, a state was encoded as a bit-vector of size 64
(resp. 70) for the flawed (resp. corrected) circuit of size n = 2 and 576 (resp. 342)
for n = 10. For the flawed system design, both “good” and “bad” states were
identified using Eqns. (7) and (8) while for the corrected design only “good”
termination states were possible. For each of the investigated circuits (encoded
either using integers or bit-vectors) computation7 required under 1 sec.

To confirm the reachability of states we searched for traces with depth up to
K = 100, which was sufficient to identify computation traces leading to both
“good” and “bad” states for flawed transducer circuits of different size (Fig. 2)
and “good” states for the corrected one (Fig. 3-left)(the existence of “bad” states
for these circuits was already ruled out). For the corrected transducers, we show
that the additional constraints from Sec. 3.2 allow us to rule out the possibility
of “bad” states, even for systems with many copies of the circuit (Fig. 3-right).

4 Synthetic Gene Circuits

In the field of synthetic biology, engineering principles are applied to redesign
genetic networks with the goal of constructing biological systems with specific

7 All computational results were obtained using the Z3 (version 4.1) theorem prover
[8] on 2.5 Ghz Intel L5420 CPU machines with a 2GB memory limit per benchmark.
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Fig. 3. Computation times for the identification of traces of lengths up to K = 100
in the corrected transducer circuits (left panel) and the verification of multiple copies
of a circuit with ten transducers based on the corrected design (right panel). BitVec‘
and BitVec (resp. Int‘ and Int) indicate a bit-vector (resp. integer) encoding with or
without the additional constraints from Sec. 3.2. For the integer encoding with the
additional constraints, the memory limit was reached for circuits of size five and up
during the identification of traces (left panel).

behavior (see [22] for a review). The construction of biological devices (relatively
small gene networks which can serve as basic building-blocks) has been pursued
initially and tools and programming languages to support this process have
been developed (e.g. [19]). The construction of larger-scale systems from devices
presents a challenging design problem [22], where chemical species serving as
“wires” must be matched to ensure proper function and other constraints must
also be satisfied (e.g. if the same species is an output of two separate devices in a
circuit, cross-talk might occur), while in addition, specific system behavior must
be obtained. The development of computational tools enabling the automated
design of systems from expressive specification of the desired behavior and ca-
pable of handling the complexities of the problem can address these challenges.
In the following, we formalize the constraints specific to the synthesis problem
of designing a gene network with certain behavior from a library of devices and
propose an SMT-based solution.

A device d is a tuple d = (Id, Sd, Fd) where Id and Sd are finite sets of
input and internally produced (output) species such that Id ∩ Sd = ∅ and
Fd = {f s

d | s ∈ Sd} is a set of update functions (f s
d is the update function

for species s). We capture the dynamics of a device as a Boolean network - a
popular formalism for modeling interaction networks [7]. In a Boolean network
each species is described as available or not, thus its exact concentration (number
of molecules) is abstracted (unlike the DSD formalism we described in Sec. 3).
We treat a device d as a transition system Td = (Qd, Qd0, Td) where q ∈ Qd cap-
tures which species are available in the system (in the following, we use q(s) ∈ B
as a Boolean, indicating whether species s is available in state q) and Qd0 = Qd

(i.e. all states are initial). The dynamics of the system are given by the functions



SMT-Based Analysis of Biological Computation 87

Table 1. Additional constraints for constructing systems from gene network devices

Constraints Description∧
s∈S

∧
d,d′∈Ds,d �=d′ ¬(D(d) ∧D(d′)) To prevent cross-talk, two devices producing

the same species are never selected at the
same time.∧

s∈I

∨
d∈Ds

D(d) All species specified as input serve as inputs
to a selected device.∧

s∈O

∨
d∈Ds D(d) All species specified as output are produced

by a selected device.∧
d∈D

(
D(d)→

∧
s∈Sd\O

∨
d′∈Ds

D(d′)
)
To prevent the production of species that do
not serve any function, all species produced
by a selected device are outputs of the circuit
or serve as input to another selected device.∧

d∈D

(
D(d)→

∧
s∈Id\I

∨
d′∈Ds D(d′)

)
All species serving as inputs to a selected de-
vice are inputs of the circuit or are produced
by another selected device in order to ensure
that all device inputs are part of the system.

f s
d : Qd → B where, for states q, q′ ∈ Qd, the synchronous transition relation
(where all species are updated at each time step) is defined as

T (q, q′) ↔
( ∧

s∈Sd

q′(s) = f s
d(q)

)
(10)

Note that Td is finite and non-deterministic: while each species s ∈ Sd is updated
deterministically, there are no restrictions on the dynamics of species from Id.

Given a set of devices D = {d0, . . . , dn} we define the set of species S =⋃
d∈D(Id ∪ Sd). A specification of some required system behavior is given over

the dynamics of a set of input and output species denoted by I ⊆ S and O ⊆ S
where I ∩O = ∅ and I ∩ (

⋃
d∈D Sd) = ∅. Our goal is to select a subset of devices

D ⊆ D where D(d) ∈ B indicates whether device d is used as part of the system.
Let Ds = {d ∈ D | s ∈ Sd} denote the set of devices producing species s

and Ds = {d ∈ D | s ∈ Id} denote the set of devices using s as an input. We
construct the transition system T = (Q,Q0, T ) where q(s) ∈ B indicates the
availability of species s ∈ S and Q0 = Q. The following constraints are asserted
for all valid system states

∀q ∈ Q,
∧

s∈S\I

(
(
∧

d∈Ds

¬D(d)) → ¬q(s)
)

(11)

In other words, a species s that is not produced by any device is never available in
valid states of the system, unless s ∈ I. To prevent cross-talk between devices and
obtain a smaller solution (e.g. where devices that produce unnecessary species
are never included), we impose the additional constraints described in Table 1
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(note that only the cross-talk constraint is required to avoid contradictions in
the following definition). The transition relation of T is defined as

T (q, q′) ↔
(∧

s∈S
q′(s) = f s

d(qd)

)
(12)

where qd denotes the part of state q relevant for device d (i.e. describing species
from Id ∪ Sd). With the exception of the inputs I, the system is deterministic.

For this problem, a bit-vector encoding is appropriate due to the Boolean
structure of the system. For an individual device d we have Qd = B|Id|+|Sd|

where each f s
d ∈ Fd is a function f s

d : B|Id|+|Sd| → B. For the overall system,
we have Q = B|S| where T is a function B|S| × B|S| → B. We use a bit-vector
D ∈ B|D| to encode the set of selected devices. Given a device d, qd can be
encoded using appropriate bit-vector extraction and concatenation to select the
species from S ∩ (Id ∪ Sd), which allows the application of functions from Fd.

Fig. 4. A library of devices (D = {d0, . . . , d4}) is represented graphically in (A). Indi-
vidual devices are specified by their input and output species (e.g. arabinose (ara) and
the protein CI are the inputs of device d3, while NRI and LacI are its outputs), together
with a Boolean update function for each species. For example, species LacI is available
in the next state (indicated by LacI’) only if arabinose is available in the current state
and the repressor CI is not (positive and negative regulation is represented by pointed
or flat arrows). We seek a circuit with an arabinose input and green fluorescent protein
(gfp) output (B) which is capable of oscillations and stabilization and satisfies the con-
straints discussed in Sec. 4. Our procedure identifies the solutions shown in (C, where
D = {d0, d1}) and (D, where D = {d2, d3, d4}) but only the solution from (D) has the
desired dynamic behavior.

The characterization of device behavior and the construction of device li-
braries is currently an ongoing effort in synthetic biology. Therefore, we consider
a hypothetical device library (Fig. 4-A) constructed from frequently-used com-
ponents [22] to demonstrate the proposed approach. The Boolean update rules
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we use as an illustration abstract the detailed gene regulation behavior which
has been observed and engineered experimentally. Our goal in this example is to
design a circuit with the input/output characteristics shown in Fig. 4-B. In addi-
tion, we require that it is possible for the output gfp to oscillate for one value of
the input ara and stabilize for the other. Two possible solutions satisfying all con-
straints from Table 1 were identified (Fig. 4-C,D). However, this alone does not
guarantee that their dynamical properties are consistent with the required behav-
ior. We specify two paths of the system q0, . . . qK and q′0, . . . , q

′
K with the prop-

erties that
∨K

i=1 qi(ara) = q0(ara),
∨K

i=1 q
′
i(ara) = q′0(ara) and q0(ara) = q′0(ara)

(i.e. a different, constant input signal is applied in each case), qK−1 = qK (in the

first case, the circuit stabilizes) and
∨K−1

i=0 (q′i = q′K ∧
∨K−1

j=i+1 q
′
j(gfp) = q′K(gfp))

(in the second case, the circuits oscillates between multiple states where the
value of gfp changes). These additional constraints eliminate the device from
Fig.4-C as a possible solution, while the device from Fig.4-D is still identified as
a candidate (overall, the solution was found in under 1 sec). Besides specifying
behavior that the system must be capable of (i.e. the existence of trajectories
with certain properties), specification of properties that all system trajectories
must satisfy are also supported in our approach through the use of quantifiers.

5 Related Work

The application of formal methods to biology has already received attention (e.g.
[6], among others) but here we focus specifically on biological engineering appli-
cations where formal specifications and analysis can supplement computational
modeling and simulation to enable the computer-aided design of larger, more
reliable systems. DNA circuits have been studied using stochastic simulation, or
more recently, using probabilistic model checking [15], which also allows prop-
erties regarding the time required for computation or the probability of failure
to be expressed. In synthetic biology, computational design platforms exists to
target the construction of devices [29,19], while formal specifications have also
been considered [30]. Here we focus on the problem of combining devices into
systems, while satisfying additional design constraints, including desired system
behavior. This problem is related to the synthesis of software programs from
components [10] - here we formalize features of the biological design process and
address this problem using SMT-based methods.

The Petri-net formalism [11] can naturally describe some properties of the
DNA circuits from Sec. 3. The application of formal methods to Petri-nets has
been studied extensively, and in the future, relevant analysis procedures can
be adapted to the problems we consider. More specifically, the computation of
invariants for Petri-nets has been studied as an analysis strategy (e.g. in the
context of biology [26]). This problem is related to the computation we describe
in Sec. 3.2 but here we derive constraints directly from the known composition of
DNA species, while for Petri-nets such information is not available and invariants
are computed from the network structure (e.g. through its incidence matrix [11]).
Since the structure of species also determines the possible reactions between
them combining these approaches is an interesting future direction.
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6 Discussion and Future Work

Our approach is general and suitable for the analysis of biological models beyond
the applications discussed in this paper. For example, with the exception of the
additional species properties we exploit in Sec. 3.2, DSD circuits can be viewed as
general Chemical Reaction Networks (CRNs) and therefore such systems might
be analyzed using the proposed methods. Furthermore, the Boolean networks
we use in Sec. 4 are a popular modeling formalisms for biological interaction
networks (such as gene regulation, and signaling networks) as studied in the field
of systems biology. A number of realistic models have been constructed based
on this formalism, including large-scale (approaching whole-cell) regulatory and
metabolic reconstructions [24] where our methods can help address challenging
analysis problems. Besides providing analysis capabilities within tools such as
Visual DSD [16], the discussed methods are also available as an online tool at [2].

The expressivity, scalability and extensibility of SMT, together with its model
generation capabilities, which served for the identification of (counter)examples
in this work but can also allow synthesis applications in the future, were the
major consideration during the development of our methods. Our choice of bit-
vectors as a specific theory of interest was motivated by the availability of re-
cently developed efficient decision procedures, which allow the use of quantifiers
[28]. The investigation of the integer and bit-vector representations we propose
on a larger set of benchmarks is a direction of future work.

In Sec. 3 we assume that all species and reactions of a DSD circuit can be
generated a priory (e.g. using Visual DSD [16]), which is often the case for cir-
cuits of practical interest with some notable exceptions [14], which might still
be approached using SMT (e.g. through the use of recursive datatypes [18]).
When a sufficient number of molecules is present in chemical and biological sys-
tems, species concentrations can be described as continuous values (e.g. using
(non-linear) ODEs) [7], which is also a common description of the synthetic gene
networks studied in Sec. 4. Such systems, as well as other infinite-state, contin-
uous and hybrid models used in biology, can be encoded directly into SMT and
analyzed using recently developed decision procedures [13]. As an alternative,
(conservative) finite transition system abstractions can be constructed (e.g. as
in [30]) to enable the SMT-based analysis of such systems.

In the modeling of biological systems, capturing individual molecules numbers
(as in Sec. 3) can provide detailed and biologically accurate system descriptions,
which are often difficult to analyze. Constructing (finite) transition system rep-
resentations as in Sec. 3 allows us to express important properties (e.g. reach-
ability) with such level of detail, which is important for applications such as
DNA computing. Currently, we ignore all probabilistic aspects of these systems
(which arise, for example, when reaction rates are considered) but SMT reason-
ing procedures for probabilistic systems (e.g. [9]) can help address some of the
current limitations and extend our approach to other model classes (e.g. prob-
abilistic Boolean networks). For challenging areas such as probabilistic SMT, it
seems natural to explore biological applications for motivation and as a source
of benchmarks that can help drive the development of novel methods.
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7 Conclusion

As a step towards the development of an SMT-based analysis framework for
studying biological computation that is scalable and supports a wide set of
models and specifications, in this paper we focus on problems related to the
engineering of biological systems, as part of the emerging fields of DNA com-
putation and synthetic biology. We show that for a number of applications in
these domains, transition systems capture important behavior and can be an-
alyzed together with relevant specifications and additional constraints through
SMT-based methods in an efficient manner, going beyond what was possible
using other techniques. Our approach is general and is currently being applied
to other biological models and formalisms. This work highlights biological engi-
neering as a domain that can benefit extensively from the application of formal
methods, while the biological complexity can also motivate the development of
novel analysis methods.
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michael.lauer@polymtl.ca

3 IRIT-ENSEEIHT, University of Toulouse, France
jerome.ermont@enseeiht.fr

Abstract. Critical embedded systems are often designed as a set of
real-time tasks, running on shared computing modules, and communi-
cating through networks. Because of their critical nature, such systems
have to meet timing properties. To help the designers to prove the cor-
rectness of their system, the real-time systems community has developed
numerous approaches for analyzing the worst case times either on the
processors (e.g. worst case execution time of a task) or on the networks
(e.g. worst case traversal time of a message). However, there is a grow-
ing need to consider the complete system and to be able to determine
end-to-end properties. Such properties apply to a functional chain which
describes the behavior of a sequence of functions, not necessarily hosted
on a shared module, from an input until the production of an output.
This paper explores two end-to-end properties: freshness and reactivity,
and presents an analysis method based on Mixed Integer Linear Program-
ming (MILP). This work is supported by the French National Research
Agency within the Satrimmap project1.

Keywords: Real-time systems, embedded systems, end-to-end analysis.

1 Introduction

Nowadays, distributed embedded systems are widely used in domains such as
nuclear power, defense or transportation. For instance in the transportation do-
main, a highly critical function hosted by such a system is X-by-wire, where “X”
can be drive, brake or fly. Typically, such a function has to meet hard real-time
requirements. In this paper, we focus on the formal verification of two kinds of re-
quirements: (1) end-to-end freshness, i.e. the worst age of an output of the system
with respect to its related input, and (2) end-to-end reactivity, i.e. the minimal
duration an input must be present in order to impact an output of the system.
For instance, at any time the orders given by a fly-by-wire control system to the

1 Safety and time critical middleware for future modular avionics platforms:
http://www.irit.fr/satrimmap/

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 93–107, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.irit.fr/satrimmap/
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flight surfaces of an aircraft must be related to an aerodynamic situation not
older than 200 ms. In the same way, any gust of wind longer than 100 ms must
be taken into account by the system. However, because of the distributed nature
of the fly-by-wire control function, and because of their increasing complexity,
analyzing end-to-end properties becomes a challenge for realistic systems.

The aim of this article is to answer this challenge. More precisely, we present
a scalable method for formally analyzing end-to-end worst case freshness and re-
activity in distributed systems composed of time-triggered tasks communicating
through an asynchronous network. Note that we use the term worst in order to
designate the least favorable value. For instance, for the freshness property in
the context of this paper, it refers to the oldest output, i.e. the less fresh.

1.1 Globally Asynchronous Locally Time-Triggered Systems

Critical embedded systems are often composed of tasks statically scheduled
on shared computing resources and communicating through a shared network.
This is the case for modern aircraft such as the Airbus A380 or the Boeing
B787. These embedded systems follow the IMA standard (Integrated Modular
Avionics) [ARI97]. The scheduling on each computing module is time-triggered,
meaning that each task periodically executes at fixed and predetermined time
intervals. However, in order to avoid the use of complex synchronization pro-
tocols, modules are globally asynchronous. Such systems can be considered as
Globally Asynchronous and Locally Time-Triggered (GALTT).

In the following we consider GALTT systems composed of N periodic tasks
Γ = {τ1, . . . , τN} running on a set of m modules M = {M1, . . . ,Mm} com-
municating via a shared network. We note Γ (Mi) the set of tasks hosted by
module Mi. An avionics case study of a GALTT system is given in section 3.
The assumptions made for the system under analysis are:

Modules: Each module Mi is characterized by a period Hi, i.e., the hyper-
period of the tasks running on the module. The hyper-period is the least common
multiple of the hosted tasks periods, Hi = lcm(τj)τj∈Γi .

Tasks: Each task τj ∈ Γ (Mi) is characterized by a set of jobs τj(k) for k =

0 . . . nj . τj(k) is the kth job of the task τj in the period of Mi. Each job is
characterized by an interval [bj(k), ej(k)] where bj(k) is the beginning date of
the job, and ej(k) is the ending date. These dates are relative to the beginning
of the period of the module Mi. A task is used to model the time required by a
software task, a sensor or an actuator.

Communication: Tasks communicate in an asynchronous way. Each job τj(k)
consumes input data arrived between bj(k) and bj(k−1). Inputs received after the
beginning of the job will be consumed by the next job. Moreover, if two (or more)
instances of the same input are received before the beginning of the job, only the
last instance is memorized. The previous values are lost. Conversely, if no new
input arrives, the task reuses the last received input. Each job produces output
data at any time during its execution, meaning during interval [bj(k), ej(k)].
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Global Asynchronism: Finally, we suppose that the modules M are globally
asynchronous, i.e., they can be shifted by an arbitrary amount of time. Never-
theless, these offsets are supposed constant.

In the paper, we do not take into account any drift between the clocks of the
module. Although clock drift is a major issue in synchronized systems where
a shared time reference needs to be established, in asynchronous systems, by
definition, such time reference is not required. Still, the discrepancies in clock
frequencies which cause the clock drift could have an impact in our analysis.
Some modules could run a little faster (or slower). This may modify the actual
tasks periods and executions times. However, worst case freshness or reactivity
are usually measured in hundreds of ms. A high-quality quartz typically used in
avionics systems is assumed to lose at most 108 seconds per second. Hence, clock
drift could not significantly impact our results. To the best of our knowledge, it
is an implicit assumption in every performance evaluation papers dealing with
asynchronous systems.

1.2 The Addressed Problem: Verification of End-to-End Properties

As previously said, embedded systems must satisfy real-time properties. In gen-
eral, the real-time analysis is decomposed in three steps: (1) verification of the
temporal behavior of each task, which is done by proving that the worst case
execution time (WCET) of each job is bounded inside its corresponding time in-
terval, (2) evaluation of the network worst case traversal times (WCTT) for each
message crossing the network, and (3) the combination of the last two analyses
to verify end-to-end properties.

The first and second steps are already abundantly addressed in the litera-
ture [SAA+04]. In this paper, we focus on the third step by considering two
specific properties: end-to-end freshness and reactivity along a periodic func-

tional chain. A periodic functional chain
in→ τn

an→ . . . τ1
a1→ τ0

out→ is a set of
communicating tasks (including sensor and actuator tasks) such that each job of
τn (for instance a sensor) periodically produces data an for τn−1 from an exter-
nal value in (for instance a physical parameter). τn−1 then periodically produces
an−1. . . upto a final task τ0 (for instance an actuator) which delivers an output
out (for instance a physical action). If the chain belongs to a critical real-time
system, it has to meet a δ-freshness requirement: whenever an instance of o is
observed or used by the environment, then it must be based on an instance of
i acquired not earlier than δ time units before. For example, if o is the angle of
a flight control surface (and τ0 is the corresponding actuator), then it must be
fresh enough with respect to the speed of the aircraft (i in that case).

The second property we are interested in is the reactivity to input changes.
For instance, let us consider again the flight control system and let us imagine
a gust of wind arrives in the front of the wings. In order to ensure a safe and
comfortable flight, the system has to respond to any gust longer than 300ms
by moving the ailerons. Put differently, it must be reactive to any gust of wind

longer than 300ms. More formally, if we consider again a periodic chain
in→ τn
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an→ . . .→ τ0
out→, the chain is said δ-reactive if any change on i longer than δ time

units impacts o. In the previous example, if i is the measure of the external wind,
then the flight control system must be 300ms-reactive with respect to i.

The aim of this paper is to propose an efficient method for verifying δ-freshness
and δ-reactivity requirements on GALTT systems.

1.3 Related Work

Latency and worst case response time analysis are already abundantly studied
in the literature. The holistic approach ([TC94, Spu96]) has been introduced
for analyzing worst case end-to-end response time of whole systems. The worst
case scenario on each component visited by a functional chain is determined by
taking into account the maximum possible jitter introduced by the component
visited previously. This approach can be pessimistic as it considers worst case
scenarios on every component, possibly leading to impossible scenarios. Indeed,
a worst case scenario for a functional chain on a component does not generally
result in a worst case scenario for this functional chain on any component visited
after this component. Illustration of this pessimism is given in section 6.

The Real-Time Calculus [TCN00] (a variation of Network Calculus [LBT01])
has been proposed as an efficient method to determine worst case use of resources
and latency in real-time systems. However, similarly to the holistic approach,
worst case end-to-end latency is taken into account by adding the worst case
delay of each component, which leads to pessimistic results.

Several methods, such as the trajectory approach [MM06] and the Network
Calculus [LBT01] have been developed to deal with such over-approximations
but can only be applied to the evaluation of network traversal time. A more
recent work has been proposed in [BD12]. The authors suggest to extend the
Network Calculus method in order to take into account the real-time scheduling
in each computing modules connected to the network. The objective is to better
characterize the communication traffic entering the network, in order to reduce
the pessimism of the Network Calculus. However, the objective remains the eval-
uation of the worst case traversal time from an entry point to another one in the
network. Thus these methods cannot be used on their own to compute real-time
properties along functional chains. Nevertheless, as shown in section 3, they are
part of the global evaluation method we propose in the following.

Upper-bounds of end-to-end properties in a networked embedded system have
been proposed by [CB06]. Authors analyze the properties by modeling the func-
tional chains and the networked architecture as a set of timed automata. In or-
der to cope with the combinatorial explosion, they propose several abstractions.
However, this work suffers from two shortcomings with respect to our objective:
(1) the proposed model does not take into account the real-time behavior and
scheduling of the modules, and (2) the abstractions are not efficient enough to
cope with realistic systems.

Furthermore, these works are strongly focused on latency properties and do
not consider more elaborate properties like freshness and reactivity.
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1.4 Contribution

To the best of our knowledge, the study of freshness and reactivity proper-
ties is relatively sparse in the literature. We proposed in [LBEP11] a latency
and a freshness analysis method for a specific class of embedded systems called
Integrated Modular Avionics (IMA), composed of computing modules holding
strictly periodic tasks (i.e., composed only of one job per period). In the current
paper, we extend this work in two directions: firstly we consider more general
GALTT systems in which tasks can be composed of several jobs in the same pe-
riod, and secondly we study the δ-reactivity property. As in [LBEP11], we show
that δ-freshness and δ-reactivity properties can be still modeled as a Mixed In-
teger Linear Program (MILP). And we show on an industrial case study that
this analysis method is scalable enough with respect to realistic systems.

2 An Avionics Case-Study

Let us consider an avionics case study depicted in Figure 1. This case study is a
part of a flight control system (FCS).

System Description. The functional chain under analysis can be summerized
as follows: the Air sensor periodically measures the total air pressure outside
the aircraft (TPana). This analog value is digitalized (TPdig) and transmitted
through a Remote Data Concentrator RDCadr to the Air Data Reference func-
tion (ADR). The ADR computes the speed of the aircraft (speed1) and sends
it to the Intertial function (IR) which consolidates the data with data from an
inertial sensor. The consolidated speed (speed2) is then returned to the ADR
for validation which sends the final speed value (speed3) to the Flight controller
(FlightCntrl). It computes the angle (θdig) which must by applied to the aileron.
This last data is transmitted to the aileron actuator (Aileron) through RDCfc.
Finally, Aileron transforms the digital data θdig into a physical angle (θana).

This functional chain is formalized as F =
TPφ→ Air sensor

TPdig→ RDCadr
TPdig→

ADR
speed1→ IR

speed2→ ADR
speed3→ FlightCntrl

θdig→ RDCfc
θdig→ Aileron

θana→ . The
architecture of the system and the real-time parameters are depicted in figure 1.

System Requirements. The chain F must satisfy the requirements:

– (200ms)-freshness: at any time, the aileron angle θ must correspond to
a total air pressure measured at most 200ms before. This is illustrated in
figure 2 and analyzed in section 4.

– (300ms)-reactivity: any variation of air pressure longer than 300ms must
reflect on the angle applied to the aileron. This is analyzed in section 5.

3 The Analysis Approach: Overview

The analysis method is based on two steps: (1) simplification of the system by
abstracting the network with a set of timed channels, and (2) evaluation of the
worst case end-to-end freshness (WCF) or worst case end-to-end reactivity.
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Task number of jobs jobs time interval (in ms) module & period (in ms)

ADR 2 [0,10], [25,35] M3, 40
IR 1 [10,20] M2, 30
FlightCntrk 4 [0,4], [10,14], [20,24], [30,34] M1, 40
RDCadr 1 [3,4] RDC3, 5
RDCir 1 [5,6] RDC2, 10
RDCfc 2 [3,4], [15,16] RDC1, 20

sensor/actuator job time interval (in ms) production/action period (in ms)

Air sensor [0,1] 5
Aileron [0,1] 5

Fig. 1. Case-study: a flight control subsystem

First step: abstraction of the network The combinatorial complexity of the veri-
fication of real-time properties takes its root in the asynchronism of the modules,
and indeterministic congestion in the network. We showed in [LEPB10] that tak-
ing into account all these factors in the evaluation of end-to-end properties is
intractable. However, in the area of distributed embedded systems, the traversal
time of each message through the network from one module to another one must
bounded. The complexity of our analysis method can be significantly reduced
by abstracting the network with a set of timed channels. In this setting, each
communication is abstracted with a channel characterized by a time interval
[δmin, δmax], where δmin (resp. δmax) is the lower (resp. upper) bound of the
network traversal time along the path. As said in section 1.3, these bounds can
be determined with various formal methods, depending on the nature of the
network. For instance, the trajectory approach has been successfully applied to
switched embedded networks in [BSF09]. The Network Calculus [LBT01] method
has been extended to switched networks with several priorities level [SB12]. Simi-
larly, [HHKG09, CB10, FFF11] propose methods for evaluating lower and upper
bounds of communication delays in other classical real-time networks such as
CAN, Flexray, and SpaceWire. Generally speaking, these methods involve the
communication path parameters (route in the network, throughput of the net-
work nodes, maximum size of the messages allocated to the path,. . . ), and they
associate each path with its minimal and maximal traversal time. We do not



Freshness and Reactivity Analysis in GALTT Systems 99

Fig. 2. A end-to-end freshness requirement in the flight control system

describe these analysis techniques in the following. Readers interested in worst
case traversal times analysis are invited to consult the provided references.

By way of example, in the FCS case study we consider that each communica-
tion is abstracted by a timed channel [1, 3] (in ms): each frame undergoes a delay
between 1ms and 3ms to reach its destination. Note that this abstraction is an
over-approximation because the bounds of the timed channels are determined
with Network Calculus, which is an over-approximative technique. We discuss
the significance of this point through experiments in section 6.

Second step: freshness and reactivity evaluation This second step constitutes the
contribution of the article. It is based on an abstract model where the network
and the communication paths are replaced by timed channels, and on linear
programing. The idea is to characterize all the possible behaviors along a func-
tional chain with a set of variables and constraints, and afterwards to determine
the worst case scenario among all these possible behaviors with respect to the
property under analysis. One of the advantage of this approach is that finding
the worst case scenario can be done automatically by a solver.

4 Worst-Case End-to-End Freshness Analysis

As previously stated, we model the behavior of each element by a set of variables
and constraints. The behavior of the whole system is obtained as the conjunction
of all these constraints. This defines a Mixed Integer Linear Program (MILP)
which can be used to determine the worst case freshness of a functional chain.
In the following, all variables used for offsets and dates are reals. All variables
used to designate a specific hyper-period or a job are integers. Although not
mandatory, we only use integers for parameters in order to improve readability.

4.1 Modeling

Module. Let Mi be a module. The only variable which characterizes Mi is its
possible offset with respect to the other modules. Modules are asynchronous,
thus the time origin of their execution frame may be shifted by an offset Oi.
This offset may be arbitrary. However, as we are interested in the regular be-
havior, and not the specific case of the initialization phase, it is not necessary to
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consider offsets greater than the maximal hyper-period of the system. The first
constraints for Mi are then:

Oi ∈ R, 0 ≤ Oi ≤ maxk=0...mHk

Task (Including Sensor and Actuator). Tasks are the only active ob-
jects of our modeling. Let τj be a task running on the module Mi. Let d be
a data periodically produced by τj . The task τj is characterized by a set of jobs

τj(k) for k = 0 . . . nj . τj(k) is the kth job of τj in the hyper-period Hi. Each job
is characterized by a time interval [bj(k), ej(k)]. These dates are relative to the
beginning of the current hyper-period which is itself relative to the start of mod-
ule Mi. Then, if n is the number of the current hyper-period, the absolute time
interval corresponding to the job τj(k) is [Oi + nHi + bj(k),Oi + nHi + ej(k)].

Let us suppose that another task reads the output data d produced by τj at
tread (tread is an absolute date). To evaluate the possible freshness of d at tread,
one has to determine which job has produced d. This job is characterized by its
index k and the index n of its hyper-period satisfying the following constraints

Oi + nHi + bj(k) ≤ tread < Oi + nHi + ej(k + 1)

for k < nj , i.e., the job is not the last job of τj in the nth hyper-period, as shown
in the figure 3(a). And

Oi + nHi + bj(nj) ≤ tread < Oi + (n+ 1)Hi + ej(0)

for k = nj , i.e., the job is the last job of τj in the nth hyper-period, as shown
in the figure 3(b). In other terms, in the first case (left part of the figure), if
d is acquired after (the relative date) bj(k) and strictly before ej(k + 1), it is
possibly produced by the kth job; indeed τj(k) may produce d anywhere in its
time interval, then possibly at Oi+nHi+bj(k), and similarly τj(k+1) may take
all its time interval for producing a new data, then possibly atOi+nHi+ej(k+1).
The second case is similar.

Then, if we consider all the jobs of τj , determining the job and the hyper-
period producing d could be done simply by considering a set of boolean variables
Bk k = 0 . . . nj (one variable per job) such that one and only one Bk is true

∀k = 0 . . . nj , Bk ∈ {0, 1},
∑

k=0...nj
Bk = 1

and such that the two following constraints are true:{
tread < Oi + nHi +

∑
k=0...(nj−1)Bk · ej(k + 1) +Bnj (Hi + ej(0))

Oi + nHi +
∑

k=0...nj
Bk · bj(k) ≤ tread

For a given offset of the module Oi and for a given tread (acquisition date of d),
these two constraints determine a set of couples (n, k), i.e., a set of jobs which
can produce d. Note that the solution is note unique because of the variation of
the execution time of each job.
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(a) first case: d is acquired between two jobs
from the same hyper-period

(b) second case: d is acquired between two
consecutive hyper-periods

Fig. 3. Rules determining which job has produced the data d acquired at tread

Then, for any couple of hyper-period n, and job k, which respects the previous
constraints, only one acquisition date (tin) of the input related to the occurrence
of d is acceptable. It it constrained by the beginning of the job:

tin = Oi + nHi +
∑

k=0...nj
Bk · bj(k)

Recall that only one of the Bk is true and denotes the job producing d; then∑
k=0...nj

Bk · bj(k) is the relative date at which the related input is acquired.
The local freshness of d at time tread is then tread − tin.

Communication through a Timed Channel. Let us now consider a timed
channel characterized by a communication time in [δmin, δmax] and a data d
crossing that timed channel. If tbefore and tafter are the input and the output
dates of d from the channel, then tbefore and tafter are related by

tafter − δmax ≤ tbefore ≤ tafter − δmin

Communication through a Shared Memory. Tasks on a same module
communicate through the local shared memory and requires no time. A shared
memory is similar to a channel characterized by the interval [0, 0]:

tafter = tbefore

4.2 Worst-Case Freshness on the Whole System

Let
in→ τn

an→ . . . τ1
a1→ τ0

out→ be a functional chain. The model of this chain
is simply obtained by connecting all the constraints of all the jobs and the
communication involved in the chain. The set of constraints thus obtained forms
a MILP. Let us note tout a date at which the final output out is observed, and tin
the related acquisition date of the input parameter in. tout and tin are related
by the set of the previous constraints. Then the freshness of out at tout is

F = tout − tin

The worst case latency is obtained on a particular behavior maximizing F . This
behavior can be found by using a MILP solver with the objective function:

maximize: F
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4.3 Application to the Case-Study

Consider the functional chain in Figure 2. The global MILP model obtained for
analyzing the worst case freshness of the chain is composed of 42 constraints
and 43 variables. As an example, we only give here the beginning of the model,
concerning the end of the chain, i.e., the actuator Aileron, and the communica-
tion task RDCfc on RDC1. The modeling language used in this listing is the one
used for lp_solve [BEN04] input files.

max : t0 - t8 ; // freshness expression to maximize

// Module offsets
OAileron <= 40; ORDC1 <= 40; OM1 <= 40; OM2 <= 40; OM3 <= 40; ORDC3 <= 40; OAir_sensor <= 40;

// Timed channels bounds
deltamin = 1; deltamax = 3;

// Aileron model where t0 is the date of the aileron angle
t0 < OAileron + 5 nAileron + 6; t0 >= OAileron + 5 nAileron + 0;
t1 = OAileron + 5 nAileron + 0;

// From RDC_fc to Aileron
t1prime >= t1 - deltamax; t1prime <= t1 - deltamin;

// RDC_fc
t1prime < ORDC1 + 20 nRDC1 + 16 B1RDC_fc + 24 B2RDC_fc ;
t1prime >= ORDC1 + 20 nRDC1 + 3 B1RDC_fc + 15 B2RDC_fc ;
B1RDC_fc <= 1 ; B2RDC_fc <= 1; B1RDC_fc + B2RDC_fc = 1;
t2 = ORDC1 + 20 nRDC1 + 3 B1RDC_fc + 15 B2RDC_fc;

// From FlightCntrl to RDC_fc
t2prime >= t2 -deltamax; t2prime <= t2 - deltamin;
...

The MILP is solved with lp solve in less than 1s on a 2.53 GHz processor.
The maximal freshness returned for the case-study is 175ms. Hence, the system
satisfies the (200ms)-freshness requirement.

5 Worst-Case End-to-End Reactivity Analysis

The second property we are interested in is the reactivity of a functional chain
to an input signal. Let us consider again the case study figure 2. Imagine a
gust of duration δms. The consequence of this gust is to suddenly increase the
value of the total pressure at the input of the system. Let us suppose that for
aerodynamical reasons the system has to react to any gust of duration δ is greater
that 300ms; briefer gust may be ignored. Then one has to verify that it is never
the case that all total pressure samples during any window greater than 300ms
are lost (i.e., overwritten) somewhere in the chain, and then do not impact the
aileron angle computation. For instance, in the scenario figure 2, samples TPn−4

to TPn−1 are overwritten by TPn, and then are lost. The period of Air sensor
is 5ms. Then it comes directly from this scenario that the chain is not reactive
to gusts of duration 20ms. The question is: can we determine the worst case
end-to-end reactivity of this chain?
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Fig. 4. a non δ-reactivity case

5.1 δ-Reactivity Modeling

Let us consider a functional chain
in→ τn

an→ . . . τ1
a1→ τ0

out→. The chain is δ-reactive
if and only if in any window [t, t + δ], at least one sample of in is related to a
sample of out. Conversely, the chain is not δ-reactive if and only if they are two
consecutive output samples outk and outk+1 which depend respectively from two
input samples inm and inm′ such that inm and inm′ are separated by more than
δ time units. In that case, as shown in figure 4, any sample inp acquired after
inm and before inm′ is lost, overwritten by inm′ somewhere in the chain.

Following this idea, a simple way to verify a chain is δ-reactive is:

1. Consider two consecutive output samples outk and outk+1. For the sake of
simplicity, let us suppose that τ0 is a task composed of only one job, an
actuator of period T0 for instance. As τ0 is the last task in the chain, its
processing time does not impact the reactivity. Thus, to simplify the evalu-
ation of the reactivity of the chain, it is not necessary to consider dates of
each sample outk and outk+1. It is sufficient to consider the beginning date
of there respective jobs. Let tk0 and tk+1

0 be these dates:

tk0 = O0 + k · T0 and tk+1
0 = O0 + (k + 1) · T0

To generalize to task τ0 composed of several jobs can be done simply by
following the modeling presented in the previous section.

2. Determine the dates tmn and tm
′

n , i.e., the dates of the inputs related to ok
and ok+1 (i.e., in figure 4, inm and inm′). This analysis is done by using the
constraints presented in the previous section.

3. Determine the reactivity related to (outk, outk+1) as the difference between
these two input dates: reactivity(outk, outk+1) = tm

′

n − tmn . The chain is then
δ-reactive if

∀k, reactivity(outk, outk+1) ≤ δ

As previously, the worst case reactivity is obtained on a particular behavior
maximizing reactivity(outk, outk+1), for any k. This behavior can be found by
using a MILP solver with the objective function: maximize: tm

′

n − tmn .
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5.2 Application to the Case-Study

Consider the functional chain in Figure 2. The global MILP model obtained for
analyzing the worst case reactivity of the chain is composed of 95 constraints and
75 variables. As an example, we only give here the beginning of the model, con-
cerning the end of the chain, i.e., the actuator Aileron, and the communication
task RDCfc on RDC1.

max : r8 - t8 ; // reactivity expression to maximize

// Offsets
OAileron <= 40; ORDC1 <= 40; OM1 <= 40; OM2 <= 40; OM3 <= 40; ORDC3 <= 40; OAir_sensor <= 40;

// Timed channels bounds
deltamin = 1; deltamax = 3;

// First sample at t0 produced by the job ntAileron
// *******************
// Aileron
t1 = OAileron + 5 ntAileron;

// From RDC_fc to Aileron
t1prime >= t1 - deltamax; t1prime <= t1 - deltamin;

// RDC_fc
t1prime <= ORDC1 + 20 ntRDC1 + 16 B1tRDC_fc + 24 B2tRDC_fc ;
t1prime > ORDC1 + 20 ntRDC1 + 3 B1tRDC_fc + 15 B2tRDC_fc ;
B1tRDC_fc <= 1 ; B2tRDC_fc <= 1; B1tRDC_fc + B2tRDC_fc = 1;
t2 = ORDC1 + 20 ntRDC1 + 3 B1tRDC_fc + 15 B2tRDC_fc;
...

// second sample at r0 produced by the job nrAileron
// *******************
// Aileron
nrAileron = ntAileron + 1 ;
r1 = OAileron + 5 nrAileron;

// From RDC_fc to Aileron
r1prime >= r1 - deltamax; r1prime <= r1 - deltamin;
r1prime >= t1prime ;

// RDC_fc
r1prime <= ORDC1 + 20 nrRDC1 + 16 B1rRDC_fc + 24 B2rRDC_fc ;
r1prime > ORDC1 + 20 nrRDC1 + 3 B1rRDC_fc + 15 B2rRDC_fc ;
B1rRDC_fc <= 1 ; B2rRDC_fc <= 1; B1rRDC_fc + B2rRDC_fc = 1;
r2 = ORDC1 + 20 nrRDC1 + 3 B1rRDC_fc + 15 B2rRDC_fc;
r2 >= t2 ;
...

The MILP is solved with the solver lp solve in 140s on a 2.53 GHz processor.
The maximal reactivity returned for the case-study is 130ms.

6 Discussion: Global versus Local Approach

6.1 Freshness Analysis: Local versus Global Approach

To evaluate the gain we may achieve, we benchmark our global approach against
a local one. As described in section 1.3, a local approach consists in determining
the local worst case freshness (LWCF) of each component visited in the func-
tional chain with respect to the previous component only. Then the end-to-end
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(a) Worst-case freshness: local versus global
approach

(b) Worst-case reactivity: local versus
global approach

Fig. 5. Local versus global approach

freshness is the sum of each LWCF. The LWCF of a timed channel is the upper
bound of the communication delay: δmax. In the same way, the LWCF of a task
τi is the maximal delay between the begin and the end of two consecutive jobs
(i.e., the time for a data to be refreshed). Then, in our case study, the end-to-end
freshness obtained following this local reasoning is:

LF = 6 + 13 + 14 + 35 + 40 + 35 + 6 + 6 + 7δmax = 155 + 7δmax (in ms) (1)

Figure 5(a) compares the local and global approaches by varying δmax. Accord-
ing to equation (1) the worst case freshness determined with the local approach
is linear (straight dashed line). The results of the global approach form a step
linear function and gives more accurate results than the local approach. The
curve of the global approach varies by steps because the functional chain crosses
module M3 twice. System designers could take advantage of this more accurate
evaluation technique: within certain range they could increase the network load
with lower impact on the end-to-end freshness than predicted by the local ap-
proach. For instance, the curves figure 5(a) show that for a maximal traversal
time through the network δmax = 7ms, the global WCF is equal to 195ms while
the local one is 204ms. Put differently, only the global method shows that the
chain still meets the requirement.

6.2 Reactivity Analysis: Local versus Global Approach

We compare our global reactivity analysis with a local approach. The reactivity
obtained following a local method is the difference between the maximal fresh-
ness LF and the minimal freshness plus one period of the end task of the chain
τ0. Following only a local reasoning, the minimal freshness happens when the
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network traversal time is minimum (δmin ) and when all tasks take no time and
are well phased. Thus in our case study the end-to-end reactivity is:

LR = 155 + 7(δmax − δmin) + 5 = 160 + 7(δmax − δmin) (in ms) (2)

We compare again the global approach against the local one by varying δmax

(δmin remains equal to 1ms). The results are plotted on figure 5(b). According
to equation (2) the worst case reactivity determined with the local approach is
linear (straight dashed line). The results of the global approach form a more
complex curve and gives more accurate results.

7 Conclusion

The article presents an analysis method for end-to-end freshness/reactivity prop-
erties on GALTT systems. This verification method is based on a MILP model-
ing. Worst case end-to-end properties are computed as optimal solutions of the
MILP problem. An interesting feature of this approach is that one can easily
compute best case end-to-end properties. It only requires to modify the objec-
tive function of the MILP form max to min. From a scalability point of view, the
case study considered previously is composed of 7 tasks (including the sensor,
the actuator, and the communication tasks), one of them (ADR) being crossed
two times. This case study is representative from industrial systems (usually
composed of 5 to 10 tasks). Our method applied to this case study does not take
more than 1s for the freshness analysis and 140s for the reactivity analysis (with
a non optimized solver). We think that these results are promising.

In this article, we made however a strong hypothesis about the internal be-
havior of the tasks. We implicitly considered that each job of each task does not
induce a delay greater than its worst case response time, i.e., the length of its
time interval. This implicit hypothesis is shown figure 2 where each job returns
an output data before the end of its time interval. Obviously it is not always the
case in realistic systems. Some tasks can implement “confirmation tests” waiting
for a given amount of time (generally a multiple of its period) before producing a
consolidated output. Obviously this internal latency impacts the global latency
and the global reactivity of the chain. Our next work to do is to extend our
global method by tasks involving internal delays.
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Abstract. Numerical methods are necessary to understand the behav-
iors of complex hybrid systems used to design control-command systems.
Especially, numerical integration methods are heavily used in simulation
to compute approximations of the solution of differential equations, in-
cluding non-linear and stiff solutions. Nevertheless, these methods only
produce approximate results and they should not be used in formal ver-
ification methods as is. We propose a systematic way to make explicit
Runge-Kutta integration method safe with respect to the mathemati-
cal solution. As side effect, we can hence compare different integration
schemes in order to pick the right one in different situations.

1 Introduction

Verification techniques for embedded, control-command systems usually involve
the modeling of the system using a hybrid automata-like formalism and then
the computation of the reachable states of the system [1,2]. To compute these
reachable states, one of the crucial points is the post operator for the continu-
ous trajectories which requires to compute over-approximations of trajectories
defined by ordinary differential equations (ODE in short). In the linear case (i.e.
when the differential equations are linear), this can be exactly and efficiently
solved using an efficient representation of convex sets as in [3]. For the non-
linear case, one cannot in general compute exactly the continuous trajectories
and approximation techniques such as hybridization [4,5] have been proposed.
This however may result in an explosion of the number of discrete jumps and
thus does not scale well to large, industrial systems.

In an industrial context, the validation of these systems (which differs to the
formal verification) usually involves the modeling of the system in a Simulink-
like formalism and then performing numerical simulations of the system to test
its behavior under some input scenarios [6,7]. Numerical simulation techniques
are very efficient and scale very well to large systems with many state variables.
Moreover, system designers are used to tune and use these simulations to have
good approximations of the system trajectories. Such simulations are however
of little help for the formal verification of hybrid systems.
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In this article, we propose to use and adapt the numerical methods used in
tools as Matlab/Simulink to define a new post operator for continuous trajec-
tories. More formally, we define a way to transform any explicit Runge-Kutta
numerical method to solve ODE into a guaranteed manner that computes over-
approximations of the exact solution. We focus on explicit Runge-Kutta-like
methods as they are the most widely used methods to solve differential equa-
tions. For example, in the Matlab/Simulink tool, there are 13 integration meth-
ods, 8 of which are explicit Runge-Kutta methods. It is well known that each
method has its particularities and is suited for a particular kind of ODEs. So,
having a collection of numerical methods allows one to choose the best one for
solving its particular ODE. Our framework proposes different methods and thus
allows to efficiently and precisely solve different kinds of equations.

In the rest of this article, we give in Section 2 an overview of numerical
methods to solve ODEs, then in Section 3 we explain how we modified them to
enclose the solution of ODEs. Then, in Section 4, we present experimentation
that show the benefits of our approach compared to related work.

2 Numerical Integration

We now recall the principles of numerical integration of ordinary differential
equations. An ordinary differential equation (ODE) is a relation between a func-
tion y : IR → IRn and its derivative ẏ = dy

dt
, written as ẏ = f(t, y). An initial value

problem (IVP) is an ODE together with an initial condition and a final time:

ẏ = f(t, y) with y(0) = y0, y0 ∈ IRn and t ∈ [0, tend] . (1)

Example 1 (Running example). We use the following IVP as our running example:⎧⎨
⎩

ẏ = z

ż = z2 − 3

0.001 + y2

with

{
y(0) = 10

z(0) = 0

and we set the final time at tend = 50. We call this IVP the “oil-reservoir” problem,
this example comes from [8]. This IVP is particularly stiff around t = 35, while
its evolution elsewhere is slow, which makes it difficult to solve.

Solving the IVP means finding a continuous and differentiable function y∞ such
that y∞(0) = y0 and ∀t ∈ [0, tend], ẏ∞(t) = f

(
t, y∞(t)

)
. We do not address here the

problem of existence of the solution and we shall always assume that f : IR×IRn →
IRn is continuous in t and globally Lipschitz in y, so Equation 1 admits a unique
solution on IR [9]. We denote the solution of (1) with initial condition y0 at t = 0

as y(t; y0). Higher order differential equations can be translated into first-order
ODEs by introducing additional variables for the derivatives of y.

2.1 Approximate Solution

An exact solution of Equation 1 is rarely computable so that in practice, ap-
proximation algorithms are used. The goal of an approximation algorithm is to
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Euler method

Fixed step ODE23

Variable step ODE23

Fig. 1. Some numerical solutions of the oil-reservoir problem with different numerical
methods, zooming on t ∈ [30, 40]

compute a sequence of time instants 0 = t0 < t1 < · · · < tn = tend and a sequence
of values y0, . . . , yn such that ∀i ∈ [0, n], yi ≈ y(ti; y0). In this article, we focus on
single-step methods that only use yi and approximations of ẏ(t) to compute yi+1.

The simplest method is Euler’s method in which ti+1 = ti +h for some step-size
h and yi+1 = yi +h×f(ti, yi); so the derivative of y at time ti, f(ti, yi), is used as an
approximation of the derivative on the whole time interval to perform a linear
interpolation. This method is very simple and fast, but requires small step-sizes.
More advanced methods use a few intermediate computations to improve the
approximation of the derivative. For example, Bogacki-Shampine method (also
named ODE23) performs three evaluations of f and then a linear interpolation
from yn using a weighted sum of the three derivative approximations (h is the
chosen step-size):

k1 = f(tn, yn) (2a)
k2 = f(tn + (1/2)h, yn + (1/2)hk1) (2b)
k3 = f(tn + (3/4)h, yn + (3/4)hk2) (2c)

yn+1 = yn + h ((2/9)k1 + (1/3)k2 + (4/9)k3) (2d)

Example 2. If we consider the “oil-reservoir” problem of Example 1, Euler and
Bogacki-Shampine with a fixed step-size of 0.1 produce two very different solu-
tions, as plotted in Figure 1 in dotted and dashed lines. Note that Euler method
diverges around t = 35, where the dynamics of the solution is very stiff.

When the derivatives of the solution exhibit high variations, for example around
t = 35 for the “oil-reservoir” problem, it is important to adapt the step-size
h to ensure that the approximate solution does not deviate too far from the
exact solution. So called variable step-size methods use a second, more precise
interpolation that is used as a reference of the solution. The distance between
both interpolations is considered as the error made by the first interpolation.
For the Bogacki-Shampine method, the second interpolation is given by:

k4 = f(tn + h, xn+1) (3a)
zn+1 = xn + h ((7/24)k1 + (1/4)k2 + (1/3)k3 + (1/8)k4) (3b)

Then, ‖ yn+1 − zn+1 ‖ is the estimated error attached to the approximation point
yn+1 and is used to both validate the step from tn to tn+1 and adapt the step-size.
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(b) Bogacki-Shampine table.

Fig. 2. Butcher table

Step-size control strategy is at the core of the performance of a numerical
integration algorithms, both in terms of precision (the step-size is reduced when
needed) and computation time (the step-size is increased when the solution
is flat). We will present in Section 3 our method for controlling the step-size
when performing guaranteed numerical integration. We refer to [9,10] for details
about the step-size strategy for numerical algorithms. On Figure 1, we show
the values of the approximated solution of the “oil-reservoir” problem for the
Bogacki-Shampine method with a variable step-size: it greatly differs from the
fixed step-size method, and it is actually very close to the actual solution (see
Section 4).

In this article, we only consider methods based on Runge-Kutta methods, ei-
ther fixed or variable step-size. All these methods can be described by a Butcher
table (see Figure 2(a)). The di represent the time instants of the intermediate
steps needed to compute the solution of ẏ = f(t, y) over the interval [tn, tn +h]. The
matrix made of the elements aij represents the weights used to approximate the
interval solution from the previous intermediate steps. The elements wi, w′

i (only
for variable step-size methods) represent the latest weights to approximate the
solution at time tn + hn with two methods of different orders. For example, the
Butcher table associated to Bogacki-Shampine is given at Figure 2(b). In con-
sequence the elements of the Butcher table give a unified description for all the
numerical integration methods members of the Rung-Kutta family. In the rest of
this article, we denote by Φ a numerical method described by such a Butcher ta-
ble: it relates two successive approximation points: ∀n ∈ IN, (tn+1, yn+1) = Φ(tn, yn).

2.2 Problems with Numerical Integration

Numerical integration only provides approximations of the solution of the IVP.
Even when using variable step-size methods, there is no guarantee that the
chosen method is close to the solution, we merely know that the smaller the
step-size is, the closer the approximations are to the solution. So, if we want to
use numerical methods in cases when an over-approximation of the trajectories
is needed, we need to compute error bounds y(tn; y0) − yn for all n ∈ IN.
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Moreover, numerical integration only concerns IVP with a single initial value,
i.e. y0 ∈ IRn. In hybrid systems model verification, it is necessary to enclose all
the solutions of a differential equation starting from any point in a given set.
More formally, given an initial set S0 ⊆ IRn, we want to compute bounds on the
set of trajectories {y(t; y0) | y′ = f(t, y), y0 ∈ S0}. The method we develop in the
rest of the article encodes sets of values using affine arithmetic and compute
bounds on the solutions of the differential equations by computing bounds on
y(tn; y0) − yn whatever the initial value is within some set S0.

Finally, implementations of numerical methods very often suffer from the use
of floating-point numbers which explain why, even if theoretically a Runge-Kutta
method converges towards the solution when the step-size converges towards 0,
it is in practice not the case. Our method handles these errors in a safe way.

3 Guaranteed Integration

We present our solutions of the drawbacks associated to the numerical solutions
of IVP. Firstly, we present our approach to manipulate sets of values for handling
uncertainties. Secondly, we describe the method to bound the truncation error
introduced in numerical methods to provide guaranteed numerical integration.

3.1 Computing with Sets

The simplest and most common way to represent and manipulate sets of values
is interval arithmetic [11]. Nevertheless, this representation usually produces too
much over-approximated results in particular because of the dependency problem.

Example 3. Consider the ordinary differential equation ẋ(t) = −x solved with
the Euler’s method with an initial value ranging in the interval [0, 1] and with a
step-size of h = 0.5. For one step of integration, we have to compute
with interval arithmetic the expression e = x + h × (−x) which produces as a
result the interval [−0.5, 1]. Rewriting the expression e such that e′ = x(1 − h), we
obtain the interval [0, 0.5] which is the exact result. Unfortunately, we cannot in
general rewrite expressions with only one occurrence of each variable.

More generally, it can be shown that for most integration schemes the width of
the result can only grow if we interpret sets of values as intervals.

To avoid this problem we use an improvement over interval arithmetic named
affine arithmetic [12] which can track linear correlation between program vari-
ables. A set of values in this domain is represented by an affine form x̂ (also
called a zonotope), i.e. a formal expression of the form x̂ = α0 +

∑n
i=1 αiεi where

the coefficients αi are real numbers, α0 being called the center of the affine form,
and the εi are formal variables ranging over the interval [−1, 1]. Obviously, an
interval a = [a1, a2] can be seen as the affine form x̂ = α0 +α1ε with α0 = (a1 +a2)/2

and α1 = (a2 − a1)/2. Moreover, affine forms encode linear dependencies between
variables: if x ∈ [a1, a2] and y is such that y = 2x, then x will be represented by
the affine form x̂ above and y will be represented as ŷ = 2α0 + 2α1ε.
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Affine arithmetic extends usual operations on real numbers in the expected
way. For instance, the affine combination of two affine forms x̂ = α0 +

∑n
i=1 αiεi

and ŷ = β0 +
∑n

i=1 βiεi with a, b, c ∈ IR, is given by:

ax̂ + bŷ + c = (aα0 + bβ0 + c) +
n∑

i=1

(aαi + bβi)εi . (4)

However, unlike the addition, most operations create new noise symbols. Multi-
plication for example is defined by:

x̂ × ŷ = α0α1 +
n∑

i=1

(αiβ0 + α0βi)εi + νεn+1 (5)

where ν =
(∑n

i=1 |αi|
)× (∑n

i=1 |βi|
)

over-approximates the error between the linear
approximation of multiplication and multiplication itself. Other operations, like
sin, exp, are evaluated using their Taylor expansions. Note that the set-based
evaluation of an expression only consists in substituting all the mathematical
operators, like + or sin, by their counterpart in affine arithmetic. We will denote
by Aff(e) the evaluation of the expression e using affine arithmetic.

Example 4. Consider again e = x + h × (−x) with h = 0.5 and x = [0, 1] which is
associated to the affine form x̂ = 0.5 + 0.5ε1. Evaluating e with affine arithmetic
without rewriting the expression, we obtain [0, 0.5] as a result.

One of the main difficulties when implementing affine arithmetic using floating-
point numbers is to take into account the unavoidable numerical errors due to
the use of finite-precision representations for values (and thus rounding on oper-
ations). We use an approach based on computations of floating-point arithmetic
named error free transformations: the round-off error can be represented by a
floating-point number and hence it is possible to exactly compute it (we refer
to [13] for more details on such methods). For instance, in the case of addition,
the round-off error e generated by the sum s = a + b is given by (� stands for
floating-point operations): e = (a 	 (s 	 (s 	 a))) ⊕ (b 	 (s 	 a)) .

A second comment on the implementation is that an affine form x̂ could be
represented as an array of floats encoding the coefficients αi. However, since in
practice most of those coefficients are null, it is much more efficient to adopt
a sparse representation and encode it as a list of pairs (i, αi), sorted w.r.t. the
first component, containing only coefficients αi �= 0. Moreover, in order to limit
the growth of the number of noise symbols in affine forms, we gather during
simulation all the coefficients below a given threshold into a new noise symbol.

3.2 Enclosing the Truncation Error

We recall from Section 2 that a numerical integration method computes a se-
quence of approximations (tn, yn) of the solution y(t; y0) of the IVP defined in
Equation (1) such that yn ≈ y(tn; y0). Every numerical method member of the
Runge-Kutta family follows the condition order [9]. This condition states that
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a method of this family is of order p iff the p + 1 first coefficients of the Taylor
expansion of the solution and the Taylor expansion of the numerical methods
are equal. Hence, at a time instant tn the Taylor expansion of the solution with
the Lagrange remainder states that ∃ξ ∈]tn, tn+1[ such that:

y(tn+1; y0) = y(tn; y0) +

p∑
i=1

hi
n

i!
y(i)(tn; y0) +

hp+1
n

(p + 1)!
y(p+1)(ξ; y0)

= y(tn; y0) +

p∑
i=1

hi
n

i!
f(i−1) (tn, y(tn; y0)) +

hp+1
n

(p + 1)!
f(p) (ξ, y(ξ; y0)) .

(6)

In Equation (6), g(n) stands for the n-th derivative of function g w.r.t. time t

that is dng
dtn

and hn = tn+1 − tn is the step-size. Moreover, the general form of an
explicit s-stage Runge-Kutta formula, that is using s evaluations of f , is:

yn+1 = yn + h
s∑

i=1

biki , (7a)

k1 = f
(
tn, yn

)
, ki = f

(
tn + cih, yn + h

i−1∑
j=1

aijkj

)
, i = 2, 3, . . . , s . (7b)

The coefficients ci, aij and bi are those given in a Butcher table (see Section 2).
We define the function φ : IR → IRn by φ(t) = yn + ht

∑s
i=1 biki(t), ki(t) is defined

as Equation (7b) where h is ht = t − tn. The Taylor expansion around tn of the
numerical solution with a Lagrange remainder states that there exists η ∈]tn, tn+1[

such that:
yn+1 =

p∑
i=0

hi
n

i!

diφ

dti
(tn) +

hp+1
n

(p + 1)!

dp+1φ

dtp+1
(η) .

The truncation error measures the distance between the true solution and the
numerical solution and it is defined by y(tn; y0) − yn. If we express the trunca-
tion error with the Taylor expansions, the consequence of the condition order
is that the numerical integration makes an error proportional to the Lagrange
remainders. More precisely, the truncation error is defined by:

y(tn; y0) − yn =
hp+1

n

(p + 1)!

(
f(p) (ξ, y(ξ)) − dp+1φ

dtp+1
(η)

)
ξ ∈]tk, tk+1[ and η ∈]tn, tn+1[ .

(8)
The challenge to make Runge-Kutta integration schemes safe w.r.t. the true
solution of IVP is then to compute a bound of the result of Equation (8). In other
words we have to bound the value of f(p) (ξ, y(ξ; y0)) and the value of dp+1φ

dtp+1 (η).
The latter expression is straightforward to bound because the function φ only
depends on the value of the step-size h, and so does its (p + 1)-th derivative. The
bound is then obtain using the affine arithmetic by:

dp+1φ

dtp+1
(η) ∈ Aff

(
dp+1φ

dtp+1
([tn, tn+1])

)
. (9)

However, the expression f(p) (ξ, y(ξ; y0)) is not so easy to bound as it requires
to evaluate f for a particular value of the IVP solution y(ξ; y0) at a unknown
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time ξ ∈]tn, tn+1[. The solution used is the same as the one found in [14,15] and
it requires to bound the solution of IVP on the interval [tn, tn+1]. We briefly
recall the main mathematical tool used to bound the solution of IVP and we
refer to [14] for a complete presentation. We consider the space of continuously
differentiable functions C0([tn, tn+1], IRn) and the Picard-Lindelöf operator:

P (f ; tn; yn)(t) = yn +

∫ t

tn

f(s, y(s))ds . (10)

Note that this operator is associated to the integral form of Equation (1). So the
solution of this operator is also the solution of Equation (1).

The Picard-Lindelöf operator is used to check the contraction of the solution
on a integration step in order to prove the existence and the uniqueness of
the solution of Equation (1) as stated by the Banach’s fixed-point theorem.
Furthermore, this operator is used to compute an enclosure of the solution of IVP
over a time interval [tn, tn+1] using affine arithmetic. Affine arithmetic can be used
to compute a bound of integral expression such that:

∫ b
a f(x)dx ∈ (b−a)Aff(f([a, b]) .

Using an affine version of the Picard-Lindelöf operator, we can try to prove the
contraction of this operator by computing a post fixed-point over the interval
[tn, tn+1] that is we want to find a value z such that:

z ⊇ yn + [0, h]Aff (f([tn, tn+1], z)) . (11)

Note that Equation (11) is associated to an iterative process to compute z.
Starting from z0 being the interval hull of yn and yn+1, we define the sequence of
affine forms zk as zk+1 = yn +[0, h]Aff

(
f([tn, tn+1], zk)

)
and stop when we find k such

that zk+1 ⊆ zk. If we cannot find a post fixed-point in a given fixed number of
iterations, this may be the case that the step-size is too large. Then we reject the
integration step and keep going the simulation with a reduced step-size (usually
hn
2

). That is Equation (11) is also used to control the integration step-size.
Furthermore, the value z is also used as an enclosure of the solution of IVP

over the time interval [tn, tn+1]. We can hence bound the Lagrange remainder of
the true solution with z such that:

f(p) (ξ, y(ξ; y0)) ∈ Aff
(
f(p) ([tn, tn+1], z)

)
. (12)

Finally, using Equation (9) and Equation (12) we can prove Theorem 1 and thus
bound the distance between the approximation points of any explicit Runge-
Kutta method and any solution of the IVP.

Theorem 1. Let S0 ⊆ IRn be a set of initial states and let y0 be an affine form
such that S0 ⊆ y0. Let Φ be a numerical integration scheme and ΦAff be the
evaluation of Φ using affine arithmetic. Let (tn, yn) be a sequence of time instants
and affine forms defined by yn+1 = y′

n+1 +en+1 where (tn+1, y′
n+1) = ΦAff(tn, yn) and

en+1 is the truncation error as defined by Equation (8) and is evaluated using
Equations (9) and (12). Then, we have that ∀y′

0 ∈ S0: ∀n ∈ IN, y(tn; y′
0) ∈ yn .

Example 5. We present the main steps of our method on the system ẋ = x2 solved
with Heun’s method: xn+1 = xn + h/2(x2

n + (xn + hx2
n)2). First, if x(tn) ∈ x̂n, we let
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x̂n+1 = x̂n +h/2(x̂2
n +(x̂n +hx̂2

n)2), evaluated using affine arithmetic. Next we bound
the truncation error x̂n+1 − x(tn+1). Heun’s method being of order 2 we need to
bound over [tn, tn+1] the third derivative of the problem and the third derivative
of the method w.r.t. time, i.e. we want to bound the expressions ...

x = 6x4 and
φ(3)(t) = 3x4

n with φ(t) = xn + (t − tn)/2(x2
n + (xn + (t − tn)x2

n)). For the latter, we
bound it with 3x̂4

n using affine arithmetic. For the former, we must bound x on the
whole interval [tn, tn+1] into an affine form ẑ and then we use 6ẑ4 as a bound of ...

x .
To compute ẑ, we use Equation (11) and iteratively compute a post-fixpoint of
ẑ = x̂n +[0, h]ẑ2. We start from the hull of x̂n and x̂n+1 and evaluate the expression
x̂n + [0, h]ẑ2 using affine arithmetic until we reach a post-fixpoint.

3.3 Step-Size Strategy

Our method automatically adapts the step-size in order to validate the existence
of the solution and improve the stability of the computed enclosure.

The iteration defined by Equation (11) successively computes sets zk until
zk+1 = yn + [0, h]Aff

(
f([tn, tn+1], zk)

) ⊆ zk. At this point, we know that IVP (1)
has a solution on [tn, tn+1] and that this solution remains in zk. As we assumed
that the IVP has a solution, there exists some h > 0 such that Picard iteration
converges. However, given some h, the iteration may diverge or take too long to
converge. So we fix a maximal number of iterations K, and if we do not converge
after K steps, the step is rejected and we set the step-size to h/2. As we start
from a good approximation of the fixpoint (the hull of the enclosure at tn and
the numerical approximation at tn+1), the iteration generally converges quickly.

Then, we let the user define two values, the absolute tolerance atol and the
relative tolerance rtol that defines the acceptable error at each integration step.
More formally, our method computes for each instant tn an error en which is the
distance between the true solution and the numerical approximation. We say
that the step from tn to tn+1 is accepted if en is such that: sup(en) ≤ err where
err = max

(
atol, rtol× max(sup(yn+1), sup(yn))

)
. If the step is not accepted, we set

the step-size to h/2 and restart from tn. If the step is accepted, the next step-size
is h′ = h

(
rtol/err

)1/(q+1), q being the order of the numerical method. So, the step-
size is automatically adapted so that the error introduced at each step converges
towards the user-defined tolerances. This is similar to what is done for variable
step-size numerical methods, except that we now use the guaranteed error to
accept and control the step-sizes. Note that we also transform fixed step-size
methods such as Euler or RK4 methods into variable step-size algorithms.

Finally, our implementation also offers another algorithm to adapt the step-
size: we use the PI algorithm from [15]. The main idea is the use a proportional-
integral controller scheme to adapt h to achieve the desired error err. This
algorithm makes the step-size more stable and thus reduces the number of re-
jected steps due to the Picard-Lindelöf iteration and in our experiments it showed
to be the best choice for controlling the step-size.
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4 Experiments

In this section we present the effectiveness of our approach to make every ex-
plicit Runge-Kutta method guaranteed through different examples mainly com-
ing from the DETEST problem set [16]. This set has been specifically defined
to test numerical integration methods on various kinds of problems classified
according linear/non-linear and non-stiff/stiff categories. We compare our ap-
proach against the VNODE (VNODE-LP version 0.3) software which imple-
ments the state of the art of guaranteed numerical integration methods based
on interval Taylor series [14]. Despite VNODE can handle high order Taylor
series we restrict our comparison to order 4 which is the highest order of the
Runge-Kutta methods we consider in this article. We use the following integra-
tion methods: Euler, Heun, Runge-Kutta 4 (RK4), Bogacki-Shampine (ode23),
Dormand-Prince (ode45) [10].

All the simulations were executed on a desktop (two 2.33GHz processors with
2Go of RAM) running Fedora Linux. The implementation was done in OCaml
using the GiNaC library [17] to symbolically compute derivatives. In the follow-
ing tables, we present: T the time (in seconds) required to simulate the problem
excluding time spent to compute derivatives and TT the total time (in seconds)
including time used to compute and compile derivatives1; Tol = rtol = atol the cho-
sen tolerance; Rej and Acc are respectively the number of rejected and accepted
steps; Evals is the number of function evaluations and Prec is the precision, taken
as the greatest width of the guaranteed enclosures calculated.

4.1 Oil-Reservoir Problem

We consider again the “oil-reservoir” problem introduced in Section 2 on which
we applied different guaranteed Runge-Kutta methods. In order to give a hint
on the kind of stiffness we deal with this example, in Figure 3(a) we give the
temporal evolution of the variable z around t = 35, where the derivative varies a
lot. We see that, even if the precision of the bounds decreases when the stiffness
is important, our method is precise enough to make the bounds contract when
the dynamics is simpler. In Figure 3(b) we give the step-size evolution of the
Heun’s method to emphasize the importance of the step-size control mechanism
presented in Section 3.3, even for initially fixed step-size integration scheme.

Next, we present in Table 1 the results of the application of different Runge-
Kutta methods on the “oil-reservoir” example. Note that VNODE is not able
to solve this problem, even with an order of 50: it is not able to go beyond 2

seconds of simulation. We remark in Table 1 that the execution time increases
with the chosen tolerance and the complexity of the Runge-Kutta method (num-
ber of rows in a Butcher table). Moreover, the precision varies with the chosen
tolerances and methods. We recall that the precision taken in this article is the

1 We distinguish both as in our implementation, we only need to compute the deriva-
tives once, if we want to re-integrate the same problem with other parameters or
from another starting point, we do not need to compute the derivatives again.
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Fig. 3. Oil-reservoir with guaranteed Heun’s method

Table 1. Simulation results on “oil-reservoir” problem

Meth Tol Acc Rej Evals T TT Prec Prec(tend)
Heun 10−6 2566 2561 10254 1.099 4.322 2.791 4.541 · 10−2

10−9 17626 36373 107998 8.878 12.101 1.438 · 10−2 3.971 · 10−3

10−12 220092 665081 1770346 141.848 145.071 7.579 · 10−5 7.579 · 10−5

ode23 10−6 2453 2449 14706 4.833 10.713 5.412 7.063 · 10−2

10−9 8320 16633 74859 23.015 26.538 0.107 1.891 · 10−2

10−12 45495 113940 478305 132.578 136.101 6.996 · 10−4 4.000 · 10−4

RK4 10−6 604 481 4340 0.909 38.646 1.413 4.824 · 10−2

10−9 1553 2031 14336 2.778 40.514 1.368 · 10−2 3.061 · 10−3

10−12 7224 14441 86660 15.409 53.145 3.683 · 10−5 3.683 · 10−5

ode45 10−6 1163 1177 16380 15.791 5653.939 7.772 1.729 · 10−1

10−9 1772 2316 28616 26.046 5642.939 1.002 6.619 · 10−2

10−12 7669 15330 160993 114.609 5731.502 2.787 · 10−5 2.787 · 10−5

greatest width of the guaranteed enclosures computed during the simulation. In
this example, the greatest width is computed around t = 35. In Table 1 the last
column gives the width of the solution enclosure at the end of the simulation,
which shows that we obtain precise results at t = 50 even if locally the error
increases.

4.2 Non-stiff Problems

DETEST Problem A3. We study the behaviors of the Heun’s method and the
RK4 method on the following problem, for a simulation time t ∈ [0, 20]:

ẏ = y cos(t) with y(0) = 1 . (13)

More precisely, we emphasize the importance of the choice of the numerical
methods in the trade-off of efficiency and precision even for this simple example.
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Fig. 4. Step-size (left) and precision (right) evolution for Problem A3 (Tol=10−3)

For this example, Heun’s method and RK4 method can solve Equation (13) more
efficiently than variable step-size methods as Bogacki-Shampine without loosing
too much precision. Figure 4, left, shows the step-size evolution of these two
methods. Note that the length of the step-size adapts to the dynamics of the
problem. Furthermore, the steps chosen by RK4 method are about four times
wider than those taken by the Heun’s method. This is explained by the order
of the method used (see Section 2). Furthermore, the precision evolution of the
two methods depicted in Figure 4, right, shows that RK4 method offers more
precise enclosures than Heun’s method.

DETEST Problem C3. In this case study we only consider RK4 method to show
the scalability of our approach. We solve for t ∈ [0, 2] and various values of n the
problem defined by:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ẏ1

ẏ2

ẏ3

...
ẏn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

. . .
0 0 · · · 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3

...
yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with y(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

In particular, we solved this problem with n = {40, 80, 120, 140}. Table 2 shows the
time spent in simulation using RK4 method and the precision generated for each
dimension and each tolerance considered. Compared to VNODE with order 4 re-
sults of the RK4 method exhibits a linear time complexity, while VNODE spends
much more time to solve it. Indeed, VNODE uses standard interval arithmetic
so to limit the wrapping effect during the simulation it uses a technique based on
QR matrix decomposition (see [14]) which has a O(n3) complexity. Our solution
to fight the wrapping effect is the use affine arithmetic which prevents the use
of QR matrix decomposition then we have a better scalability without losing to
much precision. Note also that with high order, e.g. 40, VNODE is able to solve
this problem with only one integration step.
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Table 2. Results for Problem C3

Dim Tol T Prec T VNODE Prec VNODE
40 10−3 0.378 7.381 · 10−4 0.9 4.404 · 10−4

10−6 1.064 1.284 · 10−5 7.46 2.175 · 10−07

10−9 4.628 2.530 · 10−8 72.28 3.517 · 10−11

80 10−3 0.959 1.886 · 10−3 6.92 4.404 · 10−4

10−6 2.551 1.432 · 10−5 58.89 2.175 · 10−07

10−9 10.641 2.295 · 10−8 565.57 3.517 · 10−11

120 10−3 1.49 1.753 · 10−3 23.21 4.404 · 10−4

10−6 4.297 1.386 · 10−5 196.56 2.175 · 10−07

10−9 17.782 2.446 · 10−8 2314.46 3.517 · 10−11

140 10−3 1.846 1.137 · 10−3 37.43 4.404 · 10−4

10−6 5.285 1.440 · 10−5 334.08 2.175 · 10−07

10−9 22.286 2.710 · 10−8 3904.96 3.517 · 10−11

Table 3. Results on Problem E2

Meth Tol Rej Acc Evals T Prec
Heun 10−3 38 11 98 0.013 6.451 · 10−4

10−6 130 129 518 0.036 2.073 · 10−5

10−9 1047 2092 6278 0.354 8.060 · 10−8

ode23 10−3 36 9 135 0.046 1.369 · 10−3

10−6 99 113 636 0.156 3.630 · 10−5

10−9 653 1580 6699 1.329 1.513 · 10−7

RK4 10−3 36 18 216 0.071 5.693 · 10−5

10−6 48 34 328 0.106 7.538 · 10−6

10−9 134 171 1220 0.371 1.592 · 10−8

VNODE 10−3 − − − 0 1.278 · 10−4

10−6 − − − 0.02 2.554 · 10−07

10−9 − − − 0.18 2.623 · 10−10

4.3 Stiff Problem

We consider for a simulation time t ∈ [0, 1] the DETEST Problem E2 defined by:

⎧⎨
⎩

ẏ1 = y1

ẏ2 = 5(1 − y2
1)y2 − y1

with

⎧⎨
⎩

y1(0) = 2

y2(0) = 0
.

We look at the behaviors of different explicit Runge-Kutta methods which are
known to behave not very well on such kind of problems. Table 3 gives the
result on this example. For the result of VNODE, we did not succeed to access
the information associated to columns Rej, Acc and Evals. Nevertheless, we note
that VNODE at order 4 is more efficient and precise in this example than Runge-
Kutta methods which already behave well.
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Fig. 5. Temporal evolution in (x, y)-space of the car ODE

4.4 Problem with Uncertainties

Finally, we show an example of a highly non-linear IVP, representing the move-
ment of a car in 2D space) with some initial uncertainty:

ẋ = v cos(δ) cos(θ) ẏ = v cos(δ) sin(θ) θ̇ = 0.2v sin(0.2t) .

We integrate it up to t = 30 with the initial values x(0) ∈ [0, 1], y(0) ∈ [0, 1], θ(0) = 0

and v ∈ [7, 7.1]. Figure 5 shows the evolution of the bounds on x and y with
time. This was computed using the RK4 method, with a tolerance of 10−8, in
15.6s, with v ∈ [7, 7.1]. We hence remark that our approach is efficient and robust
enough to handle uncertainties.

5 Conclusion

In this article, we presented a novel method to compute guaranteed bounds on
the solution of differential equations. This method is an extension of the previous
work of one of the authors [15]. The main advantages of this work is that it may
use various numerical methods to obtain the guaranteed bounds, so that we
can treat different kinds of equations (stiff or not, linear or not). Moreover, as
we use affine forms in order to enclose sets of values, we avoid the well known
wrapping effect which is present in [14]. This results in a more precise and
more effective method as we can make larger step-sizes. Remark that our tool
computes both over-approximations at discrete time stamps tn but also, using
the Picard-Lindelöf operator, over-approximations over each intervals [tn, tn+1].

To compute such over-approximations, various other tools exist. Developed
for the verification of hybrid systems, SpaceEx [3] handles linear differential
equations exactly using support functions and matrix exponentiation. However,
when facing non-linear equations, a hybridization [5] must be performed, which
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can end in an explosion of the number of discrete states if the equation is stiff.
Compared to tools such as VNODE [14], ValenciaIVP [18] or [19], our method
relies on well-known numerical methods and can thus treat more differential
equations. For example, VNODE could not integrate the “oil-reservoir” problem.

As should be clear from our experimentation, the fact that we can use vari-
ous numerical methods is very interesting as each method is well adapted to a
specific kind of problems. So we are confident that by adding more and more
methods to our framework we will have a large enough collection to handle most
kinds of problems. Three challenges arise towards this goal. First, we want to
handle implicit methods in which yn+1 is defined via a fixpoint equation. These
methods are more stable than explicit ones and thus handle better stiff systems
and allow for larger step-sizes. Second, we will investigate multi-step methods
that use yn, yn−1, . . . , yn−k to compute yn+1 for some k > 0. Such methods are
more efficient than single-step methods as they require less evaluation of f , how-
ever bounding the error is much more complicated. Finally, we will study variable
order methods as in [8]. Such methods embed in one Butcher table various meth-
ods with different orders. Then, at each step, the best method is automatically
chosen. This method would allow us to efficiently change the order during the
integration process.
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Abstract. A major hurdle for the application of automata learning to
realistic systems is the identification of an adequate alphabet: it must
be small enough, in particular finite, for the learning procedure to con-
verge in reasonable time, and it must be expressive enough to describe
the system at a level where its behavior is deterministic. In this paper,
we combine our automated alphabet abstraction approach, which refines
the global alphabet of the system to be learned on the fly during the
learning process, with the principle of state-local alphabets: rather than
determining a single global alphabet, we infer the optimal alphabet ab-
straction individually for each state. Our experimental results show that
this does not only lead to an increased comprehensibility of the learned
models, but also to a better performance of the learning process: indeed,
besides the drastic – yet foreseeable – reduction in terms of membership
queries, we also observed interesting cases where the number of equiva-
lence queries was reduced.

1 Introduction

The practical application of verification techniques such as model based
testing [4] or model checking [6] is often hampered by the lack of adequate
formal models. This is not the least a cause of the much propagated component-
based software design style, as most libraries only provide very partial—if any—
specifications of their components, rendering the system as a whole underspeci-
fied. As a way out of this dilemma, automata learning techniques [11] have been
proposed, allowing the automated construction of behavioral models from ac-
tual runtime behavior. This has successfully been employed in applications such
as Computer Telephony Integrated (CTI) systems [12,11], Web Services [20], or
protocol specifications [21]. A particularly fruitful application of automata learn-
ing can be found in the EC FP7 project Connect [17], where behavioral models
of networked systems are learned automatically, providing a basis for automated
on-the-fly connector synthesis.
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Fig. 1. (a) Fragment of the Mealy machine for generating country calling codes, (b)
Mealy machine with binary action parameters

In all of the above scenarios, the learning algorithm relied on a kind of test
harness, which provides an abstraction on the often infinite set of potential in-
put actions, yielding a finite view of the system fine enough to guarantee a
deterministic behavior, a precondition for most learning approaches. For real
“black-box” systems, the true challenge for automata learning, these abstrac-
tions were usually determined in a laborious, manual trial and error process.
The AAR algorithm presented in [16] was the first to overcome this problem:
it fully automatically determines the coarsest refinement of a given abstraction
that guarantees a deterministic behavior on the fly during the learning process.

In this paper we combine the AAR approach with the principle of locality:
rather than determining one global alphabet, we fully automatically infer the
optimal alphabet abstraction individually for each state. The motivation for this
combination came from practical experience, in particular with learning Web
applications: here, the alphabet symbols typically correspond to the actions a
user can take, e.g., clicking on a link or submitting form data. An example (pat-
tern) illustrating the need for locality is sketched in Fig. 1 (a): for an arbitrary
country, it outputs the ITU country calling code (such as +1 for the US and
Canada). The country is specified in a hierarchical manner, by first entering the
continent and then the name of the country.

A more technical example is shown in Fig. 1 (b): here, actions are of form
a(x,y,z), with x,y,z ranging over the set {0,1}. The concrete input alphabet
hence needs to contain every combination of values for x,y, and z, leading to
23 = 8 different input symbols. The transitions are equipped with conditions
checking the values of certain parameters. Obviously, the number of transitions
is far lower than the size of the concrete input alphabet, as the effect of an input
symbol highly depends on the current state.

A global abstraction cannot capture the specific nature of those examples;
i.e., that the notion of a “valid” or “invalid” country (Fig. 1 (a)) depends on the
selected continent, or that depending on the state in Fig. 1 (b), it is the value of
either x or z that exposes differing behavior. A global abstraction needs to refine
every single local abstraction, not only leading to an increased complexity in
terms of queries, but also reducing the comprehensibility of the inferred model.
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In our experimental analysis, we show that local alphabet abstraction refine-
ment (LAAR) does not only work for systems as in Fig. 1, but also for quite
differently structured third party benchmarks. In order to explore its perfor-
mance, we compare the results of classical L∗ learning, AAR and LAAR for the
two examples displayed in Fig. 1, the first in its real-world instantiation, the
latter with a growing number of parameters. Additionally, we investigated its
application to a hierarchical file system navigator, and also three third-party
systems. The results (cf. Table 1 in Section 4 of this paper) are quite surprising,
as for some examples there was not only a decrease of membership queries, but
also a decrease of equivalence queries.

However, despite the impressive performance results one should not forget the
original intent of LAAR: to produce an improved and more concise abstract sys-
tem model. In our experiments, the reduction factor in the number of transitions
is between 4 and 10, reaching up to 500 for specific examples.

Related work. The algorithm presented in [16], which inferred alphabet abstrac-
tions at a global level, forms the basis of this paper’s work. Dealing with infinite
alphabets is also the aim of register automata learning [14], under the assump-
tion that symbols are parameterized with data values from an infinite domain,
and that the system behaves independently of concrete data values (i.e., permu-
tations on the data domain do not affect the behavior).

In [10], an L∗-based approach for inferring a labeled transition system that
represents an interface of a software component, classifying method execution
sequences as either legal, illegal, or unknown, was introduced. The alphabet
initially consists of arbitrary method invocations, and is refined subsequently
to include constraints on the method’s parameters. Similarly to AAR, this is
done on-the-fly during the learning process. However, a fully white-box scenario
is assumed, allowing to extract the precise guards from the component’s source
code. Unlike the approach in this paper, a homogeneous global alphabet is used.

In the context of assume-guarantee reasoning [7], active learning is employed
to learn assumptions. Alphabet refinement techniques [9,3] have been used to
potentially reduce the learning alphabet by starting with a smaller subset of
the interface alphabet. When a seemingly spurious counterexample is found, the
alphabet is extended heuristically in an additional counterexample analysis step.
In contrast to [16], no abstraction is assumed on single alphabet symbols, but
rather symbols not in the learning alphabet are hidden. This notion of refinement
is related to predicate abstraction [5,13], and thus differs from our notion, which
concerns the granularity of an abstraction. Except for the first one, all the works
mentioned have in common that they do not extend the ‘black box’ model to
the input alphabet, in contrast to our approach which describes classes of the
abstraction in terms of behavioral observations.

Outline. This paper is organized as follows. Section 2 establishes the formalisms
for modeling the kind of reactive systems our algorithm operates on, including a
formalism for abstraction. In Section 3, we present our main contribution, an al-
gorithm for inferring minimal abstract models of these systems. An experimental
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evaluation of this algorithm is presented in Section 4, and the final section con-
cludes the paper, also giving an outlook on our intended future work.

2 Modeling Reactive Systems

Reactive systems, i.e., systems which directly respond to user interaction by
producing output messages, form a large class of real-life systems, a prominent
example being web services. In this paper, we will constrain ourselves to de-
terministic systems with finite output alphabets and state spaces, also being
insensitive to real-time. For the exception of the finiteness of the input alpha-
bet, which we do not require, these systems can be modeled by a widely known
automaton model, and there exist well-studied learning algorithms for inferring
such systems.

Taking into account infinite input alphabets, we will in the following subsec-
tions introduce a suitable model for this kind of systems, as well as establishing
a formalism of abstraction that allows for finite representations of these models.

2.1 Mealy Machines

Mealy machines are a variant of automata which distinguish between an input
alphabet and an output alphabet. Characteristic for Mealy machines is that
inputs are always enabled (in other words, the transition function is totally
defined for all input symbols), and that their response to an input (sequence) is
uniquely determined (this property is called input determinism). Both properties
fit the requirements of a large class of (reactive) systems very well.

Let Σ be a set of input actions. By Σ∗ we denote the set of words over Σ, with
the usual notation |w| for the length of w. The empty word is denoted by ε. Let
then Σ+ = Σ∗ \ {ε} be the set of all words of nonzero length. The concatenation
of two words u and v is written as u · v or simply uv. In the remainder of this
paper we will need to distinguish between (possibly countably infinite) concrete
input actions, referred to as ΣC, and abstract (and finite) input actions, referred
to as ΣA. These indexes are applied to symbols and words in the same way.

As an extension of the well-known Mealy machine model, we now define a
countable Mealy machine (CMM) as M = 〈Q,q0,Σ,Ω,δ,λ〉, where Q is a finite
nonempty set of states, q0 ∈ Q is the initial state, Σ is an (at most) countable set
of input actions, Ω is a finite set of output actions, δ : Q×Σ → Q is the transition
function, and λ : Q×Σ → Ω is the output function.

Intuitively, a (countable) Mealy machine evolves through states q ∈ Q, and
whenever one applies an input symbol (or action) a ∈ Σ, the machine moves to a
new state according to δ(q,a) and produces an output according to λ(q,a).1The
semantics of a Mealy machine M can sufficiently be expressed in terms of a
function �M� : Σ+ → Ω mapping each word from Σ+ to an output symbol from
Ω, defined in the following way:

�M�(wa) =de f λ(δ∗(q0,w),a).

1 We will extend δ to words in the usual way: Let δ∗(q,ε) = q and δ∗(q,aw) =
δ∗(δ(q,a),w) for aw ∈ Σ+.
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2.2 Abstractions on Countable Mealy Machines

In this section, we will describe how abstractions can serve as a way of dealing
with the large (or even infinite) structure of a CMM in a more compact (finite)
manner. The key idea is that the effect of each input symbol can be described in
terms of the immediately produced output and the future behavior (the successor
state), both of which form finite classes.

Definition 1. For arbitrary sets ΣC (concrete domain) and ΣA (abstract do-
main), a surjective function α : ΣC → ΣA is called an abstraction. If ΣA is finite,
α is called a finite abstraction. The cardinality |α| of α is defined as |α|= |ΣA|.
A function γ : ΣA → ΣC is a concretization (wrt. α) if γ ◦α is the identity function
on ΣA. For aA ∈ΣA , γ(aA) is called the representative for aA (wrt. γ). For aC ∈ΣC,
the representative is ρ(aC) with ρ = α ◦ γ. 
�

An abstraction α induces a partition Pα = {α−1(a) | a ∈ ΣA} on ΣC and therefore
also an equivalence relation. Two abstractions are said to be isomorphic if they
induce the same partition. Similarly, we adapt the concept of refinement in terms
of the induced partition.

For finitely describing CMMs we identify for each state q ∈ Q of the CMM
an abstraction αq, such that δ(q, ·) and λ(q, ·) both are invariant under the ap-
plication of ρq, regardless of the chosen concretization γq. Such an abstraction
is called a determinism-preserving abstraction (DPA). The following definition
introduces an automaton model which captures this kind of abstraction.

Definition 2. A (state-locally) abstract Mealy machine (AMM) M is defined
as M = 〈Q,q0,ΣC,Ω,A,Δ,Λ〉, where

– Q is a finite set of states,
– q0 ∈ Q is the initial state,
– ΣC is a countable set of concrete inputs,
– Ω is a finite set of outputs,
– A = {αq : ΣC → ΣA,q | q ∈ Q} is a set of local abstractions, where ΣA,q is some

(arbitrary) finite abstract domain,
– Δ = {δq : ΣA,q → Q | q ∈ Q} is a set of local transition functions and
– Λ = {λq : ΣA,q → Ω | q ∈ Q} is a set of local output functions.

An AMM evolves through states q ∈ Q by reading input symbols aC ∈ ΣC, pro-
ducing output symbols and moving to a successor state according to λq and δq

respectively, beforehand transforming the input symbol aC to an abstract symbol
aA = αq(aC). 
�

A CMM M = 〈Q,q0,ΣC,Ω,δ,λ〉 can be derived from an AMM M =
〈Q,q0,ΣC,Ω,A,Δ,Λ〉 by defining δ(q,aC) = δq(αq(aC)) and λ(q,aC) = λq(αq(aC)).
The semantics of an AMM can therefore also be expressed in terms of a function
�M � : Σ+

C → Ω, and we can define a CMM M and an AMM M to be equivalent
iff �M� = �M �.

For each CMM M, there is a unique (up to isomorphism) minimal equivalent
AMM M . Here, minimal refers to both the number of states as well as the
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cardinality of each local abstraction |αq|. Considering the possibility to derive
a CMM from M , it is obvious that the same number of states as the minimal
CMM is both necessary and sufficient. For each state q∈ Q in the minimal CMM
M = 〈Q,q0,ΣC,δ,λ〉, we define the equivalence relation !q⊆ ΣC ×ΣC by

aC !q a′C :⇔ δ(q,aC) = δ(q,a′C)∧λ(q,aC) = λ(q,a′C).

The abstraction α∗
q corresponding to !q obviously is determinism-preserving.

Furthermore, if an abstraction αq does not refine α∗
q, there exist aC,a′C ∈ ΣC

such that αq(aC) = αq(a′C) but α∗
q(aC) = α∗

q(a
′
C) and therefore aC !q a′C. By the

definition of !q, αq cannot be determinism preserving.
The minimal AMM M of some system modeled by a CMM is the most con-

cise representation of this system: it only contains a single transition for each
distinguishable transition (wrt. either source or target state, or output symbol)
in the CMM. This qualifies the minimal AMM as the desired model in terms of
comprehensibility.

3 The Learning Algorithm

In this section we will present our main contribution: an active learning algorithm
that produces an abstract model of a system under learning (SUL) at the level
of an optimal local abstraction. Before describing the concepts of our algorithm,
we will briefly revisit the algorithm L∗

M [25,23], an adaptation of the classical L∗

algorithm [2] for Mealy machines.

3.1 L∗
M Revisited

Active automata learning algorithms infer models of unknown regular systems
under learning (SUL) for which initially only an input alphabet is known, using
two kinds of queries.

– Membership queries (MQ) test the reaction of the SUL to a specific input
(e.g., a word over the input alphabet).

– Equivalence queries (EQ) test whether an intermediate hypothesis correctly
models the SUL, and returns a counterexample in case it does not.

In principle, learning starts with a one state hypothesis automaton that treats
all words over the considered alphabet (of elementary observations) alike and
refines this automaton on the basis of query results iterating two steps: hypothesis
construction and hypothesis verification.

During hypothesis construction the dual way of how states of the unknown
SUL are characterized is central:

– by an incrementally growing prefix-closed set of words reaching each state
of the SUL exactly once. This set defines a spanning tree of the intermediate
hypothesis automata.
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– by their future behavior wrt. a dynamically growing set of ‘distinguishing’
suffixes from Σ+

C . This characterization is too coarse throughout the learning
process and will be refined continuously following the pattern of the well-
known Nerode congruence [19] (or [24] for Mealy machines).

This evolving characterization is established using membership queries. From
certain well-defined sets of prefixes and suffixes, hypothesis automata can be
constructed, which are then subjected to an equivalence query. In case the hy-
pothesis is not equivalent to the target system, a counterexample highlighting
some difference is returned and will be exploited to further refine the hypothesis.
If, on the other hand, ok is returned, learning can terminate.

At this point it should be mentioned that, in general, equivalence queries for
black box systems are undecidable. Realizing them for a concrete application
is very much dependent on the application scenario itself. As this is a matter
of research independent from the approach presented in this paper, we will not
discuss it here. For the most generic way of approximating equivalence queries
in black-box scenarios by means of membership queries, a quite efficient way is
discussed in [15].

The central data structure of the L∗
M algorithm is an observation table. An

observation table is a tuple 〈S p,L p,D,T 〉, where

– S p is a prefix-closed set of access sequences identifying states in the hypoth-
esis (‘short prefixes’),

– L p is a set of one-step futures identifying the transitions in the hypothesis
(‘long prefixes’); in the classical scenario L p is usually chosen as L p = S p ·
Σ\S p,

– D is a set of distinguishing suffixes used for distinguishing states, resp. for
matching the states reached by the words in L p against those identified by
words in S p (usually initialized with Σ for Mealy machines),

– T : (S p∪L p)→ (D → Ω) is a mapping assigning to each word in S p∪L p the
observable future behavior (wrt. D) of the corresponding (possibly unknown)
state in the SUL, i.e., T (u)(v) = �SUL�(uv).

An observation table is used to maintain the dual characterization of states dis-
cussed above. It is closed iff for every word u ∈ L p, there exists a corresponding
word u′ ∈ S p such that T (u) = T (u′). Intuitively, this guarantees that in a hy-
pothesis automaton all transitions have well-defined destinations. A table can
be closed by subsequently moving words u ∈ L p violating this condition to S p
and adjusting L p accordingly (e.g., by adding all words u ·Σ). An example of a
slightly extended observation table can be found in Fig. 2 (c): The rows in the
upper part correspond to words in S p, while those in the lower part correspond
to one-step futures from L p. The columns are labeled by suffixes in D, such that
each cell corresponds to a T (u)(v) for u ∈ S p∪L p,v ∈ D.

From a closed observation table, a hypothesis automaton H can be con-
structed to which an equivalence query may yield a counterexample exposing
a behavioral difference between the SUL and H . More precisely, a counterex-
ample exposes a state in the hypothesis whose future behavior wrt. some suffix
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v /∈ D differs from every state in the hypothesis (i.e., prefix in S p). This suf-
fix is added to the set D, resulting in an unclosed table and thus the creation
of additional states in a subsequent hypothesis. Both hypothesis construction
and counterexample handling are described in detail for our new algorithm in
Sections 3.3 and 3.4.

3.2 Alphabet Abstraction Refinement

In [16], an extension to L∗
M was presented, which combines active automata

learning with inferring a globally coarsest determinism-preserving abstraction
on the input alphabet. As in this paper, a pure black-box scenario was assumed:
abstraction classes were defined in terms of query outcomes, and the refinement
was triggered by counterexamples exposing non-determinism due to the current
abstraction.

The key technical idea was to introduce a middle congruence relation on con-
crete alphabet symbols: two symbols aC,a′C ∈ ΣC could be shown to be inequiva-
lent by a prefix p ∈Σ∗

C and a suffix d ∈ Σ∗
C such that �SUL�(paCd) = �SUL�(pa′Cd).

In the context of the learning algorithm, the pair (p,d) could be used to clas-
sify arbitrary concrete symbols aC by looking at the result of a membership
query MQ(paCd). This resembles the general idea of active automata learning
to approximate the Nerode congruence [19] for separating words u,u′ ∈ S p using
suffixes v ∈ D such that �SUL�(uv) = �SUL�(u′v).

In principle, the global AAR approach can be thought of as the combina-
tion of two relatively independent components: (i) a classical active learning
algorithm, supporting a dynamically growing input alphabet, and (ii) an alpha-
bet abstraction refinement module, which is triggered by otherwise inexplicable
counterexamples; i.e., words w = w1 . . .wn ∈ Σ∗

C, which cease to be counterexam-
ples when pointwisely transforming each wi to the corresponding representative
symbol.

Naturally, a global determinism-preserving abstraction is also determinism-
preserving when applied to each state locally. However, it was already sketched
in the introductory examples in Fig. 1 that this global perspective is not always
adequate. While it would be possible to coarsen each abstraction locally for each
state until reaching the respective coarsest DPA, our approach is to perform
the abstraction refinement locally from the starting point on. This is a consid-
erably more involved task: first, there no longer exists a homogeneous, global
input alphabet. When introducing new representative symbols, it is crucial to
pinpoint the exact state of which to extend the alphabet. Second, the approach
of transforming a counterexample into a representative word is bound to fail, as
the abstraction to choose depends on the corresponding state – an information
which can be erroneous as well. In combination, this calls for a much stronger in-
tegration of the alphabet abstraction refinement part with the existing learning
and counterexample handling algorithm.

Before laying our focus on the treatment of counterexamples in Sec. 3.4, we
will first introduce the data structure for managing abstractions, and show how
these are connected to the usual observation table.
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Definition 3. An abstraction tree T for a prefix u ∈ Σ∗
C is a tuple T = 〈u,r〉,

where r is the root node of a binary tree consisting of two kinds of nodes: (i) inner
nodes are labeled with a classifier 〈d,o〉 ∈ Σ∗

C ×Ω and have two child nodes, an
equals-child, and an other-child; (ii) leaves are labeled with a pair of concrete
and abstract inputs (aC,aA) ∈ ΣC ×ΣA.

An abstraction tree T is a special kind of a decision tree, realizing both an ab-
straction function αT as well as the representative function ρT (aC) as following,
for a concrete symbol aC ∈ ΣC: starting at the root of the tree, we choose at
each inner node labeled with 〈d,o〉 the equals-child if MQ(uaCd) = o, and the
other-child otherwise. This step directly reflects the middle congruence on al-
phabet symbols from [16], as mentioned above. The step is repeated until a leaf
(aR,aA) is reached. Then, aA = αT (aC) is the corresponding abstract symbol and
aR = γT (aA) = ρT (aC) its representative.

The corresponding abstraction can be refined by splitting leaves: We call a
tuple 〈aC,d,o〉 a witness (for the insufficiency of the abstraction) if �SUL�(uaRd) =
�SUL�(uaCd) = o, i.e., it demonstrates a deviating behavior when concretizing aA

by aC instead of aR. Let (aR,aA) be the leaf found by the lookup operation for
aC, and let a′A be a new abstract symbol that does not yet appear anywhere else.
We replace the leaf by an inner node 〈d,o〉, which has the leaf (aC,a′A) as its
equals-child and the leaf (aR,aA) as its other-child.

For an abstraction tree T , we denote by ΣC(T ) the set of representatives,
i.e., the set of all concrete symbols appearing at leaves, and by ΣA(T ) the corre-
sponding abstract domain. The cardinality |T | is the total number of leaves in
the tree, it holds that |αT |= |T |.

Abstraction trees can always be initialized with a leaf (aC,aA) ∈ ΣC ×ΣA as
its rood node, where aC,aA are arbitrary concrete respectively abstract actions.
Of course, if prior knowledge about the semantics of the alphabet exists, a more
fine-grained initial abstraction can be used.

3.3 Modifications for Observation Tables

As in [16], the learning algorithm operates on a concrete level: the sets S p,L p
and D all form subsets of Σ∗

C. For constructing the set L p, we need to know the
local (representative) alphabet for each state corresponding to a prefix u ∈ S p.
We hence associate with each u ∈ S p a corresponding state-local abstraction
(tree) Tu = 〈u,ru〉. The set L p can then be defined as L p = {uaC | u ∈ S p,aC ∈
ΣC(Tu)} \S p.

For obvious reasons, the set D is not initialized with the full learning alpha-
bet, but rather with a finite arbitrary nonempty subset of Σ+

C . For determining
transition outputs in the hypothesis, L∗

M assumes that for each prefix u ∈ S p and
input a ∈ Σ there exists a table cell T (u)(a) containing the corresponding output.
As we cannot rely on this (as D is not guaranteed to contain all aC ∈ ΣC(Tu) for
every u ∈ S p), the output of each transition is stored separately by means of
an output table O : (S p∪L p) \ {ε}→ Ω. The additional |S p∪L p|− 1 MQs will
obviously neither change asymptotic query complexity nor will hamper practical
applicability. In Fig. 2 (c), the output is shown next to the respective row label.
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Closing tables. Since closing a previously unclosed observation table augments
the set S p, this also requires the introduction of a new local abstraction. Similar
to beginning with a one-state hypothesis for the automaton, as a new abstraction
we will initially use a maximally coarse one that treats all symbols from ΣC alike
(i.e., Tu = 〈u,(aC,aA)〉, where aC is an arbitrary concrete representative).

Hypothesis construction. The generation of an abstract Mealy machine
(cf. Def. 2) hypothesis H from a closed observation table 〈S p,L p,D,T 〉, ab-
straction trees Tu for every u ∈ S p and an output table O mostly resembles the
method for ordinaryMealy machines [24]: States are identified with words u∈ S p,
where ε corresponds to the initial state. Since the observation table is closed, it
follows that for each aC ∈ ΣC(Tu) there is uaC ∈ S p∪L p, and thus a word u′ ∈ S p
such that T (uaC) = T (u′). Transitions are then constructed by applying the local
abstraction αu on aC, thus δu(αu(aC)) = u′. Outputs are handled accordingly.

3.4 Handling Counterexamples

Once we have generated a hypothesis automaton H , an equivalence query will
either signal success or return a counterexample, i.e., a word c ∈ Σ+

C such that
�H �(c) = �SUL�(c). In the classical scenario, a counterexample gives rise to at
least one new state by exposing future behavior that differs from all states cur-
rently present in the hypothesis. This splitting of states is done implicitly by aug-
menting the set D of distinguishing suffixes and consequently closing the table.
As a starting point for handling counterexamples, we use the approach described
in [22] and detailed in [24], not the original way proposed by Angluin [2].

When also inferring alphabet abstractions, the situation is different: the cause
of deviating behavior can also be an abstraction that is too coarse and thus im-
poses non-determinism. Accordingly, the treatment of counterexamples becomes
a much more complicated task. The following paragraphs will explain in detail
how a counterexample is processed.

Consider a counterexample c = c1 . . .cm ∈ Σ+
C . We decompose c into c = uaCv,

where u,v∈Σ∗
C and aC = ci ∈ΣC. Values for i range from 1 to m and are considered

in ascending order. The idea now is to transform the prefix u to the word leading
to the same state in H . This word is referred to as the access sequence of u
and denoted by �u�. For each decomposition c = uaCv, we determine the local
representative aR = ρ�u�(aC) and perform the following checks:

1. �SUL�(�u�aRv) = �SUL�(�u�aCv): In the state reached via �u� in the SUL, aC

and aR may not be treated equivalently. Let o= �SUL�(�u�aCv), then 〈aC,v,o〉
is a witness for splitting the leaf labeled with the concrete symbol aR in the
abstraction tree T�u� . The word �u�aC is added to the set L p, introducing a
new transition in the hypothesis.

2. �SUL�(�u�aRv) = �SUL�(�uaR�v): The future behavior wrt. v of the state
reached by �u�aR and �uaR� differs (this is the classical case). In the hypothe-
sis, these two words must lead to different states. The suffix v is added to the
set D, resulting in an unclosed table caused by T (�uaR�)(v) = T (�u�aR)(v)
and thus the creation of a new state in the hypothesis.
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If none of the above cases applies, i is incremented and the steps described
above are repeated. Obviously, for i = 1 the initial counterexample c is consid-
ered, whereas after the last step c has been transformed into a word uaR fully
supported by the hypothesis. As c is a counterexample, both words lead to dif-
ferent outputs, guaranteeing that one of the above cases will eventually apply.
As a single counterexample may expose both an insufficient number of states
as well as an alphabet abstraction being too coarse, it usually is a good idea to
re-evaluate a counterexample after having updated the hypothesis.

3.5 Correctness and Complexity

The following theorem states that our algorithm is guaranteed to terminate after
a certain number of queries, and that it does so with an optimal result.

Theorem 1. If M is an optimal abstraction of SUL, the algorithm infers M
using O(t(n+ am)) = O(mk2n3) membership queries and at most n+ t = O(t) =
O(n2k) equivalence queries, where n = |Q|, k = |Ω|, t = ∑q∈Q |αq|, a = maxq∈Q |αq|
and m is the maximum length of a counterexample returned by an equivalence
query.

We will omit the proof of the complexity at this point, and only sketch the
idea for proving optimality. For this, we can resort to the optimality argument
from [2]: New states are introduced only when differing future behavior is ex-
plicitly discovered. This can be applied to the refinement level of the alphabet as
well: local alphabets are augmented only when necessary, hence the refinement
level of the minimal CMM is never exceeded. As long as the refinement level is
too coarse, however, counterexamples can be found.

3.6 An Example Run of the Algorithm

In order to give a better impression of how exactly the algorithm works, we
present an execution fragment of applying it to the system depicted in Fig. 1 (b).
In all contexts, we will use a(0,0,0) as the default concrete representative, hence
we initialize the data structure with S p = {ε},L p =D = {a(0,0,0)} and the only
abstraction tree Tε = 〈ε,(a(0,0,0),a1)〉. This leads to a trivial initial hypothe-
sis, consisting only of a single state and transition, outputting 0 on each input
symbol.

When conducting an equivalence query, a possible counterexample is c =
a(0,0,1)a(1,0,1)a(1,1,1), whose output 1 contradicts the hypothesis. We now
stepwisely transform this counterexample according to the process described
in Sec. 3.4. Substituting the representative a(0,0,0) for the first symbol does
not change the output, neither does replacing a(0,0,0) by its access sequence
�a(0,0,0)� = ε. After the first iteration of the loop, we transformed the coun-
terexample to a(1,0,1)a(1,1,1)/1. However, replacing a(1,0,1) with the stan-
dard representative a(0,0,0) changes the observed output behavior to 0. We
refine the abstraction tree Tε using the witness 〈a(1,0,1),a(1,1,1),1〉. The re-
sulting abstraction tree is shown in Fig. 2 (a), and a(1,0,1) is added to the local
alphabet of the state represented by ε and thus to L p.
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〈a(1,1,1),1〉

(a(1,0,1),a2) (a(0,0,0),a1)

equals other

(a)

q0 q1

a(0,0,0)/0

a(1,0,1)/0

a(0,0,0)/0

(b)

T a(0,0,0) a(1,1,1)

ε 0 0
a(1,0,1) / 0 0 1
a(0,0,0) / 0 0 0
a(1,0,1)a(0,0,0) / 0 0 0
a(1,0,1)a(1,1,1) / 1 0 1

(c)

Fig. 2. (a) Abstraction tree for ε after first refinement, (b) intermediate hypothesis
after two counterexample evaluations, (c) final observation table

Reevaluation shows that the counterexample still conflicts with our hypothe-
sis. Since the abstraction of ε has changed, we have to start transforming from the
beginning. a(0,0,1)a(1,1,1) produces 0 as last output, so the first symbol is still
replaced by a(0,0,0) and subsequently by ε. The remaining word a(1,0,1)a(1,1,1)
already starts with a representative symbol, but when substituting a(1,0,1) with
�a(1,0,1)�= ε, the output changes to 0. a(1,1,1) is added to D, leading to a new
state with access sequence a(1,0,1) being added to the hypothesis. The corre-
sponding abstraction tree is again initialized with the maximally coarse abstrac-
tion, using a(0,0,0) as a representative symbol. The intermediate hypothesis is
shown in Fig. 2 (b), the observation table at this point is the one shown in
Fig. 2 (c) without the last line.

A final reevaluation again exposes that we still have a counterexample.
A change in output from 1 to 0 is observed during the transformation
a(1,0,1)a(1,1,1) → a(1,0,1)a(0,0,0), leading to the abstraction Ta(1,0,1) being
refined using as a witness 〈a(1,1,1),ε,1〉, and we end up with a representa-
tive version of the final model. The corresponding observation table is shown in
Fig. 2 (c).

4 Experimental Results

We have implemented the algorithm outlined in the previous sections as part
of LearnLib2 [21] and conducted several experiments, the results of which are
depicted in Table 1. We compared our new algorithm with both the classical L∗

M
and the global AAR algorithm presented in [16]. In the case of infinite alphabets,
we restricted the domain to those symbols which have non-error semantics in at
least one state, as otherwise it would not have been possible to use L∗

M.
Besides taking into account the number of membership and equivalence

queries, we also considered the sizes of the abstractions: |ΣA| for global, |α| =
maxq∈Q |αq| for local AAR. A cache for avoiding multiple membership queries for
the same word was used in all experimental setups. Finally, we also recorded the
wallclock times (on a 2.5GHz Intel Core i5-2520M with 8GB RAM).

We considered the following example systems for our experiments: The coun-
try calling code (CCC) example, as displayed in Fig. 1, and a similar problem,

2 http://www.learnlib.de/

http://www.learnlib.de/
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Table 1. Results of the experimental evaluation. Lowest values are marked bold (com-
parison only between global and local AAR for EQ).

Example Size L∗M Global AAR Local AAR

|Q| |ΣC| # MQ # EQ Time # MQ # EQ Time |ΣA | # MQ # EQ Time |α|
CCC 204 200 320,200 1 51s 10,953 201 5m55s 196 2,600 204 22s 55
FHN1 95 88 190,122 3 28s 39,456 93 39s 36 3,798 99 4s 15
FHN2 310 262 7,391,946 9 58m0s 1,766,688 354 6h50m16s 258 50,371 417 7m30s 39
BV7 71 128 1,269,564 14 4m27s 175,458 146 2m00s 128 10,926 91 26s 2
BV8 84 256 5,994,280 24 25m51s 677,176 287 16m49s 256 25,168 116 1m43s 2
BV9 72 512 19,370,515 15 2h00m09s 890,475 535 53m48s 512 39,507 99 2m54s 2
BV10 75 1024 80,473,959 26 13h19m02s 2,795,183 1060 8h57m32s 1024 80,455 111 10m13s 2
Bio.Pass. 5 264 348,744 1 1m34s 2,052 14 4s 10 2,966 24 6s 6
Pots2 664 32 1,504,181 39 14m03s 1,483,594 96 16m28s 32 234,289 2,840 58m58s 7

Peterson3 1,328 57 8,775,306 43 3h21m48s > 8,000,0003 — > 4h30m — 590,786 3,986 5h45m36s 4

a file system hierarchy navigator (FHNi), modeling the navigation through a
directory structure, a model of the biometric passport (cf. [1]) and two rather
large models (Pots2 and Peterson3), distributed with the CADP tool set [8] and
the Concurrency Workbench [18]. Finally, we considered a series of automati-
cally generated automata (BVk) of the type sketched in Fig. 1 (b), with k binary
parameters.

The results underline the improvement in terms of efficiency: In all cases,
the number of membership queries could vastly be reduced, depending on the
concrete example by several orders of magnitude. For the systems with hierarchi-
cal structure, namely CCC and FHNi, there are major improvements regarding
the number of membership queries, the size of the abstraction as well as the
execution times, compared to both global AAR and L∗

M, while the number of
equivalence queries is only moderately increased in comparison to global AAR.
The biggest improvement could be observed for the BVk examples, where an
increase in two to three orders of magnitude in MQs, execution times as well as
conciseness of the model could be seen. While we expected local AAR to out-
perform the other two algorithms in terms of membership queries, we found it
surprising that, compared to global AAR, also the number of equivalence queries
was reduced significantly.

When looking at the remaining examples, which were not chosen with local
abstraction (Bio.Pass.) or even abstraction in general (Pots2 and Peterson3)
in mind, the results are still promising. Of all the considered examples, Pots2
is the only one were LAAR falls behind. While there is a reduction in terms
of membership queries by an order of magnitude, due to the computational
overhead, the execution time is much higher than for global AAR as well as L∗

M.
One should keep in mind, however, that we performed MQs by simulation, which
is extremely quick. The more time a single membership query takes, the more
does local AAR profit.

Particularly striking is the conciseness of the Peterson3 model inferred using
local abstractions: L∗

M produces a model with 57 outgoing transitions in each
state, where LAAR automatically infers a model where no state has more than
four outgoing transitions. Global AAR failed to learn this system, as it repeatedly
ran into out-of-memory-conditions.

3 Execution aborted due to out-of-memory-condition.
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5 Conclusions

We have presented an automata learning algorithm that infers a model of a
system at an abstract level, while in parallel inferring a set of state-local alphabet
abstractions just fine enough to preserve determinism. This allows us to handle
input alphabets of infinite cardinality for which no further information is known,
that is, they are – just like the system itself – treated in a ‘black box’ fashion.

By an experimental evaluation, we show that this not only leads to more con-
cise and thus more comprehensible models, but also is in the majority of cases a
significant improvement in terms of performance compared to our previous algo-
rithm, treating abstraction at a global level only. Moreover, in the case of finite
but large input alphabets, it compares very well to the classical L∗

M algorithm,
provided that a state-local perspective on alphabet abstraction is by any means
adequate considering the system’s behavior.

Currently, we are investigating the impact of LAAR by inferring models for
a variety of real-life web applications, and the generality of the local alphabet
abstraction for enhancing learning of richer automaton models, in particular
register automata [14].
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Abstract. Formal analysis tools for system models often require or benefit from
the availability of auxiliary system invariants. Abstract interpretation is currently
one of the best approaches for discovering useful invariants, in particular numer-
ical ones. However, its application is limited by two orthogonal issues: (i) de-
veloping an abstract interpretation is often non-trivial; each transfer function of
the system has to be represented at the abstract level, depending on the abstract
domain used; (ii) with precise but costly abstract domains, the information com-
puted by the abstract interpreter can be used only once a post fix point has been
reached; this may take a long time for large systems or when widening is delayed
to improve precision. We propose a new, completely automatic, method to build
abstract interpreters which, in addition, can provide sound invariants of the sys-
tem under analysis before reaching the end of the post fix point computation. In
effect, such interpreters act as on-the-fly invariant generators and can be used by
other tools such as logic-based model checkers. We present some experimental
results that provide initial evidence of the practical usefulness of our method.

1 Introduction and Motivation

Abstract interpretation and symbolic model checking have led independently over the
years to the creation of analysis tools that are starting to have a substantial impact on the
development of real world software, in particular for safety- or mission-critical systems.
Interestingly, the two exhibit complementary strengths and weaknesses [13]. Model
checking techniques so far have proved stronger on software that is mostly control-
driven and not heavily data-dependent. To be effective with data-dependent programs,
these techniques may require programs to be judiciously annotated with data invariants.
Also, model checking has been traditionally limited to finite-state systems although new
approaches, such as those based on solvers for Satisfiability Modulo Theories (SMT),
can lift that restriction in some cases.

Dually, abstract interpretation techniques are quite effective with data-dependent pro-
grams, in particular numerical ones, requiring in principle no program annotations. On
the other hand, they have more difficulties in dealing with control aspects [13]. Also,
although abstract interpretation is a very general framework, most of its applications
focus on the analysis of source code. Even tools, such as Nbac [16], that target software
artifacts at a higher level of abstraction (e.g., software models expressed in dataflow
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specification languages) do not analyze those artifacts directly and work instead with
their compilation into an intermediate imperative representation such as LLVM or byte
code. This is possibly a consequence of the fact that developing an abstract interpreter
for a complete language can be time consuming: even if a large set of abstract do-
mains, such as those provided by the APRON library [17], is readily available, defining
sound abstract transformers for every construct of the target language requires substan-
tial work. Another limitation of current abstract interpretation techniques is that they
typically depend on Kleene-style fix point algorithms to construct an abstract seman-
tics of the program under analysis. The properties of such semantics, characterized by
the concretization of a post fix point of an abstract transformer, can be obtained only
once the post fix point has been (completely) computed. Depending on the widening
strategies used or, in general, the complexity of the abstractions and the semantics con-
sidered, one may have to wait a long time before getting any interesting information
from the analysis of the program.

Contribution and Significance. In this work we try to address some of the issues
above by combining techniques from abstract interpretation and logic-based model
checking. Specifically, we propose a general method for the automatic definition of
abstract interpreters that compute numerical invariants of transition systems. We rely
on the possibility of encoding the transition system in a decidable logic to compute
transformers for an abstract interpreter completely automatically. Our method has the
significant added benefit that the abstract interpreter can be instrumented to generate
system invariants on the fly, during its iterative computation of a post fix point. A pro-
totype implementation of the method provides initial evidence of the feasibility of our
approach.

While motivated by practical issues (namely, the generation of auxiliary invariants
for a k-induction model checker) the current work is more general and can be adapted
to a wide variety of contexts. It only requires that the transition system semantics be
expressible in a decidable logic with an efficient solver, such as SAT or SMT solvers,
and that the elements of the chosen abstract domain be effectively representable in that
logic, as discussed later in more detail. Such requirements are satisfied by a large num-
ber of abstract domains used in current practice. As a consequence, we believe that
our approach could help considerably in expanding the reach of abstract interpretation
techniques to a variety of target languages, as well as facilitate their integration with
complementary techniques from model checking.

Related Work. With the current efficiency of SMT solvers on the one hand and the
ability of abstract interpretation to compute numerical invariants on the other, the issue
of combining SMT and Abstract Interpretation is receiving increasing attention. In [7],
Cousot et al, draw a parallel between SMT-based reasoning and abstract interpretation.
They identify the Nelson-Oppen procedure as a reduced product over different interpre-
tations. While this work is more general, it allows one to understand ours as follows:
the concrete domain is an abstract logical domain, our concrete transformer—computed
with the aid of an SMT solver—can be seen as an over-approximation of the concrete
transition relation in this abstract logical domain. The abstraction we build amounts to
computing a reduction between a logical and an algebraic domain, as suggested in [7,
§6]. Comparable work in [30], gives an overview of techniques embedding logical
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predicates as elements of logical lattices. Some SMT theories are then formalized
within this abstract interpretation view of the analysis: uninterpreted function symbols,
linear arithmetic, and their combination.

Another, more practical approach by Monniaux and Gonnord [23] uses bounded
reachability with an SMT solver to compute a chaotic iteration strategy. The solver iden-
tifies the equation that needs propagating in order to achieve a better widening. How-
ever, unlike ours, this solution does not use the actual models found by the SMT solver.
In [10], an SMT solver is used to choose among different strategies in an iteration-based
policy analysis. The solver identifies the next strategy that will improve the current ab-
stract property. While both works rely on SMT solvers to aid the fix point computation,
they do not encode, as we do, the concrete transition relation as a SMT formula in order
to compute the abstract property. Also related is Monniaux’s automatic modular ab-
straction for linear constraints [22]. A predicate transformer is defined using quantifier
elimination over the semantics of C statements, as in an axiomatic semantics (weakest
precondition or strongest postcondition). The transformer is exact for the linear tem-
plate abstractions considered. It is unclear, however, how this approach can scale to a
complete program analysis, since the use of quantifier elimination on a complete transi-
tion system is not usually feasible (the blocks analyzed in [22] are small functions used
in a symbol library for Lustre/Scade). King and Sondergaard [21] follow a similar ap-
proach but rely on reasoning in a concrete logic, as we do, and then abstract the result.
As in [22], they aim at computing a very precise transformer but restrict themselves to
a specific setting with finite domains, whereas we do not.

A line of work by Reps and various collaborators [24,31,28,29] shares similar foun-
dations with our approach: relying on a decidable logic to construct abstract transform-
ers. The work in [24] over-approximates least fix points but is restricted to domains
admitting only finite height chains, while that in [31] adopts the dual approach—to
avoid the convergence issue in infinite height domains—by over-approximating greatest
fix points from above. Both works are based on manually defined abstract transformers.
Very recent work [28,29], concurrent with ours, extends those approaches by synthesiz-
ing automatically the abstract transformer via a logic encoding, in a way similar to ours.
The first paper combines a least and a greatest fix point computation, while the second
only relies on a greatest fix point over-approximation. In case of infinite height domains
(e.g., intervals or polyhedra), the least fix point approximation will never converge and
only the greatest fix point may be used. In contrast, we target the over-approximation of
the least fix point, using widening to ensure convergence. Regarding the ability to pro-
duce safe abstract values before the end of the fix point computation, it is not clear how
a greatest fix point approach would compare in practice to our incremental invariant
generation mechanism (cf. Section 4). A comparative experimental evaluation would
require a substantial effort that is outside the scope of this paper.

Finally, the static analysis tools to which we compare ours experimentally in Sec-
tion 5 are based on sophisticated techniques to improve the precision of the fix point
computation, such as lookahead widening [12], or to accelerate convergence [11,26].
These techniques, as well as others such as delayed widening could be integrated in
principle in our approach since they mainly focus on the iteration strategy for the fix
point computation rather than a specific abstract transformer.
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2 Formal Preliminaries

We use basic notions and results from abstract interpretation (e.g. [4,5]). We introduce
below those that are most relevant to this work, to have a more self-contained presenta-
tion. Similarly, we also introduce relevant notions from symbolic logic and automated
reasoning. As customary, we model computational systems as transition systems. A
transition system S is a triple (Q, I,�) where Q is a set of states, the state space; I ⊆ Q
is the set of S ’s initial states; and� ⊆ Q ×Q is S ’s transition relation. A state q′ ∈ Q
is reachable if q′ ∈ I or q� q′ for some reachable state q.

Abstract Interpretation. Abstract interpretation allows one to analyze a transition
system S = (Q, I,�) by first defining a concrete domain for S , a partially ordered set
〈D,⊆〉, and a concrete transformer, a monotonic function f : D → D. In this paper we
will focus on the collecting semantics

S
def
= lfp⊆I ( f )

of S where D = ℘(Q), the power set of Q; ⊆ is set inclusion; f (X) = X∪{x′ | x ∈ X, x�
x′}; and lfp⊆I ( f ) is the least-fix point of f greater than I, obtained as the stationary limit
of the ascending sequence X0 ⊆ X1 ⊆ . . . with X0 = I and Xn = f (Xn−1) for all n > 0.

An abstract representation of the concrete domain is provided by another partial
order 〈D#,�#〉 the abstract domain. The two are related by an abstraction function
α : D �→ D# and a concretization function γ : D# �→ D. An abstract transformer is any
monotonic function g : D# → D#. We will consider domains 〈D,⊆〉 and 〈D#,�〉 that
are lattices, and abstraction and concretization functions that form a Galois connection
(which we denote by α : 〈D,⊆〉 � 〈D#,�〉 : γ). In a Galois connection, both α and γ
are monotonic; α(γ(y)) � y for all y ∈ D#; and x ⊆ γ(α(x)) for all x ∈ D.

First-Order Logic. Our method works with several logics (including propositional and
quantified Boolean logic) that can be more or less directly embedded in many-sorted
first-order logic with equality (e.g. [8]). For generality then, we present our work in
terms of the latter. We fix a set S of sort symbols and let X =

⋃
σ∈S Xσ where each Xσ

is an infinite set of variables (of sort σ). Given a many-sorted signature Σ of function
and predicate symbols, well-sorted terms and formulas (resp. Σ-terms and Σ-formulas)
are defined as usual. If F is a Σ-formula, and x = (x1, . . . , xn) a tuple of variables with
no repetitions, we write F[x] to denote that F’s free variables are from x; furthermore,
if t = (t1, . . . , tn) is a term tuple, we write F[t] to denote the formula obtained from F
by simultaneously replacing each occurrence of xi in F by ti for i = 1, . . . , n.

We adopt a standard notion of Σ-interpretationM for each signature Σ. A satisfi-
ability relation |= between such interpretations and Σ-formulas with variables in X is
defined inductively as usual. A Σ-interpretationM satisfies a Σ-formula F ifM |= F.
We are normally interested in specific classes of Σ-formulas and Σ-interpretations. We
collect these restrictions in the notion of a (sub)logic (of many-sorted logic): a triple
L = (Σ,F,M) where Σ is a signature; F, the language of L, is a set of Σ-formulas; and
M is a class of Σ-interpretations, the models ofL, that is closed under variable reassign-
ment, (i.e., every Σ-interpretation that differs from one in M only for how it interprets
the variables is also in M). A formula F[x] of L is satisfiable (resp., unsatisfiable) in L
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if it is satisfied by some (resp., no) interpretation in M. A set Γ of formulas entails in
L a Σ-formula F, written Γ |=L F, if Γ ∪ {F} ∈ F and every interpretation in M that
satisfies all formulas in Γ satisfies F as well. The set Γ is satisfiable inL if Γ |=L false.

3 Computable Abstract Transformer via Logic Encodings

For the rest of the paper we fix a transition system S = (Q, I,�) and its collecting
semantics S = lfp⊆I ( f ) introduced earlier, which coincides with the set of reachable
states of S . Our main concern will be how to define a sound abstract counterpart fA of
f in a suitable abstract domain 〈A,�A〉 with abstraction function α : ℘(Q) → A and
concretization function γ : A→ ℘(Q) so that we can define S ’s abstract semantics as

S
# def
= lfp�A

IA
( fA)

where IA is in turn a suitable abstraction of I. By well-known results [4,5], the fix point
S

# above can be computed or over-approximated so that its concretization by γ is a
sound approximation (i.e., an over-approximation) of the concrete fix point S.

A major issue when using abstract interpretation in general is how to define fA.
In practice, when the transition system is induced by a program, as is often the case,
the concrete transformer f is defined constructively in terms of the programming
language’s idioms (e.g., assignment, loop and conditional statements for imperative lan-
guages) and memory model (e.g., heap, stack, etc.). The corresponding abstract trans-
former must then handle all those constructs as well, and reflect their respective actions
in the abstract domain DA. When the abstraction function α is defined from γ by the
unique adjoint property of Galois connections the definition of fA is usually a manual,
laborious chore. One has to design the transformer in detail and then prove it sound, by
showing that f (X) ∈ γ( fA(a)) for all a ∈ A and X ∈ γ(a).

We present a method that can instead compute a sound abstraction of f completely
automatically. The method is applicable when the transition system and the concrete
and abstract domains can be encoded as we explain below in a logic L satisfying the
requirements listed in the next subsection. For generality, we will describe our method
in terms of an arbitrary logic L satisfying those requirements. To have an intuition,
however, depending on the concrete domain, possible examples of L would be propo-
sitional logic or several of the many logics used in SMT: linear real arithmetic, linear
integer arithmetic with arrays, and so on.

The basic idea of our method for computing the abstract transformer is fairly simple.
It depends on the availability of a L-formula T encoding S ’s transition relation and a
computable function γF mapping each abstract element a to a formula γF(a) satisfied by
the states abstracted by a. Given an a ∈ A, the transformer uses T, γF(a) and a solver for
L to look for a state v′ that is not abstracted by a but is the successor of a state abstracted
by a. If such a state does not exist then a is a fix point and is returned. Otherwise, the
transformer computes an abstraction a′ of state v′ and returns the join of a and a′.

The main appeal of this approach is that logic solvers enumerating satisfying as-
signments are readily available, and abstracting single states is straightforward for most
abstract domains used in practice. In principle, a better approach would be to compute
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not a single state like v′ above but a formula G denoting a whole set of them. The re-
sulting abstract transformer would then require a smaller number of iterations to reach a
fix point. This would both accelerate convergence and, since we use widening, improve
precision by possibly needing fewer widening steps. However, computing the formula
G and mapping it to a corresponding abstract element is considerably more challenging
and expensive, if possible at all for a chosen logic and abstract domain. So we leave the
investigation of this approach to further work. The rest of this section formalizes our
current approach and describes it in more detail.

Logic Requirements. We assume a logic L = (Σ,F,M) with a decidable entailment
relation |=L and a language F closed under all the Boolean operators.1 For each sort σ
in L, we distinguish a set Vσ of variable-free terms, which we call values, such that
|=L ¬(v1 = v2) for each distinct v1, v2 ∈ Vσ. Examples of values would be Boolean,
integer or rational constants. We assume that the satisfiable formulas of L are satisfied
by values, that is, for every formula F[y] (with free variables from y) satisfied by a
modelM of L there is a value tuple v such that F[v] is satisfied byM.

We assume a total surjective encoding of S ’s state space Q to n-tuples of values,
for some fixed n, where each n-tuple encodes a state. Depending on L, states may be
encoded, for instance, as tuples of Boolean constants, or integer constants, or mixed
tuples of Boolean, integer and rational constants, and so on. From now on then we will
identify states with tuples of values. Note that, thanks to our various assumptions, each
formula F[y1, . . . , yk] in k · n variables denotes a subset of Qk, namely the set of all k-
tuples of states that satisfy F. We call that set the extension of F and define it formally

as follows: �F� def
= {(v1, . . . , vk) ∈ Qk | F[v1, . . . , vk] is satisfiable in L}. We refer to

formulas like F above as state formulas and say they are satisfied by the state tuples
in �F�. For each state v = (v1, . . . , vn) ∈ Q and distinct variables x = (x1, . . . , xn) of
corresponding sort, we denote by Av the assignment formula x1 = v1 ∧ · · · ∧ xn = vn,
which is satisfied exactly by v. Finally, we assume the existence of an encoding of S in
L , i.e., a pair (I[x], T [x, x′]) of formulas of L with x and x′ both of size n, where I[x]
is a formula satisfied exactly by the initial states of S , and T [x, x′] is a formula satisfied
by two reachable states v, v′ iff v� v′.

First Abstraction—From Sets of States to Formulas. For theoretical convenience,
we start with an intermediate abstraction that maps sets of states to possibly infinitary
formulas representing those states precisely. To do that, we extend the language of L
by closing it under a disjunction operator

∨
that applies to (possibly infinite) sets of

formulas of L. We then extend the notions of satisfiability, entailment and equivalence
in L to the new language as expected—e.g., for every set Γ of formulas of L,

∨
Γ is

satisfied by an interpretationM if some F ∈ Γ is satisfied byM, and so on.2

Let Fx be the set of all formulas in the extended language above whose free variables
are from the same n-tuple x. One can show that mutual entailment between two formulas
in Fx is an equivalence relation. Let [F] denote the equivalence class of a formula F
with respect to this relation, and let E denote the set of all those equivalence classes.

Let �[F]� def
= �F� for each [F] ∈ E. The poset 〈E,�E〉 where

1 The latter is to simplify the exposition. Weaker assumptions are possible.
2 In practice, our method will never need to work with formulas

∨
Γ where Γ is infinite.
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[F] �E [G] iff F |=L G

has a lattice structure with the following join and meet operators: [F]�E [G]
def
= [F∨G]

and [F] �E [G]
def
= [F ∧G]. It can be shown that the two functions3

αE : ℘(Q)→ E
def
= λV. [

∨{Av | v ∈ V}] and γE : E→ ℘(Q)
def
= λE. �E�

form a Galois connection. By standard results [5], the best sound abstract transformer
of f with respect to this connection is

fE : E→ E
def
= αE ◦ f ◦ γE = λE. [

∨{Av | v ∈ �E� ∪ {u′ | u ∈ �E�, u� u′}}]
By our logic requirements, the most precise abstraction of the set I of S ’s initial states is
αE(I) = [I] where, recall, I is the formula denoting I in L. It follows that in the abstract

domain 〈E,�E〉 we can define the following semantics for S : SE def
= lfp�E

[I] ( fE).

Second Abstraction—Changing Fix Point Computation. For our later needs, we
would like to have a fix point computation that actually enumerates the additional states
discovered by the collecting semantics. The abstraction αE above, over-approximating
sets of states by disjunctions of assignment formulas, is not well suited for that because
these disjunctions can be infinitary. Hence, we introduce another abstract transformer,
on the same lattice 〈E,�E〉:

gE : E→ E
def
= λE. E �E choose({[Av′] | T [v, v′] is sat. in L, v ∈ �E�, v′ � �E�})

where choose is some choice function over subsets of E, returning one element of
its input set if the set is non-empty, and [false] otherwise. This function maps each
equivalence class E to a class E′ such that �E′� \ �E� contains just one state, chosen
among the successors of the states in �E� according to the transition formula T . We can
use gE instead of fE in the fix point computation thanks to the following result.4

Proposition 1 (Soundness). The transformers fE and gE have the same least fix point
above [I], i.e., lfp�E

[I] ( fE) = lfp�E
[I] (gE) where lfp�E is defined using transfinite iterations.

Main Abstraction—Abstracting Formulas in Fx. We now introduce our last abstrac-
tion, mapping formulas in Fx to elements of an abstract domain 〈A,�A〉 like those typ-
ically used in abstract interpretation tools (intervals, polyhedra, and so on). We assume
that A is fitted with a lattice structure with meet �A and join �A. We also assume the
existence of a computable monotonic function γF : A → Fx that associates a formula
of Fx to each element of A. Intuitively, we are requiring that each element of A be
effectively representable as a formula denoting a set of states. This requirement is eas-
ily satisfied for many numerical abstract domains and the sort of logics used in SMT.
For instance, intervals can be mapped to conjunctions of inequalities between variables

3 We borrow λ-calculus’ notation to denote mathematical functions.
4 All proofs of our results can be found in a companion technical report available at
http://www.cs.uiowa.edu/˜tinelli/html/publications.html .

http://www.cs.uiowa.edu/~tinelli/html/publications.html
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Sets of states
〈℘(Q),⊆〉

Equivalence
classes of
formulas
〈E,�E〉

(Numerical)
Abstract
domain
〈A,�A〉

γE

αE

γ

αγ

f fE

gE gA

Fig. 1. Global framework: combination of abstractions

Input: a ∈ A
F[x, x′] := γF(a)[x] ∧ T [x, x′] ∧ ¬γF(a)[x′]
if F is satisfiable in L then

let v, v′ be two states that satisfy F[x, x′]
return a �A αQ(v′)

return a

Fig. 2. Basic version of the automatic abstract transformer gA

and values; similarly, any linear-based abstraction can be mapped to a conjunction of
linear arithmetic constraints. As concretization function we use the monotonic function
γ : A �→ E

def
= (λF.[F])◦γF which maps each abstract element to an equivalence class in

E. Since E and A are lattices, γ induces a Galois connection αγ : 〈E,�E〉� 〈A,�A〉 : γ
where αγ is uniquely determined by γ.

In summary, we obtain the combination of abstractions illustrated in Figure 1. How-
ever, we do not use αγ at all by assuming instead the existence of a state abstraction
function αQ : Q �→ A which directly associates states to their abstract counterparts in
A. For our approach to be sound, it is enough for αQ to be such that a �A αQ(v) for each
v ∈ Q and a ∈ A where a is v’s best abstraction—i.e., the smallest element of A with
[Av] �E γ(a). In the actual domains we have considered in our implementation, the def-
inition of αQ is straightforward and such that a = αQ(v). For instance, let v = (4,−2, 5)
Then αQ(v) is ([4; 4], [−2;−2], [5; 5]) if A is the integer interval domain, and is the ab-
stract element described by the system {4 ≤ x1 ≤ 4, −2 ≤ x2 ≤ −2, 5 ≤ x3 ≤ 5} if A is
a relational domain such as octagons or polyhedra.

The Abstract Transformer. Recall that our main goal was to generate a computable
sound abstract transformer gA for gE automatically. We can do that by relying solely on
(i) the function γF, (ii) the state abstraction αQ, and (iii) a sound, complete and termi-
nating satisfiability solver for the logic L that is also able to return for each satisfiable
state formula F[x1, . . . , xk] a tuple v1, . . . , vk of states that satisfies it.

A basic procedure for computing gA is given in Figure 2. The satisfiability tests
and the choice of the states v and v′ in the figure are performed by the solver for L,
which effectively plays for gA the role of the choice function in the definition of gE. We
note that, while fix points are traditionally computed in the abstract domain, with our
approach it is not necessary to transfer back the element gA(a) to detect that a is a fix
point: it is enough to detect that the formula F in Figure 2 is unsatisfiable.
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Theorem 1 (Soundess). The transformer gA is a sound approximation of gE: for all
a ∈ A, (gE ◦ γ)(a) ⊆ (γ ◦ gA)(a).

Our eventual goal is to over-approximate the fix point lfp�A
IA

(gA) where IA is a sound
approximation of the initial state formula I; more precisely, where [I] �E γ(IA). When
I is satisfied by a single state v, the abstract element IA is just αQ(v). In general, we can
use the logic solver again to compute an IA iteratively. A basic procedure for that (also
used in [24]) is the following, starting with IA equal to the bottom element of A:

while (there is a state v satisfying I[x] ∧ ¬γF(IA)[x]) do
IA := IA �A αQ(v)

Proposition 2 (Soundness). When the loop above terminates, the computed element
IA is a sound approximation of [I].

In practice, we are mostly interested in abstract domains that do not satisfy the ascend-
ing chain condition [4]. In those cases, a widening operator ∇ is needed in addition to
the join �A, in the computation of IA and of lfp�A

IA
(gA) to ensure convergence. Although

any of the widening operators and strategies developed in the field could be used for
that, we have been able to obtain pretty good experimental results already with rather
unsophisticated widening strategies, as we discuss in Section 5.

4 On-the-Fly Invariant Generation

A one-state formula F[x] is an invariant for S if �F� includes the set RS of all reach-
able states of S . Invariants have many useful applications in static analysis, logic-based
model checking, and deductive verification in general. In our abstract domain E from
the previous section, any formula F such that lfp�E

[I] ( fE) �E [F] is an invariant, since

RS = �lfp
�E
[I] ( fE)� ⊆ �F�.5 By the construction of our abstraction in the domain A, any

fix point computation for the transformer gA : A→ A starting with the element IA from
Proposition 2 produces a value a such that γF(a) is an invariant for S .

A distinguishing feature of our approach is that, in practice, we can modify the fix
point computation for gA to generate intermediate invariants as it goes and before reach-
ing the fix point. We capitalize on the fact that γF(a) is typically a conjunction of formu-
las, or state properties, P1[x], . . . , Pm[x]. For any intermediate value a ∈ A constructed
during the fix point computation for gA, if γF(a) = P1 ∧ · · · ∧ Pm we can check whether
any of the Pi’s is already invariant.

Since the fix point computation using gA starts with an over-approximation of the
initial states, we know that the whole γF(a) is inductive, and hence invariant, if the
satisfiability test on the formula F in Figure 2 fails. However, it is possible to do better
by turning that test into one that checks the k-inductiveness [27] of the individual Pi’s
simultaneously. We discuss an efficient mechanism for doing that in previous work [18].
We refer the reader to that work for more details, but the important point here is that,

5 Of course, obtaining a formula from the equivalence class lfp�E
[I] ( fE) would be enough for all

analysis purposes since that class consists of the strongest invariant for S . However, in general,
such formulas may be infinitary or impractical to compute.
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given a bound on k, we can identify fairly quickly, for each i = 0, . . . , k, which subsets
of {P1, . . . , Pm} are conjunctively i-inductive.6 If the whole {P1, . . . , Pm} is proven k-
inductive, which is equivalent to proving that the formula

G[x0, . . . , xk+1]
def
= γF(a)[x0] ∧ T [x0, x1] ∧ · · · ∧ γF(a)[xk] ∧ T [xk, xk+1] ∧ ¬γF(a)[xk+1]

is unsatisfiable, then gA can return a because in that case it is a fix point. Otherwise, the
state vk+1 from a state tuple (v0, . . . , vk+1) that satisfies G can be used to generalize a as
done with v′ in Figure 2. In either case, any subset of {P1, . . . , Pn} that has been proven
k-inductive can be output as a set of (intermediate) invariants.

This in effect turns an abstract interpreter for A using gA into an on-the-fly invariant
generator. The invariants generated in the earlier iterations of the interpreter are usually,
but not necessarily, the simplest ones (e.g., interval bounds on a variable, equalities be-
tween variables, and so on) and become increasingly more elaborate as the computation
proceeds. The main point is that one does not need to wait until the end of a possibly
complex fix point computation using a wide set of costly abstractions to obtain poten-
tially useful invariants. Our experimental results confirm this conjecture.

An additional, if secondary, benefit of identifying intermediate invariants is that they
can be used to improve the preciseness of later iterations of the very fix point computa-
tion that generated them. This can be done by maintaining at all times a conjunction J[x]
of all the intermediate invariants generated until then, and using at each call of gA the

formula TJ[x, x′] def
= T [x, x′]∧J[x] in place of the original transition relation formula T .

Using the strengthened transition formula TJ helps counterbalance the loss of precision
caused by widening while maintaining the soundness of gA—since the strengthening
discards only states that are definitely unreachable for not satisfying the invariant J[x].

Application: Invariant Generation for Lustre Programs

This work was originally motivated by the problem of proving invariant properties of
Lustre programs. Lustre [15] is a synchronous data-flow specification/programming
language with infinite streams of values of three basic types: Booleans, integers, and
reals. It is used to model control software in embedded devices. Properties to be proven
are typically introduced within Lustre programs as observer Boolean streams so that
checking that a property is invariant amounts to checking that its corresponding stream
is constantly true. In previous work, we developed a k-induction-based parallel model
checker for Lustre programs, called Kind [20], which uses SMT solvers as its main rea-
soning engine. Kind benefits from the use of auxiliary invariant generators to strengthen
its basic k-induction procedure [19]. We implemented the fix point computation method
described here as an additional on-line invariant generator for Kind.

Kind works with an idealized version of Lustre with infinite-precision numerical
types. Idealized Lustre programs can be readily recast as transition systems in a three-
sorted concrete domain with Booleans and (mathematical) integers and reals. Such sys-
tems can be almost directly encoded and reasoned about in a quantifier-free logic of

6 For the reader unfamiliar with k-induction, it is enough to know that every k-inductive formula
is invariant, and is k′-inductive for every k′ > k. Also, 0-inductive formulas are inductive in
the traditional sense.



Incremental Invariant Generation Using Automatic Abstract Transformers 149

1 node p count ( a, b, c : bool ) returns ( x, y : i n t ; obs : bool ) ;
2 var n1, n2 : i n t ;
3 l e t
4 n1 = 10000; n2 = 5000;
5 x = 0 −> i f b or c then 0 else i f a and ( pre x ) < n1 then ( pre x ) + 1 else pre x ;
6 y = 0 −> i f c then 0 else i f a and ( pre y ) < n2 then ( pre y ) + 1 else pre y ;
7 obs = ( x != n1 ) or ( y = n2 ) ;
8 t e l

Fig. 3. Double counter example in Lustre

mixed integer and real arithmetic with uninterpreted function symbols. The linear frag-
ment of that logic, which we could call QF UFLIRA in the nomenclature of SMT-
LIB [3], can be efficiently decided by the SMT solvers used by Kind. This means that
Lustre programs limited to linear arithmetic are amenable to analysis with our method.

We have built an abstract interpreter, called Kind-AI, for such Lustre programs that
computes the abstract transformer automatically as explained earlier, and generates a
stream of invariants (for Kind’s benefit) during its fix point computation.7 As abstract
domain we use one defined, as usual, as a reduced product of a variety of abstract
domains, including relational and non-relational ones. Our implementation of the func-
tion γF converts abstract elements into formulas of QF UFLIRA as one would expect:
an interval [a; b] for a variable x is converted into the formula a ≤ x ∧ x ≤ b; a linear
constraint Σi ai ·xi ≥ c is mapped directly to the corresponding formula of QF UFLIRA.
The translation is extended homomorphically to more complex elements. For instance,
elements that are the meet of other ones (such as polyhedra, etc.) are converted to the
conjunction of the translation of the components.

Kind-AI is written in OCaml and relies on the APRON abstract domain library [17].
It shares with Kind, also written in OCaml, modules to encode Lustre programs as
transition systems in the QF UFLIRA logic, and to interact with an SMT solver. A ba-
sic partitioning mechanism allows Kind-AI to express certain conditional properties.
Specifically, it is possible to specify any Boolean term or finite range term t from the
Lustre program as a partitioning variable. Then the premises of the conditional prop-
erties are conjunctions of predicates of the form t = v, where v is one of the possible
values of t. We illustrate the use of Kind-AI here with a typical example: counters,
which are used widely within safety mechanisms for critical systems.

Example 1. In the Lustre program shown in Figure 3, two counters x and y are incre-
mented up to their respective maximum value whenever the input value a is true; both
are reset to 0 when the input c is true. The counter x is reset also when the input b
is true. Suppose we would like to prove that whenever x reaches its maximum value,
so does y. This property is expressed by the synchronous observer obs. It is enough to
show then that the Boolean stream obs is equal to the constant stream true.

With a partitioning using the Boolean terms x < n1 and y < n2, chosen for being
if-then-else guards in the program that involve stateful variables, Kind-AI behaves as
follows with respect to the state variable tuple (x, y). Its fix point algorithm finds and

7 Kind-AI and the input problems used in the experiments described in the next section can be
found at http://clc.cs.uiowa.edu/Kind/NFM13 .

http://clc.cs.uiowa.edu/Kind/NFM13
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injects, in order, into the abstract domain the states (0, 0), (0, 1), (1, 1) and (2, 2). After
the injection of (1, 1), the computed abstract element contains the sub-properties
0 ≤ x, x ≤ 1, 0 ≤ y, y ≤ 1 and x ≤ y. After the injection of (2, 2), Kind-AI identifies
three sub-properties as invariants: 0 ≤ x, 0 ≤ y and y < n2 ⇒ x ≤ y.8 Using the
same widening heuristics described in the next section, a fix point that also includes the
invariants x ≤ 10000 and y ≤ 5000 is reached in 3.95 seconds after 31 iterations.

With this program, using k-induction alone Kind is not able to prove in reasonable
time the property expressed by obs. However, when run concurrently with Kind-AI,
Kind is able to prove the target property as soon as it receives the intermediate invariants
0 ≤ x, x ≤ 10000, 0 ≤ y, y ≤ 5000 and y < n2 ⇒ x ≤ y. ��

5 Experimental Evaluation

Our approach relies heavily on widening in practice to ensure convergence. As a con-
sequence, one might wonder about the logical strength of the invariants produced by
our invariant generator. To evaluate that we did an initial experimental comparison with
a couple of other static analysis tools, ASPIC and SMT-AI, that can generate linear
numerical invariants for (finite and) infinite-state systems. The first is a tool combin-
ing linear relation analysis with widening and acceleration techniques [11]. The second
tool is an abstract interpreter that targets specifically Lustre programs and employs a
number of AI techniques to produce program invariants [25].9

We looked at the set of infinite-state transition systems collected by Gonnord on the
ASPIC website [1]. These are mostly toy numerical systems, specified in the FAST
language [9], which however admit interesting conditional and unconditional numer-
ical invariants. FAST expresses transition systems essentially as unbounded counter
automata, with a finite control structure and transitions that have linear integer arith-
metic guards, and effects described by affine functions. We translated each automaton
to a Lustre program by encoding the automaton’s states by means of a mode variable, a
finite range variable with each value representing one of the states.

We ran four different configurations of ASPIC on the FAST systems. We also ran
Kind-AI and SMT-AI on the corresponding Lustre programs, with partitioning over
the mode variable above and with the full packs option, which builds a relational ab-
straction (using polyhedra and octagons in Kind-AI, and just polyhedra in SMT-AI)
on all the stateful variables of the program. In Kind-AI, we used a very simple widen-
ing heuristics, which applies widening every two join operations and uses as widening
thresholds the numerical constants in the input program. We set an upper bound of 4 for
the k-induction loop used in the computation of the abstract transformer gA described
in Section 4. All tests were executed with a 60 second timeout on a Linux machine with
a quad-core 2.80 GHz Xeon processor with 12 GB of RAM.

Finally, we compared for each problem the invariants generated by ASPIC and SMT-
AI at the end of their analysis with the conjunction of the intermediate invariants pro-
gressively generated by Kind-AI. Figure 4 summarizes the results of this comparison.

8 Note that fast pre-analyses used in abstract interpretation tools, such as constant propagation,
will not produce implications like the one above.

9 The “SMT” in the name is just because it works with formulas in the SMT-LIB format [3].
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Benchmarks ASPIC SMT-AI Kind-AI SMT-AI
Ch79 Ch79V2 Lookahead Native runtime runtime

apache1 = 004 = 004 = 004 = 004 + 004 005 005
car7 || − || − || 12,120 083
dummy1 = 003 = 003 − − + 003 005 003
dummy4 + 014 = 014 = 014 = 014 + 006 014 005
dummy6 + 004 + 028 + 028 − + 002 028 timeout
gb + 783 + 783 = 783 || + 009 7,830 026
goubault1b + 011 = 011 = 011 = 011 + 011 026 025
goubault2b + 057 + 072 + 072 + 072 + 057 102 018
hal79a || − − − + 047 1,430 024
hal79b + 101 + 101 − − + 101 1,020 021
simplecar + 066 − = 066 − + 005 066 006
sp || − || || + 035 12,300 timeout
subway || − || || || 19,130 05,330
swap || − − − + 022 022 006
t4x0 + 014 + 014 + 014 + 014 + 014 067 027
train1 || − || || || 19,040 05,330
wcet1 || || || − || 5,530 027
wcet2 || || || || || 38,870 2,270

Fig. 4. Comparison of final invariants computed by Kind-AI vs. those computed by the other
tools. The symbol + means Kind-AI’s invariant is stronger; − weaker; = equivalent; and || incom-
parable. All runtimes are in milliseconds.

The various configuration of ASPIC are explained in [1]. The first three implement
earlier methods developed by others [14,2,12]; the last one corresponds to ASPIC’s
own method. The last two columns in the figure show the time SMT-AI and Kind-AI
respectively took to compute their fix point. The corresponding runtimes for ASPIC
are not reported because they were 3ms in almost all cases, with a maximum of 7ms.
The numbers in the ASPIC and SMT-AI columns indicate at what time during Kind-
AI’s computation the conjunction of its intermediate invariants became equivalent or
stronger than the final invariant generated by the other tools.

We stress that Kind-AI was designed to quickly compute auxiliary invariants for
Kind, not to produce comprehensive analyses. So it incorporates none of the sophisti-
cated techniques used by ASPIC to increase the precision of its analysis [11]. In spite
of that, in many cases it computed stronger or equivalent invariants. This suggests that
the sound abstract transformers generated automatically with our method can produce
fairly accurate analyses out of the box. The results also confirm that while convergence
to a fix point may take considerably longer in Kind-AI than in the other tools, good
invariants (i.e., stronger or equivalent to those from the other tools) are produced a lot
sooner.

6 Conclusion and Further Work

The framework we presented offers two main contributions: (i) a systematic and auto-
matic generation of abstract transformers based on a combination of logic solvers and
abstract domain libraries; (ii) the gradual generation of invariants during the computa-
tion of post fix points. Our approach is truly automatic whenever the target system can
be encoded in a suitable decidable logic and abstract domain elements are representable
in that logic. Such conditions are often easy to satisfy for systems already analyzable
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with SMT solvers, and for numerous abstract domains. Thanks to continuous advances
in SMT, we expect that more and more domains, such as those for finite precision inte-
gers and floating point numbers, will be supported by SMT solvers. Our approach will
then immediately provide for free abstract interpreters/invariant generators for them.
Although our current implementation works with Lustre programs, our general method
is language independent. Also, it imposes no restrictions on the abstract domains that
can be used as long as, in essence, the domains admit a concretization in a decidable
logic with an available solver. Furthermore, our framework facilitates the expression
of big-step semantics (on the logical side) and therefore avoids the loss of precision
obtained when applying abstract transfer functions at a small-step semantics level.

About the second contribution, to our knowledge, our initial implementation of the
framework is the only available tool based on abstract interpretation and Kleene-style
fix point computation that provides invariants before the post fix point is reached. Even
if reduced domains share knowledge about their current state, this information is not
a guaranteed fix point and cannot be soundly communicated to other tools. In a multi-
analyzer setting, the ability to share invariants before the end of the computation can
drastically increase performance. But that sort of intermediate but guaranteed informa-
tion can be extremely valuable even in standalone use. For example, when statically
analyzing a 200k-loc critical embedded software for the absence of run time errors [6],
one could start looking at sections of the code that are already proven to be error free
while the automatic analysis continues. This contrasts with the current general practice
for least-fix point approximations where one gets at most alarms during the computa-
tion and has to wait, possibly for hours, for that computation to end before interpreting
the results, and realizing perhaps that certain parameters need further tuning.

We have implemented our method and verified the general quality of its generated
invariants with a comparative evaluation on some benchmarks admitting interesting nu-
merical invariants. Further work will involve a more extensive experimental evaluation
of the method to assess the effects of its generated invariants on the performance of
our Kind model checker, which already relies on auxiliary invariants generated by other
means. One source of imprecision in our method, leading to weaker invariants, is the
generalization of the current abstract value to include successor states that may in fact
be unreachable. Additional work will focus on developing enhancements for mitigating
this problem.
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Abstract. An abstract interpretation based static analyzer depends on
the choice of both an abstract domain and a methodology to compute
fixpoints of monotonic functions. Abstract domains are almost always
representations of convex sets that must provide efficient algorithms to
perform both numerical and order-theoretic computations. In this paper,
we present a new abstract domain that uses support functions to rep-
resent convex sets. We define the order-theoretic operations and, using
a predefined set of directions, we define an efficient method to compute
the fixpoint of linear and non-linear programs. Experiments show the
efficiency and precision of our methods.

1 Introduction

Almost all static analysers rely on a method to efficiently compute numerical in-
variants. This is particularly true for highly numerical programs like digital filters
for which we are interested in computing a possibly tight over-approximation of
the range of values the variables can take. The theory of abstract interpretation
defines such invariants as the least fixpoint of a system of semantics equations
operating on elements of some abstract domain. The quality of the invariant then
depends on both the algorithm to compute the least fixpoint and the choice of
the abstract domain to encode sets of values.

For this second point, most domains over-approximate the sets of variables val-
ues by convex sets, very often using a (sub) polyhedral representation [6,14,9,15].
More recently, new domains were proposed that allow to encode non-convex
(even non-connected) sets [3,1] but these are convex sets in another space. So
it is clear that the static analyser efficiency relies on a precise and efficient
representation of convex sets, that allows for both numeric and order-theoretic
transformations. In this paper, we define a new abstract domain based on the
support function representation of a convex set and show that this domain allows
to efficiently and precisely compute numerical invariants.

Support function is a popular representation of convex sets for numerical
analysis [11]: a set S is represented as a function mapping each direction d
with the distance between the origin and the supporting hyperplane of S in the
direction d. Support functions offer a very compact and precise representation of
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convex sets and allow for an exact computation of affine transformation of sets
(see Section 2). Support functions with finite supports were successfully used in
the hybrid systems analysis [10] to represent value sets or in our previous work
to speed up the convergence of the Kleene algorithm on general polyhedra [16].

In this article, we present a new abstract domain which is based on a sub-
polyhedral representation of convex sets using support functions with finite
supports. It allows for a compact representation of sets and we define efficient
algorithms to compute the fixpoint of affine and non-linear loops. This domain
is similar to the template domain [15] in that it depends on a fixed direction
set Δ ⊆ Rn (n: the space dimension) and bounds the convex sets in each Δ di-
rection. However, as it benefits from the algorithms on support functions, linear
operations are very efficient and do not depend on linear programming solvers.

This article is organized as follows. Section 2 gives some basic definitions and
results on support functions. Section 3 formally defines our abstract domain, in
particular the order-theoretic operations. Sections 4 and 5 show how to adapt
Kleene algorithm to our domain for linear and non-linear loops, respectively. For
the non-linear case, the notion of interval based support function is introduced
which allows to compute both an over- and under-approximation of the least
fixpoint. Section 6 concludes the article with some experimentation.

Notations. We put R∞ = R ∪ {−∞,+∞} and IR = {[a, b]|a ≤ b : a, b ∈ R∞}.
Given two vectors v, w ∈ Rn, let 〈v, w〉 ∈ R be the scalar product of u and w.
Let Bn be the unit sphere in Rn.

2 Support Function

In this section, we give the definition of the support function of a convex set and
give some usefull properties that show how a support function is modified by set
transformations. Given a convex set S ⊆ Rn, the support function of S, denoted
δS , is a functional representation of S, as stated by Definition 1 and Property 1.

Definition 1 ( [11, Def. C.2.1.1] ). Let S ⊆ Rn be a convex set. The support
function δS is defined by:

δS :

{
Bn → R∞
d $→ sup{〈x, d〉 : x ∈ S}

Property 1 ( [11, Corollary. C.3.1.2]). Let S ⊆ Rn be a convex set and let
δS be its support function. Then, S =

⋂
d∈Bn

{
x ∈ Rn | 〈x, d〉 ≤ δS(d)

}
.

Property 1 states that a convex set is uniquely determined by its support func-
tion. Stated differently, any positively homogeneous function δ : Bn → R∞
determines exactly one convex set defined as the intersection of all hyperplanes{
x ∈ Rn | 〈x, d〉 ≤ δ(d)

}
for all d ∈ Bn. We recall that δ is positively homoge-

neous (of degree 1) if ∀d ∈ Bn, k ∈ R, δ(kd) ≤ kδ(d).
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d1

d2

d3

d4 d5

Fig. 1. Graphical representation of the support function of a convex set (in gray). The
dashed lines are the lines 〈x, d〉 = δS(d) for various directions d.

Figure 1 shows a convex set (in gray) and the value of its support function for
some directions d ∈ Bn. It should be clear from Property 1 and Figure 1 that it
holds that, for a given direction set Δ ⊆ Bn, S ⊆

⋂
d∈Δ{x ∈ Rn|〈x, d〉 ≤ δS(d)}.

Note that ifΔ is a finite set, then SΔ =
⋂

d∈Δ{x ∈ Rn|〈x, d〉 ≤ δS(d)} is a convex
polyhedron [11, Def. A.4.2.5]. So, the restriction of a support function of a set S
over a finite domain Δ defines a convex polyhedron that over-approximates S.
The faces of this polyhedron have a pre-defined shape: they are orthogonal to
the chosen directions d ∈ Δ. This is the basic idea behind our abstract domain
based on support functions, see Section 3.

Support function computation. In the rest of this section, we show how the
support function of a convex set can be computed efficiently in some cases.
Obviously Definition 1 shows that the value of δS(d) for each d ∈ Bn can be
obtained using a convex optimization problem [2], if an appropriate description
of S is known. Property 2 below shows that we can compute efficiently the
support function of a transformation of S. In this property, we denote by:

– MS for a given matrix M ∈ Rn×m the set MS = {Mx|x ∈ S},
– S⊕S′ given two convex sets S and S′ the Minkowski sum of S and S′ defined

by S ⊕ S′ = {x+ x′ | x ∈ S, x′ ∈ S′},
– λS for λ ∈ R the set λS = {λx |x ∈ S}.
– S ∪ S′ the convex hull of convex sets S and S′ and S ∩ S′ their intersection.

Property 2 ( [10, Prop. 3]). Let S, S′ be two convex sets. We have:

1. ∀M ∈ Rn×m, δMS(d) = δS(M
Td).

2. ∀λ ≥ 0, δλS(d) = λδS(d).
3. δS∪S′(d) = max(δS(d), δS′ (d)).
4. δS∩S′(d) ≤ min(δS(d), δS′(d)).
5. δS⊕S′(d) = δS(d) + δS′(d).

Note that all relations are exact, except for the computation of the support
function of the intersection for which we only have an over-approximation.

Another important case for which we can efficiently compute the support
function of a convex set S is when S is a convex polyhedron. Then, the convex
optimization problem of Definition 1 becomes a linear programming problem
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Fig. 2. Support function of a convex polyhedron. In direction d1 the supremum is
realized by a generator, in direction d2 it is unbounded.

for which we have efficient algorithms (although linear programming may be
exponential in the worst case). Moreover, Property 3 below shows that a more
efficient method exists if the polyhedron is described by its generators.

Property 3 ( [11, Ex. C.3.4.3]). Let P ⊆ Rn be a convex polyhedra generated
by the set of generators v1, . . . , vk and rays r1, . . . , rl. The support function δP
is defined by:

∀d ∈ Bn, δP(d) =

⎧⎨
⎩

max
i∈[1,k]

〈vi, d〉 if ∀j ∈ [1, l], 〈rj , d〉 ≤ 0

+∞ otherwise
.

Property 3 shows that for a convex polyhedron P represented by its generator,
the support function δP in a direction d can be computed in linear time. The
condition ∀j ∈ [1, l], 〈rj , d〉 ≤ 0 in Property 3 allows us to efficiently detect when
the polyhedron supremum supx∈P〈x, d〉 is finite or not, as illustrated on Figure 2.

3 Abstract Domain

In this section, we formally define our abstract domain based on support func-
tions: we define both the order theoretic operations and the effect of an affine
and non-linear affectation. Our domain is an abstraction of convex polyhedra
over Rn, where n is the number of variables of the program being analyzed. We
denote by P the abstract domain of convex polyhedra over Rn.

3.1 Lattice Structure

Let Δ = {d1, . . . , dl} be a finite set of directions, i.e. Δ ⊆ Bn. Our abstract

domain P�
Δ is parametrized by this set Δ and is defined in Definition 2.

Definition 2. Let Δ ⊆ Bn be the set of directions. We define P�
Δ as the set of

all functions from Δ to R∞, i.e. P�
Δ = Δ → R∞. We denote ⊥Δ (resp. 'Δ) the

function such that ∀d ∈ Δ, ⊥Δ(d) = −∞ (resp. 'Δ(d) = +∞).



Numerical Abstract Domain Using Support Functions 159

x

y

x

y

Fig. 3. The geometrical representation of γΔ(Ω1) (left) and γΔ(Ω2) (right)

For each Ω ∈ P�
Δ, we write Ω(d) the value of Ω in direction d ∈ Δ. Intuitively,

Ω is a support function with finite domain.
The abstraction and concretization functions of P�

Δ are given in Definition 3.

Definition 3. Let Δ ⊆ Rn be the set of directions. We define the concretizatiion
function γΔ : P�

Δ → P by:

∀Ω ∈ P�
Δ, γΔ(Ω) =

⋂
d∈Δ

{x ∈ Rn | 〈x, d〉 ≤ Ω(d)} .

The abstraction function αΔ : P → P�
Δ is defined by:

∀P ∈ P, αΔ(P) =

⎧⎨
⎩

⊥ if P = ∅
' if P = Rn

λd. δP(d) otherwise
.

Example 1. Let Δ ⊆ R2 with Δ = {(−3, 5), (1, 3), (−1, 0), (0,−1)}. For the ab-
stract element Ω1 = {3, 4, 3, 2}1. The result of γΔ(Ω1) is given in Figure 3(left).
The right of the Figure 3 is the result of γΔ(Ω2), with Ω2 = {3, 3,+∞, 2}. In this
case, for d3 = (−1, 0), Ω2(d3) = +∞, which means that the resulting polyhedron
is unbounded in the direction d3.

Definition 3 shows that the concretization of an abstract element of P�
Δ is a poly-

hedron defined by the intersection of half-spaces, where each one is characterized
by its normal vector d ∈ Δ and the coefficient Ω(d). The abstraction function
on the other side is the restriction of the support function of the polyhedra on
the set of directions Δ. We next define the order, join and meet of P�

Δ and then
show that (αΔ, γΔ) is a Gallois connection.

Definition 4 (Order structure of P�
Δ). We define the inclusion operation (Δ

as ∀Ω1, Ω2 ∈ P�
Δ, Ω1 (Δ Ω2 ⇐⇒ γΔ(Ω1) ( γΔ(Ω2), where ( is the inclusion

on P. The join �Δ and meet 
Δ are defined by:

– ∀Ω1, Ω2 ∈ P�
Δ, Ω1 �Δ Ω2 = λd. max(Ω1(d), Ω2(d));

– ∀Ω1, Ω2 ∈ P�
Δ, Ω1 
Δ Ω2 = λd. min(Ω1(d), Ω2(d)).

1 We identify P�
Δ = Δ → R∞ with R|Δ|

∞ , so that Ω1 = {3, 4, 3, 2} is the function
mapping the first direction to 3, the second to 4,..
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Note that the join operation is exact:

∀Ω1, Ω2 ∈ P�
Δ, γΔ(Ω1 �Δ Ω2) = γΔ(Ω1) � γΔ(Ω2)

while the meet operation is over-approximated:

∀Ω1, Ω2 ∈ P�
Δ, γΔ(Ω1 
Δ Ω2) ⊇ γΔ(Ω1) 
 γΔ(Ω2) .

Property 4. The function pair (αΔ, γΔ) form a Galois connection [5] between

P and P�
Δ.

Proof. See our extended version [17]. �

Note that ∀Ω ∈ P�
Δ, if Ω = αΔ(P), then P ⊆ γΔ(Ω), and the vertices of the

polyhedron P touch the faces of γΔ(Ω). This is stated in Proposition 5.

Property 5 ( [10, Prop. 3]). Let P be a polyhedron and Ω ∈ P�
Δ such that

Ω = αΔ(P). We have that, P ⊆ γΔ(Ω). This over approximation is tight as the
vertices of P touch the faces of γΔ(Ω).

3.2 Affine Transformations

We now explain how an element Ω ∈ P�
Δ is modified by an affine transformation

of the form X = AX + b where X is the variable set of the program, A ∈ Rn×n

is a square matrix and b ∈ Rn is a vector. Let thus P0 be a polyhedron and
Ω0 = αΔ(P0) be the initial abstract state. Let also P1 = �X = AX + b�(P0)
be the polyhedron obtained after applying the affine transformation. Our goal is
to compute the best possible abstraction Ω1 of P1, without computing P1. Note
that, using the operation set defined in Section 2, we have that P1 = AP0 ⊕ b.
Thus, using Property 2 we have: ∀d ∈ Δ, δP1(d) = δAP0⊕b(d) = δAP0(d)+δb(d) =
δP0(A

T d) + 〈b, d〉 . So we define Ω1 as:

∀d ∈ Δ, Ω1(d) = δP0(A
Td) + 〈b, d〉. (1)

Note that Ω1 = αΔ(P1), while P1 ⊆ γΔ(Ω1). However, we do not need compute
P1, we only need to evaluate δP0 on directions ATd, which can be done efficiently
if P0 is described using generators, as stated by Proposition 3. Moreover, Propo-
sition 5 ensures that P1 vertices touch γΔ(Ω1) faces. The precision of γΔ(Ω1)
depends strongly on the chosenΔ: more directions we have more precise Ω1 is.

3.3 Non-linear Transformations

We now deal with non-linear transformation, i.e. we want to apply the trans-
formation X = f(X), where f : Rn → Rn is non-linear. We use the notion of
linearisation presented in [13] to abstract the transformation into an interval lin-
ear form. Interval linear forms are given by i+

∑n
k=1 ikXk, where ∀k ∈ [1, n], Xk

is a program variable and i, ik ∈ IR. For example, the expression X1 ×X2 can
be transformed into i1 ×X2 where i1 is the interval concretization of X1. After
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the linearisation process, the transformation X = f(X) can be abstracted by
X = AX + b, where A ∈ In×n

R
and b ∈ In

R
.

As for Section 3.2, we want to compute Ω ∈ P�
Δ, which is an abstraction of

P1 = �X = AX + b�(P0) (the semantics of interval linear forms is given in [13]).
We cannot use Equation 1 directly because ∀d ∈ Δ, AT d is an interval vector
and δP0 is only defined on Rn. To deal with that, we introduce the notion of
interval based support function. In the rest of this article, ∀i ∈ IR, i represents
the upper bound of i and i its lower bound.

Let P be a polyhedron represented by its generators v1, . . . , vk and rays
r1, . . . , rl. We define the function σP by:

σP :

⎧⎪⎪⎨
⎪⎪⎩

In
R
→ R

d $→

⎧⎨
⎩

max
i∈[1,k]

〈vi,d〉 if ∀j ∈ [1, l], 〈rj,d〉∩]0,+∞[= ∅

+∞ otherwise
.

In the same way, we define ιP by:

ιP :

{
In
R
→ R

d $→ maxi∈[1,k] 〈vi,d〉
.

Property 6 shows that δP, the support function of P, can be approximated using
ιP and σP. We call this approximation interval based support function.

Property 6 (Interval based support function). Let P be a polyhedron and
δP be its support function. Let d ∈ In

R
be an interval vector, representing a set of

possible directions. We have that:

∀d ∈ d, ιP(d) ≤ δP(d) ≤ σP(d)

Proof. On the one hand, we have that ∃v ∈ P s.t. ιP(d) = 〈v,d〉 = b. So,

(∀d ∈ d), δP(d) ≥ 〈v, d〉 ≥ b. (2)

On the other hand, we have that ∃v ∈ P s.t. σP(d) = 〈v,d〉 = b′. So,

∀d ∈ d, ∃vi ∈ P s.t. δP(d) = 〈vi, d〉 ≤ 〈vi,d〉 ≤ b′. (3)

Thus from Equations 2 and 3, we have that: b ≤ δP(d) ≤ b′. �

Let us now define Ω, abstraction of P1. We know that, for all d ∈ Δ and for
all d′ ∈ ATd, δP0(d

′) ≤ σP0(A
Td). We have, ∀d ∈ Δ, δP1(d) = δAP0⊕b(d), so

δP1(d) ≤ σAP0(d) + 〈b, d〉. So we define Ω as

∀d ∈ Δ, Ω(d) = σP0(A
Td) + 〈b, d〉 . (4)

Note that in this case, Ω is an over-approximation of δP1 , i.e. αΔ(P1) (Δ Ω. In
the same way, we can use ιP to under approximate δP1 , i.e. we have that:

∀d ∈ Δ, δP(d) ≥ ιP0(A
T d) + 〈b, d〉 .

This under-approximation can be combined with the over-approximation to eval-
uate the precision of Ω.
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4 Fixpoint Computation for Affine Loops

In this section, we present a specialization of Kleene algorithm to compute the
fixpoint of an affine loop using our domain P�

Δ. We consider loops of the form:

while(C)

X=AX+b;

We suppose that A is a real matrix, b may be a set of values, given as a polyhedra
Pb, and C is a guard. Such loops include for example linear filters in which Pb

represents the possible values of the new input at each loop iteration. We assume
that the program variables lie initially in the polyhedra P0.

4.1 Loops without Guards

We first consider the case where the loop is not conditioned by a guard, i.e.
C is true. We want to compute an over-approximation in P�

Δ of P∞, the loop
invariant defined as the least fixpoint of the equation P = P0�

(
AP+Pb

)
. Usually,

P∞ is defined as the limit of the Kleene iterates given by Pi = Pi−1�(APi−1+Pb).
Property 7 defines the abstract element Ωi at each iteration and shows that

for all d ∈ Δ,Ωi(d) = δPi(d). Thus, we have that Ωi = αΔ(Pi), which means

that Ωi is the best abstraction of Pi in P�
Δ.

Property 7. Let Pi be the polyhedron obtained in the ith iteration using poly-
hedra abstract domain, then

δPi(d) = Ωi(d) = max
(
δP0(d), max

j∈[1,i]

(
δP0(A

Tjd) +

j∑
k=1

δPb
(AT (k−1)d)

))
(5)

Proof. The proof runs by induction on i. We begin by i = 1. ∀d ∈ Δ, we have,
using Property 2, that δP1(d) = δP0∪AP0+Pb

(d) = max
(
δP0(d), δP0(A

Td) + δPb
(d)

)
.

Let now i ≥ 1 such that Equation (5) is true.
Then, we have, ∀d ∈ Δ: δPi+1 = δPi�(APi+Pb)(d) = max

(
δPi(d), δPi(A

Td) + δPb
(d)

)
.

Now, we have that:

δPi(A
T d) = max

(
δP0(A

Td), max
j∈[1,i]

(
δP0(A

TjATd) +

j∑
k=1

δPb
(AT (k−1)ATd)

))

= max
(
δP0(A

Td), max
j∈[1,i]

(
δP0(A

T (j+1)d) +

j∑
k=1

δPb
(ATkd)

))

= max
(
δP0(A

Td), max
j∈[2,i+1]

(
δP0(A

T (j)d) +

j∑
k=2

δPb
(AT (k−1)d)

))

We can deduce with a case analysis that:

δPi(A
Td) + δPb

(d) = max
j∈[1,i+1]

(
δP0(A

Tjd) +

j∑
k=1

δPb
(AT (k−1)d)

)

From that we deduce Equation 5 for i+ 1. �
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Algorithm 1. Kleene Algorithm using support function

Input: Δ ⊂ Rn, set of l directions
Input: P0, The initial polyhedron
Input: A ∈ Rn×n, b ∈ Rn

1: D = Δ
2: Ω = δP0(Δ)
3: repeat
4: Ω′ = Ω
5: for all i = 0, . . . , (l − 1) do
6: Θ[i] = Θ[i] + δPb

(D[i])
7: D[i] = ATD[i]
8: Υ [i] = δP0(D[i]) +Θ[i]
9: Ω[i] = max(Ω[i], Υ [i])
10: end for
11: until Ω �Δ Ω′

Property 7 defines a normal form of Ωi i.e. Ωi = αΔ(γΔ(Ωi)). From that, we
have that (Δ can be performed in linear time, such that:

∀Ω1, Ω2 ∈ P�
Δ, Ω1 (Δ Ω2 ⇐⇒ ∀d ∈ Δ,Ω1(d) ≤ Ω2(d).

In Algorithm 1, the computation of the abstract element Ω depends on the
computation of δP0 , Θ and D. We know that P0 represents the polyhedron of
the initial condition of the analysed program, so its representation, in general,
is quite simple. In particular, the number of its generators is usually small. This
means that the computation of δP0 does not require LP solvers. So, what changes
in each iteration is the direction set in which δP0 is computed. Thus, Algorithm 1
has a polynomial complexity in the number of iteration and linear in the number
of directions in Δ. In addition, its result is as accurate as possible: at each iterate,
we have that Ωi = αΔ(Pi). So Ω∞ = αΔ(P∞), with Ω∞ is the fixpoint obtained
in our analysis and P∞ is the one obtained using polyhedra domain. Note that,
γΔ(Ω∞) can have redundant constraints i.e. ∃d ∈ Δ s.t. γΔ\{d}(Ω∞) = γΔ(Ω∞).
However, γΔ(Ω∞) can be used for another analysis, so a redundancy removal
method is needed. The one defined on polyhedra domain is time consuming,
so we want to develop an efficient redundancy removal method based on our
domain, which is the subject of our ongoing work.

Remark 1. 1) Like in the standard Kleene algorithm, Algorithm 1 does not
guarantee the termination of the analysis. To handle this problem, we can use
a widening operator on support functions which is very easy to define: if the
support function in a given direction increases, we set it to +∞. Of course using
threshold [12] can help to limit this over-approximation. Another solution to
speed-up the convergence is the use of the acceleration method presented in our
previous work [16]. For that, we construct for each d ∈ Δ the numerical sequence
Sd = (Ωi(d))i∈N, and then use acceleration methods to compute its limit.

2) Our results are more precise than those obtained using template domain [4]
with the chosen direction set Δ as a TCM [16, Sect. 5.1]. The difference is
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that, in P�
Δ the analysis is done with the precision of the polyhedra domain and

the over-approximation is done only, at the end, in the concretization function.
When with template domain, all the analysis is done in a less expressive domain.

4.2 Loops with Linear Guard

We now consider the case when the loop has a guard of the form 〈X, c〉 ≤ l, with
c ∈ Rn and l ∈ R. Let H be the half space H = {x ∈ Rn|〈x, c〉 ≤ l}. In this case,
the polyhedra Pi is defined as: Pi+1 = Pi ∪

(
(AiPi ⊕ Pb) ∩H

)
. ∀d ∈ Δ, we have

δPi+1(d) = δPi∪((Ai+1Pi⊕Pb)∩H)(d) so:

δPi+1(d) ≤ max(δPi(d),min(δPi(A
T d) + δPb

(d), δH(d)))

Note that δH(d) = l if d = λc for some λ ≥ 0 and δH(d) = +∞ otherwise. We
thus distinguish two cases: d = λc with (λ ≥ 0) or  ∃λ ≥ 0, d = λc. Let us
thus put Δ1 = {d ∈ Δ|d = λc, λ ≥ 0}, and Δ2 = Δ \ Δ1, if Δ1 is empty we
put Δ1 = {c}. Note that Δ is defined such that its elements are not two per

two parallel i.e. ∀d ∈ Δ, �d
′ ∈ Δ\{d} : d = λ.d

′
(λ ≥ 0). So, the cardinality of

Δ1 is 1. For the fixpoint computation, we separate the two cases. If d ∈ Δ2, as
δH(d) = +∞, we have the same relation between δPi+1 and δPi as for the case
of loops without guards, so Ωi(d) defined as in Property 7.
Now, for d ∈ Δ1, we put Ωi(d) = max(δγΔ(Ωi−1)(d),min(δγΔ(Ωi−1)(A

Td)+δPb
(d), l))

which is an over approximation of δPi(d):

δPi(d) = δPi−1∪((APi−1⊕Pb)∩H)(d)

≤ max(δPi−1(d),min(δPi−1(A
Td) + δPb

(d), δH(d)))

≤ max(δγΔ(Ωi−1)(d),min(δγΔ(Ωi−1)(A
T d) + δPb

(d), l))

≤ Ωi(d)

To compute Ωi(d), we use δγΔ(Ωi−1)(d) and δγΔ(Ωi−1)(A
T d), which are obtained

using linear programming. This does not affect a lot our method efficiency, be-
cause it is applied at most for one direction in Δ. So, in the case of affine loops
with linear guard 〈X, c〉 ≤ l, we use Algorithm 1 but distinguish when d ∈ Δ1

from d ∈ Δ2.Then, we have that αΔ(Pi) (Δ Ωi such that the Pi vertices touch
γΔ(Ωi) faces, except for the face of γΔ(Ωi) whose normal vector belongs to Δ1.

5 Fixpoint Computation for Non-linear Loops

Let us now handle the case of non-linear loop, i.e. we consider a loop whose body
is X = f(X), f being a (possibly) non-linear function of the program variables.
We again compute over-approximations of Pi, the Kleene algorithm iterates over
the polyhedra domain. Basically, we apply, at each iteration, a linearisation of
the function f and then use the interval based support function to compute Ωi.

Let us denote AiX+b = L(f,Ωi) the interval linear form produced by lineari-
sation of f when the value of variables X are in γΔ(Ωi). Note that this means
that the matrix A of Algorithm 1 is now an interval matrix which may change
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from one iteration to the other. We compute Ai using techniques from [13],
which requires that we have bounds on variables Xk ∈ X . Such bounds are very
easy to get in our case: we assume that in Δ we added each direction ±Xk, for
every variable Xk. Then, the bounds on Xk are given by Ωi(Xk) and Ωi(−Xk)

2.
To compute Ωi+1 from Ωi, we will thus: first compute Ai using the linearisa-

tion process, and then apply the interval linear transformation AiX + b to Ωi.
Using functions σ and ι defined in Section 3.3, we can have bounds for Ωi+1.
In the polyhedra abstract domain, let Pi be the polyhedron obtained in the ith

Kleene iteration. Property 8 below shows that we can compute bounds on δPi .

Property 8. Let d ∈ Δ. For all i ∈ N, we define di
� =

∏i
k=1 A

T
k d and :

Ψi =
i−1∑
k=1

σPb
(

i∏
q=k+1

AT
q d) + δPb

(d), Ψi =
i−1∑
k=1

ιPb
(

i∏
q=k+1

AT
q d) + δPb

(d) .

We have that: ⎧⎨
⎩

δPi(d) ≥ max
(
δP0(d),maxj∈[1,i]

(
ιP0(dj

�) + Ψj

))
δPi(d) ≤ max

(
δP0(d),maxj∈[1,i]

(
σP0(dj

�) + Ψj

))
Proof. We do not give the whole proof as it is technical and long, but rather
show how it runs for i = 1, 2. The general case is then a generalization of this.

Case i = 1. We know that P1 = P0 �A1P0 + Pb. This means that

P1 = P0 �
( ⊔
A1∈A1

A1P0 + Pb

)
.

The property of σ proves that ∀A1 ∈ A1, we have δA1P1(d) ≤ σP0(A
T
1 d), and

equivalently for ι. This proves the property for i = 1.

Case i = 2. We notice that P2 = P0 � (A1P0 + Pb) � (A2A1P0 +A2Pb + Pb).
And then, for all d ∈ Δ:

∀A1 ∈ A1, A2 ∈ A2, δA2A1P0+A2Pb
(d) = δP0(A

T
1 A

T
2 d) + δPb

(AT
2 d)

≤ σP0(A1
TA2

Td) + σPb
(A2

T d)

We equivalently get the lower bound using the ι function, and using the fact
that δS∪S′(d) = max(δS(d), δS′(d)), we get the result for i = 2. �

Let Δ ⊆ Rn be a set of directions. Property 8 allows us to define the abstract
element Ωi ∈ P�

Δ as given in Definition 5.

Definition 5. Let di
� and Ψi be defined as in Property 8. The abstract element

Ωi ∈ P�
Δ obtained in the ith Kleene iteration is given by:

∀d ∈ Δ, Ωi(d) = max
(
δP0(d), max

j∈[1,i]

(
σP0(d

�
j ) + Ψj

))
2 We let Xk denote the vector of Bn with a 1 in the dimension corresponding to Xk.
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We have that Pi ⊆ γΔ(Ωi), so Ωi of Definition 5 is sound. Note that we are no-
longer guaranteed to have the best abstraction, i.e. we only have αΔ(Pi) (Δ Ωi

(compared to the linear case in which we had an equality). We can also compute
an under-approximation of the fixpoint using the lower bound of Property 8.
We can modify Algorithm 1 for non-linear loops. Due to lack of place, we can
not present this new algorithm (see the extended version [17]). We here explain
the main differences with Algorithm 1 and why the complexity is increased. The
main difference is that we now need to keep track of the list of all matrices∏i

k=1 Ak and
∏i

q=k+1 Aq. This list, called θ in the algorithm, is used as follows:

1. we extend it at the beginning of each iteration by computing the linearisation
matrix Ai+1 and multiplying each term of the list by Ai+1.

2. we iterate on it to compute Ψ and thus the upper bound of Ω(d).

The θ list length at iteration i is i, so we must make i call to σP0 or σPb
at

iteration i, which makes the complexity of this algorithm quadratic in the number
of generators of P0 and Pb, while the algorithm for the linear case is linear.

Now let us extend this method to loops with non-linear guard. Again, we
linearize at each iteration the guard and thus get a guard of the form 〈X,Ci〉 ≤ L,
where Ci ∈ In

R
and L ∈ IR. In this case, Ci changes in each iteration. To compute

Ωi ∈ P�
Δ, we distinguish two cases, ∀d ∈ Δ:

– If d /∈ Ci then Property 8 is used to compute Ωi(d).
– If d ∈ Ci, Ωi(d) = max(δγΔ(Ωi−1)(d),min(σγΔ(Ωi−1)(A

T
i d) + 〈b, d〉, L)) .

Here more than one direction in each iteration may belong to Ci, so we may
need to perform many calls to a linear programming solver to compute Ωi.

Remark 2. To analyse programs with floating point numbers, we can use the
same technique as in the octagon domain with floating point [13]. The idea is to
use the interval analysis and so we can use the interval based support function.

6 Experimentation

To show the efficiency of our abstract domain, we use it to analyze different
numerical programs. The implementation is done using the PPL3. The experi-
mentation was done on a computer with 4 2.0GHz processors and 8Gb of RAM.
The linear programs that we analyze are digital filters 4 of order 2 to 10, to show
the impact of the number of variables on the efficiency of the analysis. These
filters are taken from the tests of Filter Verification Framework [7]. Note that
Kleene iteration using the polyhedra abstract domain without widening fails
to analyze these programs, i.e. the analysis does not terminate. So to compare
our results, we use polyhedra abstract domain with widening with delay (15
iterations). The table of Figure 4 shows that our domain, using the octagonal

3 Parma Polyhedra Library : http://bugseng.com/products/ppl/
4 Programs are at http://www.lix.polytechnique.fr/~bouissou/filters/

http://bugseng.com/products/ppl/
http://www.lix.polytechnique.fr/~bouissou/filters/
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Program Polyhedra P�
Δ

Name |V | t(s) Bounded t(s) Iteration |yn|
lp iir 9600 2 6 0.12 No 0.023 47 19.16
lp iir 9600 4 10 TO - 0.186 100 2.96
lp iir 9600 4 elliptic 10 TO - 0.471 276 3.74
lp iir 9600 6 elliptic 14 TO - 3.636 702 4.89
bs iir 9600 12000 10 chebyshev 22 TO - 53.986 2391 7.93
non linear ODE 3 TO - 0.059 13 8.047

Fig. 4. Results of analysis obtained using different methods

begin

while (0<=10) do

xn = 0.5 *x - y - 2.5;

yn = 0.9 *y + 10;

x = xn; y = yn;

done;

end
8 directions

200 directions

Fig. 5. A simple program (left) and the obtained post-fixpoints (right)

direction set and without widening, allows us to obtain a good fixpoint quickly,
when the analysis using polyhedra abstract domain returns ' in the best cases.
The column |yn| is the width of the bounding box for the output of the filter, it
is computed as |yn| = |Ω(yn)−Ω(−yn)|, where Ω is the obtained post-fixpoint.
|V | is the number of variables, columns labeled t are the execution time (in sec-
onds), the value TO meaning that the execution took more than 10 minutes,
the column “Bounded” tells whether the polyhedra analysis could compute a
bounded post-fixpoint. For most programs the analysis with widening did not
terminate before the time-out. Note that increasing the delay did not help in
getting a bounded fixpoint for the polyhedra domain. Note also that we did
not use thresholds for the widening because our programs contain infinite loops,
which means without guard, so it is hard to define relevant thresholds statically.
This table thus shows the efficiency of our algorithm for linear loops. Remember
that the computed post-fixpoint is also precise: it is the abstraction, in P�

Δ, of
the least fixpoint obtained with polyhedra domain.

For the experimentation, we took also a non-linear program, which represents
the Euler scheme to solve a non-linear ODE given by the formulas:

x1 = x1 + dt× (−(1 + γ × x2
2)× x1)

x2 = x2 + dt× (−0.5× x2 × (1− γ × x2
1) + 2× x3)

x3 = x3 + dt× (−(1− γ × x1)× 2x2 − 0.5× x3)

where dt = 0.01, γ = 0.1 and the initial variables values are in [−2, 2]. Its analysis
using polyhedra5 could not give a result in a reasonable time.

5 Using INTERPROC analyser
http://pop-art.inrialpes.fr/interproc/interprocwebf.cgi

http://pop-art.inrialpes.fr/interproc/interprocwebf.cgi
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We know that the precision of our analysis result depends strongly on the
chosen direction set. To show that, we analyse the program given in the left of
Figure 5 using P�

Δ1
and P�

Δ2
, s.t. Δ1 and Δ2 represent, respectively, set of 8

and 200 random directions. We display on Figure 5 (right) our analysis result
(in white) and the polyhedron obtained using Kleene iteration on the polyhedra
domain (filled in gray). Note that, the polyhedron is obtained after 200 iterations
and is not the least fixpoint in the polyhedra domain, which is contained in the
white polyhedron obtained with our method. Execution time using Δ1 is 0.046s
and 3.15s usingΔ2, which shows our method scalability in the directions number.

Finally, as mentionned in Section 4, our algorithm combines easily with widen-
ing: we just set Ωi(d) = +∞ if Ωi(d) > Ωi−1(d). Using this widening, we can
compute post-fixpoints of unbounded programs. For example, the simple trans-
lation x = x + 1 ∧ y = y + 1 starting from x ∈ [0, 1] and y ∈ [0, 1], we could
compute the fixpoint x ≥ 0 ∧ y ≥ 0 ∧−y ≥ x− 1 ∧ y ≤ x+ 1 in 3 iterations.

7 Conclusion

In this article, we showed a new abstract domain that uses support functions to
represent convex sets. Depending on the chosen set of directions, our domain P�

Δ

holds an over-approximation of the support functions of the set in each direction.
Clearly, both the definition and the order defined in our domain are the same
as for the template abstract domain. However, the linear assignments are very
different as we can always rely on the support function of the initial polyhedron
which is easily computed. Using this technique, we showed that our domain is
very precise: for a loop, the ith iterate is the best abstraction in P�

Δ of the ith

iterate one would have computed using the polyhedra domain.
As already stated, the precision of our domain depends on the relevancy of

the used direction set. Our analysis, in most cases, is not time consuming, so
we can get a precise post-fixpoint using a large number N of random directions.
The problem is that the resulting polyhedron contains a lot of constraints, and
is thus hard to be, eventually, re-used as an entry of another analysis. We plan
to develop a minimization method, that allows us to keep only K ≤ N relevant
directions. For that, we are looking to apply pruning methods developed in [8],
which allow to keep K linear functions from a set of N templates in order to best
approximate the value function of an optimal control problem. We believe that
the use of support functions to represent a polyhedron will allow us to use efficient
methods to compute the importance of one constraint of the polyhedron, which
is an apriori to the algorithm of [8]. Clearly, the choice of random directions is
not optimal, so we are also interested in adapting the techniques of parametrized
templates used in [4] to define the set of directions we use. In this way, we believe
we could change it during the analysis and thus gain in precision. These ideas
are the subject of our ongoing works.

Acknowledgement. We want to thank A. Adjé, E. Goubault and the anony-
mous reviewers for their helpful comments, and precious advices.
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Abstract. Verification using static analysis often hinges on precise nu-
meric invariants. Numeric domains of infinite height can infer these in-
variants, but require widening/narrowing which complicates the fixpoint
computation and is often too imprecise. As a consequence, several strate-
gies have been proposed to prevent a precision loss during widening or to
narrow in a smarter way. Most of these strategies are difficult to retrofit
into an existing analysis as they either require a pre-analysis, an on-the-
fly modification of the CFG, or modifications to the fixpoint algorithm.
We propose to encode widening and its various refinements from the
literature as cofibered abstract domains that wrap standard numeric do-
mains, thereby providing a modular way to add numeric analysis to any
static analysis, that is, without modifying the fixpoint engine. Since these
domains cannot make any assumptions about the structure of the pro-
gram, our approach is suitable to the analysis of executables, where the
(potentially irreducible) CFG is re-constructed on-the-fly. Moreover, our
domain-based approach not only mirrors the precision of more intrusive
approaches in the literature but also requires fewer iterations to find a
fixpoint of loops than many heuristics that merely aim for precision.

Adding numeric domains of infinite height to a static analysis requires that
widening and/or narrowing is applied within each loop of the program to en-
sure termination [7]. Commonly, this is implemented by modifying the fixpoint
algorithm to perform upward and downward iterations while a pre-analysis de-
termines necessary widening points. Firstly, downward iterations can be prob-
lematic since a widened state can induce a precision loss in other domains that
cannot be reverted with the narrowed numeric state [17]. Secondly, determining
a minimal set of widening points requires non-trivial algorithms for irreducible
control flow graphs (CFGs) [6]. Worse, these algorithms cannot be applied in the
context of analyzing machine code, as the CFG is re-constructed on-the-fly while
computing the fixpoint [3]. Moreover, narrowing alone is often not enough to ob-
tain precise fixpoints which has been illustrated in many papers that present
improved widenings/narrowings [10,11,12,15,17]. All of these approaches require
disruptive changes to the fixpoint engine, for instance, tracking several abstract
states [10,12], temporarily disabling parts of the CFG [11], performing a pre-
analysis with different semantics [13,15], collecting “landmarks” [17] or referring
to user-supplied thresholds [5]. This paper shows that widening and its various
refinements can be implemented without modifying an existing fixpoint engine,
thereby making numeric domains available to analyses that are oblivious to the

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 170–184, 2013.
� Springer-Verlag Berlin Heidelberg 2013
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1 ��� x = 0;

2 ��� y = 0;

3 ����� (x < 100) {

4 x = x + 1;

5 y = y + 1;

6 }

7

step line intervals affine thresholds
x y

1 2 [0, 0] x = 0
2 3 [0, 0] [0, 0] x = 0, y = 0
3 4 [0, 0] [0, 0] x = 0, y = 0 x ≤ 99
4 5 [1, 1] [0, 0] x = 1, y = 0 x ≤ 100
5 6 [1, 1] [1, 1] x = 1, y = 1 x ≤ 100
6 3 � [0, 1] [0, 1] x = y x ≤ 100
6’ 3’ ∇ [0, 100] [0, 100] x = y
7 4 [0, 99] [0, 99] x = y
8 5 [1, 100] [0, 99] x = y + 1
9 6 [1, 100] [1, 100] x = y

10 3 � [0, 100] [0, 100] x = y
11 7 [100, 100] [100, 100]

Fig. 1. Rapid convergence during widening

challenges of widening [1]. Specifically, we propose to implement the inference of
widening points and the various widening heuristics as abstract domains that can
be plugged into an analysis in a modular way. This modular approach not only
reduces the overall complexity of an analysis, it also facilitates the comparison
and combination of various heuristics.

The key idea of our approach is to implement abstract domains as cofibered
domains [18], an approach sometimes called “functor domains” [5]. Here, each
domain D has a child C that it controls. The combined domain is written D� C.
Only the leaf, namely the interval domain I, has no child. The benefit is that
a transfer function of domain D on a state s ∈ D � C may execute any number
of transfer functions on its child C before returning a new state s′. We illustrate
this idea using a cofibered threshold domain T and a cofibered affine domain A
to build the domain stack T � (A� I). A state is written as a tuple 〈t, 〈a, i〉〉 ∈
T � (A� I) containing the individual domain states t ∈ T , a ∈ A and i ∈ I.

Figure 1 presents the analysis of a simple loop over T � (A � I) where the
state of each domain is written in a separate column. The states of the interval
and affine domain for steps 1 to 6 are straightforward. The threshold domain
tracks all conditions in tests that are redundant, here x<100, i.e. x ≤ 99 in
step 3. These so-called predicates are changed by assignments, here yielding
x ≤ 100 after x=x+1;. In step 6, the state after one loop iteration is joined
with the previous state at line 3, yielding the intervals [0, 1] for both, x and y

together with the affine relation x = y and the threshold x ≤ 100 since it is still
redundant in the joined state. The interim step 6’ shows how the state obtained
at step 2 is widened with respect to the state at step 6: the threshold domain
applies widening on its child, yielding x, y ∈ [0,∞] for the interval domain while
the affine domain returns the join x = y since its lattice is of finite height. The
threshold domain then refines this state by applying the test x ≤ 100. The affine
domain passes this test to its child, the interval domain, but also applies the tests
σ(x ≤ 100) for any substitution σ = [x/y] that can be derived from equalities
over x. This refines the interval domain to x, y ∈ [0, 100] as shown as step 6’.
Steps 7 to 10 ascertain that this state is indeed a fixpoint of the loop, yielding
the post-condition shown as step 11.
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The example illustrates two consequences of this cofibered arrangement of
domains: firstly, it is a modular way of combining several domains, thus keeping
each domain simple; secondly, information can be propagated between domains
by applying several operations on a child C for each operation on the parent D.

One might argue that the modular design itself creates the need for propaga-
tion which is unnecessary when using a monolithic domain such as an off-the-shelf
polyhedra package [2]. However, combining several simple domains allows for a
more flexible trade-off between efficiency and precision by adjusting the inter-
action between domains [16]. For instance, in all polyhedra packages we tested,
the widening operation is reduced to a join when the affine relations are not
stable, thereby requiring a third fixpoint iteration for this simple example. In
our modular setup, the information in the affine domain is not intermingled with
information on variable bounds, thereby allowing the affine domain (which has
finite height) to compute a join while the interval domain performs widening.
This alternative design yields the same precision while requiring fewer iterations.

The implementation of the various widening strategies builds on the ability to
separate various concerns into individual domains. These domains are as follows:

Widening Point Domain: Rather than enhancing a fixpoint engine to iden-
tify widening points in loops, we propose a domain that turns a join operation
into a widening when it observes that the state is propagated along a back-
edge of the CFG. This simple technique for irreducible CFGs [6] and CFGs
that are constructed on-the-fly [3] works surprisingly well in practice.

Threshold Domain: We implement widening with thresholds [5,13] but infer
the thresholds automatically. We present the basic domain that infers thresh-
olds from tests. Unlike previous work [15] that extracts thresholds from a pre-
analysis using the domain of polyhedra [9], only relevant tests are tracked.

Delay Domain: A domain which postpones widening is presented that ensures
precise results for loops containing assignments of constants.

Phased Domain: We provide an automatic way to separate the state space of
loops into several phases, where phase boundaries are automatically inferred
from tests within the loop, similar to guided static analysis [11]. This domain
can be seen as an instance of a decision tree domain combinator [8].

Besides these specific domains, our paper makes the following contributions:

– Even though cofibered abstract domains only allow to selectively delay widen-
ing or to restrict the result of widening by applying tests, they suffice to
implement even the most complex widening heuristic in the literature [11].

– Our domains can be added to existing analyses without modification to the
fixpoint engine. Our modular approach allows for combining several heuris-
tics and even to retrofit an existing analysis that has no notion of widening.

– We give experimental evidence of the precision of our widening domains.

The remainder of the paper is organized as follows. The next section introduces
notation and defines a domain that determines when to widen. Sections 2 to 4 in-
troduce the threshold, delay, and phased domain to improve precision. Section 5
evaluates our domains before Sect. 6 presents related work and concludes.
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x = 0 y = 0 x < 100 x = x + 1 y = y + 1

x >= 100

1 2 3 4 5 6

7

Fig. 2. The control flow graph of the introductory example

1 Preliminaries

This section details the program analysis problem we address. The CFG is rep-
resented by a set of vertices labeled l1, l2, . . . ∈ Lab and directed edges for assign-

ments li
x=e−→ lj and tests li

e≤0−→ lj . Given the lattice 〈D,(D,�D,
D,'D,⊥D〉 of
an abstract domain D, we associate each vertex at li with a state di ∈ D which
initially are d0 = 'D and di = ⊥D for i = 0. The semantics of an assignment
edge li

x=e−→ lj in D is given by F j
i = [[li : x = e]]D : D → D; likewise for test edges.

As an example, Fig. 2 shows the CFG of the introductory example of Fig. 1.
Here, nodes li are labeled with i and an empty edge l6 −→ l3 was added so that
labels match line numbers. The solution of analysing a program is characterized
by a set of equations sj *D F j

i (si), each corresponding to an edge from li to lj .
It can be inferred using chaotic iteration [1,6] which picks a location li that is
not stable and, for all edges si −→ sj updates sj to sj := sj �D F j

i (si).
Inferring numeric information about program variables usually requires the

use of abstract domains that have infinite increasing chains such as intervals
where [0, 1] ( [0, 2] ( [0, 3] . . . or convex polyhedra [9]. In these cases, termina-
tion of the fixpoint computation is not guaranteed unless at least one widening
operator is inserted into each cycle of the graph. The idea of a widening operator
is to extrapolate the change in the abstract state between consecutive iterations
at a node in the graph. It must obey the following definition [9]:

Definition 1. Given a domain D, define ∇l
D : D ×D → D such that:

∀x, y ∈ D : x (D x∇l
D y

∀x, y ∈ D : y (D x∇l
D y

and for all increasing chains x0 (D x1 (D . . . the increasing chain y0 = x0,
. . . yi+1 = yi∇l

D xi+1 is not strictly increasing.

Consider inserting a widening operator into the equation of the no-op edge from
l6 to l3, yielding s3 := s3 ∇l

D (s3 �D F 3
6 (s6)) = s3 ∇l

D (s3 �D s6). Although ter-
mination is now guaranteed, the result of, say, an interval analysis is imprecise:
{x ∈ [0, 0], y ∈ [0, 0]}∇l

D {x ∈ [0, 1], y ∈ [0, 1]} = {x ∈ [0,∞], y ∈ [0,∞]}. This
stable state can, in principle, be made more precise by replacing the widening with
a narrowing operator and re-running the fixpoint computation just for the loop
body. However, this requires meddling with the fixpoint engine in order to identify
the loop and its in- and outgoing edges and changing the way states are handled:
for example our updates sj := sj �D F j

i (si) are expansive (si (D sj �D F j
i (si)) so

that the states cannot shrink by evaluating the updates [15]. We therefore avoid
narrowing altogether to avoid changing the way states are stored. Instead, Sect. 2
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[[l : x = e]]W 〈〈lw, fw〉, c〉 = 〈〈l, fw ∨ (l < lw)〉, [[l : x = e]]Cc〉)
[[l : e ≤ 0]]W 〈〈lw, fw〉, c〉 = 〈〈l, fw ∨ (l < lw)〉, [[l : e ≤ 0]]Cc〉)
〈w1, c1〉 �W 〈w2, c2〉 = c1 �C c2

〈〈lw1 , fw
1 〉, c1〉 �W 〈〈lw2 , fw

2 〉, c2〉 =
{
〈〈l, false〉, c1∇l

C c2〉 if fw
1 ∨ fw

2

〈〈l, false〉, c1 �C c2〉 otherwise

where l = max(lw1 , l
w
2 )

Fig. 3. Lattice and transfer functions for the widening point domain

and 3 present domains that implement more precise widenings. Before detailing
these, we address the task of identifying widening points.

1.1 Inferring Widening Points

For programs made up of well-nested loops, widening is only required at each
loop head in the program [5], which renders fixpoint computations relatively
straightforward. For programs with irreducible CFGs, it is generally necessary
to place more than one widening point in each cycle [6] and, hence, a widening
heuristic must not lose precision when widening is applied several times within a
loop. This, in turn, implies that a conservative heuristic, that places rather many
widening points, suffices. We now present such a heuristic that is appropriate
for machine code, implemented as abstract domain W . The domain observes
back-edges, that is, information flowing from larger to smaller addresses. Once
observed, the next join on W � C translates to a widening on the child C.

For the sake of finding back-edges, we assume that statement labels l ∈ Lab
represent the code address of a statement or test. The widening point domain is
given by the lattice 〈W�C,(W,�W ,
W ,'W ,⊥W〉 whereW : Lab×{true, false}
is a tuple of the last program point and a flag indicating if a backward edge has
been observed. If set, widening is applied at the next junction node at which point
the loop is usually completely traversed. Figure 3 defines the domain operations.
The transfer functions for assignment and the lattice functions for subset and join
are shown. Each function operates on tuples 〈w, c〉 ∈ W�C where w ≡ 〈lw, fw〉 ∈
W . The transfer functions [[·]]W on W apply the corresponding operation [[·]]C on
the child c ∈ C while tracking the current label l and whether a backward edge
lw → l with l < lw has been observed. The subset test (W translates to a
subset test on the child, indicating that the W domain does not actually infer
any information about the state of the program and is therefore, per definition,
stable. The only effect of the domain is that the �W translates to a widening
operation on the child if one of the flags is true. Note that this domain may
be more precise than a standard algorithm for determining widening points [6]
since widening is applied only after a back-edge. For instance, in Fig. 2, widening
is only applied when updating node l3 with a state from l6 but no widening is
applied when propagating the state from l2 to l3, as this path is not a back-edge.

The ability to add widening to an analysis without changing the fixpoint can
also be carried over to various widening heuristics, as detailed next.
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[[l : x = e]]T 〈t, c〉 = 〈[p �→ 〈l̄o, l̄w〉 ∈ t | x /∈vars(p)] ∪ [σ−1(p) �→ 〈l̄o, l̄w〉 | p �→ 〈l̄o, l̄w〉∈ t
∧σ = [x/e], σ−1(p) exists], [[l : x = e]]Cc〉

[[l : e ≤ 0]]T 〈t, c〉 = 〈filter(t′[e≤0 �→〈{l}, ∅〉 | ∃p . t(p) = 〈l̄o, ∅〉 ∧ l∈ l̄o], c), [[l : e ≤ 0]]Cc〉
where t′ = [p �→ 〈l̄o, l̄w〉 ∈ t | l /∈ l̄o ∨ l̄w �= ∅]〈t1, c1〉 �T 〈t2, c2〉 = c1 �C c2

〈t1, c1〉 �T 〈t2, c2〉 = 〈filter(t, c), c〉 where t = join(t1, t2) and c = c1 �C c2
〈t1, c1〉∇l

T 〈t2, c2〉 = 〈filter(t[pi �→ 〈l̄o, l̄w ∪ {l}〉 | 〈l̄o, l̄w〉 ∈ t ∧ l̄o ∩ l̄upd �= ∅], c), c〉 where
t= join(filter(t1, c2),filter(t2, c2))∧c=[[l : p1]]

C. . . [[l : pn]]
C(c1∇l

C c2)
pi∈{e1≤0, . . . , en≤0} = {p ∈ dom(t) | t(p)= 〈l̄o, l̄w〉 ∧ l /∈ l̄w} and
l̄upd =

⋃n
i=1{l̄o | t(pi) = 〈l̄o, l̄w〉 ∧max(ei, c)=minn

i=1(max(ei, c))}

Fig. 4. Transfer and lattice functions for the threshold domain

2 Widening with Thresholds as Abstract Domain

Widening is necessary to ensure termination when a fixpoint is computed over a
domain of infinite height. One problem of widening is that the obtained fixpoint
is almost always a post-fixpoint, that is, it is larger than the least fixpoint. This
section shows how predicates occurring in tests can be used as thresholds to
restrict the widened state, thereby often giving better results than a narrowing
can provide. Let Pred be a set of predicates that are used as conditions in tests.
We only require that the negation ¬p of p ∈ Pred exists and that ¬p ∈ Pred where
¬(¬p) ≡ p. In practice, we gather all tests convertible to linear inequalities and
assume integer arithmetic: ¬(a1x1+ . . .+anxn ≤ c) ≡ a1x1+ . . .+anxn ≥ c+1.

The threshold domain is given by the lattice 〈T �C,(T,�T ,
T 〉 where the uni-
verse T : Pred ��� ℘(Lab)×℘(Lab) is a partial map from redundant tests p ∈ Pred
to two sets of program points. The first set l̄o contains the program points of
the test where p originated. The second set l̄w denotes the widening points at
which p has been used as thresholds. We update t ∈ T to t′ = t[p $→ l] ∈ T with
t′(p) = l and t′(q) = t(q) for q = p. In abuse of notation we use [p $→ . . .] to con-
struct a new mapping and ∅ for the empty map. We enforce the invariant that all
tests p ∈ Pred are redundant in the child domain by applying filter : T × C → T
which is defined as filter(t, c) = [p $→ t(p) | p ∈ dom(t) ∧ [[¬p]]Cc = ⊥C] where
[[¬p]]Cc ∈ C computes a state of the child domain in which the test ¬p has been
applied. Note that instead of [[p]]Cc = c we use the cheaper test [[¬p]]Cc = ⊥C .

Figure 4 presents the transfer functions and lattice operations of the threshold
domain. An assignment x = e at program point l ∈ Lab is forwarded to the
child. All thresholds that are not affected by the write to x are kept as is (first
line) while predicates p that mention x are kept if an inverted substitution σ−1

exists where σ = [x/e]. For instance, consider the assignment x=x+1; in Fig. 1
where t = [x ≤ 99 $→ 〈{3}, ∅〉] ∈ T and intervals C = I with x ∈ [0, 1]. With
σ = [x/x + 1], we obtain σ−1 = [x/x − 1] and σ−1(x ≤ 99) = x ≤ 100. Thus,
the state after the assignment is 〈[x ≤ 100 $→ 〈{3}, ∅〉], x ∈ [1, 2]〉. Note that the
resulting threshold is again 98 units away from the current state space. Indeed,
applying a linear substitution ensures that each threshold remains redundant. If
x /∈ vars(e) or if e is not linear, σ−1 does not exist and the threshold is removed.
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1 ��� n = 0;

2 ����� (true) {

3 �� (! read_sec ())

4 	
������ ;

5 �� (n<60) {

6 n = n+1;

7 } ���� {

8 n = 0;

9 }

10 }

n = 0

n >= 60

n = 0

!read_sec()

n < 60

n = n + 1

1

23

4

5

Fig. 5. A loop whose fixpoint cannot be obtained by narrowing

The transfer function for tests replaces tests that originate here (l ∈ l̄o) and
which have not been applied yet (l̄w = ∅) with a fresh threshold e ≤ 0. Here,
t′ contains the remaining mappings. Tests that happen to actually restrict the
incoming state space c are removed by filter.

With respect to the lattice operation, the entailment test 〈t1, c1〉 (T 〈t2, c2〉
reduces to an entailment test on the child. The join 〈t1, c1〉 �T 〈t2, c2〉 uses a
function join that merges the program points where tests originate and where
they are applied point-wise as follows:

join(t1, t2) =

[
p $→ 〈l̄o1 ∪ l̄o2, l̄

w
1 ∪ l̄w2 〉 | 〈l̄oi , l̄wi 〉 =

{
ti(p) if p ∈ dom(ti)

〈∅, ∅〉 otherwise

]
p∈dom(t1)

∪dom(t2)

Again, applying filter removes thresholds that are not redundant in c1 �C c2.
Given the collected thresholds, the widening 〈t1, c1〉∇l

T 〈t2, c2〉 is now able to
refine the widened child state c1 ∇l

C c2 by applying those predicates e1 ≤ 0,
. . . en ≤ 0 as tests that have not yet been used at this widening point, that is,
for which l /∈ l̄w holds. For each such predicate, we check if ei ≤ 0 has actually
contributed to restricting c1 ∇l

C c2 by checking if the distance max(ei, c) to the
state c is the smallest of all predicates. The set l̄upd is defined to contain the
locations of all contributing tests. The idea is that, from two tests l1 : x ≤ 10, l2 :
x ≤ 50, only l1 is marked as being applied, thereby allowing the test x ≤ 50
to serve as a threshold in future widenings. The merged domain state t is then
updated so that all tests at locations l ∈ l̄upd are marked as applied at l. Overall,
widening is delayed at most |l̄o| times at each of the |l̄w| widening points. Since
there are only a finite number of program locations, termination follows.

Widening with thresholds can find least fixpoints where narrowing cannot
[12]. Consider the program in Fig. 5 that tracks the seconds within a minute.
The loop repeatedly waits for a seconds signal that causes read_sec to return 1.
The simplified CFG of the program contains three loops. After propagating
n = 0 to node 2, the loops through node 3 and 4 are stable. The loop via
node 5 yields n ∈ [0, 1] in node 2 which is widened to n ∈ [0,∞]. The threshold
n ≤ 59 is transformed by n=n+1 to n ≤ 60 and is applied after widening, yielding
n ∈ [0, 60]. Narrowing cannot deduce this fixpoint due the cycle via node 4 [12].
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[[l : x = e]]D〈d, c〉 = 〈d ∪ l̄, [[l : x = e]]Cc〉 where l̄ =

{
{l} if e ∈ Z

∅ otherwise

〈d1, c1〉 �D 〈d2, c2〉 = c1 �C c2
〈d1, c1〉 �D 〈d2, c2〉 = 〈d1 ∪ d2, c1 �C c2〉

〈d1, c1〉∇l
D 〈d2, c2〉 = 〈d1 ∪ d2, c〉 where c =

{
c1∇l

C c2 if d2\d1 = ∅
c1 �C c2 otherwise

Fig. 6. Lattice and transfer functions for the delaying domain

1 ��� x = 0;

2 ��� y = 0;

3 ����� (x < 100) {

4 �� (read ()) y = 1;

5 x = x + 4;

6 }

7

step line intervals congruences T · D
x y ·

1 2 [0, 0] · {1}
2 3 [0, 0] [0, 0] · {1, 2}
3 4 [0, 0] [0, 0] x ≤ 99 · {1, 2}
4 5 [0, 0] [1, 1] x ≤ 99 · {1, 2, 4}
5 6 [4, 4] [1, 1] x ≤ 103 · {1, 2, 4}
6 3 � [0, 4] [0, 1] x ≡ 4 x ≤ 103 · {1, 2, 4}
6’ 3’ ∇ [0, 100] [0,∞] x ≡ 4 · {1, 2, 4}
7 4 [0, 96] [0,∞] x ≡ 4 · {1, 2, 4}
8 5 [0, 96] [0,∞] x ≡ 4 · {1, 2, 4}
9 6 [4, 100] [0,∞] x ≡ 4 · {1, 2, 4}

10 3 � [0, 100] [0,∞] x ≡ 4 · {1, 2, 4}
11 7 [100, 100] [0,∞] · {1, 2, 4}

Fig. 7. Widening after one iteration loses the bound on y

3 Restricting Widening after Constant Assignments

It is widely acknowledged that computing a few iterations of a loop without
widening can improve the precision of the computed fixpoint [2]. For instance,
the program in Fig. 7 may set the variable y to 1 depending on some external
event where read() may return the value of some sensor in a control software
[5,8]. Given the threshold domain T as-is, the table in Fig. 7 shows how widening
the state at step 6’ with respect to that at step 2 yields x ∈ [0, 0]∇l

I [0, 4] = [0,∞]
and y ∈ [0, 0]∇l

I [0, 1] = [0,∞] where the former interval can be refined by the
threshold x ≤ 103 to [0, 100] since x ≡ 4, i.e. x is a multiple of four. The loop test
x<100 then yields the precise value for x in step 7. However, the upper bound for
y is lost. The common approach to improve the precision is to delay widening
[13], that is, to compute another iteration of the loop using the state at step 6.
After the second iteration, y ∈ [0, 1]∇l

I [0, 1] = [0, 1] is as desired.
Rather than fixing the number of times widening should be delayed, we track if

widening would alter variables that were set to a constant. To this end, we define
a delaying domain given by the lattice 〈D � C,(D,�D,
D〉 where D : ℘(Lab)
is a set of program points with constant assignments. The transfer functions in
Fig. 6 simply collect those program points that assign a constant to a variable.
Performing widening on D will check if this set has increased and, if so, perform
a join instead of a widening. For example, in step 6’ of Fig. 7, location 4 is new
relative to the state at step 2, thereby performing another iteration based on the
state at step 6. Note that the delaying domain also delays widening if a new ��-
branch becomes enabled that contains a constant assignment. Note further that
i=i+1 is never considered constant so as not to delay widening unnecessarily.
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a)

1 ��� x = 0;

2 ��� y = 0;

3 ����� (true) {

4 �� (x <= 50) {

5 y++;

6 } ���� {

7 y--;

8 };

9 �� (y<0)

10 ����;

11 x++;

12 }

b)

x = 0
y = 0

x <= 50 x > 50

y++ y--

x++

y < 0

1

2

3 4

5

c)

x

y
x > 50

y < 0

50

25 75

Fig. 8. A loop containing phase transitions

4 Guided Static Analysis as Abstract Domain

Numeric domains are usually convex approximations of the possible set of nu-
meric values. One drawback of convexity is that joining two states can incur a
precision loss that cannot later be recovered from. For example, the join of two
intervals [0, 5]�I [15, 20] = [0, 20] adds the spurious values 6, . . . 14 and applying
x ≤ 10 to this state is less precise than applying it to the individual intervals.
The idea of guided static analysis [11] is to avoid this kind of precision loss by
identifying different phases of a loop and to track a separate state for each phase.
The original proposal is formulated in terms of operations that restrict the CFG
to increasingly larger sub-graphs and to perform widening/narrowing on these
sub-graphs. In this section, we show that the same effect can be obtained by
adding a cofibered phase domain into the domain hierarchy, thereby avoiding
any modification to the fixpoint engine or to the handling of states.

Consider the loop in Fig. 8a) that increments x, starting from zero. For the
first fifty iterations, y is incremented while in the next fifty iterations y is decre-
mented. The loop exits in the 102th iteration when y becomes negative. The
state space is depicted in Fig 8c) where the two hyperplanes annotated with the
predicates px ≡ x > 50 and py ≡ y < 0 mark the different phase transitions. In
particular, observe that the three phases can be characterized by the predicates
that hold: for the first phase ¬px ∧¬py holds, for the second phase px ∧¬py and
for the third phase px ∧ py. Thus, rather than characterizing the loop phases by
enabled sub-graphs of the CFG, we construct an abstract domain that tracks
a different child domain for each feasible valuation of the predicates. In a child
c that is tracked for the predicates p1, . . . pn, we assume that each predicate pi
holds and, lest the domain is imprecise, [[¬pi]]Cc = ⊥C for all i ∈ [1, n]. Thus, in
the example, the predicates ¬px ∧¬py hold in the state of the first phase c1 and
propagating c1 over the edge from CFG node 2 to 4 in Fig. 8b) yields an empty
state, thereby simulating the fact that this sub-path of the CFG is disabled.
Analogous, a state c2 in which px ∧ ¬py holds has the path 2 → 3 → 5 disabled
since it is guarded by px ≡ x > 50.
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step line intervals affine phased threshold
x y c; p1 : t1, . . . pn : tn; p̄

1 2 [0, 0] x = 0 c1; ∅
2 3 [0, 0] [0, 0] x = 0, y = 0 c1; ∅
3 5 [0, 0] [0, 0] x = 0, y = 0 c1; {x > 50} x ≤ 50
4 6 [0, 0] [1, 1] x = 0, y = 1 c1; {x > 50} x ≤ 50
5 11 [0, 0] [1, 1] x = 0, y = 1 c1; {x > 50, y < 0} x ≤ 50
6 12 [1, 1] [1, 1] x = 1, y = 1 c1; {x > 50, y < 0} x ≤ 51, y ≥ 0
7 3 � [0, 1] [0, 1] x = y c1; {x > 50, y < 0} x ≤ 51, y ≥ 0
8 3’ ∇ [0, 50] [0, 50] x = y c1;x > 50 : t2; {y < 0}

3’ [51, 51] [51, 51] x = 51, y = 51 c2; {y < 0} y ≥ 0

9 5 [0, 50] [0, 50] x = y c1;x > 50 : t2; {y < 0}
5 ⊥A�I ; {y < 0} y ≥ 0

10 6 [0, 50] [1, 51] x = y − 1 c1;x > 50 : t2; {y < 0}
6 ⊥A�I ; {y < 0} y ≥ 1

11 7 ⊥A�I ; x > 50 : t2; {y < 0}
7 [51, 51] [51, 51] x = 51, y = 51 c2; {y < 0} y ≥ 0

12 8 ⊥A�I ; x > 50 : t2; {y < 0}
8 [51, 51] [50, 50] x = 51, y = 50 c2; {y < 0} y ≥ −1

13 9 [0, 50] [1, 51] x = y − 1 c1;x > 50 : t2; {y < 0}
9 [51, 51] [50, 50] x = 51, y = 50 c2; {y < 0} y ≥ −1, y ≥ 1

14 12 [1, 50] [1, 50] x = y c1;x > 50 : t2; {y < 0}
12 [51, 52] [50, 51] x + y = 102 c2; {y < 0} y ≥ 0

15 3’ � [1, 50] [1, 50] x = y c1;x > 50 : t2; {y < 0}
3’ ∇ [51, 102] [0, 51] x + y = 102 c2; {y < 0}

16 5 � [0, 50] [0, 50] x = y c1;x > 50 : t2; {y < 0}
5 ⊥A�I ; {y < 0}

17 6 � [0, 50] [1, 51] x = y − 1 c1;x > 50 : t2; {y < 0}
6 ⊥A�I ; {y < 0}

18 7 ⊥A�I ; x > 50 : t2; {y < 0}
7 [51, 102] [0, 51] x + y = 102 c2; {y < 0}

19 8 ⊥A�I ; x > 50 : t2; {y < 0}
8 [51, 101] [0, 50] x + y = 101 c2; y < 0 : t3; ∅
8 [102, 102] [−1,−1] x=102, y=−1 c3; ∅

20 9 [0, 50] [1, 51] x = y − 1 c1;x > 50 : t2; {y < 0}
9 [51, 100] [0, 50] x + y = 101 c2; y < 0 : t3; ∅
9 [102, 102] [−1,−1] x=102, y=−1 c3; ∅

21 10 [102, 102] [−1,−1] x=102, y=−1 c3; ∅
22 12 [1, 50] [1, 50] x = y c1;x > 50 : t2; {y < 0}

12 [51, 102] [0, 51] x + y = 102 c2; y < 0 : ⊥A�I ; ∅
23 3 � [1, 50] [1, 50] x = y c1;x > 50 : t2; {y < 0}

3 � [51, 102] [0, 51] x + y = 102 c2; y < 0 : ⊥A�I ; ∅

Fig. 9. Computing the fixpoint for the example in Fig. 8

We implement the ideas of tracking several children depending on which pred-
icates hold in the cofibered phase domain that is given by the lattice 〈P�C,(P
,�P ,
P ,'P ,⊥P〉 where P : C× (Pred×P)∗×℘(Pred) is a recursive type, repre-
senting a multi-way decision tree. A node in this tree 〈c; p1 : t1; . . . pn : tn; p̄〉 ∈ P
contains a child domain c in which predicates p1, . . . , pn ∈ Pred do not hold. The
node has n sub-trees t1, . . . tn ∈ P where pi holds in ti. The set p̄ ⊆ Pred is a
set of predicates that are unsatisfiable and represent phases that have not (yet)
been entered. Before we detail the transfer and lattice functions, we consider the
fixpoint computation in Fig. 9 using a domain stack T � P � A � I, that is,
thresholds wrapping the phase domain, that wraps affine and intervals.

Initially, the phase domain contains a single child domain c1 and no sub-trees
as shown in step 1 of Fig. 9. The idea of the phased domain is to gather all unsat-
isfiable tests as possible phase predicates, adding them to the set p̄. Thus, step 3
adds the predicate x > 50 and step 5 adds y < 0. Note that, unlike the threshold
predicates, the phase predicates are not transformed. Once widening is applied
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[[l : x = e]]T 〈c; p1 : t1; . . . pn : tn; p̄〉 =
let ce = [[l : x = e]]Cc and c′ = [[l : ¬pi]]C · · · [[l : ¬pn]]Cce and ci = [[l : pi]]

Cce
and 〈c̃ie; parti〉 = [[l : x = e]]T ti
and c̃ires = ci �C [[l : pi]]

C c̃i and c′′ = c′ �C [[l : ¬p1]]C c̃1e �C · · · �C [[l : ¬pn]]C c̃ne
and p̄red = {p ∈ p̄ | [[l : ¬p]]Cc′′ = ⊥C} and 〈pn+1, . . . pn+k} = p̄ \ p̄red
and cres = [[l : ¬pn+1]]

C · · · [[l : ¬pn+k]]
Cc′′and cn+j

new = [[l : pn+j ]]
Cc′′ for j = 1 . . . k

in 〈cres; p1 : 〈c̃1res; part1〉; . . . pn : 〈c̃nres; partn〉; pn+1 : 〈cn+1
new〉; . . . pn+k : 〈cn+k

new 〉; p̄red〉
[[l : e ≤ 0]]T 〈c; p1 : t1; . . . pn : tn; p̄〉 =

let 〈c̃ie : parti〉 = [[l : e ≤ 0]]T ti and ce = [[l : e ≤ 0]]Cc
in if

∧n
i=1 c̃

i
e = ⊥T ∧ ce = ⊥C then ⊥T else

〈ce; p1 : 〈c̃1e; part1〉; . . . pn : 〈c̃ne ; partn〉; if [[l : e > 0]]Cc = ⊥C then p̄ ∪ {e ≤ 0} else p̄〉
〈c1; part1〉 �T 〈c2; part2〉 =

let 〈〈p11 : t11; . . . p
1
n : t1n; p̄

1〉, 〈p21 : t21; . . . p
2
n : t2n; p̄

2〉〉 = compatible(part1, part2)
in c1 �C c2 ∧

∧n
i=1 t

1
i �T t2i

〈c1; part1〉 �T 〈c2; part2〉 =
let 〈〈p11 : t11; . . . p

1
n : t1n; p̄

1〉, 〈p21 : t21; . . . p
2
n : t2n; p̄

2〉〉 = compatible(part1, part2)
in 〈c1 �C c2; p

1
1 : t11 �T t21; . . . p

1
n : t1n �T t2n; p̄

1〉
〈c1; part1〉∇l

T 〈c2; part2〉 =
let 〈〈p11 : t11; . . . p

1
n : t1n; p̄

1〉, 〈p21 : t21; . . . p
2
n : t2n; p̄

2〉〉 = compatible(part1, part2)

and ce = [[l : ¬p11]]C · · · [[l : ¬p1n]]Cc1∇l
T c2 and c̃ie; part

i〉 = 〈[[l : p1i ]]T (t1i ∇l
T t2i );

and p̄red = {p ∈ p̄ | [[l : ¬p]]Cc′′ = ⊥C} and 〈pn+1, . . . pn+k} = p̄ \ p̄red
and cres = [[l : ¬pn+1]]

C · · · [[l : ¬pn+k]]
Cceand cn+j

new = [[l : pn+j ]]
Cce for j = 1 . . . k

in 〈cres; p11 : 〈c̃1e; part1〉 . . . p1n : 〈c̃ne ; partn〉; pn+1 : 〈cn+1
new〉; . . . pn+k : 〈cn+k

new 〉; p̄red〉

Fig. 10. Transfer and lattice functions for the phase domain

in step 8, the subtree t2 = c2; {y < 0} is added. This new subtree is immediately
disabled in step 9 and 10 due to the test x <= 50. Analogously, only the subtree
t2 is enabled in steps 11 and 12. Both states are joined in step 13. Incrementing
x to obtain step 14 poses the challenge that x in c1 straddles the phase bound
x > 50. Thus, the state ce = [[x++]]A�Ic1 is split into c′1 = [[x ≤ 50]]A�Ice and
c̃ = [[x > 50]]A�Ice = 〈x = 51, y = 51〉. The latter is joined with the updated
state of the subtree [[x++]]A�Ic2 = 〈x = 52, y = 50〉 yielding the downward slope
x + y = 102 in the second line of step 14. Widening is applied again, thereby
consuming the last threshold y ≥ 0. The same state is propagated in steps 16
and 17 whereas the ����-branch sees a larger state. Indeed, decrementing y in c2
surpasses the phase threshold y < 0, thereby creating a third subtree t3 = c3; ∅
in step 19. Step 20 computes the joined state from which the state at loop exit
is split off (step 21). Step 22 increments x which again propagates the point
〈x = 51, y = 51〉 from c1 to c2 as for step 14. A fixpoint is observed in step 23.

The domain operations are formally defined in Fig. 10. We allow for sev-
eral subtrees per node to cater for sequences of ��-statements. The assignment
l : x = e first computes the effect on the state in the current node c, yielding
ce, and its subtrees ti, yielding c̃ie. The state space that spills over the phase
predicates p1, . . . pn is cut off and merged into the respective parent or sub-
tree. Any previously unsatisfiable phase predicates are checked against the new
node state c′′ and new subtrees pn+1 : 〈cn+1

new 〉; . . . pn+k : 〈cn+k
new 〉; are added.
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our analysis interproc conc.
example time insns. #wp steps iter. exact iter. exact exact

simple loop Fig. 1 7 14 1 23 2 ✓ 3+1 ✓ ✓

nested loops random 7 20 2 42 3 ✓ 5+2 ✓ ✓

nested loops random (mod) 7 20 2 43 3 ✓ 5+2 ✓

nested loops medium 4 18 2 39 3 ✓ 4+2 ✓

nested loops hard 4 19 2 40 3 ✓ 4+2 ✓

nested loops hard (mod 1) 5 19 2 48 4 ✓ 4+2 ✓

nested loops hard (mod 2) 10 19 2 96 8 4+3 ✓

Halbwachs Fig. 1a [12] 2 9 1 15 2 ✓ 3+2 ✓ ✓

Halbwachs Fig. 1b 5 17 2 51 4 ✓ 4+2 ✓

Halbwachs Fig. 1b (mod) 4 17 2 49 4 ✓ 5+2 ✓

Halbwachs Fig. 2a 2 10 1 23 3 ✓ 3+2 ✓ ✓

Halbwachs Fig. 2b 3 12 1 28 3 ✓ 4+1 ✓

Halbwachs Fig. 2b (mod) 4 14 1 46 4 ✓ 3+2 ✓ ✓

Halbwachs Fig. 4 18 18 2 84 9 4+2 ✓

�Gopan Fig. 1a [10] 15 14 1 36 4 ✓ 5+2
�Gopan Fig. 1a (mod) 13 14 1 33 4 ✓ 5+1
Chaouch Fig. 2 [15] 2 12 1 19 2 ✓ 3+2 ✓

Chaouch Fig. 3 7 23 1 83 6 ✓ 4+2 ✓

Chaouch Fig. 3 (mod) 4 25 3 66 3 ✓ 4+1
Chaouch Fig. 4 2 10 1 22 3 ✓ 4+1 ✓

Chaouch Fig. 5 2 17 2 51 4 ✓ 4+2 ✓

�Chaouch Fig. 6 13 14 1 36 4 ✓ 5+2

Fig. 11. Widening examples

Much simpler is the test l : x ≤ e which is applied recursively and is also added
as phase predicate to p̄ if it is unsatisfiable. The domain operations all rely on
a function compatible that recursively adds missing phases by adding a subtree
pi : ⊥C; . . . p̄ whenever pi : ci; . . . ; p̄ only exists in the respective other domain.
The lattice operations t1 (P t2 and t1�P t2 then reduce to a point-wise lifting of
the respective operations on the child domain. Widening is defined similarly to
join, however, the phase boundaries are enforced after widening in order to en-
sure that the various states remain separated by the phase predicates. If widening
makes unsatisfiable phase predicates satisfiable, new subtrees are added.

5 Experimental Results

We evaluated the presented domains in our analyzer for machine code [16], using
a domain stack W �D� T �A� C � I where C tracks congruences, except for
examples marked with � that use W � D � T � P � A � C � I. The bench-
marks in Fig. 11 represent challenging loops that were mostly put forth in the
literature [10,12,15]. Our own “nested loops” increase two variables, with vari-
ous bounds and resets. Examples marked with “(mod)” are modifications of the
same problem. These include changing the loop exit conditions in nested loops
or adding loop exit points (����	, 
������), adding further variables or loop



182 B. Mihaila, A. Sepp, and A. Simon

counter increments on separate paths through the loop. We also modified exam-
ples, where applicable, to contain non-deterministic paths and multiple widening
points inside the loops, both features that can be found in irreducible graphs.
The measurements are as follows: insns. gives the number of instructions in the
program; #wp is the number of widening back-edges; steps the number of in-
structions the analyzer evaluated to reach the fixpoint; iter. is the maximum
number of fixpoint iterations at any program point; exact denotes if the best in-
terval bounds were found; time shows the analysis time in milliseconds. The time
shown is the median of 2000 runs on a 2.4 GHz Core i5 machine running Linux.

We compared our results with those of the Interproc and ConcurInterproc

analyzers [15]. For both we used polyhedra with congruences which is the domain
that is closest to our domain stack. Interproc can count iteration steps but only
uses narrowing to refine the post-fixpoint. The table shows that the number of
iterations in our analysis is usually smaller than that of Interproc, even with-
out the narrowing iterations (which are indicated by +n). In all benchmarks, we
used no explicit delay. Since most examples are engineered not to work with nar-
rowing, the least fixpoint is rarely obtained. ConcurInterprocuses a pre-analysis
to infer thresholds but does not perform an iteration count. Assuming that these
thresholds are applied to the states after widening, ConcurInterproc must re-
quire at least as many iterations as the number of upward iterations of Interproc.
Our precision and that of the threshold widening in ConcurInterproc match.
Entries where our analysis is less precise than ConcurInterproc require a poly-
hedral invariant that our domains cannot express. For the examples requiring dis-
junctive invariants ConcurInterproc is imprecise in that it infers, for example,
x ∈ [51, 102] for line 10 in Fig. 8. Our benchmarks used for Interproc are avail-
able on-line at http://tinyurl.com/cwdg5qr.

6 Related Work

Many authors address the task of improving widening, be it for specific domains
such as polyhedra [2,14], or by altering the way fixpoints are inferred. With re-
spect to the latter, Halbwachs pioneered the idea of using thresholds to refine
widening and to delay widening [13]. Thresholds over variables are created from
a set of constants, an idea later successfully used in the large [4]. Chaouch et
al. [15] recently proposed a pre-analysis to infer thresholds automatically. This
pre-analysis uses the polyhedron abstract domain [9] and requires a way to ex-
tract individual inequalities from it. Rather than extracting thresholds, widening
with landmarks [17] measures the distance of the current state space to the loop
condition and extrapolates the state space accordingly. Both approaches require
special domain functions, e.g. for widening, and are thus not easily portable be-
tween different numeric domains. Our threshold domain is easier to use as it is
agnostic to the underlying domain and infers the possible thresholds by itself.

Bagnara et al. generalizes the idea of delaying widening by using a finite
number of tokens: a widening may use any non-terminating strategy if there
are still tokens to consume [2]. Rather than requiring the user to fix the set

http://tinyurl.com/cwdg5qr
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of tokens, our delay domain in Sect. 3 uses program points instead of tokens,
thereby ensuring termination without depending on user input.

One challenge of using convex numeric domains is the problem of spillage of
state into branches of the program or behaviors of the transfer function that
cannot be recovered from by narrowing. In this context, Halbwachs et al. pro-
pose to re-start the analysis at a different pre-fixpoint from which widening and
narrowing infer a new post-fixpoint. The intersection of the previous and the new
post-fixpoint is still sound and may be more precise [12]. Rather than removing
the spillage, Gopan et al. propose to avoid spillage into currently unreachable
branches immediately after widening [10]. They require one state to determine
which branches of the loops are enabled and a second state to compute widen-
ing and narrowing on the enabled part of the loop. Instead of duplicating the
analysis cost by tracking a second abstract state, the authors later propose to
directly track which parts of the CFG are enabled [11]. They generalize their
idea to track different states for each phase, that is, for each set of enabled
branches in a loop. While none of the three approaches require changes to the
transfer functions of the domains as was the case for widening with thresholds,
each approach requires intrusive changes to the fixpoint engine and the handling
of states. Our threshold domain in Sect. 2 has the same functionality as the
Guided Static Analysis approach [11] but requires no changes to the way states
are handled. Interestingly, the transfer functions of our threshold domain are
similar to those of the decision tree domain of Astrée [8]. However, the latter
tracks Boolean flags as predicates and requires a user-supplied limit to avoid an
exponential explosion. Since our domain creates a tree that mirrors the finite
branching inside the loop body, its size is always limited by the program.

6.1 Conclusion

Implementing widening strategies as abstract domains is beneficial due to its mod-
ularity and independence of the fixpoint engine. This approach provides equal or
better precision combined with fewer iterations required to obtain stability.
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LiquidPi: Inferrable Dependent Session Types
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University of Illinois at Urbana-Champaign

Abstract. The Pi Calculus is a popular formalism for modeling dis-
tributed computation. Session Types extend the Pi Calculus with a
static, inferable type system. Dependent Types allow for a more precise
characterization of the behavior of programs, but in their full generality
are not inferable. In this paper, we present LiquidPi an approach that
combines the dependent type inferencing of Liquid Types with Honda’s
Session Types to give a more precise automatically derived description
of the behavior of distributed programs. These types can be used to
describe/enforce safety properties of distributed systems. We present a
type system parametric over an underlying functional language with Pi
Calculus connectives and give an inference algorithm for it by means of
efficient external solvers and a set of dependent qualifier templates.

1 Introduction

In a world of multiproccessors, embedded systems, and cloud computing, paral-
lel, concurrent, and distributed programs have become ubiquitous. With their
growth comes an increased need for tools and theory to design, implement and
verify these programs. One of the most successful verification efforts have been
type systems [12]. By providing a static characterization of program behavior
type systems allow for programmers to prove that certain dangerous behaviors
are impossible. Particularly useful have been automatically inferable types since
they can allow access to the guarantees of type systems at a low overhead for
users. Dependent types [9] focus on increasing the expressivity of type systems
by allowing for types to depend on, i.e., be constructed from, the value of terms
instead of only on other types. In general, this gives up on inferability, but Ron-
don et al. [13] describe an approach, liquid typing, that can allow for inferencing
of certain dependent type systems.

One standard tool for the design of parallel systems is the Pi Calculus [10].
When discussing types for the Pi Calculus the notion of input and output of a
process is mostly closely associated with the input and output of its channels.
Thus instead of finding the type of variables and expressions like we might in a
functional language, we instead look at providing types for channels. As a first
pass we might say that each channel has a type like int to denote that it can
only transmit integers. This notion of channel typing (and similar homogeneous
typings [6]) gives almost no ability to characterize the temporal behavior of
channels. An improvement on this approach are session types [7] which allow for
a rich characterization of the temporal behavior of the channels involved in a
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system. LiquidPi is an application of the liquid typing approach to session types.
The contributions of this paper are the following:

– A dependent session type system for LiquidPi (Section 3)
– An inference algorithm for the LiquidPi type system (Section 4)

2 Basic Syntax and Session Types

The Pi Calculus [10] is a process algebra for modeling distributed computation.
It uses synchronous channels to pass data (including channel names) between
processes that execute in parallel. The Pi Calculus can be viewed as a wrapper
providing these distributed communication constructs around some underlying
language of data and computation. For the purposes of this paper we will assume
that the underlying language is a simple functional language. We will impose
a few other requirements on this underlying language in later sections. The
syntax of the Pi Calculus, along with some informal meaning, is presented in
the following grammar, where x ranges over a set of data variables, e ranges
over expressions in the underlying functional language, k ranges over a distinct
set of channel names, τ is a type from the underlying functional language, Pi is
a τ -indexed family of processes, and X ranges over a distinct set of definition
variables.

P ::= 0 | P‖P | accept X(k).P | request X(k).P | k!(e).P | k!(k).P | k?(x).P
| k?(k).P | if e then P else P | (νk)P | k � e.Pi | caseτ k ⇒ Pi

| def X(x;k) = P in P | X(e,k)

Informally, 0 is the terminated process. The process P1‖P2 is the processes P1

and P2 executing in parallel. The process accept X(k).P initiates the session
X along k and proceeds as P . The process request X(k).P is the counterpart
to accept that requests the initiation of session X along k and proceeds as P .
The process k!(e).P sends the result of e along k and then continues as P . The
process k1!(k2).P sends the channel k2 over k1 and then continues as P . The
process k?(x).P binds the next data value sent on k to x and then continues
as P . The process k1?(k2).P receives the next channel sent on k1 and then
continues as P . The process if e then P1 else P2 evaluates e and proceeds as P1

or P2 as appropriate. The process (νk)P generates a fresh channel and binds
it to k. The process k � e.P evaluates e and sends it along k then proceeds
as P . This will be distinguished from k!(e).P in the type system by allowing
the receiving process to offer differently typed behaviors based on the value of
e. The process caseτ k ⇒ Pi receives a value of type τ along k then proceeds
as the corresponding Pi. The declaration def X(x;k) = P1 in P2 defines X as
process P1 that can use the variables in scope along with those supplied by x
and k, binds the definition to X , and proceeds as P2. The process X(e,k) calls
the process defined by X and supplies it as arguments the evaluated e and k.
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Pi Calculus semantics are traditionally given in terms of a transition seman-
tics that assumes a structural congruence that brings together compatible send/
receive instructions so that communication can occur. For more details on se-
mantics see Yoshida’s survey [16].

Session Types [7,16] were introduced to provide a static characterization of
the temporal behavior of the Pi Calculus. They rule out some dangers present
in the Pi Calculus like the nondeterminism possible with channels held by more
than two processes and sending and receiving processes disagreeing over the type
of data being communicated. The type system disallows these while still allowing
for a high degree of expressiveness such as communicating channel names and
heterogeneous channel usage. The syntax of session types, S, is given by the
following grammar where t ranges over a set of type variable names, τ is a type
from the underlying functional language, and Si is a τ -indexed family of session
types.

S ::= 0 | t | μt.S | !τ.S | ?τ.S | ![S].S | ?[S].S | &τSi | ⊕τ Si

The informal meaning of these are as follows. 0 is the type of channels that
will have no further communication. The types μt.S and t allow us to construct
(possibly infinite) recursive types. We treat types equirecursively (i.e., we identify
a recursive type with its unfolding μt.S = S{μt.S/t}). The type !τ.S is that a
channel that sends a data value of type τ and then proceeds as S. The type ?τ.S
is that of a channel that receives a data value of type τ and then proceeds as S.
The type ![S1].S2 is that of a channel that sends a channel with type S1 and then
proceeds as S2. The type ?[S1].S2 is that of a channel that receives a channel
with type S1 and then proceeds as S2. The type &τSi is that of a channel that
sends a piece of data of type τ and then proceeds as the appropriate τ -index Si.
The type ⊕τSi is that of a channel that receives a piece of data of type τ and
then proceeds as the appropriate τ -index Si. As with processes, our types have a
notion of send/receive pairs. We define the notion of a dual type to encode this
correspondence. The dual of a session type S is denoted S and defined below.

0 = 0 !τ.S =?τ.S ?τ.S =!τ.S

![S1].S2 =?[S1].S2 ?[S1].S2 =![S1].S2 &τSi = ⊕τSi ⊕τSi = &τSi

The session type system will use duality to match up compatible channel users.
A channel typing is a mapping from channel variables to session types. The last
notation needed is for marking polarity. Polarity markings are superscripts on
channel names that will allow us to distinguish the two conceptual “ends” of
a channel so that we can rule out send/receive confusion and more than two
processes using a channel at once. We use k+ to denote the positive end of
channel k, k− to denote the negative “end”, and kp to denote swapping the
polarity of kp.

Using the notions above we can give the rules for session types. We use Θ
to denote a mapping from process variables to tuples of their argument types,
Γ to denote typings for our functional variables, and Δ to denote channel typ-
ings. We use Δ1 ·Δ2 to denote the merger of two channel typings that share no
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Θ;Γ �S P : Δ · (k : S) Γ � e : τ

Θ;Γ �S k!(e).P : Δ · (k :!τ.S)
T.Send

Θ;Γ · x : τ �S P : Δ · (k : S)

Θ;Γ �S k?(x).P : Δ · (k :?τ.S)
T.Rec

for (k, S) ∈ Δ: S=0

Θ;Γ �S 0 : Δ
T.End

Θ;Γ �S P : Δ · k1 : S1

Θ;Γ �S k1!(k2).P : Δ · (k1 :![S2].S1) · (k2 : S2)
T.Thr

Θ;Γ �S P : Δ · (kp : S) · (kp : S)

Θ;Γ �S (ν k)P : Δ
T.Nu

Θ;Γ �S P : Δ · (k1 : S1) · (k2 : S2)

Θ;Γ �S k1?(k2).P : Δ · (k1 :?[S2].S1)
T.Cat

Θ;Γ �S P : Δ · (k+ : G(X))

Θ;Γ �S accept X(k).P : Δ
T.Acc

Θ;Γ �S P : Δ · (k− : G(X))

Θ;Γ �S request X(k).P : Δ
T.Req

Θ;Γ �S P : Δ1 Θ;Γ �S P : Δ2

Θ;Γ �S P‖Q : Δ1 ·Δ2

T.Par

Γ � e : Bool Θ;Γ �S P : Δ Θ;Γ �S Q : Δ

Θ;Γ �S if e then P else Q : Δ
T.If

Γ � e : τ : Enum for i ∈ τ : Θ;Γ �S Pi : Δ · (k : Si)

Θ;Γ �S k � e.Pi : Δ · k : &τSi

T.Int

τ : Enum for i ∈ τ : Θ;Γ �S Pi : Δ · (k : Si)

Θ;Γ �S caseτ k ⇒ Pi : Δ · k : ⊕τSi

T.Ext

for i ∈ dom(Δ): Δ(i) = 0 for i: Γ � ei : τi for (k, S) ∈ Δ: S=0

Θ ·X : (τ ,S);Γ �S X(e,k) : Δ · k : S
T.Call

Θ ·X : (τ ,S);Γ · x : τ �S P : (k : S) Θ ·X : (τ ,S);Γ �S Q : Δ

Θ;Γ �S def X(x;k) = P in Q : Δ
T.Def

Fig. 1. Typing Rules for Simple Session Types

common bindings. We use the hypothesis τ : Enum to denote that the type τ is
a finite enumeration. Depending on the details underlying functional language
this may have different interpretations. These enumerations could be smoothly
generalized to algebraic datatypes, but we present only the simplified view to
avoid unneeded clutter. The judgment Θ;Γ -S P : Δ denotes that, assuming
the definitions of Θ and the functional types in Γ , the free channel variables of
process P have the session types in Δ. We use Γ - e : τ to denote that the type
system for the underlying functional language proves that e has type τ from the
assumptions in Γ . We assume that sessions have some globally visible type and
so assume a mapping, G, from session names to session types. Figure 1 contains
a listing of the typing rules for simple session types. To see how the rules elim-
inate dangerous behavior consider the rule T.Nu. This rule ensures two things:
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the fresh channel has two and only two “ends”; the users of each end agree both
in the direction of communication at every step and the type of value or channel
being communicated.

3 Refinement Type System

Dependent Types [9] are types that allow the meaning of types to depend on
data values. As an example, when trying to describe the type of division we
might be interested in allowing only non-zero ints instead of all ints as divisors.
What we mostly will be interested in are a restricted class of dependent types
called refinement types. A refinement type is a basic type (i.e., a non-compound
type–int but not int->float) with a predicate attached to it; e.g., the positive
integers are given by {v : int|0 ≤ v}. Simple types can naturally be viewed as
refinement types by using the trivial always-true predicate. From this follows a
natural notion of subtyping (with the normal contravariance for functions). In
addition to allowing predicates to incorporate constants, we will want them to
allow for dependency on previously bound terms, e.g., {v : int|v ≤ x} for some
previously bound x. For compound functional types we assume that refinements
are available on the “leaf” types [13]. Refined session types, Υ , are generated by
the following grammar, where ρ denotes a refined simple type and Υi denotes a
τ -indexed family of refined session types.

Υ ::= 0 | t | μt.Υ | !ρ.Υ | ?x ∈ ρ.Υ | ![Υ ].Υ | ?[Υ ].Υ | &τΥi | ⊕τ Υi

These types are nearly the same as their simple counterparts but utilizing refined
functional types instead of simple functional types. A construct that does change
is ?x ∈ ρ.Υ . This construct allows refined session types to bind the data value
that was sent across the channel and refer to this in later refined types. In
particular, this allows for session types like ?x ∈ {v : int|True}.!{v : int|v ≥
x}.0, which would be a refined session type for describing a process that receives
an integer and then returns the absolute value of that integer. Why not provide
more binders? For the sending of data there is no new value introduced, e could
always be reconstructed in our refinement as needed, so there is nothing to bind.
An additional practical consideration is that it is not obvious what variable to
use to bind the result of e. For sending and receiving channels, we assume that
the logic that Section 4 uses cannot analyze channels and so have no need to
refer to a received channel in our predicates. For the two choice constructs, there
is no need to provide an explicit binding for the enumeration value chosen, the
τ -indexed family of types can already implicitly use this knowledge.

We will need a few more definitions before introducing the typing rules for re-
fined session types. First, ρ� is a refined type with all the refinement information
striped out (e.g., {v : int|0 ≤ v} �= int). This has a natural generalization to
environments and typings. The notion of the dual of a session type is essentially
unchanged except for the need to handle bindings during the reception of data,
so we say that for any x, !ρ.Υ =?x ∈ ρ.Υ and ?x ∈ ρ.Υ =!ρ.Υ . Additionally,
refinements introduce a notion of subtyping. We use Γ - ρ1 ( ρ2 to denote that
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Θ;Γ �SL P : Δ · k : Υ Γ �L e : ρ Γ � ρ � ρ′

Θ;Γ �SL k!(e).P : Δ · (k :!ρ′.Υ )
R.Send

Θ; Γ · x : ρ �SL P : Δ · (k : Υ ) Γ � ρ′ � ρ

Θ; Γ �SL k?(x).P : Δ · (k :?x ∈ ρ′.Υ )
R.Rec

Θ;Γ �SL P : Δ · k1 : Υ1

Θ;Γ �SL k1!(k2).P : Δ · (k1 :![Υ2].Υ1) · (k2 : Υ2)
R.Thr

Θ; Γ �SL P : Δ · (k1 : Υ1) · (k2 : Υ2)

Θ;Γ �SL k1?(k2).P : Δ · (k1 :?[Υ2].Υ1)
R.Cat

Θ;Γ �SL P : Δ · (kp : Υ ) · (kp : Υ )

Θ; Γ �SL (ν k)P : Δ
R.Nu

Θ;Γ �SL P : Δ1 Θ;Γ �SL P : Δ2

Θ;Γ �SL P‖Q : Δ1 · Δ2
R.Par

for (k, Υ ) ∈ Δ: Υ=0

Θ; Γ �SL 0 : Δ
R.End

Θ; Γ �SL P : Δ · (k+ : GL(X))

Θ;Γ �SL accept X(k).P :
R.Acc

Θ;Γ �SL P : Δ · (k− : GL(X))

Θ;Γ �SL request X(k).P :
R.Req

Γ �L e : ρ ρ�= Bool
Θ;Γ · e �SL P : Δ1 Θ; Γ · ¬e �SL Q : Δ2 Γ · e � Δ1 � Δ Γ · ¬e � Δ2 � Δ

Θ; Γ �SL if e then P else Q : Δ
R.If

Γ �L e : ρ ρ�: Enum for i ∈ ρ�: Θ;Γ �SL Pi : Δ · (k : Si)

Θ;Γ �SL k � e.Pi : Δ · k : &τSi

R.Int

τ : Enum for i ∈ τ : Θ;Γ �SL Pi : Δ · (k : Si)

Θ; Γ �SL caseτ k ⇒ Pi : Δ · k : ⊕τSi

R.Ext

for i: Γ �L ei : ρ′
i for i: Γ � ρ′

i � ρi for (k, Υ ) ∈ Δ: Υ=0

Θ · X : (ρ,Υ );Γ �SL X(e,k) : Δ · k : Υ
R.Call

Θ · X : (ρ,Υ );Γ · x : ρ �SL P : (k : Υ ) Θ · X : (ρ,Υ );Γ �SL Q : Δ

Θ; Γ �SL def X(x;k) = P in Q : Δ
R.Def

Fig. 2. Type Rules for Refined Session Types

ρ1 is a subtype of ρ2 under the assumptions in Γ (defined by Rondon [13]) and
Γ - Υ1 ( Υ2 for subtyping of refined session types, defined below.

Γ - 0 ( 0

Γ - ρ1 ( ρ2 Γ - Υ1 ( Υ2

Γ -!ρ1.Υ1 (!ρ2.Υ2

Γ - ρ1 ( ρ2 Γ - Υ1 ( Υ2

Γ -?x ∈ ρ1.Υ1 (?x ∈ ρ2.Υ2

Γ - Υ1 ( Υ2

Γ -![Υ ].Υ1 (![Υ ].Υ2

Γ - Υ1 ( Υ2

Γ -?[Υ ].Υ1 (?[Υ ].Υ2

Γ - Υ1 ( Υ2

Γ -?[Υ ].Υ1 (?[Υ ].Υ2

Γ - for i: Υi ( Υ ′
i

Γ - &τΥi ( &τΥ
′
i

for all i: Γ - Υi ( Υ ′
i

Γ - ⊕τΥi ( ⊕τΥ
′
i

Figure 2 introduces the typing rules for Refined Session Types. Θ;Γ -SL P : Δ
denotes that, using the definitions of Θ and assumptions of Γ (many of which are
just functional typing assignments), the free process channels of process P have
the refined session types in Δ. Γ -L e : ρ denotes that, under the assumptions of
Γ , e has refined type ρ, the details of which depend on the underlying functional
language. The rules are similar to the rules presented for unrefined session types
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but with the addition of subtyping information where appropriate. R.Send uses
the idea that a process may transmit a subtype of its declared type and still
maintain correct behavior. Conversely, R.Rec encodes that a process may use
a looser approximation of its received data than required while still maintaining
correctness. R.Nu remains “unchanged” for two reasons. First, the notion of
duality has changed a bit, so an implicit change to handle refinements occurs.
Second, while this would be a reasonable place to include subtyping information
but the rules R.Send and R.Rec already account for this. Similarly R.Call

and not R.Def encapsulates the idea that definitions usage can accepted more
tightly constrained types for a particular instance than they accept in general.
Perhaps the most interesting rule is R.If. This rule makes refined session types
path sensitive [1] by allowing for both branches to have different types and
slightly different assumptions (e vs. ¬e) and then combining to have one unified
typing for the whole process.

The type system for refined session types has a close connection with the
simple session types as exhibited by the following lemma.

Lemma 1 (Judgement Correspondence). For refined definition environ-
ment Θ, refined functional assumptions Γ , process P and refined channel en-
vironment Δ, Θ;Γ -SL P : Δ implies Θ �;Γ �-S P : Δ �. For simple definition
environment Θ1, simple functional environment Γ1, and simple channel typing
Δ1, Θ1;Γ1 -S P : Δ1 implies there exists Θ2, Γ2, and Δ2 s.t. Θ2;Γ2 -SL P : Δ2

and Θ2 �= Θ1, Γ2 �= Γ , and Δ2 �= Δ1.

Proof (Sketch). Both proofs proceed by induction on the size of proof trees. For
the first result, notice that by dropping all the refinement information (and
subtyping) each of the refined session type rules becomes a simple session typing
rule. For the second result, use the trivial always-true predicate to (not) constrain
the types.

4 Inferencing

Inferring arbitrary refinement predicates is undecidable in general (consider try-
ing to infer the type of a function that generates random primes) so we will
restrict our attention significantly. In particular, we will fix some set of basic
predicates and then infer predicates that are finite conjunctions drawn from this
set. For example, if wishing to infer simple interval properties we might have a set
of predicates like {v ≤ 5, v ≤ x, y ≤ v, . . . }. Following [13], we will assume that
this set is generated by a finite set of templates instantiated by program vari-
ables. We then look for conjunctions of ground substitutions for these templates
that are suitable solutions to our constraints.

Inferring refined session types proceeds in three major steps:

1. Infer simple types and record some information from doing so
2. Add predicate variables to types and gather constraints on them
3. Solve these constraints
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4.1 Simple Types

Inferring simple types is done by utilizing prior work [7,1,3]. In particular, we
assume that for our functional language we can infer simple types. During this
inferencing we will need to record a bit of extra information. Specifically, we will
assume that the simple session type inferencing algorithm annotates channel
generation with the channel’s session type. Because of polarity considerations
there is not a single type for a channel but two dual types, one for each end. For
presentational compactness, we will assume that (νk)P is annotated to become
(ν k : S)P were S was the type of k+ found during inferencing. Additionally, we
will assume that parallel compositions are annotated with how to split the com-
bined channel typing environment for the process into one typing for each of the
two subprocesses. We will denote this split by converting P1‖P2 into P1K1‖K2P2

with the names of Ki being those for Pi. Last, we assume that definitions are
annotated with their argument types. That is def X(x;k) = P1 in P2 becomes
def X(x;k) : (τ ;S) = P1 in P2. With these annotations we will be able to calcu-
late at any point the simple channel typing of a subprocess of the process that
we are trying to infer types. A more complicated implementation might be able
to cache information closer to its use location, but we think these annotations
provide a good trade-off between clarity and completeness.

4.2 Constraints

We utilize constraints of the following forms during constraint generation. Γ -wf

Υ indicates that Υ is well-formed w.r.t. Γ , i.e., that the free variables in Υ are
bound in Γ , (fn(Υ ) ⊆ dom(Γ )). Additionally, we use subtyping requirements
of the form Γ - Υ1 ( Υ2 and Γ - ρ1 ( ρ2. The constraint Υ1 = Υ2 is used to
enforce duality. We also lift our constraints to work on (equal length) vectors of
types pointwise (e.g., Γ -wf ρ is equivalent to

⋃
{Γ -wf ρi}).

We assume that we have some constraint generation algorithm that will pro-
duce correct constraints for our underlying functional language [13]. Armed with
this we can read our typing rules as generating constraints by inserting subtyp-
ing constraints as appropriate (and in the case of T.Nu a duality constraint).
Throughout the process of constraint gathering we will occasionally need to gen-
erate new refined session types with predicate variables, we denote this by τ �
for basic types and S � for session types. Whenever we perform this generation
we will provide some well-formedness constraint in addition to any subtyping
constraints generated by the typing rules.

As an example consider the rule R.Send. Suppose that we know Θ �;Γ �-SL

k!(e).P : Δ · (k :!τ.S) from our simple inference step. When we generate con-
straints for this we will make one call to our functional constraint generation
algorithm (Γ -L e : ρ), one recursive call to our session type constraint genera-
tion algorithm (Θ;Γ -SL P : Δ · k : Υ ), generate one refined type τ �, and add
the constraints Γ - ρ ( τ � and Γ -wf τ �, which corresponds to the constraints
imposed by the typing rule.

Figure 3 provides a listing of the constraint generation algorithm for refined
session types. ConstrSL(Θ,Γ, P,ΔS) returns (Δ,C) a pair of refined channel
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ConstrSL(Θ, Γ, 0, ΔS) = (ΔS , ∅)
ConstrSL(Θ, Γ, accept X(k).P,ΔS) =

(Δ · (k+ : Υ ), C) ← ConstrSL(Θ,Γ, P,Δ · (k+ : G(X)))
Return (Δ,C ∪ {Γ � Υ � GL(X)}

ConstrSL(Θ, Γ, request X(k).P, ΔS) =

(Δ · (k− : Υ ), C) ← ConstrSL(Θ,Γ, P,Δ · (k− : G(X)))

Return (Δ,C ∪ {Γ � Υ � GL(X)}
ConstrSL(Θ, Γ, k!(e).P, ΔS · (k :!τ.S)) =

(Δ · k : Υ,C) ← ConstrSL(Θ,Γ, P,ΔS · (k : S))
(ρ, C′) ← ConstrL(Γ, e)
ρ′ ← τ �
Return (Δ · k :!ρ′.Υ, C ∪ C′ ∪ {Γ �wf ρ

′;Γ � ρ � ρ′})
ConstrSL(Θ, Γ, k?(x).P,ΔS · (k :?τ.S)) =

ρ ← τ �
ρ′ ← τ �
(Δ · k : Υ,C) ← ConstrSL(Θ,Γ · x : ρ, P,ΔS · (k : S))
Return (Δ · k :?x ∈ ρ′.Υ, C ∪ {Γ �wf ρ; Γ �wf ρ

′;Γ � ρ � ρ′})
ConstrSL(Θ, Γ, k1!(k2).P,ΔS · (k1 :![S2].S1) · (k2 : S2)) =

(Δ · k1 : Υ1, C) ← ConstrSL(Θ, Γ, P,ΔS · (k1 : S1))
Υ2 ← S2 �
Return (Δ · k1 :![Υ2].Υ1, C ∪ {Γ �wf Υ2})

ConstrSL(Θ, Γ, k1?(k2).P,ΔS · (k1 :?[S2].S1)) =
(Δ · (k1 : Υ1) · (k2 : Υ2), C) ← ConstrSL(Θ,Γ, P,ΔS · (k1 : S1) · (k2 : S2))
Return (Δ · (k1 :?[Υ2].Υ1), C)

ConstrSL(Θ, Γ, P1K1‖K2P2, ΔS) =
(Δ1, C1) ← ConstrSL(Θ,Γ, P1, ΔS �K1 )
(Δ2, C2) ← ConstrSL(Θ,Γ, P2, ΔS �K2 )
Return (Δ1 · Δ2, C1 ∪ C2)

ConstrSL(Θ, Γ, k � e.Pi, ΔS · (k : &τSi)) =
for i: (Δ · (k : Υi), Ci) ← ConstrSL(Θ,Γ · (e = i), Pi, ΔS · (k : Si))
Return (Δ · (k : &τΥi),

⋃
Ci)

ConstrSL(Θ, Γ, casek e ⇒ Pi, ΔS · (k : ⊕τSi)) =
for i: (Δ · (k : Υi), Ci) ← ConstrSL(Θ,Γ · (e = i), Pi, ΔS · (k : Si))
Return (Δ · (k : &τΥi),

⋃
Ci)

ConstrSL(Θ, Γ, if e then P1 else P2, ΔS) =
(Δ1, C1) ← ConstrSL(Θ,Γ · e, P1, ΔS)
(Δ2, C2) ← ConstrSL(Θ,Γ · (¬e), P2, ΔS)
for k ∈ dom(ΔS): Υk ← ΔS(k)�

Return

⎛
⎝k : Υ , C1 ∪ C2 ∪

⋃
k∈dom(Δ)

⎧⎨
⎩

Γ �wf Υk;
Γ · e � Δ1(k) � Υk;
Γ · (¬e) � Δ2(k) � Υk

⎫⎬
⎭

⎞
⎠

ConstrSL(Θ, Γ, (ν k : S)P,ΔS) =

(Δ · (k+ : Υ1) · (k− : Υ2), C) ← ConstrSL(Θ,Γ, P,Δ · (k+ : S) · (k− : S))

Return (Δ,C ∪ {Υ1 = Υ2})
ConstrSL(Θ · (X : (ρ,Υ )), Γ,X(e,k), ΔS · (k : S)) =

for i: (ρ′
i, Ci) ← ConstrL(Γ, ei)

Return (ΔS · (k : Υ ),
⋃

Ci ∪ {Γ � ρ′ � ρ})
ConstrSL(Θ, Γ, def X(x; k) : (τ ;S) = P1 in P2, ΔS · (k : S)) =

(ρ;Υ ) ← (τ �;S �)
(Δ1 · (k : Υ ′), C1) ← ConstrSL(Θ · (X : (ρ;Υ )), Γ · (x : ρ), P1, (k : S))
(Δ2, C2) ← ConstrSL(Θ · (X : (ρ;Υ ′)), Γ, P2, ΔS)
Return (Δ2, C1 ∪ C2 ∪ {Γ �wf ρ;Γ �wf Υ ;Γ � Υ ′ � Υ})

Fig. 3. Constraint Generation Algorithm

typing (with predicate variables) and a set of constraints. We use ConstrL(Γ, e)
to denote the assumed constraint gatherer of our underlying functional language.
The algorithm assumes that, for functional assumptions Γ , ConstrL(Γ, e) re-
turns (ρ, C) a pair of a refined functional type and a set of constraints (both
well-formedness and subtyping). A small abuse of notation occurs in the case for
terminated processes and in process variable definition. Specifically, we use ΔS

as both a simple session typing and as a refined one. From our typing rules we
know in both cases it must be entirely composed of mappings of the form (k : 0)
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and so can be reasonably used in both contexts. While most of the cases used
to define ConstrSL are relatively straightforward we highlight a few rules here.

Consider the case for conditional branching, perhaps the most complicated
case. First we make recursive calls with the altered assumptions, allowing for
sensitivity to the value of e. From R.If we know that both of the typings re-
turned by these must be subtypes of our overall typing. Since we do not have
a preexisting typing use for this subtyping we have to generate one (ΔS(k) �).
We then return this typing along with our recursively generated constraints and
three new constraints for each channel in our typing. The first new constraint
ensures that our freshly generated types are well-formed. The other encodes the
subtyping present in the rule. One might worry that if both kp and kp appear
in our typing that this might cause them to become delinked. Since we will only
use our constraint generation on closed processes after simple session type infer-
encing we know that these paired channel ends will eventually be generated by
some ((ν k)P ) and thus duality will be ensured there.

The following lemma gives us the correctness of our constraint generation
algorithm.

Lemma 2 (Constraint Correctness). For a closed annotated process P , empty
definition and functional environments and simple typing, ConstrSL(∅, ∅, P, ∅)
returns (Δ,C), s.t. ∅; ∅ -SL P : Δ if and only if C has a solution.

Proof (Sketch). Induction on the proof trees of Θ;Γ -SL P : Δ for a generaliza-
tion of the lemma to non-empty environments.

4.3 Solving

Once all constraints have been generated, we will have many predicate variables
left. A solution to a system of constraints is a ground substitution for predicate
variables such that all constraints are satisfied. Assuming that our constraints
allow all legal solutions (Lemma 2), we know that there is at least one possible
solution, the trivial always-true solution. The important question is then that
of finding a maximally specific solution. We search for a maximal solution using
the normal implication ordering lifted to maps (i.e., σ1 ≥ σ2 ⇐⇒ ∀x.σ1(x) =⇒
σ2(x)).

A first pass removes all duality constraints by performing the substitutions
implied by the equations. Since all Γ in our constraints are finite and every
predicate variable has at least one well-formedness constraint, we know that for
any given predicate variable, there can be at most a finite number of ground
substitutions admissible by its well-formedness constraints. This together with
the observation that only the predicate variables mentioned in our constraints
matter for a substitution’s admissibility, we have only a finite number of “in-
teresting” substitutions that might be solutions. Assuming that we can decide
admissibility and solution ordering (e.g., via an SMT solver) then we can just
try all solutions and select a maximal one. This requirement for being able to
decide ordering is perhaps the biggest constraint on what we can choose as our
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templates, since we need to stay away from choosing those that are incompatible
with our choice of SMT solver.

This proposed solution process is unsatifyingly slow, so we instead suggest
using Iterative Weakening [13]. Iterative Weakening is a technique that starts
from the strongest admissible ground substitution (for each predicate variable a
conjunction of all predicates admissible by its well-formedness constraints) and
iteratively removes an offending conjunct. Since we deal with conjunctions of
instantiated templates we know that removing a conjunct can at most preserve
a substitution’s strength and the always-true substitution is a solution, we know
that iterative weakening will find a maximally specific solution. From the above
arguments we have the following lemma.

Lemma 3 (Solver Correctness). For a given set of constraints, s.t. every
predicate variable has at least one (finite) well-formedness constraint, iterative
weakening produces a maximally specific solution.

Proof (Sketch). Outlined above, this is proven by a generalization of Rondon [13].

5 Related Work

The most direct related work are the series of papers by Rondon et al. [13,8,14]
applying their liquid typing approach to infer refinement types for various lan-
guages. Our work can be seen as a continuance of this line of work by applying
it to the Pi Calculus.

Gay and Hole [5] present a Pi Calculus with session types and subtyping on
the choice operators, allowing flexibility on the number of branches for the type
of an internal choice and its corresponding external choice. Additionally, read-
write permission using Pi Calculus type systems tend to have subtyping for their
permissions [6]. Here subtyping is utilized to track permissions with having only
read or write permissions being viewed as a subtype of having both. Both of
these notions of subtyping are orthogonal to the subtyping used in this paper.

Perhaps closest to our dependent session types are those found in Caires et
al. [2]. They allow for full dependent types and envision writing proof carrying
code, at the functional level, by transmitting proofs across channels. They do
not (as expected) address inferring types for their programs. Additionally they
use linear logic as a basis for their typing system which gives a fairly different
feeling, since we do not need to worry about differentiating between linear and
replicateable resources.

While we use some of the simplest session types as a basis for LiquidPi a
number of extensions to them have been made [15,4,11]. In particular, these
recent works have studied global types, providing a holistic description of system
communication, instead of per channel types using asynchronous communication.
These too also involve a notion of subtyping, but it is used for dealing with
asynchrony and not at the functional level. We expect that the liquid typing
approach would likely apply in these cases, though with extra complexity arising
from their more complicated type systems.
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6 Conclusion and Future Work

We have presented LiquidPi an approach that combines the dependent type
inferencing of Liquid Types with Hondas Session Types to give a more precise
automatically derived description of the behavior of distributed programs. These
types can be used to describe/enforce safety properties of distributed systems.
We presented a type system parametric over an underlying functional language
with Pi Calculus connectives and give an inference algorithm for it by means of
efficient external solvers and a set of dependent qualifier templates. By doing this
we demonstrate that inferring dependent types for communication is achievable,
gaining a fair amount of expressivity compared to previous techniques.

As described in Section 5, there are many variations of type systems for dis-
tributed systems that have been presented, it would be interesting to integrate
inferable dependent types into them as well to yield greater expressivity. An-
other natural thing to do with this work is to create an efficient implementation.
With the ease of use of modern SMT solvers a simple prototype shouldn’t be
infeasible, but heuristics for the weakening step of iterative weakening might
need more investigation.
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Abstract. Chapel is a new programming language targeting high per-
formance computing. Chapel makes it easier to write parallel code, but is
still subject to concurrency problems such as deadlocks, race conditions,
and nondeterministic results. In theory, model checking and symbolic
execution tools can help with these problems, but certain Chapel prim-
itives are difficult to represent in the models used by existing tools. For
example, some primitives dynamically create arbitrarily nested scopes
with threads executing within those scopes. We present (1) a new formal
model that naturally represents these dynamic concepts and (2) a new
prototype model checking/symbolic execution tool for Chapel programs
that uses this model as its intermediate representation. We describe how
the tool translates Chapel into this IR and the results of applying the
tool to several synthetic Chapel programs.

1 Introduction

Currently, most high performance scientific programs are written in C, C++, or
Fortran, in combination with one or more concurrency extensions, such as the
Message Passing Interface library [13] or OpenMP [14]. These approaches, based
on old programming languages and concurrency models, pose well-known chal-
lenges to programmer productivity and to writing correct, efficient code. Much
research effort has focused on ameliorating these problems with better debug-
ging and analysis tools, but there have also been a number of recent initiatives
introducing entirely new programming languages for HPC (e.g., [1, 3, 5, 18]).

These new languages include Chapel [5], a programming language designed
for high productivity parallel programming. It incorporates high level constructs
for expressing common parallel programming patterns. While these constructs
simplify programs, they also make it easier to introduce unintended forms of non-
determinism. Such nondeterminism can lead to deadlock or unexpected results.
We present a prototype verification tool for programs written in the subset of
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prog ::= decl+
decl ::= (config | extern)? (const | var | param) v : type (= expr)? ;

| (iter | proc) f ( (v : type (, v : type)∗ )? ) (: type)? block
block ::= { (decl | stmt) ∗ }
type ::= sync? (real | int | void | bool | string | [ expr ] type)
stmt ::= block | call | expr = expr ; | return expr? ; | yield expr ;

| while ( expr ) block | if ( expr ) then stmt (else stmt)?
| cobegin block
| (for | forall | coforall) v in (expr .. expr | call) block

expr ::= x | int literal | float literal | string literal | true | false
| call | expr [ expr ] | ( expr ) | (+ | - | !) expr
| expr (|| | && | == | != | < | > | >= | <= | + | - | * | / | %) expr

call ::= f ( (expr (, expr)∗)? )

Fig. 1. Abstract syntax of Chapel subset

Chapel shown in Figure 1. The tool can automatically detect such defects or
show that none exist within specified parameters.

The Chapel programming runtime spawns tasks (threads) that interact via
shared memory. The cobegin statement creates a new task for each statement
in a block. The coforall statement creates a new task for each iteration of
a loop. The forall statement spawns one or more tasks and partitions the
iterations of the loop among those tasks. The number of tasks created depends
on the runtime configuration. Execution is halted after cobegin, coforall,
and forall statements until all created tasks have completed. An example of
a forall statement is included in Figure 2.

The iteration domain of a loop is specified by a special type of function called
an iterator. Ordinary functions that yield one return value are called procedures.
Iterators are defined using the same syntax as a procedure except return state-
ments are replaced with yield statements. An iterator definition is preceded by
the keyword iter and a procedure definition is preceded by the keyword proc.
Iterators are used to generate a sequence of values.

Constant variable declarations begin with the keyword const and must
contain an initialization expression. Regular variables are declared with key-
word var. Each variable is permitted to have one of two modifiers: config or
extern. Config variables must be in the global scope. These variables may be
initialized at compile time through some platform-dependent means. Extern
variables are assumed to be defined outside of the program. No memory is allo-
cated for extern variables and they are not initialized.

Tasks can be coordinated with sync variables. A sync variable is declared
using the sync keyword. Each sync variable has a boolean flag associated with
it, which indicates whether the variable is empty or full. A sync variable can
only be read when full and can only be written to when empty. A write to a
sync variable makes it full and a read from the variable makes it empty. A task
that attempts to read or write a sync variable must wait until it is in the correct
state. The flag is initially set to be empty.
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numTimes
N,a,sum
main

temp

j

i

config const numTimes: int = 4;
config const N: int = 5;
extern var a : [0..N] int;
var sum: sync int;
proc main() {
  var temp: int;
  for j in 1..numTimes {
    sum = 0;
    forall i in 0..N-1 {
      temp = sum;      
      sum = temp + a[i];
    }
  }
}

numTimes:4,N:5,
a:{1,2,3,4,5},sum:0

temp:0

j:1

i:0 i:3 i:6

Fig. 2. adderPar.chpl. Left: This program computes the sum of the elements in a
and stores the result in sum. This process is repeated numTimes times. If sum is not
declared to be a sync variable then the program is incorrect; center: static scope tree
for this program; right: the dynamic scope tree in a state.

The program in Figure 2 demonstrates some of the challenges for Chapel
verification. The dynamic state illustrates how the tasks share certain memory
regions. The tasks created have their own scopes for the variables that are de-
clared in the body of the forall loop. However, they share all the variables
above that point in the static scope tree. Hence the dynamic scope tree shown on
the right. The ability to declare and instantiate procedures in arbitrary scopes
is fundamental to our modeling approach, but is absent from standard model
checking languages such as Promela [10].

State space explosion is always an issue with model checking, but the dynamic
nature of Chapel concurrency exacerbates the problems. For example, to execute
a nested pair of coforall statements, each with an iteration space of size N ,
N2 concurrent processes are instantiated.

Our Chapel Verification Tool (CVT) uses model checking with symbolic ex-
ecution [4, 11, 12] to verify correctness properties of Chapel programs. It can
also verify the functional equivalence of two programs, using comparative sym-
bolic execution [16]. We constructed CVT by re-using certain components of the
Toolkit for Accurate Scientific Software (TASS) [17]. TASS supports a subset
of MPI, but not dynamic process creation, and the only scope shared by TASS
processes is the one global (“shared”) scope. Verifying Chapel programs requires
a substantially different state representation.

2 CIR: The Chapel Intermediate Representation

In this section we describe the Chapel Intermediate Representation (CIR). CIR
is a “guarded command” style representation [7] that provides simple primitives
for dynamic process creation, procedure calls, nondeterminism, and message-
passing. It also adds to the usual model a notion of scopes, which have both a
static and a dynamic aspect.
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Spin [10] uses a model which allows dynamic process creation and (as of
version 6) allows nested local scopes within a process definition. The dSPIN [6]
extension to Spin allowed additional dynamic constructs, such as heap-allocated
data and procedures with local scope nests. In both Spin and dSPIN, however, a
process or procedure can be declared only in the outermost (global) scope. CIR
goes further by allowing procedure definitions in any scope. The “forking” of
such procedures leads to states like the one depicted in Figure 2(right). In that
state, there are three processes, each with its own copy of i, but sharing j and
variables in the scopes above. This general model of concurrency and scopes is
similar to the threading model in some functional languages, such as Racket [8].

2.1 CIR Models

A CIR model consists of the following components. First, there is a set Σ of
(static) scopes, which has the structure of a rooted tree with root σ0. These
correspond to the lexical scopes in the source code, plus scopes that may be
added to translate complex statements (see §3). The root scope represents the
outermost scope encompassing the entire program. If τ is a child of σ, the lexical
scope represented by τ is immediately contained in that represented by σ.

The model associates to each σ ∈ Σ a set of typed variables and a set of
procedure symbols. We say these variables and procedure symbols are declared
in σ. All of these sets are pairwise disjoint; in particular, the variables declared in
σ do not include those declared in any child of σ. We say a variable or procedure
symbol is visible in σ if it is declared in σ or an ancestor of σ.

Types include boolean, real, int, string, arrays of any element type, and a
type process for process IDs. For simplicity, in this paper, the real and int types
represent the mathematical real numbers and integers, though no fundamental
changes are required in the model to incorporate finite-precision or other types.

For each procedure symbol f declared in the model, there is a procedure scope,
which is a child of the scope in which f is declared. A scope can be the procedure
scope of at most one procedure. The root procedure has σ0 as its procedure scope,
and is the only procedure that does not have a declaration scope.

Every scope σ “belongs to” a unique procedure: if σ is the procedure scope
for some f then σ belongs to f , else σ belongs to the procedure to which the
parent of σ belongs.

The model associates to each procedure symbol f a procedure signature, which
consists of a return type (possibly “void”) and a sequence of parameter types.
Finally, there is a guarded transition system associated to f . This system includes
a set of locations, including a start location. Each location l has an associated
scope lscope(l) which must belong to f ; there is no other restriction on lscope(l).
The location also has some number (possibly 0) of outgoing transitions. Each
transition comprises (1) a guard, a boolean-valued expression specifying when
the transition is enabled, (2) a destination location, and (3) an atomic CIR
statement.

The kinds of atomic statements are listed below. In the list, v, w and b denote
left-hand side (LHS) expressions, e, dest, src, tag, e1, . . . denote expressions, f is
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a procedure symbol, and x is a variable. In all cases, the variables and procedure
symbols must be visible in lscope(l). An asterisk indicates an optional element.
The semantics of these statements is given in Section 2.2.

1. v = e
2. return e∗

3. v∗ = f(e1, . . . , en)
4. v∗ = fork f(e1, . . . , en), where v has process type
5. join(e), where e has process type
6. v = choose(e), where v and e have integer type
7. send(dest, e, tag), where dest has process type, tag has integer type
8. receive(src, v, tag) (like above, but src and tag may have form any(w))
9. write(e)
10. noop
11. sync-read(b, v, x), where b has boolean type
12. sync-write(b, x, e), where b has boolean type.

2.2 CIR Semantics

We assume given a set of (typed) values. The values of type process are integers.
Given this, the state of a CIR model comprises

1. a set Δ of dyscopes (dynamic scopes) which has the structure of a rooted
tree with with root δ0;

2. a function static:Δ → Σ which respects tree structure, i.e., if δ1, δ2 ∈ Δ
and δ1 is a child of δ2 then static(δ1) is a child of static(δ2). We say δ is an
instance of static(δ);

3. for each δ ∈ Δ, a function which assigns a value (of the correct type) to each
variable declared in static(δ);

4. a set of integers P (the process IDs used in the state);
5. a function which assigns to each p ∈ P a call stack, which is a sequence of

frames, each frame consisting of a location l in some procedure and a dyscope
δ such that static(δ) = lscope(l);

6. a function which assigns to each ordered pair of processes a finite sequence
of messages, where a message consists of a value for the message data and
an integer tag.

Figure 3(right) shows a state of the model to its left. This state has two dyscopes
which are instances of scope 1, no instance of scope 6, and 1 instance of each
of the remaining scopes. There are 3 processes, whose call stacks are illustrated.
(The locations are not shown.)

The semantics of a CIR model are specified in a small-step operational style
using an interleaving view of concurrency. For a transition to be enabled, its
guard must evaluate to true. In addition, certain statements have an implicit
guard which must also hold; these are discussed below. For the most part, all of
this is standard, so we limit the discussion to aspects of the semantics that may
be particular to CIR.
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0:Root
n, i

f1, f2

1:f1
y

2

6:f2
w

3
i

4

g

5:g
z

double Root(int n) {
  int i;
  double f1(double y) {
    if (y>0) {
      for (int i=0; i<n; i++) {
        ...
      }
    } else {
      double g(double z) {  ...
      } ...
    }
  }
  double f2(double w) {  ...
  } ...
}

0

1
2

3

4
  5

  6

scope ID

function decls
variable decls

0
n:3 i:2

1
y:-1

4

5
z:2

1
y:2.5

2

3
i:0

p2

p0

p1

Fig. 3. CIR scopes. left: pseudocode representation of a CIR model with lexical scopes
numbered; center: the static scope tree; right: a state consisting of 3 processes and 7
dynamic scopes.

To execute v = choose(e), e is evaluated to yield an integer n. An integer in
the range [0, n− 1] is chosen nondeterministically and assigned to v.

A send statement specifies the destination process, the data to be sent, and
an integer tag. Tags are used by the receiver to select messages for reception.
The data may have any type, including an array type. The execution of the send
creates a message and appends it to the message sequence for (p, q), where p
is the process ID of the sender and q that of the receiver. The receive has an
implicit guard which holds when a message matching the tag is available in an
appropriate queue and pulls out the oldest message matching the tag. The “any”
variant used as the source argument means the receive will nondeterministically
choose one of the incoming queues which has a matching message, and then pull
out the oldest matching message from that queue; the process ID of the sender
will be stored in v. The use of “any” as the tag argument simply means the
oldest message will be removed from the queue, regardless of its tag; the tag of
that message will be stored in tag.

The sync-read and sync-write are used to model accesses to a sync variable x.
The sync-read has implicit guard b and when executed it performs the assignment
of x to v and sets b to false in one atomic step. A sync-write behaves dually.

When control moves from one location to another within a procedure’s transi-
tion system, the scope may change. When this happens, new dyscopes are created
and added to the state. This is carried out in such a way that the correspondence
between dynamic and static scopes is preserved. The protocol requires comput-
ing the “join” in the static scope tree of the old and new scopes, considering
the path from the old scope to the join to the new scope, and then creating a
corresponding structure in the dynamic tree; see Figure 4(a–c).

A dyscope is unreachable if it does not occur in any frame and is not an
ancestor of a dyscope occurring in a frame. Such a dyscope may be removed
from the state; see Figure 4(d).

If a call or fork is executed in dyscope δ then since f is visible, it must be
the case that f is declared in static(δ′) where δ′ is δ or an ancestor of δ. A new
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Fig. 4. Jump protocol. (a) a static scope tree; (b) a dyscope tree; p1 is about to
move from a location in scope 3 to a location in scope 7; (c) new dyscopes are added
corresponding to the path from scope 1 (the join of 3 and 7) to 7; (d) dyscopes 2 and
3 became unreachable so were removed.

dyscope is created whose parent is δ′ and whose scope is the procedure scope of
f . A new frame is created referring to the new dyscope. For a call, the frame is
pushed onto the existing stack; for a fork, a new process is created whose stack
consists of the single frame.

If a process has terminated and there are no references to that process in the
state, it can be removed from the state. At any point, process IDs can also be
re-assigned throughout the state, for example, to remove gaps or put the state
into a canonical form.

Symbolic semantics. We have described the “concrete” semantics of a CIR
model. Minimal changes are required to apply symbolic execution to CIR. These
techniques are now well-known: values associated to variables become (typed)
symbolic expressions, a path condition variable is added to the state, any time a
guard may be true a transition is enabled in the symbolic space, and so on. Cur-
rently, our symbolic representation uses concrete representations of the dynamic
scope tree, call stacks, and message queues (but the data in a message is sym-
bolic), although it is conceivable that these structures could also be represented
symbolically, thereby enabling reasoning for unbounded numbers of processes,
dyscopes, and so on.

3 Translating from Chapel to CIR

In this section we present the translation of several Chapel structures into CIR.
The translations are provided in a pseudocode for CIR. For readability, the
pseudocode utilizes common sequential constructs (e.g., for, if) that do not
exist in CIR, but are translated to the transition system in standard ways. There
is no proof of soundness of the translation because there is no formal semantics
of Chapel, just a natural language description in the manual. In fact, translation
to CIR could be a way to give a formal semantics to the language.
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3.1 Built-In Constants

CVT uses four built-in constants. These do not appear in the Chapel code being
verified, but are used in the translation of several constructs. Three of these
constants are used as message tags:

1. _CVT_NEXT_TAG indicates the next value yielded by an iterator.

2. _CVT_TERM_TAG indicates that an iterator has run out of values or that a
process should terminate.

3. _CVT_FORALL_TAG indicates that the message data is the next value for a
worker to use when running the body of a forall loop.

The fourth constant is _CVT_MAX_WORKERS, an upper bound on the number of
tasks used when executing a forall loop. Each forall loop may be assigned
any number of workers from 1 to _CVT_MAX_WORKERS, and CVT will explore
executions of the code with each possible number. While this bounds the number
of workers used in any particular forall loop, the use of nested loops, cobegin
statements, iterators, etc. yields programs with a high degree of concurrency.

3.2 Iterators

In the CIR model, an iterator is represented as a procedure. The procedure takes
the same arguments as the original iterator plus an argument of process type
to indicate the calling process. Yield statements are replaced by statements to
send the yielded value to the calling process. Before the procedure returns, it
sends a termination message to the caller.

iter foo(arg0, ..., argN) : T {...; yield e; ...}

is translated as

void foo(process caller, arg0, ..., argN) {
...;
send(caller, e, _CVT_NEXT_TAG);
...;
send(caller, NULL, _CVT_TERM_TAG);

}

When a range literal a..b is used as an iterator, CVT replaces this with a
call to a built-in implementation of the range literal as an iterator.

iter _CVT_range_iterator(lower : int, upper : int) {
var current : int;
current = lower;
while (current <= upper) {
yield current; current = current + 1;

}
}
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During model construction, the range literal iterator is then translated like any
other user-defined iterator.

3.3 Loops

While loops are straightforward to translate into CIR. The various flavors of
for loops have more complicated translations due to their use of iterators and
implicit parallelism.

For Loops. Recall that iterators are modeled as procedures that use send state-
ments to yield values to the calling process. When translating a for loop, CVT
forks a new process running the iterator, then executes the loop body on each
value received from the iterator.

The expression self has type process and returns the ID of the process in
which the expression is evaluated.

for x in f(...) S

is translated as

{ T x; process p; int tag;
p = fork f(self, ...);
while (true) {
receive(p, x, any(tag));
if (tag == _CVT_TERM_TAG) break;
S

}
}

Parallel Loops. Forall loops exhibit the greatest degree of nondeterminism of
the for loop varieties. CVT models forall loops as a manager-worker pattern:

forall x in f(...) S

is translated as

{ int numWorkers = 1 + choose(_CVT_MAX_WORKERS);
int i; process workers[numWorkers];
void _CVT_tmp_1(process manager) {
T x; int tag;
while (true) {

receive(manager, x, any(tag));
if (tag == _CVT_TERM_TAG) break;
S

}
}
for (i = 0..numWorkers-1) workers[i] = fork _CVT_tmp1(self);
{ T x; process iterator; int tag, dest;
iterator = fork f(self, ...);
while (true) {
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receive(iterator, x, any(tag));
if (tag == _CVT_TERM_TAG) break;
dest = choose(numWorkers);
send(workers[dest], x, _CVT_FORALL_TAG);

}
for (i = 0..numWorkers-1)

send(workers[i], NULL, _CVT_TERM_TAG);
for(i = 0..numWorkers-1) join workers[i];

}
}

The manager receives values from the iterator and assigns them to workers. All
possible numbers of workers between one and _CVT_MAX_WORKERS, inclusive,
are explored.
Coforall loops are translated similarly to forall loops, but there is always

exactly one worker process for each iteration of the loop.

3.4 Cobegin

For each statement in the body of a cobegin, a new temporary procedure is cre-
ated. Each temporary procedure takes no arguments and its body contains just
the statement from the cobegin. The cobegin statement is then translated
into a series of fork statements followed by a series of join statements.

cobegin{S1; ...; SN}

is translated as

{ process _CVT_tmp_procs[N];
void _CVT_tmp_1() {S1} ... void _CVT_tmp_N() {SN}
_CVT_tmp_procs[0] = fork _CVT_tmp_1();
...;
_CVT_tmp_procs[N-1] = fork _CVT_tmp_N();
join _CVT_tmp_procs[0]; ...; join _CVT_tmp_procs[N];

}

3.5 Sync Variables

A sync variable has additional state information indicating whether it is full or
empty. CVT tracks this information by introducing a new boolean-valued con-
trol variable (initially false) for each sync variable. For a sync variable foo$
(the symbol $ is by convention used in sync variable identifiers, but otherwise
has no special meaning), the associated control variable is _CVT_sync_foo$.
foo$ = x; is translated as sync-write(_CVT_sync_foo$, foo$, x); and
x = foo$; is translated as sync-read(_CVT_sync_foo$, x, foo$);. We in-
troduce additional temporary variables as needed to conform to this syntax.
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3.6 Composite Models

To compare two programs, CVT creates a composite CIR model. It does this by
creating models for each individual program. Each of these will have a procedure
system which begins execution and has the outermost scope for that program.
CVT then creates a new system procedure. The new system procedure’s only
task is to fork and join the individual models’ system procedures. Variables in
the outermost scope of the individual models are moved to the new outermost
scope. Any variables with the extern modifier are considered to be inputs. Any
other variables which are not const in the outermost scope are considered to
be outputs. When this new model is executed and reaches a terminal state, it
checks that all output variables with the same name have the same value.

4 Evaluation

4.1 Tool Characteristics

CVT supports two modes. It can be applied to a single Chapel program to ver-
ify (or find counterexamples to) certain safety properties, including absence of
deadlocks, out-of-bounds array indexing, division by 0, and uses of uninitialized
variables. It may also be used to compare two Chapel programs for functional
equivalence. This comparison mode can also detect data races and other inap-
propriate nondeterminism, as such defects can cause two programs to produce
different outputs on the same input. Like TASS, CVT uses symbolic execution
to verify properties for all possible input values. When CVT compares two pro-
grams, it uses the same symbolic values for corresponding input variables. Thus
the values of output variables can be compared at termination to check that
they hold equivalent symbolic expressions.

CVT is conservative in its analysis. If it says that a program is correct or
that two models are equivalent, then those properties must hold within the
bounds specified by the program and _CVT_MAX_WORKERS. However, CVT is
not necessarily precise: it may produce spurious counterexamples.

4.2 Tool Structure and Implementation

CVT is comprised of several components. These components, and the way data
flows between them, are illustrated in Figure 5.

Front End. CVT contains a new front end for the currently supported subset
of Chapel. A Java parser generated by the ANTLR parser generator [15] parses
the source and builds a Chapel AST. The AST is processed (e.g., adding the
range literal iterator implementation) to prepare for conversion to a CIR model.

CVT Model Builder. CVT converts the Chapel AST into a CIR model using
the translations discussed in Sec. 3.
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CVT Parser CIR Verifier

Properties Hold

Possible 
Counterexample

Automated 
Theorem Prover 

CVC3

 program.chpl  options

CVT Model 
BuilderChapel AST CIR Model

Fig. 5. Dataflow through CVT tool chain

CIR Verifier. The TASS components used by CVT provide a general frame-
work for symbolic execution and utilize an external theorem prover (currently
CVC3 [2]). [17] describes several nontrivial numerical programs whose computa-
tions are handled by CVC3. CVT defines the state of a CIR model as described
above, and also guarded transitions between states. A simple transition rep-
resents a deterministic move from one state to another. The state is modified
based on the statement wrapped by the transition, and there is exactly one re-
sulting state. A choose transition provides a nondeterministic choice between a
number of values. These are used when a CIR statement utilizes the expression
choose(N). In a choose transition, CVT will explore the states resulting from
each possible value of the choose expression.

4.3 Partial Order Reduction

The state space explosion problem is a major issue for formal verification of
parallel programs. While any parallel code allows statement executions to inter-
leave in many ways, a language such as Chapel provides the added challenge of
dynamically creating an unknown number of processes when executing certain
statements. Partial order reduction (POR) [9] is a technique to mitigate the state
space explosion problem.

There is a well-known POR result for concurrent systems with a simple “lo-
cal/global” scope hierarchy: suppose that in the search of the state space, some
process p is at a local location, i.e., all transitions emanating from that location
refer only to variables local to p. Then it is safe to restrict the search to the set
of transitions enabled at p.

CVT uses a generalization of this technique. Suppose p is at location l and in
dyscope δ. Recall that the set of dyscopes is structured as a tree rooted at δ0.
The outgoing transitions of l may contain expressions which refer to variables in
δ or in any dyscope along the path from δ to δ0. Let δ

′ be the highest dyscope
referred to by the outgoing transitions of l. Suppose no other process can reach
(following parent edges from the dyscopes referenced in its call stack) δ′. Then
it is safe to restrict the search to transitions enabled in p. For verification of
adderSpec with N = 10, numT imes = 5, and _CVT_MAX_WORKERS = 2 (see
§4.4), this POR technique reduced runtime from 15.3s to 0.7s and the number
of states encountered from 55331 to 505.
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Fig. 6. Results of experiments in which properties were verified to hold. In all graphs,
y-axis is total time in seconds.

4.4 Scaling Experiments

We designed several synthetic Chapel programs to test CVT. Each program has
several variants. Some variants are believed to be correct, while others contain
known defects. While simple, the programs illustrate a number of realistic er-
rors in Chapel codes. Figure 6 summarizes the results of scaling experiments
which verified that all checked properties hold. While these results use the POR
technique discussed in §4.3, we believe that there are many additional improve-
ments and optimizations that will further improve scaling in the future. Figure
7 provides some statistics for experiments which were able to detect violations.
We next describe the sample programs. The code and experimental results are
available at http://vsl.cis.udel.edu/cvt.

Adder. This program adds numbers in an array multiple times. The simplest
version of the code, adderSpec, uses nested for loops. The inner loop sums
the numbers, while the outer loop controls the number of times the addition
is performed. Another correct version, adderPar, uses a forall statement for
the inner loop to distribute the addition among multiple tasks. A sync variable
is used to store the sum in order to prevent data races. An erroneous version,

http://vsl.cis.udel.edu/cvt
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Experiment max workers states transitions max procs time (s)

adderPar vs adderNoSync 20 14495 14496 10 6.260
adderSpec vs adderND 2 7675 7819 12 5.027
locks N/A 5562 5742 5 2.712
cycle 20 1067 1066 4 1.224
prodCons vs prodConsNoSync N/A 3011 3010 6 2.779

Fig. 7. Results of experiments which detect violations, indicating time to produce the
first counterexample. Column “max workers” gives the values of _CVT_MAX_WORKERS
for that run. The “max procs” column gives the maximum number of active processes
at one time during the experiment.

adderNoSync, neglects to make the sum a sync variable. Another erroneous
version, adderND, replaces the outer for loop with a forall loop; the output
then becomes nondeterministic even though synchronization is used correctly.

config const N : int = 100;
var a: [0..N-1] sync int;
proc main() {
forall i in 0..N-1 {

var t : int;
a[(i+1)%N] = i;
writeln("Wrote ",i);
t = a[i];
writeln("Read ",t);

}
}

Fig. 8. The cycle program

locks. The locks program is a classic dead-
lock example. A cobegin spawns two pro-
cesses. Each process runs a loop that tries to
acquire and release two locks, but the pro-
cesses acquire the locks in different orders.

cycle. The cycle program in Figure 8 per-
forms reads and writes on a circular array of
sync variables. Depending on how the loop
iterations are partitioned among tasks, it
may deadlock. In particular, cycle will dead-
lock if it is executed using one task. The ver-
sion cycleCF avoids this problem by using a coforall in place of the forall.

prodCons. The prodCons program implements a producer-consumer pattern.
The producer adds items from an input array to a circular buffer of sync vari-
ables. The consumer reads items from the buffer. The erroneous version, prod-
ConsNoSync, neglects to use sync variables in the buffer.

5 Conclusion and Future Work

We have described a new model for verification of Chapel programs. The par-
allel constructs and spawning of threads in arbitrary scopes in Chapel map
naturally to this model. Using model checking with symbolic execution, we have
demonstrated the feasibility of automatic verification and defect-detection for
non-trivial Chapel programs.

CVT is a prototype tool which works only on a small subset of the full Chapel
language. We would like to extend CVT to cover a larger portion of Chapel.
In particular, more complex datatypes and arbitrary domains are interesting
directions for future work. We would also like to improve scalability, possibly by
developing improved partial order reduction techniques.
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11. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for

model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

12. King, J.C.: Symbolic execution and program testing. Communications of the
ACM 19(7), 385–394 (1976)

13. Message Passing Interface Forum: MPI: A message-passing interface standard, ver-
sion 3.0 (September 2012), http://www.mpi-forum.org/docs/docs.html

14. OpenMP Architecture Review Board: OpenMP application program interface, ver-
sion 3.1 (July 2011),
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

15. Parr, T.: ANTLR Parser Generator, http://www.antlr.org
16. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Combining symbolic exe-

cution with model checking to verify parallel numerical programs. ACM TOSEM
17(2), Article 10, 1–34 (2008)

17. Siegel, S.F., Zirkel, T.K.: TASS: The Toolkit for Accurate Scientific Software.
Mathematics in Computer Science 5(4), 395–426 (2011)

18. Yelick, K.A., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy,
A., Hilfinger, P.N., Graham, S.L., Gay, D., Colella, P., Aiken, A.: Titanium: A
high-performance Java dialect. Concurrency - Practice and Experience 10(11-13),
825–836 (1998)

http://labs.oracle.com/projects/plrg/Publications/fortress.1.0.pdf
http://labs.oracle.com/projects/plrg/Publications/fortress.1.0.pdf
http://chapel.cray.com/
http://docs.racket-lang.org/reference/
http://docs.racket-lang.org/reference/
http://www.mpi-forum.org/docs/docs.html
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.antlr.org


Formal Analysis of GPU Programs with Atomics

via Conflict-Directed Delay-Bounding�

Wei-Fan Chiang1, Ganesh Gopalakrishnan1, Guodong Li2,
and Zvonimir Rakamarić1
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Abstract. GPU based computing has made significant strides in re-
cent years. Unfortunately, GPU program optimizations can introduce
subtle concurrency errors, and so incisive formal bug-hunting methods
are essential. This paper presents a new formal bug-hunting method for
GPU programs that combine barriers and atomics. We present an al-
gorithm called conflict-directed delay-bounded scheduling algorithm (CD)
that exploits the occurrence of conflicts among atomic synchronization
commands to trigger the generation of alternate schedules; these alter-
nate schedules are executed in a delay-bounded manner. We formally
describe CD, and present two correctness checking methods, one based
on final state comparison, and the other on user assertions. We evalu-
ate our implementation on realistic GPU benchmarks, with encouraging
results.

1 Introduction

General purpose Graphics Processing Units (“GPU”) are being widely deployed
in both low-end (mobile) and high-end (supercomputing) systems in order to
accelerate computation [12]. Unfortunately, GPU program optimizations can
introduce subtle concurrency errors such as data races and deadlocks. While
many tools for formally debugging GPU programs have been proposed [3,14,15,
17,29], none of these tools cater to programs that combine barriers and atomics—
features found in popular GPU programming languages such as CUDA [23] and
OpenCL [24]. In this paper, we present an extension of our tool GKLEE [17] to
address this program class. The extension is based on a new scheduling algorithm
called conflict-directed delay-bounded scheduling algorithm (CD). The subject of
this paper is a formal description as well as a thorough evaluation of the CD
algorithm on programs that employ CUDA atomics in subtle ways.

While programs employing barriers (e.g., __syncthreads() in CUDA) and
atomic operations (e.g., atomic add, atomicmin, compare-and-swap [11] in CUDA)
are not numerous, there are many important programs, including the GPU
Gem [22] called N -body simulation [19, 21] that use them. In this paper, we
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Fig. 1. Basics of CUDA, Thread Blocks, Races, and Conflicts

formally describe CD, and present two correctness checking methods, one based
on final state comparison across two schedules, and the other on user assertions.
We evaluate our implementation on realistic GPU benchmarks, with encouraging
results; we also publicly release our benchmark suite [2].

1.1 Background

Consider a contrived GPU “kernel” program ArraySum that employs threads to
update each location a[i] of an array to the value a[(N+i-1)%N]+b:

void __global__ ArraySum (int *a, int b) {

__shared__ int temp[N];

__syncthreads(); // Barrier 0; also Barrier 3 for threads in [512-1023]

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < N) temp[idx] = a[(N+idx-1)%N] + b;

__syncthreads(); // Barrier 1; also Barrier 4 for threads in [512-1023]

if (idx < N) a[idx] = temp[idx];

__syncthreads(); // Barrier 2; also Barrier 5 for threads in [512-1023]

}

CUDA1 presents three memory spaces: the Global space visible to all threads,
the Shared space visible to threads within a thread block (typically 512 contigu-
ous threads, abstractly referred to as BLOCK_SIZE), and the Local space visible
to specific threads.2 Assume that arrays a and temp are allocated in the Shared
memory space. An invocation of kernel ArraySum with N = BLOCK_SIZE creates
BLOCK_SIZE threads in block Block 0. Fig. 1 (left) provides a high level illustra-
tion of this situation.3 The use of __syncthreads() in this example enforces the
fact that threads before the barrier are executed before those after the barrier.

1 Other GPU languages also have similar notions.
2 CUDA threads are scheduled in batches called warps. While the typical warp-size
is 32, it is not guaranteed to be so in all situations. In this paper, we take the
conservative approach of taking the warp-size to be 1.

3 Please momentarily ignore l(x), l(y), ul(x), and ul(y) of this figure. Also, for
simplicity, we highlight only three threads, namely T0, T1, and T2.
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For uniformity, we also assume the presence of __syncthreads() statements at
entry/exit (if not already present). For example, Barrier 0 and Barrier 2 in Fig. 1
(left) illustrate this convention.

Continuing our explanation of kernel ArraySum, as per CUDA conventions, all
its threads execute the same code; however, each thread computes it own specific
location idx to act upon. Each thread reads location (N+idx-1)%N, adds b to
the value read, and assigns it to location idx of array temp. Now, if one were to
remove Barrier 1, data races would be introduced; for example, temp[2] = a[1]

and a[1] = temp[1] would be executed in parallel.
Now imagine the same kernel being executed concurrently by twice as many

(i.e., 1,024) threads. The threads are now split between Block 0 and Block 1 (see
Fig. 1(left)), and observe that inter-block synchronization through barriers no
longer works. For example, even with Barrier 1 and Barrier 4 present, accesses
X1 and X2 can conflict (i.e., involve the same memory location with one of
them being a write). Similarly, potential conflicts are also (X1,Y2), (Y1,X2), and
(Y1,Y2). Next, imagine that the user has realized “lock” (l) and “unlock” (ul)
instructions using CUDA atomics. (Also, you may now stop ignoring the l()

and ul() instructions in the figure.) Now, if we protect the pair (X1,X2) using
the same lock variable x, we will avoid one data race. Likewise, assuming that
(X1,Y2) and (Y1,X2) involve different addresses, we can protect (Y1,Y2) using
another lock variable y. This will prevent data races among all pairs of accesses.

Following standard terminology (e.g., [10, 27]), we distinguish between ordi-
nary and synchronizing memory accesses. Two conflicting synchronization
instructions are not involved in a race; however, two conflicting ordinary in-
structions are involved in a race. For example, lock instructions in Fig. 1 are
conflicting, but are not involved in a data race. In general, property checking
requires that non-commuting actions [5], such as atomic regions protected by
locks, be explored under all interleavings. For illustration, suppose Fig. 1(left)
executes the program in the order the barriers are numbered 0 through 5 (thus
performing the Y1 action before the Y2 action). Then, Fig. 1(right) illustrates a
conflict-directed alternative schedule in which the order is Y2;Y1.

Let us now turn to Fig. 2 to understand the basics of scheduling. As it turns
out, data races can be detected by running a single schedule. In particular,
as described in our previous work [17], we can execute a specific sequential
schedule [1] shown by the zig-zag lines, running T0, T1,. . . . We call this schedule
the canonical schedule. During a canonical schedule, suppose we record every
access (read/write), and the (symbolic) path conditions under which the access
occurs. Then, at the end of the canonical schedule, we can check for a race
as follows. For each access pair containing at least one write, such as (P,Q),
we check whether the conjunction of the path conditions can be satisfied, and
also whether the address expressions become equal; if so, we report a race. If all
access pairs visited along the single (canonical) schedule avoid a conflict, then no
other schedule needs to be considered for race checking. Essentially, all schedules
are equivalent for finding a “first race” [16]. Clearly, the canonical schedule can
detect races across thread blocks (such as between (A,B) in the figure) as well.
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Fig. 2. Illustration of Canonical (left) and CD (right) Scheduling

Historically, it was the canonical scheduling approach that allowed us to extend
the KLEE [4] sequential program concolic analyzer to handle GPU concurrency.

As illustrated previously with respect to Y1 and Y2, property checking in the
presence of synchronization instructions requires generating alternative sched-
ules of non-commuting actions. Unfortunately, the conflict-directed approach can
require us to explore all possible orderings of the atomic regions (e.g., similar to
dynamic partial order reduction or DPOR [9]). In this context, the CD algorithm
can be understood to be a suitable search bounding method inspired by previous
work [8], but tailored to handle atomics in the context of canonical scheduling.
Assume that we have executed a canonical schedule, and in this schedule we
observe a conflict between A and P, with A encountered before P (see Fig. 2
(right)). As per the DPOR algorithm, we will be required to execute another
schedule where P is executed before A. However, before we can execute P, we
must execute all the threads in the barrier interval [3-4] (including instruction
B), cross Barrier 4, and only then be able to execute P. The CD algorithm has
been designed to smoothly handle such details, and also apply bounding.

In summary, the CD algorithm can be seen as a light-weight design that
(1) is conflict-directed in its approach to delay-bounding (original paper [8] was
not so), (2) is a light-weight approximation to DPOR while also incorporating
the barrier semantics and happens-before predecessors, and (3) is built on the
backbone of canonical scheduling, allowing us to incorporate other interesting
heuristics related to canonical scheduling to improve performance and scalability.
In particular, one such technique that enables scalability to a large number of
threads is described in our recent work [18].

2 CD Algorithm for Schedule Generation

We now provide a rough sketch of the CD algorithm. Consider Fig. 2, where
instructions {A,B,P,Q} are synchronization instructions (e.g., atomicCAS, lock,
atomicMin) guarding specific regions of the user code. We first execute the
CUDA program along a canonical schedule while checking for data races (among
ordinary accesses) as well as recording conflicts among synchronization instruc-
tions. These conflicts are inserted into a delay list D,4 and used to delay threads

4 Later, we will show that D is in fact a list of lists, but for now a simple list suffices.
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when the program is re-executed to generate alternate schedules. We now walk
through an illustrative CD execution with the help of Fig. 2(left and right).5 Ini-
tially, let list D = [] and delay-bound K = 2. Anytime |D| > K, skip over this D
list (details in §4). We present step-by-step several executions of the algorithm.

• First, while executing the initial canonical schedule shown in Fig. 2(left), collect
the conflicting pairs, which are (A,B) and (P,Q) in our example. Based on the
collected conflict pairs, obtain a list L of delay points. The delay points are the
first instructions of each conflict pair, where the notion of first is defined by the
delaying canonical scheduling order. In our example, we will obtain L = [A,P ].
• For each member l of L, append l at the end of D, thus obtaining an augmented
D list. In our example, given that we started with D = [], the initial augmented
D lists are [A] and [P ]. Now re-execute with D set to [A] and [P ] in turn.
• Consider the execution with D = [A]. This delays A, switching (via the CS1

arrow) to T0 of Block 1. After we remove A from D, we have D = []. Continue
the canonical execution of Block 1 entirely (Barrier 3 through Barrier 5). By this
time, we would have observed instruction B in Block 1’s barrier interval [3-4],
and the conflict (P,Q) again. At the end of the execution of T2 at Barrier 5,
the execution resumes with A, and then finishes the code between Barrier 1 and
Barrier 2. The conflicts observed are (B,A) and (P,Q), and we augment the initial
D = [A] with B and P to obtain D = [A,B] and D = [A,P ], respectively.
• Re-execute with D = [A,B], which generates the following execution: (1) delay
A; (2) go to Block 1 and there delay B; (3) resume by executing A, and then
resume with B. This traverses the conflicting instructions in the order A,B, P,Q.
Notice that because of the barrier semantics, we must necessarily cycle over A
and B again before we reach into P and Q.
• Re-execute with D = [A,P ]. (It is helpful to point out that Fig. 2(right) de-
picts how CD executes with D = [A,P ].) This generates the following execution:
(1) execute till A, then delay A; (2) execute through Block 1’s Barrier 4; (3) de-
scent into the barrier interval [4-5] of Block 1; (4) delay P since it is now at
the head of D; (5) switch via transition CS2 to resume A and finish the barrier
interval [1-2] of Block 0; (6) finally, resume at P and finish up Block 1 entirely.
• Since we assumed delay-bound K = 2, after exploring the delay list [A,P ], we
do not augment it any further. (Such augmentations generate 3-instruction delay
lists which are skipped.) Instead, we backtrack and re-execute with D = [P ].
Implementation note: we process all smaller D sets before going to larger sets.

The above CD execution achieves several interesting schedules, and in the end
we get the following orders of dependent actions in global traces:

– ...; A ;...; B ;...; P ;...; Q ;... (in the run with D = []),
– ...; B ;...; P ;...; Q ;...; A ;... (in the run with D = [A]),
– ...; A ;...; B ;...; Q ;...; P ;... (in the run with D = [P ]),
– ...; B ;...; Q ;...; A ;...; P ;... (in the run with D = [A,P ]).

5 For simplicity, assume here that the same instructions A,B, P,Q will be encountered
each time we replay. In general, the control flow will change due to global state
differences caused by delaying, and different instructions are likely to be encountered.
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1 leafid := tree [target ] ;
2 if leafid �= LOCK then
3 leafid := tree [target ] ;
4 if leafid = atomicCAS (&tree [target ], leafid ,LOCK ) then
5 assert(leafid �= LOCK ) ;
6 tree [target ] := func() ;

Fig. 3. Code Excerpt from a GPU Implementation of the N-Body Algorithm

A precise formal specification of CD is in §4. Next, we present a case study and
assess how well CD performs on it.

3 Motivating Example T0 T1

line 2
leafid = 0

line 3
leafid = LOCK

line 4 leafid =
tree[target] = LOCK

line 5
tree[target] = LOCK

line 5
assert(leafid �= LOCK) line 6

Fig. 4. Schedule Revealing N-Body Bug

In this section, we motivate the need
for CD with a realistic example: an
aggressively optimized GPU-based
implementation of the well-known
Barnes-Hut algorithm for perform-
ing an N-body simulation [21]. The
pseudocode shown in Fig. 3 is a vari-
ant of the original code excerpt con-
taining a bug planted by us. In the
example, each thread tries to insert
a node into a tree structure (en-
coded by tree array) where target is
the index of the intended insertion. It is possible for multiple threads to have the
same target. Variable leafid contains the value pointed by target in tree; if this
value is LOCK, then the target location is currently unavailable for modification.
Note that line 3 is the extraneous line—a bug—not present in the original code.
It presents a redundant read from tree[target] that had already been done on
line 1. The value read is used by the consequent atomicCAS .

The central operation of our interest is atomicCAS (addr , expected , new) which
atomically: (1) checks whether addr holds the expected value; (2) if so, it replaces
it with new , else it leaves the value in addr unaffected; (3) it always returns the
original value in addr . In the example, atomicCAS instruction on line 4 tries to
put LOCK in tree[target] and returns the original value in tree[target]. Once a
thread succeeds on condition in line 4 and proceeds to line 5, it exclusively owns
tree[target] until it releases the ownership by assigning to it on line 6. Therefore,
the old value of tree[target] should not be LOCK on line 5; if it were, it would
mean that the location is already owned by another thread. We consider this to
be our safety property of interest, and we encoded it as an assertion on line 5.

Fig. 4 shows why the code in Fig. 3 is erroneous. Suppose that threads T0
and T1 are accessing the same target, whose value was initialized to 0. Thread
T0 first executes lines 1-2, then is delayed, and preempted by T1. Thread T1
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executes lines 1-5, then is delayed, and preempted by T0. Thread T0 on line
3 reads leafid from tree[target] ; since its value is LOCK, after T0 executes line
3, leafid is LOCK. (If buggy line 3 was not introduced, leafid would still be a
non-LOCK value thanks to the conditional on line 2.) Then, T0 proceeds to line
4 and atomicCAS succeeds even though it has also succeeded for T1. On line 5,
T0 triggers a failure of our safety property of interest. Note that this error takes
at least two delays to be discovered. As our experimental results will show, our
implementation of CD was successful in detecting such bugs within a reasonable
number of overall delays and with acceptable runtimes.

4 Formal Description of CD

Let N = {0, 1, 2, . . .} where numbers can also be viewed as sets, e.g., 3 = {0, 1, 2}.
Consider a CUDA program pgm meant for execution within BID ∈ N thread
blocks. Let barid ∈ N number the barriers within each block, with lastbar(bid) ∈
N being the number assigned to the last barrier within block bid ∈ BID .6 A
barrier interval (BI) is the interval (block of code) enclosed by two successive
barriers. There are TID ∈ N threads per block with identifiers tid ∈ TID . For
each thread, let pc ∈ N be its program counter.

We employ the tuple cs = 〈bid , barid , tid , pc〉 to specify the control state of ex-
ecution. The way in which cs advances is depicted in Fig. 2. A canonical schedule
begins at InitCS = 〈0, 0, 0, 0〉. (Here, barid = 0 models being in barrier interval
[0-1].) Predicate DoneBar (bid , barid , tid) tells whether thread tid has executed
barrier barid within block bid . This predicate is initialized to InitDoneBar where
InitDoneBar(0, 0, 0) is true.

The entire state of the execution of pgm is captured by cs and S, where S is the
data state (CUDA shared, global, and local variables). We do not elaborate on
S, nor the CUDA instructions that update S. We maintain S0, a shadow copy
of the initial data state used during program re-execution. Given the current
instruction ins = cur(S, cs, pgm), the state update of S caused by ins is modeled
using nxt(S, pgm , cs, ins).

Consider a CUDA program pgm, and let ins be Bar (barrier) for all S and cs.
Informally speaking, a canonical schedule that begins in this state moves each
thread until its pc is at the next barrier; then another thread is picked, and so
on until all threads are at their next barrier. Whenever a thread is at the next
barrier, the DoneBar predicate associated with that thread and barrier is set to
true. When all the threads are at their next barrier, execution must switch over
to the “next” barrier interval, determined as nxtBI (S, pgm , cs). Any reasonable
implementation of these abstract functions is permissible. For instance, nxtBI
could mean either (1) stay within the same thread block and execute the next
sequential barrier interval; or (2) switch over to the next thread block and execute
the earliest unexecuted barrier interval.

6 CUDA programs are assumed to be terminating. We also assume the usual textually
aligned barriers. For example, CUDA programs are expected not to branch on thread
IDs, with only half the threads encountering a barrier.
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Delay List: Let [a, b, c] be a list. Then hd([a, b, c]) is a and tl([a, b, c]) is [b, c]. We
maintain the delay list D as a list of lists.7For example, D = [[], [a, b, c], [p, q, r]],
where a, b, c and p, q, r are instructions, is a delay list.

We describe the operational semantics of CD in terms of the rules in Fig. 5.
The rules are of the form pre

Σ→Σ′ , where if pre(Σ) holds then Σ can evolve
to Σ′; Σ is maintained as 〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉, where cs =
〈bid , barid , tid , pc〉. The CD algorithm starts with D = [[]]. If no conflicts are en-
countered, D remains [[]] until the entire program execution is finished, at which
point D becomes []. The only inference rule provided for the case D = [] is to
stop the entire execution of CD (Rule Termination). We keep a shadow-copy
of the starting delay list in D0. Suppose D0 = D = [[]] at the beginning, and say
it grows to D = [[a, b], [p, q]] at the end of execution as per the CD schedule. We
then re-initialize D0 and D according to D0 = D = [[a, b], [p, q]] and re-execute
the whole program. Here are the details of such a re-execution:

– When instruction a is encountered, it will be delayed, and D will be updated
to [[b], [p, q]], meaning that a (already delayed) need not be delayed any more.
(Rules nxtTidCSDel and nxtBidCS cover these cases.)

– Thereafter when b is encountered, it is delayed, andD is updated to [[], [p, q]].
Then (and only then) we start recording conflicts (Rule nxtPCBIrec; notice
that it checks for hd(D) = []). This is because the conflicts recorded must
be as a consequence of delaying a, b (and further conflicts discovered in the
process will later augment D). At the end of the entire pgm execution, let
us say we have encountered conflicts in the order (i, j) and (k, l). Then we
update D to [[p, q], [a, b, i], [a, b, k]] (Rule Retrig).

– Now if the delay bound K is 2, we will execute again with [p, q], but skip
over [a, b, i] and [a, b, k] (Rule Bound).

Read-Write Set: We maintain a read-write set RW that records all reads
and writes encountered; function rwOf (ins) obtains the reads and writes of
instruction ins . These will be used for race checking and also for forming conflicts.
(We do not detail race checking here.) Entries will be added to RW as/when
memory accesses (reads/writes) are encountered (Rule nxtPCBI).

Conflict List: We maintain a conflict list Confl as a list of pairs of the kind
shown above, e.g., Confl = [(i, j), (k, l)]. Confl is updated via function rec only
when hd(D) = [] (Rule nxtPCBIrec). At the end of pgm , we will change D0
from [[a, b], [p, q]] to [[p, q], [a, b, i], [a, b, k]].

Delay Bounding, Termination, Retriggering:Whenever length(hd(D0)) >
K, we update D to tl(D), which achieves delay bounding (Rule Bound). The
algorithm terminates when D = D0 = [] (Rule Termination). On the other
hand, if D = [], length(hd(D0)) ≤ K, and DoneBar (bid , lastbar(bid), tid) for all
bid , tid , we retrigger the execution with the augmented (function aug) D and

7 In our implementation, we maintain D sorted ascending in size. This allows all
shorter delay sequences to be executed before executing any longer delay sequence.
This is purely a heuristic, and has no bearing on the overall correctness of CD.
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• Termination:

D=[]

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → STOP

• Bound:

D �= [] ∧ length(hd(D0)) > K

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S, cs,DoneBar , tl(D0), tl(D),RW ,Confl〉

AssumeD �= [] ∧ length(hd(D0)) ≤ Kis a part of the precondition of the rules below.
• Retrig:

∀b ∈ BID : ∀t ∈ TID : DoneBar(b, lastbar(b), t) ∧ D1=aug(D0,Confl)

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S0, InitCS , InitDoneBar , D1, D1, ∅, []〉

• nxtBI:

cur(S, cs, pgm)=Bar ∧ ∀t ∈ TID \ {tid} : DoneBar(bid, barid+ 1, t)
∧ Db = DoneBar [〈bid, barid+ 1, tid〉 ← true]

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S,nxtBI (S, pgm, cs), Db,D0, D,RW ,Confl〉

• nxtTidCS:

cur(S, cs, pgm)=Bar ∧ ∃t �= tid ∈ TID : ¬DoneBar(bid, barid+ 1, t)
∧ Db = DoneBar [〈bid, barid+ 1, tid〉 ← true] ∧ cs1=nxtTidCS(S, pgm, cs)

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S, cs1, Db,D0, D,RW ,Confl〉

• nxtPCBI:

hd(D) �= [] ∧ ins=cur(S, cs, pgm) ∧ ins �= Bar
∧ ins �= hd(hd(D)) ∧ cs1=nxtPCBI (S, pgm, cs) ∧ RW1=add(RW , rwOf (ins))

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S, cs1,DoneBar , D0, D, RW 1,Confl〉

• nxtTidCSDel:

hd(D) �= [] ∧ cur(S, cs, pgm)=hd(hd(D)) ∧ cs1=nxtTidCS(S, pgm, cs)
∧ ∃t �= tid ∈ TID : ¬DoneBar (bid, barid, t) ∧ D1=D[hd(D) ← tl(hd(D))]

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S, cs1,DoneBar , D0, D1,RW ,Confl〉

• nxtBidCS:

hd(D) �= [] ∧ cur(S, cs, pgm)=hd(hd(D)) ∧ cs1=nxtBidCS(S, pgm, cs)
∧ ∀t ∈ TID \ {tid} : DoneBar(bid, barid, t) ∧ D1=D[hd(D) ← tl(hd(D))]

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S, cs1,DoneBar , D0, D1,RW ,Confl〉

• nxtPCBIrec:

hd(D)=[] ∧ ins=cur(S, cs, pgm) ∧ ins �= Bar
∧ cs1=nxtPCBI (S, pgm, cs) ∧ Confl1 =rec(Confl ,RW , rwOf (ins))

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S, cs1,DoneBar , D0, D1,RW ,Confl1 〉

Fig. 5. Operational Semantics of the CD Algorithm
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D0, with cs reset to InitCS , S to S0, DoneBar to InitDoneBar , RW to ∅, and
Confl to [] (Rule Retrig).

Setting DoneBar :When cur(S, cs, pgm) equals Bar, we update DoneBar to true
for 〈bid , barid + 1, tid〉, and cs to nxtBI (S, pgm , cs) (Rules nxtBI, nxtTidCS).

Staying within a BI upon Delay: If cur(S, cs, pgm) = hd(hd(D)), we set D
to D[hd(D) ← tl(hd(D))], i.e., hd(D) is replaced with tl(hd(D)) in D. Now, if
there is a tid for which DoneBar(bid , barid , tid) is false, we stay in the same BI
and use function nxtTidCS (S, pgm , cs) to update cs (Rule nxTidCSDel).

Moving over to Another BI upon Delay: When DoneBar is true of all the
threads except a thread tid , and this thread is delayed, we move over to the
next block in the scheduling order. Such a block must exist because (1) we are
replaying a schedule already traversed before, but with an instruction to delay,
(2) we recorded the first part of a conflict pair, (3) which means there is another
instruction (conflict partner in the pair) that is “yet to be seen”, and (4) we
will hit that instruction. Our selection policy in this case is to context-switch
to the next bid (in a modulo fashion) and the lowest barid such that for that
bid , barid , there is a lowest ranked tid for which DoneBar is false. We will use
function nxtBidCS (S, pgm , cs) to return this control state (Rule nxtBidCS).

5 Experimental Results

We have implemented CD in an extension of our tool GKLEE called GKLEEatm.
GKLEEatm was evaluated using the following CUDA benchmarks [2]: nbody: the
classical Barnes-Hut N-body algorithm [21], [260 LOC]; tsp: traveling salesman
algorithm [28], [130 LOC]; aMin: implements atomicMin for double-precision
floating point, [20 LOC]; aMinUpdate: use of atomicMin to set a shared lo-
cation to min, [35 LOC]; bintree: tree insertion designed similar to wait-free
ray tracing cache [7], [75 LOC]. The N-body (nbody) and traveling salesman
(tsp) benchmarks are real-life CUDA programs; others are synthetic bench-
marks we modeled after real programs. We created both bug-free and buggy
versions for each benchmark. Each buggy benchmark contains a non-trivial real-
istic bug related to a potential algorithm implementation error. We also inserted
assertions for checking correctness, which is a commonly used approach by pro-
grammers. The first four benchmarks (nbody, tsp, aMin, aMinUpdate) contain
lost-atomicity bugs similar to the bug shown in §3. Such bugs are commonly cre-
ated by programmers when they are trying to prevent side-effects of preemptions
using atomics, but fail at their attempt. Our last benchmark, bintree, contains
a missing-atomicity bug caused by unprotected shared memory accesses. In the
experiments, we test two versions of GKLEEatm with different conflict selection
policies: (1) unoptimized picks any detected conflict to trigger the generation of
a new schedule; (2) optimized picks conflicts containing at least one read/write
belonging to a “conditional atomic operation” such as atomicCAS.

For all of our benchmarks a delay bound ofK = 2 was sufficient. We performed
two sets of experiments with two different CUDA configurations: (1) 2 thread-
blocks with each of them containing one thread, and (2) 3 thread-blocks with
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benchmark
buggy bug-free

unoptimized optimized unoptimized optimized
#sch. t. rlt. #sch. t. rlt. #sch. t. rlt. #sch. t. rlt.

nbody(pa) 221 910 TP 64 182 TP 356 1134 TN 106 271 TN
nbody(fc) 44 278 TP 17 52 TP 356 1231 TN 106 295 TN
tsp(pa) 4 40 TP 4 40 TP 39 432 TN 27 293 TN
tps(fc) 4 41 TP 4 40 TP 39 426 TN 27 297 TN
aMin(pa) 25 28 TP 25 28 TP 53 57 TN 53 57 TN
aMin(fc) 4 5 TP 4 7 TP 53 56 TN 53 57 TN
aMinUpdate(pa) 18 32 TP 10 11 TP 51 81 TN 27 33 TN
aMinUpdate(fc) 18 32 TP 10 11 TP 51 88 TN 27 34 TN
bintree(pa) 83 90 FN 53 56 FN 83 90 TN 61 66 TN
bintree(fc) 2 3 FP 2 3 FP 2 3 FP 2 3 FP

(a) Experimental Results for 2 Thread-Blocks with 1 Thread Each

benchmark
buggy bug-free

unoptimized optimized unoptimized optimized
#sch. t. rlt. #sch. t. rlt. #sch. t. rlt. #sch. t. rlt.

nbody(pa) 448 2414 TP 126 429 TP 1195 4900 TN 336 1019 TN
nbody(fc) 83 606 TP 28 126 TP 1195 5366 TN 336 1137 TN
tsp(pa) 4 53 TP 4 56 TP 114 1738 TN 60 1019 TN
tps(fc) 4 55 TP 4 55 TP 114 2331 TN 60 1091 TN
aMin(pa) 107 117 TP 107 117 TP 431 463 TN 431 463 TN
aMin(fc) 6 7 TP 6 7 TP 431 464 TN 431 465 TN
aMinUpdate(pa) 6 8 TP 4 5 TP 653 912 TN 294 361 TN
aMinUpdate(fc) 6 7 TP 4 5 TP 653 882 TN 294 350 TN
bintree(pa) 14 17 TP 191 202 FN 835 902 TN 405 431 TN
bintree(fc) 2 3 FP 2 3 FP 2 3 FP 2 3 FP

(b) Experimental Results for 3 Thread-Blocks with 1 Thread Each

Fig. 6. Experimental Results. pa tags benchmarks with manually inserted assertions
for correctness checking; fc tags benchmarks where final state comparison is performed
for correctness checking; #sch. gives number of schedules explored; t. gives runtimes
in seconds; rlt. gives analysis results.

each of them containing one thread. Other configurations were not necessary due
to the high symmetry of CUDA programs.

5.1 Results and Discussion

Our experimental results are shown in Fig. 6. The result (rlt.) column shows the
outcome of the analysis:

– true-positive (TP): a true bug was reported (successful detection);
– true-negative (TN): no bug reported, none exists (no false alarm or omission);
– false-positive (FP): a bug was reported, but no error exists (false alarm);
– false-negative (FN): no bug was reported, but a real bug exists (omission).

Note that none of these bugs can be detected using previous tools due to the
lack of support for atomic operations.

Comparison between Different Thread Configurations. Benchmarks in
Fig. 6a use fewer blocks/threads than those of Fig. 6b. Using fewer blocks gener-
ates fewer conflicts and therefore also fewer schedules to explore. However, using
the two-block configuration for the bintree benchmark results in GKLEEatm miss-
ing a bug, since bintree requires at least three threads to trigger the bug scenario.
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1 while true do
2 if T[curr] �= null then
3 if T[curr] ≤ val then child := curr+2 ;
4 else child := curr+1 ;
5 if T[child] = null then
6 new := atomicAdd(&TSize, 3) ;
7 T[new] := val ;
8 T[child] := new; break ;

9 else curr := T[child] ;

10 else
if null = atomicCAS(&T[curr], null, val) then break ;

11 assert(the tree is valid and connected) ;

Fig. 7. Pseudocode Showing a Bug in our bintree Benchmark

Next we further elaborate why our bintree benchmark bug requires at least three
threads to be discovered.

Fig. 7 gives an abstraction of our bintree kernel. The tree is encoded as usual
into an array T, where three consecutive elements in T denote a node. The first
of these elements is the value of the node (hence the index of this element is also
the index of the node). The value of the second element is the index of the left
subtree (node), which contains all values less than the value of the current node.
The value of the third element is the index of the right subtree (node), which
contains all values greater than or equal to the value of the current node. In the
pseudocode, curr denotes the index of the current traversed node, child denotes
the index of the subtree to visit, and new denotes the index of a newly created
node. Lines 2-9 perform tree traversal and the insertion of new nodes, lines 3-4
decide which subtree to traverse, and lines 5-8 insert a new node into an empty
subtree. Line 9 sets the current traversed index to continue the tree traversal.
The introduced bug is on line 8 where the user should have used an atomicCAS
operation to update T [child] and continue the tree traversal upon failure. The
buggy code instead directly updates the tree, resulting in dangling nodes.

T0 T1 T2

line 7
T[3] = 2

line 7
T[6] = 3

line 10
line 8

T[2] = 3
line 8

T[2] = 6

Fig. 8. Schedule Revealing bintree Bug

Fig. 8 illustrates a buggy scenario
where T0 builds the root node (line
10), and T1 and T2 are concurrently
attempting to insert a value (val) into
the tree. Suppose that T0 has value
1 to insert, T1 has value 2, and T2
has value 3. First, T0 runs through
the code and generates the root node.
Then, T1 traverses the tree and de-
cides to insert value 2 in the right sub-
tree of the root node. However, it is
preempted just before line 8. Thread T2 then traverses the tree and inserts
value 3 in the right subtree of the root node. When T1 resumes, it overwrites
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the right subtree with value 2. The final tree is (1, 3, null, 2, null, null, 3, null,
null). The node (3, null, null) is a dangling node and the tree is not connected.
Note that while this scenario has 3 context-switches, it requires just one delay
(of T1) to be discovered.

Comparison between Different Conflict Selection Policies. We observe
that using the optimized strategy explores fewer schedules and produces the
same results as the unoptimized strategy, except for bintree under the three-
block configuration. The most remarkable savings are obtained for the nbody
kernel: our conflict selection optimization reduces the number of schedules to
explore by nearly a third (221 versus 64 in Fig. 6a), while producing the same test
outcomes. However, in general, this optimization might prune a certain “critical
conflict” necessary to trigger a schedule leading to a bug. For example, in Fig. 6b,
the bug in bintree can only be detected without conflict selection optimization.
The “lost atomicity” bug in this example pertains to two instances of line 8 in
Fig. 7. In a sense, since the programmer “forgot” to guard T [child] = new on
line 8 with an atomic construct, these lines are in a real data race.

Comparison between Different Correctness Checking Strategies. Our
two correctness checking strategies, fc and pa, produce different outcomes on
3 of our benchmarks: bintree, aMin, and nbody. In particular, fc produces a
false positive outcome for bintree in all experiments. This is because the bintree
benchmark inherently produces two distinct states (i.e., bit-level state layouts)
even for two logically equivalent trees. Therefore, checking correctness by simply
comparing final states will end up generating a false alarm for GPU programs
that generate nondeterministic bit-state outcomes (which are nevertheless logi-
cally equivalent). In contrast, for aMin and nbody, the fc strategy shows distinct
advantages, often exploring only a fifth of the number of schedules (e.g., 448
versus 83 for nbody) before finding a bug. Our results suggest that the final
state comparison strategy is better overall in terms of the number of schedules
that get explored before a bug is reached.

6 Discussion, Related Work, and Conclusions

GKLEEatm is the first tool we know that employs the combination of conflict-
directed and delay-bounded testing. Its CD algorithm extends the canonical
scheduling method which has already proven successful [17]. Since the intended
semantics of most CUDA programs is sequential, race/conflict freedom is the
norm. In these cases, we avoid generating interleavings. GKLEEatm also inher-
its additional features of GKLEE (e.g., test-case generation, test-case reduction,
bank conflict and memory coalescing estimation) that are now available for ex-
amples that employ CUDA atomics.

CD is not formally complete. For example, the initial canonical schedule in §2
gave us the delay points [A,P ]. Suppose we had executed the sequential schedule
that began with thread T2 of Block 1, we would initially encounter [B,Q]. At that
point, the control flows may change, and instead of seeing [P,A] later, we may
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see some other conflicting operations (or perhaps no conflicts at all). Our future
work may combine static analysis with CD to determine which other sequential
schedules to consider. The manner in which CD is realized using the abstract
functions nxtTidCS , nxtBidCS , nxtBI , and nxtPCBI gives us the intriguing
possibility of choosing these functions based on static analysis or randomizing
them for separate runs. In the paper, we have explored prioritizing atomics
involving conditional comparisons, such as atomicMin (see §5).

Race-Directed Testing. Race-directed testing for traditional multithreaded
programs was proposed previously [25, 26]. It detects races in a schedule and
takes them as “hints” for introducing context-switches, which in turn gener-
ate more schedules for detecting property violations. GKLEEatm extends race-
directed testing with delay-bounding, and selects a subset of races suitable for
testing CUDA programs with atomic operations.

Bounded Testing. Bounded testing is a well-known technique for analysis of
traditional multithreaded programs (e.g., [8, 13, 20]). It was empirically shown
that most of concurrency bugs can be detected by introducing only a limited
amount of nondeterminism (e.g., context-switches, delays). GKLEEatm takes this
approach to efficiently detect bugs in CUDA programs, and mixes it with our
conflict-directed feedback for obtaining new delay locations. Traditional bounded
testing typically does not employ such feedback and blindly introduces delays at
all potential conflict locations.

GPU Program Testing Tools. Recently, several GPU program testing tools
were proposed [3, 6, 14]. Test amplification [14] starts with dynamic testing of
GPU programs, but employs a test amplification technique to generalize the
results of the dynamic analysis over a large space of inputs. The amplification
relies on a static information flow analysis to prune inputs not affecting the
property to be verified. GPUVerify [3] performs symbolic analysis of GPU pro-
grams similar to PUG [15], but provides a precise CUDA operational semantics
for predicated executions. KLEE-CL [6] employ symbolic analysis to perform
equivalence checking for C programs and their accelerated OpenCL implemen-
tations. KLEE-CL can also check data race for OpenCL programs. However,
none of these tools support atomic instructions.

Conclusions. We propose the first conflict-directed delay-bounding approach
to schedule multithreaded programs. We formally describe our CD algorithm
that implements this approach as a new tool GKLEEatm, and apply it for testing
aggressively optimized GPU programs that employ atomic instructions and bar-
riers. Furthermore, we evaluate several scheduling policies and property checking
approaches. In addition to detecting subtle concurrency bugs, CD proves to be
a light-weight and tailorable approximation to more complete (but also more
expensive) algorithms such as DPOR. Our future work will include exploiting
thread symmetry [18] and informing concolic verification through static analysis.
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Abstract. Tight field bounds have been successfully used in the con-
text of bounded-exhaustive bug finding. They allow one to check the
correctness of, or find bugs in, code manipulating data structures whose
size made this kind of analyses previously infeasible. In this article we
address the question of whether tight field bounds can also contribute
to a significant speed-up for symbolic execution when using a system
such as Symbolic Pathfinder. Specifically, we propose to change Symbolic
Pathfinder’s lazy initialization mechanism to take advantage of tight field
bounds. While a straightforward approach that takes into account tight
field bounds works well for small scopes, the lack of symmetry-breaking
significantly affects its performance. We then introduce a new technique
that generates only non-isomorphic structures and consequently is able
to consider fewer structures and to execute faster than lazy initialization.

1 Introduction

Many techniques have been devised in order to determine to what extent a
software artifact is correct. Testing [1], for instance, is one of these techniques.
Two main reasons justify the place testing occupies in most software development
projects: it is lightweight, and it is scalable. The downside, as is well-known, is
that testing only allows one to detect errors that occur when code is executed on
the tested inputs. In order to achieve greater guarantees of software correctness,
more conclusive program analysis techniques have to be considered. For instance,
bounded verification [7] and model checking [2] guarantee that no errors can be
exhibited on significantly larger input sets (i.e., on that part of the input state
space that was successfully explored by the corresponding technique), compared
to testing. This is achieved, of course, at the expense of scalability. Therefore,
improving the scalability of the latter analysis techniques is a must.
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Bounded exhaustive verification automatically checks code correctness, but
subject to a scope, consisting of a maximum number of iterations and object in-
stances for the classes involved [7,4,5]. Therefore, if the technique is successful in
verifying code, it does not guarantee absolute correctness, but correctness within
the established scope (i.e., no errors exist that require atmost the establishedmax-
imum number of iterations, and involve at most the established number of object
instances). As shown in [5], by appropriately bounding the values that class fields
can take, bounded exhaustive verification based on SAT-solving can be signifi-
cantly improved. In particular, field bounds allowed bounded exhaustive verifica-
tion to significantly increase data domains scopes for analysis, and to detect bugs
that other tools based on bounded verification, model checking, or SMT-solving
failed to detect [5]. Here, we explore whether by using field bounds one can also im-
prove the scalability of symbolic execution of structures, as performed by Symbolic
PathFinder (SPF) [10], an extension of Java PathFinder (JPF).

The field bounds considered in this work are the tight bounds computed by
the approach in [5], which uses the structural invariants of the classes under
analysis (the so-called repOK). Intuitively, by changing SPF’s lazy initialization
approach [8], where all possible aliasing possibilities are explored, to only take
into account those included in pre-computed field bounds, considerably fewer
structures should be considered. Interestingly, as the results for binary search
trees in Section 5 show, this intuition holds for structures up to 6 nodes, but
then lazy initialization starts to perform better. As it will be discussed later
on, it turns out that the benefit of considering fewer options for each reference
to be lazily initialized is outweighed by the fact that the bounded approach
considers isomorphic structures whereas lazy initialization does not. That is,
although lazy initialization constructs many structurally invalid structures, they
are quickly pruned by repOK, whereas in the bounded case duplicate (isomorphic)
valid structures are considered throughout the analysis and are never pruned.

The above problem is overcome by a new algorithm, introduced in this paper,
that not only bounds lazy initialization, but also produces only non-isomorphic
structures. This algorithm can be shown to strictly consider fewer structures than
lazy initialization, since it behaves similarly except that some aliasing options are
not considered. This algorithm constitutes the main contribution of the paper.

Contributions. In this paper we make the following contributions:

1. We study of the usefulness of field bounds in the context of symbolic execu-
tion of structures.

2. We show that symmetry-breaking, as a mechanism to prevent considering
isomorphic structures, is important for efficiency.

3. We propose an algorithm that incorporates field bounds with symmetry
breaking into symbolic execution, and implement it within SPF.

4. We assess the above on three classic data structures: linked lists, binary trees
and red-black trees.

Structure of the article. In Sections 2 and 3, we introduce and discuss field
bounds and lazy initialization, respectively. In Section 4 we present the notion
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of Bounded Lazy Initialization, and introduce both a straightforward algorithm
for it, and a more efficient one that performs symmetry-breaking. In Section 5, we
present experimental results showing that, on a relevant data structures bench-
mark, bounded lazy initialization with symmetry breaking scales better than
standard lazy initialization. In Section 6 we discuss related work, and in Sec-
tion 7 we present our conclusions and proposals for future work.

2 Tight Field Bounds and Program Analysis

Bounded program verification was introduced in [7] as a technique for bug detec-
tion. In [4,5] it is implemented by translating Java code annotated with contracts
to a propositional formula, which is solved using a SAT-solver. This approach
requires the engineer to provide a scope, consisting of a maximum number of
iterations and object instances for the classes involved [7,4,5]. The existence of
a satisfying valuation for the formula can then be traced back to an execution
exhibiting an erroneous behavior (unhandled exception or contract violation)
within the provided scope. If no valuation is found, we know that the method is
correct within the prescribed scope.

The encoding of bounded program correctness as a satisfiability problem in-
volves interpreting programs in terms of relations. Given a class C, a class field
f of type C’ defined in C can be semantically interpreted, in a given program
state, as a total function f mapping object references from C (the semantic
domain associated with class C), to C′ (the domain associated with class C’).
That is, in a given program state, f can be seen as a binary relation contained
in C × C′. Notice that properties of the state may make some tuples of C × C′

infeasible as part of the interpretation of a field f. In particular, if the state
is assumed to satisfy certain representation invariant (e.g., the states prior to
the execution of the code under analysis are assumed to satisfy a precondition,
which would include the wellformedness of the inputs), all tuples corresponding
to ill-formed structures will necessarily be out of the semantic interpretation of
f in that state. For instance, in linked lists, if the representation invariant indi-
cates that lists must be acyclic, then tuples of the form 〈N,N〉, with N ∈ Node
(the semantic domain associated with the Node class) cannot belong to next (the
semantic interpretation of next), if the corresponding state is assumed to satisfy
the invariant.

The above observation about infeasible tuples in fields’ semantic domains
can be enhanced if one is able to prevent isomorphic structures via symmetry-
breaking. Symmetry breaking enforces a canonical ordering on the way references
are stored in the model of the memory heap used during analysis. In [5], a mech-
anism for automatically defining symmetry-breaking predicates, for any Java
class, is introduced. These predicates force assigning node references to struc-
tures following a breadth-first ordering. Figure 1 shows examples of the ordering
for singly linked lists and binary trees. The ordering imposed by symmetry-
breaking predicates prevents some references from being connected. For instance,
in a list, a node reference Ni can only point (through field next) to Ni+1 or the
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L0 N0 N1 N2 null
header next next next

N1 N2

N3 N4 N5

left

left

right

right right

null

T0
root

N0

left

right

left

left
right

Fig. 1. Node ordering for list-like and tree-like data structures

value null, if symmetry-breaking is imposed. Similarly, reference N0 can only
point through field left to N1 or the value null (any other candidate would
violate the breadth-first ordering). If we instead consider field right, N0 can
point to N1 (only in case N0.left = null), N2, or null.

Also in [5], the notion of tight field bound is introduced. Tight field bounds
allow us to remove from fields’ semantic domains the tuples that are infeasible
due to representation invariants and symmetry-breaking, and lead to exponential
speed-ups in analysis. Let us describe this notion. Let us consider a class C and
a field f in C, of type C’ (i.e., declared as C’ f). A scope determines sets C
and C′ of object instances of classes C and C’, respectively (e.g., if the scope
for class Node is 3, then Node = {N0, N1, N2}). Notice that the scope does not
determine the set of objects live at a specific runtime configuration, but rather
the runtime objects in any configuration. A sample scope would be, for instance,
7 Node (e.g., for performing a bounded verification on all linked lists, or binary
search trees, composed of up to 7 nodes). Consider the lattice of binary relations
〈P (C × (C′ ∪ {null)}) ,⊆〉 (disregard null if C’ is a basic type). A tight bound
for field f is a member Uf of P (C × (C′ ∪ {null)}) in which all pairs must belong
to some semantic interpretation for field f. Since the semantic interpretations
might be constrained by certain state properties (e.g., representation invariants
or symmetry breaking predicates), some tuples might necessarily be out of tight
field bounds.

As an example, consider scope 4 Node for acyclic linked lists with symmetry-
breaking. Then, relation

{(N0, N1), (N0, null), (N1, N2), (N1, null), (N2, N3), (N2, null), (N3, null)}

is a tight bound for field next. Similarly, relation

{(N0, N1), (N0, null), (N1, N2), (N1, N3), (N1, null), (N2, N3), (N2, null), (N3, null)}
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is a tight bound for field left of binary search trees, under scope 4 Node. We
invite the reader to refer to Figure 1 to verify that pair (N0, N2), for instance,
cannot belong to the tight bounds for fields next (resp., left) of linked lists
(resp., binary search trees) under symmetry breaking.

To take advantage of tight field bounds, these must be computed prior to ac-
tual program analysis. In [5], an effective distributed algorithm for computing
tight field bounds is presented. The implementation, that is designed using a mas-
ter/slave architecture, allows for the removal, from the field’s semantic domain, of
those pairs that cannot belong to any valid instance that satisfies the symmetry
breaking-induced ordering and other constraints such as a representation invari-
ant. Precomputing field bounds contributes to the scalability of analysis, since
bounds only depend on the class, its invariant and the scope, but are independent
from the code of the method under analysis. Also, once the bounds are computed,
they are stored in a bounds database, and often reused. For instance, the same
bound can be used for the analysis of all the methods in a class, and for different
kinds of analysis (verification, test input generation, etc.). Therefore, the cost of
computing bounds is amortized by their frequent use.

3 Lazy Initialization

Lazy initialization [8] is a technique for symbolic execution especially tailored
for handling complex, possibly unbounded data structures. Symbolic execution
begins with uninitialized field values and, along symbolic execution of a method
m, class fields are initialized only when they are accessed. Whenever a (previously
uninitialized) field f for an existing object o is accessed, the lazy initialization
for o.f takes place. When o.f is a reference to an instance of object type, the
following possibilities are, non-deterministically, considered:

– o.f may take the value null,
– o.f may refer to an already existing object,
– o.f refers to a new object.

This is formalized in the algorithm presented in Figure 2, extracted from [8]. In
order to make the contribution of this paper more clear we separate the above
choices into a function called options() which will be adapted in the following
sections.

3.1 A Running Example

Let us consider the algorithm in Figure 3. This algorithm searches for an inte-
ger value stored in a TreeSet. It returns the node that stores the valuer, if the
value is stored in the TreeSet, or it returns null otherwise. Figure 4 portrays 13
out of the 57 structures generated by the Lazy Initialization mechanism along
the symbolic execution of method Contains (we present those structures where
only fields root or left are being initialized). In Section 4, where we intro-
duce Bounded Lazy Initialization, we will come back to this example in order to
compare the number of generated structures.
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if (f is uninitialized) {
if (f is a reference field of type T) {

nondeterministically initialize f to each element of options()
if (method precondition is violated) {

backtrack()
}

}
if (f is primitive (or string) field) {

initialize f to a new symbolic value of appropriate type
}

}

function options()
return the set consisting of
1. null
2. a new object of class T (with uninitialized field values)
3. every object created during a prior initialization of a field of type T

Fig. 2. Lazy Initialization Algorithm

4 Bounded Lazy Initialization

Bounded Lazy Initialization profits from the existence of pre-computed tight
field bounds in order to prune the state space exploration performed by lazy
initialization even further. Let us consider an object o and a field f such that o.f
is next to be lazily initialized. For the sake of intuition, consider the partially
initialized TreeSet from Figure 5, with o = N1 and f = left. According to
Figure 2, the following possibilities arise during lazy initialization:

– o.f = null,
– o.f = N2, with N2 a new uninitialized node, or
– o.f may refer to N0 or N1.

The tight bound for TreeSet field left with up to 3 nodes is

{(N0, null), (N0, N1), (N1, null), (N2, null)} .

Out of the 4 alternatives that would be explored using lazy initialization, only one
is feasible according to the bound, namely, initializing o.f = null. The remaining
options introduce tuples to field left that were already deemed infeasible by the
bound pre-computation. Certainly, initializing o.f = N0 or o.f = N1 leads to a
cyclic structure, and therefore these initializations are correctly prevented by the
bounds. Even more interesting, o.f = N2 is also prevented since the resulting
structure would become unbalanced, with no nodes remaining to regain the
balance. It is worth noticing that tight field bounds capture these subtleties that
elude lazy initialization.
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public TreeSetNode Contains ( int key ) {
TreeSetNode p = root ;
while (p != null ) {

i f ( key == p . key ) {
return p ;

}
else i f ( key < p . key ) {

p = p . l e f t ;
}
else {

p = p . r i gh t ;
}

}
return null ;

}

Fig. 3. Method Contains from class TreeSet

Unlike lazy initialization, bounded lazy initialization bounds the size of the
generated structures. Lazy initialization produces partially initialized structures
that eventually have to be made concrete. The concretization process may require
generating a structure that, because of its size, exceeds the capabilities of the
concretization technique. Therefore, whenever possible, keeping the size of the
structures under control is beneficial for analysis.

Bounded Lazy Initialization modifies the lazy initialization algorithm by fil-
tering those initializations that are incompatible with the tight field bounds. In
Section 4.1 we present a first approach to Bounded Lazy Initialization that is
particularly useful for explaining the concept, as well as for exposing a limitation
that is later on addressed, in Section 4.2.

4.1 First Approach: Initializing from Bounds

The first algorithm for Bounded Lazy Initialization is given in Figure 6. When a
field f has to be initialized, the algorithm allows one to consider all the options
provided by the tight bound for field f. In Figure 7, we show all the struc-
tures produced by Bounded Lazy Initialization during the symbolic execution of
method Contains (cf. Figure 3). There are clear differences with the outcome of
lazy initialization (cf. Figure 4). The reduction on the number of generated struc-
tures (57 for lazy initialization versus 13 for its bounded version) is obviously
significant. Besides, as argued above, this “pruning” is sound, since the struc-
tures that are no longer produced by the bounded lazy initialization procedure
stand no chance of satisfying the class invariant.

An important property of lazy initialization is that no isomorphic partially ini-
tialized structures are ever generated. Therefore, no obviously redundant struc-
tures are being produced. When we move to bounded lazy initialization, this
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Fig. 4. Some of the structures generated by lazy initialization along the symbolic exe-
cution of method Contains

property is lost. Notice in particular that in Figure 7, the 6th and the 7th par-
tially initialized structures (also shown on the left side of Figure 8) are indeed
isomorphic (also the 10th and 12th as well as 11th and 13th). Unfortunately,
the number of isomorphic structures grows to a point where the advantage of
using the bounds is seriously reduced. In Section 4.2 we present an alterna-
tive approach that follows the same intuition, yet avoids producing isomorphic
partially initialized structures.

4.2 Second Approach: Regaining Full Symmetry Breaking

Let us analyze the 6th and 7th structures from Figure 7 (see left part of Fig-
ure 8). The reason for having these two isomorphic initialization alternatives for
N0.right is that by making use of the information provided by the tight bound
for field right, the options for this field, for node N0, are null, N1, or N2.
However, it is not necessary to consider two different “non-null” initializations.
In order to avoid these isomorphic structures, we will use sets of references as
labels for nodes in the partially initialized structure. Figure 8 illustrates how the
structures get merged into a common structure under this new approach. The
intuition is the following: each node is labeled with a set of references that can be
reached by traversing the fields, and are compatible with the tight field bounds.
The new algorithm for bounded lazy initialization is presented in Figure 9.



Bounded Lazy Initialization 237

root
N0this

right

N1

?

f = left

?

left

o

Fig. 5. A partially initialized TreeSet instance

Input: Receiver object this, and field f

Input: Tight bound Uf for field f

function options()
return {t : T such that (this, t) ∈ Uf}

Fig. 6. The Bounded Lazy Initialization algorithm (version 1)

Let us consider a node n in the partially initialized structure whose label set is
N . Let f be the field that has to be initialized, and let Uf be its tight bound.
Since Uf is a binary relation, we can compute N ′ = N ;Uf (N ′ is then the set of
all images of elements in N , with respect to relation Uf). As it was the case for
lazy initialization, the new algorithm also considers three cases, whose discussion
follows:

– If null ∈ N ′, there must be a reference r ∈ N such that 〈r, null〉 ∈ Uf.
Therefore, there may be a concrete structure instance in which n.f = null.
Thus, null is a candidate definition that has to considered. Equally impor-
tant, if null /∈ N ′ there cannot be any node pointing to null. Therefore,
null does not need to be considered. Notice that the lazy initialization al-
gorithm always evaluates the possibility of using null.

– If N ′ contains some reference, then we consider adding a new node to the
structure. Notice that if N ′ = {null}, we do not add a new node. This
decision, consistent with the tight bound information, prunes options that
are unnecessarily considered by the lazy initialization algorithm.

– In lazy initialization, the third case initializes f as pointing to previously
introduced nodes. But, if N ′ does not intersect the label set for a previously
introduced node m, it is not possible (due to the bound induced constraints),
that this.f = m. This prunes initialization options that are currently con-
sidered by lazy initialization.

Notice that no isomorphic partially initialized structures can ever be generated.
This immediately follows from the fact that we are generating structures in
the same order lazy initialization does, yet we are skipping (probably many)
initializations. If we use the algorithm from Figure 9, out of the 13 partially
initialized structures considered in Figure 7 only 10 remain.
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Fig. 7. The 13 structures generated by Bounded Lazy Initialization along the symbolic
execution of method Contains

5 Evaluation

The bounded lazy initialization algorithms described in the previous section
were implemented in Symbolic PathFinder [10], and compared to the already-
implemented lazy initialization algorithm. Three data structures are used to
illustrate the performance of the new approach:

– LList: An implementation of sequences based on singly linked lists;
– BSTree: A binary search tree implementation from [14]; and
– TreeSet:An implementation based on red-black trees as found in java.util.

They cover linear and tree-like structures. Since the number of partially initial-
ized structures generated during bounded lazy initialization strongly depends
on the cardinality of the tight bounds, it is relevant to analyze the impact of
the technique on heavily constrained structures (such as TreeSet, where tight
bounds are smaller) and on less constrained structures (such as BSTree).

5.1 Experimental Setting

Tight field bounds were not computed as part of our experiments. Instead, pre-
computed databases for the data structures were reused. Computing tight field
bounds, as put forward in [5], requires checking, via SAT solving, the feasibility
of each tuple in the corresponding field’s semantic domain. Thus, a high num-
ber of SAT queries, which depends on the scope, must be performed. However,
these checks are all independent from one another, and therefore are subject to
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root
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right

{N1,N2}

root
N0this

right

N1

root
N0this

right

N2

First approach Second approach

Fig. 8. From isomorphic partially initialized structures to a single partially initialized
structure

Input: Receiver object this, with node set N as label
Input: Tight bound Uf for field f

function options()
Let N ′ be the node set N ;Uf. return the set
1. null, if null belongs to N ′

2. a new object of class T (with uninitialized field values), if N ′ \ {null} �= ∅
3. every object created during a prior initialization of a field of

object type T whose label node set intersects with N ′

Fig. 9. The Bounded Lazy Initialization algorithm (version 2)

parallelization. Indeed, in [5] the approach to compute tight field bounds uses a
cluster. As a sample, the time required to compute tight bounds for lists, binary
search trees and red black trees using the approach in [5] is 68:53, 00:38 and
02:51 (in minutes and seconds, mm:ss), for scopes 100, 12 and 12, respectively,
and using a cluster of 16 quad-core PCs. These scopes exceed those used in this
paper, and therefore the corresponding tight bound computation times serve as
upper bounds of the actual times for the experiments in the paper. Each PC in
the cluster had two Intel Dual Core Xeon 2.67 GHz processors, a 2 MB L2 cache,
and 2 GB of RAM. The cluster used Debian GNU/Linux (kernel 2.6.18-6) and
the Argonne National Laboratory’s MPICH2 for message-passing.

The results reported in the rest of this section were computed on an Apple
MacBook Pro with a 2.3GHz Intel i5 processor with 4 Gb of memory, running
the Mac OS X 10.8.2 operating system and the Darwin 12.2.0 kernel.

5.2 Experimental Results

Each experiment explores the execution of repOK(t) on a symbolic data structure
t with n nodes. The value of n is a parameter for the experiments. The repOK

routine checks that t satisfies the constraints on the wellformedness of the corre-
sponding data structure; for example, in the implementation of TreeSet, repOK
makes sure that t is a valid binary search tree, that node parent pointers are
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Table 1. Experimental results for LList

LI BLI1 BLI2
n unique explored time explored duplicates time explored time

1 1 2 <00:01 1 0 <00:01 1 <00:01
10 10 74 <00:01 19 0 <00:01 19 <00:01
100 100 5 249 00:02 199 0 <00:01 199 <00:01

Table 2. Experimental results for BSTree

LI BLI1 BLI2
n unique explored time explored duplicates time explored time

1 1 4 <00:01 2 0 <00:01 2 <00:01
2 3 21 <00:01 10 0 <00:01 11 <00:01
3 8 82 <00:01 36 1 <00:01 44 <00:01
4 22 306 <00:01 145 9 <00:01 164 <00:01
5 64 1 140 00:01 668 61 00:01 639 00:01
6 196 4 275 00:02 3 554 393 00:02 2 464 00:01
7 625 16 144 00:04 21 165 2 523 00:05 9 604 00:03
8 2 055 61 332 00:09 140 996 16 927 00:17 35 695 00:06
9 6 917 234 154 00:29 1 030 989 119 747 01:43 136 260 00:16
10 23 713 897 596 01:44 8 259 479 908 563 13:47 516 376 00:53
11 82 499 3 452 526 06:34 – – – 1 972 260 03:12

correct, and that the red-black color constraints are satisfied, resulting in a bal-
anced tree. As repOK traverses the data structure, the fields are initialized using
the lazy, bounded lazy, and the symmetry-breaking bounded lazy techniques.

Tables 1, 2, and 3 (for LList, BSTree, and TreeSet, respectively) show the
number of structures explored, and the execution times (in minutes and seconds,
mm:ss). The last two tables show only those experiments that completed in
less than 30 minutes. The results for LList in Table 1 do not convey much
information. The first two columns show the value of n (the number of nodes)
and the number of unique data structures of this size. As expected, these values
are identical in the case of LList. The next three major columns show the
results for the LI (lazy initialization), BLI1 (the first bounded lazy initialization),
and BLI2 (the second bounded lazy initialization) techniques. The times, shown
in columns 4, 7, and 9, are negligible. The values in columns 3, 5, and 8 are
the number of choices made during the exploration according to the algorithms
in Figures 2, 6, and 9, respectively. Because the last two values are bounded,
not many such choices are explored; LI is entirely unconstrained and make all
possible choices. Nevertheless, the times remain small.

The results for BinTree show a different case, since the number of choices is
much larger, and the repOK implementation is more involved. Up to n = 6, LI
makes more choices because it is not constrained by bounds. However, at n = 7
it is overtaken by BLI1 in this regard, because of the number of duplicates the
latter explores. The number of duplicates explored (over and above the unique



Bounded Lazy Initialization 241

Table 3. Experimental results for TreeSet

LI BLI1 BLI2
n unique explored time explored duplicates time explored time

1 2 4 00:01 2 0 <00:01 2 <00:01
2 4 27 <00:01 20 2 <00:01 15 <00:01
3 7 110 00:01 22 1 <00:01 21 <00:01
4 15 409 00:01 90 1 00:01 101 00:01
5 29 1 509 00:04 239 14 00:02 158 00:01
6 49 5 610 00:08 1 231 58 00:05 883 00:04
7 84 21 043 00:27 7 636 178 00:23 4 715 00:13
8 148 79 530 02:14 51 291 576 03:13 16 146 00:53
9 270 302 402 11:51 267 750 1 775 27:11 39 583 02:59
10 518 – – – – – 149 133 17:11

structures) is given in the middle column of the table. This extra work is also
reflected in the execution times. The BLI2 technique explores fewer choices than
either LI and BLI1, meaning that it can analyze significantly more structures in
the same amount of time. This same trend is also clear in the case of TreeSet.

6 Related Work

Constraint based bounded verification has its origins in [7], where a translation
from annotated code to SAT is proposed, and off-the-shelf SAT-solvers are used
in order to determine the existence of bugs in the code under analysis. Several
articles suggest improvements over [7]. For instance, [12] uses properties of func-
tional relations to improve Java code analysis, and provides improvements for
integer and array analyses. Bounded verification can be performed modularly, as
shown in [4]. In [5], the use of tight field bounds allowed us to improve bounded
verification significantly.

Symbolic execution [9] is a technique for program analysis that executes a
path in the program control flow graph using symbolic values. During the sym-
bolic execution, conditions from branching statements are conjoined into a path
condition. The satisfaction of the path condition allows one to create inputs that
exercise the symbolically executed path. Lazy initialization [8] is an optimization
of symbolic execution where dynamically allocated data structures are partially
initialized on demand, deferring the initialization process as much as possible.
Dynamic symbolic execution [6] (also called concolic execution), uses concrete
executions to guide the symbolic execution phase.

Symbolic execution and bounded verification were combined in [11]. Symbolic
execution was used to build path conditions that were later on solved using
bounded verification. Bounds have also been used in the context of symbolic
execution; tools like Kiasan [3] and Symbolic Pathfinder [10] bound the length
of reference chains. In [13] symbolic execution was used to generate tests for
containers similar to those used here. Various different approaches were used for
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test generation, including symbolic execution of repOK(), but no bounds were
considered. All the techniques that resort to symbolic execution may profit from
using a mechanism such as, bounded lazy initialization, as defined in this paper.

7 Conclusions and Future Work

Tight field bounds have been successfully used in the context of bounded-
exhaustive bug finding, in order to increase this analysis’ scalability. In this
paper, we studied whether field bounds can also contribute to improve the ef-
ficiency of symbolic execution. We showed not only that field bounds can be
employed to improve the symbolic execution of structures, but also that sym-
metry breaking, as a mechanism to prevent considering isomorphic structures,
is important for efficiency. We proposed two algorithms that incoporate field
bounds into Symbolic Pathfinder’s lazy initialization, resulting in what we call
bounded lazy initialization. The first is a straightforward extension of lazy ini-
tialization to take into account field bounds, whereas the second prevents the
generation of isomorphic structures. We carried out experiments with classic
data structure implementations, that show the usefulness of our approach, and
the importance of avoiding generating isomorphic structures.

The presented approach requires pre-computing tight bounds for the fields of
the program under analysis. Computing tight field bounds, as put forward in [5],
requires a high number of satisfiability queries, which are independent and there-
fore are subject to parallelization. So, a cluster is used to compute these bounds.
We are working on alternative, more efficient, ways of computing tight bounds.
In particular, we are currently developing tight bound computation mechanisms
that can be run on a single workstation, with an efficiency comparable to the
approach in [5], but which may lead to less precise bounds.

We used symbolic execution on the repOK() method, to analyze the effective-
ness of using field bounds. This can be used, e.g., to generate all valid structures
(within a provided scope), to be employed later on for testing. Moreover, since
the repOK() method typically uses all fields of a structure, it does not have any
bias towards particular visits of the analyzed structures. A different approach,
that we plan to explore, would be to symbolically execute the code under anal-
ysis, and then to check which valid structures are required. This would produce
structures without necessarily having to instantiate all their parts. The contri-
bution of tight field bounds in such contexts might be different from what we
obtained in this work, so we plan to evaluate our approach in such scenarios.
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Abstract. One of the challenges in concurrent software development is early
discovery of design errors which could lead to deadlocks or race-conditions. For
safety-critical and complex distributed applications, traditional testing does not
always expose such problems. Performing more rigorous formal analysis typi-
cally requires a model, which is an abstraction of the system. For object-oriented
software, UML is the industry-adopted modeling language. UML offers a number
of views to present the system from different perspectives. Behavioral views are
necessary for the purpose of model checking, as they capture the dynamics of the
system. Among them are sequence diagrams, in which the interaction between
components is modeled by means of message exchanges. UML 2.x includes rich
features that enable modeling code-like structures, such as loops, conditions and
referring to existing interactions. We present an automatic procedure for translat-
ing UML into mCRL2 process algebra models. Our prototype is able to produce
a formal model, and feed model-checking traces back into any UML modeling
tool, without the user having to leave the UML domain. We argue why previous
approaches of which we are aware have limitations that we overcome. We fur-
ther apply our methodology on the Grid framework used to support production
activities of one of the LHC experiments at CERN.

Keywords: formal methods, software engineering, UML.

1 Introduction

As modern software systems become more complex and distributed, a major challenge
is faced in maintaining their quality and functional correctness. Early discovery of de-
sign errors which could lead to deadlocks, race-conditions and other flaws, before they
can surface, is of a paramount importance. The Unified Modeling Language (UML) [1]
has become the lingua franca of software engineering, in particular for the domain of
object-oriented systems. Over time, several mature CASE tools have already adopted
UML as the industry-standard visual modeling language for describing software sys-
tems. However, use of these tools alone does not assure the correctness of the design,
nor does it provide direct means to test the software under design. For safety-critical
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and complex distributed applications, traditional testing does not always expose such
problems. Performing more rigorous formal analysis typically requires a model, which
is an abstraction of the system. In the last decades, more rigorous methods and tools
for modeling and analysis have been proposed. Despite the research effort, these meth-
ods are still not widely accepted in industry. One problem is the lack of expertise and
the necessary time investment in the OO development cycle, for becoming proficient in
them. A more substantial problem is the lack of a systematic connection between actual
implementation and the semantics of the existing formal languages.

To bridge the gap between industry-adopted methodologies based on UML software
designs, and the sophisticated analysis, verification and optimization tools, several ap-
proaches have been proposed for automated extraction of the necessary analysis models
from the UML artifacts. For instance, Petri Nets [2, 3], Layered Queuing Networks [4]
and stochastic process algebras [5, 6] are used for performance analysis. Model check-
ing for certain properties of the system is often done via translation into process algebra
[7, 8]. Automatic synthesis of functional test cases from UML models is possible as
well [9, 10]. Model-to-model transformations can also be done within the UML do-
main itself, for the purpose of model optimization or refactoring [11]. In each of these
cases, the translation is mediated by defining graph-transformation rules between the
meta models of UML and the target language.

A UML model of a system is typically a combination of multiple views. Devising an
automated transformation methodology requires that behavioral views of the system be
available. The static views of a system (such as Class and Deployment UML diagrams)
are rarely sufficient to extract the necessary information for constructing a target model
for meaningful analysis. Activity, Sequence, and State Machines are among the most
commonly used behavioral diagrams for this purpose. State Machines (SM) represent
the reaction of individual objects on different stimuli; they are suitable for describing
specific parts of systems, such as a critical control component, but are very rarely used
[8] as the sole paradigm for developing large distributed object-oriented systems. De-
velopers almost never create a fully-formed object a-priori and in isolation, with all the
behavior that the object will ever need. Activity Diagrams (AD) describe the system at
a higher level of abstraction, where objects and message exchanges are not captured.
They represent workflows of activities, with support for choice and concurrency, and are
commonly used for business process modeling. Sequence Diagrams (SD) provide the
most fine-grained runtime view of the system. They model a set of interacting objects by
means of message-exchanges over time. These diagrams contain information about the
control flow during the interaction, capturing conditions and iterations. With the intro-
duction of UML 2.x set of rich features such as combined fragments, SDs have become
popular for expressing scenarios because of their clear and intuitive visual layout and
close correspondence with actual code-like structures. However, most of the proposed
transformation approaches up to date target only one particular type of behavioral dia-
gram, mostly AD or SM diagrams [5, 8, 12, 13]. When it comes to interactions (SDs)
or targeting multiple diagram types, the existing approaches either deal with UML 1.x
semantics [6, 14–17], largely limiting the expressiveness by not taking into account all
elements which allow designers to describe complex traces in compact manner, or their
semantical models suffer from flaws [6, 17], as we will show. Furthermore, rarely [18]
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does an approach give feedback to the software developer on the results of the formal
analysis, back into the UML domain.

Our interest in this paper is obtaining a formal model in the process algebra mCRL2
[19], taking a UML model as starting point. We chose mCRL2 because it is able to deal
with abstract data types as well as user-defined functions for data transformation. Fa-
miliarity with the toolset’s simulation, debugging, visualization and model-checking ca-
pabilities has influenced our decision, but mCRL2 has many commonalities with other
process algebraic formalisms, so in principle the methodology can be easily adapted.
Due to the true-concurrency nature (multi-actions) of mCRL2, we can faithfully express
the partial-order semantics of SDs, rather than the limited interleaving semantics that
many approaches adopt. This is important in distributed systems where the representa-
tion of parallelism by non-determinism ignores real asynchronous behaviors that may
exist. The proposed approach in this paper is based on UML 2.x semantics, and makes
use of both sequence and activity diagrams to automatically derive the target formal
model. We rely on the XMI representation to devise the model transformation pro-
cedure. XMI [1] is an XML-based vendor-independent format for metadata exchange
between compliant UML tools. Based on the approach, we have developed a proto-
type tool that can take a UML model in XMI representation as input, and construct
the mCRL2 model. Our methodology allows traces from the model checking tool to be
conveniently displayed back in any UML tool. We have further applied the tool to the
DIRAC [20] Grid framework used to support production activities for one of the LHC
experiments.

The paper is structured as follows: Section 2 gives a brief overview of the syntax and
semantics of the UML and mCRL2 language notation necessary for understanding the
Transformation Methodology (Section 3). In Section 4 we apply it on a case study from
the Grid domain, and we conclude in Section 5.

2 Preliminaries

The UML abstract syntax and semantics is described in terms of its UML metamodel,
which defines the relationships between model elements. To translate a system com-
posed of different diagrams, we chose Sequence Diagrams as a driving behavior de-
scription type, and we take the necessary additional information about concurrency
from Activity Diagrams. Our choice is motivated by the fact that SDs provide the rich-
est set of constructs for low-level behavior expression, and as such have a close corre-
spondence with actual code. Additional information from ADs is necessary for deriving
the actual (OS level) processes, relevant for concurrent and distributed systems.

2.1 Sequence Diagrams

Sequence diagrams model the interaction among a set of participants, with emphasis
on the sequence of messages exchanged over time. The participants are class instances
(objects) shown as rectangular boxes, with the vertical lines falling from them known
as Lifelines (See Fig. 1, left). Each Message sent between the lifelines defines a specific
act of communication, synchronous or asynchronous. The start and end of the directed
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Fig. 1. Sequence Diagrams notation

edge representing a message are called MessageEnds, and are marked with a so called
MessageOccurrenceSpecification element of the UML metamodel.Synchronous mes-
sages are drawn with filled arrow-head, while asynchronous ones have an open arrow-
head. Reply messages are drawn as dashed lines. All message types can carry arguments.

Messages are sent between objects with the aim of invoking specific behavior, known
as ExecutionSpecification, and visualized as a thin rectangle on the receiver’s lifeline.
Thus, execution specifications specify when a particular object is busy executing the
invoked method. Execution specifications can be nested/overlapping, as a result of a
callback message, or an object invoking its own method, an example of both shown in
Fig. 1 (right). In this example, the client object sends a request for message1 execution
on the server side, after which it is blocked until it receives a reply from that method
call. However, this does not stop other potential objects from invoking any method of
the client interface. This possibility of overlapping method executions on the lifeline on
a single object thus plays an important role in our transformation methodology choices.

Combined Fragments. Combined Fragments were introduced to add more expressive-
ness to SDs by means of constructs capturing complex control flows, thus overcoming

Fig. 2. Combined Fragments examples
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many limitations present in UML 1.x [1]. The specification supports different fragment
types, such as alt, opt, loop, break, par. They are visualized as rectangles with a keyword
indicating the type. Combined Fragments consist of one or more InteractionOperands.
Depending on the type of the fragment, InteractionConstraints can guard each of the in-
teraction operands. Combined fragments can be nested with an arbitrary nesting depth, to
capture complex workflows. Figure 2 shows how some of them can be used. The guards
play a crucial role in deciding which fragment’s operand(s) will be executed at runtime.
All fragment types above have equivalent constructs in most object oriented languages.
Another useful enhancement is the InteractionUse fragment. Thus, for expressing com-
plex scenarios, one can include a reference to another SD, which is semantically equiv-
alent to including the behavior of the called diagram in the current one. This promotes
reuse of already defined sequence diagrams.

Runtime Semantics. Unlike the syntax, the SD semantics is scattered through the
UML specification, and defined by the means of natural language. The most important
points can be summarized as follows: an object sends a message as a result of earlier
behavior invocations on its interface, and is the object’s reaction to these receptions. In
that sense, an object does not control the reception of a message. Message and execution
completion are considered local concepts. For a message m sent from object o1 to object
o2, the sender’s view of that message completion is the sending, the receiver’s view of
the message completion is its reception, while other objects have no knowledge of m.
Thus, the only synchronization points between the objects are the message exchanges.
This semantics does not impose a total ordering of the messages in a given SD.

2.2 Activity Diagrams

As already stated, we use ADs to extract concurrency information necessary for deriving
OS-level processes in a distributed system setup. Although the notion of concurrency
is present in some form in SDs, the par fragment only indicates that the implementa-
tion can execute any interleaving of the operands’ behaviors, without mandating that
the implementation be concurrent or distributed. In a concurrent or distributed setup,
each of the SDs could be parts of multiple processes that must be initialized by the sys-
tem environment at some point, and this is where elements of ADs help. We defer the
explanation of the limited subset of used elements to the section where we explain the
transformation methodology, illustrating it on an example.

2.3 The mCRL2 Language

mCRL2 is a process algebra language for specification and analysis of concurrent sys-
tems. Our choice of mCRL2 as a formal language is motivated by its rich set of abstract
data types as first-class citizens, as well as its powerful toolset for analysis, simulation,
and visualization of specifications. The syntax of mCRL2 is given by the following
BNF grammar:

p ::= a(d1, . . . , dn) | τ | δ | p+ p | p.p | p||p |
∑

d:D p | c → p / p
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A basic action a of a process may have a number of data arguments d1, ..., dn. The
action τ denotes an internal step, which cannot be observed from the external world.
Non-deterministic choice between two processes is denoted by the + operator. Processes
can be composed sequentially and in parallel by means of “.” and “||”. The sum operator∑

d:D p denotes (possibly infinite) choice among processes parameterized by d. c →
p / p is a conditional process, and depending on the value of the boolean expression c,
the first or second operand is selected.

To enforce synchronization, the allow operator ∇H(p) specifies the set of actions
H that are allowed to occur. To show possible communications in a system and the
resulting actions, the communication operator ΓC(p) is used. The elements of set C
are so-called multi-actions of the form a1 | a2 | . . . | an → c, which intuitively means
that action c is the result of the multi-party synchronization of actions a1, a2, . . . and
an. There are a number of built-in data types in mCRL2, such as (unbounded) integers,
(uncountable) reals, booleans, lists, and sets. Furthermore, by a sort definition one can
define a new data type. A new process is declared by proc.

The semantics associated with the mCRL2 syntax is a Labeled Transition System
system that has multi-action labeled transitions. A more elaborate description of
mCRL2 and its features can be found in [19].

3 Transformation Methodology

3.1 The Rationale

Before describing the transformation methodology, we outline the rationale behind the
choices we made, and why they differ from previous approaches that deal with SDs as
behavioral description diagrams of a system. The approaches of which we are aware,
and which use a process algebra formalism for a target model, translate each lifeline
(hence, each object) into a sequential process1. However, this implies that an object be-
haves intrinsically sequentially, which is not the case. The object’s individual processing
capabilities are exposed via its methods. In a concurrent setting, multiple threads of a
process (or even multiple processes sharing an object, if the implementation language
permits this) could be invoking methods of the same object, thus, that object could be
executing multiple behaviors at the same time. Consider the simple SD in Fig. 2 (right).
Even if we assume that the scenario is executed by a single OS process, treating each
object as a sequential process is problematic. In the example, after invocation of mes-
sage1, object a needs to know the choice that object b has made (modeled with the alt
fragment), while this choice is based on local conditions that only b is aware of. There-
fore, a cannot know whether its method message4 will be invoked by object c, before
a return from message1 is received on the same lifeline. Consequently, a single process
representation of the lifeline a should not control the reception of message4 and execu-
tion of the associated behavior. Some approaches attempt to deal with this by making
all involved processes aware of each others’ local decisions, but this quickly becomes
cumbersome and prone to errors, given how complex UML 2.x SDs can be made by
nesting combined fragments.

1 The only exception made to this rule is when dealing with the par fragment.
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We wish to preserve the OO paradigm in the transformation to a formal model. In this
paradigm, unless an object is active, it does not control the invocation of its methods; it
only responds by executing the associated behavior. An OS process is then essentially
a chain of method invocations on objects. To achieve this, we associate an mCRL2
process description with each class method. A description (be it actual program code
or a UML model) of a class method should not differ across objects that are instances
of that class. Of course, at runtime objects execute only one of the multiple possible
traces captured by that description, based on variable values. In our methodology, each
such mCRL2 process instance carries data parameters that encode the class, object, and
OS process instance to which the exhibited method behavior belongs at runtime. As
an important consequence of this choice, we preserve information on objects, classes
and method calls in the mCRL2 model, which makes it easy to reverse model-checking
traces back into the UML domain.

3.2 The Approach

Figure 3 gives an overview of our approach and implemented toolset. Both the source
(UML) and the target (mCRL2) models adhere to their respective metamodels. Although
any UML modeling tool with XMI export/import capabilities can be used, we chose
IBM’s Rational environment because of the excellent support for SDs and consistency
preservation across multiple views of the same model. For parsing and manipulation
of the XMI representations we use Eclipse’s MDT-UML2 plugin, which implements
the UML 2.x metamodel. The transformation rules define how to generate a model that
conforms to a particular metamodel, from a model that conforms to another metamodel.

To achieve the basic idea of mapping each method along a lifeline into an mCRL2
process description, we process the ordered events along every lifeline individually,
thus decomposing the lifeline into individual ExecutionSpecifications. We take into ac-
count both synchronous and asynchronous messages, so there are essentially 6 different

Fig. 3. Automated verification of UML models
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Fig. 4. Identifying event types along lifelines

types of message events (shown in Fig. 4) that we consider: (1) SendEvent synchCall;
(2) SendEvent reply; (3) ReceiveEvent synchCall; (4) ReceiveEvent reply; (5) Re-
ceiveEvent asynchCall; and (6) SendEvent asynchCall. In UML metamodel terms,
each of these events correspond to MessageOccurrenceSpecifications, and refer to the
ends of each Message. Readers familiar with class diagrams are referred to the UML
superstructure[1] for the Interactions metamodel, though the transformation process in
the sequel can be understood without it. An Interaction (a Sequence Diagram) essen-
tially encloses Messages, Lifelines and an ordered list of InteractionFragments. Each
Message is accompanied by a pair of MessageOccurrenceSpecifications, and has a
reference to the lifelines at which the message is sent and and received. Both
MessageOccurrenceSpecifications and CombinedFragments are specializations of In-
teractionFragment. We exploit these relationships in our algorithm for matching and
transforming into an mCRL2 model.

All fragments of an Interaction are processed sequentially, and depending on their
type, different mapping rules are applied. In case of MessageOccurrenceSpecifications,
each event type is treated separately. In case of a CombinedFragment, each Interaction-
Operand’s nested fragments are treated by applying the same procedure recursively.

1: procedure PROCESSFRAGMENTS(fragments← interaction.getFragments())
2: for each fragment in fragments do
3: if fragment.type = MessageOccurrenceSpecification then
4: message← fragment.getMessage()
5: arguments← message.getArguments()
6: event← fragment.getEvent()
7: objName, className← fragment.getCovered.getObjectAndClass()
8: theReadyStack← readyProcessesPerLifeline.get(objName)
9: theBusyStack← busyProcessesPerLifeline.get(objName)

Two in-memory stacks are kept for the currently “ready” and the “busy” methods on
each lifeline, for cases of overlapping invocations. Busy methods are waiting (blocked)



252 D. Remenska et al.

for a reply from another method execution that they have invoked, while ready processes
are active, but not blocked. The message, arguments, class, and object corresponding to
the handling event are retrieved.

10: switch event do
11: case SendEvent synchCall : 	 Case (1)
12: mcrl2Process← theReadyStack.pop()
13: if insideInteractionOperand & firstEvent then
14: operator← getCombinedFragmentOperand()
15: guard← getCombinedFragmentOperandGuard()
16: if operator = ”alt” then
17: mcrl2Process.addAltFragment(guard)
18: [...]
19: else if operator = ”par” then
20: mcrl2Process.addParFragment(guard)
21: else if operator = ”loop” then
22: loopProcess← newLoopProcess()
23: mcrl2Process.addCallT oLoopProcess(loopProcess)
24: theReadyStack.push(mcrl2Process)
25: loopProcess.addCondition(guard)
26: end if
27: end if
28: mcrl2Process.addInvocation(
29: ”synch call send(id, className, objName,message,arguments)”)
30: theBusyStack.push(theProcess)

The above pseudocode handles the case of SendEvent synchCall observed on a lifeline.
For invocation to be possible, the object representing that lifeline must already be ac-
tive in some method, at the same time not being blocked and awaiting for a return from
a method call. We obtain that “ready” method (or mCRL2 process) from a stack, on
line 12. In addition, this is the only valid UML case where it is possible for a SendE-
vent synchCall to be the first event inside a CombinedFragment. The different fragment
types are handled by associating a corresponding mCRL2 structure in the mCRL2 pro-
cess (lines 14-27). The details of how each type of fragment is mapped to an mCRL2
structure will be explained after the algorithm walk-through, where also invocations
(line 28) added to each process will be discussed.

31: case SendEvent reply : 	 Case (2)
32: mcrl2Process← theReadyStack.pop()
33: mcrl2Process.setProcessed()
34: mcrl2Process.addInvocation(”
35: synch reply send(id, className, objName,message,arguments)”)

Once a method sends a reply (SendEvent reply), that mCRL2 process description is
finished. The process is removed from the appropriate “ready” stack, as it no longer
exhibits behavior after this point.
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Fig. 5. Handling Case 4(left), Case 5(middle) and Case 6(right)

36: case ReceiveEvent synchCall : 	 Case (3)
37: findProcess← findProcess(className,message)
38: if findProcess = null then
39: findProcess← newProcess(className,message)
40: end if
41: if ¬findProcess.isProcessed then
42: theReadyStack.push(findProcess)
43: findProcess.addInvocation(
44: ”synch call receive(id, className, objName,message, arguments)”)
45: end if

Reception of a synchronous call on a lifeline indicates method invocation. Unless the
mCRL2 process corresponding to this method has already been fully constructed, a new
one is created, and pushed to the “ready” stack.

To get an intuition on how the algorithm proceeds, we treat Cases 4, 5, and 6 along
with a graphical notation (Fig. 5), rather than an algorithmic exposition. Upon recep-
tion of a reply from a method (Case (4)), the one initiating it is no longer blocked, so
the corresponding mCRL2 process is removed from the “busy” stack and added to the
“ready” one. Handling of Case (5) is analogous to Case (3), except that a different kind
of invocation is added to the mCRL2 process. Finally, handling Case (6) is also analo-
gous to Case (1), with the important difference being that the active method invoking
this asynchronous call on another object will not be blocked after the call. This is why
the process is not removed from the “ready” stack nor pushed to the busy one.

46: else if fragment.type = CombinedFragment then
47: getOperandsForCombinedFragment(fragment)
48: end if
49: end for
50: end procedure

1: procedure GETOPERANDSFORCOMBINEDFRAGMENT(fragment)
2: operands← fragment.getOperands()
3: for each operand in operands do
4: processFragments(operand.getFragments()) 	 handle recursively
5: end for
6: end procedure
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All operands that belong to a CombinedFragment are processed in turn, recursively han-
dling all fragments (possibly also nested CombinedFragments) contained in them, by
calling processFragments again. This concludes the basic algorithm for transformation
of SDs of arbitrary complexity into mCRL2 process descriptions. When the algorithm
is applied to the example in Fig. 4 it results in 6 different process definitions. The data
that messages convey, and which takes part in decisions, are owned by the objects rep-
resenting the lifelines. This data is maintained by introducing a recursive “memory”
process for each object within the mCRL2 specification, which carries all data values
as parameters [21]. Most of the primitive data types used have a direct mapping into
mCRL2 types. Strings are handled using mCRL2’s abstract data type capabilities. Due
to space limitations we will not explain the transformation rules for activity diagrams,
although they are rather simple. We will demonstrate them on an example instead.

The different invocation types added to the mCRL2 processes in the course of the
transformation are mCRL2 actions. They carry all parameters necessary for exchange
of data between processes, and are used for synchronizing the processes on the cor-
responding send/receive events. The actions synch call send and synch call receive
represent two ends of a synchronous message exchanged between two processes. Sim-
ilarly, synch reply send and synch reply receive correspond to a reply message, while
asynch call send and asynch call receive represent an asynchronous call. By applying
the mCRL2 communication (Γ ) and allow (∇) operator in the following manner:

∇{synch call, synch reply, asynch call}
Γ{synch call send|synch call receive →synch call,

synch reply send|synch reply receive →synch reply,

asynch call send|asynch call receive →asynch call}

,communication is enforced between processes as a result of the multi-action synchro-
nization at the corresponding events.

Figure 6 demonstrates the transformation rules on a simple example. Classes, ob-
jects, method names and string values are represented by enumerated data types (struct).
Replies are distinguished from their respective method calls, as they may also carry pa-
rameters. The mCRL2 summation (sum) operator is used for binding parameter iden-
tifiers to actual values when two processes communicate. This example illustrates how
the alt fragment is translated into the mCRL2 conditional operator. To avoid deadlocks,
and permit the process to continue in case none of the guards evaluates to true, the in-
ternal (τ ) step is added as a last “artificial” choice. Note that the introduction of this in-
ternal step is deliberate, in order to match the mCRL2 if-then-else operator with UML’s
alt fragment semantics, and as such, should not mask proper deadlocks. The translation
of the opt and break fragments uses the conditional operator in a very similar manner.
In a par fragment, all communication inside each operand is set to run in parallel with
the “||” mCRL2 operator. The loop fragment has a special treatment. It is translated into
a recursive process referenced by the mCRL2 process representing the method active
at the moment of entering the loop. There are several less-known combined fragments
(like ignore, consider, neg) which are not presented here. While they can be included in
the transformation, we have not encountered implementation-language counterparts in
object-oriented distributed software, so they are not tackled here.
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Fig. 6. Application of the SD transformation rules

Fig. 7. Application of AD transformation rules for system-level concurrency setup

Finally, Fig. 7 shows how a simple system-level concurrency can be expressed in an
AD, and how it is translated into an mCRL2 specification. ADs consist of Actions and
Control Nodes connected by Activity Edges, with each diagram having one Initial Node.
The control nodes have their intuitive meaning as in traditional flow charts, namely to
depict concurrent flows (Fork), and decision points (Decision). While there are various
action types, we are primarily interested in the CallBehaviorAction, which invokes a
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referenced behavior directly. Since SDs are classified as behavior, we use this action
type to provide the link between SDs and the concurrent system setup described in an
AD. In the given example, depending on the condition, three concurrent OS process
instances are started with the Seq2 SD, or alternatively one instance of Seq1 and Seq2
in parallel. The id:Nat parameter that each mCRL2 process carries is used to bind it
to an OS process in the system setup. It is also possible to add Activity Final Node for
systems where execution terminates, by design.

Validating the Transformation. The current UML specification uses a combination
of semi-formal diagrams, a constraints language, and natural language descriptions.
While there has been a substantial effort [22–24] on formalization, there is still no offi-
cial mathematically-formalized semantics definition. In this context, formal correctness
proofs to support the validity of the transformation approach are not possible. To assess
the correctness of our proposed semantics, we used the simulation and visualization
mCRL2 tools on simple diagrams in isolation, in order to get confidence before apply-
ing the transformation methodology on more complex ones. This informal validation
was based on the compositional nature of UML; we closely examined the basic UML
constructs’ behavior reflected in the formal model, with a special focus on combined
fragments. Furthermore, to facilitate the transformation, we have constructed a UML
metamodel [25] of the mCRL2 language syntax. The fact that we were able to reliably
explain complicated bugs observed in practice provided additional confidence.

4 Case Study: DIRACs Executor Framework

DIRAC [20] is the grid framework used to support production activities of the LHCb
experiment at CERN. Jobs submitted via its interface undergo several processing steps
between the moment they are submitted to the grid, to the point when their execution
on the grid actualizes. The crucial Workload Management components responsible for
orchestrating this process are the ExecutorDispatcher and the Executors. Executors pro-
cess any task sent to them by the ExecutorDispatcher, each one being responsible for a
different step in the handling of tasks (such as resolving the input data for a job). The
ExecutorDispatcher takes care of persisting the state of the tasks and distributing them
amongst all the Executors, based on the requirements of each task. It maintains a queue
of tasks waiting to be processed, and other internal data structures to keep track of the
distribution of tasks among the Executors. During testing, certain problems have man-
ifested: occasionally, tasks submitted in the system would not get dispatched, despite
the fact that their responsible Executors were idle at the moment. The root cause of this
problem could not be identified by testing with different workload scenarios, nor by
analysis of the generated logs.

We used our toolset to generate an mCRL2 model, based on the reverse-engineered
SDs of the Executor Framework implementation. To reason about the correctness of
the generated model behavior, mCRL2 relies on the modal μ-calculus language [19],
extended with regular expressions and data. Regular expressions are constructed using
the boolean constants true and false and the modalities “[]” (necessity) and “<>”
(possibly). The behaviors inside the modalities are specified using action formulas. The
constants true and false have their usual meaning: true holds in every state, while
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Fig. 8. SD trace showing a case of no-progress of tasks scheduling

false does not hold in any state of the model. Together with operators like “∗”, used
for expressing cardinality (actions can occur any number of times), “.”, which allows for
concatenating behaviors, and “!” for the set complement, or negation, powerful expres-
sions can be formulated. The action-based formulas are a good match for our transfor-
mation methodology: actions correspond to message exchanges, which already contain
the information on the sender/receiver class and object of a particular message. As will
be discussed in the next section, we plan to utilize this for expressing modal μ-calculus
formulas as sequence diagrams. The above-mentioned Executors problem can be for-
mulated as the following safety property:
[ t r ue * .
synch ca l l (1 , ExecutorQueues , queues , pushTask ( JobPath , taskId , f a l s e ) ) .
t rue * .
! ( synch ca l l (1 , ExecutorQueues , queues , popTask ( [ JobPath ] ) ) ) * .
synch rep ly (1 , ExecutorDispatcher , eDispatch , sendTaskToExecutor return (OK, 0 ) ) ] f a l s e

, meaning that a task pushed in the queue must be processed, i.e., removed from the
queue before the ExecutorDispatcher declares that there are no more tasks for processing.
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Explicit model checking was not feasible in this case due to the model size (50 concur-
rent processes), so we resorted to using a standard monitoring process which is set to run
in parallel with the original model and observe the relevant actions that the system itself
takes. This technique, combined with a depth-first traversal choice in the tool, effectively
discovered a trace violating the property within minutes. The counter-example (Fig. 8)
is a rather long trace (available at [25]), and traverses a large fraction of the SDs (27
in total), but the bug was localized in a single SD, covering the behavior of the Execu-
torDispatcher component. We only present the most important part for understanding the
cause. Whenever a task has been processed by some of the Executors, the ExecutorDis-
patcher is notified (taskProcessed(eId,taskId)), and this removes it from its internal list
of processing tasks. To further dispatch the task to another Executor, this task is removed
from the ExecutorDispatcher’s memory of processing tasks, followed by retrieval of the
next responsible Executor. In case it was actually processed by the last Executor in the
chain, the dispatcher attempts to retrieve its last Executor (getExecutorOfTask(taskId)),
so that more tasks can be dispatched by this (now free) Executor. However, this infor-
mation is already removed, as can be seen from the figure. As a result, the opt fragment
(shown only for clarity, not generated by the toolset) will not be executed, and no further
tasks waiting for this Executor will be dispatched. The bug was reported and fixed. The
figure also demonstrates how the trace is translated back in the UML domain, to facil-
itate debugging the actual problem. The process is relatively simple, since each action
of the trace already contains the information necessary to build the message exchange
sequence in the SD.

5 Conclusions and Future Work

We have presented an automated transformation methodology for verification of UML
models, based on sequence and activity diagrams, preserving the object-oriented view
of the system in the transformation. Although the mCRL2 toolset automatically discov-
ers deadlocks, model checking for application-specific properties requires the use of
temporal logic. Part of the future work is expressing modal μ-calculus formulas as se-
quence diagrams of accept/reject scenarios: behaviors that the designer wants to either
confirm or avoid in the model. This can be easily achieved, given that μ-calculus for-
mulas are action-based, and actions correspond to message exchanges in our transfor-
mation methodology. Furthermore, we plan to explore the limitations of this approach,
given that process proliferation is likely to happen in larger systems. In our case study,
we have as many as 50 processes, and already generating the entire state space can be
problematic at this scale, given that the generated model is over 2k lines of model code.

Besides discovering behavioral problems, automating performance analysis is on our
road-map as well. UML provides extension mechanisms called Profiles which allow
annotating models with quantitative information, such as expected execution time, re-
source usage, number of requests, etc. These quantities permit assessing the system’s
efficiency and reliability. Our approach can be easily extended in this direction, by
taking into account not only message occurrences, but also annotated execution speci-
fications within SDs. We can use the same target formalism for enhancing the models
with such quantitative information. The CADP toolset [26] for analysis of stochastic
models is well integrated with mCRL2 for this purpose.
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Abstract. A verification system relies on a programmer writing mathe-
matically precise descriptions of code. A specification that describes the
behavior of an operation and a loop invariant for iterative code are exam-
ples of such mathematical formalizations. Due to human errors, logical
defects may be introduced into these mathematical constructs. Tech-
niques to detect certain logical errors in program specifications, loop
invariants, and loop variants are described. Additionally, to make pro-
gram specifications more concise and to make it easier to create them,
RESOLVE has parameter modes: each formal parameter is annotated
with a mode that is related to the intended roles of the incoming and
outgoing values of that parameter. Methods to check whether the pro-
grammer has chosen a plausibly correct mode for each parameter are
also explained. The techniques described are lightweight and are applied
at an early stage in the verification process.

1 Introduction

The primary value of a formal verification system is to verify a program imple-
mentation against its specification and to report an implementation error if there
is one. The robustness of such a system depends as much on the programmer sup-
plying a correct specification for her program as it does on the theorem prover’s
ability to prove the verification conditions (VCs) generated from a proposed im-
plementation of that specification. However, inconsistencies in the specification
may be introduced during the software development process due to human er-
rors. In such scenarios, either an implementation may be declared as correct for
an incorrect specification, or it may not be possible to write a valid implemen-
tation at all. In a similar way, defects may occur when a programmer annotates
a loop with an invariant and a variant.

The idea described in this paper is used to detect certain errors at an early
stage in the formal verification process. Typically, errors are only detected in
a verification system when a VC cannot be proved by the theorem prover and
subsequently the VC is traced back to its origin in the program to identify
the error. We describe a lightweight method that checks consistency of certain
programming constructs before VCs are generated. Since the cost of detecting
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and fixing errors increases as software development reaches the later stages of
its life-cycle, eliminating errors early is widely regarded as a best practice in
software engineering.

Fig. 1. Types of correctness checks

Formal verification ensures that a program is behaviorally correct, i.e., it
matches its specification. It is far stonger than syntactic correctness of a pro-
gram, which is checked by an ordinary compiler. The techniques outlined here
lie between these two extremes. The consistency of program specifications and
loop annotations is accomplished with the help of a theorem prover (also used
for formal verification), but instead of proving an entire program to be correct,
we perform local checks on mathematical statements that do not depend on
the entire body of code. Additionally, we also illustrate methods to accomplish
consistency checks on the modes of operation parameters. These are syntactic
checks, but of a slightly different order than those that are normally carried out
by a compiler. This classification is shown in Figure 1.

Our specifications and their implementations are written in RESOLVE [1].
To detect logical inconsistencies in program specifications and their implementa-
tions, we use an SMT solver, Z3 [2], as a back-end prover. The example programs
are chosen from the RSRG software components library, some of which have been
suggested as software verification benchmarks [3]. Students in computer science
classes have been observed to make the kinds of errors that are mentioned in
this paper, as have the authors and other more experienced specifiers.

The contributions in this paper are three-fold:

– The conditions for admissibility of program specifications are formulated.
– Techniques to establish logical consistency of loop annotations (invariants

and variants) are developed.
– Methods for ascertaining that a programmer has supplied the correct modes

for the parameters of an operation are described.

A reader’s familiarity with formal specifications, pre- and post-conditions, and
loop invariants and variants is assumed. However, no prior knowledge of RE-
SOLVE or of the intricate mechanisms of Z3 is necessary. The ideas apply to
specifications and formal verification / theorem-proving technology in general.

Section 2 provides an overview of the types of defects considered. Sections
3,4 and 5 expound on the techniques for detecting such defects with examples.
Discussion and related work are presented in Section 6, with conclusions in
Section 7.
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2 Types of Specification Defects Detected

2.1 Defective Contracts

Fig. 2. Program Specifications

An operation (or method) specifica-
tion promises certain properties that
the implementer can assume at the
time of a call via the requires
clause (pre-condition) and, in turn,
demands that certain properties
hold upon return via the ensures
clause (post-condition). We first di-
vide specifications into two distinct
groups: those that are implementable
and those that are not. Unimple-
mentable specifications are, for our
(practical) purposes, considered in-
admissible. A specification with an
unsatisfiable post-condition is unim-
plementable and hence inadmissible. On the other hand, not all specifications
that are implementable are admissible1. Some of them may be trivially correct
and hence are inadmissible. This happens if the pre-condition is unsatisfiable.
This characterization is shown in Figure 2. In short, an inadmissible specifica-
tion is one that, for practical purposes, must have resulted from a specification
error. In Section 3 we discuss various techniques to detect these different types
of problems in specifications.

2.2 Defective Loop Annotations

Loop invariants and variants are important constructs needed to formally ver-
ify a program. Loop invariants are needed to reason about the loop, without
considering the loop iterations individually. Correspondingly, to prove the to-
tal correctness of programs, variants (called progress metrics in RESOLVE) are
used. A variant is usually a natural number that has a positive value before each
time the loop body is executed, and must be reduced in each iteration. Invariants
and variants are together used to prove total correctness of loops.

As mentioned earlier, there is a benefit to detecting defects in loop annota-
tions at an early stage, even before VCs are generated. In Section 4 we discuss
techniques to ensure admissibility of its constituent parts.

2.3 Inconsistent Parameter Modes

Each parameter of a RESOLVE operation is annotated with a mode in the
header of that operation. A programmer may fail to select parameter modes that

1 “Admissible” refers to a specification that does not contain any checkable defects,
not to one that “correctly formalizes the requirements”.
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are consistent with how the parameter values are utilized and changed in the
operation. In other words, the modes may not be consistent with the requires
and the ensures clause.

For example, the replaces mode indicates that the outgoing parameter
value is determined by the operation and that the incoming value is inconsequen-
tial. Thus the operation should not refer to the incoming value of the parameter.
Hence if the programmer uses a replaces mode when the incoming value of
the parameter appears in the pre- or post-condition, then she is alerted of this
anomaly.

A detailed explanation of the modes is presented in Section 5 where we also
discuss the methods we employ to detect modes that are inconsistent with the
specification of the operation.

3 Inconsistent Specifications

3.1 Methodology

A specification may be inadmissible for various reasons, as discussed in Sec-
tion 2.1. We perform a series of checks to identify those that are not admissible.
The following lists a taxonomy of defects that may occur in the specifications.

Contradiction in the Pre-condition: An implementation may be declared
as trivially correct if the pre-condition (say pre) is false. Logical contradictions
appearing in pre make it false and hence the post-condition (say post) is ir-
relevant. To avoid such default correctness, the requires clause is tested for
satisfiability.

Contradiction in the Post-condition: On the other hand, a specification
is unimplementable if post is false. A contradiction in post implies that it is
impossible to create an implementation that meets the specification. In this case
too, the ensures clause is tested for satisfiability.

Appropriateness of pre and post Together: Even when the requires and
ensures clauses are individually contradiction-free, they may still preclude an
implementation that satisfies the program specification.

procedure DecrementBy3 (updates x: Integer)
requires
x >= 3

ensures
x = #x - 3 and x > 0

Fig. 3. Proposed specification of DecrementBy3

As an example, consider the specification of a procedure DecrementBy3
shown in Figure 3. The parameter mode updates for the parameter x indicates
the value of this parameter may be changed by the operation. The # symbol in
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the ensures clause refers to the parameter at the time of the call; no # symbol
is used in the requires clause as it always refers to the incoming value. The
pre-condition of the procedure DecrementBy3 says that the incoming value of
x should be greater than or equal to 3. The post-condition of the procedure says
that the outgoing value of x is equal to 3 less than its incoming value (denoted
by #x) and that the outgoing value is positive.

The requires and ensures clauses are individually satisfiable: both are
true for #x = 4 and x = 1. Even so, a valid implementation (that is correct for
all the input values that satisfy the pre-condition) is still not possible, because
the input value #x = 3 satisfies the requires clause, but the outgoing value
of x must be 0 and that makes the second conjunct (x > 0) false, and hence
invalidates the ensures clause.

To detect logical inconsistencies in program specifications (e.g., the one in
Figure 3), we need to ascertain that for all possible values that can satisfy pre,
there exist values of the variables that satisfy post. So we check the validity of

∀x1, . . . , xn(pre =⇒ ∃y1, . . . , ym(post)) (1)

where (x1, . . . , xn) are the incoming values of the variables appearing in pre and
(y1, . . . , ym) are the outgoing values of the variables in post.

Thus the specification in Figure 3 is tested with the help of the formula

∀#x(#x >= 3 =⇒ ∃x(x = #x− 3 ∧ x > 0)) (2)

3.2 Example: A Divide Operation for Unbounded Integers

In RESOLVE, a contract contains the client-view of a software component
that describes a model of that component’s behavior. A realization module
contains operation bodies that implement the operations specified in the con-
tract. Consider the contract Divide for unbounded integers, i.e, integer values
without an upper or lower bound.

contract Divide enhances UnboundedIntegerFacility

procedure Divide (updates i: Integer, restores j: Integer,
replaces r: Integer)

ensures
#i = i * j + r and 0 < r and r < |j|

end Divide

Fig. 4. Proposed specification of Divide

In the Divide operation (shown in Figure 4), the incoming value of i (de-
noted by #i) is the dividend and the quotient is the outgoing value of i. Since
the value of the divisor j remains unchanged, its parameter mode is restores.
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The remainder from the division is returned in r. Since, the incoming value of
r is inconsequential, its parameter mode is replaces.

An important observation needs to be made about the variable j. The param-
eter mode of j is restores, which means the incoming and the outgoing values
are the same; it is equivalent to having j = #j as part of the ensures clause.
For simplicity, a programmer can leave such a clause out of the post-condition.
But while constructing the formula to check for validity, this additional conjunct
needs to be appended to the ensures clause. First, we check whether the pre-
condition (there isn’t one and hence by default is it considered to be true) and
post-condition are individually satisfiable; they are. Then, we construct formula
(3) to check for the admissibility of the specification.

∀#i,#j(true =⇒ ∃i, j, r((#i = i ∗ j + r) ∧ (0 < r) ∧ (r < |j|)∧ (j = #j)))
(3)

To test whether the specification is admissible, formula (3) is automatically
translated into Z3’s SMT2 input format and Z3 is invoked to prove it. Z3 deter-
mines that it is invalid. This gives a flag to the programmer that the specification
contains an error. When a formula is determined to be invalid, Z3 produces a
counter-example, i.e., values for which the formula does not hold. Here, it sug-
gests a value 0 for #j. As we know that j = #j, the last two conjucts of the
ensures clause in Figure 4 are reduced to 0 < r and r < 0. Since a conflict
arises, the programmer (we hope) sees that a value of 0 cannot be allowed for
the divisor j. Hence, this should be prevented by the requires clause.

requires
j /= 0

ensures
#i = i * j + r and 0 < r and r < |j|

Fig. 5. New proposed pre- and post-condition of Divide

The specification in Figure 4 is now corrected as shown in Figure 5, and it is
checked again:

∀#i,#j((#j = 0) =⇒ ∃i, j, r((#i = i∗j+r)∧(0 < r)∧(r < |j|)∧(j = #j)))
(4)

Z3 declares this formula invalid as well and produces a counter-example where
#j = 1. On substituting this value, the last two conjucts of the ensures clause
are 0 < r and r < 1. The variable r cannot satisfy both these conjuncts at
the same time, since r is an integer. Hence, the programmer should realize at
this point, that the remainder from the Divide operation may be equal to 0.



Automatically Detecting Inconsistencies in Program Specifications 267

requires
j /= 0

ensures
#i = i * j + r and 0 <= r and r < |j|

Fig. 6. Correct Pre- and post-condition of Divide

Hence, the specification for Divide is updated one last time to the admissible
one in Figure 6.

3.3 Example: An Increment Operation for Bounded Integers

We next consider a contract for bounded integers, where two constants MIN
and MAX represent the minimum and the maximum bounds respectively. The
bounds are used with the restriction that MIN <= 0 and 0 < MAX. Figure 7
shows (some of) a proposed contract for the BoundedIntegerFacility.

contract
BoundedIntegerFacility

definition MIN: integer
satisfies restriction
MIN <= 0

definition MAX: integer
satisfies restriction
0 < MAX

math subtype INTEGERMODEL
is integer
exemplar i
constraint
MIN <= i and i <= MAX

type Integer is modeled
by INTEGERMODEL

exemplar i
initialization ensures
i = 0

procedure Increment
(updates i: Integer)
requires
i <= MAX
ensures
i = #i + 1
...

end BoundedIntegerFacility

Fig. 7. A proposed BoundedIntegerFacility contract

The specification of each operation that appears in this contract can be tested
for correctness using the method described in Section 3.1. However, a bounded
integer (say i) in this contract must satisfy MIN <= i < MAX that is intro-
duced by the constraint clause. Thus, to check the validity of each of the
operation specifications in this contract, formula (1) needs to be updated such
that the constraint clause (say constr) on the program variables (an abstract
invariant) is not violated. The constraint clause must hold for both the in-
coming and the outgoing parameter values and thus needs to be appended to
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both the requires and the ensures clauses. In addition, the restriction
clause (say restr) on the boundary values (i.e., MAX and MIN) must also be ac-
counted for in the formula in the same way as the constraint. The resultant
formula is shown in (5).

∀x1, . . . , xn((pre ∧ constr ∧ restr) =⇒ ∃y1, . . . , ym(post ∧ constr ∧ restr))
(5)

where (x1, . . . , xn) are the incoming values of the parameters appearing in
pre, constr and restr and (y1, . . . , ym) are the outgoing values of the parameters
in post, constr and restr .

The specification of the operation Increment, like all others, needs to be
tested for validity using the formula from (5). Substituting values, the formula
evaluates to

∀#i,MAX,MIN(((#i <=MAX) ∧ (#i <=MAX) ∧ (MIN <= #i)

∧ (0 < MAX) ∧ (MIN <= 0)) =⇒ ∃i((i = #i+ 1) ∧ (i <=MAX)

∧ (MIN <= i) ∧ (0 < MAX) ∧ (MIN <= 0))) (6)

Z3 concludes that the formula in (6) is invalid, and produces a counter-example
with a value 1 for each of the variables #i and MAX. Substituting these values
in the formula (6), the programmer notices that the ensures clause no longer
holds true, as the value of i becomes greater than MAX. This gives the program-
mer a clue that to keep the value of i within bounds, the value of #i should
have been less than MAX.

On correcting the requires clause of the specification, the resulting speci-
fication of Increment is tested for validity and Z3 determines it to be valid.

3.4 Example: A Halve Operation

Like many other languages for writing specifications, RESOLVE supports user-
defined mathematical functions and predicates. The procedure Halve in Fig-
ure 9 contains a user-defined predicate IS ODD, that is presented in Figure 8.
The ability to make up new definitions helps the specifier: instead of writing
out the expression for odd each time, she can condense it with the help of the
predicate. This also can help the prover [4].

To test the admissibility of the Halve specification, the formula to be checked
for validity is in (7).

∀#i(true =⇒ ∃i((IS ODD(#i) =⇒ #i = i + i)

∧ (¬IS ODD(#i) =⇒ #i = i+ i+ 1))) (7)

Z3 declares this as invalid and produces a value 0 for each of the variables #i
and i. Since 0 does not satisfy the IS ODD predicate, substituting the values
gives rise to the expression 0 = 0 + 0 + 1, which is impossible. At this point
the programmer realizes that the conditions are simply flipped and she updates
the specification to the correct one. The new check of the specification indicates
that it is admissible.
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definition IS_ODD(i: Integer)
: boolean

is
i mod 2 /= 0

Fig. 8. The predicate IS ODD

procedure Halve(
updates i: Integer)

ensures
if IS_ODD(#i) then
#i = i + i

else
#i = i + i + 1

Fig. 9. Proposed specification
for Halve

4 Consistency of Loop Annotations

In RESOLVE, a loop invariant for a while loop is introduced via a maintains
clause. This clause formalizes the relation between the variable values just before
the loop (prefixed with a #) and the variable values at any time the while loop
condition is checked (unadorned). Additionally, the progress metric (variant) of
a loop is stated in a decreases clause.

procedure Add (updates n: Natural, restores m: Natural)
variable k, z: Natural
loop
maintains n + m = #n + #m and k + m = #k + #m and z = 0
decreases m

while not AreEqual (m, z) do
Increment (n)
Increment (k)
Decrement (m)

end loop
m :=: k

end Add

Fig. 10. Procedure Add for UnboundedNaturalFacility

Figure 10 shows the code for operation Add for natural numbers. This pro-
cedure adds two natural numbers n and m and stores the result in n. The
body of this procedure makes calls to two other operations: Increment and
Decrement, which have been defined in the UnboundedNaturalFacility
contract. The primary data-movement operator in RESOLVE, :=:, swaps (ex-
changes) the values of its two operands, which must be simple variables. We
perform the following checks to ensure that the constituent parts of a loop are
admissible.

4.1 The Invariant and the Boolean Condition Are Contradiction-Free

If two or more conjuncts in the loop invariant (say inv) contradict each other,
then the invariant evaluates to false and the loop will never execute. For a
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similar reason, the boolean loop condition (say B) should not contain any con-
tradictions. Thus we first check to see that inv and B are individually satisfiable.

4.2 The Variant Is Positive Every Time the Loop Executes

In order for a loop to execute, the loop variant (say var) must (a) be positive
every time the loop body executes, and (b) decrease during every iteration of the
loop (we restrict attention to loop variants that are non-negative integers). We
perform consistency checks to see that case (a) holds. Since to prove the validity
of (b), the loop body needs to be involved, this is generated as a VC later in the
tool chain.

To ensure that case (a) holds, we check the validity of the following formula.

∀x1, . . . , xn(B ∧ inv =⇒ var > 0) (8)

where (x1, . . . , xn) are the variables that occur in the boolean condition, the
invariant and the variant. Applying this formula to check the validity of the
variant in Figure 10, the formula to be tested for validity is

∀m,#m,n,#n, k,#k, z(m = z ∧ n+m = #n+#m∧
k +m = #k +#m ∧ z = 0 =⇒ m > 0) (9)

Here, since m and z are natural numbers, their values have to be at least 0 and
thus, the above formula is valid.

4.3 The Loop Invariant Is Valid Before the Loop Executes for the
First Time

Some fundamental properties of a loop invariant are that it holds (a) the first
time before entering the loop, and (b) at the end of each iteration of the loop. As
in the case of variants, to prove case (b), the loop body needs to be examined,
and thus a VC is generated later for this purpose. Here for case (a), we perform
a simple check of the logical consistency of the loop invariant before entering the
loop. We need to ensure that there exist some values of variables in the invariant
such that it is potentially true. Thus we check the validity of (10).

∃x1, . . . , xn(invinit) (10)

where invinit is the invariant with # symbols removed and (x1, . . . , xn) are
the variables in the invariant. By definition of #, before the loop executes for
the first time, each unadorned variable in the invariant has the same value as
the adorned version.

Application of this procedure to the invariant in Figure 10 results in

∃k, z, n,m(n+m = n+m ∧ k +m = k +m ∧ z = 0) (11)

The validity of formula (11) confirms that the loop invariant might be valid
at the beginning of the loop. A VC is generated later in the tool-chain to see
whether it is always valid at this point.
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5 Detecting Incorrect Parameter Modes

RESOLVE has multiple parameter modes: restores, updates, replaces
and clears. Although some of them have been mentioned in previous sections,
their meanings are consolidated in Table 1.

Table 1. Parameter modes

Parameter Mode Description

restores
The incoming and the outgoing values of the parameter

are the same

updates
The incoming and outgoing values of the parameter

are potentially different

replaces
The operation’s behavior does not depend on the

incoming value (a special case of updates)

clears
The outgoing value of the parameter is an initial
value of its type (a special case of updates)

The programmer supplies a mode for each parameter, as discussed in Sec-
tion 2.3. In our technique, syntactic checks are employed to give suggestions to
the programmer about the appropriate mode in case the way in which the pa-
rameter values in an operation are utilized are not consistent with the parameter
mode. In our method, we allow that there might be an error either in the pre- or
post-condition or in the parameter mode. In other words, we do not assume the
parameter mode or the body of the specification to be absolutely correct; instead
we make suggestions to assist the programmer write a correct specification when
these are not consistent with each other.

5.1 A Variable with Replaces Mode Appears in the Requires
Clause

If a variable occurs in the requires clause, the incoming value of the vari-
able is relevant to the operation’s behavior. But this cannot occur if the mode
is replaces. Thus if the incoming value of a variable annotated with the
replaces parameter mode is used in the requires or ensures clause, the
programmer is issued a warning message.

procedure Divide (updates i: Integer, replaces j: Integer,
replaces r: Integer)

requires
j /= 0

...

Fig. 11. Incorrect header of Divide
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As an example, consider the Divide procedure from Section 3.2. The value
of the divisor j remains unchanged, and thus the parameter mode should cor-
rectly be restores. Suppose instead, as shown in Figure 11, if the programmer
incorrectly uses the replaces mode, an error is detected, since the incoming
value of j is used in the requires clause to state that division by 0 is not
allowed.

5.2 Incoming Value of a Variable in the Post-condition

The incoming value of a variable (say x) may occur in the ensures clause if
and only if the parameter mode is updates or clears. For the restores
mode, since the incoming and outgoing values of the variables are the same, #x
should not appear in the ensures clause (because x should be used). Although
the value of the variable is changed with replaces mode, the ensures clause
cannot refer to the incoming value of the variable, since the incoming value is
supposed to be immaterial.

Thus, a warning is given to the programmer in the following two cases:

– She used the parameter mode updates or clears and yet did not use
#x in the post-condition. This could mean that either she wanted the mode
to be either restores or replaces or that she missed out an additional
conjunct in the ensures clause that refers to the incoming value of the
variable.

– She designated the mode to be restores or replaces and #x appeared
in the ensures clause.

procedure Add
(updates n: Natural,
restores m: Natural)

(a) The header of Add

ensures
n = n + m

(b) Incorrect post-condition

ensures
n = #n + #m

(c) Incorrect post-condition

ensures
n = #n + m

(d) Correct post-condition

Fig. 12. The Add operation

Figure 12 shows the contract for Add for natural numbers. The body of Add
operation was illustrated in Figure 10. The header for this procedure is shown
in (a). If the programmer writes the post-condition as shown in (b), an error
is detected since the parameter mode for n is declared as updates, yet the
incoming value #n does not appear in the post-condition. On the other hand, if



Automatically Detecting Inconsistencies in Program Specifications 273

the programmer writes the post-condition as in (c), an error is detected again
since the mode for m is restores, and yet the incoming value #m appears. The
correct post-condition is shown in (d).

5.3 Other Warnings

In addition to the errors listed above, warnings are given to the programmer
when the following anomalies are noticed:

– The clears parameter mode: When the parameter mode is clears,
typically the outgoing parameter value is not referenced in the post-condition
since the parameter value is reset to an initial value of its type.

For example, suppose a programmer declares the parameter mode of i to
be clears, and then adds a conjunct to the post-condition which says i =
0. This conjunct is unecessary, since the RESOLVE compiler automatically
adds the conjunct i = 0 to the post-condition when the parameter mode
of i is clears.

– The outgoing parameter equals a constant value in the post-
condition: If the mode of the variable is restores, then a conjunct i =
constant should not appear in the post-condition. Since the parameter
value is not changed by the operation, it is not meaningful to add a conjunct
stating that the outgoing value should be equal to a particular value. (It is
okay, of course, to say that some other variable is equal to this parameter.)

6 Discussion and Related Work

The examples of inconsistent specifications that are presented in Section 3 con-
cern integers. The method presented here to detect such inconsistencies can
also be applied for other datatypes such as arrays, stacks, queues, etc. However,
Z3 is frequently unable to determine a formula as valid / invalid if it contains
recursive definitions of datatypes. In addition, our primary admissibility-check
formula contains an alternation of quantifiers that automated solvers have trou-
ble with. It is expected that if provers become more adept at handling such
datatypes and quantifiers, a larger range of specifications can be automatically
checked for admissibility.

Validating program specifications has been previously described as generating
test-cases [5] and as symbolic execution [6, 7]. Both of these methods rely on
making the specifications executable. However, formal specifications are non-
executable mathematical statements, and to conform with this characteristic, our
technique uses a theorem prover to establish their validity. Heitmeyer, et.al [8]
describe a toolset to carry out syntactic and critical property checks like safety,
timing, etc., on specifications. In contrast, the analyses in this paper are more
general in that they do not depend only on certain properties of particular types
of specifications, but check for logical consistency of every program specification.
They are also more involved than mere syntactic checks (as depicted in Figure 1).
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Some program verifiers such as Dafny [9] are capable of detecting a subset
of inconsistent specifications that are described in this paper. Dafny is capable
of detecting a “division by zero” error in the ensures clause that states the
return value as i/j, i.e., it explicitly uses the divide operator, when a requires
clause stating that j = 0 is missing. But, it does not detect a more involved
division by zero error such as the one present in the Divide specification shown
in Figure 4.

Ponsini et.al [10] describe a way of determining the correctness of loop in-
variants using constraint solvers. Their correctness proof closely follows Hoare
logic [11]. The admissibility checks presented in this paper are of a different
nature and are more comprehensive in that consistency of loop variants is also
considered.

7 Conclusions

In this paper, we developed methods to detect logical inconsistencies in pro-
gram specifications and errors in loop invariants and variants. Methods to help
the programmer annotate each parameter in operation headers with the correct
mode are also presented.

Most inconsistencies that are identified by our techniques are logical ones:
those that if present might cause an error during verification. By detecting them
early, we prevent the programmer from making more mistakes further along.
However, some of the inconsistencies (mentioned in Section 5.3) are warnings
and not errors, in that they do not cause the verification process to fail and yet
are better eliminated so that a better program specification is achieved.

In the future, we will contine to enhance our technique to detect logical incon-
sistencies in other specification constructs. We hope that others also implement
and extend this idea to create useful lightweight tools that help programmers by
leveraging formal specifications.
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Abstract. Recent experience in the avionics sector has demonstrated the bene-
fits of using rigorous system architectural models, such as those supported by the
standard Architectural and Analysis Definition Language (AADL), to ensure that
multi-organization composition and integration tasks are successful. Despite its
ability to capture interface signatures and system properties, such as scheduling
periods and communication latencies as model attributes, AADL lacks a formal
interface specification language, a formal semantics for component behavioral
descriptions, and tools for reasoning about the compliance of behaviors to inter-
face contracts. In this paper we introduce the Behavioral Language for Embedded
Systems with Software (BLESS)—a behavioral interface specification language
and proof environment for AADL. BLESS enables engineers to specify contracts
on AADL components that capture both functional and timing properties. BLESS
provides a formal semantics for AADL behavioral descriptions and automatic
generation of verification conditions that, when proven by the BLESS proof tool,
establish that behavioral descriptions conform to AADL contracts. We report on
the application of BLESS to a collection of embedded system examples, includ-
ing definition of multiple modes of a pacemaker.

1 Introduction

Recent experiences in the avionics sector have demonstrated the benefits of using rigor-
ous system architectural models, such as those supported by the SAE standard Architec-
tural and Analysis Definition Language (AADL) [19], to ensure that multi-organization
integration tasks are successful. For example, on the System Architecture Virtual In-
tegration (SAVI) effort, members of the Avionics Vehicle Systems Institute, including
Boeing, AirBus, Honeywell, and Rockwell Collins, conducted pilot studies in the use
of AADL to define precise system architectures [23]. Using an “integrate then build”
design approach, important interactions are specified, interfaces are designed, and com-
patibility of modules and crucial system properties are verified before the internals
of components are built. Subsequently, stakeholders provide implementations that are
compliant with the architecture [9]. This development approach focuses on defining
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precise interface descriptions and exposing in architectural models important properties
needed to perform component-wise and system-wide analysis of real-time scheduling
and error propagation properties.

Despite its ability to capture interface signatures and system properties—such as
scheduling periods and communication latencies—as model attributes, AADL lacks
(i) a formal behavioral interface specification language, (ii) a formal semantics for com-
ponent behavioral descriptions, and (iii) tools for reasoning about the compliance of
behaviors to interface specifications. Obviously, such capabilities are needed to fully
support the “integrate then build” vision of SAVI, as well as the full potential of AADL
in other contexts.

Previous work on Behavioral Interface Specification Languages (BISLs) [11] has
produced a number of specification and verification technologies for programming lan-
guages used in system development, and has demonstrated that these techniques can
support the type of formal compositional reasoning that would greatly benefit the safety-
critical architecture-centric development supported by AADL and illustrated by, e.g.,
the SAVI project. While several technical concepts and lessons learned from previous
work on BISLs can be carried over and applied to the design of a BISL for AADL,
there are a number of interesting differences that give rise to significant challenges
not considered in BISLs such as JML [8] and Spec# [5]. For instance, while conven-
tional programming languages focus on interactions via method calls and shared vari-
able concurrency, AADL emphasizes component-based designs with synchronous and
asynchronous communication via ports. Thus, a different approach is needed for posi-
tioning contracts in source artifacts and for generating verification conditions to support
compositional reasoning in the presence of buffered and unbuffered port behavior. A be-
havioral specification framework for AADL must be carefully designed to align with the
real-time operating system (RTOS) concepts defined in the standardized AADL runtime
environment, which supports systems targeted for deployment on real-time platforms
like the ARINC 653, a platform for modular avionics [12]. A behavioral specification
framework for AADL must also provide a means of specifying and reasoning about
crucial timing properties phrased in terms of the RTOS concepts of scheduling periods
exposed as architecture attributes . Finally, since AADL is used in domains that require
certification, it is desirable for tools that reason about envisioned AADL specifications
produce auditable artifacts that can be assessed as part of the certification process.

In this paper, we introduce the Behavioral Language for Embedded Systems with
Software (BLESS)—a BISL and an associated proof environment for AADL [13]. The
AADL standard provides the notion of an “AADL Annex” to support extensions to
the modeling language, and BLESS uses this mechanism to introduce notations for (a)
specifying behaviors on component interfaces, (b) defining AADL-runtime aware tran-
sition systems that capture the internal behavior of AADL components, and (c) writing
assertions to capture important state and event properties within the transition system
notation. BLESS annex subclauses can be inserted into AADL components transpar-
ently to other uses of the system architecture. Successful definition and tool engineer-
ing for formal reasoning frameworks like BLESS require a precisely defined formal
semantics, and we have invested considerable effort in defining a such a semantics for
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BLESS1. Finally, BLESS includes a verification-condition (VC) generation framework
and an accompanying proof tool that enables engineers to prove VCs via proof scripts
build from system axioms and rules from a user-customizable rule library.

BLESS and AADL are rich, expressive languages. Due to space constraints, this
paper gives a cursory introduction to AADL (Section 2), and then focuses on the core
features of the BLESS language (Sections 3 & 4) and its associated specification and
verification methodology which is assisted by the BLESS tool (Section 5). Material is
presented using a running example from the medical device domain: a pacemaker [21].

The BLESS tool framework [24] is implemented as a publicly available open source
plug-in to the Eclipse-based OSATE environment for AADL [18], and includes and
editor for BLESS specifications and an environment operating the BLESS proof engine.

2 Background and Motivation

Avionics & origins of AADL: To manage the ever increasing complexity of electronic
control systems, engineers devised ways to recursively partition complex systems into
collections of simpler sub-systems. As a result, several architectural domain specific
languages (DSLs) were invented2 to capture system structure and, more importantly,
the specification of interfaces—which are crucial to successful system composition.

In a movement to standardize an architectural description language for avionics and
aerospace systems, SAE International sponsored standard subcommittee AS-2C; it is
from this effort that SAE AS5506 Architecture Analysis & Design Language (AADL)
was created, and revised upon use, now AS5506C. Both commercial and open source
tools for creating and analyzing AADL models are available [18].

AADL Core and Annex Sublanguages: AADL was designed with extensibility in
mind. It has a core language defined in its own standards document. The core lan-
guage allows one to express architectural structure—using components, interfaces, con-
nections, containment—but not behavior. The core language is extensible with annex
sublanguages, some of which have been standardized by an annex standard document
approved by AS-2C. The AADL (core) grammar allows insertion, into the text repre-
senting components, an annex subclause of the form: annex AnnexName {** ... **}.
Key standardized annexes include [20]:

– Behavior Annex (BA) extends AADL with the ability of defining component be-
havior via state machines having: states, state variables and (guarded) state transi-
tions with associated actions written in a simple imperative language.

– Data Modeling Annex (DM) supports the definition of data components.
– ARINC653 Annex defines properties relevant to the elaboration of ARINC653

compliant embedded systems.

BLESS, inspired from BA, improves and extends the state-transition formalism and,
more importantly, introduces the notion of Assertion as a basic building block for con-
tractual specifications. BLESS also adds contracts to AADL subprograms, though this
feature is not covered here.

1 Due to space constraints, the semantics cannot be presented here. We refer interested readers
to [13] for the formal semantics and details of the VC generation process.

2 The section on related work describes some of these DSL.
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Upon reviewing an early draft of the proposed standard annex document, a com-
mittee member pondered whether a tool made to transform proof outlines of highly-
concurrent programs could be adapted for a suitably-annotated state-transition system.
Motivated by this possibility, the first author created BLESS: an AADL annex sublan-
guage that can be used to annotate BA behavior with Assertions3.

3 BLESS by Example: A
Simple Pacemaker

3.1 Cardiac Pacing

Cardiac pacing is used for a

Fig. 1. Pacemaker Environment

compact illustration of BLESS,
because it is a simple safety-
critical cyber-physical systems
having crucial timing properties.
Figure 1 depicts a pacemaker
(Pulse Generator) connected by
pacing leads to the inside of a
heart’s right atrium and ventricle.

The first pacemakers emitted a short (<1 ms), low voltage (1V to 10V) “pace” at a
rate fixed (60-80 bpm) in the factory through a single lead to the right ventricle. A pace
causes a cascade of cell contractions in both right and left ventricles, expelling blood to
lungs and body, respectively. The earliest electrophysiologists selected the pacing rate
and voltage when ordering a device. When everything worked, people whose bradycar-
dia4 made simple walking activities tiresome, felt “normal” after the implant, instead of
incessantly-increasing fatigue until succumbing to their heart disease.

However, constant-rate electrical-pacing interfered intrinsic pacing of a patient’s
heart. Fortunately, the same leads implanted to deliver electrical paces, can also sense
intrinsic electrical activity of the heart (approx. 1mV). These signals, sensed within the
heart, are called electrograms.

Analog design wizards devised ways to amplify and filter millivolt electrograms,
and then to compare the signal with a programmable threshold to determine whether
an intrinsic contraction occurred (Figure 2). This allowed the pacemaker to monitor
the patient and inhibit electrical-pacing when intrinsic pacing voltage exceeds a lower
limit. This inhibitory behavior became known as “VVI”, short for: Ventricle (cham-
ber(s) paced), Ventricle (chamber(s) sensed), Inhibit 5.

Complicating matters, real hearts are electrically noisy during and after contraction,
so the pacemaker must ignore any sensed voltage for a period of time after either pacing
or sensing heart contraction. By adjusting this ventricular refractory period (VRP) and
sensing threshold, an electrophysiologist can tune a pacemaker for a specific patient,
and by choosing a lower rate limit (LRL), ensure minimum heart rate.

3 Capital ‘A’ as the proper-noun for assertions defined by BLESS.
4 Bradycardia is the class of cardiac diseases in which the heart beats too slowly.
5 Constant-rate pacing is referred to as VOO, for “pace ventricle, no sensing, constant rate”.
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Fig. 2. Pacemaker System Diagram in AADL Graphical Notation

� �

thread VVI
features
s: in event port; -- sense of a ventricular contraction
p: out event port; -- pace ventricle
n: out event port; -- non-refractory ventricular sense
lrl: in data port BLESS_Types::Time; -- lower rate limit interval
vrp: in data port BLESS_Types::Time; -- ventricular refractory period

properties
Dispatch_Protocol => Aperiodic;

end VVI;
� �

Fig. 3. AADL VVI Thread Component Type

The first author worked for five years at a leading pacemaker company, and was re-
sponsible for the release of a requirements document for a previous generation pace-
maker that since been used in over 25 research papers within the formal methods
community [21]. The pacing examples that we discuss in this paper adhere to those
requirements.

3.2 AADL VVI Component

Presented using the standardized graphical view of AADL models, Figure 2 shows the
top-level architecture of a pacing system where the structure has been simplified to fo-
cus tightly on the elements needed to present a description of the VVI pacing mode.
Figure 3 shows the AADL component type that describes the interface of a thread that
performs the VVI control function. The interface has three asynchronous event ports s,
p and n. Events arrive at port s (ventricular-sense) whenever the analog front end detects
electrograms exceeding the prescribed threshold. Events sent out on port p (ventricular-
pace) cause the front end to administer a pace of prescribed voltage. An event sent
out on port n (non-refractory ventricular-sense) indicates that a ventricular-sense was
detected after expiration of the ventricular refractory period (VRP). Data ports sup-
port the automatic propagation of state values from one component to another, without
triggering a thread dispatch within the receiving component. Data ports lrl and vrp
communicate the lower rate limit interval and ventricular refractory period programmed
by the physician through the telemetry subsystem.

3.3 Behavior for VVI

Figure 4 shows a BLESS state machine (without BLESS Assertions) that captures the
behavior of the VVI component. Without Assertions, BLESS annex language subclauses
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deliberately appear similar to BA subclauses . BLESS annex subclauses have sections
for variables, states, and transitions.

Variable values persist from thread suspension to next dispatch . States must be one
of initial, complete, final, or execute if none of these. Behavior begins in the
initial state, terminates in a final, suspends upon entry to complete states until
next dispatch. State transitions (in BA and BLESS) are of the form:

transition name: source state(s) -[condition]-> destination state {action};
Transitions are named (e.g., T26), and each transition includes one or more source states
(e.g., the pace and sense states of T2), a single target state (e.g., the off state of
T2), guard expression (e.g., the on dispatch s of T4 which holds when an event
arrives on the s event port), and a (possibly empty) set of actions to execute (e.g.,
p! & last_beat := now of T3). Transitions must be written to guarantee that only
a finite number of execute states are passed through before entering a complete or final
state. Transitions leaving complete states have dispatch conditions evaluated by the
run time system . The special dispatch condition on dispatch stop holds when an
event is received on a stop (which is predeclared for every AADL component to cause
normal termination). Transitions leaving execute states may have a boolean expression
as transition condition, so long as there is at least one enabled transition and a complete
state will eventually be reached. Sending an event out on a port p is written p!. The
current time is written as now. Action sets separated by “&” may be executed in any
order, or concurrently; action sequences separated by “;” must be executed in order;
assignment uses “:=”. A timeout with a port list and a duration is reset by event
arrival or departure at a listed port, and expires when the most recent event on a listed
port occurred the duration previously.

The transition system captures the behavior of VVI as follows. The time of the most
recent cardiac event is retained in the persistent variable last_beat. After causing
a ventricular pace to begin operation [T1], VVI waits for either a ventricular sense
[T4] (which it then checks for VRP [T5,T6]) or a timeout of the patient’s lower-rate-
limit interval since the most-recent cardiac event [T3]. If the time since the most recent
cardiac event to the current ventricular sense is within the VRP, then return to the pace
state and wait some more [T5]. Otherwise, reset last_beat to “now”, and send an
event out on n to reset the timeout [T6]. When no cardiac events have occurred in
the previous lower-rate-limit interval (timeout), send an event out on p to cause an
electrical-pace, and reset the timeout [T7]. The behavior from the sense state is similar
[T8,T9,T10].

3.4 Adding BLESS Assertions to VVI

BLESS introduces Assertions to AADL as a basic block to forming rich behavioral
specifications. Syntactically, Assertions are always enclosed in double angle brackets,
<< >>. Semantically, an Assertion is a temporal logic formula extending a first-order
predicate calculus with simple temporal operators for continuous p@t and discrete time
pˆk, where t is the time at which p occurs, and k is the number of dispatch periods
from now. As indicated by operators such as pˆk, BLESS Assertions are able to reason

6 We will sometimes abbreviate transition names, using only the “T#” prefix.
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� �

annex BLESS {**
variables
last_beat: BLESS_Types::Time;

states
power_on : initial state;
pace : complete state;
sense : complete state;
check_pace_vrp : state;
check_sense_vrp : state;
off : final state;

transitions
T1_POWER_ON:
power_on -[ ]-> pace {p! & last_beat := now};

T2_STOP:
pace,sense -[on dispatch stop]-> off {};

T3_PACE_LRL_AFTER_VP:
pace -[on dispatch timeout (p n) lrl ms]-> pace
{p! & last_beat := now};

T4_VS_AFTER_VP:
pace -[on dispatch s]-> check_pace_vrp {};

T5_VS_AFTER_VP_IN_VRP:
check_pace_vrp -[(now-last_beat) < vrp]-> pace {};

T6_VS_AFTER_VP_IS_NR:
check_pace_vrp -[(now-last_beat) >= vrp]-> sense
{n! & last_beat := now};

T7_PACE_LRL_AFTER_VS:
sense -[on dispatch timeout (p n) lrl ms]-> pace
{p! & last_beat := now};

T8_VS_AFTER_VS:
sense -[on dispatch s]-> check_sense_vrp {};

T9_VS_AFTER_VS_IN_VRP:
check_sense_vrp -[(now-last_beat) < vrp]-> sense {};

T10_VS_AFTER_VS_IS_NR:
check_sense_vrp -[(now-last_beat) >= vrp]-> sense
{n! & last_beat := now};

**};
� �

Fig. 4. VVI Thread Behavior (without BLESS assertions)

directly in terms of the logical scheduling periods captured in the AADL run-time en-
vironment – which forms an abstraction of common threading and scheduling services,
etc., found in widely-used real-time operating systems. Thus, in contrast to other mod-
eling languages and model checking frameworks that assume arbitrary interleaving of
concurrent transitions, BLESS assumes an interleaving semantics corresponding to the
scheduling abstractions in the standardized AADL run-time environment.

BLESS supports the following kinds of Assertion:

– Port Assertion expresses what is true when an event is sent or received on a port.
– State Assertion expresses what is true while the machine is in that state.
– Action Step Assertion expresses what is true during the execution of a transition’s

action steps, at that point where the Assertion is inserted.
– Thread Invariant expresses a predicate that must be true of every state.

As will be illustrated next, VVI relevant examples of each kind of Assertion are given
in Figure 5.

Before doing so we will review BLESS’s support for “predicate abstraction” allow-
ing (parameterized) predicates to be named and subsequently used in Assertions. As
an example, refer to the LRL predicate defined on line 14 in Figure 5. It captures the
property that the patient had an intrinsic or electrically-paced heartbeat in the previous
lower-rate-limit interval (cf. lrl defined in Figure 3). The identifier x is a formal pa-
rameter representing a particular time. The predicate can be read as follows: there exists
a time t in the closed interval [x− lrl, x] such that an event was issued on port n or port
p at time t.
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� �

thread VVI
2 features

s: in event port; -- ventricular contraction has been sensed
4 p: out event port -- pace ventricle

{BLESS::Assertion=>"<<VP()>>";};
6 n: out event port -- non-refractory ventricular sense

{BLESS::Assertion=>"<<VS()>>";};
8 lrl: in data port T; -- lower rate limit interval

vrp: in data port T; -- ventricular refractory period
10 properties

Dispatch_Protocol => Aperiodic;
12 annex BLESS {**

assert
14 <<LRL:x: exists t:T in x-lrl..x that (n@t or p@t)>> -- Lower Rate Limit

<<VS: : s@now and notVRP()>> -- ventricular sense detected, not in VRP
16 <<VP: : -- ventricular pace

(n or p)@(now-lrl) --last beat occurred LRL interval ago,
18 and -- not since then (",," means open interval)

not (exists t:T in now-lrl,,now that (n or p)@t) >>
20 ... -- Not shown are notVRP(), PACE(t), SENSE(t), etc.

invariant
22 <<LRL(now)>> -- LRL is "always" true

variables
24 last_beat : T

<<LAST: : (n or p)@last_beat>>; -- time of last pace or NR sense
26 states

power_on : initial state <<VS()>>; --start with "sense"
28 pace : complete state

-- ventricular pace occurred in previous LRL interval
30 <<PACE(now)>>;

sense : complete state
32 -- ventricular sense occurred in previous LRL interval

<<SENSE(now)>>;
34 check_pace_vrp : state

-- execute state to check if s is in vrp after pace
36 <<s@now and PACE(now)>>;

check_sense_vrp : state
38 -- execute state to check if s is in vrp after sense

<<s@now and SENSE(now)>>;
40 off : final state;

transitions
42 T1_POWER_ON: power_on -[ ]-> sense

{<<VS()>> n! <<n@now>> & last_beat := now <<last_beat=now>>};
44 ...

T6_VS_AFTER_VP_IS_NR: check_pace_vrp -[(now-last_beat)>=r]-> sense
46 -- s after VRP, go to "sense" state, send n!, reset timeouts

{<<VS()>> n! <<n@now>> & last_beat := now <<last_beat=now>>};
48 ... **}; ...

� �

Fig. 5. BLESS-annotated VVI Thread Component Type

Figure 5 also illustrates how a BLESS::Assertion can be attached to a port (cf.
lines 5 and 7). By attaching such Assertions one is specifying that the given predi-
cate will be true whenever an event is issued over the port. The VVI thread invariant
(LRL(now)) is given on line 22; it is effectively stating that: from when the thread
leaves its initial state until it enters a final state, the patient has a heart beat in the previ-
ous lower rate limit interval. Finally, an example of a state Assertion is given on line 30
for the pace state; and inlined action step Assertions are given on, e.g., line 43.

The complete BLESS source for the VVI example is available in [14]. (As a conve-
nience of reviewers, we have included the complete BLESS source for VVI.aadl in an
appendix.)

4 Thread Verification Obligations

For a subprogram annotated with a contract, its correctness argument (which we will
call a proof obligation) takes the form of: under the assumption that the precondi-
tion holds, if the body is executed (and terminates), then the postcondition must hold.
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A thread has a proof obligation for each complete or execute state, and each transition.
In the subsections that follow, we illustrate each of these kinds of proof obligation. As
we shall see, all proof obligations have the form <<P>>S <<Q>> where P and Q are
Assertions, and S is an action (possibly Skip, the empty action).

Complete State Assertions Imply Invariant: Entering a complete state suspends the
thread until next dispatch. Therefore each complete state’s Assertion must imply the
thread’s invariant. Thus, e.g., the complete state pace has Assertion <<PACE(now)>>.
Its proof obligation, as generated by the BLESS proof tool, is:7
� �

P [64] <<PACE(now)>>
S [51]->
Q [51] <<LRL(now)>>
What for: <<M(pace)>> -> <<I>> from invariant I when complete
state pace has Assertion <<M(pace)>> in its definition.

� �

The “What for” part explains why the proof tool generated the proof obligation; M(...)
represents a meaning function. Thus, the “meaning” of the pace state is the pace state
Assertion.

Execute States Have Enabled Outgoing Transition: Execute states are transitory and
so they must always have an enabled, outgoing transition. If more than one transition
is enabled, the choice is nondeterministic. Each execute state’s Assertion must imply
the disjunction of outgoing transition conditions8. Proof obligation for execute states
check_pace_vrp is:
� �

P [71] <<s@now and PACE(now)>>
S [71]->
Q [71] <<((now-last_beat) < vrp) or ((now-last_beat) >= vrp)>>
What for: Serban’s Theorem: disjunction of execute conditions
leaving execution state check_pace_vrp,
<<M(check_pace_vrp)>> -> <<e1 or e2 or . . . en>>

� �

Execute Transitions without Actions: For transitions without actions, the conjunction
of the Assertion of the source state and the transition condition must imply the Asser-
tion of the destination state. Execute transitions have Boolean-valued expressions for
transition conditions. Proof obligation for execute transition T5 is:
� �

P [71] <<s@now and PACE(now) and ((now-last_beat) < vrp)>>
S [97]->
Q [64] <<PACE(now)>>
What for: <<M(check_pace_vrp) and x>> -> <<M(pace)>> for
T5_VS_AFTER_VP_IN_VRP:check_pace_vrp-[x]->pace{};

� �

The transition condition T5 occurs when a sense was in VRP, thus ignored. As was
mentioned earlier, M(check_pace_vrp) stands for the meaning of check_pace_vrp,
which is its Assertion: <<s@now and PACE(now)>>. Since the T5 transition condition
is (now-last_beat) < vrp, their conjunction is the predicate given as P in the proof
obligation. The Assertion for state pace, <<M(pace)>>, is <<PACE(now)>>, shown
as Q.

Execute Transitions with Actions: For execute transitions with actions, the conjunc-
tion of the Assertion of the source state and the transition condition becomes the

7 Numbers in square brackets correspond to line #s in the full VVI source given in [14].
8 Named for Serban Georghe.
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precondition; and the Assertion of the destination state is the postcondition. The proof
obligation for execute transition with actions T6 is:
� �

P [71] <<s@now and PACE(now) and ((now-last_beat) >= r)>>
S [104]<<VS()>>n!<<n@now>> & last_beat := now<<last_beat=now>>
Q [68] <<SENSE(now)>>
What for: <<M(check_pace_vrp) and x>> A <<M(sense)>> for
T6_VS_AFTER_VP_IS_NR:check_pace_vrp-[x]->sense{A};

� �

Note that it is similar for T10. For both T6 and T10, the sense was after expiration of
the ventricular refractory period, with the same action A: an event sent out port n, and
last_beat set to the current time.

Initial and Stop Transitions: Transitions leaving initial states have proof obliga-
tions like execute transitions, with or without actions.

Every AADL component has an implicit stop port meant to signal orderly termi-
nation and transition to a final state. Because final states don’t do anything, stop
transitions without actions like T2 generate trivial proof obligations logically equiva-
lent to true.

Dispatch Transitions with Timeout: Transitions leaving complete states must have
dispatch conditions evaluated by the runtime system . BLESS follows BA in requiring
that dispatch conditions be disjunctions of conjunctions of dispatch triggers. Relative
to BA, BLESS extends the definition of the timeout dispatch trigger to include port
lists. Without a port list, BLESS, like BA, defines the timeout starting at the time-of-
previous-suspension (tops). With a port list, BLESS timeouts are reset by any event,
sent or received, on a listed port.

Dispatch trigger from timeout occurs when

– an event was sent or received on a listed port (one timeout period in the past),
– no other event has been sent or received by any listed port since then, and
– none of the other dispatch conditions leaving the same source state has occurred

since the time-of-previous-suspension (tops).

For transition T3 events leaving either port p or port n, reset the timeout.
� �

T3_PACE_LRL_AFTER_VP: --pace when LRL times out
pace -[on dispatch timeout (p n) lrl ms]-> pace
{<<VP()>> p! <<p@now>> & last_beat := now< <last_beat=now>>};

� �

The proof obligation for T3 in Figure 6 has a complex precondition:

– Assertion of the pace source state invariant: PACE(now).
– Port event LRL occurred previously: (p or n)@(now-lrl).
– No port events to reset timeout:
not (exists t:T in now-lrl,,now that (p or n)@t).

– No stop since time-of-previous-suspension (tops) [T2]:
not (exists u:T in tops,,now that stop).

– No sense since tops [T4]: not (exists u:T in tops,,now that s@u).
– No timeout since tops: not (exists u:T in tops,,now that
((p or n)@(u-lrl) and

not (exists t:T in u-lrl,,u that (p or n)@t)))

The full listing of initial proof obligations from which these examples are excerpted,
can be found in [14].
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� �

P [88] <<PACE(now) and (p or n)@(now-lrl)
and not (exists t:T in now-lrl,,now that (p or n)@t)
and not (exists u:T in tops,,now that stop)
and not (exists u:T in tops,,now that s@u)
and not (exists u:T in tops,,now that ((p or n)@(u-lrl) and

not (exists t:T in u-lrl,,u that (p or n)@t)))>>
S [91]<<VP()>>p!<<p@now>> & last_beat := now<<last_beat = now>>
Q [64] <<PACE(now)>>
What for: <<M(pace) and x>> A <<M(pace)>> for
T3_PACE_LRL_AFTER_VP:pace-[x]->pace{A};

� �

Fig. 6. Verification Obligation for Transition With Timeout

5 Using the BLESS Proof Tool

5.1 Discharing Proof Oblications

The BLESS proof tool both: (i) generates proof obligations from AADL models having
BLESS annex subclauses defining behavior adorned with Assertions, and (ii) trans-
forms proof obligations into simpler ones, with human guidance, successively by ap-
plying inference rules.When all proof obligations have been solved, the BLESS proof
tool produces a formal proof as a list of theorems, each of which is axiomatic, or de-
rived from earlier theorems in the sequence by a stated inference rule. The last theorem
in the sequence asserts that all proof obligations have been discharged.

The BLESS proof tool works as a plug-in to the Open-Source AADL Tool Environ-
ment version 2 (OSATE 2) for editing and analyzing AADL models [18], together with
a growing family of architectural analysis plug-ins. Typically, after loading a model in
BLESS, all of the proof obligations are generated together, but solved one-at-a-time, by
applying (groups of) proof rules.

The first proof obligation for VVI is:
� �

P [64] <<PACE(now)>>
S [51]->
Q [51] <<LRL(now)>>
� �

It shows that the Assertion of complete state pace, <<PACE(now)>>, needs to imply
the thread invariant, <<LRL(now)>>. By expanding the named predicates we obtain:
� �

P [64] <<p@last_beat and
(exists t:BLESS_Types::Time in now-lrl..now that p@t )>>

S [51]->
Q [51] <<exists t:BLESS_Types::Time in now-lrl..now

that (n@t or p@t)>>
� �

By splitting existential quantification we get:
� �

P [64] <<p@last_beat and
(exists t:BLESS_Types::Time in now-lrl..now that p@t)>>

S [51]->
Q [51] <<(exists t:BLESS_Types::Time in now-lrl..now that n@t)

or (exists t:BLESS_Types::Time in now-lrl..now that p@t)>>
� �

After some normalization of the predicates we get:
� �

P [64] <<(exists t:BLESS_Types::Time in now-lrl..now that p@t)
and p@last_beat>>

S [51]->
Q [51] <<(exists t:BLESS_Types::Time in now-lrl..now that n@t )
or (exists t:BLESS_Types::Time in now-lrl..now that p@t)>>

� �

which is then recognized as an axiom of the form (P ∧ Q)→ (P ∨ Q).
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� �

Theorem (1) [serial 1020]
P [64] <<(exists t:BLESS_Types::Time in now-lrl..now that p@t )

and p@last_beat>>
S [51] ->
Q [51] <<(exists t:BLESS_Types::Time in now-lrl..now that n@t )

or (exists t:BLESS_Types::Time in now-lrl..now that p@t )>>
by And-Elimination/Or-Introduction Schema:
(P and Q)->(P or R)

Theorem (2) [serial 1019]
P [64] <<(p@last_beat and (exists t:BLESS_Types::Time

in now-lrl..now that p@t ))>>
S [51] ->
Q [51] <<((exists t:BLESS_Types::Time in now-lrl..now that n@t )

or (exists t:BLESS_Types::Time in now-lrl..now that p@t ))>>
by Normalization:

Reflexivity of Conjunction: (m and k) = (k and m)
Add Unnecessary Parentheses For No Good Reason: a = (a)

and Theorem (1) [serial 1020]

...

Theorem (4) [serial 1003]
P [64] <<PACE(now)>>
S [51] ->
Q [51] <<LRL(now)>>
by Substitution of Assertion Labels
and Theorem (3) [serial 1018]
Theorem (119) [serial 1002]
P <<VVI proof obligations>>
S [51] ->
Q <<VVI proof obligations>>
by Initial Thread Obligations
and theorems 4 8 11 14 28 29 30 50 52 53 74 94 96 97 118:

...

Theorem (97) [serial 1016] used for:
<<M(check_sense_vrp) and x>> -> <<M(sense)>> for
T9_VS_AFTER_VS_IN_VRP:check_sense_vrp-[x]->sense{};

Theorem (118) [serial 1017] used for:
<<M(check_sense_vrp) and x>> A <<M(sense)>> for
T10_VS_AFTER_VS_IS_NR:check_sense_vrp-[x]->sense{A};

� �

Fig. 7. Selected Theorems from the Complete VVI Proof

Then the next proof obligation is placed in the set of currently unsolved proof obli-
gations. The BLESS proof tool accepts script files, and writes actions to a script file
that can be edited, and invoked, to make re-play of proof strategies easy. When all of
the proof obligations have been solved, theorem numbers are assigned depth first, and
the complete proof is emitted.

While the current proof process is manual, we plan to capitalize on the growth in
power and usability of theorem provers (e.g., SMT solvers) to help automate as much
of the proof process as possible.

5.2 Complete Formal Proof for VVI

In all, the complete proof for VVI requires 119 theorems, some of which are illustrated
in Figure 7. Sample theorems include: Theorem (4), which discharges the first proof
obligation considered in Section 5.1; the last theorem (119) states that all the proof
obligations have been discharged.

6 Evaluation

As can be seen from Table 1, we have been writing BLESS architectural specifications
on progressively large case studies and attempting to complete verification proofs. The
table gives the AADL/BLESS Model name, the number of AADL components in the
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Table 1. BLESS Models

Number of Number of Number of
AADL Model Component SLOC Theorems Proof script steps
VVI pacemaker 1 100 119 101
DDD pacemaker 1 302 1274 582
PulseOx Smart Alarm App 5 949 1003 460
Isolette 15 628 verif. in progress 288
PCA Pump 43 1389 verif. not started -

model and the number of Source Lines Of Code (SLOC). In addition to the VVI pacing
mode described here, the examples include DDD pacing mode (a more complex pac-
ing mode in which both atrium and ventricle are paced and sensed instead of just the
ventricle as in VVI), an application that implements “smart alarms” for pulse oximetry
monitoring, the control logic for an infant incubator (Isolette), and a detailed archi-
tectural specification (43 software and hardware components) for a Patient-Controlled
Analgesia Pump developed in collaboration with engineers from the US Food and Drug
Administration. The verification proofs for the two pacemaker case studies have been
completed, as indicated by the availability of the number of theorems required to com-
plete the proof. The last three examples have arisen as part of our work on a Medical
Application Platform (MAP) for coordinating collections of networked devices [10].
While these case studies are larger, their verification proofs are still in progress. This is
due, in part, to the fact that the models are still evolving. Each case study has allowed
us to identify the need to enhance the BLESS tool’s set of rules for use in discharging
proofs. It has also made evident, especially in the context of evolving models, of the
need for further proof automation.

7 Related Work

Much work has been done on formal methods for reasoning about behavioral descrip-
tions in high-level modeling languages such as UML. While model checking applied to
notations such as Statecharts and other state machine notations has been well-studied
(e.g., [16]), such approaches primarily focus on verifying temporal properties or simple
assertions, instead of the strong functional properties expressible in BLESS, or proper-
ties that relate directly to timing and scheduling periods in the run-time environment.
Relatively little has been done on proof tools for behavioral descriptions in architecture
definition languages. In one example, Thums and Balser [22] provide an interactive
verification framework for Statecharts based on Dynamic Logic.

The B Method [1] and successor Event-B [2] are nice examples of mature frame-
works with tool support that emphasize proof for high-level designs of realistic systems.
The Atelier B tool generates proof obligations from behavioral models and provides a
manually oriented proof environment. Recent work, e.g., [15], provides tools that trans-
late Atelier B proof obligations into Why3 so as to leverage SMT solvers. Rodin [3]
provides proof support for Event B by generating proof obligations. Both B and Event-
B focus much more heavily on refinement of high-level semantic descriptions rather
than on behaviors in the context of architectural descriptions.
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For previous work on verification of the behavioral aspects of AADL models, a trans-
lation of a subset of AADL BA into an extension of Petri nets is given by [7], while
Ölveczky et al. translate AADL BA into Real-Time Maude [17]. These strategies em-
ploy model checking and term rewriting, respectively, to verify simple assertions and
temporal properties. Thus, they achieve a much higher degree of automation, but treat
less expressive specification languages.

Also mentioned in the introduction was the important class of specification language
named Behavioral Interface Specification Languages. Notable members of this class
include the Java Modeling Language and Spec# (a BISL for C#). Most BISLs are en-
riched contract-based languages intended for the specification and verification of single-
threaded software systems. The KeY Project supports the addition of specifications to
software models expressed in UML using languages such as JML and OCL [4, 6].

8 Conclusion

The primary result of this paper—the BLESS framework for behavioral interface spec-
ification and verification—represents a significant advance in AADL capabilities that
relates directly to AADL’s core objectives of supporting rigorous system integration in
critical systems. The key technical contributions include designing specifications that
capture both functional and timing properties in a manner that aligns with AADL’s
inter-component communication primitives, scheduling framework, and run-time envi-
ronment.

Working from the specification notations, formal semantics, and tool support de-
veloped here, multiple automated verification methods, including model checking and
symbolic execution, can be developed to support verification of AADL component be-
haviors and interface descriptions. In this first stage of our work, our goal has been to
provide tool support that exercises the entirety of the BLESS language, provides strong
verification, and provides a formal framework on which more automated, lighter-weight
analyses can be built.

In addition to directly supporting interface specification and verification, BLESS an-
notations can support other facets of critical system development. For example, BLESS
is being used in US Army-funded work at the Software Engineering Institute (SEI)
on AADL’s Error Model Annex to capture system conditions under which faults/er-
rors may arise and propagate. BLESS is also being used in the AADL Requirements
Definition and Analysis Language (RDAL) Annex to formally define requirements.
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Abstract. We present an error calculus to support a novel specification mecha-
nism for sound and/or complete safety properties that are to be given by users.
With such specifications, our calculus can form a foundation for both proving pro-
gram safety and/or discovering real bugs. The basis of our calculus is an algebra
with a lattice domain of four abstract statuses (namely unreachability, validity,
must-error and may-error) on possible program states and four operators for this
domain to calculate suitable program status. We show how proof search and error
localization can be supported by our calculus. Our calculus can also be extended
to separation logic with support for user-defined predicates and lemmas. We have
implemented our calculus in an automated verification tool for pointer-based pro-
grams. Initial experiments have confirmed that it can achieve the dual objectives,
namely of safety proving and bug finding, with modest overheads.

1 Introduction

Traditionally, program specifications are given primarily for safety scenarios and are
used to describe the states under which program execution would occur safely. When
successfully verified, such specifications are said to be sound for their specified input
scenarios. That is, a specification is said to be sound if it has identified input scenarios
(or preconditions) that are guaranteed to lead to safe program execution. However, we
are also interested in complete specifications that will additionally verify the remaining
input scenarios (that lead to execution failure) as invalid ones. Informally, a specifica-
tion is said to be complete if it has unambiguously identified both input scenarios that
lead to safe code execution, and input scenarios that lead to code execution failure.

Such complete specifications for programs are helpful for two reasons. Firstly, they
can be used to specify precisely (through weakest precondition1) when inputs can be
handled correctly by programs. Conversely, we are also able to precisely identify when
programs would fail to work correctly (or safely). Secondly, the specifications on er-
roneous inputs can be used to help pinpoint actual software bugs in programs as they
could be used to precisely indicate where each given error occurs.

Though useful, the task of capturing complete specifications is very challenging,
and may not always be possible since the input scenarios under which failures could

1 While it may be desirable to have weakest precondition that guarantee safety or correctness, we
also allow flexibility for users to specify a wider range of specifications that include those with
either stronger preconditions and/or weaker postconditions. Though weaker specifications give
fewer guarantees, they are more easily verified and may be enough to ensure reliability.
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occur may not be unambiguously specified and verified. In this paper, we shall provide
the basic mechanisms that can help specify complete specifications, where possible.
To achieve this goal, we propose a lattice domain of four abstract statuses (namely
unreachability, validity, must-error and may-error) and make use of the validity (must-
error) status for specifying safe (unsafe, resp.) execution scenarios. Furthermore, when
the complete requirements are hard (or impossible) to specify, we have also provided ap-
proximation mechanisms that can help us specify near-complete specifications through
the use of may-error as opposed to must-error classification in weakened postcondition.

Our motivation for developing complete specifications for programs was further
heightened by the recent VSTTE competition [1] that was held in November 2011. Out
of five problems that the participants were asked to verify for safety and correctness,
there were two problems (problem 4 and problem 5) where more complex specifications
that satisfy completeness were requested. As complete specifications must additionally
address erroneous scenarios, we have recently developed a comprehensive verification
framework that could just as easily deal with input scenarios that invoke errors, as it
would with input scenarios that led to safe program execution

At the heart of our proposal is a calculus that can uniformly specify both safe and
unsafe execution scenarios. Our calculus uses an algebra with the lattice domain of
four-point program statuses and four binary operations over these program statuses.
The program statuses can be used for each program state, and also to decorate more
precisely the post-conditions of program specification. To support modular verification,
we provide our calculus with two entailment procedures (one for pre-condition checks
at method calls, and another for post-condition checks) and a set of sound structural
rules. Furthermore, this extension also helps to classify (into must or may) as well as
to localize errors when the verification fails. This enables our verifier to work both as a
safety and correctness proving tool and as a bug finding tool.

The paper makes the following main contributions

– a lattice domain with four distinct statuses on possible program states.
– a specification mechanism to support both sound and complete properties.
– a calculus (for the lattice) to reason about safety and must/may errors (Sec. 3)

• support for separation logic with user-defined predicates and lemmas (Sec. 4).
• support for error calculus within a modular verification framework (Sec. 5).

– an extension to support error localization (Sec. 4.3).

We also demonstrate the calculus capability of proving safety and detecting bugs with
modest overheads through an implementation and two experiments in Sec. 6. Next sec-
tion presents the algebra and new specification mechanism. It also illustrates the use of
calculus through examples on modular verification and error localization.

2 Motivation and Overview

2.1 An Algebra on Status of Program States

The basis of our proposal is the identification of an algebra (E , F ) in which E is a
lattice domain with four points used to capture the status of each program state, while
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Fig. 1. An Algebra on Status of Program States

F is a set of four binary operators (meet (
), join (�), compose (⊗) and search (⊕)) to
combine the statuses of program states. The four points that are used for program status
are as follows:

– ⊥: denotes an unreachable state.
–
√

: denotes a valid program state from normal program execution.
– �: denotes a state that corresponds to a must (or definite) error scenario.
– ': denotes a state that corresponds to a may error or an unknown scenario. That is,

it could either be ⊥, or
√

or �.

Note that the must error status (�) subsumes the unreachable ⊥ status. The may er-
ror status (') comes from imprecision or from dependency on some unknown input. In
our system, potential sources of imprecision include imprecise specifications, imprecise
invariants of complex data structures and incomplete domains. Although we could sep-
arately identify those kinds of imprecision, for simplicity we uniformly specify them
with the ' status value. In the implementation, we distinguish them through different
messages with status (see Sec. 4.3).

Let 1 be a partial ordering relation on status whereby τ1 1 τ2 means status τ1
is more precise than status τ2. The � and 
 operators denote the least upper bound
and the greatest lower bound, respectively, over the lattice domain. The domain E and
two operations �, � form a complete lattice D = 〈E ,",�,�,⊥,�〉 organized as shown
in Fig. 1a. This lattice forms a core part of the underlying abstract semantics for our
system. Furthermore, ⊥ is zero element of ⊗ and ⊕ operations; it means x ⊕ ⊥ = ⊥
and ⊥ ⊗ x = ⊥ for any values x. The remaining calculations of ⊗ and ⊕ are illustrated
in Fig. 1b. The ⊗ operator is meant to support conjunctive proving, and searches for
failures from � and ' status . The ⊕ operator is meant to support proof search, and
searches for

√
status to succeed in proving. Thus the priority order of the ⊗ operator

is �, ' and lastly
√

, and the priority order of the ⊕ operator is
√

, ' and lastly �.
Contrast this with the � operator which doesn’t have any priority between

√
and �. So

it would simply yield ' when the two statuses are combined together.

2.2 Mechanism for Sound and Complete Specifications

To illustrate our new specification mechanism, we consider a method that returns the
data which its input points to, as shown below
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int get data(node x)
case{ x =null → requires x $→node〈d, p〉 ensures (res=d)√;

x=null → ensures (true ) �; }
where res is a reserved identifier denoting the method’s result and the data structure
node is declared as: data node { int val; node next }.

In our system, each method is specified by pre- and post-conditions (through sepa-
ration logic formulas), denoted by requires and ensures keyword, respectively. In the
specification above, we also use structured specifications [9] where disjoint conditions
are expressed using case construct for expressing both sound (with x�=null condition)
and complete (with x=null condition) requirements, as can be seen for the above speci-
fication of get data (with the

√
and � statuses in postconditions, resp.). In comparison,

if we are only interested in sound specification, we could just use the following instead:

int get data(node x)
requires x $→node〈d, p〉 ensures (res=d)

√
;

Occasionally, it may be possible to automatically generate complete specification by
negating the input conditions of sound specification. However, this may not always
be feasible. Firstly, negation computation may be hard to implement in complex do-
mains. For example, it is unclear how to compute negation in separation logic (which
our system relies on). Secondly, not all methods have clearly delineated boundary be-
tween sound and complete conditions, as an example consider the interactive schedule
(ischedule) method in Fig. 2. With prio=0 condition, this method’s status depends
on the user input which is unknown at verification time. Therefore, there exists a gap
between soundness and completeness that cannot be derived simply through the nega-
tion operation. For this example, we can instead provide a near-complete specification,
as shown in the bottom right of Fig. 2. Informally, a specification is said to be near-
complete if it captures all possible input conditions but contains either ' program status
or an ambiguous disjunction, comprising of both

√
and � statuses, in one or more of

its postconditions.

1. int ischedule(int prio){
2. if (prio>0)/*run it */ return 0;
3. else if (prio<0) abort();
4. else{
5. printf(”Allow this task to run? y or n”);
6. char c=getc();
7. if (c =′ y′)/*run it */ return 0;
8. else abort(); } }

Sound Specification:
l1. int ischedule(int prio)
l2. requires prio>0 ensures (res=0)

√
;

Near-Complete Specification:
l3. int ischedule(int prio)
l4. case { prio>0→ ensures (res=0)

√
;

l5. prio<0→ ensures (true )�;
l6. prio=0→ ensures (true )�; }

Fig. 2. Code and Specification of ischedule Method

We note that our approach for proving the completeness of program is based on the
assumption that the user-supplied specification is complete; namely that it covers all
values of the input domain and that each error program state denotes an input scenario
where no valid output state is possible. Checking (or even inferring) the completeness
of specifications is a challenging research direction that could be investigated in future.
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2.3 Essence of Error Calculus

To highlight how our calculus can be used to verify programs, consider the method
foo in Fig. 3. Furthermore, to illustrate the possibility of incompleteness, we assume
a method, complexTest, whose specification cannot be handled by current automated
provers. We shall verify the code of foo in a forward manner, and would compute a pro-
gram state for each of its program point. Each program state, Φ, is a formula on the state
of variables and heap. Each program state can be combined with a status and is repre-
sented by (Φ, τ) where τ denotes a status value from our lattice.

1 int foo(int x, int y)
2 requires x≥0
3 ensures (res>0)

√
; {

4 if (x<0) return −1; /∗L1∗/
5 else{
6 if (y>1) return 1; /∗L2∗/
7 else if (y<0) return −1; /∗L3∗/
8 else return y; /∗L4∗/
9 }}

Fig. 3. Code of foo Method

As part of compositional verification, the pre-
condition of each callee is checked against the
current calling context and the postcondition
is checked at the exit of the method’s body.
In the example, we can identify four program
states of interests that correspond to four exits
(L1, L2, L3 and L4) of the method. The fol-
lowing illustrates how the statuses are decided
at exits through proof obligations discharged
for postcondition checking with the help of the
entailment procedure -C that conforms to our
error calculus. Given a program state πa and a

post-condition πc, we can determine the status s for such checking with the help of the
following judgment: πa -C πc � s. The resulting statuses generated by the entailment
procedure are as follows:

L1 : x≥0 ∧ x<0 ∧ res=−1 -C res>0 � ⊥
L2 : x≥0 ∧ ¬(x<0) ∧ y>1 ∧ res=1 -C res>0 �

√

L3 : x≥0 ∧ ¬(x<0) ∧ ¬(y>1) ∧ y<0 ∧ res=−1 -C res>0 � �
L4 : x≥0 ∧ ¬(x<0) ∧ ¬(y>1) ∧ ¬(y<0) ∧ res=y -C res>0 � '

Each of the above proofs yields a status based on the outcome of its entailment. This
status can be added to program state for each of these program points. At L1, the
antecedent is unsatisfiable which corresponds to an unreachable scenario (either infi-
nite loop2 or dead code) that can be captured by (false ,⊥) with false denoting
contradiction at that program point. At L2, the consequent can be directly proven
using the antecedent. This yields a valid program state that can be represented by
(x≥0∧¬(x<0)∧y>1∧res=1,

√
). This program state indicates that the method will

exit safely at this location with res=1. At L3, the negation of the consequent can be
proven from its antecedent. The program state at L3 can be computed to be a must er-
ror as x≥0∧¬(x<0)∧y<0,�). The sub-formula on result res=−1 is dropped since
we have a must error outcome where the output state is unimportant. At L4, the an-
tecedent can neither prove the consequent nor its negation. Hence, we would need to
classify this program point as a may error whose state is (x≥0∧¬(x<0) ∧ ¬(y>1) ∧
¬(y<0) ∧ res=y,'). A formula on result res=y is still captured since the ' status
includes possibly safe output.

2 Although we provide a mechanism to specify infinite loop, proving termination is beyond the
scope of this paper.
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When an entailment checking fails, an error messages is generated with relevant
information to help debugging process. For example, the error message at L3 is:

Verify method foo. Proving postcondition fails:
Failure (must):
(x≥0, 2) ∧ (¬(x<0), 5) ∧ (¬(y>1), 6) ∧ (y<0, 7) ∧ (res=−1, 7) �C (res>0, 3)

where irrelevant formulas are sliced away and failures are localized by pairs of the
relevant failing formulas and their corresponding statement code or specification line
numbers.

3 Assertion Language

In this section, we introduce the concepts and terminology that are used to describe
our calculus throughout the paper. Our formalism includes inductive predicates in sep-
aration logic which are written in an assertion language. We extend this language with
program status (τ ) to support error calculus with different program states.

pred ::= p(v∗) ≡ Φ [inv π]
Ψ ::= {(Φ1, τ1); ...; (Φi, τi)}
Φ ::=

∨
(∃w∗·κ∧π)∗

κ ::= emp | v �→c(v∗) | p(v∗) | κ1 ∗ κ2

π ::= α | ¬α | π1∧π2

α ::= v1=v2 |v=null |a≤0 |a=0 | · · ·
a ::= k | k×v | a1 + a2

L ::= lemma [l] p(v∗)∧π 	� ∃w∗·(κ∧π)[τ ]
	� ::=→ | ← | ↔
τ ::= ⊥ | � | √ | �

where p/l is a predicate/lemma name; v, w are variable names;
c is a data type name; k is an integer or a float constant;

Fig. 4. The Assertion Language

Separation logic can provide concise and precise notations for specifying pointer-
based programs and their data structures. We enhance the separation logic fragment
presented in [2,19]. Figure 4 describes our assertion language. Each data structure and
its properties can be defined by an inductive predicate pred, that consists of a name p, a
main separation formula Φ and an optional pure invariant formula π that must hold for
every predicate instance. The separation logic formula Φ is a disjunction of symbolic
heap. Each symbolic heap is a conjunction of a heap formula κ and a pure formula
π. The pure part captures a rich constraint from the domains of Presburger arithmetic,
monadic set or polynomial real arithmetic. The heap part includes points-to predicate
$→, spatial conjunction predicate ∗ for combining two disjoint heap memory, and user-
defined predicates p〈v1, .., vn〉 to capture more complex data structures with selected
properties. For examples, with the simple data structure node declared in Sec. 2.2, we
define variants of list segment, as follows:

pred lseg〈root, n, p〉 ≡ (root=p ∧ n=0)
∨ ∃ d, q · (root$→node〈d, q〉∗ lseg〈q, n−1, p〉) inv n≥0

pred plseg〈root, n, p〉 ≡ ∃ d · (root$→node〈d, p〉 ∧ n=1 ∧ d≥0)
∨ ∃ d, q · (root$→node〈d, q〉∗ plseg〈q, n−1, p〉 ∧ d≥0) inv n≥1
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The predicate lseg describes a list segment of nodes whose length is captured by the
parameter n. Similarly, the predicate plseg describes a list segment with only non-
negative integers.

Lemmas are used to relate data structures beyond their original predicate definitions
[18]. A lemma specification consists of a head p(v∗), a guard π, a body Φ and a direc-
tion to apply (left →, right ← or both ↔) that denotes a weakening, strengthening or
equivalence, respectively. For example, to illustrate that plseg〈root, n, p〉 is an instance
of lseg〈root, n, p〉, we can use the following left (or weakening) coercion lemma:

lemma w1 plseg〈root, n, p〉∧n>0 →lseg〈root, n, p〉

4 A Calculus on Errors

In this section, we initially formalize the calculus with pure (without heap) formulas π.
The extension of the calculus to heap formulas will be presented in the next section.

4.1 The Entailment Procedures

In this subsection, we introduce two entailment procedures for discharging the proof
obligations with support for the four-points status.

Entailment Procedure for Postconditions Checking. The basic machinery for the
judgment πa -C πc � s is captured by the following four rules. We use underlying
theorem solvers for answering sastifiability. Note that UNSAT(π) denotes that π is defi-
nitely unsatisfiable and PSAT(π) denotes that π is possibly satisfiable (as a complement
of unsatisfiability checking and due to its incompleteness).

[EC−[BOTTOM]]
UNSAT(π1)
π1 -C π2 � ⊥

[EC−[OK]]
PSAT(π1) UNSAT(π1 ∧ ¬π2)

π1 -C π2 �
√

[EC−[MUST−ERROR]]
PSAT(π1) UNSAT(π1 ∧ π2)

π1 -C π2 � �

[EC−[MAY−ERROR]]
PSAT(π1 ∧ ¬π2) PSAT(π1 ∧ π2)

π1 -C π2 � '
Two rules at the first line check the success of the entailment and classify it as unreach-
able (⊥) or valid (

√
) as usual (checking UNSAT(π1 ∧ ¬π2) is equivalent to checking

π1 =⇒ π2). Next two rules at the second line check and classify the must/may error sce-
narios; in the first rule, a must error is identified when πa =⇒ ¬πc is provable: lastly,
due to the imprecision, entailments which has not been proven so far are marked with
unknown status through the second rule. (In the last rule, the condition PSAT(π1) is
discarded because it can be implied from two present conditions.)

To illustrate this entailment procedure, let us consider a postcondition check, x≥0,
under four different program states, as shown below.

x≤−1∧x=0 -C x≥0 � ⊥
x>0 -C x≥0 �

√ x≤−1 -C x≥0 � �
true -C x≥0 � '
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Entailment Procedure for Preconditions Checking. Furthermore, to support the
checking of preconditions from specifications with soundness and/or completeness, we
introduce another entailment judgment of the form: πa -E πc � s.

[EE−[BOTTOM]]
UNSAT(π1)
π1 -E π2 � ⊥

[EE−[OK]]
PSAT(π1) UNSAT(π1 ∧ ¬π2)

π1 -E π2 �
√

[EE−[MAY]]
PSAT(π1 ∧ ¬π2)
π1 -E π2 � '

The status for this entailment is now limited to only three possible values, namely ⊥,
√

and ', without the � status, as illustrated below:

x≤−1∧x=0 -E x≥0 � ⊥
x>0 -E x≥0 �

√ x≤−1 -E x≥0 � '
true -E x≥0 � '

Unlike the earlier entailment procedure, this new entailment has introduced a '
status value where � was derived previously, since the precondition may be under-
approximated. We can recover from this lack of information by leveraging on the status
from postconditions, where applicable. We defer formalization of the recovery to Sec.
6, we now illustrate it through the check of the calling context, prio<0, against the near-
complete specification of the ischedule procedure (presented in Fig. 2) as follows:

prio<0 - case { prio>0 → ensures (res=0)
√
;

prio<0 → ensures (true )�;
prio=0 → ensures (true )'; }

� (⊥⊗√
) � (

√⊗�) � (⊥⊗') � ⊥ �� � ⊥
� �

This compositional check is performed through two steps. Firstly, for each scenario (1)
the calling context is combined with the condition of current scenario; (2) unsatisfia-
bility check is performed by the -E procedure; and (3) the status from postcondition is
combined (by ⊗). Secondly, those scenarios are joined (by �).

4.2 Structural Rules

We provide sound structural rules that would carry out the entailment proving process in
smaller entailments. These rules support error localization, separation entailment pro-
cedure and modular verification.

[SE−[� JOIN]]
π1 - π � τ1
π2 - π � τ2

π1∨π2 - π � τ1�τ2

[SE−[⊗ COMPOSE]]
π - π1 � τ1
π - π2 � τ2

π - π1∧π2 � τ1⊗τ2

[SE−[⊕ SEARCH]]
π - π1 � τ1
π - π2 � τ2

π - π1∨π2 � τ1⊕τ2

These rules use the algebraic operations presented in Sec. 2.1 to combine the results.
Note that, - is generic, and can be -C or -E . The first rule decomposes disjunction on
the antecedent, while the second rule decomposes conjunction on the consequent. Both
these rules can be implemented without any loss of information. The third rule performs
a search over a disjunction in the consequent. This search returns a set of possible proofs
for the entailment. According to the ⊕ operator, if at least one

√
status is found in this

solution set, the entailment will succeed.
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Theorem 1 (Soundness of the Structural Rules). Given an entailment π1-π2. (� is
either -C or -E). If the application of the structural rules [SE−[...]] on the given an-
tecedent π1 and consequent π2 returns the result τ , then the application of the [EC−[...]]
([EE−[...]]) rules on the given antecedent π1 and consequent π2 returns the same result
τ , namely π1 -C π2 � τ (π1 -E π2 � τ , respectively).

The proof is by an induction on the structural rules [SE−[...]] and a case analysis on the
returned result τ . We present full proof of the theorem in the technical report [16].

4.3 Error Localization Extension to Calculus

To provide support for error localization, we must extend the four-point lattice with
messages that capture the reason for each success or failure (see the left of Fig. 5).

Status ⊥ does not carry any message which is denoted by ∅. When faced with a
message with error from m1�m2 and m1⊗m2, both of the two smaller messages (with
possible errors), denoted by m1 and m2, must be resolved, before the main message is
said to be resolved. When faced with a message with error of the form m1⊕m2, only
one of the messages with errors from either m1 or m2 needs to be resolved, before the
main message m1⊕m2 is resolved. We may now modify the three operators �, ⊗ and
⊕, to propagate messages capturing the localizations for successes and failures. Let us
denote this using a generic name / for three operators. We propagate every message,
where possible, as shown at the right of Fig. 5. In case empty message ∅ is generated,
we remove it from the main message as shown in the second and third rules. In case the
resulting status from τ1/τ2 is ⊥, we remove its messages, as shown in the last rule.

τ [m] ::= ⊥[∅] | �[m] | √[m] | �[m]
m ::= bm |m1�m2 |m1⊗m2|m1⊕m2

bm ::= π1 =⇒ π2 (valid)
| π1 =⇒ π2 (must error)
| π1 =⇒ π2 (may error)

τ1[m1] % τ2[m2] ⇒ (τ1%τ2)[m1%m2]
m % ∅ ⇒ m
∅ % m ⇒ m

⊥[m] ⇒ ⊥[∅]

Fig. 5. Program State: Status and Message

5 Error Calculus for Separation Logic

In this section, we show how our calculus can be used to support the reasoning of
pointer-based programs via the fragment of separation logic presented in Sec.3. As
separation logic is a sub-structural logic, we have to account for heap memory as a
resource. Thus, entailment in separation logic is typically supported with a frame infer-
ence capability [2,19], similar to the following format:

Φ1 - Φ2 ∗ Φ3

whereby antecedent Φ1 entails Φ2 with a residue frame captured by Φ3. Logically, the
above entailment is equivalent to Φ1 =⇒ Φ2∗Φ3 whereΦ3 may contain existential vari-
ables that have been instantiated and pure formula that were already established in Φ1.
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We enhance the entailment procedure for separation logic in two steps. First, we
extend the entailment procedure above to support the error calculus by the following
judgment:

Φ1 - Φ2 � (Φ3, τ)

If the antecedent semantically entails the consequent, the entailment succeeds and we
expect status τ to be set to

√
. Otherwise, the entailment fails and we expect τ to be

set to either � or '. Second, this procedure is extended to support proof search with
disjunctive formulas and lemma as elaborated in Sec. 5.1.
To illustrate the first step, let us examine four simple examples to better understand how
status outcome is being determined by the entailment procedure of separation logic.

Entailment 1 Entailment 2
x$→node( , q) ∗ q $→node( , null)
-C x$→node( , p)

� (q $→node( , null) ∧ p=q ∧ x=null,
√
)

x$→node( , q) ∗ q $→node( , null)
-C x$→node( , null)

� (q $→node( , null),�)

The entailment 1 yields a residue q $→node( , null) and an instantiation p=q from (im-
plicit) existential variable p. It also carries a pure formula x=null from the antecedent.
The entailment 2 yields a must failure, denoted by �. The consequent expects q=null,
but the antecedent had q $→node( , null). This contradiction has caused a � failure to
be raised. The residue captures the state when failure was detected.

Entailment 3

x$→node( , q) ∗ q $→node( , null) -C x$→node(3, p)
� (q $→node( , null) ∧ p=q ∧ x=null,')

The entailment 3 yields a may failure, denoted by '. The consequent expects value 3
to be proven as the data field of x. However, the antecedent has no information on that
field position. Hence, a ' failure was raised.

5.1 Separation Entailment with Proof Search

To support proof search the entailment procedure for separation logic shall now be
presented as a judgment of the following (full) form:

Φ1 - Φ2 � (Ψ, τ)

whereby Ψ captures a set of residual program states with status information. We use a
set of program states (Ψ ) since our entailment procedure may have to conduct a proof
search with the help of lemmas. Furthermore, we must extend our entailment procedure
in the following ways. First, rules are added to support proof search that adds to our set
of outcomes with the help of lemmas. Proof search is performed in the order as follows:

– Status values of the proof search with lemmas are combined by the union (⊕) op-
erator (where

√
or ' take priority over �). Hence, if a proof search attempt fails,

we return a ' (unknown) status, rather than a � status since the latter prevents a√
success from being reported, even if they can be confirmed in a different proof

search.
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– If a complete set of lemmas have already been explored, then a must error status is
returned.

Second, when our entailment procedure becomes stuck with a non-empty consequent,
comprising some heap predicates, we shall firstly determine a pure approximation of
the consequent for both heap and pure data through XPure procedure [2]. For examples:

XPure(x $→node〈 , 〉) =⇒ x =null
XPure(lseg〈root, n, p〉) =⇒ root=p∧n = 0 ∨ root=null∧n>0

where =⇒ denotes our over-approximation, and lseg is a predicate defined in Sec
3. We may then determine if there is any contradiction with the antecedent to decide
whether must or may failure is going to be reported.

6 Modular Verification with Error Calculus

Code verification is typically formalised using Hoare triples of the form {pre}c{post},
where pre, post are the initial and final states of program code c. To incorporate status
into our program state, we shall use disjunctive program state of form

∨
(Φ, τ), giving

us a new Hoare triple of the form {
∨
(Φ1, τ1)} c {

∨
(Φ1, τ1)}. To simplify our presenta-

tion, we shall use (Φ, τ) instead of the more general disjunctive program state
∨
(Φ, τ)

that was implemented. To provide sound and complete requirements, we shall also use
structured specification from [9] of the form below:

Y ::= requires Φ Y | case{π1⇒Y1; . . . ; πn⇒Yn} | ensures (Φ)τ

This extends the pre/post specifications to support case analysis and staged verification.
The verification requirement for methods can be affected by progressively collecting
the precondition in the structured specification, prior to the verification of its method
body. As this process is straightforward, we omit the details here.

The abstract semantics of each method call is captured by its specifications. We
encode its verification with the rule [FV−[CALL]]. Note that (t v)∗ and (ref t u)∗ de-
note pass-by-value and pass-by-reference parameters, respectively. Each method call
mn(v∗, u∗) in our core language has only variables as arguments. To avoid the need for
argument substitutions, we assume that each method declaration from Program has been
suitably renamed so that actual arguments are identical to the formal arguments.

[FV−[CALL]]
t0 mn ((t v)∗, (ref t u)∗) Y {c} ∈ Program

Φ1 - Y � (Φ2, τ2)
ΦR = if τ1=

√
then (∃v′∗·Φ2) else Φ1

{(Φ1, τ1)} mn ((t v)∗, (ref t u)∗){(ΦR, τ1 ⊗ τ2)}

The proof obligations are generated and verified at the second line, provided that the
incoming status τ1 is

√
. Furthermore, output states from proving entailment are com-

posed with status from pre-state at the third line. By default, if the caller context contains
errors, such errors are simply propagated to the next instruction in a similar manner
as exceptions. However, unlike exceptions, error states are never caught. To generate
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proof obligations for the extended specification, we propose to extend the entailment
procedure to handle specification with separation formulas. The revised judgment has
the form Φ1 - Y � (Φ2, τ2), where Φ1 is the current state, Y is the specification and
(Φ2, τ2) is the residual state and its status. Three syntax-directed rules are extended.
They are used to prove each precondition and assume its respective postcondition for
the callee, as shown below:

[FV−[C−REQUIRES]]
Φ1 -E Φ� (Φ2, τ2) (Φ2) - Y � (Φ3, τ3)

Φ1 - requires Φ Y � (Φ3, τ2⊗τ3)

[FV−[C−CASE]]
Φ∧πi - Yi � (Φi, τi) i = 1 . . . n
Φ - case{πi⇒Yi}∗ � (

∨
Φi,�τi)

[FV−[C−ENSURES]]
Φ1 -C true � (Φ, τ1)

Φ1 - ensures (Φ2)τ2 � (Φ1 ∗ Φ2, τ1⊗τ2)

7 Implementation and Experiments

We have implemented our error calculus inside a program verification system for sep-
aration logic, called HIPEE. We use HIPEE to verify C-based programs against user-
given specifications. The verification is performed compositionally for each method,
and loops are transformed to recursive methods. HIPEE eventually translates separa-
tion logic proof obligations to pure formulae that can be discharged by different the-
orem provers. Our system uses Omega [21], MONA [15], Redlog [7] and Z3 [4] as
underlying theorem provers for answering the satisfiability and simplification queries.
When program code is not successfully verified against safety properties, HIPEE not
only further classifies the failures into the must or may errors but also localizes program
statements and specifications relevant to the errors.

7.1 Calculus Performance for Heap-Based Programs

To evaluate the overheads of error calculus, we executed our system HIPEE twice, once
with error calculus and a second time without, on a suite of bug-free pointer-based pro-
grams. We stress that although the sizes of these programs are fairly small, they deal
with fairly complex heap-based data structures, such as linked lists, doubly-linked lists
and AVL-trees. Therefore, these programs can be used to fully evaluate the performance
of our calculus which has been embedded inside a separation logic prover. The results
are summarized in Table 1. The first column contains the list of the verified programs
and their proven properties while the second, third and fourth columns describe number
of lines of code (LOC), number of lines of specification (LOS) and number of pro-
cedures in each program. On average, LOS is around 12% of LOC and specifications
are complicated enough to demonstrate the performance of our calculus. The fifth and
sixth columns show the total verification time (in seconds) for the system HIPEE with-
out and with error calculus, respectively. The last two columns capture the number of
satisfiability and simplification queries sent to the provers for each experiment.
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Table 1. Verification Performance with (w) and without (wo) Error Calculus

Programs (specified props) Size Proc Time(sec.) Invo.(#)
LOC LOS # wo w wo w

Linked list (size,interval) 327 50 26 0.44 0.46 2738 3202
Linked list (size,sets) 157 27 13 0.58 0.6 1520 1724

Sorted llist (size,sness,sets) 98 11 6 0.46 0.49 955 1060
Doubly llist (size,interval) 186 23 13 0.34 0.34 1864 2083

Doubly llist (size,sets) 91 13 5 0.5 0.5 1309 1429
CompleteT (size,minheight) 106 12 5 0.87 0.94 2149 2533
Heap trees (size,maxelem) 179 13 5 1.9 1.91 4540 4954

AVL (height, size) 313 27 12 3.44 3.59 7863 8585
AVL2 (height,size,bal) 152 37 7 2.83 3 6959 7876

BST (size,height) 177 18 9 0.35 0.37 1883 2192
BST (size,height,interval) 153 12 6 0.3 0.31 1581 1836

RBT (size,blackheight) 508 48 19 3.32 3.38 13069 16687
Bubble sort (size) 75 9 4 0.21 0.21 1092 1254

Quick sort (size, sets) 82 10 4 0.27 0.28 778 832
Merge sort (size,sets) 109 11 6 0.47 0.5 1035 1074

Quick sort - queue (size) 127 4 2 4.25 5.27 13218 21139
Total 2840 325 142 20.53 22.15 62553 78460

In Table 1, the results show that the total overhead introduced by our error calculus
is around 1.62 seconds (8%). This overhead is proportional to the number of extra satis-
fiability and simplification queries shown in the last two columns. These experimental
results have shown that must/may error calculus with messages can be supported with
modest overhead.

7.2 Calculus Usability

In order to show the usability of our error calculus on bugs finding and localizing, we
evaluated our system on the Siemens test suite [12] of programs. The test suite contains
programs with complex data structures (e.g. linked lists, queues), arrays and loops. Each
program in the suite has one non-faulty version, v0, and a number of seeded faulty ver-
sions (#Ver. column in Table 2) from v1 to vn. Each of these faulty versions has one or
more (seeded) faults. Total number of faults is captured in #Fault column. These faulty
versions are suitable for checking the ability of tools in finding bugs and localizing
errors (as used in [14]).We provide specifications for each program such that HIPEE
(1) successfully verifies safety (sound or complete requirements) in the non-faulty ver-
sions, and (2) captures potential must-bug errors that are complementary to the safety
scenarios. We emphasize that these specifications were designed primarily to verify
safety scenarios without considering the faulty versions of each program. Nevertheless,
HIPEE is able to utilize the same specification to find and explain the presence of bugs
in the faulty versions, as elaborated below.

Table 2 shows the result of running our system on six programs from the suite.
The properties our tool proved include: (i) memory safety (all), (ii) size of data struc-
tures (schedule1a, schedule1b and schedule2 program), (iii) array-related properties
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Table 2. Bugs finding and localizing with small programs in the Siemens Test Suite

Programs LOC LOS #Proc. #Ver. #Fault � �1 �2 LOE time(s)
tcas 173 48 9 41 48 31 14 3 3.48 3.06

schedule2 374 108 16 10 10 5 0 3 3 8.25
schedule1a 412 50 18 10 16 15 0 1 4.38 18.13
schedule1b 413 50 18 9 8 7 0 1 4.25 32.29

replace 564 73 21 24 24 18 0 6 4.21 17.89
print tokens2 570 64 19 10 10 7 0 1 4.88 20.42
print tokens 726 87 18 7 9 8 0 1 3.67 6.73

Total/(Average) 3232 480 119 111 125 91 14 16 (3.98) (15.25)

(tcas, print token, print token2 and replace program), (iv) functional arithmetic
constraints between input and output (all). We are interested in finding out all the errors
in the programs and classifying them as must (�), disjunctive may ('1) or may ('2)
errors. For instance, from 48 faults of program tcas, HIPEE was able to detect all the
errors in the program, and classified 31 of them as must (�) errors, 14 as disjunctive
may ('1) errors and 3 as may ('2) errors. In summary, HIPEE detected 97% of real
bugs including 73%, 11% and 13% of �, '1 and '2 errors, respectively.

However, a few errors were not detected by our system, e.g. v4, v9 of schedule2 and
v1, v2 of print tokens2 were verified successfully by HIPEE. Upon careful examina-
tion, we found that the substituted statement in v9 is semantically equivalent with the
non-faulty one in v0. Hence, we consider it as a bug in constructing the benchmark
rather than a real program bug. For v1, v2 and v4, there were omitted statements that are
related to the I/O systems. For instance, the following statement is omitted in v1:

if(ch == EOF) fprintf(stdout, ”It can not get character”);

This was not picked up by our system since the specification of I/O operations were not
being modelled. It would be interesting to see I/O operations being modelled in future.

Our calculus further supports debugging in localizing the errors. The LOE column
shows the average number of lines of program code and specification relevant to the
errors for each program. We are able to provide concise (between 3-5 lines) error loca-
tions for all the bugs in the suite. Such short but accurate localizations make it easier
for users to comprehend the discovered errors. The last column shows the average time
which HIPEE took for verifying a faulty version of each program.

Purely from the system point of view and on the assumption that specifications have
already been provided, HIPEE took on average 16 seconds for safety proving, bug
finding and error localization on one faulty version of each program.

8 Related Work and Conclusion

The most relevant idea to our new specification mechanism is exception safety in Spec#
language [17]. While Spec# uses otherwise keyword to explicate scenarios which def-
initely lead to exceptions, our proposal uses must error values � to model erroneous
scenarios. Hence, it is possible to integrate our mechanism into exception handling.
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Moreover, our specification mechanism with the error calculus has well supported our
verifier not only in proving safety/functional correctness and validating input parameter
(like Spec#) but also in finding and classifying bugs.

Static analysis based bug finding is not new and already exists [6,8,11,13]. Recent
work in first order relational logic [6,13] also addresses the problem of finding bugs
in programs with pointers and linked data structures. The method is based on under
approximation for loops and heap, thus it only finds the must bugs (�) in the code.
Similarly, Exorcise [11] is only capable of detecting must errors (�) based on evaluating
weakest liberal preconditions. Since both consider only postcondition violation as a
must error, they do not report on the more common bugs that are due to preconditions.
Our calculus is more expressive (with uncovering not only must error but may error and
with proving safety) through the help of new specification mechanism on sound and/or
complete properties. Moreover, to handle pointer-based programs, while the underlying
assumption in [13] is that most bugs can be found in the programs with small scope
(loop unrolling) and small heap size, we have also shown how our error calculus can
handle data structures with aliasing through a simple integration with separation logic.

As static analysis suffers from precision problem, there have been attempts to use
dynamic or hybrid analysis for safety proving and bugs finding. An approach based
on dynamic analysis to infer likely invariants from code is implemented in [3]. Invari-
ants discovered can be used as method annotations or assumptions, which can aid static
checkers in detecting bugs. This hybrid analysis uses a combination of under approxi-
mation and over approximation in different phases of analysis. Similarly, SMASH [10]
integrates safety with bug finding via a synergy between static analysis and testing. In
our approach we do not rely on dynamic analysis as our complete lattice can symbol-
ically capture a richer set of possible program states. Our method integrates both bug-
finding and safety proving within a single calculus, without prejudice to working with
dynamic-based analyses for unknown scenarios. Other attempts are based on dual static
analysis. An over-approximation for safety and another over-approximation for bugs
finding was presented in [20] but it has only been applied to numerical imperative pro-
grams. Another related approach using over- and under-approximation was presented
in [5]. In [5], the may and must queries correspond to safety and liveness properties.
Their conditions are computed with respect to a finite abstraction for each particular
property. In comparison, the conditions for our must/may error are captured in terms of
symbolic (infinite) domain that relies only on over-approximation mechanisms.

Conclusion. In this paper, we described a novel specification mechanism for both
sound and complete requirements via the calculus for must/may errors. The calculus
also enables bug finding (with safety checking) during modular verification. We can
provide fairly precise and concise failure localization from our calculus. Using sepa-
ration logic, we can support sound and complete safety verification, in the presence of
data structures with sophisticated invariants, via user-defined predicates and lemmas.
We have extended an automated tool for verifying complex data structures to use our
error calculus. Initial sets of experiments have shown that bug finding and safety check-
ing via the modular vefification can be supported with modest overheads.
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Abstract. Probabilistic-Write/Copy-Select (PWCS) is a novel synchro-
nization scheme suggested by Nicholas Mc Guire which avoids expensive
atomic operations for synchronizing access to shared objects. Instead,
PWCS makes inconsistencies detectable and recoverable. It builds on the
assumption that, for typical workloads, the probability for data races is
very small. Mc Guire describes PWCS for multiple readers but only one
writer of a shared data structure. In this paper, we report on the formal
analysis of the PWCS protocol using a continuous-time Markov chain
model and probabilistic model checking techniques. Besides the origi-
nal PWCS protocol, we also considered a variant with multiple writers.
The results were obtained by the model checker PRISM and served to
identify scenarios in which the use of the PWCS protocol is justified
by guarantees on the probability of data races. Moreover, the analysis
showed several other quantitative properties of the PWCS protocol.

1 Introduction

Control mechanisms for shared data is a central task for the design of parallel
systems. Various protocols to ensure exclusive access to shared data have been
developed by the operating system community. Most prominent are sophisticated
locking schemes. These, however, became more and more complex. Moreover,
scalability turns out to be problematic because atomic operations and cache
synchronization between an ever growing number of cores became more and
more expensive [MCS91].

At a recent Real-Time Linux Workshop, Nicholas Mc Guire proposed
a promising idea to exploit the increasing complexity of modern manycore sys-
tems for synchronizing shared objects [Gui11]. Rather than avoiding inconsis-
tencies at all cost by locking objects or updating their state with increasingly
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more expensive atomic operations, Mc Guire proposed to not synchronize read-
ers and writers at all. Instead, he proposed to explicitly allow data races on the
shared object but to make inconsistencies from ongoing writes detectable. As
such, Mc Guire’s protocol is an instance of a new class of algorithms that make
use of the randomness that is inherent in complex modern computer architec-
tures. This randomness is caused by differences in the content of the core-local
caches and by arbitration at the hardware level, which together induce small,
but almost unpredictable differences in the execution time. In the approach of
Mc Guire, writers are viewed as fault injectors that access the shared data items
probabilistically. Instead of single data items that are protected by some locking
scheme, Mc Guire’s approach deals with a fixed number of replicas of the shared
objects (called “copies” in [Gui11]) that are written and read in reversed order.
The idea is that, thanks to the inherent randomness of the writers, the proba-
bility for a reader to find at least one consistent replica is sufficiently high. For
this reason, Mc Guire used the notion Probabilistic-Write/Copy-Select, PWCS
for short, for his approach. Mc Guire reports in [Gui11] on measure-based exper-
iments illustrating that PWCS is indeed a promising approach that outperforms
most locking schemes in high-end cache coherent systems. Moreover, PWCS
makes no special assumptions on the memory consistency model except that
modifications will eventually propagate to prospective readers.

In this paper, we report on a formal analysis of Mc Guire’s protocol using
probabilistic model checking techniques. We designed a continuous-time Markov
chain (CTMC) to model the PWCS protocol, using exponential distributions
as a formalization of the inherent randomness of complex systems observed by
Mc Guire. While [Gui11] only addresses the case of a single writer and multiple
readers, we analyzed the protocol for multiple writers. This requires the consid-
eration that the replica of shared data items can be in three modes: consistent,
currently modified (by precisely one writer) or damaged (concurrently modified
by two or more writers). We identified a series of quantitative measures that
serve to evaluate the adequacy of the PWCS protocol and that address different
aspects. From the readers perspective, guarantees on the success rate and the
required time to find at least one consistent replica are most relevant. The aver-
age repairing time provides a formal criterion for the usefulness of the implicit
repairing mechanism of damaged replica, given by the possibility that eventu-
ally some writer modifies the damaged replica without being interfered by other
writers. These and other quantitative measures have been formalized as quan-
titative queries using continuous stochastic logic (CSL) [ASSB00,BHHK03] and
its extension for reasoning about rewards (CSRL) [BHHK00] and analyzed using
the model checker PRISM [KNP04,KNP09]. The model checking results indeed
confirm Mc Guire’s observations.

At its current stage, it is too early to give affirmative answers to the ap-
plicability of PWCS. But both, Mc Guire’s measure-based evaluation and our
quantitative analysis, give evidence in the potential of PWCS-like protocols that
make use of the inherent probabilism in complex systems to avoid the draw-
backs of standard locking schemes or other coordination mechanisms relying on
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a deterministic protocol or explicit probabilistic algorithms (e.g., using random
number generators).

Related Work. Probabilistic model checking was already used in various ap-
plication areas, ranging from distributed randomized algorithms over energy
management, communication, gossiping and cryptographic protocols to network
on chip design and system biology. See e.g. the homepages of the model check-
ers PRISM [KNP04,KNP05,KNP09], MRMC [KZH+11] or the CADP tool set
[CGH+10]. Most related to our approach are case studies that address the quan-
titative analysis of non-randomized mutual exclusion protocols where stochastic
distributions were used to model the delay or duration of actions. Examples
are the case studies performed by Mateescu and Serwe with the CADP toolbox
[MS10] and a series of classical mutual exclusion algorithms and our recent work
on a simple spinlock protocol using PRISM and MRMC [BDE+12b,BDE+12a].
The timing behavior of standard mutual exclusion protocols using mathematical
reasoning with stochastic distributions was also investigated by the algorithm
community, see e.g. [GM99].

2 Probabilistic-Write/Copy-Select

In [Gui11], Mc Guire presented two alternative implementations of PWCS [Gui11]
projected objects, which differ in the type of token they use for making object
inconsistencies detectable: tag-based consistency tokens complement the object
with a pair of version numbers that have to match for the data to be read consis-
tent; hash-based consistency tokens on the other hand store a hash of the data,
which up to collision uniquely identifies the consistent states of the object.

Writes proceed by first marking the object inconsistent, either by incrementing
the version of the end tag or, in case of hashes, by simply modifying some part
of the object to cause a mismatch between the stored hash and data. After the
modification completes, the begin tag is incremented to mark the data consistent
again. In case of hashes, consistency is established automatically once the stored
hash and all modifications become visible.

Readers match this operation by taking a copy of the object and its consis-
tency token. More precisely, they first copy the begin tag and then the data into
a private buffer. After that, they match the buffered begin tag with the end tag
stored in the object to determine whether they have read a consistent version.
If not they retry or follow some other back-off strategy. Replicas of the object
are used to further reduce the chance of a reader finding an inconsistent object.

To enforce the order in which end tag, data and begin tag become visible,
fences have to be used on modern processor architectures possibly in combination
with some delay loop or packet ordering scheme to ensure that the respective
updates become visible in the desired order. Hashes further relax these hardware
dependencies because no matter in which order the data and tags are read or
written, once all data plus the corresponding hash arrives at a reader, it will find
its copy to be consistent.
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Mc Guire does permits only one writer process. Here, we extend PWCS and
consider multiple writers that may modify all replicas of the object concurrently.
It may therefore happen that some replicas get damaged because different writers
succeed in storing parts of their data. In this case, the stored data and the
hash do not match, which allows a reader to recognize an inconsistency. Note
that tags would not allow for a reliable damage detection. In contrast to our
model, a reader cannot distinguish between a damaged replica and a temporarily
inconsistent one that is currently updated by a single writer. We assume that a
damaged replica becomes consistent again, and is thus implicitly repaired, when
a single writer can modify it without others interfering.

3 Stochastic Model of PWCS

To model the PWCS protocol we use exponential distributions for representing
the inherent randomness in an explicit way. This leads to a continuous-time
Markov chain (CTMC), which then serves as basis for the formal analysis using
the CTMC engine of the PRISM model checker. The CTMC is obtained in a
compositional way, using CTMCs with action labels for each writer and each
reader. The replica are represented by a non-stochastic transition system that
synchronize with the writers to change their states.

3.1 Preliminaries

We briefly summarize the relevant principles of continuous-time Markov chains.
Further details can be found in textbooks onMarkov chains, see e.g. [Kul95,KS60].

If S is a finite set then a distribution on S is a function ν : S → [0, 1] with∑
s∈S

ν(s) = 1. For U ⊆ S, ν(U) is a shortform notation for
∑
s∈U

ν(s).

The CTMCs we use here are tuples M = (S,Act , R, μ) where S is a finite
state space, Act a finite set of action names and R a function of the type R :
S × Act × S → R≥0, called the rate matrix of M. The last component μ is a
distribution on S specifying the probabilities for the starting states. If ν is a
distribution on S then we write Mν for the CTMC (S,Act , R, ν) that results
from M by replacing the initial distribution μ with ν.

We write s
λ:α−→ s′ if R(s, α, s′) = λ > 0 with the intuitive meaning thatM has

a transition from state s to state s′ with action label α and rate λ. The value λ
specifies the rate of an exponential distribution. That is, the probability for the

transition s
λ:α−→ s′ to be ready for firing some time in the interval [0, t] is 1−e−λt.

Thus, the average delay of this transition is 1/λ. If R(s, α, s′) = 0 then M cannot
move from s to s′ via action α. The choice between several enabled transitions
in state s relies on the race condition. Thus, the time-abstract probability to

fire a particular transition s
λ:α−→ s′ in state s is P (s, α, s′) = λ/E(s) where

E(s) denotes the exit rate of state s, i.e., the sum of the rates of all outgoing

transitions of state s. The probability that s
λ:α−→ s′ will fire within t time units

is then P (s, α, s′) ·
(
1− e−E(s)·t).



A Probabilistic Quantitative Analysis of Probabilistic-Write/Copy-Select 311

Paths in a CTMC are sequences of consecutive transitions augmented by the
time points when they are taken. The quantitative analysis using the logics
CSL [ASSB00,BHHK03] relies on the standard σ-algebra on infinite paths and
probability measure (see e.g. [Kul95,KS60]). To specify measurable sets of infinite
paths, we will use LTL-like notations, such as ♦T (“eventually T ”) where T ⊆ S
denotes the set of all infinite paths that contain at least one T -state. Similarly,
U denotes the until-operator and U≤t the time-bounded until with time bound
t. To formalize measurable sets of paths in a state-based logical framework, we
will also use state predicates and propositional formulas built upon them as a
symbolic formalism for sets of states. The state predicates and their meanings
will be obvious from the names of the states in our model.

For our analysis, we are chiefly interested in the long-run behavior, i.e., the
system behavior when time tends to infinity and when the system is in equilib-
rium. For this purpose, we deal with the steady-state distribution θ : S → [0, 1]
where θ(s) represents the average fraction of time to be in state s on the long-run.
Formally, θ(s) is defined by

θ(s) = lim
t→∞

θ(s, t)

where θ(s, t) denotes the probability for M being in state s at time instant
t. For finite CTMCs, function θ is well-defined and it is indeed a distribution
on S. Long-run probabilities refer to the probability measure obtained for the
CTMC Mθ where the original initial distribution μ of M is replaced with the
steady-state distribution θ.

Suppose now that U is a set of states such that θ(U) > 0. Conditional long-
run probabilities under condition U refer to the long-run behavior of M when
starting in one of the U -states. These are obtained by using the probability
measure of the CTMC MU

θ = Mν where ν is the distribution on S given by
ν(s) = 0 if s ∈ S \ U and ν(s) = θ(s)/θ(U) if s ∈ U . If Π is a measurable set of
infinite paths, then the conditional long-run probability for Π under condition U
is the probability measure of Π in the CTMC MU

θ and denoted by Pr
(
Π
∣∣U).

We will also study reward-based properties formalized using the logic CSRL
[BHHK00]. These require an extension ofM by a reward function rew : S → R≥0

where rew(s) specifies the reward to be earned per time unit when staying in
state s. For finite paths one can then reason about the accumulated reward.
Suppose π is a finite path where the underlying state sequence is s0 s1 . . . sn
and let t0 = 0 and ti the time point where π takes the i-th transition. The
accumulated reward of π is:

Rew(π) =

n−1∑
i=0

(
ti+1 − ti

)
· rew(si)

Suppose U is a set of states with θ(U) > 0 and Pr
(
♦T | U

)
= 1. The condi-

tional long-run accumulated reward for eventually reaching T under condition
U is defined as the expected value of the random variable that assigns to each
infinite path in ♦T the accumulated reward of the shortest prefix that ends in
a T -state under the probability measure in the CTMC MU

θ . It is denoted by
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AccRew
(
♦T
∣∣U). In the analysis of the PWCS-protocol, we will deal with the

reward function that assigns value 1 to all states. In this case, AccRew
(
♦T
∣∣U)

can be interpreted as the average amount of time to reach T from U on the
long-run.

For the quantitative analysis of the PWCS-protocol, we will consider several
instances of Pr

(
Π
∣∣U) and AccRew

(
♦T
∣∣U), including those where U is given

a set of actions rather than a set of states. In those cases, U is identified with
the set of states that can be entered via taking some transition with an action
label in U .

3.2 Modeling the PWCS-Protocol

The CTMC for the PWCS-protocol will be obtained by composing CTMCs for
the writers and readers and ordinary (non-stochastic) transition systems for the
replica. For the synchronization of the writers with the replica, we use CSP-like
notations for actions: !a for the sending of a signal by some writer and ?a for the
matching receive action by the replica. Since all state changes of the replica are
triggered by the writers, the action alphabet of the replica consists of actions of
the form ?a where the corresponding send action !a is in the action alphabet of
some writer. The other actions of the writers and all actions of the readers are
executed in an interleaved way. Since only the sending actions are augmented
with rates, the rate for the synchronization of ?a and !a in the composite CTMC
is the rate of the sending action !a in the CTMC of the writer. This corresponds to
the following SOS-rules to combine the CTMCs for the writers and the readers
with the transition system for the replica to obtain a CTMC for the PWCS-
protocol:

s
λ:α−→ s′

〈s, x〉 λ:α−→ 〈s′, x〉
w

λ:!a−→ w′, r
?a−→ r′

〈w, r, y〉 λ:a−→ 〈w′, r′, y〉

In the first rule, s
λ:α−→ s′ stands for a transition of some writer or reader, while

x stands for the tuple consisting of the local states of all other components.

In the second rule, w
λ:!a−→ w′ and r

?a−→ r′ stand for a transition of some
writer and replica, respectively. Here, y stands for the tuple consisting of the
local states of all readers and all other writers and replica.

Replicas. The replicas themselves are interpreted as shared data objects among
the readers and writers and behave according to the control-flow diagram shown
in Fig. 1. We abstract away from the concrete values stored in the object, and
only represent the three possible modes of a replica: it can be either consistent,
currently modified, or damaged. Therefore, the model for the kth replica consists
of the three locations consistentk, currently modifiedk, or damaged k. An integer
variable wk keeps track of the number of writers that are currently writing the
kth replica. The edges in the control-flow diagram partly refer to the counter
variable wk by means of a guard or an assignment. The usual unwinding of the
control-flow diagram yields a transition system where each state consists of a
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consistentk currently modifiedk damagedk

wk := 0 ?writing started k

wk := 1

?writing finishedk

wk := 0

?writing started k

wk := 2

if wk = 0 then
?writing started k

wk := 1

?writing started k

wk := wk+1

if wk > 0 then
?writing finishedk

wk := wk−1

Fig. 1. Control-flow diagram for the kth replica

location and a value for the counter variable wk and where the transitions are
labeled by some receive action ?a (without any reference to the counter variable).

Each replica is assumed to be initially consistent and no writer is currently
actively writing. In Fig. 1, the transitions writing startedk and writing finishedk

stand for sets of transitions writing started i
k and writing finished i

k, 1 ≤ i ≤ I
which synchronize with the respective actions triggered by any of the writers.
That is, whenever some writer starts operating on the kth replica, which is in-
dicated by the synchronous action writing started i

k, the replica changes its loca-
tion, where it is now considered to be under modification and the counter variable
wk is increased accordingly. Similarly, the synchronous action writing finishedk

indicates the end of a write operation on the kth replica. A replica is said to be
damaged if more than one writer is operating on the replica at the same time. A
replica can only become consistent if one writer can successfully write its data
without interference from another writer. We mark a damaged replica as cur-
rently modified once a single writer starts modifying the replica exclusively. If
it succeeds writing the replica without interference from another writer, we con-
sider the replica to be repaired and hence consistent. We say a writer interferes
with another reader or writer if it writes a replica that is concurrently read or
written by this other process.

Readers. Fig. 2 shows the CTMC formalizing the operational behavior of the jth

reader. For each transition we assign a rate of an exponential distribution. The jth

reader is initially in the state idlej before it starts reading the replica in the order
of decreasing indices. The delay of the transition from the idle state to the state
reading jK is exponentially distributed with rate κ. Intuitively, κ defines the “read
rate” of an individual reader, which can be understood as the average number of
reading requests per time unit in state idlej . The transition from state readingjk
to state check j

k with action reading finished j
k fires with rate δ. In states check j

k

the reader checks whether or not the read of the kth replica was successful. The
read operation is successful if the replica was found consistent at the beginning of
the read and there was no interference from a concurrent write operation of some
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success j

error j

idle j

readingj
1 check j

1

reading j
K−1 check j

K−1

...
...

readingj
K check j

K
κ : reading started j

K

δ : reading finished j
1

ρ : reading started j
1

δ : reading finished j
K−1

ρ : reading started j
K−1

δ : reading finished j
K

σ : return to read idlej

ν : return to read idlej

Fig. 2. CTMC for the jth reader

writer. For the latter, the jth reader has access to the shared boolean variables
corrupted j

k. The variables corrupted j
k are set to false whenever a transition with

action reading started j
k is fired and set to true by the writers as specified in the

next paragraph of this section. In case that the replica was found consistent and
no writer was writing the replica concurrently, the jth reader changes its state to
successj , from where it returns to state idlej with rate σ. Otherwise it proceeds
reading the next replica with rate ρ ∈ R>0. If the reader could not find a con-
sistent replica without interference from a writer, the reader moves to the state
error j . The transition from error j to idlej can be understood as a high-level rep-
resentation of some error handling which is modeled here stochastically using an
exponential distribution with rate ν. (Also the original PWCS protocol proposed
by Mc Guire does not consider any concrete policy for the error handling.) In the
following, we say a reader is in a read cycle if it is in some state other than idlej

and define the term write cycle accordingly.

Writers. The writers are modeled by the CTMC shown in Fig. 3. The ith writer
starts in its initial state idle i and changes its state to writing i1 with rate γ ∈ R,
while firing the send action !writing started i

1 synchronously with the matching re-
ceive action ?writing started i

1 by the first replica. Hence, the writer starts writing
the first replica when it enters the locationwritingi1. Once the writer has started, it
will write all replica in the order of increasing indices (i.e., in reversed order of the
readers).When the write operation of the kth replica (k ∈ N) is finished, the writer
changes its state to ready i

k with the synchronous action writing finished i
k and rate

λ before continuing with the next replica. The time to access the next replica is
exponentially distributed with rate μ ∈ R. After the writer has finished writ-
ing the last replica it changes back to state idle i via action return to write idle i

with rate η. We assume that the effect of firing writing started i
k will be that the

shared variables corrupted j
k are set to true for all readers (i.e., 1 ≤ j ≤ J). This

is to “inform” the readers which are currently reading the kth replica about the
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idlei writing i
1 ready i

1

writing i
2 ready i

2

...
...

writing i
K ready i

K

γ : !writing started i
1 λ : !writing finished i

1

μ : !writing started i
2

λ : !writing finished i
2

μ : !writing started i
K

λ : !writing finished i
K

η : return to write idlei

Fig. 3. CTMC for the ith writer

interfering write operation.We have introduced this signaling mechanism because
the interfering write may corrupt the data the reader retrieves from the replica.
Concurrent reads may retrieve corrupt data even though the replica may be con-
sistent before and after the write.

To obtain the PRISM model, we did some technical modifications on the
CTMC models presented above. Action labels have been encoded as variables.
This enables references to actions in the state-labeled logics CSL and CSRL.
Furthermore, we identify the last ready-state ready i

K with the idle-state idle i.

4 Quantitative Analysis

We now proceed to the quantitative analysis of PWCS. There are several interest-
ing questions to ask about PWCS when one seeks to use it in a specific scenario.
For example, what is the likelihood to read a consistent object, how many replicas
have to be read for that and how long does it take on average.The following queries,
which we havemodel checked, give answers to these questions and insights into the
balance between repair and damage thatwe found to be crucial for the performance
of PWCS in the presence of multiple concurrent writers.

Queries. To obtain deeper insight in PWCS and have analyzed the following six
queries. The writer index 1 ≤ i ≤ I and reader index 1 ≤ j ≤ J are arbitrarily
chosen but fixed.

Q1: “Probability to successfully read a replica (on the long run)”: The jth reader
successfully reads a replica, when it finds one consistent replica during its
read cycle without interference. That is, the reader starts its read cycle when
performing the first read action reading startedj

K and reaches location idlej

via successj (rather than via error j). Formally, the task is to compute:

Pr
(
¬error j U idlej

∣∣ reading startedj
K

)
Q2: “The p ∈ [0, 1] time-quantile for a successful read (on the long run) within

time bound t”:
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min
{
t : p ≤ Pr

(
¬error j U≤t idlej

∣∣ reading startedj
K

)}
In this query we are interested in the minimum time bound t such that the
probability to successfully read a replica on the long run (cf. Query Q1) is
above a certain threshold p.

Q3: “Fraction of time in which all K replica are damaged”: While all replicas
stay damaged, readers have no chance to successfully read a single replica.

θ
(
damaged1 ∧ . . . ∧ damagedK

)
For this query we will investigate the effect on the model checking outcome
when increasing the number of replicasK present in the model, as this should
raise the probability of finding a consistent replica for the readers.

Q4: “Average time (on the long run) for repairing a damaged replica”: In this
query we are interested in the average repair time once a replica becomes
damaged. For the computation we annotate all states of the model with re-
ward 1 and compute the following conditional long-run accumulated reward:

AccRew
(
♦ consistentk

∣∣ just damagedk

)
Here, just damaged k is a shorthand notation for the transition in which a sec-
ond writer starts operating on the kth replica, i.e., the transition from loca-
tion currently modifiedk to location damagedk with an action writing started i

k

(cf. Fig. 1).
Q5: “The p ∈ [0, 1] time-quantile for repairing a damaged replica (on the long

run) within time bound t”: In this query we are interested in the minimum
time bound t such that the probability to successfully repair a damaged
replica on the long run (cf. Query Q4) is above a certain threshold p.

min
{
t : p ≤ Pr

(
♦≤t consistentk

∣∣ just damagedk

)}
Q6: “The probability to write at least c consistent replica within one write cycle

where c ≤ K.”: We say that the ith writer successfully writes at least c
replicas in one write cycle if on the path through the cycle there are at
least c indices � = �1, . . . , �c, where w� = 0, writing started i

� is executed and
followed by writing finished j

� without interfering writes on the �th replica by
any of the other writers.

Pr
(
Πc

∣∣ writing started i
1

)
Here, the set Πc consists of all infinite paths that have a finite prefix that
meets the constraints imposed above.

5 Evaluation

We have evaluated PWCS for the three different scenarios depicted in Table 1:
Scenario 1 (frequent reads and writes) is a worst-case setup for PWCS where
readers and writers access the shared object as fast as they can. Scenario 2
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Table 1. Parameters for the three evaluated scenarios

Scenario 1 Scenario 2 Scenario 3
time rate time rate time rate

idle time (writer) 1 γ = 1 20 γ = 0.05 200 γ = 0.005
idle time (reader) 1 κ = 1 2 κ = 0.5 20 κ = 0.05

parameters common to all scenarios
time rate

write duration 2 λ = 0.5
read duration 1 δ = 1
other 0.01 μ = ρ = σ = ν = 100

(frequent reads/moderate writes) characterizes a read-most data structure where
writers access the object only every 10th read access in average. Scenario 3
(moderate reads/occasional writes) is a setup where both readers and writers
access different parts of fine-granular synchronized objects or where the times
to access objects are significantly smaller than the computation phases between
subsequent accesses. Due to the cache-agnostic nature of our CTMC model and
because we are primarily interested in the synchronization behavior of one se-
lected reader, we will instantiate our model with one reader (i.e., J = 1) and
vary the number of writers I between 1 and 5. For the queries Q1, Q3 and Q5,
we vary the number of replicas K between 1 and 5. For the remaining queries we
fix K to 5. All times are average durations relative to the average read duration.

The computations were carried out on an Intel Core i7 2640M @ 2.8GHz.
For our parameter sets, the model sizes ranged from 13 states (I = K = 1) up
to approximately 50 million states (I = K = 5). By applying PRISM’s built-in
symmetry reduction, we were able to reduce the state space significantly to about
0.65 million states. Using PRISM’s sparse engine, we observed model checking
times between a fraction of a second and 6 minutes (Q1, I = K = 5). To ob-
tain the long-run probabilities and accumulated rewards, we applied our PRISM
extension [BDE+12b] that calculates the weighted sums using the steady-state
distribution θ. For Q2 we approximated the time-quantile by sampling with a
period of 0.25 time units. In order to compute property Q6 efficiently, we trans-
lated it into a nested PCTL query that yields a compact Rabin automaton for
the converse property: “The probability to write at most c damaged replicas
where c ≤ K”.

Reader Performance (Queries Q1 – Q2). Figs. 4(a), 4(c) and 4(e) show
the probability to read a consistent replica in the three analyzed scenarios. For
Scenario 2 and 3, we clearly see that as few as four respectively two replicas
suffice to reach success rates over 95% even if replicas are damaged by interfering
writers. In the worst case Scenario 1, reads are still successful in over 45% of all
cases once the number of replicas exceeds the number of writers.

Query Q2 projects the Q1 results into the time domain. Figs. 4(b), 4(d)
and 4(f) show the probability of reading the shared object successfully within
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(a) Q1: frequent reads/writes (b) Q2: frequent reads/writes

(c) Q1: freq. reads/mod. writes (d) Q2: freq. reads/mod. writes

(e) Q1: mod. reads/occ. writes (f) Q2: mod. reads/occ. writes

Fig. 4. Results for the Queries Q1 and Q2

the time bound t. Recall, the average time to read a replica is one time unit.
As expected, additional writers cause more replica to be inconsistent. The time
to find a consistent replica increases with the number of writers. There are two
important points to notice. First, if we take the average write duration multi-
plied by the number of writers plus the average time to read a replica (i.e., 3,
5, 7, 9 and 11 time units for 1, . . . , 5 writers, respectively) the probability to
have read the object successfully is well over 90% for Scenario 2 and well over
99% for Scenario 3 and 2 or more writers. Another point to notice is the gap
between the curves and probability 1. In particular for Scenario 1, the 4-writer
curve approaches 62% but never reaches 1. Part of this gap can be explained
by writers currently modifying the replica, which renders the replica temporar-
ily inconsistent. To better grasp the influence of damage on this gap, we have
analyzed queries Q3 to Q6.
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(a) Q4: mod. reads/occ. writes (b) Q5: mod. reads/occ. writes

(c) Q3: mod. reads/occ. writes (d) Q6: mod. reads/occ. writes

Fig. 5. Results for the Queries Q3 – Q6

Replica Damage (Queries Q3 – Q6). Fig. 5 shows the results for queries
Q3 to Q6. Due to the limited space, we present only the results for Scenario 3.
However, we confirmed that the results for Scenario 2 follow the same trend.
Q3 shows that in a system with only a single replica, the likelihood that it is
damaged is below 4%. The probability that all replicas are damaged further de-
creases when the number of replicas is increased. Queries Q4 (Fig. 5(a)) and Q5
(Fig. 5(b)) address the time a replica stays damaged. In both figures, we see a
superposition of two effects: more writers damage a replica with higher probabil-
ity but the higher write rate reduces the time before a replica gets repaired. Q6
confirms these observations by answering the question how likely it is to write c
consistent replicas out of 5 replicas. Over 99% of all writes manage to produce
at least one replica, which explains the high success rate of readers.

From these observations, we can conclude: (1) PWCS preserves a high chance
of finding the shared object consistent as long as the number of replica exceeds
the number of writers. (2) Special precautions to avoid damage or to make
damage distinguishable from temporary inconsistencies are not justified.

Experimental Confirmation. To confirm our findings about damaged repli-
cas, we have implemented an element-wise PWCS-protected array. We vary the
size of the array to adjust read and write rates. Fig. 6 shows the results for queries
Q1 and Q6. All measurements were taken on an Intel Xeon X5650 @ 2.67GHz
(hyperthreading disabled). The array remains in the shared L3 cache throughout
our benchmark. The measurements confirm the analytical results except in the
one replica case in Q1. We attribute this deviation to interference from the cache
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(a) Q1: mod. reads/occ. writes (b) Q6: mod. reads/occ. writes

Fig. 6. Measurement results for the Queries Q1 and Q6

coherence protocol, which prior to writing invalidates copies of the replica of all
other readers and writers. Our model does not take cache effects into account.

Notice that we do not give graphs for Q4 and Q5 because both queries are very
hard to measure, since they require global knowledge and very tight synchronized
clocks. Moreover, the operations to gather and distribute this information from
the damaging writers to the repairing writer would influence the measurement
code such that they conceal the actual effect we would like to measure.

6 Conclusions

This work presented a quantitative analysis of Probabilistic-Write/Copy-Select
(PWCS) using continuous-time Markov chains and probabilistic model-checking
techniques implemented in the model checker PRISM. PWCS is a new synchro-
nization protocol based on the implicit-randomness induced by the complexity of
todays many-core systems. In our analysis, we were able to confirm Mc Guire’s
measure-based experiments: few replicas suffice to maintain a high probability
(> 95%) of finding a consistent replica. We established these results for the com-
mon situations where reads dominate the shared object accesses. In addition, we
also confirmed these findings for more exceptional scenarios with frequent writes.

We extended PWCS and considered multiple, parallel writers without ad-
ditional synchronization. Our analysis revealed a high probability of repairing
damaged replicas within reasonable time bounds. This high repair rate trans-
lates into a low probability (< 4%) to actually damage the object by damaging
all its replicas.

A particularly interesting point of our formal analysis is that it revealed in-
sights in the behavior of PWCS that evade measurement-based investigations.
We consider this as a general advantage of probabilistic-model checking and plan
to investigate further low-level algorithms that exhibit very short runtimes and
where the instrumentation-induced interfere conceals the quantities to measure.
In addition, we plan to look into further variants of PWCS and, more generally,
into implicit-randomness based stochastic algorithms.
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Abstract. Several case studies indicate that model checking is limited
in the analysis of mesh networks: state space explosion restricts appli-
cability to at most 10 node networks, and quantitative reasoning, often
sufficient for network evaluation, is not possible. Both deficiencies can be
overcome to some extent by the use of statistical model checkers, such as
SMC-Uppaal. In this paper we illustrate this by a quantitative analysis
of two well-known routing protocols for wireless mesh networks, namely
AODV and DYMO. Moreover, we push the limits and show that this
technology is capable of analysing networks of up to 100 nodes.

1 Introduction

Wireless Mesh Networks (WMNs) are self-organising ad-hoc networks that sup-
port broadband communication without relying on a wired backhaul infrastruc-
ture. They have gained popularity through their flexibility which allows them
to be used in a diverse range of applications, from emergency response to trans-
portation systems. Automatic route-discovery, maintenance and repair play a
fundamental role in reliability and performance of such networks where typical
scenarios include dynamic topologies. The engineering challenge is to design pro-
tocols which facilitate good service in spite of these harsh operating conditions.

Traditional approaches to the analysis of WMN protocols are simulation and
test-bed experiments. While these are important evaluation methods they are
typically used for testing implementations rather than design specifications.
Moreover, the analysis is restricted to global properties such as overall through-
put or message delay. Formal analysis of specifications is one way to systemati-
cally screen protocols for flaws and to present counterexamples to diagnose them.
It has been used in locating problems in automatic route-finding protocols [2,9].

Unfortunately, current state-of-the art model checkers are unable to handle
protocols of the complexity needed for WMN routing in realistic settings. In
previous work [8] we used the model checker Uppaal to analyse basic qualitative
properties of the Ad hoc On-Demand Distance Vector (AODV) routing proto-
col, one of four protocols currently standardised by the IETF MANET working
group. We were able to analyse systematically all network topologies of up to
five nodes. Although this provides a partial analysis, as does simulation, the
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network sizes are far from realistic and quantitative information such as proba-
bilities were not included. In this paper we investigate whether statistical model
checking can combine the systematic methodology of “classical” model checking
with the ability to analyse quantitative properties and realistic scenarios.

Statistical Model Checking (SMC) [20,19] combines ideas of model checking
and simulation with the aim of supporting quantitative analysis as well as ad-
dressing the size barrier that currently prevents useful analysis of large mod-
els. SMC trades certainty for approximation, using Monte Carlo style sampling,
and hypothesis testing to interpret the results. We are interested in timed sys-
tems and so we use SMC-Uppaal, the Statistical extension of Uppaal (release
4.1.11) [4], which supports the composition of timed and/or probabilistic au-
tomata. The sampling is carried out according to the probability distribution
defined by the probabilistic automata. Parameters setting thresholds on the
probability of false negatives (α) and on probabilistic uncertainty (ε) can be used
to specify the statistical confidence on the result. SMC-Uppaal computes the
number of simulation runs needed by using the theoretical Chernoff-Hoeffding
bounds (O

(
1
ε2 ln

2
α

)
), which crucially is independent of the size of the model.

SMC-Uppaal generates an interval [p− ε, p+ ε] for estimating p, the probability
of CTL-property ψ holding w.r.t. the underlying probability distribution.

In this paper we model two routing protocols for WMNs: AODV and DYMO
(Dynamic MANET On-demand).1 One aim is to understand the role of the
different design choices via a number of performance and correctness measures.
We analyse the performance, both over a complete set of topologies for small
networks as well as for medium-to-large network sizes. Since the complexity and
size of these protocols go far beyond what can be analysed with standard model
checking, these case studies provide excellent test bases for demonstrating the
power and capacity of the new statistical tools. We illustrate here the range
and depth of the analysis which is achievable with statistical analysis, which we
believe is currently not possible using traditional simulation alone.

In Sect. 2, we give an informal summary of routing, followed by a description of
our Uppaal models, concentrating particularly on timing aspects. Four categories
of experiments are discussed in Sect. 3. The first presents a timing analysis of
AODV; the second and third provide a thorough comparison of AODV against
DYMO both w.r.t. overall performance and quality of the routes discovered,
where we find some surprising trends. Finally we demonstrate that this analysis is
scalable, illustrated by redoing a selection of experiments for networks consisting
of up to 100 nodes. In Sect. 4 we review related work and in Sect. 5 we reflect
on the challenges ahead for SMC.

2 Routing Protocols and Their Architecture

On demand routing protocols such as AODV and DYMO are designed to estab-
lish routes only when needed, typically when a new data packet is injected by
a user (application layer). Each node maintains its own routing table thereby
1 Since March 2012, DYMO is sometimes referred to as AODVv2.
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enabling it to act as its own router. Routing tables can be updated whenever
new messages are handled, since incoming messages carry a wealth of informa-
tion concerning network connectivity simply because they have just successfully
travelled from somewhere. Nodes mine that information in different ways, which,
as our analysis shows, yields different behavioural profiles.

The collective information in the nodes’ routing tables is at best a partial
representation of network connectivity as it was sometime in the past; in the
most general scenarios mobility continually modifies that representation. Nodes
following either AODV or DYMO store information about a route towards a
possible destination d (if a route has been discovered) as follows. The total
number of hops in the route (hops), the identity of the very next hop in the
route (nhop), a “destination sequence number” (dsn) (a measure of the freshness
of the entry), and a “validity flag” (flag),2 which is unset whenever information
arrives indicating that one of the downstream links in the route is broken. Whilst
currently our analysis only looks at static topologies we nevertheless find that
these protocols do not always perform as we would expect.

2.1 Basic Architecture for Ad Hoc Routing

AODV and DYMO follow the same basic architecture. Each node maintains a
message queue to store incoming messages and a processor for handling messages.
Whilst the queue is always enabled to receive messages, message handling can
take time and so communication between queue and handler occurs only when
the handler has successfully processed a message. The workflow of the handler
is as follows: first, the next (oldest) message is loaded from its message queue.
Depending on the type of message (see below) the routing table is updated and,
if necessary, a new message is created, and either broadcast or unicast.

The AODV Architecture. Each node maintains its own destination sequence
number, routing table and keeps a record of the messages it has already re-
ceived (or initiated). It also manages a queue to store data packets waiting to
be delivered. Messages are handled appropriately according to their type:

PKT Messages containing data packets play no part in route-finding. In the
case that a node has a valid route for the PKT’s destination, the packet is
forwarded to nhop, the next hop on the route. In the case that the data
packet is injected by the application layer and no (valid) route is known,
the packet is placed on the node’s packet queue, and a route discovery
process is initiated by broadcasting an appropriate RREQ message.

RREQ Route requests are messages, broadcast to every node within transmission
range. They contain information about the originator of the route discov-
ery process, the neighbour that most recently sent it, and the number of
nodes through which the request travelled. All of this information is avail-
able for updating routing tables. The same request can be received via
different routes and so nodes maintain a record of those that have already

2 AODV calls it ValidDestination Sequence Number flag ; DYMO Route.Broken.
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been handled so that duplicates can be discarded. For new requests, the
following actions are taken. (a) If the node is either the destination or has
a valid route to the destination stored in its routing table, a route reply
(RREP) message is generated, which is unicast back to most recent sender.
(b) If the node is neither the destination nor has any information about
the destination, it increments the hop count and broadcasts it on.

RREP Replies are “logically” matched up with the corresponding request that
gave rise to it so that a route for the requested destination can be es-
tablished. The routing table is updated for that destination, by recording
nhop as the neighbour from which the RREP was received and similarly
taking hops and dsn from the RREP. Only if the routing table was changed
during the update, the hop count of the RREP is increased and then (in
the case that the node was not the original initiator) forwarded to the
neighbour from which the corresponding request was received.

RERR Error messages are generated whenever link breaks are detected by some
nodes. Often this occurs when a message (RREP or PKT) fails to be sent. In
these cases an error message is sent to all neighbours. If an RERR message is
received the routing tables are updated—in particular routes are marked
as invalid, and the error message is forwarded to all neighbours.

This informal introduction to AODV should be sufficient to understand the
experiments described below. A detailed description can be found in [14].

The DYMO Architecture. DYMO [15] follows the same basic workflow as
AODV. In this section we only highlight the major design differences.3

(a) DYMO’s mechanism for managing duplicate requests is no longer based on
a queue of handled RREQ messages. Instead DYMO uses sequence numbers
to judge whether information contained in a message should be forwarded.
While this modification saves some memory, it has been shown that the
change can lead to loss of route requests [6].

(b) On the other hand AODV can lose route replies since RREP messages are only
forwarded if the routing table of an intermediate node is updated (changed).4
To avoid this, a node generating a route reply increments the sequence num-
ber for the destination, thereby guaranting that the routing table of nodes
receiving the RREP message will be updated, and the RREP forwarded.

(c) DYMO establishes bidirectional routes between originator and destination.
When an intermediate node initiates a route reply, it unicasts a message
back to the originator of the request (as AODV does), but at the same time
it forwards a route reply to the intended destination of the route request.

(d) DYMO uses the concept of path accumulation: whenever a control message
(RREQ, RREP, RERR) travels via more than one node, information about all
intermediate nodes is stored in the message. In this way, a node receiving a
message establishes routes to all other intermediate nodes. In AODV nodes
only establish routes to a the initiator and to the sender of a message.

3 Our model is based on DYMO’s internet draft version 22.
4 http://www.ietf.org/mail-archive/web/manet/current/msg05702.html

http://www.ietf.org/mail-archive/web/manet/current/msg05702.html
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addmsg(msg_global)

addmsg(msg_global)

addmsg(msg_global)

rreq[sip]?
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newpkt[ip][tip]?
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sip:IP

sip:IP

tip:IP
addmsg(msg_global)
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pkt[sip][ip]?

rerr[sip]?
isconnected(sip,ip)

imsg[ip]!

isconnected(sip,ip)

Fig. 1. Automaton modelling the Queue

These changes imply (as intended) quite different behaviour: for example (c) and
(d) might mean that DYMO establishes many more routes in the network as a
whole than does AODV. On the other hand (a) could imply that some routes
might not be discovered at all. We investigate some of these differences below.

2.2 AODV and DYMO in Uppaal

In previous work [8], an untimed Uppaal model of AODV was developed and used
to analyse some basic qualitative properties. In this paper we extend that analysis
to quantitative properties combining time and probability. As a consequence the
models needed a significant redesign to include timing constraints on sending
messages between nodes, as well as redesigning communication between nodes
so that the unicast behaviour of DYMO and AODV was correctly rendered using
SMC-Uppaal’s (only) broadcast mechanism.

We model AODV and DYMO as a parallel composition between node pro-
cesses, where each process is a parallel composition of two timed automata, the
Handler and the Queue. Communication between nodes i and j is only feasible
if they are in transmission range of each other. This is modelled by predicates
of the form isconnected[i][j], which is true if and only if i and j can com-
municate. Communication between different nodes i, j are on channels named
according to the type of message being delivered (rerr, rrep, rreq).

The Queue of a node ip is depicted in Fig. 1. Messages (arriving from other
nodes) are stored in a queue, by using the function addmsg. Our model guarantees
that messages sent by nodes within transmission range are received.

The Handler, modelling the message-handling protocol, is far more compli-
cated and has around 20 locations. It is busy while sending messages, and can
only accept a new message from the Queue once it has completely finished han-
dling a message. Whenever it is not processing a message and there are mes-
sages stored in the Queue, the Queue and the Handler synchronise via channel
imsg[ip], transferring the relevant message data from the Queue to the Handler.
The Handler then follows the workflow sketched in Sect. 2.1. Due to lack of
space, we cannot present the full timed automaton modelling the Handler, but
it is available in full online5. Here, we concentrate on our treatment of time.

According to the specification of AODV [14], the most time consuming activity
is the communication between nodes, which takes on average 40 milliseconds.
5 http://www.hoefner-online.de/nfm2013/

http://www.hoefner-online.de/nfm2013/
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RREP[sip][ip]!

RERR[sip]!

isconnected[sip][ip]

!isconnected[sip][ip]

(a) untimed model

RREP[sip][ip]!

t:=0

t:=0

RERR[sip]!

isconnected[sip][ip]

!isconnected[sip][ip]

t<=45 &&
isconnected[sip][ip]

t<=45

t>=35 && isconnected[sip][ip]

!isconnected[sip][ip]

t>=35

(b) timed model

Fig. 2. Part of Handler—unicast a message

In Fig. 2 we compare the extract of a model without time (as used in [8]) with the
corresponding extract including time. For the untimed model we simply guard
the communication with isconnected so that the message (here a rrep) is sent
whenever the nodes are connected, and an error message is generated otherwise.
In the timed model, we use a clock variable t, set to 0 before transmission, and
then we use an intermediate location which has the effect of selecting a delay of
at least 35 milliseconds and no more than 45 milliseconds uniformly at random.
In the case that the nodes are still connected at the time of sending then the
rrep message is successfully transmitted, and otherwise an error is reported.6

3 Experiments

The experiments split into four categories: a timing analysis of AODV (Sect. 3.1);
a comparison between AODV and DYMO (Sect. 3.2); a quantitative analysis of
the two protocols (Sect. 3.3); and a feasibility study of networks of realistic size
(Sect. 3.4). The experiments of the first three categories use the following setup:
3.1GHz Intel Pentium 5 CPU, with 16GB memory, running the Mac OS X 10.7
operating system. The final category needs 128GB memory (3.3GHz). For all
experiments we use SMC-Uppaal 4.1.11 (June 2012). In the first three categories,
the parameters of false negatives (α) and probabilistic uncertainty (ε) are both
set to 0.01—yielding a confidence level of 99% and SMC-Uppaal checks 26492
runs (cf. Chernoff-Hoeffding bound). The last category uses, due to its calcula-
tional complexity, only 738 runs and a confidence level of 95% (α= ε=0.05).

3.1 A Timing Analysis of AODV

The first category extends experiments performed for the untimed model for
AODV [8], exploring in more depth the surprising result that AODV might fail
to discover an existing route in 47% of all network topologies with up to 5 nodes.
6 This complexity needs to be inserted because a change in connectivity could result in

nodes being connected at the start of transmission, but become disconnected before
the transmission is completed.
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For the experiments we generate all topologies of up to 5 nodes, where for
each topology we consider three distinct nodes A, B and C; each with particular
originator/destination roles as per scenario described below. Up to symmetry
this yields 444 topologies. For each scenario we analyse three properties; in total
this requires approximately 4000 experiments for this category.

Initially, for each scenario no routes are known. Then, with a time gap of
35–45 milliseconds, two of the distinct nodes receive a data packet and have to
find routes to the packets’ destinations. The scenarios assign roles as follows:
(i) A is the only originator sending a packet first to B and afterwards to C;
(ii) B and C are originators both sending to A;
(iii) A is sending to B first and then B is also an originator sending to C;
(iv) B is an originator sending to C followed by A sending to B.
For each scenario we analyse two properties and their combination. The first
property examines the time taken for the protocol to complete, i.e., until all
messages have been handled, which encoded in Uppaal’s syntax as

Pr[<=10000](<> (tester.final && emptybuffers())) (1)

This query asks for the probability estimate (Pr) satisfying the CTL-path ex-
pression <>(tester.final && emptybuffers()) within 10000 time units (mil-
liseconds); we choose this bound as a conservative upper bound to ensure that
the analyser explores paths to a depth where the protocol is guaranteed to have
terminated. tester refers to a process which injects the data packets to the orig-
inators (tester.final means that all data packets have been injected), and the
function emptybuffers() checks whether the nodes’ message queues are empty.

The second property examines the time for requested routes to be established.
This differs from (1) since routes are usually found before all buffers are emptied.

Pr[<=10000](<> (OIP1.rt[DIP1].nhop!=0 && OIP2.rt[DIP2].nhop!=0)) (2)

Here, o.rt[d].nhop is the next hop in o’s routing table entry for destination d.
As soon as this value is set (is different to 0), a route to d has been established.

The third property combines the first two and analyses the time which is
needed to finish the protocol and to establish the routes; this estimates the
proportion of runs which end without ever finding a route.

Pr[<=10000](<> (tester.final && emptybuffers() &&
OIP1.rt[DIP1].nhop!=0 && OIP2.rt[DIP2].nhop!=0))

(3)

For every scenario, SMC-Uppaal evaluates the property under consideration for
26492 runs and returns a probability interval [p−0.01, p+0.01], where p is the av-
eraged probability over all runs. Probability theory implies that with a likelihood
of 99% the “real” value is inside this interval.

Fig. 3 displays the results for all 5-node networks.7 The x-axis represents the
time (in milliseconds) for the property to be satisfied; the y-axis represents the
average number of simulation runs per topology for the property to be satisfied.
7 The graphs for network sizes 3 and 4 look similar and can be found at
http://www.hoefner-online.de/nfm2013/

http://www.hoefner-online.de/nfm2013/
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Four scenarios:
(i) A searches for B, then A for C;
(ii) B searches for A, then C for A;
(iii) A searches for B, then B for C;
(iv) B searches for C, then A for B
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Fig. 3. A timed analysis of AODV (5-node topologies).8

For example the highest peak in (b) shows that 720 simulation runs (out of
26492) need 164ms to finish the protocol. Figs. (b–d) refer to Properties (1), (2)
and (3). Each graph depicts the results for each scenario. For example the solid
graph corresponds to the the first scenario (A is the originator and B and C
are the destinations). The overall probability that the property is satisfied is
indicated by the percentage given in the legend.9

Analysis of the Results. All of the experiments yield a periodic behaviour of
roughly 40 milliseconds corresponding to the average time for sending a message.
Surprising is that the performance of AODV is fairly stable across scenarios.
8 Figures 3, 4 and 7 have been produced using the tool R [16].
9 More precisely, the probability shown is the average of all medians of the probability

intervals returned by Uppaal.
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Fig. 3(b) shows that AODV always terminates and presents the running times
for termination. Fig. 3(c) shows that in general route establishment occurs much
earlier; the results also show that AODV cannot always establish routes: in
the case of 3-node topologies routes are not established in 11.7% of all cases;
for networks with 4 nodes in 10.85% of all cases; and in case of 5 nodes in
approximately 10% of all cases.

Fig. 3(d) confirms that the quantitative analysis gives significantly more in-
sight than an untimed analysis such as reported in [8]. There, we considered a
similar property and found that in 47.3% of all 5-node topologies there is the
possibility of route-discovery failure—a quantitative analysis was not possible.
Our quantitative analysis shows that failure to find a route can now be estimated
at around 10%. There are two reasons for this dramatic difference. First, the in-
clusion of time ruled out some scenarios where route failure was due to messages
overtaking each other. Second, and more significant, the new analysis determines
the number of runs (not the number of topologies), where route discovery fails
and indicates that discovery failures are rare: whereas in half of the topologies
route failure is possible [8], in only ∼10% of all runs failure actually happens.

3.2 AODV versus DYMO

In Sect. 2 we have outlined the design differences between AODV and DYMO.
Moreover, we have speculated on what those differences might imply w.r.t. over-
all performance. We now run exactly the same experiments as described in
Sect. 3.1, this time for DYMO. The results averaged over all 4-node networks
and all scenarios for both routing protocols are presented in Fig. 4; in these
diagrams we also indicate the average times by vertical bars.

To our surprise, the variation in performance between the two is marginal:
DYMO appears to be more reliable in that it can establish more routes than does
AODV in some cases (Fig. 4(b,c)). DYMO takes on average longer to complete
(Fig. 4(a)) but the average time to find routes is almost exactly the same as for
AODV (Fig. 4(b)).

A first analysis of the circumstances behind the observed non-establishment of
routes in DYMO is presented in [6], indicating that problems occur when mess-
ages can overtake others. The reason why DYMO needs longer running times is the
additional RREP-message sent to the destination of a route request (cf. Page 325).

3.3 Quantitative Measurements

So far we have looked at running times and route discovery. In this section we
illustrate how to the use Value-Estimation-Feature (E) of SMC-Uppaal to explore
the quality and quantity of the routes established by AODV and DYMO.

One side effect of broadcasting route requests is that intermediate nodes,
which handle those requests, are able to establish routes to the originator. Whilst
this certainly represents an increase in “knowledge” across the network, there is
no guarantee that the routes established are optimal. In [13] it is shown that non-
optimal paths can impact overall performance of packet delivery dramatically.



Statistical Model Checking of Wireless Mesh Routing Protocols 331

120 200 280 360
0

150

300

450

600

750
AODV (100%)
DYMO (100%)

(average time: AODV 170, DYMO 200)

(a) running times

120 200 280 360
0

150

300

450

600

750
AODV (89.1%)
DYMO (94.2%)

(average time: AODV 155, DYMO 157)

(b) route establishment

120 200 280 360
0

150

300

450

600

AODV (89.1%)
DYMO (94.2%)

(average time: AODV 187, DYMO 198)

(c) combined properties

120 160 200 240 280 320 360 400
0

2500

5000

7500

10000

12500

15000

17500

20000

22500

AODV
DYMO

(d) combined Property (cumulative)

Fig. 4. AODV vs. DYMO (4-node topologies)

We examine two properties: the total number of routes established over all
routing tables, averaged over all network topologies for up to 5 nodes; and the
average difference between the length of the route established and the length of
the optimal route.

Route Quantity. Routing tables are updated whenever control messages are
received. In case of RREQ and RREP messages, AODV does so only for the origi-
nator/destination and for the sender of the message, whereas DYMO uses path
accumulation (cf. Page 325). This difference in design implies that DYMO could
potentially establish more routes than AODV. We check whether this is indeed
the case for all topologies and all scenarios described earlier using the property

E[<=10000;26492](max:total_knowledge()) (4)
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Here, the function total_knowledge() counts the number of entries in all rout-
ing tables along a run (path); max takes the largest of these values. Since value
estimation does not determine the number of runs, we set it to the same number
as determined previously (26492); the time bound is again set to 10000.

Table 1. Average number of routes found

3 nodes 4 nodes 5 nodes
AODV 5.28 8.83 13.99
DYMO 5.25 7.87 11.94

max 6 12 20

Table 1 presents the results,
grouped by network size. Note
that the last row shows the max-
imal number of possible rout-
ing table entries: this is n ·(n−1)
since each node can hold n−1
entries in an n-node network.
To our surprise, DYMO estab-

lishes fewer routes on average than does AODV. (Although it does establish
more of the requested routes Fig. 4.) A possible explanation is the following:
when DYMO floods the network with the first RREQ, many nodes establish many
routes (more than with AODV), due to path accumulation. When the second
RREQ is sent, the chance of an intermediate route reply is now greater (than for
AODV)—an intermediate route reply means that the RREQ is not forwarded, thus
additional opportunities to create routes in receiving nodes are suppressed.10

Route Quality. In almost all routing protocols based on RREQ-broadcast, non-
optimal routes can be established [13]. This can happen when the destination
does not forward the RREQ message, as the example in Fig. 5 shows. The scenario
depicts node S searching for a route to node T . As soon as T receives the RREQ
message, it generates a route reply, and suppresses the RREQ. Node A receives
the same RREQ via B and establishes a non-optimal path to S via B.

In our second experiment we check the extent of establishing non-optimal
routes. We use the query E[<=10000;26492](max:quality()), which is sim-
ilar to (4), but instead uses a function quality that compares the length of
established routes with the length of the corresponding optimal routes.11

The results in Table 2 show that the average deviation from the optimal length
(in %�) is small; which is to be expected in small networks. More interesting is
that again DYMO performs less well than AODV. Again a potential explanation
for this is the implication of path accumulation in DYMO. In the example, node
A establishes a (non-optimal) route to S, but because of path accumulation node
A will also establish a non-optimal path to B (as well as all the other nodes on
this non-optimal path).

3.4 Networks of Realistic Size

In complex protocols used for routing, analysis by “classical” model checking is
limited to around 8 nodes. WMNs usually consist of more than 50 nodes placing
them far beyond the capabilities of systematic logical analysis. In this section
we explore the scalability of SMC for such networks.
10 An example is found at the website—it requires detailed knowledge of the protocols.
11 The length of optimal routes can be calculated from the static network topology.
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Table 2. Average deviation from the
optimal

3 nodes 4 nodes 5 nodes
AODV 0.00%� 0.50%� 2.31%�
DYMO 0.00%� 2.00%� 9.68%�

S

B

T A
RREQ

R
R
E
Q

Fig. 5. Node A “accidentally” cre-
ates a non-optimal route to S

Our first task is to generate a sample realistic topology. We use the Node
Placement Algorithm for Realistic Topologies (NPART) [12]. This tool allows
the specification of arbitrary-sized topologies and transmission ranges, and it
has been shown that generated topologies have graph characteristics similar to
realistic wireless multihop ones.

B

C

A

transmission range:

Fig. 6. A topology with 100 nodes

We analyse NPART topologies con-
sisting of 25, 50, 75 and 100 nodes.
Fig. 6 depicts the 100-node topology
used for our analysis. The links be-
tween nodes are determined by the
distance between nodes; rather than
displaying the actual 201 links, we
instead indicate the link distance by
scale. The node labelled A is the origi-
nator of two packets with destinations
B and C, both of which are connected
to A albeit at several hops distance.
We check Property (3), which con-
firms that both routes are found and
that the protocols terminates. More
significant are the resources required
to perform the experiments for large
networks which we report next.

A network with 25 nodes is easily checked with a standard desktop machine
in less than half an hour with a confidence level of 95% (which means 738 runs).
However the memory consumption grows with the number of nodes. A summary
of our observations is given in Table 3.

Table 3. Memory Consumption12

#nodes 50 75 100
memory (Gb) 14 30 80
run time (m) 270 328 1777

Fig. 7 shows that the protocol finishes on average within 24× 40ms13 for the
given scenario. This also suggests that there is little interference between the
13 The average time for sending a single message.
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two requests for B and C, since the number of hops between A and C is roughly
10, and so at least 20 messages are required to establish that route alone.

4 Related Work

925 945 965 985
0

5

10

15

20

25

Fig. 7. Property (3) with 100 nodes

Traditionally, protocols for WMNs are
evaluated using test-bed experiments and
simulation, e.g., [10]. Test-bed experi-
ments evaluate protocols under realis-
tic circumstances, whereas simulation is
performed on a single machine, thus is
closely related to our work. Simulation-
based studies show that AODV performs
better than DYMO in some scenarios and
vice versa in others [1,11]. Under packet
delivery ratio (PDR) as measure Saleem
et al. [17] imply that DYMO compares un-
favourably to AODV (consistent with our
results), but this analysis does not help to
diagnose the reasons for this conclusion.

More recently formal analysis has been used to investigate the behaviour of
complex protocols [2,5]. Although formal analysis is often more detailed than
test bed analysis, with the result that only small samples can be investigated,
the outcome is often a more penetrating understanding of protocol behaviour.
For example a study using the Spin model checker showed that an early draft
of AODV could create routing loops [2]; Zave [21] uses the Alloy analyser in
combination with the Spin model checker to show that no published version of
the Chord ring-maintenance protocol is correct, and Schuts et al. establish an
impossibility result for clock synchronisation in the Chess gMAC WSN proto-
col [18]. Other specific formal analyses of AODV include that of Chiyangwa and
Kwiatkowska [5] who investigate the relation between protocol parameters and
performance, such as time outs in AODV, and Espensen et al. [7] use coloured
Petri nets to perform test runs to confirm specified behaviour.

5 Conclusion and Outlook

Our aim in this study was twofold: (i) We developed timed models for AODV and
DYMO in order to carry out a systematic analysis across all small networks. In
comparison to simulation and test bed studies, our analysis based on quality and
quantity enabled us to examine reasons for observed differences in performance
between AODV and DYMO, which was an open question before (cf. studies in
[1,11]). (ii) We examined the feasibility of SMC w.r.t. scalability. None of the
formal studies above analysed routing protocols for networks containing more
than 10 nodes, whereas our results imply that networks of realistic size can be
analysed. Finally we draw some general conclusions about SMC critical analysis.
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5.1 Statistical Model Checking: Lessons Learned

Resourcing. One of the main bottlenecks in the analysis was time—to analyse
a 100 node network takes about 30 hours. One of the next steps is to determine
whether the most recent distributed release [3] is able to reduce that overhead.

Choosing the Right Scenario. For small networks it is possible to analyse all
topologies for given scenarios. This gives a good overall view of the performance
and behaviour in any situation. For large networks this is not feasible, and so the
selection of topologies in combination with the right scenarios becomes some-
thing of a “stab in the dark”.For our study we used the comparison of AODV
and DYMO to observe that odd behaviour occur in the setting of two requests,
thus we chose that scenario for our large networks. In general, a systematic ana-
lysis of small networks can be used as a preliminary phase for selecting the most
informative scenarios.

Interpreting the Results. The results are frequently hard to interpret, partic-
ularly when they indicate odd behaviour. Unfortunately SMC-Uppaal does not
store traces during analysis, thus it is not possible to recover counterexamples to
explain the observations. We tried to diagnose odd observations by formulating
more probing queries beyond looking at overall performance. This suggests that
more powerful statistical analysis such as “rare event simulation” in combination
with multiple queries could be used to compile better evidence.

5.2 Future Work

The models for AODV and DYMO are general enough to allow for the study of
more complex scenarios, in particular mobility. In future work we will develop a
number of mobility models for understanding the behaviour of these and other
routing protocols.
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Abstract. Statistical model checking is an analysis method that cir-
cumvents the state space explosion problem in model-based verifica-
tion by combining probabilistic simulation with statistical methods that
provide clear error bounds. As a simulation-based technique, it can only
provide sound results if the underlying model is a stochastic process. In
verification, however, models are usually variations of nondeterministic
transition systems. The notion of confluence allows the reduction of such
transition systems in classical model checking by removing spurious non-
deterministic choices. In this paper, we show that confluence can be adap-
ted to detect and discard such choices on-the-fly during simulation, thus
extending the applicability of statistical model checking to a subclass
of Markov decision processes. In contrast to previous approaches that
use partial order reduction, the confluence-based technique can handle
additional kinds of nondeterminism. In particular, it is not restricted to
interleavings. We evaluate our approach, which is implemented as part
of the modes simulator for the Modest modelling language, on a set
of examples that highlight its strengths and limitations and show the
improvements compared to the partial order-based method.

1 Introduction

Traditional and probabilistic model checking have grown to be useful techniques
for finding inconsistencies in designs and computing quantitative aspects of sys-
tems and protocols. However, model checking is subject to the state space ex-
plosion problem, with probabilistic model checking being particularly affected
due to its additional numerical complexity. Several techniques have been intro-
duced to stretch the limits of model checking while preserving its basic nature
of performing state space exploration to obtain results that unconditionally,
certainly hold for the entire state space. Two of them, partial order reduction
(POR) and confluence reduction, work by selecting a subset of the transitions of
a model—and thus a subset of the reachable states—in a way that ensures that
the reduced system is equivalent to the complete system. POR was first general-
ised to the probabilistic domain preserving linear time properties [2,10], with a
� This work has been supported by the DFG/NWO Bilateral Research Program
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later extension to preserve branching time properties [1]. Confluence reduction
was generalised in [13,23], preserving branching time properties.

A much different approach for probabilistic models is statistical model check-
ing (SMC) [18,21,26]: instead of exploring—and storing in memory—the entire
state space, or even a reduced version of it, discrete-event simulation is used to
generate traces through the state space. This comes at constant memory usage
and thus circumvents state space explosion entirely, but cannot deliver results
that hold with absolute certainty. Statistical methods such as sequential hy-
pothesis testing are then used to make sure that the probability of returning
the wrong result is below a certain threshold. As a simulation-based approach,
however, SMC is limited to fully stochastic models such as Markov chains [14].

Previously, an approach based on POR was presented [6] to extend SMC and
simulation to the nondeterministic model of Markov decision processes (MDPs).
In that approach, simulation proceeds as usual until a nondeterministic choice is
encountered; at that point, an on-the-fly check is performed to find a singleton
subset of the available transitions that satisfies the ample set conditions of prob-
abilistic POR [2,10]. If such an ample set is found, simulation can continue that
way with the guarantee that ignoring the other transitions does not affect the
verification results, i.e., the nondeterminism was spurious. Yet, the ample set con-
ditions are based on the notion of independence of actions, which can in practice
only feasibly be checked on a symbolic/syntactic level (using conditions such as
J1 and J2 in [6]). This limits the approach to resolve spurious nondeterminism
only when it results from the interleaving of behaviours of concurrently executing
(deterministic) components.

In this paper, we present as an alternative to use confluence reduction, which
has recently been shown theoretically to be more powerful than branching time
POR [13]. It is absolutely vital for the search for a valid singleton subset to
succeed in the approach discussed above: one choice that cannot be resolved
means that the entire analysis fails and SMC cannot safely be applied to the
given model at all. Therefore, any additional reduction power is highly wel-
come. Furthermore, in practice, confluence reduction is easily implemented on
the level of the concrete state space alone, without any need to go back to the
symbolic/syntactic level for an independence check. As opposed to the approach
in [6], it thus allows even spurious nondeterminism that is internal to compon-
ents to be ignored during simulation. Of course, models containing non-spurious
nondeterminism can still not be dealt with.

Contributions and outline. After the introduction of the necessary preliminaries
(Section 2), we present the three main contributions of this paper: (1) Since
simulation works with a fully composed, closed system, we can relax the defin-
ition of confluence with respect to action labels compared to [13] (Section 3).
We thus achieve more reduction/detection power at no computational cost; yet,
we can prove that this adapted notion of confluence still preserves PCTL∗ for-
mulae [3] without the next operator. (2) We then introduce an algorithm for
detecting our new notion of probabilistic confluence on a concrete state space
and state its correctness (Section 4). The algorithm is inspired by, but different
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Table 1. SMC approaches for nondeterministic models (with n states)

approach nondeterminism probabilities memory error bounds
POR-based [6] spurious interleavings max = min s& n unchanged

confluence-based spurious max = min s& n unchanged
learning [17] any max only s→ n convergence

from, the one given in [12]; in particular, it does not require initial knowledge of
the entire state space and can therefore be used on-the-fly during simulation. (3)
Finally, we evaluate the new confluence-based approach to SMC on a set of three
representative examples using our implementation within the modes statistical
model checker [7] for the Modest modelling language [8] (Section 5). We clearly
identify its strengths and limitations. Since the previous POR-based approach is
also implemented in modes, we compare the two in terms of reduction power and,
on the one case that can actually be handled by the POR-based implementation
as well, performance. Proofs for all our results can be found in [16].

Related work. Aside from [6] and an approach that focuses on planning prob-
lems and infinite-state models [20], the only other solution to the problem of non-
determinism in SMC that we are aware of is recent work by Henriques et al. [17].
They use reinforcement learning, a technique from artificial intelligence, to ac-
tually learn the resolutions of nondeterminism (by memoryless schedulers) that
maximise probabilities for a given bounded LTL property. While this allows SMC
for models with arbitrary nondeterministic choices (not only spurious ones),
scheduling decisions need to be stored for every explored state. Memory usage
can thus be as in traditional model checking, but is highly dependent on the
structure of the model and the learning process. As the number of runs of the
algorithm increases, the answer it returns will converge to the actual result, but
definite error probabilities are not given. The approaches based on confluence
and POR do not introduce any additional overapproximation and thus have no
influence on the usual error bounds of SMC. Table 1 gives a condensed over-
view of the three approaches (where we measure memory usage in terms of the
maximal number of states s stored at any time; see Section 5 for concrete values).

2 Preliminaries

Definition 1 (Basics). A probability distribution over a countable set S is a
function μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. We denote by Distr(S) the set

of all such functions. For S′ ⊆ S, let μ(S′) =
∑

s∈S′ μ(s). We let support(μ) =
{s ∈ S | μ(s) > 0} be the support of μ, and write 1s for the Dirac distribution
for s, determined by 1s(s) = 1.

Given an equivalence relation R ⊆ S × S, we write [s]R for the equivalence
class induced by s, i.e. [s]R = {s′ ∈ S | (s, s′) ∈ R}. We denote the set of all such
equivalence classes by S/R. Given two probability distributions μ, μ′ over S, we
write μ ≡R μ′ to denote that μ([s]R) = μ′([s]R) for every s ∈ S.
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Our analyses are based on the model of Markov decision processes (MDPs,
or equivalently probabilistic automata, PAs), which combines nondeterministic
and probabilistic choices. In the variant we use states are labelled by a set of
atomic propositions.

Definition 2 (MDPs). A Markov decision process (MDP) is a tuple A =
(S,Σ, P, s0,AP, L), where
– S is a countable set of states, of which s0 ∈ S is the initial state;
– Σ is a finite set of action labels;
– P ⊆ S ×Σ × Distr(S) is the probabilistic transition relation;
– AP is the set of atomic propositions;
– L : S → P(AP) is the labelling function.

If (s, a, μ) ∈ P , we write s −a→ μ and mean that it is possible to take an a-action
from s and have a probability of μ(s′) to go to s′. Given a state s ∈ S, we define
its set of enabled transitions en(s) = {(s, a, μ) ∈ {s} ×Σ × Distr(S) | s −a→ μ}.

We will use SA, ΣA, . . . , to refer to the components of an MDP A. If the
MDP is clear from the context, these subscripts are omitted.

We work in a state-based verification setting where properties only refer to the
atomic propositions of states. The action labels are solely meant for synchron-
isation during parallel composition. Since we consider closed systems only, we
can therefore ignore them. We do care about whether or not transitions change
the observable behaviour of the system, i.e., the atomic propositions:

Definition 3 (Visibility and determinism). A transition s −a→ μ in an
MDP A is called visible if ∃ t ∈ support(μ) : L(s) = L(t). Otherwise, it is invis-
ible. A transition s −a→ μ is deterministic if μ(t) = 1 for some t ∈ S, i.e., μ = 1t.

We write s −τ→ μ to indicate that a transition is invisible. Transitions labelled
by a letter different from τ can be either visible or invisible.

For a given MDP, a wide class of reductions can be defined using reduction
functions. Informally, such a function F decides for each state which outgoing
actions are enabled in the reduced MDP. This MDP’s transition relation then
consists of all transitions enabled according to F , and the set of states consists
of all states that are still reachable using the reduced transition function.
Definition 4 (Reduction functions). For an MDP A = (SA, Σ, PA, s

0,AP,
LA), a reduction function is any function F : SA → P(PA) such that F (s) ⊆
en(s) for every s ∈ SA. Given a reduction function F , the reduced MDP for A
with respect to F is the minimal MDP AF = (SF , Σ, PF , s

0,AP, LF ) such that
– if s ∈ SF and (s, a, μ) ∈ F (s), then (s, a, μ) ∈ PF and support(μ) ⊆ SF ;
– LF (s) = LA(s) for every s ∈ SF ,

where minimal should be interpreted as having the smallest set of states and the
smallest set of transitions.

Given a reduction function F and a state s ∈ SF , we say that s is a reduced
state if F (s) = en(s). All outgoing transitions of a reduced state are called
nontrivial transitions. We say that a reduction function is acyclic if there are no
cyclic paths when only nontrivial transitions are considered.
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3 Confluence for Statistical Model Checking

Confluence reduction is based on commutativity of invisible transitions. It works
by denoting a subset of the invisible transitions of an MDP as confluent. Basic-
ally, this means that they do not change the observable behaviour; everything
that is possible before a confluent transition is still possible afterwards. There-
fore, they can be given priority, omitting all their neighbouring transitions.

3.1 Confluent Sets of Transitions

Previous work defined conditions for a set of transitions to be confluent. In the
non-probabilistic action-based setting, several variants were introduced, ranging
from ultra weak confluence to strong confluence [4]. They are all given diagram-
matically, and define in which way two outgoing transitions from the same state
have to be able to join again. Basically, for a transition s −τ→ t to be confluent,
every transition s −a→ u has to be mimicked by a transition t −a→ v such that u and
v are bisimilar. This is ensured by requiring a confluent transition from u to v.

In the probabilistic action-based setting, a similar approach was taken [23]. For
a transition s −τ→ 1t to be confluent, every transition s −a→ μ has to be mimicked
by a transition t −a→ ν such that μ and ν are equivalent; as usual in probabilistic
model checking, this means that they should assign the same probability to each
equivalence class of the state space in the bisimulation quotient. Bisimulation is
again ensured using confluent transitions.

In this work we are dealing with a state-based context; only the atomic pro-
positions that are assigned to each state are of interest. Therefore, we base our
definition of confluence on the state-based probabilistic notions given in [13]. It
is still parameterised in the way that distributions have to be connected by con-
fluent transitions, denoted by μ 	T ν. We instantiate this later, in Definition 6.

Definition 5 (Probabilistic confluence). Let A be an MDP, then a subset T
of transitions from A is probabilistically confluent if it only contains invisible
deterministic transitions, and

∀s −a→ 1t ∈ T : ∀s −b→ μ : (μ = 1t ∨ ∃ t −c→ ν : μ 	T ν)

Additionally, if s −b→ μ ∈ T , then so should t −c→ ν be.
A transition is probabilistically confluent if there exists a probabilistically

confluent set that contains it.

Compared to [13], the definition is more liberal in two aspects. First, not ne-
cessarily b = c anymore. In [13] this was needed to preserve probabilistic visible
bisimulation. Equivalent systems according to that notion preserve state-based
as well as action-based properties. However, in our setting the actions are only
for synchronisation of parallel components, and have no purpose anymore in the
final model. Therefore, we can just as well rename them all to a single action.
Then, if a transition is mimicked, the action will be the same by construction.
Even easier, we chose to omit the required accordance of action names altogether.
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Fig. 1. An MDP to demonstrate confluence reduction

Second, we only require confluent transitions to be invisible and deterministic
themselves. In [13], all transitions with the same label had to be so as well
(for a more fair comparison with POR). Here, this is not an option, since during
simulation we only know part of the state space. However, it is also not needed for
correctness, as a local argument about mimicking behaviour until some joining
point can clearly never be broken by transitions after this point.

In contrast to POR [2,10], confluence also allows mimicking by differently-
labelled transitions, commutativity in triangles instead of diamonds, and local in-
stead of global independence [13]. Additionally, its coinductive definition is well-
suited for on-the-fly detection, as we show in this paper. However, as confluence
preserves branching time properties, it cannot reduce probabilistic interleavings,
a scenario that can be handled by the linear time notion of POR used in [6].

3.2 Equivalence of Probability Distributions

Confluent transitions are used to detect equivalent states. Hence, two distribu-
tions are equivalent if they assign the same probabilities to sets of states that are
connected by confluent transitions. Given a confluent set T , we denote this by
μ 	T ν. For ease of detection, we only consider confluent transitions from the
support of μ to the support of ν. In principle, larger equivalence classes could
be used when also considering transitions in the other direction and chains of
confluent transitions. However, for efficiency reasons we chose not to be so liberal.

Definition 6 (Equivalence up-to T -steps). Let A be an MDP, T a set of
deterministic transitions of A and μ, ν ∈ Distr(S) two probability distributions.
Let R be the smallest equivalence relation containing the set

R′ = {(s, t) | s ∈ support(μ), t ∈ support(ν), ∃ a : s −a→ t ∈ T }

Then, μ and ν are equivalent up-to T -steps, denoted by μ 	T ν, if μ ≡R ν.

Example 1. As an example of Definition 6, consider Figure 1(a). Let T be the set
consisting of all a-labelled transitions. Note that these transitions indeed are all
deterministic. We denote by μ the probability distribution associated with the
b-transition from s0, and by ν the one associated with the c-transition from s1.

We find R′ = {(s2, s6), (s3, s5), (s4, s5)}, and so R = Id ∪ {(s2, s6), (s6, s2),
(s3, s4), (s4, s3), (s3, s5), (s5, s3), (s4, s5), (s5, s4)} (with Id the identity relation).
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Hence, R partitions the state space into {s0}, {s1}, {s2, s6}, and {s3, s4, s5}. We
find μ({s0}) = ν({s0}) = 0, μ({s1}) = ν({s1}) = 0, μ({s2, s6}) = ν({s2, s6}) = 1

3
and μ({s3, s4, s5}) = ν({s3, s4, s5}) = 2

3 . Therefore, μ ≡R ν and thus μ 	T ν.
Also note that T is a valid confluent set according to Definition 5. First, all its

transitions are indeed invisible and deterministic. Second, for the a-transitions
from s2, s3 and s4, nothing interesting has to be checked. After all, from their
source states there are no other outgoing transitions, and every transition satis-
fies the condition μ = 1t ∨ ∃ t −c→ ν : μ 	T ν for itself due to the clause μ = 1t.
For s0 −a→ 1s1 , we do need to check if the condition holds for s0 −b→ μ. There is a
mimicking transition s1 −c→ ν, and as we saw above μ 	T ν, as required. 
�
Our definition of equivalence up-to T -steps is slightly more liberal than the one
in [13]. There, the number of states in the support of μ was required to be at least
as large as the number of states in the support of ν, since no nondeterministic
choice between equally-labelled actions was allowed. Since we do allow this, we
take the more liberal approach of just requiring the probability distributions
to assign the same probabilities to the same classes of states with respect to
confluent connectivity. The correctness arguments are not influenced by this, as
the reasoning that confluent transitions connect bisimilar states does not break
down if these support sets are potentially more distinct.

3.3 Confluence Reduction

We now define confluence reduction functions. Such a function always chooses
to either fully explore a state, or only explore one outgoing confluent transition.

Definition 7 (Confluence reduction). Given an MDP A, a reduction func-
tion F is a confluence reduction function for A if there exists some confluent
set T ⊆ P for which, for every s ∈ S such that F (s) = en(s), it holds that
– F (s) = {(s, a,1t)} for some a ∈ Σ and t ∈ S such that (s, a,1t) ∈ T .

In such a case, we also say that F is a confluence reduction function under T .
Confluent transitions might be taken indefinitely, ignoring the presence of other
actions. This problem is well known as the ignoring problem [11], and is dealt
with by the cycle condition of the ample set method of POR. We can just as easily
deal with it in the context of confluence reduction by requiring the reduction
function to be acyclic. Acyclicity can be checked in the same way as was done
for POR in [6]: always check whether in the last l steps at least one state was
fully explored (i.e., the state already contained only one outgoing transition).

Example 2. In the system of Figure 1(a), we already saw that the set of all a-
labelled transitions is a valid confluent set. Based on this set, we can define the
reduction function F given by F (s0) = {(s0, a,1s1)} and F (s) = en(s) for every
other state s. That way, the reduced system is given by Figure 1(b).

Note that the two models indeed share the same properties, such as that the
(minimum and maximum) probability of eventually observing r is 2

3 . 
�
Confluence reduction preserves PCTL∗

\X , and hence basically all interesting
quantitative properties (including LTL\X , as was preserved in [6]).
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Theorem 1. Let A be an MDP, T a confluent set of its transitions and F an
acyclic confluence reduction function under T . Let AF be the reduced MDP.
Then, A and AF satisfy the same PCTL∗

\X formulae.

4 On-the-Fly Detection of Probabilistic Confluence

Non-probabilistic confluence was first detected directly on concrete state spaces
to reduce them modulo branching bisimulation [12]. Although the complexity
was linear in the size of the state space, the method was not very useful: it
required the complete unreduced state space to be available, which could already
be too large to generate. Therefore, two directions of improvements were pursued.

The first idea was to detect confluence on higher-level process-algebraic system
descriptions [4,5]. Using this information from the symbolic level, the reduced
state space could be generated directly without first constructing any part of
the original state space. More recently, this technique was generalised to the
probabilistic setting [23].

The other direction was to use the ideas from [12] to on-the-fly detect non-
probabilistic weak or strong confluence [22,24] during state space generation.
These techniques are based on Boolean equation systems and have not yet been
generalised to the probabilistic setting.

We present a novel on-the-fly algorithm that works on concrete probabilistic
states spaces and does not require the unreduced state space, making it perfectly
applicable during simulation for statistical model checking of MDPs.

4.1 Detailed Description of the Algorithm

Our algorithm is presented on the next page. Given a deterministic transition
s −a→ 1t, the function call checkConfluence(s −a→ 1t) tells us whether or not this
transition is confluent. We first discuss this function checkConfluence, and then
the function checkEquivalence on which it relies (which determines whether or
not two distributions are equivalent up-to confluent steps).

These functions do not yet fully take into account the fact that confluent
transitions have to be mimicked by confluent transitions. Therefore, we have an
additional function checkConfluentMimicking that is called after termination of
checkConfluence to see if indeed no violations of this condition occur.

The function checkConfluence first checks if a transition is invisible and was not
already detected to be confluent before. Then, it is added to the global set of
confluent transitions T . To check whether this is valid, a loop checks if indeed
all outgoing transitions from s commute with s −a→ 1t. If so, we return true and
keep the transition in T . Otherwise, all transitions that were added to T during
these checks are removed again and we return false. Note that it would not be
sufficient to only remove s −a→ 1t from T , since during the loop some transitions
might have been detected to be confluent (and hence added to T ) based on the
fact that s −a→ 1t was in T . As s −a→ 1t turned out not to be confluent, we can
also not be sure anymore if these other transitions are indeed actually confluent.
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Algorithm 1. Detecting confluence on a concrete state space
global Set〈Transition〉 T := ∅
global Set〈Transition,Transition〉 M := ∅

bool checkConfluence(s −a→ 1t) {
if L(s) �= L(t) then

return false
else if s −a→ 1t ∈ T then

return true

Set〈Transition〉 Told := T
Set〈Transition,Transition〉 Mold := M
T := T ∪ {s −a→ 1t}
foreach s −b→ μ do

if μ = 1t then continue
foreach t −c→ ν do

if checkEquivalence(μ, ν) and
(s −b→ μ �∈ T or (∃u : ν = 1u and checkConfluence(t −c→ 1u))) then

M := M ∪ {(s −b→ μ, t −c→ ν)}
continue outermost loop

end
T := Told

M := Mold

return false
return true

}

bool checkEquivalence(μ, ν) {
Q := {{p} | p ∈ support(μ) ∪ support(ν)}
foreach u −d→ 1v such that u ∈ support(μ), v ∈ support(ν) do

if checkConfluence(u −d→ 1v) then
Q := {q ∈ Q | u �∈ q ∧ v �∈ q} ∪

{ ⋃
q∈Q

u∈q∨v∈q

q
}

if μ(q) = ν(q) for every q ∈ Q then
return true

else
return false

end
}

bool checkConfluentMimicking {
foreach (s −b→ μ, t −c→ ν) ∈M do

if s −b→ μ ∈ T and t −c→ ν �∈ T then
if checkConfluence(t −c→ ν) then

return checkConfluentMimicking
else

return false
end

return true
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The loop to check whether all outgoing transitions commute with s follows
directly from the definition of confluent sets, which requires for every s −b→ μ that
either μ = 1t, or that there exists a transition t −c→ ν such that μ 	T ν, where
t −c→ ν has to be in T if s −b→ μ is. Indeed, if μ = 1t we immediately continue to
the next transition (this includes the case that s −b→ μ = s −a→ 1t). Otherwise, we
range over all transitions t −c→ ν to see if there is one such that μ 	T ν. For this,
we use the function checkEquivalence(μ, ν), described below. Also, if s −b→ μ ∈ T ,
we have to check if also t −c→ ν ∈ T . We do this by checking it for confluence,
which immediately returns if it is already in T , and otherwise tries to add it.

If indeed we find a mimicking transition, we continue. If s −b→ μ cannot be
mimicked, confluence of s −a→ 1t cannot be established. Hence, we reset T as
discussed above, and return false. If this did not happen for any of the outgoing
transitions of s, then s −a→ 1t is indeed confluent and we return true.

The function checkEquivalence checks whether μ 	T ν. Since T is constructed
on-the-fly, during this check some of the transitions from the support of μ might
have not been detected to be confluent yet, even though they are. Therefore,
instead of checking for connecting transitions that are already in T , we try to
add possible connecting transitions to T using a recursive call.

In accordance to Definition 6, we first determine the smallest equivalence
relation that relates states from the support of μ to states from the support of ν
in case there is a confluent transition connecting them. We do so by constructing
a set of equivalence classes Q, i.e., a partitioning of the state space according to
this equivalence relation. We start with the smallest possible equivalence relation,
in which each equivalence class is a singleton. Then, for each confluent transition
u −d→ 1v, with u ∈ support(μ) and v ∈ support(ν), we merge the equivalence
classes containing u and v. Finally, we can easily compute the probability of
reaching each equivalence class of Q by either μ or ν. If all of these probabilities
coincide, indeed μ ≡R ν and we return true; otherwise, we return false.

The function checkConfluentMimicking is called after checkConfluence desig-
nated a transition to be confluent, to verify if T satisfies the requirement that
confluent transitions are mimicked by confluent transitions. After all, when a
mimicking transition for some transition s −b→ μ was found, it might have been
the case that s −b→ μ was not yet in T while in the end it is. Hence, checkConflu-
ence keeps track of the mimicking transitions in a global set M . If a transition
s −a→ 1t is shown to be confluent, all pairs (s −b→ μ, t −c→ ν) of other outgoing
transitions from s and the transitions that were found to mimic them from t are
added to M . If s −a→ 1t turns out not to be confluent after all, the mimicking
transitions that were found in the process are removed again.

Based on M , checkConfluentMimicking ranges over all pairs (s −b→ μ, t −c→ ν),
checking if one violates the requirement. If no such pair is found, we return true.
Otherwise, the current set T is not valid yet. However, it could be the case that
t −c→ ν is not in T , while it is confluent (but since s −b→ μ was not in T at the
moment the pair was added to M , this was not checked earlier). Therefore, we
still try to denote t −c→ ν as confluent. If we fail, we return false. Otherwise, we
check again for confluent mimicking using the new set T .
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4.2 Correctness

The following theorem states that the algorithm is sound. We assume that M
and T are not reset to their initial value ∅ after termination of checkConfluence.

Theorem 2. Given a transition p −l→ 1q, checkConfluence(p −l→ 1q) and check-
ConfluentMimicking together imply that p −l→ 1q is confluent.

Note that the converse of this theorem does not always hold. To see why, consider
the situation that checkConfluentMimicking fails because a transition s −b→ μ was
mimicked by a transition t −c→ ν that is not confluent, and s −b→ μ was added to
T later on. Although we then abort, there might have been another transition
t −d→ ρ that could also have been used to mimic s −b→ μ and that is confluent. We
chose not to consider this due to the additional overhead of the implementation.
Additionally, in none of our case studies this situation occurred.

5 Evaluation

The modes tool1 provides SMC for models specified in the Modest language [7].
It allowed SMC for MDPs using the POR-based approach of [6]. We have now
implemented the confluence-based approach presented in this paper in modes as
well. In this section, we apply it to three examples to evaluate its applicability
and performance impact. They were selected so as to allow us to clearly identify
its strengths and limitations. For each, we (1) give an overview of the model, (2)
discuss, if POR fails, why it does and which, if any, modifications were needed to
apply the confluence-based approach, and (3) evaluate memory use and runtime.

The performance results are summarised in Table 2. For the runtime assess-
ment, we compare to simulation with uniformly-distributed probabilistic resol-
ution of nondeterminism. Although such a hidden assumption cannot lead to
trustworthy results in general (but is implemented in many tools), it is a good
baseline to judge the overhead of confluence checking. We generated 10 000 runs
per model instance to compute probabilities psmc for case-specific properties. Us-
ing reasoning based on the Chernoff-Hoeffding bound [25], this guarantees the
following probabilistic error bound: Prob(|p − psmc| > 0.01) < 0.017, where p is
the actual probability of the property under consideration.

We measure memory usage in terms of the maximum number of extra states
kept in memory at any time during confluence (or POR) checking, denoted
by s. We also report the maximum number of “lookahead” steps necessary in the
confluence/POR checks as k, which is equivalent to kmin − 1 in [6], as well as
the average length t of a simulation trace and the average number c of nontrivial
confluence checks, i.e., of nondeterministic choices encountered, per trace.

To get a sense for the size of the models considered, we also attempt model
checking (using mcpta [15], which relies on PRISM [19]). Note that we do not
intend to perform a rigorous comparison of SMC and traditional model checking
in this paper and instead refer the interested reader to dedicated comparison
1 modes is part of the Modest Toolset, available at www.modestchecker.net.

www.modestchecker.net
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Table 2. Confluence simulation runtime overhead and comparison

uniform: partial order: confluence: model checking:
model params time time k s time k s c t states time

dining
crypto-
graphers

(N)

(3) 1 s – – – 3 s 4 9 4.0 8.0 609 1 s
(4) 1 s – – – 11 s 6 25 6.0 10.0 3 841 2 s
(5) 1 s – – – 44 s 8 67 8.0 12.0 23 809 7 s
(6) 1 s – – – 229 s 10 177 10.0 14.0 144 705 26 s
(7) 1 s – – – – timeout – 864 257 80 s

CSMA/CD
(RF ,BCmax )

(2, 1) 2 s – – – 4 s 3 46 5.4 16.4 15 283 11 s
(1, 1) 2 s – – – 4 s 3 46 5.4 16.4 30 256 49 s
(2, 2) 2 s – – – 10 s 3 150 5.1 16.0 98 533 52 s
(1, 2) 2 s – – – 10 s 3 150 5.1 16.0 194 818 208 s

BEB
(K,N,H)

(4, 3, 3) 1 s 3 s 3 4 1 s 3 7 3.3 11.6 >103 > 0 s
(8, 7, 4) 2 s 7 s 4 8 4 s 4 15 5.6 16.7 >107 > 7 s
(16,15,5) 3 s 18 s 5 16 11 s 5 31 8.3 21.5 – memout –
(16,15,6) 3 s 40 s 6 32 34 s 6 63 11.2 26.2 – memout –

studies such as [27]. Model checking for the BEB example was performed on a
machine with 120 GB of RAM [6]; all other measurements used a dual-core Intel
Core i5 M450 system with 4 GB of RAM running 64-bit Windows 7.

5.1 Dining Cryptographers

As a first example, we consider the classical dining cryptographers problem [9]:
N cryptographers use a protocol that has them toss coins and communicate the
outcome with some of their neighbours at a restaurant table in order to find
out whether their master or one of them just paid the bill, without revealing
the payer’s identity in the latter case. We model this problem as the parallel
composition of N instances of a Cryptographer process that communicate via
synchronisation on shared actions, and consider as properties the probabilities
of (a) protocol termination and (b) correctness of the result.

The model is a nondeterministic MDP. In particular, the order of the syn-
chronisations between the cryptographer processes is not specified, and could
conceivably be relevant. It turns out that all nondeterminism can be discarded
as spurious by the confluence-based approach though, allowing the application
of SMC to this model. The computed probability psmc is 1.0 for both properties,
which coincides with the actual probabilities.

The POR-based approach does not work: Although the nondeterministic or-
dering of synchronisations between non-neighbouring cryptographers is due to
interleaving, the choice of which neighbour to communicate with first for a given
cryptographer process is a nondeterministic choice within that process.

Concerning performance, we see that runtime increases drastically with the
number of cryptographers, N . An increase is expected, since the number of steps
until independent paths from nondeterministic choices join again (k) depends
directly on N . It is so drastic due to the sheer amount of branching that is
present in this model. At the same time, the model is extremely symmetric and
can thus be handled easily with a symbolic model checker like PRISM.
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5.2 IEEE 802.3 CSMA/CD
As a second example, we take the Modest model of the Ethernet (IEEE 802.3)
CSMA/CD approach that was introduced in [15]. It consists of two identical
stations attempting to send data at the same time, with collision detection and
a randomised backoff procedure that tries to avoid collisions for subsequent re-
transmissions. We consider the probability that both stations eventually manage
to send their data without collision. The model is a probabilistic timed auto-
maton (PTA), but delays are fixed and deterministic, making it equivalent to an
MDP (with real variables for clocks, updated on transitions that explicitly rep-
resent the delays; modes does this transformation automatically and on-the-fly).
The model has two parameters: a time reduction factor RF (i.e., delays of t time
units with RF = 1 correspond to delays of t

2 time units with RF = 2), and the
maximum value used in the exponential backoff part of the protocol, BCmax .

Unfortunately, modes immediately reports nondeterminism that cannot be
discarded as spurious. Inspection of the reported lines in the model quickly shows
a nondeterministic choice between two probabilistic transitions—which conflu-
ence cannot handle. Fortunately, this problem can easily be eliminated through
an additional synchronisation, leading to psmc = 1.0 (which is the correct result).
POR also fails, for reasons similar to the previous example: initially, both stations
send at the same time, the order being determined nondeterministically. In the
process representing the shared medium, this must be an internal nondetermin-
istic choice. In contrast to the problem for confluence this cannot be fixed.

In terms of runtime, the confluence checks incur a moderate overhead for
this example. Compared to the dining cryptographers, the slowdown is much
less even where more states need to be explored in each check (s); performance
appears to more directly depend on k, which stays low in this case.

5.3 Binary Exponential Backoff

The previous two examples clearly indicate that the added power of confluence
reduction pays off, allowing SMC for models where it is not possible with POR.
Still, we also need a comparison of the two approaches. For this purpose, we
revisit the MDP model of the binary exponential backoff (BEB) procedure that
was used to evaluate the POR-based approach in [6]. The probability we compute
is that of some host eventually getting access to the shared medium, for different
values of the model parameters K (maximum backoff counter value), N (number
of tries per station before giving up) and H (number of stations/hosts involved).

Again, for the confluence check to succeed, we first need to minimally modify
the model by making a probabilistic transition synchronise. This appears to be a
recurring issue, yet the relevant model code could quite clearly be identified as a
modelling artifact without semantic impact in both examples where it appears.
We then obtain psmc = 0.91 for model instance (4, 3, 3), otherwise psmc = 1.0.

The runtime overhead necessary to get trustworthy results by enabling
either confluence or POR is again moderate. This is despite longer paths being
explored in the confluence checks compared to the CSMA/CD example (k). The
confluence-based approach is somewhat faster than POR in this implementation.
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As noted in [6], large instances of this model cannot be solved with classical model
checking due to the state space explosion problem.

6 Conclusion

We defined a more liberal variant of probabilistic confluence, tailored for the
core simulation step of statistical model checking. It has more reduction poten-
tial than a previous variant at no extra computational cost, but still preserves
PCTL∗

\X . We provided an algorithm for on-the-fly detection of confluence during
simulation and implemented this algorithm in the modes SMC tool. Compared to
the previous approach based on partial order reduction [6], the use of confluence
allows new kinds of nondeterministic choices to be handled, in particular lifting
the limitation to spurious interleavings. In fact, for two of the three examples we
presented, SMC is only possible using the new confluence-based technique, show-
ing the additional power to be relevant. In terms of performance, it is somewhat
faster than the POR-based approach, but the impact relative to (unsound) sim-
ulation using an arbitrary scheduler largely depends on the amount of lookahead
that needs to be performed, for both approaches. Again, on two of our examples,
the impact was moderate and should in general be acceptable to obtain trust-
worthy results. Most importantly, the memory overhead is negligible, and one of
the central advantages of SMC over traditional model checking is thus retained.

As confluence preserves branching time properties, it cannot handle the in-
terleaving of probabilistic choices. Although—as we showed—these can often be
avoided, for some models POR might work while confluence does not. Hence,
neither of the techniques subsumes the other, and it is best to combine them: if
one cannot be used to resolve a nondeterministic choice, the SMC algorithm can
still try to apply the other. Implementing this combination is trivial and yields
a technique that handles the union of what confluence and POR can deal with.

Acknowledgments. We thank Luis María Ferrer Fioriti (Saarland University)
for his help in analysing the behaviour of the partial order check on the case studies.
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This paper proposes a new efficient approach to optimize energy consumption
for energy aware buildings. Our approach relies on stochastic hybrid automata
for representing energy aware systems. The model is parameterized by several
cost values that need to be optimized in order to minimize energy consumption.
Our approach exploits a stochastic semantic together with simulation in order
to estimate the best value for such parameters. Contrary to existing techniques
that would estimate energy consumption for each value of the parameters, our
approach relies on a new statistical engine that exploits ANOVA, a technique
that can reduce the number of runs needed by the comparison algorithm to
perform the estimates. Our approach has been implemented and our experiments
show that we clearly outperform the naive approach.

1 Introduction

Cyber-Physical Systems. Cyber-physical systems are large-scale distributed sys-
tems, often viewed as networked embedded systems, where a large number of
computational components are deployed in a physical environment. Each com-
ponent collects information about and offers services to its environment (e.g.,
environmental monitoring and control, health-care monitoring and traffic con-
trol). This information is processed either at the component, in the network or
at a remote location (e.g., the base station), or in any combination of these.

Characteristic for cyber-physical systems is that they have to meet a multitude
of quantitative constraints, e.g., timing constraints, power consumption, mem-
ory usage, communication bandwidth, QoS, and often under uncertainty of the
behavior of the environment. Existing model-driven methodologies for embedded
systems are rather sophisticated in handling functional requirements, and some
methods are good at handling special kinds of quantitative constraints. However,
there is a lack of a mathematical foundation and supporting tools allowing to
handle the combination of quantitative aspects concerning, for example, time,
stochastic behavior, hybrid behavior including energy consumption.

In our previous work [10,11] we have proposed to capture the behavior of
cyber-physical systems with Priced Timed Automata (PTA). Those models are
extensions of timed automata [2], where clocks may have different rates (even

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 352–367, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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potentially negative) in different locations. Several projects at the EU level pro-
moted PTA as an adequate model for energy-aware systems. PTAs are as ex-
pressive as linear hybrid automata [1] providing high expressive power useful
for modeling complex cyber-physical systems, but also rendering most problems
either undecidable or too complex to be solved with classical model checking ap-
proaches. To overcome these limitations, we proposed in [10] to give a stochastic
semantics to PTAs and then apply Statistical Model Checking (SMC) techniques
[17,24,21,14,13], which is a highly scalable simulation-based approach. SMC con-
sists in randomly generating and monitoring simulation runs of the system and
verify whether they satisfy a given property written in some temporal logic. The
results are then used by statistical algorithms in order to compute an estimate of
the probability for the system to satisfy the property with some level of signifi-
cance. Our work has been implemented in Uppaal SMC, that is, an extension of
Uppaal that relies on verifying metric interval temporal logic (MITL) proper-
ties using our stochastic semantic and statistical model checking algorithms. Our
tool comes together with a friendly user interface that allows a user to specify
complex problems in an efficient manner as well as to get feedback in the form
of probability distributions and compare probabilities to analyze performance
aspects of systems. Uppaal SMC has been applied to a wide range of exam-
ples from networking and Nash equilibrium [5] to system biology [9], real-time
scheduling [8], and energy-aware systems [7]. A major difference with classical
Matlab Simulink® approaches is that ours relies on formal models for both
the system and the requirements, hence allowing to express eventually complex
properties and behaviors in a straight-forward way.

As a main contribution we improve over the framework presented in [7] for
modeling, analyzing and in particular optimizing control strategies for energy
aware buildings. The framework consists of several parameterized components
(rooms, building, heaters, weather, user, . . . ) as well as a collection of properties
for evaluating comfort, and energy profiles of various control strategies, i.e.,
various values for the parameters. The challenge is to find the best value of a
parameter to optimize a given property.

We then propose a systematic approach to encode the problem via stochastic
hybrid automata. Our approach relies on a new framework to optimize param-
eters of the controller given in the Hybrid Systems Verification Benchmark of
[12] to control temperatures of rooms in a given building.

We address the problem by working with a refined technique called analysis
of variance (ANOVA) to compare many distributions in one method poten-
tially more efficient than many pair-wise Student’s t-test [18] applications and
thus generalizes t-test for many distributions. There can be many different ar-
rangements of those distributions and in particular we are interested in a so
called two-factor factorial experiment design [18], where our two parameters be-
come the two factors (two orthogonal dimensions), the parameter values become
factor levels (discrete values on those two dimensions), and a cost (discomfort
or energy) is the measured outcome value. We can then reuse the data gath-
ered by ANOVA to estimate the energy and discomfort for interesting values of
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parameters. “Discomfort” is interpreted as a distance between a desired range
of temperature and the current temperature.

We have implemented our technique and show that it works faster than the
naive statistical model checking approach.

2 Stochastic Hybrid Automata

In [11], we proposedUppaal SMC that is a new release of Uppaal that supports
verification of probabilistic timed automata via simulation-based approaches [22].
Details can be found in [10]. In [7] we generalized the model to stochastic hybrid
automata (SHA) that are timed automata whose clock rates can be changed
to be constants or expressions depending on other clocks, effectively defining
ordinary differential equations (ODEs). Uppaal SMC1 supports fully hybrid
automata with ODEs and a few built-in complex functions (such as sin, cos,
log, exp and sqrt) since version 4.1.10. We only recall informally the modeling
language of SHA through an example because it is not a contribution in this
paper.

A Simple 2-Room Example. To illustrate the SHA model as supported by Up-

paal SMC, we consider the case of two independent rooms that can be heated
by a single heater shared by the two rooms, i.e., at most one room can be heated
at a time. Figure 1a shows the automaton for the heater in Uppaal notation
where the circle inscribed means initial location and U inscribed means urgent
location (no time delay is allowed). The heater starts in location OFF and turns
itself on after picking a delay between [0, 4] as there is no guard controlling lower
bound and only an invariant x ≤ 4 is setting the upper bound for time delay us-
ing clock x. The delay is chosen with a uniform probability distribution over that
interval. Then one of the weighted transitions is taken: the plain edge transition
from the location OFF is branched into either room 0 or room 1 (dashed edge).
The dashed edges have probabilistic weights 1 and 3: the room 0 is chosen with
probability 1

1+3 and room 1 with probability 3
1+3 . The heater stays on (location

ON 0 or ON 1) for some time, potentially forever. The delay in this case is picked
with an exponential probability distribution, for which we have to define the rate.
We use rate 2 for room 0 and rate 1 for room 1 and the interpretation is that the
stochastic controller is more eager to initiate the heating of room 1 than room 0,
as well as less eager to stop heating room 1. Both rooms are similar and are mo-
deled by the same template instantiated twice. Figure 1b shows an automaton for
room 0. The room is initialized to its initial temperature T=INIT[0] by leaving its
initial location Init which is also a committed location (inscribed with C). Then
the temperature T evolves by the derivatives T ′ = −T/10 or T ′ = K − T/10
depending on whether the heater is turned on or off. The equations are defined
as part of invariant expressions. Furthermore, when the heater is turned on, its
heating is not exact and is picked with a uniform distribution of K ∈ [9, 12],
realized by the update K=9+random(3). The variables T and K are clocks but

1 http://www.uppaal.org/.

http://www.uppaal.org/
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are used more generally as floating point numbers in the hybrid model. For this
purpose we stop K with the derivative expression K’==0. Furthermore, the us-
age of ODEs, such as T ′ = −T/10, prompts the checker to integrate the value
of T.

x=0

x=0

1

x<=4

2

off[1]!

on[0]!

1

3

on[1]!
ON_1

off[0]!

ON_0

OFF

(a) Stochastic heater.

Init

ONOFF
T’==K−T/10 &&
K’==0T’==−T/10

on[0]?

off[0]?

K=9+random(3)T=INIT[0]

(b) Room 0.

Fig. 1. A simple two room example

Statistical Model Checking. We use SMC [16,21,23,3] to estimate and test on the
probability that a random run of a network of SHAs will satisfy a given property.
Given a model H and a trace property ϕ (e.g. expressed in LTL [19] or MTL
[15]), SMC refers to a series of simulation-based techniques that can be used to
answer two questions: (1) Qualitative: is the probability that a random run of H
will satisfy ϕ greater or equal to a certain threshold θ (or greater or equal to the
probability to satisfy another property ϕ′)? and (2) Quantitative: what is the
probability that a random run of H will satisfy ϕ? In both cases, the answer will
be correct up to a user-specified level of significance or level of confidence that
bounds the probability of making a wrong conclusion. Our Uppaal SMC tool-
set implements a wide range of SMC algorithms for answering qualitative and
quantitative questions on networks of SHAs. The tool supports not only classical
reachability and safety properties, but also general weighted MTL properties
[6,4]. One can exploit the quantitative engine of SMC to do parameter sweep
in order to optimize some quantity. In this paper, we will rather exploit the
statistical method called ANOVA that will ease the estimation of parameters in
a single step.

SMC on the 2-Room Example. First we visualize the behaviour of our stochastic
controller by checking the property simulate 1 [<=120] { Room(0).T, Room(1).T }.
Figure 2 shows the evolution of both temperatures (shown with the short names
T0 and T1). The results are in accordance with the controller automaton. Based
on this plot we can now do some quantitative analysis by checking the query

Pr[<=120]([] Room(1).Init || Room(1).T >= 10)
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Fig. 2. Evolution of room temperatures

This query asks for an estimate of the
probability that the temperature of
room 1 stays above 10 degrees for runs
bounded by 120 time units. After 4239
runs the checker returns the interval
[0.36, 0.42] with 99% confidence level.
The tool can also test the hypothe-
sis that this probability is greater or
equal than 0.37. After 2523 runs, this
is confirmed with a level of signifi-
cance of 0.01 and an indifference re-
gion of size ±0.01.

3 The Energy-Aware Building Challenge

We consider the case of an energy-aware building where rooms are modeled
according to the layout shown in Fig. 3. A number of heaters are available and

H1

H2H3
R5

R2

R4

R3R1

Fig. 3. Layout of the rooms Ri

with the heaters Hk

can be moved between rooms. The rooms can
transfer heat between each other and an ad-
jacency matrix gives the heat transfer coeffi-
cients (not shown here for brevity). The goal
is to design a controller that will maintain the
room temperatures within acceptable comfort
ranges despite adverse weather conditions.

This case-study reproduces the model-
checking challenge of hybrid systems proposed
in HSCC [12]. In this paper, we focus on one
type of controller for which we want to find good parameters to minimize energy
consumption and maximize comfort. Furthermore, the weather model is fixed,
though every run has an uncontrollable range of temperatures.

The room temperature dynamics is described by a differential equation:

T ′
i =
∑
j �=i

ai,j(Tj − Ti) + bi(u− Ti) + cihi

where Ti and Tj are the temperatures in room i and j respectively, u is the envi-
ronment temperature, and hi is equal to 1 when the heater is turned on in room
i and 0 otherwise. The adjacency matrix a gives the heat exchange coefficients
ai,j between rooms i and j. The heat exchange with the environment is encoded
in a separate vector b, where bi is a energy loss coefficient for room i. The power
supply from heaters is encoded in a vector c, where ci is a power coefficient
for room i. The corresponding hybrid automaton is shown in Fig. 4a. The au-
tomaton is maintaining its own Boolean need[id] to inform the central controller
that a heater is needed and cold[id] to keep track of uncomfortable rooms. This
improves over the model of [7] since we can accumulate the discomfort over all
the rooms with the (dynamic) rate in the (more compact) automaton of Fig. 5b.
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cold[id]=false

need[id]=falseneed[id]=true

cold[id]=true

T[id]=T0[id]

30
T[id]’==(cvec[id]*h[id] + 
  bvec[id]*(u+−T[id]) + 
  sum(j:rid_t)(Amat[id][j]*(T[j]+ −T[id])))/scale

cold[id] &&
T[id] >= Tlow[id]

need[id] &&
T[id] > Tget[id]

!need[id] &&
H[id]==0 && 
T[id]<=Tget[id]

!cold[id] &&
T[id] < Tlow[id]

(a) Room template.

off[r]!

on[r]!

h[r]=0,
r=target

move[r]?

move[r]?off[r]!

c’==0

On

r=target

h[r]=0

c’==5

h[r]=1
Off

60 60

T[r]<=Ton[r]

T[r]>=Toff[r]

(b) Heater template.

Fig. 4. Stochastic hybrid automata model

The change in modeling discomfort allows us to avoid local optima when search-
ing for good parameters (in the next section) where one room could be heated
with low energy while another room would be cold. There are two levels of heater
control: primary (local) controller at the individual heaters and secondary (cen-
tral) controller which determines how the heaters are switched over from one
room to another. The local controllers use a bang-bang strategy, i.e., when the
controlled value (here the temperature T[r]) goes below or above a threshold,
the controller changes action. In our case, when the temperature T[r] is below
Ton[r], the heating is turned on (with h[r]=1), and when the temperature T[r] is
above Toff[r], the heating is turned off (with h[r]=0). The hybrid automaton of
the heater is shown in Fig. 4b. The central controller can switch over the heating
from one room to another. The room is said to be needing a heater if the temper-
ature drops below its Tget threshold and it is said to be outside the comfort zone
if the temperature drops below Tlow. We used the thresholds according to [12],
based on the heuristics that the temperature difference between rooms should
not be too high. This controller is shown in Fig. 5a.

Whenever the heating is turned on, the heaters consume some energy whose
rate is determined by the vector pow (power). The monitor automaton keeping
track of discomfort (accumulated time spent when rooms are cold) and this
energy consumption is shown in Fig. 5b.

!need[target] || H[target]>0

need[i] && H[i]==0 &&
H[j]>0 && T[j]>=Tget[j] 100

j:rid_t

i:rid_t, j:rid_t

need[target] && H[target]==0 &&
H[j]>0 && T[j]>=Tget[j]

i:rid_t

importance[i]*
(H[i]==0)*need[i]

H[target]=H[j], H[j]=0
move[j]!

target=i

100

choosingidle

(a) Central controller.

i: onRange_t,
j: getRange_t
setOnGet(i,j)

energy’==(sum(i:hid_t) 5*h[i]) &&
discomfort’==(sum(i:rid_t) cold[i])

1

(b) Discomfort and en-
ergy monitor.

Fig. 5. Stochastic hybrid model for controller and outcome monitor
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Fig. 6. Stochastic hybrid automaton of the user profile

Figure 6 shows the automaton used for the user profile: the room parameters
are changed based on the time of the day and whether the room is occupied or
not. For example, the room is preheated starting from 5o’clock in the morning
and the user arrives between 8 and 9 which increases the Tlow threshold require-
ment. The energy leakage into environment is increased by bvec[id]++ when the
user opens a window before entering location lunch and is decreased by bvec[id]−−
when the user comes back and closes the window.

The weather model in this study is fixed to be a daily cycle of temperatures
varying between ±A+B where the amplitude A is picked uniformly in [0, 2] and
the offset B in [0, 1].

In order to optimize the energy consumption we also model a user profile
which assumes that at night it is acceptable for the temperatures to drop to 8◦C.
Furthermore, in the morning the rooms should be preheated to about 20◦C and
should not be lower than 17◦C when the user arrives between 8 and 9 o’clock
(with a uniform distribution).

Parameters. The goal of this study is to find optimal values for temperature
thresholds Ton (primary controller) and Tget (secondary controller) with respect
to energy consumption and user discomfort time. The method is simply to pa-
rameterize the model by varying the Ton and Tget between the values [16, 22]◦C,
and estimate energy consumption and comfort time for various configurations
using Uppaal SMC. The parameter value variation is modeled as a uniform
choice during the first discrete stochastic transition in the automaton shown
in Fig. 5b. Then the energy and discomfort time is computed using derivative
expressions over all rooms by the same automaton.

4 Optimizing Control Strategies

First, we explain the methodology of our approach and then we present the
empirical results following the methodology.
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4.1 Methodology

We are interested in two aspects of the system: discomfort time and energy
consumed – two notions of a cost that are in conflict if we try to optimize both
of them, i.e. lowest energy might imply large discomfort and vice-versa, while
some configurations are better compromises. Thus our goal is to identify the best
configurations when preferring a lower discomfort for some energy ranges or a
lower energy consumption for some ranges of discomfort – the so called Pareto-
optimal frontier. But before we find the Pareto frontier, we need to estimate
both costs for every configuration.

A simple approach would be to estimate confidence intervals (average ± stan-
dard error) for both costs with some given confidence level (say 95%) and for each
configuration of the parameter values, and then compare them. The problem is
that it can take a lot of measurements to achieve confidence for every configura-
tion and even then the intervals may still overlap due to higher variance in some
combinations. A better suited technique for comparisons is a pair-wise Student’s
t-test [18] which reduces the comparison of two distributions to checking that
the mean of their differences is below, above or equal to zero. The improvement
here is that if two distributions are significantly different then we would observe
earlier with less samples that the confidence interval for the differences does not
include zero and thus we could conclude with fewer measurements compared to
estimating all the individual means. However, the Student’s t-test is a pair-wise
test but we have many more than just two configurations, thus we would need
to apply this test at least n · log(n) times with the best sorting algorithm.

Statisticians developed a more refined technique called analysis of variance
(ANOVA) to compare many distributions in one method potentially more effi-
cient than many t-test applications and thus generalizes t-test for many configu-
rations. There can be different arrangements, but we are interested in a so called
two-factor factorial experiment design [18] in particular: our two parameters be-
come the two factors (two orthogonal dimensions), the parameter values become
factor levels (discrete values on those two dimensions) and the cost (discomfort
or energy) is the measured outcome value. In such design, we are interested
in all pair-wise combinations of parameter values, and those combinations can
be arranged on a two dimensional grid. In this experiment design, ANOVA is
based on estimating the parameters for a linear model2 and computing how
much influence each factor has on the outcome. The computed measure, called
the F-statistic, is a ratio of a mean square for a particular factor and an error
square. The F-statistic is then translated into a P-value by looking up the ta-
bles of F-distribution. P-value is called the factor significance: the probability of
making an error by stating that the factor has influence on the outcome, thus
the smaller the P-value the more confidence that the factor is significant.

An important assumption of this experiment design is that the measurements
should be balanced (the amount of samples is the same across all configurations),
therefore the minimum amount of data is one sample per each configuration, and

2 A linear equation predicting the outcomes given the concrete factor values.
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at least two samples per configuration if we are also interested in the interaction
between factors. Our overall method is described by the following steps:

1. Using Uppaal SMC, generate enough runs to provide enough measurements
for each parameter configuration so that the data is balanced. At least two
runs per configuration are required, but our parameter values are chosen
stochastically by Uppaal SMC, thus there might be some negligible balanc-
ing overhead.

2. Apply ANOVA on the gathered and balanced data so far. For this pilot
study we use the implementation from the statistical tool R [20], but it is
well known in textbooks and simple to implement in any other tool.

3. If our factors are significant then stop data generation and proceed to the
next step, otherwise loop back to Step 1 and append more samples.

4. Reuse the gathered samples so far and compute the confidence intervals
(average with standard error) for the means of cost (discomfort and energy)
for each pair-wise parameter value combination.

5. Compute the Pareto frontier of discomfort and energy over configurations.
6. Present the Pareto frontier as a set of optimal parameter values the user can

choose from as a compromise between energy consumption and discomfort.

Figure 7 shows a pipeline overview of operations performed with some steps
marked where data is visualized by rectangles and operations as rounded rect-
angles. The dashed arrows indicate the change of control flow in Step 3. In
general, Step 2 is not guaranteed to show factor significance so that Step 3 could
proceed to Step 4, even if lots of data is presented. For example significance
will not be reported if some factor/parameter has no influence on the measured
outcome. Therefore an alternative test is needed to detect the independence in
order to terminate the data generation (there can be several options to explore,
thus we leave this generalization as a future work).

R−tool

ANOVA
perform

Significance:

P−value
F−statistic

UPPAAL SMC

stochastic runs
generate

Last state:

values & cost
parameter

Balance
cost by

param.values

Model

parameters
with

R−tool

means & error
compute

Pareto−optimal

& cost
param.values

Pareto alg.
compute
frontier

1. 2.

4. 5.

3.

Fig. 7. Pipeline for finding the Pareto-optimal configurations of parameters

In addition, we pick out a few configurations, estimate means using Up-

paal SMC probabilistic query and compare them to validate some of the results.
We also compare the performance of ANOVA based method with a simple mean
value estimation method.
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4.2 Results

We have parameterized the model with two parameters (factors in our experi-
ment design) represented by temperature thresholds Ton and Tget each varying
between 7 values (factor levels resp.), thus yielding 49 distinct pair-wise com-
binations to be tested. We instrumented Uppaal SMC simulator to record the
last values from a run. Consequently the query simulate 100 [<=2∗day] { Ton,

Tget, discomfort, energy } generates 100 runs and stores the values of Ton, Tget,
discomfort and energy as tuples. The gathered results can be plotted in terms of
discomfort and energy. However, the individual data is scattered so much that it
is impossible to distinguish individual clusters. An example plot of 3136 points is
displayed in Fig. 8, where a different color used for every combination, but most
configurations result in overlapping clusters (except one on the right), configu-
rations are visually indistinguishable and thus the results need to be processed
further.

In our setup the newly produced simulation results are streamed into a small
C++ program which balances the data across parameter combinations, i.e. it
outputs the data when all combinations have enough data. The balanced data is
then analyzed using R scripts applying ANOVA. Table 1 shows an output from
ANOVA performed on 98 measurements (two measurements per each combina-
tion, and there are 7 · 7 combinations): the first column shows factors, the fifth
contains F-statistic and the sixth – P-value.

The coefficients of underlying linear model are appended at the bottom of the
table, which means that the model predicts the mean discomfort with expression
60.82− 2.29 · Ton+ 1.00 · Tget− 0.05 · Ton · Tget.

In our setup, we apply the ANOVA method each time new simulation data
is appended. Table 2 displays a summary of ANOVA results for discomfort time
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Table 1. ANOVA table with coefficients of the linear model provided by R [20]

Analysis of Variance Table

Response: discomfort

Df Sum Sq Mean Sq F value Pr(>F)

Ton 1 4159.3 4159.3 63.8874 3.303e-12 ***

Tget 1 0.4 0.4 0.0063 0.9369

Ton:Tget 1 4.1 4.1 0.0629 0.8026

Residuals 94 6119.7 65.1

---

(Intercept) Ton Tget Ton:Tget

60.8283113 -2.2867466 1.0029695 -0.0510851

and energy consumption when the amount of measurements is increased with
each row. The first iteration with just one sample per configuration is not reliable
to detect interactions, thus we start with two. The table shows that even in the
first step Ton is significant for discomfort (since P<0.05) and get is significant
for energy. Later more significance emerges as more data is supplied. We stop
at iteration of 64 samples per configuration (64 · 49 = 3136 simulations) where
both factors Ton and Tget are significant (since P<0.05) in both outcomes. Their
interaction (Ton:Tget) is still not significant in distinguishing outcomes (since
P>0.05). Figures 9a and 9b show the planes of linear models learned by ANOVA:
higher Ton and Tget values are preferred to lower the discomfort, but smaller

Table 2. Summary of sequential applications of ANOVA

Number Discomfort time Energy consumption
of runs Factor F value P-value F value P-value

2 · 49 Ton 63.8874 3.30e-12 0.7147 0.4000
Tget 0.0063 0.9369 17.5777 6.24e-05

Ton : Tget 0.0629 0.8026 0.7181 0.3989

4 · 49 Ton 136.1676 <2e-16 1.1647 0.2818
Tget 0.1537 0.6955 17.9283 3.55e-05

Ton : Tget 0.0003 0.9869 0.0582 0.8096

8 · 49 Ton 315.7978 <2e-16 2.4425 0.1189
Tget 0.1202 0.7290 35.8938 4.76e-09

Ton : Tget 0.0096 0.9218 0.8253 0.3642

16 · 49 Ton 629.1384 <2e-16 6.5909 0.01044
Tget 0.5895 0.4429 90.9612 <2e-16

Ton : Tget 0.2852 0.5935 5.3053 0.02152

32 · 49 Ton 1263.5390 <2e-16 27.9527 1.42e-07
Tget 1.0840 0.2980 172.3296 <2.2e-16

Ton : Tget 0.5401 0.4625 3.2632 0.07104

64 · 49 Ton 2575.3208 <2e-16 65.6245 7.74e-16
Tget 4.6682 0.0308 405.4892 <2.2e-16

Ton : Tget 0.5949 0.4406 0.1926 0.6608
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Fig. 9. Estimated energy and discomfort for various parameter combinations

values are preferred for lower energy. Discomfort and energy are clearly in a
conflict. Perhaps a compromise can be found in upper Ton and lower Tget levels
as the plane seems more tilted in the opposite corner which should be avoided.
Next, we look at the individual cost estimates.

Figure 9c shows estimated means with standard error bars (95% confidence
intervals) aggregated by configurations. The plot shows Pareto-optimal frontier
of mean values: points which dominate others by yielding smaller discomfort and
energy values. We also plot the dominating minimum values to illustrate that
original data is widely scattered.

Figure 10 shows level maps of averages as shades of gray and contours sig-
nifying equal levels. Discomfort is greatest on the bottom-left and there is a
valley of small preferred values around (17;17) and (18;18) (discomfort=7.29,
energy=219.6). The energy consumption is greatest on the top-right with a val-
ley at around (17;18). Pareto-optimal means are marked by larger circles and
it seems that configuration (22;18) (discomfort=7.83, energy=219.0) offers nice
compromise between discomfort and energy, it is also further from steep slopes
which might be at risk of yielding long discomfort time.

The plots show that four (more than half) of Pareto-optimal configurations
are in the bottom-right corner as predicted by the ANOVA linear model and
the other three are found closer to the center – the surface curving which could
not be predicted by a linear model. Thus ANOVA can be used to detect the
significant parameters and provide a linear model of overall tendencies.
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Fig. 10. Level maps of estimated mean values where Pareto-optimal configurations
marked as: small circles for the minimum values and larger circles for mean

4.3 Comparison with Estimation

Next we evaluate the efficiency of ANOVA in discriminating the means of all the
configurations in contrast to estimating simple costs (energy and discomfort).
Two configurations are chosen for more detailed comparison: a Pareto-optimal
configuration (22; 18; 7.83± 0.23; 218.99± 2.32) and a non-optimal configuration
worse than this optimal (21; 18; 8.16± 0.26; 221.38± 2.33). To validate our re-
sults we would like to use our SMC technique in Uppaal SMC to evaluate the
means and compare them but we cannot directly do that. Instead we check the
following queries Pr[discomfort<=100] (<> time>=2∗day) and Pr[energy<=1000](<>

time>=2∗day). The actual probability is not interesting here (will be close to
one), but rather the resulting distribution over discomfort and energy. We can
then derive the mean that we want from this data as shown in Fig. 11.

Table 3. Estimated means

Ton Tget discomfort energy Optimal?

22 18 7.83 220.0 Pareto
21 18 7.86 222.1 no
22 19 8.57 226.8 no
22 17 11.22 214.8 Pareto

The results for the Pareto-optimal con-
figuration is in solid red lines. A sum-
mary of estimated means is described in a
Table 3. The estimated means for com-
bination (22;18) (discomfort 7.83 and
energy 220.0) are smaller than in alterna-
tive configuration (21;18) (7.86 and 222.1
resp.), and thus (Ton=22; Tget=18) is
a slightly better choice than (Ton=21;
Tget=18). Another Pareto-optimal config-
uration (Ton=22;Tget=17) uses less energy, but the discomfort is noticeably
larger, thus incomparable with (22;18).

Uppaal SMC used 738 runs (80s) for each query to compute the cost with 95%
confidence level (the confidence interval still needs to be computed). In principle
it would take 7·7 such queries to estimate discomfort for each configuration (plus
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Fig. 11. Probability of reaching 2 days

the same amount for energy), thus in total 36162 simulation runs (≈ 3920s ≈
1h 5min3). The ANOVA-based analysis required only 3136 simulation runs (≈
366s = 6min 6s) – an improvement of 11.5 times. Thus we conclude that ANOVA
method requires less measurements and consequently less simulations in order
to differentiate and pick the optimal configurations.

5 Conclusion

The analysis of variance has been used in a sequential manner to decide if there
is enough data for distinguishing the effects of two factors on two different costs
in a two-factor factorial design. The ANOVA method can identify the significant
factors by computing the F-statistic, however it can be problematic if the chosen
factor has no influence on the outcomes (the P-value does not converge), thus
an alternative test is needed to conclude independence to ensure termination.

We have demonstrated the technique on an energy aware buildings example
and have identified Pareto-optimal configurations in terms of both discomfort
and energy consumption. Thus SMC can be used to analyze complex models and
determine cost-optimal parameter values using statistically efficient methods.
The approach can also be distributed across a cluster of computers, but the load
balancing algorithm need also to be fair with respect to parameter values as
required by the analysis of variance.

There are many other experiment design variations including more factors
and thus in the future it would be interesting to generalize the ANOVA method
and implement the support for parametric SMC using general factorial designs
inside the model checker.
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Abstract. An optical resonator usually consists of mirrors or lenses
which are configured in such a way that the beam of light is con-
fined in a closed path. Resonators are fundamental components used in
many safety-critical optical and laser applications such as laser surgery,
aerospace industry and nuclear reactors. Due to the complexity and sen-
sitivity of optical resonators, their verification poses many challenges
to optical engineers. Traditionally, the stability analysis of such res-
onators, which is the most critical design requirement, has been carried
out by paper-and-pencil based proof methods and numerical computa-
tions. However, these techniques cannot provide accurate results due to
the risk of human error and the inherent incompleteness of numerical
algorithms. In this paper, we propose to use higher-order logic theorem
proving for the stability analysis of optical resonators. Based on the mul-
tivariate analysis library of HOL Light, we formalize the notion of light
ray and optical system (by defining medium interfaces, mirrors, lenses,
etc.). This allows us to derive general theorems about the behaviour of
light in such optical systems. In order to illustrate the practical effec-
tiveness of our work, we present the formal analysis of a Fabry-Pérot
resonator with fiber rod lens.

1 Introduction

In the last few decades, optical technology has revolutionized our daily life by
providing new functionalities and resolving many bottlenecks in conventional
electronic systems. The use of optics yields smaller components, high-speed com-
munication and huge information capacity. This provides the basis of miniatur-
ized complex engineering systems including digital cameras, high-speed internet
links, telescopes and satellites. Optoelectronic and laser devices based on opti-
cal resonators [15] are fundamental building-blocks for new generation, reliable,
high-speed and low-power optical systems. Typically, optical resonators are used
in lasers [19], optical bio-sensors [1], refractometry [20] and reconfigurable wave-
length division multiplexing-passive optical network (WDM-PON) systems [14].

An optical resonator usually consists of mirrors or lenses which are configured
in such a way that the beam of light is confined in a closed path as shown
in Figure 1. Optical resonators are usually designed to provide high quality-
factor and little attenuation [15]. But the most important design requirement
is the stability, which states that the beam of light remains within the optical
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resonator even after N round-trips. The stability of a resonator depends on
the properties and arrangement of its components, e.g., curvature of mirrors or
lenses, and distance between them. For stability analysis, optical resonators are
modelled using the principles of geometrical optics [15] which describes light as
rays that obey geometrical rules. The theory of geometrical optics can be applied

Ring-Mirror Spherical -Mirror Plane- Mirror 

Fig. 1. Optical Resonators

for the modeling and analysis of physical objects with dimensions greater than
the wavelength of light. It is based on a set of postulates which are used to
derive the rules for the propagation of light through an optical medium. These
postulates can be summed up as follows: Light travels in the form of rays emitted
by a source; an optical medium is characterized by its refractive index and light
rays follow Fermat’s principle of least time [15].

Optical components, such as lenses and mirrors are usually centered about an
optical axis, around which rays travel at small inclinations (angle with the optical
axis). Such rays are called paraxial rays and this assumption provides the basis of
paraxial optics which is the simplest framework of geometrical optics. The change
in the position and inclination of a paraxial ray as it travels through an optical
system can be described by the use of matrices called ray-transfer matrices [19].
This matrix formalism of geometrical optics allows for an accurate, scalable and
systematic analysis of real-world complex optical and laser systems.

The widespread use of optical resonators in safety and mission-critical appli-
cations, such as astronomy [3] and medicine (e.g., refractive index measurement
of cancer cells [20]), poses a real challenge to optical engineers for the model-
ing and verification of such resonators. Traditionally, the stability analysis of
optical resonators has been done using paper-and-pencil based proof methods
[10,15,19]. However, considering the complexity of present age optical and laser
systems, such an analysis is very difficult if not impossible, and thus quite error-
prone. Many examples of erroneous paper-and-pencil based proofs are available
in the open literature, a recent one can be found in [2] and its identification and
correction is reported in [11]. One of the most commonly used computer-based
analysis techniques for stability analysis is numerical computation of complex
ray-transfer matrices [13,21,8]. The stability analysis of optical and laser res-
onators involve complex and vector analysis along with transcendental functions
and thus numerical computations cannot provide perfectly accurate results due
to the heuristics and approximations of the underlying numerical algorithms.
Another alternative is computer algebra systems [12], which are very efficient
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for computing mathematical solutions symbolically, but are not 100% reliable
and sound due to their inability to deal with side conditions [5]. Another source
of inaccuracy in computer algebra systems is the presence of unverified huge
symbolic manipulation algorithms in their core, which are quite likely to con-
tain bugs. Thus, these traditional techniques should not be relied upon for the
analysis of optical resonators which are used in safety-critical applications (e.g.,
corneal surgery [23]), where inaccuracies in the analysis may even result in the
loss of human lives.

In the past few years, higher-order logic theorem proving [4] has been suc-
cessfully used for the precise analysis of a few continuous physical systems [18].
Developing a higher-order logic model for a physical system and analyzing this
model formally is a very challenging task since it requires expertise in both
mathematics and physics. However, it provides an effective way for identifying
critical design errors that are often ignored by traditional analysis techniques like
simulation and computer algebra systems. We believe that higher-order logic the-
orem proving offers a promising solution for conducting formal analysis of such
critical optical resonators. Most of the classical mathematical theories behind
geometrical optics, such as Euclidean spaces, multivariate analysis and complex
numbers, have been formalized in the HOL Light theorem prover [6,7]. In this
paper, we build on our formalization of geometrical optics [16] to provide a
practical framework for the stability analysis of optical resonators. In order to
illustrate the practical use of our work, we also present the formal analysis of a
newly developed Fabry-Pérot resonator with fiber rod lens [10,9]. To the best of
our knowledge, the present work is the first one of its kind.

The rest of the paper is organized as follows: Section 2 describes some funda-
mentals of geometrical optics, and its commonly used ray-transfer-matrix formal-
ism. Section 3 presents the proposed framework for the formal stability analysis
of optical resonators. Section 4 presents our HOL Light formalization of geo-
metrical optics. Then, Section 5 describes the formalization of the stability of
optical resonators. In order to demonstrate the practical effectiveness and the
utilization of the proposed framework, we present the analysis of a real-world
optical resonator i.e., Fabry-Pérot resonator with fiber rod lens in Section 6.
Finally, Section 7 concludes the paper and highlights some future directions.

2 Geometrical Optics

When a ray passes through optical components, it undergoes translation or re-
fraction. In translation, the ray simply travels in a straight line from one compo-
nent to the next and we only need to know the thickness of the translation. On
the other hand, refraction takes place at the boundary of two regions with dif-
ferent refractive indices and the ray obeys the law of refraction, i.e., the angle of
refraction relates to the angle of incidence by the relation n0 sin(φ0) = n1 sin(φ1),
called Snell’s law [15], where n0, n1 are the refractive indices of both regions
and φ0, φ1 are the angles of the incident and refracted rays, respectively, with
the normal to the surface. In order to model refraction, we thus need the normal
to the refracting surface and the refractive indices of both regions.
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In order to introduce the matrix formalism of geometrical optics, we consider
the propagation of a ray through a spherical interface with radius of curvature
R between two mediums of refractive indices n0 and n1, as shown in Figure 2.
Our goal is to express the relationship between the incident and refracted rays.
The trajectory of a ray as it passes through various optical components can be
specified by two parameters: its distance from the optical axis and its angle with
the optical axis. Here, the distances of the incident and refracted rays are r1
and r0, respectively, and r1 = r0 because the thickness of the surface is assumed
to be very small. Here, φ0 and φ1 are the angles of the incident and refracted
rays with the normal to the spherical surface, respectively. On the other hand,
θ0 and θ1 are the angles of the incident and refracted rays with the optical axis.
Applying Snell’s law at the interface, we have n0 sin(φ0) = n1 sin(φ1), which, in

Fig. 2. Spherical Interface

the context of paraxial approximation (i.e., the assumption that light travels at
small angles with respect to the normal, which is indeed the case in practice),
reduces to the form n0φ0 = n1φ1 since sin(φ) ! φ if φ is small. We also have
θ0 = φ0 − ψ and θ1 = φ1 − ψ, where ψ is the angle between the surface normal
and the optical axis. Since sin(ψ) = r0

R , then ψ = r0
R by paraxial approximation.

We can deduce that:

θ1 =

(
n0 − n1

n1R

)
r0 +

(
n0

n1

)
θ0 (1)

So, for a spherical surface, we can relate the refracted ray with the incident ray
by a matrix relationship using equation (1) as follows:[

r1

θ1

]
=

[
1 0

n0−n1

n1R
n0

n1

][
r0

θ0

]

Thus the propagation of a ray through a spherical interface can be described
by a 2 × 2 matrix generally called, in the literature, ABCD matrix. This can
be generalized to many optical components [15] and to the case of reflection as
follows:
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[
r1

θ1

]
=

[
A B

C D

][
r0

θ0

]

If we have an optical system consisting of k optical components, then we can
trace the input ray Ri through all optical components using composition of
matrices of each optical component as follows:

Ro = (Mk.Mk−1....M1).Ri (2)

Simply, we can write Ro = MsRi where Ms =
∏1

i=k Mi. Here, Ro is the output
ray and Ri is the input ray.

3 Formal Analysis Framework

The proposed framework, given in Figure 3, outlines the main idea behind the
theorem-proving-based stability analysis of optical resonators. The grey shaded
boxes in this figure show the key contributions of the paper that serve as the
fundamental requirements for conducting formal stability analysis in a theorem
prover. Like any system analysis tools, the inputs to this framework are the
description of the optical resonator and geometric constraints, such as radius
of curvature of mirrors and distance between different optical components. The
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Fig. 3. Proposed Stability Analysis Framework for Optical Resonators

first step in conducting stability analysis of optical resonators using a theorem
prover is to construct a formal model of the given resonator in higher-order logic.
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For this purpose, the foremost requirement is the ability to formalize the under-
lying concepts of geometrical optics which includes the modeling of optical com-
ponents and of the ray behaviour when it interacts with optical components. The
second step in the proposed framework is to use the formalization of geometrical
optics to formally derive the matrix formalism for geometrical components. This
step requires the vector theory, which is already available as a part of multi-
variate analysis in HOL Light theorem prover. The third step to conduct formal
stability analysis of optical resonators is to develop a library of frequently used
optical components such as lenses, mirrors or crystals. Since such components
are the basic blocks of optical systems, this library helps to formalize optical res-
onators. The next step is to formally define the stability of an optical resonator
and verify some generalized stability theorems which are heavily dependent on
matrix algebra within the HOL Light theorem prover. On top of that, one can
finally state and prove the stability of an optical resonator in the theorem prover.
The corresponding proof provides the output of the framework.

4 Formalization of Geometrical Optics

In order to fulfil the first requirement of the proposed stability analysis frame-
work, we present the formalization of geometrical optics in this section. The
formalization is two-fold: first, we model the geometry and physical parameters
of an optical system; second, we model the physical behavior of a ray when it
goes through an optical interface. Afterwards, we will be able to derive the ray-
transfer matrices of the optical components, as explained in Section 2. We first
define a type to describe optical systems:

Definition 1 (Optical Interface and System).
define type "optical interface = plane | spherical real"

define type "interface kind = transmitted | reflected"

new type abbrev("free space",‘:real # real‘)

new type abbrev("optical system",‘:(free space # optical interface #

interface kind) list # free space‘)

An optical system is a list of free spaces and interfaces between them. A free space
is represented by one real number for its refractive index and one for its width.
Optical interfaces are characterized both by their shape (plane or spherical, as
shown in Figure 4) and by the behavior of the ray when it goes through it (trans-
mitted or reflected), thus yielding the two above types ‘:optical interface‘

and ‘:interface kind‘. A spherical interface takes a real number representing
its radius of curvature. A term of type ‘:free space # optical interface #

interface kind‘ is called an optical component. Note that this data type can
easily be extended to many other optical components if needed.

A value of type ‘:free space‘ does represent a real space only if the refractive
index is greater than zero. In addition, in order to have a fixed order in the
representation of an optical system, we impose that the distance of an optical
interface relative to the previous interface is greater or equal to zero. We also need
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(a) Ray in Free Space (b) Plane Interface (transmitted) (c) Plane Interface (reflected) (d)  Spherical Interface (reflected)  

Fig. 4. Behavior of Ray at Different Interfaces

to assert the validity of a value of type optical interface by ensuring that the
radius of curvature of spherical interfaces is never equal to zero. These constraints
are all packaged in a predicate is valid optical system os which is true if
and only if all the optical components of os satisfy the above requirements (the
definition of this predicate is straightforward, see [16] for details).

We can now formalize the physical behaviour of a ray when it passes through
an optical system. We only model the points where a ray hits an optical interface
(instead of all the points constituting the ray). So it is sufficient to just provide
the distance of the hitting point to the optical axis and the angle taken by the ray
at that point. Consequently, we should have a list of such pairs (distance, angle)
for every component of a system. In addition, the same information should be
provided for the source of the ray. For the sake of simplicity, we define a type for
a pair (distance, angle) as ray at point. This yields the following definition:

Definition 2 (Ray).
new type abbrev ("ray at point", ‘:real # real‘)

new type abbrev ("ray", ‘:ray at point # ray at point #

(ray at point # ray at point) list‘)

The first ray at point is the pair (distance, angle) for the source of the ray,
the second one is the one after the first free space, and the list of ray at point

represents the same information for all hitting points of an optical system. It
is not necessarily the case that every value of type ray constitutes a valid ray,
we thus constrain this type by using a predicate is valid ray in system ray

sys which asserts that the value ray indeed represents a ray travelling in the
system sys [16]. For example, Figure 4 provides a couple of situations which are
formalized by is valid ray in system ray sys.

Now, as explained in Section 2, the behavior of a ray through an optical system
can be conveniently expressed by matrices. In our formalism, the matrix corre-
sponding to an optical system os is given by the function system composition

os. For the sake of conciseness, we do not provide the detailed definition of this
function, which can be found in [16]. We then obtain the following essential
result:

Theorem 1 (Ray-Transfer-Matrix for Optical System).
- ∀ sys ray. is valid optical system sys ∧
is valid ray in system ray sys =⇒
let (y0,θ0),(y1,θ1),rs = ray in
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let yn,θn = last ray at point ray in[
yn
θn

]
= system composition sys *

[
y0
θ0

]

where the function last ray at point returns the last ray at point in system.
This concludes our formalization of geometrical optics and the verification of

the generalized ray-transfer-matrix relationship (Theorem 1) of optical systems.
The formal verification of the above important theorem reassures the correctness
of our formal definitions related to optical systems. Now, we present the formal-
ization of stability of an optical resonator and the verification of the generalized
stability theorem in the following section.

5 Formalization of the Stability of Optical Resonators

Optical resonators are particular type of optical systems which are broadly
classified as stable or unstable. One of the most interesting features of opti-
cal resonators is their diverse applications, e.g., stable resonators are used in
the measurement of the refractive index of cancer cells [20], whereas unstable
resonators are used in the laser oscillators for high energy applications [19]. Sta-
bility analysis identifies geometric constraints of the optical components which
ensure that light remains inside the resonator (see Figure 5 (a)). In order to
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Fig. 5. (a) Types of Optical Resonators (b) ABCD Matrix After N Round-Trips

determine whether a given optical resonator is stable, we need to analyze the
ray behaviour after many round trips. To model N round trips of light in the
resonator, engineers usually “unfold” N times the resonator description, and
compute the corresponding ray-transfer matrix. From the results presented in
the previous section, it follows that it is equivalent to take the ray-transfer matrix
corresponding to one round-trip and then raise it to the N th power, as shown in
Figure 5 (b). For an optical resonator to be stable, the distance of the ray from
the optical axis and its orientation should remain bounded whatever the value
of N . This is formalized as follows:

Definition 3 (Resonator Stability).
- ∀ M. stable optical system M ⇔ (∀ X. ∃ Y. ∀ N.

abs((M mat pow N) * X)$1 ≤ Y$1 ∧ abs((M mat pow N) * X)$2 ≤ Y$2)
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where X and Y are 2-dimensional vectors and M is a 2 × 2 matrix (intended to
be the round-trip matrix of the resonator). The function mat pow denotes the
matrix power function and V$i denotes the ith component of a vector V.

Proving that a given resonator satisfies the abstract condition of Definition 3
does not seem trivial at first. However, if the determinant of M is 1 (It means that
the refractive index is the same at the input and output of the system. This is
generally the case for optical systems encountered in practice), optics engineers
have known for a long time that having −1 < M11+M22

2 < 1 is sufficient to ensure
that the stability condition holds. The obvious advantage of this criterion is that
it is immediate to check. In order to prove this result, we can use Sylvester’s
Theorem [22,24], which states that for a matrix M=

[
A B
C D

]
such that | M |= 1

and −1 < A+D
2 < 1, the following holds:

[
A B

C D

]N
=

1

sin(θ)

[
A sin[N(θ)]− sin[(N − 1)θ] B sin[N(θ)]

C sin[N(θ)] D sin[N(θ)]− sin[(N − 1)θ]

]

where θ = cos−1[ (A+D)
2 ]. This theorem ensures that stability holds under the

considered assumptions: Indeed, N only occurs under a sine in the resulting
matrix; since the sine itself is comprised between −1 and 1, it follows that the
components of the matrix are obviously bounded, hence the stability. We for-
malize Sylvester’s theorem as follows:

Theorem 2 (Sylvesters Theorem).

- ∀ N A B C D.

∣∣∣∣A B
C D

∣∣∣∣ = 1 ∧ −1 < (A+D)
2

∧ (A+D)
2

< 1 =⇒

let θ = acs( (A+D)
2

) in[
A B

C D

]N
= 1

sin(θ)

[
A ∗ sin[N(θ)]− sin[(N− 1)θ] B ∗ sin[N(θ)]

C ∗ sin[N(θ)] D ∗ sin[N(θ)]− sin[(N− 1)θ]

]

We prove Theorem 2 by induction on N and using the fundamental proper-
ties of trigonometric functions, matrices and determinants. Now, we derive the
generalized stability theorem for any ABCD matrix as follows:

Theorem 3 (Generalized Stability Theorem).

- ∀ A B C D.

∣∣∣∣A B
C D

∣∣∣∣ = 1 ∧ −1 < (A+D)
2

∧ (A+D)
2

< 1 =⇒

stable optical system

[
A B
C D

]

The formal verification of Theorem 3 requires the formal definition of stability
(Definition 3) and Sylvester’s theorem along with some fundamental properties of
vectors. It is important to note that our stability theorem is quite general and can
be applied to any ABCD matrix which satisfies the required assumptions. This
completes our formalization of stability and we present its practical effectiveness
by analyzing Fabry Pérot resonator in the next section.
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6 Application: Stability Analysis of Fabry Pérot
Resonator

Nowadays, optical systems are becoming more and more popular due to their
huge potential of application. In order to bring this technology to the market,
a lot of research has been done toward the integration of low cost, low power
and portable building blocks in optical systems. One of the most important such
building blocks is the Fabry Pérot (FP) resonator [15]. Originally, this resonator
was used as a high resolution interferometer in astrophysical applications. Re-
cently, the Fabry Pérot resonator has been realized as a microelectromechanical
(MEMS) tuned optical filter for applications in reconfigurable Wavelength Divi-
sion Multiplexing [14]. The other important applications are in the measurement
of refractive index of cancer cells [20] and optical bio-sensing devices [1].

Due to diverse applications of the FP resonators, different architectures have
been proposed in the open literature. The main limitation of traditional designs
is the instability of the resonators which prevents their use in many practical
applications (e.g., refractometry for cancer cells). Recently, a state-of-the-art FP
core architecture has been proposed which overcomes the limitations of existing
FP resonators [10,9]. In the new design, cylindrical mirrors are combined with
a fiber rod lens (FRL) inside the cavity, to focus the beam of light in both
transverse planes as shown in Figure 6 (a). The fiber rod lens is used as light
pipe which allows the transmission of light from one end to the other with
relatively small leakage. Building a stable FP resonator requires the geometric
constraints to be determined in terms of the radius of curvature of mirrors R
and the free space propagation distance (dfree space) using the stability analysis.

As a direct application of the framework developed in the previous sections,
we present the stability analysis of FP resonator with fiber rod lens as described
above. It is important to note that the design shown in Figure 6 (a), has a 3-
dimensional structure. We can still apply the ray-transfer-matrix approach to
analyze the stability by dividing the given architecture into two planes, i.e., XZ
and YZ planes. Now, the stability problem becomes a couple of planar problems
which are still valid since the ray focusing behaviours in both directions (XZ
and YZ) are decoupled. This is merely a consequence of the decomposition of
Euclidean space vectors into a basis. This can be seen in Figure 6 (b) and (c),
where the resonator is divided into two cross-sections. In the following, we focus
only on the analysis of the XZ plane, since the analysis in the YZ plane is fairly
similar (the complete analysis can be found in the source code [17]).

In the XZ cross-section (Figure 6 (b)), the focusing is done by the curved
mirrors. The fiber rod lens acts as a refracting slab with width df and refractive
index nf . The first step in the stability analysis, as described in our proposed
framework is to construct a formal model of the given resonator in higher-order
logic. A ray that makes a round-trip in the cavity undergoes (from left to right)
first reflection in a curved mirror of radius R, propagation through free space
of length dx and refractive index 1, refraction from free space to fiber rod lens,
propagation within fiber rod lens of length df and refractive index nf , refraction
from fiber rod lens to free space and again the propagation through free space
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Fig. 6. Fabry Pérot (FP) Resonator with fiber rod lens (a) 3-Dimensional Resonator
Design (b) Cross-Section view in the XZ Plane (c) Cross-Section view in the YZ Plane

of length dx. Of course, the “return-trip” is symmetric. We formally model this
system as follows:

Definition 4 (Formal Model of FP Resonator in XZ Plane ).
- ∀ R dx nf df. FP XZ R dx df nf =

([(1,0),spherical R,reflected;(1,dx),plane,transmitted;

(nf,df),plane,transmitted],1,dx)

Here, the pair (1,0) represents free space with refractive index 1 and null width.
FP XZ is a higher-order logic function which takes the parameters, radius of cur-
vature of mirror (R), free space length (dx), length of fiber rod lens (df) and re-
fractive index (nf). It returns an optical system (Definition 1) which corresponds
to the formalization of a cavity with the corresponding input parameters. Next,
we formally verify that the formal model of the cavity is valid under realistic
geometric constraints, such as the fact that the refractive index (nf) and lengths
of free space propagation (dx and df) should be greater than 0.

Theorem 4 (Validity of FP resonator in XZ Plane).
- ∀ R dx df nf. R = 0 ∧ 0 < dx ∧ 0 < df ∧ 0 < nf =⇒

is valid optical system (FP XZ R dx df nf)

Next, we formally verify the equivalent matrix relationship of FP resonator in
XZ plane using the formal definition of system composition.

Theorem 5 (Equivalent Matrix for FP resonator in XZ Plane).
- ∀ R dx df nf. R = 0 ∧ 0 < dx ∧ 0 < df ∧ 0 < nf =⇒
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system composition (FP XZ R dx df nf) =[
1− 2 ∗ (df + 2 ∗ dx ∗ nf)

nf ∗ R
2 ∗ dx + df

nf

− 2
R

1

]

The verification of this theorem mainly involves the matrix algebra and some
arithmetic reasoning. The following result is then easy to prove by making use
of the results already obtained in our framework:

Theorem 6 (Ray-Transfer-Matrix Model in XZ plane).
- ∀ R dx df nf. R = 0 ∧ 0 < dx ∧ 0 < df ∧ 0 < nf =⇒
(∀ ray.is valid ray in system ray (FP XZ R dx df nf)

=⇒ (let (y0,θ0),(y1,theta1),rs = ray in

(yn,θn) = last single ray ray in

vector [yn;θn] = system composition (FP XZ R dx df nf) *

vector [y0;θ0]))

where last single ray is a function that takes a ray as input and returns the
last pair (distance from the optical axis y and the orientation θ) of that ray.

To this point, we have formally developed the model of the FP resonator in
the XZ plane and also verified important properties such as the validity of the
model and the ray-transfer-matrix relationship. Now, we are in a position to
formally verify the stability of the FP resonator in the XZ plane, which is the
final step.

Theorem 7 (Stability in XZ plane).
- ∀ R dx df nf. R = 0 ∧ 0 < dx ∧ 0 < df ∧ 0 < nf

0 <
2∗dx+ df

nf

R
∧ 2∗dx+ df

nf

R
< 2 =⇒ stable optical system

(system composition (FP XZ R dx df nf))

The first four assumptions just ensure the validity of the model description. The
two following ones provide the intended stability criteria. The formal verification
of Theorem 7 requires Theorem 5 and Theorem 3 along with some fundamental
properties of matrices and arithmetic reasoning.

Similarly, we can model and verify the validity of the FP resonator in YZ
plane by performing the above mentioned steps. For the sake of conciseness, we
only present the stability theorem in YZ plane as follows:

Theorem 8 (Stability in YZ plane).
- ∀ dy df nf. 0 < dy ∧ 0 < df ∧ 0 < nf

0 < 1 − 2
nf

+ (4 ∗ dy

df
) ∗ (1− 1

nf
) ∧ 1 − 2

nf
+ (4 ∗ dy

df
) ∗ (1− 1

nf
) < 1

=⇒ stable optical system (system composition (FP YZ dy df nf))

The first three assumptions just ensure the validity of the model description.
The two following ones provide the intended stability criteria.

It is important to note that for the FP resonator with fiber rod lens, we have
two sets of stability constraints, i.e., in the XZ plane ( Theorem 7) and in the
YZ plane (Theorem 8). Consequently, the resonator can be stable in one plane
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and unstable in the other. Therefore, in practice, the criteria of Theorem 7 and
8 should both be satisfied.

This completes our formal stability analysis of the FP resonator with fiber rod
lens, which clearly demonstrates the effectiveness of the proposed theorem prov-
ing based stability analysis framework. The above formal analysis allowed us to
find some discrepancy in the paper-and-pencil based proof approach presented in
[10]. Particularly, the order of matrix multiplication in Equations (16) and (24)
in [10] should be reversed, so as to obtain correct stability constraints. Due to the
formal nature of the model and inherent soundness of higher-order logic theorem
proving, we have been able to verify the stability of Fabry Pérot (FP) resonator
with fiber rod lens with an unrivaled accuracy. This improved accuracy comes at
the cost of the time and effort spent, while formalizing the underlying theory of
geometrical optics and resonator stability. But, the availability of such a formal-
ized infrastructure significantly reduces the time required to analyze the Fabry
Pérot (FP) resonator with fiber rod lens. Moreover, we automatized parts of the
verification task by introducing new tactics, e.g., VALID OPTICAL SYSTEM TAC,
which automatically verifies the validity of a given optical system. We also for-
mally analyzed a couple of other important resonator architectures such as FP
resonator with curved mirrors and Z-shaped resonator. Our HOL Light develop-
ments of geometrical optics, Fabry Pérot (FP) resonators and Z-shaped resonator
are available for download [17] and thus can be used by other researchers and
optical engineers working in industry to conduct the formal stability analysis of
their optical resonators.

7 Conclusion

In this paper, we report a novel application of formal methods in the stabil-
ity analysis of optical resonators which is mainly based on geometrical optics.
We provided a brief introduction of the current state-of-the-art and highlighted
their limitations. Next, we presented an overview of geometrical optics followed
by some highlights of our higher-order logic formalization. In order to show the
practical effectiveness of our proposed framework, we presented the formal sta-
bility analysis of Fabry Pérot (FP) resonator with fiber rod lens. Note that this
application is not a simple toy example but an advanced system which has been
published only recently. In fact, we were able to identify some discrepancy in the
paper-and-pencil based stability analysis presented in [10]. Catching this problem
in paper-and-pencil based proofs clearly indicates the usefulness of using higher-
order-logic theorem proving for the stability analysis of optical resonators. To
the best of our knowledge, this is the first time that formal approach has been
applied for the stability analysis of optical resonators.

The rigor of formal verification allows to go beyond what is traditionally done
by optics engineers. For instance, during our formalization, we have identified
that the paraxial approximation is not taken into account rigorously in tradi-
tional techniques. However, theorem proving provides the required mathemati-
cal background to tackle this precisely. This is one of our essential future work.
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We also plan to automatize the verification of optical resonators’ stability by
developing dedicated conversions and tactics that would compute automatically
the required matrix products and check that the resulting matrices indeed satisfy
the conditions given by Sylvester’s theorem. In the future, we also plan to extend
this work in order to obtain an extensive library of verified optical components,
along with the formalization of Gaussian beams, which would allow the formal
analysis of resonator modes [19]. We also plan to package our HOL Light for-
malization in a GUI, so that it can be used by non-formal methods community
in industry for the analysis of practical resonators and in academia for teaching
and research purposes.
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Formal Verification of Nonlinear Inequalities

with Taylor Interval Approximations
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Abstract. We present a formal tool for verification of multivariate non-
linear inequalities. Our verification method is based on interval arith-
metic with Taylor approximations. Our tool is implemented in the HOL
Light proof assistant and it is capable to verify multivariate nonlin-
ear polynomial and non-polynomial inequalities on rectangular domains.
One of the main features of our work is an efficient implementation of
the verification procedure which can prove non-trivial high-dimensional
inequalities in several seconds. We developed the verification tool as a
part of the Flyspeck project (a formal proof of the Kepler conjecture).
The Flyspeck project includes about 1000 nonlinear inequalities. We suc-
cessfully tested our method on more than 100 Flyspeck inequalities and
estimated that the formal verification procedure is about 3000 times
slower than an informal verification method implemented in C++. We
also describe future work and prospective optimizations for our method.

1 Introduction

In this paper, we present a tool for formal verification of nonlinear inequalities in
HOL Light [1]. Our tool can verify multivariate polynomial and non-polynomial
inequalities on rectangular domains. The verification technique is based on inter-
val arithmetic with Taylor approximations. A short user manual describing our
tool is available [2]. Solovyev’s thesis [3] contains additional information about
the verification tool and the corresponding formal techniques.

Our work is an integral part of the Flyspeck project [4, 5]. This project was
launched in 2003 by T. Hales to produce a complete formal verification of Hales’
proof of the Kepler conjecture [6, 7]. There are several major computationally
extensive verification problems in the Flyspeck project. One of these problems
is a formal verification of about 1000 multivariate nonlinear inequalities. We
have successfully tested our formal verification tool on several simple Flyspeck
nonlinear inequalities (we have verified 130 inequalities). In theory, almost all
Flyspeck inequalities can be verified with our formal verification procedure. A
rough estimate shows that the current formal procedure is about 3000 times
slower than the corresponding informal verification algorithm in C++ [8]. With
this estimate, it will take more than 4 years to verify all Flyspeck nonlinear
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inequalities formally on a single computer (the informal procedure requires about
9 hours).

Although the existing C++ program can verify all nonlinear inequalities in the
Flyspeck project, it is still very important to have a complete formal verification
of all these inequalities. The formal HOL Light tool is much more reliable than
the original C++ program because all results produced by this tool are verified
by a small (less than 700 lines of code) HOL Light kernel. It is very unlikely that
the HOL Light tool will return a wrong result. On the other hand, even a subtle
error in the C++ program could produce a wrong answer for some inequalities.

There exist other formal methods for verification of nonlinear inequalities.
First of all, general quantifier elimination procedures may be used to solve some
polynomial inequalities [9–11]. Another method for proving polynomial inequal-
ities is known as the sums-of-squares (SOS) method [12].

A tool called MetiTarski [13, 14] is capable of verifying multivariate polyno-
mial and non-polynomial inequalities on unbounded domains. It approximates
non-polynomial functions by suitable polynomial bounds and then applies quan-
tifier elimination procedures for resulting polynomials. The paper [15] describes
a formal approximation method of univariate functions by polynomials.

The Bernstein polynomial technique [16] allows to verify multivariate polyno-
mial inequalities. Each polynomial can be written as a sum of polynomials in the
Bernstein polynomial basis. Coefficients of this representation give bounds of the
polynomial itself. A complete formal implementation of this method is done in
PVS [17]. Non-polynomial inequalities must be first converted into polynomial
inequalities by finding polynomial bounds. One way to find polynomial bounds
is to use Taylor model approximations [18]. R. Zumkeller’s thesis describes this
method in detail [16]. He also implemented an informal global optimization tool
based on Bernstein polynomials [19] in Haskell.

There exists a tool in the PVS proof assistant which uses the same technique
as our tool (interval arithmetic with Taylor approximations) [20] but this tool
works only with univariate functions.

Methods based on quantifier elimination procedures do not scale well when
the number of variables grows and when inequalities become more complicated.
The Bernstein polynomial technique works well for polynomial inequalities but
does not show very good results for inequalities involving special functions in
high dimensions.

2 Verification of Nonlinear Inequalities

2.1 Nonlinear Inequalities and Interval Taylor Approximations

Consider the problem: Prove that

∀x ∈ Rn,x ∈ D =⇒ f(x) < 0.

D is assumed to be a rectangle given by D = {(x1, . . . , xn) | ai ≤ xi ≤ bi} =
[a,b]. We also assume that f(x) is twice continuously differentiable in an open
domain U ⊃ D.
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One way to solve the problem is to consider a finite partition of D =
⋃

j D
j

such that each Dj is rectangular. Also, we assume that f̄(Dj) < 0 where f̄ is
an interval approximation of f (that is, f̄(Dj) is the interval corresponding to
the interval evaluation of f(x1, . . . , xn) for input intervals xi ∈ [aji , b

j
i ]; clearly,

f̄(D) < 0 =⇒ f(D) < 0). It is easy to see that such a partition always exists
if f is continuous, f(D) < 0, and f can be arbitrary well approximated by
f̄ on sufficiently small domains. (It follows by the compactness argument: for
each point x ∈ D there is a small rectangle Dj such that x ∈ interior(Dj) and
f̄(Dj) < 0; D is compact, so there are finitely many rectangles Dj such that
D =

⋃
j D

j .)

The main difficulty is finding a suitable partition {Dj}. The easiest way is
the following. Let D0 = D and compute f̄(D0). If this value is less than 0
(in the interval sense), then we are done. Otherwise divide D0 into two regions
D0 = D1

1 ∪ D1
2 . Then repeat the procedure for regions with upper index 1. In

general, either f̄(Dk
j ) < 0 or we get Dk

j = Dk+1
2j−1 ∪ Dk+1

2j . If we divide each
region such that sizes of new regions become arbitrarily small in all dimensions,
then the process will eventually stop and a suitable partition of D will be found.
An easy way to achieve this goal is to divide each region in half along the
coordinate for which its size is maximal, i.e., if Dk

j = {ai ≤ xi ≤ bi} = [a,b] and

bm−am = maxi{bi−ai}, then set D
(k+1)
2j−1 = [a,b(m,y)] and D

(k+1)
2j = [a(m,y)),b].

Here, y = (am+bm)/2 and a(m,y) equals to a with the m-th component replaced
by y.

As the result of the procedure above, we get a finite set of subregions S = {Dk
i }

with the property: for each Dk
i ∈ S either f̄(Dk

i ) < 0 or Dk
i = Dk+1

i1
∪Dk+1

i2
. In

the last case, the verification relies on a trivial theorem

D = D1 ∪D2 ∧ f(D1) < 0 ∧ f(D2) < 0 =⇒ f(D) < 0.

Interval arithmetic works for any continuous function (at least in theory where
numerical errors are not considered) but it is not very efficient in general. This
is due to the dependency problem when even a simple function could require a
lot of subdivisions in order to get the result on the full domain. For instance,
consider f(x) = x − arctan(x). We have f̄([0, 1]) = [0, 1]− [0, π/4] = [−π/4, 1]
and we don’t get f(x) < 1. One way to decrease the dependency problem is to
use Taylor approximations for computing bounds of f on a given domain D.

Fix y ∈ D = [a,b], then we can write

f(x) = f(y) +

n∑
i=1

∂f

∂xi
(y)(yi − xi) +

1

2

n∑
i,j=1

∂2f

∂xi∂xj
(p)(yi − xi)(yj − xj)

where p ∈ [a,b]. Let w = max{y−a,b−y} (all operations are componentwise).
Suppose we have interval bounds for f(y) ∈ [f lo

0 , f
hi
0 ], ∂f

∂xi
(y) ∈ [f lo

i , f
hi
i ] and

∂2f
∂xi∂xj

(t) ∈ [f lo
ij , f

hi
ij ] for all t ∈ D. We can write
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∀x ∈ D, f(x) ≤ f(y) +

n∑
i=1

∣∣∣∣ ∂f∂xi (y)
∣∣∣∣wi +

1

2

n∑
i,j=1

∣∣∣∣ ∂2f

∂xi∂xj
(ξ)

∣∣∣∣wiwj

≤ fhi
0 +

n∑
i=1

∣∣[f lo
i , f

hi
i ]
∣∣wi +

1

2

n∑
i,j=1

∣∣[f lo
ij , f

hi
ij ]
∣∣wiwj .

Absolute values of intervals are defined by |[a, b]| = max{−a, b}.
Let’s see how well this approximation works on an example. Again, take

f(x) = x− arctanx and D = [0, 1]. We get f ′(x) = 1− 1
1+x2 , f

′′(x) = −2x
(1+x2)2 . If

x ∈ [0, 1], then f ′′(x) ∈ [−2, 0] = [f lo
11, f

hi
11 ] and hence |f ′′(x)| ≤ 2. We compute

∀x ∈ [0, 1], f(x) ≤ 0.04 + 0.21× 0.5 + 2× 0.53 ≤ 0.4.

We see that interval arithmetic with Taylor approximations works much better.
Moreover, we don’t need to abandon direct interval approximations completely:
every time when we have to verify whether f(Di) < 0 we can first find an interval
approximation f̄(Di) and then compute a Taylor approximation. If we don’t get
the inequality in both cases, then we subdivide the domain.

One simple trick which can be done with both interval and Taylor interval
approximations is estimation of partial derivatives on a given domain. If it hap-
pens that fj(Dk) = ∂f

∂xj
(Dk) ≤ 0 or fj(Dk) ≥ 0 then it will be immediately

possible to restrict further verifications to the boundary of Dk = [a,b]. Indeed,
if fj(Dk) ≤ 0 and f(Dk|xj=aj ) < 0 then f(Dk) < 0 since the function is decreas-
ing along the j-th coordinate and its maximal value is attained at xj = aj . The
same is true for increasing functions (consider Dk|xj=bj ). Moreover, if {xj = aj}
({xj = bj}) is not on the boundary of the original domain Dk, then it is possible
to completely ignore any further verifications for the region Dk. Indeed, if the
restriction of Dk is not on the boundary of the original domain, then there is
another subdomain Dj such that the restriction of Dk is a subset of Dj and the
inequality is true on Dj. However, we need to be careful. Consider an example.
Suppose f(x) = −x2−1 and D = [−1, 1]. Assume that we have D1 = [−1, 0] and
D2 = [0, 1]. We get f ′(x) = −2x ≥ 0 on [−1, 0]. Hence, the function is increasing
and we can consider the restricted domain {0} which is not on the boundary of
[−1, 1]. Also, f ′(x) = −2x ≤ 0 on [0, 1] and we again get {0} as the restriction
of [0, 1]. If we don’t continue verifications in both cases, then we will not be able
to verify the inequality. In order to avoid this problem, we always check a strict
inequality for decreasing functions, that is, we test if fj(x) ≥ 0 or fj(x) < 0.

Another trick is to check convexity of a function before subdividing a domain

Dk. If we need to subdivide Dk and find that fjj(D) = ∂2f
∂xj∂xj

(D) ≥ 0, then

it is enough to verify f(Dk|xj=aj ) < 0 and f(Dk|xj=bj ) < 0. By convexity of f
(i.e., f attains its maximum on the boundary), we get f(Dk) < 0 from these two
inequalities.
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2.2 Solution Certificate Search Procedure

An informal verification procedure based on the ideas presented above has been
developed in C++ for informal verification of Flyspeck nonlinear inequalities [8].
The starting point of our implementation of a formal procedure for verification of
nonlinear inequalities is a port of this original C++ program into OCaml. This
OCaml program informally verifies a given nonlinear inequality on a rectangular
domain by finding Taylor interval approximations and subdividing domains if
necessary. The result of this program is just a boolean value: yes or no, the
inequality true or false (there is the third option: verification could fail due
to numerical instability or when subdomains become very small without any
definite results).

We have modified the OCaml informal verification procedure such that it re-
turns a partition of the original domain in a special tree-like structure which also
contains all necessary information about verification steps for each subdomain.
We call this structure a solution certificate for a given nonlinear inequality. The
informal procedure is called the solution certificate search procedure.

A solution certificate is defined with the following OCaml record

type result_tree =

| Result_false

| Result_pass

| Result_mono of mono_status list * result_tree

| Result_glue of (int * bool * result_tree * result_tree)

| Result_pass_mono of mono_status

| Result_pass_ref of int

The record mono_status contains monotonicity information (i.e., whether some
first-order partial derivative is negative or positive).

A simplified solution certificate search algorithm is given below in OCaml-like
pseudo code.

let search f dom =

let taylor_inteval = {find Taylor approximation of f on dom}

let bounds = {taylor_interval bounds}

if bounds >= 0 then

Result_false

else if bounds < 0 then

Result_pass

else

let d_bounds = {find bounds of partial derivatives}

let mono = {list of negative and positive partial derivatives}

if {mono is not empty} then

let r_dom = {restrict dom using information from mono}

Result_mono mono (search f r_dom)

else

let dd_bounds = {find bounds of second partial derivatives}
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if {the j-th second partial derivative is non-negative} then

let dom1, dom2 = {restrict dom along j}

let c1 = search f dom1

let c2 = search f dom2

Result_glue (j, true, c1, c2)

else

let j = {find j such that b_i - a_i is maximal}

let dom1, dom2 = {split dom along j}

let c1 = search f dom1

let c2 = search f dom2

Result_glue (j, false, c1, c2)

If the inequality f(x) < 0 holds on D, then the algorithm (applied to f and D)
will return a solution certificate which does not contain Result_false nodes. Of
course, the real algorithm could fail due to numerical instabilities and rounding
errors. This failure never happens for existing Flyspeck inequalities but it could
happen for inequalities which require more precise floating-point arithmetic. In
any case, the verification procedure described below will detect any possible er-
rors in a solution certificate. A solution certificate does not contain any explicit
information about subdomains for which verification must be performed. All
subdomains can be restored from a solution certificate and the initial domain
D. For each Result_glue(j, false, c1, c2) node, it is necessary to split the
domain in two halves along the j-th coordinate. The second argument is the
convexity flag. If it is true, then the current domain must be restricted to its
left and right boundaries along the j-th coordinate. For new subdomains, the
node contains their solution certificates: c1 and c2. The domain also has to be
modified for Result_mono nodes. Each node of this type contains a list of in-
dices and boolean parameters (packed in mono_status record) which indicate for
which partial derivatives the monotonicity argument should be applied; boolean
parameters determine if the corresponding partial derivatives are positive or
negative.

The simplified algorithm never returns nodes of type Result_pass_mono. The
real solution certificate search algorithm is a little more complicated. Every time
monotonicity argument is applied, it checks if the restricted domain is on the
boundary of the original domain or not (the original domain is a parameter of
the algorithm). If the restricted domain is not on the boundary of the original
domain, then Result_pass_mono will be returned.

If a solution certificate contains nodes of type Result_pass_mono, then it is
necessary to transform such a certificate to get new certificates which can be
formally verified. Indeed, suppose we have a Result_pass_mono node and the
corresponding domain is Dk. Result_pass_mono requires to apply the mono-
tonicity argument to Dk, that is, to restrict this domain to its boundary along
some coordinate. But it doesn’t contain any information on how to verify the
inequality on the restricted subdomain. We can only claim that there is an-
other subdomain Dj (corresponding to some other node of a solution certificate)
such that the restriction of Dk is a subset of Dj . In other words, to verify the
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inequality on Dk, we first need to find Dj such that the restriction of Dk is a
subset of Dj and such that the inequality can be verified on Dj. To solve this
problem, we transform a given solution certificate into a list of solution cer-
tificates and subdomains for which these new solution certificates work. Each
solution certificate in the list may refer to previous solution certificates with
Result_ref. The last solution certificate in the list corresponds to the original
domain. The transformation algorithm is the following

let transform certificate acc =

let sub_certs = {find all maximal sub-certificates

which does not contain Result_pass_mono}

if {sub_certs contains certificate} then

{add certificate to acc and return acc}

else

let sub_certs = {remove certificates consisting of single

Result_ref from sub_certs}

let paths = {find paths to sub-certificates in sub_cert}

let _ = {add sub_certs and the corresponding paths to acc}

let new_cert1 = {replace all sub_certs in certificate

with references}

let new_cert2 = {replace Result_pass_mono nodes in new_cert1

if they can be verified using subdomains

defined by paths in acc}

transform new_cert2 acc

This algorithm maintains a list acc of solution certificates which do not contain
nodes of type Result_pass_mono. The list also contains paths to subdomains
corresponding to certificates. Each path is a list of pairs and it can be used to
construct the corresponding subdomain starting from the original domain. Each
pair is one of ("l", i), ("r", i), ("ml", i), or ("mr", i) where i is an index.
The "l" and "r" labels correspond to left and right subdomains after splitting;
"ml" and "mr" correspond to left and right restricted subdomains. The index i
specifies the coordinate along which the operation must be performed. When a
reference node Result_ref is generated for a sub-certificate at the j-th position
in the accumulator list acc, then the argument of Result_ref is j.

3 Formal Verification

The first step of developing a formal verification procedure is formalization of
all necessary theories involving the multivariate Taylor theorem and related top-
ics. Standard HOL Light libraries contain a formalization of Euclidean vector
spaces [21] and define general Frechet derivatives and Jacobian matrices for
working with first-order partial derivatives. Also, HOL Light contains the gen-
eral univariate Taylor theorem. We formalized all other important results includ-
ing the theory of partial derivatives, the equality of second-order mixed partial
derivatives, the multivariate Taylor formula with the second-order error term.
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The main formal verification step is to compute a formal Taylor interval ap-
proximation for a function f : Rn → R on a given domainD = [a,b]. Each formal
Taylor approximation includes the following data: a point y = (a + b)/2 ∈ D,
a vector w which estimates the width of the domain and has the property
w ≥ max{b− y,y − a} (all operations are componentwise), an interval bound
of f(y) ∈ [f lo, fhi], interval bounds of partial derivatives fi(y) ∈ [f lo

i , f
hi
i ] = di

for all i = 1, . . . , n, interval bounds of second-order partial derivatives on the
full domain fij(x) ∈ [f lo

ij , f
hi
ij ] = dij for all i = 1, . . . , n, j ≤ i, and x ∈ D.

Based on this data, an interval approximation of f(x) and its partial derivatives
on D can be computed. For instance, the following theorem gives an interval
approximation of f(x) when n = 2

w1|d1|+ w2|d2| ≤ b ∧ w1(w1|d1,1|) + w2(w2|d2,2|+ 2w1|d2,1|) ≤ e

∧ b+ 2−1e ≤ a ∧ l ≤ f lo − a ∧ fhi + a ≤ h

=⇒
(
∀x, x ∈ [a,b] =⇒ f(x) ∈ [l, h]

)
.

(Here, |di| = |[f lo
i , f

hi
i ]| = max{−f lo

i , f
hi
i }.)

Formal computations of Taylor interval approximations require a lot of ba-
sic arithmetic operations. We implemented efficient procedures for working with
natural numbers and real numbers in HOL Light. Our implementation of for-
mal natural number arithmetic works with numerals in an arbitrary fixed base.
Our implementation improves the performance of standard HOL Light arith-
metic operations with natural numbers by the factor log2 b (where b is a fixed
base constant) for linear operations (in the size of input arguments) and by
the factor (log2 b)

2 for quadratic operations. We approximate real numbers with
floating-point numbers which have fixed precision of the mantissa. This preci-
sion is controlled by an informal parameter which specifies the maximal number
of digits in results of formal floating-point operations. All formal floating-point
operations yield inequality theorems which approximate real results from above
or below. Formal verification procedures are based on our implementation of in-
terval arithmetic which works with formal floating-point numbers. We also cache
results of all basic arithmetic operations to improve the performance of formal
computations.

A description of our formal verification procedure is technical and it can be
found in [3]. Here we give an example which demonstrates how the formal ver-
ification procedure works. Let f(x) = x − 2 and we want to prove f(x) < 0 for
x ∈ [−1, 1]. Suppose that we have the following solution certificate

Result_glue {1, false,

Result_pass_mono {[1, incr]},

Result_mono {[1, incr],

Result_pass

}

}
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This certificate tells that the inequality may be verified by first splitting the
domain into two subdomains along the first (and the only) variable; then the
left branch follows from some other formal verification result by monotonicity
(Result_pass_mono); the right branch follows by the monotonicity argument
and by a direct verification. This certificate cannot be used directly for a formal
verification since we don’t know how the left branch is proved. The first step is
to transform this certificate into a list of certificates such that each certificate
can be verified on subdomains specified by the corresponding paths. We get the
following list of certificates

[

["r", 1], Result_mono {[1], Result_pass};

["l", 1], Result_mono {[1], Result_ref {0}};

[], Result_glue {1, false, Result_ref {1}, Result_ref {0}}

]

The first element corresponds to the right branch of the original Result_glue
(hence, the path is ["r", 1]which means subdivision along the first variable and
taking the right subdomain). A formal verification of the first certificate yields
- x ∈ [0, 1] =⇒ f(x) < 0. The second result is the transformed left branch of
the original certificate. This transformed result explicitly refers to the first proved
result (Result_ref {0}). Now it can be verified. Indeed, Result_ref {0} yields
- x ∈ [0, 0] =⇒ f(x) < 0 (since [0, 0] ⊂ [0, 1] and we have the theorem for [0, 1]
which we use in the reference). Then the monotonicity argument

(∀x, x ∈ [−1, 0] =⇒ 0 ≤ f ′(x)) ∧ (∀x, x ∈ [0, 0] =⇒ f(x) < 0)

=⇒ (∀x, x ∈ [−1, 0] =⇒ f(x) < 0)

yields - x ∈ [−1, 0] =⇒ f(x) < 0. The last entry of the list refers to two proved
results and glues them together in the right order:

(∀x, x ∈ [−1, 0] =⇒ f(x) < 0) ∧ (∀x, x ∈ [0, 1] =⇒ f(x) < 0)

=⇒ (∀x, x ∈ [−1, 1] =⇒ f(x) < 0)

4 Optimization Techniques and Future Work

4.1 Implemented Optimization Techniques

There are several optimization techniques for formal verification of nonlinear
inequalities. One of the basic ideas of optimization techniques is to compute extra
information for solution certificates which helps to increase the performance of
formal verification procedures.

The first optimization technique is to try direct interval evaluations with-
out Taylor approximations. If a direct interval evaluation yields a desired re-
sult (verification of an inequality on a domain or verification of a monotonicity
property), then a special flag is added to the corresponding certificate node.
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This flag indicates that it is not necessary to compute full formal Taylor interval
and it is enough to evaluate the function directly with interval arithmetic (which
is faster). These flags are added to Result_pass and Result_mono nodes.

An important optimization procedure is to find the best (minimal) precision
which is sufficient for verifying an inequality on each subdomain. We have a spe-
cial informal implementation of all arithmetic, Taylor interval evaluation, and
verification functions which compute results in the same way as the correspond-
ing formal functions. This informal implementation is much simpler (because it
does not prove anything) and faster (since it does not prove anything and all
basic arithmetic is done by native machine arithmetic). For a given solution cer-
tificate, we run a modified informal verification procedure which tests different
precision parameter values for each certificate node. It finds out the smallest
value of the precision parameter for each certificate node such that the veri-
fication result is correct. Then a modified solution certificate is created where
each node contains information about the best precision parameter. A special
version of the formal verification procedure accepts this new certificate and ver-
ifies the inequality with computed precision parameters. This adaptive precision
technique increases the performance of formal arithmetic computations.

4.2 Future Work

There are some optimization ideas which are not implemented yet. The first
idea is to stop computations of bounds of second-order partial derivatives for
Taylor intervals at some point and reuse bounds computed for larger domains.
The error term in Taylor approximation depends quadratically on the size of a
domain. When domains are sufficiently small, good approximations of bounds
of second-order partial derivatives are not very important. This strategy could
save quite a lot of verification time since formal evaluation of second-order partial
derivative bounds is expensive for many functions.

Another unimplemented optimization is verification of sets of similar inequal-
ities on the same domain. The idea is to reuse results of formal computations as
much as possible for inequalities which have a similar structure and which are
verified on the same domains. The basic strategy is to find a subdivision of the
domain into subdomains such that each inequality in the set can be completely
verified on each subdomain. If inequalities in the set share a lot of similar com-
putations, then the verification of all inequalities in the set could be almost as
fast as the verification of the most difficult inequality in the set. This approach
should work well for Flyspeck inequalities where many inequalities share the
same sub-expressions and domains.

An important unimplemented feature is verification of disjunctions of inequal-
ities. That is, we want to verify inequalities in the form

∀x ∈ D =⇒ f1(x) < 0 ∨ f2(x) < 0 ∨ . . . ∨ fk(x) < 0.

This form is equivalent to an inequality on a non-rectangular domain since

(P (x) =⇒ f(x) < 0 ∨ g(x) < 0) ⇐⇒ (P (x) ∧ 0 ≤ g(x) =⇒ f(x) < 0).
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Many Flyspeck inequalities are in this form. A formal verification of these in-
equalities is simple. It is enough to add indices of functions for which the in-
equality is satisfied to the corresponding nodes of solution certificates. Then it
will be only necessary to modify the formal gluing procedure. It should be able
to combine inequalities for different functions with disjunctions.

5 Results and Tests

This section briefly introduces the implemented verification tool and presents
some test results for several polynomial and non-polynomial inequalities. We
also compare the performance of the formal verification tool and the informal
C++ verification procedure for Flyspeck nonlinear inequalities. All tests were
performed on Intel Core i5, 2.67GHz running Ubuntu 9.10 inside Virtual Box
4.2.0 on a Windows 7 host; the Ocaml version was 3.09.3; the base of arithmetic
was 200.

5.1 Overview of the Formal Verification Tool

A user manual which contains information about the tool and installation in-
structions is available at [2]. Here, we briefly describe how the tool can be used.

Suppose we want to verify a polynomial inequality

− 1√
3
≤ x ≤

√
2 ∧ −

√
π ≤ y ≤ 1 =⇒ x2y−xy4+y6+x4−7 > −7.17995.

The following HOL Light script solves this problem

needs "verifier/m_verifier_main.hl";;

open M_verifier_main;;

let ineq = ‘-- &1 / sqrt(&3) <= x /\ x <= sqrt(&2)

/\ -- sqrt(pi) <= y /\ y <= &1

==> x pow 2 * y - x * y pow 4 + y pow 6 - &7 + x pow 4

> -- #7.17995‘;;

let th, stats = verify_ineq default_params 5 ineq;;

First two lines of the script load the verification tool. The main verification
function is called verify_ineq. It takes 3 arguments. The first argument con-
tains verification options. In most cases, it is enough to provide default op-
tions default_params. The second parameter specifies the precision of formal
floating-point operations. The third parameter is the inequality itself given as
a HOL Light term. The format of this term is simple: it is an implication with
bounds of variables in the antecedent and an inequality in the consequent. The
bounds of all variables should be in the form a constant expression ≤ x or
x ≤ a constant expression. For each variable, upper and lower bounds must
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be given. The inequality must be a strict inequality (< or >). The inequality
may include sqrt (

√
), atn (arctan), and acs (arccos) functions. The constant

pi (π) is also allowed.
The verification function returns a HOL Light theorem and a record with

some verification information which includes verification time.

5.2 Polynomial Inequalities

Here is a list of test polynomial inequalities taken from [17].

– schwefel

〈x1, x2, x3〉 ∈ [〈−10,−10,−10〉 , 〈10, 10, 10〉]
=⇒ −5.8806× 10−10 < (x1 − x22)

2 + (x2 − 1)2 + (x1 − x23)
2 + (x3 − 1)2.

– caprasse

〈x1, x2, x3, x4〉 ∈ [〈−0.5,−0.5,−0.5,−0.5〉 , 〈0.5, 0.5, 0.5, 0.5〉]
=⇒ − 3.1801 < −x1x33 + 4x2x

2
3x4 + 4x1x3x

2
4 + 2x2x

3
4

+ 4x1x3 + 4x23 − 10x2x4 − 10x24 + 2.

– magnetism

〈x1, x2,x3, x4, x5, x6, x7〉 ∈ [〈−1,−1,−1,−1,−1,−1,−1〉 , 〈1, 1, 1, 1, 1, 1, 1〉]
=⇒ −0.25001 < x21 + 2x22 + 2x23 + 2x24 + 2x25 + 2x26 + 2x27 − x1.

– heart

〈x1, x2, x3, x4, x5,x6, x7, x8〉 ∈ [〈−0.1, 0.4,−0.7,−0.7, 0.1,−0.1,−0.3,−1.1〉 ,
〈0.4, 1,−0.4, 0.4, 0.2, 0.2, 1.1,−0.3〉]

=⇒ − 1.7435 < −x1x36 + 3x1x6x
2
7 − x3x

3
7 + 3x3x7x

2
6 − x2x

3
5

+ 3x2x5x
2
8 − x4x

3
8 + 3x4x8x

2
5 − 0.9563453.

Performance test results are given in Table 1. The column total time contains
total verification time, the column formal contains time of the formal verification
only. The formal verification excludes all preliminary processes: computations
of partial derivatives, search of solution certificates, adaptive precision search
procedures. The last two columns show the corresponding verification time for
the PVS procedure which is based on the Bernstein polynomial technique and
described in [17].

Test results show that our procedure is faster than the Bernstein polynomial
procedure in PVS for most cases. On the other hand, there still exist cases where
our tool is slower.
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Table 1. Polynomial inequalities

Inequality ID total time (s) formal (s) total PVS (s) formal PVS (s)

schwefel 26.33 19.15 10.23 3.18
caprasse 8.06 1.29 11.44 1.25
magnetism 7.01 1.35 160.44 82.87
heart 17.30 1.28 79.68 26.14

5.3 Flyspeck Inequalities

The Flyspeck project contains 985 nonlinear inequalities. The informal verifica-
tion program written in C++ can verify all these inequalities in about 10 hours.
Most inequalities (683) can be informally verified in less than 10 seconds. Almost
all inequalities (911) can be informally verified in less than 100 seconds.

We tested our formal verification procedure on several simple Flyspeck in-
equalities. Some of these inequalities are listed below. Table 2 contains perfor-
mance test results for these inequalities. The column total time contains total
formal verification time, the column formal contains time of the formal verifi-
cation only (excluding all preliminary processes), the column informal contains
informal verification time by the C++ program.

Δ(x1, . . . , x6) = x1x4(−x1 + x2 + x3 − x4 + x5 + x6)

+x2x5(x1 − x2 + x3 + x4 − x5 + x6)

+x3x6(x1 + x2 − x3 + x4 + x5 − x6)

−x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6,

dihx (x1, . . . , x6) =
π

2
− arctan

(
−∂Δ(x1, . . . , x6)/∂x4√

4x1Δ(x1, . . . , x6)

)
,

dihy (y1, . . . , y6) = dihx (y21 , . . . , y
2
6).

– 4717061266

4 ≤ xi ≤ 6.3504 =⇒ Δ(x1, x2, x3, x4, x5, x6) > 0.

– 7067938795

4 ≤ x1,2,3 ≤ 6.3504, x4 = 4, 3.012 ≤ x5,6 ≤ 3.242

=⇒ dihx (x1, . . . , x6)− π/2 + 0.46 < 0.

– 3318775219

2 ≤ yi ≤ 2.52 =⇒ 0 < dihy (y1, . . . , y6)− 1.629− 0.763(y4 − 2.52)

− 0.315(y1 − 2.0) + 0.414(y2 + y3 + y5 + y6 − 8.0).
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Table 2. Flyspeck inequalities

Inequality ID total time (s) formal (s) informal (s)

2485876245a 5.530 0.058 0
4559601669b 4.679 0.048 0
4717061266 27.1 0.250 0
5512912661 8.860 0.086 0.002
6096597438a 0.071 0.071 0
6843920790 2.824 0.076 0.002
SDCCMGA b 9.012 0.949 0.006
7067938795 431 387 0.070
5490182221 1726 1533 0.375
3318775219 17091 15226 8.000

Table 3. Flyspeck inequalities which can be informally verified in 1 second

time interval (ms) # inequalities total time (s) formal (s) informal (s)

0 57 423 2.159 0
1–100 35 5546 3854 1.134
101–500 11 12098 10451 3.944
501–700 14 32065 28705 8.423
701–1000 9 19040 16688 7.274

We also found formal verification time of all Flyspeck inequalities which can be
verified in less than one second and which do not contain disjunctions of in-
equalities. Table 3 summarizes test results. The columns total time and formal
show total formal verification time and formal verification time without prelim-
inary processes for the corresponding sets of inequalities. The column informal
contains informal verification time for the same sets of inequalities.

Test results show that our formal verification procedure is about 2000–4000
times slower than the informal verification program.
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17. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polyno-
mials and applications to global optimization. Journal of Automated Reasoning
(2012) (accepted for publication)

18. Zumkeller, R.: Formal global optimisation with Taylor models. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 408–422. Springer,
Heidelberg (2006)

19. Zumkeller, R.: Sergei. A Global Optimization Tool (2009),
http://code.google.com/p/sergei/
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Abstract. As the hardware root-of-trust in a trusted computing envi-
ronment, the Trusted Platform Module (TPM) warrants formal specifi-
cation and verification. This work presents results of an effort to specify
and verify an abstract TPM 1.2 model using PVS that is useful for un-
derstanding the TPM and verifying protocols that utilize it. TPM com-
mands are specified as state transformations and sequenced to represent
protocols using a state monad. Postconditions and invariants are spec-
ified for individual commands and validated by verifying a Privacy CA
attestation protocol. All specifications are written and verified automat-
ically using the PVS decision procedures and rewriting system.

1 Introduction

At the heart of trusted computing [3] is the need to appraise a remote system
in a trusted fashion. In this process – known as remote attestation [4,5,11] –
an external appraiser sends an attestation request to an appraisal target and
receives a quote used to assess the remote system’s state. To achieve its goal,
the appraiser must not only analyze the quote’s contents, but also assess the
trustworthiness of the information it contains.

The Trusted Platform Module (TPM) and its associated Trusted Software
Stack (TSS) [1] provide core functionality for assembling and delivering a quote
for appraisal with high integrity as well as binding confidential data to a specific
platform. However, neither the TPM nor TSS have been formally specified or
verified. Definitions of the over 90 current TPM commands as well as additional
TSS commands are embedded in more than 700 pages of English documentation.

We formally specify and verify a remote attestation protocol – known as the
Privacy CA Protocol – using commands from TPM version 1.2. Our objective is
to capture an abstract specification from the TPM specification, validate it, and
use it to verify the correctness of the Privacy CA Protocol. We are not making
an argument for the protocol itself, we are merely verifying this protocol as a
part of verifying the TPM. We use PVS [14] for our work, however the results
and approach generalize to other tools.
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0000328568.
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1.1 Trusted Platform Module

The Trusted Platform Module (TPM) [1] is a hardware co-processor that pro-
vides cryptographic functions at the heart of establishing and maintaining a
trusted computing infrastructure [3]. The TPM’s functionality can be distilled
into three major capabilities: (i) establishing, maintaining, and protecting a
unique identifier; (ii) storing and securely reporting system measurements; and
(iii) binding secrets to a specific platform.

The endorsement key (EK) and storage root key (SRK) are persistent asym-
metric keys maintained by the TPM. EK uniquely identifies the TPM and EK−1

is maintained confidentially while EK encrypts secrets for use by TPM. EK−1

could theoretically sign TPM data, but is never used for this purpose to avoid
unintended information aggregation. Instead, it provides a root-of-trust for re-
porting used in the attestation process. The SRK provides a root key for chaining
wrapped keys. A wrapped key is an asymmetric key pair whose private key is en-
crypted by another asymmetric key. The resulting wrapped key can be safely
stored outside the TPM and may only be installed and used if its wrapping key
is installed. Using the SRK as the root of these chains binds information to its
associated TPM.

A platform configuration register (PCR) is a special purpose register for stor-
ing and extending hashes within the TPM. As its name implies, a PCR records
a platform’s configuration during boot or at run time. The TPM ensures the
integrity of PCRs and uses a quote mechanism to deliver them with integrity
to an external appraiser. Rather than being set to a specific value, PCRs are
extended using the formula pcr ‖ h = SHA1(pcr ++ h). These hashes – called
measurements – are gathered in PCRs at various points during system oper-
ation, but the most common use is to ensure trusted boot. As each system
component boots, images and data are hashed, and each hash is used to extend
a PCR. The nature of extension implies that at the conclusion of the boot pro-
cess, the hashes in PCRs indicate whether the right parts were used in the right
order during boot. Specifically, ideal PCR extension exhibits the property that
h0 ‖ h1 = h1 ‖ h0 ⇔ h0 = h1. The only way to change a PCR value is with a
platform reboot or by using the command TPM_Extend.

1.2 Privacy CA Protocol

Remote Attestation using a TPM is the process of gathering PCRs and delivering
them to an external appraiser in a trusted fashion [9]. By examining the reported
contents of PCRs, the appraiser can determine whether it trusts the system
described. Using hashes guarantees the appraiser only learns whether the right
system is running and nothing more. Our remote attestation method is to use
a Privacy Certificate Authority (CA or Privacy CA) that produces an identity
certificate verifying that an attestation identity key (AIK) public key belongs to
a certain TPM using its EK. The Privacy CA is so named because it protects
the EK while assuring the AIK belongs to the right EK. This protocol is shown
in figure 1.
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An AIK, wrapped by the SRK, is created using the TPM’s TPM_MakeIdentity
command and can only be used by the TPM that generated it. The command
also returns a CA label digest identifying the CA certifying the AIK, and the
public AIK signed with AIK−1. The AIK signature tells us that the AIK came
from the right TPM since the TPM that generated the AIK is the only entity
with access to its private key. Using the public key embedded in the certificate,
the CA can determine if the entire certificate did indeed come from the TPM
associated with the AIK.

Although we are modeling the TPM, we also need to model the role of the
Privacy CA. This interaction between the CA and the User is modeled by
CA_certify. The CA returns a session key (identified as K with figure 1) en-
crypted by the public EK associated with the TPM that claims to have requested
the certificate. TPM_ActivateIdentity attempts to decrypt K using the TPM’s
EK−1 and releases if it decrypts successfully. Finally, we are able to use the
AIK to sign PCR values using the TPM command TPM_Quote [1]. This quote is
returned to the User who can then send back to the appraiser the information
that it needs. The command CPU_BuildQuoteFromMemory simulates this final
step generating for the appraiser an evidence package of the form:

({|{|AIK|}CA−1|}AIK−1 , {|n, PCR|}AIK−1) (1)

where: {|n, PCR|}AIK−1 is the nonce from the appraiser’s request and desired
PCR values; {|{|AIK|}CA−1|}AIK−1 is the certificate from a Privacy CA and
public AIK; and both are signed by the AIK.

2 System Model

The overall approach we take for verifying the TPM is to establish a weak bisim-
ulation [17] relation between an abstract requirements model and a concrete
model derived from the TPM specification. Both the abstract and concrete mod-
els define transition systems in terms of system state and transitions over that
system state. Here we address only the abstract model, useful in its own right
for modeling protocols and verifying operations. Here we describe our abstract
model of the TPM, including data structures and command execution.

2.1 Data Model

Our abstraction of data relevant to the TPM is defined in the PVS data type
tpmData. Figure 2 shows a subset of this data that is relevant to verifying the
remote attestation protocol. It may be noted that most elements of our tpmData
data type include a tag that shows what cryptographic operations have been
performed on data using the CRYPTOSTATUS type. These functions include en-
cryption, signing, and sealing. For example, a symmetric key identified as k:KVAL
and signed with the private key of idKey:(tpmKey?) is expressed as:

tpmSessKey(k, signed(private(idKey), clear))
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TPM User Software Privacy CA Appraiser

Attestation Request with n and PCR mask

MakeIdentity(CAd)

{|CAd,AIK|}
AIK−1

({|EK|}
AIK−1 , {|CAd,AIK|}

AIK−1 )

({{|AIK|}
CA−1}K, {K,AIK}EK )

ActivateIdentity({K,AIKd}EK )

K

Quote(n,AIK, PCRm)

{|n, PCRd|}
AIK−1

({|{|AIK|}
CA−1 |}

AIK−1 , {|n, PCRd|}
AIK−1 )

Fig. 1. Sequence diagram for the Privacy CA protocol

tpmData : DATATYPE

BEGIN

tpmDigest(digest:list[tpmData],crs:CRYPTOSTATUS) : tpmDigest?

tpmNonce : tpmNonce?

tpmSessKey(skey:KVAL,crs:CRYPTOSTATUS) : tpmSessKey?

tpmKey(key:KVAL,usage:KEY_USAGE,flags:KEY_FLAGS,PCRInfo:list[PCR],

wrappingKey:KVAL,crs:CRYPTOSTATUS) : tpmKey?

tpmQuote(digest:list[PCR],nonce:(tpmNonce?),crs:CRYPTOSTATUS) : tpmQuote?

tpmIdContents(digest:(tpmDigest?),aik:(tpmKey?),

crs:CRYPTOSTATUS) : tpmIdContents?

tpmAsymCAContents(sessK:(tpmSessKey?),idDigest:(tpmDigest?),

crs:CRYPTOSTATUS) : tpmAsymCAContents?

...

END tpmData;

Fig. 2. Data structure for abstract TPM data
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A tpmDigest structure contains the list of things that are concatenated and then
hashed to create the digest value – SHA1(d0++ d1++ ...++ dn) while tpmSessKey
is our representation of a symmetric key. Finally, the tpmKey structure represents
an asymmetric key with additional properties used by the TPM. These include
its usage, associated flags, and PCR information for wrapping. Virtually all
asymmetric keys used by the TPM are created as wrapped keys. Thus, a reference
to the wrapping key is part of the tpmKey structure. The type KVAL associated
with all keys is an integer value that uniquely identifies the key.

2.2 Abstract State

The TPM manages state by maintaining several data fields and flags. We use
a PVS record structure, referred to as tpmAbsState and shown in figure 3, to
maintain an abstract view of this state as well as the memory associated with the
environment where the TPM is being run. Elements key to the remote attestation
protocol include srk, ek, pcrs, and memory.

tpmAbsState : TYPE =

[# restore : restoreStateData, memory : mem, srk : (tpmKey?),

ek : (tpmKey?), keyGenCnt : K, keys : KEYSET, pcrs : PCRS,

locality : LOCALITY, permFlags : PermFlags, permData : PermData #];

Fig. 3. Abstract TPM and system state record data structure

The srk and the ek represent the asymmetric keys SRK and EK used by the
TPM as roots of trust previously discussed in section 1.1. memory is not part of
the actual TPM, but represents the memory used by the TPMs environment for
storing values. This is necessary for our model due to our method of command
sequencing discussed in section 2.6.

pcrs is an array of hash sequences that define the value of a PCR. Rather
than calculate the hash, a sequence of values used to create the PCR value is
maintained. One unusual feature of PCRs is they can have one of two initial
values. Resettable PCRs initialize to -1 (all 1s) while non-resettable PCRs reset
to 0. This feature along together with PCR locality is used by the appraiser
determine if the senter command is called during boot.

2.3 Abstract Command Definitions

Figure 4 shows the PVS data type tpmAbsInput that represents the abstract
syntax of the TPM command set. Each TPM_Command will have a corresponding
ABS_Command in the tpmAbsInput data structure. This approach gives us an
induction principle for the command set automatically usable by PVS to quantify
over all possible TPM inputs.



Verifying a Privacy CA Remote Attestation Protocol 403

tpmAbsInput : DATATYPE

BEGIN

ABS_MakeIdentity(CADigest:(tpmDigest?),aikParams:(tpmKey?))

: ABS_MakeIdentity?

ABS_ActivateIdentity(aik:(tpmKey?),blob:(tpmAsymCAContents?))

: ABS_ActivateIdentity?

ABS_Extend(pcrNum:PCRINDEX,d:HV) : ABS_Extend?

ABS_Quote(aik:(tpmKey?),nonce:(tpmNonce?),pm:PCRMASK) : ABS_Quote?

ABS_certify(aik:(tpmKey?),certReq:(tpmIdContents?)) : ABS_certify?

ABS_save(i:nat,v:tpmAbsOutput) : ABS_save?

ABS_read(i:nat) : ABS_read?

...

END tpmAbsInput;

Fig. 4. Representative elements from the TPM command data type

Within the tpmAbsInput data structure, the arguments to each command are
abstract representations of the actual TPM data formats and come from tpmData

data type. This is appropriate for an abstract model such as ours where we are
capturing functionality, not implementation. Some details are abstracted away
when they do not contribute to verifying the basic functionality of the device.

2.4 Abstract Outputs

Like inputs to the TPM, outputs are modeled abstractly using an algebraic type.
Again we avoid the complexity of bit-level representations specified in the TPM
standard in favor of an abstract representation that captures the essence of TPM
functionality. Figure 5 shows the representation of this type.

Each TPM command returns an output, often just to return the message that
the command was successfully run. The tpmAbsOutput constructs allow for each
command to return the correct output parameters as well as a return code. These
return codes either indicate success or a non-fatal error. Fatal errors from TPM
commands are generated using the OUT_Error construct, while non-TPM-related
fatal errors are generated using OUT_CPUError.

2.5 Abstract Command Execution

The technique for specifying TPM command execution is to define state transi-
tion and output functions in the canonical fashion for transition systems. Specif-
ically, we define the executeCom function as a transition from tpmAbsState

(figure 3) and tpmAbsInput (figure 4) to tpmAbsState:

executeCom : tpmAbsState → tpmInput → tpmAbsState

and the function outputCom to transform tmpAbsState and tpmAbsInput into
a tpmAbsOutput (figure 5) value:
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tpmAbsOutput : DATATYPE

BEGIN

OUT_MakeIdentity(aik:(tpmKey?),idc:(tpmIdContents?),m:ReturnCode)

: OUT_MakeIdentity?

OUT_ActivateIdentity(symmKey:(tpmSessKey?),m:ReturnCode)

: OUT_ActivateIdentity?

OUT_Extend(outDigest:PCR,m:ReturnCode) : OUT_Extend?

OUT_Quote(pcrData:list[PCR],sig:(tpmQuote?),m:ReturnCode) : OUT_Quote?

OUT_FullQuote(q:(tpmQuote?),idc:(tpmIdContents?),m:cpuReturn)

: OUT_FullQuote?

OUT_Certify(data:(tpmAsymCAContents?),m:cpuReturn) : OUT_Certify?

OUT_Error(m:ReturnCode) : OUT_Error?

OUT_CPUError(m:cpuReturn) : OUT_CPUError?

...

END tpmAbsOutput;

Fig. 5. Abstract TPM output record data structure

outputCom : tpmAbsState → tpmAbsInput → tpmAbsOutput

Given s : tpmAbsState and c : tpmAbsInput, the output, state pair resulting
from executing c is defined as:

(outputCom(s, c), executeCom(s, c))

As one would expect, executeCom and outputCom are defined by cases over
tpmAbsInput. Specifically, for each command in tpmAbsInput a function is de-
fined for generating the next state and for generating output. These commands
are named within the specification using the suffix State and Out respectively
for easy identification.

For example, consider the ABS_MakeIdentity input. At its core, the command
TPM_MakeIdentity creates the AIK and returns the public AIK key for use in
other operations as well as a tpmIdContents structure. This tpmIdContents

structure, containing the identity of the privacy CA that the owner expects to
certify the AIK and the AIK (see figure 5 for the OUT_MakeIdentity structure
and figure 2 for the tpmIdContents structure), is signed by the private AIK [1].

The function makeIdentityState defines how the TPM state is modified (a
new key value for the AIK is created):

makeIdentityState(s:tpmAbsState,CADigest:(tpmDigest?),

aikParams:(tpmKey?)) : tpmAbsState =

IF identity?(keyUsage(aikParams))

AND not(migratable(keyFlags(aikParams)))

THEN s WITH [‘keyGenCnt := keyGenCnt(s)+1]

ELSE s

ENDIF;
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while, the function makeIdentityOut defines the TPM output generated by the
command:

makeIdentityOut(s:tpmAbsState,CADigest:(tpmDigest?),

aikParams:(tpmKey?)) : tpmAbsOutput =

IF identity?(keyUsage(aikParams))

AND not(migratable(keyFlags(aikParams)))

THEN LET aik:(tpmKey?) = tpmKey(keyGenCnt(s), keyUsage(aikParams),

keyFlags(aikParams), pcrs(s),

wrappingKey(srk(s)),clear) IN

LET idBinding = tpmIdContents(CADigest, aik,

signed(private(aik),clear)) IN

OUT_MakeIdentity(aik,idBinding,TPM_SUCCESS)

ELSE OUT_Error(TPM_INVALID_KEYUSAGE)

ENDIF;

Functions like makeIdentityState and makeIdentityOut define the function-
ality associated with ABS_MakeIdentity. They are associated with the com-
mand in the executeCom and outputCom using a case structure defined over
tpmAbsInput. Since all TPM commands return at least a success or error mes-
sage, all abstract commands generate output, but not all commands modify
state. In instances where the state is not modified, the CASES construct used to
assemble the functions defaults to not modifying the state.

2.6 Sequencing Command Execution

TPM commands are executed in sequence like assembly commands in a tra-
ditional microprocessor. To validate the abstract model as well as verify TPM
protocols, a mechanism must be chosen to sequence command execution. Such
sequencing of TPM commands is a matter of using the output state from one
command as the input to the next command. The classical mechanism for doing
this involves executing a command and manually feeding its resulting state to
the next command in sequence. Using a LET form, to execute i;i’ would look
like the following:

LET (o’,s’) = (outputCom(s,i),executeCom(s,i)) IN

(outputCom(s’,i’),executeCom(s’,i’))

We choose to use an alternative approach that uses a state monad [13,18] to
model sequential execution. The state monad threads the state through sequen-
tial execution in the background. The result is a modeling and execution pattern
that closely resembles the execution pattern of TPM commands. Within PVS,
we defined a state monad that gives us the traditional bind (>>=) and sequence
(>>) operations. Examples of sequence and bind can be seen in figure 8.

3 Verification Results

To verify our requirements model we verify individual commands with respect
to their postconditions and invariants. To provide a degree of validation, we use
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those commands to model protocols and verify execution results. Some aspects of
attacks are considered, but there is no attempt to be comprehensive at this time.
We also assume the hash function is perfect, giving the property SHA1(b0) =
SHA1(b1) ⇔ b0 = b1. This and the constructive specification of the PCRS type
gives us the important property that bad hashes or bad extension ordering is
detectable in the PCR value.

3.1 Verifying Individual Commands

In order to prove the validity of our abstract TPM model, we define and verify
postconditions and invariants for each TPM command and verify that our ab-
stract specifications meet those properties. We consider only partial correctness
in the abstract model, as termination is meaningless at this level.

For each command, we must show that given any value for all parameters of a
command, running that command produces an output, state pair that satisfies
the postcondition while not violating any invariant. Note that we do not address
preconditions, as TPM output for every command and for each state must be
defined, therefore preconditions are always trivial. Returning to our example
of the TPM_MakeIdentity command, we verify the postconditions of command
execution with the theorem shown in figure 6.

make_identity_post: THEOREM

FORALL (state:(afterStartup?),CADigest:(tpmDigest?),aikParams:(tpmKey?)):

LET (a,s)=runState(TPM_MakeIdentity(CADigest,aikParams))(state) IN

LET waik:(tpmKey?)=tpmKey(state‘keyGenCnt, keyUsage(aikParams),

keyFlags(aikParams), state‘pcrs,

state‘srk‘wrappingKey, clear) IN

LET idBind=tpmIdContents(CADigest,waik,

signed(private(waik),clear)) IN

IF identity?(keyUsage(aikParams))

AND not(migratable(keyFlags(aikParams)))

THEN a=OUT_MakeIdentity(waik,idBind,TPM_SUCCESS) AND

s=state WITH [‘keyGenCnt := keyGenCnt(state)+1]

ELSE a=OUT_Error(TPM_INVALID_KEYUSAGE) AND

s=state

ENDIF;

Fig. 6. Verifying postconditions of TPM MakeIdentity

The LET form runs the command starting from any state in the predicate
subtype (afterStartup?). This predicate ensures that the state is any valid
tpmAbsState after the initialization commands have been run. The remainder
of the theorem defines conditions on proper execution of TPM_MakeIdentity
including both error and success cases.

In addition to defining and verifying postconditions of each TPM command,
we also verify that properties that we want to remain invariant over command ex-
ecution. Invariants in the model take two forms – those that are explicitly defined
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Table 1. Invariant fields from tpmAbsState

State Field (Invariant) Abstract Commands That Change Field

restore ABS_Startup, ABS_Init, ABS_SaveState

memory ABS_Startup, ABS_Init, ABS_save

srk ABS_Startup, ABS_Init, ABS_TakeOwnership

ek ABS_Startup, ABS_Init, ABS_CreateEndorsementKeyPair,
ABS_CreateRevocableEK, ABS_RevokeTrust

keyGenCtr ABS_Startup, ABS_Init, ABS_LoadKey2, ABS_CreateWrapKey
ABS_MakeIdentity, ABS_certify

keys ABS_Startup, ABS_Init, ABS_LoadKey2, ABS_ActivateIdentity
ABS_OwnerClear, ABS_ForceClear, ABS_RevokeTrust

pcrs ABS_Startup, ABS_Init, ABS_Extend
ABS_sinit, ABS_senter

locality ABS_Startup, ABS_Init

permFlags ABS_Startup, ABS_Init, ABS_DisableOwnerClear,
ABS_ForceClear, ABS_OwnerClear, ABS_TakeOwnership,
ABS_CreateEndorsementKeyPair, ABS_CreateRevocableEK,
ABS_RevokeTrust

permData ABS_Startup, ABS_Init, ABS_CreateRevocableEK

and those that are captured in the abstract state type definitions. As was previ-
ously mentioned, the only way to change a PCR value is by rebooting the plat-
form or using the TPM_Extend command. We can prove that this property holds
in our model. With the following theorem, we show that along with ABS_Extend,
the startup (after reboot) commands – ABS_Startup and ABS_Init, ABS_sinit
and ABS_senter – are the only commands that change the state field pcrs:

pcrs_unchanged: THEOREM

FORALL (s:tpmAbsState,c:tpmAbsInput) :

not(ABS_Startup?(c) OR ABS_Init?(c) OR

ABS_senter?(c) OR ABS_sinit?(c) OR

ABS_Extend?(c)) =>

pcrs(s) = pcrs(executeCom(s,c));

Note that while postconditions are associated with individual commands, invari-
ants are typically proven over all commands simultaneously using the induction
principle associated with the tpmAbsInput structure. The previous invariant
is an example of one such theorem – note the universally quantified variable
c : tpmAbsInput in the theorem signature.

The ABS_Startup and ABS_Init commands set up standard initial states
following the startup command and hardware initialization, respectively. They
reset all fields within tpmAbsState and are exceptions to most invariants. A list
of invariants and the commands that modify them are shown in Table 1.
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make_and_activate_identity: THEOREM

FORALL (state:(afterStartup?),caDigest:(tpmDigest?),aikParams:(tpmKey?)):

LET (a,s)=runState(

TPM_MakeIdentity(caDigest,aikParams)

>>= CPU_saveOutput(0)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_MakeIdentity(aik,idBind,m) : CA_certify(aik,idBind)

ELSE TPM_Noop(a)

ENDCASES)

>>= CPU_saveOutput(1)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_Certify(data,m) : TPM_ActivateIdentity(aikParams,data)

ELSE TPM_Noop(a)

ENDCASES))

(state) IN

identity?(keyUsage(aikParams)) AND not(migratable(keyFlags(aikParams)))

AND private(aikParams)=key(idKey(memory(s)(0)))

AND caDigest=idBinding(memory(s)(0)) =>

a=OUT_ActivateIdentity(sessK(data(memory(s)(1))),TPM_SUCCESS)

AND s=state WITH [‘keyGenCnt:=keyGenCnt(state)+2]

Fig. 7. Protocol used to verify AIK support

Possible invariants on the abstract state are captured in the subtype defined by
the wellFormed? predicate. Specifically, the definition of instruction execution
maps a state of type (wellFormed?) to another state of type (wellFormed?).
Conditions in the wellFormed? predicate include basic structural properties
such as the integrity of data for restoring TPM state that will automatically
be checked during type checking.

Verifying protocols involves using the state monad to sequence command ex-
ecution to perform more complex tasks. Before a quote can be generated, the
TPM internally creates an AIK. The public AIK is certified by a trusted Certifi-
cate Authority (CA) [16] . The protocol for generating and certifying this AIK
is shown in figure 7. The function runState runs the monad by calling it on the
initial state.

The use of bind (>>=) and lambda constructs allows one instruction to con-
sume the output of the previous instruction. For example, CA_Certify uses the
output of TPM_MakeIdentity after it is stored in memory for later use. The use
of CASE constructs accounts for the possibility that the previous output is not
of the correct type. We are working on mechanisms for eliminating this, thereby
cleaning up the protocol representation.

The conditions for proper execution of this sequence of commands involve
conditions for proper execution of the commands individually. For example, no-
tice the conditions that the key be non-migratable and an identity key were
previously seen when discussing the verification of the single TPM_MakeIdentity
command. The additional conditions in the antecedent are necessary to verify
the memory was stored correctly within the tpmAbsState. In the consequent, we



Verifying a Privacy CA Remote Attestation Protocol 409

ensure that the output bound to a and the state bound to s correspond with the
postconditions of TPM_ActivateIdentity, since it is the last command in the
sequence. However, in doing so, we know that in order for these postconditions
to be met, the previous commands were correctly executed.

3.2 Verifying Privacy CA Protocol

We are now ready to put all the moving parts together and verify the Privacy CA
protocol. The PVS representation of the protocol from figure 1 that generates
the output in equation 1 is shown in figure 8. To verify protocol execution, we
first ensure that for all inputs the output bound by the LET form to a is the
quote defined in equation 1 and that the state bound to s is the correct state
following execution. This tells us the protocol generates the right output.

A collection of additional theorems verify detection of replay attacks, spoofed
quotes and nonces, and bad signatures. For example, we can show that a bad
nonce indicating potential replay is detectable in the quote:

bad_nonce: THEOREM

FORALL (s:tpmAbsState,k:(tpmKey?), n1,n2:(tpmNonce?), pm:PCRMASK) :

n1/=n2 =>

runState(TPM_Quote(k,n1,pm))(s) /=

runState(TPM_Quote(k,n2,pm))(s);

Additionally, we confirm that a bad AIK results in a bad quote recognizable in
the quote returned by the protocol:

bad_signing_key: THEOREM

FORALL (s:(afterStartup?),n:(tpmNonce?),pm:PCRMASK,k0,k1:(tpmKey?)) :

LET (a0,s0)=runState(TPM_Quote(k0,n,pm))(s),

(a1,s1)=runState(TPM_Quote(k1,n,pm))(s) IN

private(k0)/=private(k1) =>

a0/=a1;

These and similarly formed theorems verify that: (i) bad nonces, AIK signatures
and PCR values are detectable; (ii) PCRs record measurement order as well as
values; and (iii) senter was called to initiate the secure session. These are not
properties of individual commands, but of the protocol run’s output.

4 Related Work

Most verification work involving the TPM examines systems that use the TPM
API [12,6], not the command set itself. Noteworthy exceptions are works by De-
laune et. al. [8,7] and Gürgens et. al. [10]. Delaune’s work examines properties
of functions performed within the TPM using ProVerif for their analysis. While
we are attempting to develop an abstract requirements model for the TPM,
they focus on verifying cryptographic properties of TPM functions. Their work
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cert_and_quote_with_prev_key : THEOREM

FORALL (state:(afterStartup?),n:(tpmNonce?),pm:PCRMASK,idKey:(tpmKey?),

caDig:(tpmDigest?)) :

LET (a,s)=runState(

TPM_MakeIdentity(caDig,idKey)

>>= CPU_saveOutput(0)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_MakeIdentity(aik,idBind,m) :

CA_certify(aik,idBind)

ELSE TPM_Noop(a)

ENDCASES)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_Certify(data,m) :

TPM_ActivateIdentity(idKey,data)

ELSE TPM_Noop(a)

ENDCASES)

>> CPU_read(0)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_MakeIdentity(aik,idBind,m) :

TPM_Quote(aik,n,pm)

ELSE TPM_Noop(a)

ENDCASES)

>>= CPU_saveOutput(2)

>> CPU_BuildQuoteFromMem(2,0))

(state) IN

identity?(keyUsage(aikParams))

AND not(migratable(keyFlags(aikParams)))

AND OUT_MakeIdentity?(memory(s)(0))

AND OUT_Quote?(memory(s)(2))

AND private(idKey)=key(idKey(memory(s)(0)))

AND caDig=idBinding(memory(s)(0)) =>

LET pcrs=getPCRs(s‘pcrs,pm) IN

a=OUT_FullQuote(tpmQuote(pcrs,n,signed(private(idKey),clear)),

tpmIdContents(caDig,idKey,signed(private(idKey),clear)),

CPU_SUCCESS);

Fig. 8. Protocol used to generate full quote for an external appraiser
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deals with verifying authentication [8] where they examine a command subset re-
sponsible for authentication. Two major differences are their inclusion of session
management commands and their decision not to explicitly model state change.
We have chosen to defer session management thus far and explicitly model state
change using the state monad described earlier. In their analysis of Microsoft
Bitlocker and the envelope protocol [7], they include an attacker while we are
looking at functional correctness. These distinctions aside, the abstractions they
choose are quite similar to ours even though we are working in higher-order
logic in contrast to their use of horn clauses. This is encouraging and suggests
that developing a common TPM requirements model may be feasible. It is also
worth mentioning here that Ryan’s unpublished work [15] is an excellent general
introduction to the TPM and its use.

Gürgens and colleagues [10] develop a TPM model using asynchronous prod-
uct automata (APA) and analyze models using the SH-Verification Tool (SHVT).
Their work shares several protocols of interest with ours – secure boot, secure
storage, remote attestation, and data migration – with only remote attestation
being described in detail. Like our work they analyze interaction with a Pri-
vacy CA, but unlike our work and similar to Delaune, Gürgens includes various
kinds of attackers in examining the protocol. Considering multiple attackers
with multiple intents is the most interesting contribution of this work. By using
a automata model, Gürgens also models state transition explicitly as we do, in
contrast with Delaune.

5 Conclusions and Future Work

We have successfully verified about 40% of the TPM command set and the CA
Protocol using TPM commands. As the TPM currently has no other formal verifi-
cation, this is an important step to ensuring the validity of the TPM and its com-
mands. Our CA Protocol steps through the role of the TPM in remote attestation
and proves that the commands returnwhat they are intended to return.Additional
theorems verify invariants, postconditions, and detectability of various attacks.All
models defined in this paper are available through the authors.

Immediate plans are continuing to specify the abstract TPM model while
starting on the concrete model and bisimulation specification. In the abstract
model, we are focusing now on data migration among TPMs and on direct anony-
mous attestation (DAA) [2] protocols while continuing to verify the full TPM
command set. We also plan to extend our work to include virtual TPMs.
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Abstract. Linear algebra is considered an essential mathematical the-
ory that has many engineering applications. While many theorem provers
support linear spaces, they only consider finite dimensional spaces. In ad-
dition, available libraries only deal with real vectors, whereas complex
vectors are extremely useful in many fields of engineering. In this paper,
we propose a new linear space formalization which covers both finite and
infinite dimensional complex vector spaces, implemented in HOL-Light.
We give the definition of a linear space and prove many properties about
its operations, e.g., addition and scalar multiplication. We also formalize
a number of related fundamental concepts such as linearity, hermitian
operation, self-adjoint, and inner product space. Using the developed
linear algebra library, we were able to implement basic definitions about
quantum mechanics and use them to verify a quantum beam splitter, an
optical device that has many applications in quantum computing.

1 Introduction

Linear algebra is a powerful mathematical tool which is widely used in different
engineering areas: digital image processing (where images can be represented
as eigenspaces [3]), bioinformatics (where DNA sequences form a vector space
[19]), and control systems, e.g., robotics (where the system state is represented
as a vector and each operational block as a matrix [2]). Consequently, there exist
many computer tools allowing to deal with linear algebra: numerical tools (e.g.,
Matlab [18]), computer algebra systems (e.g., Maple [1]) and theorem provers
(e.g., Coq [16]).

Classically, a linear space (or, equivalently vector space) is a set paired with
two operations (called addition and scalar multiplications) which have to satisfy
a particular set of axioms, e.g., closure of the set by these operations, commu-
tativity of addition, or distributivity of scalar multiplication over addition (see,
e.g., [4] for details). The concept of dimension of a vector space is extremely
important: it is a cardinal, which can thus be finite or infinite. The properties
of finite-dimension vector spaces can be very different from the ones of infinite-
dimension ones. For instance, a finite-dimension linear space always has the same
dimension as its dual space, whereas this is not the case in infinite dimension
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(actually an infinite-dimension linear space always has a smaller dimension as
its dual).

In this paper, we present a formalization, in HOL-Light, of complex-valued-
function linear spaces. We define the basic types of such linear spaces and prove
that they satisfy the axioms of linear spaces. We formalize many concepts such as
(linear) operators, inner product, hermitian adjoints, eigenvectors. For all these
concepts, we prove basic facts and provide tactics that allow to prove such basic
facts in an automated way. We also prove non-basic results such as Pythagorean
theorem, Cauchy-Schwarz inequality, or the fact that the eigenvalues of an auto-
adjoint operator are real values. Then, we demonstrate the use of our library in
practice by applying it to the formalization of basic quantummechanics concepts.
We use this to formalize a quantum beam splitter: a device with two optical
inputs and two optical outputs which routes the incoming photons to the output
ports [13]. We finally verify that this device preserves energy [14].

To the best of our knowledge, there currently exist only four significant for-
malizations of linear algebra: two in HOL-Light ([7] and [12]), one in PVS
[9], and one in Coq [11]. The three former focus essentially on n-dimensional
euclidean and complex spaces, whereas our work generalizes it to (possibly)
infinite-dimension vector spaces of complex numbers (more precisely, complex-
valued-function spaces). The work in [11] formalizes extensively a chapter of a
classical textbook but, as far as we know, it does not handle many other useful
concepts like operator algebra, linear operators, hermitian adjoints, eigenvec-
tors or inner product. In a nutshell, the essential difference between this work
and ours is that ours is oriented towards applications rather than a systematic
formalization of a textbook. Consequently some theorems of purely theoretical
interest are proved in [11] but not in ours. On the other hand, we formalized
more notions and results that are useful for engineering applications.

The paper is organized as follows. Section 2 presents our HOL-Light formaliza-
tion of linear algebra. Section 3 shows the usability of our framework by giving a
brief summary about quantum mechanics and showing how it can be formalized
using our development. It then introduces beam splitters, their formal definition,
and the verification that they preserve energy. Finally, Section 4 concludes the
paper.

2 Finite/Infinite Dimension Linear Space Formalization

In the following we present our formalization which is a collection of theories
consisting in definitions (types, operations, predicates) and theorems over these
definitions. This formalization is freely available at [15]. For practical use, most
of these theories also come with a dedicated tactic allowing to prove automati-
cally some basic but very useful facts. We believe that this makes our library a
practical tool instead of just a set of theorems that can be difficult to manipu-
late in practice. Indeed, it allows the user to focus on the difficult tasks which
involve some complex reasoning while getting rid easily of the simple tasks that
are usually a burden to the user of interactive theorem proving.
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2.1 Complex Functions Vector Space

In HOL-Light, the current formalization of linear spaces involves only finite real
vectors represented by the type realN (i.e., a tuple of N real numbers). Extend-
ing this to complex linear spaces is achieved simply by considering the type
complexN. In order to consider infinite dimension, we take the function space of
an arbitrary set to complex. This is expressed by the type cfun = A → complex,
where A is a type variable (cfun stands for complex function). This representa-
tion allows both for infinite-dimension linear spaces (by taking, e.g., num or real
for A) and finite-dimension ones (by taking for A any type with a finite exten-
sion). Note that a general formalization would be defined for any field, instead
of complex only, however this would require to parameterize the formalization
with operations on the corresponding field. This would make the formalization
much more complicated for no significant gain, since function spaces over the
complex field already cover most of the engineering applications.

We define the linear space operations over the type cfun as follows:

Definition 1.
cfun add (v1 : cfun) (v2 : cfun) : cfun = λx : A. v1 x+ v2 x

cfun smul (a : complex) v = λx : A. a ∗ v x

(smul stands for scalar multiplication). These functions just “lift” the corre-
sponding operations over complex numbers to the type cfun. Note that, by con-
vention, all operations dealing with a type t are prefixed with this type (hence
every operation dealing with the type cfun starts with the prefix cfun ). One
can observe that these definitions match the finite case since, if A is finite, then
the above operations correspond to the usual component-wise operations over
vectors.

For convenience, we also define the commonly used operations of negation,
subtraction and conjugation, as well as the null function:

Definition 2.
cfun neg (v : cfun) : cfun = cfun smul (−Cx(&1)) v
cfun sub (v1 : cfun) (v2 : cfun) : cfun = cfun add v1 (cfun neg v2)
cfun cnj (v : cfun) : cfun = λx : A. cnj (v x)
cfun zero = λx : A. Cx(&0)

where & is the HOL-Light function injecting natural numbers into reals, and Cx

injects real numbers into complex numbers.
We can then easily prove that the type cfun with the above operations is a

linear space by proving the usual axioms presented in Table 1 (we overload the
usual symbols for multiplication, addition, etc. with the above operations for
cfun; following HOL-Light notations, % denotes scalar multiplication).

Finally we define the notion of subspace as follows:

Definition 3.
is cfun subspace (spc : cfun → bool) ⇔

∀x y. x IN spc ∧ y IN spc ⇒
x+ y IN spc ∧ (∀ a. a % x IN spc) ∧ cfun zero IN spc
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Table 1. cfun add and cfun mul properties

Property HOL Theorem

Addition commutativity ∀x y : cfun. x+ y = y+ x

Addition Association ∀x y z : cfun. (x+ y) + z = x+ y+ z

Left Distributivity ∀(a : complex) (x : cfun) (y : cfun). a % (x+ y) = a % x+ a % y

Right Distributivity ∀(a b : complex) (x : cfun). (a+ b) % x = a % x+ b % x

Compatibility ∀(a b : complex) (x : cfun). a % (b % x) = (a ∗ b) % x

Identity Element ∀(x : cfun). x+ cfun zero = x

Additive Inverse ∀(x : cfun). x− x = cfun zero

Around 50 theorems have been proved about this theory. In order to make our
formalization easier to use in practice we have developed a tactic CFUN ARITH TAC

which allows to prove many simple facts about the above algebra. Indeed, the
axioms of linear spaces are all proved automatically with this tactic, as well as
many other theorems. This reduced our formalization from more than 300 lines
of code to around 50, thus increasing readability and usability.

2.2 Operators

A very important notion is the one of transformation between vector spaces.
Such a transformation is called an operator. The type of operators is thus
cop = (A → complex) → (B → complex), for which we define the following stan-
dard operations:

Definition 4.
cop add (op1 : cop) (op2 : cop) : cop = λx. op1 x+ op2 x

cop smul (a : complex) (op : cop) : cop = λx. a % op x

As well as negation, subtraction, conjugate and the null operator which are de-
fined as above (note that the definitions for operators and for complex functions
only differ by their type, so that higher-order logic and type polymorphism ac-
tually allows us to define general combinators which factorize these definitions;
we expanded the use of these combinators for the sake of readability). Moreover,
we proved that the set of operators with these operations satisfies all the axioms
of a linear space.

The above is very similar to the linear space presented in the previous section,
but an essential aspect of operators is the fact that we can also multiply them.
This multiplication is simply the composition:

Definition 5.
cop mul (op1 : (A → complex) → (B → complex))

(op2 : (C → complex) → (A → complex)) = λx. op1 (op2 x)

Note that the types of op1 and op2 do not need to be the same. Following the
conventions applied in HOL-Light for matrix multiplication, this operation is
denoted with the infix ∗∗. Indeed, one can recognize that, when the operator is
linear (see next section), then operators amount to matrices in finite dimension.
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This multiplication has unusual properties, starting with the fact that it is not
commutative. It follows that many results that are intuitively true in other con-
texts are actually false here. For instance, multiplication is only right-distributive
over addition, i.e., the following holds:

Theorem 1. ∀op1 op2 op3. (op1 + op2) ∗ ∗ op3 = op1 ∗ ∗ op3 + op2 ∗ ∗ op3

But the following does not:

∀op1 op2 op3. op3 ∗ ∗ (op1 + op2) = op3 ∗ ∗ op1 + op3 ∗ ∗ op2

Still, this multiplication has a lot of useful properties that we have proved in our
library. The neutral element (both left and right) of this multiplication is the
identity function. For convenience, exponentiation has also been defined (note
that, here, the operator should have the same domain and range). In total,
around 60 theorems have been proved, most of them automatically using our
tactic COP ARITH TAC.

2.3 Linear Operators

Linear operators are of particular interest in our work. They correspond, in the
finite-dimension case, to matrices. This notion is easily formalized as follows:

Definition 6.
is linear cop (op : cop) ⇔

∀x y. op (x+ y) = op x+ op y ∧ ∀a. op (a % x) = a % (op x)

Linearity is a powerful property which allows to prove some new properties, in
particular about multiplication. For instance, in the case of linear operators,
left-distributivity now holds:

Theorem 2. ∀op1 op2 op3. is linear cop op3 ⇒
op3 ∗ ∗ (op1 + op2) = op3 ∗ ∗ op1 + op3 ∗ ∗ op2

So does the associativity of scalar multiplication on the right of a multiplication:

Theorem 3. ∀z op1 op2. is linear cop op1 ⇒
op1 ∗ ∗ (z % op2) = z % (op1 ∗ ∗ op2)

Around 10 additional theorems were proved that deal with the particular prop-
erties of linear operators.

In practice, one often has to prove that a given operator is linear. To do
this, many congruence results are very useful and have indeed to be proved. We
gathered the simplest ones in the following theorem:

Theorem 4.
∀op1 op2. is linear cop op1 ∧ is linear cop op2 ⇒

is linear cop (op1 + op2) ∧ is linear cop (op1 ∗ op2) ∧
is linear cop (op2 − op1) ∧ ∀a. is linear cop (a % op1)
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The base cases for cop zero and the identity function have also been proved. To-
gether, these theorems allow to prove the most frequently seen situations dealing
with linearity. Since the involved reasoning is often very similar, we have again
developed a tactic to deal with such situations automatically: LINEARITY TAC.

Finally, the notion of eigenvalues and eigenvectors are very important both in
theory and in many applications:

Definition 7.
is eigen pair (op : cop) (f, v) ⇔

is linear cop op ⇒ op f = v % f ∧ f = zerofun

Here, f is called the eigenfunction, and v the eigenvalue. We then proved some
useful properties, in particular, the set of all the eigenvectors of a given eigenvalue
constitutes a linear space:

Theorem 5. ∀op. is linear cop op ⇒
∀z. is cfun subspace ({ f | is eigen pair op (f, z) } ∪ {cfun zero})

2.4 Inner Product

The inner product is very useful both in theory and in practice, in particular in
many engineering applications (e.g., digital communication or quantum optics).
Since the type cfun depends on a type variable A, we cannot provide an imple-
mentation of the inner product which works with every possible instantiation
of A. For instance, if A is substituted with num then we can provide a definition
based on some infinite sum, but if it is substituted with real then a suitable
notion of integration should be defined. This prevents a general definition of
inner product. We thus introduce a predicate asserting whether a given func-
tion indeed satisfies the axioms of an inner product and then parameterize our
formalization with this predicate:

Definition 8.
is inprod (inprod : cfun → cfun → complex)⇔

∀ x y z.
cnj (inprod y x) = inprod x y ∧
inprod (x+ y) z = inprod x z+ inprod y z ∧
real (inprod x x) ∧&0 ≤ real of complex (inprod x x) ∧
(inprod x x = Cx(&0) ⇔ x = cfun zero) ∧
∀a. inprod x (a % y) = a ∗ (inprod x y)

where real x states that the complex value x has no imaginary part, and
real of complex is a function casting such a complex number into a real one.

Around 20 theorems of the inner product have been proved in our formal-
ization, e.g., distributivity with respect to addition, associativity with respect
to scalar multiplication (modulo the conjugate when the scalar multiplication
occurs on the left), etc. A particularly interesting property is the injectivity of
the inner product seen as a curried function:
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Theorem 6. ∀inprod. is inprod inprod ⇒
∀x y. inprod x = inprod y ⇔ x = y

This is a powerful property which allows, in particular, to prove the uniqueness
of a hermitian adjoint (see next section).

From the inner product, we can define orthogonality as follows:

Definition 9. are orthogonal inprod u v ⇔
is inprod inprod ⇒ inprod u v = Cx(&0)

We proved some basic properties about orthogonality like the fact that it is
symmetric or that scalar multiplication preserves orthogonality. However, we can
prove some more difficult and interesting theorems like, e.g., the Pythagorean
theorem:

Theorem 7 (Pythagorean).
∀ inprod u v. is inprod inprod∧ are orthogonal inprod u v ⇒

inprod (u+ v) (u + v) = inprod u u+ inprod v v

or the existence of an orthogonal decomposition of any vector with respect to
another one:

Theorem 8 (Decomposition).
∀ inprod u v. is inprod inprod ⇒

let proj v = inprod v u

inprod v v
in

let orthogonal component = u− proj v % v in

u = proj v % v+ orthogonal component ∧
are orthogonal inprod v orthogonal component

These two theorems play a crucial role in particular when proving the Cauchy-
Schwarz Inequality, which has itself essential applications in the error analysis
of many engineering systems:

Theorem 9 (Cauchy-Schwarz Inequality).
∀ x y inprod. is inprod inprod ⇒

norm (inprod x y) pow 2 ≤
real of complex (inprod x x) ∗ real of complex (inprod y y)

where norm denotes the norm of a complex number. Note that, even without
focusing on the infinite-dimension aspect, this theorem is still a not-so-trivial
adaptation of the existing results in HOL-Light, since it extends it to complex
linear spaces.

2.5 Hermitian Adjoint

A very useful notion of linear operators is the one of hermitian adjoint. It is very
important theoretically and has many applications, e.g., in quantum mechanics.
This operation generalizes the one of conjugate transpose in the finite-dimension
case and we formalize it as follows:
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Definition 10.
is hermitian op1 op2 inprod ⇔

is inprod inprod ⇒
is linear cop op1 ∧ is linear cop op2 ∧
∀ x y. inprod x (op1 y) = inprod (op2 x) y

The relation is hermitian op1 op2 holds if and only if op2 is the hermitian
adjoint of op1. We use a relation instead of a function because the existence
of a hermitian operator cannot be proved in a general way: it depends a lot
on the underlying space. In particular, this highlights a big difference between
the finite and the infinite dimension case: in finite dimension, one can just take
the conjugate transpose of the underlying matrix to obtain the hermitian. But
in infinite dimension, this is not as simple as that: there is indeed a notion of
transpose operator, but it yields an operator in the dual space of the original
vector space. If there is an isomorphism between this dual space and the original
vector space, then one can obtain a satisfying definition of hermitian, however,
in infinite dimension, there is not always such an isomorphism. However, in any
case, if there is a hermitian operator, then it is unique, as proved by the following
theorem:

Theorem 10.
∀op1 op2 op3 inprod.

is hermitian op1 op2 inprod∧ is hermitian op1 op3 inprod

⇒ op2 = op3

We also proved some other properties of the hermitian, such as for instance the
symmetry of its relation:

Theorem 11.
∀inprod op1 op2.

is hermitian op1 op2 inprod⇔ is hermitian op2 op1 inprod

Seeing the hermitian as a function, this proves the usual property that taking
the hermitian of the hermitian is the identity.

Finally, we prove some congruence theorems which allow to prove, in many
cases, that a given operator is the hermitian of another:

Theorem 12.
∀inprod op1 op2 op3 op4 a.

is hermitian op1 op2 inprod∧ is hermitian op3 op4 inprod ⇒
is hermitian (op1 + op3) (op2 + op4) inprod ∧
is hermitian (op1 − op3) (op2 − op4) inprod ∧
is hermitian (op1 ∗ op3) (op4 ∗ op2) inprod ∧
is hermitian (a % op1) (cnj a % op2) inprod

Finally, we also provide a more “computational” version of these congruence
theorems:
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Theorem 13.
∀a b inprod op1 op2 op3 op4 op5.

is hermitian op1 op2 inprod ∧ is hermitian op3 op4 inprod ∧
is hermitian (a % op1 + b % op3) op5 inprod ⇒

op5 = cnj a % op2 + cnj b % op4

In total, around 10 theorems were proved about hermitian operators.

2.6 Self-adjoint Operators

We conclude the overview of our library by presenting the notion of self-adjoint
operator, which simply denotes operators which are their own hermitian adjoint:

Definition 11. is self adjoint op inprod⇔ is hermitian op op inprod

Once again, we have proved many congruence theorems allowing to deal with
most self-adjoint operators that are encountered in proofs. Most of them are
similar to the ones for the hermitians, only the case of scalar multiplication
should be handled with a little bit of care, since we must require that the scalar
is a real number:

Theorem 14.
∀ inprod op a. is inprod inprod ∧ real a

⇒ is self adjoint(a % op) inprod

Some other results are a less obvious and very useful, for instance:

Theorem 15.
∀ inprod op x y.

is inprod inprod∧ is linear op op ∧
inprod (op x) y = −(inprod x (op y)))

⇒ is self adjoint (ii % op) inprod

Proving that a given operator is self-adjoint using all these theorems is such a
common task that we have developed a dedicated tactic for it: SELF ADJOINT TAC

[15].
We finally give two examples of non-trivial theorems which involve many of

the concepts presented until now. The first one states that any eigenvalue of a
self-adjoint operator is real:

Theorem 16.
∀ inprod op. is inprod inprod∧ is self adjoint op inprod⇒

∀z. is eigen value op z ⇒ real z

where is eigen value z is true if and only if there exists an eigenfunction such
that z is its corresponding eigenvalue. Another result states that the eigenfunc-
tions of a self-adjoint operator are orthogonal if the corresponding eigenvalues
are different:
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Theorem 17.
∀ inprod op f1 f2 z1 z2.

is inprod inprod ∧ is self adjoint op inprod ∧ z1 = z2 ∧
is eigen pair op (f1, z1) ∧ is eigen pair op (f2, z2)

⇒ are orthogonal inprod f1 f2

This concludes the presentation of our current formalization. In order to show
its usefulness, we now give a sophisticated application by formalizing (basics of)
Quantum Mechanics and applying this to the verification of a device called a
beam splitter.

3 Application to Quantum Theory

In this section we briefly introduce quantum mechanics, how it can be mathemat-
ically represented using inner product spaces, and how we propose to formalize
it using the results of the previous section.

3.1 Quantum Mechanics

It is assumed that the description of any physical system starts with a state.
From this state, one can obtain the coordinates of the system: e.g., the position
of a moving particle, or the temperature of a given system. Coordinates are the
atomic pieces of information of the system. Being given the state of a system,
one can also derive the values of other quantities called observables : e.g., the
energy of the system. Observables are similar to coordinates except that they
are not atomic, i.e., they can be derived from coordinates. In classical physics,
the measurement of a system state (and thus observables) and its evolution
are deterministic, whereas they are only probabilistic in quantum physics [6].
Consequently, whereas the state of the system is a set of real numbers in classical
physics, it is a probability distribution in quantum mechanics. In both cases,
coordinates and observables are functions which take the system state as input.
However, in classical physics, the output of this function is a real number, but
it is a probability distribution in quantum mechanics.

For our concern, the interesting aspect of quantum mechanics is that the
involved probability distributions form an infinite-dimension (complex) inner
product space: The state of a quantum system can be mathematically repre-
sented as a complex-valued function and coordinates (and observables) can be
represented by (self-adjoint) operators. In practice, one is very often interested
in the expected value of such an observable: This can be represented by the norm
canonically associated with the inner product.

We thus have all the tools required to formalize these concepts. Note that
we formalize only some basics of quantum mechanics. However, those defini-
tions are sufficient to define formally the quantum system presented in the
next section and to do simple verification tasks on it. We start by defining
the type qstate as an abbreviation for cfun (note that this type contains a
type variable: this variable can be instantiated differently depending on the
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considered system). The space of the possible values for states is defined as
qspace = (qstate → bool)× (cfun → cfun → complex), where the first
element of the pair is the considered set of possible states, and the second one is
an inner product to be associated with this set. In order to ensure that a given
value of type qspace indeed represents a valid quantum space, we define the
following predicate:

Definition 12.
is qspace ((vs, inprod) : qspace) ⇔

is cfun subspace vs ∧ is inprod inprod

Being given a space, we can define coordinates and observables: As mentioned
above, these are mathematically represented by self-adjoint operators. They thus
have the type qstate → qstate. Being given a quantum state space, we have
to ensure that an observable (or coordinate) is self-adjoint and that the result
of its application remains in the state space. This is achieved by the following
predicate:

Definition 13.
is observable (op : qstate→ qstate) ((vs, inprod) : qspace) ⇔

is qspace (vs, inprod)∧ is self adjoint op inprod ∧
∀ x. x ∈ vs ⇒ op x ∈ vs

Now, verifying a device requires that we formalize a model of it. Mathemat-
ically, a device is just a quantum system, we thus formalize this notion. A
system is built of a state space, coordinates, and a function describing the
evolution of the state. First of all, we should notice that coordinates depend
on time, which we consider here to be a real number, so their type is actu-
ally coord = time → (qstate → qstate) (for readability, time is defined as an
abbreviation of real). The evolution of the system is actually fully expressed
by the expression of its total energy (called the “Hamiltonian”). Since the to-
tal energy is an observable, which also depends on time, it also has the type
time → qstate → qstate. So, finally, the type of quantum systems is defined
as:

qsys = qspace× coord list× (time → qstate → qstate)

To ensure that we have a valid system, we define again a predicate (qs stands
for quantum system, cs for coordinates, and H for H amiltonian):

Definition 14.
is qsys (qs, cs, H) ⇔

is qspace qs ∧ ∀t : time. is observable (H t) qs ∧
ALL (λc. is observable (c t) qs) cs

where ALL P l is true if and only if every element of l satisfies the predicate P.
Using all these notions and our library, we could prove the famous uncertainty

principle:
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Theorem 18 (Uncertainty Principle).
∀obs1 obs2 ((spc, inprod) : qspace) t qst.

is observable obs1 (spc, inprod)∧ is observable obs2 (spc, inprod) ∧
qst ∈ spc ∧ qst = cfun zero ⇒(

expectation inprod qst (commutator op1 op2)
Cx(&2)∗ii

)
pow 2

≤ real of complex (variance inprod qst op1)
∗ real of complex (variance inprod qst op2)

where expectation inprod qst op returns the expected value of an operator
op seen as a statistical measurement in a given state qst. This is classically
defined in quantum mechanics using the inner product as inprod qst (op qst).
Similarly, the variance can be computed using the inner product, which yields
the function variance. Finally commutator op1 op2 = op1 ∗ ∗op2 − op2 ∗ ∗op1.
We refer the reader to [6] for detailed explanations about the uncertainty prin-
ciple. Note that the proof of this result makes an essential use of the Cauchy-
Schwarz inequality (Theorem 9) and of our automation tactics LINEARITY TAC

and SELF ADJOINT TAC.
This concludes our formalization of quantum mechanics basics. Note that this

could not have been done with the current library of linear algebra in HOL Light
[8], because of the lack of (complex-valued) function space formalization. Neither
could it be developed in Coq using [11] because it lacks many of the notions we
used here: operators, inner product, self-adjoint.

In the next section, we present the formalization of a quantum single-mode
electromagnetic field, i.e., the inputs and outputs of a beam splitter.

3.2 Single-Mode Electromagnetic Field

A single-mode field is an electromagnetic field with a single resonance frequency.
This is the simplest model of a light beam. Such a field constitutes a quantum
system according to the definition that we have given above. We should thus
specify its coordinates and Hamiltonian (we do not specify the state space in
order to keep our formalization general). The coordinates of an electromagnetic
field consists in its amount of charges q(t) and the intensity of its flux p(t).
In quantum mechanics, operators are usually written with a circumflex, so the
quantum versions of these coordinates are written p̂(t) and q̂(t). The Hamiltonian
is then defined as:

Ĥ(t) =
ω2

2
q̂(t)2 +

1

2
p̂(t)2

where ω is the resonance frequency. In order to keep explicit the resonance
frequency, we define a type dedicated to single-mode fields by sm = qsys× real

(sm stands for s ingle-mode) where the first component is the system itself and
the second one is the frequency. Once again we collect in a predicate all the
conditions required for a value of type sm to represent a valid single-mode field:
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Definition 15.
is sm ((qs, cs, H), ω : sm) ⇔

is qsys (qs, cs, H) ∧ 0 < omega ∧ LENGTH cords = 2 ∧
let p = EL 0 cs and q = EL 1 cs in

∀t : time. H t = Cx(ω
2

2
) % ((q t) pow 2) + Cx( 1

2
) % ((p t) pow 2)

where EL i l is the ith element of a list l. Here, we assert that the system
should indeed be a valid system, that the frequency should be positive and there
should be two coordinates. We fix the first coordinate to be the charge and the
second one to be the intensity.

Using our library, we can already prove a couple of useful theorems about
single mode fields. For instance, we can prove that the Hamiltonian is linear:

Theorem 19.
∀qs cs H ω t. is sm ((qs, cs, H), ω) ⇒ is linear cop (H t)

And even that it is self-adjoint:

Theorem 20.
∀qs cs H ω t. is sm ((qs, cs, H), ω) ⇒ is self adjoint (H t)

Both theorems were proved automatically by using our tactics LINEARITY TAC

and SELF ADJOINT TAC.

3.3 Beam Splitter

A beam splitter is a generic name for an optical device which takes two input
light beams and outputs two other beams. It can route the input beams towards
the output in different ways, depending on the type of beam splitter which is
considered. For instance, as its name suggests, a typical behavior is to “split” a
single input beam, i.e., one can have a configuration where, if there is only one
incident beam, then half of the photons are routed towards one output beam,
and the other half is routed towards the other one. However other beam splitters
can have other behaviors, e.g., beam phase shifting [5]. Note that beam splitters
play an important role in some implementations of quantum computers [10], e.g.,
in [17]. In this section, we provide a general specification for a beam splitter and
prove that any device satisfying this specification preserves the energy from the
input to the output beams.

Again, we first define a dedicated type for beam splitters. The behavior of a
beam splitter, which determines the route of photons, can be modeled by four
parameters, given as complex numbers. This yields the following definition:

bmsp = complex× complex× complex× complex× sm× sm× sm× sm

The four values of type sm represent the two input and two output single-mode
fields, respectively. We then define a predicate ensuring that a value of type bmsp
indeed represents a real beam splitter.
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Definition 16.
is bmsp (b1, b2, b3, b4, in port1, in port2, out port1, out port2) ⇔

is sm in port1 ∧ is sm in port2 ∧ is sm out port1 ∧ is sm out port2
∧b1 ∗ cnj b1 + b2 ∗ cnj b2 = Cx (&1) ∧ b3 ∗ cnj b3 + b4 ∗ cnj b4 = Cx (&1)
∧b1 ∗ cnj b3 + b2 ∗ cnj b4 = Cx (&0) ∧ cnj b1 ∗ b3 + cnj b2 ∗ b4 = Cx (&0)
∧ ∀ t : time.

pout1 t = b1 % pin1 t+ b2 % pin2 t ∧ qout1 t = b1 % qin1 t+ b2 % qin2 t

∧pout2 t = b3 % pin1 t+ b4 % pin2 t ∧ qout2 t = b3 % qin1 t+ b4 % qin2 t

where pinx and qinx denote the charge and flux intensity in the xth input beam,
respectively, and the same holds with the out index for the output beams. The
first line ensures that all the involved light beams are indeed single-mode fields.
The four following lines impose general constraints on the configuration of the
device. Finally, the last four lines provide the relation that holds between the
light beams, according to the parameters.

Finally, using our formalization of linear algebra and quantum mechanics, we
could prove that any beam splitter is an energy lossless device, i.e., the total
energy of input ports is equal to the total energy of output ports. Formally:

Theorem 21.
∀ bs. is bmsp bs ⇒ Hin1 + Hin2 = Hout1 + Hout2

where Hb is the Hamiltonian of the light beam b. This result was proved in around
200 lines of HOL-Light proof script, which is quite small for an application
requiring so many layers of formalization. P

4 Conclusion

Linear algebra is extremely useful in many engineering disciplines. However the
developments currently available in theorem provers do not allow to tackle many
of these fields due to the lack of support for the required concepts (function
spaces, inner products, self-adjoints, etc.). In particular, in HOL-Light, only eu-
clidean spaces are formalized thus preventing the application to many areas. In
this paper, we presented a formalization of linear algebra which targets engineer-
ing applications rather than a purely theoretical development. Notably, we tried
to emphasize the practical usability by providing tactics which allow to solve
many small but commonly-encountered problems. Using this formalization, we
were able to define some basic notions of quantum mechanics and to apply it
to the verification that any beam splitter is an energy lossless device. In our
opinion, this demonstrates that our library is general and practical enough to
tackle complex problems that make use of linear algebra.

Furthermore, this work yields a lot of potential future research. We plan first
to develop the linear algebra library even more by adding other useful notions
of linear algebra: e.g., dual spaces or decomposition according to a basis. We
also consider providing implementations of some specific instantiations of the
theory presented here, depending on the value of the variable A in the type
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cfun. This would yield the development of some specific theories that could
be especially useful to particular areas like, e.g., electromagnetic. Finally, our
successful experiments with the formalization of quantum mechanics encourages
to go further in this direction, by developing a theorem-proving framework that
would allow easy but safe verification of quantum optics devices. This would
have applications both in the verification of optics-related technologies, and in
quantum computer engineering.
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Formal Verification

of a Parameterized Data Aggregation Protocol

Sergio Feo-Arenis and Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Abstract. We report on our experiences on the successful verification
of a parameterized wireless fault-tolerant data aggregation protocol. We
outline our verification method that involves automatic verification of
a model of the node processing algorithm under system topology
constraints. The presented work forms the basis for a generalization to
verification rules for aggregation protocols that integrate automatic ver-
ification into an inductive framework.

1 Introduction

Data aggregation protocols are used in distributed systems to collect sensor data
gathered by nodes of the system at dedicated sink nodes [5]. In case of unreliable
wireless communication, a common correctness property of a data aggregation
protocol is that, whenever there is a functioning communication path from a sen-
sor node to its sink, then the data must be aggregated at the sink. One may, e.g.,
exploit the redundancy of radio communication, where more than one node may
hear the transmissions of others, to provide multiple communication paths from
a sensor to its sink. So-called duplicate sensitive data aggregation protocols have
an additional correctness property which usually states that a sensor value should
not be aggregated more than once at a sink node.

We consider the case of parameterized data aggregation protocols with a single
sink and an arbitrary number of homogeneous nodes in a fixed (network) topol-
ogy. For this case, we want to determine whether the correctness properties stated
above are true of every configuration of the system by a semi-automatic, com-
positional approach. In general, this Parameterized Model Checking Problem is
undecidable [1].

In this work, we report on the successful verification of the ridesharing proto-
col [6], that was proposed for use in DARPA’s satellite cluster system F6 [4]. We
applied a compositional approach that involves reasoning performed manually to
derive verification conditions on the program running in the nodes. We were able
to check those verification conditions fully automatically. We intend to general-
ize our experience from the ridesharing protocol into a general proof rule for a
well-defined class of data aggregation systems which in particular comprises the
ridesharing protocol.

Initially, we present an axiomatization of the system topology, the aggregation
paths, and communication failures. Based on the axiomatization, we formalize
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Fig. 1. Ridesharing Protocol

the correctness property of the protocol. We outline a compositional method to
prove correctness that integrates the automatic verification of the program run-
ning in the nodes. We report on the automatic verification of a Boogie [2] model
that integrates the axiomatization and the program, and on how we validated our
axiomatization using an interactive theorem prover.

2 The Ridesharing Topology

The ridesharing protocol [6] was proposed for use in DARPA’s satellite cluster sys-
tem F6 [4] where satellites communicate over unreliable radio links. It is supposed
to aggregate data from nodes that are logically organized in a tree structure by a
main parent relation (cf. Figure 1(a)). Each node has a unique main parent and,
in order to provide redundancy, a set of backup parents on the same depth level
(called track) as the main parent. Nodes on the same track may have a side links
as target of requests for correction if a message from a child was lost. Communica-
tion within one track is assumed to be reliable. Data is aggregated cyclically using
schedule to avoid message collisions. Time is split into frames which is further
partitioned into slots (cf. Figure 1(b)). Each node is assigned exactly one slot to
send data.1 Furthermore, nodes can be assumed to be memoryless wrt. frames,
that is, they are initialized at the beginning of each frame. Therefore it is w.l.o.g.
sufficient to consider a single frame in the correctness proof.

Ridesharing Network. Formally, a ridesharing network is a labeled graph
(N,E, V ) comprising a finite set of nodes N including the designated node n0,
called the sink, and a set of edges E ⊆ N × N which is the union of the three
pairwise relations Em, Eb, and Es that represent the main and backup parents,
and the side links, respectively. In a network, the main parent relation induces a
tree with the sink as root, i.e. (N,Em) is a tree, and the side link relation Es is
acyclic. The labeling function V : N → D assigns each node the sensor reading
in the considered frame, i.e. a value from the domain of the possible sensor values
D. Additionally, there is an aggregation function (· ⊕ ·) such that (D,⊕) form a
monoid. When no sensor data is available, the neutral element of ⊕ is assumed.

1 For simplicity, we assume that the side link relation is acyclic. In general, the
ridesharing protocol [6] admits that nodes are assigned multiple slots under certain
side conditions.
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Node n′ is calledmain parent (backup parent, side link) of n, denoted by−→Em

(−→Eb
, −→Es) if and only if (n, n′) ∈ Em (Eb, Es). We use Ep = Em ∪ Eb to

denote the parent relation and say that nodes n and n′ are directly connected, de-
noted by n −→Ep n′, if and only if n′ is either main or backup parent of n. We
use, e.g., −→∗

Ep
to denote the reflexive, transitive closure of −→Ep . The track of a

node n, denoted by track(n), is 0 if n is the sink, and track(n′)+ 1 if there exists a
parent node n′ of n. We denote the set of all nodes at track k withNk. Side parents
of a node have to be of the same track as the node itself.

Unreliable Communication and Schedule. We model unreliable communi-
cation between parents and children by the communication function f : E → B.
For an edge e = (n, n′) ∈ E, we assume f(e) = 1 if and only if the communication
was successful between nodes n and n′. We use n �=⇒ n′ to denote that there
was successful communication between connected nodes, i.e. that n −→Ep n

′ and
f(n, n′) = 1. Its reflexive transitive closure n �=⇒∗ n′ denotes that there is a
working path between nodes n and n′. Note that working paths are in general not
unique.

For the schedule we assume that the slots are assigned guaranteeing that for all
nodesn, the input nodes according to the topology relations are scheduled beforen.

Aggregation Paths. Two further concepts are useful to clarify the conditions
that define a successful aggregation and under which correctnessmust be satisfied.

First, a sequence of successful transmissions n0 �=⇒ n1 �=⇒ . . . �=⇒ nk is called
aggregation path from n0 to nk if and only if ni+1 is the first parent of ni that
successfully receives from ni, i.e., if

∀0 ≤ i < k ∀n ∈ Ni+1 •
(
ni �=⇒ n ∧ n −→∗

Es
ni+1

)
=⇒ n = ni+1

We say n0 has an aggregation path to nk, denoted by n0 	 nk, if there exists an
aggregation path from n0 to nk or if n0 = nk. Note that aggregation paths are
unique in a ridesharing network for a given communication function.

Second, we introduce the term responsible node. A parent n′ is responsible for
aggregating the data of node n (and its children) if all preceding parents (by the
side link relation) of n did not receive the transmission from n.

Correctness. Formally, a ridesharing protocol P can be described as a function
that maps a ridesharing network with nodes N and edges E and a communi-
cation function f to a set of the nodes for which values were aggregated. I.e.,
P : (E → B) → BN . A ridesharing protocol is correct if and only if “If there
is a working aggregation path between a node n and the sink then n’s data is
aggregated exactly once by the sink.” I.e.

P is correct :⇐⇒ ∀n ∈ N • n 	 n0 =⇒ P(f)[n] = 1 (correctness)

where n0 is the sink node.
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Algorithm 1. Aggregation algorithm run by network nodes.
input : id, PC , BC , SP , v, rcv
A := 0; P := 0̄; E := 0̄;
if v �= NULL then { A := A ⊕ v; P [id ] := 1 } ; // Aggregate local sensor reading
E := rcv[SP ];
foreach c ∈ PC ∪ BC do

if rcv [c] �= undefined then
if c ∈ PC ∨ (c ∈ BC ∧E[c] = 1) then // Aggregate received values

(Ac, Pc) := rcv[c]; A := A ⊕ Ac; P := P | Pc; E[c] := 0;
end

else if c ∈ PC then // Request error correction
E[c] := 1;

end

end
return (A,P,E);

3 A Ridesharing Protocol Algorithm

We seek an algorithm which, given a topology, realizes a correct protocol if exe-
cuted on every node according to the schedule.We recall the aggregationalgorithm
as proposed in [6] (cf. Algorithm 1).

We assume that each node in the given topology has a unique identity. In order
to abstract from communication and data gathering functionality, we assume that
the algorithm is executed once per frame on each node. Input id gives the identity
of the node and PC (BC , SP) the finite set of primary children (backup children,
side parents) of the node, i.e. the inverse of Em (Eb, Es). Input v gives the cur-
rent sensor reading and rcv the messages received by id in the current frame. The
algorithm computes the message to be sent by id , given v and rcv .

The set of network messages M consists of triples (A,P,E) with the accumu-
lated sensor value A and two control boolean vectors of length |N |. The participa-
tion vector P indicates for each node whether its value is included in A, the error
vector E indicates at each position, whether correction is required for the node at
that position.

Aggregation starts by initializingAwith the neutral element of the aggregation
function and P andE with all zeroes. If node id has sensor data, it is aggregated to
A and P updated accordingly. We use rcv [SP ] to denote the bit-wise disjunction
of the error vectors received from id ’s side parents. Then,E comprises all requests
for corrections. In the loop, the received messages from id ’s children are processed
as follows: if id received the message from c and if c is a primary child or a backup
child with a pending request for correction in E then c’s data is aggregated, i.e. A
is updated and the P vector becomes the disjunction of the incoming P vectors. If
id did not receive the message from primary child c, it flags a request for correction
leaving A and P unchanged.

Executing Algorithm 1 once for each node in a network according to the sched-
ule yields a history. A history h is a sequence of transmissions τ1, τ2, . . . , τ|N | where
τj = (Aj , Ej , Pj) is the message transmitted by the node scheduled at slot j. Given
the communication function f , that indicates which node receivedwhich transmis-
sion, there is the following relation between history h and the partial functions
rcvn[ · ] : N $→ M : For each two connected nodes n −→Ep n′, rcvn[n

′] = τi if n
′
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is scheduled at slot i and f(n, n′). rcvn[n
′] is undefined otherwise. That is, rcv id

is passed as parameter rcv to the execution of Algorithm 1 on node id . The exe-
cution of Algorithm 1 once for each node in a network is a ridesharing protocol P
as it maps a communication function f to the transmission of the sink, which is
scheduled last, i.e., P(f) := P|N |.

4 Compositional Verification

In the formalizations presented in Sections 2 and 3, we have a formal model of all fi-
nite instances of Ridesharing, of which there are unboundedlymany.We canmodel
ridesharing networks for all numbers n of nodes (inducing length n for the vectors
P and E) and all tree topologies (including all sizes up to n of PC and BC ), each
with 2|Ep| failure scenarios. In general, correctness is, for this setting, undecidable.

Nonetheless, we have successfully verified the correctness of Algorithm 1 with
respect to the correctness property of Section 2. Our approach focuses the veri-
fication efforts on any single node, due to the observation that the aggregation
algorithm works symmetrically with respect to the id parameter. In principle,
we verify whether, when a node in any given track receives consistent data from
the subjacent track and its side parent, the track to which the node belongs also
transmits consistent data.

In general, having correct data for an arbitrary node at its scheduled slot is a
property of the complete earlier history, which again has an unbounded length.
However, in this case, we can observe that for every node, only the exact structure
of the network at the track immediately below and the own track is relevant. This
observation allows us to produce an abstraction that partitions the history – and
thus the input data for the node – in a finite manner according to whether the
received data contains information for nodes on tracks below, on the same track,
or on tracks above the node in question. We thus observed, that it is sufficient
to assume that the nodes on a track aggregate data exclusively from the tracks
below them, that no data is aggregated in a duplicate manner, and that the side
parents do not transmit spurious correction messages. Formally, the data trans-
mitted by track Nk = {n1, . . . , n�} in history h is the subsequence τ1, τ2, . . . , τ�
where τi = (Ai, Ei, Pi) is the transmission of node ni, 1 ≤ i ≤ �. We call the data
of track Nk consistent if and only if

∀ni = nj ∈ Nk ∀n ∈ N •
(
¬(Pi[n] ∧ Pj [n])

∧ (Pi[n] =⇒ n = ni ∨ track(n) > k) ∧ (Ei[n] =⇒ track(n) = k + 1)
) (1)

This property allows us to give a specification for the aggregation algorithm, in
the form of pre- and postconditions. The precondition is that the data in the rcv
buffers of a node is consistent, in the sense of (1) and with respect to a commu-
nication function f . The algorithm should guarantee the postcondition that, for
every possible role of a node, the bits in each position of the output vectors are
set correctly with respect to the input data. That is, that no spurious aggregation
occurred for nodes on the same track or tracks above, and that correction signals
were correctly processed and generated such that no duplicate aggregation will
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occur. Satisfying that condition allows us to conclude that the data output by the
track of the node being verified is consistent.

We utilized Boogie [2] to perform that verification task automatically. We used
the axiomatization from Section 2 and added our pre- and postconditions. Due to
the loop in Algorithm 1, an invariant was necessary. Framing conditions for the
loop variables and the fact that consistency is preserved across iterations of the
loop were sufficient.

We ensured the consistency of our model by checking that the axioms that
describe the topology and the environment are consistent. We utilized a combina-
tion of smoke testing2 and debugging by examination of counterexamples using
BVD [7]. Boogie required approximately 1 second and 13MB of RAM to verify a
total of 35 partial verification conditions.

To increase our confidence on the successful Boogie verification results, we
checkedwhether our axiomatizationwas consistent, i.e., whether our axioms imply
non-empty topologies and thus whether the verification conditions are not triv-
ially satisfied. For that purpose, we used HOL-Boogie [3] to translate the model
together with its verification conditions into Isabelle [9] and reconstructed the
proof. 3. Only one manual lemma was necessary due to technicalities in the trans-
lation to Isabelle. The remaining proof was reconstructed automatically.

Having verified that tracks produce consistent output is sufficient to reason in-
ductively and establish that for each topology of depth d, the messages of track 0
will be a correct aggregation of the nodes in the tracks below with respect to the
communication function f . In our particular case, track 0 contains only the sink
node.

Our induction proof is a double induction. Vertically, we consider ridesharing
topologies of depth d and horizontally the width of tracks. The base case d = 0 is
a track consisting of only leaf nodes. In the induction step, we inductively prove
that for a depth d + 1 the chains of side links inside the track, starting at the
leftmost node, preserve our consistency property where we can assume consistent
data from track d.

5 Conclusions and Future Work

Applications of sensor networks for critical tasks commonly require robust data
aggregation protocols. They represent an interesting instance of parameterized
systems.

We presented the successful verification of the ridesharing protocol, a wireless
aggregation protocol that employs redundant aggregation paths. The verification
puts a “spotlight” [8] on a single node in a single track, while giving a finite ab-
straction of the data coming from the subjacent track. This allowed us to derive
proof obligations on the aggregation algorithm which we discharged using auto-
matic software model checking. We checked our axiomatization using interactive
theorem proving. Overall we obtain a compositional approach which decouples

2 In Boogie, adding assert(false) to each basic block to check for its reachability.
3 Code available at: http://www.informatik.uni-freiburg.de/~arenis/nfm13/

http://www.informatik.uni-freiburg.de/~arenis/nfm13/
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the verification of the aggregation algorithm from the communication scheme. Us-
ing automatic software model checking increases the degree of automation and
allows for an easy extension to a heterogeneous implementation: each implemen-
tation just needs to be verified to satisfy the proof obligations. To the extent of
our knowledge, there are no previous works on the combination of deduction and
automatic model checking for the verification of aggregation protocols.

In the future, we would like to generalize our approach. This amounts to a more
general axiomatization of network topologies, e.g. lifting the restrictions on acyclic-
ity and reliability of the side links, a deductive framework based on our inductive
approach, and a simplification of the invariants required. Having narrowed down
the conditions that are sufficient to ensure a finite case-split during verification,
our generalization would then identify another decidable class of parameterized
systems.
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Abstract. OnTrack automates workflows for railway verification, start-
ing with graphical scheme plans and finishing with automatically gener-
ated formal models set up for verification. OnTrack is grounded on an
established domain specification language (DSL) and is generic in the
formal specification language used. Using a DSL allows the formulation
of abstractions that work for verification in several formal specification
languages. Here, we demonstrate the workflow using CSP||B and suggest
how to extend the tool with further formal specification languages.

1 Introduction

It is becoming common industrial practice to utilize Domain Specific Languages
(DSLs) for designing systems [10]. Such DSLs offer constructs native to the
specific application area. Formal methods often fail to be easily accessible for
engineers, but designs formulated in DSLs are open for systematic and, possi-
bly, automated translation into formal models for verification. DSLs also allow
abstractions to be formulated at the domain level.

Considering the railway industry, defining graphical descriptions is the de
facto method of designing railway networks. This enables an engineer to visually
represent the tracks and signals etc., within a railway network. This paper de-
scribes OnTrack1, an open tool environment allowing graphical descriptions to
be captured and supported by formal verification. Our work is inspired by the
SafeCap toolset [5] which is a graphical editor tailored towards Event-B analysis.
In OnTrack, we emphasise the use of a DSL and decoupling this DSL from the
verification method. The novelty of this is that we define abstractions on the DSL
in order to yield an optimised description prior to formal analysis. Importantly,
these abstractions allow benefits for verification in different formal languages.
Our graphical editor can be used as a basis for generating different formal spec-
ifications in different languages. Such automated generation eliminates errors
introduced when hand-coding formal specifications, improving for instance, the
hand-coded specifications in [6,8,9]. Finally, OnTrack is designed for the railway
domain, but the clear separation of an editor with support for abstractions from
the chosen formal language is a principle more widely applicable.

� The author was funded by an EPSRC vacation bursary, Summer 2012.
1 OnTrack available for download from http://www.csp-b.org
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2 Workflow

Figure 1 shows the workflow that we employ in OnTrack. Initially, a user draws
a Track Plan using the graphical front end. Then the first transformation, Gen-
erate Tables leads to a Scheme Plan, which is a track plan and its associated
control tables. Control tables contain information about when routes can be
granted, see [9] for details. Track plans and scheme plans are models formu-
lated relative to our railway DSL meta-model, see Section 3. A scheme plan is
the basis for subsequent workflows that support its verification. Scheme plans
can be captured as formal specifications. This is achieved following two trans-
formations: (1) a Represent transformation translates a Scheme Plan into an
equivalent Formal Scheme Plan over the meta-model of the formal specification
language (FSL) - this is the core transformation within the toolset; (2) various
Generate for Verification transformations turn a Formal Scheme Plan into a
Formal Specification Text ready for verification using external tools. These Gen-
erate for Verification transformations can enrich the models appropriately for
verification. These transformations are validated via manual review.

Fig. 1. OnTrack workflow

The horizontal workflow, described above, provides a validated transformation
that yields a formal specification text that faithfully represents a scheme plan. In
addition to this workflow, we are interested in abstractions to ease verification.
Moller et al. [8] identify two abstractions: representing topological insights from
the domain and reduction theorems over the language semantics. In OnTrack
we define the topological abstractions with respect to the DSL, thus they are
decoupled from the FSL. As any abstraction aDSL w.r.t the DSL induces a
corresponding abstraction aFSL over specifications, it is possible to share them
between different formal methods.

3 The OnTrack Editor

OnTrack implements the workflow from Section 2 in a typical EMF/GMF/Ep-
silon architecture [3,7]: a graphical editor realised in GMF is the front end for
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the user. As a basis for our tool, we have defined a modified version of the DSL
developed by Bjørner [1]. The concepts of such a DSL can be easily captured
within an ECORE meta-model which underlies our toolset. A small excerpt of
topological concepts within our meta-model is given in Figure 2.

Fig. 2. Static concepts from
Bjørner’s DSL

A Railway Diagram is built from Units,
Connectors and Signals. Units come in two
forms: Linear representing straight tracks,
or Point representing a splitting track. All
Unit(s) are attached together via Connec-
tor(s). Finally, Signals can be placed on Lin-
ear units and at Connectors.

Implementing a GMF front-end for this
meta-model involves selecting the concepts of
the meta-model that should become graphi-
cal constructs within the editor and assign-
ing graphical images to them. Figure 3 shows
the OnTrack editor that consists of a drawing
canvas and a palette. Graphical elements from
the palette can be positioned onto the draw-

ing canvas. Within the editor, the Epsilon Wizard Language (EWL) for model
transformations has been used to implement calls to the various scripts realizing
different transformations. The first EWL wizard, Generate Tables, automatically
computes a control table for a track plan. We omit details of this transformation
and focus instead on the Abstraction, Represent and Generate for Verification
transformations.

Fig. 3. A screenshot of “OnTrack” modelling a station
.



438 P. James et al.

Listing 1.1. ETL rule for abstract model transformation

1 rule abs transform rd: Input!RailDiagram to rd2 : Target!RailDiagram {
2 rd.computeAbstractions();
3 for(ut:Unit in rd.hasUnits){
4 if(not (toDelete.contains(ut))){
5 if(consToBeMapped.contains(ut.hasC1)) {
6 ut.hasC1 = ut.hasC1.getMapping(); }
7 if(consToBeMapped.contains(ut.hasC2)) {
8 ut.hasC2 = ut.hasC2.getMapping(); }
9 rd2.hasUnits.add(ut); } }

10 //Omitted code: similar computation with connectors and signals//
11 rd2.computeTables(); }

4 Automatic DSL Abstractions

We have implemented a particular aDSL abstraction based on the simplifying
scheme plan abstraction by Moller et al. [8]. Various sequences of units are
“collapsed” into single units. This abstraction has been shown correct, and to
improve the feasibility of verification [8]. The abstraction is implemented us-
ing the Epsilon Transformation Language (ETL) [7] that is designed for model
transformations. Listing 1.1 gives an excerpt of our transformation. The algo-
rithm uses the following list structures: toDelete: storing units to be removed
and consToBeMapped: storing which connectors require renaming.

The abs rule performs as follows: line 1 states that the rule translates the
given rail diagram rd to another rd2. The second line simply calls an operation
computeAbstraction() on rd to compute which units can be collapsed and to
populate the lists with appropriate values. For example, considering Figure 3,
toDelete = [AA,AB ,BA,BB ,AD ,AE ,AH ]. Next, the algorithm will consider
every unit ut within rd (line 3). If ut is not in the list toDelete (line 4), then
the algorithm will perform analysis on the connectors of ut. If connector one
of ut is within the set of connectors requiring renaming (line 5), then the first
connector of ut is renamed using a call to the operation getMapping() (line 6).
Lines 7 to 8 of the algorithm perform these steps for connector two of ut. After
this computation, the modified unit ut is added as an element to rd2 (line 9).
The algorithm continues in a similar manner, computing which connectors and
signals should be added to rd2. Finally, an operation computeTables is called
to compute a new control table for rd2. The result of this translation is that
units AA, AB, BA, BB, AD, AE and AH are removed from the track plan in Figure 3.

5 Automatic Generation of CSP||B Models

Here we describe the implementation of the Represent and Generate for Ver-
ification transformations for CSP||B formal specifications. The use of CSP||B
specifications for railway modelling is presented in [8,9].
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Listing 1.2. One of the ETL rules for unit to CSP datatype transformation

1 rule processUnits transform u : Bjoerner!Unit to d : CSP!DataTypeItem {
2 d.name = u.name;
3 d.type = pos;
4 if (pos list.firstItem.isDefined()) {
5 d.preceeds = pos list.firstItem; }
6 pos list.size = pos list.size + 1;
7 pos list.firstItem = d; }

The goal of the Represent transformation is to iterate through a scheme plan,
which is an instance of our DSL meta-model, in order to produce instances of
the CSP||B meta-models. It is implemented using ETL. CSP||B meta-model in-
stances contain collections of objects required to produce the final specification
text. They do not include information on the structure of statements for the fi-
nal formal specification. The Epsilon Validation Language (EVL) [7] can be used
to validate all required objects are defined as expected. We achieve traceability
between the meta-models by defining a structured ETL transformation, i.e., pro-
viding separate ETL scripts that reflect the final specification text architecture.
Overall, our CSP||B model consists of six specifications [9], each generated by
a separate ETL script. These scripts consist of 16 rules, 1 local operation and
a 17 shared operations. Listing 1.2 gives an example rule that transforms units
of a scheme plan to a CSP data type. For each unit, the processUnits rule
constructs a corresponding DataTypeItem which is then added to the datatype
(pos list). For example, for Figure 3 pos list = [AA,AB,AC,. . .].

The Generate for Verification transformation translates CSP||B meta-model
instances into formal specification text. Interestingly, in CSP||B the formal spec-
ification text differs depending on the property to be proven, see [8] for details.
Therefore, the Generate for Verification transformation produces a number of
different specification texts. These transformations are implemented using the
Epsilon Generation Language (EGL) [7] for generating text. For example, the
pos list datatype instance becomes the following fragment of CSP: datatype
ALLTRACK = AA | AB | AC | . . .. The transformations are novel as they apply
pre-processing using Apache Velocity Java templates to avoid code repetition.
These together with the EGL are used to generate models. Note that the CSP||B
instance models produced from the Represent transformation only contain the
information of a scheme plan. They do not include a model of the interlocking
algorithm. This algorithm remains constant for all scheme plans and is therefore
defined in a template file which is used in the Generate for Verification transfor-
mation to enrich the CSP||B specifications. Similarly, the behavioural description
of a train remains constant and is again defined in a separate template file. Over-
all, we define six templates which reflect the final CSP||B architecture (1 CSP
script and 5 B machines, see [9] for details). This gives a clear correspondence
between the templates and formal specification structure.
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6 Lessons Learnt and Discussion

The OnTrack toolset achieves the aim of automating the tedious production of
formal specifications. The toolset allows for abstractions to be defined over the
DSL in order to produce optimised railway models, from which transformations
to formal specifications can be defined. Importantly, these abstractions are de-
coupled from the formal specifications. In building the tool, the encoding of the
DSL into a meta-model is straightforward, however there needs to be a close
relationship between the graphical artifacts and the meta-model. The benefit of
using the toolset is that we can focus our efforts on understanding the impact
of the verification results on the safety of a scheme plan.

Current work includes the development of a Generate for Verification trans-
formation to the algebraic specification language Casl. Manual encoding has
shown the abstractions over the DSL also aid verification for a Casl based
railway modelling approach [6].

In order to extend the tool to produce formal specifications in languages
other than CSP||B, e.g., for railway verification based on NuSMV by [4], the
following would be required: define a meta-model for the chosen formal language
and then define the Represent and Generate for Verification transformations for
that language.

Future improvements that would aid our understanding of the results is to
visualise feedback of any counterexamples, produced during verification on the
scheme plan itself. Similar visualisations have already been achieved in [2].
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Abstract. Numerical algorithms lie at the heart of many safety-critical
aerospace systems. The complexity and hybrid nature of these systems
often requires the use of interactive theorem provers to verify that these
algorithms are logically correct. Usually, proofs involving numerical com-
putations are conducted in the infinitely precise realm of the field of real
numbers. However, numerical computations in these algorithms are often
implemented using floating point numbers. The use of a finite representa-
tion of real numbers introduces uncertainties as to whether the properties
verified in the theoretical setting hold in practice. This short paper de-
scribes work in progress aimed at addressing these concerns. Given a
formally proven algorithm, written in the Program Verification System
(PVS), the Frama-C suite of tools is used to identify sufficient conditions
and verify that under such conditions the rounding errors arising in a C
implementation of the algorithm do not affect its correctness. The tech-
nique is illustrated using an algorithm for detecting loss of separation
among aircraft.

1 Introduction

Virtually every aerospace application is composed of numerical algorithms. The
mathematics in these algorithms is both continuous and discrete. The hybrid
nature of aerospace applications often means that interactive theorem provers are
required to reason about their logical correctness. As the models and algorithms
are refined into an implementation, care must be taken so that assumptions made
in the abstract models are not violated by the implementation. Of particular
concern are the issues that arise when moving from the infinitely precise field
of real numbers to an implementation using a floating point representation [4,8]
such as the IEEE 754 standard [5]. It is well-known that overflows, underflows,
and accumulated rounding errors in floating point arithmetic can produce results
that significantly differ from the ideal. Hence, properties that were demonstrated
to hold in the abstract models may be violated in a concrete implementation.
Therefore one cannot assert that theorems proven in the setting of the real
numbers carry over to the implementation without additional arguments.

The domain of application of the case study in this paper is air traffic man-
agement (ATM). Advances in surveillance and communication systems allow for

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 441–446, 2013.
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ATM concepts where computer programs provide safety-critical functionality.
For instance, the self-separation operational concept proposed by NASA [10]
relies on airborne conflict detection and resolution (CD&R) systems that assist
pilots and air traffic controllers to maintain safety in the airspace by keeping
aircraft separated. Computer-based separation assurance systems are critical el-
ements of air/ground distributed operational concepts for the next generation of
air traffic management systems.

The Formal Methods group at NASA Langley has developed the Aiborne
Coordinated Conflict Resolution and Detection (ACCoRD) formal framework for
reasoning about aircraft separation assurance systems.1 The framework, which is
written in the ProgramVerification System (PVS) [9], consists of more than 1500
lemmas and includes formally verified algorithms for conflict detection, conflict
resolution, conflict recovery, loss of separation recovery, and conflict prevention
bands. This paper reports work in progress on a verification approach that is
being applied to formally prove the correctness of the C implementations of some
of these algorithms.

2 Conflict Detection

This paper concerns a conflict detection algorithm, namely CD2D, developed
by NASA as part of the ACCoRD framework. CD2D is pairwise state-based
2-D conflict detection algorithm. Pairwise refers to the fact that CD2D only
considers two aircraft called the ownship and the intruder. State-based refers to
the use of an Euclidean airspace where the aircraft fly at constant velocity. In
particular, in CD2D, the position and velocity of the ownship are represented
by 2-D position so = (sox, soy) and vector vo = (vox, voy), respectively, and
the position and velocity of the intruder are represented by si = (six, siy) and
vi = (vix, viy), respectively. As it simplifies the mathematical development, most
definitions in ACCoRD use a relative coordinate system where the intruder is
static at the center of the system. In this relative system, the ownship is located
at s = so − si and moves at relative velocity v = vo − vi.

In air traffic management, a loss of separation is a violation of the separation
requirement between two aircraft. If the vertical dimension is ignored, the sepa-
ration requirement is given by a minimum horizontal distance D. A conflict is a
predicted loss of separation within a lookahead time T . In this paper, D and T
are global constants. Loss of separation and conflict are formalized in ACCoRD
as follows.

los?(s) ≡
√
s2x + s2y < D , conflict?(s,v) ≡ ∃0 ≤ t ≤ T : los?(s + tv).

The PVS function cd2d , that models the CD2D algorithm, takes as parameters
the state of the aircraft, i.e., so,vo, si,vi and returns a Boolean value that indi-
cates whether or not a loss of separation with respect to the minimum distance
D is predicted to occur within the lookahead time T .

1 http://shemesh.larc.nasa.gov/people/cam/ACCoRD

http://shemesh.larc.nasa.gov/people/cam/ACCoRD
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cd2d(so ,vo , si ,vi) ≡ let s = so − si ,v = vo − vi in los?(s) or ω(s,v) < 0 ,

where ω is a continuous function that characterizes conflicts. It is defined as
follows.

ω(s,v) ≡
{
s · v if s2 = D2,

v2s2 + 2τ(s · v) + τ2(s,v)−D2v2 otherwise,

where τ(s,v) ≡ min(max(0,−(s · v)), Tv2). When v2 = 0, τ(s,v)
v2 denotes the

time of closest approach for the aircraft and ω(s,v)
v2 + D denotes the minimum

distance.
The ACCoRD development has a formal proof that the function cd2d is sound

and complete with respect to the predicate conflict?, i.e., that the following
statement holds.

Proposition 1. Given a distance D > 0 and a lookahead time T > 0, for all
vectors s = so − si and v = vo − vi,

(soundness) If conflict?(s,v) holds then cd2d(so ,vo , si ,vi) returns true.
(completeness) If cd2d(so ,vo , si ,vi) returns true then conflict?(s,v) holds.

Soundness and completeness are closely related to the concepts of missed-alerts
and false-alerts, respectively.

It should be noted that the theoretical development presented in this section
assumes infinite precision real numbers and does not consider physical limitations
of the aircraft. In a concrete implementation of the CD2D algorithm, those
considerations become significant. In particular, arbitrary large/small numbers
in the presence of floating point numbers and the use of floating point arithmetic
introduce uncertainties as to whether properties verified in the ideal theoretical
setting, such as Proposition 1, hold in practice.

3 Verification in Practice

In order to formally prove a stament such as Proposition 1 for a C program,
it is necessary to have a verification environment that provides a specification
language supporting both real numbers and floating point arithmetic and that
easily integrates with automated and interactive theorem provers. Frama-C is an
open-source framework developed at CEA comprising a suite of tools for static
analysis of C programs in the form of plugins implementing abstract interpreta-
tion, slicing, and deductive verification engines. In particular, Frama-C uses the
deductive verification plugin Jessie [6], which generates verification conditions
for C programs. These verification conditions are submitted to different theorem
provers via the Why3 back-end [2]. In particular, Why3 connects to the Gappa [7]
tool, which specializes in verifying properties of numerical programs. Frama-C
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supports annotations written in the ANSI C Specification Language (ACSL) [1],
an assertion language for specifying behavioral properties of C programs in a
first-order logic. As PVS, ACSL supports mathematical expressions over the
real numbers. Furthermore, ACSL has a built-in model of IEEE-754 arithmetic
including the rounding modes, casts, and infinity. The analysis presented here as-
sumes IEEE-754 in strict form, i.e., the generated verification conditions ensure
no overflows or special values, and rounding to nearest with ties to even.

A straightforward C implementation of cd2d does not satisfy Proposition 1
due to the use of floating point arithmetic in C. Indeed, in the presence of com-
putation errors, it is impossible to write a program that satisfies both correctness
and completeness. In practice, there is a trade-off between soundness and com-
pleteness in any implementation of a conflict detection algorithm. From a safety
point of view, soundness is usually considered the more desirable of the two prop-
erties since it eliminates the possibility for missed-alerts. Therefore, the target
property for the verification presented here is soundness. However, it should be
noted that completeness also has safety implications. For example, a program
that always returns true would be trivially sound. Of course, such a program
will have an unacceptable rate of false alerts and quickly erode the trust that a
pilot may have on these kinds of systems.

This paper proposes a systematic construction of a C program, namely cd2d,
from its PVS counterpart, namely cd2d , that is provably sound. The proof is
conducted in the Frama-C environment and reuses Proposition 1 and other core
geometric properties proved in PVS. The construction of cd2d starts by trans-
lating every real-valued function f involved in the definition of cd2d into an
identical logical ACSL function f and into a C function f. Function f uses real
number arithmetic, while function f uses floating point arithmetic. The spec-
ification of the function f states that the absolute error of the floating point
computation is bounded by a given positive constant εf , i.e., |f(x)− f(x)| ≤ εf .
Here only the C basic types double and int are used for the translation. There-
fore, vectors are represented by their components. For instance, the function τ ,
used in Formula 2, is translated into ACSL-annotated C code as follows.2

/∗@ log i c r e a l tauR( r e a l s x , r e a l s y , r e a l v x , r e a l v y , r e a l t ) =
@ dmin(dmax(0. ,−dotR( s x , s y , v x , v y )) , t∗sqvR( v x , v y )) ;
@∗/

/∗@ requ i r e s −100. <= s x <= 100. && . . . ;
@ ensures \abs (\ r e s u l t − tauR( s x , s y , v x , v y ,T)) <= E tau ;
@∗/

double tau(double s_x ,double s_y ,double v_x ,double v_y ) {
return min (max(0,−dot (s_x ,s_y ,v_x , v_y ) ) ,T∗sqv(v_x , v_y ) ) ; }

In ACSL, the precondition is denoted by the keyword requires, while the
postcondition is denoted by the keyword ensures. By convention, real number

2 Logical definitions in ACSL cannot refer to C constants. Hence, t has been added as
a parameter to tauR.
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functions are written with the postfix R. If function f is proven to satisfy its
specification for a certain value of εf , this value is propagated into the specifi-
cation of functions and Boolean conditions that depend on f. At the end of the
process, the cd2d function is written as follows.

int cd2d (double so_x ,double so_y ,double vo_x ,double vo_y ,
double si_x ,double si_y ,double vi_x ,double vi_y ) {

double s_x = so_x − si_x ; double s_y = si_x − si_y ;
double v_x = vo_x − vi_x ; double v_y = vi_x − vi_y ;
return los(s_x , s_y) | | omega(s_x ,s_y ,v_x , v_y) < E_cd2d ; }

In order to appropriately bound the values of the input variables, a system
of units needs to be chosen. As usual in air traffic management, distances are
given in nautical miles, speeds are given in knots (nautical miles per hour), and,
for unit consistency, times are given in hours. Typical bounds for state-based
separation assurance algorithms such as CD2D are |so x|, |so y|, |si x|, |si y| ≤
100 nautical miles and |vo x|, |vo y|, |vi x|, |vi y| ≤ 600 knots. Furthermore, the
constants D and T are set to 5 nautical miles and 0.083 hours (about 5 minutes),
respectively.

An approach to verify that cd2d verifies soundness consists in replaying the
soundness proof of cd2d and adapting, on this process, every proof step to deal
with floating point inaccuracies. This paper takes a different approach. Since
the PVS function cd2d is known to be sound and complete, soundness of cd2d
is equivalent to the following proposition.

Proposition 2 (Soundness of cd2d). Given the specified values of D and T,
for all so x, so y, si x, si y, vo x, vo y, vi x, vi y that satisfy the specified
bounds, if cd2d(so x, so y, vo x, vo y, si x, si y, vi x, vi y) returns true, then
cd2d(so x,so y,vo x,vo y,si x,si y,vi x,vi y) returns 1.

This leaves the question of how to find the error bounds for each f , i.e., εf .
Sophisticated analytical techniques exist for estimating rounding errors [3] and
while these are needed to analyze more complex computations, in many cases
it is possible to exploit the capability of Frama-C to quickly and automatically
prove assertions to discover an appropriate value for εf . The process implements
a search by dichotomy, hinging on the provability of the proof assertions.

Beginning with an initial estimate for εf , the Frama-C/Jessie plugin is invoked
generating a number of verification conditions. If the automated prover cannot
show that εf is a good bound, the value of εf is increased. On the other hand,
if the provers show that the bound holds, the value of εf is decreased. The
process continues until convergence on a tight bound. In the case of tau, the
initial value of E tau was set to 2−30, but the Gappa solver on the back-end
could not prove the postcondition. Next, E tau was set to 2−10, which the solver
easily discharged. The dichotomy process eventually reached a bound on an
absolute error of 2−21. Proposition 2 is formally verified in Frama-C for the
value E cd2d = 2× 2−1.



446 A.E. Goodloe et al.

4 Conclusion

This work in progress contributes a methodology for proving the correctness
of implementations of numerical programs whose soundness and completeness
have already been demonstrated in the ideal setting of real numbers. In particu-
lar, the approach proposed here focuses on discovering and proving the bounds
on floating-point rounding errors that can invalidate in practice the theorems
proven on reals. As a first case study, the technique was applied to candidate
algorithms in the ACCoRD framework. These algorithms feature strong cor-
rectness conditions, use only bounded loops and conditionals, and employ well
behaved mathematical operations. In addition, the algorithms have well defined
bounded input, and units were chosen that kept the magnitude of the computed
values from growing big enough to produce large rounding errors. Future work
will apply the approach to more sophisticated programs and consider relative
error in addition to the absolute error. Also, the task remains to validate the
safety implications of the error bounds shown in the paper. As the methodology
evolves, the Frama-C tool support is expected to evolve by incorporating new
algorithms and plugins to aid in the verification of numerical programs.
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V.: ACSL: ANSI/ISO C Specification Language, version 1.6 (2012)
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Abstract. Formal methods—and abstract interpretation in particular—
can assist in the development of correct control code. However, current
approaches to deploying formal methods do not always match the way
practicing engineers develop real control code. Engineers tend to think
in code first—not formal models. Standard practice is for engineers to
develop their control code and then build a model like a hybrid automa-
ton from which to verify properties. Since the construction of this model
is manual, it leaves open the possibility of error. Existing formal ap-
proaches, on the other hand, tend to focus on synthesizing control code
from a verified formal model. We propose a method for synthesizing a
hybrid automaton from the control code directly. Specifically, we use ab-
stract interpretation to create an abstract state transition system, and
from this we systematically extract a hybrid automaton. Not only does
this eliminate the introduction of error into the model based on the code,
it fits with common practice in engineering cyberphysical systems. We
test the technique on a couple examples—control code for a thermo-
stat and a nuclear reactor. We then pass the generated automata to the
HyTech model-checker to verify safety and liveness properties.

1 Introduction

Avionics, automobiles and medical equipment depend on complex control soft-
ware. The proscribed approach to developing these systems is “model-first,” with
analysis, simulation, testing, verification and code generation to follow.

However, in practice, engineers often develop code first, and a model second,
if ever. We propose an approach to formal analysis of cyber-physical systems
more in line with practice: we demonstrate that a sound model—a hybrid au-
tomaton [9] in this case—can be inferred from the control code itself. This gives
developers an efficient way to maintain and manipulate the model of a controller
more naturally. To achieve our goal, we use abstract interpretation (a higher-
order control flow analysis, in particular) to analyze control code, and from the
result, we infer hybrid automata. We can then pass these hybrid automata on to
model checkers and formally verify properties of program behavior. Source and
examples for the tool described in this paper are available [15]. For examples
and more details, we refer the reader to the companion technical report [11].

1.1 Contributions

We make the following contributions:
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1. We report preliminary work on a method to extract a hybrid automaton from
an abstract transition system, which is in turn synthesized from abstract
interpretation of control code.

2. We claim a core calculus for a subset of MATLAB as a secondary contribu-
tion, developed to facilitate our primary contribution.

2 Language: λM, a Core Calculus for MATLAB

We compile control code in MATLAB to an A-Normalized core calculus. A-
Normal Form (ANF) [7] forces an order of evaluation and simplifies the transition
rules of both the concrete and abstract semantics.

The grammar for the target language is an unsurprising subset of Scheme,
except for perhaps the inclusion of call/ec, which we use to model exceptions.
Another interesting inclusion is that the conditional expression allows a convex
predicate cp in its test expression. A convex predicate cp is a finite conjunction
of linear inequalities, e.g., x1 ≥ 3 ∧ 3x2 ≤ x3 + 5/2 [8].

pr ∈ Prog = Exp [programs]

v ∈ Var is a set of identifiers [variables]

c ∈ Const = String + Z [literals]

lam ∈ Lam ::= (λ (v1 . . . vn) e) [lambda terms]

f,æ ∈ AExp ::= lam | v | c [atomic expressions]

| (op æ1 . . .æn) [primitive operations]

op ∈ Op ⊇ {+, -, *} [primitives]

e ∈ Exp ::= (let ((v ce)) e) [expressions]

| æ [return]

| ce [tail]

ce ∈ CExp ::= (f æ1 . . .æn) [complex expressions]

| (if cp e1 e2) [physical branching]

| (if ae e1 e2) [cyber branching]

| (set! v æ) [variable mutation]

| (call/ec æ) [first-class control]

Fig. 1. Syntax for λM—a core calculus for MATLAB

To model programs, we inject them into time-stamped CESK-machines [6],
whose state-space has five components—the current expression, the current en-
vironment, the current store, the current continuation and the current time.
The time component does not relate to physical time, but is a way to encode the
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history of the machine’s execution to facilitate abstraction. It is a parameter used
when allocating new addresses in the store. In a regular CESK machine there will
be an infinite number of addresses that can be allocated in the store, but we can
structurally abstract this machine by bounding the set of times available [14].
Bounding time forces the set of states Σ̂ to be finite.

Figure 2 describes the concrete and abstract state-spaces for the analyzer. To
save space, we omit the transition relations (⇒) ⊆ Σ × Σ and (�) ⊆ Σ̂ × Σ̂
and we also omit the abstraction map α : Σ → Σ̂ that connects them. For
examples of such transitions, we refer the reader to [14]. Computing the control-
flow analysis consists of constructing the “abstract state transition graph” of
reachable states under (�).

ς ∈ Σ = Exp× Env × Store ×Kont × Time

ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ D

d ∈ D = Clo +Kont + String + Z

clo ∈ Clo = Lam× Env

κ ∈ Kont ::= letk(v, e, ρ, κ)

| halt

a ∈ Addr ::= bindaddr(v, t)

t ∈ Time is an infinite, ordered set of times

ς̂ ∈ Σ̂ = Exp× ̂Env × Ŝtore × K̂ont × T̂ime

ρ̂ ∈ ̂Env = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ D̂

d̂ ∈ D̂ = P
(

̂Clo + K̂ont + Ŝtring + Ẑ
)

̂clo ∈̂Clo = Lam× ̂Env

κ̂ ∈ K̂ont ::= letk(v, e, ρ̂, κ̂)

| halt

â ∈ Addr ::= bindaddr(v, t̂)

t̂ ∈ T̂ime is an finite set of abstract times

Fig. 2. The concrete (left) and abstract (right) state-spaces

Since our ultimate goal is to extract hybrid automata, we make use of an
alternate, labeled formulation of the abstract transition relation:

ς̂
cp
� ς̂ ′ iff ς̂ � ς̂ ′ and the physical condition cp holds after transition.

Only physical branching expressions—(if cp . . . . . . )—acquire these labels.
The label f indicates that the transition does not depend on a physical condition.

3 Extracting a Hybrid Automaton

Control-flow analysis leaves us with an abstract state transition graph. We now
briefly describe how to compile this graph into a hybrid automaton.

First, we want to annotate the states with some kind of physical state-change
equations, e.g., ẋ = −3, as well as invariants, e.g. t < 10, found in hybrid au-
tomata. To do so we require “physical” annotations in the source code. The
annotations identify which procedures read physical quantities and which pro-
cedure calls initiate physical changes in the system.
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3.1 Algorithm

To extract the hybrid automaton from the results of the abstract interpretation,
we are going to define hybrid automaton locations as sets (really, partitions) of
machine states:

p ∈ HyLocation = P(Σ̂)

We can lift the transition relation from machine states to hybrid locations:

p � p′ iff there exists ς̂ ∈ p, ς̂ ′ ∈ p′ such that ς̂ � ς̂ ′.

It’s convenient to have a special form of the transition relation as well:

p � p′ iff p �f p′ and p′′ �f p′ implies p′′ = p.

Next, we need a function, ∇, to extract governing differential equations:

∇(ς̂) =

{
[ẋ $→ [[e]]] if ς̂ = ((assertCPS ẋ = e), . . .)

∅ otherwise.

and, for partitions, it combines all equations in a partition:

∇{ς̂0, . . . , ς̂n} = ∇(ς̂0) ∪ · · · ∪ ∇(ς̂n)

The procedure Extract accepts an abstract state transition graph generated by
the abstract interpretation; it returns a hybrid automaton over the state-space
HyLocation whose transition relation is (�cp) and whose governing differential
equations are determined by the function ∇:

procedure Extract(G):
P ← {{ς̂} | ς̂ ∈ G}
do

P ←Merge(P)
P ←Split(P)

until P does not change
return P

The procedure Merge coalesces partitions with compatible equations:

procedure Merge(P ):
do

for each partition p in P :
if p � p′ and dom(∇(p)) ∩ dom(∇(p′)) = ∅:

merge partitions p and p′ in P
if p′ �f p and p′′ �f p and ∇(p) = ∇(p′):

merge partitions p′ and p′′ in P
until P does not change
return P
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The procedure Split duplicates nodes that are blocking a merge due to differ-
ential equations:

procedure Split(P ):
for each partition pair p, p′ in P :

if p′ � p and p′′ � p and dom(∇(p)) ∩ dom(∇(p′)) = ∅:
duplicate p as p∗ in P
replace the edge p� p′′ with p � p∗

return P

4 Preliminary Evaluation

All code and examples for our implementation are available [15]. We prototyped
our technique using Octave (a superset of MATLAB) for the control code. We
utilize MATLAB as the input language because in our interactions with prac-
ticing engineers, we have found substantial amounts of control code—some pro-
duction, some prototype—written in MATLAB. We analyzed the control code
for a simple thermostat and for a nuclear reactor with our tool. After producing
hybrid automata, we verified properties of the control code using HyTech [10].

5 Related Work

To generate the abstract state transition graph, we used a small-step formulation
of k-CFA [14], built upon the original formulation of k-CFA by Shivers [12] and
the large body of abstract interpretation first started by the Cousots [4,5].

Our goal was to transform the abstract state-space into a model from which
safety properties could be proved. For the model we chose hybrid automaton as
formulated by Henzinger [9]. This choice was made not only for their ability to
accurately model cyber-physical systems, but also because tools already exist
that verify safety and liveness properties [10].

The idea of merging abstract interpretation and physical systems in not unique
to our work. Cousot argues that static analysis of control software can be guided
by knowledge of the physical system [3]. Our approach claims that given addi-
tional information of the physical system, in the form of annotations, abstract
interpretation can be used to create a model of the entire system.

Similar work has been done to convert control code to hybrid automata by
Bouissou [2]. He provides a semantics preserving transformation from H-Simple

to a sampled hybrid automata and then from sampled hybrid automata to a
regular hybrid automata. H-Simple is a simple imperative language that has
statements to control sensors and actuators, very similar to the annotations
provided in our framework. While our language is also simple, it provides first
class functions, which allow powerful higher language constructs to be modeled.

Another similar work to ours is in transforming Simulink/Stateflow models
into Hybrid Automata [1,13]. However, our work differs in that we start from
the control code of the system, not another model of the system.
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Abstract. NuSMV is a state-of-the-art model checker providing BDD-
based and SAT-based techniques and a rich modeling language. While
the tool is powerful, it is hard to customize it because of the size and
complexity of its code base (more than 200K LOC). This paper presents
PyNuSMV, a Python framework for prototyping and experimenting with
BDD-based model-checking algorithms based on NuSMV.

PyNuSMV provides a rich and flexible programmable platform to
implement new logics and experiment with custom model-checking al-
gorithms. Thanks to PyNuSMV, it is possible to use NuSMV function-
alities without understanding its whole code base or struggling with
implementation details such as memory management. PyNuSMV has al-
ready been used to implement model-checking algorithms for rich logics
such as ARCTL and CTLK.

This paper describes the structure and usage of PyNuSMV, illustrates
its use by re-implementing CTL model checking, and reports initial per-
formance results showing negligible impact compared to native NuSMV.

Keywords: Symbolic Model Checking, NuSMV, Python Interface, Bi-
nary Decision Diagrams.

1 Introduction

NuSMV is a state-of-the-art BDD-based and SAT-based model checker for tem-
poral logics providing additional features such as model simulation [4]. While it
is a very powerful tool, its (open-source) code base adds up to more than 200K
lines of C code, making it difficult to extend or customize to implement new
logics or new model-checking algorithms.

PyNuSMV is a Python framework for prototyping and experimenting with
BDD-based model-checking algorithms based on NuSMV. It gives access to
some of NuSMV’s main functionalities, such as source model parsing and
BDD manipulation, while hiding NuSMV implementation details by providing
wrappers to NuSMV functions and data structures. In particular, NuSMV mod-
els can be read, parsed and compiled, giving full access to SMV’s rich mod-
eling language and vast collection of existing models. It makes it easy to
implement new BDD-based model-checking algorithms and has already been

� This work is supported by the European Fund for Regional Development and by the
Walloon Region.
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used to implement (1) rich counter-examples for CTL, (2) ARCTL model
checking, an extension of CTL reasoning about the actions of a model, and
(3) CTLK model checking, an extension of CTL reasoning about knowledge
of the agents of a system [3,6,7]. The tool, including implementations for
rich counter-examples, ARCTL and CTLK model checking, is available at
http://lvl.info.ucl.ac.be/Tools/PyNuSMV.

Python has been retained to implement PyNuSMV because it comes with
a full standard library and a full-fledged programming language supporting
high-level programming (garbage collection, functional closures). PyNuSMV uses
SWIG [1], a wrapper generator for C code, to wrap all NuSMV functions. On top
of this wrapper, PyNuSMV provides a library of classes and modules reflecting
NuSMV’s main data structures (BDDs, expressions) at the Python level. Thanks
to these classes and modules, it is easy to use NuSMV functionalities in Python,
without struggling with implementation details such as memory management.

Note that SWIG has already been used in the RATSY tool to provide a
wrapper of NuSMV functions at Python level [2]. But the goal of the tool was
to support RATSY features by implementing them in NuSMV, not to provide a
library of NuSMV functionalities.

The remainder of this paper is structured as follows: Section 2 presents the
structure of PyNuSMV, Section 3 demonstrates its uses and reports initial eval-
uation results, and Section 4 describes future work.

2 PyNuSMV

The architecture of PyNuSMV, depicted in Figure 1, consists of three layers. The
first one consists in the original code of NuSMV written in C. On this layer is
the lower interface, composed of all modules generated by SWIG. Finally, the
upper interface, built upon the lower one, consists of additional classes and
modules providing access to some NuSMV main functionalities with Python
capabilities such as garbage collection.

NuSMV

Lower interface

Upper interface
FSM BDD ...

C
P
y
th
o
n

Fig. 1. PyNuSMV three-layer architecture

The lower interface is composed of a set of Python modules generated by
SWIG. For every NuSMV package there is a SWIG interface generating a Python
module that provides wrappers for functions and data structures of the package.

The upper interface is composed of classes wrapping data structures of
NuSMV, and modules giving access to main functionalities such as CTL model
checking and model parsing. The classes of the upper interface give access to:

http://lvl.info.ucl.ac.be/Tools/PyNuSMV
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– BDDs, states and inputs (i.e. actions) of the model and standard operations
on BDDs provided as built-in operators: & (conjunction), | (disjunction),
~ (negation);

– the model itself, encoded as BDDs, and basic functionalities like computing
the pre- or post-image of a set of states through the transition relation of
the model;

– CTL formulae expressing properties of the model;
– functions acting on the global environment of NuSMV: intializing and final-

izing NuSMV, reading the model and encoding it into BDDs;
– the parser of NuSMV to get, for example, the AST of a given simple expres-

sion;
– the CTL model-checking algorithms implemented in NuSMV.

Both interfaces have their advantages. The lower interface, fully generated by
SWIG, allows the user to directly access NuSMV functions and data structures
from the Python level, but the user has to manage all the implementation details
he would manage at C level, memory in particular. On the other hand, the
upper interface abstracts implementation details such as memory management
and allows the user to focus on design and algorithmic concerns, at the cost of an
additional level of indirection. While PyNuSMV gives access to both interfaces,
most PyNuSMV applications are expected to rely only on the upper interface.

3 Evaluation

This section provides an initial evaluation of the tool. Section 3.1 shows how
to re-implement CTL model checking with PyNuSMV and Section 3.2 presents
some performance measures on small models.

3.1 Re-implementing CTL Model Checking

In order to illustrate how PyNuSMV allows to quickly and concisely experiment
with new logics and custom model-checking algorithms while abstracting away
from implementation details, this section presents an implementation of CTL
model-checking algorithms [5]. The full code (about 175 LOC), of which only
some pieces are presented here, is provided with the PyNuSMV distribution.

Figure 2 presents the main function of the program. It encodes the system into
BDDs (line 3) and, for each CTL formula identified in the model file, computes
the set of states of fsm satisfying the formula (line 8, eval ctl(fsm, spec))
and the set of initial states violating the specification. Finally, the specification
is reported as true if and only if this set is empty (lines 9 and 10).

Figure 3 shows parts of the eval ctl function. Dedicated functions are imple-
mented to evaluate basic Boolean operators and EX, EU and EG operators while
the other operators are computed by standard reduction to these operators.1

1 f → g ≡ ¬f ∨ g and A[f U g] ≡ ¬(E[¬g U ¬g ∧ ¬f ] ∨ EG¬g) are shown.
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1 def main(modelPath ):

2 init_nusmv ()

3 fsm = BddFsm.from_filename(modelPath)

4 propDb = glob.prop_database ()

5 for prop in propDb:

6 if prop.type == propTypes[’CTL’]:

7 spec = prop.exprcore

8 violating = fsm.init & ~eval_ctl(fsm , spec)

9 print(’Specification ’,str(spec),

10 ’is’,str(violating.is_false ()))

11 # We could generate counter -examples here

12 deinit_nusmv ()

Fig. 2. The main function of the CTL model checking algorithm

1 def eval_ctl(fsm , spec):

2 ...

3 elif spec.type == parser.IMPLIES:

4 left = eval_ctl(fsm , spec.car , context)

5 right = eval_ctl(fsm , spec.cdr , context)

6 return ~left | right

7 elif spec.type == parser.AU:

8 left = eval_ctl(fsm , spec.car , context)

9 right = eval_ctl(fsm , spec.cdr , context)

10 return ~(eu(fsm ,~right ,~left & ~right) | eg(fsm ,~right ))

11 ...

Fig. 3. CTL evaluation: implication and AU operator cases

Figure 4 presents the implementation dedicated to the EU operator. Note how
Python’s lambda-abstractions allow to express this in an abstract, declarative
style reflecting the mathematical definition, E[φUψ] = μZ.ψ ∨ (φ ∧ EXZ), using
a generic higher-level fixpoint function.

3.2 Performance Comparisons

As an initial performance assessment, we verified a sample of NuSMV mod-
els both with native NuSMV and with CTL model checking implemented in
PyNuSMV. Note that the PyNuSMV version used here, provided with the tool,
has been adjusted to reproduce exactly the algorithms implemented in NuSMV
and is not the version presented in the previous section. The main difference is
that it takes reachable states into account.

The results are summarized in Table 1. Eight models, taken from the NuSMV
distribution, have been processed by the two tools; the first four are very small
(up to 6000 states), the last four are a bit larger (from 106 to 1016 states). Each
model features up to three CTL formulae. The measured time is the time needed
to check the specifications only; the time needed to initialize NuSMV and to build
the model is not taken into account and is very similar in both cases.
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1 def eu(fsm , phi , psi):

2 return fixpoint(lambda Z: psi | (phi & fsm.pre(Z)),

3 BDD.false(fsm.bddEnc.DDmanager ))

4 def fixpoint(funct , start):

5 old = start

6 new = funct(start)

7 while old != new:

8 old = new

9 new = funct(old)

10 return old

Fig. 4. CTL evaluation: EU operator implementation

Table 1. NuSMV and PyNuSMV times to evaluate model specifications (in seconds)

Model NuSMV PyNuSMV

counter 0 0
mutex 0.001 0.009
dme1 0.275 0.288
gas-nq7 8.913 11.027

Model NuSMV PyNuSMV

msi wtrans 23.285 23.652
dme1-16 61.246 64.733
ftp3 75.607 78.771
key10 100.614 103.606

These results are very promising: the overhead caused by the two Python
layers of PyNuSMV remains very low. This was expected, as most of the time
needed to evaluate the CTL formulae is spent in computing BDDs operations,
and these operations take place within NuSMV in both cases.

4 Future Work

While PyNuSMV’s lower interface is automatically generated by SWIG, the
upper interface is hand-crafted and needs more work to be developed. A num-
ber of NuSMV features remain to be supported: only CTL- and BDD-related
functionalities are provided. For now, SAT-based and LTL model checking, and
simulation-related features, are not exposed at the Python level. Note that there
should be no additional difficulties to expose them in the upper interface, but a
significant amount of engineering work.

Second, NuSMV can react in various ways when an error occurs. It can output
a message on stderr, or in other cases return an error value. It also integrates a
try/fail mechanism using longjmp functionalities. Some additional work should
be provided to hide these different behaviors and provide a homogeneous error
management in the upper interface, based on Python exceptions.

5 Conclusion

This paper presents PyNuSMV, a framework for experimenting BDD-based
model-checking algorithms for new logics based on NuSMV. It allows the user to
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use some NuSMV main functionalities such as model building, BDD manipula-
tion and model-checking algorithms without having to understand the NuSMV
code base and to struggle with implementation details such as memory manage-
ment. Model checkers for rich logics such as CTLK have been re-implemented
in a matter of days and a few thousands lines of Python code. Models can be
written using the rich NuSMV modeling language and existing NuSMV models
can be directly processed. Initial evaluation shows very little loss of efficiency
compared to native NuSMV. While no performance tests have been performed
yet on ARCTL and CTLK implementations, the overhead of PyNuSMV Python
layers should remain low in these cases, too.

On the other hand, because NuSMV is primarily a standalone program, its
developers made some implementation choices that make it not ideal to use as
a library. For example, a lot of data structures are global, such as the pars-
ing abstract syntax tree of the model, the main flat hierarchy or the proposi-
tion database. This imposes some limitations to PyNuSMV users that could be
avoided if the platform was developed from scratch.
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{decker,leucker,thoma}@isp.uni-luebeck.de

Abstract. This paper presents jUnitRV as a tool extending the unit
testing framework jUnit by runtime verification capabilities. Roughly,
jUnitRV provides a new annotation @Monitors listing monitors that are
synthesized from temporal specifications. The monitors check whether
the currently executed tests satisfy the correctness properties underlying
the monitors. As such, jUnit’s concept of plain assert-based verification
limited to checking properties of single states of a program is extended
significantly towards checking properties of complete execution paths.

1 Introduction

Testing is the verification technique that is most applied in practice. Yet, testing
is still quite ad-hoc, time consuming and as such, expensive. Easily, testing of
software systems consumes up-to 50% of total development costs in safety-critical
systems.

One of the most popular testing approaches to Java code is unit testing based
on the jUnit framework [1]. Unit testing is essential in test-driven development
such as extreme programming but also common when following classical devel-
opment models.

Runtime verification is still a rather new verification technique in which a for-
mal correctness property is checked on the actual execution of a system under
scrutiny. Typically, monitor code checking the property at hand is synthesized
and interweaved with the underlying program. Then, any execution of the re-
sulting program is checked with respect to this property.

In this paper, we present jUnitRV as a tool combining the ideas of unit testing
and runtime verification.1 It allows for high-level specifications of monitors for
temporal assertions within the jUnit framework. Testing temporal properties
commonly leads to complicated test cases and may require modifications to the
application code. In jUnitRV, monitors can be annotated to single test cases to
automatically check the corresponding properties during execution.

While there are several runtime verification frameworks (see [2] for a recent
overview), none of the available tools provides a close integration into jUnit.

In the next section, we give a brief overview on how to use jUnit and jUnitRV .
Afterwards, we discuss technical issues of our tool. Section 3 details how temporal

1 jUnitRV is freely available at http://www.isp.uni-luebeck.de/junitrv
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specifications are related to program executions and Section 4 describes how
monitoring is integrated into the jUnit framework.

2 jUnitRV—A Quick Starting Guide

In this section, we introduce jUnitRV by means of an example. We recall the
ideas of jUnit, explain current limitations and show how jUnitRV can simplify
testing of so-called temporal assertions by means of runtime verification.

Testing and jUnit. The aim of unit testing is to check simple, individual units
of a program. While jUnit is originally developed to support unit testing, it
allows, in principle, for complex test scenarios and it is often used for integration
testing and system testing in practice as well.

Let us explain the main ideas about jUnit based on the following, exempli-
fying hospital application: For every patient, the hospital personnel takes the
necessary data and submits it to the central hospital information system. The
information may be queried and modified later on. For this, the hospital person-
nel uses terminals which may be shared by different users by switching between
the respective accounts.

The terminal runs a Java application which takes care of user management and
modification of patient data. To access and modify patient data in the hospital
information system, it uses the following (simplified) interface.

public interface DataService {
void connect (String userID) throws UnknownUserException;
void disconnect();
Data readData (String field);
void modifyData(String field , Data data);
void commit () throws CommitException;

}

The terminal application, called client in the following, is to be tested whether
it meets the following requirement: If data was modified through the interface,
the client must instruct the data service to commit the changes before the user
logs out since local changes would be lost otherwise. A user is logged out from
the system, e.g. when the client is shut down or the user is switched, and, as
such, the requirement has to be tested at different functions of the application.

Within Java’s unit testing framework jUnit, test cases are specified in dedi-
cated test classes. A test case in jUnit is a method comprising the annotation
@Test and a sequence of method calls to be executed. Additionally, assertions
are used to specify expectations to the program state at certain steps. jUnit
loads a specified test class and consecutively invokes all included test cases. A
typical test case for the requirement mentioned above looks as follows.

@Test
public void test1() {

DataService service = new MyDataService("http://myserver .net");
MyDataClient client = new MyDataClient(service );

client.authenticate("daniel ");
client.addPatient("Mr. Smith ");
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client.switchToUser("ruth");
assertTrue(service .debug_committed()); // switching means logout

client.getPatientFile("miller -2143 -1");
client.setPhone ("miller -2143-1", "012345678");
client.exit();
assertTrue(service .debug_committed());

}

The difficulty of using jUnit in this example is twofold: (i) for executing the test
case above the implementation must be refactored to provide enough information
to indicate whether a commit has happened. Moreover, (ii) the tester needs the
information which methods actually perform a logout (switch() and exit() in
our example).

Clearly, the need for complete knowledge of such information as well as the
need for refactoring e.g. an interface in late development phases makes testing
labor-intensive and error prone. In essence, the problem in the example above
is that a requirement on the execution trace should be checked while jUnit only
supports assertions to be checked in individual states of the system.

Runtime Verification and jUnitRV. Runtime verification (see [3] for a sur-
vey) aims at verifying properties on individual execution traces. To this end,
temporal assertions may be specified, typically in terms of temporal logic formu-
lae, and are automatically translated into a so-called monitoring code. A monitor
is a program that observes the current execution and yields a verdict whether
the property is fulfilled or violated.

The requirement in the example above can be stated as

Always (modify ⇒ ¬disconnect Until committed)

meaning it is always the case, that whenever the method DataService.modify()

is invoked, the client does not disconnect until a call to DataService.commit()

returned successfully. The link between formal events and method calls are made
explicit in jUnitRV as follows:

String dataService = "myPackage.DataService";

private static Event modify = called(dataService , "modify ");
private static Event committed = returned (dataService , "commit ");
private static Event disconnect = called(dataService , "disconnect");

Note that, besides events, jUnitRV also supports propositions. The distinction is
made precise in the next section. A corresponding monitor definition within the
jUnitRV framework can be given as follows.

private static Monitor commitBeforeDisconnect = new FLTL4Monitor(
Always (implies (

modify ,
Until(not(disconnect), committed)

)
));

jUnitRV is in general capable to deal with different logic plug-ins but comes with
a DSL for specifying temporal assertions in the temporal logic FLTL4, which
follows [4] and is defined formally in [2].
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Individual test cases can now be monitored by just adding an annotation
@Monitors together with a list of monitor names that have been defined before.
For our example, we get:

@Test
@Monitors({" commitBeforeDisconnect"})
public void test1() {

DataService service = new MyDataService("http://myserver .net");
MyDataClient client = new MyDataClient(service );

client.authenticate("daniel ");
client.addPatient("Mr. Smith ");
client.switchToUser("ruth");
client.getPatientFile("miller -2143 -1");
client.setPhone ("miller -2143-1", "012345678");
client.exit();

}

3 Execution Traces and Formal Runs

jUnitRV allows for specifying temporal assertions in jUnit. Such specifications
can be annotated to test cases and are monitored during test execution. At every
execution step, the monitor reports a (possibly preliminary) verdict. The test
case fails, if the monitor reports a violation of the property during the execution.

The monitor specifications are based on temporal logic, which describes dis-
crete sequences of observations, i.e. individual steps in time. At every such time
step, atomic propositions are assumed to evaluate to either true or false. How-
ever, the actual observation that is made and the user intends to describe is the
execution trace or run of a program.

Such a run includes e.g. method invocations and returns, variable access and
variable evaluations. To use temporal logic as a tool to describe program runs, the
mapping between formal semantics and program traces must be clear, intuitively
as well as formally. We therefore introduce our notion of events and propositions.
In first place, events serve as clock triggers to the monitors, thereby defining
the discrete steps in time. Additionally, propositions characterize the current
program state within such a discrete time unit. They are evaluated within the
scope of an event, i.e. a specific time instant.

Events. In jUnitRV, events are specified explicitly and are automatically trig-
gered. The temporal assertion in our example above uses the events modify,
committed and disconnect. Such events, mark specific actions of the program.
The events modify and disconnect trigger as soon as the methods modify()

and disconnect(), respectively, are invoked on an object of type DataService.
The event committed occurs when the method commit() returned successfully,
i.e. without throwing an exception. Each monitor is associated with a set of
events and whenever one of them occurs, a time step is indicated to it.

Propositions. Within the context of a particular time step, propositions are
evaluated and define the current observation. This evaluation defines which
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transition a monitor takes in the current step. In jUnitRV, propositions are de-
fined explicitly as follows:

private static Proposition auth =
new Proposition(eq(invoke($this , "getStatus"),AUTH);

The proposition auth evaluates to true if the method getStatus() returns the
value AUTH. The method is invoked on the current object (denoted $this), which
is the object on which the method was invoked that caused the current event,
i.e. the current time step.

Additional propositions are defined implicitly in terms of events: For each
event there is a proposition with the same name that can be used in the tem-
poral specification. Note that in any time step, only a single event can occur
and thus the propositions implicitly defined by events exclude each other. For
example, the property modify ∧ committed, meaning that the events modify

and committed occur at the same time, can never be true. In the data service
example, the specified property only uses propositions that are defined implicitly
by the corresponding events.

4 jUnit Integration

The jUnit testing framework comes with sophisticated default test case execution
capabilities. Moreover, it provides the possibility to change the test execution
behavior with the help of annotation @RunWith, which takes as argument a
suitable test runner class. As jUnitRV has to take care of event injection and
monitor execution, it provides the class RVRunner. To reuse most of jUnit’s
standard test runner, like its reporting facilities etc., RVRunner inherits from
jUnit’s test runner.

The notion of events is bound to the access of fields and invocation or return
of methods in the program under test. That means that the program must be
interleaved with code being executed whenever a respective method is invoked.
As the classes to be tested are compiled and already loaded by jUnit, when they
are about to be tested with RVRunner, monitoring code cannot be added to the
byte code directly. For code injection, RVRunner uses the following idea: It cre-
ates a customized class loader that will inject corresponding code when loading
classes. It then reloads all involved classes using this custom class loader, which
now adds the monitoring code into the program under test. Our framework uses
the Javassist library [5] that provides the functionality to manipulate the Java
bytecode at load-time of Java classes. For test execution, RVRunner delegates to
jUnit’s the default implementation preserving the standard functionality.

While jUnitRV maintains the monitor state, recognizes events and evaluates
propositions, the behavior of monitors is provided by the implementation of a
single interface Mealy which basically represents the transition function and out-
put labeling of some deterministic (possibly infinite-state) Mealy machine. That
is, jUnitRV provides the current state and proposition evaluations and expects
the subsequent monitor state. The implementation of a monitor construction
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remains independent of the state and event management. This easily allows for
the integration of custom monitoring approaches.

Since all required classes are loaded by the jUnit framework, jUnitRV can
be deployed as a standard jar-archive and integrated into any common testing
environment, it suffices to make jUnitRV available through the Java class path.
The tool works with common IDEs, e.g. Eclipse or Netbeans as it leverages the
jUnit test integration.

A major advantage of manipulation of byte code runtime verification is, that
it allows to insert event generation routines even into third party code where the
sources are not available. jUnitRV is hence also independent of the programming
language of the target program as long as it is run on the JVM. Testing Scala
applications or libraries, for example, is thus also possible.

Note that, in principle, manipulation of byte code must be treated with care as
the tested and deployed byte code differ. However, we consider this uncritical in
most practical cases. Additionally, jUnitRV allows for deploying the instrumented
application, i.e. including all modifications.

5 Conclusion

In this paper, we introduced jUnitRV as a tool extending the unit testing frame-
work jUnit by runtime verification capabilities. Within jUnit, test cases are spec-
ified manually together with assertions that are evaluated in the corresponding
states of the system under scrutiny. Using jUnitRV , it is now possible to specify
temporal assertions that specify correctness properties for complete test runs. As
such, test case specification is simplified significantly in many situations. In the
near future, we plan a case study with a larger number of users to investigate
jUnitRV’s usability in practical applications, including scalability under larger
test suites and the practical overhead.
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Abstract. Developers who use C model checkers have to overcome three
usability challenges: First, it is difficult to express application level
properties as C-level verification conditions, due to the abstraction gap.
Second, without advanced IDE support, it is difficult to interpret the
counterexamples produced by the model checker and understand what
went wrong in terms of application level properties. Third, most C model
checkers support only a subset of C and it is easy for developers to in-
advertently use C constructs outside this subset. In this paper we report
on our preliminary experience with using the MPS language workbench
to integrate the CBMC model checker with a set of domain-specific ex-
tensions of C for developing embedded software. Higher level language
constructs such as components and decision tables makes it easier for end
users to bridge the abstraction gap, to write verification conditions and
to interpret the analysis results. Furthermore, the use of language work-
benches allows the definition of analyzable language subsets, making the
implementation of analyses simpler and their use more predictable.

1 Introduction

Current C model checkers have reached a level of scalability that makes them
useful for real-world projects. However, their adoption in practice is much lower
than it could be. There are three categories of challenges in using C model
checkers [1,2]: First, it is difficult to formalize the to-be-verified application-level
properties at the level of C, so model checkers are used only to verify implicit
C-level properties (e.g., program does no crash, no overflow occurs). However,
this is often not enough for end users. Second, once the result is obtained (at the
abstraction level of C) it is difficult for a user to interpret it at the application
level. Third, due to the complexity of C itself, many model checkers support
only a subset of C and/or are simply buggy when certain C features are used.
All these challenges are due to the gap between the abstractions relevant at the
application level and how they are reflected in programs on the one hand, and
the abstractions of the analysis tool on the other hand.
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In this paper we propose a method to simplify the use of C model checkers that
is based on the following three pillars: 1) we describe how various extensions of C
encode higher level abstractions and their (explicit or implicit) properties; 2) we
lift the analysis results to the application level, making them more understand-
able to the user; and 3) we define language restrictions that reflect limitations of
C model checkers, making them evident to the user. We have implemented this
method in mbeddr, an extensible version of C. As examples for C extensions we
use components and decision tables. As analyses examples we show complete-
ness and consistency of decision tables, and checking of interface contracts and
protocols for components by using the CBMC model checker [3].

2 mbeddr: An Extensible C Language

mbeddr ([4] and ����������		
���) is an extensible set of languages for em-
bedded software development based on C, supporting the incremental, modular
domain-specific extension of C. mbeddr also supports language restriction, in
order to create subsets of existing languages. mbeddr is based on the JetBrains
MPS language workbench (�����������
�����������) and exploits its capa-
bilities for language modularization and composition [5].

Out of the box, mbeddr comes with a set of extensions for interfaces and
components, state machines, physical units and decision tables. Some of them
lend themselves to formal analysis: currently we have integrated the Yices SMT
solver (e.g. to verify decision table consistency) and the NuSMV model checker
(for verifying state machines) [4,6,7]. In this paper we illustrate how language
extension mechanisms allow a deep integration of the CBMC model checker.

Fig. 1. Interface definition (left); Use of the interface in client code (right)

Interfaces, Components, Contracts. An interface defines a set of opera-
tions. In addition to the signature, each operation can define preconditions and
postconditions. In addition, a protocol state machine defines the valid call se-
quences of the operations in an interface. The left part of Fig. 1 shows an exam-
ple interface definition. ����������	 has two preconditions, one postcondition
and a protocol specification that specifies that �������� must be called before
calling ����������	 (when ����������	 is called, the interface must be in
the ������ state, which can be reached by calling ��������). Fig. 2 shows a
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Fig. 2. Components implement each function of their provided interfaces. The users of
a component must comply with the preconditions and use protocol defined in the in-
terface. The implementation of each interface functions should comply with the defined
post-conditions. In �����������	 we show an example of decision tables.

component that provides the ����	������
 interface. The right part of Fig. 1
shows an example of client code of the component. Using model checking, we
can verify whether a clients conforms to the preconditions and the protocol, and
whether the implementation of the interface satisfies the postconditions.

Decision Tables. Decision tables [8] exploit JetBrains MPS’ projectional editor
in order to represent two-level nested if statements as a table (Fig. 2). The
tabular notations makes it easier for developers to write and understand sets of
input conditions. Decision tables suggest two verifications: completeness (check
whether all possible input value combinations are covered), and determinism
(checks that for any given set of input values only one option is valid).

3 Integrating CBMC into mbeddr

Fig. 3 shows the integration of CBMC: from programs written with higher-level
constructs we generate C that includes a set of labels that represent higher-level
verification properties (see next paragraph). The C code is then analyzed with
CBMC and the analysis results are parsed and lifted back to the abstraction
level of the higher-level constructs to make them easy to interpret.

���

����
���	
���
���	
���	������������	�

�	
���	�����������������
�����������

�������

�����
�������������������������

���	
�������

Fig. 3. Approach at a glance: generate C code, run CBMC and lift the raw results
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1 float computeSpeed(int16_t distance, int16_t time, void* ___inst) {
2 PlauzibilizedSpeedComputer* ___ci = ((PlauzibilizedSpeedComputer*)(___inst));
3 switch (___ci->___protocolState) {
4 case 2: { ___ci->___speedComputer_protocolState = 2; break; }
5 default: { protocolViolationForRunnable_2161187783549496741: break; }
6 }
7 if (!(time > 0)) { pre_2161187783549496724__2161187783549496741: ... }
8 float currentSpeed = distance / time;
9 float delta = ...

10 float ___result = decTabExp(delta, ___ci, delta, currentSpeed);
11 if (!(___result > 0)) { post_2161187783549496732__8053687140971342992: ...
12 return ___result;
13 }
14 static float decTabExp(float delta, struct PlauzibilizedSpeedComputer* ___inst,
15 float delta, float currentSpeed) {
16 if (/* no case covered */) { label_dectab_completeness_8053687140971342993: ... }
17 if ((delta < ___inst->field_maxPlausibleDelta) && (___inst->field_initialized) &&
18 (delta < ___inst->field_maxPlausibleDelta) && !(___ci->field_initialized)) {
19 label_dectab_nondeterminism_0_8053687140971342993: ... } ... }

Fig. 4. Generated C code from the implementation of the interface

Encoding Verification Conditions as Reachability. We verify pre- and
postconditions, protocols and decision tables with the help of reachability analy-
sis. As shown in Fig. 4, we generate labels (the things with the long numbers) to
annotate locations in the code which represent violations of the high level proper-
ties. For example, operation implementations in components have �� statements
at the beginning that check the precoditions. The label is placed inside the body
of the ��. The body is only executed if the precondition fails. We maintain a
mapping between each label and the higher-level construct whose property the
label represents. We then use CBMC to check whether the labels can be reached.

Lifting the Result. Running the reachability analysis with CBMC on the gen-
erated C provides a raw analysis result at the abstraction level of C. It specifies
for each label whether it can be reached or not (if it can be reached the result in-
cludes a trace through the C code). This raw result needs to be interpreted with
respect to the higher-level verification condition that is encoded by the label.
In addition, the counterexample must be related to the program that includes
the higher-level constructs. In Fig. 5 we illustrate examples for lifted results
for checking contracts, protocol of components and the completeness of decision
tables. Lifting the counterexample involves several abstraction steps:

1. Eliminate the generation noise from the C code. Part of the generated C
code represents encodings of higher level concepts. For example, additional
functions are generated that implement decision tables. In these cases, the
corresponding sections of the counterexample are irrelevant in terms of the
higher-level construct; they should not be visible in the lifted result.

2. Interpret the C-level counterexample. Higher-level constructs are encoded in
C through generation with the help of variables or function calls. These en-
codings need to be traced back. For example, the components are initialized
in a function. If this function shows up in a C-level counterexample, it means
that the components were initialized.
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Fig. 5. Examples of lifted analyses results. In the case when an analysis fails, a lifted
counterexample at the DSL-level is provided.

3. Restore original names. Since mbeddr supports namespaces, the names of the
high-level program elements are mingled with module names in the C code.
During lifting, we must recover the names of the higher-level abstractions.

Making Users Aware about the Analyzability of Their Code. Due to the
model construction problem [2], building robust verification tools for large and
complex languages is challenging. In the case when the underlying verification
tool does not support a language feature (intentionally, or because it has bugs),
we inform the user about the non-analyzability of the code by showing a warning
in the IDE. This way, unpleasant surprises are avoided and end user acceptance
can be increased. For example, Fig. 6 (above the line) shows a program frag-
ment that cannot be analyzed with CBMC 4.2 (there is a problem with function
pointers that has since been fixed). The part below the line shows CBMC’s er-
ror message if that code is used as input. Code like this is generated when the

1 struct PlauzibilizedSpeedComputer { struct PlauzibilizedSpeedComputer anSC;
2 char (*activate)(); void initializeComponents() {
3 int (*computeSpeed)(int, int); anSC.activate = &activateImpl;
4 }; anSC.computeSpeed = &computeSpeedImpl;
5 char activateImpl() { return 0; } }
6 int computeSpeedImpl(int d, int t) { int main() {
7 return 0; initializeComponents();
8 } int x = (*(snSC.computeSpeed))(2, 3);... }
9 _________________________________________________________________________________________

10 Assertion failed (base_type_eq(assignment.lhs().type().assignment.rhs().type().ns)),
11 function return_assignment, file symex_function_call.cpp, line 483

Fig. 6. Example of a code fragment that is generated from mbeddr but is not supported
by CBMC (top) and the error message provided by CBMC when this program is
analyzed (bottom). We explicitly inform mbeddr users when they use a high-level
construct that leads to a non-supported language fragment in the generated code. In
this manner, we make the usage of analysis more predictible to the developers.
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components in mbeddr are wired dynamically to support runtime polymorphism
(via indirection through function pointers). mbeddr has a configuration option
that forces static wiring of components (by using a language restriction), avoiding
the use of function pointers in the generated C code. This makes the code ana-
lyzable, but it also limits the flexibility of the user. Making this tradeoff explicit
allows users to make an informed decision regarding flexibility vs. analyzability.

4 Related Work

In this paper we extend our previous work on using language workbenches to
enable more user-friendly and high-level formal verification [4,6,7] by integrating
a general purpose C-level model checker. There is significant related work on
integrating C model checkers into development environments [9,10]. There is
also already work on generating verification properties from higher level models
[11] and to trace the analyses results at a code level back at the model level [12].

Our work is different mainly in that instead of using models to generate veri-
fication properties, we use language extensions. This way we retain the benefits
of generating verification conditions from higer-level abstractions: deriving the
verification conditions is straight forward, and lifting the counterexample to the
higher abstraction level eliminates a significant amount of noise and thereby im-
prove usability. In addition, we avoid the semantic and tool integration issues
that arise when (verifiable) parts of programs are expressed with different for-
malisms than the regular C code: the extensions have clearly defined semantics
in terms of C, and the tool integration is seamless.

5 Conclusions and Future Work

We see domain-specific languages, language engineering and language work-
benches as key enablers to increase the usability of formal verification. In the
future, we will generate invariants from high level constructs and we will support
to set different entry points in the analysis. A challenge that we foresee is that the
semantics at DSL level (”big step”) might miss many C-level errors (”small-step”)
and make the interpretation of the high-level counterexample unsound.
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Abstract. The C integer types are prone to errors due to unchecked
casting that can leave programs vulnerable to a host of security exploits.
These errors manifest themselves when there is a semantic disconnect
between the programmer’s view of the language and the actual imple-
mentation of the programming language. To help detect these errors, we
are developing a C integer type safety checking tool written in ACL2.
This paper presents the justification and fundamental logic behind the
tool, the basic operations of the tool, and discussion of future plans.

1 Introduction

Even with its latest standardization [1], the programming language C remains
weakly typed and, except for a select few of its operators that can only be ap-
plied to integer type operands, the majority of its operators can be applied to
operands of different data types by the means of its wholesale explicit or im-
plicit type casting. While cast operations involving C floating point types have
the support of runtime checks to ensure proper representation of real numbers,
casting of C integer types do not; leaving c integers subject to overflow/under-
flow, signage, and truncation errors during both runtime and compilation.
According to Seacord [2], these integer errors are the most overlooked and least
understood C memory errors.

For a runtime example, suppose a variable x is holding the value 10 and x is
used in a conditional statement, such as

if(x > -10){ // do something important... }.

Semantically, if x is greater than -10, the code’s execution path branches into “do
something important”. In C, the literal value -10 is typed as an int. If x was
declared as an int or unsigned short, then the “do something important”
branch would be taken as expected. However, if x was declared as an unsigned

int, “do something important” would not be executed. This is due to the
compiler casting the literal -10, according to C’s integer promotion rules,
to an unsigned int type, and its resulting value is interpreted as a very large
positive number. Although the different integer types of x can produce different
outcomes in the above conditional example, each are correct according to the C
casting rules.
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By being weakly typed, C is not type safe because of its potential integer
errors. Integer errors corrupt data and data corruption becomes a fault leaving a
system vulnerable to attacks including denial of service (DoS), escalation of priv-
ilege (EoP), and execution of arbitrary code attacks. Since type safety is defined
as a characteristic of a program that indicates that it is free from unintended
behaviors, the goal of the ACL2 C integer type safety analysis tool introduced
in this paper is to identify all existing and potential integer errors contained in
any given C source code. While other C type safety analysis tools have been
introduced, such as Astree [3], with claims they can show an absence of integer
bugs, we believe the ACL2 proof generating capacity of our tool can insure an
absence of integer bugs. The logic behind the tool is based on C’s static typing
semantics derived from its casting rules and the typing constraints placed on
expressions and statements as stated in the C standard and discussed in Sect.
2. The basic tool design is discussed in Sect. 3 before concluding remarks.

2 Notes on Deriving the C Static Typing Semantics

Programs written in weakly typed languages, such as C, can be type safe, if
programmers undertake the responsibility to do so. Most programmers under-
stand the operational semantics of C operators such as the binary +. However,
many programmers make the wrong assumption that if an operation is allowed
on mixed operand types, the operation is type safe. Even Ritchie [4] said, C’s
typing rules with respect to operations are quirky and flawed.

C’s typing system is defined in §6.2.5 of the standard1. Accordingly, type gives
a value meaning and a value’s type is determined by the expression accessing
a memory object or function return. For all C types, each belongs to one of
three general type categories: object types that fully describe memory objects;
function types, that describe the return type of a function; and incomplete
types that are either a void pointer or a declared object that is not fully defined,
such as an array with an unknown size.

To formalize C’s typing system, we begin with a syntax of types. The syntax
is extracted from the 26 rules outlined in §6.2.5 of the standard and expressed in
Backus-Naur Form (BNF). For example, all C types and the three general type
categories are expressed as:

〈c type〉 := 〈object type〉 〈function type〉 〈incomplete type〉

Each general type can be further reduced until the terminal or base types
are revealed. For example, 〈object type〉 can be reduced to 〈scalar-type〉,
〈aggregate-type〉, and 〈union-type〉. In 〈scalar-type〉, the 〈arithmetic-type〉
is held, and in 〈arithmetic-type〉, the base types such as int and float reside.

According to Mitchell [6], casting implies sub-typing and the syntax of C
types expressed in BNF shows sub-type relationships used by the C casting

1 Any reference to C refers to the standard ISO/IEC 9899:1999 [5](C99), since work
on this project started in advance of the C11 standard roll out.
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Γ � e1 : exp[τ1] Γ � e2 : exp[τ2]
isArithmetic(τ1) isArithmetic(τ2)

arithConv(τ1, τ2) � τ ′

Γ � e1/e2 : exp[τ ′]
(Division)

Fig. 1. Partial typing inference rules for the division operator

rules defined in §6.3 of the standard, such as integer conversion rank, integer
promotions, and usual arithmetic conversions. A sub-type relation, written
τ1 ⊆ τ2, means that any value held in type τ1 may also be held in τ2. Sub-type
relationships are reflexive (τ ⊆ τ), transitive (if τ1 ⊆ τ2 and τ2 ⊆ τ3, then
τ1 ⊆ τ3), and antisymmetric (if τ1 ⊆ τ2 and τ2 ⊆ τ1, then τ1 = τ2).

With C’s type syntax in hand, C’s static typing semantics can be constructed
and expressed (1) as typing judgments of the form

Γ - E : θ (1)

where E is an expression, Γ is the expression’s type environment, and θ is
the type attributed to E. If a typing derivation using this judgment reaches a
conclusion, then E is a well typed expression of type θ as it complies to the
standard’s typing rules. The typing semantics of a programming language is
typically defined as a consistent set of axioms and inference rules. The complete
collection of typing rules for a language is called a (formal) type system [7].

The major components of a C program are a collection of declarations (§6.7)
with or without initializations, expressions (§6.5), statements (§6.8), and func-
tions (§6.9.1). The type inference rules are drawn from the standard that provides
a combination of syntax, constraints, and semantics for each component. Con-
straints state the type restrictions; while the semantics, in addition to giving
operational meaning, specify the casting method.

Let the division / multiplicative operator be an example (Fig. 1); where the
conclusion (under the bar) is true if the premises (above the bar) are true.
The premises state that the operand expressions of / are constrained to be of
arithmetic type and according to the semantics, the usual arithmetic conversions
are performed on the operands. If the premises hold, the conclusion is that the
result has the type of the promoted type and its value contains the quotient
derived by dividing the first operand by the second operand.

To complete the division type safety analysis, it must be shown that operand
e2 = 0 and the result value belongs to the range of legal values that can be held
by the promoted type. That is, if the result of expression e1/e2 is of type τ and
if τminvalue

≤ result ≤ τmaxvalue
, then the operation is type safe.

3 Notes on Designing the Static Analysis Tool

The type safety analysis tool is being coded in ACL2 [8]. There were four factors
behind the choice of ACL2. ACL2 is 1) executable and 2) uses the bignums data
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type. 3) ACL2 supports formal proofs and our intent is to use the theorem prover
to prove properties of the tool. That is, we can evaluate the formal semantics of
the language as encoded in the tool, to ensure that is it correct; and, we can use
that formalism to reason about limitations or completeness of the tool. 4) The
tool leverages another suite of ACL2 based tools, starting with the c2acl2 [9]
translator, that models C source code (Listing 1.1), in a lisp style abstract parse
tree (AST) and generates a symbol table (symtab).

At a black box level, the analysis tool inputs the .lisp AST and the .symtab
symtab generated by c2acl2 and outputs a final report (Listing 1.2). Usefulness
of the final report depends on what happens inside the black box. For example,
a näıve approach would have the tool flag and issue a warning on every type
mismatch contained in every expression or statement. However, taking this ap-
proach on C programs, where implicit coercions are standard and routine would
produce too many false positives (i.e., false alarms) and too many false negatives
(i.e., misses).

Arriving with a false positive is straightforward. For example, the positive
value 1 belongs to all integer types. Suppose unsigned int x with the value 1

is being added to long int y also with a value 1. The näıve approach would
flag the expression x + y as a type mismatch (a type safety false positive) even
though the result 2 belongs to all integer types. On the other hand, suppose that
there is an expression containing three signed char variables named result,
x, and y where result is being assigned the addition of x with value 10 and y

with value 120. The näıve approach would not raise an alarm (a type safety false
negative) even though result is in an overflow condition. In the two scenarios
just enumerated, the näıve approach fails because it does not evaluate and test
values with respect to the valid ranges of C types.

Because of the potentially large number of false positives and false negatives,
a better tool design takes into consideration how a C program executes through
its components. According to Liskov [10], program execution can be modeled
as a series of states and transitions (2). Let σ represent a state, σ0 the initial
state, σn the final state, and Tr represent a transition, then the execution of a
program is modeled as:

σ0Tr1σ1 . . . σn−1Trnσn (2)

1 int main()
{

3 char c1;
unsigned short s2 = 12;

5 int i1 = 123;

7 c1 = s2 + s2; // unsigned short + unsigned short
c1 = i1 + c1; // int + char

9 c1 = c1 + i1; // char + int
}

Listing 1.1. Simple C program that adds mixed integer types
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(C2ACL2 (FILE "expAddVV")
2 (

";************************************************"
4 ";�Function�Definition�for�function:�main"

";************************************************"
6 (FUNC (INT )(ID "main" 1 ) NIL

(BLOCK
8 (DECL (CHAR )(ID "c1" 2 )NIL)

(DECL (UNSIGNED CHAR )(ID "c2" 3 ) (INIT (LIT "’a’")))
10 (DECL (UNSIGNED SHORT )(ID "s2" 5 ) (INIT (LIT 12)))

(DECL (INT )(ID "i1" 6 ) (INIT (LIT 123)))
12 (EXPSTMT (ASSN (ID "c1" 2) (ADD (ID "s2" 5) (ID "s2" 5))))

(EXPSTMT (ASSN (ID "c1" 2) (ADD (ID "i1" 6) (ID "c1" 2))))
14 (EXPSTMT (ASSN (ID "c1" 2) (ADD (ID "c1" 2) (ID "i1" 6))))

))"�;�End�of�function�main"
16 (TYPE -SAFETY -ANALYSIS

... "removed�repeat�of�code�for�brevity"
18 (DECLARATIONS ((2 ("c1")(( CHAR) (NOQUAL) (NOSTORE ))(NIL))

(3 ("c2")(( UCHAR) (NOQUAL) (NOSTORE ))(97))
20 (5 ("s2")(( USHORT) (NOQUAL) (NOSTORE ))(12))

(6 ("i1")(( INT) (NOQUAL) (NOSTORE ))(123))))
22 (EXP -STMTS ((( EXPSTMT (ASSN (ID "c1" 2)

(ADD (ID "s2" 5) (ID "s2" 5)))
24 (LINE 6))

(2 ("c1")(( CHAR) (NOQUAL) (NOSTORE ))(24)))
26 (( EXPSTMT (ASSN (ID "c1" 2)

(ADD (ID "i1" 6) (ID "c1" 2)))
28 (LINE 7))

(2 ("c1")(( CHAR) (NOQUAL) (NOSTORE ))
30 (147 "Error:�exceeds�value�range�of�type" CHAR )))

(( EXPSTMT (ASSN (ID "c1" 2)
32 (ADD (ID "c1" 2) (ID "i1" 6)))

(LINE 8))
34 (2 ("c1")(( CHAR) (NOQUAL) (NOSTORE ))

(270 "Error:�exceeds�value�range�of�type"
36 CHAR ))))))

Listing 1.2. Type-Safety analysis tool output for Listing 1.1

While it is impossible to statically determine the state of all C programs be-
cause of unknown input and externally defined functions, the tool should evaluate
and track expression and statement results whenever operand values are known.
Once evaluated, the result values are checked to see if they fall within the valid
range of values representable by the result type. If the value falls outside the
valid range or if any of the checks based on the static typing rules fail, the tool
issues an error statement. If any operand value is not known, such as a point of
unknown input data, a warning should be issued about the unknown value and
display the range of acceptable values. The intent is to make this warning into
a verification condition for the tool.

The process behind this design starts with listing the declaration statements.
Once the declarations have been verified, the tool uses the declaration table
and the code’s AST to validate all expressions, statements and their execution
branches, and function calls. As each is evaluated, value changes, if any, are up-
dated in the declaration table. For example, the analysis report for Listings 1.1
appears in Listing 1.2. In this example, lines 6–15 show the lisp model of the
code, lines 18–21 show program state after execution, with final variable values,
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or ranges of values, as the last item in the list for each variable. Lines 22–36
show the full output of the analysis, with detected integer errors listed on lines
30 and 35.

4 Conclusions

An ACL2 C integer type safety analysis tool is being constructed. To date, a
formal type system has been constructed and the final functions for the decla-
ration statements for the tool are being coded. Unlike some static type-checking
tools, we support dynamic analysis over the type ranges of possible values of the
variables whenever a variable value is known; thus detecting some potentially
overlooked errors, while reducing the number of false positives.

The tool in its present form does not adequately handle floats, ACL2 readily
handles rational numbers such as 1

2 but rejects floating point numbers such
as 0.5. We are examining approaches to handling floats. In addition, proofs of
correctness of the analysis are being developed. With the support of ACL2 we
will be able to verify properties of the type inference rules, and to validate if
certain errors can always be detected in all code (or a subset of programs).
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Abstract. The development of a safety case has become common practice for the
certification of systems in many safety-critical domains, but large safety cases still
remain difficult to develop, evaluate and maintain. We propose hierarchical safety
cases (hicases) as a technique to overcome some of the difficulties that arise in
manipulating industrial-size safety arguments. This paper introduces and moti-
vates hicases, lays their formal foundations and relates them to other safety case
concepts. Our approach extends the existing Goal Structuring Notation (GSN)
with abstraction mechanisms that allow viewing the safety case at different levels
of detail.

Keywords: Abstraction, Automation, Formal methods, Hierarchy, Safety assu-
rance, Safety cases.

1 Introduction

A safety case, or more generally an assurance case, is a structured argument supported
by a body of evidence, which provides a convincing and valid justification that a system
meets its (safety) assurance requirements, for a given application in a given operating
environment. The development of a safety case is increasingly becoming an accepted
practice for the certification of safety-critical systems in the nuclear, defense, oil and
gas, and transportation domains. Indeed, the development and acceptance of a safety
case is a key element of safety regulation in many safety-critical sectors [1].

At present, safety cases are manually constructed often using patterns; they also have
some natural higher-level structure, but this can become obscured by lower-level de-
tails during their evolution. Furthermore, due to the volume of information aggregated,
safety cases remain difficult to develop, evaluate (or understand), and maintain. As an
anecdotal example, the size of the preliminary safety case for surveillance on airport
surfaces with ADS-B [9] is about 200 pages, and is expected to grow as the operational
safety case is created. Tools such as AdvoCATE [5] can assist in and, to an extent,
automate the construction of assurance argument structures from external verification
tools [6], and artifacts such as requirements tables [3]. Often, these have inherent struc-
ture that can be exploited to help comprehension.

These observations, and our own prior experience [2], suggest a need for abstraction
and structuring mechanisms in creating, and when communicating, a safety argument.
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The motivation for our work is the ongoing construction of a safety case [4] for
the Swift unmanned aircraft system (UAS), being developed at NASA Ames. We have
used the goal structuring notation (GSN) [10] to document the Swift UAS safety case.
In brief, GSN is an effective graphical notation for representing the structure of an
argument from its premises to its conclusions. Using GSN (e.g., as illustrated in Fig. 1),
we can express the goals or claims made (rectangle), the strategies (parallelogram) to
develop goals, solutions (circle) that justify the claims, together with the appropriate
associated context (rounded rectangle), assumptions, and/or justifications (ovals). GSN
also provides a graphical annotation (‘/’) to indicate undeveloped elements. There are,
additionally, two link types with which to connect the notational elements: in-context-of
and is-solved-by.

In this paper, we extend GSN to include hierarchical structuring mechanisms, mo-
tivating and illustrating our ideas with a simple, but real, example argument structure
fragment. The resulting structures, hicases, better clarify the structure of a safety case
and, we believe, improve the quality and comprehensibility of the argument. Our spe-
cific contributions are a formalization of the notion of a partial safety case (argument
structure), its extension to include hierarchy, and relating the unfolding of a hicase to
an (ordinary) safety case argument structure.

2 Types of Hierarchy and Their Restrictions

Fig. 1 shows part of a chain of claims, strategies and evidence, from the top level of
the auto-generated fragment of the Swift UAS safety case (see [4] for details). The top-
level claim AC1 concerns the correct computation of aileron control variable values,
during descent, by the relevant PID control loop in the Swift UAS autopilot. The chain
of argumentation shown represents a direct proof of a verification condition. Some of
the details of the proof have been transformed into the safety case, such as the theorem
prover used as context, the proof objects, i.e., verification conditions, as claims, etc. This
is an instance of a sub-structure that we may abstract away in a hierarchical presentation.

In general, we define three types of hierarchical abstractions, i.e., hinodes:

(1) Hierarchical evidence abstracts a fully developed chain of related strategy ap-
plications, e.g., in Fig. 1, since the argument structure starting from the strategy AC10
downwards is complete (has no undeveloped elements), we can construct a hierarchical
evidence node, H1: Proof using Vampire–0.6 Prover, that abstracts and encapsulates it.
As there are many such verification conditions (in the auto-generated safety case frag-
ment of the Swift UAS), we have many instances of this structure. We can iterate this
procedure up the proof tree which offers opportunities for nesting hierarchies. Thus,
iterated abstraction can greatly reduce the size of the argument structure when viewed.

(2) Hierarchical goals, or higoals, are an abstraction to hide a chain of goals; one of
their main purposes is to provide a high-level view of an argument structure. In Fig. 1,
we can abstract the argument structure starting from (but not including) the strategy
AC2 downwards, into the higoal H2: Decomposed correctness properties hold.

(3) Hierarchical strategies aggregate a meaningful chain of (one or more) related
strategy applications, e.g., in Fig. 1, we can abstract the strategy AC30, along with its
sub-goals (AC76 and AC86), and its context elements (AC32 and AC34), into a single
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Fig. 1. Fragment of an auto-generated part of the Swift UAS safety case [4], showing hinodes
annotated as G (goal), S (strategy) and E (evidence)

hierarchical strategy H3: Argument by decomposition and hiding verification conditions.
Thus, hierarchical strategies can hide side-conditions (or trivial subgoals) by fully en-
closing particular paths of the safety case argument structure. This gives us the flexibil-
ity to concentrate an inspection on specific important paths through the safety argument,
e.g., those paths addressing claims having ‘high-risk’.

There are restrictions on what can be abstracted inside a hinode: firstly, to preserve
well-formedness, input and output node types should be consistent, e.g., a hierarchical
strategy would have a goal as an incoming node and goals as outgoing nodes, in the
same way as an ordinary strategy. Next, we cannot abstract disconnected fragments as
there would be no path from the input goal to all the outputs. It is important to note that
this restriction does not force each hinode to have only one input. Rather, the restriction
applies to the input, so multiple connections can enter a hinode. A design decision was
to place any context, justification, and assumption nodes inside a hinode; thus, we may
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not link two (or more) hinodes, using a link of type in-context-of. Finally, we permit
encapsulation of both hierarchical evidence and strategies by higoals (e.g., as shown
in Fig. 1), or of both hierarchical goals and evidence by hierarchical strategies. This
gives us a notion of nesting of hierarchies as a way to manage the size of an argument
structure.

3 Formalization

To formalize standard safety case argument structures and hierarchical argument struc-
tures, we represent them as a labeled tree. The labeling function distinguishes the types
of nodes subject to some intuitive well-formedness conditions.

Definition 1. Let {s, g, e, a, j, c} be the node types strategy, goal, evidence, assump-
tion, justification, and context respectively. A partial safety case (argument structure) is
a triple 〈N, l,→〉, comprising nodes N , the labeling function l : N → {s, g, e, a, j, c}
that gives the node type, and the connector relation, →: 〈N,N〉, which is defined on
nodes. We define the transitive closure, →∗: 〈N,N〉, in the usual way. We require the
connector relation to form a finite forest with the operation isrootN (r) checking if the
node r is a root in some tree1. Furthermore, the following conditions must be met:
(1) Each part of the partial safety case has a root goal: isrootN (r) ⇒ l(r) = g
(2) Connectors only leave strategies or goals: n → m ⇒ l(n) ∈ {s, g}
(3) Goals cannot connect to other goals: (n → m)∧[l(n) = g] ⇒ l(m) ∈ {s, e, a, j, c}
(4) Strategies cannot connect to other strategies or evidence:

(n → m) ∧ [l(n) = s] ⇒ l(m) ∈ {g, a, j, c}

By virtue of forming a tree, we ensure that nodes cannot connect to themselves, that
there are no cycles and, finally, that two nodes cannot connect to the same child node.
Additionally, we see that the two link types (is-solved-by and in-context-of ) have no
semantic content, but rather provide an informational role.

Now, we extend Definition 1 with an additional partial order relation ≤ representing
hierarchical structure, where n < n′ means that the node n is encapsulated in n′. We
define a partial hierarchical safety case, i.e., hicase, such that we can always unfold all
the hierarchy to regain an ordinary safety case argument structure.

Definition 2. A partial hierarchical safety case is a tuple 〈N, l,→,≤〉. The set of nodes
N and labeling function l are as in Definition 1. The forest 〈N,→〉 is subject to the
same conditions as in Definition 1. The hierarchical relation ≤ fulfils the axioms of a
partial order and can thus also be viewed alongside N as a forest. Finally, we impose
the following conditions on the interaction between the two relations → and ≤:
(1) If v is a local root (using →) of a higher-level node w (i.e. v < w), then l(w) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g, if l(v) = g ∧ ∀v′ v′′. (v′ < w ∧ v′ → v′′ ∧ v′′ ≮ w) ⇒ l(v′′) = s
s, if l(v) = s ∧ [ ∀v′ v′′. (v′ < w ∧ v′ → v′′ ∧ v′′ ≮ w) ⇒ l(v′′) = g

∨ subtree rooted at v is not fully developed ]
e, if l(v) = s ∧ [ �v′ v′′. (v′ < w ∧ v′′ ≮ w ∧ v′ → v′′)

∧ subtree rooted at v is fully developed ]

1 A safety case argument structure has a single root.
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(2) Connectors will target the outer nodes: (v → w1) ∧ (w1 < w2) ⇒ v < w2

(3) Connectors come from inner nodes: (v → w1) ∧ (w1 ≤ w2) ⇒ v = w1

(4) Hierarchy and connection are mutually exclusive: (v ≤ w) ∧ (v →∗ w) ⇒ v = w
(5) Two nodes which are both at the top level, or immediately included in some node,

means that at most one node has no incoming → edge:
siblings i(v1, v2) ∧ isroot s(v1) ∧ isroot s(v2) ⇒ v1 = v2

Condition (1) formalizes our intuition that (a) a higoal must have a goal as root and any
nodes immediately outside the higoal must be strategy nodes, (b) a hierarchical strategy
must have a strategy as root, and either any nodes immediately outside the hierarchical
strategy must be goals, or the subtree rooted at v inside is not fully developed. The
latter accounts for the possibility that there are no outgoing goals, but the node is not
evidence; and (c) a hierarchical evidence node is the special case of a hierarchical stra-
tegy with no outgoing goals, but where the subtree with root at v is fully developed.
That is, we can view hierarchical evidence as a hierarchical strategy without outgoing
goals just as evidence is an axiomatic strategy. Conditions (2) through (5) are designed
to produce a mapping from a hierarchical argument structure to its ordinary argument
structure unfolding, i.e., its skeleton.

We note that a safety case argument structure 〈N, l,→〉 can be mapped to a hicase
〈N, l,→, idV 〉 where idV is the trivial partial order with only reflexive pairs. This or-
dering trivially satisfies all the well-formedness properties of a hicase. Conversely, we
define a skeleton operation (sk ), which maps hicases to ordinary safety case argument
structures, such that the tuple it constructs is well-formed with respect to the safety case
argument structure conditions (of Definition 1).

Theorem 1. The skeleton operation (sk ) which maps a hicase 〈N, l,→,≤〉 to a safety
case argument structure 〈N ′, l′,→′〉, where N ′ is the set of leaves of ≤, l′ is the restric-
tion of the labeling function l, and v1 →′ v2 iff ∃w ∈ N | v2 ≤ w and v1 → w maps a
well-formed hicase to a safety case argument structure.

Proof Sketch. The relationship between hiproofs [7] and hicases (as well as the cor-
responding relationship between safety cases and proofs) allows us to claim that the
mapping constructs the appropriate forest structure on 〈N ′,→′〉. We simply need to
show the well-formedness conditions (2) through (4) of Definition 1. For instance, con-
dition (2), i.e., (v1 → v2) ⇒ l(v1) ∈ {s, g}, comes for free since if v1 → w then it
already has this property for v1 →′ v2.

4 Related Work and Conclusions

Hierarchy in safety cases has been proposed as a basic (hierarchical) decomposition
represented as indentations in a spreadsheet-based argument structure [11]. This work
creates the equivalent of hierarchical evidence, but cannot hierarchically abstract stra-
tegies, as in our approach. Our notion of hierarchy considers ways in which to combine
nodes for meaningful abstraction, unlike the notion of argument structure depth. GSN
supplies a concept for modules and references to away nodes [10] that are complemen-
tary to hicases, though neither modules nor hicases subsume each other’s functionality.
Whereas away objects are simply references to a separate safety case fragment, higoals
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are an additional node enclosing an existing argument structure. GSN modules do not
have an equivalent notion of a hierarchical strategy as an enclosure of (possibly) a com-
plex (unfinished) safety case fragment. Modules can be seen as a large segment of a
safety case, typically applied at a higher level, whereas we view hinodes as being vi-
able at all scales. Modules also have informal contracts that they must fulfill to be
well-formed, but hinodes do not enforce any semantic properties.

We have implemented hicases in our assurance case toolset, AdvoCATE [5], pro-
viding basic features for constructing, modifying, and viewing hinodes, e.g., we can
modify existing argument structures to add hinodes with open (white-box) or closed
(black-box) views. We can also generate a tree representation of a hicase and modify
its contents [8]. Our current definition for safety cases and hicases only accounts for
core GSN and potential meta-data extensions. In practice, most safety case argument
structures make use of either (or all) of the GSN modular extensions and pattern mecha-
nisms; we would like to give an account for each of these within our model, with careful
thought about the module language to ensure that no inconsistencies are introduced.

We would also like to investigate the formal notions of hicase view (a slice through
the hierarchy giving a safety case fragment), and hicase refinement (providing a mathe-
matical meaning for well-formed changes to the hicase); although both exist informally
in our tool implementation, we believe it is important to formalize these concepts.
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Craciun, Florin 291

David, Alexandre 352
Decker, Normann 459
Denney, Ewen 478
Djoudi, Adel 108
Drijvers, Manu 63
Du, Dehui 352

Engel, Benjamin 307
Ermont, Jérôme 93
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Geldenhuys, Jaco 229
Goodloe, Alwyn E. 441
Gopalakrishnan, Ganesh 213
Griffith, Dennis 185
Guldstrand Larsen, Kim 352
Gunter, Elsa L. 185

Hales, Thomas C. 383
Halling, Brigid 398
Hamadi, Youssef 78
Hartmanns, Arnd 337
Hatcliff, John 276
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