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Abstract. This paper proposes a modified evolutionary algorithm called
traceable particle swarm optimization (PSO) that boosts bronchoscope
motion tracking during electromagnetically navigated bronchoscopy.
Since electromagnetic (EM) tracking is usually deteriorated by uncertain-
ties (e.g., patient respiratory motion or magnetic field distortion) that oc-
cur in interventions, we develop a traceable PSO framework by integrating
EM sensor measurements and image intensity information into the stan-
dard PSO method. In particular, all evolutionary parameters in our PSO
framework can be updated traceably or adaptively in accordance with spa-
tial distance constraints and image similarity information, resulting in an
advantageous performance in dynamic bronchoscope motion estimation.
Experimental results based on dynamic phantom validation demonstrate
that our proposed tracking scheme provides a more robust, accurate, and
efficient approach for endoscopemotion tracking than several current avail-
able methods. The average tracking accuracy of position and orientation
was improved from (4.3 mm, 7.8◦) to (3.3 mm, 6.5◦) and the computa-
tional time was reduced from 1.0 to 0.8 seconds per frame without any
acceleration devices or code optimization strategy.

Keywords: Bronchoscope Motion Tracking, Electromagnetic Tracking,
Particle Swarm Optimization, Electromagnetically Navigated
Bronchoscopy.

1 Introduction

Endoscope location estimation or its motion tracking is the key component of
any endoscope navigation systems, for instance, bronchoscope, colonscope, con-
choscope, and neuroendoscope. Such a motion tracking procedure is usually
formulated as an optimization process, which is commonly solved by deter-
ministic [1–5, 9] or stochastic [6–8] approaches. Deterministic methods, typi-
cally intensity-based registration algorithms [3], usually define an optimization
function to minimize the pixel difference between real video images and vir-
tual bronchial renderings generated from pre-operative imaging information, for
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example, three-dimensional (3-D) data that are acquired by computed tomog-
raphy (CT) or magnetic resonance imaging (MRI) scanners. Although image-
based methods work well in bronchoscope motion tracking, they are somewhat
constrained by bronchoscopic image artifacts (e.g., motion blurring) and eas-
ily get trapped in local minima during optimization. On the other hand, since
EM trackers suffer from localization problems (e.g., patient airway deformation)
and inaccurate EM sensor measurements (e.g., magnetic field distortion due to
metallic materials in the working volume), stochastic methods, which take the
randomness of bronchoscope movements into account, were introduced to deal
with the dynamic uncertainties in bronchoscope motion tracking. Such methods
seek the optimal of the posterior probability of one bronchoscope motion state,
e.g., using sequential Monte Carlo (SMC) algorithms to generate a set of parti-
cles and propagate them to approximate the probability distribution of dynamic
states. From experimental results [6–8], stochastic approaches were proved to be
stable and accurate. Compared to deterministic methods, stochastic approaches
show more robust and precise tracking performance but require more computa-
tional time to estimate six degrees of freedom (6DoF) motion parameters.

Even though many papers have been published on stochastic methods for im-
proving electromagnetically navigated bronchoscopy [6–8], a more robust and
accurate optimization approach is still greatly expected to tackle stochastic am-
biguities in bronchoscope motion tracking. Recently, a numerous population-
based stochastic evolutionary algorithm, particle swarm optimization (PSO),
which was originally proposed by Kennedy and Eberhart [10], has been increas-
ingly applied as a successful optimization technique to address multidimensional
complex problems [12, 11, 13]. The algorithm simulates natural and biological
behaviors such as birds flocking and fish schooling to find optimal solutions in
nonlinear and high-dimensional spaces. Moreover, one of most attractive aspects
of PSO is that it can tackle nonlinear, non-differentiable, and multi-modal opti-
mization problems by dynamically interacting all particles in a similar analogy
with the “cognitive” and “social” properties of populations [15, 14].

This work develops a traceable PSO framework for boosting EM tracking dur-
ing electromagnetically navigated bronchoscopy. It is worthwhile to highlight the
following aspects of our proposed approach. First, to the best of our knowledge,
our proposed PSO framework is a novel application of PSO in endoscope mo-
tion tracking. We successfully formulated endoscope motion tracking as a PSO-
based stochastic optimization process. Video image information and EM sensor
measurements can be effectively integrated into PSO to achieve a robust and
accurate tracking method, which also provides an effective means to fuse other
external tracking sources in bronchoscopy navigation. Furthermore, using spatial
constraints and image similarity, we modified PSO to automatically refresh evo-
lutionary parameters for addressing the diversity loss problem, alleviating parti-
cle impoverishment, and obtaining various particle diversity in PSO iterations.
Finally, our proposed approach combined ideas from evolutionary computation
and medical image computing communities that should be applicable to other
endoscopic guidances, e.g., conchoscope or colonscope.
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This paper is generally organized as follows. We briefly review the basic PSO
algorithm in Section 2. In Section 3, our proposed method for bronchoscope
location or navigation is described in detail, by following our validation setups
that are presented in Section 4. Experimental results are shown in 5 and discussed
in 7 before concluding this work and giving future work in Section 7.

2 Particle Swarm Optimization

We here briefly review the standard PSO algorithm [10]. In PSO, a number of
particles are utilized to denote the solutions in a dynamic system. Each particle i
at iteration j and time k is represented by state vector xi,j

k ∈ �D associated with

velocity vector vi,j
k ∈ �D that conducts particle transition and a corresponding

fitness value that is determined by observation model f(xi,j
k ). Given a particle

set {xi,j
k ∈ �D}Ni=1 (N is the number of particles), in j-th iteration, particle state

xi,j
k and its velocity vector vi,j

k are propagated to xi,j+1
k and vi,j+1

k with inertia

weight ω (to decide how much vi,j
k to be preserved in vi,j+1

k ) by:

vi,j+1
k = ωvi,j

k + λ1η1(p
i,j
k − xi,j

k ) + λ2η2(g
i,j
k − xi,j

k ), (1)

xi,j+1
k = xi,j

k + vi,j+1
k , (2)

where λ1 and λ2 are acceleration constants and η1 and η2 are randomly generated
from the uniform distribution with interval [0.0 1.0]. pi,j

k (for the local individual

best) and gi,j
k (for the global all best) are the best state found by particle i so

far and the best state found by the whole swarm so far, respectively.
After j-th iteration, pi,j

k and gi,j
k can be updated in accordance with each

particle fitness value evaluated by f(xi,j+1
k ):

pi,j+1
k =

{
xi,j+1
k iff(xi,j+1

k ) > f(pi,j
k )

pi,j
k otherwise

, (3)

gi,j+1
k = argmaxpi,j+1

k
f(pi,j+1

k ). (4)

Based on Eqs. 1∼4, PSO tries to find the optimal solution during an optimization
procedure. Please refer to [10] for more details about the basic PSO algorithm.

3 Proposed Tracking Framework

3.1 Overview

Our proposed framework to estimate bronchoscope motion consists of three main
steps: (1) particle stochastic diffusion, (2) traceable analysis of evolutionary fac-
tors during particle propagation, and (3) the determination of bronchoscope
motion parameters. During Step (1), a swarm of particles is generated and
initialized. These particles are randomly propagated to increase the diversity.
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Fig. 1. The flowchart of bronchoscope 3-D motion estimation using our proposed
method that comprises three steps of stochastic diffusion, particle propagation with
adaptive evolutionary factors, and the determination of pose parameters

After that, evolutionary parameters including ω, λ1, and λ2 in Eqs. 1 and 2 are
calculated in Step (2). Finally, PSO iterations are performed to determine the
bronchoscope motion parameters or its pose information with position and ori-
entation. Fig. 1 illustrates the proposed tracking framework to process CT slices,
endoscopic video images, and EM sensor measurements for motion estimation.

3.2 Particle Stochastic Diffusion

We first define particle state pi,j
k as a six-dimensional vector based on the bron-

choscope position and orientation in our case of bronchoscope motion tracking:

pi,j
k = [tx ty tz θ φ ψ]T , (5)

where pi,j
k corresponds to camera pose matrix Qk(p

i,j
k ) = F(tx, ty, tz; θ, φ, ψ),

translations tx, ty, and tz and Euler angles θ, φ, and ψ of the bronchoscope cam-
era around the x-, y-, and z-axes represent position and rotation, respectively.

Suppose that we generate a swarm of particles P i,j
k = {(pi,j

k , f(pi,j
k ), γi,jk )}Ni=1,

where γi,jk is a weight based on spatial distance constraints. To increase the
diversity of particles and avoid particle impoverishment, we perform a stochastic
diffusion procedure in terms of the Gaussian propagation model and obtain xi,j

k :

xi,j
k = G(pi,j

k , μΔsk), (6)
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where μ is a Gaussian distribution random number: r ∼ N (0, 1) and Δsk is
determined by EM-based motion estimates sk and sk−1 at frames k and (k− 1):

Δsk = sk − sk−1, sk = [tkx t
k
y t

k
z θ

k φk ψk]TEM , (7)

which is also used for initializing transition velocity vk: vk = Δsk before it
is updated by the global best solutions or estimates gk and gk−1 during the
iterations:

vk = gk − gk−1,gk = [tkx t
k
y t

k
z θ

k φk ψk]Tglobal. (8)

Note that our stochastic diffusion procedure for particle diversification does not
perform a resampling process, as SMC or particle filter methods do [8], since the
local best particles provide compact samples for propagation [13].

3.3 Parameter Traceable Analysis

Evolutionary parameters λ1, λ2, and ω heavily influence the PSO performance.
Most current modified PSO algorithms do not consider spatial continuity con-
straint and image sequence information, which may result in a lack of systematic
treatment of evolutionary states and expose PSO to a dangerous level of swarm
explosion and divergence. To handle this limitation, we modify PSO based on
image intensity to traceably control λ1, and λ2 by:

λ1 = 2f(pi,j
k )/f(pi,j

k ) + f(gi,j
k ), λ2 = 2f(gi,j

k )/f(pi,j
k ) + f(gi,j

k ), (9)

where f(pi,j
k ) is defined as observation probability Pr(oi,j

k |pi,j
k ):

f(pi,j
k ) = Pr(oi,j

k |pi,j
k ) = δi,jk (

N∑
i=1

δi,jk )−1, (10)

where oi,j
k is an observation corresponding to pi,j

k . Pr(oi,j
k |pi,j

k ) depends on sim-

ilarity δi,jk between video image IkR and virtual rendering IkV (Qk) generated at

pose matrix Qk(p
i,j
k ) and δi,jk is calculated based on image intensity by a modi-

fied mean square error (MoMSE) [8]:

δi,jk =MoMSE(IkR, I
k
V (p

i,j
k )). (11)

For adaptively calculating ω, we utilize both fitness value f(xi,j
k ) ∈ [0 1] and par-

ticle spatial distribution information γi,jk among the particles. We first compute

average distance di,jk from one particle to all other particles:

di,jk =
1

N − 1

N∑
i=1,i�=t

√
(xi,j

k − xt,j
k )2. (12)

After finding the largest distance dmax and the smallest distance dmin from
{di,jk }Ni=1, we normalize distance di,jg between one particle and the current global

best particle and obtain γi,jk and assign it to each particle:

γi,jk = (di,jg − dmin)/(dmax − dmin), γi,jk ∈ [0 1]. (13)
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Finally, since ω was suggested within the interval [0.4 0.9] for weighting the
global and the local searching abilities [14], we can traceably calculate it by:

ω(f(xi,j
k ), γi,jk ) =

2

2 + 3 exp(−1.28(f(xi,j
k ) + γi,jk ))

, (14)

which shows a novel strategy to automatically control ω in our modified PSO.

3.4 Bronchoscope Motion Estimation

Our work is to estimate to a full 6 degrees of freedom camera motion matrix
Qk including camera position and orientation. We integrate EM sensor mea-
surements and image similarity information into our modified PSO algorithm
discussed above. The output of the POS tracking framework is represented by:

Q∗
k(g

∗
k) = F(tgx, t

g
y, t

g
z ; θ

g, φg, ψg) =

(
Rk tk
0T 1

)
, (15)

where tk = [tgx, t
g
y, t

g
z ]

T and rotation matrix Rk are related to θg, φg, and ψg:

Rk =

⎛
⎝C3C2 C3S2S1 − S3C1 C3S2C1 + S3S1

S3C2 S3S2S1 + C3C1 S3S2C1 − C3S1

−S2 C2S1 C2C1

⎞
⎠ , (16)

where S1 = sin θg, S2 = sinφg, S3 = sinψg, C1 = cos θg, C2 = cosφg, and
C3 = cosψg. The implementation of our proposed method for improving EM
tracking and boosting navigated bronchoscopy is summarized in Algorithm 1.

Algorithm 1. Traceable PSO for Bronchoscope Motion Estimation

input : Bronchoscopic video images IkR, CT-based virtual images IV , and
electromagnetic sensor measurements sk

output: All global best estimates Q∗
k(g

∗
k) of bronchoscope camera poses

1. Initialization: At time k = 0, use Q0 to initialize Pi,j
0 and gi,j

0 ;
2. Perform stochastic diffusion to obtain {xi,j

0 } by Eq. 6;
3. Compute f(pi,j

0 ) by Eq. 10 and update Pi,j
0 and gi,j

0 by Eqs. 3 and 4;
4. Implement Traceable PSO iterations:
for k = 1 to T (frame number) do

for j = 1 to M (iteration number) do
Update evolutionary parameters ω, λ1, and λ2 by Eqs. 9 and 14;
for i = 1 to N (particle number) do

Perform PSO iteration in accordance with Eqs. 1 and 2;

Update each particle xi,j
k and velocity vector vi,j

k ;

Compute f(pi,j
k ) and γi,j

k by Eqs. 10 and 13;

end

Update particle set Pi,j
k and global best particle gi,j

k by Eqs. 3 and 4;

end

Find global best estimate g∗k from particle set Pi,j
k ;

Determine motion pose: Q∗
k(g

∗
k) ⇐⇒ F(tgx, t

g
y, t

g
z; θ

g , φg, ψg) by Eq. 15;

end

5. Return: all {Q∗
k(g

∗
k)}Tk=1
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(a) (b)

Fig. 2. The dynamic phantom was constructed with the airway tree rubber, a motor,
and nylon thread. (a) physical phantom and (b) phantom movement.

Fig. 3. The EM tracking system that was used here includes the control unit (left)
and the fat-type magnetic field generator (right)

4 Experimental Setups

4.1 Hardwares

We evaluated our proposed tracking method on a dynamic phantom with an
adjustable motion: 0 ∼ 24 mm, as shown in Fig 2. The CT spacing parameters
of our phantom were: 512×512 pixels, 1021 slices, 0.68-mm reconstruction pitch,
and 0.5-mm thick slices. A 3-D Guidance medSAFE tracker (Ascension Tech-
nology Corporation, USA) was used as an EM tracking system, which includes
a 9-coil at flat-type transmitter as a magnetic field generator, as illustrated in
Fig. 3. Endoscopic video images of size 362×370 pixels were recorded at 30
frames per second using an endoscope (BF-P260F, Olympus, Tokyo).
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4.2 Ground Truth

To evaluate the tracking accuracy of different methods, we generated five ground
truth datasets (GTDs) by manually adjusting the position and orientation of the
virtual camera to qualitatively register the real and virtual bronchoscopic view-
ing points by hand. Three observers of the authors independently and repeatedly
collected these GTDs in multiple sessions. We clarify that intra-observer consis-
tency was 1.81 mm and 5.9◦, 1.76 mm and 4.9◦, and 1.93 mm and 4.8◦ from
three observers, respectively; inter-observer consistency was 1.71 mm and 5.6◦.
Note that the clinical requirement of position and orientation is below 2 mm and
6◦ during bronchoscopic interventions.

We compared five tracking approaches (1) M1: only using EMT tracking re-
ported by Schwarz et al. [16], (2) M2: a hybrid method presented by Mori et
al. [4], (3) M3: a modified hybrid method proposed by Luo et al. [17], (4) M4:
a SMC-based solution introudced by Luo et al. [8], and (5) our proposed frame-
work, as discussed in Section 3. Additionally, we set the particle number: N = 50
and the iteration number:M = 10. During the SMC-based tracking, the particle
number was set to 500. We have done all implementations on a Microsoft Visual
C++ platform and ran it on a conventional PC (CPU: Intel(R) Xeon(R) X5482
×2 processors, 16-GByte main memory).

5 Results

Table 1 displays the quantitative results of the tracking accuracy from different
methods. The average position and orientation errors of the proposed framework
were 3.3 mm and 6.5◦, which are definitely better than those of the previous
published methods that had average errors of at least 4.3 mm and 7.8◦. We
also visually inspected the tracking results by manually checking whether the
real images resembled the virtual images. Fig. 4 shows examples of real images
and the corresponding virtual images generated from the camera parameters

Table 1. Quantitative results of tracking accuracy of compared methods in terms of
position and orientation errors between estimated results and ground truth

Experiments Data 1 Data 2 Data 3 Data 4 Data 5

Max Motion 2.5 mm 5.6 mm 10.4 mm 13.8 mm 22.3 mm

M1 [16] 4.2±2.6 mm 5.3±3.5 mm 5.6±2.8 mm 6.0±2.6 mm 7.2±3.5 mm
6.7±5.2◦ 8.8±6.2◦ 7.9±5.3◦ 9.6±6.0◦ 13.5±11.1◦

M2 [4] 3.8±3.2 mm 4.9±4.2 mm 5.4±3.2 mm 5.8±3.6 mm 6.8±4.4 mm
6.1±4.1◦ 7.6±5.5◦ 6.8±6.2◦ 8.8±5.6◦ 12.9±13.4◦

M3 [17] 3.4±2.6 mm 4.6±3.5 mm 5.3±4.1 mm 5.6±4.8 mm 6.1±4.6 mm
5.3±3.2◦ 6.7±2.9◦ 5.6±5.2◦ 10.6±5.8◦ 12.7±11.8◦

M4 [8] 3.1±2.2 mm 3.9±2.1 mm 4.1±2.5 mm 4.6±3.2 mm 5.6±4.3 mm
4.8±4.2◦ 5.8±3.2◦ 6.2±3.1◦ 9.5±5.5◦ 12.9±12.6◦

Our method 2.6±2.4 mm 2.9±1.9 mm 3.2±2.6 mm 3.5±2.9 mm 4.4±3.0 mm
3.9±2.2◦ 4.2±2.6◦ 5.2±3.6◦ 8.9±5.2◦ 10.2±10.5◦
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No. Images M1 [16] M2 [4] M3 [17] M4 [8] Ours

0271

0382

0506

0551

0646

0731

0808

0948

1016

1145

1368

1545

Fig. 4. Visual comparison of tracking results of Data 4. Left column shows selected
frame numbers, and second column gives their corresponding video images. Other
columns display virtual bronchoscopic images generated from tracking results using
methods discussed above. Our method shows the best performance.
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estimated by each method. This visual investigation of the successfully processed
frames further demonstrates the effectiveness of our proposed method. Addition-
ally, the current runtime of our method is about 0.8 seconds per frame, which
outperforms that reported in [5] by speed-up devices (0.98 seconds).

6 Discussion

Generally, our proposed PSO tracking method provides a more accurate and
robust strategy to estimate endoscope motion than previous approaches. We at-
tribute such an advantageous performance of our PSO framework tracking to
the following aspects. First, we believe that our traceable PSO is partly an as-
sociation of PSO iterations and SMC sampling procedures, and hence it outper-
forms the SMC sampling algorithms in motion tracking. During SMC sampling
procedures, a successful particle sampling depends heavily on the proposal dis-
tribution function [18]. Particles with large weights located in the useful area of
the proposal distribution are usually sampled. In fact, the proposal distribution
is suggested to be the dynamic transition distribution, which may incur particles
with larger weight that are not sampled when the useful area of the transition dis-
tribution stays at the tail of the observation distribution [18]. However, the PSO
framework performs more like a hierarchical sampling strategy which propagates
the particles integrated with the newest observations [11], possibly resolving the
particle impoverishment problem. Next, automatically or traceably controlling
evolutionary parameters is greatly helpful to update particles in iterations. The
two acceleration factors, which were calculated based on the fitness value from
the image intensity information, are more reasonable than setting them to 2 in
standard PSOs [10]. Moreover, the inertia weight is also adaptively determined
by both spatial distance constraint and image intensity information, resulting
in more flexibly balancing the global and local search abilities and providing a
reasonable velocity limitation to move particles. Finally, without any resampling
process in our method, compared to SMC sampling or particle filtering, it is
helpful to reduce the runtime of our method.

Additionally, we must clarify the potential limitations of our proposed meth-
ods. Particle robustness, which means the particle fitness value to be correctly
computed and evaluate, depends somewhat on image intensity information. How-
ever, the image artifacts that occur in bronchoscopic video may collapse the
correct computation of the fitness value. To tackle this drawback, a more robust
intensity similarity measure, which should be slightly insensitive to illumination
changes or other image artifacts, must be developed in future work. Another
problem remains how to properly choose the particle and iteration numbers M
and N . In fact, it is difficult to know their influences on the tracking perfor-
mance. Thoroughly evaluating M and N in PSO is another future work. We
plan to adaptively select them by particle robustness during iterations, possibly
reducing our current runtime, which is also future work.
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7 Conclusions

This work proposes a new bronchoscope 3-D motion tracking framework for en-
doscope location or navigation using a traceable PSO algorithm that can refresh
its evolutionary parameters based on spatial distance constraints and image in-
tensity information during iterations. Dynamic phantom validation proves that
our method provides a more advantageous tracking performance than state-of-
the-art methods. Future work also includes reducing the runtime of our method.
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