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Abstract. From a control perspective, offshore oil and gas production is very 
challenging due to the many and potentially conflicting production objectives 
that arise from the intrinsic complexity of the oil and gas domain. In this paper, 
we show how a multi-layered multi-agent system can be used to implement a 
satisficing decision-making process for allocation of production resources. 
Through simulations using real-world production data, we illustrate that this 
satisficing decision-making process performs better than existing control sys-
tems applied on marginal fields, even though satisficing decision making often 
only provides near-optimal solutions. 
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1 Introduction 

The background for our research is oil and gas production at marginal (i.e. small in 
total oil and gas volume) fields in the Danish sector of the North Sea, more precisely 
the Siri Area. The Siri Area consists of three fields (Siri/Stine, Nini, and Cecilie). Oil 
and gas fields are typically owned by several companies (partners) to reduce the eco-
nomic risk. Within the group of partners, one partner is normally the field operator. At 
the Siri Area, DONG Energy E&P is the operator. The operator has the daily respon-
sibility for production and maintenance of the production platform’s installations.  

From a production perspective marginal fields are very challenging since they ma-
ture more rapidly, i.e. in the range of months, than larger fields that mature in the 
range of years. Furthermore, marginal fields may typically go through the full life-
cycle from installation to abandonment in less than a decade. As a consequence of the 
rapid maturing, the production scheme of marginal fields has to be revised more fre-
quently than those of regular fields. Simply applying the same relatively fixed produc-
tion scheme as is used at regular fields would result in suboptimal production. The 
application of a relatively fixed production scheme is further challenged by the fact 
that the growing global request for oil and gas advances technological achievements 
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which allow marginal fields to evolve beyond their original abandon point. This is 
also the case for the Siri Area, where the Siri production platform in 2004 became 
host for the first tieback project, such that it now consists of the main production plat-
form Siri, three unmanned satellite platforms Nini, Nini East, Cecilie, and one subsea 
installation Stine. The focus of this paper is on the intrinsic complexity of the oil pro-
duction platform and the oil production processes, with their indirect cross-production 
resource dependencies among production equipment and processes like water injec-
tion, gas handling, and tanker export. Indirect cross-production resource dependencies 
may result in unforeseen interactions, like bottlenecks and fluctuations, which cause 
the production scenarios to become very dynamic and complex. To avoid bottlenecks 
and fluctuations, process operators typically decrease the production throughput to 
increase process stability. By inspecting historical production logs at Siri, it is found 
that production throughput is frequently lowered and often goes on unnoticed for a 
long period before intervention happens, which results in unnecessary loss of produc-
tion. This loss of production can be avoided if the production scheme is continuously 
adjusted to the dynamics of the field, a process which involves the three decision 
layers of a production platform: 1) The strategic production-decision layer handling 
the planning with goals in the range of weeks/days; 2) The tactical production-
decision layer handling the allocation with goals in the range of days/hours; 3) The 
operational production-decision layer handling the local optimization with goals in 
the range of hours/minutes.  

 

Fig. 1. Simplified data infrastructure at the Siri Area 

Fig. 1 depicts a simplified data and control infrastructure diagram for the Siri Area, 
with the following abbreviations: ERP (Enterprise Resource Planning systems) and 
SAS (Safety and Automation System) [1]. Today, the data flow of integrated opera-
tion control systems is directed from the SAS system towards the ERP system and not 
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vice versa. Data from the ERP system are primary used to generate new strategic, 
tactical, and operational plans, which from a production viewpoint makes the system 
relatively static. To support a flexible production scheme that automatically adjusts 
itself to the dynamics of the field, data must flow in both directions. 

The rest of the paper is organized as follows: Section 2 presents the related state of 
the art. Section 3 provides the conceptual overview of our approach and describes its 
implementation. An experimental evaluation using real production data from the Siri 
Area is presented in section 4. Finally, section 5 concludes the paper. 

2 State of the Art 

Today, control systems for offshore oil and gas production are programmed in static 
control structures in well-proven industrial automation systems, i.e., DCS (Distributed 
Control System) or SCADA (Supervisory Control and Data Acquisition). Optimiza-
tion is normally done offline, resulting in relatively fixed production schemes. Several 
internal DONG Energy E&P optimization studies conducted at the Siri Area have 
indicated that production throughput could be increased if the information systems at 
the decision layers, i.e., SAS and ERP systems, were better integrated thereby allow-
ing a faster respond to changing field dynamics. The studies have also shown that a 
production throughput tends to decrease over time without any interconnected change 
in the related production constraints or objectives.  

In general, studies addressing optimization in a mathematically strict sense is only 
seen in a very few studies, which address optimization of lift gas and slug mitigation, 
using Advanced Process Control (APC) and Model Predictive Control (MPC) as dis-
cussed by Bonavita et al. [2]; Artificial Intelligence in Petroleum Engineering dis-
cussed by Mohaghegh [3], and Real-Time Optimization (RTO) discussed by Bieker et 
al. [4]. The focus of these studies is optimization of subsystems and none of them, to 
the best of our knowledge, can handle online optimization of a complete installation. 
A few preliminary decision-support-control and distributed optimization systems by 
Ølmheim et al. [5] and Wartmann et al. [6] have also been tested in the oil and gas 
production domain, but only in simulation scenarios and only addressing confined 
parts of the process installation. None of the mentioned control approaches seems to 
have the ability to provide a high degree of flexibility for handling the changing high-
level operational conditions at rapidly maturing marginal fields with limited data 
models, process data, and shared resources.  

To meet the challenges of controlling a dynamic offshore oil and gas production 
environment in the range of minutes/hours/days (daily production issues) through 
months/years (field maturing issues), a multi-agent system with the characteristics of 
natural decomposition of action, perception, and distributed problem solving seems a 
promising approach as it provides the required flexibility. One of the first approaches 
in applying a multi-agent system to control production can be found in the ARCHON 
project [7] that proposed to encapsulate entities with cognitive layers [8]. Multi-
layered multi-agent systems as we use them are not as such a new idea; some early 
work in this direction is the ASIC system developed by Boissier et al [9]. The ASIC 
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architecture consists of three layers: command, adaptation, and decision. A three-layer 
model was also proposed in the work of Chappin et al., for conceptualization and 
formalization of agent behaviour in a socio-technical system for operational decision 
making in electricity markets [10]. Finally, Barbuceanu et al. followed a similar ap-
proach for organizing the supply chain in manufacturing as a network of cooperating, 
intelligent agents, each performing one or more supply chain operations [11]. In the 
context of control, the work of Sørensen et al. [12] shows how multi-agent systems 
can be used to prevent interactions among independent control objectives sharing 
resources in the same controlled environment, by searching for alternative resource 
allocation solutions that are acceptable to the requirements of all control objectives.  

Building on state of the art, we propose a new application of multi-layered multi-
agent systems to bridge the gap between SAS and ERP in complex offshore oil and 
gas production by developing a multi-layered multi-agent system that integrates the 
individual decision layers present in the automation pyramid of an oil and gas produc-
tion platform. The open nature of multi-agent systems provides the necessary flexibil-
ity to meet the evolution of marginal fields, as new agents addressing changed  
production conditions can be added whenever the need arises. That is, the proposed 
multi-layered multi-agent system can adapt to new operational conditions, as it sup-
ports dynamical introduction and removal of control agents, each representing differ-
ent production objectives, without the need to inspect or modify existing control 
agents. This dynamic control is possible as the infrastructure of the multi-layered 
multi-agent system takes responsibility for coordinating potential interactions among 
control agents dynamically. 

3 The Approach and Its Key Criteria 

In the production system domain, the focus is usually on “optimization”, but for many 
real-world problems only limited models are available due to system complexity; so, 
in a mathematically strict sense, no optimization is performed, as there is no knowl-
edge with regards to location of a global production optimum. Based on literature 
studies and in the light of the interviews given by oil-and-gas-production engineers, 
we argue that it is not “optimization” that is done today in oil and gas production, but 
merely manually tuning of process parameters based on human experience. Based on 
this observation, our approach aims to find solutions to allocation of production re-
sources that satisfy the production objectives and constraints at a given time in the 
best possible way within a given time frame. Our approach is inspired by the econo-
mist Simon who introduced the concept of ‘satisficing’ as an approach to decision 
making [13]. The word ‘satisficing’ is a combination of the two words: ‘satisfy’ and 
‘suffice’. In [14], satisficing in the context of decision making is defined as: 
  

“Examining alternatives until a practical (most obvious, attainable, and rea-
sonable) solution with adequate level of acceptability is found, and stopping 
the search there instead of looking for the best-possible (optimum) solution”. 
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Satisficing decision making seems to be a useful approach in the development of 
complex control systems when no global model can be established to determine a 
global optimum. By using satisficing decision making, the aim is to find the best-
possible solutions for allocation of resources to production processes that both satisfy 
and suffice all production objectives and constraints. Since decision making in the oil-
and-gas-production domain is multi-layered, it is necessary to find satisficing solu-
tions not only within each decision layer but also across all decision layers. As shown 
in Fig. 1, the decision-making process is scattered across the strategic, tactical, and 
operational layers. Ideally, decision-making within one layer should be coordinated 
with decision making within adjacent layers in order to find solutions that bring the 
whole production platform to a state of satisficing equilibrium.  

Today, the flow of control typically propagates from the strategic layer through the 
tactical layer down to the operational layer, with no or very little feedback to upper 
layers, in case the lower layers cannot meet the demands of the decisions made at the 
upper layers. That is, any assumptions an upper layer may hold about the effects of its 
decisions at lower layers may be broken without the upper layer knowing about it, 
which may lead to suboptimal or even wrong subsequent decisions at the upper layer. 
Those unnoticed broken assumptions between multi-layered decision layers can be 
avoided, if they are made explicit by providing feedback from lower layers to higher 
layers. Such a feedback mechanism can be established based on Jackson’s work on 
problem frames [15]. We use Jackson’s concept of entailment relations [16] to dis-
cover broken assumptions. An entailment relation is a tuple (S, W ├ R), where: 

1. Specifications S are implemented as a computer program.  
2. The World W or the set of domain properties as seen by S.  
3. ├ is the semantic for entailment.  
4. R is the user Requirements.  

As the entailment relation (S, W ├ R) is defined for a single problem context, we have 
to extend the concept of entailment to cover nested sub-problems in order to use it for 
a multi-layered decision-making process. This can be done by defining a nested en-
tailment relation that propagates information from lower decision layers to upper 
decision layers. In the nested entailment relation the world W at the upper layer L1 
will be given by an entailment relation (S, W ├ R) at the lower layer L2. I.e., in the 
entailment relation (SL1, WL1 ├ R L1) at layer L1 , WL1 will be given by an entailment 
relation (SL2, WL2 ├ RL2) at layer L2, and WL2 at layer L2 will be given by an entail-
ment relation (SL3, WL3 ├ RL3) at the lower layer L3 and so on, until entailment is ter-
minated when the bottom layer is reached. When implementing the concept of entail-
ment in a multi-agent system, each specification in the set S becomes an agent, the 
world W becomes the agents’ world model and the entailment ├ of requirements R 
becomes the goals of the agents. In a control context, W usually expresses inputs and 
outputs of the control system. When the chain of nested entailment relations holds, we 
define the system to be in a state of satisficing equilibrium. The possible size of the 
satisficing equilibrium state space depends on the flexibility in the requirements R.  
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Fig. 2. Negotiation context 

Agents belonging to the same entailment relation are grouped into a negotiation 
context with one mediator agent responsible for the negotiation process. Fig. 2 depicts 
a single negotiation context (solid rectangle) with agents A1 and A2 (dashed rectan-
gles). The world W is represented by Input1, Input2 and Output1. The arrows indicate 
the direction of data flow. There is at least one negotiation context for each decision 
layer.  

 

Fig. 3. UML sequence diagram of negotiation process 

The negotiation process is an incremental process that converges towards a satis-
ficing solution, if one exists. In searching for a satisficing solution, the mediator uses 
a genetic algorithm. Implementation details concerning the genetic algorithm can be 
found in [12]. The negotiation process is divided into six steps as shown in Fig. 3. 
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1. The mediator agent generates an initial set of proposals (e.g. 200) for allocation 
of production resources. 

2. The mediator agent presents each proposal to the agents by message accept and 
they reply whether they can accept the proposal. They furthermore respond to a 
message satisficing about how satisfied they are with each specific proposal. 
Satisficing is here expressed as a percentage to which the proposal fulfils the 
agent’s goals.   

3. The mediator agent continues the negotiation process as long as it has not con-
verged towards a solution and the end of the control loop’s time period is not 
reached. The negotiation process is said to have converged, and a satisficing so-
lution found, when no new proposal can be generated, that is any better than a 
previous proposal. When the negotiation process terminates, the mediator agent 
jumps to step 6. 

4. The mediator agent selects the best 50% of the proposals based on acceptance, 
priority and the returned fitness values. 

5. The mediator then generates the missing 50% proposals using the genetic algo-
rithm’s crossover and mutation functions. The mediator then loops to step 2. 

6. Finally the mediator updates all outputs with accepted solutions. 

In case no satisficing solution could be found, the entailment relation of the negotia-
tion context is said to be broken. Broken entailments are typically caused by alloca-
tion conflicts over shared production resources. E.g. in Fig. 2, Output1 is shared by 
agents A1 and A2. Many of these resource-allocation conflicts may emerge, because 
agents by default are considered equally important. However, in any non-trivial con-
trol system the importance of individual agents may change depending on the actual 
operational state. This state-dependent change in agents’ importance is handled by 
supporting dynamic prioritization of individual agents. Important agents are given 
higher priority than less important agents. By default the priority of all agents is set to 
5. In the current implementation, we have chosen to use a priority range from 1-10  
(1 = highest and 10 = lowest). In selection of the best 50% of the proposals, the me-
diator favours proposals accepted by agents with higher priorities. 

Furthermore, to acknowledge the fact that some agents’ requirements may be more 
critical, from a safety point of view, than others, agents’ requirements can either be 
modelled as ‘hard’ or ‘soft’. A ‘hard’ requirement is a requirement that always have 
to be satisfied, and a ‘soft’ requirement is a requirement that it is desirable to satisfy. 
For instance, in the oil and gas production domain the complete production platform 
is protected by the safety system, so the outer bounds of the solution space are set by 
the safety system. The constraints in the safety system have to be mapped to hard 
requirements to avoid production shutdowns, as eventual shutdowns are very expen-
sive due to slow start-ups and thereby lost production. Examples of safety system 
constraints can be minimum/maximum temperatures, tank-levels, pressures etc. An-
other group of hard requirements is related to business logic/policies like in the Siri 
Area where each of the three oil fields (Siri/Stine, Cecilie, and Nini) are processed in 
separate separators even though a mixed field mode could give a better throughput. 
Production-related issues like optimizing flaring over water injection are ‘soft’  
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requirements. The set of ‘hard’ requirements confines the search space for finding a 
satisficing solution. Hence a satisficing solution to the allocation of production re-
sources is a solution that fulfils all ‘hard’ requirements and provides the best-possible 
solution for all ‘soft’ requirements. 

 

Fig. 4. Agent interactions between negotiation contexts on different layers 

Each decision layer may contain one or more negotiation contexts that are con-
nected to negotiation contexts in adjacent decision layers through the inputs and  
outputs of a boundary layer, as shown in Fig. 4. The boundary layer provides the nec-
essary feedback mechanisms for delegating broken entailment relations between deci-
sion layers, thereby ensuring that the system is in a constant search for a satisficing 
equilibrium. Using the inputs and outputs of the boundary layer B2, the feedback 
mechanism links the entailment relation (SL2, WL2 ├ RL2) for Context2 at decision layer 
L2 to the world WL1 of Context1 at decision layer L1. In Fig. 4 the negotiation Context1 
at decision layer L1 is connected to the negotiation Context2 at decision layer L2. 
When the negotiation process of Context1 terminates, mediator AMediator 1 passes on the 
best solution to decision Layer L2 in the form of Output1. Output1 is through boundary 
layer B2 provided as input Input4 at decision layer L2. Mediator AMediator 2 now seeks 
for a solution at decision layer L2, and feedback to decision layer L1 is through a do-
main property of the world WL1 (marked with a dashed arrow between Output2 and 
Input3) in the boundary layer B2.  Hence, agent A3‘s world W entails Context2 based 
on Input3. Thus, in case the entailment relation (SL2, WL2 ├ RL2) at decision layer L2 is 
broken, due to the value of Input4, it is propagated back to decision layer L1 through 
the nested entailment relation between Output2 and Input3.  
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The design of the feedback mechanism also ensures propagation of any change in 
the operational state of Context2, for instance in case agents are prioritized, inputs 
change, a new solution is found, etc. As an example, if agent A4 is given a higher 
priority than A5, this may impact Output2; the feedback via the domain property of 
WL1 will impact A3. A3 will seek to influence Output1; this process will continue until 
a satisficing equilibrium is found or a conflict is identified. In the next section, the 
experiment illustrates the use of both feedback and priority. To ensure stability of the 
multi-layered negotiation process in search for a satisficing equilibrium, we use the 
basic rules of thumb on closed-loop control, expressing that the inner loop  
(lower decision layer) is twice as fast as the outer loop (upper decision layer).   

4 Experiments 

To validate our approach, we have chosen the export-to-tanker scenario at the Siri 
platform, as this scenario involves all three decision layers. The experiment extends 
our previous findings [17, 18]. In the export-to-tanker scenario, the oil is exported to a 
shuttle tanker from a temporary storage tank on the seabed. Due to limited electrical 
power resources at the Siri platform, one of the major power consumers has to be 
stopped during the export-to-tanker scenario, i.e., either a gas compressor or a water 
injection pump. The gas compressors are used to handle produced gas either for use as 
fuel or lift gas (lift gas is used to get the wells to flow due to low pressure in the res-
ervoirs). Water injection is used as pressure support in the thin sandstone production 
layers in the reservoirs in order to maintain an economically-feasible production. The 
water injection system consists of three 2 MW pumps. Fig. 5 shows negotiation con-
texts (solid rectangles) that are directly involved in the experiment. Names of negotia-
tion contexts at the strategic layer are related to resource allocation concerns, whereas 
at the tactical layer they are related to systems, and at the operational layer they are 
related to production equipment.   

 

Fig. 5. Experiment negotiation context diagram 

The export-to-tanker scenario is triggered by the Oil export system at the tactical 
layer, and by requesting power from the Power negotiation context. The Power nego-
tiation context contains the following agents: Ensure power for water injection  
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(priority 6), Ensure total power (priority 3), Ensure power for gas compression (prior-
ity 4), Maximize total power allocated (priority 6), Ensure power for export (priority 
5). The Power mediator agent starts a negotiating process to find a new power plan. 
As the flare is to be kept at a minimum due to the environmental impact and the ap-
pertaining regulations, the agent Ensure power for gas compression has been assigned 
with a higher priority than the agent Ensure power for water injection.  Based on the 
agents’ priorities, we expected that a water injection pump would be stopped during 
the export-to-tanker scenario. 

 

 

Fig. 6. Real production data - Export to tanker 

Fig. 6 shows real production data for the export-to-tanker scenario executed manu-
ally at the Siri platform on 24-01-2011. The dashed line indicates when the export-to-
tanker scenario took place. During this export the water injection pump 51A (solid 
line) was manually stopped. The manual start of water injection pump 51A was post-
poned by a day (solid line) without a technical reason, resulting in an unnecessary loss 
of production. A simulation using our approach shows that the water injection pump 
would have been automatically started one day earlier (marked with the dotted line). 
This earlier start gives a better water injection performance than the manually oper-
ated system. The increase in the water injection volume is marked by the hatched 
area. Our simulation run of the real production data is shown in Fig. 7. The three  
layers from Fig. 5 and their respective negotiation contexts are mirrored in the GUI.  

In Fig. 7 agents are coloured depending on how satisfied they are with a solution. 
Satisfied agents are green (dark grey), and dissatisfied agents have shades ranging 
from yellow (light grey) to dark orange (medium grey). In the simulation, the agent 
Ensure power for water injection turns orange (medium grey) when the export-to-
tanker scenario starts, as the agent Ensure power for export has higher priority. Simi-
larly, the agent Ensure pump capacity for Siri turns orange as the power allocation for 
the Water injection system is insufficient to maintain full pump capacity. Later on, 
when the export-to-tanker scenario stops, the Power negotiation context will again 
allocate the necessary power for the water injection system, and the agents Ensure 
power for water injection and Ensure pump capacity for Siri will turn green again. 
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Fig. 7. Simulation’s run for export-to-tanker scenario 

5 Conclusion 

In this paper, we have presented a new application of multi-layered multi-agent sys-
tems for supporting decision making across the three layers of control in offshore oil 
and gas production. The proposed approach provides a new level of flexibility that 
meets the need for dynamic evolution of marginal oil and gas fields.  

We have shown that a satisficing decision-making process implemented as a multi-
layered multi-agent system can perform better than manually controlled systems, as is 
currently the state of the art within the oil-and-gas-production domain. Hence, we 
believe that the proposed approach possesses the capability to face the continuously 
changing operational conditions of marginal oil and gas fields in the North Sea. 

From an architectural perspective the proposed multi-layered multi-agent-system 
approach is not bound to the oil and gas domain, and it seems reasonable that the 
approach can be mapped to other control domains which possess a similar layered 
structure for decision making. 
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