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Abstract. The design and debugging of large-scale MAS require ab-
straction tools in order to work at a macroscopic level of description.
Agent aggregation provides such abstractions by reducing the complex-
ity of the microscopic description. Since it leads to an information loss,
such a key process may be extremely harmful for the analysis if poorly ex-
ecuted. This paper presents measures inherited from information theory
to evaluate abstractions and provide the experts with feedback regarding
the quality of generated descriptions. Several evaluation techniques are
applied to the spatial aggregation of an agent-based model of interna-
tional relations. The information from on-line newspapers constitutes a
complex microscopic description of agent states. Our approach is able to
evaluate geographical abstractions used by the domain experts in order
to provide efficient and meaningful macroscopic descriptions of the world
global state.

Keywords: Large-scale multi-agent systems, agent aggregation, macro-
scopic description, information theory, geographical and news analysis.

1 Introduction

Because of their increasing size, complexity and concurrency, current multi-agent
systems (MAS) can no longer be understood from a microscopic point of view.
Design, debugging and optimization of such large-scale distributed applications
need tools that proceed at a higher level, with insightful abstractions regarding
the global system dynamics. Among abstraction techniques (dimension reduc-
tion, subsetting, segmentation, clustering, and so on [1]), this paper focuses on
data aggregation. It consists in losing some information about the agent level
to build simpler yet meaningful macroscopic descriptions. Such a process is not
trivial for the data interpretation. In particular, unsound aggregations may lead
to a critical misrepresentation of the MAS behavior. Hence, we have to deter-
mine what are the good abstractions and how to properly use them. At each
stage of MAS development, aggregation processes should be carefully monitored
and feedback should be provided regarding the quality of generated macroscopic
descriptions.
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Fig. 1. Averaging the behavior of groups of agents may reduce the redundant infor-
mation (group A) or it may lead to an unwanted information loss (group B)

A simple example can demonstrate how critical an aggregation can be. Fig. 1
shows two groups of agents that may be simplified by two abstract entities with
an average behavior. Intuitively, group A constitutes a good abstraction since
the induced global behavior is relatively similar to the microscopic one, unlike
group B. Hence, aggregation of redundant information should be encouraged to
reduce the description complexity (group A), but details regarding heterogeneous
behaviors should be preserved in order to control the information loss (group B).

Very little work has been done in the MAS community to quantify such
aggregation properties. The main contribution of this paper consists in intro-
ducing measures from information theory (Kullback-Leibler (KL) divergence [2]
and Shannon entropy [3]) to clarify the notion of good aggregation. From these
measures, we provide generic feedback techniques and an algorithm that builds
multi-resolution descriptions out of hierarchically organized MAS. These tech-
niques and algorithms are applied to the agent-based modeling of international
relations: agents represent countries, and their behavior is extracted from on-
line newspapers. Geographers exploit multi-level aggregates to build statistics
regarding world areas. We show how these geographical abstractions should be
used to better understand the system states and, with further research, its dy-
namics. This ambitious GEOMEDIA project is conducted in collaboration with
experts from the CIST (Collège International des Sciences du Territoire, Paris).

Section 2 presents the work related to the main concern of this article. Sec-
tion 3 presents the agent-based model of the GEOMEDIA application. Section 4
introduces KL divergence to estimate information loss and section 5 Shannon
entropy to estimate complexity reduction. Section 6 shows how these measures
can be combined to identify best aggregations and to build multi-resolution rep-
resentations. Section 7 concludes this paper and gives some perspectives.
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2 Related Work

Aggregation can take place in every stage of a MAS development: from its design
to its use. Even if abstraction techniques may differ, each stage should carefully
take into consideration the quality of the aggregations. First, from a software
perspective, this section shows that very few research efforts have been done to
tackle this issue. (1) Most classical simulation platforms and monitoring systems
do not even provide the user with abstraction tools; (2) some do handle the issue,
but are still at an early stage of thought. Secondly, on a theoretical aspect, this
section explains why classical techniques (e.g. data clustering, graph analysis)
are not entirely satisfying to build consistent abstractions. In this regard, our
approach should rather be compared to recent work in multi-level MAS [4] to
which it may provide a formal and quantitative framework.

In a comprehensive survey of agent-based simulation platforms [5], Rails-
back et al. evaluate some of them by testing classical features of MAS mod-
eling and analysis. Unfortunately, the abstraction problem is not tackled by this
survey, thus indicating that such considerations are seldom if ever taken into ac-
count. Most platforms (Java Swarm, Repast, MASON, NetLogo and Objective-
C Swarm) are limited to the microscopic simulation of agents. Railsback warns
about the lack of “a complete tool for statistical output” in these platforms [5].
The provision of global views on the MAS macroscopic behavior thus constitutes
an on-going research topic. Some tools for large-scale MAS monitoring address
this issue by using aggregated data or visual abstractions to reduce the com-
plexity of execution traces [6,7]. However, these abstractions are either limited
to the simplification of agents internal behavior, and do not tackle multi-agent
organizational patterns, or they do not provide feedback regarding the quality
of such abstractions.

Some techniques from graph analysis and data clustering build groups of
agents based on their microscopic properties [8,9,10]. Such considerations may
meet ours from a theoretical point of view, but the approach presented in this
paper supports a very different philosophy: abstractions should be consistent with
the macroscopic semantics of the system. We claim that, to be meaningful, the
aggregation process needs to rely on high-level concepts provided by the domain
experts. Hence, our approach should rather be compared with research on multi-
level agent-based models [4]. These works openly tackle the abstraction problem
by designing MAS on several levels of organization according to expert defini-
tions. Such approaches aim at reducing the computational cost of simulations
by reducing the amount of detail. The measures and techniques presented in
this paper may provide a formal and quantitative framework to support such a
research effort.

To conclude, aggregation techniques should be more systematically imple-
mented on MAS platforms in order to handle large-scale systems. They should
combine consistent macroscopic semantics from the experts and feedback re-
garding the abstractions quality. For example, in this paper, abstractions used
by geographers are evaluated according to their information content.
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3 Agent-Based Modeling of International Relations

This section presents the GEOMEDIA agent-based model. It consists in the
microscopic description of countries with agents and the macroscopic description
of world areas with groups and organizations.

3.1 Microscopic Data: The Agent Level

Let A be a set of agents. It constitutes the MAS microscopic level. Visualization
tools aim at displaying and explaining variables regarding these agents: their
behavior and internal states, the events they are associated with, the messages
they exchange, and so on. Given a variable v, the set of values {v(a)}a∈A forms
themicroscopic description of the system (illustrated by distribution P in Fig. 1).

In the GEOMEDIA project, we are interested in the analysis of world in-
ternational relations. In that context, we make the assumption that citations or
co-citations of countries, within news, are good indicators to represent and under-
stand their relations. For example, we may assume that an often-cited country
is likely to politically interact with the newspaper country. In our model, the
microscopic level of agents is constituted of 168 countries. Information regard-
ing their behavior has been extracted from 70 RSS feeds of English-language
newspapers, from May 2011 to September 2012. The experiments in this paper
focus on a very basic variable, citations nb: the number of articles that name
a country, and three newspapers: the Vancouver Sun (feed CAN), the Daily Mail
(feed GBR), and the Philippine Daily Inquirer (feed PHL).

3.2 Macroscopic Data: Groups and Organizations

A group G ⊂ A is subset of agents that are members of a consistent organi-
zational pattern. It can be interpreted as an abstract agent that sums up the
behavior of its underlying agents. Hence, groups satisfy a recursive definition: a
group is either an agent or a set of groups. Variables are defined on groups ac-
cording to an aggregation operator: sum, mean, median, extrema, and so on [1].
In our case, since we work with extensive variables (i.e. variables that are pro-
portional to the aggregate size), v(G) is the sum of the values of the underlying
agents: v(G) =

∑
a∈G v(a) (see Q′ in Fig. 1).

We define an organization O as a set of groups that constitutes a partition of
the agent set A. Thus, in the scope of this paper, each agent is always a mem-
ber of one and only one group. The set of group values {v(G)}G∈O composes a
macroscopic description of the system wrt an organization. It simplifies the vari-
able distribution, from the detailed microscopic description (P in Fig. 1) to an
aggregated one (Q′). When comparing both descriptions, an assumption is made
regarding the underlying distribution of the aggregated values (e.g. uniform, ge-
ometric or Gaussian distribution). In our case, we consider that each agent has
the same weight within the aggregate. It is thus underlined that aggregated val-
ues are uniformly distributed over the agents (from Q′ to Q). Consequently, as
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illustrated in Fig. 1, some groups are more suitable than others for the anal-
ysis. For example, using group A seems relevant since P is close to Q, unlike
group B. Hence, organizations should be carefully chosen to provide accurate
high-level abstractions. In particular, they should only aggregate homogeneous
and redundant distributions. The next section presents a measure to quantify
such a property.

Groups and organizations can be derived from semantical aspects of the agent
space. In a geographical context, social, political, and economic organizations of
the world are often used. However, in this paper, we focus on topological organi-
zations, in order to be consistent with geographical maps of the world. Groups
thus aggregate nearby territories. In the following experiments, we consider two
hierarchical organizations of world countries, namely WUTS [11] and UNEP [12].
They define multi-level nested groups used by geographers to build global statis-
tics about world areas, from the microscopic level of agents to the full aggregation
(see [11] for a detailed presentation of these multi-scale organizations).

4 KL Divergence as a Measure of Organization Quality

Among classical similarity measures, Kullback-Leibler (KL) divergence [2] is of
high interest because of its interpretation in terms of information content. This
section shows how it can be exploited to provide feedback regarding the quality
of groups and organizations.

4.1 Kullback-Leibler Divergence

KL divergence measures the number of bits of information that one loses by
using an approximated distribution Q to encode the citations of countries, in-
stead of using the detailed source distribution P . In other words, KL divergence
estimates the information that is lost by the aggregation process. As we assume
that aggregated values are uniformly distributed among underlying agents, a
group whose internal distribution is very homogeneous (group A) will have a
low divergence (i.e. a low information loss), and conversely (group B).

From the KL formula [2], we define divergence (or information loss) of a
group G as follows (more details can be found in [13]):

loss(G) =
∑

a∈G

v(a)

v(A)
× log2

(
v(a)

v(G)
× |G|

)

(1)

where |G| is the size of the group (i.e. the number of aggregated agents), v(G)
is the sum of the aggregated values and v(A) is the sum of all values (i.e. the
total number of citations). KL divergence is expressed in bits/citation
(or b/c). It verifies the sum property [14], meaning that the divergence of disjoint
groups is the sum of their divergences. Therefore, for an organizationO, we have:
loss(O) =

∑
G∈O loss(G).
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(a) feed PHL (Philippines) (b) feed GBR (UK)

Fig. 2. Spatial variations of KL divergence for groups of the WUTS 3 organization (the
darker, the higher). Newspaper locations are indicated by white squares.

4.2 Groups Quality Is Correlated with the Source of Information

This first experiment aims at showing an essential feature of abstractions: their
quality depends on the context of the analysis. Fig. 2 presents the KL divergence
of groups from the WUTS 3 mesoscopic organization, for two newspapers. The
darker a group is, the less homogeneous its internal distribution is.

For the investigated dataset, we notice that groups in which newspapers are
located have high information loss, as for groups that are located close to the
newspaper (e.g. the Eastern Asia group in Fig. 2(a)) or that contain agents
that are culturally or politically related to the newspaper country (e.g. Southern
Africa in Fig. 2(b)). This can be explained by the fact that, for a newspaper,
close or related agents may have very divergent behaviors, whereas distant agents
are more or less the same. We do not aim at proving that such an hypothesis is
universally verified, but at showing that groups should be chosen with respect to
the dataset. In our case, this is partly correlated with the source of information.
As a consequence, if an analyst uses distributed probes to observe a MAS, she
does not want to use only a single abstraction pattern to summarize the infor-
mation. This is consistent with the subjectivist account of emergence, according
to which emergent phenomena strongly rely on the observation process [15].

4.3 Groups Quality Varies with Time

Fig. 3 presents the variation of KL divergence and citations nb for two groups
of countries on a monthly basis. Fig. 3(a) shows that a group can have a poor
quality on specific time periods (e.g. August 2011) and high quality on others
(e.g. from March to May 2012). Abstractions should then be chosen wrt the an-
alyzed time period. Fig. 3(b) shows that the divergence variation is not strictly
correlated to the citations nb variation (e.g. July 2011 and Nov. 2011). Hence-
forth, citations number may not be a sufficient criterion for group evaluation.
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Fig. 3. Time variation of the KL Divergence and the citations number for two groups
of agents (for feed GBR)
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Fig. 4. Two organizations of the agents space in six similar (but not equivalent) groups:
locations of the N. African agents, the W. Asian agents and the Mexico agent differ

4.4 Comparing Two Similar Organizations

The purpose of this third experiment is to compare two mesoscopic agent or-
ganizations: WUTS 2 and UNEP reg (see Fig. 4). First, a global comparison can
decide which organization is the best according to KL divergence. The induced
information loss is compared with the total quantity of information contained
in the microscopic description, given by the Shannon entropy [3], to give the
percentage of lost information.

feed CAN feed GBR feed PHL

WUTS 2 1.80 b/c (62.1%) 1.46 b/c (26.4%) 2.07 b/c (51.0%)
UNEP reg 1.57 b/c (54.1%) 1.51 b/c (27.3%) 2.26 b/c (55.7%)

It appears that, both for feed GBR and feed PHL, divergence is slightly lower
for WUTS 2 than for UNEP reg. Hence, if one should choose between these two
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organizations, WUTS 2 should be preferred. However, for feed CAN, UNEP reg is
better. Once again, abstractions should be chosen wrt the source of information.

One can perform a more subtle analysis in order to determine the groups
best shapes. For example, we notice in Fig. 4 that U22 = W22 ∪ Mexico and
W21 = U21 ∪ Mexico. Hence, one may ask: what is the best location of the Mexico
agent? Should it be aggregated with the Northern America group (W21/U21) or
with the Latin America one (W22/U22)? For feed GBR, we have:

loss(W21) + loss(W22) = 0.048 b/c < 0.055 b/c = loss(U21) + loss(U22)

Thus, the citations number of the Mexico agent is closer to those of the Northern
America agents. Mexico should be grouped accordingly. This technique allows
to evaluate and choose the shape of abstractions used by the experts.

5 Complexity Reduction of Organizations

The information content cannot be increased by the aggregation process. Hence,
for any pair of disjoint groups, we have: loss(G1∪G2) ≥ loss(G1)+loss(G2). This
means that, if we only rely on KL divergence, the more detailed is always the
better. Hence, we need a measure that also expresses what one gains with the
aggregation. To do so, this section presents two measures of complexity reduction.
They estimate the information quantity that one saves by encoding a group G
rather than its underlying agents: gain(G) =

(∑
a∈G Q(a)

) − Q(G), where Q
estimates the quantity of information needed to represent an agent or a group.

5.1 Number of Encoded Values

One way of measuring information quantities consists in estimating the number
of bits needed to encode the values of a given description. We suppose that it is
constant for each agent or group: Q(a) = Q(G) = q, where q depends on the data
type of the encoded values. Hence, for a group, we have: gain(G) = (|G| − 1)×q.
It is a basic complexity measure, but it fits well with classical visualizations (as
for the maps of this paper) since the number of displayed values defines the
granularity of the visualization.

5.2 Shannon Entropy

The number of encoded values only depends on the groups partitioning. In con-
trast, Shannon entropy also depends on the variable distribution. It is a classical
complexity measure that is consistent with KL divergence: it can be defined as
the divergence from the uniform distribution [2]. Briefly, entropy evaluates the
information quantity needed to encode each citation (and not only the citations
number for each agent). Based on Shannon’s formula [3], we define the entropy
reduction (or gain, in bits/citation) of a group G as follows:

gain(G) =

(
v(G)

v(A)
log2

(
v(G)

v(A)

))

−
∑

a∈G

(
v(a)

v(A)
log2

(
v(a)

v(A)

))

(2)
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The choice of either one of these complexity measures depends on the performed
analysis. Shannon entropy should rather be used for the visualization of indi-
viduated citations, whereas the number of values is more consistent with the
visualization of aggregated values. In any case, techniques presented in this pa-
per are meant to be generic. They can be used with any complexity measure as
long as it fits with some algebraic properties (see [13] for more details).

6 Multi-resolution Organizations of MAS

As a conclusion to the previous sections, finding a good organization relies on
two aspects: the gain and the loss induced by the aggregation of agents into an
average behavior. Choosing an organization thus consists in finding a compromise
between a complexity reduction and an information loss.

6.1 Parametrized Information Criterion

A parametrized Information Criterion can express the trade-off between com-
plexity reduction and information loss for a given group G:

pIC(G) = p× gain(G)− (1− p)× loss(G) (3)

where p ∈ [0, 1] is a parameter used to balance the trade-off. For p = 0, max-
imizing the pIC is equivalent to minimizing the loss: the user wants to be as
precise as possible (microscopic level). For p = 1, she wants to be as simple as
possible (full aggregation). When p varies from 0 to 1, a whole class of nested
organizations arises. The analyst has to choose the ones that fulfill her require-
ments: between the expected amount of details and the computational resources
available for the analysis.

Fig. 5 presents such a two-dimensional evaluation of the groups of the WUTS 3

organization. By comparing KL divergence and entropy reduction, one can easily
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spot groups that have a good gain/loss ratio. The closer a group is to the top-
left corner (light squares), the more its complexity reduction compensates its
information loss, whereas bottom-right groups have a poor gain/loss ratio and
should not be aggregated (dark squares).

6.2 Organizations within a Hierarchy

Given a value of p, best organizations are those that maximize the information
criterion. Clustering techniques, using gain and loss measures as distances, could
find such optimal partitions. However, results may have very little meaning for
the MAS analysis since agents would be aggregated regardless of their location
within the system. In contrast, we assume that, in most spatial MAS, there is a
correlation between topology and behavior. Hence, we propose that organizations
should fit with topological constraints. In other agent-based applications, such
constraints can be derived from semantic properties of the system (and not
necessarily topological properties).

In this subsection, we consider hierarchically organized MAS. A hierarchy H is
a set of nested groups, defined from the microscopic level (each agent is a group)
to the whole MAS (only one group). The number of possible multi-resolution
organizations within such a hierarchy exponentially depends on the number of
levels. For UNEP (3 levels) and WUTS (5 levels), we respectively have 1.3×106 and
3.8×1012 possible organizations. Finding the best one can thus be computation-
ally expensive. Algorithm 1 below finds topologically-consistent organizations
that maximize our information criterion. Its complexity linearly depends on the
number of groups in the hierarchy (respectively 196 and 231 groups) by doing a
classical linear search within the branches of the hierarchy. Indeed, according to
the sum property [14] of our information-theoretic measures (see subsection 4.1),
each branch can be independently evaluated.

This algorithm has been executed on the WUTS hierarchy for the feed PHL

newspaper. As we increase the gain/loss parameter p, complexity decreases and
divergence increases (see Fig. 6). For p = 0, all agents are displayed (see Fig. 7).

Algorithm 1. linearly finds best organizations within a hierarchy

Require: A hierarchy H and a trade-off parameter p in [0, 1].
Ensure: An organization made of groups in H that maximizes the pIC.
1: function findBestOrganization(H,p)
2: if H contains only one group G then return {G}
3: G← biggest group of H
4: bestOrganization ← ∅
5: for each direct subhierarchy S of H do
6: aux← findBestOrganization(S, p)
7: bestOrganization← union(bestOrganization, aux)

8: if pIC of {G} > pIC of bestOrganization then return {G}
9: else return bestOrganization

10: end function
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p = 0 p = 0.4

Fig. 7. Two multi-resolution organizations within the WUTS hierarchy, generated from
Algorithm 1, for different values of the trade-off parameter p

This map is hard to read because too much information is displayed (e.g. in
Western Europe). The map on the right presents the best organization generated
by the algorithm for p = 0.4. Some groups are aggregated (e.g Latin America

and S. Africa). They correspond to the groups in Fig. 2(a) that have a very
low KL divergence. Other groups, that have a high information loss wrt their
complexity reduction, are kept detailed. As p increases, higher-level groups are
displayed, thus reducing the map complexity while saving the more information.
This technique leads to multi-resolution maps that fit the variable distribution.
For p > 0.56, only the total number of citations is displayed (full aggregation).

7 Conclusion and Perspectives

The design and debugging of complex MAS need abstraction tools to work at a
higher level of description. However, such tools have to be built and exploited
with the greatest precaution in order to preserve useful information regarding the
system behavior and to guarantee that generated descriptions are not misleading.
To that extent, this paper focuses on aggregation techniques for large-scale MAS
and gives clues to estimate their quality in term of information content. They
are applied to the geographical aggregation of international relations through
the point of view of on-line newspapers. We show that, by combining informa-
tion theoretic measures, one can give interesting feedback regarding geographical
abstractions and build multi-resolution maps of the world that adapt the visu-
alization complexity to the effective information content.

Future work will apply these techniques to other dimensions of the analysis:
e.g. for temporal aggregation, thematic aggregation, multi-dimensional aggre-
gation [16]. Besides this work, we are currently exploiting these techniques for
performance visualization of large-scale distributed systems [17]. This kind of
application shows that our techniques can be scaled up to 1 million agents.



168 R. Lamarche-Perrin, Y. Demazeau, and J.-M. Vincent

Acknowledgement. This work is partially funded by the ANR-CORPUS GE-
OMEDIA project. We would like to thank C. Grasland, M. Severo, and T. Giraud
for their work on this project; and L. M. Schnorr for its close collaboration.

References

1. Elmqvist, N., Fekete, J.: Hierarchical Aggregation for Information Visualization:
Overview, Techniques, and Design Guidelines. IEEE Transactions on Visualization
and Computer Graphics 16(3), 439–454 (2010)

2. Kullback, S., Leibler, R.: On Information and Sufficiency. Annals of Mathematical
Statistics 22(1), 79–86 (1951)

3. Shannon, C.: A mathematical theory of communication. Bell System Technical
Journal 27, 379–423, 623–656 (1948)

4. Gil-Quijano, J., Louail, T., Hutzler, G.: From Biological to Urban Cells: Lessons
from Three Multilevel Agent-Based Models. In: Desai, N., Liu, A., Winikoff, M.
(eds.) PRIMA 2010. LNCS (LNAI), vol. 7057, pp. 620–635. Springer, Heidelberg
(2012)

5. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based Simulation Platforms:
Review and Development Recommendations. Simulation 82, 609–623 (2006)

6. Búrdalo, L., Terrasa, A., Julián, V., Garćıa-Fornes, A.: A Tracing System Archi-
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