
Decentralized Intelligent Real World Embedded

Systems: A Tool to Tune Design
and Deployment

Jean-Paul Jamont, Michel Occello, and Eduardo Mendes

Université de Grenoble-Alpes, LCIS, 26000 Valence, France
firstname.lastname@lcis.grenoble-inp.fr

http://lcis.grenoble-inp.fr

Abstract. This paper presents an approach and a tool, called MASH,
to design of real world decentralized intelligent systems. MASH enables
the simulation of distributed systems including virtual and real world
embedded nodes according to realistic physical models. We present the
key features of this tool and its architecture.

Keywords: embedded MAS, deployment, simulation.

1 Introduction

Context.More and more real world intelligent systems consist of lots of small in-
terconnected devices which interact together. These components must be small,
inexpensive, and therefore as simple as possible. Designing such solutions re-
quires to take into account strong criteria like energy consumption, low CPU
power, low memories etc.

In the literature, we can consider two types of approach to design such sys-
tems. Decentralized approaches as multiagent systems (MAS) and other dis-
tributed artificial intelligence solutions. Systems are seen as sets of interacting
autonomous entities (agents) reasoning about a partial description of their en-
vironment. Centralized solutions as traditional automation based solutions. A
global model of the environment is defined and maintained. The decisional pro-
cess uses this model to decide and to act.

In the first case, interesting applicative properties (like stability) are difficult
to prove because of the decentralized and distributed nature of the system. The
possible number of exchanged messages due to the cooperation process between
the distributed entities can be a problem too. In the second case, obtaining a
realistic global model can be expensive in term of computation and in term of
information transport.

We focus on decentralized intelligent systems. Designing software for such sys-
tems is a difficult task due to the inherent complexity at both conceptual and
implementation levels. Systems can be observed at both an individual level and
a social level. The individual level focuses on capacities, knowledge and goals of
entities. The social level focuses on global aspects of the whole system, external

Y. Demazeau et al. (Eds.): PAAMS 2013, LNAI 7879, pp. 133–144, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

134 J.-P. Jamont, M. Occello, and E. Mendes

expression of interaction and cooperation situations. From local individual inter-
actions can emerge behaviors at the system level which are difficult to predict.

Problem. Designing and deploying a decentralized intelligent systems requires
to simulate the behavior of the whole designed system. Because of the complexity
of applicative problems, simulation tools must help the designer to investigate
important features of local control strategies and to inspect their effects on the
global behavior. The precision of the models used in the simulation (physical
environment, energy consumption, wave propagation...) has a significant impact
on the quality of the whole solution that will be really deployed in the real
world. To support the system deployment, we must simulate decentralized in-
telligent systems constituted by virtual (simulated) parts and embedded parts
really deployed in the real world.

Such a tool must support an important variety of models coming from different
fields. These models are mainly organizational models (self-organization process,
hierarchy management etc.), interaction models (contract net protocol, recruit-
ing interaction protocol etc.), physical environment models (including different
classes of application dependent models as wave propagation models, thermal
dissipation model, fluid flow etc.) and user models (implementing different types
of user’s specific needs dependent behavior).

Contribution. MASH (MultiAgent Software Hardware simulator) tries to meet
these requirements. This tool is used according to the following approach
(figure 1). This approach is involved in a more complete system design method-
ology called DIAMOND [11] which is not presented here.

When the simulated solution meets the requirements it is necessary to em-
bed the solution in the real world devices. A specific effort is needed to tune
algorithms in order to fit resources of devices. Algorithms must be simplified to
accommodate, for example, memory limitations, reduced computation capacities
etc. Deviations of the global behavior may result from these modifications. Tools

Fig. 1. Using MASH to design and to deploy real world MAS

A Tool to Tune Design and Deployment Real of MAS 135

must help to control effects of local changes in the behavior of entities on the
global behavior.

This paper gives an insight to our pragmatic design approach and focuses on
its associated tool. Applications are given in a companion demo paper within
the same proceedings [12].

The structure of the paper is as follows: Section §2 introduces the MASH ar-
chitecture. In section §3 we focus on the key features of our tool : the virtual/real
world mixed society simulation and the use of realistic physical models. For each
of these key features the related works are exposed.

2 An Introduction to MASH Architecture

2.1 Preliminary Definitions

Embedded MAS include different types of agents:

– Embedded agents are agents embedded in the real world which can per-
ceive and act on physical environment. They are often constituted by a
software part and a hardware part. Soccer robots, autonomous vehicle, in-
telligent sensors are embedded agents.

– Software agents are traditional agents which can perceive and acts on
virtual environment.

– Virtual agents are a type of software agents used to simulate the behavior
of real world embedded agents.

– Avatar agents represent embedded agents in virtual societies. They enable
embedded agents to interact with software agents. They link the simulated
MAS with behaviors computed on physical devices.

Virtual environments are environments in which parameter values are esti-
mated/computed from their physical models. Parameter values of physical envi-
ronments are acquired by sensors and they are modified by effectors.

We call virtual society the set of software agents of the multiagent system.
Embedded agents are not taken into account contrary to their avatars.

We call instruction a method call on an agent (or an object) at a specified
date (date,<object identifier>.<method name>(<param1>,...)) . A scenario consists in
a set of instructions.

2.2 Architecture Overview

MASH enables involving software simulation (involving software agents), the
hardware simulation (only real world embedded agents operating on a simulated
environment) and the virtual/real world hybrid simulations (involving software
agents and real world embedded agents operating on a simulated/real world
mixed environment).

In figure 2, we can see in the background the main windows which allow to
view the system according to customized criteria (defined by the designer). It

136 J.-P. Jamont, M. Occello, and E. Mendes

is possible to spy agents i.e. to inspect their internal states and the history of
events. The inspected agent is Agent2 which is a real world agent. Among the
various events, we can see the bytes received by this agent and their translation
into logical messages.

Fig. 2. The MASH main windows

Virtual agents and real world embedded agents are abstracted by an Individual
agent manager (figure 3). The Individual Agent Manager enables the integration
in the simulation of virtual and real world agents. Each agent possesses its own
model and its own architecture. An agent can be implemented by a software
agent (as a java class) or its behavior can be computed in a real world embedded
agent. In this case, an avatar translates the logical call of methods and exchanged
messages to its wrapped embedded agent. Physical connections are implemented
according to a given bit specification (defined by user). The avatar allows to
give a graphical representation of the real world embedded agent in the MAS
graphical representation.

The Behavior component is the applicative component. It simulates the ex-
ecution of software on a single node. It processes messages received from other
agents. The agent’s decision cycle dedicated to the functional aspect of the ap-
plication is implemented here.

Agents interact together and with the environment through the society man-
ager and the Environment manager. The Society Manager defines the locality
of an agent. In other words, it enables an agent (1) to identify its neighbor-
hood i.e. the agents that can physically receive the messages it transmits, (2) to

A Tool to Tune Design and Deployment Real of MAS 137

VIRTUALAGENT 1 VIRTUALAGENT I EMBEDDEDAGENT I+1 EMBEDDEDAGENT N... ...
Behavior Battery model Behavior Battery model Real world agent Real world agent

INDIVIDUAL AGENT MANAGER

SOCIETY MANAGER
1

1 1 1 1
1 1 1 1

n

ENVIRONMENT MANAGER

Serial/TCP-IP/USB wrapperSerial/TCP-IP/USB wrapper

1
1

Matlab wrapper

Environment maps External modeling toolWave propagation model

E
V
E
N
TS

M
A
N
A
G
E
R

Journal

1 1

1 1

Scenario

1 1

Fig. 3. Simplified architecture of the MASH simulator

access the environment values that its sensors can measure and (3) to act on the
environment (to modify environment parameters) with their effectors.

The Environment manager computes different physical models to allow a
realistic simulation. When an agent wants to capture an environment value ,
this component decides firstly the accessibility of this data by the agent (Does
the agent have the appropriate sensor? Does the agent is in the good geographical
area?). Secondly, it returns the value or it throws an exception.

Concerning the scenario processing, the simulator uses the reflection API of
java which allows to examine or to modify the runtime behavior of Java applica-
tions. MASH uses it to examine properties of agents, including their declaration
and their contents. Main advantages of use of this API is the possibility, when a
scenario is running, to call dynamically user defined methods/services without
any additional declaration of possible actions.

3 Key Features

In this part, we focus on main particularities of MASH. For each of them, we
present a quick review of related works and give an insight of its implementation
in MASH.

3.1 Simulation of Real World/Virtual Societies

Software actors and hardware actors mixed systems are increasingly common,
but relatively few tools enable their development.

138 J.-P. Jamont, M. Occello, and E. Mendes

Related Works. Some works support simulation of systems including hard-
ware entities and software entities. These works often belong to the wireless
networks field. These simulators [14,7,22,23] are often specialized in the study of
a specific type of model (battery discharge model, wave propagation model...).
We identified no contribution in the field of decentralized artificial intelligence
which enables to involve software agents and real world embedded agents in a
same simulation. In [24], authors make a virtual discrete environment from the
physical observations to plan actions. In [9], the simulator acquires data from
sensors to obtain more realistic virtual simulations.

Concerning MASH. In our tool, all real world embedded agents have an
avatar in the simulated society. These avatars are managed by the Individual
agent manager. Their main role is to translate logical messages into physical
ones and vice versa. They can be used to compare real world agent behaviours
to the behaviour of their virtual implementation.

As an instance, figure 4 shows the expected role and the measured role of
an hardware agent included in the simulator. At t=152.45s, we can see that
the real world agent requires more time to choose its next role (the CPU clock
is lower than the virtual agent clock). At t+dt, we can see that the real world
agent has chosen an unexpected role (simple member). Reason is that a more
important amount of time is needed to analyze the received messages.

Fig. 4. Tracking an agent role

3.2 Simulation Using Realistic Physical Models

The majority of distributed intelligence systems concerns only virtual applica-
tions. For example, in the context of home automation, simulators belonging to
the distributed intelligence field focus on software problems like interaction pro-
tocols used to negotiate users’ needs, decision making and distributed problem
solving to adapt these needs to energy limitation [2,1], data-mining to match the
specific situation to a previously observed one [6].

The associate tools like [3,18,13,17] are not suitable for the design of real
world systems especially because physical laws of these environments are indeed
reduced to their simplest expression.

A Tool to Tune Design and Deployment Real of MAS 139

Environment Models. The environment models in which agents evolve are
often reduced to their simplest form (in most of works of ambient artificial in-
telligence). However their impact on simulation results is very important. We
present related works and a use of more realistic models in MASH.

Related Works. The most interesting solutions are those that use the well
known tools Labview [5] or Matlab[16]. In [20,4], authors use Labview to imple-
ment a MAS. In their simulations an agent is implemented as a virtual instru-
ment. Of course, by this way authors lose the advantages of multiagent simulators
(large scale simulation, multiagent specific models...). Very recently, in another
context a matlab/simulink multiagent toolkit for distributed networked fault tol-
erant control systems has been proposed [15]. In [21], MACSimJX an extension
of Jade is proposed to enable interaction between Simulink and this tool.

Concerning MASH. Matlab is undoubtedly the most suitable tool to model
physical systems even if the creation of a model requires to have serious knowl-
edge about the physical law that we want to model.

A Simulink model is presented as block diagram. Such diagrams enable to
solve set of algebraic equations and ordinary differential equations. This block
organization enables easy reuse of already developed blocks and allows to have
a better comprehension of the whole model.

In [10], we propose to model1 temperature evolution of each room of a build-
ing. The temperature of a room depends, on one hand, of elements that are only
dependent on that particular room and of external parameters, and on the other
hand of shared components, such as walls and doors, with other rooms. Con-
sequently, we propose the following methodology: making one model for each
piece with its own components (air, floor, ceiling, external walls, windows, in-
ternal heating sources...) and one model for each linking component (walls and
doors between rooms, floor/ceiling for multilevel building...). Mainly, the first
models (room model) are connected using the second models (internal building
walls). This methodology permits to connect and disconnect the rooms very ef-
ficiently without having to rewrite the equations of the different components.
One has first to define the components (rooms and internal walls) connectivity
and second the physical parameters of each component.

The resulting modular model is implemented into MatLab/Simulink. The
model enables to change the building configuration easily. Some parts of the
model are exposed in figure 5. We find on this figure the entire model of the
6 rooms building that we simulate (fig. 5a) and how we compute the temper-
ature of the rooms and of the internal walls composing the building according
equations described in [10] that are in state space form (fig. 5b).

To use a physical model defined with Matlab/Simulink, MASH can interact
with this tool by two ways : using a client/server approach or by files exchange.

Concerning the first solution, the Matlab Real-Time Workshop is able to pro-
vide the code to implement both a server and a client. We use only its server
code generation. MASH supplies the client code to access to the physical model

1 This model results from our collaboration with automation researchers.

140 J.-P. Jamont, M. Occello, and E. Mendes

Fig. 5. Environment physical model : Part of the Matlab block model

parameters. Because this solution requires to buy a specific module, we preferred
to develop a little Matlab script which enables a double queue file communica-
tion. These text files (default names: data.in (inputs of the physical model
i.e. outputs of MASH) — data.out (outputs of the physical model i.e. inputs
of MASH)) enables to share parameters and measures. An example of these
exchanged file is given in figure 7.

Then, MASH therefore uses a very simple algorithm (alg. 1) to put the update
data relating to the environment in which agents evolve.

Algorithm 1. Integrating Matlab/Simulink computed values

repeat
Read environment values in data.out.xml

Update MASH virtual environment
Agents act
Write controllable values by agents in data.in.xml

until simulation.isRunning()

Energy Consumption Model. Energy consumption models are very impor-
tant to obtain realistic results from the energy efficiency point of view. It is
necessary for the software simulated agent to include the energetic consumption
in the simulation because all embedded agents must integrate the energy point
of view in their reasoning.

Related Works. The battery model simulates the capacity and the lifetime of
the agent energy source. It is difficult to define a universal model because the
battery behaviour strongly depends on the material used to build the agents.
For an embedded agent, one of its main goals is to increase as much as possible

A Tool to Tune Design and Deployment Real of MAS 141

<?xml version= ”1.0”>
<! − − Written on 24-Aug-2011 10:52:41 using the XML Toolbox for Matlab −− >
<root>
. <data1>
. <name>simulated time< /name>
. <type>float< /type>
. <value>30< /value>
. <unit>day< /unit>
. <description>Simulation time : day< /description>
. <direction>out< /direction>
. < /data1>
. ...
. <data17>
. <name>Tai 03 03< /name>
. <type>float< /type>
. <value>32.678271140525< /value>
. <unit>celcius< /unit>
. <description>Ambient air temperature < /description>
. <location>room 3< /location>
. <direction>out< /direction>
. < /data17>
. ...
< /root>

Fig. 6. Example of XML exchanged files between Matlab/Simulink and MASH

the lifetime of its energy storage. One of the most simplest models of battery is
the linear model. Other models are described in [19,8].

In a lot of simulators of decentralized intelligent systems, energy consumption
models are not really available. Considering the large variety of batteries existing
in the real world, it will be interesting to supply several models.

Concerning MASH. We defined an open structure which allows to imple-
ment several models. The more simple one implemented in MASH consists in
defining the battery as a linear storage of current. The remaining capacity C
after operation of time td can be expressed by the following equation where
C′ is the previous capacity and I(t) is the instantaneous current used by the

hardware at time t : C = C′ − ∫ t0+td
t=t0

I(t)dt. The designer must tune the val-
ues involved in this model. For instance, we can define the consumed current
depending on some states: radio emission (8.1 mA), radio reception (7.0
mA), cpu active mode (2.0 mA), cpu sleeping mode (1.9 mA). A designer
can add new states to model others current consumptions (sensing consump-
tions, acting consumptions...).

Wave Propagation Model. If for most applications, the use of a particular
model of wave propagation is not essential, it may be necessary when the system
environment is disturbed non-uniformly. We present here the use of such models
in MASH.

Related Works. In tools specialized on wireless network simulation like NS2,
numerous models are available. These models are dedicated to specific environ-
ment (cities, home indoor...). We can tune some parameters like the bit rate, the
bit error rate and so on. In a lot of distributed intelligence simulator, these models
don’t really exist. Authors consider an arbitrary range or that the environment

142 J.-P. Jamont, M. Occello, and E. Mendes

is fully covered by access points. Associated energy consumption models are of-
ten poorly understood by software specialists. An example of false assumption
often found in papers is that a system (as a WSN) spends more energy during
transmissions rather than during receptions.

Concerning MASH. The wave propagation model can be modelled as a part
of the Matlab environment model. Even that, to simplify reuse of such a model,
we separate this specific model. So it is possible to have two concurrent Matlab
simulation (one for modelling the wave propagation and one for others physical
phenomena like heat transfer).

If a so advanced model is not necessary, MASH offers a simple model imple-
menting the Friis free space transmission equation (used in telecommunications
engineering) which does not need to use Matlab. The wave propagation model
is implemented like circular wave propagation through the 2-dimensional grid.
MASH estimates the received power measured by a receiver agent Pr when a
sender agent sends the message with transmitter power Ps. Considering the re-
ceiver signal strength, we can estimate the probability of a good reception of the
message by the receiver agent. Estimating Sr requires to know the geographical
position of the sender and of the possible receivers. These positions are stored
in the environment map and not in the agent because in a lot of applications,
embedded systems cannot know their positions. From these positions, we can
identify the different media crossed by the signal (air, water, wall etc.) during
its propagation.

4 Conclusion

This paper presents an approach to design and deploy real world systems based
on decentralized intelligence based on MAS. We presented MASH a tool sup-
porting this approach.

Building such systems imposes to design and to tune embedded agents. MASH
enables using both simulated and really embedded agents in a same system. One
of its major benefits is so the possibility to control possible deviations obtained
at the system level from the individual level behaviour modification. A second
ability of MASH is it supply realistic physical models for agent environment.
Coupling virtual agents/embedded agents with physical models leads to a real-
istic development tool, bringin closer MAS and physical systems.

Currently MASH supports simulation of systems incorporating populations
of 600 to 900 agents (depending on the agent architecture complexity). So the
next main improvement of MASH consists in enabling the society manager to
distribute individual agent manager on clusters of machines.

References

1. Abras, S., Ploix, S., Pesty, S., Jacomino, M.: A multi-agent home automation
system for power management. In: Proc. of the 3rd Int. Conf. on Informatics in
Control, Automation and Robotics, Intelligent Control Systems and Optimization,
pp. 3–8. INSTICC Press (2006)

A Tool to Tune Design and Deployment Real of MAS 143

2. Begg, R., Hassan, R.: Artificial neural networks in smart homes. In: Augusto, J.C.,
Nugent, C.D. (eds.) Designing Smart Homes. LNCS (LNAI), vol. 4008, pp. 146–
164. Springer, Heidelberg (2006)

3. De Carolis, B., Cozzolongo, G., Pizzutilo, S., Plantamura, V.L.: Agent-based home
simulation and control. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S.
(eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 404–412. Springer, Heidelberg
(2005)

4. Conte, G., Scaradozzi, D., Perdon, A., Morganti, G.: Mas theory for resource man-
agement in home automation systems. Journal of Physical Agents 3, 15–19 (2009)

5. Fairweather, I., Brumfield, A.: LabVIEW: A Developer’s Guide to Real World
Integration. Taylor and Francis (2011)

6. Galton, A.: Causal reasoning for alert generation in smart homes. In: Augusto,
J.C., Nugent, C.D. (eds.) Designing Smart Homes. LNCS (LNAI), vol. 4008, pp.
57–70. Springer, Heidelberg (2006)

7. Girod, L., Elson, J., Cerpa, A., Stathopoulos, T., Ramanathan, N., Estrin, D.:
Emstar: A software environment for developing and deploying wireless sensor net-
works. In: Proc. of the USENIX Annual Tech. Conf., pp. 283–296. USENIX (2004)

8. Handy, M., Timmermann, D.: Simulation of mobile wsn with accurate modelling
of non-linear battery effects. In: Applied Simulation and Modelling. Acta Press
(2003)

9. Hassaine, F., Moulton, R., Fink, C.: Composing a high fidelity hla federation for
littoral operations. In: Symp. on Applied Computing, pp. 2087–2092. ACM (2009)

10. Jamont, J.P., Mendes, E., Occello, M.: A framework to simulate and support the
design of distributed automation and decentralized control systems: application to
control of indoor building comfort. In: Proc. of the IEEE Symp. on Computational
Intelligence in Control and Automation, pp. 80–87. IEEE (2011)

11. Jamont, J.P., Occello, M.: A multiagent method to design hardware/software col-
laborative systems. In: Proceedings of the 12th International Conference on Com-
puter Supported Cooperative Work in Design, pp. 361–366. IEEE (2008)

12. Jamont, J.-P., Occello, M.: Using mash in the context of the design of embedded
multiagent system. In: Demazeau, Y., Ishida, T., Corchado, J.M., Bajo, J. (eds.)
PAAMS 2013. LNCS, vol. 7879, pp. 283–286. Springer, Heidelberg (2013)

13. Kim, I., Park, H., Noh, B., Lee, Y., Lee, S., Lee, H.: Design and implementation
of context-awareness simulation toolkit for context learning. In: IEEE Conf. on
Sensor Networks, Ubiquitous, and Trustworthy Computing, pp. 96–103 (2006)

14. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation
of entire tinyos application. In: Proc. of the Int. Conf. on Embedded Networked
Sensor Systems, pp. 126–137. ACM (2003)

15. Mendes, M., Santos, B., da Costa, J.S.: A matlab/simulink multi-agent toolkit for
distributed networked fault tolerant control systems. In: Proc. of the 7th IFAC
Symp. on Fault Detection, Supervision and Safety of Technical Processes (2010)

16. Moore, H.: MATLAB for engineers. ESource–the Prentice Hall engineering source.
Prentice Hall (2001)

17. Nguyen, T.V., Nguyen, H.A., Choi, D.: Development of a context aware virtual
smart home simulator. CoRR 1007.1274 (2010)

18. O’Neill, E., Klepal, M., Lewis, D., O’Donnell, T., O’Sullivan, D., Pesch, D.: A
testbed for evaluating human interaction with ubiquitous computing environments.
In: Proc. of the 1st Int. Conf. on Testbeds, Research Infrastructures for the Devel-
opment of Networks and Communities, pp. 60–69. IEEE Computer Society (2005)

19. Park, S., Savvides, A., Srivastava, M.B.: Simulating networks of wireless sensors.
In: Proc. of the 2001 Winter Simulation Conference, pp. 1330–1338. ACM (2001)

144 J.-P. Jamont, M. Occello, and E. Mendes

20. Ponci, F., Deshmukh, A., Monti, A., Cristaldi, L., Ottoboni, R.: Interface for multi-
agent platform systems. In: Proceedings of the IEEE Instrumentation and Mea-
surement Technology Conference, pp. 2226–2230. IEEE (2005)

21. Robinson, C.R., Mendham, P., Clarke, T.: A multiagent approach to manage com-
munication in wis. Journal of Physical Agents 4(3), 489–503 (2010)

22. Sobieh, A., Hou, J.: A simulation framework for sensor networks in j-sim (2003)
23. Titzer, B., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation with

precise timing. In: Proceedings of the 4th Int. Symp. on Information Processing in
Sensor Networks, pp. 477–482. IEEE (2005)

24. Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of e’gv
transportation systems. In: 4th Int. Joint Conf. on Autonomous Agents and Mul-
tiagent Systems - Industrial Applications, pp. 67–74. ACM (2005)

	Decentralized Intelligent Real World Embedded Systems: A Tool to Tune Design and Deployment
	Introduction
	An Introduction to MASH Architecture
	Preliminary Definitions
	Architecture Overview

	Key Features
	Simulation of Real World/Virtual Societies
	Simulation Using Realistic Physical Models

	Conclusion
	References

