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Abstract. In this paper, we propose a directed inference approach for
multi-class multi-model fusion. Different from traditional approaches
that learn a model in training stage and apply the model to new data
points in testing stage, directed inference approach constructs (one) gen-
eral direction of inference in training stage, and constructs an individual
(ad-hoc) rule for each given test point in testing stage. In the present
work, we propose a framework for applying the directed inference ap-
proach to multiple model fusion problems that consists of three com-
ponents: (i) learning of individual models on the training samples, (ii)
nearest neighbour search for constructing individual rules of bias correc-
tion, and (iii) learning of an optimal combination weights of individual
models for model fusion. For inference on a test sample, the predic-
tion scores of individual models are first corrected with bias estimated
from the nearest training data points, and then the corrected scores are
combined using the learned optimal weights. We conduct extensive ex-
periments and demonstrate the effectiveness of the proposed approach
towards multi-class multiple model fusion.

1 Introduction

Big data has posed great challenges in applying machine learning technologies.
First, the scale of the data is too big to feed into most single-node and batch-
mode machine learning algorithms. Second, the model trained on a small subset
of data usually subjects to high bias and high variance.

To meet the big data challenge, a common approach is to adopt a distributed
learning framework, where data and learning are distributed to different nodes
in a cloud based computational network. These computational nodes are usu-
ally categorized into two types: one master node and a set of slave nodes. Each
slave node will train an independent model on a subset of training data with
single-node solvable scale, and make temporary decisions based on each inde-
pendent model. The master node will take charge of distributing data, collecting
information from slave nodes, and making the final decision, also called model
fusion.

There are two steps involved in distributed learning framework. The first step
is the distributing of multiple models in different slave nodes. The simplest way
is to train each model, e.g., support vector machine (SVM)[8], neural network
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(NN) [13], decision tree [11], logistic regression (LR) [15], etc., independently on
each node. The second step is to fuse multiple models and make the final decision,
which has become a bottleneck problem in the distributed learning framework.
There are several ways for model fusion. The simplest approach that combines
the scores of multiple models with equal weights suffers from severe problems.
First, each model may have substantially biased prediction and as a result adding
them together may blow up the prediction bias on a test sample1. Second, each
individual model may perform very differently since different models are learned
based on different assumptions and objective functions, as a result the simple
average would be very vulnerable to poorly performed models.

Although some other methods have been considering different weighting
schemes to fuse multiple models, e.g., bagging, boosting, maximum margin of
ensembles [10], and etc, they are studied in the traditional system on a single
machine over all training samples and therefore they may not fit into the modern
distributed system.

In this work, we seek an approach to directly combine multiple models with
each trained on the same set (or different subset) of training samples. The pro-
posed directed inference approach consists of three key components: (i) learning
of individual models, which is same as traditional approach; (ii) nearest neigh-
bour search for estimating the prediction bias on a test sample to correct the
prediction scores of individual models; and (iii) learning of an optimal combina-
tion weights for model fusion. To make an inference on a test sample, the raw
prediction scores are first computed for each model and then are corrected with
estimated bias from the nearest neighbours retrieved using a distance metric and
finally are added together using the learned optimal combination weights. The
proposed approach can be also understood from the viewpoint of bias-variance
trade-off. Combination of multiple models has shown to be effective in reducing
the variance of prediction, however it could have adversary effect by increasing
the bias. Therefore, the bias correction step in the proposed method helps to
reduce the bias in individual models and the optimal weighting scheme further
alleviate the impact of models with large bias.

We organize the remaining part of the paper as follows. In section 2, we review
some related work from three angles, directed inference, bias and variance trade-
off, and model fusion. In section 3 we present the proposed approach with three
key components: learning of individual models, learning of a distance metric
and learning of an optimal combination weights. In section 4, we present the
experimental results and finally we conclude in section 5.

2 Related Work

2.1 Directed Inference

Directed (ad-hoc) inference (DAHI) approach is a new machine learning tech-
nique proposed by Vladimir Vapnik [18]. The key difference between DAHI and

1 Throughout the paper, we use the terms of sample, example, instance and data point
interchangeability.
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traditional inductive/deductive or transductive learning is that in the testing
stage, DAHI constructs a specific individual rule for each test example based
on a principle concept learned in the training stage. The present work fits into
the framework of DAHI by first learning multiple individual models in a single
machine or in a distributed learning framework, a distance metric for retriev-
ing a nearest neighbour and an optimal combination weights, then for each test
sample by computing a bias corrected score for each individual model and then
combing the multiple scores using the learned weights.

2.2 Bias and Variance Trade-Off

Bias and variance take-off is a common problem in model selection and model
assessment. It has been shown that the mean square error of an estimator can
be decomposed into a sum of the variance and the bias square of the estimator.
Given multiple unbiased estimators, by simply averaging their prediction scores,
one can obtain an estimator with dramatically reduced variance. However, if
the individual models are biased, the trade-off between bias and variance may
kick in, i.e. the variance of combined models may be reduced, while the bias
may be blown up. One of the key motivations of the proposed approach is to
reduce the bias of individual models. Given the bias and variance trade-off, it
is however generally a difficult and even impossible task to construct a fixed
estimator with both small bias and variance. Therefore, we resort to DAHI to
construct individual rules with small bias and combine them to obtain a small
variance.

Bias correction has been introduced to construct individual rules with small
bias [4,2] and has shown to be effective in regression [4] and binary classifica-
tion [2]. Bias correction works by subtracting an estimated bias value from the
prediction score on any test example. The bias on a test sample is estimated by
taking average of the bias values on training data points in the nearest neigh-
bourhood. The underlying assumption is that in the small neighbourhood of a
test example, the bias value is a constant. Previous works have used Euclidean
distance or rectangle distance to retrieve a number of nearest neighbours. How-
ever, the Euclidean nearest neighbour may not share similar bias as the models
may learned in a different space (e.g., kernel SVM is learned in a mapped high
dimensional or infinite dimensional space).

2.3 Model Fusion

Model fusion is part of the ensemble learning process, by which multiple in-
telligent models are trained and combined for making a decision. Fusion is a
major scheme for improving the performance by generating a more robust deci-
sion boundary based on multiple decision models. It can also be considered as a
generalized model selection process, where instead of selecting the best model,
fusion selects the best combination of models. The commonly used fusion meth-
ods include simple fusion, majority voting, Borda count, threshold voting, and
heuristic decision rules [14,25,12], weighted average [27], fuzzy integral, fuzzy
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templates, and Dempster-Shafer theory[20], dynamic model selection [22], neu-
ral network (NN) based NN combination [21], local fusion [26], fuzzy combination
[3], bagging [6], boosting [16], and etc.

3 A Directed Inference Approach towards Multi-class
Multi-model Fusion

In this section, we present a directed inference approach towards multi-class
multi-model fusion. The proposed approach consists of three key components:
(i) learning of individual models, (ii) nearest neighbour search for bias correction,
and (iii) learning optimal combination weights.

3.1 Learning of Individual Models

Our goal is to classify a data point into one of the K classes, denoted by
{C1, . . . , CK}. A common approach for multi-class classification is to cast the
problem into several binary classification problems, e.g., one vs all or one vs one.
In what follows, we briefly describe several methods for multi-class classification.
Throughout the paper, we let xi ∈ R

d, i = 1, . . . , n denote the feature vectors
and yi ∈ {1, . . . ,K}, i = 1, . . . , n denote their class labels. Without incurring
confusion, we also use yi ∈ {0, 1}K to denote a K-dimensional vector with only
one entry equal to 1 indicating the class label.

Support Vector Machine (SVM) [8] constructs a hyperplane in the linear
form f(x) = w�x + c by maximizing the margin from the hyperplane to the
nearest training data point. It categorizes any data point into one of the two
classes by checking the sign of the prediction score w�x + c. In addition to
linear classification, SVM can also perform non-linear classification by using the
kernel trick, which is equivalent to mapping data points into high dimensional or
infinite dimensional feature spaces. In the experiments, we choose LibSVM [7] to
run kernel SVM with RBF kernel. To perform multi-class classification, it follows
one vs one scheme by constructing K(K − 1)/2 binary classifiers and finally
outputs a vector of scores that sum up to one, with each element indicating the
confidence of assigning the data point into the corresponding class.

Neural Network (NN) [13] models the relationship between input and out-
put in a structured information processing network, consisting of hidden layers
of nodes between input and output. The learning process is actually adapting
the model to the training data by changing the structure of the network. To
adopt the NN for muti-class classification, we build K feed-forward neural net-
works with a hidden layer of 25 neurons. The k-th neural network NNk is trained
by regressing the input features xi to the indicator variable I(yi = k) on the
training data. The decision on a test point is made by C(x) = argmaxk NNk(x),
where NNk(x) gives the prediction value on x.

Decision Tree [5] is a widely used non-linear model for both regression or
classification. A decision tree could be either a classification tree or a regression
tree depending on the type of the target variable and it is built upon the training
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data by recursively splitting the feature space with one feature and a splitting
criterion that minimizes error in the two resulting sub-spaces. To classify a data
point into one of K classes, we construct K regression trees with each tree
Tk built on the training data xi, i = 1, . . . , n with binary indicator variables
I(yl = k), and predict the class of a test point by C(x) = argmaxk Tk(x).
In this work, we choose the most well-known implementation of decision tree,
CART [5].

Logistic Regression (LR) [15] is a discriminative model for classification.
We consider linear logistic regression model for multi-class classification, which

defines the class conditional probability by Pr(y = k|x) =
exp(w�

k x)
∑

K
l=1 exp(w�

l x)
and

learns theK weightsw1, . . . ,wk by maximizing the log-likelihood on the training
data. To avoid over-fitting, a regularization term (λ/2)

∑K
k=1 ‖wk‖22 is added to

the objective.

3.2 Nearest Neighbour Search

Given multiple models denoted by f1, . . . , fm learned from the training data,
the remaining question is to combine them into a single model for achieving a
better performance. In this and next section, we address the question by nearest
neighbour search using a distance metric for bias correction and learning an
optimal combination weights for model fusion.

The raw prediction scores of model fj on a given test example X are generated
by fj(X) ∈ R

K . The motivation of bias correction is to reduce the bias of indi-
vidual models in predicting test data points. If we can accurately estimate the
bias bj(X) = fj(X)−Y, where Y is the unknown class label of the given exam-

ple X, we can subtract the estimated bias b̂j(X) from the raw prediction scores

fj(X) and obtain a more accurate classification decision based on fj(X)− b̂j(X).

The question reduced to accurately estimation of the bias b̂j(X) for a given test
point X. We take a non-parametric method, i.e., nearest neighbour estimation. A
non-parametric method fits into the framework of directed inference [19], which
is useful for constructing individual rules for test examples.

Let N (X) denote a small neighbourhood of X that contains the nearest train-
ing data points, which we assume shares the similar bias as the test data point
X, then the bias of X can be estimated by

b̂j(X) =
1

|N (X)|
∑

xi∈N (X)

(fj(xi)− yi) (1)

It still remains a problem how to retrieve a nearest neighbourhood of the test
point X. A simple method is to define a nearest neighbourhood by using the
Euclidean distance metric ‖xi −X‖2. However, in some cases it may not reflect
the underlying manifold of the bias function bj(x) = fj(x) − y, which depends
on the model prediction f(x) and the ground-truth y. A simple example that
provides a negative evidence of using the Euclidean distance is given in Figure 1,
where for the green test point, the bias of the nearest training data points (in the
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Fig. 1. An Illustration of nearest neighbourhood (nn) defined by the Euclidean metric
and the learned metric for estimating the bias on a test point (green dot)

green circle) defined by Euclidean distance metric are mixed with positive values
and negative values. As a consequence, by averaging the biases of the nearest
training data points may yield a poor estimation of bias on the test data point.
In contrast, if we define a nearest neighbourhood by a distance metric (e.g. the
blue elliptical circle) that is consistent with the ground truth, i.e. data points
with the same class labels have small distances and data points with different
labels have large distances, then the estimation of bias can be improved. There
exist many methods to formulate the distance metric learning [23,28,24]. In our
empirical study, we choose a simple and effective method, relevant component
analysis (RCA) [17,1], which is briefly described below.

RCA is originally proposed for learning a distance metric from partially la-
belled similar data points. Let C1, . . . , CK denote a set of K chunklets, where a
chunklet is defined as a set of data points that share the same class labels. In
our settings, each chunklet corresponds to one class. Then a positive semidefinite
distance metric A ∈ R

d×d is learned by minimizing the within class distances,
i.e.,

min
A∈S

d×d
+

K∑

k=1

1

nk

∑

yi=k

(xi − ck)
�A(xi − ck)− log detA (2)

where S
m×m
+ ⊆ R

m×m denotes a PSD cone, ck is the center of the kth chunklet
and nk is the number of data points in Ck. The negative log-determinant term
is added to avoid a trivial solution, which also has an information theoretic and
Bayesian interpretation [1]. Finally, one can easily show that the optimal solution
to (2) can be computed as
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A =

⎛

⎝
K∑

k=1

1

nk

∑

yi=k

(xi − ck)(xi − ck)
�

⎞

⎠

−1

Equipped with a distance metric A, either the Euclidean metric or the learned
metric, we can retrieve k nearest neighbors of the test sample X with k shortest
distance (xi −X)�A(xi −X) to form N (X).

3.3 Learning of an Optimal Combination Weights

In the previous section, we describe a nearest neighbour search for estimating
the bias on a given test point X. Given the estimated bias, the prediction of each
model is corrected by fj(X)− b̂j(X), and the corrected score will be combined by
a weighted summation. In this section, we present a convex approach for learning
a globally optimal combination weights. Let ω1, . . . , ωm denote the weights to
be learned, the combined prediction is computed by

f̂(X) =

m∑

j=1

ωj

(
fj(X) − b̂j(X)

)
(3)

The combination weights are global in the sense that all test points share the
same weights. The optimal combination weights ω = (ω1, . . . , ωm)� are learned
following the spirit of cross-validation. To this end, we let (xv

i , y
v
i ), i = 1, . . . , N

denote a separate set of N validation data points sampled from the same distri-
bution of the training data points, and then we optimize the following objective

min
ω∈Δ+

N∑

i=1

�

⎛

⎝
m∑

j=1

ωj(fj(x
v
i )− b̂j(x

v
i )), y

v
i

⎞

⎠ (4)

where Δ+ = {ω : ω ≥ 0,
∑m

j=1 ωj = 1} is a simplex, b̂j(x
v
i ) is the estimated bias

from the nearest neighbors and �(z, y) is a hinge loss for multi-class defined as

�(z, y) = max
k �=y

([z]k − [z]y + b)+

where b is a specified margin parameter and [s]+ = max(0, s)
To optimize the objective in (4), we can employ the widely adopted gradi-

ent descent method that iteratively updates ωt = ωt−1 − η∇L(ωt−1), where
η is a step size. However, the standard gradient decent method suffers from a
low convergence rate of O(1/

√
T ) for the non-smooth hinge loss function, i.e.,

L(ω̂T ) ≤ minω∈Δ+ L(ω) + O(1/
√
T )), where ω̂T =

∑T
t=1 ωt/T . In this paper,

we extend the primal dual prox method proposed in [29] to optimize L(ω) that
enjoys a convergence rate of O(1/T ). To this end, we write the objective in (4)
into a min-max formulation:

min
ω∈Δ+

max
α∈ΩN

+

1

N

N∑

i=1

∑

k �=y

αi
k

(
[f̂(xv

i )]k − [f̂(xv
i )]yv

i
+ b

)

︸ ︷︷ ︸
F (ω,α)
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Algorithm 1. Pdprox algorithm for optimizing structured hinge loss over a
s implex (Pdprox-shs)

1: Input: step size γ
2: Initialization: θ0 = 1/m,α0 = 0
3: for t = 1, 2, . . . do

4: ωt = Pθt−1(γ∇ω(θt−1, αt−1)) =
θt−1 ◦ exp(−γ∇ω(θt−1, αt−1))∑m

j=1[θt−1 ◦ exp(−γ∇ω(θt−1, αt−1))]j
5: αt = ΠΩN

+
[αt−1 + γ∇α(ωt, αt−1)]

6: θt = Pθt−1(γ∇ω(ωt, αt)) =
θt−1 ◦ exp(−γ∇ω(ωt, αt))∑m

j=1[θt−1 ◦ exp(−γ∇ω(ωt, αt))]j
7: end for
8: Output ω̂T =

∑T
t=1 ωt/T and α̂T =

∑T
t=1 αt/T .

by observing that �(z, y) = maxα∈Ω+

∑
k �=y αk([z]k− [z]y+b), where Ω+ = {α ∈

R
K−1 : α ≥ 0,

∑
k αk ≤ 1}. To present the algorithm, we let ∇α(ω, α) denote the

partial gradient of F (ω, α) in terms of ω, ∇α(ω, α) denote the partial gradient
of F (ω, α) in terms of α, and let [u]j denote the jth element in u. The detailed
steps for updating the primal variable ω and the dual variables α are presented in
Algorithm 1, which is a variant of Algorithm 2 proposed in [29]. The updating
rule for the primal variable ω and the auxiliary primal variable θ is due to a
proximal mapping Pθ(g) = argminω∈Δ+ g�(ω − θ) + V (ω, θ), where V (ω, θ) =∑

j ωj log(ωj/θj) is the entropy distance function. The updating rule for the dual

variables α is due to a projection Πα∈ΩN
+
[α̂] = argminα∈ΩN

+
‖α − α̂‖2F , which

can be efficiently computed using the algorithm in [9]. Finally, we present the
following theorem that states the convergence rate of Algorithm 1 for optimizing
the structured hinge loss over a simplex. The proof can be easily duplicated
following the analysis in [29].

Theorem 1. Assuming ‖[f̂(x)]‖∞ ≤ R and setting γ =
√

N
8mR2 , by running

Algorithm 1 with T steps, we have

L(ω̂T ) ≤ min
ω∈Δ+

L(ω) +
logm+N

2γT

4 Experiments

In this section, we present some preliminary experimental results. The data sets
we choose for study include open benchmarks, DNA, letter, pendigits, protein,
satimage, in UCI data repositories. We also adopted a jet engine fault classi-
fication data, which contains a total of 19, 635 instances. Each instance corre-
sponding to a case of engine has 11 attributes from sensors and also is labelled
to one of seven classes which indicates one of the seven fault types including
normal. We refer to the data as aircraft engine fault diagnosis (AEFD) data.
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More details can be found in [27]. The data is split into a training set of 15, 708
instances and a testing set of 3, 927 instances. Table 1 summarizes the statistics
of the chosen datasets.

Table 1. Statistics of datasets

Name instances features source class type

dna 3,186 180 statlog 3 multi-class
letter 20,000 16 Statlog 26 multi-class

segment 2,310 19 Statlog 7 mult-class
protein 24,387 357 JYW02a 3 multi-class
satimage 6,435 36 Statlog 6 multi-class
AEFD 19,635 11 GE 7 multi-class

Table 2. Prediction performance of individual models with/without bias correction,
where nbs and bs indicate performances without and with bias correction, respectively.
The reported results of bias correction is using the Euclidean distance metric.

DNA letter segment

SVM NN CART LR SVM NN CART LR SVM NN CART LR

nbs 0.9625 0.9475 0.9740 0.9765 0.8158 0.9350 0.8250 0.7532 0.9450 0.9850 0.9750 0.9350

bs 0.9740 0.9645 0.9800 0.9765 0.9436 0.9596 0.9148 0.8234 0.9750 0.9850 0.9800 0.9500

protein satimage AEFD

SVM NN CART LR SVM NN CART LR SVM NN CART LR

nbs 0.6709 0.6849 0.4948 0.6892 0.8575 0.8885 0.8320 0.8170 0.7675 0.8296 0.7056 0.7833

bs 0.6324 0.6130 0.5369 0.6801 0.9040 0.8995 0.8845 0.8170 0.8273 0.8442 0.7904 0.8182

Table 3. Prediction performance of multiple model fusion with bias correction using
equal weights and optimal combination weights

DNA letter segment protein satimage AEFD

average opt average opt average opt average opt average opt average opt

0.9795 0.9850 0.9126 0.9680 0.9950 0.9850 0.6730 0.6683 0.8528 0.8622 0.8180 0.8745

We use the default splitting of training, validation and testing if there exists
a validation data, otherwise we manually generate a validation data set by sam-
pling from the training data with the same size of the testing data set. For the
purpose of demonstration, we train 4 classification models (SVM, NN, CART,
LR) on all training data points, and report the metric of overall accuracy com-
puted based on the confusion table [27]. The parameters in models are tuned
on the validation data set. The number of nearest neighbours for estimating the
bias is set to 5. The margin parameter in the structured hinge loss is set to 0.5.
Both the bias correction and the model fusion are done on the previously listed
dataset.

We first demonstrate the effectiveness of bias correction on individual mod-
els. The results are summarized in Table 2. From the results, we can observe
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Fig. 2. Comparison of Pdprox-shs vs Gradient Descent (GD) method for optimizing
the structured hinge loss on dna data set.

that bias correction can improve the prediction substantially. Furthermore, we
compare the performance by using the Euclidean distance and a learned dis-
tance metric by RCA. We observed on several data sets that the distance metric
learned from the ground truth can improve the performance of Euclidean dis-
tance metric, e.g. on AEFD data sets the performances of the four models are
improved to (0.8533, 0.8630, 0.8024, 0.8215), on letter data set the performances
are improved to (0.9546, 0.9656, 0.9216, 0.8302). On other data sets, the learned
distance metric by RCA is comparable to the Euclidean distance metric.

Next, we demonstrate the effectiveness of model fusion. We compare the pro-
posed convex approach for learning an optimal combination weights to the equal
weighting fusion. The results are reported in Table 3. Among the six selected
benchmark datasets for multi-class classification, the proposed optimal fusion ap-
proach significantly outperforms the equal weighting method on four datasets,
and performs almost the same on the segment and protein data. By checking
these two data sets, we find all individual classifiers perform almost equally.
Thus, we draw a conclusion that the proposed fusion approach significantly out-
performs simple fusion method when outputs of individual classifiers are diverse.

Finally, we show the efficiency of Pdprox-shs algorithm compared to gradient
descent (GD) method for optimizing the structured hinge loss over a simplex.
Both the initial step size of GD and the step size of Pdprox-shs are set to the
same value 100. We plot the objective value versus the number of iterations on
DNA data in Figure 2. It clearly shows that Pdprox-shs performs better than
GD, which verifies our theoretical analysis on the convergence rate.

5 Conclusion

In this paper, we propose a directed inference approach for multi-class multi-
model fusion. Different from traditional approaches, directed inference approach
constructs a principle concept in training stage and individual (ad-hoc) rules for



362 T. Yang, L. Wu, and P.P. Bonissone

classifying test samples. The presented approach consists of three key compo-
nents: (i) learning of individual models, (ii) nearest neighbour search for estimat-
ing the bias of a given test sample, and (iii) learning of an optimal combination
weights for fusing the bias corrected scores of multiple models. We demonstrate
the effectiveness of the proposed approach on extensive data sets. In the future
work, we plan to extend the work to other tasks (e.g. regression and binary clas-
sification) and conduct the experiments in real distributed learning framework.

Acknowledgement. We sincerely thank Dr. Shengzhuo Zhu for pointing out
the connection to DAHI.
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