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Abstract. In this paper, we propose Randomized Bayesian Network Classifiers
(RBNC). It borrows the idea of ensemble learning by constructing a collection of
semi-naive Bayesian network classifiers and then combines their predictions as
the final output. Specifically, the structure learning of each component Bayesian
network classifier is performed by just randomly choosing the parent of each
attribute in addition to class attribute, and parameter learning is performed by us-
ing maximum likelihood method. RBNC retains many of naive Bayes’ desirable
property, such as scaling linearly with respect to both the number of instances
and attributes, needing a single pass through the training data and robust to noise,
etc. On the 60 widely used benchmark UCI datasets, RBNC outperforms state-
of-the-art Bayesian classifiers.

1 Introduction

A Bayesian network [1] encodes the joint probability distribution of a set of variables
as a directed acyclic graph (DAG) and a set of conditional probability tables (CPTs).
Its modularity and intuitive graphical representation make it an attractive model for real
world problems, and their use for classification has received considerable attentions
[2,3]. Assume that X1, X2, ..., Xa are a attributes (corresponding to attribute nodes in
a Bayesian network). An instance I is represented by a vector (x1, x2, ..., xa), where xi

is the value of Xi. Let C represent the class variable (corresponding to the class node
in a Bayesian network). We use c to represent the value that C takes and c(I) to denote
the class label of I . A Bayesian network classifier predicts the class label of instance I
using Equation 1.

c(I) = argmax
c∈C

P (c)P (x1, x2, ..., xa|c) (1)

Assume that all attributes are independent given the class, that is,

c(I) = argmax
c∈C

P (c)

a∏

i=1

P (xi|c) (2)

This assumption is called conditional independence assumption and the resulting clas-
sifier is called a naive Bayesian classifier, or simply naive Bayes.

Naive Bayes is the simplest form of Bayesian network classifier and has been widely
applied to many real world applications [4,5,6,7,8]. Despite the fact that the conditional
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independence assumptions are often inaccurate, the naive Bayes classifier has several
properties that make it surprisingly useful in practice. In particular, both the time and
space complexity grow linearly with respect to both the number of instances and at-
tributes, the learning can be done with a single pass through the training data and the
performance is robust to noise, etc.

It is obvious that the conditional independence assumption in naive Bayes is rarely
true. To relax this assumption, many techniques have been proposed. Extending its
structure is a direct way to overcome the limitation of naive Bayes, since attribute depen-
dencies can be explicitly represented by adding arcs. Learning Bayesian networks has
become an active research in the past decade [3,9,10]. The goal of learning a Bayesian
network is to determine both the structure of the network (structure learning) and the
set of CPTs (parameter learning). Since the number of possible structures is extremely
huge, structure learning often has high computational complexity. Thus, heuristic and
approximate learning algorithms are the realistic solution. A variety of learning algo-
rithms have been proposed, such as TAN [2], BNC[9], HNB [11], f̂CLL[3], AnDE[6],
etc. Most of these algorithms achieve improved accuracy over naive Bayes. However,
this is achieved at the cost of increasing the order of computational complexity
which severely limits its applicability in practice, especially for large-scale and high-
dimensional data.

In fact, a model that could relax conditional independence assumption and also re-
tain many of naive Bayes’ desirable computational and theoretical properties, is more
desirable. In this paper, we present a new model Randomized Bayesian Network Classi-
fiers (RBNC). It borrows the idea from ensemble learning paradigms by constructing a
collection of semi-naive Bayesian network classifiers and then combining their predic-
tions as the final output. Specifically, the structure learning of each component Bayesian
network classifier is performed by just randomly choosing the parent of each attribute
in addition to class attribute, and parameter learning is performed by using maximum
likelihood method (i.e. frequency counting). Our experimental results show that RBNC
demonstrates remarkable accuracy compared to other state-of-the-art algorithms.

The rest of the paper is organized as follows. We first introduce the related work.
Then we present our new model RBNC, followed by the description of our experimental
setup and results in detail. Finally, the paper is concluded in section 5.

2 Related Work

Numerous techniques have been proposed to improve or extend naive Bayes, mainly in
two approaches: selecting or forming new attribute subsets in which attributes are con-
ditionally independent, and extending the structure of naive Bayes to represent attribute
dependencies.

The idea of selecting a subset of attributes or forming new attributes is to convert
the data to a new form that satisfies the conditional independence assumption. Of the
proposed techniques, selective naive Bayes (SBC) by [12] demonstrates a remarkable
improvement over naive Bayes. SBC uses forward selection to find a good subset of
attributes, and then uses this subset to construct a naive Bayes.
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Learning Bayesian networks has become an active research in the past decade. The
goal of learning consists of determining both the structure of the network and the set
of CPTs. Since the number of possible structures is extremely huge, structure learn-
ing often has high computational complexity. Moreover, learning unrestricted Bayesian
network seems to not necessarily lead to a classifier with good performance. Thus,
heuristic and approximate learning algorithms are the realistic solution. For example,
[2] proposed Tree Augmented Naive Bayes (TAN), a structure learning algorithm that
learns a maximum spanning tree from the attributes, but retains naive Bayes model as a
part of its structure to bias towards the estimation of conditional distribution. BNC-2P
[9], on the other hand, is a heuristic discriminative structure learning method with con-
ditional log likelihood as scoring function. Although the structures in TAN and BNC-2P
are selected discriminatively, the parameters are trained via maximum likelihood train-
ing for computational efficiency.

Factorized conditional log-likelihood (f̂CLL) [3] is the most recently proposed score
function for learning Bayesian network classifiers. It is an approximation of the condi-
tional log-likelihood criterion, and is devised in order to guarantee decomposability
over the network structure as well as efficient estimation of the optimal parameters.
This discriminative criteria achieves the same time and space complexity as the log-
likelihood scoring function. The experimental results show that f̂CLL trained TAN
achieves improved accuracy over other discriminatively trained Bayesian network
classifiers.

Hidden Naive Bayes (HNB) [13,11] using a predefined network structure to take
the influences from all attributes into account. In HNB, each attribute Xi has a hid-
den parent Xhpi which combines the influences from all other attributes. The classifier
corresponding to an HNB on an instance I = (x1, ..., xa) is defined as follows:

c(I) = argmax
c∈C

P (c)

a∏

i=1

P (xi|Xhpi , c) (3)

where

P (xi|Xhpi , c) =

a∑

j=1,j �=i

wijP (xi|xj , c) (4)

The weight wij is defined by the conditional mutual information between two attributes
Xi and Xj . The hidden parent Xhpi for Xi is essentially a mixture of the weighted
influences from all other attributes. Since there is no structure learning, learning an
HNB is mainly about estimating the parameters from the training data. To create the
hidden parent of an attribute, HNB needs to compute the conditional mutual information
for each pair of attributes.

The most recent work on improving naive Bayes is AnDE (averaged n-dependence
estimators) [6] which is an generalization of the well-known AODE (averaged one-
dependence estimators) [5] algorithm. In AnDE, an ensemble of n-dependence classi-
fiers are learned and the prediction is produced by aggregating the predictions of all
qualified classifiers. An x-dependence estimator means that the probability of an at-
tribute is conditioned by the class variable and at most x other attributes. In AnDE, a
n-dependence classifier is built for every combination of n attributes, in which the given
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n attributes are set to be the parent of all other attributes. AnDE predicts the class label
of instance I using Equation 5.

c(I) = argmax
c∈C

∑

s∈Sn

P (c, s)
a∏

j=1,j �∈s

P (xj |c, s) (5)

where Sn indicates the set of all size-n subsets of {x1, ..., xa}. The experimental results
show that the bias-variance trade-off for A2DE results in strong predictive accuracy
over a wide range of data sets. Another reason for the authors presenting primarily
results for A2DE is because the computational complexity (both space and time) of
AnDE(n ≥ 3) is very high and defeats their Weka implementation on most data sets
[6]. The ensemble size is a (the number of attributes) for both AODE and A2DE.

Table 1 shows the training time and space complexity of some algorithms discussed.

Table 1. Computational complexity of algorithms

Training Complexity Testing Complexity
Algorithm Time Space Time Space
NB O(ta) O(kav) O(ka) O(kav)
TAN O(ta2 + k(av)2 + a2 log a) O(k(av)2) O(ka) O(kav2)
HNB O(ta2 + k(av)2) O(k(av)2) O(ka2) O(k(av)2)
AODE O(ta2) O(k(av)2) O(ka2) O(k(av)2)

AnDE O(t

(
a

n+ 1

)
) O(k

(
a

n+ 1

)
vn+1)O(kn

(
a
n

)
)O(k

(
a

n+ 1

)
vn+1)

RBNC-n O(Ntan) O(Nkavn+1) O(Nkan) O(Nkavn+1)

k is the number of classes.
a is the number of attributes.
v is the average number of values for an attribute.
t is the number of training examples.
n is the number of parent nodes except class.
N is the number of component models of RBNC.

3 The RBNC Algorithm

In this section, we introduce the RBNC family of algorithms and analyze its computa-
tional complexity.

3.1 Algorithm Definition

Instead of searching for a single Bayesian network classifier model by optimizing some
(discriminative or generative) score on data, RBNC randomly constructs multiple
Bayesian network classifier models and then simply average their probability predic-
tions as the final output.

We focus on augmented naive Bayes classifiers, that is, Bayesian network classifiers
where the class attribute has no parents and all attributes have at least the class attribute
as parent. In addition, we introduce a parameter n to control the maximum number of
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Algorithm 1. RBNC algorithm
Input: Training data D, where < X1, ..., Xa > and C represent a input attributes and class
attribute, respectively. Maximum number of parents (except class) per node n and number of
component models N .
Output: A set of Bayesian network classifier models E.

Initialize E = {}.
/∗ structure learning ∗/
for i = 1 to N do

Generate a random permutation < A1, .., Aa > of the given a input attributes.
Initialize an empty Bayesian network model Mi with a+ 1 node.
For Mi, set class attribute C as parent for all other attributes.
for j = 2 to a do

if j ≤ n then
For Mi, set all attributes in {A1, ..., Aj−1} as parent of attribute Aj .

else
For Mi, randomly select n attributes in {A1, ..., Aj−1} as parent of attribute Aj .

end if
end for
E=E

⋃
Mi.

end for
/∗ parameter learning ∗/
Compute the CPTs for all Mi ∈ E on data D using maximum likelihood.
return E

parents per node in the network. The structure of each component Bayesian network
classifier in RBNC is constructed by just randomly choosing n other attributes as the
parents for each attribute in addition to class attribute. To ensure the generated structure
is DAG, first, all the attributes are ordered, then each attribute can only select those
ahead of it as parents. The parameters in each component network are set to their max-
imum likelihood values, i.e. observed frequency counting over the data. The detailed
learning process of RBNC is depicted in Algorithm 1.

RBNC predicts the class label of instance I using:

c(I) = argmax
c∈C

N∑

q=1

Pq(c|I) (6)

where Pq(c|I) is the posterior probability estimation of the q-th component model in
RBNC, and is defined as:

Pq(c|I) = P (c)

a∏

i=1

P (xi|πi, c) (7)

where πi is the set of parents values of attribute Xi.
It should be noted that RBNC-0 is just naive Bayes and in RBNC-n (n ≥ 1), each

component models define a weaker conditional independence assumption than naive
Bayes, as it is necessarily true if the naive Bayes’ assumption is true and may also
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be true when the naive Bayes’ assumption is not. As this is a weaker assumption than
Equation 2, the bias of the model should be lower than that of naive Bayes. However, it
is derived from higher-dimensional probability estimates and hence its variance should
be higher.

Similar to AnDE, RBNC utilizes parameter n that transforms the approach between a
low-variance high-bias learner (naive Bayes) and a high-variance low-bias learner with
Bayes optimal asymptotic error. So, RBNC actually defines a family of algorithms.
Successive members of the family will be best suited to differing quantities of data,
starting with low variance for small data set, with successively lower bias but higher
variance suiting to increasing data quantities.

3.2 Computational Complexity of RBNC

Each component Bayesian network model in RBNC forms an (n+2)-dimensional prob-
ability table containing the observed frequency for the given combination of n + 1 at-
tribute values and the class labels. The space complexity of the table is O(kavn+1) and
the time complexity of compiling it is O(tan), as we need to update each entry for the
combination of the n + 1 attribute-values for every instance. The time complexity for
classifying a single instance is O(kan) as we need to consider each attribute for the
combination of n parent attributes within each class.

Assume the number of component models in RBNC is N , then for RBNC, the space
complexity is O(Nkavn+1), time complexity of compiling it is O(Ntan) and classi-
fying a single instance is O(Nkan).

4 Experiments and Results

4.1 Experiment Setup

We conduct our experiments under the framework of Weka [14] on a PC with Intel
Core 2 Duo P8600 2.4G CPU and 4G RAM. In our experiments, we use the 60 well-
recognized datasets from the UCI repositories[15], which include all the datasets rec-
ommended by Weka and the benchmark datasets used by related works [2,9,10,3]. A
brief description of the data sets is in Table 2. Numeric variables are discretized using
supervised discretization method implemented in Weka. Missing values are also pro-
cessed using the mechanism in Weka, which replaces all missing values with the modes
and means from the training data. In addition, all the preprocessing is done with the
default parameters in Weka implementation.

We compared RBNC-n (n=1,2,3, and ensemble sizes N are all set to 20) with the
following algorithms:

1. The naive Bayes classifier (NB).
2. The discriminatively trained tree-augmented naive Bayes (TAN-f̂CLL) algorithm

using factorized conditional log-likelihood [3].
3. The Hidden naive Bayes classifier (HNB) [11].
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Table 2. Description of the data sets used for experiments

Datasets Size Attribute Classes Datasets Size Attribute Classes
adult 48842 15 2 ionosphere 351 35 2
albalone 4177 9 28 iris 150 5 3
anneal 898 39 6 kr-vs-kp 3196 37 2
anneal.ORIG 898 39 6 labor 57 17 2
audiology 226 70 24 letter 20000 17 26
australian 690 15 2 lymph 148 19 4
autos 205 26 7 mofn 1324 11 2
badges 294 11 2 mushroom 8124 23 2
balance-scale 625 5 3 nursery 12960 9 5
breast-cancer 286 10 2 optical 5620 65 10
breast-w 699 10 2 ozone 2536 73 2
car 1728 7 4 page-blocks 5473 11 5
chess 28056 7 18 pendigital 10992 17 10
cleve 296 14 2 pima 768 9 2
cmc 1473 10 3 primary-tumor 339 18 21
colic 368 23 2 segment 2310 20 7
colic.ORIG 368 28 2 shuttle 5800 10 7
corral 128 7 2 sick 3772 30 2
credit-a 690 16 2 sonar 208 61 2
credit-g 1000 21 2 soybean 683 36 19
dermatology 366 35 6 spambase 4601 58 2
diabetes 768 9 2 splice 3190 62 3
ecoli 336 8 8 tic-tac-toe 958 10 2
flare 1066 11 2 vehicle 846 19 4
glass 214 10 7 vote 435 17 2
heart-c 303 14 5 vowel 990 14 11
heart-h 294 14 5 waveform-5000 5000 41 3
heart-statlog 270 14 2 wine 178 14 3
hepatitis 155 20 2 yeast 1484 10 10
hypothyroid 3772 30 4 zoo 101 18 7

4. The Averaged one-dependence estimators (AODE) and Averaged two-dependence
estimators (A2DE). We do not present the results of AnDE (n ≥ 3) since even the
computational requirements of A3DE defeat the Weka implementation except in
cases of low dimensional data, and this is the same issue encountered by [6].

5. The Random Forests classifier with both the default setting of 10 trees (RF-10) and
with 100 trees (RF-100).

The naive Bayes, HNB, AODE, A2DE and RF are already implemented in Weka,
and the source code of TAN-f̂CLL algorithm is available at the author’s homepage
http://kdbio.inesc-id.pt/˜asmc/software/fCLL.html. So, we only
implemented RBNC within the Weka framework and uploaded the source codes of
RBNC at1. We used the laplace estimation to avoid the zero-frequency problem for all
compared methods. In our experiment, the performance of an algorithm on each data
set has been calculated via 10 runs of 10-fold stratified cross validation.

4.2 The Effect of Varying n within RBNC

To investigate how increasing n within the RBNC framework affects performance as
the quantity of data increases, we form learning curves for NB, RBNC-1, RBNC-2,
RBNC-3 and RBNC-4 on the Adult and Nursery dataset, respectively.

1 http://homepage.fudan.edu.cn/wangqing/files/2011/10/rbnc1.zip

http://kdbio.inesc-id.pt/~asmc/software/fCLL.html
http://homepage.fudan.edu.cn/wangqing/files/2011/10/rbnc1.zip
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Fig. 1. Learning curves as function of training set size

First, 10% instances are selected at random as a test set and training sets were sam-
pled from the remaining instances. The training sets size consist of 1

211 , 1
210 ,..., 1 fraction

of the remaining instances, respectively. This process is repeated 100 times and each al-
gorithm is evaluated on the resulting training-test set pairs. The learning curves of error
rate for NB, RBNC-1, RBNC-2, RBNC-3 and RBNC-4 are presented in Figure 1.

Figure 1 clearly show the predicted trade-off for increasing n. At the smallest data
size, where low variance is more important than low bias, error rate is minimized by n
= 0 (NB) and increases as n increases. At the largest data size, where low bias is most
important, this dimensionality is reversed.

4.3 Experimental Results

Table 3 shows the comparison results of two-tailed t-test with a 95% confidence level
between each pair of algorithms on data, in which each entry w/t/l means that the

Table 3. Summary of experimental results under pairwise two-tailed t-test with 95% confidence
level. Each cell contains the number of wins, ties and losses between the algorithm in that row
and the algorithm in that column.

w/t/l RBNC-3 RBNC-2 RBNC-1
RBNC-2 1/44/15 – –
RBNC-1 4/33/23 1/38/21 –
NB 4/24/32 2/25/33 1/31/28
TAN-f̂CLL 6/28/26 8/30/22 14/31/15
HNB 3/40/17 8/39/13 13/42/5
AODE 5/33/22 6/39/15 9/45/6
A2DE 6/37/17 9/40/11 17/41/2
RF-10 6/29/25 8/27/25 19/20/21
RF-100 11/33/16 19/23/18 25/26/9
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algorithm at the corresponding row wins in w data sets, ties in t data sets, and loses
in l data sets, compared to the algorithm at the corresponding column. Table 4 and 5
show the detailed accuracies of the algorithms on each data set. The mean accuracy and
standard deviation, together with the overall rank on all data sets are summarized at the
bottom of the table.

From the experimental results, we can see that RBNC-n algorithms can achieve sub-
stantial improvement over naive Bayes (32 wins and 4 losses, 33 wins and 2 losses, 28
wins and 1 losses, respectively). This results show that many data sets in our exper-
iments contain strong dependencies, and conditional independence assumption failed
to capture these dependencies. In addition, RBNC-1 and RBNC-2 are comparable to
AODE (6 wins and 9 losses) and A2DE (11 wins and 9 losses), respectively. For Ran-
dom Forests algorithms, RBNC-n (n=1, 2, 3) all outperform RF-10 and RBNC-3 sig-
nificantly outperforms RF-100 (16 wins and 11 losses). Overall, the performance of
RBNC-3 is the best among all the algorithms compared. Considering that RBNC-n
scales linearly with respect to both the number of instances and attributes of the train-
ing data, RBNC-n are overall more efficient.

To study the robustness of our algorithm, we test it on these 60 UCI data sets un-
der artificial noise in the class labels. Following the method in [16], the noisy version
of each training data set is generated by choosing 10% instances and changing their
class labels to other incorrect labels randomly. Due to space limited, we do not list the
detailed results of the accuracy and standard deviation on each data set here. The exper-
imental results show that the RBNC algorithms are all robust to noise and also achieve
substantial improvement over naive Bayes. And RBNC-3 still to be the best among the
algorithms compared.

To further understand the working mechanism of RBNC-n and the difference com-
pared with Random Forests, we use the bias-variance decomposition to analysis them.
The results again demonstrate that with n increasing, RBNC-n evolves from low vari-
ance coupled with high bias through to high variance coupled with low bias. The bias
terms for RBNC-n (n=1, 2, 3) and RF (10 and 100) are 0.0963, 0.0760, 0.0696, 0.0663
and 0.0669, respectively. So RBNC-3 could achieve the same level of bias compared
with Random Forests. This is of interest because it demonstrates that it is possible to
create low-bias high-variance generative learners without discriminative learning.

5 Conclusion

In this paper, we propose the RBNC family of algorithms which utilize a single pa-
rameter n to control over a bias-variance trade-off, such that higher values of n are
appropriate for greater numbers of training cases. RBNC retains many of naive Bayes’
desirable property, such as the time and space complexity are linear with respect to
both the number of training instances and attributes, the learning can be done by a
single pass through the training data and the performance is robust to noise. Our ex-
perimental results show that RBNC has a better overall performance compared to the
state-of-the-art Bayesian network classifier algorithms. Considering the simplicity and
efficiency, RBNC is a promising model that could be used in many applications.
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