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Abstract. To overcome the pricey computation required by redundant
kernel function matrix and poor label performance, in a novel perspective,
we present support vector clustering with boundary patterns (BPSVC for
abbreviation) for efficiency. For the first phase, the conventional method
of estimating the support vector function with the whole data is altered
by only essential boundary patterns. Thence, BPSVC only need to solve
a much simpler optimization problem. For the second phase of cluster la-
beling, both convex decomposition and cone cluster labeling method are
employed by an ensemble labeling strategies for further improvements on
accuracy and efficiency. Both theoretical analysis and experimental results
show its superiorities in comparison of the state-of-the-art methods, espe-
cially for large-scale data analysis.

Keywords: data analysis, support vector clustering, convex decompo-
sition, boundary pattern, cluster labeling.

1 Introduction

With the advantage of generating cluster boundaries of arbitrary shape, support
vector clustering (SVC)[12, 15] has attracted many researchers and been exten-
sively applied to wide variety of domains, e.g., instance-based learning, pattern
denoising and medical information processing etc[6, 13, 14].

However, the literatures show that training to estimate a support function
and cluster labeling are two major bottlenecks which might degrade its popu-
larity. As a quadratic programming problem, the prior can be solved by many
classic algorithms, such as sequential minimal optimization and entropy-based
algorithms[16], in approximately O(N2) kernel evaluations, here N is the num-
ber of data points. In addition, data block based methods [1, 17] may be a
good choice even though persistent parameter tuning is generally required. Cor-
respondingly, the time complexity of the latter is O(N2m) with m � N which
is the sample rate on each edge. Naturally, the studies argue that cluster label-
ing takes most of the computation time in the entire SVC clustering process.
For efficiency, especially on large-scale data, some insightful methods have been
designed to replace the complete graph (CG)[15], such as support vector graph
(SVG)[15], proximity graph of delaunay (DD)[9], minimum spanning tree (MST),
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k -nearest neighbor (kNN)[10], divide and conquer-based[11, 17], cone cluster la-
beling (CCL)[8], equilibrium based approaches[18–21], fast support vector clus-
tering (FSVC) [14], double centroids (DBC) labeling [4] and position regularized
support vector clustering (PSVC)[2], etc.

However, we find that many of them reach lower time consumption with
higher error or improve accuracy at the cost of efficiency. We consider to make
improvements in terms of decreasing both the number of pointsN and the sample
rate m. Three works are included in the proposed support vector clustering with
boundary patterns (BPSVC) method, i.e., selecting critical points on cluster
boundaries, constructing a so-called minimum hypersphere in feature space by
the selected points, and integrating our convex decomposition based clustering
labeling (CDCL)[3] and CCL to complete labeling under an ensemble labeling
strategy. Benchmarks depict the main contributions of this paper including:

– The proposal of constructing hypersphere by only the boundary points at
much lower cost of time and space to estimate the support function.

– The ensemble labeling strategy, especially for transferring connectivity checks
between all pair-wise points (or SVs in [15], or stable equilibrium points
(SEPs) in [18]) into between neighboring convex hulls with significantly re-
duced sample rate to avoid redundant checks.

2 Preliminaries

2.1 Estimating a Trained Support Function

Following [14, 13], the support function is defined as a positive scalar function
f : Rn → R+ where a level set of f estimates a support of a data distribution
and which can be decomposed into several disjoint connected components corre-
sponding to different clusters. In support vector domain description (SVDD)[12],
estimating a support function is to find the exact SVs by solving the dual prob-
lem in Eq.(1) where C is a constant for penalty and xi corresponds to coefficient
βi(i = 1, . . . , N) if its 0 < βi < C is a support vector.

max
βj

∑

j

K(xj ,xj)βj −
∑

i,j

βiβjK(xi,xj)

s.t.
∑

j

βj = 1, 0 ≤ βj ≤ C, j = 1, . . . , N
(1)

By optimizing Eq.(1) with Gaussian kernel K(xi,xj) = e−q||xi−xj ||2 , the objec-
tive trained support function can be formulated by a squared radial distance of
the image of x from the sphere center α given by

f(x) = K(x,x)− 2
∑

j

βjK(xj ,x) +
∑

i,j

βiβjK(xi,xj) (2)

Theoretically, the squared radius R2 is usually defined by the value of f(xi)
while xi is one of SVs.
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2.2 Cluster Assignments

Since SVs locate on the border of clusters in data space, a simple graphical
connected-component method can be used for labeling. For any two points, xi

and xj , we can check m segmers sampled on the line segment connecting them
by traveling its image in the hypersphere. According to Eq.(2), xi and xj should
be labeled the same cluster index while all the m segmers are always lying in
the hypershpere, i.e., f(xm̃) ≤ R2 for m̃ = 1, · · · ,m.

3 Support Vector Clustering with Boundary Patterns

Notice that the hypersphere is determined by SVs which are a subset of bound-
aries. Obviously, either SVs or boundaries are sufficient for constructing the
hypersphere. Thus, we prefer a transferred strategy which collects a candidate
set of them from cluster boundaries.

3.1 Obtaining Boundary Patterns

To select the most informative points, a border-edge pattern selection method
presented by Li and Maguire [22] is preferred in this study. It confirms that,
on the cluster boundaries, every point actually has all or most of its nearest
neighbors sitting on one side of the tangent plane passing through it. Therefore,
boundaries identification is to count the ratio of a point’s nearest neighbors
on two sides. Following [22], for a given point xi with its k nearest neighbors
xj(j = 1, 2, . . . , k), we can reformulate the procedure as follows:

– Setting a threshold γ (0 < γ < 1) to control the curvature of the aforemen-
tioned surface.

– Generating normal vector ni =
∑k

j=1 vij , where vij = xj − xi.

– Calculating li = 1
k

∑k
j=1 g(n

T
i · vij), where the function g(x) returns 1 if

x ≥ 0, otherwise it returns 0.
– Cluster boundary identification. If li ≥ 1 − γ, then xi is considered as one

of the boundary points.

3.2 Constructing Hypersphere for Support Function

Given a data set X = {x1,x2, . . . ,xN} in Rd, selecting the cluster boundaries
will return a subset ZS = {xs1 ,xs2 , . . . ,xsM } ⊆ X which contains the most
informative points for constructing the hypersphere. That is, each point xsi

(i = 1, . . . ,M) can be approximately expected as one of SVs.

Estimating Coefficients for Boundaries. Consider the definition of SVs[15],
we have

f(xs1) = f(xs2) = · · · = f(xsM ) (3)
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Since K(xsi ,xsi) with Gaussian kernel and
∑

i,j βiβjK(xsi ,xsj ) are respectively
equal in Eq.(3), it is easy to check that Eq.(3) has the following expression:

⎧
⎪⎪⎨

⎪⎪⎩

∑
j βj [K(xsj ,xs1)−K(xsj ,xs2)] = 0∑
j βj [K(xsj ,xs1)−K(xsj ,xs3)] = 0

· · ·∑
j βj [K(xsj ,xs1)−K(xsj ,xsM )] = 0

(4)

where j ∈ [1,M ] and
∑

j βj = 1. Let β = [β1, β2, · · · , βM ]T , 0 = [0, 0, · · · , 0]T
and Q = [Q1, Q2, · · · , QM−1]

T where

Qj = [1−K(xs1 ,xsj+1),K(xs2 ,xs1)−K(xs2 ,xsj+1), · · · ,
K(xsM ,xs1)−K(xsM ,xsj+1 )]

(5)

then the Eq.(4) can be further written as

Qβ = 0

s.t.
∑

i

βi = 1, βi ≥ 0 (6)

Since Q is determined by the cluster boundaries, β can be found by solving this
linear system of equations with inequality constraint. Using β and Eq.(2), the
required hypersphere with radius R can be constructed. However, the Eq.(6)
can hardly be solved directly. Thus an alternative method is constructed by
converting Eq.(6) into a quadratic programming problem.

Consider Eq.(6), we get

∑

j

(Qjβ)
2 =

⎡

⎢⎢⎣

Q1β
Q2β
· · ·

QM−1β

⎤

⎥⎥⎦

T

×

⎡

⎢⎢⎣

Q1β
Q2β
· · ·

QM−1β

⎤

⎥⎥⎦ = 0 (7)

where Qj (j = 1, · · · ,M − 1) is either positive or negative and each element of
Qjβ or (Qjβ)

2 is 0. Naturally, it can be approximately reformulated by

min βTHβ

s.t.
∑

j

βj = 1, βj ≥ 0, j = 1, · · · ,M (8)

whereH = QTQ is a Hessian matrix in R
M×M . Note that it is a standard convex

quadratic program, its global optimal solution can be obtained effectively and
the value of the object function can be guaranteed very close to 0 for (Qjβ)

2 ≥ 0.
Obviously, the penalty factor C is no longer existing.

Removal of Less Informative Points. For real problem, it is poetical that
all the boundary patterns are expected to be SVs. One aspect is that none of the
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boundary pattern selection methods can guarantee a hundred percent correct.
On the other hand, taking two nearest neighboring patterns to constructing the
hypersphere is unnecessary. As depicted by Fig.1, compared with CG, in spite of
a correct result achieved by BPSVC (see Fig.1b) which estimates an acceptable
support function by solving the convex quadratic program (8), too many points
lying on the cluster boundaries are recognized as SVs. Obviously, some of these
data points are useless.
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Fig. 1. Comparison of cluster boundaries and clustering results on ring[14]. (a) CG[15]
(q = 2, C = 1). (b) BPSVC (k = 10, γ = 0.2, q = 3.125) before removing any boundary
point. (c) BPSVC (k = 10, γ = 0.2, q = 3.125) after removing boundary points whose
corresponding coefficient lower than 10−3.

Our intuitive solution is quite simple: since the importance of a data point xsj

relates to its corresponding coefficient βj (j = 1, · · · ,M) directly in constructing
center α =

∑
j βjΦ(xj), where Φ(·) is a nonlinear map function. To further

obtain a neat data set, those boundary points with coefficients lower than a
predefined threshold βs should be removed for uselessness or little information.
Obviously, a smaller βs allows more redundant data to profile cluster boundaries
accurately, but sometimes go along with overfitting; whereas a smoother profile
would be generated by a greater βs at the risk of much more overlapped regions
between clusters. Following the principle of SVC, a large number of experiments
suggest that an appropriate threshold βs for removing the less informative points
should be 10−�lgN� more or less, e.g., βs = 10−3 for ring in Fig.1c.

Estimating the Radius of the Hypersphere. Notice that programming (8)
is a compromise of programming (1). Therefore, the strict zero can hardly be
achieved though we expected it should be. After the removal of useless boundary
points, in reality, we get a reduced set ZR = {xr1 ,xr2 , . . . ,xrL} ⊆ ZS with
L ≤ M , which are the exact SVs. However, the relation of their distances to the
center of the hypersphere is

f(xr1) ≈ f(xr2) ≈ · · · ≈ f(xrL) (9)

Finally, consider the numerical problem in practical[1], we construct the hyper-
pshere whose radius is the maximum distance from xrl (l ∈ [1, L]) to its center,
i.e., R2 = maxLl=1 f(xrl).
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3.3 Ensemble Labeling Strategy for Efficiency

Following the aforementioned works, a subset of boundary points are selected as
exemplars for cluster assignments. Intuitively, three conventional strategies can
be employed, i.e., checking the full pairs of SVs like SVG, directly calculating
the distance between each pair of SVs to verify if their cones are intersected
(like CCL), and traveling the line segments connecting each pair of SEPs con-
verged from the SVs while the solution of finding the minimal hypersphere,
∂x/∂t = −∇f(x), is considered as a gradient dynamical system (e.g., reduced
complete graph (R-CG) [4, 18]). However, as the previously stated, these strate-
gies suffer from some obvious drawbacks. For the first, it is time-consuming while
processing large-scale or high dimension data[4, 14]. Although the adjacency ma-
trix of SVs can be calculated very fast, a radius lower than 1 is essential for the
second strategy to find connected components. However, due to numerical prob-
lem, the radius which should be lower than 1 cannot be guaranteed. Therefore,
CCL cannot be employed directly. Finally, as noted in Ref.[20] and detailed by
Ref.[4], only SEPs employed by the third strategy to represent data for connec-
tivity checking usually lead to relatively high error on irregular shaped data set.
Therefore, to achieve improvements on both efficiency and clustering quality, we
prefer a simple but effective ensemble labeling strategies of CDCL and CCL.
As depicted in lines 4∼8 of Algorithm 1, it prefers CDCL since the constructed
hypersphere’s radius is greater than 1; otherwise, CCL is employed.

4 Implementation

In this section, we give description of the proposed BPSVC method as well as
some remarks distinguishing from the others. For the given γ and k, line 2 of Al-
gorithm 1 collects cluster boundaries for constructing the objective hypersphere
by line 3. Three essential elements of the support function, i.e., the radius of
the hypersphere R, the final set of SVs ZR with respect to their coefficient β
are obtained by ConstructHypersphere(Zs, q, βs). To get a nest set of SVs, the
threshold βs for removing useless boundary points is set in line 1 of the Algorithm
1. Notice that although in Algorithm 1 we start from selecting cluster boundaries
by measuring the full data set, the computation is significantly reduced as the
calculation is repeated in data space and a rather lower size of data (M,L � N)
remained for both line 3, and ConnectivityAnalysisofConvexHulls(ZR, q) in line
5 or ConnectivityAnalysisofSVs(ZR, R) in line 7. Specifically, taking this tidy
data into the rather simple convex quadratic program (8) makes the proposed
BPSVC handle large-scale problem efficiently.

Actually, the ensemble labeling strategies is implemented by line 4∼8. Since
R ≥ 1, CDCL is employed to decompose ZR into Nc groups for construct-
ing convex hulls (detailed in Ref.[3]). Then the connectivity analysis of clusters
can be done between convex hulls. It believes that the far from associate ex-
ternal locations to convex hulls is, the greater probability that the correspond-
ing local region to be sparse distribution with data points is. Practically, it
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Algorithm 1. BPSVC(X , γ, k, q)

Input: the data set X , number of neighbors k
threshold γ and Gaussian kernel width q

Output: clustering labels for all the data points
1 set βs = 1/|X |
2 Zs ← SelectClusterBoundaries(X , γ, k)
3 {ZR, R, β} ← ConstructHypersphere(Zs, q, βs)
4 if R ≥ 1 then
5 A← ConnectivityAnalysisofConvexHulls(ZR, q)
6 else
7 A← ConnectivityAnalysisofSVs(ZR, R)
8 end
9 Labels ← FindConnComponents(A)
10 for each x ∈ X\ZR

11 inx ← find the nearest SV from x
12 Labels[x] ← Labels[vinx]
13 end
14 return Labels

does reduce the average sample rate m significantly. All of these tasks are com-
pleted by function ConnectivityAnalysisofConvexHulls(H) in line 5. After that,
the adjacency matrix A is obtained for connectivity analysis by means of any
standard algorithm. Otherwise, while R is lower than 1, the invoked function
ConnectivityAnalysisofSVs(ZR, R) will check the connectivity among SVs fol-
lowing the CCL method, which could be explained by Ref.[8]. By now, the output
of FindConnComponents(A) in line 9 is an array with size Nc which contains the
cluster labels. Finally, the remaining data points are separately assigned with
the labels of their nearest SVs.

5 Experiments

5.1 Datasets and Experimental Settings

To demonstrate the performance of the proposed BPSVC, in this section, we
conduct comparisons among ten state-of-the-art methods, i.e., CG, DD, k-NN
(k = 4), MST, R-CG, E-SVC, CCL, FSVC, PSVC and CDCL. The employed
data sets (described in Table 1) include: five-Gaussians, twocircles and D31

from Refs.[14, 13, 24] and iris, wisconsin, zoo, movement libras and shuttle

from UCI repository[25]. For fair comparisons, all the simulations are carried out
in MATLAB 2011b on system with Intel Dual Core 2.66 GHz and 3GB RAM,
and all of the data sets are employed without any preprocessing.
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Table 1. Description of the benchmark data sets

Data sets dims size # of classes

twocircles 2 300 2
iris 4 150 3

wisconsin 9 683 2
zoo 16 101 7

movement libras 90 360 15
five-Gaussians 2 1000 5

D31 2 3100 31
shuttle 9 43500 7

To measure the clustering accuracy, we use adjusted rand index (ARI)[6, 23],
rand index (Rand), jaccard coefficient (Jaccard)[5], and normalized mutual infor-
mation (NMI)[7], which are a widely used similarity measure between two data
partitions where both true labels and predicted cluster labels are given.

5.2 Benchmark Results

Table 2 shows the performance achieved by the evaluated algorithms. Notice
that the time cost is an average value of ten times of the execution for each
data. Rank of each algorithm is given depending on its performance measure
followed by corresponding rank (from 1 to 3). In particular, the value of rank 1
for each test item is highlighted by boldface.

Table 2. Benchmark results on data sets with different sizes

Data Methods (C, q) ARI Rand Jaccard NMI Time(sec.)

t
w
o
c
i
r
c
l
e
s

CG 0.5,0.125 1.00000a 1.00000a 1.00000a 1.00000a 10.01
DD 0.3,0.0638 1.00000a 1.00000a 1.00000a 1.00000a 11.66
kNN 0.32,0.125 0.69679 0.84854 0.69612 0.76529c 2.38
MST 0.3,0.3252 0.59935 0.79541 0.58953 0.64044 17.56
R-CG 0.3, 0.1072 0.67695 0.83864 0.67625 0.75411 2.93
E-SVC 0.2,0.074 0.73547c 0.86785c 0.73486c 0.77801 28.62
CCL 0.1, 0.0633 0.76193b 0.88581b 0.77423b 0.80800b 9.71
FSVC 0.1, 50 0.14592 0.57411 0.14552 0.50433 0.75b

CDCL 0.1,0.1385 1.00000a 1.00000a 1.00000a 1.00000a 0.77c

PSVC —,0.1385 1.00000a 1.00000a 1.00000a 1.00000a 14.78
BPSVC —,11.3379 1.00000a 1.00000a 1.00000a 1.00000a 0.22a

i
r
i
s

CG 0.46,15.4321 0.61780 0.84886 0.55187 0.67392 1.13
DD 0.5, 13.8504 0.58334 0.83696 0.51645 0.65589 2.87
kNN 0.45, 13.8504 0.64143 0.85718 0.57655 0.68600 0.36b

MST 0.45, 4.0816 0.79457 0.91257 0.74981 0.79331 1.08
R-CG 0.29,12.5 0.73737 0.89208 0.68095 0.75000 3.07
E-SVC 0.19,1.3889 0.56812 0.77629 0.59514 0.76117 4.74
CCL 0.03, 0.7436 0.88579b 0.94953b 0.85776b 0.87052b 0.76
FSVC 0.33, 2.4691 0.56196 0.77271 0.57842 0.71256 1.07
CDCL 0.19,9.4518 0.92218a 0.96564a 0.90075a 0.90112a 0.67c

PSVC —,15.4321 0.61467 0.84904 0.54504 0.68354 1.50
BPSVC —, 4.0816 0.85089c 0.93548c 0.8148c 0.82681c 0.15a
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Table 2. (Continued)

Data Methods (C, q) ARI Rand Jaccard NMI Time(sec.)

w
i
s
c
o
n
s
i
n

CG 0.4, 0.3472 0.77930 0.88971 0.80951 0.69747 66.45
DD — — — — — —
kNN 0.4, 0.3472 0.76243 0.88110 0.79463 0.68049 31.65
MST 0.4, 0.3472 0.66311 0.82986 0.70612 0.61597 85.72
R-CG 0.1, 0.0868 0.80345 0.90241 0.83473 0.66434 22.25
E-SVC 0.2,0.1134 0.13441 0.59395 0.54846 0.14341 443.23
CCL 0.1,0.005 0.90763b 0.94861b 0.90957b 0.81521b 124.35
FSVC 0.1,1.3889 0.66871 0.83192 0.70242 0.45672 13.06c

CDCL 0.105,0.0595 0.86850c 0.93482c 0.88747c 0.77555c 1.31a

PSVC —,2.8345 0.2574 0.63714 0.52731 0.22633 192.95
BPSVC —,4.8828 0.91712a 0.95882a 0.92658a 0.80295a 4.41b

z
o
o

CG 0.49, 0.4287 0.93421c 0.97663c 0.90367c 0.90763c 0.62
DD — — — — — —
kNN 0.49, 0.4287 0.93421c 0.97663c 0.90367c 0.90763c 0.26a

MST 0.49, 0.4287 0.93421c 0.97663c 0.90367c 0.90763c 0.38c

R-CG 0.27, 0.3916 0.95702a 0.98455a 0.93633a 0.92036a 3.82
E-SVC 0.27, 0.3916 0.95702a 0.98455a 0.93633a 0.92036a 19.85
CCL 0.1,2.5826 0.83426 0.89861 0.79016 0.84893 1.03
FSVC 0.1,0.2551 0.84625 0.94416 0.79033 0.85331 2.67
CDCL 0.39,0.5 0.94691b 0.98079b 0.92215b 0.90934b 2.83
PSVC —,0.4058 0.7441 0.91723 0.65878 0.85325 0.73
BPSVC —,50 0.93421c 0.97663c 0.90367c 0.90763c 0.30b

m
o
v
e
m
e
n
t
l
i
b
r
a
s

CG 0.5,5.5556 0.24218 0.93013 0.15922 0.70155 15.14
DD — — — — — —
kNN 0.5, 3.8580 0.26661c 0.91360c 0.18532c 0.66459c 7.26b

MST 0.5, 3.8580 0.24872 0.91102 0.17385 0.65660 41.07
R-CG 0.5, 5.5556 0.23559 0.93375 0.15194 0.70258 252.89
E-SVC — — — — — —
CCL 0.5, 5.5556 0.08987 0.93873 0.04556 0.70874 26.91
FSVC 0.3,0.4132 0.14205 0.93861 0.04478 0.70352 226.09
CDCL 0.32,4.8828 0.33195b 0.92098b 0.23010b 0.68084b 78.57
PSVC —,4.3253 0.25407 0.91882 0.17412 0.67012 12.18b

BPSVC —, 2.9744 0.37034a 0.92103a 0.25995a 0.68956a 4.20a

CG 0.15,22.8269 0.47118 0.83982 0.39755 0.63436 89.01
DD 0.2,19.5313 0.61487 0.89230 0.51115 0.69568 25.63
kNN 0.21,15.4321 0.26661 0.91360 0.18532 0.66459 7.26c

f
i
v
e
-
G
a
u
s
s
i
a
n
s MST 0.14,0.5 0.67807 0.90912 0.57554 0.72340 52.84

R-CG 0.14,17.3010 0.86934c 0.95987c 0.80832c 0.85852c 12.90
E-SVC 0.14,17.3010 0.85854 0.95707 0.79335 0.84993 775.69
CCL 0.1,0.005 0.00211 0.31746 0.19109 0.091794 650.39
FSVC 0.1,50 0.71373 0.91753 0.59742 0.77843 2.39b

CDCL 0.14,17.3010 0.88074a 0.96344a 0.82348a 0.86874a 7.67
PSVC —,29.5858 0.00124 0.30446 0.19180 0.13823 750.21
BPSVC —,2.0406 0.87043b 0.96020b 0.80979b 0.86845b 1.19a

D
3
1

CG 0.15, 0.5 0.23448 0.87570 0.15893 0.63159 3594.75
DD 0.5, 2.9744 0.54946 0.95681 0.39769 0.8488 500.37
kNN 0.5, 2.9744 0.72032 0.98334 0.57344 0.88154 242.70
MST — — — — — —
R-CG 0.1, 5.2029 0.86532c 0.99160c 0.76938c 0.88985c 53.27
E-SVC — — — — —
CCL — — — — — —
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Table 2. (Continued)

Data Methods (C, q) ARI Rand Jaccard NMI Time(sec.)
FSVC 1,200000000 0.56109 0.96430 0.40702 0.82011 4.18a

CDCL 0.1,5.5556 0.90199a 0.99420a 0.82643a 0.94355a 19.79c

PSVC —,12.5 0.45178 0.94391 0.31265 0.80943 7041.01
BPSVC —,1.3889 0.87670b 0.99224b 0.78685b 0.90216b 6.72b

s
h
u
t
t
l
e

CG — — — — — —
DD — — — — — —
kNN — — — — — —
MST — — — — — —
R-CG — — — — — —
E-SVC unknown 0.59[15] — — — —
CCL — — — — — —
FSVC unknown 0.58[15] — — — —
CDCL — — — — — —
PSVC — — — — — —
BPSVC —,0.0078 0.68574a 0.86416a 0.82084a 0.62654a 878.19a

Note: aRank 1, bRank 2, cRank 3; “—” means not available.

In terms of accuracy, it is apparent that BPSVC is better for most of data sets
(namely twocicles, wisconsin, movement libras and shuttle). Furthermore,
it achieves first three ranks consistently on the other data sets. With the help
of hypersphere construction and convex decomposition, BPSVC reaches global
optimal solutions consistently. For time consumption, BPSVC employs much
fewer points to work out the support function, while the others keep solving
the same quadratic programming problem with different parameters to achieve
their best performance. Thus BPSVC finishes the clustering works fastest on five
out of eight data sets. Its advantage is obvious on relative large-scale data, e.g.,
shuttle. Due to memory limitation, we cannot afford the requirement of kernel
matrix from FSVC[14], thus a direct citation of experiment result is given.

6 Concluding Remarks

This paper develops a support vector clustering with boundary method namely
BPSVC from a new perspective. It gives an optimal solution for these known
problems, i.e., a requirement of huge memory for kernel matrix, too many re-
dundant point pairs and a great sample rate.

Even though BPSVC gives consistent results for various cases, how to shrink
the cluster boundaries to leave a number of outliers while obtains high quality
profiles for clusters in input space, might be an open issue for further improve-
ments on both efficiency and accuracy. And how to redefine the coefficient βj

for the remaining patterns after removing unless data needs to be further inves-
tigated as well.
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