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Abstract. Multiple Instance Learning is concerned with learning from
sets (bags) of feature vectors (instances), where the bags are labeled,
but the instances are not. One of the ways to classify bags is using a
(dis)similarity space, where each bag is represented by its dissimilari-
ties to certain prototypes, such as bags or instances from the training
set. The instance-based representation preserves the most information,
but is very high-dimensional, whereas the bag-based representation has
lower dimensionality, but risks throwing away important information. We
show a connection between these representations and propose an alterna-
tive representation based on combining classifiers, which can potentially
combine the advantages of the other methods. The performances of the
ensemble classifiers are disappointing, but require further investigation.
The bag-based representation preserves sufficient information to classify
bags correctly and produces the best results on several datasets.

1 Introduction

Multiple-instance learning (MIL) [8] extends traditional supervised learningmeth-
ods in order to learn from objects that are described by a set (bag) of feature vec-
tors (instances), rather than a single feature vector only. For example, instead of
representing an image or a document by a single feature vector, we could repre-
sent each segment or paragraph by its own feature vector. This is a more flexible
representation, that can potentially preserve more information than if we were to
compress all segments or paragraphs into a single feature vector.

MIL problems are often considered to be two-class problems, i.e., a bag of
instances can belong either to the positive or the negative class. The bag labels
are available, but the labels of the individual instances are not defined. The
standard assumption here is that a bag is positive if and only if at least one
instance inside the bag is positive. For example, an image labeled as “cat” would
have a cat in at least one of its segments, whereas images without this label would
not portray any cats at all. In this setting, it is possible to say that only one
instance (the segment containing the cat) is informative.

It has been argued that there are more general kinds of MIL problems where
the assumption above does not apply [22,5]. For example, for an image of the
category “beach”, it would be difficult to say which part of the image is informa-
tive. We would need to identify several objects (such as water and sand) to say
that it is a beach, so at least a few instances in a positive bag must be informa-
tive. This reasoning can be extended even further to consider cases where simply
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the presence of particular objects is not enough: consider how much of an image
has to be covered by trees for you to call it a forest. Here, a certain fraction of
instances is required for the positive class label[22], and therefore most, or even
all instances can be informative.

One of the ways to classify bags in MIL problems is by representing the bags
in a similarity or dissimilarity space [18]: each bag is then represented by its
dissimilarities to certain prototypes. In our work[21], these prototypes are (a
subset of) bags from the training set. Because a single dissimilarity is defined
between two bags, information provided by the more informative instances in
the bags might be overlooked. In MILES [5], an alternative representation using
all the instances from the training set as the prototypes is used. A 1-norm SVM
is then used to automatically select the most informative dissimilarities (and
therefore instances). More investigation into the instance-based representation
with other base classifiers has been done in [11].

A challenge in both settings is how to define the (dis)similarity measure be-
tween a bag and a prototype. In MILES, the similarity of a bag and a prototype
instance is determined by the minimum distance between the bag’s instances
and the prototype instance. In our work[21,6], we define the dissimilarity of two
bags as the combination (such as minimum, average or maximum) of minimum
instance distances between these bags.

Theway the information fromdifferent instances is combined links the instance-
based and bag-based dissimilarity representations. In the former case, dissimilar-
ities are concatenated, thus extending the dissimilarity representation, whereas
in the latter they are combined into a single number by an operation such as
averaging[17]. We also investigate a third alternative, i.e., combining classifiers
trained on different subsets of dissimilarities. Comparing these representations
can help us gain more insight into the informativeness of bags or instances as
prototypes, and thus improve performances on real-life MIL problems.

2 Dissimilarity Representations

2.1 In Multiple Instance Learning

In Multiple Instance Learning, an object is represented by a bag Bi = {xik|k =
1, ..., ni} ⊂ R

d ofni feature vectors or instances. The training set T = {(Bi, yi)|i =
1, ...N} consists of positive (yi = +1) and negative (yi = −1) bags. The tradi-
tional assumption for MIL is that there are instance labels yik which relate to the
bag labels as follows: a bag is positive if and only if it contains at least one posi-
tive, or concept instance[8]. In this case, it might be worthwhile to search for only
these informative instances. Alternative formulations, where a fraction or even all
instances are considered informative, have also been proposed [10].

We can represent an object, and therefore also a MIL bag Bi, by its dis-
similarities to prototype objects in a representation set R[18]. In our work, R
is taken to be a subset of size M of the training set T of size N (M ≤ N).
Each bag is represented as d(Bi, T ) = [d(Bi, B1), ...d(Bi, BM )]: a vector of M
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dissimilarities. Therefore, each bag is represented by a single feature vector and
the MIL problem can be viewed as a standard supervised learning problem.

MILES [5] considers a different definition of prototypes, using all the instances
in the training set. The motivation is that, with just a few concept instances
per bag, it is better to consider just these informative instances rather than
the bag as a whole. MILES is originally a similarity-based approach, but in its
dissimilarity-based counterpart, each bag would be represented as
d(Bi, T ) = [d(Bi, x1,1), d(Bi, x1,2), ..., d(Bi, x1,n1), ...d(Bi, xM,nM )].

2.2 In Combining

When several dissimilarity representations for the same data are available, it can
be an advantage to combine these sources of information. Assume that we are
given L dissimilarity representations D1, D2, · · · , DL. In [17], three main ways
of combining such representations are outlined:

– Concatenating the representations: Dext = [D1D2 · · ·DL].

– Averaging the representations: Dsum =
∑L

i=1 D
i.

– Training a base classifier on each Di and combining the L outputs using a
fixed rule (such as averaging) or a trained combiner [14,9].

3 Approach

In previous work[21,6], we have focused on defining d(Bi, Bj) through the pair-
wise instance dissimilarities [d(xik ,xjl)]ni×nj . We use the squared Euclidean
distance for the instance dissimilarity, but other choices are also possible. In all
the dissimilarities considered, the first step is to find, for each instance in Bi,
the distance to its closest instance in Bj . Using these minimum instance dis-
tances, we can define many bag dissimilarities, for instance, by averaging these
minimum distances. Assume that we are only given one prototype Bj . With the
bag dissimilarity, the bag representation of Bi using prototype Bj would be:

Dbag
Bj

(Bi) =
1

ni

ni∑

k=1

min
l

d(xik,xjl) (1)

In MILES, the similarity between a bag and a prototype instance is defined as
the maximum similarity between the bag’s instances and the prototype instance:

s(Bi, x) = maxk exp (− d(xik,x)
σ2 ) . In terms of distances this corresponds to the

minimum instance distance between the bag and the prototype. Therefore, the
instance representation of Bi using the instances of Bj would be:

Dinst
Bj

(Bi) = [min
l

d(xi1,xjl),min
l

d(xi2,xjl), · · · ,min
l

d(xini ,xjl)] (2)

It is not difficult to now see that Dbag
Bj

(Bi) =
1
ni

∑ni

k=1 D
inst
Bj

(Bi). Another way

to see this is that with Dinst, we can potentially give every prototype instance a
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different weight, whereas in Dbag, all instances from the same bag get the same
weight.

Note that averaging as in (1) is not the only way to condense several dis-
similarities into a single value: for instance, minimum or maximum operations
could also achieve the same goal. However, these would essentially select a single
instance per bag, rather than combining the information from all instances, as
in (2). Therefore, we chose averaging as a combiner.

Previous results[21,5] suggest that both the bag-based and instance-based rep-
resentations are (at least partly) informative: there are at least some prototypes
(bags or instances) that distinguish between positive and negative bags in the
dissimilarity space. We believe that comparing Dbag and Dinst directly, we can
gain more insight into the structure of Multiple Instance Learning problems: how
many instances are informative and what is a good (bag or instance) prototype.

Furthermore, we introduce two other representations that can help us in this
understanding. In the “bag set” representation DBS , a separate classifier is built
on the instances of each prototype, to formM classifiers in total. In the “random
set” representation DRS , random sets of instances are used to build M separate
classifiers. Each set of classifiers (built on bag sets or on random sets) forms an
ensemble, where the individual classifier decisions are combined.

A diagram clarifying all the representations is shown in Fig.1. In terms of
the initial dissimilarity matrix, Dinst, DBS and DRS are identical, but Dinst is
used as a single input to a single classifier, whereas DBS and DRS have several
feature subsets and classifiers associated with them. In fact, DRS is just Dinst

used together with the random subspace method [12].
These representations are also interesting in terms of speed and information

trade-off. We assume that the data is available offline, so that all dissimilarity
matrices can be computed beforehand. Dinst contains all instance information,
but is very high-dimensional, which can severely slow down and/or deteriorate

Fig. 1. Different ways for constructing dissimilarity representations of bag B using two
prototype bags (green with 3 instances and blue with 2 instances). Dbag consists of
just two dissimilarities (one for each bag), whereas Dinst consists of dissimilarities to
all 5 instances. In DBS , a separate classifier is built on each prototype’s instance dis-
similarities. In DRS , classifiers are built on random selections of all available instances.
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the performance of many classifiers. Dbag might lose some information, but is a
more compact representation, reducing training time and the possibility of over-
fitting. The ensemblesDRS andDBS have access to all the information, although
the information is now split up into subspaces. Although several classifiers have
to be trained, each classifier can be very fast due to the reduced dimensionality,
and the greater choice of classifiers that could be applied.

Alternatively, dimensionality reduction or rather, prototype selection tech-
niques could be applied to Dbag or Dinst directly. This adds several more vari-
ables to the problem under investigation: which method for selection is used, and
how many prototypes are selected. We do not pursue this line of investigation
further, but we refer the reader to [19] for an overview of possible techniques.

4 Experiments

4.1 Artificial Data

Fig.2 shows two artificial datasets that help to gain some more understanding
about the different representations. The first dataset originates from [16] and
shows a classical concept in the middle of the plot. We call this the “Concept”
dataset. A positive bag here consists of one such concept instance, the other ni−1
instances are from the background distribution, whereas negative bags have ni

instances from the background. In the second datasets, instances of positive and
negative bags are generated by two Gaussians with the same mean, but different
variance. We call this the “Distribution” dataset.

The Concept dataset has N bags with 25 instances each. Due to the dense
concept, distances of the concept instances are informative: they are lower for
positive bags, than for negative bags. In this case, a sparse classifier used on
the N × 25N matrix Dinst should be able to find these informative distances.
Averaging over the distances as in the N×N matrixDbag, however, would dilute
this important information. Indeed, from the learning curve we can see that Dbag

performs very poorly in this case.
The Distribution dataset also has bags with 25 instances each. Here, the bag

as a whole is a more discriminative source of information than a particular in-
stance, because the distributions overlap. Dinst and Dbag would both contain
the necessary information to classify the bag correctly, so the extra flexibility of
Dinst would only result in more computation, not better classifiers. The learn-
ing curve also demonstrates that Dbag provides enough information for good
performance.

4.2 Real-Life MIL Data

We test all representations on several MIL datasets. Because of the number of
different experiments and the running times using the instance-based represen-
tation Dinst and, we limit ourselves to a few MIL datasets with a reasonable
total number of instances. A list is shown in Table 1.
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Fig. 2. Artificial datasets and corresponding learning curves. In the datasets, + and
© are instances of positive and negative bags respectively.

The Musk datasets[8] are molecule activity prediction problems, where bags
are molecules and instances are different conformers (thus with different activ-
ity) of these molecules. Fox, Tiger and Elephant are image datasets, where the
bags are images and instances are segments (of which at least some segments
contain foxes, tigers or elephants). These datasets are strongly expected to have
a concept, and methods that explicitly search for concept instances, have been
quite successful.

In Newsgroups[24] and Web Recommendation [23], both text categorization
datasets, the situation might be different. In Newsgroups, a bag is a collection of
posts where a post is represented by counts of frequently-occurring words. At the
first glance, it seems that this is a typical Concept-type dataset: a positive bag
for the category “politics” contains 3% of posts about politics, whereas negative
bags contain only posts about other topics. What is different here, is that posts
about politics may have nothing in common and thus be very far apart in the
feature space, unlike the concept instances in the artificial Concept dataset.

In the bird song datasets [3], a bag is a audio fragment consisting of bird songs
of different species. Whenever a particular species is heard in the fragment,
the bag is positive for that category. It could be expected that birds of the
same species have similar songs, therefore there should be different concepts for
different bird species. It is also possible that some species are heard together
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Table 1. MIL Datasets. Number of positive and negative bags as well as the total,
minimum, average and maximum number of instances per bag are specified.

Dataset +bags -bags total min mean max

Musk 1 [8] 47 45 476 2 5 40
Musk 2 [8] 39 63 6598 1 65 1044
Fox [1] 100 100 1302 2 7 13
Tiger[1] 100 100 1220 1 6 13
Elephant [1] 100 100 1391 2 7 13
Alt.atheism [24] 50 50 5443 22 54 76
Rec.motorcycles [24] 50 50 4730 22 47 73
Politics.mideast [24] 50 50 3376 15 34 55
Web recommendation 1 [23] 21 92 2212 4 30 131
Web recommendation 4 [23] 88 25 2291 4 31 200
Web recommendation 7 [23] 54 59 2400 4 32 200
Brown Creeper [3] 197 351 10232 2 19 43
Winter Wren [3] 109 439 10232 2 19 43
Pacific slope Flycatcher [3] 165 383 10232 2 19 43

more often.1 In this case, instances which are negative for one species, could still
be helpful in classifying fragments as containing that species or not.

We want to compare different data representations using the same base clas-
sifier, therefore, this classifier should be applicable to both large (Dinst) and
small (DBS , as some bags may contain just 2 or 3 instances) dimensionalities.
We use the 1-norm SVM (or Liknon classifier [2]) and the Winnow classifier [15]
as classifiers which are able to select a few informative dissimilarities. Further-
more, we use the logistic classifier and the support vector classifier LIBSVM [4]
with a linear kernel to compare the results when no such explicit selection is
taking place.

Each dataset and classifier combination is tested using the four representations
Dbag, Dinst, DBS and DRS . For DRS we let the number of classifiers is equal to
the number of bags (just as in DBS), the number of instances for each subspace
is set to the average number of instances per bag. Both ensembles are combined
by averaging the posterior probabilities of the individual classifiers. These set-
tings are chosen as reasonable default settings for a fair comparison. We use the
area under the receiver-operating-characteristic (AUC) as the evaluation mea-
sure, because this is found to be more discrimnative between classifiers[13] and
more suitable for MIL problems[20]. Note that many other MIL papers use the
accuracy as the evaluation measure and the results cannot be compared directly.

5 Results and Discussion

The results are shown in Tables 2 and 3. Overall, on these datasetsDbag performs
the best, followed by Dinst and DRS , and DBS in the last place. To ease the

1 We have verified this, and this is indeed true for some species, e.g. the labels of
Winter Wren and Pacific-slope Flycatcher have a correlation of 0.63.
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Table 2. AUC and standard error (×100) of Winnow and Liknon classifiers, 5 × 10
cross-validation. Bold indicates results not significantly worse than best per dataset.

Dataset Dbag Dinst DBS DRS

W
in
n
o
w

Musk1 89.6 (1.6) 90.2 (1.4) 83.6 (1.8) 83.1 (1.9)
Musk2 83.6 (1.9) 84.0 (2.4) 85.6 (2.2) 88.4 (2.0)
Fox 62.2 (1.8) 65.7 (1.7) 51.4 (1.9) 54.3 (1.8)
Tiger 83.0 (1.6) 85.8 (1.3) 76.2 (2.0) 80.7 (1.9)
Elephant 90.1 (1.0) 89.2 (1.0) 80.3 (1.5) 84.3 (1.4)
alt.atheism 70.0 (2.7) 54.0 (2.7) 57.3 (2.8) 55.0 (2.8)
rec.motorcycles 73.7 (2.8) 54.2 (2.6) 54.8 (2.3) 54.5 (2.8)
pol.mideast 70.8 (2.4) 63.4 (2.3) 61.3 (2.4) 59.7 (2.2)
Web1 79.9 (2.8) 80.7 (2.8) 75.9 (3.1) 87.3 (2.5)
Web4 76.4 (2.7) 62.7 (3.0) 70.6 (3.3) 70.6 (2.9)
Web7 67.8 (2.5) 74.6 (2.7) 66.7 (2.5) 71.7 (2.7)
Brown Creeper 67.9 (1.2) 72.6 (1.4) 85.7 (0.7) 85.7 (0.7)
Winter Wren 94.0 (1.0) 93.7 (1.1) 90.7 (1.5) 86.0 (1.8)
PS Flycatcher 79.5 (1.5) 80.9 (1.1) 86.1 (0.9) 84.5 (1.1)

L
ik
n
o
n

Musk1 90.9 (1.4) 93.8 (1.0) 76.0 (2.4) 79.8 (2.3)
Musk2 91.1 (1.8) 90.4 (1.8) 84.6 (2.1) 90.3 (1.6)
Fox 67.8 (1.7) 66.4 (1.6) 56.4 (2.0) 61.8 (2.1)
Tiger 86.7 (1.5) 87.9 (1.3) 83.4 (1.5) 84.9 (1.5)
Elephant 90.9 (1.0) 90.3 (0.9) 85.2 (1.5) 88.1 (1.3)
alt.atheism 65.5 (2.5) 56.1 (2.8) 59.0 (2.5) 59.2 (2.6)
rec.motorcycles 72.6 (2.5) 55.0 (2.7) 51.3 (2.4) 50.0 (2.5)
pol.mideast 69.1 (2.6) 63.8 (2.5) 50.4 (2.4) 50.2 (2.3)
Web1 82.1 (2.6) 77.7 (2.6) 81.9 (2.7) 88.7 (2.0)
Web4 76.7 (3.1) 55.0 (3.3) 69.8 (2.9) 72.5 (2.8)
Web7 69.5 (2.9) 59.8 (3.2) 62.5 (2.6) 70.4 (2.9)
Brown Creeper 87.1 (0.6) 87.6 (0.6) 85.9 (0.6) 86.0 (0.6)
Winter Wren 96.8 (0.4) 96.8 (0.5) 97.2 (0.3) 97.0 (0.3)
PS Flycatcher 89.5 (0.6) 89.2 (0.6) 86.4 (0.7) 84.6 (0.7)

comparison, we performed a Friedman rank test[7] on each classifier. The ranks
are shown in Table 4. Although there are not always significant differences, the
ordering of the ranks follows the same pattern in each case.

The fact that Dbag and Dinst perform comparably (except Newsgroups, as
will be explained later) suggests that Dbag is able to capture the important
information that Dinst contains. One conclusion is that real life datasets are less
like the Concept, and more like the Distribution dataset from Fig.2. In other
words, even the non-concept instances in positive bags may be very informative.
Consider images of foxes and tigers. Because foxes and tigers live in a different
habitats, the parts of the images containing trees, sand and so forth can tell us
something about which animal is probably in the image. Or, as in the bird songs
datasets, some birds species can be heard together often.

Although Dinst potentially contains more information than Dbag, there are
few cases where it is a clear winner in terms of performance. It is possible that the
low sample size of these datasets limits the full potential of Dinst: there are just
too many features to deal with. It must be noted that Dinst is not completely the
same as MILES[5] because there, an exponential similarity function is used which
gives more importance to low distances. The effects of such a transformation (on
all studied representations) are left for further investigation.

One surprising result is that for Newsgroups, onlyDbag is able to produce some
reasonable performances. One of the reasons is that positive and negative bags
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Table 3. AUC and standard error (×100) of support vector and logistic classifiers,
5× 10 cross-validation. Bold indicates not significantly worse than best per dataset.

Dataset Dbag Dinst DBS DRS

L
IB

S
V
M

Musk1 93.3 (1.2) 93.7 (1.4) 76.5 (2.4) 80.0 (2.3)
Musk2 93.4 (1.4) 93.7 (1.3) 86.5 (2.0) 90.6 (1.7)
Fox 67.9 (1.5) 67.9 (1.5) 52.9 (2.0) 60.6 (2.0)
Tiger 88.1 (1.5) 86.5 (1.4) 83.2 (1.5) 84.8 (1.5)
Elephant 91.3 (0.8) 89.3 (1.0) 85.6 (1.6) 87.4 (1.3)
alt.atheism 70.7 (2.5) 48.8 (2.7) 49.2 (2.4) 51.1 (2.8)
rec.motorcycles 71.4 (2.4) 42.9 (2.7) 39.0 (2.2) 40.4 (2.5)
pol.mideast 69.4 (2.3) 50.6 (3.0) 52.4 (2.3) 51.8 (2.5)
Web1 86.1 (2.4) 80.2 (2.7) 83.4 (2.1) 89.6 (1.8)
Web4 75.1 (2.8) 60.4 (3.2) 70.7 (3.2) 73.7 (2.7)
Web7 71.0 (2.8) 68.7 (3.0) 58.6 (2.8) 71.6 (2.8)
Brown Creeper 88.0 (0.6) 87.6 (0.6) 84.6 (0.7) 84.2 (0.7)
Winter Wren 97.2 (0.4) 95.7 (0.4) 96.5 (0.4) 96.2 (0.4)
PS Flycatcher 89.3 (0.6) 89.0 (0.7) 86.6 (0.7) 84.9 (0.7)

L
o
g
is
ti
c

Musk1 92.3 (1.4) 91.2 (1.6) 80.6 (2.4) 83.8 (2.1)
Musk2 91.4 (1.3) 86.2 (1.8) 91.5 (1.4) 93.7 (1.1)
Fox 67.1 (1.4) 66.4 (1.3) 60.4 (1.9) 63.5 (1.8)
Tiger 84.4 (1.5) 86.3 (1.3) 85.0 (1.4) 85.4 (1.5)
Elephant 89.2 (0.9) 88.8 (1.0) 86.6 (1.4) 88.8 (1.2)
alt.atheism 71.3 (2.6) 55.7 (2.6) 54.2 (2.7) 54.3 (2.7)
rec.motorcycles 75.3 (2.5) 56.2 (2.6) 52.4 (2.6) 50.7 (2.7)
pol.mideast 69.9 (2.3) 61.1 (2.3) 54.1 (2.4) 55.0 (2.2)
Web1 87.1 (2.2) 79.0 (2.9) 78.0 (2.7) 80.4 (2.6)
Web4 79.4 (2.9) 64.3 (3.1) 73.0 (3.3) 73.2 (3.6)
Web7 69.6 (2.9) 72.7 (2.8) 69.3 (3.1) 75.8 (2.9)
Brown Creeper 75.5 (1.0) 80.2 (0.8) 86.9 (0.6) 86.6 (0.6)
Winter Wren 91.5 (0.7) 94.8 (0.4) 93.3 (0.4) 91.9 (0.5)
PS Flycatcher 75.5 (0.9) 80.4 (0.8) 84.8 (0.7) 84.4 (0.7)

contain many instances that are very close together: similar to the background
instances in the Concept dataset in Fig.2. However, a few true positive instances
are very far away from all other instances, and from each other. There are so
few of them, that even the sparse classifiers using Dinst are not able to select
only the correct ones. However, they are so far away from everything, that they
can still sufficiently influence the dissimilarities in Dbag. The asymmetry of Dbag

also plays a role here; by transposing Dbag, much better results can be achieved
[6]. However, this is not as straightforward for Dinst, so we did not pursue this
possibility here.

It is interesting thatDRS often performs better thanDBS . To find out why, we
examined the performances of the individual classifiers of both ensembles. Some
typical results are shown in Fig.3. It is, indeed, often the case that DRS produces
more accurate classifiers. One reason for this could be the dimensionalities per
classifier: DBS can often have classifiers built on just 2 or 3 dimensional spaces
(especially for Musk, Fox, Tiger and Elephant). However, sometimes DBS and
DRS have classifiers with similar performances, but the ensemble using DRS

is still much better. This suggests that classifiers built on each bag separately
provide more correlated information, than classifiers built on random selections
of instances.

A way to improve the performance of an ensemble is to use a trained combiner
which would learn which individual classifier outputs most often correspond with
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Table 4. Ranks of Friedman test (best possible is 1, worst is 4). The null hypothesis H0

is that there are no significant differences between ranks. H0 is rejected (for significance
of 5%) when the F -value of the ranks is larger than the critical value (CV). Significant
differences are those larger than the critical difference (CD).

Classifier Dbag Dinst DBS DRS F CV Reject H0? CD

Winnow 2.14 2.36 2.85 2.64 0.82 2.85 No -
Liknon 1.50 2.50 3.29 2.71 6.48 2.85 Yes 1.25
LIBSVM 1.29 2.64 3.36 2.71 10.86 2.85 Yes 1.25
Logistic 2.14 2.36 3.07 2.43 1.38 2.85 No -
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Fig. 3. Histograms of performances of individual base classifiers and the final ensembles
of DBS and DRS for the Fox and Web Recommendation 1 datasets

the true labels of the training set. This could filter out the less accurate clas-
sifiers from the ensemble, increasing the overall performance. Looking at Fig.3,
we would expect such performance improvements to be possible, especially for
DBS . Following [9], we have performed a few experiments with the nearest mean
combiner, both on DBS and DRS . The results, however, were quite disappoint-
ing: for both ensembles, only minor improvements, if any, could be achieved. A
possible cause for this is that nearest mean combiner was trained on normalized
posterior probabilities, while the original classifier outputs might have been more
informative.

We have found that for DBS , there is little relation between the label of the
prototype and the performance of the classifier. This is in line with the idea
that positive and negative bags may not have the same type of background
instances. On the other hand, we have found medium to strong correlations
between dimensionality and the AUC of the individual classifiers. It might be
worth investigating whether this can help us to select more informative proto-
types a priori, before creating the dissimilarity matrix. Furthermore, there might
be room for improvement for DRS . The subspaces are allowed to be larger than
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the average number of instances per bag, because the dissimilarities are sampled
with replacement.

6 Conclusion

We examined several dissimilarity representations for Multiple Instance Learn-
ing. These representations are based on distances of bags to prototype bags or
instances. We investigated how such distances can be combined in order to create
informative dissimilarities, and how this affects the dimensionality of the final
representation. We considered combining such distances by averaging, by con-
catenating or by ensembling subspace classifiers, where each classifier is trained
on a selection of the instance distances.

Averaging instance distances into a bag-based representation reduces the di-
mensionality and performs very well. Although the concatenated, instance-based
representation is potentially the most informative, its rather high dimensionality
might be harmful for performance. Lower dimensionality can also be achieved
by combining subspace classifiers. However, in this case it is more difficult to
achieve good performances because more variables, such as subspace size and
the combining rule, are involved. It remains a question how to create and select
such informative subspaces.

The bag representation produces good results, which means that averaging
does not dilute the information of the individual instances. This suggests that
in practice, most instances in a bag can be informative. In other words, the dis-
tributions of instances from positive and negative bags may be very different in
general, and not only in terms of the presence or absence of a concept. A reason-
able conclusion is that in such cases, it is better to use the bag representation,
which requires less resources but still provides good performances.
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