
Self-Organizing Neural Grove and Its Application
to Incremental Learning

Hirotaka Inoue

Department of Electrical Engineering and Information Science,
Kure National College of Technology,

2-2-11 Agaminami, Kure, Hiroshima, 737-8506 Japan
hiro@kure-nct.ac.jp

Abstract. Recently, multiple classifier systems have been used for practical ap-
plications to improve classification accuracy. Self-generating neural networks
(SGNN) are one of the most suitable base-classifiers for multiple classifier
systems because of their simple settings and fast learning ability. However, the
computation cost of the multiple classifier system based on SGNN increases in
proportion to the numbers of SGNN. In this paper, we propose a novel prun-
ing method for efficient classification and we call this model a self-organizing
neural grove (SONG). Experiments have been conducted to compare the SONG
with bagging and the SONG with boosting, the multiple classifier system based
on C4.5, and support vector machine (SVM). The results show that the SONG
can improve its classification accuracy as well as reducing the computation cost.
Additionally, we investigate SONG’s incremental learning performance.

1 Introduction

Classifiers need to find hidden information within a large amount of given data effec-
tively and classify unknown data as accurately as possible [1]. Recently, to improve the
classification accuracy, multiple classifier systems such as neural network ensembles,
bagging, and boosting have been used for practical data mining applications [2]. In gen-
eral, base classifiers of multiple classifier systems use traditional models such as neural
networks (backpropagation network and radial basis function network) [3] and decision
trees (CART and C4.5) [4].

Neural networks have great advantages such as adaptability, flexibility, and universal
nonlinear input-output mapping capability. However, to apply these neural networks,
it is necessary for the network structure and some parameters to be determined by hu-
man experts, and it is quite difficult to choose the right network structure suitable for a
particular application at hand. Moreover, they require a long training time to learn the
input-output relation of the given data. These drawbacks prevent neural networks from
being the base classifier of multiple classifier systems for practical applications.

Self-generating neural networks (SGNN) [5] have a simple network design and high
speed learning. SGNN are an extension of the self-organizing maps (SOM) of Koho-
nen [6] and utilize the competitive learning which is implemented as a self-generating
neural tree (SGNT). The abilities of SGNN make it suitable for the base classifier of
multiple classifier systems. In order to improve in the accuracy of SGNN, we proposed

Z.-H. Zhou, F. Roli, and J. Kittler (Eds.): MCS 2013, LNCS 7872, pp. 109–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

110 H. Inoue

ensemble self-generating neural networks (ESGNN) for classification [7] as one of mul-
tiple classifier systems. Although the accuracy of ESGNN improves by using various
SGNN, the computation cost, that is the computation time and the memory capac-
ity increases in proportion to the increase in numbers of SGNN in multiple classifier
systems.

In an earlier paper [8], we proposed a pruning method for the structure of the SGNN
in multiple classifier systems to reduce the computation cost. In this paper, we propose
a novel pruning method for more effective processing and we call this model a self-
organizing neural grove (SONG). This pruning method is constructed in two stages. In
the first stage, we introduce an on-line pruning algorithm to reduce the computation
cost by using class labels in learning. In the second stage, we optimize the structure
of the SGNT in multiple classifier systems to improve the generalization capability by
pruning the redundant leaves after learning. In the optimization stage, we introduce a
threshold value as a pruning parameter to decide which subtree’s leaves to prune and
estimate with 10-fold cross-validation [9]. After the optimization, the SONG improve
its classification accuracy as well as reducing the computation cost. We use bagging [10]
and boosting [11] as a resampling technique for the SONG.

We investigate the improvement performance of the SONG by comparing it with a
multiple classifier system based on C4.5 [12] using ten problems in the UCI machine
learning repository [13]. Moreover, we compare the SONG with support vector machine
(SVM) [14] to investigate the computational cost and the classification accuracy.

The rest of the paper is organized as follows. The next section shows how to construct
the SONG. Section 3 shows the experimental results. Then section 4 is devoted to some
experiments to investigate the incremental learning performance of SONG. Finally we
present some conclusions, and outline plans for future work.

2 Constructing Self-Organizing Neural Grove

In this section, we describe how to prune redundant leaves in the SONG. First, we
mention the on-line pruning method in the learning of SGNT. Second, we show the
optimization method in constructing the SONG. Finally, we show a simple example of
the pruning method for a two dimensional classification problem.

2.1 On-Line Pruning of Self-Generating Neural Tree

SGNN are based on SOM and are implemented as an SGNT architecture. The SGNT
can be constructed directly from the given training data without any intervening human
effort. The SGNT algorithm is defined as a tree construction problem of how to con-
struct a tree structure from the given data which consists of multiple attributes under
the condition that the final leaves correspond to the given data.

Before we describe the SGNT algorithm, we denote some notations.

– input data vector: ei ∈ IRm.
– root, leaf, and node in the SGNT: nj .
– weight vector of nj: wj ∈ IRm.

Self-Organizing Neural Grove and Its Application to Incremental Learning 111

Table 1. Sub procedures of the SGNT algorithm

Sub procedure Specification
copy(nj ,ei/wwin) Create nj , copy ei/wwin as wj in nj .
choose(ei, n1) Decide nwin for ei.
leaf(nwin) Check nwin whether nwin is a leaf or not.
connect(nj , nwin) Connect nj as a child leaf of nwin .
prune(nwin) Prune leaves if the leaves have the same class.

– the number of the leaves in nj : cj .
– distance measure: d(ei,wj).
– winner leaf for ei in the SGNT: nwin.

The SGNT algorithm is a hierarchical clustering algorithm. The pseudo C code of the
SGNT algorithm is given as follows:

Algorithm (SGNT Generation)

Input:
A set of training examples E = {e_i},

i = 1, ... , N.
A distance measure d(e_i,w_j).

Program Code:
copy(n_1,e_1);
for (i = 2, j = 2; i <= N; i++) {

n_win = choose(e_i, n_1);
if (leaf(n_win)) {
copy(n_j, w_win);
connect(n_j, n_win);
j++;

}
copy(n_j, e_i);
connect(n_j, n_win);
j++;
prune(n_win);

}
Output:

Constructed SGNT by E.

In the above algorithm, several sub procedures are used. Table 1 shows the sub proce-
dures of the SGNT algorithm and their specifications.

In order to decide the winner leaf nwin in the sub procedure choose(e i,n 1),
competitive learning is used. This sub procedure is recursively used from the root to
the leaves of the SGNT. If an nj includes the nwin as its descendant in the SGNT, the
weight wjk (k = 1, 2, . . . ,m) of the nj is updated as follows:

112 H. Inoue

wjk ← wjk +
1

cj
· (eik − wjk), 1 ≤ k ≤ m. (1)

In the SGNT, the input vector xi corresponds to ei, and the desired output yi corre-
sponds to the network output oi which is stored in one of the leaf neurons, for (xi, yi) ∈
D. Here, D is the training data set which consists of data {xi, yi|i = 1, . . . , N},
xi ∈ IRm is the input and yi is the desired output. After all training data are inserted
into the SGNT as the leaves, the leaves each have a class label as the outputs and the
weights of each node are the averages of the corresponding weights of all its leaves.
The whole network of the SGNT reflects the given feature space by its topology.

We explain the SGNT generation algorithm using an simple example. In this exam-
ple, m is one and the four training data (xi, yi) is (1,1), (2,2), (3,3), and (4,4). Hence,
e11 = 1, e21 = 2, e31 = 3, and e41 = 4. Fig. 1 shows an example of the SGNT gener-
ation. First, e11 is just copied to a neuron n1 as the root, and e11 is substituted to w11

(Fig. 1 (a)). In Fig. 1, the circle is the neuron, the integer in the circle is the number of
neuron j, the integer of left-upper of the circle is cj , and the integer of under the circle
is wj1. Next, n2 and n3 are generated as the children of n1 with w21 = 1, w31 = 2. w11

is updated by e21 to 1+1/2(2− 1) = 1.5 (Fig. 1 (b)). Next, the winner in {n1, n2, n3}
is n3 since d(e3,w1) = 1.5, d(e3,w2) = 2, and d(e3,w3) = 1; and thus, n4 and n5

are generated as the children of n3 with w41 = 2, w51 = 3. w31 is updated by e31 to
2+ 1/2(3− 2) = 2.5 and w11 is updated by e31 to 1.5+ 1/3(3− 1.5) = 2 (Fig. 1 (c)).
Finally, n6 and n7 are generated as the children of n5 with w61 = 3, w71 = 4. w51 is
updated by e41 to 3+1/2(4−3) = 3.5, w31 is updated by e41 to 2.5+1/3(4−2.5) = 3,
and w11 is updated by e41 to 2 + 1/4(4− 2) = 2.5 (Fig. 1 (d)).

Note, to optimize the structure of the SGNT effectively, we remove the threshold
value of the original SGNT algorithm in [5] to control the number of leaves based on
the distance because of the trade-off between the memory capacity and the classification
accuracy. In order to avoid the above problem, we introduce a new pruning method in
the sub procedure prune(n win). We use the class label to prune leaves. For leaves
that have the nwin’s parent node, if all leaves belong to the same class, then these leaves
are pruned and the parent node is given to the class.

(a) (b) (c)

1
2

1

2 31.5

1 2

1

1

1 1

1
3

2 31 22

2.51 4 51

1
4

2 31 32.5

31 4 52

3.51 6 71

2 3

1

1

2

3 4

(d)

Fig. 1. An example of the SGNT generation

Self-Organizing Neural Grove and Its Application to Incremental Learning 113

 T

 ...SGNT
 1

SGNT
 2

SGNT
 K

Input

Combiner
 Σ

 o 1 o 2 o K

Output
 o

Fig. 2. The SONG which is constructed from K SGNTs. The test dataset T is entered at each
SGNT, the output oi is computed as the output of the winner leaf for the input data, and the
SONG’s output is decided by voting outputs of K SGNTs.

1 begin initialize j = the height of the SGNT
2 do for each subtree’s leaves in the height j
3 if the ratio of the most class ≥ α,
4 then merge all leaves to parent node
5 if all subtrees are traversed in the height j,
6 then j ← j − 1
7 until j = 0
8 end.

Fig. 3. The merge phase

2.2 Optimization of the SONG

The SGNT has the capability of high speed processing. However, the accuracy of the
SGNT is inferior to the conventional approaches, such as nearest neighbor, because the
SGNT has no guarantee to reach the nearest leaf for unknown data. Hence, we construct
the SONG by taking the majority of multiple SGNT’s outputs to improve the accuracy
(Fig. 2).

Although the accuracy of the SONG is superior or comparable to the accuracy of
conventional approaches, the computational cost increases in proportion to the increase
in the number of SGNTs in the SONG. In particular, the huge memory requirement
prevents the use of SONG for large datasets even with the latest computers.

In order to improve the classification accuracy, we propose an optimization method
of the SONG for classification. This method has two parts, the merge phase and the
evaluation phase. The merge phase is performed as a pruning algorithm to reduce dense
leaves (Fig. 3).

This phase uses the class information and a threshold value α to decide which sub-
tree’s leaves to prune or not. For leaves that have the same parent node, if the proportion

114 H. Inoue

1 begin initialize α = 0.5
2 do for each α
3 evaluate the merge phase with 10-fold CV
4 if the best classification accuracy is obtained,
5 then record the α as the optimal value
6 α← α+ 0.05
7 until α = 1
8 end.

Fig. 4. The evaluation phase

of the most common class is greater than or equal to the threshold value α, then these
leaves are pruned and the parent node is given the most common class.

The optimum threshold values α of the given problems are different from each other.
The evaluation phase is performed to choose the best threshold value by introducing
10-fold cross validation (Fig. 4).

2.3 An Example of the Pruning Method for the SONG

We show an example of the pruning method for the SONG in Fig. 5. This is a two-
dimensional classification problem with two equal circular Gaussian distributions that
have an overlap. The shaded plane is the decision region of class 0 and the other plane
is the decision region of class 1 by the SGNT. The dotted line is the ideal decision
boundary. The number of training samples is 200 (class0: 100, class1: 100) (Fig. 5(a)).

The unpruned SGNT is given in Fig. 5(b). In this case, 200 leaves and 120 nodes are
automatically generated by the SGNT algorithm. In this unpruned SGNT, the height is
7 and the number of units is 320. In this, we define the unit to count the sum of the
root, nodes, and leaves of the SGNT. The root is the node which is of height 0. The unit
is used as a measure of the memory requirement in the next section. Fig. 5(c) shows
the pruned SGNT after the optimization stage in α = 1. In this case, 159 leaves and
107 nodes are pruned away and 48 units remain. The decision boundary is the same
as the unpruned SGNT. Fig. 5(d) shows the pruned SGNT after the optimization stage
in α = 0.6. In this case, 182 leaves and 115 nodes are pruned away and only 21 units
remain. Moreover, the decision boundary is improved more than the unpruned SGNT
because this case can reduce the effect of the overlapping class by pruning the SGNT.

In the above example, we use all training data to construct the SGNT. The structure
of the SGNT is changed by the order of the training data. Hence, we can construct
the SONG from the same training data by changing the input order. We investigate the
pruning method for more complex problems in the next section.

3 Experimental Results

We investigate the computational cost (the memory capacity and the computation time)
and the classification accuracy of the SONG with bagging for ten benchmark problems
in the UCI machine learning repository [13]. We evaluate how the SONG is pruned

Self-Organizing Neural Grove and Its Application to Incremental Learning 115

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x 2

x1

class0
class1

(a)

class0
class1

node

0
0.2

0.4
0.6

0.8
1

x1 0
0.2

0.4
0.6

0.8
1

x2

0
1
2
3
4
5
6
7

Height

(b)

class0
class1

node

0
0.2

0.4
0.6

0.8
1

x1 0
0.2

0.4
0.6

0.8
1

x2

0
1
2
3
4
5
6
7

Height

(c)

class0
class1

node

0
0.2

0.4
0.6

0.8
1

x1 0
0.2

0.4
0.6

0.8
1

x2

0
1
2
3
4
5
6
7

Height

(d)

Fig. 5. An example of the SONG’s pruning algorithm, (a) a two dimensional classification prob-
lem with two equal circular Gaussian distribution, (b) the structure of the unpruned SGNT, (c)
the structure of the pruned SGNT (α = 1), and (d) the structure of the pruned SGNT (α = 0.6).
The shaded plane is the decision region of class 0 by the SGNT and the dotted line shows the
ideal decision boundary.

using 10-fold cross-validation for the ten benchmark problems. In this experiment, we
use a modified Euclidean distance measure for the SONG. Since the performance of the
SONG is not sensitive to the threshold value α, we set the different threshold values α
to vary from 0.5 to 1; α = [0.5, 0.55, 0.6, . . . , 1]. We set the number of SGNT K in the
SONG as 25 and execute 100 trials by changing the sampling order of each training set.
All experiments in this section were performed on an UltraSPARC workstation with a
900MHz CPU, 1GB RAM, and Solaris 8.

Table 2 shows the average memory requirement and classification accuracy of 100
trials for the SONG. As the memory requirement, we count the number of units which
is the sum of the root, nodes, and leaves of the SGNT. The average memory requirement
is reduced from 65% to 96.6% and the classification accuracy is improved 0.1% to 2.9%
by optimizing the SONG. This supports that the SONG can be effectively used for all
datasets with regard to both the computation cost and the classification accuracy.

Table 3 shows the average classification accuracy of 10 trials for the SONG with
bagging and boosting. On boosting, we implement AdaBoost [11] to the SONG. Since

116 H. Inoue

Table 2. The average memory requirement and classification accuracy of 100 trials for the bagged
SGNT in the SONG. The standard deviation is given inside the bracket on classification accuracy
(×10−3).

memory requirement classification accuracy
Dataset pruned unpruned ratio pruned unpruned ratio
balance-scale 107.68 861.18 12.5 0.866(6.36) 0.837(7.83) +2.9
breast-cancer-w 30.88 897.37 3.4 0.97(2.41) 0.966(2.71) +0.4
glass 104.33 297.75 35 0.714(13.01) 0.709(14.86) +0.5
ionosphere 50.75 472.39 10.7 0.891(6.75) 0.862(7.33) +2.9
iris 15.64 208.56 7.4 0.962(6.04) 0.955(5.45) +0.7
letter 6197.5 27028.56 22.9 0.956(0.77) 0.955(0.72) +0.1
liver-disorders 163.12 471.6 34.5 0.648(12.89) 0.636(13.36) +1.2
new-thyroid 49.45 298.21 16.5 0.958(7.5) 0.957(7.49) +0.1
pima-diabetes 204.4 1045.03 19.5 0.749(7.05) 0.728(7.83) +2.1
wine 15 238.95 6.2 0.976(4.41) 0.972(5.57) +0.4
Average 693.88 3181.96 16.9 0.869 0.858 +1.1

Table 3. The average classification accuracy of 10 trials for the SONG with bagging and boosting.
The standard deviation is given inside the bracket (×10−3).

SONG with bagging SONG with boosting
Dataset SGNT SONG ratio SGNT SONG ratio
breast-cancer-w 0.96(4.74) 0.975(2.86) +1.5 0.96(6.47) 0.957(4.13) -0.3
ionosphere 0.847(19.3) 0.89(8.23) +4.3 0.854(18.26) 0.773(17.4) -8.1
liver-disorders 0.571(21.4) 0.636(11.0) +6.5 0.588(17.0) 0.572(24.3) -1.6
pima-diabetes 0.705(9.8) 0.754(4.96) +4.9 0.696(12.2) 0.722(6.82) +2.6
Average 0.771 0.814 +4.3 0.775 0.756 -1.9

original AdaBoost algorithm have been proposed for binary classification problems,
we use four binary classification problems in Table 3. In comparison with boosting,
bagging is superior to boosting on all of the 4 datasets. In short, bagging is better than
boosting in terms of the classification accuracy.

To evaluate the SONG’s performance, we compare the SONG with a multiple classi-
fier system based on C4.5. We set the number of classifiers K in the multiple classifier
system as 25 and we construct both multiple classifier systems by bagging. Table 4
shows the improved performance of the SONG and the multiple classifier system based
on C4.5. The results of the SGNT and the SONG are the average of 100 trials. The
SONG has a better performance than the multiple classifier system based on C4.5 for 6
of the 10 datasets. Although the multiple classifier system based on C4.5 degrades the
classification accuracy for iris, the SONG can improve the classification accuracy for
all problems. Therefore, the SONG is an efficient multiple classifier system on the basis
of both the scalability for large scale datasets and the robustly improved generalization
capability for the noisy datasets comparable to the multiple classifier system with C4.5.

Self-Organizing Neural Grove and Its Application to Incremental Learning 117

Table 4. The improved performance of the SONG based on pruned SGNT and the multiple clas-
sifier system (MCS) based on C4.5 with bagging

SONG based on SGNT MCS based on C4.5
Dataset SGNT SONG ratio C4.5 MCS ratio
balance-scale 0.779 0.866 +8.7 0.795 0.827 +3.2
breast-cancer-w 0.956 0.97 +1.4 0.946 0.963 +1.7
glass 0.642 0.714 +7.2 0.664 0.757 +9.3
ionosphere 0.852 0.891 +3.9 0.897 0.92 +2.3
iris 0.943 0.962 +1.9 0.953 0.947 −0.6
letter 0.879 0.956 +7.7 0.880 0.938 +5.8
liver-disorders 0.59 0.648 +5.8 0.635 0.736 +10.1
new-thyroid 0.939 0.958 +1.9 0.93 0.94 +1
pima-diabetes 0.695 0.749 +5.4 0.749 0.767 +1.8
wine 0.955 0.976 +2.1 0.927 0.949 +2.2
Average 0.823 0.869 +4.6 0.837 0.874 +3

To show the advantages of the SONG, we compare it with SVM on the same prob-
lems. In the SONG, we choose the best classification accuracy of 100 trials with bag-
ging. In SVM, we use C-SVM in libsvm [14] with radial basis function kernel. We
select the parameters of SVM, the cost parameters C and the kernel parameters γ, from
15× 15 = 225 combinations by 10-fold cross validation; C = [212, 211, 210, . . . , 2−2]
and γ = [24, 23, 22, . . . , 2−10]. We normalize the input data from 0 to 1 for all prob-
lems in k-nearest neighbor and SVM. All methods are compiled by using gcc with the
optimization level -O2 on the same workstation.

Table 5 shows the classification accuracy, the memory requirement, and the com-
putation time achieved by the SONG and SVM. Next, we show the results for each
category.

First, in view point of the classification accuracy, the SONG superior to SVM 3 of
the 10 datasets and degrade 1.7% in the average. Second, in terms of the memory re-
quirement, even though the SONG includes the root and the nodes which are generated
by the SGNT generation algorithm, this is less than SVM for 8 of the 10 datasets. Al-
though the memory requirement of the SONG is totally used K times in Table 5, we
release the memory of SGNT for each trial and reuse the memory for effective com-
putation. Therefore, the memory requirement is suppressed by the size of the single
SGNT. Finally, in view of the computation time, although the SONG consumes the cost
of K times of the SGNT to construct the model and test for the unknown dataset, the
average computation time is faster than SVM. The SONG is slower than SVM for small
datasets such as glass, ionosphere, and iris. However, the SONG is faster than SVM for
large datasets such as balance-scale, letter, and pima-diabetes. Especially, in letter, the
computation time of the SONG is faster than SVM about 11 times. We need to repeat
10-fold cross validation many times to select the optimum parameter for α, k, C, and
γ. This evaluation consumes much computation time for large datasets such as letter.

118 H. Inoue

Table 5. The classification accuracy, the memory requirement, and the computation time of ten
trials for the best pruned SONG and SVM

classification acc. memory requirement computation time (s)
Dataset SONG SVM SONG SVM SONG SVM
balance-scale 0.885 0.992 109.93 60.6 0.82 4.77
breast-cancer-w 0.976 0.973 26.8 79.6 1.18 0.64
glass 0.758 0.738 91.33 132.4 0.36 0.61
ionosphere 0.912 0.954 51.38 147.9 1.93 1.25
iris 0.973 0.96 11.34 51.3 0.13 0.06
letter 0.958 0.977 6208.03 7739.7 208.52 2359.39
liver-disorders 0.685 0.73 134.17 214.5 0.54 2.07
new-thyroid 0.972 0.977 45.74 44.1 0.23 0.22
pima-diabetes 0.764 0.766 183.57 363.5 1.72 5.63
wine 0.983 0.989 11.8 62.2 0.31 0.15
Average 0.887 0.904 687.41 889.58 21.57 236.88

Therefore, the SONG based on the fast and compact SGNT is useful and practical for
large datasets. Moreover, the SONG has the ability of parallel computation because
each classifier behaves independently. In conclusion, the SONG is a practical method
for large-scale data mining compared with SVM.

4 Considerations

In this section, we investigate the performance of the incremental learning of the SONG.
We use letter in this experiment since it contains large scale data (the number of input
dimension: 16, the number of classes: 26, and the number of entries: 20000).

This experiment is performed as follows. First, we divide letter dataset into ten parts.
Second, we select one of the ten parts as the testing data. Third, we enter one of the
remaining nine parts into the SONG for training. Forth, we test the SONG using the
testing data. Finally, we continue the training and the testing until all nine parts of the
dataset are entered into the SONG.

Fig. 6 shows the relation between the number of training data and the classification
accuracy. The more the number of training data increases, the more the classification
accuracy improves for all the number of ensembles K . The width of the improvement
is wide for small K and all values of N .

As the memory requirement, we count the number of units which is the sum of the
root, nodes, and leaves of the SGNT. Fig. 7 shows the relation between the number of
training data N and the number of units in α = 1. Here, the total units are the number
of all units without pruning and the remaining units are the number of all units with
pruning. Both of them are the average of 25 SGNTs. The number of nodes increases
linearly in proportion to the increase in the number of training data. The slope of the
remaining units is smaller than the slope of the total nodes. This means that the SONG
has the capability for good compression for large scale data. This supports that the
SONG can be effectively used for large scale datasets.

Self-Organizing Neural Grove and Its Application to Incremental Learning 119

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

%
)

of N

K=1
K=3
K=5
K=9

K=15
K=25

Fig. 6. The relation between the number of training data and the classification accuracy

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

of

 u
ni

ts

of N

total units
remaining units

Fig. 7. The relation between the number of training data and the number of units

5 Conclusions

In this paper, we proposed a new pruning method for the multiple classifier system
based on SGNT, which is called SONG, and evaluated the computation cost and the ac-
curacy. We introduced an on-line and off-line pruning method and evaluated the SONG
by 10-fold cross-validation. Experimental results showed that the memory requirement
reduced remarkably, and the accuracy increased by using the pruned SGNT as the base
classifier of the SONG. Additionaly, we investigated an incremental learning perfor-
mance of the SONG. Experimental results showed that the SONG could be applicable
to incremental learning. The SONG is a useful and practical multiple classifier sys-
tem to classify large datasets. In future work, we will study a parallel and distributed
processing of the SONG for large scale data mining.

Acknowledgment. The author would like to thank Kyoshiro Sugiyama for implement-
ing AdaBoost algorithm on the SONG, Anthony Nepia and the anonymous referees for
their helpful comments.

120 H. Inoue

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers,
San Francisco (2000)

2. Quinlan, J.R.: Bagging, Boosting, and C4.5. In: Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence, Portland, OR, August 4-8, pp. 725–730. AAAI Press, The
MIT Press (1996)

3. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York
(1995)

4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons Inc.,
New York (2000)

5. Wen, W.X., Jennings, A., Liu, H.: Learning a neural tree. In: The International Joint Confer-
ence on Neural Networks, Beijing, China, November 3-6, vol. 2, pp. 751–756 (1992)

6. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)
7. Inoue, H., Narihisa, H.: Improving generalization ability of self-generating neural networks

through ensemble averaging. In: Terano, T., Liu, H., Chen, A.L.P. (eds.) PAKDD 2000.
LNCS (LNAI), vol. 1805, pp. 177–180. Springer, Heidelberg (2000)

8. Inoue, H., Narihisa, H.: Optimizing a multiple classifier system. In: Ishizuka, M., Sattar, A.
(eds.) PRICAI 2002. LNCS (LNAI), vol. 2417, pp. 285–294. Springer, Heidelberg (2002)

9. Stone, M.: Cross-validation: A review. Math. Operationsforsch. Statist., Ser. Statistics 9(1),
127–139 (1978)

10. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
11. Freund, Y., Schapire, R.E.: Boosting: Foundations and Algorithms. MIT Press, Cambridge

(2012)
12. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)
13. Frank, A., Asuncion, A.: UCI machine learning repository (2010),

http://archive.ics.uci.edu/ml
14. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Transac-

tions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm

http://archive.ics.uci.edu/ml
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Self-Organizing Neural Grove and Its Application to Incremental Learning
	Introduction
	Constructing Self-Organizing Neural Grove
	On-Line Pruning of Self-Generating Neural Tree
	Optimization of the SONG
	An Example of the Pruning Method for the SONG

	Experimental Results
	Considerations
	Conclusions
	References

