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Preface

This volume contains the papers presented at the 11th International Workshop
on Multiple Classifier Systems (MCS 2013) held in Nanjing, China, during May
15–17, 2013. This was the 11th edition of the well-established series of meetings
providing a leading international forum for the discussion of issues in multiple
classifier systems and ensemble methods. The aim of the workshop is to bring
together researchers from diverse communities concerned with this topic, in-
cluding pattern recognition, machine learning, neural network, data mining, and
statistics.

MCS 2013 received 59 full submissions. The Program Committee consisting
of 45 experts carefully reviewed the submissions, with the help of external re-
viewers. Based on the reviews, 34 papers were selected for presentation at the
workshop and inclusion in the proceedings. The workshop program and this vol-
ume were significantly enhanced by two invited talks given by world renowned
experts: Bin Yu (UC Berkeley, USA) and Marcello Pelillo (Università Ca’ Foscari
Venezia, Italy).

This workshop would not have been possible without the help of many in-
dividuals and organizations. First of all, we would like to thank the Program
Committee members and reviewers, for their great efforts in providing insight-
ful comments on the submissions. We also wish to thank all the authors who
have submitted their recent work to the workshop. The management of the pa-
pers, including the preparation of this proceedings volume, was done with the
EasyChair conference management system. Special thanks go to the Local Ar-
rangements and Publicity Chairs, Ming Li, Yang Yu, and Giorgio Fumera, for
their outstanding contribution to the organization of MCS 2013.

This workshop was organized by the LAMDA Group of the National Key Lab-
oratory for Novel Software Technology, Nanjing University, China, the Center
for Vision, Speech and Signal Processing of the University of Surrey, UK, and
the Department of Electrical and Electronic Engineering of the University of
Cagliari, Italy. We thank the International Association for Pattern Recognition
(IAPR), IEEE Computer Society Nanjing Chapter, and the National Science
Foundation of China for their support.

May 2013 Zhi-Hua Zhou
Fabio Roli

Josef Kittler
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César Garćıa-Osorio

Towards a Framework for Designing Full Model Selection and
Optimization Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Quan Sun, Bernhard Pfahringer, and Michael Mayo

Transfer Learning with Part-Based Ensembles . . . . . . . . . . . . . . . . . . . . . . . 271
Shiliang Sun, Zhijie Xu, and Mo Yang

Dimensionality Reduction Using Stacked Kernel Discriminant Analysis
for Multi-label Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Muhammad Atif Tahir, Ahmed Bouridane, and Josef Kittler



Table of Contents XI

Ensemble of Feature Chains for Anomaly Detection . . . . . . . . . . . . . . . . . . 295
Lena Tenenboim-Chekina, Lior Rokach, and Bracha Shapira

Soft-Voting Clustering Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Haishen Wang, Yan Yang, Hongjun Wang, and Dahai Chen

Randomized Bayesian Network Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Qing Wang and Ping Li

A Novel Pattern Rejection Criterion Based on Multiple Classifiers . . . . . . 331
Wei-Na Wang, Xu-Yao Zhang, and Ching Y. Suen

MRF-Based Multiple Classifier System for Hyperspectral Remote
Sensing Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Junshi Xia, Peijun Du, and Xiyan He

A Directed Inference Approach towards Multi-class Multi-model
Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Tianbao Yang, Lei Wu, and Piero P. Bonissone

A New Feature Fusion Approach Based on LBP and Sparse
Representation and Its Application to Face Recognition . . . . . . . . . . . . . . . 364

He-Feng Yin and Xiao-Jun Wu

Binary Decision Trees for Melanoma Diagnosis . . . . . . . . . . . . . . . . . . . . . . . 374
Yu Zhou and Zhuoyi Song

ECOC Matrix Pruning Using Accuracy Information . . . . . . . . . . . . . . . . . . 386
Cemre Zor, Terry Windeatt, and Josef Kittler

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399



 

Z.-H. Zhou, F. Roli, and J. Kittler (Eds.): MCS 2013, LNCS 7872, pp. 1–12, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Improving Simple Collaborative Filtering Models  
Using Ensemble Methods  

Ariel Bar1, Lior Rokach1, Guy Shani1, Bracha Shapira1, and Alon Schclar2 

1 Department of Information Systems Engineering 
Ben-Gurion University of the Negev, Beer-Sheva, Israel 

{arielba,liorrk,shanigu,bshapira}@bgu.ac.il 
2 School of Computer Science, Academic College of Tel Aviv-Yaffo 

P.O.B. 8401, Tel Aviv 61083, Israel 
alonschc@mta.ac.il 

Abstract. In this paper we examine the effect of applying ensemble learning to 
the performance of collaborative filtering methods. We present several syste-
matic approaches for generating an ensemble of collaborative filtering models 
based on a single collaborative filtering algorithm (single-model or homogene-
ous ensemble). We present an adaptation of several popular ensemble tech-
niques in machine learning for the collaborative filtering domain, including 
bagging, boosting, fusion and randomness injection. We evaluate the proposed 
approach on several types of collaborative filtering base models: k-NN, matrix 
factorization and a neighborhood matrix factorization model. Empirical evalua-
tion shows a prediction improvement compared to all base CF algorithms. In 
particular, we show that the performance of an ensemble of simple (weak) CF 
models such as k-NN is competitive compared with a single strong CF model 
(such as matrix factorization) while requiring an order of magnitude less com-
putational cost.  

Keywords: Recommendation Systems, Collaborative Filtering, Ensemble Methods. 

1 Introduction 

Collaborative Filtering is perhaps the most successful and popular method for provid-
ing predictions over user preferences, or recommending items. For example, in recent 
Netflix competitions, CF models were shown to provide the most accurate models. 
However, many of these methods require a very long training time in order to achieve 
high performance. Indeed, researchers suggest more and more complex models, with 
better accuracy, at the cost of higher computational effort. 

Ensemble methods suggest that a combination of many simple identical models 
can achieve a performance of a complex model, at a lower training computation time. 
Various ensemble methods create a set of varying models using the same basic algo-
rithm automatically, without forcing the user to explicitly learn a single set of model 
parameters that perform the best. The predictions of the resulting models are com-
bined by, e.g., voting among all models. Indeed, ensemble methods have shown in 
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many cases the ability to achieve accuracy competitive with complex models. In this 
paper we investigate the applicability of a set of ensemble methods to a wide set of 
CF algorithms. We explain how to adapt CF algorithms to the ensemble framework in 
some cases, and how to use CF algorithms without any modifications in other cases. 
We run an extensive set of experiments, varying the parameters of the ensemble. We 
show that, as in other Machine Learning problems, ensemble methods over simple CF 
models achieve competitive performance with a single, more complex CF model at a 
lower cost. 

2 Background and Related Work 

Collaborative Filtering (CF) [1] is perhaps the most popular and the most effective 
technique for building recommendation systems. This approach predicts the opinion 
that the active user will have on items or recommends the "best" items to the active 
user, by using a scheme based on the active user's previous likings and the opinions of 
other, like-minded, users. The CF prediction problem is typically formulated as a 
triplet (U, I, R), where: 

• U is a set of M users taking values form {u1, u2… um}. 
• I is a set of N items taking values from {i1, i2… in} 
• R - The ratings matrix, is a collection of historical rating records (each record con-

tains a user id (u∈U), an item id (i∈I), and the rating that u gave to i – ru,i.  

A rating measures the preference by user u to item i, where high values mean stronger 
preferences. One main challenge of CF algorithms is to give an accurate prediction, 
denoted by r^

u,i to the unknown entries in the ratings matrix, which is typically very 
sparse. Popular examples of CF methods include k-NN models [1-2] and Matrix Fac-
torization models [3]. 

Ensemble is a machine learning approach that uses a combination of identical 
models in order to improve the results obtained by a single model. Unlike hybridiza-
tion methods [4] in recommender systems that combine different types of recommen-
dation models (e.g. a CF model and a content based model), the base models which 
construct the ensemble are based on a single learning algorithm.  

Most improvements of collaborative filtering models either create more sophisti-
cated models or add new enhancements to known ones. These methods include ap-
proaches such matrix factorization [3],[5], enriching models with implicit data[6], 
enhanced k-NN models [7], applying new similarity measures [8], or applying  
momentum techniques for gradient decent solvers [5]. 

In [9] the data sparsity problem of the ratings' matrix was alleviated by imputing 
the matrix with artificial ratings, prior to building the CF model. Ten different ma-
chine learning models were evaluated for the data imputing task, including an ensem-
ble classifier (a fusion of several models). In two different experiments the ensemble 
approach provided lower MAE (mean absolute error). Note that this ensemble  
approach is a sort of hybridization method. 



 Improving Simple Collaborative Filtering Models Using Ensemble Methods 3 

 

The framework presented in [10] describes three matrix factorization techniques, 
different in their parameters and constraints solving the matrix formation optimization 
problem. The best results (minimum RMSE – root mean square error) were achieved 
by an ensemble model which was constructed as a simple average of the three matrix 
factorization models. 

Recommendations of several k-NN models are combined in [11] to improve MAE. 
The suggested model was a fusion between the User-Based CF approach and Item-
Based CF approach. In addition the paper suggests lazy Bagging learning approach 
for computing the user-user, or item-item similarities.  

In [12] a modified version of the AdaBoost.RT ensemble regressor (AdaBoost [13] 
variant designed for regression tasks) was shown to improve the RMSE measure of a 
neighborhood matrix factorization model. The authors demonstrate that adding more 
regressors to the ensemble reduces the RMSE (the best results were achieved with 10 
models in the ensemble). 

A heterogeneous ensemble model which blends five state-of-the-art CF methods 
was proposed in [14]. The hybrid model was superior to each of the base models. The 
parameters of the base methods were chosen manually. 

The main contribution of this paper is a systematic framework for applying ensem-
ble methods to CF methods. We employ automatic methods for generating an ensem-
ble of collaborative filtering models based on a single collaborative filtering algorithm 
(homogeneous ensemble). We demonstrate the effectiveness of this framework by 
applying several ensemble methods to various base CF methods. In particular, we 
show that the performance of an ensemble of simple (weak) CF models such as k-NN 
is competitive compared with a single strong CF model (such as matrix factorization) 
while requiring an order of magnitude less computational cost. 

3 Ensemble Framework  

The proposed framework consists of two main components: (a) the ensemble method; 
and (b) the base CF algorithm. We investigate four common ensemble methods: Bag-
ging, Boosting (a variant of AdaBoost), Fusion and Randomness Injection. These 
methods were chosen due to their improved accuracy when applied to classification 
problems, and the diversity in their mechanisms.  

The Bagging and AdaBoost ensembles require the base algorithm to handle data-
sets in which samples may appear several times, or datasets where weights are as-
signed to the samples (equivalent conditions). Most of the base CF algorithms assume 
that each rating appears only once, and that all ratings have the same weight. In order 
to enable application of Bagging and Boosting, we modify the base CF algorithms to 
handle recurring and weighted samples. We evaluate four different base (modified) 
CF algorithms: k-NN User-User Similarity; k-NN Item-Item Similarity; Matrix Facto-
rization (three variants of this algorithm) and Factorized Neighborhood. The first 
three algorithms are simpler, having a relatively low accuracy and rapid training time, 
while the last two are more complex, having better performance and higher training 
cost. 
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4 Ensemble Methods For CF 

4.1 Bagging 

The Bagging approach (Fig.1) [15] generates k different bootstrap samples (with re-
placement) of the original dataset where each sample is used to construct a different 
CF prediction model. Each bootstrap sample (line 2) is in the size of the original rat-
ing data set. The base prediction algorithm is applied to each bootstrap sample (line 3) 
producing k different prediction models. The ensemble model is a simple average 
over all the base ones (line 5). 

 
 

Fig. 1. Bagging algorithm for CF 

4.2 Boosting 

AdaBoost [15] is perhaps one of the most popular boosting algorithms in machine 
learning. In this approach, weights are assigned to each rating tuple, while an iterative 
process constructs a series of K models. After model Mi is learned, the weights are 
updated to allow the subsequent model, Mi+1, focus on the tuples that were poorly 
predicted by Mi. The ensemble model combines the predictions of each individual 
model via a weighted average according the accuracy of each model.  

In this work we evaluated several variants of the AdaBoost.RT [16] algorithm. Ini-
tial experiments with the original algorithm resulted with poor accuracy models; for 
all evaluated configurations, the ensemble model either had a negligible accuracy 
improvement or even an overall accuracy decrease compared to the original base 
model; Thus, we replaced the original relative error function with a pure absolute one 
as presented in Fig.2 (line 6 in the pseudo code). This modification resulted with im-
provement of the original algorithm. As suggested in the original work, we initialize δ 
the demarcating threshold criteria to be the AE (the model error) of the original data-
set. During the calibration process of the algorithm we evaluated different values for 

Input: 
• T – Training dataset of ratings <U,I,R> 
• K – ensemble size. 
• BaseCF– the Base CF prediction algorithm. 
Output: Bagging ensemble 
Method: 
1. for i= 1 to K do: 
2. Create a random bootstrap sample Ti, by sampling T with replacemen 
3. Apply the BaseCF to Ti and construct Mi. 
4. end for 

The prediction rule of the model is:

 
=

K
M

uui Krr i

i

^ /
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"n" (line 8 in the pseudo code), controlling the distribution function. The best results 
were achieved when we set n=1. We noticed that both the original and modified algo-
rithms were highly unstable with n=2 or 3, as the accuracy of the final ensemble  
model decreased substantially.         

 

Fig. 2. AdaBoost.RT algorithm for CF 

4.3 Fusion 

A straightforward way to construct an ensemble is to take a specific prediction algo-
rithm, and use it several times on the same dataset, but each time with different initial 
parameters [17]. This process constructs different models, which can later be com-
bined together by e.g. averaging. For the k-NN algorithms, we applied the following 
three fusion schemas:  

1. Fusion by similarity metric - we combined the predictions of a two k-NN with dif-
ferent similarity measures (Pearson and Cosine.)   

Input: 
• T – Training dataset of ratings <U,I,R> 
• K – the ensemble size. 
• BaseCF– the Base CF prediction algorithm  
• δ – Threshold (0 <δ<the rating score range) for demarcating correct and 

incorrect predictions 
Output: AdaBoost.RT model 
Method: 

1. Assign iteration number t=1 
2. Assign initial distribution for each tuple in R:  

Dt(rui) = 1/|R| 
3. while  t ≤ K  Do 
4. Apply BaseCF to T with distribution Dt, and construct the model Mt. 
5. for each rating rui∈  R 
6. calculate ||)( ^

ui
Mt

uiuit rrrAE −=  

7. calculate error rate of iteration t:  


>

=
δ

ε
)(:

)(
uit rAEui

uitt rD
 

8. Set βt = εt
n 

9. Update distribution Dt+1 as:        //Zt = normalization factor             
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10. Set t= t+1 
11. end while 

The prediction rule of the model is: 
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2. Fusion by CF perspective - we combined the predictions of the User-User k-NN 
model, and the Item-Item k-NN model.  

3. k-NN Fusion by CF perspective & similarity metric -  combination of the two pre-
vious fusion schemes (total of four models in the ensemble). 

For matrix factorization, we applied fusion to models which were constructed using 
different vector sizes of the latent factors. 

4.4 Randomness Injection 

All ensemble methods described so far in this section are generic in the sense that 
they are not limited to a specific CF prediction algorithm. Thus one of their parame-
ters is BaseCF- the base CF prediction algorithm, which is used to construct the base 
models in the ensemble. 

A different approach to create an ensemble is to take a base algorithm and modify 
it such that it will create various sub models and combine their results. A popular way 
to achieve this is by introducing randomness to the basic learning schema. By doing 
so, it is possible to run the algorithm several times, and receive a different model each 
time. These models can then be joined to provide a combined prediction. In this work 
the randomness to the CF algorithms was injected as follows: 

Random k-NN - Instead of selecting the top k nearest neighbors (users or items) for 
the prediction rule, we randomly select any k users/items from the top 2*k nearest 
neighbors. We can repeat this process K times (the ensemble size) to get K different 
predictions, and then use a simple average on them for the final one. 

The MF algorithms are naturally randomized, since in the initialization process of 
the learning phase, we assign small random numbers to the latent factors. If we simp-
ly repeat this process K times (the ensemble size), each time with random initial val-
ues, we will receive K different MF models. These models can then be combined into 
an ensemble by a simple average. 

5 Modified CF Algorithms 

Some ensemble methods require that the base prediction algorithm can handle data-
sets with reoccurring or weighted samples. Accordingly, we had to modify CF algo-
rithms which assume that each rating appears once, and that all ratings weights are 
equal. The first step in our modification was to update the original CF prediction 
problem from Section 2, by adding a new element W to the problem formalization. W 
is a vector of weights whose size is equal to the number of ratings, where wu,i indi-
cates the relative distribution of ru,i. It is important to notice that when all weights are 
equal, all modified algorithms coincide with the original ones. 

5.1 Modified k-NN Algorithms 

The main modification in these algorithms is to include the rating's weights into the 
similarity measures. For the user-user k-NN prediction, we suggest using the modified 
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Pearson correlation coefficient, and the modified cosine-based similarity measures as 
described in Eqs.1 and 2 respectively, where S(u,v) is the set of items that both users 
u and v rated, ru is the weighted average rating of user u, and wuvj is the maximum 
between wuj and wvj. We use the same modified measures for item-item similarity, 
updating the required indices.   
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5.2 Modified MF Algorithms 

In this work we modified the ISMF, RISMF and BRISMF algorithms from [5] to 
handle weighted datasets. The modified algorithm continues to the minimize SSE 
(Sum of Square Errors), while applying new gradient steps as presented in Eq.3, tak-
ing into consideration the associated weight for each rating. 

 p'uk = puk + η · wui · (eui·qki-  λ·puk) (3) 

 q'ki = qki + η · wui · (eui·puk-  λ·qki) 

In a similar way, we modify the Factorized Neighborhood Model (FNM) [7] to handle 
weighted datasets. We chose this model due to the high accuracy of its predications. 
The new gradient steps are presented in Eq. 4. 
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6 Evaluation 

6.1 Experimental Setup 

The evaluation of the algorithms described in sections 4 and 5 was mainly based on the 
100K MovieLens dataset. We used RMSE for measuring accuracy over 5 different ran-
dom 80:20 on the dataset. We compared the following configurations: all k-NN models 
were evaluated by applying the modified Pearson and Cosine similarity measures and 3 k-
NN sizes (5, 10, 20). The three matrix factorization algorithms from section 5.2, were 
evaluated using different sizes of latent factors (3, 4, 5, 10, 20, 30, 40, 50); The Factorized 
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Neighborhood Mode algorithm (FNM) was evaluated using different latent factor sizes: 3, 
4, 5, 10, 20 and 30, all other parameters of the MF algorithms were consistent with the 
original work. For each configuration we evaluated its original RMSE (baseline) without 
any ensemble enhancement. We apply all ensemble methods from Section 4 to each con-
figuration with different ensemble sizes and compare the results to the baseline: The en-
semble size of Bagging ranged from 5 to 20  for the k-NN algorithms, and from 5 to 50 
for the MF algorithms; The ensemble size of AdaBoost.RT ranged from 1 to 10; The en-
semble size of Fusion was either 2 or 4 for the k-NN algorithm, and ranged between 5 and 
10 for the MF algorithms; Finally, the ensemble size of Randomness Injection was set 
from 1 to 10. We now report various results and insights from these experiments. 

6.2 Accuracy Results 

Due to space restrictions, we are unable to report all possible RMSE results. We 
therefore limit Table 1 to the best configuration of each method. For example, from 
all k-NN User-User ensemble configurations using Bagging, the ensemble over k=20 
produced the best results and is hence reported in the table. 

We organized the base CF model according to their relative "strength", where sim-
ple/less accurate models appear on the left, and more advanced/complex/accurate 
appear on the right. The final row of the table indicates the improvement percentages 
of the best ensemble model compared to the baseline model. 

Table 1. ML (100K ratings) Accuracy Results (RMSE)  

CF 

Ensemble 
k-NN-User k-NN-Item ISMF RISMF BRISMF FNM 

Baseline 0.9535 0.9526 0.9434 0.9407 0.9268 0.9231 

Bagging 0.9495 (20) 0.9464 (20) 0.9173 (50) 0.9152 (50) 0.9170 (50) 0.9333 

AdaBoost.RT 0.9410 (10) 0.9459 (10) 0.9397 (10) 0.9415 0.9332 0.9367 

Fusion 0.9383 (4) 0.9383S (4) 0.9411 (10) 0.9383 (10) 0.9241 (10) 0.9158 (10) 

Random 0.9462 (10) 0.9437 (10) 0.9407 (10) 0.9381 (10) 0.9237 (10) 0.9153 (10) 

Improvement 1.57% 1.47% 2.76% 2.66% 0.97% 0.87% 

We use the following notations in the table: ensemble enhancements which im-
proved with statistical significance the RMSE measure over the baseline accuracy are 
presented with the ensemble size (in parentheses). The best model in each column is 
displayed in bold-face font. Ensemble models of relatively weak algorithms which 
improve the RMSE to a level of more advanced models are displayed in italic font. 
We check for statistical significance using One-Way ANOVA with repeated measures 
(applying the Greenhouse-Geisser test) with confidence level α= 0.05, followed by a 
simple paired t-test, with confidence level α = 0.05.  

Our results indicate the following: We were able to significantly improve the  
baseline results of every base CF model type in our work, by at least two different 
ensemble approaches; The improvement level was between 0.87% and 2.76%. These 
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improvements may seem modest, but lowering the RMSE is a difficult problem, and 
every reduction in RMSE is difficult to achieve. The improvement level depends on 
the base CF models - more complex models are more difficult to improve. This agrees 
with the idea that ensemble should be applied to boost the performance of weak CF 
models, not to improve complex models. The Fusion and Random Injection ensemble 
methods were able to improve the accuracy of all base CF models; Bagging failed to 
improve FNM, and AdaBoost failed to improve RISMF, BRISMF and FNM, howev-
er, these ensemble approaches may achieve better results than other ensembles, when 
applied to other base CF algorithms. The performances of the suggested boosting 
approaches on the matrix factorization models require exploring additional boosting 
methods such as the Stochastic Gradient Boosting [18] or designing special ones for 
this task. In the spirit of the "No Free Lunch" theorem, none of the evaluated ensem-
ble method was optimal for all given scenarios. Consequently, one should look for the 
(base model, ensemble) pair that achieves the best results for the dataset at hand. 

6.3 The Effect of the Ensemble Size 

Table 1 show that if the ensemble method improves the accuracy of the basic model, 
then the ensemble model that achieved the best result is the one with the highest num-
ber of members. Consequently, the strategy in this case is to use as many ensemble 
members as possible provided that the improvement is significant, and feasible with 
the amount of computation resources. Fig.3 demonstrates this idea by using Random-
ness injection on FNM. Adding more members to the ensemble may be practical, as 
the complexity of all the ensemble methods grows linearly in the number of ensemble 
members. Fig.3a also demonstrates that the accuracy improves with the ensemble 
sizes , the more members of the ensemble, the higher the accuracy, up to a certain 
limit, after which the improvement is marginal.(e.g.: adding the first member to the 
ensemble improved the accuracy by 0.43%, while the last member contributed only 
0.02% improvement). This observation was stable in all the experiments of our stu-
died ensemble methods, leading us to define the maximum ensemble sizes as  
described in section 6.1, as in all evaluated models the last ensemble member contri-
buted up to 0.07% RMSE improvement which is considered insignificant.  

 

Fig. 3. The effect of the ensemble size in Random FNM 
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6.4 Computational Cost and Accuracy Tradeoff 

As described in sub-section 6.2 in several scenarios an ensemble of relatively weak 
models achieved better accuracy than a single stronger model. Fig.4 present the 
RMSE obtained by various methods as function of the computation cost (training time 
- presented in log scale). The graph shows the following results: An ensemble of the 
k-NN-User method achieves competitive performance with two MF methods (ISMF 
and RISMF) at an order of magnitude less computational cost (4 seconds instead of 
24-26). An ensemble of MF methods (ISMF and RSIMF) achieves a competitive 
performance with a BRISMF method at a much lower computational cost (170 
seconds instead of 490).  

 

Fig. 4. Computational cost VS. RMSE 

6.5 Additional Accuracy Results 

We now present results for the larger MovieLens dataset with 1 million ratings.  
Due to time limitations it was not feasible to test all methods. Therefore, for each  
of base CF models, we evaluated only the two ensemble models which produced  
the best results on the MovieLens 100K dataset. Table 2 summarizes the RMSE  
results of the experiments with the same notations as in the previous table. We applied 
the same configurations as described in sub-section 6.2 except for the maximum  
ensemble size that was set to 30 in the Bagging experiments with MF algorithms.  
The accuracy results in this experiment are consistent with the ones in previous  
sections. 
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Table 2. ML (1M ratings) Accuracy Results (RMSE) 

BaseCF  Ensemble 

Model 

RMSE-MLB 

(Ensemble Size)  

 BaseCF  Ensemble 

Model 

RMSE-MLB 

(Ensemble Size)  

KNN-User Base (None) 0.9302 RISMF Base (None) 0.8712  

Fusion  0.8972 (4) Bagging 0.8480 (30)  

AdaBoost.RT 0.9116 (10)  Random  0.8673 (10)  

KNN-Item Base (None) 0.9029 BRISMF Base (None) 0.8620 

Fusion  0.8972 (4)  Bagging 0.8519 (30)  

Random 0.8954 (10)  Random 0.8570 (10)  

ISMF Base (None) 0.8812  FNM Base (None) 0.8654 

Bagging 0.8523 (30)  Fusion 0.8469 (10)  

Random  0.8759 (10)  Random 0.8465 (10)  

7 Conclusions 

In this work we presented a novel systematic framework for applying ensemble me-
thods to collaborative filtering models. Our framework used four popular ensemble 
techniques (Bagging, Boosting, Fusion and Randomness Injection) which were 
adapted to solve the collaborative filtering based rating prediction task. Typical colla-
borative filtering algorithms neither handle datasets with reoccurring samples, nor 
weighted samples. We thus modify the original base collaborative filtering algorithms 
to handle such settings. 

Empirical evaluation shows an RMSE improvement by applying the suggested en-
semble methods to the base CF algorithms. These improvements may increase the 
accuracy of relatively weak models to the level of more advanced ones. We found that 
in most cases it is preferable to add more base models to the ensemble, as we obtain a 
more accurate model compared to the combined model. Since all our ensemble me-
thods have a linear running time and space complexity with respect to the ensemble 
size, it may be feasible to add more models to the ensemble as long as the improve-
ment level is significant. These encouraging results indicate that ensemble methods 
can be used to enhance collaborative filtering algorithms. The boosting approach 
suggested in this paper is preliminary and requires further research.  In the future we 
plan to evaluate our suggestions on other datasets and also on other problems, such as 
the recommendation of items.  

A key issue that needs further investigation is how to find a data-driven criterion 
for choosing the optimal (ensemble, base model) pair for a given dataset. Other issues 
that need to be addressed are: application of other boosting/ensemble methods, and 
evaluation of additional collaborative filtering models. 
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Abstract. Multiple Instance Learning is concerned with learning from
sets (bags) of feature vectors (instances), where the bags are labeled,
but the instances are not. One of the ways to classify bags is using a
(dis)similarity space, where each bag is represented by its dissimilari-
ties to certain prototypes, such as bags or instances from the training
set. The instance-based representation preserves the most information,
but is very high-dimensional, whereas the bag-based representation has
lower dimensionality, but risks throwing away important information. We
show a connection between these representations and propose an alterna-
tive representation based on combining classifiers, which can potentially
combine the advantages of the other methods. The performances of the
ensemble classifiers are disappointing, but require further investigation.
The bag-based representation preserves sufficient information to classify
bags correctly and produces the best results on several datasets.

1 Introduction

Multiple-instance learning (MIL) [8] extends traditional supervised learningmeth-
ods in order to learn from objects that are described by a set (bag) of feature vec-
tors (instances), rather than a single feature vector only. For example, instead of
representing an image or a document by a single feature vector, we could repre-
sent each segment or paragraph by its own feature vector. This is a more flexible
representation, that can potentially preserve more information than if we were to
compress all segments or paragraphs into a single feature vector.

MIL problems are often considered to be two-class problems, i.e., a bag of
instances can belong either to the positive or the negative class. The bag labels
are available, but the labels of the individual instances are not defined. The
standard assumption here is that a bag is positive if and only if at least one
instance inside the bag is positive. For example, an image labeled as “cat” would
have a cat in at least one of its segments, whereas images without this label would
not portray any cats at all. In this setting, it is possible to say that only one
instance (the segment containing the cat) is informative.

It has been argued that there are more general kinds of MIL problems where
the assumption above does not apply [22,5]. For example, for an image of the
category “beach”, it would be difficult to say which part of the image is informa-
tive. We would need to identify several objects (such as water and sand) to say
that it is a beach, so at least a few instances in a positive bag must be informa-
tive. This reasoning can be extended even further to consider cases where simply

Z.-H. Zhou, F. Roli, and J. Kittler (Eds.): MCS 2013, LNCS 7872, pp. 13–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the presence of particular objects is not enough: consider how much of an image
has to be covered by trees for you to call it a forest. Here, a certain fraction of
instances is required for the positive class label[22], and therefore most, or even
all instances can be informative.

One of the ways to classify bags in MIL problems is by representing the bags
in a similarity or dissimilarity space [18]: each bag is then represented by its
dissimilarities to certain prototypes. In our work[21], these prototypes are (a
subset of) bags from the training set. Because a single dissimilarity is defined
between two bags, information provided by the more informative instances in
the bags might be overlooked. In MILES [5], an alternative representation using
all the instances from the training set as the prototypes is used. A 1-norm SVM
is then used to automatically select the most informative dissimilarities (and
therefore instances). More investigation into the instance-based representation
with other base classifiers has been done in [11].

A challenge in both settings is how to define the (dis)similarity measure be-
tween a bag and a prototype. In MILES, the similarity of a bag and a prototype
instance is determined by the minimum distance between the bag’s instances
and the prototype instance. In our work[21,6], we define the dissimilarity of two
bags as the combination (such as minimum, average or maximum) of minimum
instance distances between these bags.

Theway the information fromdifferent instances is combined links the instance-
based and bag-based dissimilarity representations. In the former case, dissimilar-
ities are concatenated, thus extending the dissimilarity representation, whereas
in the latter they are combined into a single number by an operation such as
averaging[17]. We also investigate a third alternative, i.e., combining classifiers
trained on different subsets of dissimilarities. Comparing these representations
can help us gain more insight into the informativeness of bags or instances as
prototypes, and thus improve performances on real-life MIL problems.

2 Dissimilarity Representations

2.1 In Multiple Instance Learning

In Multiple Instance Learning, an object is represented by a bag Bi = {xik|k =
1, ..., ni} ⊂ R

d ofni feature vectors or instances. The training set T = {(Bi, yi)|i =
1, ...N} consists of positive (yi = +1) and negative (yi = −1) bags. The tradi-
tional assumption for MIL is that there are instance labels yik which relate to the
bag labels as follows: a bag is positive if and only if it contains at least one posi-
tive, or concept instance[8]. In this case, it might be worthwhile to search for only
these informative instances. Alternative formulations, where a fraction or even all
instances are considered informative, have also been proposed [10].

We can represent an object, and therefore also a MIL bag Bi, by its dis-
similarities to prototype objects in a representation set R[18]. In our work, R
is taken to be a subset of size M of the training set T of size N (M ≤ N).
Each bag is represented as d(Bi, T ) = [d(Bi, B1), ...d(Bi, BM )]: a vector of M
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dissimilarities. Therefore, each bag is represented by a single feature vector and
the MIL problem can be viewed as a standard supervised learning problem.

MILES [5] considers a different definition of prototypes, using all the instances
in the training set. The motivation is that, with just a few concept instances
per bag, it is better to consider just these informative instances rather than
the bag as a whole. MILES is originally a similarity-based approach, but in its
dissimilarity-based counterpart, each bag would be represented as
d(Bi, T ) = [d(Bi, x1,1), d(Bi, x1,2), ..., d(Bi, x1,n1), ...d(Bi, xM,nM )].

2.2 In Combining

When several dissimilarity representations for the same data are available, it can
be an advantage to combine these sources of information. Assume that we are
given L dissimilarity representations D1, D2, · · · , DL. In [17], three main ways
of combining such representations are outlined:

– Concatenating the representations: Dext = [D1D2 · · ·DL].

– Averaging the representations: Dsum =
∑L

i=1 D
i.

– Training a base classifier on each Di and combining the L outputs using a
fixed rule (such as averaging) or a trained combiner [14,9].

3 Approach

In previous work[21,6], we have focused on defining d(Bi, Bj) through the pair-
wise instance dissimilarities [d(xik ,xjl)]ni×nj . We use the squared Euclidean
distance for the instance dissimilarity, but other choices are also possible. In all
the dissimilarities considered, the first step is to find, for each instance in Bi,
the distance to its closest instance in Bj . Using these minimum instance dis-
tances, we can define many bag dissimilarities, for instance, by averaging these
minimum distances. Assume that we are only given one prototype Bj . With the
bag dissimilarity, the bag representation of Bi using prototype Bj would be:

Dbag
Bj

(Bi) =
1

ni

ni∑
k=1

min
l

d(xik,xjl) (1)

In MILES, the similarity between a bag and a prototype instance is defined as
the maximum similarity between the bag’s instances and the prototype instance:

s(Bi, x) = maxk exp (− d(xik,x)
σ2 ) . In terms of distances this corresponds to the

minimum instance distance between the bag and the prototype. Therefore, the
instance representation of Bi using the instances of Bj would be:

Dinst
Bj

(Bi) = [min
l

d(xi1,xjl),min
l

d(xi2,xjl), · · · ,min
l

d(xini ,xjl)] (2)

It is not difficult to now see that Dbag
Bj

(Bi) =
1
ni

∑ni

k=1 D
inst
Bj

(Bi). Another way

to see this is that with Dinst, we can potentially give every prototype instance a
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different weight, whereas in Dbag, all instances from the same bag get the same
weight.

Note that averaging as in (1) is not the only way to condense several dis-
similarities into a single value: for instance, minimum or maximum operations
could also achieve the same goal. However, these would essentially select a single
instance per bag, rather than combining the information from all instances, as
in (2). Therefore, we chose averaging as a combiner.

Previous results[21,5] suggest that both the bag-based and instance-based rep-
resentations are (at least partly) informative: there are at least some prototypes
(bags or instances) that distinguish between positive and negative bags in the
dissimilarity space. We believe that comparing Dbag and Dinst directly, we can
gain more insight into the structure of Multiple Instance Learning problems: how
many instances are informative and what is a good (bag or instance) prototype.

Furthermore, we introduce two other representations that can help us in this
understanding. In the “bag set” representation DBS , a separate classifier is built
on the instances of each prototype, to formM classifiers in total. In the “random
set” representation DRS , random sets of instances are used to build M separate
classifiers. Each set of classifiers (built on bag sets or on random sets) forms an
ensemble, where the individual classifier decisions are combined.

A diagram clarifying all the representations is shown in Fig.1. In terms of
the initial dissimilarity matrix, Dinst, DBS and DRS are identical, but Dinst is
used as a single input to a single classifier, whereas DBS and DRS have several
feature subsets and classifiers associated with them. In fact, DRS is just Dinst

used together with the random subspace method [12].
These representations are also interesting in terms of speed and information

trade-off. We assume that the data is available offline, so that all dissimilarity
matrices can be computed beforehand. Dinst contains all instance information,
but is very high-dimensional, which can severely slow down and/or deteriorate

Fig. 1. Different ways for constructing dissimilarity representations of bag B using two
prototype bags (green with 3 instances and blue with 2 instances). Dbag consists of
just two dissimilarities (one for each bag), whereas Dinst consists of dissimilarities to
all 5 instances. In DBS , a separate classifier is built on each prototype’s instance dis-
similarities. In DRS , classifiers are built on random selections of all available instances.
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the performance of many classifiers. Dbag might lose some information, but is a
more compact representation, reducing training time and the possibility of over-
fitting. The ensemblesDRS andDBS have access to all the information, although
the information is now split up into subspaces. Although several classifiers have
to be trained, each classifier can be very fast due to the reduced dimensionality,
and the greater choice of classifiers that could be applied.

Alternatively, dimensionality reduction or rather, prototype selection tech-
niques could be applied to Dbag or Dinst directly. This adds several more vari-
ables to the problem under investigation: which method for selection is used, and
how many prototypes are selected. We do not pursue this line of investigation
further, but we refer the reader to [19] for an overview of possible techniques.

4 Experiments

4.1 Artificial Data

Fig.2 shows two artificial datasets that help to gain some more understanding
about the different representations. The first dataset originates from [16] and
shows a classical concept in the middle of the plot. We call this the “Concept”
dataset. A positive bag here consists of one such concept instance, the other ni−1
instances are from the background distribution, whereas negative bags have ni

instances from the background. In the second datasets, instances of positive and
negative bags are generated by two Gaussians with the same mean, but different
variance. We call this the “Distribution” dataset.

The Concept dataset has N bags with 25 instances each. Due to the dense
concept, distances of the concept instances are informative: they are lower for
positive bags, than for negative bags. In this case, a sparse classifier used on
the N × 25N matrix Dinst should be able to find these informative distances.
Averaging over the distances as in the N×N matrixDbag, however, would dilute
this important information. Indeed, from the learning curve we can see that Dbag

performs very poorly in this case.
The Distribution dataset also has bags with 25 instances each. Here, the bag

as a whole is a more discriminative source of information than a particular in-
stance, because the distributions overlap. Dinst and Dbag would both contain
the necessary information to classify the bag correctly, so the extra flexibility of
Dinst would only result in more computation, not better classifiers. The learn-
ing curve also demonstrates that Dbag provides enough information for good
performance.

4.2 Real-Life MIL Data

We test all representations on several MIL datasets. Because of the number of
different experiments and the running times using the instance-based represen-
tation Dinst and, we limit ourselves to a few MIL datasets with a reasonable
total number of instances. A list is shown in Table 1.
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Fig. 2. Artificial datasets and corresponding learning curves. In the datasets, + and
© are instances of positive and negative bags respectively.

The Musk datasets[8] are molecule activity prediction problems, where bags
are molecules and instances are different conformers (thus with different activ-
ity) of these molecules. Fox, Tiger and Elephant are image datasets, where the
bags are images and instances are segments (of which at least some segments
contain foxes, tigers or elephants). These datasets are strongly expected to have
a concept, and methods that explicitly search for concept instances, have been
quite successful.

In Newsgroups[24] and Web Recommendation [23], both text categorization
datasets, the situation might be different. In Newsgroups, a bag is a collection of
posts where a post is represented by counts of frequently-occurring words. At the
first glance, it seems that this is a typical Concept-type dataset: a positive bag
for the category “politics” contains 3% of posts about politics, whereas negative
bags contain only posts about other topics. What is different here, is that posts
about politics may have nothing in common and thus be very far apart in the
feature space, unlike the concept instances in the artificial Concept dataset.

In the bird song datasets [3], a bag is a audio fragment consisting of bird songs
of different species. Whenever a particular species is heard in the fragment,
the bag is positive for that category. It could be expected that birds of the
same species have similar songs, therefore there should be different concepts for
different bird species. It is also possible that some species are heard together
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Table 1. MIL Datasets. Number of positive and negative bags as well as the total,
minimum, average and maximum number of instances per bag are specified.

Dataset +bags -bags total min mean max

Musk 1 [8] 47 45 476 2 5 40
Musk 2 [8] 39 63 6598 1 65 1044
Fox [1] 100 100 1302 2 7 13
Tiger[1] 100 100 1220 1 6 13
Elephant [1] 100 100 1391 2 7 13
Alt.atheism [24] 50 50 5443 22 54 76
Rec.motorcycles [24] 50 50 4730 22 47 73
Politics.mideast [24] 50 50 3376 15 34 55
Web recommendation 1 [23] 21 92 2212 4 30 131
Web recommendation 4 [23] 88 25 2291 4 31 200
Web recommendation 7 [23] 54 59 2400 4 32 200
Brown Creeper [3] 197 351 10232 2 19 43
Winter Wren [3] 109 439 10232 2 19 43
Pacific slope Flycatcher [3] 165 383 10232 2 19 43

more often.1 In this case, instances which are negative for one species, could still
be helpful in classifying fragments as containing that species or not.

We want to compare different data representations using the same base clas-
sifier, therefore, this classifier should be applicable to both large (Dinst) and
small (DBS , as some bags may contain just 2 or 3 instances) dimensionalities.
We use the 1-norm SVM (or Liknon classifier [2]) and the Winnow classifier [15]
as classifiers which are able to select a few informative dissimilarities. Further-
more, we use the logistic classifier and the support vector classifier LIBSVM [4]
with a linear kernel to compare the results when no such explicit selection is
taking place.

Each dataset and classifier combination is tested using the four representations
Dbag, Dinst, DBS and DRS . For DRS we let the number of classifiers is equal to
the number of bags (just as in DBS), the number of instances for each subspace
is set to the average number of instances per bag. Both ensembles are combined
by averaging the posterior probabilities of the individual classifiers. These set-
tings are chosen as reasonable default settings for a fair comparison. We use the
area under the receiver-operating-characteristic (AUC) as the evaluation mea-
sure, because this is found to be more discrimnative between classifiers[13] and
more suitable for MIL problems[20]. Note that many other MIL papers use the
accuracy as the evaluation measure and the results cannot be compared directly.

5 Results and Discussion

The results are shown in Tables 2 and 3. Overall, on these datasetsDbag performs
the best, followed by Dinst and DRS , and DBS in the last place. To ease the

1 We have verified this, and this is indeed true for some species, e.g. the labels of
Winter Wren and Pacific-slope Flycatcher have a correlation of 0.63.
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Table 2. AUC and standard error (×100) of Winnow and Liknon classifiers, 5 × 10
cross-validation. Bold indicates results not significantly worse than best per dataset.

Dataset Dbag Dinst DBS DRS

W
in
n
o
w

Musk1 89.6 (1.6) 90.2 (1.4) 83.6 (1.8) 83.1 (1.9)
Musk2 83.6 (1.9) 84.0 (2.4) 85.6 (2.2) 88.4 (2.0)
Fox 62.2 (1.8) 65.7 (1.7) 51.4 (1.9) 54.3 (1.8)
Tiger 83.0 (1.6) 85.8 (1.3) 76.2 (2.0) 80.7 (1.9)
Elephant 90.1 (1.0) 89.2 (1.0) 80.3 (1.5) 84.3 (1.4)
alt.atheism 70.0 (2.7) 54.0 (2.7) 57.3 (2.8) 55.0 (2.8)
rec.motorcycles 73.7 (2.8) 54.2 (2.6) 54.8 (2.3) 54.5 (2.8)
pol.mideast 70.8 (2.4) 63.4 (2.3) 61.3 (2.4) 59.7 (2.2)
Web1 79.9 (2.8) 80.7 (2.8) 75.9 (3.1) 87.3 (2.5)
Web4 76.4 (2.7) 62.7 (3.0) 70.6 (3.3) 70.6 (2.9)
Web7 67.8 (2.5) 74.6 (2.7) 66.7 (2.5) 71.7 (2.7)
Brown Creeper 67.9 (1.2) 72.6 (1.4) 85.7 (0.7) 85.7 (0.7)
Winter Wren 94.0 (1.0) 93.7 (1.1) 90.7 (1.5) 86.0 (1.8)
PS Flycatcher 79.5 (1.5) 80.9 (1.1) 86.1 (0.9) 84.5 (1.1)

L
ik
n
o
n

Musk1 90.9 (1.4) 93.8 (1.0) 76.0 (2.4) 79.8 (2.3)
Musk2 91.1 (1.8) 90.4 (1.8) 84.6 (2.1) 90.3 (1.6)
Fox 67.8 (1.7) 66.4 (1.6) 56.4 (2.0) 61.8 (2.1)
Tiger 86.7 (1.5) 87.9 (1.3) 83.4 (1.5) 84.9 (1.5)
Elephant 90.9 (1.0) 90.3 (0.9) 85.2 (1.5) 88.1 (1.3)
alt.atheism 65.5 (2.5) 56.1 (2.8) 59.0 (2.5) 59.2 (2.6)
rec.motorcycles 72.6 (2.5) 55.0 (2.7) 51.3 (2.4) 50.0 (2.5)
pol.mideast 69.1 (2.6) 63.8 (2.5) 50.4 (2.4) 50.2 (2.3)
Web1 82.1 (2.6) 77.7 (2.6) 81.9 (2.7) 88.7 (2.0)
Web4 76.7 (3.1) 55.0 (3.3) 69.8 (2.9) 72.5 (2.8)
Web7 69.5 (2.9) 59.8 (3.2) 62.5 (2.6) 70.4 (2.9)
Brown Creeper 87.1 (0.6) 87.6 (0.6) 85.9 (0.6) 86.0 (0.6)
Winter Wren 96.8 (0.4) 96.8 (0.5) 97.2 (0.3) 97.0 (0.3)
PS Flycatcher 89.5 (0.6) 89.2 (0.6) 86.4 (0.7) 84.6 (0.7)

comparison, we performed a Friedman rank test[7] on each classifier. The ranks
are shown in Table 4. Although there are not always significant differences, the
ordering of the ranks follows the same pattern in each case.

The fact that Dbag and Dinst perform comparably (except Newsgroups, as
will be explained later) suggests that Dbag is able to capture the important
information that Dinst contains. One conclusion is that real life datasets are less
like the Concept, and more like the Distribution dataset from Fig.2. In other
words, even the non-concept instances in positive bags may be very informative.
Consider images of foxes and tigers. Because foxes and tigers live in a different
habitats, the parts of the images containing trees, sand and so forth can tell us
something about which animal is probably in the image. Or, as in the bird songs
datasets, some birds species can be heard together often.

Although Dinst potentially contains more information than Dbag, there are
few cases where it is a clear winner in terms of performance. It is possible that the
low sample size of these datasets limits the full potential of Dinst: there are just
too many features to deal with. It must be noted that Dinst is not completely the
same as MILES[5] because there, an exponential similarity function is used which
gives more importance to low distances. The effects of such a transformation (on
all studied representations) are left for further investigation.

One surprising result is that for Newsgroups, onlyDbag is able to produce some
reasonable performances. One of the reasons is that positive and negative bags
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Table 3. AUC and standard error (×100) of support vector and logistic classifiers,
5× 10 cross-validation. Bold indicates not significantly worse than best per dataset.

Dataset Dbag Dinst DBS DRS

L
IB

S
V
M

Musk1 93.3 (1.2) 93.7 (1.4) 76.5 (2.4) 80.0 (2.3)
Musk2 93.4 (1.4) 93.7 (1.3) 86.5 (2.0) 90.6 (1.7)
Fox 67.9 (1.5) 67.9 (1.5) 52.9 (2.0) 60.6 (2.0)
Tiger 88.1 (1.5) 86.5 (1.4) 83.2 (1.5) 84.8 (1.5)
Elephant 91.3 (0.8) 89.3 (1.0) 85.6 (1.6) 87.4 (1.3)
alt.atheism 70.7 (2.5) 48.8 (2.7) 49.2 (2.4) 51.1 (2.8)
rec.motorcycles 71.4 (2.4) 42.9 (2.7) 39.0 (2.2) 40.4 (2.5)
pol.mideast 69.4 (2.3) 50.6 (3.0) 52.4 (2.3) 51.8 (2.5)
Web1 86.1 (2.4) 80.2 (2.7) 83.4 (2.1) 89.6 (1.8)
Web4 75.1 (2.8) 60.4 (3.2) 70.7 (3.2) 73.7 (2.7)
Web7 71.0 (2.8) 68.7 (3.0) 58.6 (2.8) 71.6 (2.8)
Brown Creeper 88.0 (0.6) 87.6 (0.6) 84.6 (0.7) 84.2 (0.7)
Winter Wren 97.2 (0.4) 95.7 (0.4) 96.5 (0.4) 96.2 (0.4)
PS Flycatcher 89.3 (0.6) 89.0 (0.7) 86.6 (0.7) 84.9 (0.7)

L
o
g
is
ti
c

Musk1 92.3 (1.4) 91.2 (1.6) 80.6 (2.4) 83.8 (2.1)
Musk2 91.4 (1.3) 86.2 (1.8) 91.5 (1.4) 93.7 (1.1)
Fox 67.1 (1.4) 66.4 (1.3) 60.4 (1.9) 63.5 (1.8)
Tiger 84.4 (1.5) 86.3 (1.3) 85.0 (1.4) 85.4 (1.5)
Elephant 89.2 (0.9) 88.8 (1.0) 86.6 (1.4) 88.8 (1.2)
alt.atheism 71.3 (2.6) 55.7 (2.6) 54.2 (2.7) 54.3 (2.7)
rec.motorcycles 75.3 (2.5) 56.2 (2.6) 52.4 (2.6) 50.7 (2.7)
pol.mideast 69.9 (2.3) 61.1 (2.3) 54.1 (2.4) 55.0 (2.2)
Web1 87.1 (2.2) 79.0 (2.9) 78.0 (2.7) 80.4 (2.6)
Web4 79.4 (2.9) 64.3 (3.1) 73.0 (3.3) 73.2 (3.6)
Web7 69.6 (2.9) 72.7 (2.8) 69.3 (3.1) 75.8 (2.9)
Brown Creeper 75.5 (1.0) 80.2 (0.8) 86.9 (0.6) 86.6 (0.6)
Winter Wren 91.5 (0.7) 94.8 (0.4) 93.3 (0.4) 91.9 (0.5)
PS Flycatcher 75.5 (0.9) 80.4 (0.8) 84.8 (0.7) 84.4 (0.7)

contain many instances that are very close together: similar to the background
instances in the Concept dataset in Fig.2. However, a few true positive instances
are very far away from all other instances, and from each other. There are so
few of them, that even the sparse classifiers using Dinst are not able to select
only the correct ones. However, they are so far away from everything, that they
can still sufficiently influence the dissimilarities in Dbag. The asymmetry of Dbag

also plays a role here; by transposing Dbag, much better results can be achieved
[6]. However, this is not as straightforward for Dinst, so we did not pursue this
possibility here.

It is interesting thatDRS often performs better thanDBS . To find out why, we
examined the performances of the individual classifiers of both ensembles. Some
typical results are shown in Fig.3. It is, indeed, often the case that DRS produces
more accurate classifiers. One reason for this could be the dimensionalities per
classifier: DBS can often have classifiers built on just 2 or 3 dimensional spaces
(especially for Musk, Fox, Tiger and Elephant). However, sometimes DBS and
DRS have classifiers with similar performances, but the ensemble using DRS

is still much better. This suggests that classifiers built on each bag separately
provide more correlated information, than classifiers built on random selections
of instances.

A way to improve the performance of an ensemble is to use a trained combiner
which would learn which individual classifier outputs most often correspond with
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Table 4. Ranks of Friedman test (best possible is 1, worst is 4). The null hypothesis H0

is that there are no significant differences between ranks. H0 is rejected (for significance
of 5%) when the F -value of the ranks is larger than the critical value (CV). Significant
differences are those larger than the critical difference (CD).

Classifier Dbag Dinst DBS DRS F CV Reject H0? CD

Winnow 2.14 2.36 2.85 2.64 0.82 2.85 No -
Liknon 1.50 2.50 3.29 2.71 6.48 2.85 Yes 1.25
LIBSVM 1.29 2.64 3.36 2.71 10.86 2.85 Yes 1.25
Logistic 2.14 2.36 3.07 2.43 1.38 2.85 No -
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Fig. 3. Histograms of performances of individual base classifiers and the final ensembles
of DBS and DRS for the Fox and Web Recommendation 1 datasets

the true labels of the training set. This could filter out the less accurate clas-
sifiers from the ensemble, increasing the overall performance. Looking at Fig.3,
we would expect such performance improvements to be possible, especially for
DBS . Following [9], we have performed a few experiments with the nearest mean
combiner, both on DBS and DRS . The results, however, were quite disappoint-
ing: for both ensembles, only minor improvements, if any, could be achieved. A
possible cause for this is that nearest mean combiner was trained on normalized
posterior probabilities, while the original classifier outputs might have been more
informative.

We have found that for DBS , there is little relation between the label of the
prototype and the performance of the classifier. This is in line with the idea
that positive and negative bags may not have the same type of background
instances. On the other hand, we have found medium to strong correlations
between dimensionality and the AUC of the individual classifiers. It might be
worth investigating whether this can help us to select more informative proto-
types a priori, before creating the dissimilarity matrix. Furthermore, there might
be room for improvement for DRS . The subspaces are allowed to be larger than
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the average number of instances per bag, because the dissimilarities are sampled
with replacement.

6 Conclusion

We examined several dissimilarity representations for Multiple Instance Learn-
ing. These representations are based on distances of bags to prototype bags or
instances. We investigated how such distances can be combined in order to create
informative dissimilarities, and how this affects the dimensionality of the final
representation. We considered combining such distances by averaging, by con-
catenating or by ensembling subspace classifiers, where each classifier is trained
on a selection of the instance distances.

Averaging instance distances into a bag-based representation reduces the di-
mensionality and performs very well. Although the concatenated, instance-based
representation is potentially the most informative, its rather high dimensionality
might be harmful for performance. Lower dimensionality can also be achieved
by combining subspace classifiers. However, in this case it is more difficult to
achieve good performances because more variables, such as subspace size and
the combining rule, are involved. It remains a question how to create and select
such informative subspaces.

The bag representation produces good results, which means that averaging
does not dilute the information of the individual instances. This suggests that
in practice, most instances in a bag can be informative. In other words, the dis-
tributions of instances from positive and negative bags may be very different in
general, and not only in terms of the presence or absence of a concept. A reason-
able conclusion is that in such cases, it is better to use the bag representation,
which requires less resources but still provides good performances.
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Abstract. Spatially distributed regions may have different influences
that affect the underlying physical processes and make it inappropriate
to directly relocate learned models. We may also be aiming to detect
rare events for which we have examples in some regions, but not oth-
ers. A novel method is presented for combining classifiers trained on
regions with known sensor data and predicting rare events in new re-
gions, specifically the closure of shellfish farms. The proposed similarity
weighted ensemble method demonstrates an average 10 fold improvement
in accuracy over One Class classification and 3 fold improvement over
rules hand-crafted by an expert.

1 Introduction

Environmental and biological monitoring applications often require detection of
previously unseen events; including harmful algal blooms [1], and tsunamis [2].
We may have records of events from some of our monitoring regions, but not
others. Models may not be able to be directly relocated because of differences
in the underlying physical processes at the different locations influenced by fac-
tors such as geography, meteorology, human activity, and land use. Monitoring
shellfish farm contamination is an example of this problem.

Farmed shellfish contaminated with harmful microbes can cause significant
risk to public health. Areas where shellfish are grown in Australia, and many
other parts of the world, are monitored to ensure product does not make it to
market that might cause serious illness or death when consumed. Farmers desire
the shortest possible closure times, as being unable to harvest cost them around
US$5,000 per day and, in some areas, closures may last for months.

Closure rules have been developed by the public health authority based on
the response of thermotolerant coliforms (faecal bacteria) to changes in salinity,
rainfall and river flow. The salinity, rainfall and river flow are then monitored
remotely to ensure they have not exceeded thresholds. A new model is created
for each growing zone because of the effect of geography on the physical processes
as well as differences in distance and availability of sensors.
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of Economic Development, Tourism and the Arts and the CSIRO Food Futures
Flagship.
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The Aquaculture Decision Support (AquaDS) project has been focusing on
developing a real-time decision support system for the health authority to reduce
the dependence on a single expert, and provide nowcast and forecasts of possible
closures over the web to allow farmers to manage proactively. The AquaDS
project is developing data-driven models to predict closures from a database of
manual samples linked to closure dates. The closures, however, are relatively rare
with most growing zones having less than 10% manual samples taken when they
were closed. Although we have demonstrated this problem can be learned with
standard machine learning techniques using class balancing techniques, such as
bagging and boosting [3] there are still many locations where we have insufficient,
or no, examples of closures. Delivering a decision support system that predicts
for only approximately 20% of growing zones will not be satisfactory. There is
also a high probabilty in the future that new growing zones will open and it
would be beneficial to begin providing closure predictions as soon as possible.

This paper investigates exploiting models developed for other locations that
have sufficient positive examples. The hypothesis is that we can utilise each
negative example to determine to what degree we can reuse models from other
locations. We use the example of the shellfish farm contamination problem to
explore this approach.

We are not able to measure coliform levels in real-time for use in the decision
support system, however we do have coliform levels for every manual sample we
use training the classification models. The proposed solution classifies farm clo-
sures with an ensemble of classifiers each weighted by their similarity in response
to thermotolerant coliforms. The similarity weights are derived by creating a re-
gression model for each zone to predict coliforms and calculating the accuracy
of its ability to predict coliforms for each other zone.

2 Related Work

Chigbu et al. [4] developed a system for regulators that integrated rainfall and
streamflow data, from the United States agencies National Oceanic and Atmo-
spheric Administration (NOAA) and the National Weather Service (NWS), and
compared with regulated thresholds to recommend a close/open decision. Their
work did not seek to ingest feedback from decisions, make predictions and/or
address the needs of the farmers themselves.

Kelsey [5] investigated the assumed relationship between rainfall/streamflow
and faecal coliforms. They performed a multiple-parameter regression analysis
over a much wider range of historical environmental and water sampling data
in four US estuaries to identify whether closure decisions would be better based
on other proxies. They point out that “These ... could be used to develop real-
time predictions of bacteria concentration for use in a closure decision system.
Rainfall measurements at gauges or from radar are available in near-real time
through the NOAA NWS, and it may be relatively straightforward to develop
real-time data sources for salinity and water temperature as well.”
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Biological monitoring also has the need to detect rare events or unusual con-
ditions [6] that need to be generalised to different patients with potentially very
different characteristics.

Rare event detection is generally performed using class imbalance techniques
that alter the training set using oversampling of positive examples and/or under-
sampling of negative examples [7]. However, these still require positive examples
to be available.

One class classification [8] provides the ability to learn in the absence of ex-
amples of the target class. A model is created on the negative examples and
outliers are presumed to represent the target class.

Minku and Yao [9] use the output of different software development companies
to predict the productivity of another company using regression trees with an
accuracy weighted majority vote.

Ensemble approaches consistently demonstrate improved performance on clas-
sification tasks [10], but the use of ensembles is less explored on one rare event
problems. Tax et. al. [11] showed an improvement in classifying via a one class
model when an ensemble of One Class classifiers is used. However, these tech-
niques do not allow the reuse of models for which we might have adequate
examples.

3 Expert Closure Rules

As outlined in Section 1, closure rules have been developed by a human expert
that consist of thresholds in salinity, rainfall or river flow that will prompt a
closure. For example, the expert closure rule at Fleurty’s Point is ’salinity < 30’.

The thresholds themselves are developed by graphing the environmental phe-
nomenon (salinity, rainfall or river flow) against the thermotolerant coliform
levels. The expert then determines the point at which the coliform level rises to
unsafe level. The authorities use some base statistics on the number of coliforms
per 100 millilitres; the median must be below 14, and 90% of samples must be
under 21.

Figure 1 demonstrates this method for salinity at Fleurty’s Point. We can
visualise that the percentage of samples with over 21 coliforms per 100ml starts
rising when salinity drops below 31 PSU. The actual salinity threshold is < 30
PSU for this zone. In comparison, Great Swanport West shows risky coliform
levels rising when salinity drops under 25 PSU (Figure 2), which is consistent
with the actual salinity trigger of < 26. Figure 3 shows the same method for river
flow at Great Swanport West. We see the coliform levels rising dramatically when
there is 5 cumecs of river flow, which is consistent with the actual flow threshold
of > 5 cumecs.

The manager performs outlier detection and adjustments based on her ex-
pertise. For example, accounting for sensor drift on various platforms. She also
monitors trends in rainfall, which are not captured by these threshold-based
rules. This creates a system in which human interpretation of the sensor data is
crucial to when the rule is applied in reality, and farms actually closed.
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Fig. 1. Expert decision visualisation for Fleurty’s Point
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Fig. 2. Expert decision visualisation for Great Swanport West

4 Similarity Weighted Ensembles

Due to the lack of positive examples for many locations we have developed an
ensemble method that makes use of locations for which we do have sufficient
examples.

Our previous work, confirmed with the health authority, has shown that the
coliforms themselves are not good direct predictors for closure [3] as the author-
ities want to close farms in anticipation of rises in the harmful bacteria. The
real-time decision support system will want to warn of closures based on the
causes of rainfall and river flow rather than waiting until faecal bacteria is al-
ready high. However, how coliform levels are affected by trends in rainfall and
river flow in the negative example should give us an indication that two zones
are similar, and provide a basis for prediction of the class of interest.

A regression model r is trained for each location to predict the coliform level,
which is a continuous value representing the level of faecal bacteria present per
100 millilitres. The regression model is then evaluated for each of the other
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Fig. 3. Expert decision visualisation for Great Swanport West

locations on a dataset X that is different to the training and final evaluation test
set. Equation 1 shows how a weight w for a classification model c for location
l is derived from the accuracy of the regression model r on location l, where t
represents the target value for each example x. Only negative examples are used
to train the regression model to simulate locations where we only have negative
examples.

wcl = 1−

∑
x∈X

|trx − tlx|

|X | (1)

The weights are then scaled between 0 and 1.
Equation 2 shows how the class probability of an example x is calculated

through the sum of the weighted probabilities from the classifiers from other
locations C. The classifier of the current location l is removed from C. The
approach is further illustrated in Figure 4.

pl(x) =
∑
c∈C

pc(x) · wcl∑
c∈C

wcl

(2)

The ensemble weighting method has similarities with the Accuracy Weighted
Ensembles of Wang et al. [12], whereas the means of obtaining the weights is
novel.

5 Experimental Setup

The dataset is derived from 18692 manual water samples taken by the Tas-
manian Shellfish Quality Assurance Program (TSQAP) between 1983 and May
2012 from 45 shellfish locations all over Tasmania. This has been combined with
environmental data from the Tasmanian Department of Primary Industry, Wa-
ter and the Environment (DPIPWE) and the Bureau of Meteorology (BOM). It
includes 66 features:
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Fig. 4. Classification with Similarity Weighted Ensembles

– 1. Salinity - salt level in the water sample in Practical Salinity Units (PSU)
from manual sampling.

– 2. Coliforms - Level of faecal bacteria present per 100 millilitres from man-
ual water sampling.

– 3. Tide - six discrete tide states from BOM; ranging from low rising to low
falling.

– 4. Wind - a discrete direction state from BOM, where 1-8 represent direc-
tions clockwise from North, and 9 represents a calm state.

– 5. Temperature - air temperature in degrees celcius from BOM.
– 6. Biotoxins - presence of harmful algae.
– 7-14. Rain at Site 1 - Rainfall in millimetres recorded for last 1 to 8 days

from the closest BOM weather station.
– 15-21. Cumulative Rain at Site 1 - Cumulative rainfall in millimetres

recorded for last 1 to 7 days.
– 22-36. Rain and Cumulative Rain at Site 2
– 37-44. Flow at Site 1 river flow rate in cubic metres per second (cumecs)

from the closest gauging station. This data is provided by DPIPWE.
– 45-52. Cumulative Flow at Site 1 river flow rate in cubic metres per

second (cumecs).
– 53-66. Flow and Cumulative Flow at Site 2

The sample dates have been merged with farm closure dates taken from TSQAP
annual reports to create an output class, which is the Open/Closed decision
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made by the TSQAP manager. This is a much more complete data set than that
used in [3], which had only five inputs; salinity, coliforms, location, rainfall and
flow.

For the purposes of this work we describe an example with a Closed state a
positive example and Open state a negative example.

There are 10 growing zones out of 45 that have greater than 9% of exam-
ples with a Closed state. In order to evaluate the proposed Similarity Weighted
Ensemble method we focus on these 10 zones, so that we can determine actual
versus predicted accuracy. We could perform these tests on the zones for which
we do not have sufficient Closed examples, but it would be impossible to eval-
uate the prediction quality. Table 1 describes the class percentages for each of
the selected zones.

Table 1. Percentages of each class for growing zones studied

Zone Closed% Open% Instances Zone Closed% Open% Instances

Fleurtys Point 9.1 90.1 484 Hastings 15.8 84.2 941
Montagu 23.5 76.5 337 Moulting 11.7 88.3 367
Big Bay B 32.5 67.5 209 Big Bay C 22.2 77.8 266
Big Bay E 21.1 78.9 665 Duck Bay 35.5 64.5 900
Blackman 11.7 88.3 729 Deep Bay 15.4 84.6 415

5.1 Machine Learning Methods

Unless otherwise stated the machine learning methods were implemented using
the Weka toolbox [13] with cross-validated parameter selection. The Weka clas-
sifiers used were:

Method Abbreviation Weka Classifier
Random Forest RF RandomForest
Decision Tree DT J48
Nearest Neighbour KNN IBk
Support Vector Machine SVM SMO
One Class One Class OneClassClassifier
Expert Rules Expert Custom

All ensembles used AdaBoost [14] to perform class balancing; as this proved
simple and effective in previous experiments [3]. All experiments use 10 cross-fold
validation.

Experimentation on the data set suggest that nearest neighbour was the most
effective regression method so the Weka IBk library was chosen for determining
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Fig. 5. Matthews Correlation Coefficient for all zones for One Class, One Class ensem-
bles with majority voting (maj), and the Expert closure rules

weights. A new Vote meta-classifier was developed to implement the Similarity
Weighted combination rule described in Section 3. The expert closure rules have
also been modeled in a Weka Classifier so that we can also include them in
ensembles.

The One Class Classifier uses the default settings of a REPT tree with Bag-
ging. This method combines class probability and density estimation as described
in [15]. The training set includes only negative examples, simulating a zone for
which we only have Open states, and is tested on both a set with both Open
and Closed states.

The learned models are compared using Matthews Correlation Coefficient,
which is an effective method for evaluating a two-class classifier even when the
classes are imbalanced [16]. Equation 3 describes the measure that is based on
the confusion matrix where tp denotes the true positive count, and fn the false
negative count.
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mcc =
tp · tn− fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(3)

6 Results

Figures 5 and 6 show the results of the shellfish farm closure dataset on all
locations. Table 2 shows in detail three of the growing zones on the expert
rules, different machine learning techniques and the simlarity weighted ensembles
versus a majority voting scheme.

Fig. 6. Matthews Correlation Coefficient for all zones on majority voting (maj) and
Similarity Weighted voting (sim)

Figure 7 shows the range of accuracy of the two voting schemes in the growing
zone Duck Bay specifically.
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Fig. 7. Matthews Correlation Coefficient for Duck Bay on majority voting (maj) and
Similarity Weighted voting (sim)

Table 2. Matthews Correlation Coefficient of Methods on Specific Zones

Method Vote Big Bay Fleurty’s Moulting

Expert Rules None 0.3 0.1 0.2
Expert Rules Majority 0.3 0.2 0.2

One Class None -0.5 (± 0.03) -0.002 (± 0.06) 0
One Class Majority -0.05 (± 0.06) 0.05 (± 0.07) 0.2 (± 0.02)

Random Forest Majority 0.82 (± 0.07) 0.76 (± 0.05) 0.89 (± 0.07)
Random Forest Similarity 0.85 (± 0.06) 0.78 (± 0.05) 0.85 (± 0.07)

Decision Tree Majority 0.92 (± 0.07) 0.87 (± 0.02) 0.85 (± 0.03)
Decision Tree Similarity 0.95 (± 0.02) 0.9 (± 0.03) 0.86 (± 0.03)

KNN Majority 0.93 (± 0.02) 0.88 (± 0.06) 0.56 (± 0.07)
KNN Similarity 0.95 (± 0.02) 0.91 (± 0.03) 0.62 (± 0.08)

SVM Majority 0.93 (± 0) 0.87 (± 0) 0.83 (± 0.007)
SVM Similarity 0.93 (± 0) 0.87 (± 0) 0.83 (± 0.007)
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7 Discussion

The manager performs outlier detection and adjustments based on her expertise.
For example, accounting for sensor drift on various platforms. Figures 1 to 3 show
significant numbers of examples where the threshold is exceeded, but the coliform
levels do not rise. Because of these factors the closure rules do not predict closures
well, as seen in Figure 5. There is also little benefit in combining the expert rules
into an ensemble. Therefore it does not appear to be enough when a new growing
zone is added to use an ensemble of closure rules until we have enough coliform
examples. The creation of expert rules also requires manual samples with high
coliform levels to be available, which may not occur for an unknown period of
time. Reusing the data-driven models from other locations will allow predictions
of closures to be made much sooner.

Using an ensemble approach produces significantly more accurate classifiers
than using One Class classification with the medians of the Matthews Correlation
Coefficient up to ten times higher at Fleurty’s Bay with each machine learning
method (Table 2). A small improvement is gained from an ensemble of One Class
classifiers, however combining classifiers trained for other locations is much more
successful.

The similarity weighting approach does indicate an improvement over a ma-
jority voting scheme for most zones. This is visible in Figure 7 where we can see
an improved accuracy range for all methods except for Random Forest, although
in Table 2 there is an improvement in all these zones. The biggest improvements
are seen in the Nearest Neighbour methods. The average performance over all
zones is similar between majority voting and similarity weighting.

The results suggest that the similarity technique may be preferable for some
growing zones; potentially those that are different from the norm. Further work
will be required on identifying the characteristics of these zones; possibly through
an initial clustering stage.

8 Conclusion

This study can be applied to a range of rare event detection problems that
are affected by different geographical factors. The data-driven approach was
consistently shown to be significantly more accurate than the expert crafted
rules.

In addition to standard techniques we have introduced a novel method that
makes use of the physical processes learned from manual sampling programs and
models from other locations. This showed an average 10 fold improvement over
One Class classification for an ensemble of models from other locations, and an
average improvement in accuracy of 2% when we weight by the similarity of the
locations for many zones.

We have also determined that traditional ensemble classifiers are a significant
improvement over one-class classification, which suggests that they would be
useful in circumstances in which we do not have a observations of a relevant
physical process to weight by.
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Abstract. Diversity is deemed a crucial concept in the field of multiple
classifier systems, although no exact definition has been found so far.
Existing diversity measures exhibit some issues, both from the theoretical
viewpoint, and from the practical viewpoint of ensemble construction.
We propose to address some of these issues through the derivation of
decompositions of classification error, analogue to the well-known bias-
variance-covariance and ambiguity decompositions of regression error.
We then discuss whether the resulting decompositions can provide a
more clear definition of diversity, and whether they can be exploited
more effectively for the practical purpose of ensemble construction.

Keywords: Diversity, Bias-variance-covariance decomposition, Ambi-
guity decomposition.

1 Introduction

The concept of “diversity” is deemed among the most important in the field of
multiple classifier systems (MCSs), both theoretically, as a way to understand
how MCSs work, and as a practical tool for constructing effective classifier en-
sembles [21,46]. However, its exact understanding and definition is still a rele-
vant open issue. For instance, quoting from [46] (Sect. 5.1): “It is no doubt that
understanding diversity is the holygrail in the field of ensemble learning”.

Besides the obvious observation that combining identical classifiers is useless,
the concept of diversity has roots in theoretical arguments (e.g., [36,22,15,9]),
also inspired by other domains like software engineering [24,28]. In particular, it
has been influenced by the bias-variance-covariance (BVC) [37] and the ambi-
guity [18,4] decompositions of the error of regressor ensembles. Moreover, wide
empirical evidence motivates the potential usefulness of combining non-identical
classifiers. This lead to the widely accepted idea that: (i) there exists a property
of MCSs that can be defined as “diversity”, can be quantitatively defined and
thus measured, and is related to ensemble accuracy (together with the accu-
racy of individual classifiers); (ii) such a property can be practically exploited
to construct an effective ensemble of classifiers.

Z.-H. Zhou, F. Roli, and J. Kittler (Eds.): MCS 2013, LNCS 7872, pp. 37–48, 2013.
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The concept of diversity has been investigated in the MCS literature
from different aspects: several diversity measures have been defined (e.g.,
[17,26,8,13,32,20,1,40,23]); several methods for MCS construction have been pro-
posed, explicitly using diversity measures (e.g., [41,13,1,2,16,40,23]); existing di-
versity measures have been analysed to understand whether and how much they
are “correlated” with ensemble accuracy [32,20,35]; several authors analysed the
concept of diversity itself [31,19,4,5,7].

However, although all the existing measures reflect intuitive notions of diver-
sity, none of them has been derived from an exact decomposition of the ensemble
error, contrary to the ambiguity decomposition; none of them exhibits a clear
trade-off with the average error of ensemble members, in determining the en-
semble error [20,35]; and effective techniques for MCS construction like bagging
and boosting do not make explicit use of diversity measures. These issues led
some authors even to question the practical usefulness of measuring diversity in
MCSs: “[...] the question of the participation of diversity measures in designing
classifier ensembles is still open. Directly calculating the accuracy for the chosen
combination method makes more sense than calculating the diversity and trying
to predict the accuracy. Even if the measure of diversity is easier to calculate
than some combination methods, the ambiguous relationship between diversity
and accuracy discourages optimising the diversity” [32] (sect. 7); “The quest for
defining and using diversity might be heading toward a dead end or might result
in powerful new ensemble-building methodologies” [21] (sect. 10.5); “It is not
yet known whether diversity is really a driving force, or actually a trap since it
might be just another appearance of accuracy” [46] (sect. 5.1).

On the basis of the above premises, in this paper we address the issue of
diversity with the following goals: (i) deriving exact decompositions of the en-
semble error for any combining rule and any number of classes; and exploiting
them to understand (ii) whether they can provide a more clear understanding
of diversity, and (iii) whether they can be exploited for ensemble construction,
more effectively than existing measures. After an overview on BVC and ambi-
guity decompositions for regression problems in Sect. 2, in Sect. 3 we address
issue (i) above by deriving the analogue of these decompositions for the ensemble
classification error. In particular, we consider the Kohavi-Wolpert bias-variance
decomposition [17] to derive a BVC-like decomposition, while our ambiguity-
like decomposition generalises the one of [7]. We then address issues (ii) and (iii)
above in Sect. 4. We finally suggest some directions for future work in Sect. 5.

2 Background: Decompositions of Regression Error

In regression problems, an unknown function has to be estimated using a set
d of n samples of its input-output pairs, (x, y) ∈ R

m × R.1 Assume that a
learning algorithm is used, which produces the estimator f(x; d) when trained
on d. To simplify notation, in the following we will write f in place of f(x; d).

1 Throughout the paper we will use uppercase letters to denote random variables, and
the corresponding lowercase letters to denote specific values.
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The expectation of the mean squared error (MSE) of f on a given input x, taken
over random training sets D of size n and over P [Y |x], can be written in terms
of the well-known bias-variance (BV) decomposition [12]:

ED,Y |x
[
(f − Y )2

]
= bias2f + varf + noise , (1)

where noise equals the variance of Y given x, and is independent on D, while

bias2f = (ED[f ]− E[Y |x])2 , varf = ED

[
(f − ED[f ])2

]
. (2)

It is known that, usually, bias can be reduced only at the expense of a higher vari-
ance, and vice versa, and that an effective variance reduction technique consists
of linearly combining an ensemble of N different regressors:

fens(x; d) =
1

N

N∑
i=1

fi(x; d) . (3)

The BV decomposition of fens can be rewritten in the form of a bias-variance-
covariance (BVC) decomposition [37,4]. Let us define

bias = 1
N

∑
j biasfj , var = 1

N

∑
j varfj ,

cov = 1
N(N−1)

∑
i,j �=i ED [(fi − ED[fi])(fj − ED[fj ])] .

(4)

It then follows that:

ED[(fens − E[Y |x])2] = bias
2
+

1

N
var + (1− 1

N
)cov . (5)

This highlights that the variance reduction effect strongly depends on the amount
of correlation between the outputs of individual regressors: the lower the corre-
lation (i.e., the lower the term cov, which can also be negative), the higher the
reduction of variance.

The MSE of fens can also be written equivalently in terms of the ambiguity
decomposition, which, for a given (x, y) and d, is given by [18,4]:

(y − fens)
2 =

1

N

N∑
i=1

(y − fi)
2 − 1

N

N∑
i=1

(fi − fens)
2 . (6)

Differently from the BVC decomposition, the ambiguity decomposition high-
lights a trade-off between the average accuracy of individual regressors, and
their deviation from the ensemble output. The latter term was called “ambigu-
ity” (hence the name of the decomposition),2 and can be easily interpreted in
terms of diversity between individual regressors. Therefore, this provides a clear,
formal definition of “diversity” for regression problems [4].

2 The ambiguity term is related to the correlation among individual regressors. The
beneficial effects of negative correlation had already been pointed out in [29].
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From the practical viewpoint of ensemble construction, the ambiguity decom-
position was successfully exploited by the Negative Correlation Learning (NCL)
method [25].3 NCL is a parallel, gradient-descent learning algorithm, whose ob-
jective function is given by the linear combination of the MSE of individual
regressors (the first term of the ambiguity decomposition), minus a term pro-
portional to the corresponding ambiguity. Instead of independently training the
individual regressors first, and then computing the coefficients of their linear
combination, NCL pursues both goals simultaneously. This may allow it to at-
tain a better trade-off between accuracy and diversity.

In principle, the ambiguity decomposition could also be exploited in the con-
text of an overproduce and choose strategy, for selecting the best subset of
regressors s′ out of a given, larger set s. The members of s can be first inde-
pendently trained (by minimising their individual MSE); then, the subset s′

exhibiting the highest ambiguity should be selected. However, all works on re-
gressor ensemble selection we are aware of did not use this approach, but relied
on the direct estimate of the ensemble MSE [43,30,14,39,27,34,38], with the only
exception of [11]. However, in [11] diversity measures inspired by the ones de-
fined for classification problems were used, instead of the clean ambiguity term.
The above overproduce and choose strategy, implemented by maximising some
diversity measure, is used by several classifier ensemble construction techniques,
instead. We will further discuss this point in Sect. 4.

3 Decompositions of the Ensemble Classification Error

Several BV decompositions of classification error have been proposed, e.g.,
[3,17,10], and have been used to empirically investigate the variance (and some-
times bias) reduction effect of classifier combination techniques. However, no
decomposition analogue to BVC (i.e., explicitly including the outputs of indi-
vidual classifiers) has been derived yet. This is not straightforward, for instance
because the concept of covariance is undefined for categorical outputs (class
labels), as pointed out in [4]. Similarly, no ambiguity-like decomposition (i.e.,
including the average error of individual classifiers) has been derived for MCSs,
with the only exception of the one of [7] for two-class problems. Accordingly,
existing diversity measures have not been derived from exact decompositions of
classification error. However, we point out that they have been empirically and
theoretically analysed by investigating whether and how their trade-off with the
average error of individual classifiers is related to the ensemble error. In other
words, they have been (often implicitly) considered as the equivalent of the am-
biguity term in the corresponding decomposition (6).

In the following we show how an analogue of the BVC decomposition can be
derived, as well as the analogue of the ambiguity decomposition, which gener-
alises the one of [7] to any number of classes.

3 NCL was actually defined “heuristically” in [25], with no reference to the ambiguity
decomposition. The strong relationship between NCL and the ambiguity decompo-
sition was pointed out and thoroughly analysed in [5].
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3.1 A Bias-Variance-Covariance Decomposition for Classifier
Ensembles

We consider the Kohavi-Wolpert BV decomposition of classification error (0/1-
loss), for a L-class problem [17]. We denote class labels by y1, . . . , yL. To further
simplify the notation, we define: P [yi] = P [Y = yi|x], and P̂ [yi] = PD[f(x;D) =
yi]. The loss of a classifier f(x; d) on a given sample (x, y), which we denote by
e(x, y; d), equals I[f(x; d) �= y], where I[a] = 1 (0), if a = True (False). Bias and
variance are defined in [17] as follows:

biasf =
1

2

∑
yi

(
P [yi]− P̂ [yi]

)2
, varf =

1

2

(
1−

∑
yi

P̂ [yi]
2

)
. (7)

It follows that [17]:

ED,Y |x[e(x, Y ;D)] = biasf + varf + noise , (8)

where noise = 1
2

(
1−∑yi

P [yi]
2
)
.

We now rewrite the above bias and variance terms for a MCS {f1, . . . , fN}.
We denote by fens the ensemble output, with no restriction on the combining
rule. Adding and subtracting to the expressions of biasfens and varfens the two
terms indicated below, after some manipulations we obtain:

biasfens =
1
2

∑
yi

(
P [yi]− 1√

N

∑
j P̂j [yi] +

1√
N

∑
j P̂j [yi]− P̂ens[yi]

)2
= bias+ b,

varfens = 1
2

(
1− 1

N2

∑
j,yi

P̂ 2
j [yi] +

1
N2

∑
j,yi

P̂ 2
j [yi]−

∑
yi
P̂ens[yi]

2
)

= 1
N var + v ,

(9)

where bias = 1
N

∑
j biasfj , var = 1

N

∑
j varfj , and the terms b and v are given

in the online appendix of this paper4 (they are not reported here due to lack of
space). This easily leads us to the analogue of the BVC decomposition (5):

ED,Y |xeens(x, Y ;D) = bias+
1

N
var + b+ v + noise . (10)

The term b+ v corresponds to the covariance term of (5), and its interpretation
is under analysis at the time of submitting the camera-ready of this paper.

3.2 Ambiguity-Like Decomposition for Classifier Ensembles

The only decomposition of the classification error (0/1-loss) of an ensemble,
analogue to the ambiguity decomposition, has been derived in [7], for two-class
problems. Denoting the class labels by the values {−1,+1}, the loss of a classifier
4 http://prag.diee.unica.it/pra/bib/didaciMCS2013

http://prag.diee.unica.it/pra/bib/didaciMCS2013 
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on a sample (x, y) can be expressed as ef (x, y; d) =
1
2 (1 − y × f). Denoting by

e(x, y; d) the average loss of an ensemble of N classifiers, it follows that [7]:

eens(x, y; d) = e(x, y; d)− y × fens × 1

N

N∑
j=1

δj(x, y; d) , (11)

where δj(x, y; d) =
1
2 (1− fj × fens). This term is a measure of the disagreement

between classifier fj and the ensemble. The decomposition (11) appears thus
very similar to the ambiguity decomposition (6). However, the second term in
the right-hand side (RHS) of (11) also includes the true class label y, contrary
to the ambiguity term in (6). The interpretation of decomposition (11) is very
clear: it shows that a lower average accuracy of individual classifiers can be
compensated by a higher disagreement with the ensemble, as far as the ensemble
remains correct. This latter condition is due to the presence of the y term in the
RHS of (11). We point out that decomposition (11) is valid for any combining
rule, although in [7] only majority voting was considered.

Here we show that a more general decomposition can be obtained, for any
number of classes. To this aim, we can exploit the BVC-like decomposition (10).
We denote the expected average misclassification probability of individual clas-

sifiers on a point x, ED,Y |x
[

1
N

∑
j ej(x, y; d)

]
, by e(x). It is easy to see that

e(x) = bias+ var + noise. Rewriting (10) by adding and subtracting the term
N−1
N var, after some manipulations we obtain:

eens(x) = e(x)−∑yi
P [yi]

1
N

∑
j

(
P̂ens[yi]− P̂j [yi]

)
= e(x)− 1

N

∑
j

(
PD,Y |x[fens = Y |x]− PD,Y |x[fj = Y |x]) .

(12)

The same result can also be obtained by directly computing
ED,Y |x[eens(X, Y ;D) − e(X, Y ;D)], which is the approach followed in [7]. Ob-
viously, for L = 2, the expectation of (11) with respect to D,Y |x equals (12).

We can further rewrite decomposition (12) in the case of a fixed training set
d, i.e., by taking the expectation of eens(x, y; d) with respect of P [Y |x] only:

eens(x; d) = e(x; d) − 1

N

∑
j

(
PY |x[fens = Y |x]− PY |x[fj = Y |x]) . (13)

In particular, for a single sample (x, y) and a single training set d, we obtain the
generalisation of (11) for L > 2:

efens(x, y; d) = e(x, y; d)− 1

N

∑
j

(I[fens = y]− I[fj = y]) . (14)

Expressions (12)–(14) are thus three different versions of a general ambiguity-
like decomposition of the ensemble error, that is valid for any number of classes
and any combining rule.5 Comparing (12) to the BVC-like decomposition (10), to
understand the correspondence between their terms (as done in [4] for regression
error), is the subject of our ongoing work.

5 This decomposition can also be easily extended to any loss function.
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4 Discussion

Let us recall the second and third issues mentioned in the introduction. Can the
second term of decomposition (12)–(14) be interpreted as a diversity measure?
Can it be practically exploited for ensemble construction? In particular, is it more
effective than existing diversity measures, and than the direct estimate of the
ensemble error, e.g., in terms of estimation reliability, computational complexity,
or the possibility of estimating it using unlabelled samples only? We address
these issues in the following.

4.1 Interpretation of the Ambiguity-Like Decomposition

For two-class problems, the second term in the RHS of decomposition (11) can
be interpreted as a diversity measure, in terms of the disagreement between the
individual classifiers and the ensemble [7], similarly to the ambiguity term in
(6). In the general case when L > 2, it is easy to see that a similar interpretation
can be given for the second term in the RHS of decomposition (14). However,
for L > 2 the disagreement is not expressed in terms of the class labels, but in
terms of the correctness of such choices (they coincide only when L = 2).

In [7] the decomposition (11) was further analysed by considering the case of
zero Bayes error (i.e., when y is a deterministic function of x), and by taking the
expectation of (11) over P [X], which gives the error probability of the ensemble.6

Taking into account that y × fens = +1 (−1) when the ensemble is correct
(wrong), and denoting by x+ and x− the corresponding regions in feature space,
one obtains [7]:

eens(d) = e(d) −
∫
x+

1

N

N∑
j=1

δj(x; d)dx +

∫
x−

1

N

N∑
j=1

δj(x; d)dx . (15)

This highlights that increasing the disagreement is beneficial on samples where
the ensemble is correct, while it is detrimental on samples where the ensem-
ble is wrong. Accordingly, the corresponding diversity components were named
respectively “good” and “bad” diversity in [7].

It is now easy to see that the same interpretation can be given when L >
2, from decomposition (14), provided that “disagreement” is intended as ex-
plained above. On samples where the ensemble is correct, increasing the dis-
agreement is beneficial, i.e., the highest number of individual classifiers should
misclassify such samples, independently on the specific class labels they choose.
Increasing the disagreement is detrimental on samples misclassified by the en-
semble, instead: this means as well that the highest number of individual clas-
sifiers should misclassify such samples. Accordingly, the concept of good and
bad diversity can be extended to L > 2, by considering the above definition of
disagreement.

6 This analysis can be easily extended to the case of non-zero Bayes error.
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4.2 Practical Exploitation of Diversity Measures

Here we discuss the practical usefulness of diversity measures, including the di-
versity term of the ambiguity-like decomposition (14), for ensemble construction.

We first point out that the diversity term in (14) depends on the specific com-
bining rule. This is a consequence of the fact that the error of a given ensemble
depends on the combining rule, and that the first term in the RHS of (14) is
the average error of ensemble members. However, existing diversity measures do
not depend on the combining rule. Actually, although they are not explicitly
tailored to a specific rule, most of them seem related to majority voting [35].
Even interesting measures recently proposed, using information theory, do not
take into account the combining rule [6,44]. The pros and cons of using a single
diversity measure for all combining rules, and of using different measures tailored
to specific rules, have been discussed in [21] (sect. 10.5): “The problem is that
the ‘clean’ diversity measure might be of little use due to its weak relationship
with the ensemble accuracy [...]. On the other hand, the more we involve the
ensemble performance into defining diversity, the more we are running onto the
risk of trying to replace a simple calculation of the ensemble error by a clumsy
estimate that we call diversity.’

On the other hand, as pointed out in Sect. 3, existing measures are usually
considered as the equivalent of the ambiguity term in regression. Indeed, they
have often been analysed by investigating whether and how their trade-off with
the average error of individual classifiers is related to the ensemble error, but no
clear correlation has been found [32,20,35]. This raised some doubts about the
usefulness of existing measures for ensemble construction. Some authors even
argued that a direct estimation of ensemble accuracy can be more effective. For
instance, see the quote from [32], reported in Sect. 1; and: “In our opinion, the
existing diversity measures are [...] not [sufficient] for [selecting base classifiers]”
[35] (sect. 4). Such doubts are strengthened by the following fact: overproduce
and choose methods for ensemble construction, that make explicit use of diver-
sity measures, did not provide evidence that such an approach is more effective
than directly estimating ensemble accuracy [41,13,1,2,16,40]. In particular, be-
sides [41,40], where such a comparison has not been made, in [13,1,2] the use of
diversity measures did not provide any significant accuracy improvement, and
in [16] the direct estimation of classifier accuracy turned out to significantly
outperform the use of diversity measures.

Consider now the exact decomposition of the ensemble error (14), or the equiv-
alent (for two-class problems) decomposition (11). Can their diversity terms be
exploited more effectively in the context of overproduce and choose methods? At
least at a first glance, the answer seems negative. The reason is that to compute
these diversity terms (on a given set of samples, e.g., a validation set) one needs to
know both the ensemble output and the correct class label of each sample. How-
ever, this also allows one to directly estimate the ensemble accuracy.We point out
that a similar issue arises about the use of the ambiguity decomposition for regres-
sion problems as well, as mentioned in Sect. 2. However, even though computing
the ambiguity term in (6) is not computationally cheaper than directly computing
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the ensemble MSE, the former does not involve the correct output y, which allows
one to compute it using also unlabelled samples. It would be interesting to inves-
tigate whether this can be actually advantageous. It is worth noting that the use
of unlabelled samples to promote diversity in MCSs has been suggested in [42].

Consider now the use of diversity measures for ensemble construction strate-
gies analogue to NCL, i.e., for directly constructing a MCS without overproduc-
ing first, and then selecting a subset of classifiers. In this context, it is pertinent to
note that well-known MCS construction techniques like bagging, random forests,
random subspace, and AdaBoost, are effective even though they do not explicitly
use any diversity measure (see, e.g., [21], chapter 10). By the way, they are all
tailored to majority voting (or weighted voting, in the case of AdaBoost) [35]. On
the one hand, it is commonly believed that such techniques “can be interpreted
as building diverse base classifiers implicitly” [35]. This fact has also inspired the
idea of investigating what objective function, and thus, what diversity measure,
is implicitly optimised by such techniques.7 On the other hand, the above dis-
cussion about existing measures and about the diversity terms in (14) and (11),
strengthens the doubt that they are not more useful in practice than directly
estimating ensemble accuracy. Indeed, they seem only “descriptive”, i.e., they
formalise the intuition that (at least for the majority voting rule) an effective
ensemble is made up of classifiers that are accurate “enough” on different regions
of the feature space, such that (ideally) a majority of them correctly classifies
each sample. This is exactly the goal that techniques like bagging pursue, us-
ing different strategies, without explicitly relying on diversity measures. To our
knowledge, the only method analogue to NCL proposed so far (besides the direct
use of NCL with base classifiers like neural networks) is the one of [45]. It simul-
taneously trains a set of two-class linear classifiers, and computes the weights
of their linear combination, using a SVM-like learning algorithm. The objective
function aims at jointly maximising individual accuracy and diversity. Diversity
is measured as the average pairwise disagreement between individual classifiers.
This method exhibited comparative performance with bagging and AdaBoost.
On the other hand, the considered diversity measure does not coincide with the
ambiguity term (11). A further investigation of this method is thus interesting.

To sum up, existing diversity measures are at most an approximation of the
“real” diversity term, in the context of exact decompositions of the ensemble
error like (14) and (11), in which the first term is given by the average error
of ensemble members. On the other hand, the practical usefulness of diversity
measures, even exact ones, remains questionable. In the next section we will
indicate possible research directions to address this issue.

5 Suggestions for Future Research

On the basis of the above results and discussion, we conclude this paper by
suggesting some research directions, aimed at better understanding whether

7 Zhi-Hua Zhou, MCS 2010 panel discussion: http://www.diee.unica.it/mcs/
mcs2010/panel discussion.html

http://www.diee.unica.it/mcs/mcs2010/panel discussion.html
http://www.diee.unica.it/mcs/mcs2010/panel discussion.html
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the explicit use of diversity measures can be useful in practice, for ensemble
construction.

1. The BVC-like decomposition (10), and in particular the term corresponding
to covariance, deserves further analysis. A comparison with the ambiguity-
like decomposition (12) is interesting, to understand the correspondence be-
tween their terms, as done in [4] for the BVC and ambiguity decompositions
of regression error.

2. The ambiguity-like decomposition (12) should be extended to loss functions
different than 0/1. It should also be further analysed with respect to specific
combining rules, different frommajority voting (which has been considered in
[7]). In particular, it would be interesting to investigate whether the average
error of individual classifiers is the most suitable as the first term of such a
decomposition, for any combining rule.

3. The effectiveness of explicitly using diversity measures in ensemble con-
struction methods with the overproduce and choose strategy, should be
thoroughly compared with the direct estimation of ensemble accuracy. This
should be done also for regression problems, where the ambiguity term seems
in principle more advantageous than the corresponding one for classification
problems.

4. It is also interesting to compare the diversity terms derived from exact de-
compositions of the ensemble error like (14) and (11), with existing diversity
measures. This can help understanding which of these measures is a bet-
ter approximation to the “real” diversity, also with respect to a specific
combining rule. This could even suggest new diversity measures that better
approximate the “real” one, and are also of practical use.
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Abstract. In this study, we propose a novel two-stages mixture of ex-
perts scheme estimating gender from facial images. The first stage com-
bines a couple of complementary gender classifiers with a third arbiter in
case of decision discrepancy. Experimentally, we have verified the com-
mon thinking that one appearance-based (Haar-features cascade) clas-
sifier with another shape-based (landmarks positions metrology with
SVM) classifier form a complementary couple. Subsequently, the sec-
ond stage in our scheme is a Bayesian framework that is activated only
when the arbiter cannot take a confident decision. We demonstrate that
the proposed scheme is capable of classifying gender reliably from faces
as small as 16x16 thumbnails on benchmark databases, achieving 95%
gender recognition on FERET database, and 91.5% on the Labeled Faces
in the Wild dataset.

Keywords: gender classification, committeemachines,Bayes, resolution.

1 Introduction

Many human activities and machine applications depend on accurate gender
recognition. It can be used as a prior step to face recognition and verifica-
tion [1,2]. Gender discrimination also helps in the indexing and retrieval of images
and videos [3].

Automatic gender classification has been widely investigated in literature.
Most studies have used 2D face images for classification, which can be done
using either appearance-based or shape-based methods. Appearance-based ap-
proaches use the cropped, resized, and illumination normalized texture of the
face (or portions of it) as a classification attribute, while the shape-based ap-
proaches extract a set of discriminative face shape features and uses them for
the classification process.
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It is expected that the classification accuracy can be improved by combining
more than one classifier [4], especially when each method relies on different input
features extracted from the face.

In this work we compare several state-of-the art classification techniques on
different features and image resolution. Then we propose a Mixture of Experts
(MoE) technique based on Naive Bayes theorem for merging some of these well
known classifiers to achieve boosted performance.

The rest of the paper is organized as follows; Section 2 reviews previous related
work, Section 3 describes the individual classification methods used along with
their input feature types, and Section 4 introduces our proposed method for
merging these classifiers. Section 5 states the databases we used, then explains
and discusses the experiments and results. In the final section, we conclude our
work.

2 Related Work

Mäkinen et al. [4] presented an overview on the topic of gender classification
from face images. They experimented on FERET database [5] and WWW [4]
(another dataset containing images they randomly collected from the web). They
compared six state-of-the-art gender classification algorithms, none of which is
shape-based. They used different face normalizations and alignments, and they
introduced combined results of these classifiers.

Another comparative study was presented by Calfa et al. in [6], giving special
attention to linear techniques and their relations, due to their simplicity and
low computational requirements. Their work proves that, with a linear feature
selection, Linear Discriminant Analysis on the linearly selected set of features
achieves results comparable to the best gender classifiers based on Support Vec-
tor Machines with Radial Basis Function kernel (SVM+RBF) [7] and Boosting.

Shan [8] investigated gender classification on real-life faces acquired in uncon-
strained conditions. Boosted Local Binary Patterns (LBP) [9] were used with
SVM, where LBP was employed to describe faces, then Adaboost was used to
select the discriminative LBP features, followed by an SVM for classification. The
author reported results on the Labeled Faces in the Wild (LFW) database [10].

Cao et al. [11] presented a shape-based approach where they used topolog-
ical information extracted from facial landmarks to perform gender classifica-
tion. The authors compared their technique to Local Binary Patters which is
an appearance-based classifier, and showed a slightly lower performance that is
due to the simplicity and small amount of information encoded in the metrol-
ogy features. I our work we focus on combining shape information with the face
appearance for boosted accuracy.

3 Individual Experts and Features

In this section, we shed some light on the classifiers we used as independent
experts in our merger, along with the features supplied for each classifier.
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3.1 Features

We compared four different types of features; three of which are appearance-
based and one is shape-based.

Appearance-Based Approach. We used three types of features that can be
extracted from the appearance of a face in the image; which are normalized pixel
values (to be in the range [0−1]), Principal component analysis (PCA) [12], and
Haar-like features [13].

Shape-Based Approach. We used the positions of 76 facial landmarks, that
were automatically located on the face then their coordinates values were shifted
to have the nose-tip at the center. The positions are then normalized by scaling
them so that all faces have a constant inter-eyes distance.

3.2 Individual Gender Classification Methods

To perform classification, we chose to use Support Vector Machines (SVM) [7]
which are well known for their accuracy and speed. However, for the Haar-like
features, due to their high-dimensional vector, we used Adaboost [14] to select
the most discriminant features.

For SVM, we specifically use Least-Square SVM (LS-SVM) [15] which are the
least squares versions of SVM in which the solution is found by solving a set
of linear equations instead of the convex quadratic programming problem for
classical SVMs. We use SVM with Radial Basis Function (RBF) Kernel.

4 Proposed Mixture of Experts

We present here the details of our approach for merging several individual clas-
sification methods in order to achieve higher gender recognition accuracy.

4.1 Mixture of Experts

A Mixture of Experts (MoE) is a form of dynamic committee machines, where
the outputs of the constituent experts (classifiers) are non-linearly combined by
some form of gating system to produce an overall output that is superior to that
of any single expert alone. In MoE, the input signal is also directly involved in
actuating the integration mechanism as shown in Fig. 1.

4.2 Proposed Basic Mixture of Experts with Bayesian Combiner

The Naive Bayes classifier is based on the Bayes’ theorem;

p(C|F1, . . . , Fn) =
p(C)p(F1, . . . , Fn|C)

p(F1, . . . , Fn)
, (1)
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Fig. 1. Structure of a general Mixture of Experts network

where F1 to Fn are the input features, and C is the class of these features. The
denominator of this fraction can be neglected as it does not depend on the class
C; then the theorem can be stated as;

posterior ∝ (prior × likelihood) . (2)

We adopt this Naive Bayes approach for the merger stage of our mixture machine
using the scores as inputs, and C representing the chosen expert. In other words,
for each image I and M different experts, the combiner will return the decision
of one chosen expert, depending on the set of scores returned by the M experts.
The scores are independent of each other given a certain expert, hence the Naive
concept.

Training. Each expert is trained using a training subset of the database images.
We then train the Bayesian merger using another subset of images. This is done
by calculating the prior of each of the contributing individual methods and the
likelihood of their outputs’ scores as follows:

For each expert, we run its previously-trained classifier on this subset and
obtain the following:

- Prior This is the classifier’s achieved accuracy on this data subset. At merge
time we normalize it with the other experts’ priors, so that

∑M
m=1 prior(m) = 1;

where prior(m) is the prior of the m’s classifier and M is the number of experts
to be merged.

- Likelihood We use the scores returned by the classifier from this subset, then
split the score range into N intervals. For each interval, we calculate the per-
centage of images that were correctly classified (true percent) and those that
were wrong (false percent). Likelihood of this interval is the true percent minus
the false percent, which might result in a negative value if there are more falsely
classified samples in an interval than the correct ones. In this case, we shift all
the values to have a min = 1, and finally, the values are normalized to [0 − 1].
For our machine, we choose N = 20.
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Merging. When a new face is to be classified, each expert, m, is run on the
input image returning a binary output om along with its score cm. The prior of
each expert alone is retrieved, and these priors are normalized. Then we retrieve
the likelihoods of the returned scores, using the trained Bayesian merger. The
posterior of each method is then calculated by:

posterior(m, cm) = pr(m)× likelihood(m, cm) . (3)

The final output (class) is then taken to be that of the method with the highest
posterior.

4.3 Proposed 2-Stages MoE

The experts contributing in the MoE should be chosen such that they classify
more images differently, which will happen if each expert relies on different cues
for its decision.

The effect of increasing the number of experts used in the machine will be
discussed in Section 5.4, and it can be expected that using more experts might
lead to higher accuracy.

However, we introduce an enhancement to the basic Bayesian MoE proposed
in the previous subsection, which allows us to achieve these high correct rates
using only two main experts, by adding another stage to this basic MoE, prior
to the Bayesian stage.

Using two experts only, will cause the merge machine to be invoked only if
each decides the image to belong to a different class.

Training Stage(1). Stage(1) is a classifier trained on the same subset of images
used to train the Bayesian MoE (which is now Stage(2)).

Each trained expert is used to classify this subset and return scores for its
decisions. The scores for each image are concatenated to its normalized pixel
values to form a single vector used to train the classifier of Stage(1). A threshold
score ConfThr, is calculated as the average score of the correctly classified faces
in this subset.

Merging. If both experts disagree on which class an image belongs to, then
their scores are fed to Stage(1) along with the image itself, to return a decision
and a score. The decision of Stage(1) supports one of the experts to be the final
decision only if its confidence is above the calculated threshold score ScThr;
otherwise, its decision is discarded and Stage(2) is used to resolve the conflict
based on the experts’ posteriors as done in the basic Bayesian MoE. The use of
the image itself in the decision of Stage(1) is what separates our MoE from a
standard dynamic committee machine.

The structure of the proposed 2-Stages MoE is depicted in Fig 2.
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Fig. 2. Structure of the proposed 2-Stages Mixture of Experts network. O is output
class with score Sc. ScThr is the threshold score of Stage (1).

5 Experiments and Results

5.1 Datasets and Experimental Setup

Our experiments were performed on three face image databases; two of which
are well known and publicly available: the FERET image database [5], the LFW
database [10]. We have used also a dataset we refer to as MixDB, containing
images that were privately collected including several ethnicities; Caucasians,
Asians and also some from African descent. We used frontal and near-frontal
face images.

While FERET DB contains studio-setting constrained images; LFW offers a
unique collection of faces captured from the web, which represents a variation
of expressions and lightings. From the FERET database we used one image per
subject from the frontal fa gallery. For the LFW we selected the frontal faces
and formed a set containing 4500 males and 2340 females, having at most two
images of the same subject.

For each DB, we created three subsets;
- Training set: used for training individual classifiers;
- Extra-Training set: used for training the combiner stages; and, finally,
- Testing set: used to evaluate the classification performance.
Five-folds cross validation is used for our experiments, where the images are

divided into 5 folds, keeping the same ratio between male and female faces;
duplicate images of the same subject are placed in the same fold. One fold is
used for Testing, two for Training and the remaining two for Extra-Training;
this process is repeated five times and the average is reported. The number of
faces used for each database is shown in Table 1.



Gender Classification Using Mixture of Experts 55

Table 1. Number of faces used for each database (Male/Female)

FERET MixDB LFW

All 600/405 1185/1096 4500/2340

1 Fold 120/81 237/219 900/468

For implementation, images preprocessing, training and testing, we used MAT-
LAB. In all images, the eyes positions were manually located, however in prac-
tice, the eyes can be located automatically using active appearance model (AAM).
Each image was then rotated so that both eyes lie on a horizontal line, and the
face area was extracted to be a square with dimensions relative to the inter-
eyes distance. Colored images were transformed to grayscale, then the lighting
was enhanced using MATLAB’s built-in function imadjust which increases the
contrast by remapping the intensity values to fill the entire range of [0− 255].

5.2 Individual Experts

The experts we use in our mixture machine, adopt two classifiers; SVM and
Adaboost, each with different features extracted from the image.

The notations we use, are:
- SVM[Norm]: Normalized image pixels,
- SVM[PCA]: Dimensionally reduced vector using PCA,
- SVM[LM]: Landmarks positions, and
- Ada[Haar]: Haar-features.
For SVM[PCA], we varied the number of principal components (PCs) used

from 50 to 300, then tested SVM’s classification on different image sizes, from
16 × 16 to 40 × 40 with step 8 pixels per side. We obtained best classification
results using 150 PCs regardless of the initial images’ size. So, on the following
experiments we will use 150 PCs for SVM[PCA].

For SVM[LM], 76 landmarks’ positions are located automatically using
Stasm [16] which is an extended version of Active Shape Model. The coordi-
nates of the landmarks are manipulated as explained in 3.1. Subsequently, SVM
is trained on these manipulated coordinates; a vector of size nLM × 2, where
nLM is the number of landmarks detected.

We carried out two experiments; the first one regards the choice of the resolu-
tion of face images to be used. Then the second experiment tests the performance
of our proposed Mixture of Experts.

5.3 Experiment (1): Studying the Effect of Image Resolution
on Individual Classifiers

The purpose of this experiment is to investigate the effect of changing the input
face image size on the accuracy of the individual classifiers.

Fig. 3 compares the weighted average performance of the experts listed in 5.2,
except for SVM[LM] which is independent of the image size. Images are resized
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using bi-cubic interpolation. For Haar, due to the very high dimension of the
Haar-like feature vector, we stopped at 24× 24 images, in which case the Haar-
features vector’s dimension is 136,656.

Fig. 3. Classifiers’ responses over different image resolution

From Fig. 3, the following observations are made:
- Increasing the image resolution for the used classifiers does not improve the

achieved classification accuracy; but even degrades it significantly when using
the image pixels values.

- Using SVM: For a certain higher resolution image; e.g. 40 × 40 = 1600,
reducing the dimension yields better accuracy; which can be done by two ways;
either reducing the image size using simple down-sampling; i.e. SVM[Norm] on
lower resolution images, or using PCA; SVM[PCA]. Obviously PCA gave higher
performance.

- SVM[PCA]: Its performance is much better than using simple pixel values,
and as the number of PCs remain constant (150 in this case), the initial image
size does not affect the performance.

- Computational time: Reducing the images’ resolution significantly reduces
training time for some experts. For example, on the FERET dataset, Adaboost
took 7 minutes for training using Haar features on 400 face images of size 16×16.
When the size increased to 24 × 24, the training time jumped to 1 and a half
hour.

For the coming experiment we will use low resolution; 16 × 16 images, since
it achieves not only less computational time, but also better accuracy.

Table 2 presents the classification rates of each individual expert on 16× 16
images.

5.4 Experiment (2): Proposed MoE

We used our proposed 2-Stages MoE to merge pairs of expert on 16×16 images.
Experts contributing in the machine must each be using different features for
classification as explained in Section 4, so we specifically chose to merge the
shape-based expert, SVM[LM], with each of the other appearance based experts.

For Stage(1), we use SVM as an aiding expert trained with normalized pixel
values of the face images concatenated with the score values returned by the two
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Table 2. Classification Results of Individual Experts on 16× 16 face images, sorted in
a Descending Order

Expert FERET MixDB LFW

Ada[Haar] 93.71% 86.89% 88.41%

SVM[Norm] 92.91% 85.58% 88.36%

SVM[PCA] 91.11% 82.68% 87.41%

SVM[LM] 80.19% 77.48% 78.76%

experts. The result of Stage(1) supports one of the main contributing experts’
decision only if they both disagree, and the SVM’s returned confidence is above
the threshold score ScThr.

Table 3. Results of the proposed Bayesian Mixture of Experts on 16 × 16 images,
when one of the experts is shape-based. These results are the weighted average of all
databases.

Experts Best
Expert

Basic
Bayesian
MoE

2-Stages
MoE

(1) SVM[LM]+Ada[Haar] 88.59% 90.01% 91.54%

(2) SVM[LM]+SVM[PCA] 86.71% 88.41% 90.51%

(3) SVM[LM]+SVM[Norm] 88.19% 89.66% -

(4) SVM[LM]+Ada[Haar]+SVM[Norm] 88.59% 90.57% -

(5) SVM[LM]+Ada[Haar]+SVM[PCA] 88.59% 90.17% -

(6) SVM[LM]+SVM[PCA]+SVM[Norm] 88.19% 89.74% -

(7) SVM[LM]+Ada[Haar]+SVM[PCA]+SVM[Norm] 88.59% 90.53% -

Table 3 presents the best achieved weighted average results using our proposed
MoE on 16×16 images, which shows an improvement over the best contributing
expert by up to 3%. Best classification rate is achieved using our proposed 2-
Stages MoE to merge the shape-based SVM[LM] with the appearance-based
Ada[Haar].

By comparing row(1) with row(4), and row(2) with row(6), it is observed that
the accuracy of the 2-Stages MoE is about 1% higher than that of the Basic
Bayesian MoE, when using 3 experts, two of which are the same experts used in
the 2-Stages MoE, and the third expert is SVM[Norm]. Using SVM[Norm] as
an expert in this 3-experts Basic MoE is the closest to Stage(1) of the 2-Stages
MoE, yet trained on normalized image pixels only (without the cofidence values
of the other two experts). From this we can say that using the aiding expert (here
SVM[Norm]) as a part of the combiner stages in the 2-Stages MoE is better than
including it from the beginning as a contributing expert while using Bayesian
combiner only for the merge.
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Fig. 4 compares the performance of the basic MoE with varying number of
contributing experts, with the 2-Stages MoE. From this figure it is seen that in-
creasing the number of experts for the basic MoE beyond three does not improve
the accuracy, yet using the proposed 2-Stages MoE does.

Fig. 4. Best mixture results on 16× 16 images. These results are the weighted average
of all databases.

Table 4. Best 5-folds Results on each Database

Best Indi-
vidual Ex-
pert

2-Stages
MoE

Other Methods Classifi-
cation by
humans

FERET 93.71% 95.10%±1.2% - OpenCV: 90.31% 85.50%

Ada[Haar] - Calfa el at. [6]: 93.95%±2.6%

FERET [4] 91.59% 95.33% - Mäkinen et al. [4]: 92.86%

MixDB 86.89% 90.12%±3.4% - OpenCV: 81.67% 77.80%

Ada[Haar]

LFW 88.41% 91.49%±1.1% - OpenCV: 81.58% 86.67%

Ada[Haar] - Shan [8]: 94.81%±1.1%

5.5 Best Results on each Database

Table 4 presents the best achieved results on each database alone using our
proposed 2-Stages MoE for merging SVM[LM] and Ada[Haar]. We compare these
results to OpenCV’s gender classification [17] on our subsets, and to published
results on the same databases. For FERET, Calfa et al. [6] used the frontal set
as we did, and reported results using 5-folds cross validation.

Mäkinen et al. [4] achieved best results using combination by voting of six
classification methods, on frontal images with hair. Their subset contained 760
face images divided equally between male and female, from which they used 80%
for training and 20% for testing. We report results of our method on their set,
splitting the 80% that are used for training equally between the ’Training’ and
’Extra-Training’ subsets.
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Shan [8] tested SVM on boosted LBP, on the LFW database; a set containing
4500 males and 2943 female, approximately the same number of images we used.
They performed 5-folds cross validation for their reported results as we did.
We think Shan’s results are better on LFW because of using the boosted LBP
which are complicated features compared to the simple features we used for our
mixture. However, they have not reported results on any other database.

We also report the average rate of classification done by a small group of 5
people; 3 male and 2 female, on a subset of the 16 × 16 adjusted face images
that was randomly selected from the datasets, 100M/100F from FERET and
the same for MixDB, while 150M/150F from LFW. The poor classification rate
proves that even though humans can easily classify gender from high resolution
face images, it is much harder to classify from very small images like the ones
we used.

6 Conclusions and Future Work

In this research, we presented a new approach for merging several gender classifi-
cation methods using Naive Bayes. We used a Mixture of Experts formed of two
stages used to combine results of two experts; the first stage uses the input im-
age along with the scores of the experts for classification, while the second stage
implements a Naive Bayes approach for the merge. Our experiments showed that
the multilevel MoE composed of only two contributing experts achieves compa-
rable results and sometimes better than using basic MoE which supports more
than two experts.

We tested on both appearance-based and shape-based data, and the best
merge result obtained are when these were combined together, as shown in Ta-
ble 3, where the best results are obtained when combining SVM on landmarks
positions, with Adaboost on Haar-like features.

The effect of varying the resolution of images on the classification accuracy
was studied, from which we proved one of the aspects of the ’curse of the dimen-
sionality’ problem, showing that higher resolution images are not necessary for
better performance. We demonstrated in Section 5.3 that the time taken by the
classification process can be reduced a lot without loosing much accuracy using
low resolution face images.

For future work we plan to use different features extracted from the face image
like SIFT, SURF, or boosted LBP along with other classifiers.
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Abstract. In various learning problems data can be available in different
representations, often referred to as views. We propose multi-class clas-
sification method that is particularly suitable for multi-view learning set-
ting. The algorithm uses co-regularization and error-correcting techniques
to leverage information from multiple views and in our empirical evalua-
tion notably outperforms several state-of-the-art classification methods on
publicly available datasets. Furthermore, we apply the proposed algorithm
for identification of the pathogenic bacterial strains from the recently col-
lected biomedical dataset. Our algorithm gives a low classification error
rate of 5%, allows rapid identification of the pathogenic microorganisms,
and can aid effective response to an infectious disease outbreak.

1 Introduction

Frequently the problem at hand requires considering a classification task in-
volving more than two classes, namely when the label y is chosen from the set
Y = {1, . . . , κ}, where κ > 2. A number of methods have been proposed to deal
with this problem and they can be divided into two main categories: i) methods
that reduce the multi-class problem into simpler binary classification tasks and
combine the obtained results afterwards (e.g. [1,2,3]) and ii) genuine multi-class
classification algorithms (e.g. [4,5,3]) that learn a single function for discrimi-
nating between the multiple classes. In [3], authors provide a detailed overview
of the methods that are frequently used for multi-class classification. They re-
fer to the algorithms that learn a single function for discriminating between
different classes as a “single machine” approach. For instance, in the one-versus-
all method (e.g. [3]) the aim is to create a binary classification problem such
that examples y = l1 belong to the positive class and all other examples hav-
ing class labels l2,...,κ belong to the negative class. Another way to deal with the
multi-class learning problem is described in [2], where all possible pairs of classes
l1, l2 ∈ Y are considered. This means that

(
κ
2

)
hypotheses have to be generated

and combined. The method is referred to as the all pairs approach.
A more general suggestion on how to treat multi-class classification problem

was proposed in [1] and later extended in [6]. It is known as the error-correcting
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output codes (ECOC) approach. The key idea is to construct the coding matrix
C ∈ {−1,+1}κ×p, where p is some positive integer, such that the rows of the ma-
trix have good error correcting properties (e.g. a large Hamming distance). The
binary learning algorithm is then run once for each column of the output matrix,
whose rows correspond to the encodings of the appropriate y labels induced by
the coding matrix C. For example, this setting is a generalization of one-versus-
all scheme and it can be represented with κ×κ coding matrix having all diagonal
elements equal to 1 and all other elements equal to −1. Given a new example
x′ from input space X , we can predict the corresponding label y′ by finding
the row of the coding matrix that is “closest” to f = (f1(x

′) . . . fp(x′)), where
fs(x

′), s = 1, . . . , p are the prediction functions constructed for each column of
the output matrix.

Another group of algorithms that can be considered as genuine multi-class
classifiers is described in e.g. [7,4,5]. These algorithms learn a single prediction
function that can properly discriminate between different classes. Some of the
algorithms (e.g. [4,5]) use so-called joint feature maps/views Φ(x, y) on the data
from X and labels Y to learn the prediction function. In this case the predicted
class is the one that maximizes the output of the learnt function for the new data
point. We note that the initial problem considered in [4] is structured output
prediction and the presented formulation allows considering multi-class classifi-
cation as a special case. In fact, using multiple views for learning has been shown
to be beneficial for the predictive performance of the algorithm in many tasks
beyond multi-class classification (e.g. [8]). Multi-class classification algorithms
that construct a single prediction function appear to have good generalization
performance and are usually computationally more efficient compared to ap-
proaches that need to train several binary classifiers to solve the problem. On
the other hand, methods such as ECOC have the attractive property of error
correction, they are extensively used in practice and continuously improved (see,
for example, a recent work on decreasing number of binary classifiers needed for
class prediction [9]).

This work aims to combine the benefits of the methods described above and
presents a novel multi-class classification algorithm that is particularly suitable
for multi-view learning setting. We extends co-regularization [10] framework to
be applicable to multi-class problems as well as describe a loss-based decoding
approach for estimating class labels when using multiple views/feature represen-
tations. In our empirical evaluation on publicly available datasets from the UCI,
Statlog, and other repositories proposed algorithm outperforms several state-of-
the-art multi-class classification methods. Furthermore, we apply our algorithm
to the task of identification of pathogenic bacterial species from the dataset con-
taining MS spectra of highly infectious Brucella microorganism [11]. The genus
Brucella contains infectious species that have been found to cause infections in
a wide variety of mammals. Most Brucella species have a narrow host range.
Infection in humans arises from direct or indirect contact with infected animals
or through consumption of contaminated meat or dairy products. We demon-
strate that our algorithm gives a low classification error rate of 5% and allows
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rapid identification of the pathogenic strains. Proposed algorithm can be helpful
for timely and effective response to an infectious disease outbreak, regardless of
whether the outbreak is natural or deliberate.

2 Preliminaries

In the following subsections we briefly describe our framework for constructing
our multi-view multi-class classification algorithm and outline related research
directions. We are interested in the selection of suitable prediction function f ∈
H. Following [12], we consider the reproducing kernel Hilbert space (RKHS)
determined by the input space X and the positive definite kernel function k :
X × X → R. Using the RKHS H as our hypothesis space, we consider the
optimization problem

min
f∈H

J(f) = c(f,D) + λ‖f‖2H (1)

where c(·, ·) is the loss measuring the error of the prediction function f on the
training set D = (X,Y ), ‖ · ‖H denotes the norm in H, and λ ∈ R

+ is a regular-
ization parameter controlling the tradeoff between the error on the training set
and the complexity of the hypothesis. We note that by specializing the loss in the
above formulation we can obtain support vector machines or regularized least-
squares (RLS) [13] as well as other closely related algorithms such as proximal
vector machines and ridge regression.

Next, we describe a straightforward extension of the RLS algorithm to handle
multiple outputs. Suppose instead of having a single column matrix for the
outputs, we now have an n×p-matrix, where p is the number of outputs. Slightly
overloading our notation, let the output matrix be denoted as Y ∈ R

n×p. In the
context of multi-class classification using ECOC the rows of Y would be the same
as those of the coding matrix C. We use the dataset D = (X,Y ) originating
from a set {(xi,yi)}ni=1 of data points, where X = (x1, . . . ,xn)

t ∈ Xn, Y =
(y1, . . . , ,yn)

t ∈ R
n×p. We write the minimization problem as

min
f∈H

J(f ,D) =
p∑

i=1

n∑
j=1

(yji − fi(xj))
2 + λ‖fi‖2H, (2)

thus, the problem at hand boils down to solving p independent regression tasks.
We note that using a square loss function leads to an efficient multi-output
regression solution, namely we obtain predictions for each output by inverting
the kernel matrix only once, therefore, complexity of the algorithm is hardly
increased compared to a standard single output problem. On the other hand
when using methods similar to SVMs for prediction of multiple outputs, the
complexity of solving a single task is multiplied by the number of outputs.

3 Co-regularized Multi-class Classification

Co-regularization (e.g. [10,14]) is naturally applicable in situations where more
than one feature representation of the same object exists. Formally, consider
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M RKHSs H1, . . . , HM along with their corresponding kernel functions k(v) :
X × X → R, 1 ≤ v ≤ M . In the classification task, we search for a vector
f = (f1, . . . , fM ) ∈ H1 × . . .×HM of prediction functions which minimizes

J(f ,D) =
M∑
v=1

c(f (v),D) + λ
M∑
v=1

‖f (v)‖2Hv
+ ν

M∑
v,u=1

c̃(f (v), f (u),D), (3)

where λ, ν ∈ R
+ are regularization parameters and c̃ is a loss function measur-

ing the disagreement between the prediction functions of the views. A classical
example is a web-document classification task where the document can be repre-
sented by the word features or link features it contains, thus, creating two distinct
views of the same data point [15]. The setting described above is suitable for
multi-view approaches, however, in many cases it is not trivial to decide which
set of features is most appropriate for co-regularization (e.g. when the views are
too similar the approach will not work well in practice, as the co-regularization
term would not contribute to the learning).

In case of multi-class classification, the encoding represents a natural choice
for constructing a different view of the data. In some sense, the encoding can
be considered as a structured output that uniquely describes the label. We sug-
gest that by taking into account correlations among such structured outputs in
addition to the inputs can be beneficial for the performance of the learning algo-
rithm. We will construct the views on input-output representations and use them
for training of our algorithm. We will show that when dealing with multi-class
classification problems co-regularization among the views constructed from the
input-output representations leads to improved classification performance. Our
key contribution is an efficient algorithm for multi-class classification that re-
tains benefits of an error-correcting approach and can learn from multiple views
based on expressive input-output feature representations.

One problem associated with using multi-view representation of the inputs
and outputs for multi-class classification arises when estimating the class label
of the new data point. Due to the kernel function used to construct the feature
space, the encoding of the label of the new data point has to be provided to the
algorithm. We solve above problem by making use of the fact that in multi-class
classification tasks the set of possible class labels that can be assigned to the
new data point is known. The strategy is to compute predictions by considering
all possible labels. Once predictions are available loss-based decoding [6] can be
used to find the true class label.

Below we propose a simple loss-based decoding approach for estimating the
class label when using multiple feature representations. More formally, applying
the representer theorem [12] in this context of the co-regularization problem de-
scribed in (3) shows that the minimizers f (v) ∈ H(v) for v = 1, . . . ,M have the

form f (v)(x′,y′) =
∑n

i=1 a
(v)
i k(v)((x′,y′), (xi,yi)), where x′ is an unseen exam-

ple, y′ ∈ {C1,·, . . . Cκ,·} is the encoding of the label, and a
(v)
1 , . . . , a

(v)
n ∈ R

p are

the coefficients. We take the average over all views f∗(x′,y′) =
∑M

v=1 f (v)(x′,y′)
M ,
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and define the loss based decoding function that calculates the distance be-
tween the prediction and the rows of the coding matrix dL(Ci,·, f∗(x′,y′)) =∑p

j=1(Ci,j − f∗
j (x

′,y′))2. Finally, we select the label to be assigned to the
new data point x′ by choosing the class i∗ with the smallest distance: i∗ =
argmini dL(Ci,·, f∗(x′,y′

i)). In our empirical evaluation we have tried several
strategies for selecting the class label for a new data point, however, assign-
ing the label based on smallest distance usually leads to the best results. We
note that constructing views on inputs-outputs has been shown to be beneficial
(e.g. [8]) in structured output prediction problems. We suggest that our approach
can be adapted for such tasks, however, in this work we primarily aim to address
multi-class classification problem.

4 Computational Issues

We have mentioned that using square or hinge loss functions leads to two closely
related algorithms and argued that our choice of the square loss leads to consid-
erable computational benefits when addressing the problem of multiple output
prediction. Thus, using square loss and matrix notations we can reformulate (3)
as

J(A) =
M∑
v=1

tr
(
Y −K(v)A(v)

)t(
Y −K(v)A(v)

)
+ λ

M∑
v=1

trA(v)tK(v)A(v) +

ν

M∑
v,u=1

tr
(
K(v)A(v) −K(u)A(u)

)t(
K(v)A(v) −K(u)A(u)

)
,

where A(v) = (a
(v)
1 , . . . , a

(v)
n )t ∈ R

n×p and A = (At
1, . . . , A

t
M )t ∈ R

Mn×p. The
matrix K(v) ∈ R

n×n has entries of the form
[
K(v)

]
i,j

= k(v)((xi,yi), (xj ,yj)).

The function k((x,y), (x′,y′)) is referred to as a joint kernel. The main idea
behind the joint kernel is to describe the similarity between input-output pairs
by mapping pairs into a joint space [8]. A joint kernel can encode more than
just information about inputs or outputs independent of each other: it can also
encode known dependencies between inputs and outputs. For example, several
variations of joint kernels have been proposed in [8]. One way to define a joint
kernel k is to multiply kernels constructed on input data kX : X × X → R with
kernel constructed on outputs kY : Y × Y → R:

k((x,y), (x′,y′)) = kX (x,x′) · kY(y,y′). (4)

This feature space corresponds to the tensor product of the features space on X
with that on Y. The kernel we use in the experiments is the standard Gaussian
kernel:

k((x,y), (x′,y′)) = exp

[
− ||(x,y) − (x′,y′)||2

2σ2

]
.

Note that this kernel can be decomposed into a tensor product as in (4) with
Gaussian kernels both on inputs and outputs.
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4.1 Derivation of the Algorithm

Consider following optimization problem minA∈RMn×p J(A). Given this formu-
lation of our optimization problem, we can follow the framework described in
[16] to find a closed form for the solution by taking the partial derivative of J(A)
with respect to A(v)

d

dA(v)
J(A) = −2K(v)t(Y −K(v)A(v)) + 2λK(v)A(v)

−4ν
M∑

u=1,u �=v

K(v)t(K(u)A(u) −K(v)A(v)).

By defining G
(v)
ν = 2ν(M − 1)K(v)tK(v), G

(v)
λ = λK(v) and G(v) = K(v)tK(v),

we can rewrite the above term as

d

dA(v)
J(A) = 2(G(v) +G(v)

ν +G
(v)
λ )A(v) − 2K(v)tY − 4ν

M∑
u=1,u�=v

K(v)tK(u)A(u).

At the optimum we have d
dA(v) J(A) = 0 for all views, thus we get the exact

solution by solving

⎛⎜⎜⎜⎜⎜⎝
Ḡ(1) −2νK(1)tK(2) . . .

−2νK(2)tK(1) Ḡ(2) . . .

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
A(1)

A(2)

...

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
K(1)tY

K(2)tY

...

⎞⎟⎟⎟⎟⎟⎠
with respect to A(1), . . . , A(M), where Ḡ(v) = G(v) +G

(v)
ν +G

(v)
λ . The left-hand

side matrix is positive definite and therefore invertible. By defining

B =

⎛⎜⎝G(1) 0 . . .

0 G(2) . . .
...

...
. . .

⎞⎟⎠ D =

⎛⎜⎜⎝
G

(1)
λ 0 . . .

0 G
(2)
λ . . .

...
...

. . .

⎞⎟⎟⎠E =

⎛⎜⎝K(1)tY

K(2)tY
...

⎞⎟⎠

C =

⎛⎜⎜⎝
G

(1)
ν −2νK(1)tK(2) . . .

−2νK(2)tK(1) G
(2)
ν . . .

...
...

. . .

⎞⎟⎟⎠
we can formulate the solution of the system as follows:

A = (B + C +D)−1E. (5)

Furthermore, we suggest an approach that allows searching for the optimal
parameter without increasing the computational cost (see online supplemen-
tary material). The computational complexity of constructing the vector E is
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Table 1. Classification errors in % on resampled datasets of the Random baseline,
mSVMlin, mSVM, mRLS, and mvRLS algorithms. Bold numbers indicate the method
with the lowest classification error on the particular dataset.

Dataset Random mSVMlin mSVM mRLS mvRLS

covertype 85.7 46.2 45.6 46.1 44.1
letter 96.1 68.2 67.7 67.9 67.1
mnist 90 41.6 41.1 41.0 39.5
news20 95 82.3 81.3 81.7 78.6
poker 90 55.5 55.1 55.2 54.5
svmguide4 83.3 56.6 56.2 56.7 55.7
usps 90 32.3 31.8 32.5 30.4
vowel 90.9 60.2 59.9 59.9 59.4

O(Mn2p). Further, the matrices B and D can be constructed in O(Mn3), and
the matrix C in O(M2n3) time. The resulting matrix (B + C +D) ∈ R

Mn×Mn

can be inverted in O(M3n3). Thus, for fixed parameters λ, ν ∈ R
+ the solution

of the optimization problem can be found in O(M3n3+Mn2p) time (we demon-
strate how to further decrease computation complexity of the algorithm in the
online supplementary material).

5 Empirical Evaluation

In the following section we refer to the multi-output regularized least-squares
algorithm for multi-class classification as mRLS. The shorthand notation for our
multi-view multi-class classification algorithm is mvRLS. Further, we denote a
multi-class SVM1 using a linear and Gaussian kernel with shorthand notation
mSVMlin and mSVM, respectively.

Various datasets are used to evaluate performance of the multi-class classifiers.
Following previous works, we test the methods on the benchmark datasets from
the UCI, Statlog, and other repositories that are made publicly available at the
LIBSVM webpage2 in the format directly usable by mSVM and our algorithms.
We note that the attributes in the datasets are linearly scaled to [-1,1].

For the mvRLS algorithm we construct two views: one using a joint kernel over
inputs and outputs, another one purely based on inputs. We use training data
points and their encodings for constructing the views. For estimating the class of
the unseen data point using these two views we follow the procedure described
in Section 3. Similar to [16] we set the width of k(x,x′) = exp

[−(x− x′)2/2σ2
]

to σ2 = 1/n
∑n

i,j=1(xi−xj)
2. For the joint kernel the width parameter is chosen

identically. We have checked on several datasets whether the computed width
is in a good agreement with the one estimated using 10-fold cross-validation.

1 http://svmlight.joachims.org/svm_multiclass.html
2 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

http://svmlight.joachims.org/svm_multiclass.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
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In all cases we have found the computed value to be near optimal. For selecting
the regularization parameters for the mvRLS as well as for the other learn-
ing algorithms we use a 10-fold cross-validation procedure. Estimating optimal
regularization parameters can be computationally prohibitive when conducting
cross-validation. For the mvRLS we use the procedure described in Section 4 to
efficiently search for the parameters. Namely, for each ν on a grid, we apply the
fast parameter selection procedure to obtain results for all λ’s with a single run.
A similar approach can be applied to find the optimal regularization parameter
for the mRLS algorithm.

5.1 Experimental Setup

Following [6] we construct a dense encoding for the multi-class classification
problems. The encoding has 10 log2(κ) columns where each entry is chosen to be
-1 or 1 with equal probability. We generate 10000 random matrices and select
the one having the largest Hamming distance among the rows. We also conduct
several experiments using sparse random codes [6] (e.g. in addition to -1 and
1, entries containing 0s are allowed), as well as with one-vs-all encoding. Using
dense encoding leads to slightly better performance in these trials and we choose
it for comparing the algorithms in our final experiments. Somewhat similar ob-
servations were reported in [3], where it is also noted that when parameters for
underlying binary classifiers are tuned correctly, the one-vs-all scheme becomes
quite competitive to error-correcting approaches.

We consider an experimental setup similar to [17], where the classification per-
formance of the binary classifiers is compared on large UCI datasets. From every
dataset we randomly sample 100 examples. We ensure that examples belonging
to different classes are present in the randomly selected subset. Two thirds of
these examples are used for training, while one third is reserved for testing. On
the training set we use 10-fold cross-validation to estimate regularization param-
eters. We select parameters that on average lead to the best performance over
10-folds. With these parameters fixed, we retrain the algorithm on the training
set (two thirds) and test it on the test set (one third). Finally, we repeat the
complete experiment 50 times and average the results. The obtained results for
each dataset are reported in the Table 1.

We note that although the mSVM algorithm is efficient with a linear kernel,
its runtime when using a nonlinear kernel is large3. Thus, one of the reasons
for adapting the experimental setup proposed in [17] is the possibility to com-
pare our algorithm to the non-linear mSVM method. It can clearly be seen that
mvRLS consistently has good classification performance. We use the Friedman
test [18] with significance level (p < 0.01) on the results obtained from 50 in-
dependent runs of the algorithm and demonstrate that statistical significance
of the obtained results. To further study the performance differences between
the algorithms we use post-hoc Nemenyi test. Only in one case (vowel dataset)

3 See http://svmlight.joachims.org/svm_multiclass.html for details.

http://svmlight.joachims.org/svm_multiclass.html
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where mvRLS performs better than the other methods the obtained differences
are not significant.

6 Identification of Pathogenic Bacterial Strains

We apply proposed multi-view multi-class classification algorithm to recently
collected biomedical dataset described in [11]. The dataset obtained via matrix-
assisted laser desorption/ionization time-of-flight mass spectrometry consists of
spectra of 170 Brucella isolates. The genus Brucella contains highly infectious
species that have been found to cause infections in a wide variety of mammals.
Infection in humans arises from direct or indirect contact with infected animals
or through consumption of contaminated meat or dairy products. Also, diagnos-
tic laboratory workers are also at risk; 2% of all cases of brucellosis are laboratory
acquired. Brucella species have a low infectious dose and are capable of transmis-
sion via aerosols, and the treatment of infections is lengthy with a risk of compli-
cations. The Brucella species primarily considered to be pathogenic for humans
are B. melitensis, B. suis, B. abortus, and sporadically B. canis, B. suis biovars.
The collected data requires preprocessing such as re-sampling, de-noising, base-
line correction, normalization and finally peak detection and qualification before
it can be used for training the classifier. We follow [19] to extract relevant fea-
tures for each data point. We evaluate performance of the proposed algorithm on
multi-class classification problem with 5 classes containing pathogenic Brucella
species (B. melitensis, B. suis, B. abortus, B. canis, and B. suis biovars) and
one additional class containing the rest of non-pathogenic microorganisms. We
also test classification performance of our method with lower number of classes
representing pathogenic species. A motivation for such experiment is an obser-
vation that B. canis and B. suis biovars have not been documented to be human
pathogens and can be merged into separate class. In all classification experiments
we follow the same parameter estimation and view construction procedure as de-
scribed in Section 5. We randomly split complete dataset into training set (two
thirds) and test it on the test set (one third). We ensure that examples belonging
to different classes are represented in both subsets. Once the parameters are es-
timated via 10-fold cross-validation on the training set, we retrain the algorithm
on the training set and test it on the test set. The obtained classification perfor-
mance on the test set is depicted in the Figure 1. Similarly to the experiments
on the benchmark datasets it can observed that mvRLS consistently outper-
forms other algorithms. The performance differences are statistically significant
according to the Friedman test [18] (p < 0.01). The main result is shown in the
subfigure (a). Experiment 1 corresponds to the multi-class classification problem
with 5 classes of pathogenic and 1 class of non-pathogenic species. Experiment
2 corresponds to the classification problem with B. canis and B. suis biovars
species merged into a single class. The rest of the experiments correspond to
different reductions of 5 pathogenic classes into lower number of classes. With
the exception of experiment 1, the subfigures (a), (b), and (c) depict results
on 5-class classification and the subfigures (d), (e), and (f) depict results on to
4-class classification tasks.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Experiment 1 (see subfigure (a)) corresponds to the multi-class classification
problem with 5 classes of pathogenic and 1 class of non-pathogenic species. The rest of
the experiments correspond to different reductions of 5 pathogenic classes into lower
number of classes. With the exception of experiment 1, the subfigures (a), (b), and (c)
depict results on 5-class classification and the subfigures (d), (e), and (f) depict results
on to 4-class classification tasks.
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7 Conclusions and Discussion

This work concerns a novel multi-class classification algorithm that is partic-
ularly suitable for multi-view learning setting. We formulate the algorithm by
extending co-regularization [10] framework to be applicable to multi-class prob-
lems as well as suggest new loss-based decoding approach for estimating class
labels when using multiple views/feature representations. In our empirical evalu-
ation on benchmark datasets the proposed algorithm outperforms several state-
of-the-art multi-class classification methods. We apply our algorithm to the task
of identification of pathogenic bacterial species of highly infectious Brucella mi-
croorganism. The results show low classification error rate of 5% on this task,
which suggests that our method can be helpful for timely and effective response
to an infectious disease outbreak.

Our approach can be extended in various situations. For instance, the algo-
rithm can be adapted for the task of structured output prediction. It also allows
efficient construction of different views for the co-regularization problem (see on-
line supplementary material) and leads to notable speed up when dealing with
large-scale learning tasks.
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Abstract. In practical applications of pattern recognition and computer vision,
the performance of many approaches can be improved by using multiple models.
In this paper, we develop a common theoretical framework for multiple model fu-
sion at the feature level using multilinear subspace analysis (also known as tensor
algebra). One disadvantage of the multilinear approach is that it is hard to obtain
enough training observations for tensor decomposition algorithms. To overcome
this difficulty, we adopted the M2SA algorithm to reconstruct the missing entries
of the incomplete training tensor. Furthermore, we apply the proposed framework
to the problem of face image analysis using Active Appearance Model (AAM) to
validate its performance. Evaluations of AAM using the proposed framework are
conducted on Multi-PIE face database with promising results.

1 Introduction

Observations in the real world are often affected by many factors which lead to wide
variations in object appearance. Typical examples are gender, pose, age and expression
variations of the human face. The difficulties posed by these factors limit the perfor-
mance of many existing object recognition approaches. Thus, modelling these factors
is very important for image understanding and analysis, which are the ultimate goals of
computer vision.

To counteract the difficulty posed by different variations, more sophisticated object
modelling approaches have been proposed in recent years, such as the view-based [1]
[2], bilinear-based [3] [4] and tensor-based approaches [5] [6]. The core idea of these
methods is to try to decouple the original space into different subspaces and obtain a
set of state-specific models which can represent their corresponding state-specific ob-
servations well. This is a common way to solve the difficulty as stated above. These
models trained using subsets parametrized by specific factors can perform much better
than a generic model trained from a pool of observations with many factors [7]. Implic-
itly, these approaches are based on different multiple model frameworks. In practical
applications, we always choose one of these models or fuse some of them into a new
model. Actually, both the view-based and bilinear methods can be viewed as special
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cases of the multilinear methods. Using multilinear structure has lots of advantages
in high dimensional data analysis because it offers a natural description of real-world
observations.

In this paper, we develop a unified and compact theoretical framework for feature
level multiple model fusion by using multilinear algebra. In practical applications, how-
ever, it is normally hard to obtain enough training samples for classical tensor decompo-
sition algorithms, such as the Higher Order Singular Value Decomposition (HOSVD)
[8]. For example, for an object with 5 different factors and each factor including 10
different variations, the total number of the required training samples is 105. To cope
with this problem, the M2SA [9] algorithm is implemented with our multiple model
fusion system, which can reconstruct the missing entries by using a weighted scheme.
The proposed framework is applied to face image analysis using Active Appearance
Model(AAM)[10] to validate it and to assess its performance.

The rest of this paper is organized as follows: Section 2 introduces the basic theory of
tensor algebra and our multiple model fusion framework. Section 3 addresses the M2SA
algorithm to cope with the missing entries. The application of the proposed framework
to the AAM is discussed in Section 4. The experimental results obtained on the Multi-
PIE face database [11] are presented in Section 5 and conclusions are summarized in
the last section.

2 Multiple Model Fusion

In this paper, scalars, vectors, matrices and higher-order tensors are denoted by lower-
case and upper-case letters (a,A,b,B,· · · ), bold lower-case letters (a,b,· · · ), bold upper-
case letters (A,B,· · · ) and calligraphic upper-case letters (A,B,· · · ) respectively.

The adopted model fusion framework is carried out at the feature level of observa-
tions by using multilinear algebra. The multilinear algebra, also known as tensor alge-
bra, is an extension of 1D vector and 2D matrix in linear algebra, which are actually
1st-order and 2nd-order tensors respectively. Normally, the term ′higher-order tensors′

stands for N th-order tensors when N � 3.
Suppose we have an observation training set X parametrised by M different factors

and each factor has Im (m = 1 · · ·M ) different variations. We can divide this training
set into subsets X = {X1,1,··· ,1, · · · ,Xi1,i2,···iM , · · · ,XI1I2···IM }. For these observa-
tions in each subset, we can extract their features and obtain the feature level description
for the corresponding subset:

Yi1,i2,··· ,iM = {yi1,i2,··· ,iM
1 , · · · ,yi1,i2,··· ,iM

L }, (1)

where L is the number of features, yl ∈ R
Dl×1(l = 1 · · ·L) are feature vectors and

Dl is the dimensionality of these feature vectors. These features could be the shape,
texture, Haar-like feature, HoG, LBP, SIFT and so on. We can choose one or some of
these features for (1). The feature selection might affect the performance of the model
seriously. Thus, we should choose suitable feature selection methods to achieve the best
performance of the models in a given application.

Normally, given a specific model, we can train a set of those models using different
state-specific training subsets:

{Mi1,i2,··· ,iM : Yi1,i2,··· ,iM }, im = 1 · · · IM (2)



Feature Level Multiple Model Fusion Using Multilinear Subspace Analysis 75

where Mi1,i2,··· ,iM is the state-specific model trained from the corresponding subset
Yi1,i2,··· ,iM . Then, one of these models or a fused model obtained by combining some
of these models chosen by a state estimation approach can be applied to the test set with
corresponding variations. This multiple model system can improve the performance
greatly. However, it is not convenient to describe and analyse this incompact framework.
Here, we introduce the multilinear approach to the feature level multiple model fusion
framework to obtain a unified and compact structure. Fig. 1 shows an example of the
proposed feature level multiple model fusion approach based on a 3rd-order tensor.

= ×1 ×2 ×3 

Original Training Set (X)

Feature Level Description (Y)

Feature Extraction

Tensor Decomposition

…Subset Y1,1,1 Subset YI1,I2,I3

…M1,1,1 MI1,I2,I3

Mnew

Modelling

…
Model Level Fusion

= ×1 ×2 ×3 

Feature Level Fusion

Mnew

Test Set

State 
Estimation

Feature Level Fusion Model Level Fusion

Modelling

Fig. 1. Comparison between the model level and feature level multiple model fusion frameworks

In multilinear approach, each feature level training set can be rewritten as a higher-
order tensor Yl ∈ R

I1×I2×···×IM×IM+1(l = 1 · · ·L) and IM+1 = Dl. Set N =
M + 1, the (M + 1)th-order tensor can be simplified to a N th-order tensor Yl ∈
R

I1×I2×···×IN . Then, we apply tensor decomposition algorithms to these training ten-
sors Yl(l = 1 · · ·L). The most popular two types of tensor decomposition algorithms
are CANDECOMP/PARAFAC (CP) based tensor decomposition and Tucker-based ten-
sor decomposition [12]. Both of them are generalizations of SVD and PCA from a 2D
matrix to a higher-order tensor. In this paper, we choose the Tucker-based tensor be-
cause its decomposition algorithm and structure are much more convenient than that of
the CP-based tensor.

The feature level training tensor Y can be decomposed by Tucker-based HOSVD [8]
decomposition algorithm (also known as the ’Tucker1’ algorithm):

Y = Z ×1 U1 ×2 U2 · · · ×N UN (3)
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where Z ∈ R
I1×I2×···×IN is the core tensor with the same dimensionality of the in-

put tensor Y , which stands for the interaction between the orthonormal mode matrices
Un ∈ R

In×In(n = 1 · · ·N). The mode-n matrix Un in (3) is the left singular matrix
obtained by applying SVD to mode-n flatten matrix Y(n) of tensor Y [12] and the core
tensor Z is computed by:

Z = Y ×1 U
T
1 ×2 U

T
2 · · · ×N UT

N . (4)

When we apply the multiple model system to a specific application, we must choose one
of these models or fuse them into a new model to adapt to the practical environment.
Here, we do the selection or fusion process at the feature level rather than the model
level. Note that, the performance of a model might be affected only by one or some of
the factors. Thus, we only need to fuse the training tensor on these corresponding factor
modes rather than all the modes. Suppose the model is influenced by the nth and n+1th
factors seriously, we can obtain the fused model at the feature level by:

{Mnew : Z ×1 U1 · · · ×nα
T
nUn ×n+1 α

T
n+1Un+1 · · · ×N UN}

s.t.

In∑
k=1

αn(k) = 1, (5)

where Mnew is the fused new model and αn is the state parameters standing for the
degree of the membership to different variations of the nth factor. We can also set
αn(k) ∈ {0, 1} to achieve a model selection framework. The elements in state vector
α can be obtained by using different classifiers or multiple classifier systems, such as
the variation estimation scheme in [6].

3 Coping with Incomplete Training Set

The feature level multiple model fusion framework using tensor algebra provides a
compact structure for the multiple model system. However, this tensor-based framework
can only tackle with the problems when all the entries of the input tensors are available.
In practical applications, it is hard to obtain such an complete tensor. To overcome
this difficulty, we introduce some state-of-the-arts tensor completion methods in this
section.

One possible way to solve this problem is by using the naive mean of available
entries. But this method can only be used when a small number of training samples
are missing. The performance of the fused model goes down rapidly as the number
of missing entries is increasing. Another way is to reconstruct these missing entries
by using some prediction algorithms. Suppose we have an incomplete training tensor
Y ∈ R

I1×I2×···×IN . To reconstruct the missing entries for this incomplete tensor, we
first define a corresponding non-negative index (weight) tensor I of the same size as Y:

Ii1i2···iN = { 1, when Yi1i2···iN is available,
0, when Yi1i2···iN is missing.

(6)

The goal of the incomplete tensor decomposition is to minimize:

‖I ∗ (Y − Ŷ)‖, (7)
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where ′∗′ is Hadamard product (or element-wise product), and Ŷ is the reconstructed
tensor. To solve this objective function, Acar et al. proposed an approach named CP
Weighted OPTimization (CP-WOPT) [13] by using a gradient descent optimization ap-
proach. However, the CP-WOPT is based on CP tensor and the gradient descent op-
timization algorithms influence the reconstruction accuracy seriously. An alternative
method is the Tucker-based M2SA algorithm [9]. Although the objective function of
M2SA is the same as that of CP-WOPT, it does not need to compute the gradient using
some optimization algorithms in each iteration. Thus the time cost is greatly reduced
by using M2SA and the reconstruction performance is independent to the optimization
algorithms.

The M2SA is an iterative progress based on N-Mode tensor dimensionality reduction
algorithm. The N-Mode tensor dimensionality reduction algorithm aims to find a lower
rank− (R1, · · · , RN ) approximation for an input tensor. The mode-n rank of tensor Y
is defined as Rn = rank(Y(n)), where Y(n) is the mode-n flatten matrix of Y at the
nth mode. A pseudo code of the N-mode dimensionality reduction algorithm is given
in Algorithm 1.

Algorithm 1. N-Mode Dimensionality Reduction
1.Pre-iteration
Set the lower rank Rn < In for n = 1, 2, · · · , N ; apply HOSVD to Y; truncate each mode
matrix Un to Rn columns and obtain the initial mode matrices U0

1, U0
2, · · · U0

N ;
2. Iterate for k = 1, 2, · · · :
2.1 Set Ũk

n = Y ×1 (U
k
1)

T · · · ×n−1 (U
k
n−1)

T ×n+1 (U
k−1
n+1)

T · · · ×N (Uk−1
N )

T
;

2.2 Obtain Ũk
n by unfolding Ũk

n along the nth mode;
2.3 Orthonormalise the columns of Ũk

n and truncate to Rn columns to obtain Uk
n;

Untill ‖Uk
n
T ·Uk−1

n ‖2 > (1− ε)Rn, for n = 1, 2, . . . , N ;
3. Compute the core tensor by Ẑ = ŨN ×N ÛT

N and the rank-reduced approximation Ŷ =
Ẑ ×1 Û1 ×2 Û2 · · · ×N ÛN .

Algorithm 2. M2SA
1. Fill the missing elements in training tensor Y with the average value of all the available el-
ements with some corresponding contributory factors to obtain the initialization of the training
tensor Y0;
2. Apply Algorithm 1 to Y0 to get the initial rank-reduced approximation Ŷ0 = Ẑ0 ×1 Û0

1 ×2

Û0
2 · · · ×N Û0

N ;
3. Iterate for k = 1, 2, · · · :
3.1 Update training tensor by Yk = Y.× I + Ŷk−1.× (∼ I);
3.2 Apply Algorithm 1 to Yk to get the new rank-reduced approximation Ŷk = Ẑk ×1 Ûk

1 ×2

Ûk
2 · · · ×N Ûk

N ;
Until ‖(Yk − Ŷk).× I‖ < ε or k > Max Loop;

4. Compute the rank-reduced approximation Ŷ = Ẑ ×1 Û1 ×2 Û2 · · · ×N ÛN .
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Unfortunately, the Algorithm 1 cannot be used for an incomplete tensor. To adapt
this to a sparse tensor with missing entries, the M2SA algorithm has been proposed.
The M2SA algorithm uses a weighted scheme to achieve the best reconstruction perfor-
mance for the available entries as the reduction of the dimensionality of the input sparse
tensor, which is summarized in Algorithm 2. The prediction of missing entries by using
M2SA completes the training tensor. Thus, we can apply the classical HOSVD to this
reconstructed training tensor.

4 Application to Face Image Analysis

To validate the proposed multiple model fusion framework, we apply it to human face
image analysis, which is an important problem in pattern recognition and computer
vision. We develop the proposed multiple model fusion framework using 2D morphable
models in this section.

It has been reported that the 2D morphable models are powerful tools for face im-
age analysis, such as the well-known active shape model (ASM) [14], AAM [10] and
constrained local model (CLM) [15]. AAM is one of the most popular 2D morpbable
models due to its capability of modelling both shape and global texture for human faces
[16]. Typically, an AAM is fitted to input images to achieve automatic face annotation
or to attempt face recognition. However, the AAM is very sensitive to pose, expression
and illumination variations, which seriously limits its applicability. In this section, we
perform the tensor-based multiple model fusion framework to the AAM to overcome
the fitting difficulty posed by view, expression and illumination variations when we
have an incomplete training samples.

4.1 Feature Selection

The classical AAM is trained from a set of labelled images. We choose the classical
shape and appearance (global texture) information as the features used in our multiple
model framework. The shape is manually landmarked in the training phase and the ap-
pearance relates to shape-free surface obtained by using a piecewise affine warp from
the original shape to the mean shape. Fig. 2 shows an example of the normalized shape
and appearance features. Suppose the training set contains Iid identities with Ipe pose,
Iexp expression and Iill illumination variations. In practical applications, it is hard to
obtain such a big training set which contains all these variations. Given an incomplete
training set, we can extract the shape and appearance features and subsequently obtain
the incomplete shape training tensor S ∈ RIid×Ipe×Iill×Iexp×Is and appearance train-
ing tensorA ∈ RIid×Ipe×Iill×Iexp×It , where Is and It are dimensions of the shape and
global texture feature vectors.

For the incomplete training shape and appearance tensors, the use of M2SA implies
constructing:

S =ZS ×1 Vid ×2 Vpe ×3 Vill ×4 Vexp ×5 Vs, (8)

A = ZA ×1 Wid ×2 Wpe ×3 Will ×4 Wexp ×5 Wt, (9)
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Fig. 2. Extracted shape and appearance features

where: ZS and ZA are shape and appearance core tensors; Vid,Vpe,Vill,Vexp,Vs

are mode matrices of the shape tensor for identity, pose, illumination, expression and
the coordinates of the landmarks in shape respectively; Wt is the mode matrix of the
global texture tensor based on the number of pixels in the mean shape.

Using the multiple model fusion framework we can obtain a specific AAM model
which can be fitted to the input images with corresponding variations much better than
a generic AAM model.

4.2 Feature Level Model Fusion

Given an input test image, we first predict the pose, expression and illumination condi-
tions to obtain the fused shape and appearance models of AAM. The prediction algo-
rithm can be performed either on pixel level or feature level. For model selection, this
is a typical classification problem which identifies the single membership states of the
input images. We can use some classical algorithms to obtain the state estimation re-
sults, such as the SVM, neural network, the discrete tensor-based estimation in [6] and
so on. In principle,we could also identify the degree of membership of each input image
in various states of variations to define mixing parameters for the multiple models (in
contrast to model selection).

Once we obtain the state estimation results, we can train the fused shape and appear-
ance models using the training approach in [17]:

{MS : ZS ×2 α
T
peVpe ×4 α

T
expVexp ×5 α

T
s Vs}, (10)

{MA : ZA×2α
T
peWpe ×3 α

T
illWill ×4 α

T
expWexp ×5 α

T
t Wt}, (11)

where αs are the model mixing coefficient defined in (5).
It has been observed that the AAM fitting algorithms work well when the initial ap-

pearance can cover most part of the face in the input image [18]. Thus, we assume that
the face region has been detected by a face detection algorithm with a sufficient accu-
racy to provide initialization for the AAM fitting. The estimation algorithm we adopted
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for predicting αs in (10) is the discrete estimation algorithm in [6]. At last, the corre-
sponding fused shape and appearance models are used for AAM fitting by the inverse
compositional algorithm in [16] to obtain the shape and global texture information of
the face in the input image.

5 Experimental Results

5.1 Database and Experimental Environments

We evaluated the proposed tensor based multiple model fusion framework by applying
it to face image analysis using AAM on the Multi-PIE [11] face database. The Multi-
PIE face database has more than 750,000 facial images (640*480) captured from 377
people across 15 different poses, with 19 different illumination conditions and a range
of different expressions across 4 sessions. It is a laborious work to landmark all the
images in the Multi-PIE face database for model training and test. Although the total
number of the identities is 377, only 129 identities are captured in all sessions with
wide variations. From these 129 identities, we choose a subset containing 40 identities
with 4 different poses (01 0, 04 1, 05 1 and 09 1), 3 different expressions (neutral from
session 1, smile from session 3 and scream from session 4) and 4 different illuminations
(00, 01, 07 and 13) as our training and test sets. Fig. 3 shows these pose, expression and
illumination variations in our subset.

Fig. 3. Pose, illumination and expression variations of one identity from our experimental subset

The experiments were conducted on Dell PowerEdge C6145 servers with 4×AMD
Opteron 6262 Processors (64 cores), 512 GB RAM and programmed by Matlab 2012a
64-bit using Tensor Toolbox 2.5 from Sandia National Laboratories [19].

5.2 Performance of AAM Using the Proposed Framework with Incomplete
Training Set

In our experiments, we randomly choose 20 identities as the training set and the oth-
ers as the test set. To make the evaluation meaningful, we adopt the repeated cross-
validation scheme in our experiments. In each loop, we randomly remove 5% − 95%
entries from the complete training shape and texture tensors to generate the incomplete
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Fig. 4. Comparison of the reconstructed shape and texture errors by the M2SA and naive mean
methods
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(b) Fitted texture error
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(c) Convergence rate by using threshold of
the fitted shape error 2
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(d) Convergence rate by using threshold of
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Fig. 5. Comparison of the AAM fitting performance by using the proposed framework

training tensors. Both the training and test subsets were landmarked manually to obtain
the shape and global texture features for modelling, and the ground truth for evaluation.
We took 52 landmarks for the shape feature in our experimental results. Thus, the size
of the shape and texture training tensors are 20×4×3×4×104 and 20×4×3×4×4018
respectively. All the images have been resized to 320*240.

We first test the reconstruction performance of the M2SA algorithm in terms of the
RMS errors between the reconstructed missing entries and the ground truth data. To make
a comparison, we substitute the missing entries using the mean of the available entries:
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Yiid,ipe,iexp,iill,i
m =

∑
J Y((jid=iid)∨(jpe=ipe)∨(jexp=iexp)∨(jill=iill))∧(j=i)

a

sum(I) , (12)

where the lower right subscripts ′m′ and ′a′ stand for missing entries and available
entries respectively; the upper right subscripts stand for the positions of the value in
tensor Y; sum(I) gives the number of the available entries and I is the index tensor
(6). Fig. 4 presents the reconstruction performance of M2SA in terms of shape and
appearance reconstruction RMS errors. The M2SA can obtain a better reconstruction
results both for the shape and appearance features used for AAM modelling. The ob-
tained reconstructed shape and appearance features are used to cope with the problem
of incomplete data in the training set in the subsequent steps.

Fig. 6. Some fitted faces using the proposed framework with 80% missing entries
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To evaluate the AAM fitting performance with the proposed framework, we first
measured the fitting performance in terms of the pt-to-pt error between the fitted shape
and the ground truth shape. Then we warped the global texture from the fitted shape to
the mean shape and measured the RMS error between the warped texture and the ground
truth texture. Also, we measured the convergence rates of the AAM by using threshold
value of fitted shape error 2 and threshold value of fitted texture error 16. Fig. 5 shows
the trends of the AAM fitting performance using the proposed multiple model fusion
framework as the percentage of missing entries is increasing. It is obvious that the use
of the M2SA algorithm can maintain the AAM fitting performance even when the ma-
jority of training entries are missing. Fig. 6 shows some typical fitted results produced
by the fused AAM model using the proposed framework with 80% missing entries.
The proposed multiple model fusion framework can overcome the pose, expression and
illuminations variations even in some extreme cases.

6 Conclusions

In this paper, we developed a unified theoretical framework for feature level multiple
model fusion by using multilinear algebra. Furthermore, we applied the M2SA algo-
rithm to extend the proposed framework to incomplete training data. We then applied
the proposed framework to face image analysis using AAM and evaluated the system
performance on the Multi-PIE face database.

The experimental results obtained on the Multi-PIE face database validate the ro-
bustness of the proposed multiple model fusion framework on face image analysis in
the presence of with pose, expression and illumination variations. The use of M2SA
algorithm improved the performance of our model fusion system in the case of an in-
complete training set. The results show that our model can maintain good performance
even when up to 80% training samples are missing.
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Abstract. The combination of classifier decisions is a common approach
to improve classification performance [1–3]. However, non-stationary fu-
sion of decisions is still a research topic which draws only marginal atten-
tion, although more and more classifier systems are deployed in real-time
applications. Within this work, we study Kalman filters [4] as a combiner
for temporally ordered classifier decisions. The Kalman filter is a linear
dynamical system based on a Markov model. It is capable of combining
a variable number of measurements (decisions), and can also deal with
sensor failures in a unified framework. The Kalman filter is analyzed in
the setting of multi-modal emotion recognition using data from the au-
dio/visual emotional challenge 2011 [5, 6]. It is shown that the Kalman
filter is well-suited for real-time non-stationary classifier fusion. Combin-
ing the available sequential uni- and multi-modal decisions does not only
result in a consistent continuous stream of decisions, but also leads to
significant improvements compared to the input decision performance.

1 Introduction

Typically, fusion approaches aim at combining classifier decisions in a time-
invariant manner using classical combiners, as specified by Kuncheva [2], i.e.
average, maximum, product etc. or fuzzy integrals, decision templates, Dempster-
Shafer combination [7, 2, 3]. Most of these methods require fuzzy or probabilistic
classifier outputs. Furthermore, adaptive fusion approaches such as the asso-
ciative linear memory, pseudo-inverse, naive Bayes decision fusion have been
examined [8]. However, these stationary, time-independent approaches are insuf-
ficient when dealing with a stream of classifier outputs obtained by observing
an ongoing event in real-time. Intuitively, the temporally linked inputs to the
fusion architecture are faced by extending standard combiners, which results in
methods such as moving average, or computing the product of all inputs within
one window. Jeon and Landgrebe [9] propose two fusion approaches for multi-
temporal classifiers, namely the likelihood decision fusion rule and the weighted
majority decision fusion rule. Both approaches make use of temporal data to
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c© Springer-Verlag Berlin Heidelberg 2013
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find a global decision. Although the method is proposed for fusing temporally
structured data, no Markov assumption is made. Glodek et al. [10] addresses
the combination of temporally structured data using Markov fusion networks
(MFN), which are related to the Markov Random Field in image processing to
repair distorted images. The MFN estimates the most likely sequence of classi-
fier outcomes by enforcing them (1) to be close to the given available classifier
outcomes and (2) to maintain a similarity over time. Because of the later prop-
erty, the MFN can handle missing classifier outcomes in a native way (e.g. due
to silence in the audio channel).

Kalman Filters [4], which are broadly used in the area of object tracking, are
well-suited for the task of classifier fusion, since they are based on a Markov
chain. The goal is to reduce the noise of measurements by taking multiple mea-
surements and the latest estimate into account. Within this work, we will adopt
the Kalman Filter to use classifier outcomes as input measurements. Missing
classifier outcomes (e.g. because of a missing signal) are addressed by increasing
the uncertainty of the estimate using the observation noise of the model.

Recently, the recognition of human affective states became an important field
of research [11–14]. Many configurations of features and classifiers using different
modalities have been studied [15–18]. However, the interplay of different modal-
ities, which is an inherent part of the recognition task, has been examined only
marginally. The audio/visual emotion challenge (AVEC) is designed to investi-
gate spatio-temporal combination of multiple classifiers [6, 5]. Within this work,
we use the challenge data to study the Kalman filter for classifier fusion.

The rest of this paper is organized as follows: Section 2 introduces the pro-
posed Kalman filter for classifier fusion. The method is then evaluated in Sec-
tion 3 using the AVEC 2011 data set. Section 4 summarizes the results of the
new approach and draws a conclusion on the achieved outcome.

2 Classifier Fusion Using Kalman Filter

The Kalman Filter [4] is a popular algorithm in the field of navigation and object
tracking [19, 20]. A prominent feature is that all measurements are assumed to
be uncertain. Furthermore, the model also handles missing measurements by an
additional increase of the uncertainty.

Classifier fusion is realized by taking classifier outcomes (ranging in the in-
terval of [0, 1]) as measurements. Classifier outcomes may be unavailable in case
a sensor fails or does not perceive any signal. The estimation is decomposed
into two steps, namely the prediction and the update step. While the predic-
tion step calculates an estimated scalar x̂t at the time of the next measurement,
the update step (also known as correction step) combines this estimate with
the latest measurements zmt where t ∈ {1, . . . , T } denotes the time steps and
m ∈ {1, . . . ,M} the index of the classifier. The prediction step’s mean estimate
x̂t is obtained based on the previous estimate xt−1 and a so-called control u.
Both quantities are weighted linearly by f and b:

x̂t = f · xt−1 + b · u with f, b ≥ 0. (1)
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The control u can be used to bias the prediction to a certain value (e.g. the
least informative classifier combination 0.5 in case of a two-class problem and
with predictions ranging between [0, 1]). However, we decided to omit the last
term. As a result, our model presumes that the mean of the current estimate is
identical to the previous one. Due to the restriction of the state space in this
application to the values [0, 1], the usage of popular process models like dead
reckoning, which propagates the state using the last state and its first derivation
with respect to the time, may not be used. Consequently, a non-linear version
of the dead reckoning model would be necessary to keep the state restrictions.
The covariance of the prediction is given by p̂t and obtained by combining the a
posteriori covariance with an additional covariance qm which models the process
noise:

p̂t = f · pt · f + qm. (2)

The successive update step is performed for every classifier m and requires three
intermediate results, namely the residuum y, the innovation variance s and the
Kalman gain k:

y = zmt − h · x̂t (3)

s = h · p̂t · h+ rm (4)

k = p̂t · h · s−1 (5)

where h is the observation model which maps the predicted quantity to the new
estimate and rt,m is the observation noise. These outcomes are then used to
update the new estimate and its variance:

xt = x̂t + k · y (6)

pt = p̂t − k · s · k (7)

Missing classifier outcomes (decisions) are replaced by a measurement prior z̃mt

equals to 0.5 and a corresponding observation noise r̃m which is set relatively
high compared to the actual observation noise.

We extended the over-all classifier system by base classifiers which are addi-
tionally allowed to make use of a reject option [21]. That means, classifiers are
also allowed to reject a sample and to return no class assignment. Because of the
temporal structure the missing classifier outcomes can be reconstructed based
on adjacent decisions. The proposed architecture is shown in Figure 2: Each of
the M classifiers provide a classifier outcome and additionally a corresponding
confidence value for each time step t. The confidence value is used to reject deci-
sions with low confidence. The remaining decisions are processed by the Kalman
filter which derives a combined estimate based on the current and past decisions.

3 Empirical Evaluation

The proposed combination method can be applied to any kind of multi-modal
classifier fusion which is sequentially structured and where a Markov assumption
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Fig. 1. Multiple classifier system using classifiers with reject option and the
Kalman filter to combine the decisions. The M classifiers decisions and confi-
dences are collected for ever time step t and temporally combined using the Kalman
filter, resulting in an integrated decision and confidence for every time step.

is plausible. This section focuses on an exemplary data set for classification
which has already proven to be very difficult, namely the audio/visual emotion
challenge (AVEC) 2011 for human affective state recognition [6, 5].

3.1 The Data Set

The AVEC data set was introduced in 2011 in form of a challenge for the recogni-
tion of emotional user states [5, 6]. The recordings show a subject communicating
with a virtual agent which endeavors to induce an affective state in the test per-
son. Four categories have been labeled by two up to eight annotators using a
continuous scale: Arousal, Expectancy, Power and Valance. Binary labels are
obtained by averaging the annotations per category and recording. The final
label are then found by thresholding this averaged value against the average
over all recordings per category. As a result, the occurrences of each class label
is balanced. Since the challenge is continued in 2012 the ground-truth labels of
the test data are still not available. Therefore, the available data of the training
and development set has been re-arranged to obtain a new development/test
and a nested training/validation data set. The number of cross-validation folds
is limited to 4 × 4 (number of development and trainings set, respectively) to
realize subject independent tests (a person to be tested does not occur in the
corresponding trainings set).

3.2 Base Classifiers

Based on the recordings, individual classifiers for audio and video are created
using the partitioned cross-validation. The audio classification is performed on
word-level using three bags of features:
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– Fundamental frequency, the energy and linear predictive coding (LPC)

– Mel frequency cepstral coefficient (MFCC)

– Relative spectral transform - perceptual linear prediction (RASTA-PLP) [22].

To obtain a fixed-length feature vector from an arbitrary long sequence of fea-
tures, a transformation according to Bicego et al. [23] based on HMM is imple-
mented. The classification is conducted using five bags of random forests [24].
The final output is obtained by averaging and the standard deviation is used to
calculate the confidence measure.

The classification of the video channel is based on features extracted by the
computer expression recognition toolbox (CERT) [25], which is designed to rec-
ognize facial properties (such as action units or basic emotions). The output
of the modules “Basic Emotions 4.4.3”, “FACS 4.4”, “Unilaterals” and “Smile
Detector” are concatenated to form a 36-dimensional feature vector per frame.
Classification and the confidence value is realized analogously to the audio clas-
sification using five naive Bayes classifiers with bagging [26]. It is worth noting
that the detection of the subject’s face failed in about 8% of the frames. The
missing detections directly result in missing classifier outcomes. The confidence
measures are obtained in the same manner by using the standard deviation of
the ensemble.

Parameters of all base classifiers are optimized using the training and valida-
tion set. The results of the base classifiers are then derived from the test set.
In order to optimize the parameters of the fusion algorithm, the training and
validation sets partitions are used, i.e the features are replaced by the results of
the base classifiers decisions.

3.3 Experimental Results

The performance of the the audio and video classifier without fusion are given in
Table 1. Frames without a classifier decision, e.e. due to the subject is not speak-
ing or the face is not recognized, are ignored in this evaluation. The Table shows
the accuracies and the F1-measures (i.e. F1 = 2 P ·R

P+R where P is the precision
and R the recall) for the four classes and their negations. Compared to other
results of non-acted emotion recognition, e.g. studies based on the Cohn-Kanade
data set [27], the achieved accuracies and the F1-measures are remarkable low.
However, compared to the challenge best performing submissions the results are
already outstanding1 (The best result of the class arousal achieved an accuracy
rate of around 61%). Table 2 and Table 3 show the performance of the four
categories using only uni-modal temporal fusion. Results based on the audio
channel are shown in the upper part of Table 2, while the utilized parameters
are listed in the lower part. The term reject refers to the proportion of dis-
carded decisions, whereas qaudio and r correspond to the process noise and the
observation noise, respectively. The measurement prior z̃mt is set to 0.5 and the
corresponding observation noise r̃m is set a magnitude higher than the assigned

1 Compare http://sspnet.eu/avec2011/ (02/21/2013).

http://sspnet.eu/avec2011/
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Table 1. Audio and video classifier performances before fusion. Performance
is evaluated frame-wise and only in case classifier outputs are given. Accuracies in
percent with standard deviation. The F1-measure for the class and the corresponding
negation F1 is additionally provided.

Audio Arousal Expectancy Power Valance

↑Acc. 61.8±3.6 59.0±6.3 57.5±9.4 57.5±7.9

↑F1 65.8±3.8 16.4±7.1 69.6±9.3 70.1±6.8

↑F1 56.7±3.4 72.6±5.2 24.7±6.6 24.9±8.4

Video Arousal Expectancy Power Valance

↑Acc. 57.0±4.2 54.8±4.0 55.7±2.9 59.9±7.4

↑F1 60.8±5.1 49.6±9.4 57.5±11.3 67.1±11.5

↑F1 51.3±9.3 56.6±10.7 48.8±12.3 43.5±7.1

Table 2. Frame-wise audio performance using Kalman filter for classifier
fusion. Accuracies in percent with standard deviation and F1-measure for the class
and the corresponding negation F1. Lower part of table lists the parameter assignments.

Audio Arousal Expectancy Power Valance

↑Acc. 74.3±6.6 57.5±6.2 56.5±11.2 59.7±11.0

↑F1 77.4±6.5 12.5±6.2 69.1±10.2 72.9±8.5

↑F1 69.4±8.2 71.8±5.3 22.7±8.9 16.2±14.1

Reject 10% 90% 90% 50%
qaudio 10−7 10−7 10−5 10−4

r 0.1 0.1 0.1 0.75

r. As a result, the estimate slowly converge to the prior in case of continuously
missing measurements. Parameters have been optimized for each label indepen-
dently using the aforementioned cross-validation sets. Compared to the results
without temporal fusion, only Arousal and Valance are improved at first glance.
However, the most important difference of the evaluation compared to Table 1
is that now a decision for every frame is available. Arousal is recognized most
reliably using the audio channels which is not only confirmed by the high accu-
racy but, furthermore, due to the fact that the optimal portion of rejected labels
is very low. In contrast, the category Power seems to be less present in the audio
channel. With the exception of the category Arousal, the unbalancedness of the
F1-measures has clearly increased. The process noise determined on the training
and validation set, are in general of a very low quantity, while the observation
noise ranges from 0.1 to 0.75.

Table 3 shows the results for the video channel. Here, all categories are able
to improve their recognition performance, compared to Table 1. However, the
category Arousal is recognized better using the combined estimate based on the
audio channel shown in Table 2. In general, the F1-measures have increased as
well as to the accuracies and are more balanced. Both, the process noise and
the observation are chosen very similar to the ones in the audio channel, which
might be related to the same range of decisions values (i.e. in the interval [0, 1]).
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Table 3. Frame-wise video performance using Kalman filter for fusion. Ac-
curacies in percent with standard deviation and F1-measure for the class and the
corresponding negation F1. Lower part of table lists the parameter assignments.

Video Arousal Expectancy Power Valance

↑Acc. 64.5±2.9 59.1±4.7 58.9±5.0 65.4±9.8

↑F1 67.9±4.2 56.7±11.1 60.6±13.8 73.3±11.4

↑F1 57.3±12.7 56.4±17.5 48.2±17.1 44.2±8.5

Reject 50% 90% 0% 90%
qvideo 10−7 7.5−6 5−5 10−4

r 0.1 0.1 0.1 0.75

Table 4. Frame-wise audio and video performance using Kalman filter for
fusion. Accuracies in percent with standard deviation and F1-measure for the class and
the corresponding negation F1. Lower part of table lists the parameter assignments.

Audio-visual Arousal Expectancy Power Valance

↑Acc. 68.5±5.7 62.5±4.9 61.8±6.6 64.2±9.3

↑F1 72.6±4.2 42.2±15.7 69.1±7.6 72.6±10.9

↑F1 59.7±15.1 71.1±5.8 43.5±18.0 43.7±3.0

A. rej. 0% 0% 0% 90%
V. rej. 50% 50% 0% 10%
qaudio 10−6 5−6 10−7 5−5

qvideo 10−5 10−5 10−5 10−4

r 0.75 0.1 0.1 0.75

The performance of the combined audio and video channel is shown in Table 4.
The multi-modal combination improves the accuracies of Expectancy and Power,
whereas the category Arousal performed better using only the audio channel,
and the category Valance performed better using only the video channel. The
low performance of Arousal can be related to the unbalanced occurrences of
outputs in video and audio channel. Decisions in the audio channel are not
always available, whereas the frame-wise outputs of the video channel are almost
constantly available. Therefore, the video classifier outputs are the main influence
if no audio signal is present and the audio channel is practically overruled. In
case of the category Valance the decrease in performance can be traced back to
the weak F1-measure of the audio channel. However, although the combination
of the audio and video not always achieves the best performance, it outperforms
uni-modal approach. Furthermore, the uni-modal classification of emotions is far
from being solved, since features from the data are in general weak and even the
labels are very uncertain [18]. Multi-modal approaches are sound as using the
audio channel alone leads to a high degree of uncertainty in case the subject does
not make any utterances, whereas the face of the participant will not always be
in the field of view. The classifier system gets more robust and the likelihood of
a sensor failure is reduced, the more modalities are available.
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Fig. 2. Multi-modal fusion of Arousal using the Kalman filter. The orange
dots and the blue squared-shaped markers correspond to the video and audio deci-
sions. Markers in pale color have been rejected and do not contribute to the fusion.
The thick black curve corresponds to the fusion result, while the area around the curve
corresponds to the variance determined by the Kalman filter (scaled by 10 for illustra-
tion purposes). The light gray curve displays the ground-truth. The parameters used
are qaudio = 10−6, qvideo = 10−5 and r = 0.75.

Although it appears to be tantalizing to interpret the parameter chosen by the
optimization process, a direct interpretation is difficult. For instance, the audio
classifier is only able to provide outputs in case a signal is present, such that the
classifier outputs of the video channel are much more frequent then the classifier
outputs of the audio channel. As a result the rejection rate and the process noise
for audio and video cannot be compared with each other. Furthermore, the ratio
between these modalities is additionally modified by assessing the quality in
terms of rejecting unreliable outputs.

4 Conclusions

The presented work proposes the application of Kalman filters for classifier fu-
sion. The Kalman filter is a widely used and well-understood model for tracking
moving objects and navigation [4, 20]. The model combines multiple measure-
ments and can handle the absence of measurements by increasing the uncertainty
of the predicted state. Within this work, we replaced the uncertain measurements
that are usually processed by the Kalman filter by multi-modal classifier out-
puts. As a result, missing classifier outputs (e.g. caused by a missing signal, for
instance of the audio channel, or by a rejected sample due to low confidence)
can be handled in a unified framework.

In order to evaluate the performance of the combiner, the audio/visual emo-
tional challenge (AVEC) 2011 data set [5, 6] has been utilized. The fusion of
classifier outputs is studied uni- and multi-modally, and has clearly improved
the recognition of all four categories. In addition, the filtering resulted in a
reconstruction of missing classification outputs such that a class assignment is
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possible for all frames. Although the Kalman Filter applied can be regarded as
the simplest time-series model possible (e.g. no control matrix, and assuming an
identity matrix for the dynamics), the results for this data set are outstanding.

Future work will integrate the confidence, that was used here only for the
rejection of samples, directly into the Kalman Filter and perform additional ex-
periments on other data sets. Furthermore, a detailed comparison with multiple
state-of-the-art approaches (e.g. MFN [10], block-averaging) is currently in
preparation.
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Abstract. Systems for face re-identification over a network of video
surveillance cameras are designed with a limited amount of reference
data, and may operate under complex environments. Furthermore, tar-
get individuals provide a small proportion of the facial captures for de-
sign and during operations, and these proportions may change over time
according to operational conditions. Given a diversified pool of base clas-
sifiers and a desired false positive rate (fpr), the Skew-Sensitive Boolean
Combination (SSBC) technique allows to adapt the selection of ensem-
bles based on changes to levels of class imbalance, as estimated from the
input video stream. Initially, a set of BCs for the base classifiers is pro-
duced in the ROC space, where each BC curve corresponds to reference
data with a different level of imbalance. Then, during operations, class
imbalance is periodically estimated using the Hellinger distance between
the data distribution of inputs and that of imbalance levels, and used
to approximate the most accurate BC of classifiers among operational
points of these curves viewed in the precision-recall space. Simulation
results on real-world video surveillance data indicate that, compared to
traditional approaches, FR systems based on SSBC allow to select BCs
that provide a higher level of precision for target individuals, and a signif-
icantly smaller difference between desired and actual fpr. Performance
of this adaptive approach is also comparable to full recalculation of BCs
(for a specific level of imbalance), but for a considerably lower complex-
ity. Using face tracking, a high level of discrimination between target and
non-target individuals may be achieved by accumulating SSBC predic-
tions for faces captured corresponding to a same track in video footage.

1 Introduction

Video surveillance networks found at many airport security checkpoints are com-
prised of a growing number of IP-based surveillance cameras. Face re-identification
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consists in automatically matching facial regions captured in multiple live or pre-
recordedvideo streamsagainst facialmodels of individuals enrolled to a system [15].
Face re-identification in semi- or unconstrained video surveillance environments
raises several challenges. First, FR systems must operate under complex environ-
ments with changing illumination, pose, expression, blur, occlusion, etc. Small
proportion of the faces collected for design or during operation correspond to indi-
viduals of interest, although non-target faces are abundant. In addition, the covert
and unobtrusive capture of video sequences provides only a limited amount of high
quality reference samples to design facial models.

To avoid biasing performance towards the majority (non-target) class, classi-
fiers applied to face matching are typically designed with balanced data, using
sampling techniques or cost sensitivity analysis. Moreover, an estimate of class
priors is often used to scale classifier outputs, although actual class proportions
are often unknown a priori and may change over time. Specialized architectures
for FR in video surveillance [14] do not exploit information on class imbalance
to enhance performance. The impact of imbalance on classification performance
can be observed in the Precision-Recall Operating Characteristic (PROC) [11]
space – the precision measure allow to observe the proportion of correct target
predictions over all target samples. This typically declines when the propor-
tion of negative samples grow over the positive ones. Given its relationship to
the Receiver Operator Characteristics (ROC) space [3], the PROC space can be
exploited to adapt classification systems according to changing class imbalance.

Since the proportion of design samples per class rarely correspond to the ac-
tual distribution of operational data, the performance of systems for FR in video
surveillance will differ from that achieved during the design stage. What’s more,
the underlying distributions change over time in video surveillance applications.
For instance, a security checkpoint (inspection lane or portal) may witness peaks
in the flow of target and non-target individuals. It is desirable to estimate class
imbalance periodically over time, and adaptively select an operation point with
design data that follows the class imbalance of the operational data.

In this paper, a BC technique is proposed to adapt the selection of classifiers
ensembles given the current class imbalance, as estimated from operational data.
This technique, called the Skew-Sensitive BC (SSBC) technique, exploits the
PROC space. During design phases, a pool of diversified classifiers is generated,
and imbalanced validation data is used to produce several BCs by successively
growing the number of negative samples from the majority class. Negative sam-
ples are assumed to be available in large quantities, while the limited number of
positive samples is assumed to be fixed. Each BC is optimized for one specific
class imbalance level. During operations, the system relies on the Hellinger dis-
tance [8] to periodically estimate the closest class imbalance from operational
data streams, from a set of known imbalanced data sets. This estimation is used
to approximate the most accurate BC of classifiers among operational points of
these curves viewed in the PROC space.

Proof-of-concept experiments are performed with real-world video FR data
from the Carnegie Mellon University Face in Action database [7], where class
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proportions captured in operational video streams change over time. The perfor-
mance of SSBC is assessed within a modular FR system comprised of an EoC of
2-class classifiers per person [2,14], and compared to that of BC optimized with
data obtained with random under-sampling [6].

2 Face Recognition in Video Surveillance

The problem addressed in this paper is the design of accurate and robust sys-
tems for video-to-video FR from footage recorded across a network of surveillance
cameras. These systems are considered for person re-identification applications,
where individuals of interest must be detected within semi- or unconstrained
scenes, as found at security checkpoints. Each camera captures streams of 2D
images or frames, and provides a particular view of individuals populating the
scene. The system first performs segmentation to isolate regions of interest
(ROIs) corresponding to the faces in a frame, from which invariant and discrimi-
nant features are extracted and selected for classification and tracking functions.
For classification, some features are assembled into an input pattern, a, that cor-
responds to a spatial vector or an ordered sequence of measurements.

During enrolment, one or more reference patterns a are captured for an in-
dividual, and employed to design a user-specific facial model. Recognition is
typically implemented using a template matcher or a neural or statistical clas-
sifier, mapping the input pattern space to one of N predefined classes, each
corresponding to an individual enrolled to the system. During operations, in-
put patterns a are matched against the models of individuals, and the system
outputs a list of all possible identities.

Systems for FR in video encounter several challenges. Biometric models are
poor representatives of faces to be recognized during operations. The perfor-
mance of FR systems may decline because neural and statistical classifiers de-
pend on the availability of representative reference data of users and the opera-
tional environment. In addition, underlying class distributions may change due
to ageing and variation in operational environments. These factors contribute to
a growing divergence between the facial model of an individual and its underly-
ing class distribution. In addition, with FR in video surveillance, faces captured
in video frames are typically lower quality and generally smaller than still im-
ages. Furthermore, faces acquired from semi- or unconstrained scenes may vary
considerably due to limited control over operational conditions.

Several specialized architectures have been proposed for FR in video surveil-
lance. The open-set Transduction Confidence Machine-kNN (TCM-kNN)
algorithm [12] modified the traditional kNN, using transduction to measure
strangeness between samples, and to reject samples of unknown individuals.
Ekenel et al. [4] combined kNN and Gaussian Mixture Modeling with three
different metrics to estimate individual frame contributions to the overall deci-
sion. Kamgar-Parsi et al. [10] proposed a morphing approach to generate new
synthetic reference data and improve the separability of target and non-target
classes.
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These systems have also been modeled in terms of user-specific detectors,
each one implemented using one or more binary (1- or 2-class) classifiers [14].
This modular approach was employed with user-specific SVMs [5] and ensembles
of 2-class ARTMAP neural classifiers[14]. Binary ensembles are justified by the
limited amount of positive samples for design, and by the complexity of real-
world video scenes [14]. However, these architectures do not consider or exploit
class imbalance information to enhance performance. This information is relevant
in the context of video surveillance, owing to the potentially small number of
positive samples w.r.t. the negative ones, and to changing operational conditions.

3 Binary Classification under Class Imbalance

Binary (1- or 2-class) classifiers output a crisp decision or a score that is com-
pared to a decision threshold to provide a final crisp decision. A common as-
sumption in pattern recognition (PR) literature is that class priors are known
and that data distributions are balanced, i.e., instances of all classes are assumed
to be equally present in both training and operational data. Real world prob-
lems rarely follow this ideal case – class priors are unknown and may change over
time, and training samples are imbalanced and are not necessarily representa-
tive of operational data. Classifiers applied to FR in video surveillance should
be designed to operate under class imbalance – limited target (positive) class
samples w.r.t. non-targets (negative) class samples.

Four main approaches have been proposed in literature to train classifiers from
skewed1 reference data sets [6] – algorithm level, cost sensitive, data level and
ensemble techniques. Algorithm level approaches modify the classifier behavior
to bias toward the minority (positive) class. With cost sensitive approaches, the
classifier training procedure minimizes the total cost of misclassified instances,
instead of minimizing the number of misclassified instances. Errors have a much
higher cost for the minority class, and the sum of miss-classifications costs drives
the learning process. Data level approaches are categorized either as under-
sampling or as over-sampling techniques. Data under-sampling techniques will
reduce the sample number of the majority (negative) class to match that of the
minority class. Finally, ensemble learning approaches [6] are usually performed in
conjunction with one of the three other approaches to optimize the combination
of classifiers. While the above techniques have been used to design monolithic
classifiers and ensembles for imbalance classes, it is assumed that class imbal-
ance observed in the design data is representative of the imbalance encountered
during operations. This paper focuses on adapting the selection classification
system according to the class imbalance observed during operations.

Performance of binary classifiers is commonly evaluated using the ROC anal-
ysis, which is based on two intra-class measures, the true positive rate tpr =
TP/(TP + FN) (proportion of correct positive class predictions) and the false
positive rate fpr = FP/(FP + TN) (proportion of incorrect negative class pre-
dictions). ROC graphs display the entire range of tpr and fpr values to obtain

1 Data skew is the ratio of positive samples πp to negative ones πn, λ = πp/πn.
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different operational points. Given a data set, each (tpr, fpr) pair in a ROC
graph represents a different decision threshold for one soft classifier (an opera-
tional point or vertice), and the empirical ROC curve is obtained by connecting
the observed pairs in the graph.

Given an imbalance in class distributions, the PROC space [3] (also known
as the P-R space) focuses on an inter-class measure – the classifier precision =
TP/(TP +FP ) (proportion of correct positive predictions against the total pos-
itive predictions) – which is related to classification accuracy, as well as recall
(the same as tpr). PROC graphs represent the impact on performance of im-
balance through precision measure. A classifier has different PROC curves when
evaluated on data with different class imbalance, while the ROC curves would
be equivalent since both tpr and fpr are insensitive to imbalance. Davis and
Goadrich discussed [3] the equivalence between dominating operational points
in the ROC and PROC spaces, from which they derived a methodology to find
the PROC achievable curve (analogous to the ROC convex hull).

A decision threshold γ applied to classifier scores is often selected with inde-
pendent validation data (val) once the classifier has been designed. The optimal
decision boundary for a classifier is selected to minimize the probability of error
according to the Bayes theory, which is equivalent to the equal error rate (EER)
when the positive and negative classes are balanced. If class imbalance changes,
so does the optimal threshold. Assume that class imbalance is known, one can
select a decision threshold that provides the EER for every different level of
class imbalance. In video surveillance applications, an acceptable fpr is set by
the human operator, projecting it to an operational point. Thus, the decision
threshold is a variable defined by the desired fpr and class imbalance.

4 Boolean Combination of Classifiers

Boolean combination (BC) are versatile techniques for threshold-optimized fu-
sion of crisp and soft 1- or 2-class classifiers at the decision level [9] (typically in
the ROC space). A soft classifier ci produces a binary decision when its normal-
ized output score is compared to a threshold 0 ≤ γ ≤ 1. This decision ci,γi affects
a trade off between positive and negative classes (e.g., an operational point in
the ROC space). Given a set of decision thresholds Γ , the BC of two soft classi-
fiers ci and cj is the fusion of all ci,γi and cj,γj using Boolean operations. Each
resulting EoC (e.g., ROC vertices) consists of decision thresholds applied to the
classifier scores and a Boolean function. Selecting the superior operational points
in the decision space (for instance, the ROC convex hull or the PROC achievable
curve) defines the best performance trade off. The ROCCH is the ROC curve
composed of the vertices that maximize the area under the ROC curve (AUC).

A BC technique produces a set EoCs, each one corresponding to a vertice of
the ROCCH. After performing BC, the next step is to define an operation point
for the specific application. A general approach to select an operation point
is to choose the EoC in the BC that provides the best trade off between tpr
and fpr values, but for a specific application, the operation point is typically
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selected for a target fpr value using validation data. However, it is unlikely that
an EoC produced by BC will correspond to the the target fpr value. BC of
classifiers in the decision space should therefore be performed using imbalanced
data corresponding to operational data, allowing to generate better operations
points and performing selection and fusion of the most suitable ensembles.

Scott et al. proposed a method to interpolate between two consecutive vertices
(EoCs) on the ROCCH, Ei and Ej , to realize an operation point Ek between
the two original ones [16]. To classify input samples, the interpolation method
alternates between the decisions provided by Ei and Ej for each sample. The
probability of selecting one of the two vertices is determined by the distance of
Ek to the vertexes Ei and Ej .

5 Adaptive Skew-Sensitive BC

Figure 1 presents the block diagram of an adaptive classification system based
on the new skew-sensitive BC (SSBC) technique. It allows for adaptive selection
and fusion of the best ensembles of binary classifiers, based on its estimation
of class imbalance. Assume a stream of facial patterns (opd) input to some FR
system, where the level of class imbalance on the input stream is estimated as λ∗,
the closest level in a set Λ of known class imbalance levels. Since this estimate
may change over time, and BC is a computationally intensive task, the SSBC
technique is proposed to cost-effectively adapt ensembles of classifiers. In this
situation, BCs are approximated from adjacent levels of class imbalance λi and
λj , λi < λ∗ < λj and using validation data following the class imbalance level
λ∗, the level of class imbalance estimated from the operational data opd. The
approach can approximate the BC up to a maximum λmax class imbalance level.

The approach uses a set of known levels of class imbalance, Λ = {1/1, . . . ,
λmax}, to which the system will adapt, and a subset ΛBC ⊂ Λ that is selected
to optimize an initial set of BCs E used to adapt the system to class imbal-
ance changes. The set ΛBC contains evenly distributed intermediate class imbal-
ance levels from Λ, including the initial and maximum levels of class imbalance
(λinit = 1/1 and λmax). The SSBC approach uses OPT and VAL, data sets follow-
ing the levels of class imbalance in Λ, each following a class imbalance level in
Λ. The target minority class is held fixed, while those from the non-target class
are grown through random sub-sampling. This allows the SSBC approach to
generate OPT and VAL with data sets following any class imbalance level between
λinit = 1/1 and λmaxt.

Once a pool of binary classifiers C = {c1, . . . , cn} is generated using balanced
data, ensemble selection and fusion is performed using the Iterative Boolean
Combination (IBC) technique [9]. BC of C is performed during the design phase
using the levels of imbalance in ΛBC using Algorithm 1. Each BC in E is opti-
mized for one class imbalance level in ΛBC with the corresponding data in OPT.
During BC, the number of decision thresholds t is used to create the operations
points (which provide binary decisions) for classifier fusion. After BC for is per-
formed for all class imbalance levels in ΛBC , the approach assumes that data is
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Fig. 1. Architecture to adapt a BC of classifiers to imbalanced class distributions

Algorithm 1. Initial BC design for the SSBC technique.

Data: Pool of classifiers C, number of decisions thresholds t, data sets OPT and
VAL and the target fpr

Result: Set of BCs E and the operation point op for λinit = 1/1.
1 E = ∅;
2 forall the opt ∈ OPT matching a level of class imbalance in ΛBC do
3 E = E ∪ {IBC(C, t, opt)};
4 Select Eλinit ∈ E for λinit = 1/1;
5 Select op ∈ Eλinit for the target fpr with valinit ∈ VAL;

balanced and operates at λinit = 1/1. An operation point op for a target fpr
from Eλinit is selected using the data set valλinit .

During system operation, the feature histogram of operational data is accu-
mulated over time to periodically estimate the closest level of class imbalance
λ∗ ∈ Λ using Algorithm 3. Once the closest class imbalance level λ∗ is estimated
from the levels available in Λ, the BC is approximated using Algorithm 2. Fi-
nally, an updated operation point op is selected with valλinit ∈ VAL and used to
update the decision thresholds Γ and the Boolean fusion function.

A. Approximating BCs to New Class Imbalances. Given the known set
of class imbalance levels Λ, the set of BCs E created with Algorithm 1, and
assuming λ∗, the level of class imbalance estimated from operational data of
class imbalance levels in Λ. The procedure to approximate BCs to the class
imbalance level λ∗ is indicated in Algorithm 2 and graphically represented in
Fig. 2, where the appoximated BC is indicated by the dashed line in Fig. 2.b.
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Fig. 2. ROC and inverted PROC graphs obtained with the val for a target fpr = 5%.
Given the BCs optimized for Λ (solid lines), the SSBC approximates the BC for λ∗ =
1/5 (dashed line) from the adjacent BCs λi and λj .

Algorithm 2. SSBC technique for adapting BC for a new λ∗ class imbal-
ance level.
Data: set of BCs E, set of class imbalance levels ΛBC , data sets OPT and VAL,

the estimated class imbalance λ∗ ∈ Λ and the target fpr.
Result: Operation point op for the target fpr.

1 E∗ = ∅;
2 if λ∗ ∈ ΛBC then
3 E∗ = Eλ∗ ;

4 else
5 Select λi, λj ∈ ΛBC , such as that λi < λ∗ < λj ;
6 Select opt∗ ∈ OPT, following λ∗ ;
7 E∗ = ROCCH(Eλ1 ∪Eλ2 , opt∗);

8 Select val∗ ∈ VAL, following λ∗ ;
9 Select op ∈ E∗ for the target fpr with val∗;

When λ∗ ∈ ΛBC , the BC E∗ is selected directly from E. Otherwise, the BC
is estimated as follows. First, the adjacent class imbalance levels λi, λj ∈ ΛBC

are determined. Next, the opt∗ data set is selected in OPT, which was generated
by random under sampling to follow the same class imbalance level as λ∗. Then
EoCs (vertices in the ROCCH) in both Eλi and Eλj are combined, and only the
points projected in the ROCCH using the opt∗ data set to calculate tpr and fpr
are kept in E∗. Finally, an operation point is selected for the target fpr using
val∗, validation data that was also obtained with random under sampling to
follow the level of class imbalance of λ∗.

Algorithm 2 is computationally more efficient than performing full BC every
time a new class imbalance levels λ∗ is detected. For 2 classifiers and t decision
thresholds, the worst case time complexity for IBC is O(t2). For the simulations
in this paper (t = 100), about 200000 EoC evaluations were required with IBC.
The approximation strategy in Algorithm 2 requires O(|Eλ1 | + |Eλ2 |) in the



Adaptive Ensemble Selection 103

worst case. In simulations, there was a significant reduction to about 1% of the
original computational effort. Memory requirement is also considerably smaller
with Algorithm 2, requiring O(|Eλ1 | + |Eλ2 |) vertices stored in memory in the
worst case, against O(t2) for IBC.

B. Estimation of Closest Class Imbalance Level λ∗. In literature, some
approaches have been proposed to estimate class imbalance. Using classifier out-
puts to estimate class imbalance is less reliable since it is influenced by imbalance.
It is however possible to use the Hellinger distance in the feature space to select,
from several labeled data sets of known class imbalances, which has the clos-
est imbalance (smallest distance) to unlabeled operational data [8]. For a given
number of features and bins in the histogram, the Hellinger distance is:

H(ld, opd) =
1

f

features∑
j=1

√√√√bins∑
i=1

(√
|ldj,i|
|ld| −

√
|uodj,i|
|uod|

)2

(1)

Assume the set Λ of class imbalance levels and the set of data sets OPT, where each
data set in OPT follows one different class imbalance level in Λ. Algorithm 3 details
the process to estimate λ∗, the class imbalance level in Λ which has the closest
class proportions to unlabeled operational data opd. Given L+, the positive
class samples in the reference data OPT (fixed, regardless of class imbalance), the
number bins b used to calculate (1) is b = �√L+.

Algorithm 3. Class imbalance level λ∗ estimation from an unlabeled op-
erational data opd and a set of data sets OPT.

Data: Data set OPT, operational data features histogram opd and b bins
Result: Estimated class imbalance level λ∗

1 min = ∞;
2 λ∗ = 0;
3 forall the opt ∈ OPT do
4 hd = H(opt, opd, b);
5 if hd < min then
6 min = hd;
7 Set λ∗ to class imbalance level of opt;

8

6 Validation on Face Re-identification Data

A. Experimental Methodology. To validate SSBC, experiments are per-
formed with real-world video surveillance data. They seek to detect the presence
of a restrained list of individuals of interest appearing in video streams. An
IP surveillance camera continuously feeds video frames to a FR system. Faces
captured in the video frame are extract into ROIs. Data is then processed ac-
cording to two parallel streams – a recognition stream detects the presence of
individual or interest based on appearance, while the tracking stream follows
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the location of different individuals over successive frames. For the recognition
stream, assume a modular classification architecture adapted for surveillance ap-
plications, where each target individual is modeled as a user-specific detection
module. Each module is implemented with a binary classifier that is assigned
to discriminate between the target (positive) and non-target (negative) classes,
and with responses combined through BC [14].

Video data for this experiment is extracted from the Carnegie Mellon Uni-
versity – Face in Action (FIA) database [7]. This database contains 20 seconds
video sequences for 244 individuals, over three different capture sessions. Each
individual is captured from six views: frontal, left and right, and with two focal
lengths, 2.8mm (normal) and 4.8mm (zoomed). This experiment uses the frontal
camera with both focal lengths on all three sessions as the video stream for the
single IP camera. The initial enrollment process considers a watch list with 10
individuals of interest selected in the database (labeled as person 2, 58, 72, 92,
147, 151, 176, 188, 190 and 209). Each individual is the positive or target class
for one detector module (EoC) as described in [14].

For recognition, multi-block local binary pattern features are extracted from
grey-scaled ROIs, and the 32 most discriminant features are selected through
principal component analysis. Feature vectors are compared against facial models
of target individuals enrolled to the system. Using a track-and-classify strategy,
the classification responses corresponding to different individuals (face tracks)
are accumulated over time to improve performance and reliability [13].

For design of 2-class classifiers, a Universal Background Model [1] built from
unknown individuals, and a cohort model of the other target individuals. In-
dividuals in the data base are split in two for training and test, and for each
individual of interest, 100 negative class individuals are selected for training
(from universal and cohort models), and other 100 negative class individuals are
selected for testing (maximum class imbalance λmax = 1/100).

For each experiment, a pool of diversified classifiers C is initially generated
using a DPSO training strategy to co-jointly optimize all parameters of a prob-
abilistic fuzzy ARTMAP network (PFAM) [2]. At the end of the optimization
process, the local best classifiers from 7 DPSO sub-swarms is selected for the
initial pool of PFAM nets. The pool is then used to optimize a set of BCs E
using IBC. An initial operation point p is selected for a class imbalance level
λinit = 1/1 and a target fpr = 1%. During operation, the detector module with
the ensemble p evaluates the stream of operational data to identify the target
individual in the current frame. In parallel, a CAMSHIFT algorithm is used to
track the movement and location of different faces over time. The system accu-
mulates operational data for the last 30 minutes to estimate the level of class
imbalance λ∗. After the current elapsed time is higher than the update time
tu = 15, the operational data level of closest class imbalance λ∗ in Λ is esti-
mated with opt as the reference data. Then, the BC is approximated to λ∗ and
an operation point is selected for the target fpr = 1% to update p for operation.

Experiments use Λ = {1/1, 1/10, 1/20, 1/30, . . . , 1/100}, ΛBC = {1/1, 1/10,
1/50, 1/100}, target fpr = 1% and λinit = 1/1. Class imbalance level is estimated
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every tu = 15 minutes, over the last 30 minutes interval. The experiments are
replicated 10 times using 2 × 5-fold cross-validation to generate training data.
After the 5th replication, the 5 folds are randomly regenerated for the next five
replications. FIA faces from video sequences in session one, captured with both
the 2.8mm and 4.8mm frontal cameras, are used to generate the pool of diversifier
classifiers C and define the BCs for the initial class imbalances in ΛBC . A total of
120 facial samples per individual are randomly selected from both focal distances
to build a system design data set D with λmax = 1/100.

Training data folds in D are split in six folds as follows. The Dtt uses 2 folds,
with a total of 40 positive samples. Each of the remainder data sets uses one fold
with 20 positive samples. The Det validation data is used to stop the number of

training epochs, whereas Dft is the validation data to evaluate the fitness function

of the DPSO learning strategy. Negative data in Dtt, D
e
t and D

f
t is balanced through

random under-sampling for classifier training. The data set Dot is used to generate
the set of data sets OPT following ΛBC , whileD

v
t is used to create VAL. Each fold

has 2000 negative samples from the cohort and universal background models,
providing class imbalance levels up to λ = 1/100.

Operational test data is extracted from FIA sessions 2 and 3 using both focal
lengths. These video sequences are split in two parts of 10 seconds to produce
8 blocks of video with one target individual and 100 non-target individuals (co-
hort model and unseen individuals). Each block is used to simulate 30 minutes
of time. During test, class imbalance in the test data changes over time in these
8 blocks of 30 minutes, with the following levels of class imbalance sequence:
1/20, 1/35, 1/100, 1/65, 1/100, 1/80, 1/60 and 1/15. Imbalance changes in test

are achieved by randomly removing individuals from each block. The experiment
assumes a maximum class imbalance level to adapt λmax = 1/100, but actual
class imbalance is known only after extracting facial regions. A stream of oper-
ational data is accumulated by SSBC to estimate the closest level of imbalance
in ΛBC at every 15 minutes, over the last 30 minutes. To define the closest class
proportions, Hellinger distance is used with b = �√L+ = 4 bins per feature,
where L+ = 20 is the positive class cardinality of the labeled reference data.

Transactional performance is measured in the ROC and PROC spaces from
individual predictions on faces captured in videos: tpr, fpr, precision and F1.
A FR system that integrates SSBC is compared to the one with BC that uses
random under sampling (RUS) to balance the data used to optimize the BC
(opt) and select the operation point (val). The pool of classifiers C is generated
as described above, however, only one BC is optimized to select a single operation
point for the entire simulation. Time analysis allows to evaluate the performance
of FR systems over a video stream. A face tracker is used to accumulate the
positive predictions for facial regions corresponding to a same individual (i.e.,
with a high confidence track), over a 1 second (30 frame) window.

B. Results and Discussion. Table 1 details the mean transactional per-
formance for the compared approaches, as well as standard deviation values
(between parenthesis). At time t = 1, both the random under sampling static
approach and the proposed adaptive approach uses the same EoC, optimized for
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Table 1. Average performance measures for a target fpr = 1% on test segments at
different t = 1 . . . 8 times. The standard deviation is shown in parenthesis. RUS is a
static approach that uses random under sampling to balance data sets.

Approach Measure
Update Period

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

SSBC

fpr
4.89% 1.20% 1.65% 1.85% 1.16% 1.09% 0.66% 0.70%
(0.024) (0.008) (0.008) (0.012) (0.006) (0.008) (0.005) (0.006)

tpr 65.58% 49.66% 54.53% 55.67% 53.42% 51.00% 47.52% 49.85%
recall (0.299) (0.329) (0.247) (0.308) (0.261) (0.306) (0.394) (0.399)

precision
43.68% 55.09% 41.15% 45.33% 41.99% 47.17% 53.59% 67.93%
(0.225) (0.315) (0.209) (0.187) (0.177) (0.198) (0.335) (0.314)

F1
0.492 0.518 0.446 0.479 0.450 0.470 0.498 0.550
(0.217) (0.255) (0.187) (0.212) (0.191) (0.221) (0.332) (0.344)

BC w/ RUS

fpr
4.89% 4.32% 5.82% 5.93% 4.65% 4.57% 3.45% 3.63%
(0.024) (0.021) (0.025) (0.027) (0.025) (0.025) (0.020) (0.024)

tpr 65.58% 67.40% 69.71% 69.87% 69.01% 66.06% 61.68% 64.02%
recall (0.299) (0.292) (0.186) (0.231) (0.153) (0.241) (0.320) (0.319)

precision
43.68% 38.94% 23.37% 29.23% 23.93% 27.04% 34.25% 54.43%
(0.225) (0.211) (0.127) (0.109) (0.107) (0.108) (0.184) (0.237)

F1
0.492 0.470 0.319 0.382 0.332 0.349 0.414 0.550
(0.217) (0.195) (0.136) (0.113) (0.129) (0.134) (0.212) (0.237)

Fig. 3. Time analysis for module of individual 151, with decisions accumulated over a
sliding window of 30 frames. The blue line is for a target individual of interest, while
the red line is the typical of a non-target individual. Solid lines are a FR system using
BC with RUS, while dotted lines are the proposed SSBC.

balanced data. After time t = 2 the SSBC approach uses data in the last 30 min-
utes to estimate the class imbalance and approximate a new BC of classifiers.
The SSBC technique selects an operation point closer to the target fpr = 1,
with smaller standard deviation values. On the other hand, the RUS approach
selects an operation point with higher fpr values. The proposed SSBC tech-
nique reduces the number of false positive detections and keeps high positive
performance, thereby providing better support for a human operator.

For time analysis, a face tracker allowed to accumulate positive predictions
of each user-specific module (EoC) over time for improved reliability. Once a
face is captured in a frame, the CAMSHIFT algorithm is initiated to track its
location over time. As shown in Figure 3, when accumulated positive predictions
reach a threshold (e.g., tdet = 8), target individual 151 is recognized. The FR
system with SSBC provides a higher level of discrimination between target and
non-target faces appearing in video but with lower fpr values. Accumulated
predictions for target persons rise faster and higher than for BC with RUS.
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7 Conclusions

BC are promising techniques for ensemble-based FR in video surveillance, al-
though the impact of imbalanced class proportions is difficult to observe in the
ROC space. In this paper, an adaptive SSBC technique is proposed to select
the most accurate BCs according to class imbalance. Imbalanced data is used to
generate several BCs in the decision space, by successively growing number of
samples from the majority class. During operations, the system periodically es-
timates class proportions from operational data distributions using the Hellinger
distance. The closest operational points on PROC curves are employed to esti-
mate the most accurate BC of classifiers. Instead of full re-calculation of BCs,
the knowledge obtained when combining classifiers for other skew levels is used
to approximate the BC to new class priors, providing a significant reduction in
computational complexity, and maintaining a comparable level of performance.

Experiments using real-world video data for face re-identification have allowed
to compare a modular FR system that integrates the proposed SSBC technique
with one that integrates static BC obtained through RUS. Results indicate the
advantages of adapting the BC over time to the operation class proportions.
Transaction-based analysis shows fprs closer to desired values, as well as con-
sistently higher F1 scores when using the SSBC technique. Time-based analysis
shows a high level of discrimination between target and non-target individuals.
However, SSBC depends heavily on the granularity of the pre-trained λ levels,
affecting a trade-off between accuracy and resources to store BC curves and ref-
erence data. Future research will focus on improving approximations of BC to
estimated imbalance levels. Currently, SSBC selects ensembles from the original
BCs (optimized for the adjacent imbalance levels) with a mixture of data that
follows estimated imbalance level. This approximation may benefit from a strat-
egy to combine vertices in the ROCCH by normalizing to proportions according
to difference between estimated and adjacent imbalance levels.
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Abstract. Recently, multiple classifier systems have been used for practical ap-
plications to improve classification accuracy. Self-generating neural networks
(SGNN) are one of the most suitable base-classifiers for multiple classifier
systems because of their simple settings and fast learning ability. However, the
computation cost of the multiple classifier system based on SGNN increases in
proportion to the numbers of SGNN. In this paper, we propose a novel prun-
ing method for efficient classification and we call this model a self-organizing
neural grove (SONG). Experiments have been conducted to compare the SONG
with bagging and the SONG with boosting, the multiple classifier system based
on C4.5, and support vector machine (SVM). The results show that the SONG
can improve its classification accuracy as well as reducing the computation cost.
Additionally, we investigate SONG’s incremental learning performance.

1 Introduction

Classifiers need to find hidden information within a large amount of given data effec-
tively and classify unknown data as accurately as possible [1]. Recently, to improve the
classification accuracy, multiple classifier systems such as neural network ensembles,
bagging, and boosting have been used for practical data mining applications [2]. In gen-
eral, base classifiers of multiple classifier systems use traditional models such as neural
networks (backpropagation network and radial basis function network) [3] and decision
trees (CART and C4.5) [4].

Neural networks have great advantages such as adaptability, flexibility, and universal
nonlinear input-output mapping capability. However, to apply these neural networks,
it is necessary for the network structure and some parameters to be determined by hu-
man experts, and it is quite difficult to choose the right network structure suitable for a
particular application at hand. Moreover, they require a long training time to learn the
input-output relation of the given data. These drawbacks prevent neural networks from
being the base classifier of multiple classifier systems for practical applications.

Self-generating neural networks (SGNN) [5] have a simple network design and high
speed learning. SGNN are an extension of the self-organizing maps (SOM) of Koho-
nen [6] and utilize the competitive learning which is implemented as a self-generating
neural tree (SGNT). The abilities of SGNN make it suitable for the base classifier of
multiple classifier systems. In order to improve in the accuracy of SGNN, we proposed
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ensemble self-generating neural networks (ESGNN) for classification [7] as one of mul-
tiple classifier systems. Although the accuracy of ESGNN improves by using various
SGNN, the computation cost, that is the computation time and the memory capac-
ity increases in proportion to the increase in numbers of SGNN in multiple classifier
systems.

In an earlier paper [8], we proposed a pruning method for the structure of the SGNN
in multiple classifier systems to reduce the computation cost. In this paper, we propose
a novel pruning method for more effective processing and we call this model a self-
organizing neural grove (SONG). This pruning method is constructed in two stages. In
the first stage, we introduce an on-line pruning algorithm to reduce the computation
cost by using class labels in learning. In the second stage, we optimize the structure
of the SGNT in multiple classifier systems to improve the generalization capability by
pruning the redundant leaves after learning. In the optimization stage, we introduce a
threshold value as a pruning parameter to decide which subtree’s leaves to prune and
estimate with 10-fold cross-validation [9]. After the optimization, the SONG improve
its classification accuracy as well as reducing the computation cost. We use bagging [10]
and boosting [11] as a resampling technique for the SONG.

We investigate the improvement performance of the SONG by comparing it with a
multiple classifier system based on C4.5 [12] using ten problems in the UCI machine
learning repository [13]. Moreover, we compare the SONG with support vector machine
(SVM) [14] to investigate the computational cost and the classification accuracy.

The rest of the paper is organized as follows. The next section shows how to construct
the SONG. Section 3 shows the experimental results. Then section 4 is devoted to some
experiments to investigate the incremental learning performance of SONG. Finally we
present some conclusions, and outline plans for future work.

2 Constructing Self-Organizing Neural Grove

In this section, we describe how to prune redundant leaves in the SONG. First, we
mention the on-line pruning method in the learning of SGNT. Second, we show the
optimization method in constructing the SONG. Finally, we show a simple example of
the pruning method for a two dimensional classification problem.

2.1 On-Line Pruning of Self-Generating Neural Tree

SGNN are based on SOM and are implemented as an SGNT architecture. The SGNT
can be constructed directly from the given training data without any intervening human
effort. The SGNT algorithm is defined as a tree construction problem of how to con-
struct a tree structure from the given data which consists of multiple attributes under
the condition that the final leaves correspond to the given data.

Before we describe the SGNT algorithm, we denote some notations.

– input data vector: ei ∈ IRm.
– root, leaf, and node in the SGNT: nj .
– weight vector of nj: wj ∈ IRm.
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Table 1. Sub procedures of the SGNT algorithm

Sub procedure Specification
copy(nj ,ei/wwin) Create nj , copy ei/wwin as wj in nj .
choose(ei, n1) Decide nwin for ei.
leaf(nwin) Check nwin whether nwin is a leaf or not.
connect(nj , nwin) Connect nj as a child leaf of nwin .
prune(nwin) Prune leaves if the leaves have the same class.

– the number of the leaves in nj : cj .
– distance measure: d(ei,wj).
– winner leaf for ei in the SGNT: nwin.

The SGNT algorithm is a hierarchical clustering algorithm. The pseudo C code of the
SGNT algorithm is given as follows:

Algorithm (SGNT Generation)

Input:
A set of training examples E = {e_i},

i = 1, ... , N.
A distance measure d(e_i,w_j).

Program Code:
copy(n_1,e_1);
for (i = 2, j = 2; i <= N; i++) {

n_win = choose(e_i, n_1);
if (leaf(n_win)) {
copy(n_j, w_win);
connect(n_j, n_win);
j++;

}
copy(n_j, e_i);
connect(n_j, n_win);
j++;
prune(n_win);

}
Output:

Constructed SGNT by E.

In the above algorithm, several sub procedures are used. Table 1 shows the sub proce-
dures of the SGNT algorithm and their specifications.

In order to decide the winner leaf nwin in the sub procedure choose(e i,n 1),
competitive learning is used. This sub procedure is recursively used from the root to
the leaves of the SGNT. If an nj includes the nwin as its descendant in the SGNT, the
weight wjk (k = 1, 2, . . . ,m) of the nj is updated as follows:
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wjk ← wjk +
1

cj
· (eik − wjk), 1 ≤ k ≤ m. (1)

In the SGNT, the input vector xi corresponds to ei, and the desired output yi corre-
sponds to the network output oi which is stored in one of the leaf neurons, for (xi, yi) ∈
D. Here, D is the training data set which consists of data {xi, yi|i = 1, . . . , N},
xi ∈ IRm is the input and yi is the desired output. After all training data are inserted
into the SGNT as the leaves, the leaves each have a class label as the outputs and the
weights of each node are the averages of the corresponding weights of all its leaves.
The whole network of the SGNT reflects the given feature space by its topology.

We explain the SGNT generation algorithm using an simple example. In this exam-
ple, m is one and the four training data (xi, yi) is (1,1), (2,2), (3,3), and (4,4). Hence,
e11 = 1, e21 = 2, e31 = 3, and e41 = 4. Fig. 1 shows an example of the SGNT gener-
ation. First, e11 is just copied to a neuron n1 as the root, and e11 is substituted to w11

(Fig. 1 (a)). In Fig. 1, the circle is the neuron, the integer in the circle is the number of
neuron j, the integer of left-upper of the circle is cj , and the integer of under the circle
is wj1. Next, n2 and n3 are generated as the children of n1 with w21 = 1, w31 = 2. w11

is updated by e21 to 1+1/2(2− 1) = 1.5 (Fig. 1 (b)). Next, the winner in {n1, n2, n3}
is n3 since d(e3,w1) = 1.5, d(e3,w2) = 2, and d(e3,w3) = 1; and thus, n4 and n5

are generated as the children of n3 with w41 = 2, w51 = 3. w31 is updated by e31 to
2+ 1/2(3− 2) = 2.5 and w11 is updated by e31 to 1.5+ 1/3(3− 1.5) = 2 (Fig. 1 (c)).
Finally, n6 and n7 are generated as the children of n5 with w61 = 3, w71 = 4. w51 is
updated by e41 to 3+1/2(4−3) = 3.5, w31 is updated by e41 to 2.5+1/3(4−2.5) = 3,
and w11 is updated by e41 to 2 + 1/4(4− 2) = 2.5 (Fig. 1 (d)).

Note, to optimize the structure of the SGNT effectively, we remove the threshold
value of the original SGNT algorithm in [5] to control the number of leaves based on
the distance because of the trade-off between the memory capacity and the classification
accuracy. In order to avoid the above problem, we introduce a new pruning method in
the sub procedure prune(n win). We use the class label to prune leaves. For leaves
that have the nwin’s parent node, if all leaves belong to the same class, then these leaves
are pruned and the parent node is given to the class.
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Fig. 1. An example of the SGNT generation
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Fig. 2. The SONG which is constructed from K SGNTs. The test dataset T is entered at each
SGNT, the output oi is computed as the output of the winner leaf for the input data, and the
SONG’s output is decided by voting outputs of K SGNTs.

1 begin initialize j = the height of the SGNT
2 do for each subtree’s leaves in the height j
3 if the ratio of the most class ≥ α,
4 then merge all leaves to parent node
5 if all subtrees are traversed in the height j,
6 then j ← j − 1
7 until j = 0
8 end.

Fig. 3. The merge phase

2.2 Optimization of the SONG

The SGNT has the capability of high speed processing. However, the accuracy of the
SGNT is inferior to the conventional approaches, such as nearest neighbor, because the
SGNT has no guarantee to reach the nearest leaf for unknown data. Hence, we construct
the SONG by taking the majority of multiple SGNT’s outputs to improve the accuracy
(Fig. 2).

Although the accuracy of the SONG is superior or comparable to the accuracy of
conventional approaches, the computational cost increases in proportion to the increase
in the number of SGNTs in the SONG. In particular, the huge memory requirement
prevents the use of SONG for large datasets even with the latest computers.

In order to improve the classification accuracy, we propose an optimization method
of the SONG for classification. This method has two parts, the merge phase and the
evaluation phase. The merge phase is performed as a pruning algorithm to reduce dense
leaves (Fig. 3).

This phase uses the class information and a threshold value α to decide which sub-
tree’s leaves to prune or not. For leaves that have the same parent node, if the proportion
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1 begin initialize α = 0.5
2 do for each α
3 evaluate the merge phase with 10-fold CV
4 if the best classification accuracy is obtained,
5 then record the α as the optimal value
6 α ← α+ 0.05
7 until α = 1
8 end.

Fig. 4. The evaluation phase

of the most common class is greater than or equal to the threshold value α, then these
leaves are pruned and the parent node is given the most common class.

The optimum threshold values α of the given problems are different from each other.
The evaluation phase is performed to choose the best threshold value by introducing
10-fold cross validation (Fig. 4).

2.3 An Example of the Pruning Method for the SONG

We show an example of the pruning method for the SONG in Fig. 5. This is a two-
dimensional classification problem with two equal circular Gaussian distributions that
have an overlap. The shaded plane is the decision region of class 0 and the other plane
is the decision region of class 1 by the SGNT. The dotted line is the ideal decision
boundary. The number of training samples is 200 (class0: 100, class1: 100) (Fig. 5(a)).

The unpruned SGNT is given in Fig. 5(b). In this case, 200 leaves and 120 nodes are
automatically generated by the SGNT algorithm. In this unpruned SGNT, the height is
7 and the number of units is 320. In this, we define the unit to count the sum of the
root, nodes, and leaves of the SGNT. The root is the node which is of height 0. The unit
is used as a measure of the memory requirement in the next section. Fig. 5(c) shows
the pruned SGNT after the optimization stage in α = 1. In this case, 159 leaves and
107 nodes are pruned away and 48 units remain. The decision boundary is the same
as the unpruned SGNT. Fig. 5(d) shows the pruned SGNT after the optimization stage
in α = 0.6. In this case, 182 leaves and 115 nodes are pruned away and only 21 units
remain. Moreover, the decision boundary is improved more than the unpruned SGNT
because this case can reduce the effect of the overlapping class by pruning the SGNT.

In the above example, we use all training data to construct the SGNT. The structure
of the SGNT is changed by the order of the training data. Hence, we can construct
the SONG from the same training data by changing the input order. We investigate the
pruning method for more complex problems in the next section.

3 Experimental Results

We investigate the computational cost (the memory capacity and the computation time)
and the classification accuracy of the SONG with bagging for ten benchmark problems
in the UCI machine learning repository [13]. We evaluate how the SONG is pruned
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Fig. 5. An example of the SONG’s pruning algorithm, (a) a two dimensional classification prob-
lem with two equal circular Gaussian distribution, (b) the structure of the unpruned SGNT, (c)
the structure of the pruned SGNT (α = 1), and (d) the structure of the pruned SGNT (α = 0.6).
The shaded plane is the decision region of class 0 by the SGNT and the dotted line shows the
ideal decision boundary.

using 10-fold cross-validation for the ten benchmark problems. In this experiment, we
use a modified Euclidean distance measure for the SONG. Since the performance of the
SONG is not sensitive to the threshold value α, we set the different threshold values α
to vary from 0.5 to 1; α = [0.5, 0.55, 0.6, . . . , 1]. We set the number of SGNT K in the
SONG as 25 and execute 100 trials by changing the sampling order of each training set.
All experiments in this section were performed on an UltraSPARC workstation with a
900MHz CPU, 1GB RAM, and Solaris 8.

Table 2 shows the average memory requirement and classification accuracy of 100
trials for the SONG. As the memory requirement, we count the number of units which
is the sum of the root, nodes, and leaves of the SGNT. The average memory requirement
is reduced from 65% to 96.6% and the classification accuracy is improved 0.1% to 2.9%
by optimizing the SONG. This supports that the SONG can be effectively used for all
datasets with regard to both the computation cost and the classification accuracy.

Table 3 shows the average classification accuracy of 10 trials for the SONG with
bagging and boosting. On boosting, we implement AdaBoost [11] to the SONG. Since
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Table 2. The average memory requirement and classification accuracy of 100 trials for the bagged
SGNT in the SONG. The standard deviation is given inside the bracket on classification accuracy
(×10−3).

memory requirement classification accuracy
Dataset pruned unpruned ratio pruned unpruned ratio
balance-scale 107.68 861.18 12.5 0.866(6.36) 0.837(7.83) +2.9
breast-cancer-w 30.88 897.37 3.4 0.97(2.41) 0.966(2.71) +0.4
glass 104.33 297.75 35 0.714(13.01) 0.709(14.86) +0.5
ionosphere 50.75 472.39 10.7 0.891(6.75) 0.862(7.33) +2.9
iris 15.64 208.56 7.4 0.962(6.04) 0.955(5.45) +0.7
letter 6197.5 27028.56 22.9 0.956(0.77) 0.955(0.72) +0.1
liver-disorders 163.12 471.6 34.5 0.648(12.89) 0.636(13.36) +1.2
new-thyroid 49.45 298.21 16.5 0.958(7.5) 0.957(7.49) +0.1
pima-diabetes 204.4 1045.03 19.5 0.749(7.05) 0.728(7.83) +2.1
wine 15 238.95 6.2 0.976(4.41) 0.972(5.57) +0.4
Average 693.88 3181.96 16.9 0.869 0.858 +1.1

Table 3. The average classification accuracy of 10 trials for the SONG with bagging and boosting.
The standard deviation is given inside the bracket (×10−3).

SONG with bagging SONG with boosting
Dataset SGNT SONG ratio SGNT SONG ratio
breast-cancer-w 0.96(4.74) 0.975(2.86) +1.5 0.96(6.47) 0.957(4.13) -0.3
ionosphere 0.847(19.3) 0.89(8.23) +4.3 0.854(18.26) 0.773(17.4) -8.1
liver-disorders 0.571(21.4) 0.636(11.0) +6.5 0.588(17.0) 0.572(24.3) -1.6
pima-diabetes 0.705(9.8) 0.754(4.96) +4.9 0.696(12.2) 0.722(6.82) +2.6
Average 0.771 0.814 +4.3 0.775 0.756 -1.9

original AdaBoost algorithm have been proposed for binary classification problems,
we use four binary classification problems in Table 3. In comparison with boosting,
bagging is superior to boosting on all of the 4 datasets. In short, bagging is better than
boosting in terms of the classification accuracy.

To evaluate the SONG’s performance, we compare the SONG with a multiple classi-
fier system based on C4.5. We set the number of classifiers K in the multiple classifier
system as 25 and we construct both multiple classifier systems by bagging. Table 4
shows the improved performance of the SONG and the multiple classifier system based
on C4.5. The results of the SGNT and the SONG are the average of 100 trials. The
SONG has a better performance than the multiple classifier system based on C4.5 for 6
of the 10 datasets. Although the multiple classifier system based on C4.5 degrades the
classification accuracy for iris, the SONG can improve the classification accuracy for
all problems. Therefore, the SONG is an efficient multiple classifier system on the basis
of both the scalability for large scale datasets and the robustly improved generalization
capability for the noisy datasets comparable to the multiple classifier system with C4.5.
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Table 4. The improved performance of the SONG based on pruned SGNT and the multiple clas-
sifier system (MCS) based on C4.5 with bagging

SONG based on SGNT MCS based on C4.5
Dataset SGNT SONG ratio C4.5 MCS ratio
balance-scale 0.779 0.866 +8.7 0.795 0.827 +3.2
breast-cancer-w 0.956 0.97 +1.4 0.946 0.963 +1.7
glass 0.642 0.714 +7.2 0.664 0.757 +9.3
ionosphere 0.852 0.891 +3.9 0.897 0.92 +2.3
iris 0.943 0.962 +1.9 0.953 0.947 −0.6
letter 0.879 0.956 +7.7 0.880 0.938 +5.8
liver-disorders 0.59 0.648 +5.8 0.635 0.736 +10.1
new-thyroid 0.939 0.958 +1.9 0.93 0.94 +1
pima-diabetes 0.695 0.749 +5.4 0.749 0.767 +1.8
wine 0.955 0.976 +2.1 0.927 0.949 +2.2
Average 0.823 0.869 +4.6 0.837 0.874 +3

To show the advantages of the SONG, we compare it with SVM on the same prob-
lems. In the SONG, we choose the best classification accuracy of 100 trials with bag-
ging. In SVM, we use C-SVM in libsvm [14] with radial basis function kernel. We
select the parameters of SVM, the cost parameters C and the kernel parameters γ, from
15× 15 = 225 combinations by 10-fold cross validation; C = [212, 211, 210, . . . , 2−2]
and γ = [24, 23, 22, . . . , 2−10]. We normalize the input data from 0 to 1 for all prob-
lems in k-nearest neighbor and SVM. All methods are compiled by using gcc with the
optimization level -O2 on the same workstation.

Table 5 shows the classification accuracy, the memory requirement, and the com-
putation time achieved by the SONG and SVM. Next, we show the results for each
category.

First, in view point of the classification accuracy, the SONG superior to SVM 3 of
the 10 datasets and degrade 1.7% in the average. Second, in terms of the memory re-
quirement, even though the SONG includes the root and the nodes which are generated
by the SGNT generation algorithm, this is less than SVM for 8 of the 10 datasets. Al-
though the memory requirement of the SONG is totally used K times in Table 5, we
release the memory of SGNT for each trial and reuse the memory for effective com-
putation. Therefore, the memory requirement is suppressed by the size of the single
SGNT. Finally, in view of the computation time, although the SONG consumes the cost
of K times of the SGNT to construct the model and test for the unknown dataset, the
average computation time is faster than SVM. The SONG is slower than SVM for small
datasets such as glass, ionosphere, and iris. However, the SONG is faster than SVM for
large datasets such as balance-scale, letter, and pima-diabetes. Especially, in letter, the
computation time of the SONG is faster than SVM about 11 times. We need to repeat
10-fold cross validation many times to select the optimum parameter for α, k, C, and
γ. This evaluation consumes much computation time for large datasets such as letter.
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Table 5. The classification accuracy, the memory requirement, and the computation time of ten
trials for the best pruned SONG and SVM

classification acc. memory requirement computation time (s)
Dataset SONG SVM SONG SVM SONG SVM
balance-scale 0.885 0.992 109.93 60.6 0.82 4.77
breast-cancer-w 0.976 0.973 26.8 79.6 1.18 0.64
glass 0.758 0.738 91.33 132.4 0.36 0.61
ionosphere 0.912 0.954 51.38 147.9 1.93 1.25
iris 0.973 0.96 11.34 51.3 0.13 0.06
letter 0.958 0.977 6208.03 7739.7 208.52 2359.39
liver-disorders 0.685 0.73 134.17 214.5 0.54 2.07
new-thyroid 0.972 0.977 45.74 44.1 0.23 0.22
pima-diabetes 0.764 0.766 183.57 363.5 1.72 5.63
wine 0.983 0.989 11.8 62.2 0.31 0.15
Average 0.887 0.904 687.41 889.58 21.57 236.88

Therefore, the SONG based on the fast and compact SGNT is useful and practical for
large datasets. Moreover, the SONG has the ability of parallel computation because
each classifier behaves independently. In conclusion, the SONG is a practical method
for large-scale data mining compared with SVM.

4 Considerations

In this section, we investigate the performance of the incremental learning of the SONG.
We use letter in this experiment since it contains large scale data (the number of input
dimension: 16, the number of classes: 26, and the number of entries: 20000).

This experiment is performed as follows. First, we divide letter dataset into ten parts.
Second, we select one of the ten parts as the testing data. Third, we enter one of the
remaining nine parts into the SONG for training. Forth, we test the SONG using the
testing data. Finally, we continue the training and the testing until all nine parts of the
dataset are entered into the SONG.

Fig. 6 shows the relation between the number of training data and the classification
accuracy. The more the number of training data increases, the more the classification
accuracy improves for all the number of ensembles K . The width of the improvement
is wide for small K and all values of N .

As the memory requirement, we count the number of units which is the sum of the
root, nodes, and leaves of the SGNT. Fig. 7 shows the relation between the number of
training data N and the number of units in α = 1. Here, the total units are the number
of all units without pruning and the remaining units are the number of all units with
pruning. Both of them are the average of 25 SGNTs. The number of nodes increases
linearly in proportion to the increase in the number of training data. The slope of the
remaining units is smaller than the slope of the total nodes. This means that the SONG
has the capability for good compression for large scale data. This supports that the
SONG can be effectively used for large scale datasets.
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5 Conclusions

In this paper, we proposed a new pruning method for the multiple classifier system
based on SGNT, which is called SONG, and evaluated the computation cost and the ac-
curacy. We introduced an on-line and off-line pruning method and evaluated the SONG
by 10-fold cross-validation. Experimental results showed that the memory requirement
reduced remarkably, and the accuracy increased by using the pruned SGNT as the base
classifier of the SONG. Additionaly, we investigated an incremental learning perfor-
mance of the SONG. Experimental results showed that the SONG could be applicable
to incremental learning. The SONG is a useful and practical multiple classifier sys-
tem to classify large datasets. In future work, we will study a parallel and distributed
processing of the SONG for large scale data mining.
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Abstract. In this paper cascaded reduction and growing of result sets
is introduced as a principle for combining the results of different object
detectors. First, different candidate operating points are selected for each
object detection algorithm. This procedure is based on the analysis of
precision and recall of the individual methods. Selecting an appropri-
ate operating point prior to fusion is important because it regulates the
cardinal number of the result set. As diversity and correlation between
object detectors also depend on the elements of the result sets, this and
the application of set operations allow to create a final set of detected ob-
jects by including missing and excluding false detections. The approach
allows both diverse and correlated detectors to contribute to the per-
formance of the combined detector. The performance of the proposed
algorithm is compared to other combining algorithms. It outperforms or
competes with existing state of the art combiners for several datasets.
Additionally, the results provide a significant improvement in the inter-
pretability of the combining rules. As a unique feature of the proposed
algorithm, the found operating points can be used to reconfigure the ob-
ject detection algorithms to adapt their individual results to the needs
of the combination procedure allowing a reduction in runtime.

Keywords: object detection, combining, fusion, image processing.

1 Introduction

Object detection in digital images is an important task in many application
fields such as microscopy, remote sensing, robot vision, tracking in surveillance
applications, and autonomous navigation. While good solutions exist for some
applications such as face recognition, it is still difficult to achieve sufficient detec-
tion rates for many other problems to fully automate the analysis of images. The
main reason is the variety of the appearance due to changes of camera perspec-
tive, illumination, observation of deformable objects, and occlusion of objects.
The combination of different algorithms has the potential to overcome some of
these problems. First, related work on the combination of object detectors and
classifiers is introduced. Second, a novel approach to late fusion is described. Af-
ter introducing the dataset, the results of combination are presented. The paper
concludes with a summary of the potentials of the new algorithm.

Z.-H. Zhou, F. Roli, and J. Kittler (Eds.): MCS 2013, LNCS 7872, pp. 121–133, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Related Work

The combination of object detection algorithms is closely related to the field of
multiple classifier systems, since most methods can be applied to combine object
detection results. Successful approaches to classifier fusion are based on Bayes
theorem [11], the Dempster-Shafer theory of evidence [2], fuzzy logic [4,5,13], vot-
ing [15], analysis of correspondence [8,18], and on machine learning approaches
[9]. However, modifications are required because object detection results differ
from classifier results. First, object detectors output positions and dimensions
of objects in addition to the measurement, rank, or abstract level outputs [26].
Consequently, the matching of the result sets of different detectors is needed.
Second, object detectors do not output a label or a measurement for each image
patch, therefore, the combination algorithms must deal with missing information
from some of the detectors. Third, since image patches can overlap or have dif-
ferent scales, matching of objects between detectors may not be unique. Fourth,
the cardinal number of the result sets of different detectors for the same image
can be different. Additionally, if a measurement level output is provided then a
threshold on this value can be used to further reduce the number of elements in
the result set of detected objects.

Current research on combining object detection approaches focuses on early
or intermediate level fusion [23,21,14]. Fusion of feature vectors at an early stage
has the advantage that the spatial relation of the different features are preserved
at the pixel or image patch level. Its disadvantage is the curse of dimensional-
ity, using more dimensions requires much more training data for most problems
to achieve a good generalization performance for a detector. Other approaches,
which claim to be late level fusion methods, still produce extended feature sets
[10]. Some classifier fusion approaches have been published for the fusion of dif-
ferent sensor data [1], the boosting of object detection by inclusion of contextual
information from classification [20], and the fusion of the decisions of multiple
experts for different object categories [16]; however, it is difficult to find pub-
lished work on combining the final detections of different algorithms for the same
object class. In object detection, late fusion is much more related to the abstrac-
tion level of the features than in classifier fusion. The reason is obvious, because
information processing in human perception works analogously and has always
inspired the computer vision community.

Moreover, combining object detectors at the level of detected objects allows
not only to fuse different successful approaches to achieve a better performance,
but also a deeper understanding of the strengths and weaknesses of individual
approaches. It also adds more levels of freedom to the selection of the combined
detection methods because they can be handled as a black box.

3 Proposed Method

The basic concepts of the approach are the utilization of operating points and the
construction of improved result sets. The consequences of using these concepts
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are summarized in section 3.1. In the following operating points correspond to
the thresholds which are used to control the elements contained in the result set
of each detector. An operating point is used to convert the measurement level
output into an abstract level output. This concept is well-known from analysis of
classifier performance in receiver operating characteristic (ROC) and precision
recall (PR) space where it is used for the construction of characteristic curves.

3.1 Preliminaries

The operations cut (∩) and union (∪) are used for the fusion of result sets of
different detectors. Therefore, correspondences between the elements of the result
sets have to be calculated. This must be based on the positions and extends of
the objects. The objective is to minimize the error related costs EC:

EC = (1 − TPR) · p(+) · C(−|+) + FPR · p(−) · C(+|−) (1)

p(·) denotes the apriori probability of the classes and C the costs of false positive
and false negative detections. The true positive rate (TPR) and the false positive
rate (FPR) depend on the operating points. These are set by thresholds tA and
tB for the measurement level output of object detectors A and B respectively.
Minimization of EC(tA, tB) as a function of the two thresholds tA and tB is
computationally expensive. The number of different threshold values is only
bounded by the number of objects in the training dataset. For each pair (tA, tB)
the costs EC as well as the gradient of the error cost function can be calculated
by application of the set operations only.

To solve that problem, the threshold values can be quantized, such that only
a limited number of k thresholds is used for each object detector. By setting
k = 3 we achieve:

1. reduction of complexity for minimization

2. good interpretability

For the last reason the three thresholds are set such that they correspond to
operating points with the attributes precise, optimal, and sensitive.

Combining object detectors is repeated until EC stops to decrease. Since the
associative law does not hold for arbitrary sets:

(A ∩B) ∪ C �= A ∩ (B ∪C) (2)

the order of object detectors matters. The fusion rule for the object detectors
OD1, . . . , ODM has the form:

((OD1
o1 ⊗OD2

o2) . . .⊗ODM
oM ) (3)

where o1, . . . oM ∈ {1, ..., k} denote the operating points. The brackets denote
the cascade and ⊗ denotes the selected fusion operation.
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3.2 Matching Positions and Shapes

The matching of detection results is a necessary condition for fusion. In the
learning phase the object boundaries of a reference dataset are used. In the
application phase pairwise matching of the different result sets is needed.

A commonly used measure for performance evaluation of object detectors is
the matching of upright rectangles [7]. The overlap of two rectangles can be
checked quickly [24]. Two rectangles defined by their centers M1,M2 and the
distances dx and dy to the corner points do not overlap, if any of the following
inequations are true: ∣∣∣∣(M1 −M2)

(
1
0

)∣∣∣∣ > dx1 + dx2 (4)

∣∣∣∣(M1 −M2)

(
0
1

)∣∣∣∣ > dy1 + dy2 (5)

otherwise, the size of the overlap can be calculated easily. An efficient overlapping
test for arbitrary convex polygons is known as separating axis test [19]. If a more
detailed representation of the object boundaries is needed then this algorithm
can be used.

If object detection is compared to other classification problems then an obvi-
ous difference is the meaning of false positives. The set of image patches which
do not contain an object is typically large and not part of the reference dataset.
However, for comparison and combination of different object detectors such a
reference is needed. Therefore, the false positives of all methods are combined
into a single reference set.

3.3 Selecting Operating Points

Selecting candidate operating points is a preprocessing step. Later, the learning
algorithm selects those candidate operating points which provide the maximum
error cost reduction. Operating points correspond to points on the precision
recall curves of the individual object detectors. It is assumed that each object
detector provides a measurement level output. The PR curves are obtained by
thresholding the output values. However, if one or more object detectors provide
only abstract level output then only a single operating point exist for those
methods.

Fig. 1 shows the precision recall curve of an object detector. The positions i
of the smallest and the largest threshold are highlighted. If the operating point
corresponds to the threshold at position i = 1 then the cardinal number of the
result set is maximized. This means that the objects of the reference dataset are
reproduced best. However, at this operating point the precision has its smallest
value because all false detections of the object detector also satisfy the condition
that the output value is larger than the selected threshold. Therefore, in this
operating range the detector is called sensitive for the presence of objects.
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The precise or specific operating points correspond to large threshold values.
Only few objects are detected, but the detectors output high confidence values
for these detections. Therefore, the recall of the reference dataset is small and
the precision is high.

Eq.(6) provides the measure F which is used for the selection of operating
points on the precision recall curves:

Fi = (Pi − Pmin)(Pmax − Pmin)
−1 · (Ri −Rmin)(Rmax −Rmin)

−1 (6)

where Fi is the product of the precision Pi and the recall Ri for the operating
point with index value i. Fig. 2 shows P and R as a function of the position index
i. It is one of the difference to classification problems that the recall must not
reach the value 1. Hence, eq.(6) includes offset corrections for both dimensions.
Fig. 3 illustrates how the sensitive operating point is found by a threshold on
the value of F . Since the recall converges to one in this operating range:

F1 ≈ (P1 − Pmin)(Pmax − Pmin)
−1 (7)

With decreasing recall the difference Δ = P − F grows. In Fig. 3 the threshold
Δ ≤ 0.03 is plotted. If Δ exceeds the threshold then the operating point is
determined by the corresponding position index i.
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Using the same approach an operating point within the high precision operat-
ing range is determined. Here, F converges to the value of the normalized recall
(Ri − Rmin)(Rmax − Rmin)

−1. Fig. 3 shows both operating points Pspec und
Psens for Δ ≤ 0.03. The third operating point Popt was found by minimizing the
Euclidian distance between the precision recall curve and the perfect operating
point Pideal = (1, 1)T . Search space is limited to the range between Psens and
Pspec.

3.4 Cascaded Reduction and Growing of Result Sets

Fig. 4 shows the search for combining rules. First, a random order of the object
detectors is set. This step is repeated to avoid local minima of the error cost
function. A complete search can be done for small numbers n of object detectors.
Since the number of possible arrangements is n!, with growing n a fixed number
of randomly chosen permutations is validated.

The operating point with minimum costs EC is selected for the first object
detector OD1 of the current permutation. The choice depends on the ratio of
the error costs which has to be provided as an input value. Selection of the
set operation and the operating point is repeated for the next object detector
OD2, . . . , ODn. By default a ratio of 1 : 1 is assumed.

4 Datasets

The proposed algorithm has been tested with several datasets. In this paper,
results for a dataset from a surveillance application and for object detection
in microscopy images of plant samples are presented. The tasks are to detect
individuals in surveillance camera images and the analysis of spatiotemporal
fungal patterns [3], Fig. 5 shows the camera field of view as well as a leaf with
two colonies.
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Fig. 4. Flow chart of the search for a combining rule

Fig. 5. Field of view of the surveillance camera with ground reference points and image
of two phytopathogenic fungi
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While the proposed method has been developed for combination of object
detection results, it can deal with standard classification problems. The WDBC,
Statlog Heart, and SPECTF datasets from the UCI machine learning repository
have been selected to test the performance of the algorithm. For all comparisons
10-fold cross-validation is used.

5 Results and Discussion

For detection of people in the surveillance camera images the following algo-
rithms were used:

1. Fixed background subtraction (BS)
2. Difference image (DIFF)
3. Lucas-Kanade tracking (LKT [17])
4. Mixture of Gaussians (MoG [22])
5. Running Average subtraction (RA [6])

Most of the algorithms belong to the class of background subtraction methods
while Lucas-Kanade tracking provides a motion based object detection. To es-
timate the performance of the object detectors a validation set is used. Next,
the performance of the combining algorithm is calculated based on 10-fold cross-
validation of the outputs of the detectors for this validation set.

The following combination rule was found by cascaded reduction and growing
of the result set:

(((LKT1 ∪ BS2) ∪DIFF2) ∪MoG3) (8)

For the given dataset the obtained rule uses only a cascade of ∪ operations. This
indicates that the false detections of the individual object detectors are highly
correlated while diversity is given for the true detections. The background sub-
traction with a Running Average based method does not contribute to the result
set, hence, it can be excluded from the multiple object detector system. The in-
dices of the method names are the preselected operating points (1=sensitive,
2=average, 3=specific).

Fig. 6 shows the performance of the individual and the combined detectors in
more detail. The diagram shows the precision recall curves of the methods. The
PR-curve of the LKT algorithm shows its great contribution to the result. The
high overall precision of this detection algorithm allows the multiple detector
system to operate the method with a low false positive rate at its sensitive
operating point.

Fig. 7 shows a comparison between the approach of cascaded reduction and
growing of result sets (CRAGORS) and a number of combiners (e.g. AdaBoost,
Random Forest). The proposed method ranks second best and outperforms most
of the other methods. The ranking is based on the Euclidian distance between the
ideal operating point and the best operating point of each combination method.
The red line marks the distance of the operating point of the best performing
individual detector. For the detection of fungal patterns a good segmentation into
image foreground and background is required. For each pixel 36 features from the
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Fig. 7. Ranking of different combining methods for detection of individuals: (1) Ran-
dom Forest, (2) CRAGORS, (3) CRAGORS (ROC), (4) SCANN, (5) AdaBoost, (6)
Sum rule, (7) Max rule, (8) Median rule, (9) Min rule, (10) Product rule, (11) Fuzzy
Templates, and (12) Voting

input RGB image are considered, which can be calculated quickly with integral
images [12]. The following algorithms were used to find good segmentations of
the microscopy images:

1. AdaBoost with J4.8 as weak learner (ADA, 10 stages)
2. Random Forest (RF, 10 trees)
3. Bagging classifier with kNN (BAG, 10 bags)

Finally, the different segmentation results were combined by the proposed al-
gorithm. Only the abstract level outputs of the three segmentation approaches
were used. Hence only a single operating point for each method was considered,
yielding the following fusion result:

((ADA ∪BAG) ∪RF )

This combining rule can be easily implemented with binary AND and OR oper-
ations per pixel. Fig. 8 shows the improvements of combination and a ranking of
different combination algorithms as well. The improved segmentation allows a
better detection of objects in subsequent processing steps as well as an improved
estimation of important object features such as the area of fungal patterns. The
red line marks the performance of the best individual segmentation method. A
number of combining algorithms failed to improve the performance (ranks 5-12).
Only four algorithms including two variants of the proposed one (ranks 3,4) were
capable of improving the results.
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Fig. 8. Ranking of different algorithms for combining segmentation results of mi-
croscopy images

The good performance of the proposed method for the combination of de-
tection results raises the question, whether other typical classification problems
from the UCI machine learning repository can benefit or not. The following
classifiers have been selected and the results of their combination have been
evaluated:

1. Linear kernel SVM
2. Radial basis function kernel SVM
3. AdaBoost with decision trees (J4.8)
4. AdaBoost with kNN (k=1)
5. Random forest classifier
6. kNN classifier (k=10)

The obtained combining rules as well as corresponding precision and recall values
are listed in Tab. 1.

Table 1. Combining rules, precision P, and recall R for selected datasets from UCI
Machine Learning Repository

Dataset Combining Rule P R

Statlog 1 (((linSVM2 ∩RF401) ∩ boostedJ4.82) ∪ rbfSVM3) 0.87 0.79
Statlog 2 ((((linSVM1 ∪RF402) ∩ boostedJ481) ∪ boostedkNN3) ∪ rbfSVM1) 0.96 0.6
SPECTF (((rbfSVM2 ∩RF402) ∪ linSVM2) ∩ boostedJ481) 0.86 0.74
WDBC (((rbfSVM2 ∩ singlekNN2) ∪RF402) ∩ linSVM1) 0.96 0.95

Fig. 9 shows the precision recall curves of the tested classifiers for the Statlog,
WDBC, and SPECTF datasets. The operating points of the combined methods
are indicated by circles. Each circle corresponds to a different weighting of the
false positive and false negative errors. Therefore, for each circle a different
combination rule for the classifiers has been calculated.
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(a) STATLOG (b) SPECTF

(c) WDBC

Fig. 9. Precision/recall curves for classification performance on UCI dataset and op-
erating points of combined classifiers (circles)

For all tested datasets the fusion algorithm improves the classification perfor-
mance. This is worth mentioning because the individual classifiers are classifier
ensembles such as random forests as well as adaptive boosted classifiers. It shows
that the method is not limited to fusion of object detection algorithms. Its basic
principle is the careful selection of operating points prior to fusion to ensure a
sufficient level of diversity or compliance of the individual detectors or classifiers.

6 Conclusion

In this paper, a novel approach to the combination of object detection algorithms
has been presented. The selection of operating points allows the reconfiguration
of individual object detectors. Additionally, redundant detectors can be excluded
automatically, as a result the time for the matching step between the result sets
is greatly reduced. This is an important feature because matching is required
for all combining methods. Depending on the detection algorithm, additional
reductions of runtime are possible. Methods such as Viola and Jones cascade of
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boosted features [25] benefit from sensitive operating points because only few
levels of the cascade must be evaluated. The processing time of other algorithms
such as LKT [17] decreases, if only the precisely trackable objects have to be
detected. Segmentation is a common preprocessing step for object detection.
Showing that the proposed algorithm improves the segmentation of microscopy
images of phytopathogenic fungi illustrates that combining different algorithms
is beneficial at the different processing levels of an object detection chain.
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Abstract. In this paper, a Single Classifier-based Multiple Classification Scheme
(SMCS) is proposed as an alternative multiple classification scheme. The SMCS
uses only a single classifier to generate multiple classifications for a given test
data point. Because of the presence of multiple classifications, classification com-
bination schemes, such as majority voting, can be applied, and so the mechanism
may improve the recognition rate in a manner similar to that of Multiple Classi-
fier Systems (MCS). The experimental results confirm the validity of the proposed
SMCS as applicable to many classification systems.

1 Introduction

Most EoCs are created so that an abundance of diverse classifiers is generated, and
subsequently an optimal subset of classifiers is selected. By partially omitting selected
samples from a sample pool for each classifier training operation, we create different
data subsets [4,5,8]. Then, by using these data subsets to train classifiers, every classifier
will be different from the others. Multiple classifiers yield multiple class labels for a
given test sample, and we can combine these multiple class labels into a single class
label. Given that each classifier actually draws a boundary between classes, the MCS
obtains a new boundary by applying a fusion function , that is, de facto, a combination
of different boundaries drawn by different classifiers.

In this paper, we propose an unconventional Single-Classifier-based Multiple Clas-
sification Scheme (SMCS) approach that is similar to the MCS, but without the need
to train multiple classifiers. We propose a mechanism that achieves multiple classifica-
tions with a single classifier, and so benefits from the logic of an MCS without repetitive
classifier training and without classifier selection. Given a test sample to classify and
some training samples, our method divides the training samples into two groups: one
containing what we call reference samples, and the other containing what we call evalu-
ation samples. We use different reference samples to generate different pseudo test data
points, each of which constitutes a different combination of an original test sample and
some reference samples (Fig. 1), and we use evaluation samples to select adequate refer-
ence samples for pseudo test data point generation. Because we use different reference
samples to generate pseudo test data points, data diversity is extracted from the original
training data in a way similar to that in MCS. Furthermore, because of the generation
of multiple pseudo test data points for an original test sample, we can obtain multiple
classifications for that test sample. Consequently, traditional classification combination
schemes in the MCS, such as the majority voting fusion function, can be implemented
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to generate a final class label. The proposed method can somehow be related to local
learning [1], in which local information is exploited to facilitate classification task.

Note that the generation of pseudo data points to improve classification accuracy is
not new [6]. The generation of artificial training examples, known as virtual examples,
have been proposed for Support Vector Machine (SVM) [2, 10]. However, this is dif-
ferent from the proposed methods in three perspectives: a) The virtual examples are to
generate virtual training data, whereas the proposed method is to generate pseudo test
data; the scopes are different. b) The virtual examples are generated so that the learning
machine will extract the invariances from the artificially enlarged training data [10],
whereas our proposed method is to generate pseudo test data points so that the learning
machine can combine them and enhance accuracy; the purposes are different. c) Virtual
examples are designed specifically for SVM, whereas the proposed method is suitable
for all kinds of classifiers; the scales are different.

Also Note that there are some fundamental differences between the MCS and the
SMCS. In the MCS, we benefit from the fact that each classifier has a different per-
ception of how a test sample should be classified. Because the decision boundary made
by each classifier is different, there is diversity among decision boundaries drawn by
different classifiers. Given that classifiers make different errors on different test sam-
ples, diversity can actually help improve classification accuracy. So, in the MCS, one
of the core issues is to generate, select, and combine multiple classifiers, such that the
combined decision boundary is better than any existing single boundary. In the SMCS,
we not only try to find a better decision boundary, but one with the potential to be
close to the oracle and not constrained by an existing classifier boundary and the num-
ber of classifiers. In designing the SMCS, we acknowledged the fact that a decision
boundary drawn by a classifier might never be optimal; so, instead of refining several
existing decision boundaries by combining them, we are trying to explore and make use
of information in the neighborhood of a single decision boundary. In this way, we are
looking for diversity that is already present in the neighborhood, rather than trying to
benefit from diversity embedded in different classifiers. Consequently, diversity is ex-
tracted not from diverse decision boundaries, but from diverse pseudo test data points.
The core issue is then to adequately generate, select, and combine multiple pseudo test
data points for a test sample, rather than generating, selecting, and combining multiple
classifiers.

We focus on two main questions in this paper:

1. Can we extract diversity from a dataset without training multiple classifiers?
2. Can multiple classification without multiple classifiers enhance accuracy?

2 Proposed Method

Given a training dataset X, we first divide the training samples into N reference sam-
ples Xr = {x1, x2, · · · , xN}, and M evaluation samples X̌e = {x̌1, x̌2, · · · , x̌M},
a single classifier CX trained by all the available training samples X, and a test
data point x̃t. The mechanism involves the creation of K pseudo test data points,
X̂t = x̂1,t, x̂2,t, · · · , x̂K,t, which would result in K corresponding classification out-
puts ŷ1,t, ŷ2,t, · · · , ŷK,t after being classified by CX.
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MCS philosophy SMCS philosophy

Fig. 1. The multiple classification philosophies of the MCS and the SMCS compared. Empty
circles represent reference samples of class A, and empty rectangles represent reference samples
of class B. The dark circle represents a test sample to be classified, gray circles represent pseudo
test data points generated by the SMCS, and lines represent the decision boundaries drawn by
classifiers: a) the MCS relies on multiple classifiers to generate multiple decision boundaries, and
so multiple classifications are generated to classify a test sample; b) the SMCS relies on a single
classifier, and so there is only one decision boundary, but multiple pseudo test data points are
generated to subsequently generate multiple classifications.

The purpose of this mechanism is to generate X̂t, such that the combination of clas-
sification outputs on these K pseudo test data points ŷt will be as close to the true class
label yt as possible. Note that:

ŷt = g(ŷ1,t, ŷ2,t, · · · , ŷK,t) (1)

where g(·) is the classification combination function, such as majority voting.
Here, the main problem is to design a stable mechanism that generates pseudo test

data points that improve the overall classification result. We decompose this problem
into two sub problems, expressed as the following two questions:

1. What is the function f(·) used to generate pseudo data points, given a test sample
and several reference samples?

2. How do we decide which reference samples to use to generate pseudo data points,
given a test sample?

We address these two sub problems in the sections below and describe them in more
detail.

2.1 Define a Function to Generate Pseudo Test Data Points

There are a number of ways to solve the first component of the problem, which is to
decide how to generate a pseudo test data point given a test sample and one or more
reference samples.

A pseudo test data point can be generated as a combination of a test sample and a
reference sample, or as a combination of a test sample and several reference samples.
It can be generated in a deterministic way, or with some random factors. To gain some
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insight into the properties of the SMCS, we start with a simple and deterministic func-
tion to generate pseudo test data points. In our method, each pseudo test point is based
on an original test sample and a single reference sample:

x̂i,t = f(xi, x̃t) (2)

where x̂i,t indicates a generated pseudo test data point, x̃t is the original test sample,
and xi is a reference sample.

For example, if each data point has L feature dimensions, then the feature l of the
generated pseudo test data point x̂i,t will simply be a weighted average of the same
feature of the test sample x̃t and that of the reference sample xi:

x̂i,t,l = αxi,l + (1− α)x̃t,l, 1 ≤ l ≤ L, 0 ≤ α ≤ 1 (3)

where x̂i,t,l indicates the value of the feature l of the generated pseudo test data point
x̂i,t, xi,l indicates the value of the feature l of the reference sample xi, and x̃t,l indicates
the value of the feature l of the test sample x̃t. Also note that α controls the noise and
diversity present in pseudo test data points: the larger it is, the greater the diversity and
the noise.

2.2 Select Reference Samples to Generate Pseudo Test Data Points

Not every generated pseudo data point will be adequate for classification. The fitness of
a pseudo data point will largely depend on the “chemistry" between the test sample x̃t

and the reference sample xi.
In order to evaluate the fitness of each reference sample xi for a test sample x̃t in an

attempt to generate adequate pseudo data points, we propose a three-step scheme:

1. Identify valid [ evaluation sample - reference sample ] pairs
Remember that we divide training samples into evaluation samples and reference
samples. We will use these M evaluation samples to determine the fitness of a ref-
erence sample. Each evaluation sample will generate a pseudo data point using the
reference sample, and then the pseudo data point will be classified. If the classifi-
cation of this pseudo data point has the same label as the evaluation sample, then
this [ evaluation sample - reference sample ] pair is regarded as valid; otherwise, it
is regarded as invalid.

2. Assign weight to reference samples
For a given test sample, we find the m nearest evaluation samples. Then, every
reference sample is assigned a weight based on its validity with respect to these m
evaluation samples, which is obtained as the sum of the m [ evaluation sample -
reference sample ] pairs.

3. Select reference samples and generate pseudo test data points
We set a threshold for the reference samples, and select only those with weights
higher than that threshold for pseudo test data point generation.

Here we notice two things. First, each function can be manipulated independently and
so is subject to optimization. This modular approach gives our proposed method a great
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deal of flexibility, and it can be adapted to various pattern recognition problems. Second,
the step of identifying valid [ evaluation sample - reference sample ] pairs needs only
to be performed once for all the test samples, whereas the other two steps need to
be carried out for each individual test sample. Given that the first step is more time
consuming, and the second and the third steps are fairly straightforward and less time
consuming, the overall process can be implemented in the real world without incurring
enormous cost. We provide more details below.

Identify valid [ evaluation sample - reference sample ] pairs. The first step is to
evaluate the fitness of each reference sample by using several evaluation samples from a
evaluation dataset, X̌e = {x̌1, x̌2, · · · , x̌M}. For a reference sample xi to be evaluated,
an evaluation sample x̌k generates a pseudo data point x̂i,k using this reference sample.
Then, the generated pseudo data point is classified by a classifier:

x̂i,k �→ ŷi,k (4)

Since we already know the class label yk of each evaluation sample x̌k, we can de-
termine whether or not the classification of this pseudo data point is correct, meaning
that it has the same class label as that of the evaluation sample. We repeat the same
process between all the reference and evaluation samples, and then define a validity
measure vi,k for each [ evaluation sample x̌k - training data point xi] pair, 1 ≤ k ≤M ,
1 ≤ i ≤ N , and set the validity to 1 for correct classification and to 0 for incorrect
classification:

vi,k = 1, if ŷi,k = yk (5)

vi,k = 0, otherwise (6)

Figure 2 shows the process of identifying valid [ evaluation sample - reference sample
] pairs. The validity measures are then used to evaluate the fitness of each training data
point xi, as described in the next section.

Assign Weight to Reference Samples. The validity measure vi,k for each [ evaluation
sample x̌k - reference sample xi] pair tells us whether or not a reference sample xi is
fit to generate a pseudo test point with an evaluation sample x̌k, but it does not tell us
whether or not a reference sample xi is fit to generate a pseudo test point with a test
sample x̃t.

In order to decide whether or not we should use a reference sample xi to generate
a pseudo test point with a test sample x̃t, first we try to find the m nearest evaluation
samples from the test sample x̃t. The idea behind this action is that these evaluation
samples can be seen as proxies of the test sample x̃t. If they all qualify as correct
classifications with the use of the reference sample xi to generate pseudo test points,
then the test sample x̃t can use this reference sample xi to generate pseudo test points
as well.
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Fig. 2. Each evaluation sample generates a pseudo data point using a reference sample. The clas-
sification result of this pseudo data point provides an indication of the fitness of the [ evaluation
sample - test sample ] pair. Solid circles represent reference samples, white circles represent
evaluation samples, and gray circles represent generated pseudo data points.

Given a test sample x̃t, let us consider the nearest m evaluation samples to be trust-
worthy for this test sample, noting that m � M . We then use these m evaluation data
points to evaluate the fitness of reference samples for the test sample x̃t. The weight of
a reference sample xi is assigned as follows:

wi =

m∑
k=1

δi,kvi,k (7)

where vi,k is a validity measure vi,k for the [ evaluation sample x̌k - reference sample
xi] pair, and δi,k is a weighting adjustment based on distance or other factors.

Figure 3 demonstrates a general scheme for assigning weight to reference samples
through the aggregation of multiple validity measures between a reference sample and
evaluation samples. In this paper, we define the weighting adjustment δi,k as:

δi,k =
d(x̌k, x̃t) + d(x̌k, xi)

d(x̃t, xi)
(8)

where d(·) indicates a Euclidean distance function, x̌k is an evaluation sample, xi is a
reference sample, and x̃t is a test sample.

So, d(x̌k, x̃t) is the distance between the evaluation sample x̌k and the test sample
x̃t, d(x̌k, xi) is the distance between the evaluation sample x̌k and the reference sample
xi, and d(x̃t, xi) is the distance between the reference sample xi and the test sample x̃t.

In our weighting adjustment δi,k, the weight wi increases with d(x̌k,xi)
d(x̃t,xi)

, because
knowing that the reference sample produces correct pseudo data points for an evalua-
tion sample, the distance between the evaluation sample x̌k and the reference sample
xi signals the robustness of the reference sample; whereas the distance between the
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Fig. 3. For each test sample, each reference sample is evaluated indirectly by aggregating the
validity of [ evaluation sample - reference sample ] pairs from the nearby evaluation samples.
Now, the weighting of reference samples can be adjusted by distances. Solid circles represent
reference samples, white circles with a dotted contour represent test samples, and white circles
with a solid contour represents evaluation samples.

test sample x̃t and the reference sample xi scales down this robustness measure. The
weight wi also increases with d(x̌k,xi)

d(x̃t,xi)
, because the ratio of the distance d(x̌k, xi) to the

distance d(x̃t, xi) represents the validity to approximate the test sample x̃t using the
evaluation sample x̌k .

Note that other weighting mechanisms may be suitable as well. This is simply the
one that we chose to implement.

Select Reference Samples and Generate Pseudo Test Data Points. Given a test sam-
ple x̃t, once all reference samples are evaluated using the nearest m evaluation samples
from that test sample, we can proceed to select adequate reference samples for the pur-
pose of pseudo test data point generation.

Again, we can only evaluate the nearest n reference samples for the test sample. We
also define a threshold θ. Therefore, the selection criterion for reference samples is:

if wi ≥ θ si = 1 (9)

else si = 0 (10)

where si is the selection decision on reference sample xi. The threshold θ is defined as:

θ = ρmax{wi}, 0 < ρ ≤ 1 (11)

Figure 4 shows the process of reference sample selection that we use to generate pseudo
data points for a test data point. Once multiple diverse pseudo test data points are gener-
ated, we can use them to feed a classifier to produce multiple classifications for a single
test sample. However, these multiple classifications need to be combined in order to
produce a final class label for the test sample. We describe the process below.
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Fig. 4. Adequate reference samples are then selected by the weights that each test sample assigns
to them. The selected reference samples then generate pseudo test data points for the original test
data point. Solid circles represent reference samples, white circles with a dotted contour represent
a test sample, and gray circles represent generated pseudo test data points.

2.3 Combine Multiple Classification Outputs

Supposing that I reference samples xi, 1 ≤ i ≤ I are selected for a test sample x̃t,
corresponding pseudo test data points can be generated:

x̂i,t = f(xi, x̃t) (12)

By applying a single classifier CX that is trained with all the available reference samples
X, multiple classification outputs can be obtained:

x̂i,t �→ ŷi,t (13)

Once we have multiple classification outputs, a fusion function g is implemented to
combine them:

ŷt = g(ŷ1,t, ŷ2,t, · · · , ŷI,t) (14)

As a result, we obtain the final class label output for the test sample concerned.
Below, we provide the pseudo code for our proposed method to better illustrate the
methodology.

3 Experiments

In order to verify the validity of the proposed SMCS, to understand effects of neighbor-
hood sizes m and n and reference sample selection, and to measure the performance
of the SMCS, we carried out a number of experiments on different datasets extracted
from the UCI Machine Learning Repertoire. The experiments were conducted in MAT-
LAB using PRTools [3]. The training datasets are further split into a reference dataset,
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Table 1. The datasets used in our experiments

Datasets Number Dimension Reference Evaluation Test Dataset Size
of Classes Dataset Size Dataset Size Dataset Size per Class

breast-tissue 6 9 35 36 35 6
bupa-liver 2 6 115 115 115 58

glass 6 9 72 71 71 12
iris 3 4 50 50 50 17

parkinsons 2 22 65 65 65 32
vowel 11 11 330 330 330 30
wdbc 2 30 190 189 190 95
yeast 10 8 494 495 495 49

Table 2. The error rates of a Single Classifier-based Multiple Classification Scheme with pa-
rameters n = m = 9 ∼ 21 and ρ = 0.8 ∼ 0.95. We show the error rates of a single classifier
(denoted "single classifier") as the baseline, and those of an average SMCS without any parameter
selection (denoted "average smcs").

Dataset Method LDC QDC KNN PW MLP Tree
breast-tissue single classifier 31.43% 40.00% 48.57% 51.43% 54.29% 40.00%
breast-tissue average smcs 24.29% 29.49% 48.57% 48.57% 43.67% 32.04%
breast-tissue error change −22.73% −26.28% 0.00% −5.56% −19.55% −19.90%

bupa-liver single classifier 33.04% 41.74% 32.17% 46.09% 33.91% 40.00%
bupa-liver average smcs 33.51% 33.66% 32.02% 45.22% 30.99% 31.43%
bupa-liver error change 1.41% −19.35% −0.48% −1.89% −8.61% −21.43%

glass single classifier 30.99% 36.62% 33.80% 40.85% 61.97% 25.35%
glass average smcs 22.48% 35.97% 31.09% 40.85% 61.97% 21.83%
glass error change −27.44% −1.79% −8.04% 0.00% 0.00% −13.89%

iris single classifier 8.00% 4.00% 10.00% 8.00% 4.00% 24.00%
iris average smcs 6.07% 4.43% 5.07% 6.00% 4.50% 15.43%
iris error change −24.11% 10.71% −49.29% −25.00% 12.50% −35.71%

parkinsons single classifier 15.38% 15.38% 20.00% 16.92% 12.31% 13.85%
parkinsons average smcs 13.08% 13.52% 20.00% 16.92% 11.37% 10.93%
parkinsons error change −15.00% −12.14% 0.00% 0.00% −7.59% −21.03%

vowel single classifier 39.09% 11.21% 29.09% 3.03% 84.24% 30.61%
vowel average smcs 33.17% 7.90% 24.10% 3.16% 83.64% 19.32%
vowel error change −15.14% −29.54% −17.15% 4.29% −0.72% −36.88%

wdbc single classifier 8.42% 6.84% 6.32% 7.37% 3.68% 10.00%
wdbc average smcs 5.62% 5.30% 6.05% 6.11% 2.18% 5.11%
wdbc error change −33.26% −22.53% −4.17% −17.09% −40.82% −48.87%

yeast single classifier 41.01% 100.00% 42.42% 42.22% 48.89% 52.53%
yeast average smcs 37.86% 100.00% 38.97% 38.89% 47.58% 42.76%
yeast error change −7.67% 0.00% −8.15% −7.89% −2.67% −18.60%
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to be used for pseudo data point generation, and an evaluation dataset, to be used for
reference sample evaluation purposes in the SMCS. For pseudo data point generation,
we implemented a weighted combination of a reference sample and a test sample, as
described in Eq. (16), with equal weights for both, so α = 1

2 . We also tested different
ranges of parameters for m, n, and ρ, in an effort to gain more insight: the value of m
was set equal to n, and we tested m = n = 9, m = n = 11, · · · , and m = n = 21; for
the threshold setting ρ, we tested ρ = 0.95, ρ = 0.9, ρ = 0.85, and ρ = 0.80.

Our experimental results suggest that the proposed SMCS works to some extent,
with an average improvement of 16.31%. The injected diversity seems to enhance the
accuracy of the recognition rates in most cases, and generally the noise that is inherent
in diversity does not degrade the classification results. Table 2 provides a summary of
SMCS error rates on various dataset-classifier combinations. We note that the improve-
ment achieved with the SMCS also depends on the classification methods of the trained
classifiers.

4 Conclusion

The experimental results confirm the validity of the proposed SMCS as an applicable
scheme for an MCS. This is especially true when we encounter the curse of dimen-
sionality, and can only train weak classifiers. The parameters m, n and ρ also have an
impact on the number of generated pseudo points. The correlation between m,n and the
number of pseudo points is 0.0432, and that between ρ and the number of pseudo points
is −0.2428. Hence, we might attempt to conclude that the smaller the ρ, the larger the
number of generated pseudo points. Nevertheless, more experiments may be needed to
have a better understanding on the effects of m, n and ρ.

To summarize, there are several critical aspects to the potential impact of the pro-
posed SMCS:

1. Dynamic Decision Boundary
Unlike the MCS, which attempts to combine multiple decision boundaries from
multiple classifiers in order to achieve an optimal decision boundary, the SMCS
operates under the assumption that a static optimal boundary is difficult or impos-
sible to draw by combining multiple boundaries, or may not even exist. Instead, it
tends to make dynamic decisions given a static decision boundary by generating
pseudo data points for multiple classifications, and therefore shifts the complexity
of decision boundary optimization to pseudo data point generation optimization.

2. Compatibility with the MCS
Selection of a suitable classification scheme does not have to be an either/or propo-
sition, as it is feasible to apply both the MCS and the SMCS on a dataset, where
each classifier trained with an MCS can further generate multiple pseudo test data
points for each test sample to be classified. In this case, we actually generate a
dual multiple classification system, which may further improve the performance of
traditional MCS or the proposed SMCS.

3. Flexibility in Pseudo Data Points Generation
Unlike traditional MCS, where the generation of multiple classifiers is generally
quite straightforward, the proposed SMCS tends to be more flexible and it can have
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almost infinite variations; such as on the choice of the pseudo data point generation
function, on the evaluation of reference samples, and on the adjustment of neigh-
borhood size, etc. Consequently, the best SMCS scheme may be different for each
dataset, and this indicates more opportunity for performance enhancement.

4. Reduced Cost in Classifier Training Time
Compared with traditional MCS, the SMCS requires the training of only one clas-
sifier. Suppose, for example, that an MCS needs to train K classifiers and re-
quires training time TK , the proposed SMCS would require training time T1, and
T1 ≈ TK

K . This represents a speeding up by a factor of about K for classifier train-
ing. When K becomes large, such as 100 ∼ 4000 [11], the gain may be substantial.

5. Reduced Cost in Ensemble Selection Time
Classifier training represents only a part of the cost of ensemble construction, be-
cause subsequent ensemble selection must be conducted to select the best subset of
classifiers [7, 9]. Because the SMCS uses only one classifier, there is no need for
classifier subset selection. In fact, classifier subset selection is replaced by refer-
ence sample selection in the SMCS. This operation in the proposed SMCS is quite
straightforward, requiring only nearest neighbor identification and a sum operation.
It is therefore less time consuming than traditional classifier selection.

Nevertheless, the classification problem is not solved without cost. Although the SMCS
reduces classifier training cost considerably, it actually increases the classification cost
on each test sample. In other words, the SMCS shifts the cost of classifier training to
the cost of pseudo test data point classification. As a result, if the cost of classification
is critical for a system performance and the training cost is negligible, the SMCS may
not be suitable for the system. On the contrary, if the training cost is prohibitively high
and the classification cost is less substantial, then the SMCS should be considered as a
potential solution.
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Abstract. In multi-label learning, the relationship among labels is well accepted
to be important, and various methods have been proposed to exploit label relation-
ships. Amongst them, ensemble of classifier chains (ECC) which builds multiple
chaining classifiers by random label orders has drawn much attention. However,
the ensembles generated by ECC are often unnecessarily large, leading to extra
high computational and storage cost. To tackle this issue, in this paper, we pro-
pose selective ensemble of classifier chains (SECC) which tries to select a subset
of classifier chains to composite the ensemble whilst keeping or improving the
performance. More precisely, we focus on the performance measure F1-score,
and formulate this problem as a convex optimization problem which can be ef-
ficiently solved by the stochastic gradient descend method. Experiments show
that, compared with ECC, SECC is able to obtain much smaller ensembles while
achieving better or at least comparable performance.

Keywords: multi-label, classifier chains, selective ensemble.

1 Introduction

In traditional supervised learning, one instance is associated with one concept; but in
many real-world applications, an object is naturally associated with multiple concepts
simultaneously. For examples, a document may belong to multiple topics [14], an image
or a music can be annotated with more than one words [1,24]. Obviously, one label per
instance is not capable of dealing with such tasks, and multi-label learning which asso-
ciates each instance with multiple labels simultaneously has become an active research
topic during the past few years [17,6,8,28,16,2].

A straightforward approach to multi-label learning is the binary relevance method,
which decomposes the task into a number of binary classification problems, each for
one label [1]. However, such a method is usually not able to achieve good performance,
since it neglects the relationships between class labels, which have been widely ac-
cepted to be important [4,27]. In the literature, many methods have been proposed to
exploit label relationships. Read et al. [16] introduced classifier chain (CC) to incorpo-
rate class relationships, whilst trying to keep the computational efficiency of the binary
relevance method. Specifically, like the binary relevance method, each CC is also con-
sist of multiple binary classifiers each for one label, but these binary classifiers are
linked in a chain such that each incorporates the class predicted by the previous clas-
sifier as additional attributes. Obviously, the quality of CC is dependent on the label
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Fig. 1. The performance of ECC with different ensemble sizes on CAL500, where hamming loss
and one-error are considered. For the selective ensemble, the nine CCs are selected based on the
performance on test data from the first twenty CCs via exhaustive search.

orders in the chain. Rather than selecting one good label order, ECC [16] constructs
multiple CCs by using different random label orders, and it combines them for predic-
tion by a voting scheme. This method has drawn much attention [4,26,11].

Generally speaking, by combining more diverse CCs, the performance of ECC tends
to improve and converge. For example, as illustrated in Fig.1, both hamming loss and
one-error decrease when the ensemble size increases, and they converge after ensemble
size reaches about fifty and thirty, respectively. However, one problem is that the ensem-
bles constructed by ECC tend to be unnecessarily large, which requires large amount
of memory storage and also decreases the response time for prediction. As an exam-
ple, in Fig.1, we can see that similar even better performance can be achieved by using
only nine out of the first twenty classifiers, this indicates that the original ECC is quite
redundant and it can be largely pruned.

In this paper, we propose the selective ensemble of classifier chains (SECC) method,
which tries to reduce the ensemble size of ECC whilst keeping or improving the perfor-
mance. Specifically, by focusing on the frequently-used performance measure F1-score,
we try to optimize an upper bound of the empirical risk, and formulate the problem into
a convex optimization problem with �1-norm regularization, also an efficient stochas-
tic optimization method is presented to solve the problem. Experiments on image and
music annotation tasks show that SECC is able to obtain much smaller ensembles than
ECC, while its performance are better or at least comparable to ECC.

The remainder of the paper is organized as follows. Section 2 briefly reviews some
related work. Section 3 presents our proposed SECC method. Section 4 reports the
experiment results, which is followed by the conclusion in Section 5.

2 Related Work

In the past few years, many multi-label learning methods have been proposed in the
literature, which generally fall into two groups. The first group include algorithm adap-
tation based methods, which try to modify an algorithm to make multi-label predictions;
representatives include BoostTexter [17], ML-kNN [28], HMC tree [25], etc. The other
group of methods try to perform problem transformation, where a multi-label problem
is transformed to one or more other problems, which can be solved by using existing
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methods. For example, it was transformed into binary classification problems [1,4,16],
multi-class classification problems [23,15], and ranking problems [6,7]. In practice,
problem transformation based methods are attractive due to its scalability and flexibil-
ity, that is, any off-the-shelf methods can be used to suit the requirements.

The binary relevance (BR) method [1] is a common problem transformation method,
and it transforms a multi-label problem into multiple binary problems, each is to predict
the relevance of one label. It is obviously that BR treats each label independently, and
does not model relationships existing between class labels. Due to this, its performance
is not satisfying, and many methods have been proposed to improve it by exploiting
label relationships. Read et al. [16] proposed the CC model which is an important im-
provement over BR. By building chaining classifiers, CC overcomes the disadvantages
of BR and achieves higher performance, while retaining the computational complexity.
In practice, the performance of CC heavily depends on the label order in the chain;
thus ECC is proposed to combine multiple CCs which are based on random labels or-
ders. However, a potential problem of ECC is that it may generate unnecessarily large
ensembles, reducing its efficiency.

In traditional supervised learning, selective ensemble (a.k.a. ensemble pruning or
ensemble selection) [30, Chapter 6] is an active research topic, and many technologies
has been used to build selective ensembles, such as genetic algorithm [31], semi-definite
programming [29], clustering [9], sparse optimization [13]. Obviously, ECC is an en-
semble of multi-label classifiers, making the current work essentially different.

3 The SECC Method

In this section, we present our proposed SECC method. Before describing the problem
formulation, we begin with some notations and preliminaries. Then, we transform the
problem to a convex optimization problem, and give a stochastic optimization solution.

3.1 Preliminaries and Problem Formulation

Let X be the instance space and L be a set of l labels. In multi-label learning, each
instance xi ∈ X is associated with multiple labels in L, which is represented as an
l-dimensional binary vector yi with element 1 indicating xi is associated with the k-th
label and−1 otherwise. Given a set of training examples S = {(xi,yi)}mi=1, the task of
multi-label learning is to learn a multi-label classifier h : X �→ Y , where Y ⊆ {−1, 1}l
is the set of feasible label vectors, such that it can be used predict labels for unseen
instances. In practice, it is often to learn a vector-valued function f : X �→ R

l which
determines the label of x as

ŷ = argmaxy′∈Y y′
f(x) . (1)

It is clear that how the argmax is computed depends on the structure of Y; for example,
if Y = {−1, 1}l, ŷ is simply sign[f(x)].

Instead of learning one multi-label classifier, ECC constructs a group of CCs based
on random label orders, and combines them via voting for prediction. Without loss of
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generality, we denote the group of CCs as {h(t) : X �→ Y}kt=1, and ECC combines
them to produce the vector-valued function f : X �→ R

l as

f(x;w) =
∑k

t=1
wth

(t)(x) , (2)

where w = [w1, . . . , wk]

 is the weighting vector; for example, they are simply set to

1/k for the simple voting.
As discussed above, one problem with ECC is that the CCs generated based on ran-

dom label orders are redundant, which results in a large ensemble size, i.e., large value
of k. It can be found that in (2) the CC classifier h(k) will be excluded from the en-
semble if wk is zero, and the size of ensemble is exactly ‖w‖0. Based on this, our the
task of reducing the size of ECC becomes to finding a weighting vector w, such that
the performance of corresponding ensemble is better than or comparable to ECC, while
the ensemble size ‖w‖0 is small.

3.2 A Convex Formulation

Here, we find the weighting vectorw based on the principle of empirical risk minimiza-
tion. That is, given the training example S = {(xi,yi)}mi=1, we consider to solve the
vector w by solving the following optimization problem.

min
w∈W

1

m

∑m

i=1
Δ(yi, f(xi;w)) s.t. ‖w‖0 ≤ b , (3)

whereW is the feasible space of w, 0 < b ≤ K is the budget of ensemble size, and
Δ(yi, f(xi;w)) is the empirical risk function measuring the loss of determining xi’s
label vector by f(xi;w) while its true label is yi. More specifically, in current work,
we consider the frequently-used performance measure F1-score, and define the loss
function Δ as

Δ(y, f(x;w)) = 1− F1(y, ŷ) , (4)

where ŷ is the label vector determined by f(x;w), and F1(·, ·) is

F1(y, ŷ) =
2tp

l + tp− tn
,

where tp =
∑

i=1 I(yi = 1∧ ŷi = 1) the number of groundtruth labels in the predicted
relevant labels, tn =

∑
i=1 I(yi = −1 ∧ ŷi = −1) counts how many predicted non-

relevant labels are truly non-relevant, and l is the number of possible class labels.

Convex Relaxation. It is easy to see that the problem is not easy to solve, mainly
because the risk function Δ is non-decomposable over labels, non-convex and non-
smooth. Inspired by some works on directly optimizing performance measures [10,12]
which is generally based on structured prediction [19,21], instead of directly minimize
the empirical risk as (3), in SECC, we consider to optimize one of its convex upper
bounds, which is based on the following proposition.
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Proposition 1. Given a multi-label classifier f : X �→ R
L in (2) and the empirical risk

function Δ in (4), define the loss function �(y, f(x)) as

�(y, f(x)) = max
y′∈Y

[
(y′ − y)
f(x) +Δ(y,y′)

]
, (5)

where Y is the set of feasible label vectors, then the loss function �(y, f(x)) provides a
convex upper bound over Δ(y, f(x)).

Proof. It is obvious the loss function �(y, f(x)) is convex in f , because it is pointwise
maximum of linear functions. Let ŷ = sign[f(x)], i.e., the prediction determined by
f(x), it is easy to find that ŷ is the maximizer of y
f(x). Then, we can get

�(y, f(x)) ≥ ŷ
f(x)− y
f(x) +Δ(y, ŷ) ≥ Δ(y, ŷ) ,

thus �(y, f(x)) is an upper bound overΔ(y, ŷ), which completes the proof. �
From the optimization problem (3), by replacing the risk function Δ(·, ·) with its up-
per bound �(·, ·), and ‖w‖0 with its continuous relaxation ‖w‖1, we can obtain the
optimization problem of SECC as

min
w

∑m

i=1
�(yi,Hiw) + λ‖w‖1 , (6)

where λ is the regularization parameter and Hi ∈ R
l×k is the matrix collecting the

predictions of {h(t)}kt=1 on instance xi, i.e.,

Hi = [h(1)(xi), · · · , h(k)(xi)] .

Obviously, the problem (6) is an �1-regularized convex optimization problem, and we
solve it via stochastic optimization subsequently.

3.3 Stochastic Optimization

To solve the �1-regularized convex optimization problem (6), we employ the state-of-
the-art stochastic optimization algorithm presented in [18], and the key is how to com-
pute the subgradient of the loss function �(yi,Hiw) with respect to w. The following
proposition provides the method to compute the subgradient of �(yi,Hiw).

Proposition 2. Given an example (xi,yi), a set of multi-label classifiers {h(t)}kt=1

and a weighing vector w0 ∈ R
K , denote pi = Hiw0 be the ensemble’s prediction on

example (xi,yi), then the vector

g = (ỹ − yi)

Hi ,

is a subgradient of �(yi,Hiw) at w0, where ỹ is the solution of the argmax problem

ỹ = argmaxy′∈Y
[
y′
pi +Δ(yi,y

′)
]
. (7)

Proof. It is obvious that the function �(yi,Hiw) is a pointwise maximum of linear
functions in w, then it is straightforward to obtain its subgradient if the maximizer of
(5) at w0 can be obtained. Actually, the argmax problem (7) solves the maximizer,
which completes the proof. �
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Algorithm 1. Stochastic optimization algorithm for SECC

Input: S = {(xi,yi)}mi=1, CC classifiers {h(t)}kt=1, regularization
parameter λ, step size η

Output: weighting vector w
1: let w = 0, � = 0 and p = 2 ln k
2: repeat
3: select (xi,yi) uniformly at random from S
4: let Hi = [h(1)(xi), · · · , h(k)(xi)] and pi = Hiw
5: solve the argmax, i.e., ỹ ← argmaxy′∈Y

[
y′�pi +Δ(yi,y

′)
]

6: compute the sub-gradient, i.e., g = (ỹ − yi)
�Hi

7: let �̃ = �− ηg
8: ∀t, let �t = sign(�̃t)max(0, |�̃t| − ηλ)
9: ∀t, let wt = sign(�t)|�t|p−1/‖�‖p−2

p

10: until convergence

Algorithm. Based on above proposition, we can present the stochastic optimization
method for solving the optimization problem (6), whose pseudocode is summarized in
Algorithm 1. Specifically, this algorithm is a stochastic subgradient descend method.
At each iteration, it first samples an example (xi,yi) uniformly at random from data S,
and then compute the subgradient of �(yi,Hiw) (lines 4-6). Since the example (xi,yi)
is chosen at random, the vector g is an unbiased estimate of the gradient of the empirical
risk

∑m
i=1 �(yi,Hiw). Next, the dual vector � is updated with step size η (line 7) so

that the empirical risk is decreased; and also it is truncated to decrease the regularizer
λ‖w‖1 (line 8). Finally, the updates of � are translated to the variable w via a link
function in line 9. This procedure iterates until convergence. It is worth noting that, at
each iteration of Algorithm 1, we even do not need to compute the predictions on all
examples, and all the operations are very efficient as long as the argmax problem (7)
can be efficiently solved.

Solving the Argmax. To make Algorithm 1 practical, it is obvious that the argmax
problem (7) needs to be solved efficiently. Noting that the feasible space of ỹ is of ex-
ponential size (i.e., 2l), and it is infeasible to solve it by exhaustive search. Fortunately,
this problem has been studied in [10], and an efficient solution has been proposed.
Roughly speaking, the solution is based on fact that F1-score can be computed from the
contingency table (i.e., four numbers: true positive, true negative, false positive, false
negative) which take at most O(l2) different values. Algorithm 2 summarizes the pseu-
docode, and it is easy to see that its computational complexity is O(l2), where l is the
number of class labels.

Convergence & Complexity. Based on Theorem 3 in [18], we can find that the number
of iterations of Algorithm 1 to achieve ε-accuracy is bounded by O(log k/ε2), where
k is the number of CC classifiers. Moreover, in each iteration, all the operations are
performed on one single example, and we can see that the computational complexity
is dominated by the argmax which as shown above can be solved by Algorithm 2 in
O(l2) time. As a consequence, we can see that the method can converge to a ε-accurate
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Algorithm 2. Solve the argmax problem (7) [10]
Input: true label vector y, current prediction p
Output: label vector ỹ
1: {i+1 , . . . , i+pos} ← sort {i | yi = +1} in descending order of pi’s
2: {i−1 , . . . , i−neg} ← sort {i | yi = −1} in descending order of pi’s
3: for tp = 0 to pos do
4: fn = pos− tp
5: set y′

i+1
, . . . , y′

i+tp
to +1 and set y′

i+tp+1

, . . . , y′
i+pos

to −1

6: for tn = 0 to neg do
7: fn = neg − tn
8: set y′

i−1
, . . . , y′

i−
fn

to +1 and set y′
i+
fn+1

, . . . , y′
i+neg

to −1

9: let v ← Δ(y,y′) + y′�p
10: if v is the largest so far then
11: ỹ = y′

12: end if
13: end for
14: end for

solution in at most O(l2 · log k/ε2) time. It worth noting that this computational com-
plexity is independent of m, i.e. the number of training examples, this constitutes one
of the appealing properties of SECC.

4 Experiments

In this section, we perform a set of experiments to evaluate the effectiveness of SECC.
Specifically, we first show the effectiveness of optimizing the upper bounds, and then
compare SECC with ECC and other state-of-the-art multi-label classifiers.

4.1 Configuration

The experiments are performed on image and music annotation tasks. Specifically,
– Image annotation tasks are Corel5k [5] which has 5000 images and 374 possible

labels, and Scene [1] has 2407 images and 6 possible labels;
– Music annotation tasks are CAL500 [24] which has 502 songs and 174 possible

labels, and Emotions [20] which has 593 songs and 6 possible labels.
The information of these tasks are also summarized in Table 1.

In the experiments, we first train an ECC of size 100, then build SECC upon it. We
compare SECC with BSVM [1] which trains one SVM for each label, and state-of-the-
art methods including the lazy method ML-kNN [28], label ranking method CLR [7]
and the full ECC combining all classifiers (denoted as ECCfull). It is also compared
with the random strategy which selects classifiers randomly (denoted as ECCrand) .
Specifically, LIBSVM [3] is used to implement the base classifier in BSVM and ECC;
the default implementation of ML-kNN and CLR in MULAN [22] are used.
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Fig. 2. The F1-score (left) and ensemble size (right) of SECC on the CAL500 task, during the
optimization procedure. Both the F1-score on training and test set are ploted.

For each task, these comparative methods are evaluated by 30 times random holdout
test, i.e., in each time, 2/3 for training and 1/3 for testing; finally, the mean F1-score over
30 times and the standard derivation are reported; also the sizes of ensembles generated
by SECC are reported. In each time of holdout test, SECCs choose the regularization
parameter λ by 5 fold cross validation on training set; ECCrand randomly selects N CC
classifiers to form the ensemble, where N is the size of SECC in this time.

4.2 Effectiveness of Optimizing the Upper Bound

A question naturally raised about SECC is whether it is effective to optimize the upper
bound of the empirical risk; in other words, whether optimizing the upper bound will
improve the performance?

To answer this question, we record the training and test performance on the CAL500
task where the parameter λ is to 2−8, and the results are shown in the left plot of Fig.2.
It can be seen that both the F1-score on training and test data improve as the number
of iterations increases. This optimizing the upper bound is effective in improving the
performance. Also, we record the ensemble sizes of SECC at different iterations, and
plot then in the right plot of Fig.2. It can be seen that the ensemble size of SECC
decreases with the number of iterations increases. This results shows the effectiveness
of SECC in obtaining a smaller ensemble.

Moreover, we can see from Fig.2 that the performance tends to converge after some
iterations, i.e., the F1-scores converge after about 1500 iterations. Noting there are 502
examples in CAL500, this means we need to scan the data set for only three times, also
the operations in each iteration are very simple, so this method is efficient. For example,
on the CAL500 task, it takes only 1.5 seconds for 3000 iterations on a PC with Intel
Core 1.7GHz CPU, which is very efficient.

4.3 Performance Comparison Results

The F1-scores achieved by comparative methods are shown in Table 1, where the en-
semble size of ensemble methods, including SECC, ECCfull and ECCrnd, are also
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Table 1. Experimental results (mean±std.) achieved by comparative methods, which incudes the
F1-score and the ensemble sizes for ensemble methods (SECC, ECCfull and ECCrnd). Also, the
information of each task is summarized, where #F, #L and #N indicate the number of features,
labels and examples, respectively. The mark ‘•’(‘◦’) indicates that SECC is significantly better
(worse) than the corresponding method based on paired t-tests at 95% significance level.

SECC ECCfull ECCrand BSVM ML-kNN CLR

Corel5k: #F=499, #L=374, #N=5000
F1-score .149±.006 .134±.006• .127±.008• .135±.005• .016±.003• .034±.001•

Size 15.3±5.6 100.0 15.3±5.6 – – –

Scene: #F=294, #L=6, #N=2407
F1-score .672±.002 .668±.012 .657±.014• .595±.014• .675±.018 .629±.009•

Size 22.0±10.8 100.0 22.0±10.8 – – –

CAL500: #F=68, #L=174, #N=502
F1-score .384±.013 .323±.010• .333±.023• .314±.029• .322±.011• .405±.003◦

Size 19.6±4.7 100.0 19.6±4.7 – – –

Emotions: #F=72, #L=6, #N=593
F1-score .619±.017 .618±.015 .612±.016 .614±.014 .602±.029• .622±.016

Size 63.7±21.2 100.0 63.7±21.2 – – –

given. For better comparison, we perform paired t-tests at 95% significance level to
compare SECC with other methods, and the results are indicated in Table 1 by ‘•’(‘◦’).

It can be seen from these results that the performance of SECC is quite promising.
Compared with the full ensemble ECCfull, it achieves 3 significant better F1-scores,
while the ensemble size is much smaller. For examples, on Corel5k, the F1-score is
improved from 0.134 to 0.149, while the ensemble size is reduced to 15.3; on CAL500
the F1 score is improved from 0.323 to 0.384, whiles the ensemble size of reduced
from 100 to less than 20; even on Scene and Emotions, SECC still achieves comparable
performance to ECC, but it still reduces the average ensemble size to 22.0 and 63.7,
respectively. Compared with ECCrand which choose CCs randomly, SECC achieves
significantly better performance on Corel5k, CAL500 and Scene, and comparable F1-
score on Emotions. All of these results show the effectiveness of SECC, in both reducing
the ensemble sizes and improving the performance.

Comparing with other methods, we can see that the performance of SECC is signif-
icantly better than BSVM and ML-kNN on three tasks, also its performance is compa-
rable against the state-of-the-art methods CLR (i.e., 2 wins and 1 loss). It is not hard to
find that the superiority of SECC mainly inherits from the good performance of ECC.

In summary, SECC inherits from the good performance of ECC while improve its
efficiency by generating smaller ensembles.

5 Conclusion and Future Work

Noticing that ECC tends to generate unnecessarily large ensembles, in this paper, we
propose selective ensemble of classifier chains (SECC) and it is expected that it can
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reduce the size of ECC whilst keeping or improving its performance. Specifically, after
obtaining multiple CCs, instead of combining all of them by voting like ECC, SECC
tries to select some of them to composite the ensemble. In this paper, by focusing on
the frequently-used performance measure F1-score, we formulate this selection prob-
lem as an �1-norm regularized convex optimization problem, and present a stochastic
subgradient descend method to solve it. Experiments on image and music annotation
tasks shows the effectiveness of the proposed method.

In this work, we consider the CC classifier as a common multi-label classifier which
has multiple outputs. In practice, CC itself is a group of single-label classifiers, hence
it will be interesting to consider SECC at the level of such binary classifiers.
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Abstract. This paper establishes a link between two supervised learn-
ing frameworks, namely multiple-instance learning (MIL) and learning
from only positive and unlabelled examples (LOPU). MIL represents an
object as a bag of instances. It is studied under the assumption that its
instances are drawn from a mixture distribution of the concept and the
non-concept. Based on this assumption, the classification of bags can be
formulated as a classifier combining problem and the Bayes classifier for
instances is shown to be closely related to the classification in LOPU.
This relationship provides a possibility to adopt methods from LOPU to
MIL or vice versa. In particular, we examine a parameter estimator in
LOPU being applied to MIL. Experiments demonstrate the effectiveness
of the instance classifier and the parameter estimator.

1 Introduction

Multiple-instance learning (MIL) [1] is a generalised supervised-learning frame-
work that represents an object as a bag consisting of many feature vectors called
instances. Only some of the instances in the bag are informative about the label of
the object, while others share the same probability distribution for objects from
different classes. In the training phase, only the labels of bags (not instances) are
known, and a classifier is trained to separate bags into different classes. Many
problems can be formulated as MIL problems, such as image annotation [2, 3],
text categorization [2, 4], and visual tracking [5].

Learning with only positive and unlabelled examples (LOPU) deals with an-
other limitation of supervised learning [6]. Here one is given a set of examples
which are all positive, and another set of examples which include both positive
and negative examples. It is the task of the classifier to learn from the unla-
belled examples a model of the negative class. For example, to classify users’
preference of web pages, an user’s bookmarks can be seen as positive exam-
ples, while other web pages in the internet include both negative and potentially
positive examples. LOPU has been applied to information retrieval [7], docu-
ment or web page classification [8–10], and biomedical classification [11], among
others.

Z.-H. Zhou, F. Roli, and J. Kittler (Eds.): MCS 2013, LNCS 7872, pp. 157–166, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://prlab.tudelft.nl


158 Y. Li et al.

In MIL, it is typically assumed that there is an underlying concept, whose
instances distinguish between positive bags an negative bags [1, 12, 2]. The
classical assumption of MIL is that a bag is classified to be positive if at least
one of its instances is from the concept [1]. Many MIL algorithms (e.g. Diverse
Density [12], MI-SVM [2], and the method in [13]), however, usually use the
information of only one concept instance from each positive bag [14]. In order to
exploit the information from concept instances more effectively, numerous new
assumptions have been proposed for MIL [15].

We study MIL based on the assumption proposed by the authors in [16].
This assumption helps to effectively combine the information from all concept
instances, which can be formulated as a classifier combining problem. The MIL
model and method have been studied in [16]. The focus of this paper is on the
link between this MIL model and LOPU. We examine how the instance classifier
of this MIL model is related to the classification in LOPU, and how to adapt
methods from LOPU to MIL or vice versa. In particular, a parameter estimator
from LOPU is modified and applied to MIL.

The paper is organized as follows. Section 2 introduces MIL with our as-
sumption and derives the instance classifier. The relationship between MIL and
LOPU is elaborated in Section 3. Section 4 presents experiment results with the
derived instance classifier and parameter estimator. Finally, Section 5 concludes
the paper.

2 Instance Classifier for MIL

The MIL model with the mixture assumption is introduced, based on which a
Bayes classifier is derived for instance classification.

2.1 The Mixture Assumption

Denote an object as a bag Bi = {Bi1,Bi2, · · · ,BiJi}, which contains Ji feature
vectorsBij of dimensionalityD. Assume that instances in a bag are conditionally
statistically independent [17]. That is, given the label of a bag, its instances are

drawn independently: p(Bi1,Bi2, · · · ,BiJi |ω(Bi)) =
∏Ji

j=1 p(Bij |ω(Bi)), where
ω(Bi) is the label of the bag Bi and can be either positive ‘+’ or negative ‘−’.

Denote the probability density function (pdf) p(x|+), from which the in-
stances x in positive bags are drawn, as f+(x) and the pdf for negative bags
as f−(x). Assume further that a concept C exists, which defines the difference
between positive and negative bags. The non-concept C̄ denotes the background
region which is shared by both positive and negative bags. Formally, there are
two distinct distributions to generate instances, one is fC(x) for the concept C
and the other is f C̄(x) for the non-concept C̄.

We follow the mixture assumption for MIL in [16]. It assumes that the in-
stances in a negative bag are all drawn from C̄, while the instances in a positive
bag are drawn from both C and C̄,
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f−(x) = f C̄(x),

f+(x) = αfC(x) + (1− α)f C̄(x), 0 < α < 1,
(1)

where the mixing coefficient α represents the fraction of instances sampled from
the concept C in a positive bag.

2.2 The Instance Classifier

Based on the mixture assumption, the Bayes classifier for instances has been
briefly presented in [16]. For completeness, a more detailed derivation is provided,
which is followed with an analysis.

Denote the prior probabilities for positive and negative bags as β and 1 − β
respectively,

P (+) = β,

P (−) = 1− β, 0 < β < 1.
(2)

Then the prior probabilities for the concept C and the non-concept C̄ are

P (C) = αβ,

P (C̄) = (1− β) + (1 − α)β = 1− αβ.
(3)

From Bayesian decision theory, we know that an instance should be classified to
the class with the largest posterior. That is, for a new test instance x,

assign x to the concept C, if
P (C|x) ≥ P (C̄|x)⇐⇒

p(x|C)P (C) ≥ p(x|C̄)P (C̄)⇐⇒
fC(x) · αβ ≥ f C̄(x) · (1− αβ)

(4)

From Eq. (1), the density of the concept fC(x) can be obtained as

fC(x) =
f+(x)− (1− α)f−(x)

α
. (5)

Substituting it into (4), the decision rule becomes

f+(x) − (1− α)f−(x)
α

· αβ ≥ f−(x) · (1 − αβ)⇐⇒

f+(x) ≥
(
1

β
+ 1− 2α

)
f−(x)

(6)

Since f+(x)=p(x|+)= p(x)P (+|x)
P (+) = P (+|x)

β p(x) and similarly f−(x)= P (−|x)
1−β p(x),

the decision rule (6) can be expressed using the posteriors P (+|x) and P (−|x):
P (+|x)

β
p(x) ≥

(
1

β
+ 1− 2α

)
P (−|x)
1− β

p(x)⇐⇒

P (+|x) ≥ 1 + β − 2αβ

1− β
P (−|x)

(7)
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Note that as (1+β−2αβ)− (1−β) = 2β(1−α) > 0, 1+β−2αβ
1−β > 1 always holds.

Equation (7) provides a way to adapt traditional classifiers for instance classi-
fication. Applying a traditional classifier to instances labelled according to their
bag label (‘+’ or ‘−’), the posteriors P (+|x) or P (−|x) can be obtained. By
weighting the obtained posteriors according to (7), the instances can then be
classified to the concept C or the non-concept C̄.

Traditional supervised classifiers have been shown to work well on many MIL
problems, despite the fact that they ignore the assumptions underlying MIL [14].
By taking such MIL assumptions into account, our approach can improve the
performance of standard supervised classifiers when applied to MIL. In a com-
parable setting, [14] proposed to use higher cost for false positives in order to
improve the classification performance. A higher cost for false positives is anal-
ogous to the term 1+β−2αβ

1−β in (7). The reason is that increasing the cost for
false positives is equivalent to increasing the threshold of posteriors to classify
an instance to the concept, which has the same meaning as (7).

The k-NN for MIL. To illustrate the decision rule (7), we present an instance
classifier using k-NN (k-nearest neighbour) [18], which is also used in our ex-
periments. If k nearest neighbours are found for an instance x, k+ of them are
from positive bags and k−(= k − k+) from negative bags, then the estimates of
posteriors are

P̂ (+|x) = k+
k
, and P̂ (−|x) = k−

k
. (8)

From (7) the decision rule for the concept becomes

assign x to the concept C, if
k+ ≥ 1 + β − 2αβ

1− β
· k−.

(9)

3 Relation between MIL and LOPU

The instance classifier (7) is trained by assigning bag labels to their instances.
The instances from negative bags are known to be from the non-concept, while
those from positive bags are partly from the concept and partly from the non-
concept. Consequently, this problem turns out to be very similar to LOPU.
In LOPU, all labelled examples are positive, while unlabelled examples may be
positive or negative. In terms of LOPU, the classification of instances in MIL can
be considered as a learning problem with only unlabelled and negative examples
and we can use this relation to our benefit.

One of the widely used methods in LOPU is to identify unlabelled examples
that are most likely to to be negative with some heuristics, and then train a clas-
sifier based on the identified negative examples and the given positive examples
[9, 11]. Similar heuristics have been used in Diverse Density to explicitly search
for the concept area [12], in MI-SVM to identify the instance in each positive
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bag which is mostly likely to be from the concept [2], and in the disambiguation
method to identify concept instances in each positive bag [13].

The LOPU method proposed in [11] shares additional similarities with our
instance classifier. It is based on the so-called “selected completely at random”
assumption [6], which means that any positive example has a constant proba-
bility to be chosen by the user and then labelled. Consequently, the unlabelled
examples include other positive examples which are not chosen by the user and
all the negative examples. The pdf of the unlabelled examples can thus be ex-
pressed as a mixture of distributions, which is similar to the pdf f+(x) in (1).
In addition, a central result in that paper is a lemma which relates the classifier
trained by treating all unlabelled examples as negative and the “ideal” classifier
if the labels of all unlabelled examples are provided. This lemma can be derived
from the decision rule (7). Besides, they proposed a method to assign weights to
unlabelled examples in LOPU, which can also be used to weight instances from
positive bags in MIL.

Based on the relationship between LOPU and MIL, a parameter estimator
of α has been proposed in [16]. This estimator is based on another estimator
proposed in [11], but modified to make it robust in the MIL setting. The basic
idea is as follows. In MIL terms, the estimator in [11] is for the parameter

θ =
1− β

(1− β) + β(1 − α)
, (10)

which is the probability that a non-concept instance is from a negative bag. It
is estimated as the average posteriors of instances in negative bags B− from a
validation set

θ̂ = mean
x∈B−

P (−|x). (11)

This results in an estimator

α̂ =
θ̂ + β̂ − 1

θ̂ · β̂ , (12)

which is, however, is very sensitive to estimation errors, as θ and β appear in
the denominator. A more robust estimator is proposed in [16]. It is based on the
assumption that in positive bags, the posteriors of concept instances should be
large (close to one) since these instances occur only in positive bags, and the
posteriors of non-concept instances have an expectation of 1− θ. Therefore, by
definition, α can be estimated as the fraction of instances in positive bags whose
posteriors are larger than a threshold τ ,

α̂ =
# {x |x ∈ B+, P (+|x) > τ}

# {x |x ∈ B+} , (13)

where # returns the number of elements in a set and τ takes value as the mean of
1− θ̂ and the maximum posterior of instances in positive bags maxx∈B+ P (+|x).

MIL was linked to semi-supervised learning (SSL) in [19], by viewing MIL as a
problem with unlabelled data but positive constraints. The relation with LOPU
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makes it clearer that in MIL, there is no labelled positive instances. Besides,
the link with SSL is based on the classical MIL assumption, while the mixture
assumption is used to relate it to LOPU.

The crucial difference between MIL and LOPU is that the instances in MIL
are from bags and are not individual objects. Therefore, MIL has to consider
the problem of bag classification in addition to instance classification.

4 Experiments

The derived instance classifier (7) and parameter estimator (13) are tested with
a synthetic data and various benchmark MIL datasets. To obtain the label of
a bag from its instances, the method derived in [16] is used, which is based on
classifier combining. Its basic idea is to compute the fraction of a bag’s instances
which are classified to the concept and label the bag as positive if the fraction is

large than a threshold. The threshold is derived to be (1−αβ)(1−2β)
2(1−β)Ji

+ αβ, which

can be approximated by αβ if the number of instances in a bag Ji is sufficiently
large or is αβ if β = 0.5. We use k-NN as the instance classifier, with k set to half
of the average number of instances in a bag. The corresponding MIL algorithm
is as follows:

Training data construction. For all training bags, assign the bag label
to its instances and use all instances for training.

Instance classification. For a test bag Bi = {Bi1,Bi2, · · · ,BiJi}, clas-
sify each instance Bij according to (9).

Bag classification by Combining. Calculate the fraction of concept
instances in the bag Bi, and classify it as positive if the fraction is

larger than the threshold (1−αβ)(1−2β)
2(1−β)Ji

+αβ, and negative otherwise.

4.1 Synthetic Data

We use the synthetic data in [20, 21]. Figure 1(a) shows the ground-truth of
the problem, where the black area is the non-concept and the white area is the
concept. With α = 0.3 and β = 0.5, one realisation is shown in Figure 1(b).

Trained on the data in Fig. 1(b), the decision boundaries of the instance
classifier (9) is shown in Fig. 1(c), where the cyan area is for the concept and
the purple area is for the non-concept. We can see that the instance classifier
separates the concept and the non-concept very well. In comparison, the decision
boundaries for the classifier without the weighting factor 1+β−2αβ

1−β in (9) is shown

in Fig. 1(d), where much non-conept area is misclassified to the concept.
The parameter estimator (13) and the instance classifier (9) are tested with

α changing from 0.05 to 0.9. The prior β is fixed to 0.5, and there are 30 posi-
tive and 30 negative bags, with 40 instances in each bag. The average results of
ten times 10-fold cross-validation are reported. Figure 2(a) shows the estimated
α. Overall, the estimator works very well for all different αs, though it seems that
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Fig. 1. A synthetic MIL dataset. (a) The ground-truth decision boundary between the
concept (white) and the non-concept (black). (b) Scatter plot of all instances, where
red instances (*) are from positive bags and blue ones (+) are from negative bags. (c)
Decision boundaries of the instance classifier (9). (d) Decision boundary of (9), but
without the weighting factor 1+β−2αβ

1−β
. The cyan area is for the concept and the purple

area (the dark area, if viewed in black and white) is for the non-concept.

there is a small tendency of underestimation (around 0.03). Figure 2(b) shows the
classification error of instances with our approach (9) and the traditional k-NN,
i.e., (9) without the weighting factor 1+β−2αβ

1−β . The results clearly demonstrate
the necessity of this weighting factor, especially when α is small. When α is very
large (e.g. 0.8 or 0.9), this weighting factor goes close to one and the difference
between the two methods becomes small. Based on our instance classification,
the results of bag classification are shown in Figure 2(c). It shows that when α
is large than 0.2, perfect classification are obtained. When α is very small (e.g.
0.05), the error is relatively high, as there are only one or two concept instances
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Fig. 2. Results with different αs. (a) The estimated α. (b) The classification of in-
stances. (c) The classification of bags.

in a positive bag. As a result, there are very few concept instances in the training
set. Using k-NN with a smaller k, or increasing the number of bags for training,
may improve the performance.

4.2 Benchmark MIL Datasets

Our method has been applied to a few mostly tested MIL datasets in [16]. The
data sets are the MUSK1 and MUSK2 collected in [1], and the Elephant, Tiger,
and Fox from the COREL dataset [2]. A support vector machine with RBF
kernel is used as the instance classifier. It has been shown that our method,
though relatively simple, achieves results comparable to other state-of-the-art
methods.

Table 1 shows the classification results of our method, and another two meth-
ods which output estimations of a parameter very similar to α. This parameter
is the so-called witness rate, which is the fraction of “true positive” instances in
all the positive bags. The witness rate in [21] was automatically estimated, while
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Table 1. Accuracy on the five benchmark MIL datasets. The results of our method
are comparable to other state-of-the-art methods [16].

MUSK1 MUSK2 Elephant Tiger Fox

ALP-SVM [20] 86.3 86.2 83.5 86.0 66.0
witness rate 1.00 0.28 0.58 0.6 0.71

SVR-SVM [21] 87.9 (1.7) 85.4 (1.8) 85.3 (2.8) 79.8 (3.4) 63.0 (3.5)
witness rate 1.00 0.895 0.378 0.427 1.00

Our method 88.38 (1.08) 84.92 (2.18) 84.35 (0.88) 80.75 (1.16) 62.80 (0.86)
estimated α 0.82 0.77 0.80 0.51 0.88

that in [20] was tuned manually. We can see that the estimated witness rates and
αs are quite close to each other (except for Elephant). In addition, their values
are quite large, which indicates that there are usually more than one concept
instance in a positive bag and thus justifies our assumption to some extent. The
large values of α may also explain why using traditional supervised classifiers
without taking MIL assumptions can work well for some data sets [14]. When α
is very large, the weighting factor in the instance classifier (7) becomes close to
one, and thus the traditional classifier without this weighting factor can already
work relatively well (c.f. Figure 2(b)).

5 Conclusion

Based on the assumption that instances from positive bags follow a mixture dis-
tribution, the Bayes classifier is derived for instance classification. A relationship
is then established between the classification of instances in MIL and another
learning framework called LOPU. It is shown how numerous results in both
fields can be linked together. This link also makes it possible to apply methods
from MIL to LOPU, or the other way around. In particular, it is studied how to
adopt a parameter estimator proposed in LOPU for estimating the parameter α
in MIL. The derived instance classifier and the parameter estimator are shown
to perform well in the experiments.
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Abstract. When selecting features for knowledge discovery applications, stabil-
ity is a highly desired property. By stability of feature selection, here it means
that the feature selection outcomes vary only insignificantly if the respective data
change slightly. Several stable feature selection methods have been proposed, but
only with empirical evaluation of the stability. In this paper, we aim at provid-
ing a try to give an analysis for the stability of our ensemble feature weighting
algorithm. As an example, a feature weighting method based on L2-regularized
logistic loss and its ensembles using linear aggregation is introduced. Moreover,
the detailed analysis for uniform stability and rotation invariance of the ensemble
feature weighting method is presented. Additionally, some experiments were con-
ducted using real-world microarray data sets. Results show that the proposed en-
semble feature weighting methods preserved stability property while performing
satisfactory classification. In most cases, at least one of them actually provided
better or similar tradeoff between stability and classification when compared with
other methods designed for boosting the stability.

1 Introduction

High dimensional data poses challenges into learning tasks due to the curse of dimen-
sionality. In the presence of many irrelevant features, learning models tend to overfit
and become less comprehensible. Feature selection has been an active area in machine
learning for decades. It is an important and frequently used technique in data mining
for dimension reduction via removing irrelevant and redundant features. Various stud-
ies show that features can be removed without performance deterioration [1]. Moreover
feature selection brings the immediate effects of speeding up a data mining algorithm,
enhancing generalization performances and allowing insights into the problem through
the interpretation of the most relevant features [2]. Feature selection has been widely
applied to many research fields such as genomic analysis [3], text mining [4], etc. A fea-
ture selection algorithm is usually associated with two important aspects: search strat-
egy and evaluation criterion. Algorithms designed with different strategies broadly fall
into three categories: filter, wrapper and embedded models [5]. Alternatively, according
to the outcomes, feature selection algorithms can be divided into either feature weight-
ing (ranking) algorithms or subset selection algorithms. A comprehensive surveys of
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existing feature selection techniques and a general framework for their unification can
be found in [2, 5–7].

Various feature selection algorithms have been developed with a focus on improving
classification accuracy while reducing dimensionality [2, 5, 6]. Besides high accuracy,
another important issue is stability of feature selection - the insensitivity of the result
of a feature selection algorithm to variations of the training set [8–10]. This issue is
particularly critical for applications where feature selection is used as a knowledge dis-
covery tool for identifying characteristic markers to explain the observed phenomena.
For example, in microarray analysis, biologists are interested in finding a small number
of features (genes or proteins) that explain the mechanisms driving different behaviors
of microarray samples. A feature selection algorithm often selects largely different sub-
sets of features under variations to the training data, although most of these subsets
are as good as each other in terms of classification performance [10]. Such instability
dampens the confidence of domain experts when experimentally validating the selected
features. More concrete example, in analyzing cancer biomarkers such as leukemia, the
available data sets usually are high dimensional yet with small sample size. Among the
thousands of genetic expression levels, a critical subset is to be discovered that links to
two leukemia labels. It is therefore necessary that the selected predictive genes are com-
mon to variations of training samples. Otherwise the results will lead to less confident
diagnosis. Stable feature selection has been demonstrated in biomarker identification
via empirical process [11, 12]. Moreover, stability is desirable in algorithm designing
since it is believed to lead to good generalization ability [13, 14].

For the stable feature selection methods, ensemble technique is among the most pow-
erful to improve the stability of feature selection [8, 10, 15, 16]. Similar to the case
of supervised learning, the general idea is to repeat the feature selection process on
many randomly perturbed training sets (e.g., by bootstrapping the samples in the orig-
inal training set), and aggregate the outputs in this procedure. Indeed, in large feature/
small sample size domains it is often reported that several different feature subsets may
yield equally optimal results [17], and ensemble feature selection may reduce the risk
of choosing an unstable subset. Furthermore, different feature selection algorithms may
yield feature subsets that can be considered local optima in the feature subsets, and
ensemble feature selection might give a better approximation to the optimal subset or
ranking of features. Finally, the representational power of a particular feature selector
might constrain its search space such that optimal subsets cannot be reached. Ensemble
feature selection could help in alleviating this problem by aggregating the outputs of
several feature selectors [8].

However, the existing stable feature selection algorithms are always short of one
important aspect, that is a theoretic stability analysis of the selection algorithm. It is
imperative to go beyond simple and empirical evaluation. Therefore in this study, as
an example, a special feature weighting algorithm is introduced, which is based on
L2-regularized logistic regression loss for describing the local data structure. And its
ensemble version using linear aggregation strategy is also proposed. Moreover, the
proof for the stability of ensemble feature weighting about small changes (changing
or removal of one sample) of data set is also presented based on uniform stability.
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The introduced feature weighting algorithm is under embedded model and outputs a
feature weights (measuring features’ relevance) vector.

The paper is organized as follows, a feature weighting algorithm based on L2-
regularized logistic loss and its ensemble version is introduced in section 2. Section
3 provides the proof for stability of ensemble feature weighting. The experimental re-
sults are shown in section 4, the paper ends with conclusion in section 5.

2 Ensemble Feature Weighting

To train a ensemble model for feature weighting, we are given a training sample set D,
which contains n samples, D = {X,Y } = {xi, yi}ni=1, where xi is the input for the i-th
training sample, and yi is the label, and each sample is represented by a d-dimensional
vector xi = (xi1, xi2, · · · , xid) ∈ Rd.

2.1 Feature Weighting Algorithm

In general, in order to achieve good generalization, the nearest neighbors with the same
label to a sample (i.e., target samples) always should be closer to the sample, while
other samples from different classes are separated by a large margin. Based on local
learning, for sample xi, it should be close to the nearest target sample (i.e., nearest hit
sample NH(xi)) and away from the nearest neighbor sample with different class label
(i.e., near miss sample NM(xi)). For the purposes of this paper, we use the Manhattan
distance to define the nearest neighbors and their closeness, while other standard defi-
nitions may also be used. The logistic regression loss is adopted to model the fit of data
for its simplicity and effectiveness. To prevent from overfitting and improve the robust-
ness of feature weighting, the L2-regularization is used for its rotational invariance [1]
and strong stability property [18]. Thus, the evaluation criterion for feature weighting
is defined as follows,

LD(w) =
1

n

n∑
i=1

log(1 + exp(−wT zi)) + γ.||w||2 (1)

where γ is the cost parameter balancing the importance of the two terms, T is the
transpose, w is the feature weight vector, zi = |xi − NM(xi)| − |xi − NH(xi)| and
|.| is an element-wise absolute operator. The zi can be considered as the mapping point
of xi [9].

In the Eqn. (1), wT zi is the local margin for xi, which belongs to hypothesis mar-
gin [19] and an intuitive interpretation of this margin is a measure of the proportion
of the features in xi that can be corrupted by noise (or how much xi can move in the
feature space) before being misclassified [20]. By the large margin theory [21], a clas-
sifier that minimizes a margin-based error function usually generalizes well on unseen
test data. Then one natural idea is to scale each feature, and thus obtain a weighted
feature space parameterized by a vector w, so that a margin-based error function in the
induced feature space is minimized. In the end, feature selection aims to find the target
model w, which minimizes the loss function in Eqn.(1) through gradient descent-based
techniques.
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2.2 Weight-Based Ensemble Feature Weighting

Similar to the ensemble models for supervised learning, there are two essential steps
in ensemble feature selection. The first step involves creating a set of different base
feature selectors, each provides its output, while the second step aggregates the results
of all feature selectors [8]. We adopt a subsampling based strategy and linear aggrega-
tion. Then m subsamples of size αn(0 < α < 1) are drawn randomly from D, where
the parameters m and α can be varied. Subsequently, feature weighting is performed
on each of the m subsamples. Therefore, we obtain feature weighting results ensemble
En = {w1, w2, · · · , wm}, where wt(t = 1, 2, · · · ,m) represents the outcome of the
t-th base feature selector trained on t-th subsample. Specifically, in our case, each fea-
ture selection result wt(t = 1, 2, · · · ,m) is a feature weighting vector. And we obtain
the final ensemble feature weighting result we = 1

m

∑m
t=1 wt, where wt ∈ En. This

ensemble method belongs to weight-based ensemble model (WEn).
The proposed ensemble feature weighting is also corresponding to the recognition

that when estimating an unknown function from data, one needs to find a tradeoff be-
tween bias and variance [13]. Indeed, besides the regularization, another idea is to use
statistical procedures to reduce the variance without altering the bias and lead to high
stability. One such technique is the bagging approach [22], which consists in averaging
several estimators built from random subsamples of the data.

3 Stability Analysis

Now, we will firstly show the rotation invariance for our proposed feature weighting
algorithm. Based on the Proposition 4.2 in [1], let H be a rotational matrix {H ∈
Rd×d, HTH = HHT = I, |H | = 1}, then Hx is x rotated through some angle around
the origin. It is evident that loss function LD(w) is rotational invariance with respect
to H . In other words, LD(w) = 1

n

∑n
i=1 log(1 + exp(−(Hw)T (Hzi))) + γ.||Hw||2,

and Hzi = H(|xi − NM(xi)| − |xi −NH(xi)|) = |Hxi −H.NM(xi)| − |Hxi −
H.NH(xi)|, which means the proposed feature weighting algorithm is rotational in-
variance for sample xi. The linear aggregation strategy is employed, then intuitively the
ensemble feature weighting is also rotational invariance.

3.1 Uniform Stability Definition

On the other hand, a stable algorithm is one whose output does not change significantly
with small changes in the input. The stability of classification, regression and sample
ranking has been deeply analyzed [13, 14, 23], however, the stability of feature selection
has not been explicitly introduced in theory. Similarly, we also consider changes to such
a sample that consist of replacing a single example in the sequence with a new example
or the exclusion of the sample. For a given training set D of size n, we will denote
D\i as the training set obtained by removing point (xi, yi) for all i ∈ {1, · · · , n}. And
we denote by Di the training set obtained by changing one point (xi, yi) into (x′

i, y
′
i),

which is assumed to be independent from D.

Definition 1. (Uniform weighting stability) For a feature selection algorithm A
whose outputs on data set D and D\i are weight vectors denoted by wD and wD\i ,
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respectively. Algorithm A has uniform weighting stability β (β ≥ 0) if for all D and
any i ∈ {1, · · · , n}, we have

||wD − wD\i || ≤ β.

A smaller value of β corresponds to greater weighting stability. More formally, point
(xi, yi) is replaced by the empty set which we assume the learning method treats as
having this point simply removed, and the Di can be regarded as one data set is firstly
replaced by the empty set and then the empty set is replaced by point (x′

i, y
′
i). So an

feature weighting algorithm with uniform stability β has also the following property:
For all D and i ∈ {1, · · · , n}, ||wD −wDi || ≤ ||wD −wD\i ||+ ||wDi −wD\i || ≤ 2β.
In other words, stability with respect to the exclusion of one point implies stability
with respect to changes of one point. Then we only focus on stability analysis for the
exclusion case in the follows.

3.2 Stability for Ensemble Feature Weighting

For ensemble, bootstrap strategy is used to train the same feature weighting algorithm
on a number m of different bootstrap sets of a training set D and by averaging the
obtained solutions. We denote these bootstrap sets by D(rt) for t = 1, · · · ,m, where
the rt ∈ R = {1, · · · , n}p(p < n) are instances of a random variable corresponding to
sampling without replacement of p elements from the training set D. And R is a space
containing elements r that model the randomization of the subsampling. We will use
the shorthand wD(rt) to denote the outcome of the feature weighting algorithm applied
on the t-th bootstrap training set D(rt). And the ensemble result is 1

m

∑m
t=1 wD(rt).

The uniform weighting stability of ensemble feature weighting is defined as follows:
For all D and i ∈ {1, · · · , n}.

βe = Er1,··· ,rm [|| 1
m

m∑
t=1

wD(rt) −
1

m

m∑
t=1

wD\i(rt)||]

where E is the expectation and r1, · · · , rm are i.i.d. random variables modeling the
random sampling and having the same distribution as r. Then

βe ≤ 1

m

m∑
t=1

Ert [||wD(rt) − wD\i(rt)||]

= Er[||wD(r) − wD\i(r)||] = Er[|| � wD(r)||]
The stability for the removal of xi(i ∈ {1, 2, · · · , n}) case is considered, then the
random sampling containing sample xi should be determined.

βe ≤ Er[|| � wD(r)||(I(i ∈ r) + I(i /∈ r))]

= Er[|| � wD(r)||I(i ∈ r)] + Er[|| � wD(r)||I(i /∈ r)]

= Er[|| � wD(r)||I(i ∈ r)]

where I(.) is indicator function. Note that the second part of the last second equation is
equal to zero because when i is not in r, which means point xi does not belong to D(r)
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and, thus, D(r) = D\i(r). The size of subsample D(r) is p, then Er(I(i ∈ r)) = p
n

because this subsampling is done without replacement,

βe ≤ p

n
|| � wD(r)||

where || � wD(r))|| is the uniform stability of base feature weighting on bootstrap
set D(r) that contains sample xi, and �wD(r) = wD(r) − wD\i(r) where wD(r) and
wD\i(r) is the minimizer for the convex objective function LD(r)(w) and LD\i(r)(w)
respectively. According to Eqn.(1), these objective functions are defined as follows,

LD(r)(w) =
1

p

p∑
j=1

log(1 + exp(−wT zj)) + γ.||w||2

LD\i(r)(w) =
1

p

p∑
j=1,j �=i

log(1 + exp(−wT zj)) + γ.||w||2

Due to the convexity of the objective functions, for any a ∈ [0, 1], we get

LD(r)(wD(r))− LD(r)(wD(r) − a� wD(r)) ≤ 0

LD\i(r)(wD\i(r))− LD\i(r)(wD\i(r) + a� wD(r)) ≤ 0

So summing the two equations above, we get that

1

p

p∑
j=1,j �=i

log(1 + exp(−wT
D(r)zj)) +

1

p
log(1 + exp(−wT

D(r)zi))

− 1

p

p∑
j=1,j �=i

log(1 + exp(−(wD(r) − a� wD(r))
T zj))

− 1

p
log(1 + exp(−(wD(r) − a� wD(r))

T zi))

+
1

p

p∑
j=1,j �=i

log(1 + exp(−wT
D\i(r)zj))

− 1

p

p∑
j=1,j �=i

log(1 + exp(−(wD\i(r) + a� wD(r))
T zj))

+ γ.||wD(r)||2 − γ.||wD(r) − a� wD(r)||2
+ γ.||wD\i(r)||2 − γ.||wD\i(r) + a� wD(r)||2

≤ 0

(2)

Since logistic loss is the convex function, then by Jensen’s inequality,

log(1 + exp(−(wD(r) − a� wD(r))
T zj)

= log(1 + exp(−((1 − a)wT
D(r)zj + awT

D\i(r)zj))

≤ log(1 + exp(−wT
D(r)zj))

− a(log(1 + exp(−wT
D(r)zj))− log(1 + exp(−wT

D\i(r)zj)))
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Similarly, we also can get

log(1 + exp(−(wD\i(r) + a� wD(r))
T zj))

≤ log(1 + exp(−wT
D\i(r)zj)

+ a(log(1 + exp(−wT
D(r)zj))− log(1 + exp(−wT

D\i(r)zj)))

The two equations above are plugged into (2), then

||wD(r)||2 − ||wD(r) − a� wD(r)||2 − ||wD\i(r) + a� wD(r)||2 + ||wD\i(r)||2

≤ a

pγ
(log(1 + exp(−wT

D\i(r)zi))− log(1 + exp(−wT
D(r)zi)))

≤ a

pγ
| � wT

D(r)zi|

and the last line above is gotten because it is proved in [24] that the logistic loss function
is a Lipschitz function with Lipschitz constant 1. If we set a = 1/2, the left side of
previous equation approximately amounts to

||wD(r)||2 + ||wD\i(r)||2 −
1

2
||wD(r) + wD\i(r)||2

=
1

2
||wD(r)||2 + 1

2
||wD\i(r)||2 − wT

D(r)wD\i(r) =
1

2
|| � wD(r)||2

Thus,

|| � wD(r)||2 ≤ 1

pγ
| � wT

D(r)zi|

and based on Cauchy-Schwarz inequality

| � wT
D(r)zi| ≤ || � wD(r)||||zi||

Then combine the two equations above and the samples are normalized, it can be shown
||zi|| ≤ 2, we obtain the stability for our base feature weighting.

||wD(r) − wD\i(r)|| = || � wD(r)|| ≤ 2

pγ

and the uniform stability for ensemble feature weighting is

βe ≤ 2

nγ

3.3 Remarks and Discussions

The analysis results show that a larger regularization parameter γ leads to better stabil-
ity. And the ensemble feature weighting owns better stability bounds than base feature
weighting. The ensemble algorithm has a uniform stability bound goes to zero as 1

nγ ,
and it is stable because of the wide acceptance that the algorithms have a uniform sta-
bility bound that decreases as O( 1

n ), and are hence stable [13, 14, 23, 18]. To our best
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knowledge, this work provides the first uniform stability-style analysis on the stabil-
ity of feature selection. Although in [2], the analysis for robustness of spectral fea-
ture selection against noise is presented, and in [9], the experimental results also show
the variance reduction leads to stable feature selection. It is obvious that our work is
significantly different because formal stability notion is considered explicitly, and we
mainly focus on sampling randomness instead of noise, and we thus are interested in
how changes to the training data influence the result of feature weighting algorithm.

Moreover, the L2-norm is used as stability metric in the paper, this is only for ease
of presentation. Other norm can be adopted, such as L∞-norm, which is employed
to measure the uniform stability of classification and regression algorithm [13, 14].
Certainly, the proof for the stability also makes sense because of L∞− norm ≤ L2−
norm in most cases. And it should be noted that the stability bound is loose, and we
only like to prove that the proposed ensemble feature weighting algorithm is stable
because its stability scales like 1

n .
Finally, it is evident the theoretical analysis results still hold true for other ensemble

feature weighting algorithms where base feature weighting algorithm is based on L2-
regularized convex Lipschitz loss functions and linear aggregation strategy is employed.

4 Experiments

In order to validate the performance of our ensemble algorithm, the experiments are
conducted on several real-world data sets to show its stability and classification power.
The data sets consist of small samples with high dimension, medium samples and
large samples with low dimension. The chosen data sets are Sonar, Arcene, Musk,
Ionosphere, which are taken from UCI ML repository [25], and Colon cancer diag-
nosis data set is introduced in [26] and Lung cancer is introduced in [27]. Colon,
Arcene and Lung owns small samples (62,200,203) with extremely high dimension-
ality (2000,10000,12600). The small sample problem is one of the most challenging
problem for feature selection, particularly on its output stability.

Note that feature weighting is almost never directly used to measure the stability of
feature selection, and instead converted to a ranking based on the weights [8]. Because
the feature weights are always changed to feature ranks, then another ensemble strat-
egy should be considered: instead of the feature weights linear combination, the feature
weight vectors outputted from the m subsamples are firstly changed to feature rank vec-
tors (Noting that the ranking value for a feature is set as follows: The best feature with
the largest weight is assigned rank 1, and the worst one rank d), then linear combination
of these feature rank vectors is adopted to obtain the ensemble ranking results as in [8].
And we call this ensemble strategy as rank-based ensemble(REn). Other chosen stable
feature weighting algorithms for comparison are ensemble Relief (En-Relief) [8] and
newly proposed stable feature selection strategy based on variance reduction, which is
to assign different weights to different samples based on margin, and then to obtain high
stability for feature selection [9]. We combine the sample weighting strategy with the
newly proposed feature weighting algorithm-Lmba [28] and named as VR-Lmba.
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4.1 Experimental Results for Stability

To measure the stability of feature weighting algorithms, we also adopt a subsampling
based strategy-bootstrap without replacement. For a data set, 10 subsamples containing
90% of the data are randomly drawn without replacement. This percentage was chosen
as in [8] to assess robustness with respect to relatively small changes in the data set. Of
course, the sampling rate and the number of subsamples can be varied. Subsequently,
the proposed ensemble algorithms (WEn and REn) with α = 0.9 and γ = 1, En-Relief
and VR-Lmba is performed on each subsample, which is considered as the data set D
described in section 2, and output a feature rank vector (if the output is a feature weight
vector, it should be changed to feature rank vector). Then the similarity between fea-
ture ranking result pairs is calculated using Spearman rank correlation coefficient [8],
and the stability is the average similarity over all pairwise similarity between the differ-
ent feature ranking results [8]. The stability of these feature weighting algorithms for
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Fig. 1. Experimental results of stability
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different data sets is shown in Fig.1. The X-axis is the number of base feature selectors
m. Note that VR-Lmba is not a ensemble method, then its stability does not change
along with m.

4.2 Balance between Stability and Classification

Besides the stability, classification performance is another important issues for feature
selection. In order to validate the tradeoff between the stability and classification accu-
racy, a F-Measure is employed, which is defined as 2×stability×accuracy

stability+accuracy [8]. In this part
of experiments, the number of base selectors for ensemble feature weighting is constant
and set as 20 for all ensemble algorithms, i.e., m = 20. 10-cross validation is used
and the linear SVM with C=1 and 3-nearest neighbors(3NN) classifier is adopted. The
experimental results are shown in Fig. 2 and 3 corresponding to 3NN and SVM. For
space constraints, only the experimental results of two data sets for each classifier are
shown in the figures.

4.3 Observations and Discussions

From the results, we can observe that the stability value of rank-based ensemble-REn is
the highest among all stable feature weighting algorithms, and weight-based ensemble-
WEn always gets higher or similar stability to En-Relief and VR-Lmba. In addition,
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at least one of our proposed ensemble methods (REn or WEn) always obtain higher or
similar balance between the stability and classification accuracy to other stable ones.

For the higher stability of rank-based ensemble-REn than weight-based ensemble-
WEn, this can be explained intuitively by the fact that the stability is measured based
on the feature ranks. Consider the scenarios if the feature weights produced by base
feature weighting algorithm change due to the data variation, however, their ranks may
not change, which leads to higher stability for rank-based ensemble than weight-based
ensemble. Of course, if the feature weights do not change, then the feature ranks surely
stable. Thus it means that the stable weight-based ensemble leads to stable rank-based
ensemble, then the theoretic analysis of stability for weight-based ensemble hold true
for the rank-based ensemble. And the above analysis also give some reasons for the
high efficiency of En-Relief, which also belongs to rank-based ensemble model.

5 Conclusion

The stability of feature selection is attracted much attention. Our major contribution is
presenting the theoretical analysis for the uniform stability of ensemble feature weight-
ing algorithm. In the paper, as an example, a logistic loss-based feature weighting al-
gorithm via L2-regularization is introduced. And its weight-based ensemble version-
WEn is presented and is formally analyzed on the stability. The experimental results
on some real-world data sets including microarray data (small sample size problem)
have also shown the proposed ensemble feature weighting algorithms (weight-based
ensemble-WEn or rank-based ensemble-REn) get higher stability and better or com-
parable tradeoff between classification and stability to other stable algorithms in most
cases. In our analysis, the linear combination is adopted in ensemble feature weighting,
other combination scheme is our future work.
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Abstract. Clustering Ensemble effectively improves clustering accuracy,
stability and robustness, which is most resulted from the diversity of the
base clustering results. It is a key point to measure the diversity of clus-
tering results. This paper proposes a method to measure diversity of base
clustering results and a covariance-based selective clustering ensemble
algorithm. Experiments on 20 UCI data sets show that this algorithm
effectively improves the clustering performance.

Keywords: Clustering ensemble, Covariance, Selective ensemble.

1 Introduction

Clustering is the process of splitting the set of physical or abstract objects into
similar object classes [1]. It is a high similarity between the same class and a great
difference between the different classes. Ensemble learning gets base learners by
different methods, and obtains a final results by combining base learners in some
way [2]. Strehl et al. [3] proposed the clustering ensemble in 2002. Clustering
ensemble is a method of aggregating the multiple division collection of one object
into a final clustering result. Clustering ensemble effectively reduces the impact
on noise and outliers, and increases the clustering stability and robustness.

Recent years, there are many research works in clustering ensemble. Topchy
et al. [4] designed a mixture model for clustering ensemble, and they offered
a probabilistic model of consensus with a finite mixture of multinomial distri-
butions in a space of clustering. A new consensus function by the generalized
mutual information was proposed in [5]. Luo et al. [6] used information theory
to design a genetic algorithm to combine multiple clusterings. Hassan et al. [7]
developed a ensemble method with majority voting and parallel fusion in con-
junction with a neural classifier. Mohammadi et al. [8] stated an evolutionary
approach to clustering ensemble, and they used an evolutionary combinational
clustering method to find the number of clusters. Iqbal et al. [9] proposed the
semi-supervised clustering ensemble by voting, and they introduced a flexible
two parameters weighting mechanism in their algorithm. The semi-supervised
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cluster ensemble model based on bayesian network was designed. And the vari-
ational inference oriented semi-supervised cluster ensemble is illustrated in this
paper [10]. Jia et al. [11] presented a bagging-based spectral clustering ensemble
selection. Yang et al. [12] presented a semi-supervised clustering ensemble based
on multi-ant colonies, and they incorporated pairwise constraints not only in
each ant colony clustering process, but also in computing new similarity matrix.
Iam-On et al. [13] advanced a link-based cluster ensemble approach for categor-
ical data clustering, and they improved the conventional matrix by discovering
unknown entries through similarity between clusters in an ensemble.

There are also some disadvantages when the number of base clusterings is
large. For example, computing and storage overhead of system is greatly in-
creased, and the difference between the base clusterings will continue to decrease.
Zhou et al. [14] proposed the selective ensemble, and proved that the performance
of the integration of some clustering results is better than the integration of all
clustering results. Fern et al. [15] designed three different selection approaches of
JC (Joint Criterion), CAS (Cluster and Select), CH (Convex Hull) that jointly
consider quality and diversity. Azimi et al. [16] presented an adaptive cluster
ensemble selection, and they proposed a novel framework that selects ensemble
members for each data set based on its own characteristics. Jia et al. [17] devel-
oped a similarity-based spectral clustering ensemble selection, and they used the
random scaling parameter, Nyström approximation and random initialization
of k-means to perturb spectral clustering for producing the components of an
ensemble system. Liu et al. [18] advanced a new selective clustering ensemble
algorithm, they used the compactness and the separation to measure the quality
of the clustering and defined the connectivity matrix to measure the quality and
diversity.

We propose a new method based on covariance to measure the diversity.
Firstly, base clustering results are generated by K-Means, AP, and FCM. Sec-
ondly, we calculate the covariance between each of the two base clustering results,
and generate covariance matrix. Finally, part of base clustering results with small
covariance are chosen to ensemble by CSPA.

The rest of the paper is organized as follows. Section 2 describes the related
work. Section 3 introduces the principle of selective cluster ensemble based on
covariance. Section 4 reports the experimental results. Section 5 provides con-
clusions and future work.

2 Related Work

It is a key point to measure the diversity of clustering results in selective clus-
tering ensemble. Fern [19] used the normalized mutual information (NMI) to
measure the diversity of clustering results.

NMI =
I(X,Y )√
H(X)H(Y )

(1)
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where I(X,Y ) is the mutual information of random variableX and Y , I(X,Y ) =∑
x,y p(x, y)log

p(x,y)
p(x)p(y) , H(X) is the he entropy of the X , H(Y ) is the entropy

of the Y , and H(X) =
∑

x p(x)log
1

p(x) . The NMI value is between 0 and 1, the

value is smaller, the diversity is lager. Unlike other measure methods, NMI is
not biased by large clusters.

Derek [20] used a method based on entropy to measure the diversity of clus-
tering results.

div(c) =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

−(pij log2pij + (1− pij)log2(1− pij)) (2)

where pij is the probability of xi and xj are cluster in the same class, p(x, y) =
1
k

∑k
h=1 δ(πh(xi), πh(xj)), πh(xi) is the label of the xi in the class πh, and πh(xj)

is the label of the xj in the class πh. If πh(xi) = πh(xj), δ is 1, otherwise δ is 0.
The value is also between 0 and 1, the value is smaller, the diversity is smaller.

Hadjitodorov [21] proposed four methods based on the adjusted rand index
to measure the diversity of clustering results, and discovered the performance of
the ensemble by middle value of diversity is better than the ensemble by max
value of diversity.

ar(πa, πb) =

∑ka

h=1

∑kb

l=1

(
nh,l

2

)− t3
1
2 (t1 + t2)− t3

(3)

where t1 =
∑ka

h=1

(
nh

2

)
, t2 =

∑kb

l=1

(
nl

2

)
, t3 = 2t1t2

N(N−1) , ka and kb are the number

of clusters of πa and πb, respectively, nh,l is the number of points that are the
same time in the cluster h and the cluster l, nl is the number of points in the
cluster l, and nh is the number of points in the cluster h. The value is smaller,
the diversity is lager. When two clusters are completely independent, the value
is 0.

Luo [22] proposed five methods to measure the diversity, including CEBDM
based on conditional entropy, DFBDM based on double fault measure, CFDBDM
based on coincident failure diversity and IRABDM based on measurement of
inter-rater agreement. The values of five methods are smaller, the diversity is
smaller. Li [23] proposed a new method based on support vector machine to
measure the diversity. Zhou [24] described in details some other methods of
pairwise measures and non-pairwise measures, including Q-Statistic, Kohavi-
Wolpert variance and so on.

3 Selective Clustering Ensemble Based on Covariance

We propose a new method based on covariance to measure the diversity. Co-
variance is a method used to measure the correlation between random variables,
and the clustering result is deemed to the random variable, so the covariance is
used to measure the diversity of clustering results. In addition, unlike NMI and
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CE also consider expectation and variance after obtaining values, the covariance
uses the expectation in calculating the value, so the covariance has been consid-
ered the problem of the offset. Let (X,Y ) be a two-dimensional random variable,
E(X) and E(Y ) were the expectation of X and Y , respectively. COV (X,Y ) is
the covariance between X and Y , as follows,

COV (X,Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y ). (4)

Let π(xi) be the label of the xi, π(xj) be the label of the xj . We define a formula
as follows,

π(xi)− π(xj) =

{
1 π(xi) �= π(xj)

0 π(xi) = π(xj)
. (5)

For ann-dimensional randomvariableX=(X1, X2, ..., Xn), letσij=COV (Xi, Xj),
i, j = 1, 2, ..., n, it defines matrix V is the covariance matrix of X , and V is an n-
order symmetric matrix.

V =

⎡⎢⎣σ11 · · · σ1n

...
. . .

...
σn1 · · · σnn

⎤⎥⎦ (6)

where σ11 = COV (X1, X1) is the variance of X1.
N clustering results are deemed to an n-dimensional random variable X =

(X1, X2, ..., Xn). The covariance matrix V is a symmetric matrix, and the val-
ues on the diagonal are variance. We only consider the difference between the
base clustering results, and don’t consider the positive correlation and negative
correlation, so we simplify V to V ′ that all values are non-negative and values
on the diagonal are 0. And it is

V =

⎡⎢⎣σ11 · · · σ1n

...
. . .

...
σn1 · · · σnn

⎤⎥⎦ −→ V ′ =

⎡⎢⎢⎢⎢⎢⎣
0 σ12 · · · σ1n−1 σ1n

0 0 · · · σ2n−1 σ2n

...
...

. . .
...

...
0 0 · · · 0 σ(n−1)n

0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦ . (7)

The steps of select base clustering results to ensemble(SBCRE) are shown in
Algorithm 1. The input ism base clustering results, and the output ism ensemble
results. Firstly, we calculate the covariance between two base clustering results,
and generate covariance matrix V . Secondly, V is simplified to V ′. Thirdly,
we select the maximum value of V ′, remove the row with maximum, and set
the maximum to 0. Fourth, the ensemble results are obtain by ensemble the
remaining base clustering results with CSPA. Finally, the output is obtained
with m iterations.
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Algorithm 1. SBCRE

Input: m base clustering results
Output: m ensemble results
begin∣∣ Calculate the covariance between two base clustering results according∣∣ to the formula (4), and generate covariance matrix V ;∣∣ Simplify V to V ′ according to the formula (7);∣∣ if m � 1 then∣∣ ∣∣ Select the maximum value of V ′, record row number r and column∣∣ ∣∣ number c;∣∣ ∣∣ Remove the rth row;∣∣ ∣∣ The maximum is set to 0, update V ′;∣∣ ∣∣ m = m− 1;∣∣ ∣∣ The ensemble results are obtain by ensemble the m base clustering∣∣ ∣∣ results with CSPA.∣∣ end
end

We uses three different cluster methods of K-Means [25,26], AP [27] and FCM
[28,29]. The 60 base clustering results are generated with different initialization.
We get 60 ensemble results by Algorithm 1, and calculate the F-measure between
each ensemble result and the label of each data set. The final result with max-
imum F-measure on each data set is obtained. The steps of selective clustering
ensemble based on covariance(SCEBC) are shown in Algorithm 2.

Algorithm 2. SCEBC

Input: The data set X has n samples
Output: The set has labels of n samples
begin∣∣ Generate 20 base clustering results according to the K-Means;∣∣ Generate 20 base clustering results according to the AP;∣∣ Generate 20 base clustering results according to the FCM;∣∣ Get m ensemble results according to the Algorithm 1;∣∣ Calculate the F-measure between each ensemble result and the label of data set;∣∣ The ensemble result with the maximum F-measure as the output.
end

4 Experiment

4.1 Data Set

The 20 UCI data sets are used in the experiment. The number of features, classes
and instances on each data set are shown in Table 1.
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Table 1. The number of features, classes and instances on each data set

Data Set Features Classes Instances

Iris 4 3 150
Glass 9 6 214
Wine 13 3 178
Zoo 16 7 101

Ionosphere 34 2 351
Sonar 60 2 208

Balance scale 4 3 625
Pima 8 2 768

Spect-heart 22 2 267
Hepatitis 19 2 155
Bupa 6 2 345

Habermans survival 3 2 306
Wdbc 30 2 569
Statlog 19 7 2310
Vehicle 18 4 846

Breast-cancer-Wisconsin 9 2 683
Car 6 4 1728

Credit-g 20 2 1000
Vowel 13 11 990

Lymphography 18 4 148

4.2 Evaluation Criteria

F-measure is the evaluation criteria of experiment results [30], and it is shown
in formula (8).

F (i) =
2× precision(i, j)× recall(i, j)

precision(i, j) + recall(i, j)
(8)

where precison(i, j) =
Nij

Ni
is the precision, recall(i, j) =

Nij

Nj
is the recall, Ni

is the total number of samples of correct clustering, Nj is the total number of
samples of jth class in clustering results, and Nij is the total number of correct
clustering of jth class in clustering results. However, the formula (8) will get a
lot of F (i) values, so the F-measure is weighted and averaged by formula (9), as
follows,

F (i)′ =
∑k

i=1(|i| × F (i))∑k
i=1 |i|

. (9)

4.3 Experiment Result

The experiment results are reported in this subsection. The F-measures of dif-
ferent algorithms on each data set are shown in Table 2, where ALL is directly
ensemble, RSE is selective ensemble based on random, and CSEV is average
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Table 2. The F-measures of different algorithms on the each data set

Data Set
Base Clustering Methods Clustering Ensemble by CSPA
K-means AP FCM ALL RSE CSEV

Iris 0.8519 0.8351 0.8644 0.8667 0.8783 0.8812
Wine 0.6598 0.6618 0.6622 0.6632 0.6636 0.6689
Zoo 0.6010 0.6183 0.6273 0.6319 0.6223 0.6329
Glass 0.5581 0.5268 0.5281 0.5390 0.5252 0.5867

Ionosphere 0.6708 0.6670 0.6792 0.6815 0.6650 0.6902
Sonar 0.5428 0.4636 0.5425 0.5476 0.5389 0.5506

Balance scale 0.5511 0.5410 0.5554 0.5629 0.5579 0.5672
Pima 0.5547 0.5469 0.5433 0.5656 0.5657 0.5658

Spect-heart 0.6112 0.6114 0.6096 0.6188 0.6169 0.6234
Hepatitis 0.5335 0.5232 0.5266 0.5409 0.5364 0.5519
Bupa 0.6429 0.5538 0.6080 0.6674 0.6623 0.6687

Habermans survival 0.5951 0.5934 0.5948 0.5952 0.5953 0.5953
Wdbc 0.8639 0.8758 0.8639 0.8850 0.8747 0.8850
Statlog 0.5478 0.5490 0.5456 0.5477 0.5473 0.5495
Vehicle 0.4691 0.4580 0.4632 0.4747 0.4749 0.4757

Breast-cancer-Wisconsin 0.7606 0.7592 0.7564 0.7963 0.7969 0.7997
Car 0.3253 0.3219 0.4817 0.3186 0.3209 0.3476

Credit-g 0.5009 0.4952 0.4976 0.5185 0.5029 0.5385
Vowel 0.1966 0.1973 0.1649 0.1992 0.1944 0.2004

Lymphography 0.5029 0.4820 0.4866 0.4905 0.4894 0.5085

Fig. 1. The F-measure of different algorithms on the each data set

value of selective ensemble based on covariance. A F-measure value between an
ensemble result and the labels of data set is obtained with one iteration, so a
total of 60 F-measure values are obtained. The CSEV is the average value of the
60 F-measure values.
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Fig. 2. The F-measure and covariance between each ensemble result and the label of
Iris and Wine

Table 3. The covariances with maximum F-measure on each data set

Data Set Covariance maximum F-measure

Iris 0.5803 0.9000
Wine 0.5940 0.6924
Zoo 0.5822 0.6438
Glass 0.5029 0.6045

Ionosphere 0.2498 0.6977
Sonar 0.4236 0.5524

Balance scale 0.4416 0.6326
Pima 0.2360 0.5658

Spect-heart 0.2474 0.6352
Hepatitis 0.1425 0.5927
Bupa 0.1817 0.6990

Habermans survival 0.3827 0.5953
Wdbc 0.2493 0.8870
Statlog 0.1846 0.5698
Vehicle 0.4248 0.5152

Breast-cancer-Wisconsin 0.2229 0.8113
Car 0.2135 0.4109

Credit-g 0.1489 0.5834
Vowel 0.5993 0.2268

Lymphography 0.2950 0.5285

From the Table 2, we can see that the F-measures of clustering ensemble
are better than base clustering on 16 data sets except Glass, Statlog, Car, and
Lymphography. The F-measure of CSEV equals RSE on the Habermans survival,
the F-measure of CSEV equals ALL on the Wdbc, the F-measure of FCM is
better than CSEV on the Car, and the F-measures of CSEV are better than
base clustering, ALL, and RSE on other 17 data sets.

We can obtain two conclusions based on above results. Firstly, the clustering
ensemble result is better than base clustering. Secondly, the CSEV is better than
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base clustering, ALL, and RSE, which can also be seen from Fig. 1, where CSEM
is max value of selective ensemble based on covariance. The x axis of Fig. 1 are
20 data sets and the y axis are the F-measures.

The covariances with maximum F-measure on each data set are shown in
Table 3. From the Table 3, we can see that the covariance is between 0.1 and
0.6 on 20 data sets. Therefore, we will be directly select base clustering results
that covariance in this interval to ensemble in the practical applications.

We can clearly see all F-measures and covariances of each selection on iris,
wine, zoo, and glass from Fig. 2 to Fig. 3. The x axis is the number of base
clustering results that does not use to ensemble. The y axis are F-measures and
covariances between each ensemble result and the label of each data set.

Fig. 3. The F-measure and covariance between each ensemble result and the label of
Zoo and Glass

5 Conclusion

In this paper, we propose the selective clustering ensemble based on covariance.
We measure diversity based on covariance. Our work may prove the better per-
formance of our algorithm with experiments on the 20 UCI data sets, and get
a covariance interval that is between 0.1 and 0.6. In future work, we will try to
study more on selective clustering ensemble based on covariance and use them to
the practical applications. We also will try to add semi-supervised information
in this algorithm and achieve the parallelization of this algorithm.
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Abstract. Recently, web video categorization has been an ever interest-
ing research with the popularity of web videos. Clustering ensemble has
become a good alternative for categorization. Semi-supervised clustering
ensemble has shown a better performance since it may incorporate the
known prior knowledge, e.g., pairwise constraints. In this paper, we pro-
pose a Semi-supervised Cluster-based Similarity Partitioning Algorithm
(SS-CSPA) to categorize the videos containing textual data provided
by their up-loaders. The feature of this algorithm is the introduction of
an unsupervised learning, consensus between clustering and additional
support of pairwise constraints to formulate semi-supervised clustering
ensemble paradigm. Experimental results on the real-world web videos
show that the proposed algorithm outperforms existing methods for
categorization of web videos.

Keywords: Clustering, Cluster Ensemble, Pairwise Constraints, Video
Categorization.

1 Introduction

Multimedia advancement in digital world has provided an easy path to produce
abundant videos by its users. This abundance of videos has made the selection
criteria quite complicated for a user to search and get the desired video. Web
video categorization is principally a procedure of assigning web videos to pre-
defined categories (such as Sports, Autos & Vehicle, Animals, Education, etc).
It performs a critical role in many information retrieval tasks. On social web
sites (such as YouTube [1]), extreme load of web video data obstructs the users
to comprehend them effectively. Allocation of certain categories to these videos
is a primary step. However, the diversity of web videos ranges from professional
high quality videos to non-professional low quality videos, it makes web video
categorization task more difficult. Conventionally, web videos are classified by
using audio, textual, visual low-level features or their combinations [2,3]. These
methods depend mostly on building models through machine learning techniques
(e.g., SVM, HMM, GMM) to map visual low-level features to the high-level se-
mantics. Due to unsatisfactory results of present high-level concept detection
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methods [4,5] and the expense of feature extraction, the content based catego-
rization could not achieve the expected results. In addition, one of features of
web videos is that the up-loaders generally use three ways, i.e., title, tag and
description, to label their web videos. Therefore, the additional textual infor-
mation associated with the web videos may become feasible features for the
categorization.

Clustering ensemble is a framework for combining multiple base clustering re-
sults without accessing the original features of the objects. Base clusters can be
generated either by using different clustering algorithms or the same algorithm
with different parameters. Consensus function formulation is the most critical
part in this scheme. Several efficient consensus functions have been derived from
statistical, graph-based and information theoretic principles, e.g., co-association
matrix [6], hyper-graph cuts [7], mutual information [8], mixture models [9] and
voting process [10]. Ensemble models have been validated to improve the accu-
racy and robustness of single clustering methods [11] and successfully applied
in many domains [12]. Recently, the semi-supervised clustering ensemble has
emerged as an important variant of clustering ensemble since it incorporates the
known prior knowledge and achieves a better performance [13].

In this paper, we aim to deal with the categorization problem of web videos by
using their textual data based on the semi-supervised clustering ensemble. The
rest of the paper is organized as follows. In Section 2, a brief survey of related
work is described. Section 3 demonstrates the proposed framework together with
the algorithm for web video categorization. Section 4 shows the experimental
details along with evaluation of results. Concluding remarks and future work are
stated in Section 5.

2 Related Work

2.1 Web Video Categorization

Automatic categorization of web videos is a crucial task in the field of multime-
dia indexing. Numerous studies have been conducted so far on this critical sub-
ject [3]. Ramchandran et al. [16] proposed a consensus learning approach using
YouTube categories for multi-label video categorization. However, the specific
categories and the amount of data are not described in their work. Schindler et
al. [17] categorized the videos using bag-of-words representation but the classifi-
cation results are unsatisfactory. Zanetti et al. [18] used 3000 YouTube videos to
explore existing video classification techniques. Wu et al. used textual and social
information for web video categorization that consist of user upload habits (They
determined that users upload videos usually related to the same category) and
YouTube related videos (specified by YouTube) [15]. Liu et al. suggested a tech-
nique for video topic retrieval using ‘related video’ links that YouTube relates to
each web video to improve its textual information [19]. Ballen et al. proposed the
use of social knowledge to suggest video tag and temporal localization [20]. Chen
et al. used Wikipedia categories (WikiCs) and content duplicated open resources
(CDORs) for web video categorization [21]. They also proposed a voting scheme
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that categorizes videos into the space spanned by enriched WikiC instead of raw
title and tag.

2.2 Clustering Ensemble

Clustering ensemble has become a good alternative in dealing with cluster anal-
ysis problems. Dimitriadou et al. proposed a voting based ensemble method
using cluster alignment technique [22]. Fred et al. presented a clustering ensem-
ble method by considering co-association matrix as the similarity matrix [11].
Strehl et al. developed a hypergraph partitioning based the ensemble method
[7]. Topchy et al. designed an adaptive scheme for integration of multiple non-
independent clustering and extended the ensemble framework for generation of
partitions [23]. Zhang et al. solved the ensemble problem by reducing it to a
graph partitioning problem [24].

Recently, semi-supervised clustering ensemble has been proposed and shown a
better performance by incorporating the known prior knowledge, e.g., pairwise
constraints. Most commonly used constraints are must-link (ML) and cannot-
link (CL). A must-link constraint enforces that two objects must belong to the
same cluster while a cannot-link constraint enforces that two objects must be-
long to the different clusters [13]. Zhou et al. proposed disagreement-based semi-
supervised learning paradigm, where multiple learners are trained for the task and
the disagreements among the learners are exploited during the semi-supervised
learning process [25]. Zhou et al. pointed out that most semi-supervised ensem-
ble methods work by training learners using the initial labeled data first, and
then using the learners to assign pseudo-labels to unlabeled data [26]. Iqbal et al.
solved semi-supervised clustering ensemble by voting [27]. Wang et al. explored
a semi-supervised cluster ensemble model based on semi-supervised learning and
ensemble learning utilizing Bayesian network and EM algorithm [28]. Yang et al.
presented a novel semi-supervised consensus clustering ensemble algorithm based
on multi-ant colonies [29].

3 Proposed Framework

3.1 System Overview

Our system builds on top of the bag-of-words paradigm which is one of text
information retrieval approaches. This technique assumes that the set of words
in a document is a representative of its content and meaning. Firstly, we identify
the meaningful words (terms) from textual data (e.g., the title, tag and descrip-
tion of a web video) of web videos, and apply the TF − IDF scheme to find the
weights of terms in a video. This step is crucial due to the noisy, mixed and inac-
curate nature of textual data of web videos. We use the Vector Space Model with
Cosine Similarity for the comparison of vectors, which ultimately leads to find
the desired similarity between videos. Related videos information provided by
the YouTube algorithm is used as a strong support for the clustering ensemble
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process. The important fact is that two related videos do not necessarily be-
long to same category. We use this information as must-link constraints. Using
the above calculated similarity matrix and must-link information, we execute
different clustering algorithms to identify the group of similar videos, leading
to assign the category label to a video. Here we select three algorithms, graph
partitioning, spectral clustering and affinity propagation [30] for the clustering
purpose.

Next, we apply different clustering ensemble algorithms, e.g., CSPA, MCLA
and HGPA [7], to integrate the base clustering results and obtain the consensus
solution.

Finally, we incorporate pairwise constraints into the clustering ensemble algo-
rithm and get the ultimate results. We denote this algorithm as a Semi-supervised
Cluster-based Similarity Partitioning Algorithm (SS-CSPA). The framework of
the proposed SS-CSPA algorithm is shown in Fig. 1.

Fig. 1. Proposed framework

3.2 Pairwise Constraint Rules

Related video information can be viewed from two different angles. First, from
the configuration point of view, we have Star andMesh schemes. In Star scheme,
we consider only the first video to be related with all remaining videos in a given
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Fig. 2. Different configurations of pairwise constraints

set, whereas in Mesh scheme, each video is considered to be related with every
other video within the group, as shown in Fig. 2.

Second, from the category point of view, we have Same and Cross category
membership. If the category of both videos is the same, we refer it as the Same
category membership, whereas if there exist two videos with different categories,
we refer it as the Cross category membership, as summarized in Table 1.

Table 1. Must-link matrix configuration

Relation Type Membership Type Reference Membership Type Reference

Star Same Category ML-1 Cross Category ML-3

Mesh Same Category ML-2 Cross Category ML-4

3.3 Similarity Measure

A simple two-fold heuristics [32] based on frequency is used to score each com-
ponent directly as a function of Term Frequency (TF) refering to the number
of occurrences of a particular term in a specific document, and Inverse Docu-
ment Frequency (IDF) refering to the distribution of a particular term across all
documents.

IDF (t) = 1 + log[
n

k
] (1)

where n = Total number of documents, and k = Number of documents with
term t appearing at least once.

The basic theme of TF − IDF scheme is that, if a word appears frequently in
a document, it must be an important keyword, unless it also appears frequently
in other documents. The final weight of a term in a document can be calculated
as
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Weight(t, d) = TF (t, d) ∗ IDF (t). (2)

In order to accommodate different lengths of documents, we use relative counts.
To find the similarity between documents, we represent each document in term
space as a vector of term weights. For example, for two documents Di and Dj ,
we have

Di = (wi1, wi2, ......wiN ) and Dj = (wj1, wj2, ......wjN ). (3)

The similarity between these two documents can be calculated by using normal-
ized Cosine function between them,

Sim(Di, Dj) =

∑N
i=1(wit ∗ wjt)√∑N

i=1(wit)2 ∗
∑N

i=1(wjt)2
. (4)

Using the above calculated similarity matrix and a set of must-link matrices we
are ready to use any similarity based clustering algorithm.

3.4 The Algorithm

The proposed SS-CSPA Algorithm is outlined as follows.

Input: (i) Dataset, containing textual part of videos (UtVd).
(ii) Related Video Information (RVi).

Calculate all possible configurations of pairwise constraints M-(1,2,3,4) from RVi.
for i ∈ {DataSets UtV d (Dec− 08(3), Jan− 09(6), F eb− 09(9))}

for j ∈ {DataSet Copies Cj}
for k ∈ {T itle, Tag,Description}

Text pre-processing for extraction of unique and meaningful terms.
Apply TF − IDF scheme to find term weights.
Calculate the initial similarity matrix Si.

for m ∈ {M − 0,M − (1, 2, 3, 4)} M-0 is without must-link
Calculate net similarity Sn = Si +m.
Execute different clustering algorithms and get labels.
Ensemble the labels with and without must-link.

End m
Ensemble the labels with and without must-link.

End k
Ensemble the labels with and without must-link.

End j
End i
Output: Micro precision accuracy (SS-CSPA vs Ground truth labels).
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4 Experiments

4.1 Datasets and Evaluation Criteria

Among the different available datasets, we select MCG-WEBV [33] as a bench-
mark containing most viewed videos for four months (Dec 2008 to Mar 2009).

Datasets. We perform a number of experiments on textual part by considering
the basic textual features like title, tag and description. Related videos data is
also included as must-link constraint. Some basic facts about three considerable
datasets are stated in Table 2.

Table 2. Dataset description

DataSet Number of Copies Instances Features
UtVd Categories Ci Title Tag Des

Dec-08(3) 3 3 1000 1846 3917 5601

Jan-09(6) 6 3 1821 3089 6672 7983

Feb-09(9) 9 1 2504 3992 8502 9998

Evaluation Criteria. For evaluation, we use micro-precision [34] to measure
accuracy of the consensus cluster with respect to the true labels: the micro-
precision is defined as

MP =

K∑
h=1

[
ah
n
], (5)

where K is the number of clusters and n is the number of objects, ah denotes
the number of objects in consensus cluster h that are correctly assigned to the
corresponding class. We identify the corresponding class for consensus cluster h
as the true class with the largest overlap with the cluster, and assign all objects
in cluster h to that class. Note that 0 ≤ MP ≤ 1 with 1 indicating the best
possible consensus clustering which has to be in full agreement with the class
labels.

4.2 Results

Using the above stated scheme, we first perform the three clustering algorithms
with must-link constrains and find the clustering labels. For each dataset, we
select at least three subsets for experiments and take their average. The results
are compared with true labels to find the accuracy. The average accuracy for
three datasets with spectral clustering is shown in Table 3.
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Table 3. Average clustering accuracies for three datasets with spectral clustering

Data M-0 M-1 M-2 M-3 M-4 M-0 M-1 M-2 M-3 M-4 M-0 M-1 M-2 M-3 M-4

SubSection Dataset Dec-08(3) Dataset Jan-09(6) Dataset Feb-09(9)

Title 0.75 0.65 0.50 0.73 0.60 0.42 0.42 0.45 0.38 0.43 0.30 0.34 0.33 0.34 0.37

Tag 0.90 0.90 0.92 0.88 0.83 0.58 0.61 0.56 0.56 0.43 0.46 0.44 0.47 0.44 0.38

Des 0.64 0.75 0.83 0.66 0.63 0.48 0.54 0.49 0.46 0.46 0.31 0.36 0.40 0.34 0.31

All 0.92 0.82 0.94 0.88 0.93 0.57 0.57 0.65 0.56 0.50 0.44 0.46 0.49 0.47 0.42

Table 4. Clustering ensemble for dataset Dec-08(3)

Data M-0 M-1 M-2 M-3 M-4 M-0 M-1 M-2 M-3 M-4 M-0 M-1 M-2 M-3 M-4

CSPA MCLA HGPA

SubSection Dataset Dec-08(3)-C1

Title 0.41 0.43 0.42 0.44 0.50 0.50 0.45 0.45 0.48 0.40 0.34 0.39 0.41 0.35 0.33

Tag 0.70 0.43 0.50 0.55 0.50 0.59 0.46 0.53 0.63 0.57 0.36 0.36 0.40 0.37 0.47

Des 0.55 0.59 0.45 0.65 0.45 0.54 0.53 0.45 0.57 0.51 0.36 0.40 0.41 0.42 0.44

All 0.57 0.56 0.60 0.64 0.58 0.50 0.62 0.68 0.65 0.67 0.35 0.52 0.60 0.40 0.37

Dataset Dec-08(3)-C2

Title 0.63 0.54 0.60 0.54 0.60 0.61 0.58 0.56 0.57 0.54 0.41 0.40 0.40 0.35 0.35

Tag 0.84 0.75 0.83 0.84 0.80 0.82 0.80 0.75 0.75 0.68 0.44 0.45 0.44 0.44 0.34

Des 0.60 0.42 0.73 0.69 0.59 0.60 0.58 0.65 0.63 0.60 0.34 0.35 0.43 0.37 0.36

All 0.75 0.83 0.92 0.90 0.91 0.60 0.78 0.79 0.88 0.79 0.44 0.42 0.42 0.37 0.45

Considering the above results as base clusters, we execute three clustering
ensemble algorithms, CSPA, MCLA and HGPA as shown in Table 4.

Finally, we execute the SS-CSPA algorithm with all configurations of must-
link constraints, results are shown in Table 5.

We repeat the whole scheme for two other instances of dataset Dec-08(3) as
well as for all three instances of data set Jan-09(6) and Feb-09(9). The overall
performance is shown in Table 6.

4.3 Results Discussion

At each stage of experimental scheme, we get corresponding results being mile-
stones for next stage.

1. Among title, tag and description data subsets, tag performs very well. If we
fuse tag information as ALL, it shows better performance.

2. The M-2 configuration of must-link performs better as compared to M-1,
M-3 and M-4.

3. The graphical clustering (METIS) [31] has prominently better results as
compared to others two methods for this kind of sparse data.

4. The accuracy is high for dataset Dec-08(3) (small no of categories) as com-
pared to dataset Jan-09(6) and Feb-09(9) (more categories).
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Table 5. Semi-supervised cluster-based similarity partitioning (SS-CSPA) results for
Dataset Dec-08(3)

Data M-0 M-1 M-2 M-3 M-4 M-0 M-1 M-2 M-3 M-4

SubSection Must Link - 1 Must Link - 2

Title 0.41 0.44 0.40 0.52 0.42 0.47 0.39 0.42 0.53 0.50

Tag 0.70 0.44 0.43 0.55 0.49 0.67 0.45 0.54 0.54 0.42

Des 0.54 0.59 0.46 0.65 0.62 0.54 0.59 0.49 0.66 0.50

All 0.57 0.52 0.53 0.65 0.58 0.58 0.56 0.83 0.65 0.70

Must Link - 3 Must Link - 4

Title 0.46 0.45 0.43 0.52 0.43 0.40 0.45 0.42 0.54 0.42

Tag 0.70 0.45 0.49 0.55 0.52 0.66 0.45 0.43 0.55 0.40

Des 0.54 0.59 0.51 0.65 0.46 0.53 0.59 0.49 0.66 0.50

All 0.57 0.52 0.61 0.65 0.72 0.62 0.56 0.60 0.65 0.72

Table 6. Final performance of SS-CSPA

Performance M-1 M-2 M-3 M-4 AVERAGE M-1 M-2 M-3 M-4 AVERAGE

Dataset Dec-08(3)-C1 Dataset Dec-08(3)-C2

Increase or Same 65 % 75 % 80 % 70 % 72 % 70 % 85 % 70 % 80 % 76 %

Decreased 35 % 25 % 20 % 30 % 28 % 30 % 15 % 30 % 20 % 24 %

5. The CSPA ensembling method has better performance as compared to other
two.

6. We also investigate the neutral behaviour of pairwise constraints, and find
that this happens only in situations where some constraints are already im-
plemented during the natural process of clustering ensemble.

7. The semi-supervision technique at ensembling level also performs very well.

5 Conclusions

This paper proposed a novel approach, SS-CSPA, to categorize the videos con-
taining textual data provided by their up-loaders. Experimental results showed
that the proposed approach worked well for categorization purpose. Keeping in
view all the facts and statistics about the main datasets as well as must-link
constraints, it is found that the available noisy text information and less dense
constrains are not sufficient to fully categorize the videos data. There is a need of
some more data sources like user interest videos, visual contents of correspond-
ing videos and specifically the audio frequency patterns and bands may help us
to obtain better categorization results. In our future work, while searching for
more supportive information, the fusion of additional information for web video
categorization is also a challenge.
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Abstract. Error-correcting output coding (ECOC) is nowadays an es-
tablished technique to build polychotomous classification systems by
aggregating highly efficient dichotomizers. This approach has exhibited
good classification performance and generalization capabilities in many
practical applications. In this field much work has been devoted to study
new solutions both for the coding and the decoding phase, but little
attention has been paid to the algebraic tools typically employed in the
Coding Theory, which could provide an ECOC design approach based on
robust theoretical foundations. In this paper we propose an ECOC clas-
sification system based on Low Density Parity Check (LDPC) Codes, a
well known technique in Coding Theory. Such framework is particularly
suitable to define an ECOC system that employs dichotomizers provided
of a reject option. The experiments on some public data sets have demon-
strated that, in this way, the ECOC system can reach good recognition
rates when a suitable reject level is imposed to the dichotomizers.

Keywords: ECOC, reject option, LDPC, coding theory, ensemble learn-
ing.

1 Introduction

Among the ensemble learning algorithms,ErrorCorrectingOutputCoding (ECOC)
has gained large popularity in the Pattern Recognition community as an effective
approach for decomposing a polychotomous classification problem in several di-
chotomies. The reasons of this success can be attributed to the strong theoretical
roots and good comprehension characterizing two-class classifiers such as Percep-
trons or Support Vector Machines, the error correcting capabilities of the codes
used to group classes and the good generalization capabilities due to the reduction
of both bias and variance [11].

The rationale underlying the ECOC approach is to break the original M
classes problem into L different binary problems. Each class is assigned a code
word of length L, thus defining a M × L coding matrix in which each column
specifies a particular binary problem that groups the original classes into two
superclasses. For each unknown samples the outputs produced by the L di-
chotomizers are combined into an output word which has to be matched with
the code words associated to the original classes (decoding phase).
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In previous papers focused on ECOC, much work has been devoted to the
analysis of predefined codes (e.g., one-vs-one, one-vs-all, random codes, exhaus-
tive codes, linear error correcting codes). Moreover, great attention has been
devoted to the possibility of building efficient output codes based on the learn-
ing algorithms used [4], on the data distribution in the particular problem at
hand [7], [15], [2] or on minimizing the number of dichotomizers to be trained in
the ensemble [3]. In the decoding phase, the decision is typically based on the
Hamming distance computed between the code words and the crisp outputs of
the dichotomizers. Other decoding strategies have also been proposed, based on
Euclidean distance between the soft outputs of the dichotomizers and the code
words. Other distances have been also proposed, defined on the loss function
used during training [1] or on a weighted loss-based distance [6].

However, the research done in this field has drifted away from the original
approach proposed in [5] where the learning task was considered with a com-
munications problem in which the identity of the correct output class for a new
example is being transmitted over a channel. As a consequence, the usual setting
proposed in literature for an ECOC-based classification system does not exploit
all the typical features of an error correcting coding provided by Coding Theory
and does not consider all the algebraic tools typically employed, which could
provide an ECOC design approach based on robust theoretical foundations.

In this paper we propose an ECOC classification system based on a well known
technique in Coding Theory [9]: Low Density Parity Check (LDPC) Codes. Be-
sides the algebraic structure which provides a strong theoretical framework, we
choose LDPC codes because they allow us to efficiently handle not only errors
but also erasures, i.e., events in which the channel abstains from giving an out-
put since there is knowledge that the symbol is likely to be in error. Since in the
ECOC setting this corresponds to a dichotomizer provided with a reject option,
such a framework is particularly suitable to define an ECOC system that, for
each classification act, can rely on trustworthy dichotomizers and algebraically
recover the outputs of the dichotomizers that do not provide a reliable response.

We have proposed a similar mechanism in [12] with the purpose of adding a
reject option to the whole ECOC classification system; in that case we obtained
some improvement in the error rate of the ECOC system, but at the cost of
rejecting the samples for which a reliable decoding could not be reached. In this
paper we introduce a new reject option for the dichotomizers that allows us
to choose more accurately the operating point of the two-class classifiers. This
time the possibility of rejecting a sample is limited only to the dichotomizers
while the ECOC system works at zero reject. Notwithstanding, the experiments
performed on some public datasets show that a significant decrease in the error
rate of the ECOC system can be obtained when a suitable reject level is imposed
to the dichotomizers.

2 A Glimpse at Coding Theory

The usual ECOC approach consists of representing each class label by a bit
string of length L, called code word, with the only requirement that distinct
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classes are represented by distinct code words. However, this usual setting does
not exploit all the typical features of an error correcting coding provided by
Coding Theory. For this reason, before analyzing the proposed approach, let us
introduce some basic concepts of linear codes [16] that revealed to be useful for
an ECOC classification system.

Let us consider the Galois field GF (2), i.e., a set of two elements {0, 1} where
a sum and a product operations, both modulo-2, are defined and let us denote
with GFL(2) the vector space of all L-tuples over the field GF (2). An (L,K, d)
code C over GFL(2) is a K-dimensional vector subspace of GFL(2) where the
vectors of the subspace are the code words of C and d is the minimum Hamming
distance among them. If u = [u0, u1, . . . , uK−1] is a K-bit source message to
be coded, it can be associated to a code word c = [c0, c1, . . . , cL−1] of C and
thus, the 2K possible source messages with length K are associated with 2K

code words with length L. The difference L−K is called redundancy, while the
ratio r = K/L is the transmission rate of the code C. The relation between the
redundancy and d is regulated by an upper bound d ≤ L−K + 1, which means
that, for a smaller r, d can increase and thus the error correction capability.

Since C is aK-dimensional vector subspace, there existK linearly independent
vectors belonging to GFL(2), let us call them g0, . . . ,gK−1, which form a basis
for C. In this way, the correspondence between the source message u and the
code word c can be put in terms of a linear combinations of the basis vectors

through u, i.e., c = uG where G =
(
g0 . . . gK−1

)T
is a K × L matrix termed

the generator matrix of C.
Let us now consider C⊥, the orthogonal complement of C, i.e., the set of vectors

belonging to GFL(2) which are orthogonal to the code words of C. Moreover, let

H =
(
h0 . . . hL−K−1

)T
be the (L−K)×L matrix collecting the L−K vectors

hi of the basis of C⊥. In this way, each code word c = uG of the code satisfies
the condition HcT = 0; for this reason, H is called the parity check matrix of
C. In other words, the parity check matrix defines L−K equations which allow
the received word to be checked to verify if it is actually a code word of C. In
particular, if the received vector o = c + e is given by a code word c corrupted
by an error pattern e, we get a parity check condition given by:

HoT = HeT �= 0. (1)

According to the last equation, it is possible to show that for a linear code a
decoding technique is able to recover a code word if the erroneous bits are less
than �(d− 1) /2.

Finally, it is worth introducing here an useful and intuitive graphical repre-
sentation of linear codes, the Tanner graph [18], that shows how each component
of the output vector is involved in the parity check constraints (see Fig. 1). This
is a bipartite graph with L variable nodes, corresponding to every component
of the output vector, and L−K check nodes, corresponding to the parity check
constraints, i.e., to the rows of H. To build the graph, every check node i is
connected to a variable node j if and only if hij = 1 where hij is the element of
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Fig. 1. An example of a Tanner graph for a generic code

the matrix H on the i-th row and the j-th column. The number of connections
deriving from a node is usually referred as the degree of the node.

3 LDPC Codes in ECOC Framework

Among the techniques provided by Coding Theory we found that Low Density
Parity Check (LDPC) codes [9] constitutes a suitable theoretical framework to
be used in ECOC classification systems. LDPC codes, in fact, are characterized
by a sparse pseudo-random matrix H that allows us to exploit the redundancy
of the code words when employing decoding technique suitable with abstaining
classifiers. An (a, b)-regular LDPC code is defined as a binary linear code such
that in its Tanner graph every variable node has degree a and every check node
has degree b. The term “low density” indicates that the number of edges in
the Tanner graph is aL, where L is the length of the code. As L increases, the
number of edges in the Tanner graph grows linearly in L, while for other codes
it grows much faster.

To integrate LDPC codes into an ECOC framework, the first point is the
choice of L and K. If M is the number of the classes in the original multiclass
problem, obviously we haveK � �log2 M�; however, for a fixed L, it is convenient
to keep K as low as possible so as to decrease the transmission rate and thus, to
increase the minimum Hamming distance (MHD) d among the code words. Once
L and K = �log2 M� are determined, the matrices G and H of the code C can
be generated and thus, following the steps described in the previous section, the
code words. When code words have been found a coding matrix C can be created
assuming each row corresponding to a code word and each column to a binary
subproblems as in common ECOC framework. However, in this context we do not
need to choose among possible code words or to maximize the Hamming distance
between the rows of the coding matrix since, according to Coding Theory, LDPC
codes are already built to maximize the minimum Hamming distance d between
any pair of code words.

Let us now consider the coding matrix C produced by the chosen code C
which, depending on the structure of the generator matrix, could contain similar
or identical columns as well as all-zeros or all-ones columns. Unlike the usual
ECOC, in our approach we cannot eliminate such columns unless all the algebraic
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properties of the code do not hold and we cannot apply the correct decoding
procedure. Actually, the all-zeros/all-ones columns are not a big problem since
they can be neglected during the training of the dichotomizers so that the number
of needed dichotomizers becomes lower than L. The bits corresponding to all-
zeros/all-ones columns can be then inserted within the output vector before the
decoding algorithm starts. Moreover, even identical columns become an issue less
problematic than in the usual ECOC systems. In fact, in the decoding algorithm
we should avoid the presence of dependent errors but in our approach, thanks
to the sparseness of the parity check matrix, correlated outputs are likely to be
forwarded to different check nodes thus making the following phases robust to
such circumstance.

4 The Decoding Procedure with Abstaining Classifiers

The ECOC classification of an unknown sample x requires the execution of a
decoding algorithm over a received code word o defined by the set of L binary
predictions on x. In Coding Theory received code words are considered as the
result of transmitting unknown code words c over a noisy channel. A commonly
employed model of noisy channel is the Binary Erasure Channel (BEC) in which
each code word symbol is lost with a fixed constant probability timely inde-
pendent of all the other symbols. The BEC can be usefully employed in ECOC
framework to model classifiers with a reject option, i.e., classifiers that can ab-
stain from a decision according to the reliability of its output. In this way, it is
possible to single out the unreliable elements (binary decisions) in the output
vector and process them in an appropriate way before arriving at the decoding
stage. As a consequence, the decoding rules have to be modified to take their
decisions only on the basis of the bits evaluated as sufficiently reliable. LDPC
codes have been widely studied when applied to the BEC model and several
decoding algorithm have been proposed. The most promising one that we will
describe in the following has been shown to be the message-passing algorithm
and its extension that has been shown to guarantee good performance when
employed with codes of finite length less than 104 [14].

4.1 Defining the Reject Rule for Dichotomizers

Before going into details about the decoding techniques, let us consider how to
design the reject option for the group of dichotomizers in the ECOC architecture.
Let us assume that each dichotomizer fh(x) outputs a real value in the range
[−1,+1] and that, to take a decision about the class of x, the value fh(x) is
compared with a threshold τh. In other words, x is assigned the class +1 if
fh(x) ≥ τh otherwise, the class −1 is chosen. It is worth noting that irrespective
of the value of the decision threshold τh, the majority of unreliable decisions
correspond to the outcome values near the threshold, where the distribution of
the two classes overlaps. In other words, the samples for which the output of
the dichotomizer falls in this region are characterized by some ambiguity in the
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allocation, because their corresponding outcomes are very similar and thus quite
difficult to distinguish. A way to obtain more reliable results is to employ a
decision rule with two thresholds, τh1 and τh2 with τh1 ≤ τh2, such that:

r(fh, τh1, τh2) =

⎧⎪⎨⎪⎩
+1 if fh(x) > τh2,

−1 if fh(x) < τh1,

reject if fh(x) ∈ [τh1, τh2].

(2)

The idea is to encapsulate the class overlap region into the reject interval [τh1, τh2],
so as to turn many of the errors due to the class overlap into rejects. The optimal
values for the thresholds (τh1, τh2) should be chosen to satisfy two contrasting re-
quirements: enlarging the reject region to eliminate more errors and limiting the
reject region to preserve as many correct classifications as possible. In our case,
we cannot choose the same pair of thresholds for all the dichotomizers because
each of them has different distributions for the output score, and a unique choice
would involve abnormal results for most of them. Accordingly, we imposed all di-
chotomizers to work at a chosen rejection rate ρ and we used the method presented
by Pietraszek in [13]. This approach requires estimating the ROC curve of each di-
chotomizer and calculating the pair of thresholds (τh1, τh2) such that fh abstains
for no more than ρ at the lowest possible error rate. The rationale is to make all
the dichotomizers work almost at the same level of reliability.

4.2 The Decoding Procedure

Once the binary reject has been applied the output vector can also contain
rejected bits, i.e., oi ∈ {0, 1, ?} and thus the parity check condition in eq. (1)
cannot be checked. Nevertheless, we can assume that all the bits not rejected
are correct and in this way, eq. (1) becomes a system of linear equations with
the rejected bits as unknowns. In particular, if we denote with E the index set
of the rejected bits and with Ē the index set of the bits not rejected, the parity
check condition HoT = 0 can be written as:

HoT = HEo
T
E +HĒo

T
Ē = 0 (3)

Since we are working with the arithmetic modulo 2, this is equivalent to:

HEo
T
E = HĒo

T
Ē (4)

where HĒo
T
Ē

is a known term. This system has a unique solution if and only
if the matrix H has a subset of |E| independent rows; in this case, the solution
can be found by performing Gaussian elimination and back substitution.

The parity check equations allow the rejects to be eliminated by means of
an iterative procedure (direct recovery algorithm) that can be summarized as
follows [17]:
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1. Initialize the values of all check nodes to zero;
2. FOR EACH variable node, IF the node has a value in {0, 1} THEN add this value

to the values of all adjacent check nodes and remove all the edges coming
from it;

3. FOR EACH check node, IF the node has degree one THEN substitute its value
into the unique adjacent variable node and remove the edge;

4. IF at least a check node with degree one has been found in the previous step
THEN goto step 2 ELSE exit.

It is worth noting that each check node with degree 1 singled out in step 3 can be
only connected to a variable node with reject whose value is substituted in such a
way to satisfy the constraint. The procedure ends when there are no more check
nodes with degree 1. This means either all the check nodes have degree 0 (and
thus all the rejects have been recovered) or there is some check node with degree
greater than 1, i.e., a check node connected with two or more variable nodes with
rejects which cannot be recovered. This case happens when rank(HE) < |E|. In
order to have a high probability of recovering the rejected bits, the code to be
chosen should have a sparse parity check matrix, as in the case of LDPC codes,
with the property that HE has a triangular sub-matrix with high probability
when |E| is not too large [16].

When rank(HE) < |E| it is possible to successfully extend the previously
analyzed algorithm by means of the Guess algorithm [14] that consists in per-
forming several guesses of the erased bits unsolved by the recovery algorithm
and can be summarized in this way:

1. Apply the recovery algorithm;
2. IF a stopping condition exists, THEN find the check nodes with degree two

and guess one bit.
3. Goto step 1 until all stopping conditions have been removed.
4. Create a list of 2g solutions where g is the number of guesses made. From

the list, ok with k ∈ {1, 2, ..., 2g}, pick the one that satisfies HoT
k = 0.

Obviously, compared to the recovery algorithm, the complexity of this algorithm
increases with g. However, thanks to the sparsity of H, this does not represent
a problem for LDPC codes that, instead, in such situation, exhibits a strong
improvement of the decoding performance [14].

It is also worth noting that the previously described decoding algorithms
do not necessarily output a code word belonging to C. In fact, in step (4) of
the Guess algorithm we have implicitly made the assumption that all the bits
not rejected were correctly decoded, but this is obviously not always true. The
recovered code word c̃ could thus contain some erroneous bits; moreover, such
errors could propagate during the recovery of the rejected bits, even though this
problem is sensibly mitigated by the sparseness of the parity check matrix. As
a result, the recovery could produce a code word different from the correct one.
However, a high MHD among the code words of the coding matrix increases the
probability that the erroneously recovered code word does not represent another
class, i.e., that c̃ ∈ C and c̃ /∈ C. In this case, an effective rule is to decide for the
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Table 1. Data sets and code parameters used in the experiments

Data sets Classes Features Samples K L Dichot.

SatImage 6 36 6435 3 100 7
Glass 7 9 214 3 100 7
PenDigits 10 16 10992 4 100 14
Yeast 10 8 1484 4 100 14

class corresponding to the code word c ∈ C with the lowest Hamming distance
from the recovered code word c̃.

5 Experiments

To evaluate the performance of the proposed ECOC classification system, some
experiments have been performed on four data sets publicly available at the
UCI Machine Learning Repository [8] using SVM with RBF kernel [10] as base
dichotomizer. All the employed data sets have numerical input features and a
variable number of classes. For each data set, 10 runs of a multiple hold out
procedure have been performed to avoid any bias in the comparison. In each
run, the data set has been split in three subsets: a training set (containing the
50% of the samples of each class) to train the base classifiers, a tuning set (25%
of the samples of each class) to optimize the SVM parameters (γ of the RBF
kernel and C) using a grid approach and a test set to evaluate the performance of
the multiclass classification. The code matrix has been chosen with K dependent
on the number of classes as explained in Sect. 3 and L = 100 so as to have a
redundancy that guarantees a very high minimum Hamming distance among the
code words. As stated at the end of Sect. 3, equal columns are a less problematic
issue in our approach and thus, we have considered a different dichotomizer for
every different column found in the matrix C. More details on each data sets,
the code parameters and the number of dichotomizers are reported in Table 1.

Our method has been compared with two classical approaches of multiclass-to-
binary decomposition that are one-vs-all that discriminates one class against the
others and one-vs-one that defines as many binary problems as the possible pairs
of different classes. Moreover, for the sake of comparison we have also considered
the Recursive ECOC (RECOC) method [19] that is the only method in literature
using LDPC codes to design recursive ECOC classifiers built from a number of
sparsely connected dichotomizers and employing an iterative algorithm ,i.e., the
sum-product algorithm, as decoding technique. To have a fair comparison, for
every approach, well optimized SVM with RBF kernel have been used as base
dichotomizers.

The performance obtained with our approach has been evaluated in terms of
curves reporting the error rate when varying the parameter ρ of the reject rate
for the dichotomizers. The value of ρ has been varied in the interval [0, 0.5] with
a step of 0.05. It is worth noting that this curve is not the usual error-reject
curve that plots the error rate with respect to a reject rate at the output stage.
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(a) (b)

(c) (d)

Fig. 2. Comparison of the proposed approach with commonly employed methods in
literature on four data sets: (a) SatImage, (b) Glass, (c) PenDigits, (d) Yeast

Our approach, instead, uses an “internal” reject but the whole classification
system works at zero reject thanks to the decoding procedure described in Sect.
4. Figs. 2 show the results of our experiments for the four datasets. Each figure
represents the trend of the error rate for our approach (termed LDPC with
Reject) together with lines representing the error rate obtained by the other
approaches.

Two main observations can be done. The first is that employing the reject for
the dichotomizers we improve the performance of the whole classification system:
for three datasets (SatImage, Glass, and Yeast) there is always one point of the
curve with an error rate lower than the zero reject (i.e., ρ = 0); for one dataset
(PenDigits) the point on the y-axis has an equal performance than the following
ones (i.e., ρ = 0.05). It is also worth noting that the error rate strongly increases
for higher values of ρ. However, this is an expected behavior since increasing the
number of rejects also increases the number of guesses g to be done and this
produces a similar-to-random decision.

The second observation is that our approach exhibits higher performance than
all the other considered methods since there is always one point of the curve
with a lower error rate. A drawback of the proposed system with respect to
simple approaches like one-vs-all and one-vs-one is to estimate a good value of
the parameter ρ; however, it is also worth remembering that our approach does
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not require any selection of rows ad columns of the coding matrix since it is
completely based on LDPC codes and decoding techniques deriving from the
Coding Theory.

6 Conclusions and Future Works

In this paper we proposed a novel framework for an ECOC classification system
founded on the strong theoretical roots of the Coding Theory techniques. The
proposed approach is based on LDPC codes using code words generated without
any selection of rows and columns of the coding matrix. Such codes allow us to
use dichotomizers with a reject option and to define an effective algorithm for
recovering the rejects so as to obtain a final decision at the output of the whole
classification system. Some preliminary experiments accomplished on benchmark
datasets showed that the proposed method is effective when compared with other
standard approaches such as one-vs-one or one-vs-all techniques. Our approach
also exhibits better performance than RECOC system that is the only method
in literature using LDPC codes in the ECOC structure.

Future works will focus on the analysis of the employed coding matrix and
in particular, on the properties of the LDPC code words that can be further
exploited to verify to what extent we can fit the Coding Theory tools to the
classification systems. Moreover, an analysis of the behavior of the Guess algo-
rithm has to be performed to find an upper bound for the number of guessed
bits so as to avoid considering high values for the parameter ρ. Finally, a deeper
experimental analysis is required to extend our approach to other classifier ar-
chitectures and to other decoding rules to be employed when all the bits have
been recovered.
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Abstract. We present a novel analysis of the state of the art in object
tracking with respect to diversity found in its main component, an en-
semble classifier that is updated in an online manner. We employ estab-
lished measures for diversity and performance from the rich literature on
ensemble classification and online learning, and present a detailed eval-
uation of diversity and performance on benchmark sequences in order to
gain an insight into how the tracking performance can be improved.

1 Introduction

We deal with the problem of single-target model-free object tracking in videos,
meaning that a single object is to be tracked and no a priori information about
the object is available. Many authors (e.g. [14,17,24,25]) formulate the task of
object tracking as a binary classification problem, and use ensembles of multiple
learners as binary classifiers. One of the elements required for accurate predic-
tion in ensembles is error diversity [6]. While measures for diversity have been
considered explicitly in the context of object tracking before [26], in this work,
we take a different path and analyse the diversity in the state of the art object
tracking method TLD (Tracking-Learning-Detection [17]) in order to gain an
insight into how its performance can be improved by manipulating diversity.

As TLD consists of multiple interleaved components, we focus our analysis on
its most influential component, a random fern classifier [23]. While it is not clear
yet whether our findings generalize to the original TLD method, or to other
object tracking methods, we do establish a baseline with the analysis of the
random fern classifier, against which more involved methods can be evaluated
in future. The contributions of this paper are threefold: firstly, we show how
diversity can be measured in TLD. Secondly, we provide a detailed analysis with
respect to diversity and performance. Thirdly, we hint at ways how performance
might be improved.

This work is structured as follows. In section 2 we discuss related work in
object tracking and machine learning. In section 3 we describe the state of the
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art tracking method TLD. In section 4, we lay out our experimental setup. In
section 5 we present our analysis of diversity and performance, and section 6
gives conclusions and final remarks.

2 Related Work

In this section, we first review related work in online learning for object track-
ing, and secondly describe existing techniques for the engineering of diversity in
ensembles of learners.

2.1 Online Learning in Object Trackers

Collins et al. [8] were the first to employ binary classification in a tracking con-
text, the two classes being the object and the immediate surrounding. They
employ feature selection in order to switch to the most discriminative colour
space from a set of candidates and use mean-shift for finding the mode of a like-
lihood surface, thereby locating the object. In a similar spirit, Grabner et al. [14]
perform online boosting and Babenko et al. [1] use multiple instance learning
in order to find the location of the object. All of these methods use a form of
reinforcement learning, meaning that the prediction of the classifier is directly
used to update the classifier. While this approach enables the use of unlabelled
data for training, it typically amplifies errors made in the prediction phase, thus
leading to a degradation of tracking performance. In [15], this problem is ad-
dressed by casting object tracking as a semi-supervised learning problem, where
only the first appearance of the object is used for updating. Both Kalal et al. [17]
and Santner et al. [25] employ an optic-flow-based mechanism for labelling the
available data in order to reduce the errors made in the prediction phase and
demonstrate superior results.

2.2 Diversity of Ensembles in Object Tracking

In machine learning generally, diverse ensembles of classifiers often provide bet-
ter prediction accuracy than any of the individual members of the ensemble [6].
Visentini et al. [26] employ a combined measure of diversity and performance
to select classifiers from a pool for adaptive object tracking. Additionally, di-
versity has been considered more generally in computer vision. Bertolami and
Bunke [2] use diversity measures as indicators for the accuracy of ensemble clas-
sification for handwriting recognition. Frinken et al. [13] increase the diversity
of a handwriting recognition system by combining Neural Networks, Maximum
Margin Hidden Markov Models and Hidden Markov Models, and show that high
diversity leads to better results. Levy et al. [19] force classifiers to learn different
aspects of the data by minimizing correlation between ensemble members and
show improved results on visual recognition problems.
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2.3 Engineering Diversity in Online Learning

The literature is abound with methods for encouraging diversity in ensembles.
Attempts at consolidating these methods into taxonomies have also been made
[6, 9], which can provide guidelines for encouraging diversity in different ways.

The taxonomy by Dietterich [9] consolidates ensemble creation methods into
various categories with diversity encouragement being at the heart. For the dis-
cussion in this section, we assume a standard supervised learning problem: a
learning algorithm is presented with a training set S {(x1, y1) . . . (xN , yN )} of
size N for learning some unknown function y = f(x). The learning algorithm
outputs a classifier, which is a hypothesis hi ∈ H about the true underlying
function f . The various methods found in such taxonomies have been applied
mostly in the offline learning mode. They can however be adapted to the online
case (e.g. [21,22]), where training instances continuously arrive one at a time as
a stream of data. A brief overview of the taxonomy now follows:

Bayesian voting. In problems where it is possible to enumerate each hypoth-
esis hi ∈ H, and calculate a prior P (h), the problem of classifying a new
example x amounts to computing P (f(x) = y|S,x) =

∑
h∈H h(x)P (h|S).

This can be viewed as an ensemble consisting of all possible hypotheses in
H, where each hypothesis h is weighted by its posterior probability P (h|S).
However, Bayesian voting fails where it is not possible to enumerate all pos-
sible hypotheses and calculate the prior P (h).

Manipulating training examples. L iterations of the learning algorithm are
run. In each iteration a different subset of the training set S is used to
train the classifier hi, i = 1 . . . L, thus generating multiple classifiers, each
trained on a different training set. Example algorithms in this category are
Bagging [3], Cross validated committees, and AdaBoost [12].

Manipulating input features. The input features are divided into feature
subsets, and in each iteration i of the learning algorithm, a classifier is trained
on a subset(s) of the input features. The random subspace method [16] falls
into this category.

Injecting randomness. Some randomness can be induced into the learning
setup, for example in a neural network ensemble by using different initial
weights, or injecting noise into the input features following bootstrap sam-
pling.

Manipulating output targets. The error-correcting output code technique
[10] manipulates the y labels of the training examples in classification prob-
lems where the number of classes, k, is large. Instead of learning the problem
on the original k classes, in each iteration i = 1 . . . L, the k classes are di-
vided into two subsets A and B (different in each iteration) and the input
data re-labelled 0 and 1 respectively for classes in subsets A and B. This
results in L classifiers h1 . . . hL. To classify a new data point x, if hi(x) = 0,
then each class in subset A receives a vote and if hi(x) = 1, then each class
in subset B receives a vote. Once all L classifiers have voted, the class with
the largest prediction is selected as the ensemble output.
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Manipulating error functions. Diversity can be explicitly encouraged and
maintained by defining and minimising a correlation term between ensem-
ble members. Negative correlation encourages individual members to learn
different parts of the training data (specialisation) allowing the ensemble to
learn the entire training data better than any single or monolithic mem-
ber [20]. Ensemble members are trained simultaneously allowing the mem-
bers to interact and cooperate through a correlation penalty term that is
introduced in the error function such that the individual error of each mem-
ber is negatively correlated to the rest of ensemble errors [7].

Diversity Metrics. Several measures for a quantitative assessment of diversity
in ensembles have been proposed in the literature. Kuncheva et al. [18] have
conducted a wide and detailed study of various diversity measures, and conclude
that there is no unique way of measuring diversity, and in general, there is no
direct or distinctive relationship between the diversity of an ensemble and its
accuracy. One of the most commonly used diversity measures, the Q-statistic [18]
is calculated in a pairwise manner for any two classifiers fi and fj:

Qi,j =
ad− bc

ad+ bc
(1)

The symbols a, b, c, d refer to the number of times
a : fi and fj are correct,
b : fi is correct, fj is incorrect,
c : fi is incorrect, fj is correct,
d : fi and fj are incorrect.

Qi,j is closer to 1 if the output of the classifiers is not diverse, and is closer to
−1 if their output is diverse. An overall measure for the diversity of an ensemble
of size n is then obtained by averaging all of the pairwise measurements.

3 State of the Art in Object Tracking

3.1 Tracking-Learning-Detection

Kalal et al. [17] propose a solution to the tracking problem which they call
Tracking-Learning-Detection (TLD). TLD consists of two separate components:
A frame-to-frame tracker that predicts the location Lj of the object in frame
Ij by calculating the optical flow between frames Ij−1 and Ij and transforming
Lj−1 accordingly. Clearly, this approach is only feasible as long as the object is
visible in the scene and fails otherwise. When the object is presumably tracked
correctly (according to certain criteria) the location Lj is used in order to update
a Random Fern classifier [23] with positive training data from patches close to
Lj and negative data from patches that exceed a distance. This classifier is then
applied in a sliding-window manner (see figure 1) in order to re-initialize the
frame-to-frame-tracker after failure. Two additional stages not described here
are used for classification.
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Fig. 1. In TLD, a binary ensemble classifier is used to locate the object of interest by
applying it in a sliding-window manner. The ability for multi-scale detection is achieved
by scaling the size of the detection window. Image is from the SPEVI1dataset.

3.2 Random Fern Classifier

The Random Fern classifier [23] operates on binary features f1 . . . fn calculated
on the raw image data. These features are randomly partitioned into groups of
so-called ferns F1 . . . Fm of size s

F1︷ ︸︸ ︷
f1 . . . fs,

F2︷ ︸︸ ︷
fs+1 . . . f2s . . .

Fm︷ ︸︸ ︷
f(m−1)s+1 . . . fms . (2)

Ferns essentially are non-hierarchical trees, meaning that the outcome of each
fern is independent of the order in which features are evaluated. The main rea-
son for favouring ferns over trees is that they can be implemented extremely
efficiently, an important property for real applications.

3.3 Features

In [23], a feature vector of size s consists of s binary tests performed on gray-
scaled image patches. Each test compares the brightness values of two random
pixels (See figure 2). The locations of the tests are generated once at startup
and remain constant throughout the rest of the processing. The same set of tests
is used with appropriate scaling for all subwindows. Input images are smoothed
with a Gaussian kernel to reduce the effect of noise.

3.4 Random Ferns in TLD

The posterior probability for each fern is

P (y = 1|Fk) =
P (y = 1)P (Fk|y = 1)∑1
i=0 P (y = i)P (Fk|y = i)

. (3)

1 http://www.eecs.qmul.ac.uk/~andrea/spevi.html

http://www.eecs.qmul.ac.uk/~andrea/spevi.html
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1 1 0 1

Fig. 2. Feature values depends on the brightness values of pairs of two random pixels.
In this case, the outcome is the binary string 1101.

In TLD, the prior is assumed to be uniform, and the P (Fk|y = i) are modelled
as the absolute number of occurrences #pFk

for positive training data and #nFk

for negative training data. Therefore, the posterior probability becomes

P (y = 1|Fk) =
#pFk

#pFk
+#nFk

. (4)

When #pFk
= #nFk

= 0, then P (y = 1|Fk) is assumed to be 0 as well. Each
training instance is used for training only if it was misclassified in the current
frame. A decision is obtained by employing a threshold θ on the posterior prob-
abilities combined using the mean rule

1

m

m∑
i=1

P (y = 1|Fi) ≥ θ. (5)

4 Experimental Setup

We conduct experiments according to the following novel pattern in order to
assess the diversity and the performance of the Random Fern classifier in TLD.
For each frame, we closely follow the predict-update cycle of classical online
learning: first we let the classifier predict labels for all subwindows. We then
measure performance and diversity using the ground truth values and update the
classifier according to the misclassified examples. Each experiment is run 10 times
with different seeds for the random number generator. Over these runs, the mean
and standard deviation of the selected metrics for performance and diversity are
reported. We apply the following modifications to the original algorithm [17].

– Majority voting is used instead of the mean rule. Crisp outputs are obtained
by applying the threshold θ on the posterior probabilities of the individual
classifiers.
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– We replace the optic-flow based tracker with manually labeled ground truth.
– We disregard the two classification stages besides the random fern classifier.

The first modification enables the use of the Q statistic. We perform the last
two modifications since we are interested only in the performance limits of the
classifier. The analysis of this modified version gives us a baseline against which
to evaluate more involved methods in the future.

4.1 Performance Measures

We use the following statistics to measure the performance, based on the occur-
rences of True Positives (TP), False Negatives (FN) and False Positives (FP)
in each frame. TPs, FNs and FPs are found by comparing algorithmic output
to manually annotated ground truth. Recall, given by

Rj =
TPj

TPj + FNj
, (6)

measures the fraction of positive instances that were correctly classified as pos-
itive. Precision, given by

Pj =
TPj

TPj + FPj
, (7)

measures the fraction of examples classified as positive that are truly positive.
The F-measure, given by

Fj =
2RjPj

Rj + Pj
, (8)

as the harmonic mean, combines precision and recall into a single measurement.
We calculate Rj , Pj and Fj for each frame and report their average values R,P, F
over the whole sequence.

As the employed set of subwindows is not exhaustive, there will typically be
no single subwindow of the same location and the same dimension as the manual
annotation. We therefore employ the measure used in the Pascal Visual Object
Challenge [11] for overlap between two bounding boxes B1 and B2, namely,

overlap =
B1 ∩B2

B1 ∪B2
=

I

(B1 +B2 − I)
. (9)

If the overlap between a manual annotation and a subwindow is larger than 0.5,
the subwindow is labelled positive as well.

We employ the Q-statistic (section 2.3) as a measure for diversity in each
frame and report averaged values over the whole sequence. While other diver-
sity measures are available, we chose the Q-statistic as a starting point for our
analysis primarily due to its widespread use. However, we plan to investigate
different measures of diversity in future work.
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4.2 Sequences

We employ the following six sequences for conducting our evaluation. These se-
quences were used in [17,27] for evaluating object tracking methods. David (761
frames) shows a person walking from an initially dark setting into a bright room
and undergoing various changes in appearance. Jumping (313 frames) shows a
person jumping rope causing motion blur. Pedestrian 1 (140 frames), Pedes-
trian 2 (338 frames) and Pedestrian 3 (184 frames) show pedestrians being
filmed by an unstable camera. Car (945 frames) shows a moving car, exposed
to low contrast recording and undergoing multiple occlusions. The appearance
of the car itself stays constant over the run of the sequence.

5 Diversity Analysis of TLD

In this section we present novel analyses of diversity within TLD based object
tracking. Firstly, we explore the effect of varying the parameters of the system
on the selected metrics. Secondly, we artificially increase diversity in the system
and analyse the resulting effects. We use the parameters m = 30, s = 14, θ = 0.5
unless noted otherwise.

5.1 Effect of Parameters

The parameter m steers the number of classifiers in the ensemble. Breiman [4]
proved that an ensemble of randomized decision trees does not overfit as more
trees are added, meaning that performance does not decrease. However it is not
clear how m affects diversity. In figure 3 we plot Q and F against m for the
sequence David. Increasing m leads to a convergent behaviour of Q, similar to
the performance metric. Q converges more quickly than the performance metrics.
These findings generalize to all sequences.

The parameter θ directly influences recall and precision. High values of θ lead
to an improvement of precision, as false positives are filtered out, and to a degra-
dation of recall. Low values of θ lead to the inverse effect. Intuitively, both high
and low values of θ should lead to a reduction of diversity, as the output of the
individual classifiers become more similar. In table 1, θ is varied for all sequences.
Surprisingly, Q decreases monotonically as θ is increased. The explanation for
this effect is that high values of theta lead to many positive instances being mis-
classified, and therefore the set of positive training data becomes larger, causing
a reduction of Q.

5.2 Increasing Diversity

In order to artificially increase diversity in the ensemble classifier, we restrict the
location of the binary tests for individual classifiers to certain parts of the in-
put image, thus decreasing the amount of information shared between them. For
each classifier we randomly sample a value μj . We then generate the binary tests
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Fig. 3. Both diversity and performance exhibit a convergent behaviour when the num-
ber of ferns m is increased

Table 1. Increasing θ leads to an increase of diversity due to many positive instances
being misclassified, thus increasing the size of the positive training set

Sensitivity threshold θ

Sequence Metric 0.1 0.3 0.5 0.7 0.9

car Q 0.31±0.01 0.29±0.01 0.28±0.01 0.27±0.01 0.26±0.01
P 0.62±0.01 0.76±0.00 0.81±0.00 0.84±0.00 0.86±0.00
R 0.95±0.00 0.92±0.00 0.90±0.00 0.85±0.00 0.73±0.00

david Q 0.21±0.01 0.19±0.01 0.18±0.01 0.17±0.01 0.16±0.01
P 0.28±0.02 0.56±0.01 0.67±0.00 0.74±0.00 0.74±0.01
R 0.82±0.00 0.76±0.00 0.70±0.00 0.58±0.01 0.34±0.01

jumping Q 0.24±0.01 0.22±0.01 0.21±0.01 0.21±0.01 0.20±0.01
P 0.36±0.01 0.59±0.00 0.68±0.00 0.76±0.00 0.78±0.01
R 0.85±0.00 0.77±0.00 0.70±0.00 0.58±0.00 0.35±0.01

pedestrian1 Q 0.30±0.01 0.27±0.01 0.26±0.01 0.26±0.01 0.25±0.01
P 0.23±0.01 0.38±0.01 0.45±0.01 0.53±0.01 0.52±0.01
R 0.53±0.01 0.44±0.01 0.38±0.00 0.26±0.01 0.14±0.01

pedestrian2 Q 0.31±0.01 0.29±0.01 0.28±0.01 0.27±0.01 0.26±0.01
P 0.35±0.01 0.53±0.01 0.62±0.01 0.74±0.01 0.77±0.02
R 0.71±0.01 0.68±0.01 0.65±0.01 0.58±0.01 0.45±0.01

pedestrian3 Q 0.47±0.01 0.45±0.01 0.44±0.01 0.44±0.01 0.42±0.01
P 0.53±0.01 0.68±0.01 0.76±0.01 0.84±0.01 0.87±0.01
R 0.92±0.01 0.87±0.01 0.83±0.01 0.75±0.01 0.57±0.01
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Table 2. Diversity increases when the locations of the binary tests become more local.
Qbad indicates that diversity in the classification result of misclassified instances is
already very high from the start.

Feature locality 1− σ

Sequence Metric 0.1 0.3 0.5 0.7 0.9

car Q 0.28±0.01 0.23±0.01 0.16±0.01 0.10±0.00 0.08±0.00
Qgood 0.27±0.01 0.22±0.01 0.15±0.01 0.10±0.00 0.07±0.00
Qbad 0.01±0.00 0.00±0.00 0.00±0.00 -0.00±0.00 -0.01±0.00
F 0.86±0.00 0.86±0.00 0.86±0.00 0.85±0.00 0.77±0.01

david Q 0.19±0.01 0.17±0.01 0.13±0.01 0.11±0.00 0.11±0.00
Qgood 0.18±0.01 0.16±0.01 0.13±0.01 0.11±0.00 0.10±0.00
Qbad 0.00±0.00 0.00±0.00 -0.00±0.00 -0.00±0.00 0.00±0.00
F 0.69±0.00 0.69±0.00 0.69±0.01 0.67±0.01 0.51±0.01

jumping Q 0.22±0.01 0.20±0.02 0.16±0.02 0.09±0.01 0.07±0.00
Qgood 0.21±0.01 0.19±0.02 0.15±0.02 0.09±0.01 0.07±0.00
Qbad 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00
F 0.70±0.00 0.70±0.01 0.69±0.01 0.66±0.01 0.44±0.02

pedestrian1 Q 0.26±0.01 0.25±0.01 0.21±0.01 0.15±0.01 0.08±0.00
Qgood 0.23±0.01 0.22±0.01 0.18±0.01 0.13±0.01 0.07±0.00
Qbad 0.04±0.00 0.04±0.00 0.03±0.00 0.03±0.00 0.02±0.00
F 0.41±0.01 0.41±0.01 0.41±0.02 0.40±0.02 0.34±0.02

pedestrian2 Q 0.27±0.01 0.26±0.01 0.21±0.01 0.14±0.01 0.08±0.00
Qgood 0.26±0.01 0.25±0.01 0.20±0.01 0.13±0.01 0.07±0.00
Qbad 0.04±0.00 0.03±0.00 0.03±0.00 0.02±0.00 0.01±0.00
F 0.66±0.01 0.67±0.01 0.66±0.01 0.62±0.03 0.49±0.04

pedestrian3 Q 0.45±0.01 0.44±0.02 0.38±0.02 0.22±0.01 0.09±0.01
Qgood 0.44±0.01 0.42±0.02 0.37±0.02 0.21±0.01 0.08±0.00
Qbad 0.04±0.00 0.04±0.00 0.03±0.00 0.03±0.00 0.02±0.00
F 0.81±0.01 0.81±0.01 0.80±0.01 0.77±0.01 0.71±0.02

from the two-dimensional uniform distribution U(max(0, μj−σ),min(1, μj+σ)).
Brown and Kuncheva [5] show that the majority vote error can be decomposed
into the sum of individual errors (additive term), diversity measured on correctly
classified instances called good diversity (subtractive term) and diversity mea-
sured on misclassified instances called bad diversity (additive term). While the
decomposition of the F measure into analogous Q terms is unknown, the notions
of good and bad diversity are still helpful in our context. For this experiment,
we measure Q both on correctly classified instances (Qgood) and on misclassified
instances (Qbad).

When σ is decreased, we make the following observations for all sequences
in table 2: Q and Qgood decrease strongly. Qbad starts out closely above the
theoretical minimum − 1

m , decreasing only slightly. Depending on the sequence,
performance rapidly decreases at a certain value of σ. Increasing diversity the
way we have seems to increase the error of the individual classifiers. For low
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values of σ, this increase is compensated for by a decreased Qgood, leading to
a stable F . For high values of σ, the errors of the individual classifiers seem to
outweigh the increased good diversity, leading to a reduction of F .

These observations suggest that we need to find a way to encourage diversity
that keeps the individual classifiers from exhibiting an increased error. Since Qbad

is close to the theoretical minimum, increasing it can help us increase ensemble
performance. Devising a training scheme that is informed by the wrongly classified
instances may be one way of increasing Qbad. Further analysis of the relationship
between Qgood, Qbad, and individual classifier performance, will shed more light
on ways to encourage diversity that may lead to an increased overall performance.

6 Conclusions and Future Work

In this work, we presented an analysis of the state of the art in object tracking
with respect to diversity and showed how it is influenced by the intrinsic param-
eters of its ensemble classifier. We also showed how diversity can be increased
artificially and conclude that performance is reduced due to an increased error
of the individual classifiers. We plan to look into methods that increase good
diversity while keeping the individual accuracy stable. We also acknowledge the
fact that reducing bad diversity will help increase performance.

A better understanding of the relationship between performance of individual
classifiers, as well as between good and bad diversity, will help show ways on how
overall performance can be increased. We also plan to explicitly reduce correla-
tion in the system by making use of algorithms similar to minimal correlation
learning [19].

As only misclassified examples are used for training, the classifier highly over-
fits the training data. This does not to lead to a reduction in performance as
long as sequences contain sufficient training examples. When short sequences
with severe changes in appearance occur, performance is affected in a negative
way. The results of Minku et al. [21] suggest that an increased level of diversity
could help in exactly these cases.

References

1. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple
instance learning. Pattern Analysis and Machine Intelligence 33(8) (August 2011)

2. Bertolami, R., Bunke, H.: Diversity analysis for ensembles of word sequence recog-
nisers. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.)
SSPR&SPR 2006. LNCS, vol. 4109, pp. 677–686. Springer, Heidelberg (2006)

3. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)
4. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
5. Brown, G., Kuncheva, L.I.: “Good” and “Bad” Diversity in Majority Vote Ensem-

bles. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp.
124–133. Springer, Heidelberg (2010)

6. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: A survey
and categorisation. Journal of Information Fusion 6, 5–20 (2005)

7. Chen, H., Yao, X.: Multiobjective neural network ensembles based on regularized
negative correlation learning. Knowledge and Data Engineering 22(12) (2010)



Can Diversity amongst Learners Improve Online Object Tracking? 223

8. Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking
features. Pattern Analysis and Machine Intelligence 27(10), 1631–1643 (2005)

9. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

10. Dietterich, T.G., Bakiri, G.: Solving Multiclass Learning Problems via Error-
Correcting Output Codes. Journal of Artificial Intelligence Research 2 (1995)

11. Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pas-
cal visual object classes (VOC) challenge. International Journal of Computer Vi-
sion 88(2), 303–338 (2010)

12. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS,
vol. 904, pp. 23–37. Springer, Heidelberg (1995)

13. Frinken, V., Peter, T., Fischer, A., Bunke, H., Do, T.-M.-T., Artieres, T.: Improved
handwriting recognition by combining two forms of hidden markov models and
a recurrent neural network. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS,
vol. 5702, pp. 189–196. Springer, Heidelberg (2009)

14. Grabner, H., Bischof, H.: On-line boosting and vision. In: Computer Vision and
Pattern Recognition, vol. 1 (2006)

15. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line boosting for robust
tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS,
vol. 5302, pp. 234–247. Springer, Heidelberg (2008)

16. Ho, T.K.: The random subspace method for constructing decision forests. Pattern
Analysis and Machine Intelligence 20(8), 832–844 (1998)

17. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-Learning-detection. Pattern Anal-
ysis and Machine Intelligence 34(7), 1409–1422 (2012)

18. Kuncheva, L.I., Whitaker, C.J.: Measures of Diversity in Classifier Ensembles and
Their Relationship with the Ensemble Accuracy. Machine Learning 51(2), 181–207
(2003)

19. Levy, N., Wolf, L.: Minimal correlation classification. In: Fitzgibbon, A., Lazebnik,
S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577,
pp. 29–42. Springer, Heidelberg (2012)

20. Liu, Y., Yao, X., Higuchi, T.: Evolutionary ensembles with negative correlation
learning. Evolutionary Computation 4(4), 380–387 (2000)

21. Minku, L.L., White, A.P., Yao, X.: The Impact of Diversity on Online Ensemble
Learning in the Presence of Concept Drift. Knowledge and Data Engineering 22(5),
730–742 (2010)

22. Oza, N.C.: Online Bagging and Boosting. Systems, Man and Cybernetics (2005)
23. Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using

random ferns. Pattern Analysis and Machine Intelligence 32(3), 448–461 (2010)
24. Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line random forests.

In: International Conference on Computer Vision Workshops (2009)
25. Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST: Parallel robust

online simple tracking. In: Computer Vision and Pattern Recognition (2010)
26. Visentini, I., Kittler, J., Foresti, G.L.: Diversity-based classifier selection for adap-

tive object tracking. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009.
LNCS, vol. 5519, pp. 438–447. Springer, Heidelberg (2009)

27. Yu, Q., Dinh, T.B., Medioni, G.: Online tracking and reacquisition using co-trained
generative and discriminative trackers. In: Forsyth, D., Torr, P., Zisserman, A.
(eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg
(2008)



A New Perspective of Support Vector Clustering

with Boundary Patterns

Yuan Ping, Huina Li, Yong Zhang, and Zhili Zhang

Department of Computer Science and Technology
Xuchang University, 461000 Xuchang, China

pyuan.lhn@gmail.com

Abstract. To overcome the pricey computation required by redundant
kernel function matrix and poor label performance, in a novel perspective,
we present support vector clustering with boundary patterns (BPSVC for
abbreviation) for efficiency. For the first phase, the conventional method
of estimating the support vector function with the whole data is altered
by only essential boundary patterns. Thence, BPSVC only need to solve
a much simpler optimization problem. For the second phase of cluster la-
beling, both convex decomposition and cone cluster labeling method are
employed by an ensemble labeling strategies for further improvements on
accuracy and efficiency. Both theoretical analysis and experimental results
show its superiorities in comparison of the state-of-the-art methods, espe-
cially for large-scale data analysis.

Keywords: data analysis, support vector clustering, convex decompo-
sition, boundary pattern, cluster labeling.

1 Introduction

With the advantage of generating cluster boundaries of arbitrary shape, support
vector clustering (SVC)[12, 15] has attracted many researchers and been exten-
sively applied to wide variety of domains, e.g., instance-based learning, pattern
denoising and medical information processing etc[6, 13, 14].

However, the literatures show that training to estimate a support function
and cluster labeling are two major bottlenecks which might degrade its popu-
larity. As a quadratic programming problem, the prior can be solved by many
classic algorithms, such as sequential minimal optimization and entropy-based
algorithms[16], in approximately O(N2) kernel evaluations, here N is the num-
ber of data points. In addition, data block based methods [1, 17] may be a
good choice even though persistent parameter tuning is generally required. Cor-
respondingly, the time complexity of the latter is O(N2m) with m � N which
is the sample rate on each edge. Naturally, the studies argue that cluster label-
ing takes most of the computation time in the entire SVC clustering process.
For efficiency, especially on large-scale data, some insightful methods have been
designed to replace the complete graph (CG)[15], such as support vector graph
(SVG)[15], proximity graph of delaunay (DD)[9], minimum spanning tree (MST),
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k -nearest neighbor (kNN)[10], divide and conquer-based[11, 17], cone cluster la-
beling (CCL)[8], equilibrium based approaches[18–21], fast support vector clus-
tering (FSVC) [14], double centroids (DBC) labeling [4] and position regularized
support vector clustering (PSVC)[2], etc.

However, we find that many of them reach lower time consumption with
higher error or improve accuracy at the cost of efficiency. We consider to make
improvements in terms of decreasing both the number of pointsN and the sample
rate m. Three works are included in the proposed support vector clustering with
boundary patterns (BPSVC) method, i.e., selecting critical points on cluster
boundaries, constructing a so-called minimum hypersphere in feature space by
the selected points, and integrating our convex decomposition based clustering
labeling (CDCL)[3] and CCL to complete labeling under an ensemble labeling
strategy. Benchmarks depict the main contributions of this paper including:

– The proposal of constructing hypersphere by only the boundary points at
much lower cost of time and space to estimate the support function.

– The ensemble labeling strategy, especially for transferring connectivity checks
between all pair-wise points (or SVs in [15], or stable equilibrium points
(SEPs) in [18]) into between neighboring convex hulls with significantly re-
duced sample rate to avoid redundant checks.

2 Preliminaries

2.1 Estimating a Trained Support Function

Following [14, 13], the support function is defined as a positive scalar function
f : Rn → R+ where a level set of f estimates a support of a data distribution
and which can be decomposed into several disjoint connected components corre-
sponding to different clusters. In support vector domain description (SVDD)[12],
estimating a support function is to find the exact SVs by solving the dual prob-
lem in Eq.(1) where C is a constant for penalty and xi corresponds to coefficient
βi(i = 1, . . . , N) if its 0 < βi < C is a support vector.

max
βj

∑
j

K(xj ,xj)βj −
∑
i,j

βiβjK(xi,xj)

s.t.
∑
j

βj = 1, 0 ≤ βj ≤ C, j = 1, . . . , N
(1)

By optimizing Eq.(1) with Gaussian kernel K(xi,xj) = e−q||xi−xj ||2 , the objec-
tive trained support function can be formulated by a squared radial distance of
the image of x from the sphere center α given by

f(x) = K(x,x)− 2
∑
j

βjK(xj ,x) +
∑
i,j

βiβjK(xi,xj) (2)

Theoretically, the squared radius R2 is usually defined by the value of f(xi)
while xi is one of SVs.



226 Y. Ping et al.

2.2 Cluster Assignments

Since SVs locate on the border of clusters in data space, a simple graphical
connected-component method can be used for labeling. For any two points, xi

and xj , we can check m segmers sampled on the line segment connecting them
by traveling its image in the hypersphere. According to Eq.(2), xi and xj should
be labeled the same cluster index while all the m segmers are always lying in
the hypershpere, i.e., f(xm̃) ≤ R2 for m̃ = 1, · · · ,m.

3 Support Vector Clustering with Boundary Patterns

Notice that the hypersphere is determined by SVs which are a subset of bound-
aries. Obviously, either SVs or boundaries are sufficient for constructing the
hypersphere. Thus, we prefer a transferred strategy which collects a candidate
set of them from cluster boundaries.

3.1 Obtaining Boundary Patterns

To select the most informative points, a border-edge pattern selection method
presented by Li and Maguire [22] is preferred in this study. It confirms that,
on the cluster boundaries, every point actually has all or most of its nearest
neighbors sitting on one side of the tangent plane passing through it. Therefore,
boundaries identification is to count the ratio of a point’s nearest neighbors
on two sides. Following [22], for a given point xi with its k nearest neighbors
xj(j = 1, 2, . . . , k), we can reformulate the procedure as follows:

– Setting a threshold γ (0 < γ < 1) to control the curvature of the aforemen-
tioned surface.

– Generating normal vector ni =
∑k

j=1 vij , where vij = xj − xi.

– Calculating li = 1
k

∑k
j=1 g(n

T
i · vij), where the function g(x) returns 1 if

x ≥ 0, otherwise it returns 0.
– Cluster boundary identification. If li ≥ 1 − γ, then xi is considered as one

of the boundary points.

3.2 Constructing Hypersphere for Support Function

Given a data set X = {x1,x2, . . . ,xN} in Rd, selecting the cluster boundaries
will return a subset ZS = {xs1 ,xs2 , . . . ,xsM } ⊆ X which contains the most
informative points for constructing the hypersphere. That is, each point xsi

(i = 1, . . . ,M) can be approximately expected as one of SVs.

Estimating Coefficients for Boundaries. Consider the definition of SVs[15],
we have

f(xs1) = f(xs2) = · · · = f(xsM ) (3)
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Since K(xsi ,xsi) with Gaussian kernel and
∑

i,j βiβjK(xsi ,xsj ) are respectively
equal in Eq.(3), it is easy to check that Eq.(3) has the following expression:⎧⎪⎪⎨⎪⎪⎩

∑
j βj [K(xsj ,xs1)−K(xsj ,xs2)] = 0∑
j βj [K(xsj ,xs1)−K(xsj ,xs3)] = 0

· · ·∑
j βj [K(xsj ,xs1)−K(xsj ,xsM )] = 0

(4)

where j ∈ [1,M ] and
∑

j βj = 1. Let β = [β1, β2, · · · , βM ]T , 0 = [0, 0, · · · , 0]T
and Q = [Q1, Q2, · · · , QM−1]

T where

Qj = [1−K(xs1 ,xsj+1),K(xs2 ,xs1)−K(xs2 ,xsj+1), · · · ,
K(xsM ,xs1)−K(xsM ,xsj+1 )]

(5)

then the Eq.(4) can be further written as

Qβ = 0

s.t.
∑
i

βi = 1, βi ≥ 0 (6)

Since Q is determined by the cluster boundaries, β can be found by solving this
linear system of equations with inequality constraint. Using β and Eq.(2), the
required hypersphere with radius R can be constructed. However, the Eq.(6)
can hardly be solved directly. Thus an alternative method is constructed by
converting Eq.(6) into a quadratic programming problem.

Consider Eq.(6), we get

∑
j

(Qjβ)
2 =

⎡⎢⎢⎣
Q1β
Q2β
· · ·

QM−1β

⎤⎥⎥⎦
T

×

⎡⎢⎢⎣
Q1β
Q2β
· · ·

QM−1β

⎤⎥⎥⎦ = 0 (7)

where Qj (j = 1, · · · ,M − 1) is either positive or negative and each element of
Qjβ or (Qjβ)

2 is 0. Naturally, it can be approximately reformulated by

min βTHβ

s.t.
∑
j

βj = 1, βj ≥ 0, j = 1, · · · ,M (8)

whereH = QTQ is a Hessian matrix in R
M×M . Note that it is a standard convex

quadratic program, its global optimal solution can be obtained effectively and
the value of the object function can be guaranteed very close to 0 for (Qjβ)

2 ≥ 0.
Obviously, the penalty factor C is no longer existing.

Removal of Less Informative Points. For real problem, it is poetical that
all the boundary patterns are expected to be SVs. One aspect is that none of the



228 Y. Ping et al.

boundary pattern selection methods can guarantee a hundred percent correct.
On the other hand, taking two nearest neighboring patterns to constructing the
hypersphere is unnecessary. As depicted by Fig.1, compared with CG, in spite of
a correct result achieved by BPSVC (see Fig.1b) which estimates an acceptable
support function by solving the convex quadratic program (8), too many points
lying on the cluster boundaries are recognized as SVs. Obviously, some of these
data points are useless.
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Fig. 1. Comparison of cluster boundaries and clustering results on ring[14]. (a) CG[15]
(q = 2, C = 1). (b) BPSVC (k = 10, γ = 0.2, q = 3.125) before removing any boundary
point. (c) BPSVC (k = 10, γ = 0.2, q = 3.125) after removing boundary points whose
corresponding coefficient lower than 10−3.

Our intuitive solution is quite simple: since the importance of a data point xsj

relates to its corresponding coefficient βj (j = 1, · · · ,M) directly in constructing
center α =

∑
j βjΦ(xj), where Φ(·) is a nonlinear map function. To further

obtain a neat data set, those boundary points with coefficients lower than a
predefined threshold βs should be removed for uselessness or little information.
Obviously, a smaller βs allows more redundant data to profile cluster boundaries
accurately, but sometimes go along with overfitting; whereas a smoother profile
would be generated by a greater βs at the risk of much more overlapped regions
between clusters. Following the principle of SVC, a large number of experiments
suggest that an appropriate threshold βs for removing the less informative points
should be 10−�lgN� more or less, e.g., βs = 10−3 for ring in Fig.1c.

Estimating the Radius of the Hypersphere. Notice that programming (8)
is a compromise of programming (1). Therefore, the strict zero can hardly be
achieved though we expected it should be. After the removal of useless boundary
points, in reality, we get a reduced set ZR = {xr1 ,xr2 , . . . ,xrL} ⊆ ZS with
L ≤M , which are the exact SVs. However, the relation of their distances to the
center of the hypersphere is

f(xr1) ≈ f(xr2) ≈ · · · ≈ f(xrL) (9)

Finally, consider the numerical problem in practical[1], we construct the hyper-
pshere whose radius is the maximum distance from xrl (l ∈ [1, L]) to its center,
i.e., R2 = maxLl=1 f(xrl).
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3.3 Ensemble Labeling Strategy for Efficiency

Following the aforementioned works, a subset of boundary points are selected as
exemplars for cluster assignments. Intuitively, three conventional strategies can
be employed, i.e., checking the full pairs of SVs like SVG, directly calculating
the distance between each pair of SVs to verify if their cones are intersected
(like CCL), and traveling the line segments connecting each pair of SEPs con-
verged from the SVs while the solution of finding the minimal hypersphere,
∂x/∂t = −∇f(x), is considered as a gradient dynamical system (e.g., reduced
complete graph (R-CG) [4, 18]). However, as the previously stated, these strate-
gies suffer from some obvious drawbacks. For the first, it is time-consuming while
processing large-scale or high dimension data[4, 14]. Although the adjacency ma-
trix of SVs can be calculated very fast, a radius lower than 1 is essential for the
second strategy to find connected components. However, due to numerical prob-
lem, the radius which should be lower than 1 cannot be guaranteed. Therefore,
CCL cannot be employed directly. Finally, as noted in Ref.[20] and detailed by
Ref.[4], only SEPs employed by the third strategy to represent data for connec-
tivity checking usually lead to relatively high error on irregular shaped data set.
Therefore, to achieve improvements on both efficiency and clustering quality, we
prefer a simple but effective ensemble labeling strategies of CDCL and CCL.
As depicted in lines 4∼8 of Algorithm 1, it prefers CDCL since the constructed
hypersphere’s radius is greater than 1; otherwise, CCL is employed.

4 Implementation

In this section, we give description of the proposed BPSVC method as well as
some remarks distinguishing from the others. For the given γ and k, line 2 of Al-
gorithm 1 collects cluster boundaries for constructing the objective hypersphere
by line 3. Three essential elements of the support function, i.e., the radius of
the hypersphere R, the final set of SVs ZR with respect to their coefficient β
are obtained by ConstructHypersphere(Zs, q, βs). To get a nest set of SVs, the
threshold βs for removing useless boundary points is set in line 1 of the Algorithm
1. Notice that although in Algorithm 1 we start from selecting cluster boundaries
by measuring the full data set, the computation is significantly reduced as the
calculation is repeated in data space and a rather lower size of data (M,L� N)
remained for both line 3, and ConnectivityAnalysisofConvexHulls(ZR, q) in line
5 or ConnectivityAnalysisofSVs(ZR, R) in line 7. Specifically, taking this tidy
data into the rather simple convex quadratic program (8) makes the proposed
BPSVC handle large-scale problem efficiently.

Actually, the ensemble labeling strategies is implemented by line 4∼8. Since
R ≥ 1, CDCL is employed to decompose ZR into Nc groups for construct-
ing convex hulls (detailed in Ref.[3]). Then the connectivity analysis of clusters
can be done between convex hulls. It believes that the far from associate ex-
ternal locations to convex hulls is, the greater probability that the correspond-
ing local region to be sparse distribution with data points is. Practically, it
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Algorithm 1. BPSVC(X , γ, k, q)

Input: the data set X , number of neighbors k
threshold γ and Gaussian kernel width q

Output: clustering labels for all the data points
1 set βs = 1/|X |
2 Zs ← SelectClusterBoundaries(X , γ, k)
3 {ZR, R, β} ← ConstructHypersphere(Zs, q, βs)
4 if R ≥ 1 then
5 A ← ConnectivityAnalysisofConvexHulls(ZR, q)
6 else
7 A ← ConnectivityAnalysisofSVs(ZR, R)
8 end
9 Labels ← FindConnComponents(A)
10 for each x ∈ X\ZR

11 inx ← find the nearest SV from x
12 Labels[x] ← Labels[vinx]
13 end
14 return Labels

does reduce the average sample rate m significantly. All of these tasks are com-
pleted by function ConnectivityAnalysisofConvexHulls(H) in line 5. After that,
the adjacency matrix A is obtained for connectivity analysis by means of any
standard algorithm. Otherwise, while R is lower than 1, the invoked function
ConnectivityAnalysisofSVs(ZR, R) will check the connectivity among SVs fol-
lowing the CCL method, which could be explained by Ref.[8]. By now, the output
of FindConnComponents(A) in line 9 is an array with size Nc which contains the
cluster labels. Finally, the remaining data points are separately assigned with
the labels of their nearest SVs.

5 Experiments

5.1 Datasets and Experimental Settings

To demonstrate the performance of the proposed BPSVC, in this section, we
conduct comparisons among ten state-of-the-art methods, i.e., CG, DD, k-NN
(k = 4), MST, R-CG, E-SVC, CCL, FSVC, PSVC and CDCL. The employed
data sets (described in Table 1) include: five-Gaussians, twocircles and D31

from Refs.[14, 13, 24] and iris, wisconsin, zoo, movement libras and shuttle

from UCI repository[25]. For fair comparisons, all the simulations are carried out
in MATLAB 2011b on system with Intel Dual Core 2.66 GHz and 3GB RAM,
and all of the data sets are employed without any preprocessing.



A New Perspective of Support Vector Clustering with Boundary Patterns 231

Table 1. Description of the benchmark data sets

Data sets dims size # of classes

twocircles 2 300 2
iris 4 150 3

wisconsin 9 683 2
zoo 16 101 7

movement libras 90 360 15
five-Gaussians 2 1000 5

D31 2 3100 31
shuttle 9 43500 7

To measure the clustering accuracy, we use adjusted rand index (ARI)[6, 23],
rand index (Rand), jaccard coefficient (Jaccard)[5], and normalized mutual infor-
mation (NMI)[7], which are a widely used similarity measure between two data
partitions where both true labels and predicted cluster labels are given.

5.2 Benchmark Results

Table 2 shows the performance achieved by the evaluated algorithms. Notice
that the time cost is an average value of ten times of the execution for each
data. Rank of each algorithm is given depending on its performance measure
followed by corresponding rank (from 1 to 3). In particular, the value of rank 1
for each test item is highlighted by boldface.

Table 2. Benchmark results on data sets with different sizes

Data Methods (C, q) ARI Rand Jaccard NMI Time(sec.)

t
w
o
c
i
r
c
l
e
s

CG 0.5,0.125 1.00000a 1.00000a 1.00000a 1.00000a 10.01
DD 0.3,0.0638 1.00000a 1.00000a 1.00000a 1.00000a 11.66
kNN 0.32,0.125 0.69679 0.84854 0.69612 0.76529c 2.38
MST 0.3,0.3252 0.59935 0.79541 0.58953 0.64044 17.56
R-CG 0.3, 0.1072 0.67695 0.83864 0.67625 0.75411 2.93
E-SVC 0.2,0.074 0.73547c 0.86785c 0.73486c 0.77801 28.62
CCL 0.1, 0.0633 0.76193b 0.88581b 0.77423b 0.80800b 9.71
FSVC 0.1, 50 0.14592 0.57411 0.14552 0.50433 0.75b

CDCL 0.1,0.1385 1.00000a 1.00000a 1.00000a 1.00000a 0.77c

PSVC —,0.1385 1.00000a 1.00000a 1.00000a 1.00000a 14.78
BPSVC —,11.3379 1.00000a 1.00000a 1.00000a 1.00000a 0.22a

i
r
i
s

CG 0.46,15.4321 0.61780 0.84886 0.55187 0.67392 1.13
DD 0.5, 13.8504 0.58334 0.83696 0.51645 0.65589 2.87
kNN 0.45, 13.8504 0.64143 0.85718 0.57655 0.68600 0.36b

MST 0.45, 4.0816 0.79457 0.91257 0.74981 0.79331 1.08
R-CG 0.29,12.5 0.73737 0.89208 0.68095 0.75000 3.07
E-SVC 0.19,1.3889 0.56812 0.77629 0.59514 0.76117 4.74
CCL 0.03, 0.7436 0.88579b 0.94953b 0.85776b 0.87052b 0.76
FSVC 0.33, 2.4691 0.56196 0.77271 0.57842 0.71256 1.07
CDCL 0.19,9.4518 0.92218a 0.96564a 0.90075a 0.90112a 0.67c

PSVC —,15.4321 0.61467 0.84904 0.54504 0.68354 1.50
BPSVC —, 4.0816 0.85089c 0.93548c 0.8148c 0.82681c 0.15a
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Table 2. (Continued)

Data Methods (C, q) ARI Rand Jaccard NMI Time(sec.)

w
i
s
c
o
n
s
i
n

CG 0.4, 0.3472 0.77930 0.88971 0.80951 0.69747 66.45
DD — — — — — —
kNN 0.4, 0.3472 0.76243 0.88110 0.79463 0.68049 31.65
MST 0.4, 0.3472 0.66311 0.82986 0.70612 0.61597 85.72
R-CG 0.1, 0.0868 0.80345 0.90241 0.83473 0.66434 22.25
E-SVC 0.2,0.1134 0.13441 0.59395 0.54846 0.14341 443.23
CCL 0.1,0.005 0.90763b 0.94861b 0.90957b 0.81521b 124.35
FSVC 0.1,1.3889 0.66871 0.83192 0.70242 0.45672 13.06c

CDCL 0.105,0.0595 0.86850c 0.93482c 0.88747c 0.77555c 1.31a

PSVC —,2.8345 0.2574 0.63714 0.52731 0.22633 192.95
BPSVC —,4.8828 0.91712a 0.95882a 0.92658a 0.80295a 4.41b

z
o
o

CG 0.49, 0.4287 0.93421c 0.97663c 0.90367c 0.90763c 0.62
DD — — — — — —
kNN 0.49, 0.4287 0.93421c 0.97663c 0.90367c 0.90763c 0.26a

MST 0.49, 0.4287 0.93421c 0.97663c 0.90367c 0.90763c 0.38c

R-CG 0.27, 0.3916 0.95702a 0.98455a 0.93633a 0.92036a 3.82
E-SVC 0.27, 0.3916 0.95702a 0.98455a 0.93633a 0.92036a 19.85
CCL 0.1,2.5826 0.83426 0.89861 0.79016 0.84893 1.03
FSVC 0.1,0.2551 0.84625 0.94416 0.79033 0.85331 2.67
CDCL 0.39,0.5 0.94691b 0.98079b 0.92215b 0.90934b 2.83
PSVC —,0.4058 0.7441 0.91723 0.65878 0.85325 0.73
BPSVC —,50 0.93421c 0.97663c 0.90367c 0.90763c 0.30b

m
o
v
e
m
e
n
t
l
i
b
r
a
s

CG 0.5,5.5556 0.24218 0.93013 0.15922 0.70155 15.14
DD — — — — — —
kNN 0.5, 3.8580 0.26661c 0.91360c 0.18532c 0.66459c 7.26b

MST 0.5, 3.8580 0.24872 0.91102 0.17385 0.65660 41.07
R-CG 0.5, 5.5556 0.23559 0.93375 0.15194 0.70258 252.89
E-SVC — — — — — —
CCL 0.5, 5.5556 0.08987 0.93873 0.04556 0.70874 26.91
FSVC 0.3,0.4132 0.14205 0.93861 0.04478 0.70352 226.09
CDCL 0.32,4.8828 0.33195b 0.92098b 0.23010b 0.68084b 78.57
PSVC —,4.3253 0.25407 0.91882 0.17412 0.67012 12.18b

BPSVC —, 2.9744 0.37034a 0.92103a 0.25995a 0.68956a 4.20a

CG 0.15,22.8269 0.47118 0.83982 0.39755 0.63436 89.01
DD 0.2,19.5313 0.61487 0.89230 0.51115 0.69568 25.63
kNN 0.21,15.4321 0.26661 0.91360 0.18532 0.66459 7.26c

f
i
v
e
-
G
a
u
s
s
i
a
n
s MST 0.14,0.5 0.67807 0.90912 0.57554 0.72340 52.84

R-CG 0.14,17.3010 0.86934c 0.95987c 0.80832c 0.85852c 12.90
E-SVC 0.14,17.3010 0.85854 0.95707 0.79335 0.84993 775.69
CCL 0.1,0.005 0.00211 0.31746 0.19109 0.091794 650.39
FSVC 0.1,50 0.71373 0.91753 0.59742 0.77843 2.39b

CDCL 0.14,17.3010 0.88074a 0.96344a 0.82348a 0.86874a 7.67
PSVC —,29.5858 0.00124 0.30446 0.19180 0.13823 750.21
BPSVC —,2.0406 0.87043b 0.96020b 0.80979b 0.86845b 1.19a

D
3
1

CG 0.15, 0.5 0.23448 0.87570 0.15893 0.63159 3594.75
DD 0.5, 2.9744 0.54946 0.95681 0.39769 0.8488 500.37
kNN 0.5, 2.9744 0.72032 0.98334 0.57344 0.88154 242.70
MST — — — — — —
R-CG 0.1, 5.2029 0.86532c 0.99160c 0.76938c 0.88985c 53.27
E-SVC — — — — —
CCL — — — — — —
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Table 2. (Continued)

Data Methods (C, q) ARI Rand Jaccard NMI Time(sec.)
FSVC 1,200000000 0.56109 0.96430 0.40702 0.82011 4.18a

CDCL 0.1,5.5556 0.90199a 0.99420a 0.82643a 0.94355a 19.79c

PSVC —,12.5 0.45178 0.94391 0.31265 0.80943 7041.01
BPSVC —,1.3889 0.87670b 0.99224b 0.78685b 0.90216b 6.72b

s
h
u
t
t
l
e

CG — — — — — —
DD — — — — — —
kNN — — — — — —
MST — — — — — —
R-CG — — — — — —
E-SVC unknown 0.59[15] — — — —
CCL — — — — — —
FSVC unknown 0.58[15] — — — —
CDCL — — — — — —
PSVC — — — — — —
BPSVC —,0.0078 0.68574a 0.86416a 0.82084a 0.62654a 878.19a

Note: aRank 1, bRank 2, cRank 3; “—” means not available.

In terms of accuracy, it is apparent that BPSVC is better for most of data sets
(namely twocicles, wisconsin, movement libras and shuttle). Furthermore,
it achieves first three ranks consistently on the other data sets. With the help
of hypersphere construction and convex decomposition, BPSVC reaches global
optimal solutions consistently. For time consumption, BPSVC employs much
fewer points to work out the support function, while the others keep solving
the same quadratic programming problem with different parameters to achieve
their best performance. Thus BPSVC finishes the clustering works fastest on five
out of eight data sets. Its advantage is obvious on relative large-scale data, e.g.,
shuttle. Due to memory limitation, we cannot afford the requirement of kernel
matrix from FSVC[14], thus a direct citation of experiment result is given.

6 Concluding Remarks

This paper develops a support vector clustering with boundary method namely
BPSVC from a new perspective. It gives an optimal solution for these known
problems, i.e., a requirement of huge memory for kernel matrix, too many re-
dundant point pairs and a great sample rate.

Even though BPSVC gives consistent results for various cases, how to shrink
the cluster boundaries to leave a number of outliers while obtains high quality
profiles for clusters in input space, might be an open issue for further improve-
ments on both efficiency and accuracy. And how to redefine the coefficient βj

for the remaining patterns after removing unless data needs to be further inves-
tigated as well.
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Abstract. The combination of multiple classifiers was proven to be use-
ful in many applications to improve the classification task and stabilize
results. In this paper we used the Optimum-Path Forest (OPF) clas-
sifier to investigate input data manipulation techniques in order to use
less data from the training set without hampering the classification accu-
racy. The data undersampling can be useful to speed-up the classification
task, and could be specially useful with large datasets. The results indi-
cate that the OPF-based ensemble methods allow a significant reduction
on the size of the training set, while maintaining or slightly improving
accuracy. We provide intuition for a case of failure and report the results
of synthetic and real datasets.

Keywords: Optimum-Path Forest, undersampling, pasting of small votes.

1 Introduction

Ensemble learning techniques include methods to create multiple classifiers and
to combine their decisions. There are many approaches designed to produce
ensembles of classifiers such as input data manipulation, e.g. Bagging [1] input
feature manipulation, e.g. random subspace method [9], among others. These
method are based on classifiers trained with different training sets obtained
by manipulation of samples or features. The decision fusion is often obtained
by majority voting (when only class labels are available) or by averaging (for
support/confidence output for each class).

Although the most often cited advantage of ensemble learning is to improve
the recognition accuracy by adding complexity to the system [17], the
same framework can be also used to reduce the computational cost while
maintaining or even slightly improving the accuracy. This kind of effect is spe-
cially interesting for large datasets, for which it is not feasible to use all data
available to create the classification model, due to the high computational cost.

� Supplementary material for this paper such as the code and datasets can be found
at http://www.icmc.usp.br/~moacir/project/MCS

Z.-H. Zhou, F. Roli, and J. Kittler (Eds.): MCS 2013, LNCS 7872, pp. 236–246, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.icmc.usp.br/~moacir


Ensembles of OPF Classifiers Using Data Manipulation and Undersampling 237

It is clearly important to investigate methods that uses smaller training sets
or undersamples the data. However, it is also challenging to design a success-
ful pattern recognition system with a single classifier trained with a reduced
number of samples, since they often require sufficient and relevant data in order
to perform well [5]. Therefore, multiple classifiers can be a way out, providing
that the base classifier is able to produce suficient diversity and accuracy with
undersampled training sets [3], and that its training computational cost is not
deterrent.

Questions such as what exact sampling methodology to use, and the right
sample size are difficult to answer. However, some of those questions are ad-
dressed by [13]. Our claim is that ensemble methods can help by reducing the
variance of the results obtained by several classifiers trained with reduced ran-
domly sampled data, without the need to fine tune sample size. An example of
ensemble approach developed in this context is pasting of small votes, proposed
by Breiman [2]. It builds classifiers from “bites”, bags of small size, of data.
Two main algorithms were originally proposed: Rvote and Ivote. Rvote selects
random objects from the training set in order to build the classifiers, whereas
Ivote selects the samples based on their importance. Distributed versions of both
algorithms were proposed afterwards by Chawla et al. [4].

Related works performed undersampling mainly to deal with imbalanced data.
For example, the IRUS method, proposed in 2009, severely undersamples the
majority class, and creates a large number of distinct training sets [20]. Balance
cascade learners were also proposed in the same context [11]. Another study
used ensembles with undersampling in order to classify websites reputation [8].
The Ensembles on Random Patches tackles larger datasets by using random
selection of both samples and features [12]. Also, ensemble methods based on
undersampling in terms of the bias-variance decomposition of the error were
developed before [21].

The Optimum-Path Forest (OPF) classifier [15] was proposed in 2009 and two
studies on multiple OPF classifiers were published. The first reported the use of
disjoint and distributed partitions of the training set, with good results [18], the
second used OPF outputs in a graph modeled through a Markov Random Field
in order to obtain a hierarchy of the decisions [19]. Since this classifier appears
to have produced diversity under input data manipulation according to the first
study [18], and to handle well small sizes of data as shown in the second one
[19], it is likely to have the potential to be investigated as a base classifier for an
ensemble using both input data manipulation and undersampling.

In this study, we propose input sample manipulation to construct ensembles
with a reduced number of samples to train each OPF base classifier. The outputs
are combined by majority voting, since OPF outputs only class labels. As far
as we know there are no papers on the creation of ensembles of OPF classifiers
based on pasting of small votes with an undersampled training set.

The methods were implemented to be included on the free library LibOPF
[14] and are available at the project webpage. The behavior and the accuracy
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improvement is compared to the OPF single classifier using datasets with differ-
ent characteristics.

2 The OPF Classifier

This method interprets samples as vertices of a graph. The training step connects
the samples from the same class in order to produce a tree for each class, using a
specified distance space adjacency relation. The set of trees is called the optimum
path forest (OPF). Each tree has a prototype vertex (obtained by minimizing
the distance from the vertex of the current class to a vertex of another class).
This prototype is considered the root of the tree. A new sample is classified by
connecting it to the tree that offers the optimum cost path to its root. This
classifier was proposed in 2009 [14] and showed good performance on different
applications. It handles multi-class problems natively and has no parameters to
adjust.

Using an input training set S of size N , a subset S is selected with N ′ sam-
ples, from which M samples are used to train each of the L base classifiers and
construct the ensemble.

3 Combining OPF Classifiers

All algorithms were developed based on pasting of small votes. The aim was
to explore the OPF characteristics in order to create classifiers that produce
diverse outputs under data perturbation. The algorithms are given a previously
undersampled training set. The bite size,M , is then computed by the algorithms.
In this study we used M = N ′/L, allowing the methods to be tested even with
scarce data.

OPF–Rvote uses small training sets (bites), obtained at random from the original
training set [2]. The procedure can be done with or without replacement. The
Algorithm 1 shows the complete procedure.

OPF–Ivote uses smaller training sets, but they are obtained by an algorithm
that computes the importance of each sample, inserting mainly samples that
are misclassified by the combination of the previously trained classifiers [2]. It
uses an evaluation set in order to obtain the errors. The Algorithm 2 shows the
complete procedure.

4 Method and Experiments

Six ensembles were created with each algorithm, with L = 3, 5, 9, 11, 13 and 15
base classifiers. Since one of our objectives was to investigate the data under-
sampling, we used only half the samples in the training set, i.e. N ′ = N/2, so
half the data was used to form the reduced training set N ′.
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Algorithm 1. OPF-Rvote

Require: Ensemble size L, training set S′ of size N ′, size of each bite M ,
sampling with replacement R (true or false)

1: for i = 1 to L do
2: if R = true then
3: Si ←M sampled items from S′, with replacement.
4: else
5: Si ←M sampled items from S′, without replacement.
6: end if
7: Train classifier hi using Si.
8: end for
9: for each new pattern do

10: Compute the majority voting of hi, i = 1, ..., L.
11: end for

Algorithm 2. OPF-Ivote

Require: Ensemble size L, training set S′ of size N ′, size of each bite M ,
evaluation set A.

1: S1 ←M sampled items from S′, with replacement.
2: Train classifier h1 using S1.
3: Compute the error E1 of the classifier h1 using A
4: for i = 2 to L do
5: while training set Si has less than M samples do
6: Select one sample x from S
7: Classify x using the previous classifiers hj j = 1, ..., i− 1
8: label ← majority voting of hj(x), j = 1, ..., i− 1.
9: if label was misclassified then

10: Si ← x
11: else
12: Si ← x with probability p = Ei−1/(1− Ei−1)
13: end if
14: end while
15: Train classifier hi using Si.
16: Compute the error Ei of the classifier hi using A
17: end for
18: for each new pattern do
19: Compute the majority voting of hi, i = 1, ..., L.
20: end for

Moreover, the bite size is M = N ′/L, so that larger ensembles contains base
classifiers trained with less samples. This choice was made in order to study the
behavior of the OPF classifiers when dealing with less data. It also allow the
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methods to be tested with datasets with fewer samples and different ensemble
sizes.

We used two hold-out settings for the experiments:

– Configuration 1 (Single OPF, OPF-Rvote): 30% train, and 70% test.
– Configuration 2 (OPF-Ivote): 25% train, 5% evaluation and 70% test.

The OPF-Ivote uses the evaluation set A in order to compute the errors Ei, as
an estimate of the out-of-bag error (see Algorithm 2).

Each experiment was repeated 100 times. The average and standard deviation
were computed by these repetitions. The evaluation was based on an accuracy
value that takes into account the balance between the classes:

Acc = 1−
∑c

i=1 E(i)

2c
,

where c is the number of classes, and E(i) = ei,1 + ei,2 is the partial error of c,
computed by:

ei,1 =
FP (i)

N −N(i)
and ei,2 =

FN(i)

N(i)
, i = 1, ..., c,

where FN(i) (false negatives) is the number of samples belonging to i incorrectly
classified as belonging to other classes, and FP (i) (false positives) the samples
j �= i that were assigned to i.

Detailed information about the datasets used in the experiments are shown
in Table 1, including synthetic and real data:

– Lithuanian: “Lithuanian” type classes as proposed by Raudys [6].
– Banana: “banana-shaped” distributed classes [6].
– Gaussian: Gaussian distributed classes of different covariance matrices [6].
– Corel-GCH: global histogram color features from 1000 images obtained

from the Corel image dataset [10].
– Pterygium: identification of a common ophthalmic disease [16].
– Skin: classification of skin and non-skin image pixels, obtained from face

images of various age, ethnicities and genders from FERET database and
PAL database [7].

– Spambase: identification of spam emails (advertisements for products/web
sites, make money fast schemes, chain letters, pornography, etc.) from non-
spam emails [7].

5 Results and Discussion

The average accuracy and standard deviation values for the single classifier and
the best ensemble result are shown in Table 2, including the number of base
classifiers L for the best ensemble result. The value of M , the actual size of the
training set for each base classifier is also shown in the same table. The accuracy
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Table 1. Dataset characteristics

Dataset #Samples #Classes #Features
Lithuanian 1,000 4 3
Banana 1,000 2 4
Gaussian 100,000 4 3
Corel-GCH 1,000 10 64
Spambase 4,601 2 57
Pterigyum 7,651 2 89

Skin 245,057 2 4

Table 2. Results

Dataset Single-OPF N Ensemble methods L M

Lithuanian 76.2±0.6 300
RVote: 78.6±0.3 13

16RVote-WR: 79.2±0.0 9
IVote: 78.9±0.0 9

Banana 80.5±0.3 300
RVote: 81.6±0.1 13

16RVote-WR: 82.3±0.2 9
IVote: 81.5±0.0 7

Gaussian 96.1±0.2 30,000
RVote: 96.3±0.1 7

3,000RVote-WR: 96.4±0.0 5
IVote: 96.4±0.0 9

Corel-GCH 77.6±0.2 300
RVote: 74.4±0.1 3

50RVote-WR: 74.6±0.1 3
IVote: 75.0±0.0 3

Spambase 86.5±0.1 1,380
RVote: 84.7±0.1 3

230RVote-WR: 85.1±1.2 3
IVote: 84.9±0.1 3

Pterygium 94.1±2.5 2,550
RVote: 98.9±0.1 15

115RVote-WR: 98.7±0.0 15
IVote: 98.8±0.0 15

Skin 99.2±0.1 73,517
RVote: 99.7±0.0 11

2,827RVote-WR: 99.7±0.1 13
IVote: 99.8±0.1 13

curves for different ensemble sizes of OPF-Rvote, OPF-Rvote-WR (withouth
replacement) and OPF-Ivote are shown in Figure 1 for the synthetic datasets
and in Figure 2 for real datasets.

The combination of multiple OPF classifiers showed slight improvement on
the classification accuracy. We observed a significant improvement for the Ptery-
gium, a larger dataset with 7651 available samples and 89 features. The creation
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(a) (b)

(c)

Fig. 1. Average accuracy of synthetical datasets: a) Lithuanian, b) Gaussian and c)
Banana-shaped

of ensembles with data undesampling was successful, achieving an improvement
of ≈ 5% with a final result of 99% accuracy for the ensemble with 15 base
classifiers. The experiments showed a small improvement:≈ 3% in Lithuanian, ≈
3% Gaussian and ≈ 2% Banana-shaped dataset. It is interesting to see, however,
that the improvement could be achieved for a reduced training set size and
adapting the bite size M as the ensemble size, L, grow larger, since M was
defined as a function of L. Also, where there is redundancy, such as in Skin and
Pterygium datasets, the method is able to make use of fewer training instances,
improve speed, while increasing the accuracy.

The exception was the dataset Corel-GCH that obtained worst results with
ensemble methods. This example show when the method fails: under a low
number of examples per class. Since the training set has 30 samples/class,
when the ensemble size is 3, each base classifier has to be trained using just
M = �(30/2)/3 = 5 images/class. Moreover, this dataset presented a low vari-
ance characteristic (between the samples), not desirable when combining classi-
fiers created by Bagging and pasting of small votes [17].

The potential of the OPF for ensemble learning by input data manipulation
and undersampling can be seen in Figure 3, where are shown results of using
from 50% (as in the experiments) to 20% of the Pterygium original training set.
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(a) (b)

(c) (d)

Fig. 2. Average accuracy of real datasets: a) COREL-GCH, b) Spambas, c) Pterigyum
and d) Skin

Fig. 3. OPF-Rvote for Pterygium dataset with different sizes of N ′

5.1 Running Time Analysis

The platform used to run the experiment was a 2.1GHz Intel R©dual-core portable
computer with 2GB RAM memory and a 64 bit operating system Linux 3.2.0-33
kernel version. The running time were computed using the same 10 repetitions
experiment. The average was obtained and the standard deviation was insignif-
icant (below 0.01. For the datasets with 1000 samples the running time of both
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single and ensemble methods to train and classify was very similar, around 0.05
sec. However, for the 100, 000 samples dataset, we observed a speed improve-
ment, as shown in Figure 4.

Fig. 4. Running time of training and classification for the Gaussian 100k samples
dataset

As expected, the OPF-Bagging and the OPF-Rvote were faster, since the
OPF-Ivote has a error computing step that uses an evaluation set in order to
choose the samples. This running time improvement was possible due to the
reduced training set and bites calculated based on the ensemble size. Since OPF
training is O(N2), it is faster to train several classifiers with (N/2)/L samples
than to train a single one with N .

6 Conclusions

This paper reports results of ensembles of OPF using input data manipulation
and the undersampling of the data. The results indicate that it is possible to
maintain or even improve the accuracy with ensemble of OPF classifiers while
using less data to train the base classifiers.

We observed the expected behavior of Bagging and pasting of small votes,
that is, for higher variance cases, the input manipulation methods are able to
reduce the variance and consequently improve the accuracy. More importantly,
this effect was achieved using half the available data and a bite size inversely
proportional to the ensemble size, an important result for large dataset applica-
tions. However, for the dataset with lower variance and also few examples per
class, the proposed methods degraded the results.

As an important contribution, we showed that OPF classifier is a promis-
ing base classifier for parallel combination using a reduced number of training
examples. Besides, the running time of the ensembles is compatible with large
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datasets. Further studies should investigate diversity and bias/variance of OPF
ensembles to a deeper understanding of the present results.
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Abstract. In the Random Oracle ensemble method, each base classifier
is a mini-ensemble of two classifiers and a randomly generated oracle that
selects one of the two classifiers. The performance of this method have
been previously studied, but not for imbalanced data sets. This work
studies its performance for this kind of data. As the Random Oracle en-
semble method can be combined with any other ensemble method, this
work considers its combination with four ensemble methods: Bagging,
SMOTEBoost, SMOTEBagging and RUSBoost. The last three meth-
ods combine classical, not specific for imbalance, ensemble methods (i.e.,
Bagging, Boosting), with pre-processing approaches designed for imbal-
ance (i.e., random undersampling, SMOTE). The results show that Ran-
dom Oracles improves all these methods.

1 Introduction

The classification of imbalanced data sets may require specific techniques. In ad-
dition, special performance measures are required, since with imbalanced data,
conventional classification measures (for example, accuracy) are not useful. A
measure used for the imbalance is the AUROC: area under the ROC curve
(Receiver Operating Characteristics) [1]. Often when these curves are only con-
sidered, this area is called AUC. Another useful curve for imbalance is the
Precision-Recall curve [2], the area under this curve is called AUPRC. These
two curves (and their corresponding measures) are generated from the confi-
dences given by the classifiers to their predictions. Another measure used for
imbalance is the F-measure, the harmonic mean of precision and recall.

Various approaches for dealing with imbalanced data sets have been pro-
posed [3]. In the data level approached the data is pre-processed, altering the
classes distribution. For example, SMOTE [4] generates artificial instances of the
minority class. Other approaches are based on ensemble methods. A common
approach is to combine a method of ensembles that imbalance is not specific to
a pre-processing technique.

A combination of Boosting and SMOTE is SMOTEBoost [5]. For each Boost-
ing iteration, SMOTE is applied to the data, generating artificial instances of the
minority class. SMOTEBagging [6] used Bagging and SMOTE. Each base clas-
sifiers is trained with a balanced data set: the classes have the same number of
instances. These training data sets have instances that are obtained from resam-
pling the original training data and artificial instances generated with SMOTE.

Z.-H. Zhou, F. Roli, and J. Kittler (Eds.): MCS 2013, LNCS 7872, pp. 247–258, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In order to increase the diversity, the percentage of instances from resampling
and SMOTE is variable. RUSBoost [7] is a method based on SMOTEBoost, but
it used random undersampling of the majority class instead of SMOTE of the
minority class.

This paper studies the performance of the Random Oracle ensemble method
[8,9,10] in imbalanced data. As this method can be used in conjunction with
other ensemble methods, it will be combined with these ensemble methods for
imbalance.

The rest of the paper is organized as follows: Sect. 2 describes the Random
Oracles ensemble method. The experiments and results are presented in Sect. 3.
Diversity and error of the base classifiers is considered in Sect. 4. Finally, Sect. 5
shows the conclusions.

2 Random Oracles

A Random Oracle classifier is formed by two classifiers and a randomly generated
oracle. The oracle selects one of the two classifiers. It can be seen as a random
discriminant function, it splits the data into two subsets without taking into
consideration the class labels or cluster structure. Moreover, a Random Oracle
classifier can be used as the base classifier of any other ensemble method.

Given a base method, the process for training a Random Oracle classifier
is: 1) Select randomly the Random Oracle. 2) Split the training data in two
subsets using the Random Oracle. 3) For each subset of the training data, build
a classifier.

Given a test instance, the prediction is obtained in the following way: 1) Use
the Random Oracle to select one of the two classifiers. 2) Return the prediction
(and its confidence) given by the selected classifier.

For oracles with small computational complexity (both in training and pre-
diction), the computational complexity of a Random Oracle classifier is very
similar to the complexity of the base classifier. In the prediction phase, only
one of the two classifiers is used. In the training phase, two classifiers are built.
Nevertheless, they are trained with a disjoint partition of the training examples
and the training time of any method depends, usually at least linearly, on the
number of training examples.

Different types of Oracles can be considered. In this work two are considered:
Linear and Spherical Random Oracles. The linear oracle divides the space into
two subspaces using a hyperplane. To build the oracle, two different training
objects are selected at random, the points that are at the same distance from
the two training objects define the hyperplane. Each remaining training object
is assigned to the subspace of the selected training object for which is closer.
Algorithms 1 and 2 show the training and testing phases of this method.

The spherical oracle also divides the space into two subsets: inside and outside
of a sphere. A training object is selected randomly as the center of the sphere.
Another seven training examples are selected randomly, the distances from the
center to these examples is calculated, the radius is the median of these seven
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Input: Training dataset D; base learning method L

Output: Random Oracle Model RO
RO.instance [1] ← {x | (x, y) is a random instance from D}
RO.instance [2] ← {x | (x, y) is a random instance from D}
D1 ← ∅ // The training dataset for the 1st sub-model

D2 ← ∅ // The training dataset for the 2nd sub-model

foreach instance (x, y) ∈ D do
if distance (RO.instance[1],x) < distance(RO.instance[2],x) then

D1 ← D1 ∪ {(x, y)} // Add the instance to the 1st subset

else

D2 ← D2 ∪ {(x, y)} // Add the instance to the 2nd subset

RO.model [1] ← L(D1) // Train the 1st sub-model

RO.model [2] ← L(D2) // Train the 2nd sub-model

Algorithm 1. Random Linear Oracle method: training phase

Input: Trained Random Oracle RO; instance x
Output: Predicted value
if distance (RO.instance[1],x) < distance(RO.instance[2],x) then

return RO.model [1].predict(x) // Predict with the 1st sub-model

else

return RO.model [2].predict(x) // Predict with the 2nd sub-model

Algorithm 2. Random Linear Oracle method: prediction phase

distances. This is done with the purpose of having some guarantee that there will
be training examples inside and outside of the sphere. As an additional source
of diversity, the distances are calculated in a random subspace (a subset of the
features). This random subspace is only used for defining the sphere, the two
classifiers are trained using all the features.

In Random Subspaces [11] and Bagging each classifier is trained with a data
set randomly obtained from the original training data. In these methods the
used data sets are different because some information of the original training
data is lost, diversity is obtained at the potential cost of decreased accuracy
of the base classifiers. The objective of Random Oracles is to have diversity
without losing information. The Random Oracle classifier is trained using all
the attributes and instances, the diversity is obtained because the two classifiers
in the Random Oracle are trained with different partitions of the training data.
These ensemble methods can be used together.

It is also possible to use Random Oracles with more than two sub-regions,
but in our experiments they do not improve the performance.

In this work, the distances are calculated according to the Euclidean distance,
numerical attributes are scaled within [0,1]. For nominal attributes we consider
that the distance is 0 or 1 depending if the two values are different or equal.
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3 Experiments

3.1 Data Sets

Two collections of datasets were used. The HDDT collection1 contains the binary
imbalanced datasets used in [12]. The KEEL collection2 contains the binary
imbalanced datasets from the KEEL repository of [13].

Table 1 shows the characteristics of the 20 data sets in the HDDT collec-
tion and Table 2 the 66 data sets in the KEEL collection. Many data sets in
these two collections are available or are modifications of data sets in the UCI
Repository [14].

Table 1. Characteristics of the data sets from the HDDT collection.(#E: number of
examples, #A: number of attributes (numeric/nominal), IR: imbalance ratio).

Data set Examples Attributes Imbalance
Numeric Nominal Ratio

boundary 3505 0 175 27.50
breast-y 286 0 9 2.36
cam 18916 0 132 19.08
compustat 13657 20 0 25.26
covtype 38500 10 0 13.02
credit-g 1000 7 13 2.33
estate 5322 12 0 7.37
german-numer 1000 24 0 2.33
heart-v 200 5 8 2.92
hypo 3163 7 18 19.95
ism 11180 6 0 42.00
letter 20000 16 0 24.35
oil 937 49 0 21.85
optdigits 5620 64 0 9.14
page 5473 10 0 8.77
pendigits 10992 16 0 8.63
phoneme 5404 5 0 2.41
PhosS 11411 480 0 17.62
satimage 6430 36 0 9.29
segment 2310 19 0 6.00

3.2 Settings

Weka [15] was used for the experiments. Unless explicitly specified, the param-
eters for the different methods take the default values given by Weka.

The decision tree method used for constructing the base classifiers was J48
(Weka’s re-implementation of C4.5 [16]). As recommended for imbalanced data
[12], it was used without pruning and collapsing but with Laplace smoothing at
the leaves. C4.5 with this options is called C4.4 [17].

Several ensemble methods were considered. The first ensemble method is Bag-
ging [18]. It was the best method for imbalanced data in [12] and [19].

1 Available at http://www.nd.edu/~dial/hddt/
2 Available at http://sci2s.ugr.es/keel/imbalanced.php

http://www.nd.edu/~dial/hddt/
http://sci2s.ugr.es/keel/imbalanced.php
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Table 2. Characteristics of the data sets from the KEEL collection. #E: number of
examples, #N: number of numeric attributes, #D: number of discrete attributes, IR:
imbalance ratio.

data set #E #N #D IR

abalone19 4174 7 1 129.44
abalone9-18 731 7 1 16.40
cleveland-0 vs 4 177 13 0 12.62
ecoli-0-1-3-7 vs 2-6 281 7 0 39.14
ecoli-0-1-4-6 vs 5 280 6 0 13.00
ecoli-0-1-4-7 vs 2-3-5-6 336 7 0 10.59
ecoli-0-1-4-7 vs 5-6 332 6 0 12.28
ecoli-0-1 vs 2-3-5 244 7 0 9.17
ecoli-0-1 vs 5 240 6 0 11.00
ecoli-0-2-3-4 vs 5 202 7 0 9.10
ecoli-0-2-6-7 vs 3-5 224 7 0 9.18
ecoli-0-3-4-6 vs 5 205 7 0 9.25
ecoli-0-3-4-7 vs 5-6 257 7 0 9.28
ecoli-0-3-4 vs 5 200 7 0 9.00
ecoli-0-4-6 vs 5 203 6 0 9.15
ecoli-0-6-7 vs 3-5 222 7 0 9.09
ecoli-0-6-7 vs 5 220 6 0 10.00
ecoli-0 vs 1 220 7 0 1.86
ecoli1 336 7 0 3.36
ecoli2 336 7 0 5.46
ecoli3 336 7 0 8.60
ecoli4 336 7 0 15.80
glass-0-1-2-3 vs 4-5-6 214 9 0 3.20
glass-0-1-4-6 vs 2 205 9 0 11.06
glass-0-1-5 vs 2 172 9 0 9.12
glass-0-1-6 vs 2 192 9 0 10.29
glass-0-1-6 vs 5 184 9 0 19.44
glass-0-4 vs 5 92 9 0 9.22
glass-0-6 vs 5 108 9 0 11.00
glass0 214 9 0 2.06
glass1 214 9 0 1.82
glass2 214 9 0 11.59
glass4 214 9 0 15.46

data set #E #N #D IR

glass5 214 9 0 22.78
glass6 214 9 0 6.38
haberman 306 3 0 2.78
iris0 150 4 0 2.00
led7digit-0-2-4-5-6-7-8-9 vs 1 443 7 0 10.97
new-thyroid1 215 5 0 5.14
new-thyroid2 215 5 0 5.14
page-blocks-1-3 vs 4 472 10 0 15.86
page-blocks0 5472 10 0 8.79
pima 768 8 0 1.87
segment0 2308 19 0 6.02
shuttle-c0-vs-c4 1829 9 0 13.87
shuttle-c2-vs-c4 129 9 0 20.50
vehicle0 846 18 0 3.25
vehicle1 846 18 0 2.90
vehicle2 846 18 0 2.88
vehicle3 846 18 0 2.99
vowel0 988 13 0 9.98
wisconsin 683 9 0 1.86
yeast-0-2-5-6 vs 3-7-8-9 1004 8 0 9.14
yeast-0-2-5-7-9 vs 3-6-8 1004 8 0 9.14
yeast-0-3-5-9 vs 7-8 506 8 0 9.12
yeast-0-5-6-7-9 vs 4 528 8 0 9.35
yeast-1-2-8-9 vs 7 947 8 0 30.57
yeast-1-4-5-8 vs 7 693 8 0 22.10
yeast-1 vs 7 459 7 0 14.30
yeast-2 vs 4 514 8 0 9.08
yeast-2 vs 8 482 8 0 23.10
yeast1 1484 8 0 2.46
yeast3 1484 8 0 8.10
yeast4 1484 8 0 28.10
yeast5 1484 8 0 32.73
yeast6 1484 8 0 41.40

As ensemble methods for imbalance the following were used: SMOTEBoost,
SMOTEBagging and RUSBoost. SMOTEBoost has a parameter, the number of
artificial instances to generate. Three values were considered: 100%, 200% and
500% of the number of instances in the minority class.

For each considered ensemble method there are three versions: one without
Random Oracles, and two with Random Oracles: Linear and Spherical For all
the ensembles the number of classifiers was 100.

The results were obtained with 5× 2-fold cross validation [20]. Average ranks
[21,22] were used for comparing several methods across several data sets.

3.3 Results

Table 3 shows the comparison of methods with and without Random Oracles,
according to the AUROC. Each entry in the table shows the number of wins
(W), ties (T) and losses (L) when comparing the method with the oracle (linear
or spherical) with the original method. For 20 data sets, according to a two-
tailed sign test at α = 0.05 a classifier is significantly better than another if the
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number of wins plus half the number of ties is at least 15 [21]. For the HDDT
collection in all the considered pairs the number of wins is at least 15, with the
only exception of RUSBoost and the Linear Oracle. For 66 data sets, the required
number of wins (plus half the number of ties) is 41. For the KEEL collection the
number of wins is at least 41.

Table 3. Comparison of methods with and without Random Oracles, according to the
AUROC

Method Linear Oracle Spherical Oracle
HDDT KEEL HDDT KEEL
W/T/L W/T/ L W/T/L W/T/ L

Bagging 20/0/0 57/1/ 8 20/0/0 59/1/ 6
SMOTEBagging 20/0/0 61/2/ 3 20/0/0 61/2/ 3
SMOTEBoost (100%) 19/0/1 50/2/14 19/0/1 52/2/12
SMOTEBoost (200%) 16/0/4 53/2/11 18/0/2 56/2/ 8
SMOTEBoost (500%) 17/0/3 49/2/15 18/0/2 56/2/ 8
RUSBoost 14/0/6 41/2/23 16/0/4 44/2/20

Table 4 shows the comparison of methods with and without Random Ora-
cles, according to the AUPRC. In all the cases the balance if favorable for the
method with Random Oracles, in the great majority of the cases the balances
are significant according to the sign test.

Table 4. Comparison of methods with and without Random Oracles, according to the
AUPRC

Method Linear Oracle Spherical Oracle
HDDT KEEL HDDT KEEL
W/T/L W/T/ L W/T/L W/T/ L

Bagging 19/0/1 56/1/ 9 20/0/0 62/1/ 3
SMOTEBagging 19/0/1 55/2/ 9 20/0/0 59/2/ 5
SMOTEBoost (100%) 19/0/1 59/2/ 5 16/0/4 58/2/ 6
SMOTEBoost (200%) 14/0/6 56/2/ 8 16/0/4 60/2/ 4
SMOTEBoost (500%) 15/0/5 57/2/ 7 17/0/3 57/2/ 7
RUSBoost 16/0/4 39/2/25 15/0/5 41/2/23

Table 5 shows the comparison of methods with and without Random Oracles,
according to the F-measure. In this case the advantage for the Random Ora-
cles, compared with the other considered measures, is reduced. Nevertheless, the
balance is never favorable for the method without Random Oracle.
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Table 5. Comparison of methods with and without Random Oracles, according to the
F-measure

Method Linear Oracle Spherical Oracle
HDDT KEEL HDDT KEEL
W/T/L W/T/ L W/T/ L W/T/ L

Bagging 11/0/9 33/4/29 10/0/10 36/3/27
SMOTEBagging 15/0/5 51/4/11 17/0/ 3 50/4/12
SMOTEBoost (100%) 13/0/7 51/3/12 14/0/ 6 48/4/14
SMOTEBoost (200%) 12/0/8 52/3/11 15/0/ 5 51/4/11
SMOTEBoost (500%) 14/0/6 52/4/10 14/0/ 6 55/4/ 7
RUSBoost 12/0/8 42/1/23 13/0/ 7 43/3/20

Until now the results in this section show the comparison of a method and the
corresponding method augmented with Random Oracles. They show clearly the
advantage of using Oracles, but another interesting issue is what are the best
methods among all the considered. Average ranks [21,22] are used to compare all
these methods. For each data set all the methods are sorted, from best to worst,
according to the considered performance measure. The best method has rank 1,
the second rank two and so on. If several methods have the same performance
they are assigned an average rank (e.g., if two methods have the best result,
both have a rank of 1.5). The average rank of a method is calculated as the
mean across all the data sets.

The Iman and Davenport Test is used to determine the presence of differ-
ences among all the compared methods. As a post-hoc procedure, using the best
method as the control, the Hochberg procedure is used [22]. Table 6 shows the
average ranks according to the AUROC. For the two collections of data sets, all
the methods with Random Oracles are above all the methods without random
oracles. The top positions are for SMOTEBoost with Spherical Random Oracles.
In these tables a double horizontal line is used to indicate for which methods
the Hochberg procedure rejects (α = 0.05) the hypotheses.

Table 7 shows the average ranks according to the AUPRC. For the KEEL
collection all the methods with Random Oracles have better ranks than all the
methods without Random Oracles. This is not the case for the HDDT collec-
tion, due to the positions of RUSBoost with Random Oracles. Nevertheless, all
the methods with Random Oracles have a better rank than the corresponding
method without Random Oracles. The top positions are for SMOTEBoost with
Random Oracles.

Table 8 shows the average ranks according to the F-measure. The advantage
of Random Oracles is less clear than for the other measures, but still there is an
advantage. For all the methods with Random Oracle the rank is better than the
corresponding method without Random Oracles. The top positions are, for the
two collections, for SMOTEBoost with Spherical Oracle.
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Table 6. Average ranks according to the AUROC. The prefix “L-” is used for methods
with Linear Random Oracle and “S-” for methods with Spherical Random Oracle.

(a) HDDT

Method Ranking

S-SMOTEBoost (100%) 5.950
S-SMOTEBoost (200%) 6.350
L-SMOTEBoost (100%) 7.025
S-SMOTEBagging 7.400
L-SMOTEBoost (200%) 7.400
S-SMOTEBoost (500%) 7.425
L-SMOTEBoost (500%) 8.200
L-SMOTEBagging 8.650
S-Bagging 9.450
S-RUSBoost 9.450
L-Bagging 9.900
L-RUSBoost 10.400

SMOTEBoost (100%) 11.100
SMOTEBoost (200%) 11.300
RUSBoost 11.300
SMOTEBoost (500%) 11.950
SMOTEBagging 13.500
Bagging 14.250

(b) KEEL

Method Ranking

S-SMOTEBoost (500%) 6.9242
S-SMOTEBoost (200%) 7.2803
S-SMOTEBagging 7.5303
L-SMOTEBoost (200%) 7.5758
S-RUSBoost 7.9470
S-Bagging 7.9848
L-SMOTEBagging 8.0833
L-SMOTEBoost (500%) 8.1742
S-SMOTEBoost (100%) 8.4470
L-Bagging 8.5303
L-SMOTEBoost (100%) 8.5606
L-RUSBoost 8.5909

RUSBoost 9.9621
SMOTEBoost (500%) 12.1061
SMOTEBoost (200%) 12.3485
SMOTEBoost (100%) 13.0758
SMOTEBagging 13.7727
Bagging 14.1061

Table 7. Average ranks according to the AUPRC

(a) HDDT

Method Ranking

L-SMOTEBoost (100%) 6.05
S-SMOTEBoost (100%) 6.45
L-SMOTEBoost (200%) 6.85
S-SMOTEBagging 7.20
S-SMOTEBoost (200%) 7.25
S-SMOTEBoost (500%) 8.15
S-Bagging 8.70
L-SMOTEBoost (500%) 9.05
L-SMOTEBagging 9.10
L-Bagging 9.50
SMOTEBoost (200%) 10.00
SMOTEBoost (100%) 10.50
S-RUSBoost 10.85
L-RUSBoost 11.05

SMOTEBoost (500%) 12.05
RUSBoost 12.40
SMOTEBagging 12.55
Bagging 13.30

(b) KEEL

Method Ranking

S-SMOTEBoost (500%) 7.2121
L-SMOTEBoost (200%) 7.2348
S-Bagging 7.2803
S-SMOTEBoost (200%) 7.3182
S-SMOTEBoost (100%) 7.5152
L-SMOTEBoost (100%) 7.5303
L-SMOTEBoost (500%) 7.8561
S-SMOTEBagging 7.9394
L-Bagging 8.2576
S-RUSBoost 8.4242
L-SMOTEBagging 8.7121
L-RUSBoost 8.9773

RUSBoost 10.3636
SMOTEBagging 13.2424
Bagging 13.1667
SMOTEBoost (200%) 13.1970
SMOTEBoost (500%) 13.2879
SMOTEBoost (100%) 13.4848
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Table 8. Average ranks according to the F-measure

(a) HDDT

Method Ranking

S-SMOTEBoost (500%) 6.200
S-SMOTEBoost (200%) 6.500
L-SMOTEBoost (500%) 6.950
L-SMOTEBoost (200%) 7.600
S-SMOTEBagging 8.050
L-SMOTEBoost (100%) 8.050
S-SMOTEBoost (100%) 8.750
S-RUSBoost 8.800
SMOTEBoost (500%) 8.900
SMOTEBoost (200%) 9.250
L-SMOTEBagging 9.350
L-RUSBoost 9.550
SMOTEBoost (100%) 9.650
RUSBoost 9.900

SMOTEBagging 11.200
L-Bagging 13.825
S-Bagging 14.125
Bagging 14.350

(b) KEEL

Method Ranking

S-SMOTEBoost (500%) 6.3864
S-RUSBoost 7.1894
L-RUSBoost 7.5682
S-SMOTEBagging 7.6591
L-SMOTEBoost (200%) 7.7121
L-SMOTEBoost (500%) 7.2955
S-SMOTEBoost (200%) 8.1818
L-SMOTEBoost (100%) 8.6061
L-SMOTEBagging 8.7045

S-SMOTEBoost (100%) 9.1894
RUSBoost 9.6288
SMOTEBagging 10.8788
SMOTEBoost (500%) 10.9318
L-Bagging 11.4091
S-Bagging 11.7424
SMOTEBoost (200%) 12.0833
Bagging 12.8712
SMOTEBoost (100%) 12.9621

4 Diversity Study

One possible explanation for the improvements obtained with the use of Random
Oracles is that they can introduce additional diversity in the base classifiers.
This diversity is a necessary ingredient of successful ensembles. The other is
the accuracy of the base classifiers, but if the classifiers are very accurate they
cannot be very diverse.

Kappa-error diagrams [23] are used to represent the diversity (measured with
κ) and error of the classifiers in an ensemble. Each pair of classifiers is represented
as a point, the x axis is the diversity between the two classifiers, the y-axis is
the average error of the two classifiers.

Figure 1 shows for two data sets these diagrams, for Bagging and L-Bagging.
They also show the average diversity and error across all the pairs of classifiers.

Each κ-error diagram shows a single data set. For several data sets, their
information can be summarized with κ-error relative movement diagram [24].
Figure 2 shows these diagrams for Bagging and L-Bagging. Each arrow represents
a data set, the head coordinates are given by the differences between the average
diversity and error of the two considered classifiers.

The number in the corners (e.g., 74, 1) indicate how many arrows go to the
corresponding quadrant (e.g., top-left, right-bottom). From 85 data sets, in 84
cases the arrows go to the left, that is, the diversity is increased when using
Bagging with linear oracles instead of Bagging without oracles. As expected, the
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increased diversity usually (in 74 data sets) comes with increased error in the
base classifiers.

5 Conclusions

The performance of Random Oracles have been studied when included in ensem-
ble methods for imbalanced data. Four ensemble methods have been considered:
Bagging, SMOTEBagging, SMOTEBoost and RUSBoost. According to the AU-
ROC, the AUPRC and the F-Measure in two sets of data sets (HDDT and
KEEL) including Random Oracles improves the results.

From the four ensemble methods, the best global results are for SMOTEBoost.
This method has a parameter, the number (or percentage) of artificial instances
of the minority class to generate. In this work three values have been considered,
the results could improve if the parameter were adjusted for each data set.

The diversity of the base classifiers has been studied, Random Oracle usu-
ally improves this diversity. This can be the cause of the better performance of
ensembles with Random Oracles.

As base classifiers, only decision trees have been used. Other base classifiers
could give better results or affect in different ways the behaviour of the ensemble



Random Oracle Ensembles for Imbalanced Data 257

methods. The performance of the different ensemble methods with other base
classifiers can be studied in future work.
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Abstract. People from a variety of industrial domains are beginning
to realise that appropriate use of machine learning techniques for their
data mining projects could bring great benefits. End-users now have to
face the new problem of how to choose a combination of data processing
tools and algorithms for a given dataset. This problem is usually termed
the Full Model Selection (FMS) problem. Extended from our previous
work [10], in this paper, we introduce a framework for designing FMS
algorithms. Under this framework, we propose a novel algorithm com-
bining both genetic algorithms (GA) and particle swarm optimization
(PSO) named GPS (which stands for GA-PSO-FMS), in which a GA is
used for searching the optimal structure for a data mining solution, and
PSO is used for searching optimal parameters for a particular structure
instance. Given a classification dataset, GPS outputs a FMS solution
as a directed acyclic graph consisting of diverse data mining operators
that are available to the problem. Experimental results demonstrate the
benefit of the algorithm. We also present, with detailed analysis, two
model-tree-based variants for speeding up the GPS algorithm.

1 Introduction

Machine learning users now have to face the new problem of how to choose a
combination of data processing tools and algorithms. The goal is usually defined
as maximizing or minimizing a quantitative measure. In classification problems,
the goal could be optimising the classification accuracy, the Lift score or the ROC
area (AUC); in regression problems the goal could be optimising RMSE (root
mean squared error), MAE (mean absolute error), or any proper loss function.

Sometimes the final goal might be a combination of multiple goals. Tradition-
ally, these problems are addressed separately in the feature selection, model or
parameter selection and the meta-learning fields. A practical data mining prob-
lem consists of many sub-problems which presents an extremely large search
space that could be a very time-consuming task for humans to explore manu-
ally. Therefore, strategies and methods that can help people to choose, or that
could automatically suggest, an optimised data mining solution is useful. In this
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paper, we propose a framework which can be used for designing new FMS algo-
rithms, and we also present a novel FMS algorithm which is a realization and
an application of the proposed framework.

1.1 Data Mining in the DMO Space and Framework

We first define the DMO space and discuss potential approaches for searching the
space. We here attempt to define a search space that consists of all data mining
actions (operators) that are available to a given dataset for a user-specified goal,
such as a set of outlier filters, a set of feature selection methods, a set of data
transformation techniques and a set of base learning algorithms. In this sense,
we call the subject of interest “the space of data mining operators (DMO)”, or
simply “the DMO space” [10].

(a) An illustration of the
DMO space

(b) A graphical representa-
tion of the DMO template
used by GPS

(c) A graphical represen-
tation of a DMO solution
template instance

Fig. 1. A full model defined by the GPS algorithm

In this search space, a data mining solution is abstracted as a directed acyclic
graph (DAG) consisting of DMOs that are connected based on some relations:
see Figure 1 (a) for an illustration. For simplicity, in Figure 1 (a) we consider
that an optimal data mining solution is given by a DAG defined by four DMOs
(A, B, C and D) for dataset T . The DMO space is represented by the largest
oval, which consists of all DMOs applicable to T . The directed arrows repre-
sent the relationships (action rules) in the DAG. If Operator A is an outlier
filter, Operator B is a feature reduction method, Operator C is a decision tree
algorithm, and Operator D is a post-processing method, the DAG can be in-
terpreted as follows: given a dataset T , in an optimal solution we first use the
outlier detection method (DMO A) to remove outliers, and then we employ the
feature selection method (DMO B) to remove useless features, and then build
a decision tree model (DMO C ), and finally, we use a probability calibration
method (DMO D) to calculate the model outputs. This is a very large search
space because in theory there exists an arbitrary number of DMOs (including an
arbitrary number of link directions, node orders and arrangements). Therefore,
the next question is how to search in this space?

In practice, due to the resources at hand, usually we do not search in an infi-
nite DMO space, and, moreover, we can make the DMO space a finite space by



Towards a Framework for Designing Full Model Selection 261

defining the DMOs that are to be included. For example, given a dataset T , and
given we have one outlier detection algorithm, two feature selection methods,
three classification algorithms and that the goal is to build a model that gives
the lowest classification error on T , typically, we can define the following node
type DMO objects:
DMOfilter , DMOno−filter, DMOfeature−selection−1,

DMOfeature−selection−2, DMOno−feature−selection,

DMOalgorithm−1, DMOalgorithm−2, DMOalgorithm−3.

Given these DMOs, if we want to preprocess the data, we can define some func-
tion type DMOs that output a new data object. For example:
data ⇐= DMOpreprocessing−1(DMOfilter , DMOfeature−selection−1)

data ⇐= DMOpreprocessing−2(DMOno−filter, DMOfeature−selection−1)

data ⇐= DMOpreprocessing−3(DMOfilter , DMOfeature−selection−2)

...

where DMOpreprocessing−1,2,3 are function type DMOs. We can also define more
complex function type DMOs which take function and node type DMOs as in-
puts and output a solution. For example:
solution ⇐= DMObuild−model(DMOpreprocessing−1, DMOalgorithm−1)

solution ⇐= DMObuild−model(DMOpreprocessing−2, DMOalgorithm−2)

solution ⇐= DMObuild−model(DMOpreprocessing−3, DMOalgorithm−1)

...

whereDMObuild−model, andDMOpreprocessing−1,2,3 are all function type DMOs.
In this way, we are free to define which, and what kind of, DMOs are to be added
to the DMO space.

To meet the data mining goal, we could simply search all the DMO function-
object relations (paths) in the space. Therefore, the solution which has the lowest
classification or regression error could be the output of a grid-search-like exhaus-
tive search. One advantage of an exhaustive search in a finite DMO space is that
the user controls the search complexity. Another advantage is that the DMO
relations can be designed by a data mining expert and then shared and reused.
For example, if an expert designed a good DMO search space for an unbalanced
binary classification problem, she can probably share it with her colleagues or
reuse it for a new project.

However, the disadvantage is also obvious because the search complexity grows
dramatically as the number of DMOs increases, with the result that if the search
space is too large, due to computational and time costs the user may have to
terminate the search before all DMOs are explored. To overcome this problem,
we may need to think about questions such as how promising DMOs can be
automatically defined/generated for a given dataset.

In the previous examples, we have defined some DMOs by hand. One could
generate DMOs simply by generating all possible DMO combinations of different
types, but doing so would create an extremely large (even infinite) search space,
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and the problem becomes intractable. We here propose a semi-automatic method
to solve this problem.

Firstly, we define some DMO functions, and add these functions to the DMO
search space as we did on previous page. Secondly, we define some templates
(rules) for searching. Here are two examples:

solution ⇐=

DMOchain−search(DMO[filter], DMO[feature−selection],

DMO[tree−model]) (1)

solution ⇐=

DMOchain−search(DMOrandom−topology−search(DMO[filter],

DMO[feature−selection]), DMO[tree−model]) (2)

Template (1) is a chain solution. Here a chain solution means the order (such
as from left to right) of each DMO does matter. A “[...]” is a placeholder for a
certain type of DMO object: in this example, the [filter] placeholder can be sub-
stituted by any filter-type DMO. The [feature-selection] placeholder follows the
same rule, and the [tree-model] placeholder can be substituted only by a “tree”
type model. In template (2), we can see a new DMO function called “random-
topology-search”, which means that the order of the DMOs will be changed
automatically during the search. So we can see that template (1) is actually a
subset of template (2). Once we have a set of DMO objects added, and a DMO
template defined, then we have a finite DMO space.

So far, we have defined a DMO space that consists of node type DMOs,
function type DMOs and DMO templates. In the template part of the search
space, we will have to make a decision on what kind of search strategy to use
when searching for substitution DMOs for placeholders. We here consider only
cases where an exhaustive search (in the case of too many DMOs permutations) is
not feasible, and we are particularly interested in a search method that optimises
a problem by iteratively trying to improve a candidate DMO with regard to a
given measure of quality (the goal metric). These methods are usually referred
to as a “heuristic search”, such as the best-first search, the local search (using
neighborhood relation) and the population-based evolutionary algorithms.

1.2 Related Work

The PSMS system proposed in [3], is an application of Particle Swarm Opti-
mization (PSO) to the problem of full model selection for binary classification
problems. In total, 3 feature transformation objects, 13 feature selection objects
and 10 classifier objects are used in the PSMS system. A full PSMS model is
defined as a 16-dimensional particle position. For the details of the PSMS sys-
tem, we refer the reader to [3]. Based on the experimental results in [3], the
PSMS system shows promising results when it is compared with the Pattern
Search (PS) strategy [9] for the FMS problem. The system also showed com-
petitive performance compared with other search strategies in a model selection
competition.
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From the system architecture point of view, PSMS assumes a full model has
three components: feature transformation, feature selection, and learning algo-
rithm. In the DMO framework, we can define the following DMO template for
the search space covered by the PSMS system:
solution ⇐=

DMOchain−search(

DMOrandom−topology−search(DMO[feature−transformation],

DMO[feature−selection]),

DMO[algorithm])

We can see that the search space covered by the above DMO template is a sim-
plified presentation of a full model, because a full model may have other com-
ponents, such as data cleansing and data sampling. Extended from our previous
work [10], in the next section, we introduce a novel search strategy for the FMS
problem, which covers five data mining components, namely, data cleansing,
data sampling, feature transformation, feature selection and algorithm DMOs.

2 The GPS Search Strategy

In this section, we propose a novel algorithm for searching a FMS solution in
the DMO space. The algorithm combines both genetic algorithm (GA) [6] and
particle swarm optimization (PSO) [7], in which GA is used for searching the
optimal template instance of a DMO template, and PSO is used for searching
the optimal parameter set for a particular template instance. The motivation is
that GA is usually considered a good strategy for combinational optimization
problems, whereas PSO is usually considered good at numerical optimization.

The proposed algorithm is named as GPS (GA-PSO FMS). It can be seen
as a realization and an application of the DMO framework. Before introducing
the GPS algorithm, we first define a DMO template. Here, we assume a FMS
solution consists of five DMOs:

DMO[data−cleansing],
DMO[data−sampling],
DMO[feature−transformation],
DMO[feature−selection] , and
DMO[algorithm].

Then, a DMO template for the FMS problem covered by GPS is defined as:
solution ⇐=

DMOchain−search(

DMOrandom−topology−search(

DMO[data−cleansing], DMO[data−sampling],

DMO[feature−transformation], DMO[feature−selection]),

DMO[algorithm]) (3)

Graphically, this template can be represented as Figure 1 (b). The four DMOs
at the top can be performed in any order, then followed by an Algorithm DMO.
Figure 1 (c) shows a solution instance of the DMO template, which can be
interpreted as: given a dataset, we firstly apply the data sampling technique,
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Algorithm 1. Pseudocode of the GPS strategy for searching a FMS solution

procedure GPS(T ,P ,M ,W ,G)
Input:
T (number of generations for GA), P (population size for GA), M (number of

evolutions for PSO), W (swarm size for PSO), G (goal metric)

Get P random template instances based on template (3).
Populate template instances with objects in the DMO pools (Table 2)
for i ← 1 to T do

Use a standard PSO procedure PSO(M ,W ,G,I) to search for the optimal
parameters for each template instance I (optimising the goal metric G), and assign
an evaluation score to each template instance I . This procedure is similar to the
PSMS system [3].

Do crossover // single point crossover among the top 20% template instances.
Do mutation // randomly choose 30% template instances from the popula-

tion, and randomly change one DMO in each template instance.
Replace the worst N template instances with the N new template instances

generated in above two steps, here we use N = (20% + 30%) × P .
solutionbest ← populationbest

end for
return solutionbest

end procedure

SMOTE [2], followed by applying log-transformation, then, we do IQR out-
lier detection, and then use information gain based feature selection; finally, an
AdaBoost.M1 [4] model is built based on the transformed data. We call such a
solution a “DMO solution template instance”, shortened to “template instance”.

For each of the five DMOs we have defined in template (3), we have a pool of
data mining tools available. For this research, the filters and algorithms in the
WEKA [5] machine learning package are used. Table 2 shows the tools that are
included in the GPS system.

Algorithm 1 shows the pseudocode of the GPS algorithm. The basic steps of
the system are: firstly a initial population of DMO template instances is ran-
domly generated based on a predefined template (e.g., template (3) and Figure
1 (b)), the placeholders of each template instance are randomly populated with
the objects in the pools of DMOs (e.g., Figure 1 (c)). Then for each GA iter-
ation (generation), PSO is used for searching an optimal parameters for each
template instance (similar to the PSMS system). The population of template
instances is then sorted by their PSO-based evaluation scores. After the PSO
optimization procedures are done, typical GA operators, such as crossover and
mutation, can be applied for generating new template instances which are used
for replacing the template instances with relatively low evaluation scores. The
above procedure is repeated T times, where T is the number of GA generations.
Finally, the template instance with the best evaluation score is returned as the
GPS solution.
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Table 1. Data sets: basic characteristics

Original data sets Final binary data sets

Data set with release year #Insts Atts:Classes Class distribution (#Insts)

Adult 96 48,842 14:2 23% vs 77% (10,000)
Chess 94 28,056 6:18 48% vs 52% (8,747)

Connect-4 95 67,557 42:3 26% vs 74% (10,000)
Covtype 98 581,012 54:7 43% vs 57% (10,000)

KDD09 Customer Churn 09 50,000 190:2 8% vs 92% (10,000)
Localization Person Activity 10 164,860 8:11 37% vs 63% (10,000)
MAGIC Gamma Telescope 07 19,020 11:2 35% vs 65% (10,000)

MiniBooNE Particle 10 130,065 50:2 28% vs 72% (10,000)
Poker Hand 07 1,025,010 11:10 45% vs 55% (10,000)

UCSD FICO Contest 10 130,475 334:2 9% vs 91% (10,000)

3 Comparing GPS to PSMS and Other Learning Systems

We experiment with ten classification problems. All of them are real-world
datasets which can be downloaded from the UCI repository, the UCSD data
mining contest repository and the KDD Cup repository. These data sets were
selected because they are large and come from different research and industrial
areas. To speed up the experiments, all five multi-class datasets were converted
to binary problems by retaining only the two largest classes from each. After this
conversion to binary problems, for datasets that are larger than 10,000 instances,
a subset of 10,000 instances is randomly selected for experiments. Table 1 shows
the basic properties of the original and the final datasets.

To test the performance of the GPS algorithm, we implemented a variant1 of
the PSMS system proposed in [3] with the DMO pools defined in Table 2. The
two systems are set to optimise the AUC performance2 and are tested under
30 configurations (3 experiments per dataset): for GPS, the population size for
GA and the swarm size for PSO are both set to 10, and the number of PSO
evolutions is set to 10; for PSMS, the swarm size is set to 10.

For each dataset, three experiments were conducted. Let g be the number of
GA generations for GPS; when g=10, the number of PSO evolutions for PSMS is
set to 1000; when g=20, the number of PSO evolutions for PSMS is set to 2000;
when g=30, the number of PSO evolutions for PSMS is set to 3000. So, for each
experiment, the training cost for both systems is roughly the same. The objec-
tive functions of both GPS and PSMS are based on the respective training set
AUC performance obtained from 3-fold cross validation of a particular template
instance. The AUC performance of two popular ensemble learning algorithms,
AdaBoost.M1 [4] with 1,000 decision stumps, and Random Forest [1] with 1,000
unpruned random trees are also reported as baseline performance.

Figure 2 (a) to Figure 2 (j) show the comparison results based on the AUC
performance obtained from 5 times 3-fold cross validation. Figure 2 (k) gives
a summary in terms of number of wins. Overall, on the 10 datasets, the GPS
algorithm wins 83% (25 wins) of the 30 experiments. The results demonstrate
the benefit of combining GA and PSO for the FMS problem. Also, we can see

1 In our implementation, the dimensionality of each particle is adapted automatically
based on the number of parameters of a particular DMO.

2 The balanced error rate (BER) was used in the original PSMS system.
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(a) Adult (b) Chess (c) Connect-4 (d) Covtype

(e) KDD Cup 09 (f) Localiz.P.Act. (g) Magic. (h) MiniBooNE.

(i) Poker (j) UCSD (k) Overall number
of wins as histogram

Fig. 2. A comparison of AUC performance between GPS and PSMS under 30 different
configurations; the number of PSO evolutions for GPS is set to 10; x-axis g is the
number of GA generations for GPS; when g=10, the number of PSO evolutions for
PSMS is set to 1000; when g=20, the number of PSO evolutions for PSMS is set to
2000; when g=30, the number of PSO evolutions for PSMS is set to 3000

that the best performance of both GPS and PSMS outperform AdaBoost.M1
and Random Forest on 9 out of the 10 datasets, which indicates the advantage
of a full model over the single algorithm model. Another interesting pattern is
that the GPS algorithm outperforms the baseline algorithms with big margin on
datasets with a relatively imbalanced class distribution.

4 Speeding Up the GPS System

The training complexity of the GPS algorithm depends on the base learners
found and evaluated during the search. The main cost for GPS is the cost for
estimating a base learner’s performance (e.g., cross validation). The algorithm
searches for a full model consisting of many data mining operators. Therefore,
although GPS is powerful in modeling, the user may have to wait for several
hours, or even days on relatively large data. For example, on the reduced version
of the KDD Cup 2009 data (with 50,000 data points and 190 numeric attributes),
the GPS system took about six hours to complete on an AMD 2.8G PC with 16G
RAM (number of GA generations, number of PSO evolutions, GA’s population
size and PSO’s swarm size were all set to 10, and 3-fold cross validation was
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Table 2. WEKA algorithms and filters that are used as the DMO objects

Data Sampling Data Cleansing Feature Trans. Feature Sel.

SMOTE oversampling NumericCleaner Normalize CfsSubsetEval
Resample with replacement RemoveUseless Standardize InfoGainAttributeEval
Resample no replacement ReplaceMissingValues Center GainRatioAttributeEval

Do nothing Do nothing AddNoise OneRAttributeEval
Discretize PrincipalComponents

NominalToBinary ChiSquaredAtt.Eval
NumericTransform Do nothing

Do nothing

Algorithm HyperParameters
Bagging with Random Tree num.Bagging.Iterations, num.Atts., depth.Tree

Bagging with REPTree num.Bagging.Iterations, num.Folds., depth.Tree
AdaBoost.M1 with DecisionStump num.Boosting.Iterations , useResample
LogitBoost with DecisionStump num.Boosting.Iterations , useResample
Bagging with J48 Decision Tree num.Bagging.Iterations , prune , conf.
RotationForest with REPTree num.Iterations, Percentage.removed, projection

used in the objective function). Therefore, in this section, we present a strategy
for speeding up the GPS algorithm. Before introducing the new algorithm, we
first review the model tree idea.

A model tree [11] is a decision tree system that uses linear models at the leaves
instead of using discrete class labels for classification tree or mean as the predic-
tion for regression tree. Model trees inherit the advantageous scalable feature of
decision tree systems since the training data is stored in a tree structure. Some
variants that have been designed based on the model tree idea show promising
results, such as the logistic model tree [8].

We here propose a novelGPS-basedmodel tree algorithmnamed the Full Model
Tree, because GPS builds a full model on a given dataset. The idea is that instead
of training the GPS algorithm on the full training data, we build GPS models at
the leaves of a tree structure. In the second set of experiments in this paper, we
compare GPS to Full Model Tree with two different tree structures, namely, the
perfect binary tree and the random binary tree based on the following definitions.

Definition 1: A perfect binary tree is a binary tree with all leaf nodes at the
same depth. All internal nodes have degree 2.

Definition 2: A random binary tree is a binary tree formed by inserting nodes
one at a time according to a random mechanism.

Next, we show that theoretically when the above two binary tree structures
are used, and if the tree height is greater than zero and the training complexity
of GPS is worse than linear, then GPS-based Full Model Tree is faster than GPS
when training on the same data.

Assume the running time of the normal GPS algorithm (GPS-0) for training
its model on a dataset of n data points is O(f(n)), and that for the GPS-based
Full Model Tree is O(g(n)). Based on our preliminary experiments, we found
that the empirical training complexity of GPS is worse than linear on most of
the datasets we have tested, so here we consider the case for f(n) > n1, n > 1.

Theorem 1. For a perfect-binary-tree-based GPS Full Model Tree T with height
h ≥ 1. If GPS-0’s empirical training complexity is worse than linear, such as
f(n) > n1, n > 1, then we have g(n) < f(n).



268 Q. Sun, B. Pfahringer, and M. Mayo

Proof. Let l be the number of leaf nodes of T , we have l = 2h, (l ≥ 2). Let k be
the number of data points at each leaf of T , we have k = n/l. Then, we have
g(n) = l× f(k) and f(n) = f(k × l). Let f(n) = nx, so we have x > 1.

f(n)− g(n) = f(k × l)− l × f(k) = (k × l)x − l× kx

= kx × lx − kx × l = kx × (lx − l) = kx × lx−1 > 0.

Theorem 2. For a random-binary-tree-based GPS Full Model Tree T with height
h ≥ 1. If GPS-0’s empirical training complexity is worse than linear, such as
f(n) > n1, n > 1, then we have g(n) < f(n).

Proof. Let l be the number of leaf nodes of T , h ≥ 1 so we have l ≥ 2. Let
ki be the number of data points at leaf i of T , we have

∑l
i=1 ki = n. Let

f(n) = nx, we have x > 1. Then, we have g(n) =
∑l

i=1 g(ki) =
∑l

i=1 ki
x and

f(n) = nx = (
∑l

i=1 ki)
x. Therefore, f(n)−g(n) = {(∑l

i=1 ki)
x−∑l

i=1 ki
x} > 0.

The two theorems state that theoretically the two Full Model Tree variants are
faster than GPS in the case that the training complexity of GPS is worse than
linear. Results above are also applicable to memory consumption stating that
the two Full Model Tree variants are supposed to be more memory efficient than
GPS if the training complexity in terms of memory of GPS is worse than linear.
The results also imply that if GPS’s training complexity is linear or better, then
theoretically the Full Model Tree variants will not speed up the original GPS
algorithm. Next, we describe how the GPS-based Full Model Trees are built.

When growing a perfect binary tree, firstly the algorithm checks if the tree
height is equal to a user-specified value h. If tree height = h or the current data
contains only one class, then make a leaf node and build a GPSmodel, else the best
variable is selected for splitting. Here, the best is based on the information gain
measure of a variable. For numeric variables, we examine information gain using
the median of a variable as the splitting point; for nominal variables, we balance
the number of data points from distinct categorical values. For instance, imagine
a nominal variable has two distinct categorical values A and B ; if the data we are
to split has 100 data points, where 80 of them belong to A, and 20 of them belong
to B, then we randomly select 30 data points from A, and put them into B. If the
nominal variable has three distinct categorical values, say A with 60 data points,
B with 30 data points, and C with 10 data points, then we merge B and C first,
and then balance A and BC by randomly moving 10 data points from A to BC.
The same balancing strategy is also applicable to a nominal variable having more
than three distinct categorical values. In this way the amount of data from the
current node is roughly equally split for its two child nodes.

When growing a random binary tree, firstly the algorithm checks if the tree
height is equal to a user-specified value h. If tree height = h or the current data
contains only one class, then make a leaf node and build a GPS model, else the
algorithm randomly chooses one of the best K variables for splitting. Here, the
best is based on the information gain measure of a variable, where K is a user-
specified value. For numeric variables, the best splitting point is found by trying
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Table 3. Performance and runtime of the GPS and the Full Model Tree algorithms;
A “�” indicates that in terms of AUC, the GPS algorithm is significantly better than
the respective algorithm; A “♦” indicates that in terms of runtime, the GPS algorithm
is significantly slower than the respective algorithm; level of significance 0.05

Dataset GPS FMT-perfect FMT-random GPS FMT-perf. FMT-rand.
AUC Runtime (mins)

Adult 0.94 ± 0.002 0.93 ± 0.003 0.93 ± 0.002 � 45 ± 6 37 ± 4 ♦ 48 ± 11
Connect-4. 0.95 ± 0.002 0.95 ± 0.002 0.95 ± 0.003 � 91 ± 5 77 ± 9 ♦ 74 ± 14 ♦
KDD Cup. 0.77 ± 0.002 0.77 ± 0.002 0.76 ± 0.003 � 178 ± 9 157 ± 11 ♦ 189 ± 8
Mini.B.E. 0.98 ± 0.002 0.98 ± 0.002 � 0.97 ± 0.003 � 124 ± 7 123 ± 9 135 ± 12
UCSD. 0.68 ± 0.003 0.68 ± 0.002 � 0.67 ± 0.002 � 487 ± 16 417 ± 19 ♦ 476 ± 17

all possible splitting points between two neighbored numbers (the splitting point
with the highest gain will be selected); for nominal variables, the data is split
between the majority categorical value and the other categorical values.

Next, we examine both the predictive performance and the runtime of the two
Full Model Tree variants (one uses the perfect binary tree structure, the other
uses the random binary tree structure, namely, FMT-perfect and FMT-random,
respectively) to the original GPS algorithm.

We use five medium size datasets for this experiment. Table 1 shows the prop-
erties of these datasets. The original KDDCup09 dataset has 50,000 data points,
190 numeric variables and 40 categorical variables. To speed up the experiment,
the 40 categorical variables were removed from the data because some variables
have thousands of distinct values. We set the height of both FMT-perfect and
FMT-random to 3. So, for FMT-perfect, there will be 23 = 8 leaf GPS models to
be built, and each leaf will have n/8± 1 data points where n is the total number
of training data points. The K value for FMT-random is set to log(M)+1, where
M is the number of variables. For the GPS algorithm, the number of generations
for GA, the population size for GA, the number of evolutions for PSO, and the
swarm size for PSO are all set to 10. The objective function of GPS is based on
2-fold cross validation.

Table 3 shows the comparison results based on 5 times 3-fold cross validation.
The AUC performance and the runtime are reported. For the AUC performance,
we can see that GPS significantly outperforms FMT-random on all datasets, in-
dicating that FMT-random is not good enough to be used as a GPS alternative.
The GPS algorithm significantly outperforms FMT-perfect on two datasets; for
the other three datasets, the performance of GPS and FMT-perfect has no sig-
nificant difference. This indicates that for these three datasets, FMT-perfect can
be used as a GPS alternative. In terms of runtime, the FMT-random algorithm is
significantly faster than GPS only on the Connect-4. dataset. One reason could
be that the number of data points at the leaf nodes of FMT-random are not
the same, so the empirical training complexity of FMT-random varies at each
leaf. We can see that FMT-perfect is faster than FMT-random on all datasets
because usually the number of leaf nodes of FMT-random is less than that
for FMT-perfect. The results show that FMT-perfect is significantly faster then
GPS on 4 out of 5 datasets, indicating that FMT-perfect is a viable approach for
speeding up GPS. Overall, on 3 out of 5 datasets, namely, Adult, Connect-4., and
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KDDCup09, the perfect-binary-tree-based Full Model Tree could significantly
speed up the GPS algorithm without sacrificing GPS’s predictive power.

5 Conclusions

We proposed a framework (in the DMO space setting) which can be used for
designing new FMS (full model selection) algorithms, and a novel FMS algorithm
which can be seen as a realization and an application of the framework. Our
experiments on ten real-world problems show that the GPS algorithm performs
very competitively with PSMS, the state-of-the-art PSO-based FMS algorithm.
We also examined the feasibility of using the model tree idea for speeding up
the GPS algorithm. Our experimental results suggest that using the perfect
binary tree as the internal tree structure for GPS-based Full Model Tree is a
viable approach when the empirical training complexity of GPS is worse than
linear. The techniques described in this paper could probably also be applied
to regression and label ranking problems, but this needs to be verified in a
future study. Another future work direction is to compare the performance of the
GPS systems to fine-tuned base-level ensemble algorithms. The 5-DMO template
(3) defined in Section 2 is only one of many possible templates for practical
data mining solutions, in future research we will also investigate methods for
optimizing alternative templates simultaneously in a cloud environment.
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Abstract. Transfer learning is one of the most important directions in
current machine learning research. In this paper, we propose a new learn-
ing framework called Multi-source part-based Transfer Learning (Ms-
pbTL), which is one kind of parameter transfer with multiple related
source tasks. Dissimilar to many traditional works, we consider how to
transfer information from one task to another in the form of integrating
transferred information between parts. We regard all the complex tasks
as a collection of several constituent parts respectively. It means that
transfer learning between two complex tasks can be accomplished by sub-
transfer learning between their parts. Then, after completing the above
information transfer between the source and target tasks, we integrate
the models of all the parts in the target task into a whole. Experiments
on some real data sets with support vector machines (SVMs) validate
the effectiveness of our proposed learning frameworks.

Keywords: Transfer learning, part-based model, multi-source learning,
support vector machine.

1 Introduction

Traditional machine learning usually depends on the availability of a large num-
ber of data from a single task to train an effective model. However, researchers
often confront the situations that there are not enough data available and they
have to resort to data from other tasks (source tasks) to aid the learning of the
target task. In some cases, even though there are many training examples for
the target task, integrating information from other tasks or data sets can still
be helpful to improve the performance. Due to the above reasons, some machine
learning strategies have been investigated, including multi-task learning [1–3],
multi-view learning [4, 5], lifelong learning [6, 7] and transfer learning [8–10]. In
this paper, we would like to develop new methods for effective transfer learning.

It should be noted that the target task and source task often have different
data distributions in real applications. For example, Wall Street firms often hire
physicists to solve finance problems even though there is nothing in common
superficially between these two problems [11]. It is easy to see in this example
that humans can deal with some problems through applying knowledge learned
in one domain to an entirely different one. The reason humans can do this is that
they have the ability to choose the essence or the most related part of knowledge
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which is useful to learn the new task. Nevertheless, computers cannot directly
distinguish whether one part in the source task is good or bad to transfer to the
target task. As a result, it is significant for us to teach the computer to judge
the importance of every part in one complex task. One solution to this problem
is to weight different parts differently by their contributions to the task.

Many collections of data exhibit a common underlying structure: they consist
of a number of identical parts, each with a range of possible states [12]. Some-
times, although one part of a source task is unsuitable to help learn the target
task, there may still exist another part which is useful and helpful for this work.
In our paper, to find such parts, we utilize a part-based model. This approach
has been used in many fields, especially image processing and computer vision.
For instance, Bar-Hillel et al. [13] used this principle to establish the model for
the task of object recognition. However, they have just made use of the part-
based model in one single task. In this paper, we extend the part-based model
to transfer learning. Moreover, for the purpose of avoiding negative transfer [14],
which is a situation where knowledge from a source task unexpected deterio-
rates the performance of target task, the principle of multi-source learning [15]
is used in our learning framework as well. Different from the usage of multi-
source learning in transfer learning like [16], we will analyze the contribution of
every part in every source task to help judge the importance of different parts
in the target task. With the help of these principles, we can not only reduce
the problem of negative transfer, but also improve the effectiveness of transfer
learning.

In this paper, we propose a framework named Multi-source part-based Trans-
fer Learning (Ms-pbTL). It is an extension of pbTL [17], which is a process of
parameter transfer using one source task. In pbTL, all the complex tasks are
regarded as a collection of constituent parts, and every task can be divided into
several parts respectively. This means transfer learning between two complex
tasks can be accomplished by sub-transfer learning tasks between their parts.
This method is also used in Ms-pbTL.

Some main functions of the frameworks of the Ms-pbTL are described in the
following points. Firstly, due to the usage of the part-based model, one task can
be divided into a number of parts so as to exploit different latent knowledge.
Secondly, the multi-source principle lets us have opportunities to obtain more
sets of parameters from different source tasks synchronously, which can be com-
bined in the target task. Finally, we can make a difference not only between
different parts in one single source task, but also between the corresponding
parts in all the source tasks. This step makes it possible to focus more on the
parts which can contribute much more to the target task. Besides these points,
in our frameworks, from every part in all the source tasks, we can obtain a set of
parameters which can be transferred to its corresponding part in the target task
to construct an ensemble of classifiers with support vector machines (SVMs)
[18, 19]. At the same time, notice that the parameters about a certain part of
one source task can only be transferred into the corresponding part of the target
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task. Depending on this rule, after reusing all the sets of parameters from the
source tasks to help train the ensemble classifiers on their corresponding parts
in the target task, we combine these classifiers into a final classifier with weights
determined by their accuracy rates. The effectiveness of our proposed learning
frameworks is supported by experiments on multiple real data sets.

The remainder of this paper is organized as follows. In Section 2, we describe
our framework Ms-pbTL in detail. Then, experiments with our proposed meth-
ods are provided in Section 3. Section 4 concludes the whole paper and gives
future work directions.

2 Multi-source Part-Based Transfer Learning

In this section, we present our transfer learning framework, Ms-pbTL. It is es-
sential for us to pay attention to one special characteristic of this part-based
model. According to the part-based principle, the whole will be divided into
several parts to learn separately. Different from multi-view learning, some latent
relationships exist between every pair of two adjacent parts in the part-based
model. For example, one picture of human can be divided into three parts such
as head, the upper part of the body and the lower part of the body. Obviously,
every part contains many particular features which only exist in the part itself.
Nevertheless, serving as the joint of the head and the upper part of the body, the
neck is the part which can belong to both of them. As a result, all the features
about the neck can be contained in both of these two parts. Consequently, we
can summarize the characteristics of the part-based model as follows. On one
hand, every part of the whole contains a number of distinctive features which
will not belong to other parts. On the other hand, there exist a few features
which are used to describe the intersection between two adjacent parts and may
appear in both of them.

In order to fully use the benefits of the part-based model in parameter trans-
fer learning, a basic learning framework named part-based Transfer Learning
(pbTL) which utilizes one source task was proposed in [17]. For the purpose
of avoiding negative transfer and improving the effectiveness of transfer learn-
ing, we propose its extended version, a new learning framework, Multi-source
part-based Transfer Learning (Ms-pbTL). In the first step, we use SVM to train
classifiers and learn a set of optimal parameters for every part of each source
task. Then, these sets of parameters need to be transferred to the parts of the
target task correspondingly. This is the process of parameter transfer learning.
Following this, we can learn several better classifiers trained on the basis of these
parameters about every part in the target task and combine them into a final
classifier in a weighted fashion at last. The function of this step is to determine
which part can contribute much more. Before presenting our learning framework
Ms-pbTL, we need to state some key considerations here.

Firstly, we use RBF as the kernel function in the SVM. The detailed formula
can be written as:

k(xi, xj) = e−‖xi−xj‖2/2σ2

. (1)
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Therefore, due to the characteristics of RBF and SVM, the core elements in our
parameter transfer learning are the usual regularization coefficient C in the SVM
formulation and the width parameter σ in the above (1).

Secondly, we divide the source tasks and target task into several parts in
terms of features correspondingly. In this step, we need not only to divide these
features into different parts averagely, but also to consider in a characteristic
of the part-based model that different parts may be related to each other and
contain some common features. For example, according to the supposition that
dimension = 10 (the dimension of the data set) and N = 3 (the number of
parts to be divided into), now we can split the first nine features into three
parts averagely and supply the last feature for every part so as to create three
interdependent four-dimensional parts.

Thirdly, although samples of source and target tasks come from different
distributions, we suppose they can be mapped into the same class label set.

The detailed process of Ms-pbTL is given in Table 1.

2.1 Remarks on Ms-pbTL

Through getting the optimal set of parameters of every part in the source task
and transferring them to the target task part by part, the merits of different parts
can be clearly shown. Moreover, the goal of treating different parts differently
can be reached by defining weights as well. The weights can be calculated as:

WTi =
AccuracyTi∑N
i=1 AccuracyTi

. (2)

What is more, in (2), to further distinguish the importance of different parts in
the target task, we calculate the weights of the classifiers of different parts by the
distribution of their accuracy rates on the training data set. These accuracy rates
show the percent of samples which are predicted correctly by fTN . Furthermore,
in the output step, we compose the final classifier by the sum of the product of
every classifier and its weight. The detailed formula can be written as:

hf (x) =

{
1 if

∑N
i=1 WTi × fTi(x) ≥ 0

−1 otherwise.
(3)

In Ms-pbTL, we use several source tasks S1, · · · , Sn simultaneously to learn the
target task. From step 1 to 3, we divide all the source tasks and the target
task into N parts. In step 4, due to the fact that now we have n source tasks,
we can learn n sets of optimal parameters from them to help every part in the
target task to come to n sub-classifiers, respectively. Then, with the help of the
accuracy vector acquired in step 5, we can combine all the sub-classifiers about
one part into a final sub-classifier in line with step 6. After that, we calculate
the weights of each classifier to obtain a final one.
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Table 1. Framework of multi-source part-based transfer learning

Input:
set of n source tasks S1, · · · , Sn (now each Si here is a source task) and one
target task T , where S1, · · · , Sn and T belong to different distributions, but
contain the same class label set Y = {1,−1} as Os-pbTL.
Initialize the number of parts to be divided. : N
Initialize the parameter set (C, σ) in SVM with RBF.

1. Divide every source task into N parts by their features under the same
rule: {(S11, · · · , S1N ), · · · , (Sn1, · · · , SnN )}.

2. Get N classifiers of every source task on the basis of its parts:
{(fS11 , · · · , fS1N ), · · · , (fSn1 , · · · , fSnN )},
and their optimal parameter vectors:
{[(CS11 , σS11), · · · , (CS1N , σS1N )], · · · , [(CSn1 , σSn1), · · · , (CSnN , σSnN )]}.
(In this paper, we will use cross validation to learn these optimal
parameter vectors)

3. Divide the target task into N parts corresponding to the source tasks:
T1, · · · , TN .

4. According to every part in the target task, we will come to n sub-
classifiers: {[fT11 , · · · , fT1n ], · · · , [fTN1, · · · , fTNn ]} by the optimal sets of
parameters about the corresponding parts of n source tasks acquired in
step 2.

5. Calculate the accuracy rate about every classifier obtained in step 4:
{[AccuracyT11 , · · · , AccuracyT1n ], · · · , [AccuracyTN1 , · · · , AccuracyTNn ]}.

6. Calculate the final classifier of every part of the target task, respec-
tively:for i = 1, · · · , N
fTi =

∑n
j=1 AccuracyTij × fTij

end
7. Calculate the accuracy rate {AccuracyT1 , · · · , AccuracyTN } of every

classifier {fT1 , · · · , fTN} in the target task.
8. Calculate the weights of {fT1 , · · · , fTN }:

for i = 1, · · · , N
WTi =

AccuracyTi∑N
i=1 AccuracyTi

end
Output the hypothesis:

hf (x) =

{
1 if

∑N
i=1 WTi × fTi(x) ≥ 0

−1 otherwise

In addition to all the description above, it is also important for us to discuss
more here. In our paper, we have not considered the problem caused by the
diversity between the corresponding parts of the source and target tasks. For
example, in step 4, we train the sub-classifiers of every part in the target task on
the basis of the optimal sets of parameters learned in the source tasks directly
and make no changes. However, sometimes, the sets of parameters learned in the
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source tasks are not suitable enough to be reused in the target task because of
the diversity mentioned above. As a result, if we want to deal with this problem
and come to the sets of parameters which are more suitable for the learning of
the target task, we can actually just initialize the parameter vectors of every part
in the target task by the optimal sets of parameters obtained in the correspond-
ing parts of the source tasks. After that, the work is to update them through
continuous iterations with some other processors such as neural networks until
coming to the satisfied ones.

3 Experiments

In this section, we implement two groups of experiments. We start with a basic
group of experiments with real data sets so as to illustrate the effectiveness of
our learning framework. In this group of experiments, for the purpose of imple-
menting our method, Ms-pbTL, we employ two source tasks simultaneously to
help learning a target task. Moreover, we do a further study about the influence
caused by varying the number of source tasks in Ms-pbTL.

In all these experiments, we set the parameter N = 3, which represents the
number of parts to be used in the target task and source tasks. Certainly, in
practical applications, this number of different tasks can be different and needs
to be decided by the characteristics of different tasks. In addition, we compare our
method, Ms-pbTL, with basic SVM, transfer learning with basic SVM (Transfer
SVM) and pbTL in all the experiments.

3.1 Learning with Two Source Tasks

In this section, we run some experiments on real data sets from UCI repository.
Note that all the data sets used here are transformed into binary-class problems.
Then, due to the characteristics of different data sets, we use different ways to
generate the target task and source tasks and run five sets of experiments on
four data sets.

On one hand, data sets
Segmentation
path:cement

and
Digit
5:8 are multi-class problems.

They are divided into several binary-class sub-data sets by their labels to gener-

ate the target task and source tasks. On the other hand, data sets
Digit
3:8 , German

and
WQ

level 5: 7
are binary-class problems, as a result, we need to divide them into

several sub-data sets by one specific rule to generate the target task and source
tasks. Table 2 provides the summary of the used real data sets.

For each data set in Table 2, we use a specific rule to divide it into the target
task and source tasks.

Segmentation is one seven-class data set. We divide the whole data set into
several binary-class sub-data sets by their labels to generate the target task and
source tasks. We use all the data with label sky and window as the source task
A, the data with label grass and foliage as the source task B and the data with
label path and cement as the target task.
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Table 2. Summary of data sets

Real data set
Segmentation
path:cement

Digit
5:8

Digit
3:8

German
WQ

level 5: 7

Total number of examples 1980 3361 1126 1000 2337
Size of the source task A 660

sky:window
1115
6:2

488 230 877

Size of the source task B 660

grass:foliage
1134
3:9

330 411 648

Target training set 330

path:cement
500
5:8

150 159 500

Target testing set 330

path:cement
618
5:8

158 200 312

Dimensions 19 64 64 24 11
Number of classes 6 6 2 2 2

Handwritten Digit is one ten-class data set and here we use two different
ways to generate the target task and source tasks. Firstly, similar to data set

Segmentation, in
Digit
5:8 , we use all the data with label 6 and 2 as the source task

A, the data with label 3 and 9 as the source task B and the data with label 5
and 8 as the target task.

After that, we get all the data with label 3 and 8 to generate one binary-class

data set, Digit
3:8 , to run another set of experiments. According to this data set,

we divide it into the target task and source tasks on the basis of the value of
dimension six. All the data according with the rule dimension six < 5 belong
to the source task A, 5 ≤ dimension six < 10 belong to the source task B and
dimension six ≥ 10 for the target task.

German Credit Data is one binary-class data set. We split the data set on
the basis of the feature Duration of month. The source task A consists of all
the data following the rule Duration > 24 while the source task B consists of
all the data following the rule 12 < Duration ≤ 24 and Duration ≤ 12 for the
target task.

Wine Quality (WQ) is one eleven-class data set and the assignment of it is
to grade the wine quality between 0 to 10. Because the data of different classes
are not balanced, we select all the data with label level 5 and 7 to generate one
binary-class data set which contains 2337 samples. Then, we divide this data
set into the target task and source tasks on the basis of the value of feature
Residual sugar. The source task A consists of all the data following the rule
Residual sugar < 3 while the source task B consists of all the data following
the rule 3 ≤ Residual sugar < 8 and Residual sugar ≥ 8 for the target task.

Finally, note that we only make use of the source task A to run the experiments
of Transfer SVM and pbTL. Furthermore, in our framework Ms-pbTL, due to the
fact that we divide all the data sets into three parts by their features randomly,
we run the experiments of every data set for ten times and get the mean of them
as the final scores. Certainly, standard deviation (Std) will be also calculated
synchronously. Moreover, it is significant to demonstrate here that, in order to
keep the characteristics of the part-based model, we make most of features be
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owned by only one part and a few features be shared among all the parts in one
task. For example, in our experiments, we make use of the Handwritten Digit
data set which contains 64 features. We realign the features randomly at the
beginning. Then we divide the first 60 features into three parts averagely and
share the rest 4 features for all parts. As a result, we create three interdependent
24-dimensional parts. Table 3 shows the classification results.

Table 3. Accuracy rates of different methods (%)

SVM Transfer SVM pbTL Ms-pbTL

Segmentation
path:cement

83.33 87.88 91.61±2.66 94.09±2.05

Digit
5:8

58.99 49.02 88.35±6.23 93.46±1.67

Digit
3:8

51.27 56.33 66.52±8.19 80.57±7.42

German 72.00 74.00 74.70±0.42 75.95±0.93

WQ
level 5: 7

69.55 70.19 74.39±2.33 76.47±2.54

Table 3 shows that pbTL and Ms-pbTL outperform the standard SVM and
Transfer SVM in every data set and the results of Ms-pbTL are better than

pbTL. In data sets
Segmentation
path:cement ,

Digit
5:8 and

Digit
3:8 , our proposed framework

improves the results remarkably. Compared with these three data sets, Ms-pbTL

makes a less improvement on the data sets German and
WQ

level 5: 7 .

What’s more, we need to pay attention to the results of
Digit
5:8 especially.

In the experiments of this data set, though Transfer SVM fails to excel the
standard SVM, Ms-pbTL still outperforms standard SVM which illustrates three
important points as follows. Firstly, general transfer learning can not exert its
benefit all the time. Secondly, even though the whole-based transfer learning has
been ineffective, the part-based transfer learning can still be effective. Thirdly,
the part-based model can help avoid negative transfer.

Overall speaking, experimental results of real data sets show that the combi-
nation of the part-based model and transfer learning can promote the learning
efficacy and obtain a higher accuracy with the help of multi-source learning.

3.2 Varying the Number of Source Tasks

Here we intend to study the effect of transfer learning caused by varying the
number of source tasks. Our purpose here is to observe the changes of the exper-
imental results about Ms-pbTL with the increase of the number of source tasks.
We use two different ways to generate the target task and source tasks.

SCITOS-G5 is one four-class data set which records the wall-following nav-
igation task of one mobile robot. However, because of the sparse of the data
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of two class, Slight-Right-Turn and Slight-Left-Turn, we just use the data from
other two classes, Move-Forward and Sharp-Right-Turn to generate one binary-
classes data set to run our experiments. We divide the data set SCITOS-G5 into
several parts to generate the target task and source tasks by its first feature,
US1, which is the ultrasound sensor at the front of the robot. Details can be
seen in Table 4.

Then, for the other set of experiments, in order to acquire enough sub-data
sets with different labels to generate the target task and source tasks, we reuse
the ten-class data set, Handwritten Digit here. Similar to the experiments of
Digit
5:8 in the last part, we come to the target task and source tasks by its class

labels as shown in Table 4.

Table 4. Summary of SCITOS-G5 and
Digit
5:8

SCITOS-G5
Digit
5:8

Total number of samples 4302 5620
Dimensions 24 64
Number of classes 2 10

Rule of the target task US1 ≥ 2.1 Digit 5 and 8
Training size of the target task 400 500
Testing size of the target task 349 612

Rule of the source task A 1.5 ≤ US1 < 2.1 Digit 3 and 8
Size of the source task A 615 1126

Rule of the source task B 1.3 ≤ US1 < 1.5 Digit 5 and 9
Size of the source task B 716 1120

Rule of the source task C 1.0 ≤ US1 < 1.3 Digit 2 and 6
Size of the source task C 770 1115

Rule of the source task D 0.8 ≤ US1 < 1.0 Digit 7 and 0
Size of the source task D 619 1120

Rule of the source task E US1 < 0.8 Digit 1 and 4
Size of the source task E 833 1139

Note that we only use the source task A to run the experiments of Transfer
SVM and pbTL. Then with the increase of the number of source tasks in Ms-
pbTL, we intend to add one more source task into our experiments every time
from the source tasks B to E orderly. Furthermore, due to the fact that we
divide every data set into three parts randomly by their features, we run the
experiments of every data set for ten times and get the mean of them as the final
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scores. Certainly, standard deviation (Std) will be also calculated synchronously.
Detailed results have been given in Table 5. Note that Ms-pbTL, Ms3-pbTL,
Ms4-pbTL and Ms5-pbTL represent the results of the experiments about the
part-based transfer learning with two, three, four and five source tasks.

Table 5. Accuracy rates of different methods (%)

SCITOS-G5
Digit
5:8

SVM 81.95 58.99
Transfer SVM 82.52 50.98
pbTL 84.84±1.43 88.97±4.06

Ms-pbTL 86.59±1.04 94.59±1.37

Ms3-pbTL 87.51±1.61 95.53±1.10

Ms4-pbTL 88.82±1.63 95.52±1.44

Ms5-pbTL 88.62±2.04 95.31±1.47

According to the results of SCITOS-G5 in Table 5, from Ms-pbTL to Ms4-
pbTL, we can see that, as the number of source tasks increases, the increasing
degrees of experimental results come to decrease and the negative growth hap-

pens to Ms5-pbTL finally. The experiments of
Digit
5:8 meet the similar condition

as well. The results of this data set reach the peak in Ms3-pbTL and then begin
to decrease.

In general, though both Ms-pbTL and Ms3-pbTL perform well, the increasing
degrees of experimental results become progressively less obvious with increasing
number of source tasks. Therefore, we can derive the following conclusion. Too
many source tasks can not lead to a better outcome for transfer learning. The
most important point of improving the effectiveness of transfer learning is to
select the source tasks which are more similar to the target task rather than use
as many source tasks as we can.

4 Conclusion and Future Work

In this paper, we propose a new learning framework, multi-source part-based
transfer learning. From our experiments on real data sets, this framework is
proved to be more useful and effective than traditional transfer learning. We
conclude the reasons about its feasibility with the following points. Firstly, the
part-based model lets us have chance to take advantage of different latent knowl-
edge on one task. Secondly, it also decreases the influence of irrelevant and useless
features. Thirdly, the multi-source principle makes us obtain more knowledge
from different source tasks to learn the target task. At the same time, it also
helps avoid negative transfer.

In the future, how to split one task into several interrelated parts more logi-
cally is an interesting direction to study. At the same time, experiments in our
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paper show that the increase of the number of source tasks does not always
improve transfer learning, and therefore it may still be a challenge to study how
to select the optimal combination of multiple source tasks to promote transfer
learning.
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Abstract. Multi-label classification in which each instance may belong
to more than one class is a challenging research problem. Recently, a con-
siderable amount of research has been concerned with the development of
“good” multi-label learning methods. Despite the extensive research ef-
fort, many scientific challenges posed by e.g. curse-of-dimensionality and
correlation among labels remain to be addressed. In this paper, we pro-
pose a new approach to multi-label classification which combines stacked
Kernel Discriminant Analysis using Spectral Regression (SR-KDA) with
state-of-the-art instance-based multi-label (ML) learning method. The
proposed system is validated on two multi-label databases. The results
indicate significant performance gains when compared with the state-of-
the art multi-label methods for multi-label classification.

Keywords: Multi-label Classification, Dimensionality Reduction, KDA
using Spectral Regression.

1 Introduction

A conventional multi-class classification system assigns each instance x a single
label l from a set of disjoint labels L. However, in many modern applications such
as text classification [1, 2], image/video categorisation [3] etc, each instance is
to be assigned to a subset of labels Y ⊆ L. This problem is known as multi-label
learning. Figures 1 shows some examples of multi-label images.

There is a considerable amount of research concerned with the development
of “good” multi-label learning methods [4, 5, 1, 6–8]. Despite the extensive re-
search effort devoted to the problem of multi-label learning, there still exist many
scientific challenges. They include (i) the curse-of-dimensionality, as multi-label
learning involves data with a large number of features, and (ii) capturing the
correlation among classes. The curse of dimensionality especially can severely
degrade the performance of the learning techniques especially methods based on
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a b

Fig. 1. Examples of multi-label images. (a) Two concepts Horse and People appear in
the same image. (b) Four concepts Bicycle, Cow, Motorcycle and People appear in the
same image.

nearest neighbour principle [9]: keeping the number of training samples limited
and increasing the number of features will eventually result in badly perform-
ing classifiers. Interestingly, most state-of-the-art multi-label methods, including
those referred to as instance-based, are designed to focus mainly on the second
problem and a very limited effort has been devoted to the curse-of-dimensionality
problem. The aim of this paper is to focus on the first aspect, and tackle this
problem by dimensionality reduction using stacked kernel discriminant analysis
(Stacked-KDA).

Spectral methods have emerged as a powerful tool for dimensionality reduc-
tion and manifold learning. Spectral Regression combined with Kernel Discrim-
inant Analysis (SR-KDA) introduced by Cai et al [10] has been successful in
classification tasks such as multi-class face, text, spoken letter recognition and
visual category recognition [11]. The method combines the spectral graph analy-
sis and regression for an efficient large matrix decomposition in KDA. It has been
demonstrated that it can achieve an order of magnitude speed-up over the eigen-
decomposition while producing smaller error rate compared to state-of-the-art
classifiers.

In this paper, we propose a new approach to ML classification which combines
SR-KDAwith state-of-the-art instance-basedML learning method. Stacked KDA
is used as a dimensionality reduction approach while instance-based method
(MLkNN [4]) is used for multi-label classification. Interestingly, a great benefit
of the proposed approach is that both the curse-of-dimensionality and the corre-
lation problems can be tackled simultaneously [12]. The curse-of-dimensionality
is handled by using feature extraction while the correlation problem is solved
by stacked generalisation as well as the multi-label classification at later stage
that inherently takes correlation among labels into account. To the best of our
knowledge, this is the first study that aims to use KDA using spectral regression
(with/without stacking) as a dimensionality reduction method for multi-label
classification.

The proposed approach is applied to two multi-label data sets. We validate
the advocated approach experimentally and demonstrate that it yields significant
performance gains when compared with the state-of-the art multi-label methods.
In addition, the complexity analysis of the proposed dimensionality reduction
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technique has indicated several orders of magnitude speed-up over the traditional
KDA for multi-label classification.

The paper is organised as follows. In Section 2, we review the state-of-the-art
methods for multi-label classification. Section 3 presents the proposed approach.
Experiments are described in Section 4 followed by the results obtained and their
discussion in Section 5. Section 6 concludes the paper.

2 Related Work

The sparse literature on multi-label classification, driven by problems in text
classification, bioinformatics, music categorisation, and image/video classifica-
tion, has recently been summarised by Tsoumakas et al [5]. This research can
be divided into two different groups: i) problem transformation methods, and
ii) algorithm adaptation methods. The problem transformation methods aim to
transform a multi-label classification task into one or more single-label classifi-
cation problems [13, 3], or label ranking [14] tasks. The algorithm adaptation
methods extend traditional classifiers to handle multi-label concepts directly
[4, 15, 7]. In this section, we briefly review the state-of-the-art work in this
research area.

Multi-label classification can be reduced to the conventional binary classifica-
tion problem. This approach is referred to as binary relevance (BR) learning in
the literature [5]. In BR learning, the original data set is divided into |Y | data
sets where Y = {1, 2, ..., N} is the finite set of labels. BR learns one binary classi-
fier ha : X → {¬a, a} for each concept a ∈ Y . BR learning is theoretically simple
and has a linear complexity with respect to the number of labels. Its assumption
of label independence makes it attractive to situations where new examples may
not be relevant to any known subset of labels or where label relationships may
change over the test data [6].

As already pointed out, instance-based approaches are also quite popular in
multi-label classification. In [4], a lazy learning approach (MLkNN) is proposed
and is based on the principle of BR learner. This method is derived from the
popular k-Nearest Neighbour (kNN) algorithm and bayesian inference. Given an
instance x and its associated label set y ⊆ Y , it finds the k nearest neighbours of
x in the training data. Let N(x) be the set of k nearest neighbours of x. Then,
based on the label sets of these neighbors, a membership counting vector Cx

is defined as: Cx(l) =
∑

b∈N(x) tb(l), l ∈ Y , where Cx(l) counts the number of

neighbors of x belonging to the l-th class, tb(l) is the category vector for x. Given
a query instance q, MLkNN first identifies its k nearest neighbors N(q) in the
training set. Let H l

1 be the event that q has label l while H l
0 be the event that

q does not belong to l. In addition, let El
j(j ∈ 0, 1, ..., k)) denote that among

the k nearest neighbors of q, there are exactly j instances which have label l.
Therefore, based on the membership counting vector Cq, the category vector tq
is determined using the following bayesian principle:

tq(l) = argmaxb∈0,1P (H l
b)P (El

Cq(l)
|H l

b) (1)
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where P (H l
b) and P (El

Cq(l)
|H l

b) are prior and conditional label observation prob-

abilities. It has been shown in [4] that these probabilities can be directly esti-
mated from the training set based on frequency count.

In [16], a multi-label dimensionality reduction method called MDDM (Multi-
label Dimensionality reduction via Dependence Maximization) is proposed. This
method finds the lower-dimensionality feature space by maximizing the depen-
dence between the original feature description and class labels associated with
the same object. A closed-form solution is then derived for MDDM which en-
ables the multi-label dimensionality reduction process to become both effective
and efficient. In [17], a multi-label dimensionality reduction method (MLSI) is
introduced based on supervised latent semantic indexing. This method maps
the input features into a new feature space that retains the information of the
original inputs and also captures the dependency of output dimensions. In [18],
a general framework is proposed to extract shared subspaces in multi-label clas-
sification. In [19], a joint learning framework is studied in which dimensionality
reduction and multi-label classification are performed simultaneously.

3 Multi-label Dimensionality Reduction Using Stacked
Kernel Discriminant Analysis

Dimensionality reduction is a pre-processing procedure which maps the original
data space X to a low dimensional space Z. Normally, dimensionality reduction
is represented by a transformation matrix H ∈ Rm×l such that

z = HTx for x ∈ X (2)

where l is usually much smaller than m. In this section, we discuss the proposed
dimensionality reduction method using stacked KDA. We first briefly discuss
KDA using Spectral Regression followed by the proposed system of dimension-
ality reduction that involves stacked KDA. One advantage of the dimensionality
reduction is the lower cost of the learning process since the learning process will
be performed in the lower dimensional space. Also the effects of noisy or redun-
dant features can be reduced. Further, by introducing stacking during feature
extraction, the instances belonging to multiple classes will capture the correla-
tion for mutli-label classification.

3.1 KDA Using Spectral Regression (SR-KDA)

Linear Discriminant Analysis (LDA) is one of the most popular dimensionality
reduction algorithm [10, 20] where projection vectors are obtained by maximizing
the between class covariance and simultaneously minimizing the within class
covariance. Mathematically, the objective function of LDA is defined as follows:

wopt = argmax
wTSbw

wTStw
(3)
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where Sb and St denote between and within class scatter matrix. The optimal w’s
are the eigenvectors corresponding to the non-zero eigenvalue of eigen-problem
Sbw = λStw.

To extend LDA to the nonlinear case, Let xi ∈ Rd, i = 1, · · · ,m be train-
ing vectors represented as an m × m kernel matrix K such that K(xi, xj) =
〈Φ(xi), Φ(xj))〉, where Φ(xi) Φ(xj) are the embeddings of data items xi and xj .
If ν denotes a projective function into the kernel feature space, then the objective
function for KDA is

max
ν

D(ν) = νTCbν
νT Ctν

(4)

where Cb and Ct denote the between-class and total scatter matrices in the
feature space respectively. Equation 4 can be solved by the eigen-problem Cb =
λCt. It is proved in [21] that equation 4 is equivalent to

max
α

D(α) = αTKWKα
αTKKα (5)

where α = [α1, α2, .....αm]T is the eigen-vector satisfying KWKα = λKKα.
W = (Wl)l=1,....n is a (m × m) block diagonal matrix of labels arranged such
that the upper block corresponds to positive examples and the lower one to
negative examples of the class. Each eigenvector α gives a projection function ν
into the feature space.

It is shown in [10] that instead of solving the eigen-problem in KDA, the KDA
projections can be obtained by the following two linear equations

Wφ = λφ

(K + δI)α = φ (6)

where φ is an eigenvector of W , I is the identity matrix and δ > 0 is a regu-
larisation parameter. W = (Wl)l=1,....n is a (m ×m) block diagonal matrix of
labels arranged such that the upper block corresponds to positive examples and
the lower one to negative examples of the class. Eigenvectors φ are obtained
directly from the Gram-Schmidt method. Since (K + δI) is positive definite, the
Cholesky decomposition is used to solve the linear equations in ( 6). Thus, for
the resolution of linear system (6), the system becomes

K∗α = φ⇔
{
RTβ = φ
Rα = β

(7)

i.e., first solve the system to find vector β and then vector α. In summary,
SR-KDA only needs to solve a set of regularised regression problems and there
is no eigenvector computation involved. This results in great improvement of
computational cost and allows to handle large kernel matrices. After obtaining α,
new data items are calculated from : f(x) =

∑m
i=1 αiK(x, xi) where K(x, xi) =

〈Φ(x), Φ(xi))〉 and classification can be carried out on the projected data.
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Complexity Analysis. The computation of SR-KDA involves two steps: (i) re-
sponse generation which is the cost of the Gram-Schmidt method (ii) regularised
regression which involves solving (c− 1) linear equations using the Cholesky de-
composition where c is the number of classes. As in [22], we use the term flam,
a compound operation consisting of one addition and one multiplication, to
measure the operation counts. The cost of the Gram-Schmidt method requires
(mc2− 1

3c
3) flams. The Cholesky decomposition requires 1

6m
3 flams and the c−1

linear equations can be solved with m2c flams. Thus, the computational cost of
SRKDA excluding the cost of Kernel Matrix K is 1

6m
3+m2c+mc2− 1

3 c
3 which

can be approximated as 1
6m

3 + m2c. Comparing to the cost of ordinary KDA
(92m

3 +m2c), SR-KDA significantly reduces the dominant part and achieves an
order of magnitude (27 times) speed-up.

3.2 Proposed Dimensionality Reduction Technique Using Stacked
KDA

Let X denote a set of instances and let Y = {1, 2, ..., N} be a set of labels. Given
a training set S = {(x1, y1), ...., (xm, ym)} where xi ∈ X is a single instance and
yi ⊆ Y is the label set associated with xi, the goal is to design a multi-label
learner that predicts a set of labels from an unseen example. Motivated by the
fact that there should exist some relation between the features and labels asso-
ciated with the same instance, we attempt to find a lower-dimensional feature
space using the concept of Stacking. Stacked generalisation or (stacking) is a
type of ensemble method that uses the outputs of one classifier as inputs to an-
other classifier [23]. In this paper, this concept is used to capture the correlation
among labels during supervised dimensionality reduction.

The proposed system is demonstrated in Figure 2. It consists of a two-stage
process. The objective of the first stage is to capture correlation among labels.
In this stage, N projections (α1, α2, .....αN ) are obtained by applying SR-KDA
on binary data sets since multi-label data can be divided into N binary data sets
using binary relevance model. During this stage, the projections of training data
are obtained using leave one out cross validation. Cross validation is necessary
so that the projections of training data remain unbiased and accurately reflect
the true performance in the first stage. Without cross validation, the projec-
tions obtained from training data do not reflect the true representation of test
data necessary for dimensionality reduction in the second stage and to capture
correlation among labels.

In the second stage, the projected scores obtained from the first stage and the
original features are combined and normalised. The main objective of this stage
is to extract a small number of co-related features so that the learning using
nearest neighbour classifiers can be performed more efficiently. In this stage, N
projections are obtained which results in N new features. Thus, the new feature
vector consists of small number of features that also consider correlations among
different labels. Instance-based multi-label classifier (MLkNN) is then trained to
obtain the predicted label sets.
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Fig. 2. Proposed system for multi-label classification using Stacked KDA

Complexity Analysis. In many practical situations the number of concepts
can be very high, and the learning of independent binary classification tasks may
become computationally expensive, especially if a kernel-based learning model
is adopted. This problem problem can easily be solved by using SR-KDA in
binary classification tasks as its time complexity scales linearly with respect to
the number of concepts. The main computational part results from cholesky
decomposition which is independent of the number of labels (See Figure 3). The
total computational cost of SR-KDA using the Cholesky factorisation for all
concepts is 1

6m
3 + m2Nc. Compared to the cost of ordinary KDA for multi-

label classification, (N × (92m
3 + m2c)), SR-KDA achieves a several orders of

magnitude (27N times) speed-up over KDA which is massive for large scale
multi-label datasets.

Fig. 3. Multi-label Dimensionality Reduction using SR-KDA. The most computational
part i.e. Cholesky decomposition is performed only once irrespective of the number of
labels.

4 Experimental Setup

4.1 Datasets

We experimented with 2 multi-label datasets. Table 1 shows certain standard
statistics of these datasets. The image dataset “scene” is concerned with semantic
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indexing of images of still scenes [13]. The “yeast” data set contains 14 functional
classes of 2417 genes of Yeast Saccharomyces Cerevisiae [15] where each gene is
represented by a 103-dimensional feature vector. The publicly available feature
vectors are used in this paper 1. A short description of these datasets is presented
below. All reported results are estimated from 5×2 fold cross validation and the
paired t-test is then used to determine their significance under a value of 0.05.

Table 1. Standard and multi-label statistics for the data sets used in the experiments.
DS = Distinct Subsets.

Datasets Domain Samples Features Labels DS

Scene Vision 2407 294 6 15
Yeast Biology 2417 103 14 198

4.2 Evaluation Criterion

Multi-label classification requires different evaluation measures, compared to the
traditional single-label classification. In this paper, 5 different evaluation mea-
sures are used to compare the proposed approach with the state-of-the-art multi-
label classification methods. These measures include Hamming Loss, Accuracy,
Classification Accuracy, and Micro/Macro F1 and are described below.

4.3 Benchmark Methods

In order to show the effectiveness of the proposed approach, the features obtained
from the proposed method (Stacked-KDA) are used to improve the performance
of instance-based multi-label classifier MLkNN [4]. These classifiers are then com-
pared with several state-of-the-art multi-label classifiers (RAkEL, CLR, ECC,
BPMLL). Decision Tree (C4.5) is used as a base classifier in RAkEL [3] while Lin-
ear SVM is used as a base classifier in ECC [6] and CLR[14]. BPMLL is run with
0.05 learning rate, 100 epochs and the number of hidden units equal to 20% of
the input units as recommended in [2]. For the training of these multi-label clas-
sifiers, the Mulan [24] and MEKA 2 open-source libraries in Java for multi-label
classification are used. The proposed method is also compared with state-of-the-
art multi-label dimensionality reduction methods MDDM (non-linear) [16] and
multi-label linear discriminant analysis [25]. Since MDDM is already proved to
be more effective than Principal Component Analysis (PCA), Locality Preserv-
ing Projections (LPP), and Multi-label informed latent semantic indexing MLSI
[17], due to lack of space, we only show a comparison with MDDM. For KDA,
KDA-stacked, and MDDM, RBF kernel is used with γ set to 1/A where A is the
average squared euclidean distance between all elements of the kernel matrix.
For KDA, regularisation parameter δ is set to default value 0.01.

1 All feature vectors can be downloaded from http://mlkd.csd.auth.fr/

multilabel.html
2 http://www.cs.waikato.ac.nz/~jmr30/software

http://mlkd.csd.auth.fr/multilabel.html
http://mlkd.csd.auth.fr/multilabel.html
http://www.cs.waikato.ac.nz/~jmr30/software
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5 Results and Discussion

In this section, we first compare and discuss the results obtained using the pro-
posed method with other dimensionality reduction techniques including LDA,
multi-label LDA [25], and MDDM [16] followed by a comparison with state-of-
the-art multi-label classifiers.

5.1 Comparison with State-of-the-Art Dimensionality Reduction
Techniques

Tables 2-3 compare the performance of the proposed technique. It is observed
from these tables that when the stacked-KDA is used as a dimensionality reduc-
tion technique, a significant improvement has been achieved in all measures and
in both data sets except for hamming loss measure in Yeast when compared with
MLkNN. The features obtained from the proposed method also provide better
discrimination when compared with LDA, MDDM, and MLDA.

Although, it is not a general rule, the proposed method seems to have perfor-
mance advantage over MLkNN (i.e. by using original features) when the number
of features is high. For example, in yeast which does not suffer from the curse-
of-dimensionality problem in the majority of classes, only 2.7% improvement is
achieved when accuracy is used as evaluation measure. In contrast, in scene,
which consists of large number of features, 16.0% increase in performance is
obtained. This supported our earlier argument that the number of features can
significantly degrade the performance of the nearest-neighbor rule. Tables 2 and
3 also show that impact of stacking as better discrimination is observed when
compared with SR-KDA i.e. without stacking. This is due to capturing of cor-
relation among labels during supervised dimensionality reduction.

Table 2. Comparison of proposed method with other dimensionality reduction tech-
niques for Scene. For each evaluation criterion, ↓ indicates “the smaller the better”
while ↑ indicates “the higher the better”. ∗ means significantly better than all other
methods except those which are marked as +.

H-Loss ↓ Accuracy ↑ Clas-Acc ↑ Micro F1 ↑ Macro F1 ↑
MLkNN [4] 0.092 0.644 0.604 0.714 0.718
LDA 0.154 0.502 0.378 0.586 0.598
MLDA [25] 0.126 0.635 0.589 0.646 0.659
MDDM [16] 0.091 0.672 0.636 0.724 0.729
SR-KDA (Proposed) 0.083 0.756 0.712 0.767 0.779
Stacked SR-KDA (Proposed) 0.079∗ 0.767∗ 0.727∗ 0.776∗ 0.787∗

5.2 Comparison with other Multi-label Classifiers

Figure 5.2 shows the comparison of the proposed method with state-of-the-art
multi-label classifiers. It is observed that by using the proposed technique, signif-
icant performance gains have been observed in majority of evaluation measures
for both yeast and scene. Classification accuracy which is a very strict evaluation
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Table 3. Comparison of proposed method with other dimensionality reduction tech-
niques for Yeast

H-Loss ↓ Accuracy ↑ Clas-Acc ↑ Micro F1 ↑ Macro F1 ↑
MLkNN [4] 0.198∗ 0.499 0.165 0.633 0.352
LDA 0.276 0.393 0.031 0.544 0.393
MLDA [25] 0.263 0.440 0.157 0.565 0.405
MDDM [16] 0.199 0.503 0.177 0.635 0.356
SR-KDA (Proposed) 0.213 0.500 0.198 0.628 0.427+

Stacked SR-KDA (Proposed) 0.202 0.513 0.214∗ 0.640+ 0.408

measure and requires the predicted set of labels to be the exact match of the
actual labels ranks first in all data sets. The accuracy which is defined by how
close the actual set of labels is to the predicted set of labels is quite high us-
ing the proposed approach. Overall, there is improvement of 12.1%, in accuracy
when compared with the other best multi-label classifier for scene. Figure 5.2
shows that when Hamming Loss is used as an evaluation measure which is de-
fined as the percentage of labels that are misclassified, our proposed method and
Godbole have achieved best performance.

The proposed method also compares favorably when Micro/Macro F1 are
used as evaluation measures. The two averaging procedures (Micro and Macro)
bias the results differently. The micro-averaging tends to over-emphasise the
performance for the largest categories, while macro-averaging over-emphasizes
the performance on the smallest categories. It is observed that the performance
of Macro F1 is comparable to other ML classifiers. This can be explained by the
fact that these data sets contain as few as one example for some categories, and
since Macro F1 gives an equal weight to every category, misclassification of these
few samples due to nearest-neighbour rule in MLkNN can drop the performance.

5.3 Discussion

The results presented in this paper show the merit of Stacked-SRKDA as
dimensionality reduction technique. The presented method avoids expensive
eigen-value decomposition and thus makes it possible to use KDA in large scale
experiments as a dimensionality reduction technique. For multi-label classifica-
tion, the proposed method leads to an improvement in the majority of data sets
and evaluation measures when compared with other multi-label classifiers that
use more complex processes to model label correlations. In addition, SR-KDA
also inherits the convenient property of data visualization, since it allows low
dimensional views of the data vectors. This makes an intuitive analysis possi-
ble, which is helpful in many practical applications. In summary, considering
both accuracy and efficiency, the proposed approach is very attractive compared
to the other state-of-the-art approaches. Furthermore, the proposed method is
easy-to-use and no tedious parameters tuning is required. For SR-KDA, regu-
larisation parameter δ is set to 0.01 in all data sets and for RBF kernel, the
gamma value is set to the inverse of average squared euclidean distance between
all elements of the kernel matrix.
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Fig. 4. Comparison of the proposed method with state-of-the-art multi-label classifiers

6 Conclusion

In this paper, we have proposed a stacked-based dimensionality reduction method
to simultaneously solve the two major problems in multi-label categorisation
i.e. curse-of-dimensionality and label correlation . The curse-of-dimensionality is
handled by using feature extraction while the correlation problem is solved by
stacked generalisation. The presented approach is then applied to scene and yeast
multi-label datasets. It has been shown that the presented approach provides a
very accurate and efficient solution when compared with the state-of-the-art
multi-label methods.
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Ensemble of Feature Chains for Anomaly Detection 
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Abstract. Along with recent technological advances more and more new threats 
and advanced cyber-attacks appear unexpectedly. Developing methods which 
allow for identification and defense against such unknown threats is of great 
importance. In this paper we propose new ensemble method (which improves 
over the known cross-feature analysis, CFA, technique) allowing solving ano-
maly detection problem in semi-supervised settings using well established su-
pervised learning algorithms. Theoretical correctness of the proposed method is 
demonstrated. Empirical evaluation results on Android malware datasets dem-
onstrate effectiveness of the proposed approach and its superiority against the 
original CFA detection method.       

Keywords: ensemble methods, machine learning, anomaly detection, probabilistic 
methods, network monitoring, Android, malware. 

1 Introduction 

Anomaly detection refers to the problem of findings patterns in data that do not con-
form to expected behavior [1]. Numerous anomaly detection techniques have been 
developed over the years and implemented in various domains, such as fault-
detection, healthcare applications, and intrusion detection systems. Different types of 
anomaly detection methods exist depending on application domain, problem and data 
types, system location etc. The prime differentiation between various techniques is 
according to the type of utilized detection algorithm: supervised, semi-supervised or 
unsupervised.  

Anomaly detection methods based on supervised learning algorithms can be used 
when the training data includes instances labeled as either `normal' or `abnormal'. 
Then, a learning algorithm can be applied to distinguish between these types of data, 
and hence discover anomalies. The major shortcoming of this approach is that it  
requires examples of anomalous data, which often do not exist or are very scarce 
(leading to imbalance class distributions, a known machine learning problem). Fur-
thermore, it requires manual labeling of instances. Moreover, it mainly allows detec-
tion of known attack patterns. In the case of semi-supervised problem settings, only 
`normal' instances are available for training, and thus, only the normal behavior can 
be learned and modeled. Instances that deviate from the learned 'normal' models can 
then be considered as anomalous. Unsupervised anomaly detection techniques detect 
anomalies in an unlabeled dataset under the assumption that the typical normal  
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instances will be much more common than abnormal ones and are looking for in-
stances with less fit to the rest of the data.  

In this paper we propose a new technique allowing solving semi-supervised ano-
maly detection problem using supervised learning methods for which numerous well 
established and quick algorithms exist. The idea of this technique was inspired by two 
existing methods: cross-feature analysis [2] and Classifier Chains [3]. Similarly to 
cross-feature analysis (CFA) the new technique estimates the probability of a feature 
getting a certain value, given the values of other features. The estimated probabilities 
of all the features are then combined into the entry vector's probability following the 
chaining approach, initially suggested in [3] for solving multi-label classification 
problems. The proposed approach is theoretically justified and hence is expected to 
improve the accuracy performance over the original CFA method.  

We evaluate the proposed method experimentally on 15 datasets representing network 
behavior of five real and ten self-developed mobile malware applications and their be-
nign versions. Specifically, we aim to detect mobile malware applications of a new re-
cently appeared self-updating type [4]. The initial version of such malware applications 
which is hosted on official marketplace sites is absolutely benign and does not contain 
any malware by itself. Instead after the application is downloaded and installed on end 
user device the update procedure is initiated and the package containing actual malicious 
payload is downloaded from the attacker's server insensibly to the user. The update ac-
tion can be scheduled for any specific or random time in the future, or even be initiated 
remotely by sending a command message to the devices, using, for instance, Google's 
push notification service. This new technique allows malware applications to stay undis-
covered on the market despite recently deployed scanning service [5] designed to flag 
malicious applications before they can be downloaded by end users. Additionally, such a 
self-updating capability makes it possible for malware developers to simultaneously 
penetrate new threats into numerous devices. The new threats can even exploit system 
vulnerabilities which were unknown at the time of the development of the initial applica-
tion version. Developing methods which allow for identification and defense against this 
new emerging malware type is of great importance. Malware activities of this type and 
most others regularly affect the application's network behavior and can be detected by 
monitoring network behavior patterns. Thus, we focus on monitoring applications net-
work behavior and aim to detect its unexplained changes any time they occur. Evaluation 
results demonstrate that deviations from an application's normal behavior can be detected 
quickly and accurately. In addition, the proposed ensemble algorithm allows for better 
detection and lower false positive rates. 

The rest of the paper is organized as follows. Section 2 describes the existing me-
thods for anomaly detection. Section 3 presents our new method. Section 4 presents 
the conducted experiments and their results. Lastly, Section 5 concludes the paper and 
outlines future research. 

2 Related Work  

Our task relates to the family of semi-supervised anomaly detection methods which 
assume that the training data consists of "normal" instances only (or mainly from 
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normal instances while abnormal instances are negligible). These types of problems 
can be solved, for example, with one-class support vector machines (SVMs), the local 
outlier factor (LOF) method or clustering based techniques [1, 6]. In the literature 
there are several attempts to use probabilistic methods for anomaly detection. In par-
ticular, Bayesian networks [7] and cross feature analysis [2, 6]. Generally speaking all 
these methods are based on the notion of likelihood. The idea is to evaluate the like-
lihood of getting a current behavior given the historical behavior of the application. 
Formally, it can be defined as follows    , , … , | , 
where , , … ,  is the features vector,  is the total number of features and  is 
a training set of normal events. If the estimated likelihood is relatively low then we 
define the current behavior as abnormal and we suspect that it might be due to mali-
cious activity. In order to estimate the likelihood we utilize probabilistic supervised 
learning methods. Given a training set, these methods can induce a model that esti-
mates the probability of a feature getting a certain value, given the values of all other 
features. We examine two different ways to estimate the likelihood using probabilistic 
supervised learning methods: original cross-feature analysis [2] (CFA) and its im-
proved versions referred to as Feature Chains (FC) and Ensemble of Feature Chains 
(EFC). 

2.1 Cross-Feature Analysis 

The cross-feature analysis approach was initially presented by Huang et al. [2] and 
then further analyzed by Noto et al. [6]. Both of these works have found this approach 
successful and useful for anomalies detection. Differently from Huang et al. [2] which 
consider discrete features only and from Noto et al. [6] who mainly focus on methods 
for measuring and combining the contributions of each feature predictor, we devel-
oped an improved version of cross-feature analysis technique which can handle both 
numeric and nominal features and is suitable for running on mobile devices. As well, 
we precisely implemented the original CFA version for comparison purposes. In the 
following the general idea of cross-feature analysis and the original CFA technique 
are presented followed by the description of the proposed improvements. 

The main assumption underling the cross-feature analysis approach is that in nor-
mal behavior patterns, strong correlations between features exist and can be used to 
detect deviations caused by abnormal activities. The basic idea of a cross-feature 
analysis method is to explore the correlation between one feature and all the other 
features. Formally, cross-feature analysis approach tries to solve the classification 
problem : , … , , , … , , where , , … ,  is the features vec-
tor and  is the total number of features. Such a classifier is learned for each fea-
ture , where 1, … . Thus, an ensemble of learners for each one of the features 
represents the model through which each features vector will be tested for "normali-
ty". The procedure utilized for online analysis of each individual instance is described 
below. 
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When a features vector representing a normal event is tested against C , there is a 
higher probability for the predicted value to match (for discrete features) or be very 
similar (for numeric features) to the observed value. However, in the case of a vector 
representing abnormal behavior, the probability of such a match or similarity is much 
lower. Thus, by applying all the features models to a tested vector and combining 
their results, a decision about vector normality can be derived. The more different the 
predictions are from the true values of the corresponding features, the more likely that 
the observed vector comes from a different distribution other than the training set 
(i.e., represents an anomaly event). A threshold distinguishing between normal and 
anomalous vectors can be computed by calculating the lower bound of output values 
from normal events. 

For each predictor  the probability of the corresponding feature value of a vector 
 to come from a normal event is computed. For numeric features this probability, 

noted   , is calculated as the following:     1                       (1) 

where,  is the predicted value and  is the actual observed value. Note that 
if the result of the logarithm function above is greater than one, it is converted to one. 
Thus, the calculated probability is always in the range [0, 1]. For the nominal features 
the estimated probability for the true class is utilized. In [2] two options for combin-
ing predictions of all features into the final decision are examined: Average Match 
Count and Average Probability. The second option which computes the average of 
probabilities over all classifiers, as follows     ∑ | , … , , , … ,                      2  

was found by the authors as providing better performance results than Average Match 
Count. Thus, we evaluate this approach in our experiments. Events with the Average 
Probability below the threshold learned on normal data are classified as anomaly.  

3 Feature Chains 

In this section we describe the proposed improvement over the original CFA method 
which is referred to as Feature Chains. First we describe a single feature chain model. 
Then we show how to build an ensemble of feature chains. 

3.1 A Single Feature Chain Model 

This new method for likelihood estimation of an observed features vector , , … ,  was inspired by a successful algorithm for multi-label classification 
called Classifier Chains [3]. Classifier Chains method was recently proposed for solv-
ing multi-label classification problem using binary classifiers in a way that overcomes 
the label independence assumption. According to the Classifier Chains algorithm, a 
single binary classifier is associated with each one of the predefined labels in the  
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dataset and all these classifiers are linked in an ordered chain. The feature space of 
each classifier in the chain is extended with the 0/1 label associations of all previous 
classifiers. Following this idea we suggest to perform the chaining on the input fea-
tures (as opposed to the labels chain that was performed in the original Classifier 
Chains algorithm), for estimating likelihood of the observed features vector in the 
following way:  , , … , | , , … ,                                    3  

Note that Equation (3) is justified by the following equivalence which can be derived 

by applying Bayes rule ( |  ,
) on the features conditional probabilities, 

calculated at the right side term of the Equation (3):  
 | | , … | , , … ,        , , ,, … L, L , … ,L , … ,                      4  

 
By reducing the corresponding denominator and numerator in Equation (4) we will be 
left by only the last term L, L , … ,  which is equivalent to the left side of Equ-
ation (3). Differently, from the Equation (2) used in the original version of Cross-
Feature Analysis method the Equation (3) used by Feature Chains approach has a 
theoretical justification. Thus, it potentially can be used for the likelihood estima-
tion of , , … ,  and we expect for a practical improvement in the anomaly 
detection accuracy. 

Similarly to the Cross Feature Analysis method, every conditional probability term 
in Equation (3) is estimated using any probabilistic supervised learning algorithms 
that can provide the conditional probability of the target feature given the input fea-
tures.  If the examined feature is nominal then classification methods (such as SVM 
or classification trees) should be used and if the target feature is numeric, then regres-
sion methods should be used. Certain methods such as Neural Networks and Classifi-
cation and Regression tree (e.g., CART) can be used for both nominal and numeric 
target features. 

In the case of numeric features, the distance between actual and predicted values is 
used as a proxy to the estimated probability for getting the actual value. Various scal-
ing methods can be used to convert the distance to a probability. For example, one of 
the options is the log distance approach as proposed by [2] and presented in Equation 
(1). Another approach followed by [6] is to calculate the distance as the difference in 
actual and predicted values divided by the range of that featureÊs value (i.e., the max-
imum distance is 1.0). Yet, another option is to divide the difference in value by the 
mean of the observed values for that feature. 

One concern about the proposed feature chain algorithm is the low dimensionality 
of the data used at the beginning of chaining process. It is true that using only a few 
attributes in the beginning is oversimplification. But on the other hand the probability 
can be estimated more accurately due to the low number of parameters to estimate.  
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In addition we try to overcome this oversimplification by using ensemble of Feature 
Chains as explained below, thus allowing averaging over numerous different chains. 

3.2 Ensemble of Feature Chains  

It should be noted of course that the order of features in the chain may have an effect 
on the model's accuracy. As with any learning algorithm, some models may overesti-
mate the probability value and others underestimate the probability value. A conve-
nient option for solving this issue is using an ensemble of Feature Chain models 
where each of the models is learned on a different chain of randomly ordered features. 
This approach was proved successful in the case of Classifier Chains method [3]. 
Additionally, it is known that ensemble methods are able to improve the prediction 
performance over a single classifier [8]. Note that Feature Chains method can occa-
sionally be referred to as ensemble method because it involves multiple models. 
However, none of these models is capable for predicting the likelihood of the entry 
instance and therefore we use the term ensemble strictly in the sense of combining the 
final (i.e. instance-related) predictions of multiple models. Below the EFC learning 
process is described.  

An Ensemble of Feature Chains trains m Feature Chain models , , … , . Each 
of the  is trained with a random features ordering in the chain. Hence predictions 
of each  model depend on underlying features order and are likely to be diverse in 
border-line cases. For combining the predictions of all the models several approaches 
exist. In this paper we examine a simple and popular majority voting approach, ac-
cording to which binary decisions (0 – for normal and 1 – for anomalous instance) of 
all distinct FC models are summarized and divided by total number of models m, so 
that the output, referred to as anomaly votes score is normalized into the range of [0, 
1]. A threshold is used to derive the final decision such that an instance is marked as 
anomaly if its anomaly votes score is above the defined threshold t.  

4 Experimental Studies 

This section presents the evaluation of the proposed detection methods. First, the data 
aggregated from several real and self-developed malware applications utilized in this 
experiment is described. Then, the system evaluation processes is described and the 
observed results are presented.  

4.1 Evaluated Malware 

For the evaluation of the proposed methods we experimented with five real and ten 
self-written Trojan malware. Each malware has two versions: the original benign 
application requesting network access permission for various purposes (such as dis-
playing advertisements, high scores update, information or data sharing, etc.) and the 
repackaged version of the original application with injected malware code utilizing 
network communication for malicious purposes. 
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For the experiments with the real malware, five infected applications and their be-
nign versions were used. The infected applications and the corresponding versions of 
the benign application were obtained from a repository collected by crawling the offi-
cial and various alternative Android markets for over a year and a half. We used two 
applications injected with PJApps Trojan - Fling and CrazyFish; two applications 
injected with Geinimi Trojan - Squibble Lite and ShotGun; and one sample of Droid-
KungFu-B malware found within the OpenSudoku game. The PJApps Trojan sends 
sensitive information containing the IMEI, Device ID, Line Number, Subscriber ID, 
and SIM serial number to a web server, and retrieves commands from a remote com-
mand and control server. Similarly, the Geinimi Trojan transmits information from 
the device to the server and may be instructed to perform certain actions. The Droid-
KungFu-B malware targets rooted phones and requests for the root privilege; then, 
with or without the root privilege, it collects and steals the sensitive phone informa-
tion, such as IMEI, phone model, etc. All the infected applications are mobile games 
which exploit network communication for certain purposes, such as online advertise-
ments or score updates.  

Malware applications with the advanced self-updating capabilities have just started 
to appear and there are not yet enough known real malware samples of this type. 
Thus, for the purposes of this paper, we have created the malware packages using two 
different types of self-updating behavior (type 1, entry application update and type 2, 
injection of compiled malicious component) and infected several open-source applica-
tions with these packages.  

The utilized open-source applications are: APG, K-9 Mail, Open WordSearch, Rat-
tlesnake Free and Ringdroid. The APG, the Android Privacy Guard application,  
provides OpenPGP functionalities, such as encryption and signing of emails. It uses 
network connections for public and secret keys management. K-9 Mail is an open 
source email client for Android. Open WordSearch is a game application that uses 
network connections to synchronize global high scores. Rattlesnake Free is also a 
game application utilizing network connections for online advertisements. Ringdroid 
is an application for recording and editing sounds and creating ringtones directly on 
the Android phone. It uses network connections to share ringtones and other sounds 
created by users. Each one of these applications was infected and evaluated using the 
created malware of both types. To simulate malicious behavior within the created 
malware, we choose to implement some simple malicious behavior patterns of known 
malware, such as stealing a user's contacts list, recent calls details, and user's GPS 
location which are sent out to a remote server.  

An application infected with the malware component of type 1 will present an "up-
date is available" notification to the user when the corresponding command is re-
ceived by the device. When a user agrees to install the update, it will download a 
malicious version of the same application from a remote server and replace the benign 
version with the malicious one. At this stage the user is presented with a list of per-
missions to be granted to the new application version, which actually could differ 
from those granted to the original application. Once installed, the new malicious ver-
sion will wait for an external command. When the command is received, it steals the 
user's contacts list and sends it to a remote server. 
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An application infected with malware component of type 2 will silently download 
a precompiled malicious payload when the corresponding command is received by the 
device, and then continue to load and execute malicious code without any notification 
to the user. The malicious payload will first steal the user's contacts list and send it to 
a remote server and then continue to report the user's location and recent call details to 
the server every specified time period (set to two minutes for our experiments).  

For data aggregation all the malware applications and their benign counterparts 
were executed on the specially designated devices and their network behavior features 
were collected. The list of the utilized features is presented at Table 1.  Initially, a 
benign version of each evaluated application was installed and executed on a device 
for two days. Then, it was injected\replaced by the malicious version, which was  
executed for at least one hour. 

Table 1. The list of utilized features 

No. Feature Brief Description 
1 avg_sent_bytes Represent the average amount of data sent or received by an 

application at the observed time interval (of 1 min.) 2 avg_rcvd_bytes 
3 avg_sent_pct Represent the average portion of sent and received amount of 

data at the observed time interval (of 1 min.) 4 avg_rcvd_pct 

5 pct_avg_rcvd_bytes 
Represents the portion of average received amount of data at 
the observed time interval (of 1 min.) 

6 inner_ sent Average time intervals between send\receive events occurring 
within the time interval of less than 30 seconds.  7 inner_ rcvd 

8 outer_ sent Average time intervals between send\receive events occurring 
within the time interval above or equal to 30 seconds. 9 outer_ rcvd 

4.2 Experimental Setup 

We implemented all the evaluated methods in Java using Weka [9] open source li-
brary. The Decision/Regression tree (REPTree Weka's  implementation) algorithm 
was used as base learning algorithm for CFA and FC methods, as it can handle both 
nominal and numeric target features. The decision threshold values were learned on a 
separate set of labeled data examples during the calibration experiments. The values 
allowing preserving an acceptably low level of false positive alarms (below 20%) 
were determined as follows: 0.7 for CFA method and 0.001 for FC method.  

The ensemble methods are known for their capability to improve the prediction 
performance over a single classifier in exchange for more computational resources 
and longer execution times. Thus, for the sake of a fair comparison, we compare the 
EFC, utilizing the REPTree method as the base learner of each single chain model, 
with CFA and FC methods set to use Rotation Forest [10] ensemble as their base 
learner. The versions of CFA and FC methods utilizing the ensemble algorithm as 
their base learner are denoted CFA-IE and FC-IE correspondingly (IE stands for In-
ternal Ensemble). Rotation Forest is a recently proposed but already well-known suc-
cessful method for building classifier ensemble using independently trained decision 
trees. The Rotation Forest was set to use the REPTree algorithm as its base learner. 
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The majority voting threshold of the EFC method was set to a commonly used intui-
tive value of 0.5. Influence of the ensemble models number on the performance  
accuracy was analyzed on the calibration datasets and m=50 was selected as always 
providing stable optimal results. Respectively, the number of iterations for the Rota-
tion Forest was set to 50, also. 

For learning the "normal" patterns first 30 records (not counting a few bootstrap-
ping records) of each benign application were used. The rest of the normal data and 
observed traces of malicious versions were used for testing the methods detection 
performance. To evaluate the detection capabilities of the proposed methods the fol-
lowing standard measures were employed: True Positive Rate (TPR) measure (also 
known as detection rate), which determines the proportion of correctly detected in-
stances relating to application's malicious behavior and the False Positive Rate (FPR) 
measure (also known as false alarm rate), which determines the proportion of mista-
kenly detected anomalies in an actually normal application behavior. Note that some-
time significant deviations in normal application's behavior can be caused by changes 
in user's behavior. Thus a certain level of false alarms might be acceptable especially 
for applications with diverse network functionality.  

4.3 Results 

Initially we compare the new methods, FC and EFC, to the original CFA method. 
Results of these algorithms for all the evaluated benign\malware application pairs are 
presented in Table 2. The best result for each evaluation measures on a particular 
application dataset is marked in bold separately for the FC vs. CFA and EFC vs. CFA 
pair-wised comparisons.   

Table 2. Malware Detection Results – New Methods vs. Original CFA 

 Application 
name 

TPR (%) FPR (%) 
CFA FC EFC CFA FC EFC 

R
ea

l 
  

m
al

w
ar

e Fling 66.8 69.0 67.9 0 4.2 3.5 
OpenSudoku 100 100 100 0 0.0 0 

ShotGun 100 100 100 0 4.8 4.8 
Squibble 77.5 95.0 97.5 15.8 15.8 15.8 

Crazy Fish 90.6 100 100 0 7.7 7.7 

Se
lf

-u
pd

at
e 

1 

APG 100 92.3 92.3 0 0.0 0 
K-9 Mail 91.7 100 100 0 2.0 0 

WordSearch 100 100 100 6.3 6.3 6.3 
Rattlesnake 92.3 92.3 92.3 8.1 12.2 6.5 
Ringdroid 100 100 100 0 0.0 0 

Se
lf

-u
pd

at
e 

2 

APG 100 100 92.9 0 4.3 0 
K-9 Mail 66.7 83.3 91.7 0 2.9 0 

WordSearch 100 100 100 8.3 8.3 8.3 
Rattlesnake 83.3 100 100 8 16.0 8.0 
Ringdroid 92.3 100 100 0 0.0 0 
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Additionally, we perform an experiment comparing EFC with CFA and FC me-
thods utilizing ensemble algorithm as their base learner. Results of these algorithms 
are presented in Table 3. The best result for each evaluation measures on a particular 
dataset is marked in bold separately for the FC-IE vs. CFA-IE and EFC vs. CFA-IE 
pair-wised comparisons. 

Table 3. Malware Detection Results – Ensemble Methods 

 Application 
TPR (%) FPR (%) 

CFA-IE FC-IE EFC CFA-IE FC-IE EFC 

R
ea

l 
  

m
al

w
ar

e Fling 65.8 68.5 67.9 0.7 2.8 3.5 
OpenSudoku 100 100 100 0 0 0 

ShotGun 99.3 100 100 0 7.1 4.8 
Squibble 82.5 92.5 97.5 0 15.8 15.8 

Crazy Fish 94.9 100 100 0 0 7.7 

S
el

f-
up

da
te

 1
 APG 100 100 92.3 0 0 0 

K-9 Mail 100 100 100 38.8 0 0 
WordSearch 100 100 100 6.3 6.3 6.3 
Rattlesnake 92.3 100 92.3 36.6 9.8 6.5 
Ringdroid 80.0 100 100 16.7 0 0 

S
el

f-
up

da
te

 2
 APG 92.9 100 92.9 0 0 0 

K-9 Mail 25 83.3 91.7 40 0 0 
WordSearch 100 100 100 8.3 8.3 8.3 
Rattlesnake 100 100 100 32 9.3 8.0 
Ringdroid 100 100 100 16.7 0 0 

 
Lastly, we evaluate detection performance of EFC method with respect to the 

number of ensemble models. The TPR and FPR results on two of the evaluated appli-
cations are presented in Fig. 1. For all other evaluated applications similar results 
were observed. 

Statistical significance of the difference between algorithms' results was deter-
mined by Wilcoxon signed-ranks test [11]. The exact confidence level is mentioned 
specifically for each comparison at the results discussion. 

Generally, it can be seen that for almost all malicious applications, the high level of 
deviation (80-100% of anomalous instances) from the normal network behavior was 
detected by all the evaluated methods. Additionally, it can be seen that the FPR of all 
the detection algorithms is below 10% in most cases.  

Comparing the performance of the proposed Feature Chain and the original CFA 
approaches, it can be seen that FC significantly outperforms the CFA in terms of TPR 
(the difference is statistically significant at 0.05 confidence level). It provides higher 
detection rate on 7 datasets and lower detection rate on 1 dataset only. However, at 
the same time it suffers from much higher false alarms rate than CFA method (the 
difference is also statistically significant at 0.05 confidence level). Yet, the EFC ap-
proach successfully overcomes this drawback: aggregation of numerous FC  
models into a composite ensemble model allows reduction of FPR to statistically 
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indistinguishable difference comparing to CFA method, while preserving the very 
high detection rate on all the datasets.     

We continue by comparing the performance of the EFC, FC-IE and CFA-IE me-
thods. As can be seen (in Table 3) both EFC and FC-IE methods provide the highest 
detection rate on most datasets. There are slight differences between TPR results of 
these two methods on a few datasets, however this difference is statistically insignifi-
cant. On the other hand, it can be seen that CFA-IE method archives lower TPR on 8 
and 6 datasets comparing with FC-IE and EFC methods correspondingly. In some of 
these cases the difference in the achieved detection rates is very meaningful and could 
lead to much later identification of the malware. At the same time, the CFA-IE me-
thod outperforms (in terms of TPR) the FC-IE and EFC methods in 0 and 1 cases, 
only, correspondingly. The difference between CFA-IE and FC-IE detection rate is 
statistically significant at 0.01 confidence level. Additionally, considering the FPR of 
the ensemble algorithms, it can be seen that CFA-IE method has unexpectedly high 
level (above 20%) of false alarms on several datasets, while both EFC and FC-IE 
preserve relatively low FPR values.     

 
Fig. 1. EFC performance with respect to number of models 

Considering, the EFC performance with respect to the number of ensemble models 
(as depicted in Fig. 1) it can be seen that high and stable level of True Positive Rate is 
achieved at relatively low number of models, 7. It can be seen also that larger 
number of models leads to lower False Positive Rate. However, for achieving a stable 
low FPR level, a larger number of models, regularly 30, is needed. 

Summarizing the above comparison we conclude that the proposed Feature Chains 
technique allows for significant improvement of the detection performance over the 
original CFA method. However, it suffers from a higher False Positives Rate. At the 
same time, the two evaluated ensemble versions of the new Feature Chains methods, 
EFC and FC-IE, allow for significant reduction in the false alarms rate (the difference 
is statistically significant at 0.05 confidence level), while preserving the high True 
Positive Rate. Hence, the results justify using the proposed ensemble methods, FC-IE 
or EFC, for anomaly detection.  

0

20

40

60

80

100

2 3 5 7 10 15 19 20 25 30 35 40 45 50 

De
te

ct
io

n 
Ra

te
 

Number of Models 

K-9 mail client 

TPR

FPR

0

20

40

60

80

100

2 3 5 7 10 15 19 20 25 30 35 40 45 50 

De
te

ct
io

n 
Ra

te
 

 

Number of Models 

Rattlesnake  game 

TPR

FPR



306 L. Tenenboim-Chekina, L. Rokach, and B. Shapira 

 

5 Summary and Conclusions 

This paper presented a novel probabilistic method for solving semi-supervised ano-
maly detection problems and its ensemble version. The new method is based on the 
known cross-feature analysis and classifier chaining methods. It can handle numeric 
and nominal features and is suitable for running on mobile devices. The presented 
method can be used for solving various semi-supervised anomaly detection problems. 
Theoretical correctness of the proposed method was demonstrated. 

Empirical evaluation of the proposed methods on the variety of datasets demon-
strated effectiveness of the proposed approach for the defined problem: a high TPR 
along with low FPR could be achieved. The proposed Ensemble of Feature Chains 
and Feature Chains using internal ensemble proved superior to the original CFA me-
thod and its ensemble version.  

Among our future research directions are evaluation of the present methods on 
more datasets from different domains and comparison with other anomaly detection 
methods.  

References 

1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. 
Surv. 41(3), 1–58 (2009) 

2. Huang, Y.A., Fan, W., Lee, W., Yu, P.S.: Cross-feature analysis for detecting ad-hoc 
routing anomalies. In: IEEE 23rd Int. Conf. on Distributed Computing Systems, pp. 478–
487 (2003) 

3. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label Classifi-
cation. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML 
PKDD 2009, Part II. LNCS, vol. 5782, pp. 254–269. Springer, Heidelberg (2009) 

4. Symantec blog:  
http://www.symantec.com/connect/blogs/androiddropdialer-
identified-google-play 

5. Google mobile blog, android and security: http://googlemobile.blogspot.co. 
il/2012/02/android-and-security.html 

6. Noto, K., Brodley, C., Slonim, D.: Anomaly detection using an ensemble of feature mod-
els. In: Proc. of the 10th IEEE International Conf. on Data Mining, pp. 953–958 (2010) 

7. Ye, N., Xu, M., Emran, S.M.: Probabilistic networks with undirected links for anomaly de-
tection. In: Proceedings of the IEEE Systems, Man, and Cybernetics Information Assur-
ance and Security Workshop, West Point, NY, pp. 175–179 (2000) 

8. Rokach, L., Maimon, O.: Ensemble Methods for Classifiers. In: Data Mining and Know-
ledge Discovery Handbook. Springer US (2005) 

9. Weka 3: Data Mining Software in Java, http://www.cs.waikato.ac.nz/ml/ 
weka/ 

10. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation Forest: A New Classifier Ensemble 
Method. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1619–
1630 (2006) 

11. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Ma-
chine Learning Research 7, 1–30 (2006) 



Soft-Voting Clustering Ensemble

Haishen Wang, Yan Yang	, Hongjun Wang, and Dahai Chen

School of Information Science & Technology
Southwest Jiaotong University
Chengdu, 610031, P.R. China

{hshwang,dahaichen}@my.swjtu.edu.cn,
{yyang,wanghongjun}@swjtu.edu.cn

Abstract. Clustering ensemble is a framework for combining multiple
based clustering results of a set of objects without accessing the original
feature of the objects. The majority voting method is widely used in
clustering ensemble because of its simplicity, robustness and stability. In
general, the existing voting methods only accept hard clustering results
as input. In this paper we propose a new algorithm, Soft-Voting Clus-
tering Ensemble (SVCE), which has better flexibility and generalization.
The theory of SVCE is illustrated and the algorithm of SVCE is stated
in detail firstly. Then 15 UCI datasets are used for the experiment and
the results show that the proposed method has a better performance
than state of the art ensemble methods in most cases, such as Majority
Voting, Weighted Majority Voting, CSPA, MCLA, HGPA.

Keywords: Clustering ensemble, Majority voting, Soft-Voting Cluster-
ing Ensemble.

1 Introduction

Clustering ensemble [1] is widely used in data mining, information retrieval,
knowledge-reuse [2], multiviews clustering [3], distributed computing [4] and
other fields. Clustering ensemble is a framework for combining multiple based
clustering results of a set of objects without accessing the original feature of the
objects. In general, clustering ensemble can be considered as two step processes:
generating based clusterings and consensus function [5]. In the first step, all ob-
jects are partitioned into several separate clusters, known as based clustering
results, which are generated either by different algorithms or by the same algo-
rithm with different initialization. In the second step, all based clustering results
are combined by a consensus function to get the final result.

Depending on the way that objects are assigned to clusters, clustering methods
are divided into two kinds: hard clustering and soft clustering. In hard clustering,
the degree of membership between an object and a cluster is 0 or 1, showing that
every object only belongs to one cluster. In soft clustering, every object belongs
to any cluster with different degrees of membership. Soft clusterings output a
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matrix of membership degrees instead of a label vector for all objects; often these
degrees of a object sum up to one.

Clustering ensemble can go beyond what is typically achieved by a single
clustering algorithm in several respects [6]. First, ensemble model improves ro-
bustness and has better average performance across the domains and datasets.
Second, ensemble model has novelty that finding a combined solution unattain-
able by any single clustering algorithm. Third, ensemble model provides a higher
stability and confidence estimation that clustering solutions with lower sensitiv-
ity to noise, outliers or sampling variations and clustering uncertainty can be
assessed from ensemble distributions. Forth, ensemble model has a better par-
allelization and scalability, because of parallel clustering of data subsets with
subsequent combination of results and the ability to integrate solutions from
multiple distributed sources of data or attributes.

There are five popular consensus functions used in clustering ensemble [7],
for example co-association method, majority voting method, hypergraph meth-
ods, mutual information method and mixture model method. In co-association
method, co-association matrix is used as similarity matrix, and one can use
numerous similarity-based clustering algorithms by applying them to the co-
association matrix. In major voting method, the first step is to solve a label
correspondence problem and the second step is to use a simple voting to assign
objects in clusters. In hypergraph method, all clustering results are represented
as hyperedges on a graph with N vertices, each hyperedge describes a set of
objects belonging to the same cluster and a consensus function is formulated as
a solution to hypergraph partitioning problem. In mutual information approach,
the objective function for a clustering ensemble can be formulated as the mutual
information between the empirical probability distribution of labels in the con-
sensus partition. In mixture model method, the consensus clustering is derived
from a solution of the maximum likelihood problem for a finite mixture model
of the ensemble of partitions.

In terms of soft clusterings ensemble, Punera et al. proposed several consensus
algorithms that work on soft clusterings and experimented with many real-life
datasets to empirically show that using soft clusterings as input does offer sig-
nificant advantages [8]. Yang et al. stated a method to combine soft clusterings
based on fuzzy similarity measure and showed promising results compared to
general clustering ensemble methods based on crisp clusterings [9]. Zhai et al.
presented a dual boosting for fuzzy clustering ensemble, which is efficient in
stability and accuracy [10].

Strehl and Ghosh first proposed clustering ensemble in 2002 and they pro-
posed three graph-theoretic approaches for finding the consensus clustering [1].
Fred et al. explored evidence accumulation for combining the results of multiple
clusterings [11] and showed that the evidence accumulation clustering performs
better compared to other combination methods [12]. Zhang et al. stated a new
algorithm called spectral clustering ensemble, which provides necessary diversity
and high quality of component learners, and overcomes the shortcomings of spec-
tral clustering [13]. Fern et al. defined the clustering ensemble selection problem,
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and achieved a better performance by selecting a subset of based clustering re-
sults to form a small ensemble [14]. Domeniconi et al. addressed the problem of
combining multiple weighted clusters, making use of the weight vectors associ-
ated with the clusters [15]. Ayad et al. presented a more general formulation of
the voting problem as a regression problem with multiple-response and multiple-
input variables [16]. Wang et al. proposed Bayesian cluster ensembles, which is
mixed-membership model for learning clustering ensemble and is applicable to all
the primary variants of the problem [17]. Yang et al. illustrated the novel semi-
supervised consensus clustering ensemble algorithm based on multi-ant colonies,
which incorporates pairwise constraints as well [18].

Most of popular ensemble approaches only accept hard clustering results as in-
put. In order to form an ensemble of soft clustering using the methods mentioned
above, we have to “harden” the results. This leads to the loss of the valuable in-
formation produced by soft clustering. In this paper we propose SVCE algorithm
that accept the results of soft clustering and use the information adequately.

Compared with state of the art ensemble methods, there are two advantages
of SVCE.

(1) SVCE has better flexibility and generalization. It not only can do an
ensemble in its own way, but also can accept hard clustering results. In addition,
membership degree of SVCE is [0,1] instead of {0,1}.

(2) SVCE has higher robustness. By making full use of the valuable informa-
tion produced by soft clustering, used as input, SVCE obtains a better perfor-
mance.

In the rest of this paper, related work on majority voting is described in Sec-
tion 2. The theory and algorithm of SVCE are introduced formally in Section 3.
The experimental setup and results comparison with various ensemble methods
are showed in Section 4. Finally, this paper is concluded in Section 5.

2 Related Work

2.1 Fuzzy C-Means

Fuzzy c-means (FCM) is a popular soft clustering method, which is proposed by
Dunn [19] and expanded by Bezdek [20]. FCM shows how to group objects into
a special number of different clusters. The purpose of this method is to find the
best c-partitions at the same time every object can belong to several clusters
with different membership degrees.

The objective function of FCM Algorithm is

J(U,C1, ..., Cc) =

c∑
i=1

Ji =

c∑
i=1

n∑
j

uq
ijd

2
ij (1)

where uij is the membership degree of object j and cluster i, and it is between
0 and 1, and

∑c
i=1 uij = 1; Ci is the i-th cluster center, c is the number of all

clusters; dij = ||Ci−Xj|| is the Euclidean distance between object j and cluster
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i; The q is weight exponent, which can be any real number greater than 1. The
number q is larger, the fuzziness is greater. So q can indicate the grade of fuzzy.

However this objective function is too complex to use for computation. So
two necessary conditions are used to replace it, which can make the objective
function get smallest value. They are as follows,

Ci =

∑n
j=1 u

q
ijxj∑n

j=1 u
q
ij

, (2)

uij =
1∑c

k=1(
dij

dkj
)2/(q−1)

. (3)

Then we do a iteration by using this two equation and update the membership
degree uij and the cluster center Ci. This iteration can be ended when ||Ct+1 −
Ct|| < ε, where ε is a termination criterion, which is between 0 and 1, and it is
very small, and t is the iteration steps.

2.2 Majority Voting

Majority voting [21] is a simple and intuitive ensemble technique. Essentially,
the ensemble chooses the cluster for object which is chosen by the majority of
based clustering results.

Let us define the decision of the m-th clustering Hm as hm,i ∈ {0, 1} (m =
1, 2, 3, ...,M , i = 1, 2, 3, ..., C), where M is the number of based clustering results
and C is the number of clusters. If m-th clustering result chooses cluster i, then
hm,i = 1, and 0 otherwise. The majority voting result in an ensemble decision
for cluster k if

M∑
m=1

hm,k = max
i

M∑
m=1

hm,i . (4)

There are many works on majority voting for its simpleness and stability. Breiman
developed the bagging predictors, which is a method to generate multiple ver-
sions of a predictor and use these to get an aggregated predictor. The aggregation
averages over the versions when predicting a numerical outcome and does a ma-
jority voting when predicting a cluster [22]. Dietterich proposed the Bayesian
voting as follows,

P (Hm|S) ∝ P (S|Hm)× P (Hm) (5)

and the Bayesian voting primarily addresses the statistical component of ensem-
bles [23]. Stepenosky et al. used majority voting and decision templates to form
an ensemble and explored the feasibility of a diagnostic tool for early diagnosis of
Alzheimers disease [24]. Zhou et al. developed four methods of voting, weighted-
voting, selective voting and selective weighted-voting to do the ensemble and
improved the clustering performance [25]. Fu et al. proposed a fuzzy majority
voting scheme and offered a decision model based on fuzzy set theory for fuzzy
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clustering ensemble [26]. Tumer et al. developed the voting active clusters for
combining multiple based clusterings into a single unified “ensemble” clustering
which is robust against missing data and does not need to collect all objects
in one central location [27]. Rokach et al. made a summary that all existing
ensemble techniques, and voting has been mentioned as an important ensemble
method [28]. Toman et al. proposed a method using a generalization of weighted
majority voting scheme to locate the optic disc in retinal images automatically
and achieved better performance [29].

3 Soft-Voting Clustering Ensemble

In this section we first introduce Soft-Voting from input, output and other as-
pects. Then we describe the function of SVCE and make a comparison between
SVCE and Majority Voting Clustering Ensemble (MVCE) in detail.

3.1 Soft-Voting

An object is partitioned into the cluster supported by most partitions in majority
voting. Similar to majority voting, Soft-Voting assigns an object to the cluster
with the highest membership degree.

As mentioned above, the input of Soft-Voting is different from majority voting.
Now it is a matrix of membership degrees instead of a group of labels. If an object
has a group of membership degrees just like (0.7, 0.2, 0.1), it means that the
possibility that this object belongs to the first cluster is 0.7, the second is 0.2,
and the third is 0.1. So this object most possibly belongs to the first cluster. If
a voting is needed, this object is completely assigned to the first cluster, and
the group of membership degrees becomes (1, 0, 0). If there are many groups
of membership degrees for one object, all groups have to be combined before
voting.

Suppose that all the based clustering results of one dataset are independent. If
the probability that object j belongs to cluster c in partition m1 is P (c−m1) and
the probability that object j belongs to cluster c in partitionm2 is P (c−m2), the
probability that object j belongs to cluster c in both partition m1 and partition
m2 at the same time is P (c−m1m2), given by

P (c−m1m2) = P (c−m1)× P (c−m2) . (6)

In this processing, we use the product of two entities in same position as a new
membership degree. For example, there are two partitions of 3 objects,

m1 =

∣∣∣∣∣∣
0.8 0.1 0.1
0.2 0.7 0.1
0.3 0.2 0.5

∣∣∣∣∣∣ , m2 =

∣∣∣∣∣∣
0.7 0.1 0.2
0.1 0.8 0.1
0.2 0.2 0.6

∣∣∣∣∣∣ .
As for the object 1, three values (0.8×0.7, 0.1×0.1, 0.1×0.2) are used as new
membership degrees, because they show the probability that the two partitions
support this object assigned into the same cluster.



312 H. Wang et al.

The result of the two partitions combined by Soft-Voting is

m1×m2 =

∣∣∣∣∣∣
0.8× 0.7 0.1× 0.1 0.1× 0.2
0.2× 0.1 0.7× 0.8 0.1× 0.1
0.3× 0.2 0.2× 0.2 0.5× 0.6

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0.56 0.01 0.02
0.02 0.56 0.01
0.06 0.04 0.30

∣∣∣∣∣∣ .
The result needs to be normalized.As for the object 1, the sum of probability (0.56,
0.01, 0.02) is not equal to 1.0, the solution is that we use 0.56/(0.56+0.01+0.02)
to replace 0.56, 0.01/(0.56+0.01+0.02) to replace 0.01, 0.02/(0.56+0.01+0.02) to
replace 0.02. Then the sum of membership degrees of the first object is 1.0. After
having the normalized result, we choose cluster for every object by Soft-Voting.

3.2 Clustering Ensemble Based on Soft-Voting

For SVCE, we repeatedly use formula (6) to do an ensemble among all based
clustering results, and use Soft-Voting to choose cluster for every object.

Letus assume that there areM partitions of a givendatasetX = {x1, x2, ..., xN}
into C clusters. Each of these M partitions is represented by an N × C member-
ship matrix Um (m = 1, ...,M). um

ij is the element of Um
ij and means the degree of

membership of xj to the i-th cluster of the m-th partition.
The purpose is to choose the cluster for every object with the highest mem-

bership degree. Having M partitions, first to all, an ensemble is formed among
the M partitions as formula (6). In the process of ensemble, the uij is normalized
whenever two partitions are combined.

The main technique of SVCE is showed by formula(7),

x̂j = arg max
i

M∏
m=1

um
ij (i = 1, 2, ..., C, j = 1, 2, 3, ..., N) (7)

where x̂j means the cluster label of object xj .
In this function, we note that uij belongs to [0,1], which is produced by soft

clustering. The hard clustering result is a special case of soft clustering result.
SVCE use soft clustering result as input, while the input of MVCE is only hard
clustering, then SVCE is more flexible than MVCE. In addition, SVCE also
accepts the input of MVCE and gets a similar ensemble result.

Because majority voting can not use the results of soft clustering as input,
we do a improvement on majority voting, which makes it accept soft clustering
results and use the matrix of membership degrees as input.

The following example illustrates that SVCE can get a better result as com-
pared to modified MVCE in general. Let us assume that for object xj there
are two partitions: p1 = (u1, u2, u3), p2 = (v1, v2, v3), where u1 > u2 > u3 and
v1 > v2 > v3. The group of membership degrees produced by modified MVCE is
MV = (m1,m2,m3), and the group of membership degrees produced by SVCE
is SV = (s1, s2, s3). So this object most probably belongs to the first cluster.
Obviously, u1 and v1 are more close to 1, the result is more accurate.

Let us define that a1, a2, a3, a4 respectively represents the accurate ratio of
partition p1, partition p2, modified MVCE and SVCE. And accurate ratios of
these four partitions are calculated as follows,



Soft-Voting Clustering Ensemble 313

a1 = u1

u1+u2+u3
= u1

1 = u1,
a2 = v1

v1+v2+v3
= v1

1 = v1,

a3 = m1

m1+m2+m3
= u1+v1

(u1+v1)+(u2+v2)+(u3+v3)
= u1+v1

1+1 = u1+v1
2 ,

a4 = u1×v1
(u1×v1)+(u2×v2)+(u3×v3)

= u1

(u1× v1
v1

)+(u2× v2
v1

)+(u3× v3
v1

)
> u1

u1+u2+u3
= a1,

a4 = u1×v1
(u1×v1)+(u2×v2)+(u3×v3)

= v1
(v1×u1

u1
)+(v2×u2

u1
)+(v3×u3

u1
)
> v1

v1+v2+v3
= a2.

a3 is between a1 and a2, because a3 is the average of a1 and a2. a4 is greater
than both a1 and a2, so a4 is greater than a3, that is to say, SVCE has a higher
accurate ratio than modified MVCE when u1 > u2 > u3 and v1 > v2 > v3. The
results of the based clustering are considered to meet this precondition. Though
the results are produced by different methods, they have the similarity, which
can be illustrated by experiment. So SVCE has a higher robustness and better
average performance than modified MVCE.

The steps of SVCE is illustrated in Algorithm 1.

Algorithm 1: SVCE

Input: X: a dataset has N objects

C: the number of clusters in one FCM

M: the number of based clustering results

Output: the cluster labels of N objects

Steps:

(1) Use FCM algorithm M times to obtain based clustering

results:

a.Get dataset and find the number of clusters;

b.Obtain M based clustering results by using FCM.

(2) Choose a clustering result as standard, relabeling

others. Then combine all results and find the cluster

label for every object.

a.Randomly choose a clustering result as the standard,

then process other (M-1) results and make all

clustering results have the identical labels ;

b.From 1 to M, do the multiplication as formula(6),

normalizing and saving based clustering results;

c.Refering to the final result, assign every object

into the cluster which this object belongs to with

the highest membership degree.

4 Empirical Study

All ensemble methods, including CSPA, MCLA, HGPA, SVCE, MVCE,
WMVCE(Weighted Majority Voting Clustering Ensemble [25]), are applied to
15 datasets and F-measure is used to evaluate the results. In this section, the
experiments and results are showed in detail.
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4.1 Experiments

15 datasets are used for this experiment, which are summarized in Table 1. 14
datasets are from UCI Data Repository and the remaining one is an artificial
dataset.

Table 1. The instances, classes, features and source of each dataset

Dataset Instances Classes Features Source

2d4c 200 4 2 Artificial
Balance-scale 625 3 4 UCI

Contraceptive-method-choice 1473 3 9 UCI
Diabetes 768 2 8 UCI
Glass 214 6 9 UCI

Heart-statlog 270 2 13 UCI
Ionosphere 351 2 34 UCI

Iris 150 3 4 UCI
Liver-disorders 345 2 7 UCI

Pima-Indians-diabetes 768 2 8 UCI
Segment 210 7 19 UCI
Sonar 208 2 60 UCI

SPECTF-heart 267 2 44 UCI
Vehicle 846 4 18 UCI
Wine 178 3 14 UCI

In this experiment, FCM algorithm is used to produce based clustering re-
sults. For FCM, the weight exponent q is set as 2, membership degrees uij are
initialized by random number between 0 and 1, termination criterion ε is set
as 0.0001. Different based clusterings are generated by changing the initializa-
tion of membership degrees uij , which are used as input of SVCE. Then a final
clustering result is obtained by SVCE. Because other methods do not accept
soft clustering results, all these based clustering results are “hardened”. The
hardened results are sent to other ensemble methods, and the final results are
obtained respectively. Finally, a comparison is made among all results.

In the process of voting-based cluster ensemble methods, unifying clusters
label is crucial. In order to achieve the most consistent labeling of clusters in a
partition, we must solve an assignment problem equivalent to maximum weight
bipartite matching problem. Equivalent matching problem is constructed from
a contingency table between two partitions. A contingency matrix contains a
number of cluster label co-occurrences counted for two partitions of the same
set of objects [30]. We use the method mentioned in [30] to achieve relabeling.

F-measure is used to evaluate the results, and the best method is found by
comparing the values of F-measure. The F-measure is an external evaluation
method, which combines the ideas of precision and recall. The precision and
recall of cluster t respect to class s are defined as

precision(s, t) =
nst

ns
, (8)



Soft-Voting Clustering Ensemble 315

recall(s, t) =
nst

nt
, (9)

where Nst is the number of class s in cluster t, Nt is the number of members of
cluster t and Ns is the number of members of class s.

The f-measure of class s is then given as

F (s) =
2× precision(s, t)× recall(s, t)

precision(s, t) + recall(s, t)
. (10)

The F-measure value is larger, the result is better.

4.2 Results

In order to get more exact results, the experiment is conducted 10 times repeat-
edly with same conditions. The comparison among the 6 ensemble methods is
made from two aspects: the average value of F-measure and the variance value
of F-measure. The average value reflects the performance in general and the
variance value reflects the degree of stability.

The comparison among 6 ensemble methods is made from the aspect of the
average F-measure value. Then we compare 6 ensemble methods in the aspect
of variance F-measure value. Table 2 shows all the results.

Table 2. The performance of 6 methods on 15 datasets (boldface is the highest)

Dataset SVCE MVCE WMVCE CSPA HGPA MCLA

2d4c 0.976±0.0004 0.967±0.0006 0.971±0.0003 0.957±0.0091 0.302±0.0426 0.966±0.0006
Balance-scale 0.589±0.1026 0.680±0.1630 0.680±0.0940 0.570±0.7735 0.414±0.0156 0.564±0.8226

Contraceptive-method-choice 0.402±0.0000 0.372±0.0003 0.385±0.0001 0.392±0.0021 0.349±0.0413 0.395±0.0000
Diabetes 0.633±0.0001 0.606±0.0002 0.620±0.0002 0.557±0.0269 0.514±0.0000 0.616±0.0001
Glass 0.423±0.0002 0.391±0.0007 0.420±0.0013 0.417±0.0341 0.357±0.0250 0.382±0.0096

Heart-statlog 0.590±0.0004 0.541±0.0003 0.569±0.0005 0.566±0.0000 0.516±0.0000 0.575±0.0002
Ionosphere 0.713±0.0001 0.658±0.0002 0.653±0.0001 0.668±0.0000 0.590±0.0000 0.706±0.0002

Iris 0.884±0.0019 0.748±0.0051 0.877±0.0029 0.828±0.0259 0.643±0.0125 0.874±0.0014
Liver-disorders 0.357±0.0038 0.345±0.0072 0.420±0.0056 0.513±0.0008 0.520±0.0121 0.349±0.0002

Pima-Indians-diabetes 0.635±0.0015 0.617±0.0007 0.626±0.0011 0.565±0.0160 0.508±0.0000 0.606±0.0001
Segment 0.565±0.0089 0.562±0.0075 0.565±0.0062 0.540±0.0564 0.490±0.0136 0.571±0.0788
Sonar 0.549±0.0015 0.516±0.0073 0.523±0.0047 0.535±0.0000 0.504±0.0000 0.552±0.0067

SPECTF-heart 0.661±0.0012 0.639±0.0047 0.671±0.0039 0.575±0.0084 0.617±0.0538 0.641±0.0168
Vehicle 0.431±0.0037 0.407±0.0001 0.421±0.0001 0.380±0.0019 0.278±0.0007 0.379±0.0076
Wine 0.699±0.0027 0.681±0.0098 0.690±0.0043 0.671±0.0113 0.533±0.0101 0.674±0.0039

Best 10 1 2 0 1 2
Worst 0 2 0 1 12 0

Table 2 shows that SVCE has 10 highest F-measure values in the 15 datasets
and no worst value. Thus SVCE has a better performance in general among 6
methods in the aspect of average value. From Table 2, we also note that the
variance value of SVCE is smaller, which indicates stability of SVCE is higher.
So the performance of SVCE is the best in 6 methods mentioned above.

From Table 2, we obtain the Fig. 1, which more clearly shows the average
performance of 6 ensemble methods.
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Fig. 1. The average F-measure values of 6 methods on 15 datasets

All the results show that SVCE is a better ensemble method in general, be-
cause SVCE uses the soft clustering results as input. By making full use of the
valuable information, it obtains a better ensemble result.

5 Conclusion

In this paper, we propose a new ensemble method - SVCE, which accept the
results of soft clustering. SVCE is more generalized that the membership degree
SVCE processed is [0, 1], while the membership degree of other ensemble meth-
ods is just a binary strategy {0, 1}. SVCE is flexible, because it also can use
the results of hard clustering as input. The experiment shows that SVCE get a
better ensemble result than other ensemble methods.

In this experiment, it also has been proved soft clustering method is more
suitable to represent an object. In future work, we will try to study more on
soft clustering algorithms and use them to produce based clustering results with
diversity. We also will try to extend this mode to a semi-supervised model, by
adding a little labeled data in the process of ensemble.
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Abstract. In this paper, we propose Randomized Bayesian Network Classifiers
(RBNC). It borrows the idea of ensemble learning by constructing a collection of
semi-naive Bayesian network classifiers and then combines their predictions as
the final output. Specifically, the structure learning of each component Bayesian
network classifier is performed by just randomly choosing the parent of each
attribute in addition to class attribute, and parameter learning is performed by us-
ing maximum likelihood method. RBNC retains many of naive Bayes’ desirable
property, such as scaling linearly with respect to both the number of instances
and attributes, needing a single pass through the training data and robust to noise,
etc. On the 60 widely used benchmark UCI datasets, RBNC outperforms state-
of-the-art Bayesian classifiers.

1 Introduction

A Bayesian network [1] encodes the joint probability distribution of a set of variables
as a directed acyclic graph (DAG) and a set of conditional probability tables (CPTs).
Its modularity and intuitive graphical representation make it an attractive model for real
world problems, and their use for classification has received considerable attentions
[2,3]. Assume that X1, X2, ..., Xa are a attributes (corresponding to attribute nodes in
a Bayesian network). An instance I is represented by a vector (x1, x2, ..., xa), where xi

is the value of Xi. Let C represent the class variable (corresponding to the class node
in a Bayesian network). We use c to represent the value that C takes and c(I) to denote
the class label of I . A Bayesian network classifier predicts the class label of instance I
using Equation 1.

c(I) = argmax
c∈C

P (c)P (x1, x2, ..., xa|c) (1)

Assume that all attributes are independent given the class, that is,

c(I) = argmax
c∈C

P (c)

a∏
i=1

P (xi|c) (2)

This assumption is called conditional independence assumption and the resulting clas-
sifier is called a naive Bayesian classifier, or simply naive Bayes.

Naive Bayes is the simplest form of Bayesian network classifier and has been widely
applied to many real world applications [4,5,6,7,8]. Despite the fact that the conditional
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independence assumptions are often inaccurate, the naive Bayes classifier has several
properties that make it surprisingly useful in practice. In particular, both the time and
space complexity grow linearly with respect to both the number of instances and at-
tributes, the learning can be done with a single pass through the training data and the
performance is robust to noise, etc.

It is obvious that the conditional independence assumption in naive Bayes is rarely
true. To relax this assumption, many techniques have been proposed. Extending its
structure is a direct way to overcome the limitation of naive Bayes, since attribute depen-
dencies can be explicitly represented by adding arcs. Learning Bayesian networks has
become an active research in the past decade [3,9,10]. The goal of learning a Bayesian
network is to determine both the structure of the network (structure learning) and the
set of CPTs (parameter learning). Since the number of possible structures is extremely
huge, structure learning often has high computational complexity. Thus, heuristic and
approximate learning algorithms are the realistic solution. A variety of learning algo-
rithms have been proposed, such as TAN [2], BNC[9], HNB [11], f̂CLL[3], AnDE[6],
etc. Most of these algorithms achieve improved accuracy over naive Bayes. However,
this is achieved at the cost of increasing the order of computational complexity
which severely limits its applicability in practice, especially for large-scale and high-
dimensional data.

In fact, a model that could relax conditional independence assumption and also re-
tain many of naive Bayes’ desirable computational and theoretical properties, is more
desirable. In this paper, we present a new model Randomized Bayesian Network Classi-
fiers (RBNC). It borrows the idea from ensemble learning paradigms by constructing a
collection of semi-naive Bayesian network classifiers and then combining their predic-
tions as the final output. Specifically, the structure learning of each component Bayesian
network classifier is performed by just randomly choosing the parent of each attribute
in addition to class attribute, and parameter learning is performed by using maximum
likelihood method (i.e. frequency counting). Our experimental results show that RBNC
demonstrates remarkable accuracy compared to other state-of-the-art algorithms.

The rest of the paper is organized as follows. We first introduce the related work.
Then we present our new model RBNC, followed by the description of our experimental
setup and results in detail. Finally, the paper is concluded in section 5.

2 Related Work

Numerous techniques have been proposed to improve or extend naive Bayes, mainly in
two approaches: selecting or forming new attribute subsets in which attributes are con-
ditionally independent, and extending the structure of naive Bayes to represent attribute
dependencies.

The idea of selecting a subset of attributes or forming new attributes is to convert
the data to a new form that satisfies the conditional independence assumption. Of the
proposed techniques, selective naive Bayes (SBC) by [12] demonstrates a remarkable
improvement over naive Bayes. SBC uses forward selection to find a good subset of
attributes, and then uses this subset to construct a naive Bayes.
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Learning Bayesian networks has become an active research in the past decade. The
goal of learning consists of determining both the structure of the network and the set
of CPTs. Since the number of possible structures is extremely huge, structure learn-
ing often has high computational complexity. Moreover, learning unrestricted Bayesian
network seems to not necessarily lead to a classifier with good performance. Thus,
heuristic and approximate learning algorithms are the realistic solution. For example,
[2] proposed Tree Augmented Naive Bayes (TAN), a structure learning algorithm that
learns a maximum spanning tree from the attributes, but retains naive Bayes model as a
part of its structure to bias towards the estimation of conditional distribution. BNC-2P
[9], on the other hand, is a heuristic discriminative structure learning method with con-
ditional log likelihood as scoring function. Although the structures in TAN and BNC-2P
are selected discriminatively, the parameters are trained via maximum likelihood train-
ing for computational efficiency.

Factorized conditional log-likelihood (f̂CLL) [3] is the most recently proposed score
function for learning Bayesian network classifiers. It is an approximation of the condi-
tional log-likelihood criterion, and is devised in order to guarantee decomposability
over the network structure as well as efficient estimation of the optimal parameters.
This discriminative criteria achieves the same time and space complexity as the log-
likelihood scoring function. The experimental results show that f̂CLL trained TAN
achieves improved accuracy over other discriminatively trained Bayesian network
classifiers.

Hidden Naive Bayes (HNB) [13,11] using a predefined network structure to take
the influences from all attributes into account. In HNB, each attribute Xi has a hid-
den parent Xhpi which combines the influences from all other attributes. The classifier
corresponding to an HNB on an instance I = (x1, ..., xa) is defined as follows:

c(I) = argmax
c∈C

P (c)

a∏
i=1

P (xi|Xhpi , c) (3)

where

P (xi|Xhpi , c) =

a∑
j=1,j �=i

wijP (xi|xj , c) (4)

The weight wij is defined by the conditional mutual information between two attributes
Xi and Xj . The hidden parent Xhpi for Xi is essentially a mixture of the weighted
influences from all other attributes. Since there is no structure learning, learning an
HNB is mainly about estimating the parameters from the training data. To create the
hidden parent of an attribute, HNB needs to compute the conditional mutual information
for each pair of attributes.

The most recent work on improving naive Bayes is AnDE (averaged n-dependence
estimators) [6] which is an generalization of the well-known AODE (averaged one-
dependence estimators) [5] algorithm. In AnDE, an ensemble of n-dependence classi-
fiers are learned and the prediction is produced by aggregating the predictions of all
qualified classifiers. An x-dependence estimator means that the probability of an at-
tribute is conditioned by the class variable and at most x other attributes. In AnDE, a
n-dependence classifier is built for every combination of n attributes, in which the given
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n attributes are set to be the parent of all other attributes. AnDE predicts the class label
of instance I using Equation 5.

c(I) = argmax
c∈C

∑
s∈Sn

P (c, s)
a∏

j=1,j �∈s

P (xj |c, s) (5)

where Sn indicates the set of all size-n subsets of {x1, ..., xa}. The experimental results
show that the bias-variance trade-off for A2DE results in strong predictive accuracy
over a wide range of data sets. Another reason for the authors presenting primarily
results for A2DE is because the computational complexity (both space and time) of
AnDE(n ≥ 3) is very high and defeats their Weka implementation on most data sets
[6]. The ensemble size is a (the number of attributes) for both AODE and A2DE.

Table 1 shows the training time and space complexity of some algorithms discussed.

Table 1. Computational complexity of algorithms

Training Complexity Testing Complexity
Algorithm Time Space Time Space
NB O(ta) O(kav) O(ka) O(kav)
TAN O(ta2 + k(av)2 + a2 log a) O(k(av)2) O(ka) O(kav2)
HNB O(ta2 + k(av)2) O(k(av)2) O(ka2) O(k(av)2)
AODE O(ta2) O(k(av)2) O(ka2) O(k(av)2)

AnDE O(t

(
a

n+ 1

)
) O(k

(
a

n+ 1

)
vn+1)O(kn

(
a
n

)
)O(k

(
a

n+ 1

)
vn+1)

RBNC-n O(Ntan) O(Nkavn+1) O(Nkan) O(Nkavn+1)

k is the number of classes.
a is the number of attributes.
v is the average number of values for an attribute.
t is the number of training examples.
n is the number of parent nodes except class.
N is the number of component models of RBNC.

3 The RBNC Algorithm

In this section, we introduce the RBNC family of algorithms and analyze its computa-
tional complexity.

3.1 Algorithm Definition

Instead of searching for a single Bayesian network classifier model by optimizing some
(discriminative or generative) score on data, RBNC randomly constructs multiple
Bayesian network classifier models and then simply average their probability predic-
tions as the final output.

We focus on augmented naive Bayes classifiers, that is, Bayesian network classifiers
where the class attribute has no parents and all attributes have at least the class attribute
as parent. In addition, we introduce a parameter n to control the maximum number of
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Algorithm 1. RBNC algorithm
Input: Training data D, where < X1, ..., Xa > and C represent a input attributes and class
attribute, respectively. Maximum number of parents (except class) per node n and number of
component models N .
Output: A set of Bayesian network classifier models E.

Initialize E = {}.
/∗ structure learning ∗/
for i = 1 to N do

Generate a random permutation < A1, .., Aa > of the given a input attributes.
Initialize an empty Bayesian network model Mi with a+ 1 node.
For Mi, set class attribute C as parent for all other attributes.
for j = 2 to a do

if j ≤ n then
For Mi, set all attributes in {A1, ..., Aj−1} as parent of attribute Aj .

else
For Mi, randomly select n attributes in {A1, ..., Aj−1} as parent of attribute Aj .

end if
end for
E=E

⋃
Mi.

end for
/∗ parameter learning ∗/
Compute the CPTs for all Mi ∈ E on data D using maximum likelihood.
return E

parents per node in the network. The structure of each component Bayesian network
classifier in RBNC is constructed by just randomly choosing n other attributes as the
parents for each attribute in addition to class attribute. To ensure the generated structure
is DAG, first, all the attributes are ordered, then each attribute can only select those
ahead of it as parents. The parameters in each component network are set to their max-
imum likelihood values, i.e. observed frequency counting over the data. The detailed
learning process of RBNC is depicted in Algorithm 1.

RBNC predicts the class label of instance I using:

c(I) = argmax
c∈C

N∑
q=1

Pq(c|I) (6)

where Pq(c|I) is the posterior probability estimation of the q-th component model in
RBNC, and is defined as:

Pq(c|I) = P (c)

a∏
i=1

P (xi|πi, c) (7)

where πi is the set of parents values of attribute Xi.
It should be noted that RBNC-0 is just naive Bayes and in RBNC-n (n ≥ 1), each

component models define a weaker conditional independence assumption than naive
Bayes, as it is necessarily true if the naive Bayes’ assumption is true and may also
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be true when the naive Bayes’ assumption is not. As this is a weaker assumption than
Equation 2, the bias of the model should be lower than that of naive Bayes. However, it
is derived from higher-dimensional probability estimates and hence its variance should
be higher.

Similar to AnDE, RBNC utilizes parameter n that transforms the approach between a
low-variance high-bias learner (naive Bayes) and a high-variance low-bias learner with
Bayes optimal asymptotic error. So, RBNC actually defines a family of algorithms.
Successive members of the family will be best suited to differing quantities of data,
starting with low variance for small data set, with successively lower bias but higher
variance suiting to increasing data quantities.

3.2 Computational Complexity of RBNC

Each component Bayesian network model in RBNC forms an (n+2)-dimensional prob-
ability table containing the observed frequency for the given combination of n + 1 at-
tribute values and the class labels. The space complexity of the table is O(kavn+1) and
the time complexity of compiling it is O(tan), as we need to update each entry for the
combination of the n + 1 attribute-values for every instance. The time complexity for
classifying a single instance is O(kan) as we need to consider each attribute for the
combination of n parent attributes within each class.

Assume the number of component models in RBNC is N , then for RBNC, the space
complexity is O(Nkavn+1), time complexity of compiling it is O(Ntan) and classi-
fying a single instance is O(Nkan).

4 Experiments and Results

4.1 Experiment Setup

We conduct our experiments under the framework of Weka [14] on a PC with Intel
Core 2 Duo P8600 2.4G CPU and 4G RAM. In our experiments, we use the 60 well-
recognized datasets from the UCI repositories[15], which include all the datasets rec-
ommended by Weka and the benchmark datasets used by related works [2,9,10,3]. A
brief description of the data sets is in Table 2. Numeric variables are discretized using
supervised discretization method implemented in Weka. Missing values are also pro-
cessed using the mechanism in Weka, which replaces all missing values with the modes
and means from the training data. In addition, all the preprocessing is done with the
default parameters in Weka implementation.

We compared RBNC-n (n=1,2,3, and ensemble sizes N are all set to 20) with the
following algorithms:

1. The naive Bayes classifier (NB).
2. The discriminatively trained tree-augmented naive Bayes (TAN-f̂CLL) algorithm

using factorized conditional log-likelihood [3].
3. The Hidden naive Bayes classifier (HNB) [11].
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Table 2. Description of the data sets used for experiments

Datasets Size Attribute Classes Datasets Size Attribute Classes
adult 48842 15 2 ionosphere 351 35 2
albalone 4177 9 28 iris 150 5 3
anneal 898 39 6 kr-vs-kp 3196 37 2
anneal.ORIG 898 39 6 labor 57 17 2
audiology 226 70 24 letter 20000 17 26
australian 690 15 2 lymph 148 19 4
autos 205 26 7 mofn 1324 11 2
badges 294 11 2 mushroom 8124 23 2
balance-scale 625 5 3 nursery 12960 9 5
breast-cancer 286 10 2 optical 5620 65 10
breast-w 699 10 2 ozone 2536 73 2
car 1728 7 4 page-blocks 5473 11 5
chess 28056 7 18 pendigital 10992 17 10
cleve 296 14 2 pima 768 9 2
cmc 1473 10 3 primary-tumor 339 18 21
colic 368 23 2 segment 2310 20 7
colic.ORIG 368 28 2 shuttle 5800 10 7
corral 128 7 2 sick 3772 30 2
credit-a 690 16 2 sonar 208 61 2
credit-g 1000 21 2 soybean 683 36 19
dermatology 366 35 6 spambase 4601 58 2
diabetes 768 9 2 splice 3190 62 3
ecoli 336 8 8 tic-tac-toe 958 10 2
flare 1066 11 2 vehicle 846 19 4
glass 214 10 7 vote 435 17 2
heart-c 303 14 5 vowel 990 14 11
heart-h 294 14 5 waveform-5000 5000 41 3
heart-statlog 270 14 2 wine 178 14 3
hepatitis 155 20 2 yeast 1484 10 10
hypothyroid 3772 30 4 zoo 101 18 7

4. The Averaged one-dependence estimators (AODE) and Averaged two-dependence
estimators (A2DE). We do not present the results of AnDE (n ≥ 3) since even the
computational requirements of A3DE defeat the Weka implementation except in
cases of low dimensional data, and this is the same issue encountered by [6].

5. The Random Forests classifier with both the default setting of 10 trees (RF-10) and
with 100 trees (RF-100).

The naive Bayes, HNB, AODE, A2DE and RF are already implemented in Weka,
and the source code of TAN-f̂CLL algorithm is available at the author’s homepage
http://kdbio.inesc-id.pt/˜asmc/software/fCLL.html. So, we only
implemented RBNC within the Weka framework and uploaded the source codes of
RBNC at1. We used the laplace estimation to avoid the zero-frequency problem for all
compared methods. In our experiment, the performance of an algorithm on each data
set has been calculated via 10 runs of 10-fold stratified cross validation.

4.2 The Effect of Varying n within RBNC

To investigate how increasing n within the RBNC framework affects performance as
the quantity of data increases, we form learning curves for NB, RBNC-1, RBNC-2,
RBNC-3 and RBNC-4 on the Adult and Nursery dataset, respectively.

1 http://homepage.fudan.edu.cn/wangqing/files/2011/10/rbnc1.zip

http://kdbio.inesc-id.pt/~asmc/software/fCLL.html
http://homepage.fudan.edu.cn/wangqing/files/2011/10/rbnc1.zip
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Fig. 1. Learning curves as function of training set size

First, 10% instances are selected at random as a test set and training sets were sam-
pled from the remaining instances. The training sets size consist of 1

211 , 1
210 ,..., 1 fraction

of the remaining instances, respectively. This process is repeated 100 times and each al-
gorithm is evaluated on the resulting training-test set pairs. The learning curves of error
rate for NB, RBNC-1, RBNC-2, RBNC-3 and RBNC-4 are presented in Figure 1.

Figure 1 clearly show the predicted trade-off for increasing n. At the smallest data
size, where low variance is more important than low bias, error rate is minimized by n
= 0 (NB) and increases as n increases. At the largest data size, where low bias is most
important, this dimensionality is reversed.

4.3 Experimental Results

Table 3 shows the comparison results of two-tailed t-test with a 95% confidence level
between each pair of algorithms on data, in which each entry w/t/l means that the

Table 3. Summary of experimental results under pairwise two-tailed t-test with 95% confidence
level. Each cell contains the number of wins, ties and losses between the algorithm in that row
and the algorithm in that column.

w/t/l RBNC-3 RBNC-2 RBNC-1
RBNC-2 1/44/15 – –
RBNC-1 4/33/23 1/38/21 –
NB 4/24/32 2/25/33 1/31/28
TAN-f̂CLL 6/28/26 8/30/22 14/31/15
HNB 3/40/17 8/39/13 13/42/5
AODE 5/33/22 6/39/15 9/45/6
A2DE 6/37/17 9/40/11 17/41/2
RF-10 6/29/25 8/27/25 19/20/21
RF-100 11/33/16 19/23/18 25/26/9
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algorithm at the corresponding row wins in w data sets, ties in t data sets, and loses
in l data sets, compared to the algorithm at the corresponding column. Table 4 and 5
show the detailed accuracies of the algorithms on each data set. The mean accuracy and
standard deviation, together with the overall rank on all data sets are summarized at the
bottom of the table.

From the experimental results, we can see that RBNC-n algorithms can achieve sub-
stantial improvement over naive Bayes (32 wins and 4 losses, 33 wins and 2 losses, 28
wins and 1 losses, respectively). This results show that many data sets in our exper-
iments contain strong dependencies, and conditional independence assumption failed
to capture these dependencies. In addition, RBNC-1 and RBNC-2 are comparable to
AODE (6 wins and 9 losses) and A2DE (11 wins and 9 losses), respectively. For Ran-
dom Forests algorithms, RBNC-n (n=1, 2, 3) all outperform RF-10 and RBNC-3 sig-
nificantly outperforms RF-100 (16 wins and 11 losses). Overall, the performance of
RBNC-3 is the best among all the algorithms compared. Considering that RBNC-n
scales linearly with respect to both the number of instances and attributes of the train-
ing data, RBNC-n are overall more efficient.

To study the robustness of our algorithm, we test it on these 60 UCI data sets un-
der artificial noise in the class labels. Following the method in [16], the noisy version
of each training data set is generated by choosing 10% instances and changing their
class labels to other incorrect labels randomly. Due to space limited, we do not list the
detailed results of the accuracy and standard deviation on each data set here. The exper-
imental results show that the RBNC algorithms are all robust to noise and also achieve
substantial improvement over naive Bayes. And RBNC-3 still to be the best among the
algorithms compared.

To further understand the working mechanism of RBNC-n and the difference com-
pared with Random Forests, we use the bias-variance decomposition to analysis them.
The results again demonstrate that with n increasing, RBNC-n evolves from low vari-
ance coupled with high bias through to high variance coupled with low bias. The bias
terms for RBNC-n (n=1, 2, 3) and RF (10 and 100) are 0.0963, 0.0760, 0.0696, 0.0663
and 0.0669, respectively. So RBNC-3 could achieve the same level of bias compared
with Random Forests. This is of interest because it demonstrates that it is possible to
create low-bias high-variance generative learners without discriminative learning.

5 Conclusion

In this paper, we propose the RBNC family of algorithms which utilize a single pa-
rameter n to control over a bias-variance trade-off, such that higher values of n are
appropriate for greater numbers of training cases. RBNC retains many of naive Bayes’
desirable property, such as the time and space complexity are linear with respect to
both the number of training instances and attributes, the learning can be done by a
single pass through the training data and the performance is robust to noise. Our ex-
perimental results show that RBNC has a better overall performance compared to the
state-of-the-art Bayesian network classifier algorithms. Considering the simplicity and
efficiency, RBNC is a promising model that could be used in many applications.
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Abstract. Aiming at improving the reliability of a recognition system, this pa-
per presents a novel SVM-based rejection measurement (SVMM) and voting 
based combination methods of multiple classifier system (MCS) for pattern re-
jection. Compared with the previous heuristic designed criteria, SVMM is more 
straight-forward and can make use of much more information from the training 
data. The voting based combination methods for rejection is a preliminary at-
tempt to adopt MCS for rejection. Comparison of SVMM with other well-
known rejection criteria proves that it achieves the highest performance. Two 
different methods (structural modification and dataset re-sampling) are used to 
build MCSs. The basic classifier is the convolution neural network (CNN) 
which has achieved promising performances in numerous applications. Rejec-
tion based on MCS is then evaluated on MNIST and CENPARMI digit data-
bases. Specifically, different rejection criteria (FRM, FTRM and SVMM) are 
individually combined with MCS for pattern rejection. Experimental results in-
dicate that these combinations improve the rejection performance consistently 
and MCS built by dataset re-sampling works better than that with structural 
modification in rejection. 

Keywords: Rejection criterion, SVMM, MCS, CNN, soft voting, handwritten 
digit recognition. 

1 Introduction 

In pattern recognition, the recognition rate is always an important factor in evaluating 
the performance of a classifier and plenty of classifiers or multiple classifier systems 
have achieved high recognition rates based on different datasets like MNIST, 
CENPARMI and so forth in the past decades. However, although the recognition 
accuracy of some models has reached error rates of less than 1% on the benchmark 
MNIST dataset [1, 2, 3, 4] and CENPARMI numeral dataset [5], it is still impossible 
to reach a 100% recognition accuracy. And a low percentage of errors in recognition 
could still cause a huge loss in real-life systems, like check-reading in the banks; 
hence the reliability of a classifier is as important as recognition accuracy, as defined 
below:  
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In order to improve the reliability of a classifier, some confusing patterns must be 
rejected before entering the testing loop in order to prevent errors. That is why some 
useful rejection criteria are produced to determine and filter out the confusing sam-
ples. To evaluate the effectiveness of rejection, we can draw a curve in the coordinate 
system whose -axis is the number of rejected samples and the -axis is reliability. 
A good rejection criterion can achieve a higher reliability with fewer samples  
rejected. So in this case, we expect the curve to be as close to the top left corner as 
possible. 

In this paper, our main goal is to improve the reliability of recognition systems by 
detecting the confusing samples that may easily cause error.  To accomplish this 
goal, we have designed a novel rejection criterion, called SVM-based Measurement 
(SVMM), which learns the optimal rejection boundary from the training data. Brief 
descriptions of this criterion as well as several other well-known rejection criteria are 
presented in Sections 2. After that, we first attempt to use Multiple Classifier System 
(MCS) for the purpose of pattern rejection. It is implemented by using voting methods 
to combine decisions from different classifiers. Both hard voting and soft voting are 
considered and details are followed in Section 3. Section 4 reports all the experimen-
tal results and analyses. Specifically, the newly proposed rejection criterion verified 
and compared with other rejection criteria on MNIST numeral dataset. MCS based 
rejections with both hard voting and soft voting are evaluated on the same dataset and 
also CENPARMI numeral dataset with MCSs differing in structural modification and 
dataset re-sampling. At last, we provide our concluding remarks in Section 5. 

2 Rejection Criteria 

Pattern rejection can be viewed as a two-class recognition problem, which takes the 
output values of a classifier as features to recognize a pattern as a confusing one to 
reject or a clear one to accept. Generally, for a regular classifier, the output is always 
a vector consisting of confidence values or probabilities of possible classes. Given a 
pattern , suppose the output vector of the classification is ( c is the number of 
possible classes) 

                              , , … , , 0, 1,2, … ,                                (1) 

After that, this pattern is classified according to  max . In case 
that the outputs are negative, normalization can be used to guarantee that all the 
values are positive (e.g. , min  ).  
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2.1 Existing Rejection Criteria 

In the research field of rejection, some traditional rejection criteria have been studied 
before and have reached high recognition rates as well as high reliability. In this sec-
tion, some useful criteria are presented. 

The first rank confidence value (FR) and the second rank confidence value (SR) 
can be described as max ,   max ,                                 (2) 

FR is expected to be much larger than all the other output values for a clear sample. 
Besides, the gap between FR and SR is also viewed as a useful index, to reflect the 
quality of a sample. That is why First Rank Measurement (FRM) and First Two Rank 
Measurement (FTRM) have been proposed for rejection [6]. 

FRM is one of the most useful criteria, which takes into account only FR of the 
output vector. It rejects samples by setting a threshold  to FR and accepts those 
satisfying . 

FTRM is another important index for rejection. Unlike FRM, it emphasizes the gap 
between FR and SR. It sets a threshold  to the gap and accepts only the samples 
satisfying .  

Besides these two well-known rejection criteria, He et al propose a novel LDA 
measurement (LDAM) in [6, 7], which relies on the principle of Fisher Linear Dis-
criminant Analysis. They apply the principle of LDA on outputs for the rejection 
option as a one dimensional application which shifts the Fisher criterion to 

                                              
(3)

 

where  and  are the centers of two classes and Σ  is within-class scatter. 
Then they define two classes for rejecting and accepting samples:  

and , … , , in order to maximize the separation between FR and all the 
other confidence values. (Here  are confidence values in a descending order). Thus, 
in LDA,   can be defined by:

 

                                              
(4)

 

where , ∑ , Σ 0, Σ ∑  and  Σ Σ . 

Then a threshold  is set and samples are accepted if they satisfy . The 
criterion has been proved to produce a better performance than FRM and FTRM 
based on eight-direction gradient feature with SVM classifier for handwritten charac-
ter recognition [6, 7]. 
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2.2 SVM-Based Rejection Measurement (SVMM) 

The previous rejection criteria have been designed based on some heuristic ideas.  In 
this section, we propose a new SVM-based rejection measurement (SVMM) to extend 
the rejection process into a learning based method. Specifically, rejection can be 
viewed as a two-class recognition problem, one stands for rejected samples and the 
other for accepted ones. For a classifier, the output of a sample is a vector of confi-
dence values , , … , , 0, 1,2, … , , as mentioned before. Then these 
values are extracted as features and sorted into a descending order: , , … , ,                                             (5) 

The correctly and wrongly classified samples are labeled differently (correctly classi-
fied samples with label "1" while incorrectly classified ones with label "-1") and used 
to train an SVM classifier. Linear SVM is selected for training to locate the rejection 
boundary. So the decision boundary is a linear function combining all the components 
of the output vector, represented in Eq. (6). (   are the coefficients of SVM ) 

          ∑                                                    (6) 

The reason for choosing a linear kernel for SVM rather than a nonlinear one, like 
RBF kernel, is based on the following points: 

1. A linear kernel works very fast in training and testing and an optimal linear sepa-
rating boundary is a good way to avoid over-fitting. 

2. A linear boundary is more meaningful physically and function (6) includes some 
special cases in it. For instance, FRM can be viewed as a linear boundary with 1  and 0 ; while FTRM can be viewed as: 1, 1 and 0. 

Note that in the training process of SVMM, the number of samples in class "1" is always 
much larger than that of class "-1", because the baseline accuracy of the classifier is high. 
In this case, the problem is an unbalanced classification problem. To solve this problem, 
we use different weighting functions for different classes in the "libsvm" software [8]. In 
the testing process, the same features are extracted and sorted into descending order, and 
a sample is rejected if  in Eq. (6) is smaller than a pre-defined threshold. 

With this new criterion, the linear rejection boundary is located by training an 
SVM with training data. The main difference between SVMM and other criteria, like 
FRM, FTRM and LDAM, is that SVMM extends the rejection process from heuristic 
design to learning based procedure. Using learning based method on the training set 
to predict the rejection on testing samples is more straight-forward and can make use 
of much more information from the data. 

3 Rejection with Multiple Classifier System 

3.1 Construction of Multiple Classifier System (MCS) 

Since convolution neural network (CNN), especially MCS based on CNN, works 
effectively in handwritten character recognition as shown in [4, 9, 10], it is selected as 
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the core classifier and MCS is built on it in our strategy. The CNN classifier is based 
on the principle of deep learning. It processes the raw images of samples and extracts 
useful trainable features to classify samples into different categories [1]. 

Re-sampling the dataset (with Bagging [11], Boosting [12] and so forth) and 
changing the classifier (in structure or type [13]) are two main ways to produce com-
mittees.  Many researchers have used these methods to produce a group of classifiers 
and applied certain combination methods for recognition. Some of them have 
achieved extremely high recognition rate in handwritten numeral recognition with 
CNN model on MNIST dataset [9, 10].  

For the construction of the MCS, we select the CNN model in [4] as the basis 
model "M0". It has three convolution layers with 25, 50 and 100 feature maps sequen-
tially, and one output layer which is fully connected to the last convolution layer. Two 
modifications have been explored: one is changing the number of feature maps in 
each of three convolution layers in both increasing and decreasing ways to build new 
models. The other is using "Bagging" method (i.e. dataset re-sampling) to randomly 
select samples for the training sets to train the same CNN model numerous times. The 
structures of the modified classifiers are listed in Tables 1 and 2, while the informa-
tion of re-sampling datasets is listed in Table 3. 

3.2 Rejection Based on MCS 

MCS for Recognition VS Rejection. MCS with different combination methods are 
often used in pattern recognition to enhance the recognition rate. In handwritten num-
eral recognition, some researchers have yielded state-of-the-art performance in recog-
nition based on differently designed MCSs. On the MNIST numeral dataset, a recog-
nition rate of 99.73% is achieved with an MCS consisting of 35 classifiers [9]; Wu et 
al obtained an even better recognition rate of 99.77% based on a MCS with 5 CNNs 
based on different training sets as well as different operations of spatial pooling [10]. 

Although MCS has contributed a lot to recognition, it is seldom used for pattern re-
jection. As it is so effective in recognition, it is assumed to be useful in rejection as 
well. Therefore, we attempt to adopt MCS to the rejection problem. In [14, 15], the 
authors apply MCS for rejection based on the cascading methods and achieve high 
performances. In this paper, a committee approach for MCS rejection is used. 

Voting Based Combination Method for MCS Rejection. For the purpose of com-
bining multiple classifiers, voting is always a good choice for the reason that it is 
simple and effective. Hard voting is the simplest voting method which assigns equal 
weight to all votes. Another frequently used method is soft voting, which assigns a 
weight to each classifier according to its performance [16, 17]. For the weights part, 
all the rejection criteria mentioned in Section 2 can be selected for the reason that they 
reflect the rejection performance of a single classifier. A certain type of rejection 
criterion is assigned to each model in the voting procedure, and the class label with 
the highest voting value provides the final decision for each sample.  
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Suppose there are  different classifiers in the MCS, denoted as , , … , , for 
a random pattern, each classifier 1,2, … ,  would provide a prediction of the 
label  as well as an output vector , , … , . Then for each classifier, the se-
lected rejection criterion (FRM, FTRM or SVMM) can be calculated based on the 
output vector , , … , , denoted as 1,2, … , . (For the reason that LDAM 
does not work as effectively as the other criteria, it is not considered for combination.) 
The above-mentioned method is the soft voting. We also consider the hard voting 
method by simply setting  1. After that, a voting value 1,2, … ,  is calcu-
lated for each class denoted as: 

 ∑ , ,    , 1               0                           (7) 

Among , a maximum voting value max  can be found and a thre-
shold   is searched and determined. A pattern is rejected if   is smaller than 
a threshold. As the voting values are sums of all models, the thresholds   can be 
any real numbers between 0 and . But for the hard voting method, the threshold can 
only be an integer which cannot yield a reliability-rejection curve. The whole proce-
dure of MCS based pattern rejection is shown in Fig. 1. 

 

Fig. 1. Flow chart of voting based combination of MCS for pattern rejection 

4 Experiments 

4.1 Multiple Classifier System 

Two well-known datasets are selected for these experiments including CENPARMI 
[18] and MNIST [19] handwritten numeral datasets. The former contains 4000 train-
ing samples and 2000 testing samples with no-fixed size while the latter contains 
60000 training samples and 10000 testing samples with identical size of 28 by 28 
pixels. 

Firstly, structural modification (SM) method [20] is conducted to build commit-
tees. For the CENPARMI data, we increase the numbers of feature maps in each con-
volution layer (C1, C3 and C5) of the basic model and train all the models to 150th 
epoch as shown in Table 1. For the MNIST data, these numbers are slightly changed 
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in both increasing and decreasing directions as listed in Table 2 below. Secondly, 
dataset re-sampling (DR) method is used on CENPARMI data. In this phase, model 
structure is fixed as the basic one. Different training sets are formed by randomly 
selecting 2000 training samples and distorting them with elastic algorithm [3]. The 
process is repeated four times to obtain 4 different training sets (G1-G4) with 4000 
samples each, as listed in Table 3. The numbers in the first 10 columns represent the 
numbers of samples selected in different categories for different training sets. 

Table 1. Information about modified structures in MCS with CENPARMI dataset 

  M0 (basis) M1 M2 M3 
C1 25 50 50 70 
C3 50 75 90 75 
C5 100 120 100 100 

Training Error Rate (%) 0.5 0.38 0.38 0.43 
Testing Error Rate (%) 2.45 2.45 2.25 2.45 

Table 2. Information about modified structures in MCS with MNIST dataset 

  M0  M1 M2 M3 M4 M5 M6 

C1 25 25 25 25 25 10 40 
C3 50 50 50 30 80 50 50 
C5 100 80 120 100 100 100 100 

Training Error Rate (%) 0.36 0.34 0.31 0.34 0.26 0.34 0.29 

Testing Error Rate (%) 0.62 0.63 0.61 0.6 0.58 0.63 0.61 

Table 3. Information about re-sampling training sets with CENPARMI data 

 
0 1 2 3 4 5 6 7 8 9 

Training 
Error Rate 

(%) 

Testing 
Error Rate 

(%) 
G1 474 462 416 350 332 394 380 370 400 422 1.65 2.80 
G2 450 408 358 404 394 382 424 424 396 360 1.52 3.65 
G3 458 482 408 340 372 410 392 426 386 326 1.27 3.50 
G4 402 440 380 390 430 426 370 412 350 400 1.77 3.45 

4.2 Comparison of Different Rejection Criteria 

In the selected CNN model, the output of each sample is a 10-dimention vector con-
sisting of confidence values for possible classes. FRM, FTRM and LDAM are used 
respectively as rejection criteria with the basic model. Thresholds are searched  
incrementally. As in CNN model, the outputs are confidence values instead of proba-
bilities, the most appropriate starting point, step and ending point for thresholds 
searching vary according to different rejection criteria. For the newly proposed 
SVMM, "libsvm" tools are applied and the same CNN model is used as a feature ex-
tractor. Totally, there are 216 out of 60000 samples labeled "-1" while the rest are 
labeled "1" for the training process. Since the training set is so unbalanced with the 
number of samples in class "1" almost 300 times that of class "-1", the weight para-
meter is set to "400" for class "-1". A linear kernel is selected in order to find a linear 
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decision boundary in the feature space. Normalization is conducted on the decision 
value with SVM of each sample on purpose of making the threshold-setting procedure 
more convenient. Then different thresholds are set for rejection. All the results are 
shown by the curves presenting the relationship between the number of rejected sam-
ples and reliability in Fig. 2.  

Results show that, although LDAM is proved to have a better performance than 
FRM and FTRM in [7] based on eight-direction gradient feature with an SVM clas-
sifier, it is the least useful one in our experiment with the CNN model. The perfor-
mances of FRM and FTRM which are far different in [7] are insignificantly different 
in CNN model "M0". So it can be concluded that these pre-defined criteria vary in 
performance with different classifier models or types of features.  
 

 

Fig. 2. Relationship between number of       Fig. 3. Samples in FR-SR feature space 
rejected sample and reliability in "M0" 

From Fig. 3, FR and SR of correctly classified samples are extremely close to 1 
and -1 respectively. As a result, a line with slope "1" standing for FTRM is an optimal 
boundary to separate wrongly and correctly classified samples. That is why FTRM is 
an effective criterion for rejection. Another effective criterion FRM can also be 
viewed as a problem of finding a boundary parallel to the -axis in Fig. 3, which, by 
observation, is less effective than FTRM. However, it is noticed that although these 
two criteria can be useful, many correctly classified samples will also be rejected by 
them no matter where the boundary is. 

It is also shown in Fig. 2 that SVMM works as effective as FTRM in rejection and 
the two are always the relatively best ones among all of the criteria. Similar results 
appear when we applied these criteria to all the modified CNN models, as displayed 
in Fig. 4. Besides, it is noticed that the performances of FTRM and SVMM are too 
close to determine which one is better. The reason for this can be traced back to the 
training process of CNN model when the expected values in the decision layer are set 
to be "1" for the true class and "-1" for the other classes. Hence, FTRM is already a 
distinctively effective criterion to determine the quality of a sample as analyzed with 
Fig. 3. When we use the SVMM, which uses all the values of the output vector, FR 
and SR contribute much more than the others since the others are slightly different 
from SR. Therefore, the rejection boundary of SVMM is very close to that of FTRM. 
This explains the similar performances of these two criteria. 
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Fig. 4. Relationship between number of rejected sample and reliability in modified models 

4.3 Pattern Rejection with MCS 

Voting Based Combination Method. In this experiment, hard voting and soft voting 
rejection methods are both conducted based on the MNIST dataset with MCS built by 
SM. 

In hard voting, a range limitation problem makes the rejection process inflexible 
for the reason that the thresholds can only be set to several integers. Once the maxi-
mum value (number of classifiers in the MCS) is reached, the reliability cannot be 
improved anymore. The highest reliability is 99.86% with 118 samples rejected when 
the threshold is set to "7". 

In soft voting, the proposed combination method has been applied with FRM, 
FTRM and SVMM respectively. Since these criteria have different value ranges, dif-
ferent starting points, search steps and ending points are chosen. For FRM and 
SVMM, the starting and ending points are 0 and 1 respectively; while for FTRM, the 
starting and ending points are 0 and 2. The search steps for all of them are 0.1 at regu-
lar places and 0.01 at the sections where the number of rejected samples changes 
sharply based on different criteria. The results are shown in Fig. 5. We can find that 
with the combination of seven CNN models, the rejection performances are consis-
tently improved for all rejection criteria (FTM, FTRM and SVMM).  

Structural Modification (SM) and Data Re-sampling (DR). In this section, we 
adopt the soft voting combination rejection method with MCS on the CENPARMI 
handwritten numeral dataset. The MCS is constructed in two different ways including 
SM and DR, as presented in Section 4.1. FTRM is chosen as weight for soft voting 
combination and thresholds are searched from 0 with an incremental step of 0.05 until 
suitable reliability values are reached. The results are shown as curves displaying the 
relationship between number of rejected samples and reliability, presented in Fig. 6. 
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Fig. 5. Relationship between number of rejected sample and reliability with MCS and single 
models based on different rejection criteria 

From these two figures, it is proved again that soft-voting combination method 
with MCS could improve the rejection performance of the system no matter which 
method is adopted to construct the MCS. Furthermore, it is shown in Fig. 6 that with 
our combination method, although MCS does not necessarily improve the recognition 
rate (without rejection), it can still improve the rejection performance of the whole 
system.  

Table 4 below lists some important information about the performance of different 
rejection methods based on the CENPARMI dataset. In [7], it is claimed that using 
LDAM, a reliability of 99.67% is achieved with 175 samples rejected. With our com-
bination methods, the MCS with SM (Com-SM) obtains a reliability of 99.78% with 
only 164 samples rejected and 99.89% with 180 rejected. The other MCS with DR 
(Com-DR) achieves the same reliability as LDAM with 6 less samples rejected and 
99.73% with 179 samples rejected. Both of these two construction methods with MCS 
obtain better rejection results than state-of-the-art rejection method based on the same 
dataset. 

Comparing two different construction methods of MCS (SM and DR), it is clear 
that the system with DR performs better than that with SM. As shown in Table 4, to 
reach a reliability of 99.94%, DR should reject 257 samples while SM should reject 
393 samples,  even if the original recognition rate (without rejection) of DR is 
smaller than that of SM (see Table 1 and 3). This indicates that building MCS with 
DR makes errors between different classifiers in the system much more diverse. 

 

Fig. 6. Relationship between number of rejected sample and reliability with MCS built by 
different methods 
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Table 4. Rejection performances of different rejection methods based on CENPARMI dataset 

Number of rejected samples Reliability Method 

175 99.67% [7] 

164 99.78% Com-SM 

180 99.89% Com-SM 

169 99.67% Com-DR 

179 99.73% Com-DR 

393 99.94% Com-SM 

257 99.94% Com-DR 

5 Conclusion 

In this paper, a novel SVM-based rejection measurement and voting based combina-
tion methods with multiple classifier system (MCS) for rejection are proposed. The 
main difference between SVMM and other criteria (FRM, FTRM, LDAM and so 
forth) is that SVMM finds the rejection boundary based on the training data rather 
than experiences as in those pre-defined criteria. The voting based combination me-
thod of MCS is a new attempt to adopt MCS for the purpose of rejection. In the soft 
voting method, different rejection criteria (FRM, FTRM and SVMM) are used as 
weights for different models since they reflect their rejection effectiveness. Experi-
ments are conducted on well-known MNIST and CENPARMI digit datasets. Differ-
ent MCSs are constructed with two different building methods, structural modifica-
tion and dataset re-sampling. The results show that no matter what building method is 
chosen or what criterion is selected as weight in soft voting, rejection based on MCS 
can improve the rejection performance of the system consistently. It is also indicated 
that MCS built by dataset re-sampling works better than that by structural modifica-
tion in rejection. 
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Abstract. Hyperspectral remote sensing image (HRSI) classification is
a challenging problem because of its large amounts of spectral channels.
Meanwhile, labeled samples for supervised classifier is very limited. The
above two reasons often lead to unstable classification result and poor
generalization capacity. Recent research has demonstrated the potential
of multiple classifier system (MCS) for producing more accurate classi-
fication result. In addition, another vital aspect of HRSI classification is
spatial contents. Markov random field (MRF), which takes the spatial
dependence among neighborhood pixels based on the intensity field from
observed data into consideration, is always adopted as an effective way to
integrate the spatial information. In this paper, we proposed an effective
framework for classifying HRSI image, called MRF-based MCS, which
are based on the aforementioned two powerful algorithms. The proposed
model is validated by multinomial logistic regression (MLR) classifier.
Experimental results with hyperspectral images collected by the NASA
Jet Propulsion Laboratory’s Airborne Visible Infra-Red Imaging Spec-
trometer (AVIRIS) demonstrate that MRF-based MCS is a promising
strategy in the context of hyperspectral image classification.

1 Introduction

Hyperspectral remote sensing image classification is a challenging problem be-
cause of its high dimensionality (hundred of bands) and limited availability of
training samples. Therefore, we need some advanced approaches to generate the
high performance classification result. Over the course of the past 10 years, the
advent of a novel machine learning scheme named as multiple classifier system
had a significant impact on improving HRSI classification accuracy [1–4]. MCS,
just like its name, combines the individual classifier’s output according to a
certain algorithm (such as majority vote) or based on an iterative error mini-
mization [5, 6]. The output of individual classifier can be constructed by several
strategies, such as: different classifiers using the same/different training set, same
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classifier using different training samples etc. Many researchers have investigated
the performance of HRSI classification using different MCS approaches. For in-
stance, Foody et al [7] adopted majority voting rule to combine multiple binary
classifiers for mapping a specific class. Doan and Foody [8] explored the combi-
nation of soft classification methods and found these methods could improve the
accuracy. A wealth of information for remote sensing image classification using
MCS technologies can be found in [4].

If the spatial information of HRSI image (especially for the high spatial res-
olution) is not considered, the thematic map, which includes salt and pepper
classification noise, looks very noisy. Accordingly, it is essential to take into ac-
count spatial information. This topic is named as spectral-spatial classification.
Many studies have been carried out on this topic. To the best of our knowledge,
spectral-spatial analysis for HRSI classification can be divided into the following
groups [9, 10]:

– Mathematical morphology. Results of morphological operators over features
from original images or calculated by feature extraction/selection methods
are treated as the input of classifiers.

– Segmentation and majority vote. Firstly, the neighbored regions using a
spatial or spectral segmentation are designed. Secondly, the most frequently
class derived from the supervised classifier in a region is adopted as the final
class.

– Composite kernels. This refers to kernel-based classifier, in which multiples
kernels are used to combine spatial and spectral features.

– Markov random field.
– Other approaches consists of tensor modeling, context-based classification

etc.

In many cases, the exploitation of spatial information in classification is obtained
through MRF, a probabilistic model that is commonly used to integrate spatial
information into image classification [11, 12]. In the MRF framework, maximum
a posteriori (MAP) probability is one of the most popular statistical criteria
for optimality the energy function. Tarabalka et al [13] used MRF method as
a post-processing scheme to a probability-SVM classification map. The used
MRF framework is called metropolis algorithm, based on stochastic relaxation
and annealing. Li et al [14] integrated the spectral and spatial information into
a Bayesian framework, and then used a multinomial logistic regression (MLR)
classifier to learn the posterior probability for the spectral information. Finally,
spatial information is considered using a multilevel logistic MRF prior.

In this paper, we present a novel framework for enhancing the performance
of HRSI classification by combining MCS and MRF. In particular, we propose
to integrate the multiple classification results obtained by MLR classifier with
different training samples using MCS approaches. The MLR classifier is used to
generate a spectral-based classification map, whereas MCS is chosen to provide
an ensemble of classification maps. To generate the final classification result, we
propose to aggregate further ensemble pixel-based classification maps through
different MRF methods. More details can be seen in Section 2.
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The structure of the remainder paper is as follows. Section 2 is a fine descrip-
tion of MRF-based MCS framework. In Section 3, we describe the preliminary
results currently in progress to verify the performance of the proposed frame-
work. Finally, Section 4 gives the conclusions and future directions of research.

2 MRF-Based MCS

2.1 Framework Overview

MRF-based MCS can be summarized as the flowchart in Fig.1. Firstly, we ran-
domly select training samples (repeat M times, M is the ensemble size) to train
a supervised classifier. Secondly, we adopt some rules of MCS to combine the
individual classification outputs. Finally, we use MRF regularization to obtain
the final result. Assuming that hyperspectral image has n pixel vectors X ={
xi ∈ RD, i = 1, 2, ..., n

}
, Y is the class label of image Y = {yi, i = 1, 2, ..., n}.

Ω = {ω1, ω2, ..., ωk}, k is the number of class of interest.

Fig. 1. The flowchart of MRF-based MCS framework

2.2 Multiple Classifier System

MCS combines class labels or probability from multiple classifiers. The final
output mainly depends on the supervised classifier and the diversity among
the classification results. In this paper, MLR is chosen due to its capability
of offering excellent HRSI classification accuracy with short computation time
[14]. This classifier can generate the class labels and probabilities, respectively.
Furthermore, majority voting (MV) and Bayesian average (BA) are selected as
the MCS rules, respectively. For the purpose of MRF in the next step, we need
both the class label and probabilities.

MV is the most popular MCS method by which each individual classifier votes
for the specific class, and the class that collects the majority votes is predicted
as the final output [6]. Class probabilities, which is equal to the number of times
that the class is predicted of class divided by ensemble size, is defined as follows:

P (xi|yi ∈ Ωj) =

∑M
l=1 δ(yl,i, Ωj)

M
(1)
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where, yl,i represents the class label of pixel i in
{
lth, l = 1, 2, ...,M

}
classifier,

δ(·, ·) is a Kronecker delta function, when α = β, δ(α, β) = 1 and otherwise
δ(α, β) = 0.

BA is used to linearly average the probabilistic derived frommultiple classifiers
[6, 15]. The class label is decided by which has the largest probabilities. It can
be defined as follows:

P (xi|yi ∈ Ω) =
1

M

M∑
j=1

Pj (xi|yi ∈ Ω) , i = 1, 2, . . . , n (2)

Then, the class label is decided:

yi = argmaxP (xi|yi ∈ Ω) (3)

where Pj (xi|yi ∈ Ω) represents the probability of pixel i in
{
jth, j = 1, 2, ...,M

}
classifier.

2.3 MRF Regularization

The pixel-wise classifications only consider the image pixels as the discrete spec-
tral signals, not treat the image pixels as a whole. And the spatial correlation
between the images is ignored at all. Thus, the boundaries of the objects in im-
age is hard to distinguish, especially for the low spatial resolution hyperspectral
image. Therefore, the intergration of the spatial and spectral information is nec-
essary for the context of hyperspectral remote sensing image classification. MRF
is a powerful mathematical framework to incorporate spatial information by ex-
ploring the relationships between neighborhood image pixels. The basic principle
of MRF is that the label of a pixel depends only on itself and its nearest ones
among all the neighbors [16]. In some previous studies, a energy cost function
with both spectral information and spatial relation is established to construct
MRF model [13, 16].

Generally speaking, MRF models tend to solve the following optimization
problem of a energy cost function:

argmin
n∑

i=1

E = argmin
n∑

i=1

Espectral(xi) + Espatial(xi) (4)

where, Espectral(xi) and Espatial(xi) are the spectral and spatial energy function,
respectively. The spectral energy function is defined as:

Espectral(xi) = − lnP {xi|yi} (5)

where, P {xi|yi} can be achieved from MCS rules. And the spatial energy func-
tion is described as:

Espatial(xi) = −β
∑
j∈C

δ (yi, yj) (6)
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where, C is the neighborhood of pixel i, β controls the importance of spatial
information.

The above optimization problem, which involves pairwise and unary inter-
action terms, is very difficult to compute. In order to tackle this optimization
problem, we exploit two different MRF models: one is based on stochastic re-
laxation and annealing (MRF-SA) [13], and the other is based on Graph Cut
(MRF-GC) [17].

MRF-SA model firstly randomly selects a pixel in the image and computes
the local energy E. Then, a new class label is assigned to this pixel and the
new local energy Enew is calculated. Finally, we compare the new local energy
with old local energy, if the new local energy is larger than the old local energy,
the new class label is assigned to this pixel. Otherwise, the new class assign-
ment is accepted with the probability P = exp((Enew −E)/T ), T is the control
parameter. The above procedures repeat N times (N is defined by the user).

Graph Cut(GC) is the development of fast algorithms for labeling MRF. GC
constructs MRF model on a graph with nodes and edges and solve the minimiza-
tion of an energy cost function as a maximum flow problem [16]. In this paper,
α-expansion algorithm is used to solve the optimization problem of a cost func-
tion [18], because the Kronecker delta function δ(·, ·) in spatial energy is metric
on the space of labels. A metric means that δ(·, ·) satisfies three conditions:

δ (yi, yj) = 0⇔ yi = yj (7)

δ (yi, yj) = δ (yj , yi) ≥ 0 (8)

δ (yi, yj) ≤ δ (yi, yk) + δ (yk, yj) (9)

More details about α-expansion algorithm can be seen in [17]. And this algorithm
yields very well approximations and is quite efficient from a computational point
of view, with the computational complexity of O(n) [14].

3 Experimental Results

3.1 Datasets and Experiment Design

AVIRIS dataset collected over a vegetation area of Indian Pines, Indiana, USA,
is used to validate the performance of MRF-based MCS framework. The image
size is 145 rows by 145 columns. The image includes 200 spectral bands after
removing twenty water absorption bands (104-108, 150-163 and 220). The ground
truth, that is used as training and test samples, consists of 16 classes with 10366
pixels, which is detailed in Table.1 [19]. The spatial resolution is 20 m/pixel.

Experiments achieved by MRF-based MCS are conducted to illustrate the
influence of different number of training samples and the impact of ensemble
size. From Table.1, the minor class named as Hay-windrowed has only 20 data
points. Thus, we randomly select training samples comprised of 80, 160, 240 and
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Table 1. Classes for AVIRIS image and the number of ground truth

Index Classes Number Index Classes Number
1 Alfalfa 54 9 Hay-windrowed 20
2 Corn-no till 1434 10 Soybeans-no till 968
3 Corn-min till 834 11 Soybeans-min till 2468
4 Corn 234 12 Woods 614
5 Grass/pasture 497 13 Wheat 212
6 Grass/tree 747 14 Soybeans-clean till 1294
7 Grass/pasture-mowed 26 15 Bldg-Grass-Tree-Drives 380
8 Oats 489 16 Bldg 95

320 (5, 10, 15 and 20 per class, respectively) from the ground truth. We also
investigate the impact of different ensemble size(10, 40, 70, 100) to classification
accuracy. For both two MRF models, β is set to 4. For MRF-SA, T is initial
set to 2. After every 106 iterations, T for the next η + 1 iteration is computed
as T η+1 = 0.98T η. In this paper, we just focus on the MCS and MRF-based
MCS results, so the default parameters of individual classifier are adopt. Overall
accuracy (OA), Average accuracy (AA) and kappa coefficient (κ) are treated as
the quantitative indices. In order to increase the statistical significance of the
results, each value of OA reported in this experiment is obtained from 10 Monte
Carlo (MC) runs.

3.2 Results

Fig.2 and 3 show the average overall accuracies (OA%)(after 10 MC runs) ob-
tained by the best of single classifiers, Single-MRF-SA, Single-MRF-GC, MV,
BA, MV-MRF-SA, BA-MRF-SA, MV-MRF-GC and BA-MRF-GC using differ-
ent number of training samples and ensemble size. The MV and BA are quite
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Fig. 2. Average OA of using different number of training samples, the ensemble size is
fixed to 10
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Fig. 3. Average OA of using different ensemble size, the number of training samples is
fixed to 80

effective methods among the MCS algorithms. Compared with the single classi-
fier, both MV and BA obtain more accurate results and achieve higher overall
accuracies. In this dataset, BA is superior to MV. MRF regularizations on sin-
gle classifier significantly improve the classification result. They indicate the
effectiveness of MRF regularization. Compared to the results derived from MCS
rules and single classification using MRF regularization, the four MRF-based
MCS models significantly increase the classification accuracies. And MRF-SA
methods outperform MRF-GC approaches. For example, when the number of
training samples is 80 (5 samples per class) with the ensemble size M = 10,
the OAs of Single, Single-MRF-SA, Single-MRF-GC, MV and BA are 58.38%,
65.73%, 66.68%, 66.56% and 67.28%, MV-MRF-SA, BA-MRF-SA, MV-MRF-
GC and BA-MRF-GC gain the OAs of 79.13%, 79.99%, 78.8% and 78.36%,
respectively. The standard deviations of MCS and MRF-based approaches are
very small, indicated that all MCS and MRF-based methods are the stable clas-
sifiers. For different training samples (Fig.2), the general trend is that OA greatly
improve when the number of training samples rise. The general trend of differ-
ent ensemble size (Fig.3) is similar to the one of different training samples. OA
increased slightly when ensemble size increase. Both more training samples and
ensemble size can improve the classification result, but the computation time is
also increased.

In order to compare the class-specific accuracies, we list all accuracies of each
class using the above algorithms with the training samples of 160 and the ensem-
ble size of 10 (only one run). The results are summarized in Table.2. It can be
observed that MRF-based MCS models not only enhance the overall accuracy,
but also improve all the class-specific accuracies. For instance, compared to Sin-
gle classifier, BA-MRF-SA achieves the OA of 86.47%, with the improvement
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of 20.56 percentage points, Soybeans-clean till of BA-MRF-GC improves the
accuracy from 61.75% to 99.17%. Different MRF-based MCS approaches lead
to the best classification results for different class. MV-MRF-SA gains the best
accuracies of class corn,woods, MV-MRF-GC presents the best results for class
Grass/pasture, Soybeans-no till, BA-MRF-SA gives the best accuracies for class
Corn-min till,Soybeans-min till and the other classes get the best performance
using BA-MRF-GC method.

Table 2. Classification accuracies for the Indian Pines image using 160 training samples
(10 samples per class) with the ensemble size M = 10

Class Single Single-MRF-SA Single-MRF-GC MV BA MV-MRF-SA BA-MRF-SA MV-MRF-GC BA-MRF-GC

1 84.09 97.73 88.64 90.91 90.91 100 100 100 100
2 58.85 68.89 55.55 67.77 65.80 75.98 76.47 76.69 80.55
3 59.83 66.02 60.92 65.05 63.23 87.86 88.35 80.34 79.61
4 76.34 99.11 67.86 91.07 91.52 98.66 100 99.55 100
5 72.90 70.84 82.75 86.24 85.83 85.01 83.78 94.25 83.37
6 79.51 97.29 98.24 94.98 94.84 98.37 99.19 97.96 99.19
7 100 100 100 100 100 100 100 100 100
8 91.23 97.7 96.03 96.24 97.29 99.79 99.37 99.37 99.37
9 100 100 100 100 100 100 100 100 100
10 45.82 82.36 61.84 67.01 67.12 74.22 75.78 76.2 75.16
11 61.55 52.12 72.34 52.56 56.18 76.44 82.34 66.8 72.21
12 61.75 85.43 96.19 81.95 84.77 72.52 97.02 97.02 99.17
13 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5
14 76.95 86.99 98.13 90.5 89.72 93.85 90.42 91.43 83.41
15 50.81 68.34 77.84 65.14 66.49 78.65 85.41 89.73 99.46
16 84.71 81.18 92.94 85.88 89.41 100 100 96.47 98.82

OA 65.81 75.49 77.15 73.07 73.71 83.52 86.47 82.8 83.56
AA 75.24 84.93 83.15 83.43 83.91 90.05 92.35 91.58 91.86
κ 61.59 72.48 74.07 69.87 70.55 81.41 84.71 85.38 81.48

4 Conclusion

In this paper, we developed a novel MRF-based MCS framework aiming at ad-
dressing hyperspectral spectral-spatial classification. The proposed algorithms
model the class labels and probability based on multiple classifier system using
MLR classifier. The final result is efficiently computed by stochastic relaxation
and annealing, and α-expansion Graph Cut methods. Our experiments indicate
that the proposed framework not only greatly improves the overall accuracy,
but also enhance the class-specific accuracies, even for the very small training
samples (5 samples per class). Future works will be directed toward testing more
supervised classifiers, MCS rules and MRF-based approaches.
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Abstract. In this paper, we propose a directed inference approach for
multi-class multi-model fusion. Different from traditional approaches
that learn a model in training stage and apply the model to new data
points in testing stage, directed inference approach constructs (one) gen-
eral direction of inference in training stage, and constructs an individual
(ad-hoc) rule for each given test point in testing stage. In the present
work, we propose a framework for applying the directed inference ap-
proach to multiple model fusion problems that consists of three com-
ponents: (i) learning of individual models on the training samples, (ii)
nearest neighbour search for constructing individual rules of bias correc-
tion, and (iii) learning of an optimal combination weights of individual
models for model fusion. For inference on a test sample, the predic-
tion scores of individual models are first corrected with bias estimated
from the nearest training data points, and then the corrected scores are
combined using the learned optimal weights. We conduct extensive ex-
periments and demonstrate the effectiveness of the proposed approach
towards multi-class multiple model fusion.

1 Introduction

Big data has posed great challenges in applying machine learning technologies.
First, the scale of the data is too big to feed into most single-node and batch-
mode machine learning algorithms. Second, the model trained on a small subset
of data usually subjects to high bias and high variance.

To meet the big data challenge, a common approach is to adopt a distributed
learning framework, where data and learning are distributed to different nodes
in a cloud based computational network. These computational nodes are usu-
ally categorized into two types: one master node and a set of slave nodes. Each
slave node will train an independent model on a subset of training data with
single-node solvable scale, and make temporary decisions based on each inde-
pendent model. The master node will take charge of distributing data, collecting
information from slave nodes, and making the final decision, also called model
fusion.

There are two steps involved in distributed learning framework. The first step
is the distributing of multiple models in different slave nodes. The simplest way
is to train each model, e.g., support vector machine (SVM)[8], neural network
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(NN) [13], decision tree [11], logistic regression (LR) [15], etc., independently on
each node. The second step is to fuse multiple models and make the final decision,
which has become a bottleneck problem in the distributed learning framework.
There are several ways for model fusion. The simplest approach that combines
the scores of multiple models with equal weights suffers from severe problems.
First, each model may have substantially biased prediction and as a result adding
them together may blow up the prediction bias on a test sample1. Second, each
individual model may perform very differently since different models are learned
based on different assumptions and objective functions, as a result the simple
average would be very vulnerable to poorly performed models.

Although some other methods have been considering different weighting
schemes to fuse multiple models, e.g., bagging, boosting, maximum margin of
ensembles [10], and etc, they are studied in the traditional system on a single
machine over all training samples and therefore they may not fit into the modern
distributed system.

In this work, we seek an approach to directly combine multiple models with
each trained on the same set (or different subset) of training samples. The pro-
posed directed inference approach consists of three key components: (i) learning
of individual models, which is same as traditional approach; (ii) nearest neigh-
bour search for estimating the prediction bias on a test sample to correct the
prediction scores of individual models; and (iii) learning of an optimal combina-
tion weights for model fusion. To make an inference on a test sample, the raw
prediction scores are first computed for each model and then are corrected with
estimated bias from the nearest neighbours retrieved using a distance metric and
finally are added together using the learned optimal combination weights. The
proposed approach can be also understood from the viewpoint of bias-variance
trade-off. Combination of multiple models has shown to be effective in reducing
the variance of prediction, however it could have adversary effect by increasing
the bias. Therefore, the bias correction step in the proposed method helps to
reduce the bias in individual models and the optimal weighting scheme further
alleviate the impact of models with large bias.

We organize the remaining part of the paper as follows. In section 2, we review
some related work from three angles, directed inference, bias and variance trade-
off, and model fusion. In section 3 we present the proposed approach with three
key components: learning of individual models, learning of a distance metric
and learning of an optimal combination weights. In section 4, we present the
experimental results and finally we conclude in section 5.

2 Related Work

2.1 Directed Inference

Directed (ad-hoc) inference (DAHI) approach is a new machine learning tech-
nique proposed by Vladimir Vapnik [18]. The key difference between DAHI and

1 Throughout the paper, we use the terms of sample, example, instance and data point
interchangeability.
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traditional inductive/deductive or transductive learning is that in the testing
stage, DAHI constructs a specific individual rule for each test example based
on a principle concept learned in the training stage. The present work fits into
the framework of DAHI by first learning multiple individual models in a single
machine or in a distributed learning framework, a distance metric for retriev-
ing a nearest neighbour and an optimal combination weights, then for each test
sample by computing a bias corrected score for each individual model and then
combing the multiple scores using the learned weights.

2.2 Bias and Variance Trade-Off

Bias and variance take-off is a common problem in model selection and model
assessment. It has been shown that the mean square error of an estimator can
be decomposed into a sum of the variance and the bias square of the estimator.
Given multiple unbiased estimators, by simply averaging their prediction scores,
one can obtain an estimator with dramatically reduced variance. However, if
the individual models are biased, the trade-off between bias and variance may
kick in, i.e. the variance of combined models may be reduced, while the bias
may be blown up. One of the key motivations of the proposed approach is to
reduce the bias of individual models. Given the bias and variance trade-off, it
is however generally a difficult and even impossible task to construct a fixed
estimator with both small bias and variance. Therefore, we resort to DAHI to
construct individual rules with small bias and combine them to obtain a small
variance.

Bias correction has been introduced to construct individual rules with small
bias [4,2] and has shown to be effective in regression [4] and binary classifica-
tion [2]. Bias correction works by subtracting an estimated bias value from the
prediction score on any test example. The bias on a test sample is estimated by
taking average of the bias values on training data points in the nearest neigh-
bourhood. The underlying assumption is that in the small neighbourhood of a
test example, the bias value is a constant. Previous works have used Euclidean
distance or rectangle distance to retrieve a number of nearest neighbours. How-
ever, the Euclidean nearest neighbour may not share similar bias as the models
may learned in a different space (e.g., kernel SVM is learned in a mapped high
dimensional or infinite dimensional space).

2.3 Model Fusion

Model fusion is part of the ensemble learning process, by which multiple in-
telligent models are trained and combined for making a decision. Fusion is a
major scheme for improving the performance by generating a more robust deci-
sion boundary based on multiple decision models. It can also be considered as a
generalized model selection process, where instead of selecting the best model,
fusion selects the best combination of models. The commonly used fusion meth-
ods include simple fusion, majority voting, Borda count, threshold voting, and
heuristic decision rules [14,25,12], weighted average [27], fuzzy integral, fuzzy
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templates, and Dempster-Shafer theory[20], dynamic model selection [22], neu-
ral network (NN) based NN combination [21], local fusion [26], fuzzy combination
[3], bagging [6], boosting [16], and etc.

3 A Directed Inference Approach towards Multi-class
Multi-model Fusion

In this section, we present a directed inference approach towards multi-class
multi-model fusion. The proposed approach consists of three key components:
(i) learning of individual models, (ii) nearest neighbour search for bias correction,
and (iii) learning optimal combination weights.

3.1 Learning of Individual Models

Our goal is to classify a data point into one of the K classes, denoted by
{C1, . . . , CK}. A common approach for multi-class classification is to cast the
problem into several binary classification problems, e.g., one vs all or one vs one.
In what follows, we briefly describe several methods for multi-class classification.
Throughout the paper, we let xi ∈ R

d, i = 1, . . . , n denote the feature vectors
and yi ∈ {1, . . . ,K}, i = 1, . . . , n denote their class labels. Without incurring
confusion, we also use yi ∈ {0, 1}K to denote a K-dimensional vector with only
one entry equal to 1 indicating the class label.

Support Vector Machine (SVM) [8] constructs a hyperplane in the linear
form f(x) = w
x + c by maximizing the margin from the hyperplane to the
nearest training data point. It categorizes any data point into one of the two
classes by checking the sign of the prediction score w
x + c. In addition to
linear classification, SVM can also perform non-linear classification by using the
kernel trick, which is equivalent to mapping data points into high dimensional or
infinite dimensional feature spaces. In the experiments, we choose LibSVM [7] to
run kernel SVM with RBF kernel. To perform multi-class classification, it follows
one vs one scheme by constructing K(K − 1)/2 binary classifiers and finally
outputs a vector of scores that sum up to one, with each element indicating the
confidence of assigning the data point into the corresponding class.

Neural Network (NN) [13] models the relationship between input and out-
put in a structured information processing network, consisting of hidden layers
of nodes between input and output. The learning process is actually adapting
the model to the training data by changing the structure of the network. To
adopt the NN for muti-class classification, we build K feed-forward neural net-
works with a hidden layer of 25 neurons. The k-th neural network NNk is trained
by regressing the input features xi to the indicator variable I(yi = k) on the
training data. The decision on a test point is made by C(x) = argmaxk NNk(x),
where NNk(x) gives the prediction value on x.

Decision Tree [5] is a widely used non-linear model for both regression or
classification. A decision tree could be either a classification tree or a regression
tree depending on the type of the target variable and it is built upon the training
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data by recursively splitting the feature space with one feature and a splitting
criterion that minimizes error in the two resulting sub-spaces. To classify a data
point into one of K classes, we construct K regression trees with each tree
Tk built on the training data xi, i = 1, . . . , n with binary indicator variables
I(yl = k), and predict the class of a test point by C(x) = argmaxk Tk(x).
In this work, we choose the most well-known implementation of decision tree,
CART [5].

Logistic Regression (LR) [15] is a discriminative model for classification.
We consider linear logistic regression model for multi-class classification, which

defines the class conditional probability by Pr(y = k|x) =
exp(w�

k x)
∑

K
l=1 exp(w�

l x)
and

learns theK weightsw1, . . . ,wk by maximizing the log-likelihood on the training
data. To avoid over-fitting, a regularization term (λ/2)

∑K
k=1 ‖wk‖22 is added to

the objective.

3.2 Nearest Neighbour Search

Given multiple models denoted by f1, . . . , fm learned from the training data,
the remaining question is to combine them into a single model for achieving a
better performance. In this and next section, we address the question by nearest
neighbour search using a distance metric for bias correction and learning an
optimal combination weights for model fusion.

The raw prediction scores of model fj on a given test example X are generated
by fj(X) ∈ R

K . The motivation of bias correction is to reduce the bias of indi-
vidual models in predicting test data points. If we can accurately estimate the
bias bj(X) = fj(X)−Y, where Y is the unknown class label of the given exam-

ple X, we can subtract the estimated bias b̂j(X) from the raw prediction scores

fj(X) and obtain a more accurate classification decision based on fj(X)− b̂j(X).

The question reduced to accurately estimation of the bias b̂j(X) for a given test
point X. We take a non-parametric method, i.e., nearest neighbour estimation. A
non-parametric method fits into the framework of directed inference [19], which
is useful for constructing individual rules for test examples.

Let N (X) denote a small neighbourhood of X that contains the nearest train-
ing data points, which we assume shares the similar bias as the test data point
X, then the bias of X can be estimated by

b̂j(X) =
1

|N (X)|
∑

xi∈N (X)

(fj(xi)− yi) (1)

It still remains a problem how to retrieve a nearest neighbourhood of the test
point X. A simple method is to define a nearest neighbourhood by using the
Euclidean distance metric ‖xi −X‖2. However, in some cases it may not reflect
the underlying manifold of the bias function bj(x) = fj(x) − y, which depends
on the model prediction f(x) and the ground-truth y. A simple example that
provides a negative evidence of using the Euclidean distance is given in Figure 1,
where for the green test point, the bias of the nearest training data points (in the
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Fig. 1. An Illustration of nearest neighbourhood (nn) defined by the Euclidean metric
and the learned metric for estimating the bias on a test point (green dot)

green circle) defined by Euclidean distance metric are mixed with positive values
and negative values. As a consequence, by averaging the biases of the nearest
training data points may yield a poor estimation of bias on the test data point.
In contrast, if we define a nearest neighbourhood by a distance metric (e.g. the
blue elliptical circle) that is consistent with the ground truth, i.e. data points
with the same class labels have small distances and data points with different
labels have large distances, then the estimation of bias can be improved. There
exist many methods to formulate the distance metric learning [23,28,24]. In our
empirical study, we choose a simple and effective method, relevant component
analysis (RCA) [17,1], which is briefly described below.

RCA is originally proposed for learning a distance metric from partially la-
belled similar data points. Let C1, . . . , CK denote a set of K chunklets, where a
chunklet is defined as a set of data points that share the same class labels. In
our settings, each chunklet corresponds to one class. Then a positive semidefinite
distance metric A ∈ R

d×d is learned by minimizing the within class distances,
i.e.,

min
A∈S

d×d
+

K∑
k=1

1

nk

∑
yi=k

(xi − ck)

A(xi − ck)− log detA (2)

where S
m×m
+ ⊆ R

m×m denotes a PSD cone, ck is the center of the kth chunklet
and nk is the number of data points in Ck. The negative log-determinant term
is added to avoid a trivial solution, which also has an information theoretic and
Bayesian interpretation [1]. Finally, one can easily show that the optimal solution
to (2) can be computed as
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A =

⎛⎝ K∑
k=1

1

nk

∑
yi=k

(xi − ck)(xi − ck)



⎞⎠−1

Equipped with a distance metric A, either the Euclidean metric or the learned
metric, we can retrieve k nearest neighbors of the test sample X with k shortest
distance (xi −X)
A(xi −X) to form N (X).

3.3 Learning of an Optimal Combination Weights

In the previous section, we describe a nearest neighbour search for estimating
the bias on a given test point X. Given the estimated bias, the prediction of each
model is corrected by fj(X)− b̂j(X), and the corrected score will be combined by
a weighted summation. In this section, we present a convex approach for learning
a globally optimal combination weights. Let ω1, . . . , ωm denote the weights to
be learned, the combined prediction is computed by

f̂(X) =

m∑
j=1

ωj

(
fj(X) − b̂j(X)

)
(3)

The combination weights are global in the sense that all test points share the
same weights. The optimal combination weights ω = (ω1, . . . , ωm)
 are learned
following the spirit of cross-validation. To this end, we let (xv

i , y
v
i ), i = 1, . . . , N

denote a separate set of N validation data points sampled from the same distri-
bution of the training data points, and then we optimize the following objective

min
ω∈Δ+

N∑
i=1

�

⎛⎝ m∑
j=1

ωj(fj(x
v
i )− b̂j(x

v
i )), y

v
i

⎞⎠ (4)

where Δ+ = {ω : ω ≥ 0,
∑m

j=1 ωj = 1} is a simplex, b̂j(x
v
i ) is the estimated bias

from the nearest neighbors and �(z, y) is a hinge loss for multi-class defined as

�(z, y) = max
k �=y

([z]k − [z]y + b)+

where b is a specified margin parameter and [s]+ = max(0, s)
To optimize the objective in (4), we can employ the widely adopted gradi-

ent descent method that iteratively updates ωt = ωt−1 − η∇L(ωt−1), where
η is a step size. However, the standard gradient decent method suffers from a
low convergence rate of O(1/

√
T ) for the non-smooth hinge loss function, i.e.,

L(ω̂T ) ≤ minω∈Δ+ L(ω) + O(1/
√
T )), where ω̂T =

∑T
t=1 ωt/T . In this paper,

we extend the primal dual prox method proposed in [29] to optimize L(ω) that
enjoys a convergence rate of O(1/T ). To this end, we write the objective in (4)
into a min-max formulation:

min
ω∈Δ+

max
α∈ΩN

+

1

N

N∑
i=1

∑
k �=y

αi
k

(
[f̂(xv

i )]k − [f̂(xv
i )]yv

i
+ b

)
︸ ︷︷ ︸

F (ω,α)
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Algorithm 1. Pdprox algorithm for optimizing structured hinge loss over a
s implex (Pdprox-shs)

1: Input: step size γ
2: Initialization: θ0 = 1/m,α0 = 0
3: for t = 1, 2, . . . do

4: ωt = Pθt−1(γ∇ω(θt−1, αt−1)) =
θt−1 ◦ exp(−γ∇ω(θt−1, αt−1))∑m

j=1[θt−1 ◦ exp(−γ∇ω(θt−1, αt−1))]j
5: αt = ΠΩN

+
[αt−1 + γ∇α(ωt, αt−1)]

6: θt = Pθt−1(γ∇ω(ωt, αt)) =
θt−1 ◦ exp(−γ∇ω(ωt, αt))∑m

j=1[θt−1 ◦ exp(−γ∇ω(ωt, αt))]j
7: end for
8: Output ω̂T =

∑T
t=1 ωt/T and α̂T =

∑T
t=1 αt/T .

by observing that �(z, y) = maxα∈Ω+

∑
k �=y αk([z]k− [z]y+b), where Ω+ = {α ∈

R
K−1 : α ≥ 0,

∑
k αk ≤ 1}. To present the algorithm, we let ∇α(ω, α) denote the

partial gradient of F (ω, α) in terms of ω, ∇α(ω, α) denote the partial gradient
of F (ω, α) in terms of α, and let [u]j denote the jth element in u. The detailed
steps for updating the primal variable ω and the dual variables α are presented in
Algorithm 1, which is a variant of Algorithm 2 proposed in [29]. The updating
rule for the primal variable ω and the auxiliary primal variable θ is due to a
proximal mapping Pθ(g) = argminω∈Δ+ g
(ω − θ) + V (ω, θ), where V (ω, θ) =∑

j ωj log(ωj/θj) is the entropy distance function. The updating rule for the dual

variables α is due to a projection Πα∈ΩN
+
[α̂] = argminα∈ΩN

+
‖α − α̂‖2F , which

can be efficiently computed using the algorithm in [9]. Finally, we present the
following theorem that states the convergence rate of Algorithm 1 for optimizing
the structured hinge loss over a simplex. The proof can be easily duplicated
following the analysis in [29].

Theorem 1. Assuming ‖[f̂(x)]‖∞ ≤ R and setting γ =
√

N
8mR2 , by running

Algorithm 1 with T steps, we have

L(ω̂T ) ≤ min
ω∈Δ+

L(ω) +
logm+N

2γT

4 Experiments

In this section, we present some preliminary experimental results. The data sets
we choose for study include open benchmarks, DNA, letter, pendigits, protein,
satimage, in UCI data repositories. We also adopted a jet engine fault classi-
fication data, which contains a total of 19, 635 instances. Each instance corre-
sponding to a case of engine has 11 attributes from sensors and also is labelled
to one of seven classes which indicates one of the seven fault types including
normal. We refer to the data as aircraft engine fault diagnosis (AEFD) data.
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More details can be found in [27]. The data is split into a training set of 15, 708
instances and a testing set of 3, 927 instances. Table 1 summarizes the statistics
of the chosen datasets.

Table 1. Statistics of datasets

Name instances features source class type

dna 3,186 180 statlog 3 multi-class
letter 20,000 16 Statlog 26 multi-class

segment 2,310 19 Statlog 7 mult-class
protein 24,387 357 JYW02a 3 multi-class
satimage 6,435 36 Statlog 6 multi-class
AEFD 19,635 11 GE 7 multi-class

Table 2. Prediction performance of individual models with/without bias correction,
where nbs and bs indicate performances without and with bias correction, respectively.
The reported results of bias correction is using the Euclidean distance metric.

DNA letter segment

SVM NN CART LR SVM NN CART LR SVM NN CART LR

nbs 0.9625 0.9475 0.9740 0.9765 0.8158 0.9350 0.8250 0.7532 0.9450 0.9850 0.9750 0.9350

bs 0.9740 0.9645 0.9800 0.9765 0.9436 0.9596 0.9148 0.8234 0.9750 0.9850 0.9800 0.9500

protein satimage AEFD

SVM NN CART LR SVM NN CART LR SVM NN CART LR

nbs 0.6709 0.6849 0.4948 0.6892 0.8575 0.8885 0.8320 0.8170 0.7675 0.8296 0.7056 0.7833

bs 0.6324 0.6130 0.5369 0.6801 0.9040 0.8995 0.8845 0.8170 0.8273 0.8442 0.7904 0.8182

Table 3. Prediction performance of multiple model fusion with bias correction using
equal weights and optimal combination weights

DNA letter segment protein satimage AEFD

average opt average opt average opt average opt average opt average opt

0.9795 0.9850 0.9126 0.9680 0.9950 0.9850 0.6730 0.6683 0.8528 0.8622 0.8180 0.8745

We use the default splitting of training, validation and testing if there exists
a validation data, otherwise we manually generate a validation data set by sam-
pling from the training data with the same size of the testing data set. For the
purpose of demonstration, we train 4 classification models (SVM, NN, CART,
LR) on all training data points, and report the metric of overall accuracy com-
puted based on the confusion table [27]. The parameters in models are tuned
on the validation data set. The number of nearest neighbours for estimating the
bias is set to 5. The margin parameter in the structured hinge loss is set to 0.5.
Both the bias correction and the model fusion are done on the previously listed
dataset.

We first demonstrate the effectiveness of bias correction on individual mod-
els. The results are summarized in Table 2. From the results, we can observe
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Fig. 2. Comparison of Pdprox-shs vs Gradient Descent (GD) method for optimizing
the structured hinge loss on dna data set.

that bias correction can improve the prediction substantially. Furthermore, we
compare the performance by using the Euclidean distance and a learned dis-
tance metric by RCA. We observed on several data sets that the distance metric
learned from the ground truth can improve the performance of Euclidean dis-
tance metric, e.g. on AEFD data sets the performances of the four models are
improved to (0.8533, 0.8630, 0.8024, 0.8215), on letter data set the performances
are improved to (0.9546, 0.9656, 0.9216, 0.8302). On other data sets, the learned
distance metric by RCA is comparable to the Euclidean distance metric.

Next, we demonstrate the effectiveness of model fusion. We compare the pro-
posed convex approach for learning an optimal combination weights to the equal
weighting fusion. The results are reported in Table 3. Among the six selected
benchmark datasets for multi-class classification, the proposed optimal fusion ap-
proach significantly outperforms the equal weighting method on four datasets,
and performs almost the same on the segment and protein data. By checking
these two data sets, we find all individual classifiers perform almost equally.
Thus, we draw a conclusion that the proposed fusion approach significantly out-
performs simple fusion method when outputs of individual classifiers are diverse.

Finally, we show the efficiency of Pdprox-shs algorithm compared to gradient
descent (GD) method for optimizing the structured hinge loss over a simplex.
Both the initial step size of GD and the step size of Pdprox-shs are set to the
same value 100. We plot the objective value versus the number of iterations on
DNA data in Figure 2. It clearly shows that Pdprox-shs performs better than
GD, which verifies our theoretical analysis on the convergence rate.

5 Conclusion

In this paper, we propose a directed inference approach for multi-class multi-
model fusion. Different from traditional approaches, directed inference approach
constructs a principle concept in training stage and individual (ad-hoc) rules for
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classifying test samples. The presented approach consists of three key compo-
nents: (i) learning of individual models, (ii) nearest neighbour search for estimat-
ing the bias of a given test sample, and (iii) learning of an optimal combination
weights for fusing the bias corrected scores of multiple models. We demonstrate
the effectiveness of the proposed approach on extensive data sets. In the future
work, we plan to extend the work to other tasks (e.g. regression and binary clas-
sification) and conduct the experiments in real distributed learning framework.

Acknowledgement. We sincerely thank Dr. Shengzhuo Zhu for pointing out
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Abstract. In this paper, we propose a new feature fusion approach based on lo-
cal binary pattern (LBP) and sparse representation (SR). Firstly, local features 
are extracted by LBP and global features are sparse coefficients which are ob-
tained via decomposing samples based on the over-complete dictionary. Then 
the global and local features are fused in a serial fashion. Afterwards PCA is 
used to reduce the dimensionality of the fused vector. Finally, SVM is em-
ployed as a classifier on the reduced feature space for classification. Experi-
mental results obtained on publicly available databases show that the proposed 
feature fusion method is more effective than other methods like LBP+PCA, 
Gabor+PCA and Gabor+SR in terms of  recognition accuracy. 

Keywords: Feature fusion, local binary pattern, sparse representation, support 
vector machine, face recognition. 

1 Introduction 

Automatic face recognition [1] remains one of the most visible and challenging re-
search topics in computer vision, machine learning and biometrics. It is widely ap-
plied to different fields including biometric authentication, security applications and 
human computer interaction. Compared with other biometrics, such as fingerprint 
identification and palm identification, face recognition has the advantages of being 
convenient, immediate and well accepted. 

The question of which low-dimensional features of an object image are the most 
relevant or informative for classification is a central issue in face recognition. Con-
ventional facial features can be roughly divided into global features (PCA [2], LDA 
[3], LPP [4], etc.) and local features (LBP [5], SIFT [6], etc.). However, both the 
global and local features are not rich enough to capture all of the classification infor-
mation available in the image, in addition, researches have shown that different  
features have different classification capabilities and a fusion scheme that harnesses 
various features is likely to improve the overall performance. 

There are three levels of information fusion, i.e. pixel level, feature level and deci-
sion level. The decision level fusion, represented by multi-classifier combination, has 
been one of the hot research topics on pattern recognition [7-10]. In recent years, 
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some feature level fusion methods have been proposed, for instance, Sun et al. [11] 
proposed a novel feature fusion method. Firstly, two groups of feature vectors are 
extracted with the same pattern, then a correlation criterion function is established 
between the two groups of feature vectors, finally their canonical correlation features 
are extracted to form effective discriminant vectors for recognition. Huang [12] put 
forward an efficient face representation and recognition method, which combines the 
both information between rows and those between columns from two-directional 
2DPCA on fusion face image and the optimal discriminative information from col-
umn-directional 2DLDA. Song [13] provided a method based on the feature fusion of 
the local and global features, local features are extracted from sub-images and global 
features are obtained via PCA. Chowdhury et al. [14] presented a fusion method, first 
of all, face images are divided into a number of non-overlapping sub-images, the G-
2DFLD method is applied to each of these sub-images as well as to the whole image 
to extract local as well as global discriminant features respectively. These extracted 
local and global features are fused to form a large feature vector and FLD method is 
applied on it to reduce its dimensionality. Nevertheless, the above fusion methods are 
largely dependent on the dimensionality of features, and in low-dimensional feature 
space, recognition accuracy of these methods is not that high. 

However, within the framework of sparse representation, the precise choice of fea-
ture space is no longer critical. What is crucial is that the dimensionality of the feature 
space is sufficiently large and that the sparse representation is correctly computed 
[15]. In addition, according to related researches about local binary pattern (LBP), 
features coded by LBP have highly discriminative power [16], this property makes it 
suitable for image classification tasks. Inspired by these findings, we intend to use the 
fused features of sparse coefficient and local features extracted by LBP to improve the 
recognition performance.  

The remainder of this paper is organized as follows: LBP and sparse representation 
are reviewed in Section 2 and Section 3 respectively. Section 4 presents the proposed 
method. Experiments are conducted on publicly available databases to verify the ef-
fectiveness of the proposed method in Section 5. Finally, conclusions are drawn in 
Section 6.  

2 Local Binary Pattern 

The LBP operator was first introduced by Ojala [17] and used as texture descriptor. 
Then Ahonen [5] applied it to face recognition and obtained outstanding results, 
which demonstrates that LBP is able to well describe face images.  

The original LBP operator was defined as a window of size . This operator 
uses the value of the center pixel as a threshold, and the 8 surrounding pixels whose 
value is higher than or equal to the value of the threshold is assigned a binary value 1, 
otherwise the value is 0. When this process is accomplished, 8 values can be read start 
from the top left corner in the clockwise direction. The 8-bit binary number or its 
equivalent decimal number can be assigned to the center pixel and it can describe the 
texture information of an image. The basic LBP operator is illustrated in Fig. 1.  
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Fig. 1. The original LBP operator 

In order to facilitate the analysis of textures with different scales, the basic LBP op-
erator is extended by combining neighborhoods with different radius. In this case, P 
points on the edge of a circle, whose radius is R, are sampled and compared with the 
value of the center pixel. For ease of presentation, the notation (P,R) is employed to 
formulate P sampling points on a circle of radius of R. See Fig. 2 for an example of 
circular neighborhoods. 

  
Fig. 2. The circular (8,1), (16,2) and (8,2) neighborhoods 

Another extension of the original LBP operator is the definition of so called uni-
form patterns. A local binary pattern is called uniform if the binary pattern contains at 
most two bitwise transitions from 0 to 1 or vice versa when the bit pattern is consi-
dered circular [18]. Experimental results have demonstrated uniform patterns can 
describe most of the texture information, at the same time, they have strong ability to 
do classification tasks. 

Generally, when we extract features from face images, we can divide the face im-
age into small blocks. And features are extracted from each block independently. The 
descriptors are then concatenated to form a global description of the face image. In 
this way we can obtain a description of the face image on local and holistic levels. In 
this paper, uniform patterns of (8,1) are applied to extracted LBP features. 

3 Sparse Representation (SR) 

Theoretical results show that well-aligned images of a convex, Lambertian object lie 
near a low-dimensional feature space of the high-dimensional image space [19]. This 
is the only prior knowledge about the training samples in SR. The idea of SR is pre-
sented as follows [15]. 

Suppose we have C distinct classes, given sufficient training samples of the i-th ob-
ject class, the size of face images is w×h, and the total number of samples of i-th class 

is in . We stack the in  training images from the i-th class as columns of a  
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matrix i

i

nm
niii RvvA ×∈= ],,[ ,1,   (m=w×h). For a test sample mRy ∈  belongs to 

this class, according to linear subspace theory, y can be approximated by the linear 

combination of the samples within iA , i.e. 
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Since the initial identity of the test sample y is unknown, let A be the concatenation 

of the n training samples from all the C classes, where , then we can 
define a new matrix A: 
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If we use the new matrix A to represent the test image y, that is 

            mRAxy ∈= 0
                            (3) 

where nT
niii Rx

i
∈= ]0,,0,,,,,,,0,,0[ ,2,1,0  ααα  is a coefficient vector whose 

entries are zero except those associated with the i-th class, and A is referred to as dic-
tionary. 

In robust face recognition, the system  is always ill-determined, so its so-
lution is not unique, but we just need to find a locally optimal solution. Conventional-
ly, this problem is settled by choosing the minimum  solution. However, the 
solution is non-sparse and it has no discriminative information. This motivates us to 
seek the sparsest solution to  , leading to the following optimization problem: 

       yAxtosubjectxxl == ,||||minarg)( 00
0                (4) 

where  denotes the , which counts the number of nonzero elements in a 
vector. 

However, the problem of finding the sparsest solution of an ill-determined system 
of linear equations is NP-hard. Recent progress in the theory of sparse representation 
and compressed sensing reveals that if the solution  is sparse enough, the solution 
to the  problem (4) is equal to the following  prob-
lem [20]: 

          yAxtosubjectxxl == ,||||minarg)( 11
1              (5) 

To solve the  problem, one can use gradient projection method [21], 
homotopy algorithm [22], iterative shrinkage-thresholding  [23] etc.  

In order to guarantee the coefficient vector x  has the form[0, , 0, , 0, , 0]α   

where all the non-zero entries are together, we solve this optimization problem: 

          2
2 1 2 2 1m in || || || | | || | |

x
y A x x xλ λ− + +                       (6) 
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The  penalty in the above expression promotes sparsity of the coefficient vector x , 
while the quadratic  penalty encourages grouping effect, i.e. selection of a group of 
correlated training samples. 

4 Proposed Feature Fusion Method 

Wavelet transform has been introduced in our method to perform the preprocessing of 
the face images, it can reduce noise of images, and the low frequency component is a 
coarser approximation to the original image. Thus the wavelet image should be more 
suitable for recognition.  

Given all that, the procedure of the proposed method is presented as follows: 

1. Perform wavelet transform to the original image and obtain its 1-level low-
frequency component L. 

2. Divide the 1-level low frequency component into small blocks, then extract LBP 
features for each small block.  

3. Concatenate the LBP features of all the small blocks to form the local feature of 
the original image.  

4. Based on the over-complete dictionary (which contains all the training samples), 
the same original image can be decomposed to obtain its sparse coefficient, i.e., the 
global feature. 

5. Then the local and global features are fused in a serial fashion [24], after the di-
mensionality of the fused feature is reduced, it can be used for recognition. 

Framework of the proposed method and other methods that will be compared with in 
this paper is depicted in Fig. 3. 

 

Fig. 3. Framework of the methods considered in this paper 

5 Experiments and Analysis 

In this section, we conduct experiments on publicly available databases for face rec-
ognition. The ORL and XM2VTS databases are used to verify the performance of the 
proposed method and its competing methods: 
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PCA: global features extract by PCA. 
LBP: local features extract by LBP. 
SR: sparse representation of the sample, i.e. sparse coefficient. 
Gabor+PCA: fused features extracted by Gabor filter and PCA. 
Gabor+SR: fused features extracted by Gabor filter and sparse coefficient. 
LBP+PCA: fused features extracted by LBP and PCA. 

When extracting local features based on LBP, the original face image is preprocessed 
by wavelet transform. In this experiment, the basis function of wavelet transform is 
coif4. In SR, the error tolerance ε  is 0.05. We use Gabor filter at five different 
scales and eight orientations, thus we obtain 40 Gabor filters. The global and local 
features are fused in a serial fashion. Then PCA is utilized to do dimensionality reduc-
tion. Finally, linear SVM is employed for classification and the strategy for multi-
class classification is one-against-one approach [25]. 

5.1 Experiments on the ORL Database 

The ORL database contains images from 40 individuals, each providing 10 different 
images. For some subjects, the images were taken at different times. The facial ex-
pressions (open or closed eyes, smiling or non-smiling) and facial details (glasses or 
no glasses) also vary. The images were taken with a tolerance for some tilting and 
rotation of the face of up to 20 degrees. Moreover, there is also some variation in the 
scale of up to about 10 percent. All images are gray-scale and have a resolution of 
92×112 pixels. Half of the images per subject are chosen as training samples, the 
reminder for testing, and the face image is divided into 4×4 blocks when extracting 
the LBP features. Fig. 4 shows the recognition performance for various methods, in 
conjunction with different feature dimensionality. Table 1 shows the detailed recogni-
tion accuracy of the methods considered and Table 2 records the computation time of 
Gabor+SR and the proposed method. 

Table 1. Recognition rate(%) of different methods on the ORL database and the associated 
dimensionality of feature 

Dimensionality 10 30 50 70 90 

PCA 93.5% 92% 94.5% 93.5% 91.5% 

LBP 83.5% 93.5% 95.5% 97% 97% 

SR 82% 94% 93.5% 93.5% 93% 

Gabor+PCA 92% 94% 95% 95.5% 95% 

Gabor+SR 82% 96% 96.5% 97.5% 98% 

LBP+PCA 92% 94% 95% 95.5% 95% 

Proposed  97% 97% 97% 97% 97% 
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Fig. 4. Curves of recognition rate by different methods versus feature dimensionality on the 
ORL database 

Table 2. Computation time(s) of Gabor+SR and the proposed method on the ORL database and 
the associated dimensionality of feature 

Dimensionality 10 30 50 70 90 

Gabor+SR 115.43s 116.03s 116.66s 117.42s 118.04s 

Proposed     16.37s 16.42s 16.47s 16.55s 16.61s 

5.2 Experiments on the XM2VTS Database 

The XM2VTS database is a multi-modal database which consists of video sequences 
of talking faces recorded for 295 subjects at one month intervals. The data has been 
recorded in 4 sessions with 2 shots taken per session. From each session two facial 
images have been extracted to create an experimental face database of size 55×51. In 
our experiment, we chose a subset of the dataset consisting of 100 subjects. For each 
subject, four images are used as training samples, the rest for testing, and the face 
image is divided into 8×8 blocks when extracting the LBP features. The comparison 
of competing methods is given in Fig. 5 and Table 3. Computation time of Gabor+SR 
and the proposed method is recorded in Table 4. 
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Table 3. Recognition rate(%) of different methods on the XM2VTS database and the 
associated dimensionality of feature 

Dimensionality 5 10 20 30 35 

PCA 33.5% 58.75% 78.25% 86.5% 87.75% 

LBP 35.75% 58.25% 81% 87.25% 88.5% 

SR 27% 62.5% 80.5% 85.75% 88% 

Gabor+PCA 45% 69% 80.5% 83.25% 83.75% 

Gabor+SR 52.75% 79.75% 92% 95% 94.75% 

LBP+PCA 45% 68.75% 80.25% 83.25% 83.75% 

Proposed  96% 96% 96% 96% 96% 
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Fig. 5. Curves of recognition rate by different methods versus feature dimensionality on the 
XM2VTS database 

Table 4. Computation time(s) of Gabor+SR and the proposed method on the XM2VTS 
database and the associated dimensionality of feature 

Dimensionality 5 10 20 30 35 

Gabor+SR 470.45s 470.61s 471.80s 473.14s 473.73s 

Proposed  72.38s 72.66s 73.22s 73.77s 74.15s 

 
Based on the above experimental results obtained on ORL and XM2VTS databas-

es, we have the following observations: 

1. As feature dimensionality increases, performance of LBP is better than that of 
PCA, this indicates that local features may contain more discriminative information. 

2. When we fuse global features (e.g. features extracted by SR) with local features 
(e.g. Gabor features), performance of global features is boosted. This demonstrates 
that fused features can improve the overall performance. 
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3. By and large, the proposed method is more competitive than other methods, not 
only the performance of the proposed method remains stable, but the computation 
time is acceptable. Though performance of Gabor+SR is better than that of LBP+SR 
on ORL database, it is computationally expensive, and its computation time is about 7 
times that of our method. 

6 Conclusions 

In this paper, we propose a new feature fusion approach based on LBP and sparse 
representation. Firstly, local features are extracted by LBP and global features are 
sparse coefficients which are obtained via decomposing samples based on the over-
complete dictionary. Then the global and local features are fused in a serial fashion. 
Experiments conducted on the ORL and XM2VTS databases show the feasibility and 
effectiveness of the new method. However, in this paper, we do not explore other 
feature fusion methods, so in future, we will investigate other methods and come up 
with a better approach for robust face recognition. 
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Abstract. Although computer aided diagnosis of melanoma is an ac-
tive research area for more than two decades, its clinical application is
still just on horizon. To speed up its clinical application, two critical
challenges need to be solved: the data gap and the decision-making gap.
Ideally, these two issues shall be attacked simultaneously. However, in
the literature, most current methods designing melanoma diagnosis clas-
sifiers adopt a biased approach by either focusing on the data gap or
on the decision-making gap while neglecting the other. In this article,
we present one prototype system covering both the data gap and the
decision-gap. Performance of this new method is presented and compar-
isons with respect to alternative approaches, including the conventional
one, are also included.

Keywords: computer aided diagnosis, decision tree, classification.

1 Introduction

Computer based early diagnosis of melanoma has been studied for more than two
decades [1]. One of the key aims of this research field is to build a digital system
for clinical diagnosis applications. This task is important because the manual
inspection, while common in clinical practice, has undesirable features such as
repetitiveness and subjectivity. Computer based methods, however, have huge
potential in alleviating these shortcomings and providing an important clinical
alternative when second opinion is needed.

For a computerized melanoma diagnosis system, there are two key compo-
nents: data and decision-making. As shown in the flowchart in Fig. 1, the data
are mainly images while the decision-making process means applying certain
machine learning techniques to label the sample as either benign or malignant.
In the literature, a variety of imaging protocols, such as digital dermoscopy, in-
frared imaging, multispectral imaging, confocal microscopy, have been applied
in collecting digital data of lesions [2].

Though data is the inalienable part of a computer aided diagnosis (CAD) sys-
tem, the decision-making is of utmost importance, especially with the abundance
of numerous imaging devices on the market. Here for a CAD system, decision-
making refers to carrying a diagnosis based on certain algorithms/classifiers. In
other words, a CAD system mimics the clinical diagnosis process, which typically
involves computing techniques such as feature extraction and classification.

Z.-H. Zhou, F. Roli, and J. Kittler (Eds.): MCS 2013, LNCS 7872, pp. 374–385, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. General melanoma diagnosis process

Although CAD based melanoma diagnosis has been an active research area,
its clinical application is still stagnating currently. Before bringing CAD based
melanoma inspection into real clinical practices, there are two critical challenges:

– Data gap: The feature descriptors describing pigmented lesion properties
may include both metric and non-metric values. Some attributes might in-
volve physical meanings such as the diameter, some other features, such as
Euler number of the lesion area, might not have any unit. However, typical
learning paradigms like support vector machines [5] and neural networks [6]
treat these data as purely numerical inputs without paying attention to the
physical/clinical meanings of these attributes.

– Decision-making gap: This refers to the decision making style in clinical di-
agnosis and early CAD based diagnosis of melanoma. For instance, [10, 11]
only used border attributes in melanoma diagnosis. Instead of applying a
set of clinical heuristics such as the ABCD rules[7], this decision-making
style focuses on just one property of pigmented lesions. Hence there is a gap
between these CAD systems and the clinical diagnosis. Although the one-
feature based CAD is an effective methodology in justifying the usefulness of
certain descriptors, comprehensive features covering both geometric and col-
ormetric properties should be incorporated in the decision-making process,
particularly for CAD systems targeting clinical applications[13]. However,
this combinatorial approach like [4] improves the diagnosis accuracy at the
cost of increasing the complexity, i.e., jeopardizing the interpretability of the
diagnosis system to a certain extent.

To build a successful diagnosis system, we believe both the data gap and the
decision-making gap shall be solved. However, publications covering the decision
gap [6, 13], albeit of varying performance, are neglecting the data gap by and
large. Publications like [9, 10] are free of data gap while they have the decision-
making gap when compared with clincial heuristics in diagnosis.

In this paper, a prototype system is designed, aiming at covering both the
data gap and the decision-making gap. Section 2 discusses the geometrical and
colormetric features extracted at first. Then the prototype is presented in line
with the conventional design. Section 3 shows experimental results on a test
dataset.
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Fig. 2. (a) Extracting asymmetrical indices; (b) Extracting diameter indices

2 Method

Since a typical decision-making process involves feature extraction and classifi-
cation, this section is divided into two subsections. In Section 2.1, the shape, size
and colour features for the pigmented lesions are examined, which are inspired
by the ABCD rules [2, 7]. In Section 2.2, unlike [4] that uses three heteroge-
neous classifiers, the decision tree is the only classifier employed here to conduct
diagnosis.

2.1 Feature Descriptors

This is a classical topic in CAD based melanoma diagnosis. Here a set of features
are extracted following the ABCD rules.

Asymmetry. In [7], asymmetry rule means the more asymmetrical the lesion
is, the more likely it is malignant. [8, 13] use principal axis based methods to
describe the asymmetry features. In this paper, a four-axis method is utilized to
describe the asymmetry features. Fig. 2(a) shows the idea of how to construct
the asymmetry features. In Fig. 2(a), the solid line is the first axis adopted and
the original lesion area lies within the region enclosed by the solid boundary. The
dashed line encloses an area which, given the axis, is symmetrical with respect
to (w.r.t.) the original lesion area. Apart from the horizontal line in Fig. 2(a)
serving as the symmetrical axis, the diagonal line, off-diagonal line and vertical
line can also be used as symmetrical axes.

To construct one symmetrical area as shown in Fig. 2(a), there are two steps.
Firstly, one detects the centroid of the lesion area. Then a reference axis, i.e.,
the symmetrical axis, is selected. These symmetrical axes are 0, 45, 90, 135
degrees w.r.t. the horizontal axis. Denote the original lesion area as A0, and the
symmetrical lesion area as Ai, the asymmetry indices are defined as:

ai =
XOR(A0, Ai)

2A0
, i = 1, 2, 3, 4, (1)
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where XOR means exclusive-or operation between two areas. Thus these four
attributes are all non-metric variables.

Border Irregularity. To maintain the equivalence in terms of units for the
border irregularity descriptors, indentation/protrusion index proposed in [10] is
used here.

The method in [10] constructs an area based irregularity index in several steps:
Firstly, a smoothed outline of the lesion is extracted via a series of multiscale
Gaussian filters. Then the area enclosed within the smoothed outline is compared
with the original lesion area. Denote the original lesion area as A0 and the
smoothed area as As, the indentation area lies within As while outside A0.
The protrusion area is the opposite: it lies within A0 while outside As. So the
indentation and protrusion maps can be obtained as follows:

Iind = A0 −As, (2)

Ipro = As −A0, (3)

where Iind and Ipro represents the indentation and protrusion images respec-
tively. Specifically, for pixels in Iind and Ipro, the definitions are as follows:

Iind(x, y) =
{1, A0(x, y) == 1&As(x, y) == 0
0, otherwise

, (4)

Ipro(x, y) =
{
1, A0(x, y) == 0&As(x, y) == 1
0, otherwise

. (5)

With the above definitions, one can extract the border irregularity features ac-
cordingly. In [10], these features are non-metric and they lie within [0,1].

Colour Variation. The colour variations are extracted via four different chan-
nels: red, green, blue and intensity channels. The intensity channel is obtained
by fusing the RGB channels as follows:

I(x, y) =
√
R2(x, y) +G2(x, y) +B2(x, y), (6)

where x and y denotes the coordinates of the pixels. By calculating the statistics
of the images, the four features of colour variations are defined as follows:[

log
σ(R)

μ(R)
, log

σ(G)

μ(G)
, log

σ(B)

μ(B)
, log

σ(I)

μ(I)

]
, (7)

where μ and σ denotes the mean value and standard deviation of the lesion area
pixels of the given colour channel. Since the mean value and the standard devi-
ation are of the same unit, i.e., the image intensity in different colour channels,
the ratios between these two are free of metric unit. For computational conve-
niences, one can limit the range for the above colour variation descriptors within
a reasonable region, e.g., [-10, 10].
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Diameter. Unlike the original diameter feature expressed in [7] which states
that 6mm diameter is the critical threshold in judging a suspicious lesion as
malignant, here a 4-element diameter feature vector is extracted, which includes
the following attributes:

d1 := 2
√
�(A0)/π, (8)

d2 := 2
√
�(Ac)/π, (9)

d3 := svd(S, 1), (10)

d4 := svd(S, 2), (11)

where Ac is the convex hull extracted with the given lesion area and ’�’ is the
operator to calculate the number of non-zero elements lying within. Fig. 2(b)
gives an example of a lesion area and its convex hull. Therefore in (8), d1 is
the equivalent diameter of the original lesion area. Likewise, d2 in (9) is the
equivalent diameter of the convex hull. S in (10)(11) is the covariance matrix
constructed by the coordinates of the lesion area pixels. Since the image plane
is 2D, S is a 2 by 2 positive definite matrix. In (10)(11), svd(S, 1) and svd(S, 2)
represent the first and the second singular values of S respectively.

Clearly the four diameter feature descriptors above are of length units ex-
pressed in image pixels. In addition, the numerical values of these four attributes
are non-negative.

Therefore, in the above subsections, the ABCD rules have been implemented
in a way aiming at reducing the data gap between attributes within each feature
group. As there are 4 elements for every feature group, altogether there are 16
attributes extracted for one 2D image sample of pigmented skin lesions.

2.2 Decision Trees

In the literature, there are a few protocols proposed for decision-making in
melanoma diagnosis.

In [6], a neural network was proposed to carry diagnosis of melanoma. The
feature descriptors cover asymmetry/border/colour properties and overall there
are 14 entries in the feature vector. In experiments, one of the tested neural
networks includes 14 input neurons, 7 hidden neurons and 1 output neuron.
This neural network was trained with the well-known back-propagation method
[14].

[4] formulated a multiple classifier system, including linear disciminant anal-
ysis (LDA), decision trees and k-nearest neighbor. The feature descriptors cover
geometrical and colormetric domains, resembling the ABCD rules proposed
in [7].

In [13], another ABCD rules based system for melanoma diagnosis was tested.
In this system, there are 8 feature descriptors: skin line direction, skin line in-
tensity, asymmetry, border irregularity, red/green/blue component variegation
and diameter of lesion. After dimension reduction for the feature vectors, the
first two principal components of these 8 components are selected for designing
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(a)

(b)

Fig. 3. Melanoma diagnosis using multiple decision trees. (a) with data gap; (b) data
gap free.

a linear classifier. The area under the receiver operating characteristic (ROC)
curve obtained is 0.94.

[13] represents a typical approach in designing computer aided diagnosis of
melanoma, which involves dimension reduction after feature extraction. In [4, 6,
13], there is one hidden assumption behind applying dimension reduction meth-
ods: different features representing different properties are numerically computable.
Here by computable, it means they are allowed to be numerically mixed together,
including addition/deduction etc. Due to the non-homogeneity of the attributes,
this operation, though numerically accepted commonly, neglects the data gap be-
tween different attributes. The associated undesirable risks include: Firstly, the re-
sult depends on the chosen metrics. Secondly, the result only has numerical mean-
ing but the physical/clinical meaning might be elusive. For instance, suppose the
skin line direction, blue component variegation and diameter of lesion are f1, f7
and f8 respectively, adding them together as f1+f7+f8 gives a numerical number,
which is hardly of any clinical significance.
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Unlike the above mentioned references, here decision trees [14] and only de-
cision trees are used for decision making. They are selected not only because of
the learning capability, but also because of its interpretability and its intuitive-
ness [3].

Recently, [3] proposes a decision tree based classification system which al-
lows the end-users to tune the trees manually. This technique, called Visually
Tuned Decision Tree (VTDT), illustrates that decision tree not only can generate
comprehensible rules to domain experts, it also has the potential to allow hu-
man experts to embed their domain knowledge in designing the decision making
models.

In utilizing decision trees to design the CAD system for melanoma diagnosis,
there exist two approaches. As shown in Fig. 3(a), this method stacks the feature
vectors together and feeds the overall feature vector into decision trees. The
final output is generated by majority voting of the member decision trees. This
approach has the data gap problem since the diameter attributes are in pixels
while the other values are non-metric.

Fig. 3(b) offers an alternative which eliminates both the data gap and the
decision-making gap. This is achieved by forwarding only homogeneous data
into one given decision tree, i.e., no mixture or stacking of variables bearing
different metric units. In addition, for the decision making part, since Fig. 3(b)
combines both the geometric and colormetric properties of skin lesion in diag-
nosis, the decision-making gap is avoided as well, making it more similar to the
clinical diagnosis than using a single diagnosis rule. Also compared with metric
learning[15], Fig. 3(b) is a specific approach not only driven by the data, domain
knowledge such as physical meanings of features also play important roles.

3 Experiments and Results

This section presents the CAD experimental results, which were obtained by
testing the diagnosis systems in Fig. 3(a)(b) via cross-validations.

3.1 Experimental Setup

In the collected 2D image dataset, there are 110 malignant samples and 125
benign lesions. The lesion areas in these data were segmented by using the online
graph-cut based algorithm [16–19]. Feature descriptors were extracted with the
above methods. To run the experiments, Matlab 7.12 is used as the experimental
platform.

In standard k-fold cross validation, the data are divided into k-subsets first.
Then k-1 subsets are used to train the classifier and the remaining subset is left
for testing. As multiple decision trees are used in both Fig. 3(a) and (b), em-
ploying standard k-fold cross-validation will introduce significant training data
overlaps among different decision trees. Thus in training the multiple decision
trees, only 1 of the k subsets was selected to train the classifier. Hence for
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Table 1. Different setups for evaluating multiple decision trees

Nodes (0/1 output) Nodes (real number output)
Data Gap ROC curve Data Gap ROC curve

Fig. 3(a) No - Yes Available

Fig. 3(b) No - No Available

RF No - Yes Available

different decision trees, the probability for two of them holding the same training
data is generally small (1/k2). In the following experiments, k is chosen as 5 and
for multiple decision trees, N is set as 3. In this case, the Fig. 3(b) design has
12 trees. When making a majority voting for Fig. 3(b), if there is a draw, the
outputs of the decision trees using colour attributes will be chosen to make a
majority voting, leading to a final diagnosis.

For the design of nodes in the binary decision trees in Fig. 3, one can use either
univariate nodes, or multivariate nodes with linear discriminant analysis to split
a mother node into two daughter nodes. Specifically, for a univariate node, there
is no data gap since no direct numerical operation between attributes arises.
However, it also limits the flexibility in choosing the decision boundaries [14]. For
multivariate nodes with linear classifiers, as shown in Table 1, receiver operating
characteristic (ROC) curves can be generated, which offer a qualitative as well
as quantitative perspective in evaluating the performance.

To give a third opinion, the random forest (RF) [20] is also incorporated in
the experiments. In this paradigm, a series of feature-set are randomly selected
via a uniform distribution over different descriptors. For every set, one decision
tree is trained as described above. Here two random forests are tested: one with
3 trees and one with 12 trees so that the number of trees is equal to the Fig.
3(a) and Fig. 3(b) respectively with N = 3.

3.2 ROC Analysis

Fig. 4 shows the ROC curves for the ABCD features. Each ROC curve corre-
sponds to one feature group processed via linear discriminant analysis based
multivariate nodes. The areas under curves (AUCs) in Fig 4 are 0.688, 0.723,
0.758 and 0.644 respectively.

Fig. 5(a) presents the ROC curve by stacking the descriptors directly as one
vector and then feeding the vector into a decision tree with multivariate nodes.
As can be seen from Fig. 5(a), the AUC is 0.885. Fig. 5(b) shows the ROC curve
for decision system in Fig. 3(b). This AUC for Fig 5(b) is 0.923, slightly higher
than Fig. 5(a).

In addition, from Fig. 4 to Fig. 5, it can be seen that by applying multiple
decision trees to mimic the ABCD rules, the diagnostic performance can be
enhanced effectively. Although there exists data gap in Fig. 3(a), Fig. 5(a) still
suggests that the direct stacking of features deserves certain efforts. The multiple
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Fig. 4. ROC curves for ABCD descriptors respectively. (a) asymmetry (AUC=0.688);
(b) border irregularity (AUC=0.723); (c) colour variations (AUC=0.758); (d) diameter
(AUC=0.644).

decision trees in Fig. 3(b) eliminate the data gap while performing even better,
at least qualitatively as shown in Fig. 5’s ROC analysis.

For random forests, Fig. 5(c) and (d) show that 12-tree gives better results
than 3-tree. This indicates an approach to improving the performance of ran-
dom forests though overfitting could be a potential problem. Also the 12-tree’s
performance is comparable to the data-gap free design in Fig. 3(b). However,
there are several disadvantages inherent in 12-tree random forests: Firstly, the
probability of overlaps between different trees’ training data is non-zero and
sometime significant, albeit depending on the details of the sampling scheme.
Also the computational cost of 12-tree random forests is higher than Fig. 3(b)
due to the reuse of certain features via re-sampling. In addition, because of the
randomness introduced in sampling features, interpretability of the classification
process is sacrificed, i.e., it is not data-gap-free.
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Fig. 5. ROC curves for multiple decision trees. (a) with data gap - Fig. 3(a): AUC =
0.885; (b) without data gap - Fig. 3(b): AUC = 0.923; (c)random forest - 3-tree: AUC
= 0.867; (d) random forest - 12-tree: AUC=0.916.

Table 2. Simulation results with different multiple decision tree designs (%)

Accuracy Sensitivity Specificity PPV NPV

Fig.3(a) 79.57(±0.39) 73.81(±0.50) 84.69(±0.39) 81.09(±0.44) 78.43(±0.42)

Fig.3(b) 82.86(±0.24) 77.22(±0.51) 87.80(±0.01) 84.76(±0.08) 81.45(±0.34)

RF∗ 76.28(±0.47) 71.11(±0.77) 80.81(±0.45) 76.49(±0.50) 76.11(±0.52)

RF∗∗ 82.94(±0.39) 76.11(±0.41) 88.94(±0.73) 85.81(±0.80) 80.92(±0.27)

(PPV: positive predictive value; NPV: negative predictive value; *3-tree; **12-tree)

3.3 Classification Result

Apart from the ROC analysis, the two multiple decision tree systems in Fig. 3 are
also evaluated in classification. Table 2 shows the classification results, in which
the performance indicators, including accuracy/sensitivity/specificity, positive
predictive value (NPV) and negative predictive value (NPV), are measured.
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From Table 2, it can be seen that Fig. 3(b) is better than Fig. 3(a) in terms
of mean values of the above indicators, though with varying levels. The stan-
dard deviations of these indicators for Fig. 3(b)’s design are generally less than
results obtained from using Fig. 3(a), indicating a slightly better consistency in
performance.

Table 2 also shows the results via random forests. Here the performance of
RF with 12 trees is better than the 3-tree version while similar to the results of
Fig. 3(b). These observations from Table 2 confirms the observations made in
Section 3.2.

4 Conclusion

By working on covering both the data gap and the decision-making gap, this pa-
per examined the application of multiple binary decision trees in computer aided
diagnosis of melanoma. Two structurally different designs are highlighted: the
conventional design (Fig. 3(a)) and the new design (Fig. 3(b)). In experimental
studies on a dataset containing 235 samples (125 benign and 110 malignant),
while the first design gives good results in ROC analysis and classification tests,
the second design can perform even better. The only downside of the new design
is that its structure appears less straightforward than its conventional alterna-
tive. However, if one needs a high performance CAD system free of both the
data gap and the decision-making gap, the system in Fig. 3(b) merits certain
consideration.

Though Fig. 3(a) and Fig. 3(b) are different, in fact Fig. 3(b) can be derived
from Fig. 3(a) in two steps. Firstly, one can set the number of decision trees in
Fig. 3(a) as 12, i.e., N=12. Then by putting feature selections prior to feeding
the data into the decision trees, one can obtain the design in Fig. 3(b).
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Abstract. The target of ensemble pruning is to increase efficiency by
reducing the ensemble size of a multi classifier system and thus compu-
tational and storage costs, without sacrificing and preferably enhancing
the generalization performance. However, most state-of-the-art ensemble
pruning methods are based on unweighted or weighted voting ensembles;
and their extensions to the Error Correcting Output Coding (ECOC)
framework is not strongly evident or successful. In this study, a novel
strategy for pruning ECOC ensembles which is based on a novel accu-
racy measure is presented. The measure is defined by establishing the
link between the accuracies of the two-class base classifiers in the con-
text of the main multiclass problem. The results show that the method
outperforms the ECOC extensions of the state-of-the-art pruning meth-
ods in the majority of cases and that it is even possible to improve the
generalization performance by only using 30% of the initial ensemble size
in certain scenarios.

1 Introduction

Ensemble pruning aims to decrease the number of base classifiers of an existing
ensemble system without sacrificing performance and brings about the bene-
fits of reduced complexity and storage requirements, as well as increase in per-
formance in some cases. Due to the computational complexity of finding the
optimum classifier combination through exhaustive search, various sub-optimal
techniques have been proposed in the literature for ensemble pruning. Among
these approaches, search and ordering based methods can be listed as the most
straightforward methods. While carrying out the search or the ordering (rank-
ing), the idea of having diverse and/or accurate base classifiers is usually required
as a key for success.

Error Correcting Output Coding (ECOC) [6] is a powerful ensemble tech-
nique, in which multiple base classifiers are trained according to the information
obtained from a pre-set binary code matrix. The idea is to solve the original
multiclass problem by decomposing it into simpler two-class decompositions.
The pruning of the ECOC matrix using state-of-the-art pruning methods, which
have mainly been defined for majority / weighted voting ensembles, is not ap-
propriate due to the specific requirements of the ECOC framework: The link
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between the accuracies of the base classifiers solving different two-class prob-
lems and the ensemble accuracy obtained for the main multiclass problem is not
taken into account. In order to overcome these deficiencies and further improve
the existing approaches, we propose a method for pruning ECOC which is based
on a novel accuracy measure.

Section 2 summarizes the state-of-the-art pruning methods found in the lit-
erature and Sec. 3 gives insight about the ECOC framework. In Sec. 4, the
proposed novel pruning method is explained and finally in Sec. 5-6 details of
experimentation and the conclusions drawn are presented.

2 Pruning Background

Existing ensemble pruning algorithms in the literature have mainly been de-
veloped in the context of majority or weighted voting ensembles. Taxonomies
and detailed analysis of the existing strategies can be found in [14,10,18]. Be-
low, the descriptions of some of the most popular pruning algorithms are given.
Note that these algorithms do not have straightforward extensions to the ECOC
framework.

Ordered aggregation pruning methods aim to rank all the classifiers according
to a desired measure and then select the first n many desired components. The
uth classifier to be added to the set Cu−1, which contains the first u − 1 classi-
fiers of the ordered sequence, is selected based on a measure gauging maximum
improvement on the ensemble.

Reduce Error Pruning (REP) [9] is an ordered aggregation pruning method in
which the first classifier selected is the one having the lowest classification error.
In each subsequent iteration, the classifier which provides maximum improve-
ment in the current subensemble accuracy is added to the ensemble. Backfitting,
which aims to interchange an already selected classifier with a new one from the
pool of unselected, can be applied if the new classifier reduces the subensemble
error.

Margin Distance Minimization (MDM), as initially defined in [11], is an or-
dered aggregation pruning method based on the base classifiers’ average success
in correctly classifying patterns belonging to a selection set, S. For a given S of
size μ, the mth component of the signature vector c for the classifier i is defined
to be equal to 1 if the classification decision is correct for the pattern Sm and
−1 otherwise. That is,

c(i)m = 2I (di (Sm) = φ (Sm)) -1 (1)

where I (true) = 1, I(false) = 0; di (Sm) is the decision of the base classifier i
for the pattern Sm, and φ (Sm) is the actual label.

The aim is then to select a subensemble whose average signature vector,
< c >, over all classifiers is as close as possible to a reference vector, o, in the
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first quadrant. The reference vector is designed arbitrarily to consist of equal
components, om,mε(1,α) = p, in which the choice of p is advised to be sufficiently
small for the algorithm to progressively focus on examples that are more difficult
to classify. When the Euclidean distance, dEucl, is used as the distance metric,
the classifier selected in the uth iteration is

su = argmint distEucl

(
o,

1

T

(
c(t) +

u−1∑
i=1

c(i)

))
(2)

in which t is the index of a yet unselected base classifier and T is the total
number of base classifiers.

Boosting-based Pruning (OB) [12] is also an ordered aggregation pruning
method in which base classifiers are ordered according to their performance in
boosting. In each iteration of boosting, the classifier with the lowest weighted
training error is selected from the initial pool of classifiers. OB does not halt even
when the selected classifier has zero training error and continues running even
if all the classifiers have training error more than 50%, by resetting the weights.
OB has later been combined with Instance-based Pruning [7] in [13]; however
the results have shown improvement over OB in speed rather than accuracy.

Different from the above mentioned commonly used ordering and search based
approaches, Zhang et al. [17] have proposed an optimization framework for en-
semble pruning. Using the finding that the success of the ensemble depends on
the individual classification powers and complementarities of the base classifiers
[9,3,4], an optimization problem which maximizes accuracy and diversity at the
same time is formulated.

In general, the more accurate the base classifiers are, the less different and
therefore diverse they become. Hence, in order to end up with the optimal
accuracy-diversity trade-off, a matrix P is formed by using the data points in a
selection set S such that Pmi = 0 if ith classifier is correct on data point Sm; and
Pmi = 1 otherwise. Thus, G = PTP is the matrix in which the diagonal entry
Gii is the total number of errors made by classifier i, and the off-diagonal Gij is
the number of common errors of the classifiers i and j. Then,

∑
i G̃ii is supposed

to be a measure for the overall ensemble strength in the sense of accuracy and∑
ij,i�=j G̃ij in the sense of diversity, where G̃ is obtained after normalizing each

element of G into [0, 1]. Therefore, the overall
∑

ij G̃ij , incorporating both ac-
curacy and diversity, is considered to be a good approximation for the ensemble
error and the optimization problem is formulated as

minx xT G̃x
s.t

∑
t xt = p

xtε {0, 1}
(3)

where x is a vector with elements xt = 1 if tth classifier is chosen as a result
of pruning and 0 otherwise; and p is the desired input size of the pruned ensemble.
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This problem is NP-hard, and the suboptimal solution is found by transform-
ing it into the form of the max-cut problem with size p and using semidefinite
programming (SDP).

3 Error Correcting Output Coding (ECOC)

Error Correcting Output Coding (ECOC) [6] is a powerful multiclass classification
technique, in which multiple two-class base classifiers are trained using re-labeled
subsets of the training data, determined by a preset code matrix.. The main idea
behind this procedure is to solve the original multiclass problem by combining the
decision boundaries obtained from simpler two-class decompositions.

In an ECOC matrix C, a particular element Cji ε {−1,+1} indicates the
desired label for class j, to be used in training the base classifier i. An example
ECOC matrix is provided in Figure 1 for a 4 class problem to be solved using 5
base classifiers. During decision making, namely decoding, the decisions of each
base classifier for a given test sample are located in a vector consecutively, and
the similarity between this vector and the codeword for each class (the row array
Cj is the codeword for class j) is measured using a distance metric such as the
Hamming distance or L1 norm.

As the name implies, ECOC can handle incorrect base classification results
up to a certain degree. Specifically, if the minimum Hamming Distance (HD)
between any pair of codewords is h, then up to �(h− 1)/2 single bit errors can
be corrected. Thus, in order to help with the error correction, the code matrix
is suggested to be designed to have large HD between the codewords of different
classes.

There are various data dependent and independent methods proposed for
the design, namely encoding of the ECOC matrix. Most importantly, it has
been theoretically and experimentally proven that the randomly generated long
or deterministic equi-distant code matrices give close to optimum performance
when used with strong base classifiers [8,16]. This is why random codes have also
been used for the experiments in this study. Finally for encoding, note that the
use of ternary ECOC matrices [1], where Cji = 0 is introduced to leave a class
out of the consideration of a base classifier, has also been investigated.

Fig. 1. An example ECOC matrix for a 4 class problem with 5 base classifiers
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4 ECOC Pruning

The algorithms presented in Section 2 have initially been proposed for major-
ity/weighted voting ensembles like Bagging. In our experiments, we extend their
scope to the ECOC framework and make use of them to prune the base clas-
sifiers that have been trained on the two-class decompositions determined by a
given ECOC matrix. However, the following problems arise during the exten-
sions of these methods to the ECOC framework: The connection between the
base classifier accuracies measured on two-class decompositions of the ECOC
matrix and the target multiclass accuracy is not evident; and neither a com-
plex diversity measure, nor the HD information which is crucial in the design of
ECOC matrices are taken into account during pruning.

To overcome these shortcomings and further improve the pruning efficiency, we
introduce a novel pruning method based on a novel accuracy measure for ECOC,
called AcEc. Using AcEc, the problem that the dichotomies within ECOC con-
tain indirect information about the multiclass problem is overcome by taking
into account the ECOC matrix structure while calculating the base accuracies.

4.1 Pruning Using the ECOC Accuracy Measure (AcEc − P )

When we focus on the base classifier accuracy for different two-class decompo-
sitions in the ECOC framework, the fact that the ultimate objective is to solve
a multiclass problem is usually overlooked. We propose a novel approach to in-
vestigate a given base classifier’s effectiveness by measuring its accuracy k times
with respect to each individual class of a k class problem, and averaging the re-
sults. We shall refer to this measure as AcEc, and the pruning method achieved
by using ordered aggregation based on it as AcEc− P .

Consider an ECOC ensemble with N base classifiers and k classes, and a
selection set S consisting of μ training patterns. The desired label for the pattern
Sm belonging to class j, to be used in training the base classifier i within the
ECOC framework can be denoted by

θm,i = ψi (j) = ψi (φ (Sm)) (4)

where 1 ≤ m ≤ μ, 1 ≤ i ≤ N , φ is the target label function for the multiclass
problem and ψi is the binary decomposition function defined by the ithcolumn
ECOC matrix.

To calculate AcEci for a given classifier i, each pattern Sm of the selection set
S is relabeled and target-mapped k times, with respect to each of the k classes.
In each run l of k, the relabeling function r is defined as

rl (Sm) = +1, if φ (Sm) = l
rl (Sm) = −1, otherwise (5)

whereas the target-mapping function f is formulated as
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fi,l (Sm) = ψi (l) di (Sm) (6)

where di (Sm) is the decision of the base classifier i for the pattern Sm.
For each run l, the function r creates a 1 − vs − the rest relabeling by as-

signing value 1 to the patterns from the class of interest, l, and −1 to the rest.
On the other hand, the mapping function f maps the base classifier’s decision
based on the information obtained from the ECOC matrix. Any pattern Sm,
which is at the same bi-partition with class l and is therefore sharing the same
ECOC labeling θm,i = ψi (l) is mapped to the label fi,l (Sm) = +1 if they are
correctly classified by i; and to label fi,l (Sm) = −1 if they are misclassified by
i. Conversely, the rest of the patterns lying in the opposite bi-partition (as a
result of having opposite ECOC labeling) with respect to class l are mapped
to fi,l (Sm) = −1 if they are correctly classified by i; and are mapped to label
fi,l (Sm) = 1 if they are misclassified. Note that f is a function of i, whereas r
is not.

The final accuracy measure for classifier i on set S at the lth run, which might
be referred to as the class l − vs− the rest analysis for i on S, is given by

AcEci,l =

μ∑
m=1

fi,l (Sm) rl (Sm) (7)

and AcEc over all runs l = 1...k is defined as the average

AcEci =
1

k

k∑
l=1

(
μ∑

m=1

fi,l (Sm) rl (Sm)

)
. (8)

Figure 2 presents an example AcEc calculation for the base classifier 1 of the
ECOC matrix C given in Figure 1. The pattern column indicates the patterns
from all classes which have been correctly or incorrectly classified by classifier 1;
for example cl2 denotes the patterns from class 2 correctly classified by classi-
fier 1, and c̃l2 denotes those incorrectly classified. The relabeling and mapping
columns show the results of r and f functions respectively, for each one of the k
cases. Finally, the AcEc columns denote the final accuracy calculation for each
pattern group. Thus, in this example,

AcEc1,1 = no(cl1)-no(c̃l1)-no(cl2)+no(c̃l2)+no(cl3)-no(c̃l3)+no(cl4)-no(c̃l4),

AcEc1,2 = -no(cl1)+no(c̃l1)+no(cl2)-no(c̃l2)+no(cl3)-no(c̃l3)+no(cl4)-no(c̃l4), ...

where no(cll) denotes the number of patterns belonging to class l. The resulting
AcEci is the average over all column AcEci,l’s.

The pseudo-code for the AcEc can be found in Algorithm 1.
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Fig. 2. AcEc calculation given the base classifier 1 of the ECOC matrix C

Interpretation of AcEc. AcEc evaluates the average strength of a given base
classifier i in coping with 1 − vs − the rest problems for each class in the orig-
inal multiclass problem. This can only be elucidated by making use of the base
classifier’s decisions together with information derived from the ECOC matrix.
Below is a summary interpretation of an AcEc column for any base classifier i
and for the run l (class l− vs− the rest) given without loss of generality.

1. Patterns from class l are rewarded with +1 if they have been correctly clas-
sified; or penalized with −1 otherwise.

2. Patterns from the opposite ECOC bi-partition of class l are rewarded with
+1 if correctly classified, and penalized with −1 otherwise.

3. Patterns from the same bi-partition with class l (but not belonging to class
l) are rewarded with +1 if they have been misclassified, and −1 otherwise.

With reference to 3, note that as the strength of the base classifier in run l is
measured in terms of its ability to separate class l from the rest, any pattern
from the same bi-partition but not from the same class as l is being penalized
for the correct classification.

Therefore, for a given class l − vs− the− rest analysis for i,

AcEci,l = (no(TPl)+no(TNl))-(no(FPl)-no(FNl))
AcEci,l = 2 (no(TPl)+no(TNl))− μ

where μ is the number of training patterns; no(TPl), no(TNl), no(FPl) and
no(FNl) are the numbers of true positives, true negatives, false positives and
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false negatives for class l, respectively. Thus, it can be observed that AcEci,l is
an indicative of accuracy for class l given classifier i.

5 Experiments

Experiments have been carried out on 2 artificial and 7 UCI Machine Learning
Repository (MLR) [2] datasets summarized in Table 3.

Pruning algorithms have been analyzed on ECOC ensembles of pruned CART
(CART-P) trees , unpruned CART trees and Neural Networks (NNs). As it has
been theoretically and experimentally proven that the randomly generated long
ECOC matrices give close to optimum performance when used with strong base
classifiers [8], randomly generated ECOC matrices of 50 and 150 base classifiers
are used to embrace both short (lower ensemble accuracy) and long codes (higher
ensemble accuracy). ECOC decoding is carried out using HD.

All experiments have been repeated 15 times using different ECOC matrices,
and additional random perturbation for the base classifiers is obtained by use of
bootstrapping. In each run, patterns have random 50/50 train/test split unless
they have already been provided as separate sets by UCI MLR. Finally note that
the training set is used as the selection set for the pruning techniques in this
study.

Tables 1 and 2 show pruned ensemble accuracies calculated on the datasets
for pruning rates of 50% and 70% respectively. Pruning methods of MDM, REP,
PSDP, OB, AcEc-P are analyzed together with two more pruning algorithms:
ordered aggregation pruning based on base classifier accuracy (BaseAc) and
random selection which is repeated 20 times within each of the 15 runs (RAND).
The unpruned ensemble accuracy is also provided under the name “FULL EN”.
In each table, the results obtained using CART-P trees, NNs with Levenberg-
Marquardt backpropagation for 16 nodes and 15 epochs, and CART trees as
base classifiers are presented. For each base classifier type, initial ECOC matrix
sizes of 50 (block (a) in each table) and 150 (block (b)) columns are evaluated.

The pruning method which obtains the highest accuracy in each case is marked
in bold, whereas the one having the second rank is underlined.
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Table 1. Test error rates (%) obtained using different pruning methods, base classifier
types and ensemble sizes; for prune rate = 0.50

5.1 Discussion of the Results

When all datasets, base classifier types and pruning rates are taken into account;
AcEc−P , REP and OB are found to be the most successful pruning algorithms
in the sense of pruned ensemble accuracy, in the order given. As a result of
pairwise comparisons between AcEc − P and the rest of the algorithms, the
ratio of cases where AcEc−P is found to reveal ensemble accuracy better than
or equal to REP and OB over all cases is 63.8% and 75% respectively.

As the number of base classifiers decrease and the pruning rate increases, the
results obtained using REP start getting better than the rest. Though, even when
REP is at the peak of its performance (case of 50 base classifiers & 70% pruning
rate), the performance of AcEc − P follows closely, being at most 2% worse
than the results obtained by REP. Due to the above mentioned overall superior
performance of AcEc−P and the high time complexity of REP, AcEc−P still
comes out to be the most favorable pruning algorithm in general.

Contrary to the findings for pruned Bagging ensembles [10], pruned ECOC en-
sembles are not observed to commonly improve the generalization performance of
the unpruned ones. This is explained by the characteristics of the ECOC frame-
work such as its resistance to overfitting and better capacity for error correction,
especially when used with long code matrices and strong base classifiers, making
it hard to improve its performance via pruning. Table 4 shows both the signifi-
cant differences between the results obtained by AcEc−P pruned and unpruned
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Table 2. Test error rates (%) obtained using different pruning methods, base classifier
types and ensemble sizes; for prune rate= 0.70

Table 3. Summary of the datasets used in the experiments. Sizes of the datasets not
having separate test sets are given under #Training.

ECOC ensembles, and the number of datasets for which the pruned ensembles
with the given rates perform better than the unpruned, over all datasets. For the
significance tests, the procedure suggested by Demsar [5] is utilized by using the
Friedman significance test with the Nemenyi post-hoc procedure, with p < 0.05.
The toolbox used in the implementation is provided in [15]. Here, the ensembles
pruned by AcEc − P with the given pruning rates are assigned 0 if there is no
statistical difference between them and the unpruned ensemble, and 1 otherwise.
It can be deduced that it is possible to reduce the size of the ensemble down
to 30% (using a pruning rate of 70%) of the initial size without a significant
difference between the AcEc− P pruned and the unpruned ensemble, and even
improve the generalization performances in some cases.
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Table 4. Significance test results between the pruned and unpruned ensembles / No.
of datasets (over 9) for which pruned ensemble performs better than the unpruned

It should also be noted that according to findings in Table 1, the deterioration
in the ensemble accuracy when AcEc− P is used with a pruning rate of 50% is
only within ∼ 0.01 for all datasets and base classifier types, when an initial pool
of 150 classifiers is used. That is to say, instead of using a 150 column ECOC
matrix, using one with 75 will never degrade the performance by more than
∼ 1%, which is highly useful when applications requiring speed and accuracy at
the same time are considered.

6 Conclusions

We have presented a novel ECOC pruning method, which works by establishing
the link between the individual two class decompositions of an ECOC matrix and
the main multiclass problem using accuracy information. It is found as a result
of experimentation that this method, namely AcEc− P , yields superior results
to those of the state-of-the art ensemble pruning methods applied to ECOC. It
is also shown that in certain cases it is possible to use a pruning rate of 70%
without a significant difference in the performance and even help increase the
classification performance at times. Especially when used with longer codes and
lower pruning rates, the difference in the performance of the pruned ensemble
and the unpruned one can be kept within an upper limit as small as 0.01.

As for future work, the strength of the method is to be further investigated us-
ing theoretical bounds, and possible improvements are to be sought via utilizing
further information such as HD and diversity in addition to accuracy.

References

1. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying
approach for margin classifiers. JMLR 1, 113–141 (2000)

2. Asuncion, A., Newman, D.: UCI machine learning repository (2007),
http://www.ics.uci.edu/~mlearn/MLRepository.html

3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
4. Chandra, A., Yao, X.: Ensemble learning using multi-objective evolutionary algo-

rithms. J. Math. Model. Algorithms 5(4), 417–445 (2006)
5. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7,

1–30 (2006)

http://www.ics.uci.edu/~mlearn/MLRepository.html


ECOC Matrix Pruning Using Accuracy Information 397

6. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-
correcting output codes. J. Artif. Intell. Res. (JAIR) 2, 263–286 (1995)

7. Hernandez-Lobato, D., Martinez-Munoz, G., Suarez, A.: Statistical instance-based
pruning in ensembles of independent classifiers. IEEE Trans. Pattern Anal. Mach.
Intell. 31(2), 364–369 (2009)

8. James, G., Hastie, T.: The error coding method and picts (1998)
9. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: International

Conference on Machine Learning, pp. 211–218 (1997)
10. Martinez-Munoz, G., Hernandez-Lobato, D., Suarez, A.: An analysis of ensem-

ble pruning techniques based on ordered aggregation. IEEE Trans. Pattern Anal.
Mach. Intell. 31(2), 245–259 (2009)

11. Martinez-Munoz, G., Suarez, A.: Aggregation ordering in bagging. In: Proc. of the
IASTED ICAIA, pp. 258–263. Acta Press (2004)

12. Martinez-Munoz, G., Suarez, A.: Using boosting to prune bagging ensembles. Pat-
tern Recognition Letters 28, 156–165 (2007)

13. Soto, V., Martínez-Muñoz, G., Hernández-Lobato, D., Suárez, A.: A double pruning
algorithm for classification ensembles. In: El Gayar, N., Kittler, J., Roli, F. (eds.)
MCS 2010. LNCS, vol. 5997, pp. 104–113. Springer, Heidelberg (2010)

14. Tsoumakas, G., Partalas, I., Vlahavas, I.: A taxonomy and short review of ensemble
selection. In: ECAI 2008, Workshop SUEMA (2008)

15. Ulas, A., Yildiz, O.T., Alpaydin, E.: Cost-conscious comparison of supervised learn-
ing algorithms over multiple data sets. Pattern Recognition (2011)

16. Windeatt, T., Ghaderi, R.: Coding and decoding strategies for multi-class learning
problems. Information Fusion 4(1), 11–21 (2003)

17. Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite program-
ming. JMLR 7, 1315–1338 (2006)

18. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms, 1st edn. CRC Press,
Boca Raton (2012)



Author Index

Afzal, Mehtab 190

Bar, Ariel 1
Bonissone, Piero P. 352
Bouridane, Ahmed 283

Chandra, Arjun 212
Chen, Dahai 307
Chen, Songcan 167
Cheplygina, Veronika 13
Chibamu, Walter 212
Christmas, William 73

D’Este, Claire 25
Didaci, Luca 37
Dietmayer, Klaus 85
Dı́ez-Pastor, José-Francisco 247
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