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Abstract. The past decades witnessed a big effort in solving road-network 
congestion problem through routing optimization approaches. With a multi-
objective optimization perspective, this paper proposed a new method which 
solved the road-network congestion problem by combining two objectives of 
shortest routing and congestion avoidance. Especially, we applied the approach 
of Brownian agents to find the next intersection of road network to avoid 
congestion. Vehicles were simulated as Brownian agents with automatic 
movements in the road-network, and the entire network congestion distribution 
were optimized at the same time. We tried to find out the relationship between 
the moving strategies of the vehicles and the network congestion. By means of 
computer simulation, we implemented our proposed method with a predefined 
road-network topological structure. We tested the parameters sensitivity by 
scaling the proportion of agent with two moving strategies: the shortest path 
strategy and a mix strategy combining two objectives of shortest routing and 
congestion avoidance. Furthermore, we analyzed the various network 
congestions under a mix strategy by changing the weights to represent different 
focus on two moving strategies. The simulation results proved the applicability 
and efficiency of our proposed method for alleviating the network congestion 
distribution, and the intersections within a higher vehicle density were observed 
decreased. 

Keywords: road-network congestion, multi-objective optimization, Brownian 
agent. 

1 Introduction 

Road-network congestion becomes a more and more serious problem in our daily life. 
Facing the traffic problems, ITS (intelligent transportation system) was proposed to 
handle it. There lots of agent-based traffic applications and systems among the ITS. In 
the early year, Nagel introduce a stochastic discrete automaton model to simulate 
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freeway traffic [1], and lots of traffic application using CA (Cellular Automata) in the 
later years were proposed [2][3][4]. Wang also summarized the multi-agent system 
used for traffic management systems, and rethink control systems and reinvestigate 
the use of simple task-oriented agents for traffic control and management of 
transportation systems in 2005[5]. Later, more and more researchers focus on this 
area. Du proposed an urban traffic coordination control system based on Multi-Agent-
Game, the system uses the coordination control of each agent to coordinate the urban 
traffic signal for elimination the congestion of traffic network [6]. Chin introduced a 
Q-Learning algorithm acts as the learning mechanism for traffic light intersections to 
release itself from traffic congestions situation in 2012[7].   

Based on the above mentioned works, the conventional traffic applications using 
agents were focus on one or intersections or traffic signals. Although these methods 
improved the road network congestion in some degree, it is difficult to find deep level 
optimization objectives in the practical application problems and research focus.  

In our research, we mainly focused on the road-network congestion problems by 
using Brownian agent motion model. At the early stage of application of agent 
models, agents was defined either complex or minimalistic ways. A complex agent 
can be regarded as an autonomous entity with either knowledge or behavior based 
rules, performing complex actions such as learning and building its own strategy with 
multiple attributes [8]. The conceptual design of complex agent is ideal but 
impractical. The alternative is the minimalistic agent, which has the simplest rule set 
to guide its decision, without referring the internal attributes. But due to 
oversimplification, the practical application of such agent is also very limited. To 
avoid both extremes, Brownian agent approach is proposed [9][10]. A Brownian 
agent is a minimalistic agent with internal degrees of freedom. Through specific 
action, Brownian agents are able to generate a self-consistent field which in turn 
influences their further movement and behavior [9]. The non-linear feedback between 
the agents and the field generated by themselves results in an interactive structure 
formation process on the macroscopic level. 

The applications with Brownian agent model mostly simulated the agent's own 
activities and analyzed their macro-emergence. Schweitzer and his colleges began their 
research on the BA in the early years; they defined a potential attribute which 
described a two-dimensional plane, the attribute would influent the agent movement 
decision, and the agents’ movements would cause changes of the potential attribute and 
result in the aggregation phenomenon [11]. Schweitzer also optimized the network 
topology by using a mix Brownian Agent-based strategy which combined the 
Boltzmann and Darwin hybrid genetic strategy [12]. Another interesting work was 
done by Espitia in 2011. He proposed a complex Brownian particle swarm model for 
solving the routing planning problems [13]. Minazuki focused on the optimization of 
traffic flow and traffic management, the extent of the traffic congestion can be 
predicted using a model based on the Brownian motion process [14]. Li and Dan 
proposed a conflict detection algorithm based on Brownian motion, their algorithm had 
better results for practical application of automated air traffic control systems [15]. 

Compared to the previous agent application, the characteristic of Brownian Agent 
was more macroscopic, their whole behaviors and merging characters are more 
suitable for global optimization. In our work, the design of intelligent transportation  
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system should at least achieve two objectives. One is the shortest routing length to the 
destination, and the other is the avoidance of the adjacent high-density congestion 
area. With a multi-objective optimization perspective, this paper proposed a new 
method which solved the road-network congestion problem by combining two 
objectives of shortest routing and congestion avoidance. Especially, we applied the 
approach of Brownian agent to find the next intersection of road network to avoid 
congestion. Vehicles spontaneously move to the destination, and the entire network 
congestion distribution would be optimized at the same time. By means of computer 
simulation, we proved the efficiency and applicable of our model in solving road-
network congestion problem.  

The rest of the paper is organized as follows: Section 2 describes the model 
through ODD protocol. Section 3 gives experimental settings and discusses the results 
of computer simulations. Section 4 analyzes the simulation results. Finally, Section 5 
gives concluding remarks and an outlook of future work. 

2 Model Description with ODD Protocol 

The model description follows the ODD (Overview, Design concepts, Details) 
protocol for describing individual- and agent-based models [16]. 

2.1 Purpose 

The Multi-Objective Optimization Algorithm with Brownian Agent Model is 
designed to solve the road-network congestion problem. We also focus on  
the methodology: a multi-objective optimization with Brownian agent model. 
Vehicles are regarded as Brownian agents, they spontaneously move to the 
destination, and the entire network congestion distribution would be optimized at  
the same time. We analyze the various network congestions under a mix strategy by 
changing the weights to represent different focus on two moving strategies: the 
shortest path strategy and a mix strategy combining two objectives of shortest routing 
and congestion avoidance. We repeated the optimization processes of model 
parameters through agent strategies, in order to reduce the degree of congestion of the 
whole network, and provide a new model for the road-network congestion and traffic 
control methods.  

2.2 Entities, State Variables, and Scales 

Table 1. Entities and Descriptions 

Entities Description Entities name in the model 

Vehicle 
mobile nodes of the road-

network 
Id(integers from 1 to 500) 

Intersection 
immobile nodes of the road-

network where vehicle 
passed or located 

Id(integers from 1 to 39) 
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Table 2. State Variable and Descriptions 

State variables Descriptions Variables name in the model 
Links between 

Interactions 
The connection between 

intersection nodes 
adjMatrix 

Density of Intersection 
The number of vehicles at 

each intersection node 
locationDensity 

Source Node Set 
The list of intersection nodes 

where vehicle departures 
start 

Destination Node Set 
The list of intersection nodes 

where vehicle moves to 
end 

Vehicle Path 
The list of intersection nodes 

where vehicles passed by 
pathMap 

Waiting Vehicles 
The vehicles of waiting 

queue at each intersection 
node 

waitQueue 

Vehicle State 
The states of vehicles at 

present intersection, either 
mobile or immobile 

vehicleState 

2.3 Process Overview and Scheduling 

In the simulation model, each vehicle would choose one of its neighbor intersections 
with the minimum value as next moving target at each simulation step. The minimum 
value is addressed as an attribute of intersection nodes, estimated by a fitness value of 
 
At each simulation cycle 
start 
     for i = 0 to 500 
      Initialize the vehicles in the network 
     end for 
     for i = 0 to 39 
      Initialize the intersection nodes in the network 
     end for 
     for Simulation Step = 0 to the end of simulation step 
      for i = 0 to 500 
       if (Simulation Step == the time step a vehicel should be added) 
        add vehicle to the network 
       end if 
      end for 
      update the information of intersection nodes in the network; 
      for i = 0 to 500 
       if (vehicle in the network) 
        calculate its next jump and update it 
       end if 
       if (vehicle arrived its destination) 
        remove this vehicle 
       end if 
      end for 
     end for 
End 

Fig. 1. Pseudo-Code of the Agent Simulation Model 
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a multi-objective function. At each simulation step, a vehicle in the first position of 
the waiting queue at present intersection node would move to the next neighbor 
intersection with minimum attribute value. When a vehicle arrived at its destination, it 
would be moved out from the road-network. A simulation cycle is defined as one 
execution of vehicles movement and nodes update. The following pseudo-code 
describes the process and scheduling of the simulation. 

2.4 Design Concepts 

Basic principles. The general concepts underlying the models’ design is Brownian 
Agents and Active Particles, which is addressed systematically by Frank Schweitzer 
[10]. Brownian particles were observed in 1826 by the British botanist Brown (1773-
1858). According to the concept of Brownian Agents that Schweitzer mentioned, 
Brownian Agents can be described by external variables and internal degrees of 
freedom. The external variables can be observed from the outside, and internal 
degrees of freedom can be indirectly concluded only from observable actions. During 
the motion, the internal degrees of freedom can be described as indirect influence of 
the environment condition. In our model, vehicle agents will leave those intersection 
nodes with a high density in order to avoid congestion. With a multi-objectives 
optimization perspective, we used two objectives of shortest routing and congestion 
avoidance. The internal degree of freedom can be reflected by dynamics of vehicle 
agents’ decisions on next movement. For the entire network, vehicle agents clustered 
in one intersection node would lead to a density increasing, causing other vehicle 
agents to skip this intersection to find another path, through which to alleviate the 
network congestion. 

Emergence. Different moving strategies would lead to a different congestion 
distribution. Even with the same strategy, the distribution would show some features. 

Adaptation. Vehicle agents would make their moving decisions based on the 
attributes (a combination influence of shortest path and congestion avoidance) of 
location nodes. Vehicle agents behaviors would lead to the network congestion 
changed. Such a feedback between vehicle agents and the network state generates 
agent’s adaption.  

Objectives. The objective of the model is to alleviate the entire network congestion. 
The congestion of each intersection node is measured by the density of vehicle agents. 
And, the congestion of the entire network is estimated by the density distribution of 
the whole network. 

Stochasticity. When vehicle agents moves in the road-network, its source and 
destination intersection node, and the time step when the vehicle agent put into the 
network are randomly generated. For the calculation of next jump, a Gaussian random 
number is employed to simulate the stochastic behaviors during such process. 

Observation. The data collected from the agent-based model are the time 
consumption when a vehicle arrives at the destination intersection and the dynamics 
of vehicles density at each location node during the entire simulation.  

Road-Network description.  We define the attributes Ux of a intersection node in 
the following: 

 ),(),( trdesiGtrpreAU x =  (1) 
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Where preA(r, t) represents the constant influence on intersection node r with time t, 
desiG(r, t) denotes the influence of local vehicle density of the intersection node. At 
an initial stage, we set the value of preA(r, t) as 1 to simplify the experiments. 

According to the statistical data from the internet, the numbers of vehicles through 
an intersection varied in time, average numbers were 28 or 29 cars per one minute. 
Therefore, we define the vehicle density as follows: if the number of vehicle agents is 
greater than or equal to 28, the density is set to 1; otherwise the density is computed 
as the vehicle number plus one divided by 28. 

2.5 Initialization 

At the initial stage, The road-network topology is show in Fig.2, the nodes 
distribution were same with the network in [12].  

 

Fig. 2. The Road-Network Topology of the Simulation 

2.6 Sub Models 

The sub model is agent mobile model, introduced by equation (2): 
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Equation (2) was another type of Langevin equation within external potential. In our 

model, we did not consider the friction factor 0γ . 
x

xU

∂
∂ )(

 was regarded as the 

environment factor at location. )(2 0 tTk iB ξγ  was the Gaussian random 

disturbance. We set a fitness function involves two objectives as in Equation (3). 
Where Λ  represents a utility value of adjacent intersection node. Vehicle agents 
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would choose the intersection node with minimum value as next jump. The first term  
f (Ux) of Equation (3) denotes the attributes of the adjacent node. The second term 
g(x) represents the restraint of the agent, that is, agents should always move towards 

destination mode. The parameter λ  is used to balance the two objectives (shortest 
path and congestion avoidance). In order to retain certain randomness of the motion, 
we add Gaussian random number into the utility function and obtained equation (3).  

 GaussianxgUfU xx ++−=Λ )()()1(),( λλλ  (3) 

3 Experimental Setup and Result Discussion 

3.1 Experimental Setup 

Given the network topology in Fig.2, the simulation model randomly generated 500 
vehicle agents, which were put into the network during the first 50 simulation steps. 
Each vehicle agent is assigned its source and destination random. For a robust result, 
each simulation was executed 50 times and the average value was obtained as the 
final result. 

There are two types of vehicle agents defined in our model: 

1. In the first type, agents directly used the shortest path of travel in the 
network. At each simulation step, agents select the intersection node with the 
shortest path to the destination. We use Floyd Shortest Path algorithm to 
calculate the shortest path, so we give the name of this type as Floyd Agent. 

2. Of the second type, agents move or choose the next movement intersection 
mode based on the multi-objective utility function (3). We define such type as 
Mix Agent. 

To simplify the experiments, we made the following additional restrictions: each 
intersection node only allowed one vehicle agent to go through at one simulation step. 
When vehicles lined up at one intersection node, the simulation model would select 
the vehicle node at the top of the waiting queue.  

3.2 Experimental Result and Discussion 

In order to examine the efficiency of our proposed model and algorithms, we 
summarized the methods of simulation experiments in Table (3). 

Table 3. Experimental Descriptions 

Group No. Description Measurements  

Group 1 
The effect of λ on network 
congestion with fixed agent 

occupation 

The average arrival time of agents 
The average vehicle density of 39 

intersection nodes 
The density distribution at one 

simulation step 

Group 2 
The effect of agent occupation on 
network congestion with fixed λ 

The average time cost and average 
node density of road-network 
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The first group of experiments was executed to examine the effect of λ on network 
congestion with fixed agent occupation. We measured the system performance based 
on the average arrival time of agents, the average vehicle density of 39 intersections 
nodes, and the density distribution a one simulation step. In this series of simulations, 
we set two groups of vehicle agents: the first group has all agents with Shortest Path 
Strategy, while in the second group the agents with Floyd Strategy or Mix Strategy 
occupied a 50% rate, respectively. 

In the first step of group 1, we tried to find out the effects of different strategies on 
the agents. Figure 3-5 showed the results of average arrival time under different 
experimental settings of experiments group 1 in Table (3). Figure 3 gave the average 
arrival time of Floyd agents with effect of Mix agents, figure 4 showed the average 

arrival time of Mix agents with the effect of weight( λ ), Fig.5 showed the 
relationship between arrival time cost of Mix agents and the weight. 

 

Fig. 3. The Effects of Mix Agents with Different Weight on Floyd Agents 

In Fig.3, the x-axis represented a set of situations distinguished by agent proportion 

(rate) and weights ( λ ) of the agents with the shortest path strategy; the y-axis 
denoted the average arrival time of the Floyd agents, described by simulation steps. 
The first column of the figure showed the average time step when all the agents were 
Floyd agents and they arrived the destination. The second column gave the average 
time step when Floyd agents and Mix agents respectively occupied a half rate, the 

weight ( λ ) was assigned value 0.95. The rest columns of Figure 3 ranged the weight 
from 0.75 to 0.05. Based on the results, we found that the average time steps of Floyd 
agents were in the scale of (60, 80), no matter the various weight of Mix agents. The 
results indicated that the changes of Mix agents had little effect on the average arrival 
time of Floyd agent.  

In Fig.4, the x-axis represented 50 simluation trials by three different weight of 
Mix agent, the y-axis denoted the average arrival time of agents, described by 
simulation steps. Compared the simulation results with the results of Floyd agents in 
Fig.3, we found that the average arrival time of Mix Agent is longer than Floyd 

Agent; and the value would be longer when the weight ( λ ) decreased. Based on the 
description of equation (3), we found these agents tended to avoid congestion. This 
tendency became more apparent when the weight was getting smaller. 
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Fig. 4. Average Arrival Time of the 50% Mix Agents in the Network with Different Weight  

 

Fig. 5. Average Arrival Time of Mix Agent with Different Weight 

In Fig.5, the x-axis represented the different weights, the y-axis denoted the 
average arrival time of the Mix Agents, described by simulation steps. The results 
indicated that the average arrival time of the Mix Agent would be longer when the 
weight was smaller. This increasing tendency represented in Fig.5 became greater 
when the weight was set below 0.35. 

In the second step of group 1, we studied the effect of Mix Agent to the network 
congestion. We analyzed the feasibility of improving the network congestion by 
multi-objective algorithm with Brownian Agent. Fig.6-7 showed the results of 
congestion improvements under different experimental settings of experiments group 
1 in Table (3). 

 

Fig. 6. Density of 39 nodes of the Network 
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In Fig.6, x-axis represented the index of 39 nodes, and y-axis represented the 
average density of the 39 nodes. The calculation of density was defined in Section 2. 
The three kinds of splashes denoted the density of agents in the network with three 
types of moving strategies as the complete shortest path strategy, the Floyd and Mix 
agent occupied a 50% rate respectively with different weight values as 0.85, 0.15. 
From the results, we found that the entire network congestion decreased obviously 
when the weight of Mix Agent decreased. The results could be observed distinguished 
among those nodes selected by the rectangles. Because Mix Agent were more inclined 
to avoid congestion node when the weights decreased according to equation (3), thus 
the average density of the network nodes was significantly decreased. 

 

Fig. 7. Density of 39 Intersection Nodes at Time Step 49 

Fig.7 gave the density distribution of the network node at one selected simulation 
step. By sorting the density distribution of 100% Floyd Agents, we found that the 
time step 49 held the most serious congestion during the whole simulation process. 
Therefore, we picked up this single time step to verify the feasibility of Mix Agent to 
improve the congestion of the entire network. Based on the results shown in Fig.7, we 
found that the congestion of the intersection nodes selected by the rectangles had been 
notably improved.  

According to the results of experiments described in Table (3), we could conclude 
that the Mix Agents using the multi-objective algorithm would greatly alleviate the 
congestion of the special intersession nodes and the entire network. Meanwhile 
because of the shunt in the congestion intersection node, Mix Agents arrival time may 
be increased. 

In the second group of experiments described in Table (3), we tried to found the 
effects of agents’ proportions on the simulation results. The parameters were set as 
follows: the weight of Mix Agents was 0.35, the occupation rates of two types of 
agents were set to 25%: 75%, 75%: 25%. Fig.7-8 showed the simulation results 
changed when modifying the occupation rate. 

From the results of Fig.8-9, we found that the greater the occupation rate of Mix 
Agent was, the smaller the network congestion became. On the other hand, the more 
the number of Mix Agent was, their average time steps became longer with fixed 
weights.  
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Fig. 8. Average arrival time of Mix Agent with different occupation rate 

 

Fig. 9. Density of nodes with different Agent occupation rate  

Compared with other congestion control model or algorithm, just like Chiu 
introduced vehicle navigation systems, which were equipped with Dynamic Route 
Guidance System, providing shortest distance path of given target location with a 
multi-objective algorithm [17]. Yoshikawa et al. proposed a hybrid genetic algorithm 
to solve path optimization [18]. The traditional road-network congestion optimization 
was focus on the route optimization. Our experiment was based on the entire network, 
the individual can sense the surrounding environment, from the macro point of view, 
improved the network congestion, the method herein used is of creativeness. 

4 Conclusion 

This paper proposed a new method which solved the road-network congestion 
problem by combining two objectives of shortest routing and congestion avoidance. 
By means of computer simulation, we implemented our proposed method with a 
predefined road-network topological structure. We tested the parameters sensitivity 
by scaling the proportion of agent with different moving strategies and the weights of 
Mix agent. The simulation results proved the applicability and efficiency of our 
proposed method for alleviating the network congestion distribution, and the 
intersections within a higher vehicle density were observed decreased. 
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The bigger average time consumption with Mix agent, which indicated a mix 
strategy by considering both effects of shortest path and congestion avoidance might 
result more time cost than the shortest path strategy. But the actual traffic situation is 
far more complicated, and the intersection waiting time consumption seems bigger 
than the cost of detours. Therefore, our model made its sense in its applicability and 
efficiency of solving road-network congestion problem by a multi-objective 
optimization algorithm with Brownian agent model.  

5 Future Works 

In the present version, our model only simulated agent movement via network nodes, 
while in the real transportation system, the vehicles mobile continuously and could 
not jump to the next intersection. In the future work, we will change agent motion in 
line with the actual road condition. Furthermore, other traffic effects, such as some 
nature impact from the intersection node itself (such as preA we mentioned in our 
equation and model in section 2) should be far more designed and implemented.   
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