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Abstract. Falls are a major health problem among the elderly. The conse-
quences of a fall can be minimized by an early detection. In this sense, there is 
an emerging trend towards the development of agent systems based on mobile 
phones for fall detection. But when a mobile phone-based fall detector is used 
in a real-world scenario, the specific features of the phone can affect the per-
formance of the system. This study aims to clarify the impact of two features: 
the accelerometer sampling frequency and the way the mobile phone is carried. 
In this experimental study, 5 participants have simulated different falls and ac-
tivities of daily living. Using these data, the study shows that the sampling fre-
quency affects the performance of the detection. In the same way, when a fall 
detector intended to be attached at the body is carried in an external accessory, 
the performance of the system decreases. 

Keywords: Fall detection, mobile phones, real-world scenarios. 

1 Introduction 

Falls in the elderly are a common cause of mortality, morbidity, reduced functioning, 
and premature nursing home admissions [1]. Among many other factors, the severity 
of a fall depends on the amount of time the elder remains lying on the floor after fall-
ing [2]. Therefore, a quick detection and assistance is needed. 

The evolution of mobile phones to integrated systems with computing power, 
communication resources and embedded sensors opens the door to new innovative 
research in fields such as ambient intelligence [3]. Modern mobile phones have the 
potential to act as intelligent agents [4].  In particular, the design of agent systems 
based on mobile phones for automatic fall detection is an emerging research area. The 
first system appeared in 2009: Sposaro et al. [5] presented a detector for the Android 
operating system that is available for download from the Google Play store. Since 
then, the number of mobile phone-based detectors has increased dramatically, each 
time with more features and enhanced algorithms. The system of Dai et al. [6] can be 
considered the first relevant work in this field. Following this trend, Lee et al. [7] 
compared the motion signals acquired by the built-in accelerometer of the phone  
to those recorded by an independent body-mounted accelerometer, showing better 
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results in the latter. Albert et al. [8] propose a system not only to detect a fall but also 
to automatically classify the type. In this sense, Martin et al. [9][10] describe a  
multi-agent system capable of detecting falls through the sensors embedded in a mo-
bile phone. Other authors have also worked in this direction [11,12]. 

In all of these studies, the signals from the built-in accelerometer of the phones are 
used for fall detection. However, it should be noted that there is high variability with-
in mobile phone models. When mobile phone-based fall detectors are used in real-
world scenarios, there is a risk that the performance is affected by the specific device 
features. This risk is greater for sensor-dependent applications such as fall detectors. 
In this experimental study, we aim not only to identify some of these features but also 
to quantify them.  

The rest of this paper is structured as follows: Section 2 examines the contributions of 
this work, section 3 describes the methodology used in the experiments, section 4 intro-
duces the detection algorithm, section 5 explains the influence of the accelerometer  
sampling frequency, section 6 explores the idea of wearing the phones in handbags,  
and section 7 draws some initial conclusions and outlines areas that can be researched 
further. 

2 Contributions 

This study aims to clarify the impact on mobile phone-based fall detection of some 
factors that can compromise its performance in a real-world scenario. We put the 
focus on two: 

• Accelerometer sampling frequency: The built-in accelerometer of the phones sam-
ples at different frequencies depending on the model in question. This study ex-
amines the degradation of the detection as the sampling frequency decreases. This 
is an important aspect when selecting the suitable smart phone for a real-world ap-
plication. 

• The way the mobile phone is carried: All previous research placed the mobile 
phone in a standardized position of the subject’s body (waist, thigh, trunk, back, 
wrist, etc.). However, users may wish to carry the mobile phones in external acces-
sories like handbags. To the best of our knowledge, this is the first study that ex-
amines the effect on fall detection of wearing the phone externally. 

3 Subjects and Methods 

Mobile phone-based fall detectors use the acceleration signals from the built-in acce-
lerometers of the phones. Then, these signals can be classified as falls or activities of 
daily living (ADL). Therefore, to measure the performance of a detector, it is neces-
sary to acquire acceleration data from both falls and ADL. 

Since this is an experimental study, these data have been collected from 5 young 
volunteers (mean age 27.6, SD 8.5, 3 males, 2 females). All participants performed 4  
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different simulated falls: forward, backward, lateral left and lateral right. Fall types 
were selected to fit into the broader categories of typical fall events of older people 
[13,14]. They were completed on a soft mattress. The methodology of the simulations 
was the following: firstly, researchers gave oral information on the experiment includ-
ing the preventive measures that should be adopted to avoid any risk, secondly a writ-
ten consent was obtained from each participant; thirdly researches performed a prac-
tical demonstration of each fall type, fourthly subjects were required to be as natural 
as possible, using, if desired, common strategies to minimize the fall impact such as 
flexing their knees or putting their hands. Each fall type was repeated 4 times. 

Subjects were also requested to simulate the most common types of ADL (table 1). 
Each ADL was repeated 3 times. 

During the experiments, participants wore a mobile phone in both their pockets 
(left and right) and in two handbags. Thus a total of 64 fall records and 180 ADL 
records were collected from each participant. Half of them were acquired from the 
pockets and the other half from the handbags. After each simulation, the acceleration 
data were downloaded wirelessly from the mobile phones to a PC. The sampling fre-
quency was 50 Hz. Each record contained a 6 second width time window around the 
highest peak of the acceleration magnitude. 

Table 1. List of common ADL performed by the 5 volunteers 

Most common types of Activities of Daily Living 

Sitting down on a soft chair Getting up from a soft chair 

Sitting down on a hard chair Taking the lift (two floors, up) 

Picking up something from the floor Squatting and tying shoelaces 

Lying down on a bed Getting out of bed 

Jogging Walking 

Walking downstairs Walking upstairs 

Getting into the car Getting out of the car 

Jump to pick something  

4 Fall Detection Algorithm 

A low-complexity algorithm has been selected for fall detection. This algorithm has 
been tested with the data from the falls and ADL (section 3). It considers both an 
upper and a lower threshold. If the maximum value of the acceleration within a 
checking time window of 1 second around the peak, is higher than the upper 
threshold, the pattern recognition is triggered to check the minimum value. If this 
value is less than the lower threshold, a fall detection is reported [5]. 

This algorithm has been used to measure the impact on its performance of the two 
mentioned factors: the acceleration sampling frequency (section 5) and the way users 
carry the phones (section 6). 
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The performance of the algorithm is clearly worse when tested on the handbag data 
set compared to the performance on the pocket data set, the kind of data for which the 
detector was originally trained. Table 3 quantifies the difference by measuring the 
area under the ROC curves. It reaches 10%. 

Table 3. Area under the ROC curve for both, the pocket-tested and the handbag-tested system 

 Detector tested with data 
from the pockets 

Detector tested with data 
from the handbags 

Area under the ROC curve 0.8363 0.7559 

7 Discussion and Conclusions 

This study has proven that the acceleration sampling frequency influences the 
performance of a fall detector. The level of dependence is in part conditioned by the 
fall detection algorithm. As an example, a low-complexity algorithm has been used in 
this study. Other algorithms could have strengthened or weakened this dependence. 
This is not a minor problem in mobile phone-based fall detection. This implies that 
the same application can behave differently depending on the particular phone model 
in which it is run. Researches in this field must be very cautious when selecting the 
sampling frequency. Also, the features of the built-in accelerometers must be 
examined to ensure they can sample at the proper frequency.  

Unlike dedicated fall detectors, mobile phone-based systems not only detect falls but 
also perform many other tasks, for example, making calls, sending SMS, running other 
applications, etc. In a real-world scenario, subjects may wish to use these functions as 
well as to carry the mobile phones in different places. In this way, handbags are proper 
accessories to keep these devices. This study investigates for the first time the effect of 
carrying the mobile phones in them. Results show that the performance of the system 
decreases when a traditional fall detector intended to be worn on the thigh is carried in a 
handbag. Therefore, studies in this field should consider using the phones as true 
“phones”. Otherwise, their performance may decrease in a real-world scenario, leading 
probably to their rejection. To be accepted by their potential users, fall detectors should 
meet their needs and this inevitably includes usability aspects. 

This study has still some limitations. For the analysis, we have considered a simple 
threshold-based fall detection algorithm. Further research should incoporate more 
sophisticated algorithms based on machine learning and investigate their performance 
when faced to real-world conditions. 

In conclusion, future studies in mobile phone-based fall detection should also 
consider the specific features of phones since they could compromise the performance 
in a real-world scenario. In this study, we have shown the impact of two factors: the 
sampling frequency and the way the device is carried. 
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