
An Agent-Based Middleware

for Cooperating Smart Objects

Giancarlo Fortino, Antonio Guerrieri, Michelangelo Lacopo,
Matteo Lucia, and Wilma Russo

DEIS, University of Calabria

Abstract. This paper proposes an agent-oriented and event-based
framework for the development of cooperating smart objects. Smart ob-
jects are objects of the real life augmented with computing, communica-
tion, sensing/actuation and storing functionalities. They are the building
blocks of the future Internet of Things (IoT) towards the construction of
complex smart environments. In the proposed framework, smart objects
are modelled as agents that can cooperate as a multi-agent system to
fulfill specific goals. The framework implementation relies on the JADE
middleware that provides an effective agent management and commu-
nication infrastructure. In particular, cooperating smart objects can be
implemented as JADE or Jadex agents and can cooperate through direct
coordination based on ACL message passing and spatio-temporal decou-
pled coordination based on a topic-based publish/subscribe. A simple yet
effective case study referring to a smart office environment constituted
by two cooperating smart objects, is presented to elucidate the proposed
approach.

Keywords: Internet of Things, Smart Objects, Multi-Agent Systems,
Wireless Sensor and Actuator Networks, JADE.

1 Introduction

Recent progresses in electronics, telecommunications and computing are driving
the vision of the Internet of Things (IoT), a world-wide network of interconnected
heterogeneous physical objects (sensors, actuators, smart devices, smart objects,
RFID, embedded computers, etc) uniquely addressable and based on standard
communication protocols [1].

Among several approaches available for building the IoT [2], in this paper
we focus on an IoT defined as a loosely coupled, decentralized system of coop-
erating smart objects (SOs). An SO is an autonomous, physical digital object
augmented with sensing/actuating, processing, storing, and networking capabil-
ities. It is able to sense/actuate, store, and interpret information created within
itself and around the neighboring external world where it is situated, acts on its
own, cooperates with other SOs, and exchanges information with other kinds of
electronic devices and human users.

To date, research efforts have mainly focused on prototyping middleware in-
frastructures for the implementation of SO-based smart systems. Apart from

J.M. Corchado et al. (Eds.): PAAMS 2013 Workshops, CCIS 365, pp. 387–398, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



388 G. Fortino et al.

many projects focused on smart environments but not specifically on smart ob-
jects, UbiComp [3], FeDNet [4] and Smart Products [5] promote SOs as central
entities in developing the IoT infrastructure, even though they differ in many
aspects (e.g. programming model, metadata, system architecture, SO archi-
tecture, communication model, proactivity, programming language, knowledge
management).

To define an IoT infrastructure based on a well-defined distributed comput-
ing paradigm which effectively supports the definition of distributed comput-
ing entities, their architecture and their coordination, this paper proposes an
agent-oriented and event-based framework for the development of cooperating
smart objects. The framework relies on the agent paradigm, which is centered
on the concept of agent, as it is a well-defined distributed computing paradigm
for developing methods and middleware for SOs. Agents are defined as autono-
mus, proactive, social, and situated entities that can fulfill specific objectives
[6]. Therefore, the characteristics of agents perfectly fit those of the SOs. The
proposed framework is implemented in JADE [7] and allows to program cooper-
ating smart objects as JADE or Jadex [8] agents that comply with a well-defined
event-driven reference architecture. The exploitation of JADE will enable inter-
operability between SO applications and agent applications based on JADE.
Moreover, the proposed smart objects are based on the BMF [9] and SPINE [10]
frameworks, which manage their sensor and actuator networks that are based on
IoT standards (e.g. IEEE 802.15.4, ZigBee, 6LowPan). The JADE-based frame-
work is finally exemplified through a simple yet effective case study.

The remainder of the paper is organized as follows. Section 2 discusses related
work. In Section 3 the event-driven reference architecture for cooperating smart
objects is described. Section 4 presents the proposed agent-based framework
whereas the case study is detailed in Section 5. Finally conclusions are drawn
and future work is briefly discussed.

2 Related Work

Nowadays, the development of architectures and middlewares for SOs is still an
emergent research activity. Available works can be roughly classified in three
kinds: (i) ad-hoc middlewares fo smart environments that could be reused, af-
ter a proper enhancement, for smart objects (e.g. Smart-Its, 2WEAR, Ambient
Agoras, Aura, Gaia, iRoom) [11]; (ii) infrastructures focused on an all-inclusive
IoT vision, where each object, even a sensor or an RFID, belongs to the IoT [12],
[13]; (iii) smart object middleware focused on the development of an SO-based
IoT (e.g. FedNet [4], SmartProducts [5], and UbiComp/Gadgetware Architec-
tural Style [3]). In particular, we discuss the latter works as they are specifically
focused on SO middleware.

FedNet [4] uses XML metadata to describe the requirements of SO applica-
tions, but it does not consider the SO management. FedNet does not provide
a SO architecture because it is a high level middleware providing an interface
to different SO architectures. For this reason, the proactivity in FedNet is “out



An Agent-Based Middleware for Cooperating Smart Objects 389

of the SO” and applications are able to provide proactivity by orchestrating
the SOs. The matching between FedNet application requirements and services
provided by SOs together with the proactivity is managed by a (centralized)
coordinator. FedNet supports 802.11x (TCP/IP) and bluetooth (RF-COMM)
communication protocols.

SmartProducts [5] provides a metadata representation based on OWL and
RDF languages. SmartProducts offers an SO architecture which allows the SOs
to cooperate with each other in a P2P fashion through the communication mid-
dleware named MundoCore that supports several low-level communication pro-
tocols. SmartProducts supports proactivity in SOs, which can store knowledge
in a proactive knowledge base (through specific APIs) which is associated with
a reasoner to gather new knowledge.

UbiComp/GAS [3] uses XML data for the representation and communica-
tion of the SOs and their communication. It is based on a middleware named
GAS-OS, which is installed on each SO and defines the SO architecture. In Ubi-
Comp/GAS, SOs are components of distributed applications collaborating in
a P2P fashion. It is based on the plug/synapse model for interconnecting SOs
and the proactivity is limited to the substitution of lost synapses. The knowl-
edge management is based on Knowledge Bases (KBs) and on a Prolog infer-
ence engine that supports the gathering of new knowledge. The communication
protocols provided are TCP/IP and eRDP.

The aim of our proposal is the design and implementation of an event-driven
SO architecture suitable for every SO and a distributed high-level P2P frame-
work for SOs based on the agent paradigm. Our framework supports several
communication types (message passing and publish/subscribe) and provides
proactivity based on inference rules and on local and remote KBs.

3 Event-Driven Architecture for Cooperating Smart
Objects

A Smart Object (SO) is a common physical object augmented with sensing,
actuation, processing, storing, and communication capabilities. To implement
these capabilities, hardware and software components have to be added to its
physical structure. In particular, the hardware components provide the objects
with augmented capabilities and the software components implement the SO
functionalities.

The hardware structure of a SO is typically composed by a computing device
(such as a PC/notebook/tablet/smartphone or even an embedded computing
node) and a set of wireless/wired sensors and/or actuators nodes. The device
computing power is purposely defined depending on the functionalities the SO
will provide and on the dimension and complexity of the SO.

The software infrastructure can be logically organized according to a mas-
ter/slave model, in which the master (or coordinator) is the most powerful device
of the SO and can control a set of software entities running on sensor/actuator
nodes. The coordinator is the only component having the capability of commu-
nicating with other SOs and other external, personal and environmental devices.



390 G. Fortino et al.

The communication capability with other SOs provides the basis for cooper-
ation among SOs to achieve common goals, e.g. data sharing, complex service
provisioning, ambient intelligence management, etc.

This simple yet effective SO model is quite general as it can accommodate any
size of SOs: small (e.g. pencil, desk, sofa, coffeemaker, door), medium (e.g. mo-
torbike, tram, bus shelter) and large (e.g. building, tunnel, highway). Moreover,
in case of large SOs, the coordinator can be hierarchically organized to optimize
the SO management functionalities.

Fig. 1. SO Architecture

The defined cooperating smart objects (CSO) comply with the event-driven
architecture (see Fig. 1) which is an instance of the high level architecture re-
ported in [11]. The proposed architecture is composed of a Behavior that for-
malizes the object behavior, an EventDispatcher that manages all the internal
events of the object, a Communication Management Subsystem that manages
communications with other CSOs and external entities, a Device Management
Subsystem that manages the sensor/actuator nodes of the object, and a KB
Management Subsystem that manages the object knowledge base.

The Behavior component is composed by a set of Tasks. Tasks are software
subcomponents programmed to reach specific objectives through a set of oper-
ations, involving computation, communication, sensing/actuation, and storage
management. They can be either proactive or reactive. Proactive tasks are able
to self-trigger to fulfill specific objectives whereas reactive tasks are only trig-
gered by events sent by other internal or external entities. Tasks have also an
internal state and can interact with the CSO subsystems and with other tasks.

According to the proposed architecture, as tasks are driven by events, exter-
nal CSO communication, signals to/from the CSO devices, data to/from the KB



An Agent-Based Middleware for Cooperating Smart Objects 391

are always formalized as events and handled by the EventDispatcher that sends
them to the interested tasks. In particular, when the EventDispatcher starts
its execution, waits for events. When an event arrives, it is inserted into the
event queue of the EventDispatcher, which fetches, filters and, if not discarded,
forwards the event only to the interested tasks. More than a task can be target
of the same event instance.

Depending on the realization of the architecture, tasks can be implemented
following either run-to-completion or multi-threading paradigms.

Tasks can be divided in:

– System Tasks: they provide basic services common to all the CSOs. In
particular, the system tasks are:
• Shutdown/Reboot/Standby tasks, which respectively implement the shut-
down/reboot/standby operations of the CSO.

• Discovery task, which enables the CSOs discovery.
• Information Access task, which provides the information related to the
basic CSO functionalities.

• Parameter Setting task, which allows setting the basic parameters of the
CSO.

– User Defined Tasks: they are application-level tasks designed to define
specific CSO behaviors. Examples of User Defined tasks are provided in
Section 5.

Events are characterized by two properties: event type and event source type.
The types of event can be:

– Inform: events containing information;
– Request: events formalizing a request;
– Log: events for logging purposes;
– Error: events representing occurring errors.

The event source types can be:

– Internal: the event source is an internal software component.
– External: the event source is an external entities or components.
– Device: the event source is a CSO device.

A priority among events is defined as follows. Error events have the highest
priority whereas the Log events have the lowest one. Inform and Request events
have the same priority, which can also be specifically customized.

Device Management Subsystem, Communication Management Subsystem,
and KB Management Subsystem are designed to be generic and are respectively
based on extensible DeviceAdapters, CommunicationAdapters, and KBAdapters
to allow for interaction with different entities through different protocols.

The Device Management Subsystem manages interactions with sensing/actu-
ation devices and is composed by:



392 G. Fortino et al.

– DeviceManager, which manages and coordinates different DeviceAdapters.
– DeviceAdapter, which allows to interact with sensors/actuators hiding low

level-details. In particular, it interprets high-level requests from tasks which
translates into the specific sensor/actuator protocol, and receives data from
sensors/actuators which makes available to tasks.

The Communication Management Subsystem provides a common interface for
different kinds of communication (local or remote) with other CSOs or different
devices so as to allow the CSO to manage all the communication in the same
way. This subsystem is composed by:

– CommunicationManager, which manages and coordinates different Commu-
nicationAdapters.

– CommunicationAdapter, which manages all the active connections and mon-
itors the channel to set new connections by hiding low-level mechanisms;

The KB Subsystem provides the CSO with a knowledge base and consists of:

– KBManager, which manages and coordinates different KBAdapters.
– KBAdapter, which manages a KB containing the knowledge of the CSO. The

KB can be local or remote and store information that can be shared among
tasks.

4 Agent-Based Implementation

The event-driven architecture for CSOs has been fully implemented and inte-
grated in the JADE middleware (see Fig. 2). CSOs are thus JADE-based agents
so exploiting all features of JADE middleware at the agent management and
communication levels. In the following subsections we first provide some basic
information about the JADE middleware and then describe the JADE-based
implementation of CSOs.

4.1 The JADE Middleware

JADE [7] is a FIPA-compliant middleware for the development of distributed
multi-agent systems. A JADE agent is defined as a set of behaviors, each of
which represents one or more tasks to fulfill. JADE doesn’t provide any high-
level abstraction for the definition of intelligent behaviors. To this purpose, the
Jadex framework [8] has been introduced. It allows to program agents according
to the BDI (Belief Desire Intention) paradigm. Specifically, a Jadex agent is
defined as a triple: Goal (the agent objectives), Belief (the agent beliefs), and
Plan (the agent plan). Jadex provides an execution model based on events that
trigger the execution of plans. It is possible to execute Jadex agents on the JADE
platform by using the specific adapter.

The agent communication is managed by the JADE platform through ACL
message passing according to the FIPA specifications. The agent interaction can



An Agent-Based Middleware for Cooperating Smart Objects 393

Fig. 2. Realization of the event-driven architecture forCSOsusing the JADEmiddleware

also occur by means of the publish/subscribe pattern based on the topic mech-
anism. Such mechanism allows to send a given message to many agents without
knowing the identity of the target agents. The topic-based communication is im-
plemented in the JADE kernel service, named TopicManagementService, which
manages the creation and the subscription to topics.

The exploitation of ACL messages and the topic-based coordination allows for
interoperability among CSOs that will be able to request services and exchange
information with each other and with other FIPA agents.

4.2 Agent-Oriented CSOs

The JADE-based CSO architecture is reported in Fig. 2. CSOs are agents of
the JADE platform so they are managed by the AMS (Agent Management
System) and can use the DF (Directory Facilitator) to look up other agents.
The communication layer is based both on ACL messages and topic-based Pub-
lish/Subscribe. In the following we provide the most relevant JADE-based im-
plementation details of the CSO architecture components (see Fig. 1).

– Task. Due to the affinity between the Task concept and the concepts of
Behaviour (in JADE) and Plan (in Jadex), tasks are defined as JADE Be-
haviours or Jadex Plans. Thus, the task execution is based on the mecha-
nisms provided by the specific framework.



394 G. Fortino et al.

– EventDispatcher. The EventDispatcher (ED) is modelled as an active com-
ponent (Behaviour or Plan) and operates according to the execution mecha-
nisms of the exploited platforms. For each event submitted to the ED, it adds
such an event to its queue and self triggers the event dispatching through
an ACL message in JADE or through an event in Jadex. In JADE, each
task implemented as a Behaviour will wait for a specific ACL message that,
in turn, contains the high-level event to be dispatched to the task. A task
will use the register method provided by the ED to register to the events of
interest with its ID and, by using the JADE message template, will intercept
the ACL messages having a conversationID equal to its ID. Thus, for each
registered event, the ED builds an ACL message, sets the apposite conver-
sationID and sends the message into the internal system. Jadex is based on
events so allowing to distinguish between internal events and input/output
messages. As in Jadex a plan can be executed upon the occurrence of an
event of interest, an event is uniquely associated to a task (the association
could be based either on XML or Java classes). In particular, tasks register
the high-level event of interest and the triggering Jadex event to the ED.

– Communication Management Subsystem. As shown in Fig. 2, JADE
provides a set of services (TopicManagementService and MessagingService)
and an ACL-based communication channel for the agent iteraction. To pro-
vide communication among CSOs, an active component, named Communi-
cationManagerMessageHandler has been introduced (as Behaviour in JADE
and as Plan in Jadex), which captures the ACL messages targeting CSOs
and translates them into external events (see Section 3). Moreover, two other
handlers (TCPAdapter and UDPAdapter) have been defined to manage com-
munication with external networked entities based on TCP and UDP.

– Device Management Subsystem. The management of wireless sensors/
actuators is carried out through the DeviceManager that handles several
DeviceAdapters. In particular, two DeviceAdapters have been realized: the
BMFAdapter, which allows to manage wireless sensor and actuator networks
(WSANs) based on the BMF framework [9], and the SPINEAdapter, which
allows to manage Body Sensor Networks (BSNs) based on the SPINE frame-
work [10]. BMF and SPINE are based on IoT standards protocols such as
IEEE 802.15.4, ZigBee, and 6LowPan.

– Knowledge Management Subsystem. Currently, the KB is constituted
by just one object containing the global state variables of the CSO; ocal
variables can also be kept inside the CSO tasks.

5 Designing a Smart Environment through Cooperating
Smart Objects

In this section we exploit the agent-oriented framework described in the previous
section to develop a case study. In particular, the case study refers to a smart
environment composed of two CSOs: a Smart Office (or SmartO) and a Smart
Body (or SmartB). The two CSOs will gather information and cooperate to



An Agent-Based Middleware for Cooperating Smart Objects 395

support the working activity of the office user. As shown in Fig. 3: (i) the SmartO
is physically composed of an office room with two desks, two PCs with screen,
a whiteboard, a projector, and a chair, and is augmented with a set of wireless
sensors, organized as a BMF-based WSAN; (ii) the SmartB corresponds to the
office user that wears a BSN, which consists of two accelerometer-equipped sensor
nodes and a mobile basestation, which is able to recognize the following user
activities: standing still, sitting, walking, and laying down.

Fig. 3. Physical and hardware structure of the CSOs: Smart Office and Smart Body

5.1 Operating Scenarios

The operating scenarios of the case study refer to a usual working day: entry in
the office, work at desk, work at whiteboard, meeting, etc. On the basis of the
information gathered, the two CSOs will support the user during the working
activity by suggesting to turn the lights and/or the projector off while not used,
to take a break, and showing such information on the screen closest to the user. In
Table 1 the defined scenarios are described in detail by reporting the correlated
inference rules and actions performed by the smart environment.

5.2 Interaction between SmartO and SmartB

Each CSO publishes a set of topics and services that can be exploited by each
other or by other entities to implement more complex services. In particular, in
Table 2 the topics that the two CSOs publish and subscribe to are reported.
Moreover, the provided services can be requested one-shot or according to spe-
cific state transitions of the CSO. In particular, the services offered by SmartB al-
low to query SmartB about the activity the user is currently performing, whereas
SmartO, apart from the services for querying the room state (e.g. user presence,
temperature, light, etc), provides actuation services that allow the exploitation
of the screens.



396 G. Fortino et al.

Table 1. Operating scenarios of the case study

Scenario Description Inference Action
1 User enters in the office Uncertain position Information shown on both

the screens
2 User at desk 1 Work at desk Information shown only on

Screen 1
3 User is sitting for too long

time
User should stand up Alerting message displayed

on Screen 1
4 User moves around the room Uncertain position, walking Information shown on both

the screens
5 User uses the whiteboard Work at whiteboard, stand-

ing
Information shown only on
Screen 2

6 User starts a presentation Presentation running Switch screens off (do not
disturb), notify information
through Twitter

7 Presentation over, user for-
gets the projector on and sits
to Desk 1

Energy wastage Alerting message sent to the
user on Screen 1

8 User leaves forgetting lights
on

Energy wastage Alerting message sent to the
user through Twitter

Table 2. Published and subscribed topics

Topic Publisher Subscriber
Sitting SmartB SmartO
PresentationIsRunning SmartO SmartB
Work at Desk SmartO SmartB
Work at Whiteboard SmartO SmartB
MorePeopleInTheRoom SmartO SmartB

5.3 An Overview of SmartB and SmartO

SmartB has been developed by using the JADE version of the proposed agent
framework that can work atop J2SE and J2ME (or Android). The management
of the BSN (constituted by two Shimmer nodes, see Fig. 3) is based on SPINE
which is integrated through the SPINEAdapter. To display feedback messages
to the user, SmartB uses the screen service of SmartO. The KB of SmartB is
distributed among its tasks. Some inference rules embedded in SmartB are as
follows:

1. TooLongSitting ⇐ SittingTime > 2h ∧WorkAtDesk
2. DoingPresentation ⇐ Walking ∧ PresentationIsRunning
3. UseScreen1 ⇐ DeskUsed ∧ Sitting ∧ ¬MorePeopleInTheOffice
4. UseScreen2 ⇐ WhiteboardUsed ∧ ¬MorePeopleInTheOffice

SmartO has been developed by using the Jadex version of the proposed agent
framework that can work atop J2SE. The management of the WSAN (consti-
tuted by five sensor nodes: three TelosB equipped with presence sensors, one
TelosB for ambient sensing, and an Epic smart plug node to measure the power
consumption of the projector, see Fig. 3) is based on BMF which is integrated
through the BMFAdapter. Moreover, SmartO directly controls the two screens
for providing feedback to the user through a specific GUI. The KB consists of
a Java class which maintains all the state variables and generates events when
the values of such variables change. Some inference rules embedded in SmartO
are as follows:



An Agent-Based Middleware for Cooperating Smart Objects 397

1. isSomebodyInTheRoom ⇐ AmbientPresence ∨ isDeskUsed ∨ isWhiteboardUsed
2. isPresentationRunning ⇐ lowAmbientLight ∧ isSomebodyInTheRoom ∧ isProjectorOn
3. notDisturb ⇐ isPresentationRunning
4. morePeopleInTheOffice ⇐ isPresentationRunning ∨ (isDeskUsed ∧

isWhiteBoardUsed)
5. uncertainPosition ⇐ morePeopleInTheOffice ∨ (isSomebodyInTheRoom ∧ ¬isWhite-

boardUsed ∧ ¬isDeskUsed)
6. waste ⇐ isAmbientLightHigh ∧ (isProjectorOn ∨

¬isSomebodyInTheRoom)
7. useScreenOne ⇐ isDeskUsed ∧ ¬notDisturb
8. useScreenTwo ⇐ isWhiteboardUsed ∧ ¬notDisturb

6 Conclusion

This paper has proposed an agent-oriented framework for the development of
cooperating smart objects as building blocks for the constitution of even complex
smart environments towards the future IoT. An ecosystem of cooperating smart
objects is modelled and implemented as a distributed MAS based on the widely
used JADE middleware. Finally, a case study has shown the effectiveness of
using the proposed approach in developing smart environments based on smart
objects. Moreover, apart from the well-recognized benefits to exploit an agent-
oriented approach, the exploitation of JADE can facilitate integration with other
FIPA-compliant agent systems.

On-going work is being devoted to define tiny cooperating smart objects
based on the MAPS (Mobile Agent Platform for SunSPOTs) framework [14],
integrate them on the basis of the JADE-MAPS gateway [15], and extend the
JADE DF with effective CSO discovery mechanisms. Future work will focus on
the customization of the agent-oriented methodology ELDAMeth [16],[17] for
the development of smart environments based on the proposed agent-oriented
framework.

Acknowledgments. This work has been partially supported by TETRis -
TETRA Innovative Open Source Services, funded by the Italian Government
(PON 01-00451).

References

1. Vasseur, J.P., Dunkels, A.: Interconnecting Smart Objects with IP - The Next
Internet. Morgan Kaufmann (2010)

2. Kortuem, G., Kawsar, F., Sundramoorthy, V., Fitton, D.: Smart Objects as Build-
ing Blocks for the Internet of Things. IEEE Internet Computing 14(1), 44–51 (2010)

3. Goumopoulos, C., Kameas, A.: Smart Objects as Components of UbiComp Appli-
cations. International Journal of Multimedia and Ubiquitous Engineering 4 (2009)

4. Kawsar, F., Nakajima, T.: A Document Centric Framework for Building Dis-
tributed Smart Object Systems. In: Proc. of the 2009 IEEE International Sympo-
sium on Object/Component/Service-Oriented Real-Time Distributed Computing,
ISORC 2009, pp. 71–79. IEEE Computer Society (2009)

5. Miche, M., Schreiber, D., Hartmann, M.: Core Services for Smart Products. In:
Smart Products: Building Blocks of Ambient Intelligence (AmI-Blocks 2009), col-
located with AmI 2009 (2009)



398 G. Fortino et al.

6. Luck, M., McBurney, P., Preist, C.: A Manifesto for Agent Technology: Towards
Next Generation Computing. Autonomous Agents and Multi-Agent Systems 9(3),
203–252 (2004)

7. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a
FIPA-compliant agent framework. Softw. Pract. Exper. 31, 103–128 (2001)

8. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. In:
Multi-Agent Programming, pp. 149–174 (2005)

9. Fortino, G., Guerrieri, A., O’Hare, G., Ruzzelli, A.: A flexible building management
framework based on wireless sensor and actuator networks. Journal of Network and
Computer Applications 35(6), 1934–1952 (2012)

10. Bellifemine, F., Fortino, G., Giannantonio, R., Gravina, R., Guerrieri, A., Sgroi, M.:
SPINE: A domain-specific framework for rapid prototyping of WBSN applications.
Software - Practice and Experience 41(3), 237–265 (2011)

11. Fortino, G., Guerrieri, A., Russo, W.: Agent-oriented smart objects development.
In: Proc. of the 2012 IEEE 16th International Conference on Computer Supported
Cooperative Work in Design, CSCWD 2012, pp. 907–912 (2012)

12. de Souza, L.M.S., Spiess, P., Guinard, D., Köhler, M., Karnouskos, S., Savio, D.:
SOCRADES: A web service based shop floor integration infrastructure. In: Flo-
erkemeier, C., Langheinrich, M., Fleisch, E., Mattern, F., Sarma, S.E. (eds.) IOT
2008. LNCS, vol. 4952, pp. 50–67. Springer, Heidelberg (2008)

13. Floerkemeier, C., Lampe, M., Roduner, C.: Facilitating RFID Development with
the Accada Prototyping Platform. In: Proceedings of the Fifth IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops, PER-
COMW 2007, pp. 495–500. IEEE Computer Society, Washington, DC (2007)

14. Aiello, F., Fortino, G., Gravina, R., Guerrieri, A.: A java-based agent platform for
programming wireless sensor networks. Computer Journal 54(3), 439–454 (2011)

15. Mesjasz, M., Cimadoro, D., Galzarano, S., Ganzha, M., Fortino, G., Paprzycki,
M.: Integrating JADE and MAPS for the development of agent-based WSN ap-
plications. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) Intelligent
Distributed Computing VI. SCI, vol. 446, pp. 211–220. Springer, Heidelberg (2012)

16. Fortino, G., Garro, A., Russo, W.: A discrete-event simulation framework for the
validation of agent-based and multi-agent systems. In: Proceedings of WOA 2005
- 6th AI*IA/TABOO Joint Workshop ”From Objects to Agents”: Simulation and
Formal Analysis of Complex Systems, pp. 75–84 (2005)

17. Fortino, G., Russo, W.: ELDAMeth: An agent-oriented methodology for
simulation-based prototyping of distributed agent systems. Information and Soft-
ware Technology 54(6), 608–624 (2012)


	An Agent-Based Middleware
for Cooperating Smart Objects
	Introduction
	Related Work
	Event-Driven Architecture for Cooperating Smart Objects
	Agent-Based Implementation
	The JADE Middleware
	Agent-Oriented CSOs

	Designing a Smart Environment through Cooperating Smart Objects
	Operating Scenarios
	Interaction between SmartO and SmartB
	An Overview of SmartB and SmartO

	Conclusion
	References




