
Designing Autonomous Social Agents

under the Adversarial Risk Analysis Framework

Pablo G. Esteban1 and David Rı́os Insua2

1 Rey Juan Carlos University of Madrid
pablo.gomez.esteban@urjc.es

2 Royal Academy of Sciences, Spain
david.rios@urjc.es

Abstract. We describe how the Adversarial Risk Analysis framework
may be used to support the decision making of an autonomous agent
which needs to interact with other agents and persons. We propose sev-
eral contextualizations of the problem and suggest which is the concep-
tual solution in some of the proposed scenarios.

Keywords: Game Theory, Adversarial Risk Analysis, Multi-agent sys-
tems, Intelligent Agents.

1 Introduction

In [1], we have described a behavioural model for an autonomous decision agent
which processes information from its sensors, facing an intelligent adversary us-
ing multi-attribute decision analysis at its core, complemented by models fore-
casting the decision making of the adversary. We call Adversarial Risk Analysis
(ARA) to this framework, see [2]. Generally speaking, ARA views a two-person
game through two coupled influence diagrams, one for the supported agent and
one for the adversary. The supported agent would build an explicit model for the
decision-making of the adversary. Given such model, the supported agent may
simulate outcomes under it, which will draw on subjective probabilities about
the adversary’s beliefs, preferences, capabilities and resources. Following such
approach, we avoid the standard and unrealistic game theoretic assumptions
of common knowledge, through a nested hierarchy of decision analysis models.
From the point of view of supporting our agent, the problem is understood as
a decision analytic one, see [3], but we consider principled procedures which
employ the adversarial structure to forecast the adversary’s actions and the evo-
lution of the environment surrounding both of them, therefore, embracing also
adaptability: the agent performs as best as it can, given the circumstances. On
doing this, the agent would forecast what the other participant thinks about
him, thus starting the above mentioned hierarchy. Depending on the level the
agent climbs up in such hierarchy, we would talk about a 0-level analysis, 1-level
analysis and so on, borrowing the k-level thinking terminology, see [4], [5] and
[6]. Our approach has a Bayesian game theoretic flavor, as in [7] and [8].

J.M. Corchado et al. (Eds.): PAAMS 2013 Workshops, CCIS 365, pp. 292–303, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Designing Autonomous Social Agents 293

This model has been implemented within an AISoy1 robot, see [9]. In this
paper, we shall refer to multi-agent systems, exploring the social needs of our
robotic agent, and how it handles interactions with other agents, both human and
robotic ones. We have in mind four possible scenarios, shown in Fig. 1. On the
top left, Fig. 1(a), we consider a single agent facing multiple adversaries (agents
and users). On its right, Fig. 1(b), several agents compete in their interaction
with several users. At the bottom left, several agents, each of them related with
only one user, compete in a global scenario, see Fig. 1(c). Finally, bottom right,
there are multiple agents cooperating to satisfy themselves and the users, see
Fig. 1(d).

(a) (b)

(c) (d)

Fig. 1. Different scenarios take into account

Throughout this paper, we shall explore the interaction among different agents
and users, within the scenarios outlined above. Due to space limitations we
shall only describe in detail the two first scenarios (Figs. 1(a) and 1(b)), briefly
introducing the third one (Fig. 1(c)). Our motivation is the design of societies
of robotic agents that interact among them and with one or more users. Those
agents may be used as interactive robotic pets, robotic babysitters and teaching
assistants or cooperative caregivers for the elderly.

The paper is structured as follows. In Section 2, we provide the basic model
for a single agent facing a single adversary. In Section 3, we consider a case in
which a decision agent is identifying several users and robotic agents, and makes
decisions depending on the adversary is facing, scenario (1(a)). Next, in Section
4, we define two cases of a society of competitive robots which interact with
humans, scenarios (1(b)) and (1(c)). For comparative purposes, we deal with

294 P.G. Esteban and D.R. Insua

them through the standard game theoretic and the novel ARA frameworks.
We remain at a conceptual level, describing the solution concepts, although
we outline the required modeling. Finally, in Section 5, we end up with some
discussion.

2 The Basic Model

We briefly describe, as a starting point, the model in [1] which supports the
decision making of an agent A facing a user B. This model will serve as a basis
for later elaborations. A and B make decisions, respectively a and b, within
finite sets A and B, which possibly include a do nothing action. They are placed
within an environment E which changes with the user’s actions, adopting a state
e within a set E . Essentially, we plan our agent’s activities over time within the
decision analytic framework, see [3], including models to forecast the adversary
behaviour (Adversarial Risk Analysis) and the evolution of the environment.
Note that we could view the problem within the game-theoretic framework, see
[10], but with our alternative approach we avoid the much debated common
knowledge assumptions, see [8] or [11].

Assume that, for computational reasons, we just forecast one period ahead
based on a two period memory. We are interested in computing, at each time t,

p(et, bt | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2)) = (1)

= p(et | at, bt, (et−1, at−1, bt−1), (et−2, at−2, bt−2))×
× p(bt | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2)) ,

which forecast the reaction of the user and the evolution of the environment,
given the agent action, and the recent history. This constitutes the adversarial
part of the model. The first term in (1) will be simplified to

p(et | bt, et−1, et−2) ,

which we call the environment model, thus assuming that the environment is
fully under control by the user. The second term in (1) will be simplified to

p(bt | at, bt−1, bt−2) . (2)

The agent will maintain two models, Mi with i ∈ {1, 2}, in relation with (2).
The first one, M1, describes the evolution of the user by himself, assuming that
he is not affected by the agent’s actions. We call it the user’s model and describe
it through

p(bt | bt−1, bt−2) .

The second one, M2, refers to the user’s reactions to the agent’s actions, which
we describe through

p(bt | at) .

Designing Autonomous Social Agents 295

We call it the classical conditioning model, with the agent possibly conditioning
the user. We combine both models to recover (2), through model averaging, see
[12]:

p(bt | at, bt−1, bt−2) =

= p(M1) p(bt | bt−1, bt−2) + p(M2) p(bt | at) ,
where p(Mi) denotes the probability that the agent gives to model Mi, with
p(M1) + p(M2) = 1, p(Mi) ≥ 0.

Assume that the agent faces multiple consequences c = (c1, c2, . . . , cl), that
will be of the form ci(at, bt, et), i = 1, . . . , l. We shall assume that they are
evaluated through a multi-attribute utility function, see [3]. Specifically, we adopt
an additive form

u(c1, c2, . . . , cl) =

l∑

i=1

wiui(ci) ,

with wi ≥ 0,
∑l

i=1 wi = 1, where ui represents the robot’s i-th component
utility function and wi represent the corresponding utility weight.

Our agent aims at maximizing the predictive expected utility, i.e. implements
the alternative solving

max
at∈A

ψ(at) =

∫ ∫
u(c(at, bt, et))× [p(et|bt, et−1, et−2) p(bt|at, bt−1, bt−2)] dbtdet .

Planning (r + 1) instants ahead follows a similar parth, but may turn out to be
very expensive computationally.

For details on the implementation of this model, including learning, forecast-
ing and decision making, see [1].

3 Supporting an Agent Facing Several Agents and Users

In this Section, we extend our basic model to a case in which the agent faces
several adversaries, which may be agents or users, see Fig. 1(a). As an example,
assume that our agent (A) is supporting two children (B1 and B2) in their daily
school assignments, so that, A should be able to identify who is who, to evaluate
how correctly each of them is working, and deliver the corresponding score and
support.

For that purpose, the agent must be able to identify the adversary he is facing
and will have different forecasting models in relation with each of the known
opponents. We assume that the agent will face just one adversary at each of the
time steps of the scheme described in Fig. 2.
Using some identification method, the agent will guess who is the user/agent
it is dealing with and adapt its behaviour accordingly. The difference between
facing another agent or a user would essentially be the set of actions available for
the corresponding adversary forecasting model. Adversary identification is not a
core element of our work. For that purpose we could base the identification of the
opponent Bx on eigenface recognition algorithms, see [13] for a face recognition
survey, and implement it with the OpenCv libraries, see [14], as we have done.

296 P.G. Esteban and D.R. Insua

Fig. 2. Agent loop with advesary recognition

We assume that the user is that which maximizes p(Bx|Dt), after obtaining an
image of the face of the participant. Our agent will not make any difference
among robotic agents as there is no physical difference among them, because we
assume they are all robots of the same type.

3.1 Model

As in Section 2, our agent A makes decisions within a finite set A. In this case,
there are r adversaries B1, . . . , Br which interact with A. An index x will be
used to identify the corresponding adversary. As Bx may be an agent or a user,
he makes decisions within the set A, in case it is an agent, or a set B that will
designate the set of available actions to the users, which we assume are the same
for all of them.

The agent decision model is similar to that in Section 2. However in this
case, the forecasting model is conditional on the guessed adversary, so that (1)
becomes

p(et, bt | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2), Bx) =

= p(et | bt, at, (et−1, at−1, bt−1), (et−2, at−2, bt−2), Bx)×
×p(bt | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2), Bx) . (3)

Using a similar decomposition, now

p(et | bt, at, (et−1, at−1, bt−1), (et−2, at−2, bt−2), Bx) = p(et | bt, et−1, et−2, Bx) ,
(4)

and

p(bt | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2), Bx) = p(bt | at, bt−1, bt−2, Bx) .

We should note that, when Bx is a robotic agent, the environment model (4)
would become p(et | et−1, et−2, Bx), because the agent’s action does not affect
the environment.

Again, we view this as a problem of model averaging, for each agent Bx:

p(bt | at, bt−1, bt−2, Bx) =

= p(M1|Bx) p(bt | bt−1, bt−2, Bx) + p(M2|Bx) p(bt | at, Bx) ,

Designing Autonomous Social Agents 297

where p(Mi|Bx) denotes the probability that the agent gives to model Mi,
assuming that the adversary is Bx, with p(M1|Bx)+p(M2|Bx) = 1, p(Mi|Bx) ≥
0. Finally, we shall use model averaging over users, defined through

p(et, bt | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2)) =

=
∑
Bx

[
p(et | bt, et−1, et−2, Bx)× p(bt | at, bt−1, bt−2, Bx)× p(Bx)

]
.

The core of the classical conditioning model and the adversary’s model remains
as before. In our implementation, we use two matrix-beta models, see [15], to
store the corresponding data, a n×m matrix for the classical conditioning model
and a n×n×nmatrix for the adversary’s model, as the set A hadm elements and
set B had n. As the robot faces users and agents, the size of the data structures
would be different depending on the type of adversary it is dealing with. This
corresponds to a 0-level implementation in that we only appeal to past behaviour
of the adversary, possibly as a response to our previous behaviour.

We include also some details about the preference model. As described in
[1], each agent aims at satisfying five objectives which are: being charged, being
secure, being taken into account, being accepted and being updated. The first and
the last objectives would remain unvaried within the multiagent model, but
the other three should be extended to face several users and agents. Generally
speaking, those objectives and subobjectives which refer to inference of user’s
actions, should take into account the actions of each user within the scenario,
specifically,

u21(attack) =

{
1, if none of the users attacked

0, otherwise ,

and

u41(play) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if the robot inferred a user or another agent

playing around

0, otherwise .

Some subobjectives ought to be extended to include agents’ actions as well as
users’ actions, as it is the case of:

u313(asked to play) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if the robot is asked to play by the user

or by another agent

0, otherwise ,

where asked to play refers to detecting an order to play from the user, including
the game’s title, or a request for playing by another agent (action a8: ask for
playing). For additional details, see [1]. The expected utility model would remain
the same as in Section 2.

4 Supporting an Agent Competing with Other Agents

We deal now with two competing scenarios in which agents interact with one or
more users. In the first case, several agents compete among them to be selected

298 P.G. Esteban and D.R. Insua

by the users, so that the competition is among the agents. In the second case,
each agent interacts with its own user forming a team. Each tandem agent-
user will compete against the other participating teams. For comparison, both
cases are solved computing the corresponding Nash Equilibria (NE) and under
the ARA framework. We assume that there is communication among the agents.
Moreover, under the NE framework, we shall assume that there is a computerised
trusted third party (CTTP) that would handle the conflict, computing the NE
when needed. This may be an external computer or one of the robotic agents
that could adopt the role of trusted party. Working under the ARA framework
we shall not make such assumptions, but, for convenience, we shall allow agents
to communicate.

There will be two different types of communication: among the participating
robotic agents and each of them with the CTTP. The agents would be period-
ically transferring information to interact with each other. Whenever a conflict
arises, participating agents would send their beliefs, matrices and parameters,
as well as their utilities to the CTTP, who would compute the required solution
and send back the corresponding strategies to each participating agent.

For both models, the preference model and the expected utility model would
be the same as in Section 3.

4.1 Supporting an Agent within a Society of Competing Agents

In this case, several agents compete among them to accomplish an identical
goal, involving users in the scene, see Fig. 1(b). As an example, consider a case
in which there are three robots (A,B,C) and two kids (X,Y) in a scene. The
kids want to play “Simon says”. They would like to have at least one more player
to do so. All agents want to play with the kids, but just one of them will play.
The robotic agents would compete to be chosen as the third player, being nicer,
funnier or whatever, in order to be selected.

Model. We have several agents, under a competing attitude, facing simultane-
ously one or several users within an environment. To fix the discussion, assume
that, as in the example, we have three agents (A,B,C) and two users (X,Y).
Agents will perform actions aAt , aBt and aCt , respectively, whereas users will
perform bXt and bYt actions, respectively.

We use again a multi-attribute utility function. However, in this case the
consequences will depend on the actions of all agents and users:

ci(aAt , aBt , aCt , bXt , bYt , et) ,

for i = 1, . . . , l, where et is the environmental state as in Section 2. The utility
that the agents will obtain will be, respectively:

uA(aAt , aBt , aCt , bXt , bYt , et), uB(aAt , aBt , aCt , bXt , bYt , et),

uC(aAt , aBt , aCt , bXt , bYt , et) .

Designing Autonomous Social Agents 299

We next describe the forescasting model for agent A,

pA(aBt , aCt , bXt , bYt , et | (5)

| aAt , (aAt−1
, aBt−1

, aCt−1
, bXt−1

, bYt−1
, e

t−1
), (aAt−2

, aBt−2
, aCt−2

, bXt−2
, bYt−2

, e
t−2

)) .

Assuming that e
t
remains exclusively under the users’ control, (5) will be de-

composed as:
pA(et | bXt , bYt , et−1, et−2) × pA(aBt , aCt , bXt , bYt |

| aAt , (aAt−1
, aBt−1

, aCt−1
, bXt−1

, bYt−1
, e

t−1
), (aAt−2

, aBt−2
, aCt−2

, bXt−2
, bYt−2

, e
t−2

)) .

Note that in the scheme described in Fig. 2, we assumed that each agent chooses
its action depending on the action performed by the user, so that when several
agents face the same user, the actions performed by them would be considered
simultaneous. For that reason, when our agent A is facing another agent, we
assume that the forecasted action of the robotic agent will depend only on the
actions previously perfomed by itself and the action of the agentA. Users’ actions
will depend on all agent’s actions. Equation (5) then becomes:

pA(et | bXt , bYt , et−1, et−2)× pA(aBt | aBt−1 , aBt−2 , aAt−1)× (6)

× pA(aCt | aCt−1 , aCt−2 , aAt−1)× pA(bXt | aAt , aBt , aCt , bXt−1bXt−2)×
× pA(bYt | aAt , aBt , aCt , bYt−1 , bYt−2) .

Finally, we find out that our forecasting models for agent A are: the first term
of (6) (the environmental model), and the rest of (6) which is the model to
forecast the adversaries’ actions. This second term in (6) will be decomposed in
the adversary models and the classical conditioning model, similarly to what we
did in Section 2. The adversary models would be those in which the forecasted
action depends on the evolution of their own behaviour as, e.g.:

pA(aBt | aBt−1 , aBt−2) and pA(bXt | bXt−1 , bXt−2) .

The classical conditioning models would be those reflecting the reaction to our
agent’s behaviour as, e.g.:

pA(aBt | aAt−1) and pA(bXt | aAt) .

They are combined through model averaging techniques. Forecasting other
agents’ actions shall be defined as forecasting the user’s actions in Section 2,
evaluating the evolution of its own behaviour and how reactive is to agent A’s
actions:

pA(aBt | aBt−1 , aBt−2 , aAt−1) = (7)

= p(MB
1)pA(aBt | aBt−1 , aBt−2) + p(MB

2)pA(aBt | aAt−1) ,

with
∑

i p(M
B
i) = 1, p(MB

i) ≥ 0, and, similarly, for pA(aCt | aCt−1 , aCt−2 , aAt−1).
In this case, forecasting the users’ actions would be extended to include the re-
action of the user to the actions of every agent:

300 P.G. Esteban and D.R. Insua

pA(bXt | aAt , aBt , aCt , bXt−1bXt−2) = p(MX
1)pA(bXt | bXt−1 , bXt−2)+

+ p(MX
2)pA(bXt | aAt) + p(MX

3)pA(bXt | aBt) + p(MX
4)pA(bXt | aCt) ,

with
∑

i p(M
X
i) = 1, p(MX

i) ≥ 0, and, similarly, for pA(bYt | aAt , aBt , aCt , bYt−1 ,
bYt−2). Note that

p(MX
i | Dt) =

p(Dt |MX
i)p(MX

i)
∑4

i=1 p(Dt |MX
i)p(MX

i)
, i = 1, . . . , 4 .

Computing Nash Equilibria. As we are in a competitive scenario, we are dealing
with selfish agents so that each agent will aim at maximizing its expected utility.
For example, when A implements aAt , and the other agents implement aBt and
aCt , agent A’s expected utility would be:

ψA(aAt , aBt , aCt) =

∫ ∫ ∫
uA(aAt , aBt , aCt , bXt , bYt , et)×

×
[
pA(bXt | aAt , aBt , aCt , bXt−1bXt−2)× pA(bYt | aAt , aBt , aCt , bYt−1bYt−2)×

× pA(et | bXt , bYt , et−1, et−2)
]
dbXtdbYtdet ,

and, analogously, for the other agents. As we pointed out above, we assume that
a CTTP would play the role of a trusted party solving the existing conflicts, and
there will be communication among the agents. Each agent would send its beliefs,
matrices, parameters and utilities, so that, in our example, the CTTP will have
available ψA, ψB and ψC which would be common knowledge. Then, the CTTP
would compute the Nash Equilibria with methods described, e.g. in [16] or [17].

ARA Solving agents Let us write the problem from the ARA framework point
of view. In this case, communication is not required. Under this framework, we
are supporting one of the agents (say, agent A), to make a decision facing several
users (X and Y) and other agents (B and C). The agent will aim at maximizing
its expected utility based on forecasts of the other agents defined through

max
aAt

ψA(aAt) =

∫ ∫
ψA(aAt , aBt , aCt)×

[
pA(aBt | aBt−1 , aBt−2 , aAt−1)×

× pA(aCt | aCt−1 , aCt−2 , aAt−1)
]
daBtdaCt ,

where the relevant probability models were described in (7). In a 0-level ap-
proach, we may use matrix-beta models to implement these.

4.2 Agent Supporting a User within a Competitive Society of Users

In this case, each agent is interacting with its own user, supporting her within a
competition against other user-agent teams, see Fig. 1(c). As an example, consider
a case in which three teams are involved, couples robotA - childX , robotB - child
Y and robot C - child Z. Each of the teams work on school assignments willing to
be chosen as the favourite by the teacher and get the highest grade. Each agent
shall support its own user in making decisions, forecasting what the other agents
would do. Assumptions similar to those in the previous Section will be made here.

Designing Autonomous Social Agents 301

Model. We will have several agents, under a competing attitude, supporting si-
multaneously their corresponding user within an environment. To fix the discus-
sion, assume that we have three agents (A,B,C) and three users (X,Y, Z) form-
ing agent-user teams. Agents will perform actions aAt , aBt and aCt , whereas
users will perform bXt , bYt and bZt actions.

We use again a multi-attribute utility function. In this case, the consequences
will depend on the actions of all agents and the supported user. The consequences
that agent A would face when it is supporting user X are:

cA(aAt , aBt , aCt , bXt , et) ,

where et is the environmental state, as described in Section 2. The utilities that
the agents will obtain in our example will be, respectively:

uA(aAt , aBt , aCt , bXt , et), uB(aAt , aBt , aCt , bYt , et),

uC(aAt , aBt , aCt , bZt , et) .

The forescasting model for agent A would be

pA(aBt , aCt , bXt , et | (8)

| aAt , (aAt−1 , aBt−1 , aCt−1 , bXt−1 , et−1), (aAt−2 , aBt−2 , aCt−2 , bXt−2 , et−2)) .

Simplifications and assumptions related to the forecasting models would be anal-
ogous to those of the previous case. Equation (8) ends up decomposed in:

pA(et | bXt , et−1, et−2) ,

the environmental model, and

pA(aBt | aBt−1 , aBt−2 , aAt)× pA(aCt | aCt−1 , aCt−2 , aAt)× (9)

× pA(bXt | aAt , bXt−1bXt−2) ,

the model to forecast the adversary’s action, which will be decomposed in the
adversary model and the classical conditioning model, as we did in the previous
scenario, then combined, through model averaging techniques.

Computing Nash Equilibria. Again, we are dealing with selfish agents so that
each agent will aim at maximizing expected utility. Agent A’s expected utility
will be

ψA(aAt , aBt , aCt) =

∫ ∫
uA(aAt , aBt , aCt , bXt , et)×

×
[
pA(bXt | aAt , bXt−1bXt−2)× pA(et | bXt , et−1, et−2)

]
dbXtdet ,

and, similarly, for the other agents. As in the previous scenario, we assume that
a CTTP would solve the existing conflicts, and there will be communication
among the agents, so that ψA, ψB and ψC would have common knowledge. The
Nash Equilibria may be computed as described in the previous scenario.

302 P.G. Esteban and D.R. Insua

ARA Solving agents From the ARA perspective, we are supporting one of the
agents (agent A) facing his own user (X) and other agents (B and C), so that,
it shall be willing to maximize its expected utility, defined through

max
aAt

ψA(aAt) =

∫ ∫
ψA(aAt , aBt , aCt)×

[
pA(aBt | aBt−1 , aBt−2 , aAt)×

× pA(aCt | aCt−1 , aCt−2 , aAt)
]
daBtdaCt .

The relevant probability models are described in (9). As before, we use matrix-
beta models for their 0-level implementation.

5 Discussion

We have described different scenarios in which a decision agent is facing several
adversaries (human and robotic ones).

As future work, we have two more scenarios to develop. Within the first one,
we aim at supporting a society of agents, where n agents would like to behave
cooperatively towards one or several users, see Fig. 1(d). As an example, suppose
three robotic agents that want to support their children with their corresponding
weekly school assignments, trying to emulate a cooperative environment in the
school. They are under a cooperative attitude, so that they would look for helping
the child together to find the best solution that satisfy their common goal. Within
the other scenario, moving from the competing towards cooperating attitude
shall be studied: agents will then modify their behaviour depending on their
experience. To do such a thing, we should define two types of behaviour: selfish
and cooperative. Based on certain parameters, the agent would move from a
cooperative attitude to a competitive one, or viceversa. Note also, that the ARA
models proposed here correspond to 0-level thinking and we could explore 1-level
and 2-level thinking ideas.

The field of cognitive processes has recently shown that emotions may have
a direct impact on decision-making processes, see e.g. [18]. Advances in areas
such as affective decision making [19], neuroeconomics [20] and affective com-
puting [21] are based on this principle. Following this, a potential future work,
concerning these models will be addressed towards providing a model for an
autonomous agent that makes decisions influenced by emotional factors when
interacting with humans and other agents. Our aim with this would be to make
interactions between humans and agents more fluent and natural.

Acknowledgments. Research supported by grants from the MICINN project
RIESGOS, the RIESGOS-CM project and the INNPACTO project HAUS. We
are grateful to discussion with Diego Garćıa, from AiSoy Robotics S.L., Jesus
Rı́os and David Banks.

Designing Autonomous Social Agents 303

References

1. Rázuri, J.G., Esteban, P.G., Insua, D.R.: An adversarial risk analysis model for
an autonomous imperfect decision agent. In: Guy, T.V., Kárný, M., Wolpert, D.H.
(eds.) Decision Making and Imperfection. SCI, vol. 474, pp. 165–190. Springer,
Heidelberg (2013)

2. Ŕıos Insua, D., Ŕıos, J., Banks, D.: Adversarial risk analysis. Journal of the Amer-
ican Statistical Association 104(486), 841–854 (2009)

3. Clemen, R.T., Reilly, T.: Making Hard Decisions with Decision Tools. Duxbury,
Pacific Grove (2004)

4. Stahl, D.O., Wilson, P.W.: On players models of other players: Theory and exper-
imental evidence. Games and Economic Behavior 10(1), 218–254 (1995)

5. Banks, D., Petralia, F., Wang, S.: Adversarial risk analysis: Borel games. Applied
Stochastic Models in Business and Industry 27, 72–86 (2011)

6. Kadane, J.B.: Adversarial risk analysis: What’s new, what isn’t?: Discussion of ad-
versarial risk analysis: Borel games. Journal Applied Stochastic Models in Business
and Industry 27(2), 87–88 (2011)

7. Kadane, J.B., Larkey, P.D.: Subjective probability and the theory of games. Man-
agement Science 28(2), 113–120 (1982)

8. Raiffa, H.: Negotiation Analysis: The Science and Art of Collaborative Decision
Making. Press of Harvard University Press, Cambridge (2007)

9. AISoyRobotics (2010), http://www.aisoy.es
10. Aliprantis, C., Chakrabarti, S.: Games and Decision Making. Oxford University

Press (2010)
11. Lippman, S., McCardle, K.: Embedded nash bargaining: Risk aversion and impa-

tience. Decision Analysis 9, 31–41 (2012)
12. Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: A

tutorial. Statistical Science 4, 382–417 (1999)
13. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature

survey. ACM Comput. Surv. 35(4), 399–458 (2003)
14. Hewitt, R.: Seeing With OpenCV, Part 4: Face Recognition With Eigenface (2007)
15. Ŕıos Insua, D., Ruggeri, F., Wiper, M.: Bayesian Analysis of Stochastic Process

Models. Wiley (2012)
16. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.

Cambridge University Press (2007)
17. Menache, I., Ozdaglar, A.: Network Games: Theory, Models, and Dynamics. Mor-

gan and Claypool Publishers (2011)
18. Busemeyer, J.R., Dimperio, E., Jessup, R.K.: Integrating emotional processes into

decision-making models, pp. 213–229. Oxford University Press, New York (2006)
19. Loewenstein, G., Lerner, J.S.: The role of affect in decision making. In: Davidson,

R., Scherer, K., Goldsmith, H. (eds.) Handbook of Affective Science, pp. 619–642.
Oxford University Press, Oxford (2003)

20. Glimcher, P.W., Camerer, C., Poldrack, R.A., Fehr, E.: Neuroeconomics: Decision
Making and the Brain. Academic Press (2008)

21. Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)

http://www.aisoy.es

	Designing Autonomous Social Agentsunder the Adversarial Risk Analysis Framework
	Introduction
	The Basic Model
	Supporting an Agent Facing Several Agents and Users
	Model

	Supporting an Agent Competing with Other Agents
	Supporting an Agent within a Society of Competing Agents
	Agent Supporting a User within a Competitive Society of Users

	Discussion
	References

