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Abstract. Next generation of smart grid technologies demand intel-
ligent capabilities for communication, interaction, monitoring, storage,
and energy transmission. Multiagent systems are envisioned to provide
autonomic and adaptability features to these systems in order to gain
advantage in their current environments. In this paper we present a
mechanism for providing distributed energy storage systems (DESSs)
with intelligent capabilities. In more detail, we propose a self-configurable
mechanism which allows a DESS to adapt itself according to the future
environmental requirements. This mechanism is aimed at reducing the
costs at which electricity is purchased from the market.
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1 Introduction

Smart grid technologies are positioned as one of the leading frameworks to build
the next generation of systems and applications. Intelligent functions are ex-
pected to provide the smart grid with self-corrective and reconfiguration features,
by creating a more complex interaction behavior among intelligent devices [1].
To address these issues, the multiagent system paradigm is widely agreed to be
one challenging approach to build these systems [2, 3, 4, 5, 6].

In the last few years, agent-based technologies have been used to model smart
grid systems, mostly focused on optimizing the system performance. In [7], agents
represent customers which are faced with a multi-scale decision-making problem
along temporal and contextual dimensions. The objective of these agents is to
maximize the utility focused on these dimensions by learning the information of
time-series. In [8], authors propose a model for dynamic coalition formation to
approximate optimal micro-grid configurations.

The multiagent paradigm is envisioned as a strong solution to different ap-
proaches based on the smart grid, however, little work has been done focused on
the use of agent-based techniques for storage management in these domains. Re-
lated to this issue, in [3] authors present an agent-based model for micro-storage
management in the micro-grid. They propose a strategy based on game theory
which reduces costs and carbon emission and converges to an efficient storage
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behavior. Their storage strategy proposed is focused on a learning mechanism
that decides on when to store energy and when to use the stored energy in home
devices. However, agents are self-interested with the aim of maximize their in-
dividual monetary profit. Therefore, conflicts that may arise depending on the
distributed decision-making (e.g. a limited number of devices allowed to charge
simultaneously at the same moment) are not considered.

The use of widely distributed energy storage systems (DESSs) with intelligent
monitoring, communications, and control will enable the power grid of the future
[9]. According to [10], the storage opportunity involves multiple interests with
value propositions: (1) electric energy time-shift for purchasing electricity during
periods when price is low to use the stored energy or to sell it when the price is
high; (2) electric supply capacity for reducing the need to buy new central station
generation capacity; (3) sub-station on-site power for managing equipments when
the grid is not energized; (4) energy storage to provide highly reliable electric
service; and so on. A DESS optimally located on the grid allows to maintain
control over the grid and to the service reliability [9]. Storage can be applied at
the energy production, at the transmission system, at the distribution system,
and on the customer’s side [11].

One of the benefits from storage that has been discussed in the literature long
ago is referred to the use of storage systems for energy arbitrage. This involves
purchasing electric energy during periods when the price is low, to charge the
storage devices, so that the stored energy can be used or sold at a later time
when the price is high [10]. This approach have been also studied in other works
[12, 13, 14]. These decisions depend on different factors such as the market
prices, the storage costs, the transmission costs, etc. In addition, depending on
the storage device system, different parameters are associated to each one such
as the efficiency, the charge rate, the storage response, the energy retention time.

To this respect, we focus on how intelligent storage systems can be build to
achieve optimal configurations in the smart grid. We propose a self-configuration
mechanism in order to provide a DESS with intelligent storage for improving
the efficiency level. This mechanism uses an organizational representation of the
DESS and focus on an adaptation of the roles played by agents. The objective of
this process is aimed at scheduling the supplying and charging periods in order
to reduce the electricity purchasing cost for supplying the system.

The rest of the paper is organized as follows. Section 2 presents the DESS
model. Section 3 explains in detail the self-configuration mechanism. Section 4
shows the evaluation of the mechanism proposed. Finally, Section 5 presents
some concluding remarks.

2 DESS Model

The DESS modeled in this work represents a group of storage devices which are
geographically distributed (Figure 1). Each one of these devices is able to supply
its stored electricity for a given area (e.g. a neighborhood, a town, etc.). The
self-configuration mechanism is aimed at deciding for any storage device, when
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to store electricity by purchasing it from the market and when to use the stored
electricity. Therefore, the optimal configuration is aimed at minimizing the cost
of purchasing the electricity demanded by the areas during several periods of time
(e.g. hourly, daily, etc.). The optimal configuration is dependent on the current
and future electricity purchasing prices, and the current and future electricity
demand. For reasons of clarity, in this work we assume an homogeneous system
of storage devices in order to omit some of the parameters which could influence
the optimal configuration, such as the standby losses or the transportation losses.

Fig. 1. Representation of the DESS

The optimal configuration that is obtained, represents a decision-making prob-
lem that determines the state of each storage device. Similar to other real-life
problems, a conflict may emerge in this problem when different and autonomous
decisions are taken distributively. As an example, if all storage devices decide to
charge simultaneously, this could cause to exceed the generation or the trans-
portation capacity. In order to solve this conflict, our approach selects the most
optimal configuration according to the domain restrictions and not only by con-
sidering the individual preferences of the storage devices.

Since this problem determines a distributed scenario, we represent the group
of storage devices as autonomous agents with organizational capabilities, in order
to configure them according to the organizational constraints that must be ful-
filled. These constraints are referred to the limited capacity of the transportation
system, which determines the maximum number of storage devices that can be
charged simultaneously. Based on our previous definition of dynamic organiza-
tion [15], we model the DESS as a multiagent system Gt = 〈At,R,Pt, Λt, Δt

i, Φ〉,
where:

– At = {a1 . . . an} denotes the set of agents that are associated to the storage
devices. Each agent ax is able to supply electricity to its specific area x and
has associated different parameters for a given moment t: L(ax)

t represents
the electricity load; Q(ax)

t represents the electricity supplied to the area;
and P (ax)

t represents the electricity purchased from the market.
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– R = {supplier, charge, idle} denotes the set of roles which agents can play.
We define three possible roles that agents can play (but not simultane-
ously) depending on the state of the storage device. An agent ax playing
the supplier role refers that the electricity demanded by the area x is sup-
plied from the storage device; an agent playing the charge role refers that the
storage device is being charged by purchasing electricity from the market,
and the electricity demanded by the area is also directly supplied from the
market; finally, an agent playing the idle role is neither charging its storage
device nor supplying electricity to its corresponding area.

– Pt = {St, Ct, It} denotes the three subsets of agents depending on the roles
that they are playing at the moment t. We define St ⊆ At as the subset of
agents that are playing the supplier role at the moment t. We define Ct ⊆ At

as the subset of agents that are playing the charge role at the moment t.
Finally, we define It ⊆ At as the subset of agents that are playing the idle
role at the moment t.

– Λt = λt+1 . . . λm denotes the sequence of electricity purchasing price esti-
mations for the following moments. A given electricity purchasing price λy

represents the estimated price at which the electricity can be purchased from
the market at the moment y. For reasons of simplicity, this estimation is the
same for every storage device.

– Δt
i = δt+1

i . . . δmi denotes the sequence of forecast demand of electricity asso-
ciated to each area for the following moments. A given demand δyi represents
the forecast demand of electricity for the area i at the moment y.

– Φ denotes the set of constraints that must be fulfilled at each moment. As
we stated above, we enforce that the number of storage devices that can
be simultaneously charged at the same time does not exceed a predefined
value Nmax, which corresponds to the limit capacity of the transportation
system: φ1 :| St |≤ Nmax.

3 Self-configuration Mechanism

The self-configuration mechanism is intended at providing the decision-making
process which determines the state of each storage device at any moment. This
mechanism provides a general vision of the whole system and allows to determine
the specific consequences of each change of state in the rest of the system.

This mechanism is based on our previous work about role reallocation for
organizational adaptation in agent societies [16]. This work obtains the adap-
tation with the highest potential for improvement in utility based on the costs
of adaptation. Similarly, the self-configuration mechanism presented in this pa-
per, obtains the roles configuration of the storage devices which minimizes the
electricity purchasing costs, depending on the electricity purchasing price and
the electricity demand for the forthcoming moments. The problem of predict-
ing future electricity purchasing prices is widely studied in other works such as
[17, 18, 19], and is out of the scope of this work.
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In order to determine the state of the storage device for the following mo-
ment, we define the concept of impact associated to each possible role that can
be played by each agent. This impact represents the measurement of the effects
of playing a role in terms of system utility based on the costs for carrying out
each this action. This impact measures the different alternatives that can be
chosen from the current storage devices configuration in order to adapt it, based
on the benefits and costs of each alternative. Computing the impact becomes
essential in order to empirically specify the value of each possible configuration
before changing the state of the storage devices. Given the DESS model pre-
sented in Section 2, following we define the notation for obtaining the impact
measurements for playing each possible role allocation.

First, each area can be supplied by its corresponding storage device, or di-
rectly by the market at the current electricity purchasing price. In this last case,
considering δt+1

x as the forecast demand of electricity for the next moment t+ 1
associated with the area x, if this demand is supplied from the market, this will
be purchased at the price λt+1, which defines the following cost for supplying
the area x from the market:

S(x,m)t+1 = δt+1
x × λt+1

Otherwise, if this demand is supplied from the storage device, this will be sup-
plied at the following supplying cost:

S(x, ax)
t+1 = δt+1

x × p̄ t+1

being p̄ t+1 the average price of the stored electricity in ax, according to the prices
at which this stored electricity was previously purchased from the market:

p̄ t+1 =

⎧
⎪⎨

⎪⎩

λt+1 for t = 0

(L(ax)
t×p̄ t)+(P (ax)

t×λt)−(Q(ax)
t×p̄ t)

L(ax)t+P (ax)t−Q(ax)t
for t > 0

In the above equation, the variables L(ax)
t, Q(ax)

t and P (ax)
t represent the

electricity load, the electricity supplied, and the electricity purchased as denoted
in Section 2. In this case, the electricity supplied to the area by the agent ax
for the next moment t+ 1 corresponds to Q(ax)

t+1 = λt+1. Otherwise, if the
electricity is supplied from the market, this value is null: Q(ax)

t+1 = 0. Hence,
the cost for supplying a given area x can be calculated depending on which
source supplies the electricity.

When the electricity is supplied from the storage device, the load of this device
will be reduced to: L(ax)

t+1 = L(ax)
t−δt+1

x . This causes that each storage device
needs to be charged eventually from the market. In case that the storage device
is charged at the moment t+ 1, the cost associated to this charge is calculated
as the amount of electricity purchased according to the electricity purchasing
price at this moment:

C(ax)
t+1 = N(ax)× λt+1
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being N(ax) the predefined amount of electricity that this storage device can
charge (it could be related to the charge rate of each device). In this case, the
electricity purchased from the market will be: P (ax)

t+1 = N(ax). Otherwise,
P (ax)

t+1 = 0.
If the storage device is not charged in the next moment t+ 1, it will be able

to supply electricity until its reserves are running out (denoted as the moment
t + n). Being L(ax)

t+1 = L(ax)
t, the charge could be postponed to a future

moment t′, which is comprised in the period of time up to t + n, at which the
electricity purchasing price is the cheapest one, formally:

(
t + 2 ≤ t′ ≤ t + n

)∧
(

δt
′

x = argmin
i∈[t+2,t+n]

(δix)

)

∧
⎛

⎝
i=t+n∑

i=t+2

δix ≤ L(ax)
t

⎞

⎠∧
⎛

⎝
i=t+n+1∑

i=t+2

δix > L(ax)
t

⎞

⎠

According to the above notation, the impact for an agent ax for playing the
supplier role at the moment t+ 1 is measured as: (1) the cost required for
supplying the electricity demanded from the storage device; (2) the benefits for
not supplying this electricity from the market at the next moment; (3) the cost
for charging the storage device in the future moment t′ (the best case); and (4)
the benefits for not charging the storage device at the next moment:

I(ax, supplier)
t+1 = S(x, ax)

t+1 − S(x,m)t+1 + C(ax)
t′ − C(ax)

t+1

We must note that in order to an agent ax being able to play the supplier role, it
must maintain the supply availability, i.e. the current load of the storage device
must be higher than the expected demand for the next moment, otherwise, this
storage device cannot be a supplier:

φ2 : L(ax)
t < δt+1

x → I(ax, supplier)
t+1 = ∞

The impact for an agent ax for playing the charge role at the moment t+ 1 is
measured as: (1) the cost required for supplying the electricity demanded from
the market at the next moment; (2) the benefits for not supplying this electricity
from the storage device; (3) the cost for charging the storage device at the next
moment; and (4) the benefits for not charging the storage device in the future
moment t′ (the best case):

I(ax, charge)
t+1 = S(x,m)t+1 − S(x, ax)

t+1 + C(ax)
t+1 − C(ax)

t′

The impact for an agent ax for playing the idle role at the moment t+ 1 is
measured as: (1) the cost required for supplying the electricity demanded from
the market at the next moment; (2) the benefits for not supplying this electricity
from the storage device; (3) the cost for charging the storage device in the future
moment t′ (the best case); and (4) the benefits for not charging the storage device
at the next moment:

I(ax, idle)
t+1 = S(x, g)t+1 − S(x, ax)

t+1 + C(ax)
t′ − C(ax)

t+1

Finally, we measure the impact of a whole self-configuration of the system as the
aggregation of the impact of each role allocation:

I(Pt+1) =
∑

a∈St+1

I(a, supplier)t+1 +
∑

a∈Ct+1

I(a, charge)t+1 +
∑

a∈It

I(a, idle)t+1
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Given the state of the system defined as Gt = 〈At,R,Pt, Λt, Δt
i, Φ〉, some agents

could be reallocated to play other roles in the future moment t + 1. A role
reallocation process entails transforming the current set of role allocations Pt

into Pt+1. Each one of the possible role allocations determines a different Gt+1

with an associated impact I(Pt+1).
Let Θ denote the set of all the possible different role allocation that can be

obtained from the current configuration. The challenge of the self-configuration
mechanism is to find the specific role allocation P̂t+1 that minimizes the role
allocation impact:

I(P̂t+1) = argmin
Pt+1∈Θ

I(Pt+1)

4 Evaluation

In this section we present some experiments for testing the performance of
the self-configuration mechanism applied to the DESS model. For these ex-
periments, the system is composed at any moment by a set of five agents
At = {a1, a2, a3, a4, a5} and the electricity demand and purchasing price is
changing during 50 time-steps. Being t the current time-step, the demand for
a given area x = [1..5] for the next time-step is calculated according to the
following formula: δt+1

x = δtx × random[0.95, 1.05]. Due to the objective of the
self-configuration mechanism is not focused on the price prediction but is focused
on improving the performance of the system, we assume that the electricity pur-
chasing price changes progressively by following a sequence from a lowest price of
3c/kWh up to a highest price 6c/kWh. In this experiment, the maximum number
of devices that are allowed to charge simultaneously is defined as Nmax = 3.

In the first experiment (Figure 2) we test the performance of the DESS when
the self-configuration mechanism is applied. Therefore, the configuration of the
system at any moment reflects the role allocation which minimizes the impact.

In Figure 2(a) we show the aggregated cost for satisfying the demand of all
the areas during the 50 time-steps. We compare the performance of the self-
configuration mechanism with the performance of a static mechanism, in which
the charge is carried out when it is needed, i.e. when the storage device has not
enough electricity stored for supplying the following time-step. In Figures 2(c)
and 2(d) we show the electricity purchasing price at any moment in order to
compare it with the cost.

We can observe that the performance of the self-configuration mechanism is
always better (the cost is lower) than the mechanism which charges the devices
when it is needed. This is because the self-configuration mechanism changes the
configuration of the storage devices by taking into consideration the forthcoming
electricity demand and the purchasing price. Therefore, this mechanism config-
ures the system for supplying the electricity in the following time-steps according
to these parameters. It can also be observed that the average cost is decreasing
on time when the self-configuration mechanism is used, while it is oscillating (as
the electricity purchasing price oscillates) when the charges are carried out when
they are needed. The average cost during the 50 time-steps is 492.54e±50.68 with
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(a) Electricity cost (b) Average supplying price

(c) Purchasing price (d) Purchasing price

Fig. 2. Smart grid performance in a progressive electricity purchasing price scenario

a 95% confidence interval when using the self-configuration mechanism. In con-
trast, this cost is 584.33e±66.27 if the storage devices are charged when it is
needed. This causes a whole economic difference between both approaches of
4579.63e during the 50 executions.

In Figure 2(b) we show the average price of all the storage devices at any time.
Similar to the above figure, the average price is lower for the self-configuration
mechanism. The average price for all the iterations is 3.74e when using the self-
configuration mechanism and 4.49e when not, which represents an average price
reduction of almost 17%.

In the second experiment we want to test the number of agents which are
playing each role depending on the purchasing price changes. In order to ob-
serve more clearly the behavior of both strategies, we present an scenario in
which the purchasing price changes from the lowest value to the highest one
(Figure 3(b)). Thus, the differences between purchasing and supplying electric-
ity may be quite different from one time-step to the following one. The objective
of this experiment is to demonstrate how the self-configuration mechanism is able
to adapt the role configuration according to the price is expected to abruptly
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(a) Number of suppliers

(b) Purchasing price

Fig. 3. Smart grid performance in a progressive electricity purchasing price scenario

increase or decrease in the next few moments. In Figure 3(a) we show the number
of storage devices which are simultaneously purchasing electricity (i.e. playing
the charge role) at each time-step. We can observe that the self-configuration
mechanism is able to configure the system in order to charge simultaneously the
highest number of allowed devices (3) when the price is low and it is expected
to increase in the next few moments. Similarly, the number of devices that are
simultaneously charged is reduced to 0 when the price is the highest one and it is
expected to decrease in the next few moments. We can observe that the storage
devices are charging and the areas are supplied directly from the market when
the price is low. This stored electricity is then supplied to the areas when the
purchasing price remains high. In contrast, when the devices are charged when
needed, the number of devices that are charged simultaneously do not follow
any pattern. In this experiment, differences between both approaches are even
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higher than in the first experiment. The average cost during the 50 time-steps
is 413.58e±1.03 with a 95% confidence interval for the self-configuration mecha-
nism and 574.05e pm86.77 if the storage devices are charged when it is needed.
This causes a whole economic difference between both approaches of 8023.39e
during the 50 executions. The average price for all the iterations is 3.14e when
using the self-configuration mechanism and 4.07e when not, which represents an
average price reduction of almost 23%. Therefore, the self-configuration mecha-
nism is able to reduce the cost for purchasing the energy demanded by the areas
during a long-time period. This is caused because the role allocation adaptation
allows to obtain the configuration with the highest potential for cost reduction,
according to the future purchasing prices and demand.

5 Conclusions

We proposed a self-configuration mechanism which provide distributed storage
in smart grids with intelligence. This mechanism is based on organizational adap-
tation by role reallocation. The representation of the DESS by means of a mul-
tiagent organization provides different future challenges such as including other
organizational dimensions to be adapted (such as the agent population) and to
improve the organizational interaction and cooperation among agents.

The decision-making process associated to the self-configuration mechanism,
obtains the solution which minimizes the electricity supplying costs for satisfying
the demand of the areas. As we observed in the experiments, these costs can be
significantly reduced when taking into account the future prices and demand.
In addition, since the objective is to maximize the utility of the whole system,
conflicts that can emerge from individual utilities are solved due to the global
view of the system. What is more, the configuration of the storage devices fits
the current and future parameters of the environment by adjusting the number
of devices that are charging and supplying energy at any moment.
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