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Abstract. The rapid development of Gene Ontology (GO) and huge
amount of biomedical data annotated by GO terms necessitate compu-
tation of semantic similarity of GO terms and, in turn, measurement
of functional similarity of genes based on their annotations. This paper
proposes a novel and efficient method to measure the semantic similar-
ity of GO terms. This method addresses the limitations in existing GO
term similarity measurement methods by using the information content
of all ancestor terms of a GO term to determine the GO term’s semantic
content. The aggregate information content of all ancestor terms of a
GO term implicitly reflects the GO term’s location in the GO graph and
also represents how human beings use this GO term and all its ancestor
terms to annotate genes. We show that semantic similarity of GO terms
obtained by our method closely matches the human perception. Exten-
sive experimental studies show that this novel method outperforms all
existing methods in terms of the correlation with gene expression data.

1 Introduction

Gene Ontology (GO) [1] describes the attributes of genes and gene products (ei-
ther RNA or protein, resulting from expression of a gene) using a structured and
controlled vocabulary. GO consists of three ontologies: biological process (BP),
cellular component (CC) and molecular function (MF), each of which is modeled
as a directed acyclic graph. In recent past, many biomedical databases, such as
Model Organism Databases (MODs) [2], UniProt [3], SwissProt [4], have been
annotated by GO terms to help researchers understand the semantic meanings
of biomedical entities. With such a large diverse biomedical data set annotated
by GO terms, computing functional or structural similarity of biomedical enti-
ties has become a very important research topic. Many researchers have tried to
measure the functional similarity of genes or proteins based on their GO anno-
tations [5–16]. Since different biomedical researchers may annotate the same or
similar gene function with different but semantically similar GO terms based on
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their research findings, an accurate measure of semantic similarity of GO terms
is critical to accurate measurement of gene functional similarities.

While those existing studies have proposed differentmethods tomeasure the se-
mantic similarity of GO terms, they all have their limitations. In general, there are
three types of methods for measuring the semantic similarity of GO terms: node-
based [9, 17–19], edge-based [10, 20, 21], and hybrid [6, 11] methods. See section 2
for a brief discussion of some most representative methods and their limitations.

In this paper, we propose a novel method to measure the semantic similarity
of GO terms. This method is based on two major observations: (1) In general,
the dissimilarity of GO terms near the root (more general terms) of GO graph
should be larger than that of the terms at a lower level (more specific terms); (2)
the semantic meaning of one GO term should be the aggregation of all semantic
values of its ancestor terms (including the term itself). The first observation
follows the human perception of term semantic similarity at different ontology
levels. The second observation agrees with how human beings use the term to
annotate genes.

The rest of the paper is organized as follows. We review existing most repre-
sentative methods for semantic similarity measurement of GO terms in section 2;
we introduce our proposed Aggregate Information Content based approach (AIC)
in section 3. Section 4 provides details of experimental evaluation of AIC, while
section 5 concludes the paper with a summary of unique charateristics of AIC.

2 Related Prior Work

A large number of studies [5–14] have appeared in the literature in the last 15
years to measure the semantic similarity of GO terms. All of these methods can be
broadly classified into three categories: node-based, edge-based, and hybrid meth-
ods. The three most cited representative methods [17–19] were originally designed
to measure the semantic similarity of natural language terms. While each of them
has its limitations they have been widely adopted by bioinformatics researchers to
measure the semantic similarity of GO terms. In 2007, Wang [6] proposed a new
measure of the semantic similarity of GO terms: this new hybrid method consid-
ers both the GO structure and the semantic content (biological meaning) of the
GO terms in measuring the semantic similarity of GO terms, and many studies
[5, 11, 15, 16] have shown the superiority of this hybrid method. Besides, it has
been widely accepted by biomedical researchers [11] since it was published.

2.1 Limitations of Current Methods

Node-based measures (e.g. Resnik’s [17], Lin’s [18], Jiang and Conrath’s [19],
Schlicker’s [9]) rely mainly on Information Content (IC) of the GO terms to rep-
resent their semantic values; IC of a GO term is derived from the frequency of
its presence (including the presence of its children terms) in a certain corpus
(e.g. SGD database, GO database). Resnik’s [17] method concentrates only on
the Maximum Information Contained in Ancestors (MICA) of the compared GO



226 X. Song et al.

terms, but ignores the locations of these terms in the GO graph, e.g., a GO
term’s distance from the root of the ontology, and the semantic impact of other
ancestor terms. A term’s distance to the root of the ontology shows the special-
ization level of this term in human perception. If a term is far from the root in
the ontology, it means biomedical researchers know more details about this term
and the meaning of the term is more specific. On the other hand, if a term is
closer to the root of the ontology, it means the term is a more general term, such
as cellular process or metabolic process, which does not provide too much details
about the related biomedical entities. Ignoring the specialization level of a term
is the principal reason that the semantic similarity obtained by these methods
is inconsistent with human perception; they suffer from “shallow annotation”
problem [8, 13, 6] in which the semantic similarity of GO terms near the root of
the ontology are sometimes measured very high.

Edge-based approaches [10, 20, 21] are based on the length of graph paths con-
necting the terms being compared. Some edge-based approaches [20] treat all edges
equally, ignoring the levels of edges in the ontology. This simple edge-based ap-
proach also suffers from “shallow annotation” because based on this approach,
the semantic similarity of two terms with a certain graph distance near the root
would be equal to the semantic similarity of two terms with the same graph dis-
tance but away from the root. To address the “shallow annotation” problem, other
edge-based methods [10, 21] assign different weights to the edges at the different
levels of the ontology, assuming that the edges at the same level of the ontology
have the sameweight. However, the terms at the same level of the GO graph do not
always have the same specificity because different gene properties demand differ-
ent levels of detailed studies. It means the edges at the same level of the GO graph
but in different GO branches do not necessarily have the same weights.

The hybrid method [6] considers both the GO structure and the semantics
(biological meanings) of GO terms at different ontological levels. However, this
method uses two semantic contribution factors, obtained from empirical study
of gene classification of certain species, to calculate the semantic values of GO
terms. Semantic contribution factors obtained by empirical studies on genes from
certain species may not be suitable for genes of other species.

2.2 Review of Existing Representative Methods

We provide a brief overview of the four most representative methods for GO
term semantic similarity measure: Method A by Resnik [17], Method B by Lin
[18], Method C by Jiang and Conrath [19], and Method D by Wang et. al [6].
We use these four methods as benchmarks to evaluate the relative performance
of our proposed AIC method in this paper in the next sections.

Method A. The frequency of a GO term is recursively defined as,

freq(t) = annotation(t) +
∑

i∈child(t)

freq(i) (1)
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Fig. 1. GO terms at different ontology levels sharing the same LCA

where annotation(t) is the number of gene products annotated with term t in
the GO database. child(t) is the set of children of term t. For each term t ∈ T ,
p(t) denotes the probability that term t occurs in the GO database,

p(t) = freq(t)/freq(root) (2)

Information Content(IC) of term t is defined as

IC(t) = − log p(t) (3)

Method A usesMaximum Information Contained in Ancestors (MICA) of two terms
to measure the semantic similarity between them.

simGO(a, b) = max
c∈P (a,b)

IC(c) (4)

where P (a, b) denotes the set of common ancestor terms of term a and term b in
the ontology graph. Based on the definition of IC in Method A (Equations 1, 2,
3), MICA often happens to be the IC value of the Least Common Ancestor LCA
of terms a and b.

The principal limitation of method A derives from the fact that it considers
only MICA of two terms while ignoring the distances of the two terms to their
LCA and the semantic contribution of other ancestor terms. For example, terms
a and b have the same LCA with terms c and b in the partial GO graph shown
in Figure 1. Using method A, the semantic similarity between term a and b
would be equal to the semantic similarity between term c and d, inconsistent
with human perception.

Methods B & C. Method B is based on the ratio between IC values of two
terms and that of their MICA; the semantic similarity between two terms a and
b is defined as,

simGO(a, b) =
2 ∗maxc∈P (a,b) IC(c)

IC(a) + IC(b)
(5)

Method C introduces the concept of term distance into the semantic similarity
calculation. The intuition is that two terms closer in the GO graph should be
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more similar than two terms farther in the GO graph. The distance between two
terms a and b is defined as

DisGO(a, b) = IC(a) + IC(b)− 2 ∗ max
c∈P (a,b)

IC(c) (6)

The semantic similarity of two terms a and b are then defined as

simGO(a, b) =
1

1 +DisGO(a, b)
(7)

Note: Methods B and C ameliorated the principal limitation of Method A by
implicitly considering the graph distance of the two terms in the semantic sim-
ilarity measure. Consider the example in Figure 1; simGO(c, d) should be less
than simGO(a, b) according to human perception because the graph distance
between c and d is greater than the graph distance between a and b. Since term
a is a parent of term c, we have freq(a) > freq(c) and p(a) > p(c) (Equations 1
and 2). According to the definition of IC in Equation 3, we have IC(c) > IC(a).
Similarly, we have IC(d) > IC(b). Therefore, the semantic similarity values ob-
tained by both methods B and C are consistent with human perception in this
aspect.

However, it is possible that a GO term has multiple parent terms with differ-
ent semantic relations; using MICA alone does not account for multiple parents.
Also, two terms at a higher level (more general terms) of GO graph should be,
as is perceived by humans, semantically more dissimilar than two terms with
the same graph distance at a lower level (more specific terms). Because methods
B and C do not consider the specialization level of two terms’ LCA in the se-
mantic similarity measure, the semantic similarity values obtained by these two
methods may still be inconsistent with the human perception as demonstrated
in our experiment in Section 4.

Method D. Method D attempts to address the shortcomings of other existing
methods by aggregating the semantic contributions of ancestor terms in the GO
graph. The S-value of GO term t related to term a (where term t is an ancestor
of term a) is defined as,

Sa(t) =

{
1 if t = a
max{we ∗ Sa(t

′)| t′ ∈ children of t} if t �= a
(8)

where we is the semantic contribution factor of an edge. Then the semantic value
(SV) of a GO term a is,

SV (a) =
∑

t∈Ta

Sa(t) (9)

where Ta is the set of GO terms in DAGa (Directed Acyclic Graph consisting
all the ancestors of the term including the term itself). Finally, the semantic
similarity between two GO terms a, b is defined as,

simGO(a, b) =

∑
t∈Ta∩Tb

(Sa(t) + Sb(t))

SV (a) + SV (b)
(10)
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where Sa(t) is the S-value of GO term t related to term a and Sb(t) is the S-
value of GO term t related to term b. While this method combines both the
semantic and the topological information of GO terms to address weaknesses
of methods A, B and C, it still suffers from two disadvantages. First, it needs
to use a semantic contribution factor value (weight) empirically obtained from
gene classification to calculate the semantic values of GO terms. Using a semantic
contribution factor obtained from the classification of genes from certain species
may not be suitable for measuring the functional similarity of genes in other
species. Second, some biomedical studies need to obtain the similarity matrix
for a large group of GO terms or genes. Dynamically calculating the semantic
values of GO terms is time consuming and may result in a long user response
time, which will be shown in our experimental studies.

3 Proposed Aggregate Information Content Based
Method (AIC)

We address the limitations of the existing methods using an aggregate informa-
tion content approach.

3.1 GO Similarity

This aggregate information content based similarity measurement method (
Method AIC) considers the aggregate contribution of the ancestors of a GO
term (including this GO term) to the semantics of this GO term, and takes into
account how human beings use the terms to annotate genes. We use a term’s IC
value, as defined before (Equations 1, 2, 3), to represent their semantic contri-
bution values. Given the fact that terms at upper levels (more general terms) of
ontology graph are less specific than those at lower levels, we define the weight
of a term t as,

W (t) = 1/IC(t) (11)

We further propose a logarithmic model to normalize W(t) into a semantic weight
SW (t):

SW (t) =
1

1 + e−W (t)
(12)

We then compute semantic value SV (a) of the GO term a by adding the se-
mantic weights of all its ancestors (i.e., aggregating semantic contribution of the
ancestors).

SV (a) =
∑

t∈Ta

SW (t) (13)

where Ta is the set of all of its ancestors including a itself. We define the semantic
similarity between GO terms a and b, based on their aggregate information
content (AIC), as follows.

simGO(a, b) =

∑
t∈Ta∩Tb

2 ∗ SW (t)

SV (a) + SV (b)
(14)
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Fig. 2. GO Graph containing terms
GO:0050794 and GO:0007154

Table 1. IC values & Semantic Weights of
GO terms

Go Terms IC value SW value

0050794 1.2931 0.6842

0007154 2.0939 0.6172

0050789 1.1339 0.7072

0065007 1.0343 0.7245

0009987 0.4346 0.9090

0008150 0 1

where SW (t) is the semantic weight of term t defined in Equation 12, and SV(t)
is the semantic value of term t defined in Equation 13. Aggregating the semantic
contribution of all ancestor terms implicitly factors in the position of the term
in the GO graph, and overcomes the weakness of the MICA based approaches.

We demonstrate how to use the AIC method to compute the semantic similar-
ity between two terms, GO:0050794 and GO:0007154, shown in Figure 2.(All the
similarity comparison figures showed in this paper are retrieved from the tools
in [22].) First, we use the GOSim R package [23] to retrieve the IC information
for all related GO terms, shown in Table 1. Second, we calculate the seman-
tic weight for each GO term using Equation 12. Finally, we use Equation 13
and Equation 14 to get the semantic similarity of GO terms GO:0050794 and
GO:0007154 as simGO(0050794, 0007154) = 0.5828.

3.2 Gene Similarity

There are several methods [6, 8, 12] to measure the functional similarity of gene
products based on the semantic similarity of GO terms. The common methods
are: MAX [6, 8] and AVE [12] methods; they define functional similarity between
gene products as the maximum or average semantic similarity values over the
GO terms annotating the genes respectively. In this paper, we use AVE method
as follows,

simAVE(g1, g2) = average
t1∈annotation(g1)
t2∈annotation(g2)

sim(t1, t2) (15)

where annotation(g) is the set of GO terms that annotates gene g. Although
some studies [6, 8] use the MAX method to compute the functional similarity of
genes, people [5] found that the AVE method is more stable and less sensitive
to outliers. In addition, the AVE method is more compatible with our original
objective of capturing all available information while the MAX method often
ignores the contribution of other GO terms.
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4 Experimental Evaluation of AIC

It is well known, as demonstrated in [7, 5, 8], that there is a high correlation be-
tween gene expression data and the gene functional similarity obtained from GO
term similarities, i.e., genes with similar expression patterns should have high sim-
ilarity in GO based measures because they should be annotated with semantically
similar GO terms. We use the correlation of genes obtained from gene expression
data to validate the gene functional similarities obtained by GO based similar-
ity measures. As in many existing studies [13, 24–26], we use gene expression data
from Spellman dataset [27], which comprises of 6178 genes, to obtain the gene cor-
relation patterns. The gene annotation data used to calculate the gene functional
similarity is obtained from the GO database (2012-07). In the next two subsec-
tions, we provide comparison of our method (AIC) with the state-of-the-art cur-
rent methods: Method A [17], Method B [18], Method C [19], and Method D [6]
in terms of GO term semantic similarity and gene functional similarity.

4.1 Evaluating AIC Method Using GO Term Semantic Similarity

From human perspective, we know that two GO terms at higher levels of the
gene ontology should have larger dissimilarity than two GO terms with the
same graph distance at lower levels. Our AIC method is compatible with this
observation in that two GO terms with the same graph distance at the lower
levels of the gene ontology usually share more common ancestors. Therefore, the
semantic similarity of GO terms obtained by our AIC method is consistent with
human perception as shown in an illustrative example from our experimental
results in Figure 3 and Table 2.

Consider the two GO terms GO:0005739 and GO:0005777 as shown in Figure 3.
The semantic similarity values obtained byMethods A, B, C, D andAIC are shown
in Table 2. These two very specific GO terms have only one different ancestor term
GO:0042579; the semantic similarity between them should be very high. However,
the semantic similarity values obtained by Method A [17], Method B [18], and
Method C [19] fail to exhibit this expected behavior while Method D [6] and the
proposed AIC method correctly exhibit this expected behavior. This observation
reinforces our previous contention that use of MICA alone in computing similarity
is not sufficient because of loss of important information.

Now, we check whether all these semantic similarity measurement methods
agree with the human perspective: two GO terms at higher levels of the gene
ontology should have larger dissimilarity than two GO terms with the same
graph distance at lower levels. We calculate the semantic similarity between
GO:0044424 and GO:0005622 (Group 1) and the semantic similarity between
GO:0044444 and GO:0005737 (Group 2). The semantic similarity values are
shown in Table 2. These two groups of GO terms have similar structure in the
GO graph except group 1 is closer to the root of the GO graph. Based on human
perception, the semantic similarity of GO terms in group 1 should be less than
that in group 2 since GO terms in group 2 are at a lower level of the GO graph.
However, only methods A, D and our AIC method satisfy this property. The
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Fig. 3. GO graph of terms GO:0005739 and
GO:0005777

Table 2. Semantic similarity values of GO
term pairs obtained by different methods

Dataset Method Similarity

SW(GO:0005739,
GO:0005777)

A 0.135

B 0.335

C 0.464

D 0.797

AIC 0.915

SW(GO:0044424,
GO:0005622)

A 0.049

B 0.948

C 0.990

D 0.845

AIC 0.902

SW(GO:0044444,
GO:0005737)

A 0.104

B 0.872

C 0.960

D 0.879

AIC 0.942

semantic similarity values obtained by methods B and C are inconsistent with
the human perception because these two methods do not consider the specializa-
tion level of two terms’ LCA in the semantic similarity measure. The “shallow
annotation” problem is clearly shown in these experiments.

4.2 Evaluating AIC Using Correlation with Gene Expression Data

In our next set of experiments, we first use Pearson’s correlation to compute the
gene expression similarity with the Spellman dataset [27]. Then, we calculate
the correlation between the functional similarity of these genes obtained from
BP ontology and the gene expression similarity. The objective is, as stated in
[7], to test the hypothesis that pairs of genes exhibiting similar expression levels
which are measured by the absolute correlation values in gene expression data
tend to have high functional similarities between each other. The average of
correlation coefficients between genes within an expression similarity interval
estimates the mean of the statistical distribution of correlations; and it shows
the underlying trend that relates expression similarity and functional similarity.
We split the gene pairs into groups with equal intervals according to the absolute
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Table 3. Pearson’s correlation coefficients between gene expression data and gene
functional similarities obtained by different semantic similarity measurement methods

Groups Method B [18] Method C [19] Method A [17] Method D [6] Proposed AIC

4 0.789 0.930 0.614 0.929 0.966

5 0.717 0.889 0.561 0.802 0.850

6 0.569 0.700 0.413 0.745 0.774

7 0.622 0.761 0.519 0.725 0.733

8 0.597 0.675 0.496 0.706 0.714

9 0.659 0.664 0.417 0.745 0.778

10 0.620 0.730 0.403 0.733 0.772

11 0.665 0.691 0.419 0.725 0.761

12 0.485 0.722 0.246 0.716 0.782

13 0.525 0.715 0.321 0.709 0.791

Table 4. Computation Efficiency of Methods D and AIC

Execution Time (seconds)

# of Gene Pairs 200 500 2000

Method D 173 3506 36123

Method AIC 56 261 7632

gene expression correlation values between gene pairs, as in previous studies
[13, 5, 7, 8], and then compute Pearson’s correlation coefficient between the
mean of gene functional similarities and the mean of gene expression correlation
values in each group. We split gene pairs into 4-13 groups respectively. We again
compare the results obtained using four existing methods (Methods A, B, C
and D) and those obtained using our AIC method, as shown in Table 3. The
experimental results show that our AIC method generally outperforms other four
methods with higher correlation coefficients between gene functional similarity
and gene expression similarity.

4.3 Evaluating the Computation Efficiency of the AIC Method

While methods D and AIC show superiority to other three methods in agreement
with human perception and in correlation with gene expression data, Method
D is computationally expensive due to the recursive computation of semantic
values of GO terms. On the other hand, our proposed AIC method uses the
aggregate IC value, which can be precomputed, to represent the semantic value
of a GO term. Thus, method AIC should be computationally more effective.
We use the execution time of computing the functional similarities of a large
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number of gene pairs to evaluate the computation efficiency of our proposed
AIC method. In this experiment, we use methods D and AIC to compute the
functional similarities of three sets of gene pairs. The numbers of genes in these
sets are 200, 500 and 2000 respectively. The experiment was conducted on a
Linux box with a i7-2600K CPU @ 3.40GHz, 8G memory. The execution time
are shown in Table 4. As demonstrated by the experimental results, method AIC
is considerably faster than method D.

5 Conclusion

Experimental results in Section 4 demonstrate the superiority of the proposed
AIC method over the current ones. Method AIC is characterized with the fol-
lowing unique features:

– It does not suffer from “shallow annotation”. Note that, in Equation 14 the
denominator is smaller when terms are annotated at the top levels, i.e., the
equal difference on the numerator will result in a larger difference in the
semantic similarity value. Thus, the semantic similarity value of two terms
at top levels is less than that of two terms with the same graph distance at
lower levels. This is consistent with human perspectives.

– It exhibits high correlation coefficient between the gene expression similarity
and the GO based functional similarity.

– It is computationally much faster than the popular hybrid method [6].

In summary, the proposed method AIC is very promising in that it outperforms
all existing state-of-the-art methods in terms of consistency with human percep-
tion, correlation with gene expression data and computational efficiency.
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