
Zhipeng Cai
Oliver Eulenstein
Daniel Janies
Daniel Schwartz (Eds.)

 123

LN
BI

 7
87

5

9th International Symposium, ISBRA 2013
Charlotte, NC, USA, May 2013
Proceedings

Bioinformatics
Research and Applications

Lecture Notes in Bioinformatics 7875
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand

T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff

R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Zhipeng Cai Oliver Eulenstein
Daniel Janies Daniel Schwartz (Eds.)

Bioinformatics
Research and Applications

9th International Symposium, ISBRA 2013
Charlotte, NC, USA, May 20-22, 2013
Proceedings

13

Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Zhipeng Cai
Georgia State University
Atlanta, GA 30303, USA
E-mail: zcai@gsu.edu

Oliver Eulenstein
Iowa State University
Ames, IA 50011, USA
E-mail: oeulenst@iastate.edu

Daniel Janies
University of North Carolina at Charlotte
Charlotte, NC 28223, USA
E-mail: djanies@uncc.edu

Daniel Schwartz
University of Connecticut
Storrs, CT 06269, USA
E-mail: daniel.schwartz@uconn.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38035-8 e-ISBN 978-3-642-38036-5
DOI 10.1007/978-3-642-38036-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013935987

CR Subject Classification (1998): J.3, H.2.8, H.3-4, F.1, F.2.2, I.5

LNCS Sublibrary: SL 8 – Bioinformatics

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 9th edition of the International Symposium on Bioinformatics Research and
Applications (ISBRA 2013) was held during May 20–22, 2013, at Charlotte,
North Carolina, USA. The symposium provides a forum for the exchange of
ideas and results among researchers, developers, and practitioners working on
all aspects of bioinformatics and computational biology and their applications.

The technical program of the symposium included 25 contributed papers,
selected by the Program Committee from a number of 46 full submissions re-
ceived in response to the call for papers. Additionally, the symposium included
poster sessions and featured invited keynote talks by five distinguished speakers:
Tanya Berger-Wolf from the University of Illinois at Chicago spoke on computa-
tional behavioral ecology; Martha L. Bulyk from Brigham & Women’s Hospital
and Harvard Medical School spoke on transcription factors and DNA regulatory
elements; Luonan Chen from the Chinese Academy of Sciences spoke on identify-
ing critical transitions of biological processes by dynamical network biomarkers;
Stephen C. Harvey from the Georgia Institute of Technology spoke on unusual
RNA structures and information content in RNAs from the “prebiotic ribosome”
to modern viruses; and Bin Ma from the University of Waterloo spoke on peptide
identification from mass spectrometry.

We would like to thank the Program Committee members and external re-
viewers for volunteering their time to review and discuss the symposium papers.
We would like to extend special thanks to the Steering and General Chairs of the
symposium for their leadership, and to the Finance, Publication, Publicity, and
Local Organization Chairs for their hard work in making ISBRA 2013 a success-
ful event. Last but not least, we would like to thank all authors for presenting
their work at the symposium.

May 2013 Zhipeng Cai
Oliver Eulenstein

Daniel Janies
Daniel Schwartz

Organization

Steering Chairs

Dan Gusfield University of California, Davis, USA
Yi Pan Georgia State University, USA
Ion Mandoiu University of Connecticut, USA
Marie-France Sagot INRIA, France
Alexander Zelikovsky Georgia State University, USA

General Chair

Cynthia Gibas The University of North Carolina at Charlotte,
USA

Program Chairs

Zhipeng Cai Georgia State University, USA
Oliver Eulenstein Iowa State University, USA
Daniel Janies The University of North Carolina at Charlotte,

USA
Daniel Schwartz University of Connecticut, USA

Publication Chair

Zhipeng Cai Georgia State University, USA

Finance Chair

Larry Mays The University of North Carolina at Charlotte,
USA

Local Organization Chair

Zhengchang Su The University of North Carolina at Charlotte,
USA

Program Committee

Srinivas Aluru IIT Bombay/Iowa State University, India/USA
Danny Barash Ben-Gurion University, Israel
Robert Beiko Dalhousie University, Canada

VIII Organization

Daniel Berrar Tokyo Institute of Technology, Japan
Paola Bonizzoni Università di Milano-Bicocca, Italy
Daniel Brown University of Waterloo, Canada
Doina Caragea Kansas State University, USA
Tien-Hao Chang National Cheng Kung University, Taiwan
Matteo Comin University of Padova, Italy
Ovidiu Daescu University of Texas at Dallas, USA
Jorge Duitama International Center for Tropical Agriculture

(CIAT), Colombia
Guillaume Fertin University of Nantes, France
Vladimir Filkov University of California Davis, USA
Katia Guimaraes Universidade Federal de Pernambuco, Brasil
Jiong Guo Universität des Saarlandes, Germany
Robert Harrison Georgia State University, USA
Jieyue He Southeast University, China
Steffen Heber North Carolina State University, USA
Jinling Huang East Carolina University, USA
Lars Kaderali University of Technology Dresden, Germany
Iyad Kanj DePaul University, USA
Yury Khudyakov Centers for Disease Control and Prevention,

USA
Danny Krizanc Wesleyan University, USA
Jing Li Case Western Reserve University, USA
Min Li Central South University, China
Guohui Lin University of Alberta, Canada
Ion Mandoiu University of Connecticut, USA
Fenglou Mao University of Georgia, USA
Osamu Maruyama Kyushu University, Japan
Ion Moraru University of Connecticut Health Center, USA
Giri Narasimhan Florida International University, USA
Yi Pan Georgia State University, USA
Bogdan Pasaniuc UCLA, USA
Andrei Paun Louisiana Tech University, USA
Nadia Pisanti Università di Pisa, Italy
Maria Poptsova University of Connecticut, USA
Teresa Przytycka NIH, USA
Sven Rahmann University of Duisburg-Essen, Germany
David Sankoff University of Ottawa, Canada
Russell Schwartz Carnegie Mellon University, USA
Joao Setubal Virginia Bioinformatics Institute, USA
Ileana Streinu Smith College, Northampton MA, USA
Raj Sunderraman Georgia State University, USA
Wing-Kin Sung National University of Singapore, Singapore
Sing-Hoi Sze Texas A&M University, USA

Organization IX

Ilias Tagkopoulos University of Califronia, Davis, USA
Marcel Turcotte University of Ottawa, Canada
Stéphane Vialette Université Paris-Est, France
Panagiotis Vouzis Carnegie Mellon University, USA
Xiang Wan Hong Kong Baptist University, SAR China
Jianxin Wang Central South University, China
Li-San Wang University of Pennsylvania, USA
Lusheng Wang City University of Hong Kong, SAR China
Fangxiang Wu University of Saskatchewan, Canada
Yufeng Wu University of Connecticut, USA
Dechang Xu Harbin Institute of Technology, China
Jinbo Xu Toyota Tech Inst at Chicago, USA
Zhenyu Xuan University of Texas at Dallas, USA
Alex Zelikovsky Georgia State University, USA
Fa Zhang Institute of Computing Technology, China
Yanqing Zhang Georgia State University, USA
Leming Zhou University of Pittsburgh, USA

Additional Reviewers

Bernauer, Julie
Campos, Jaime
Chirita, Claudia
Dondi, Riccardo
Fang, Ming
Jaric, Melita
Knapp, Bettina
Leung, Fanny
Liu, Li Zhi
Ma, Qin
Marschall, Tobias

Mohamed Babou, Hafedh
Mohamed, Nabeel
Montangero, Manuela
Roman, Theodore
Ryvkin, Paul
Skums, Pavel
Tang, Xiwei
Warren, Andrew
Xie, Lu
Zhou, Chan

Table of Contents

Peptide Identification from Mass Spectrometry . 1
Bin Ma

Identifying Critical Transitions of Biological Processes by Dynamical
Network Biomarkers . 2

Luonan Chen

Computational Behavioral Ecology . 3
Tanya Berger-Wolf

Unusual RNA Structures: Information Content in RNAs
from the “Prebiotic Ribosome” to Modern Viruses 4

Stephen C. Harvey

The Radiation Hybrid Map Construction Problem Is FPT 5
Iyad Kanj, Ge Xia, and Binhai Zhu

Reconstructing Ancestral Genomic Orders Using Binary Encoding and
Probabilistic Models . 17

Fei Hu, Lingxi Zhou, and Jijun Tang

Computational Methods for the Parallel 3D Simulation of Biochemical
Kinetics at the Microscopic Scale . 28

Laurent Crépin, Fabrice Harrouet, Sébastien Kerdélo,
Jacques Tisseau, and Pascal Redou

A Tool for Non-binary Tree Reconciliation . 40
Yu Zheng and Louxin Zhang

Patterns of Chromatin-Modifications Discriminate Different Genomic
Features in Arabidopsis . 52

Anuj Srivastava, Xiaoyu Zhang, Sal LaMarca, Liming Cai, and
Russell L. Malmberg

Inferring Time-Delayed Gene Regulatory Networks Using
Cross-Correlation and Sparse Regression . 64

Piyushkumar A. Mundra, Jie Zheng, Niranjan Mahesan,
Roy E. Welsch, and Jagath C. Rajapakse

A Simulation of Synthetic agr System in E.coli . 76
Xiangmiao Zeng, Ke Liu, Fangping Xie, Ying Zhang, Lei Qiao,
Cuihong Dai, Aiju Hou, and Dechang Xu

XII Table of Contents

Gene Regulatory Networks from Gene Ontology . 87
Wenting Liu, Kuiyu Chang, Jie Zheng, Jain Divya,
Jung-Jae Kim, and Jagath C. Rajapakse

Partitioning Biological Networks into Highly Connected Clusters
with Maximum Edge Coverage . 99

Falk Hüffner, Christian Komusiewicz, Adrian Liebtrau, and
Rolf Niedermeier

Reconstructing k -Reticulated Phylogenetic Network from a Set of Gene
Trees . 112

Hoa Vu, Francis Chin, W.K. Hon, Henry Leung, K. Sadakane,
Ken W.K. Sung, and Siu-Ming Yiu

LCR Finder: A de Novo Low Copy Repeat Finder for Human
Genome . 125

Xuan Liu, David Wai-lok Cheung, Hing-Fung Ting,
Tak-Wah Lam, and Siu-Ming Yiu

Heuristic Algorithms for the Protein Model Assignment Problem 137
Jörg Hauser, Kassian Kobert, Fernando Izquierdo-Carrasco,
Karen Meusemann, Bernhard Misof, Michael Gertz, and
Alexandros Stamatakis

Alignment of DNA Mass-Spectral Profiles Using Network Flows 149
Pavel Skums, Olga Glebova, Alex Zelikovsky, Zoya Dimitrova,
David Stiven Campo Rendon, Lilia Ganova-Raeva, and
Yury Khudyakov

A Context-Driven Gene Prioritization Method for Web-Based
Functional Genomics . 161

Jeremy J. Jay, Erich J. Baker, and Elissa J. Chesler

Exploiting Dependencies of Patterns in Gene Expression Analysis
Using Pairwise Comparisons . 173

Nam S. Vo and Vinhthuy Phan

Cloud Computing for De Novo Metagenomic Sequence Assembly 185
Xuan Guo, Xiaojun Ding, Yu Meng, and Yi Pan

Protein Closed Loop Prediction from Contact Probabilities 199
Liang Ding, Joseph Robertson, Russell L. Malmberg, and Liming Cai

A Graph Approach to Bridge the Gaps in Volumetric Electron
Cryo-Microscopy Skeletons . 211

Kamal Al Nasr, Chunmei Liu, Mugizi Robert Rwebangira, and
Legand L. Iii Burge

Table of Contents XIII

Measure the Semantic Similarity of GO Terms Using Aggregate
Information Content . 224

Xuebo Song, Lin Li, Pradip K. Srimani, Philip S. Yu, and
James Z. Wang

Scalable and Versatile k -mer Indexing for High-Throughput Sequencing
Data . 237

Niko Välimäki and Eric Rivals

POMAGO: Multiple Genome-Wide Alignment Tool for Bacteria 249
Nicolas Wieseke, Marcus Lechner, Marcus Ludwig, and Manja Marz

Effect of Incomplete Lineage Sorting on Tree-Reconciliation-Based
Inference of Gene Duplication . 261

Yu Zheng and Louxin Zhang

Ellipsoid-Weighted Protein Conformation Alignment 273
Hyuntae Na and Guang Song

Construction of Uncertain Protein-Protein Interaction Networks and
Its Applications . 286

Bihai Zhao, Jianxin Wang, Fang-xiang Wu, and Yi Pan

Does Accurate Scoring of Ligands against Protein Targets Mean
Accurate Ranking? . 298

Hossam M. Ashtawy and Nihar R. Mahapatra

Author Index . 311

Peptide Identification from Mass Spectrometry

Bin Ma

David R. Cheriton School of Computer Science
University of Waterloo
binma@uwaterloo.ca

Abstract. Mass spectrometry is nowadays the method of choice for
protein characterization in proteomics. Computer algorithms and soft-
ware have played an essential role in analyzing the large amount of mass
spectrometry data produced in any proteomics experiment. The funda-
mental task of such analyses is to identify the peptide for each spectrum
in the data. Such identification is called “database search” if it requires
the assistance of a protein database, and called “de novo sequencing”
if not. In the past 20 years, many database search software tools have
been developed for peptide identification; and a particular one, Mascot,
that was developed in 1999, became dominant in the market. While new
tools were continuously published in the following decade, none has sig-
nificantly improved Mascot. The situation was disrupted around 2010,
when the field witnessed a flurry of new database search tools that sig-
nificantly improved Mascot in terms of both accuracy and sensitivity.
In the first part of the talk, the peptide identification problem will be
introduced, and the history briefly reviewed. In the second part of the
talk, some practical concerns for using the bioinformatics tools in a pro-
teomics lab are discussed. Properly dealing with these concerns resulted
into the significant improvement we witnessed in the past few years. The
second part of the talk will be focused on the research conducted at the
author’s own group.

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, p. 1, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Identifying Critical Transitions of Biological

Processes by Dynamical Network Biomarkers

Luonan Chen

Key Laboratory of Systems Biology
Shanghai Institutes for Biological Sciences

Chinese Academy of Sciences
lnchen@sibs.ac.cn

Abstract. There are non-smooth or even abrupt state changes during
many biological processes, e.g., cell differentiation process, proliferation
process, or even disease deterioration process. Such changes generally
signal the emergence of critical transition phenomena, which result in
drastic transitions in system states or phenotypes [1-4]. Therefore, it is
of great importance to identify such transitions and further reveal their
molecular mechanism. Recently based on dynamical network biomark-
ers (DNBs), we developed a novel theory as well as the computational
method to detect critical transitions even with a small number of sam-
ples. We show that DNBs can identify not only early-warning signals
of the critical transitions but also their leading networks, which drive
the whole system to initiate such transitions [1-4]. Examples for com-
plex diseases are also provided to detect pre-disease stages (or detect
early-signal of complex diseases) for which traditional methods failed,
for demonstrating the effectiveness of this novel approach.

References

[1] Chen, L., Liu, R., Liu, Z., Li, M., Aihara, K.: Detecting early-warning signals
for sudden deterioration of complex diseases by dynamical network biomarkers.
Scientific Reports 2, 342 (2012), doi:10.1038/srep00342

[2] Liu, R., Li, M., Liu, Z.-P., Wu, J., Chen, L., Aihara, K.: Identifying critical tran-
sitions and their leading networks in complex diseases. Scientific Reports 2, 813
(2012), doi:10.1038/srep00813

[3] Wang, J., Sun, Y., Zheng, S., Zhang, X.-S., Zhou, H., Chen, L.: APG: an Active
Protein-Gene Network Model to Quantify Regulatory Signals in Complex Biological
Systems. Scientific Reports 3, 1097 (2013), doi:10.1038/srep01097

[4] Liu, R., Aihara, K., Chen, L.: Dynamical network biomarkers for identifying critical
transitions of biological processes. Quantitative Biology (2013)

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, p. 2, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Computational Behavioral Ecology

Tanya Berger-Wolf

Department of Computer Science
University of Illinois at Chicago

tanyabw@uic.edu

Abstract. Computation has fundamentally changed the way we study
nature, from molecules to ecosystems. Recent advances in data collection
technology, such as GPS and other mobile sensors, high definition cam-
eras, satellite images, and genotyping, are giving biologists access to data
about the natural world which are orders of magnitude richer than any
previously collected. Such data offer the promise of answering some of the
big questions about why animals do what they do, among other things.
Unfortunately, in the domain of behavioral ecology and population dy-
namics, our ability to analyze data lags substantially behind our ability
to collect it. In this talk I will show how computational approaches can
be part of every stage of the scientific process of understanding animal
sociality, from data collection (identifying individual animals from pho-
tographs by stripes and spots) to hypothesis formulation (by designing a
novel computational framework for analysis of dynamic social networks).

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, p. 3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Unusual RNA Structures: Information Content

in RNAs from the ”Prebiotic Ribosome”
to Modern Viruses

Stephen C. Harvey

School of Biology
Georgia Institute of Technology, Atlanta, GA

steve.harvey@biology.gatech.edu

Abstract. About a dozen years ago, Robin Gutell proposed that com-
parative sequence analysis of all ribosomal RNAs pointed to the existence
of a “minimal ribosome”. Together we mapped the structure of the min-
imal ribosome in three dimensions by computer-based modeling. The
resulting model (Mears et al. (2002) J Mol Biol 321:215-234) was subse-
quently confirmed in direct structural studies (Mears et al. (2006) J Mol
Biol 358:193-212). The minimal ribosome points back toward the “pre-
biotic ribosome”, i.e., the RNA molecule that catalyzed peptide bond
formation during the RNA World, before the appearance of the genetic
code. We have been pursuing the prebiotic ribosome in collaboration
with a group of scientists at the Georgia Tech Astrobiology Center, un-
der the leadership of Loren Williams, using a variety of experimental and
computational approaches. This work has led to recognition of the role of
unusual RNA structures and interactions in a previously unexpected cat-
alytic activity: RNA is capable of catalyzing coupled oxidation-reduction
reactions, a key requirement for any system of prebiotic molecules with
the capacity for metabolism and replication.

Many small icosahedral RNA viruses assemble spontaneously, without
the need for a specialized apparatus or the input of energy. An under-
standing of assembly mechanisms would have obvious implications for
the development of new antiviral treatments, and for the design of novel
nanoparticles capable of self-assembly. We have developed the first com-
plete model of any real virus in full atomic detail (Zeng et al. (2012) J
Struct Biol 180:110-116), and we have also determined the structure of
the viral RNA in vitro (Athavale et al. (2013) PLoS ONE 8:e54384).
These studies contribute to the growing understanding that unusual
RNA secondary structures play important functional roles in the viral
life cycle.

In this talk, I will discuss the convergence of these lines of research,
with particular emphasis on the search for novel signals in RNA se-
quences and secondary structures.

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, p. 4, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Radiation Hybrid Map Construction

Problem Is FPT

Iyad Kanj1, Ge Xia2, and Binhai Zhu3

1 School of Computing, DePaul University, Chicago, IL 60604-2301
ikanj@cs.depaul.edu

2 Department of Computer Science, Lafayette College, Easton, PA 18042
gexia@cs.lafayette.edu

3 Department of Computer Science, Montana State University, Bozeman,
MT, 59717-3880

bhz@cs.montana.edu

Abstract. The Radiation Hybrid Map Construction problem (RHMC)
is of prime interest in the area of Bioinformatics, and is concerned with
reconstructing a genome from a set of given gene clusters. The problem
is NP-complete, even for the special case when the cardinality of each
cluster is 2. Recently, Zhang et al. considered the case when the cardinal-
ity of each cluster is at most three, and proved that RHMC in this case is
fixed-parameter tractable. They asked whether RHMC is fixed-parameter
tractable for any fixed upper bound on the cluster cardinality.

In this paper, we answer the question of Zhang et al. in the affirmative
by showing that RHMC is fixed-parameter tractable when the cardinality
of each cluster is at most d, for any nonnegative integer-constant d.

Keywords: Radiation Hybrid Mapping, fixed-parameter tractability,
path decomposition.

1 Introduction

Sequencing a genome is a fundamental problem in modern genetics. Radiation
hybrid (Rh) mapping is an early technique for mapping unique DNA sequences
onto chromosomes and whole genome. The technique has been used since 1990
for constructing maps of small chromosomal regions for human and several other
mammals [8, 23, 24]. In Rh mapping experiments, chromosomes of the target
organism are randomly broken into small DNA fragments through gamma radi-
ation. The underlying assumption is that, when two genes are physically close
to each other on the chromosome, the probability that these two corresponding
gene markers are broken down by the gamma radiation is low, and so with a
high probability they are either co-present in, or co-absent from, a DNA frag-
ment. The Radiation Hybrid Map Construction problem (RHMC) is to deter-
mine, based on the observed co-occurrences, whether or not a linear order of
the markers exist that would interpret the observed co-occurrences in the DNA
fragments, accounting for the possibility of a certain number of errors in the

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 5–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

6 I. Kanj, G. Xia, and B. Zhu

observed co-occurrences/fragments. The problem is formally defined as follows,
where a gene is represented by a “marker” (symbol), and a DNA fragment is
represented by a “cluster”:

Radiation Hybrid Map Construction (RHMC)
Given: A set M of symbols called markers, a set C of clusters, where
each cluster is a subset of M, and k ∈ N

Parameter: k
Question: Decide if we can delete a set C′ of at most k clusters from
C so that there exists a linear order L on the markers in M satisfying
that the markers in each (remaining) cluster in C \ C′ appear consecu-
tively/adjacently with respect to L

To clarify, when in the above problem definition we say that the markers in a
cluster “appear consecutively” with respect to the linear order, we mean that
there exists a permutation of the markers in the cluster such that the permuted
markers appear consecutively in this linear order.

For d ∈ N, we denote by RHMCd the restriction of RHMC to the instances in
which the cardinality/size of each cluster is at most d.

Most of the traditional Rh map construction methods use heuristics, and often
lead to the construction of maps for a small subset of the set of markers (see, for
example, [13]). Slonim et al. [24] proposed a hidden Markov model on the Rh
mapping data and used a maximum-likelihood approach to construct the map.
Givry et al. [9] employed known sequence information for target chromosomes
to construct the map.

Recently, RHMC was shown to be NP-complete, even when the size of each
cluster is 2, that is, RHMC2 [7]. An approximation algorithm of ratio 2 was also
given for the optimization version of RHMC2 [7]. More recently, this approxima-
tion ratio was improved to 10/7 in [6].

In this paper, we consider the RHMC problem from the parameterized com-
plexity perspective. Parameterized complexity was developed in the 1990’s by
Downey and Fellows [11] to cope with the NP-hardness of a problem. It was moti-
vated by the core observation that in many practical instances of hard problems,
certain parameters remain small even when the input instances are large. For
example, one naturally expects the number of clusters that need to be deleted,
that is the parameter k, in an instance of the RHMC problem (due to possible
errors in the Rh process) to be rather small compared to the total number of
clusters in the instance. Therefore, a natural question to ask is whether we can
take advantage of this observation and design an algorithm for RHMC such that
the exponential term in its running time is a function of the parameter (k) only
rather than the instance size. Such algorithms would be computationally feasi-
ble when the parameter is moderately small, and they have the advantage (over
approximation algorithms) of computing exact solutions to the input instances.
More formally, a parameterized problem is said to be fixed-parameter tractable
if there exists an algorithm that, given (x, k) where x is an input instance of
the problem and k is a parameter, the algorithm decides the instance (x, k)

The RHMC Problem Is FPT 7

in time f(k)|x|O(1), where f is a function of k only. Parameterized complexity
has witnessed rapid growth and development, and has become one of the main
tools for coping with the computational intractability of NP-hard problems.
It has found numerous applications in database systems, VLSI design, games,
robotics, computational biology, linguistics, cryptography, and computational
learning (see [2, 3, 5, 10, 14–16, 20], to name a few).

Zhang et al. [25] studied parameterized and kernelization algorithms for the
RHMC problem. They gave a parameterized algorithm for RHMC3 that runs in
time O(6kk+n), thus proving that the problem is fixed-parameter tractable; they
also proved that the problem has a kernel with at most 22k clusters. For RHMC2,
they gave a parameterized algorithm that runs in time O∗(2.45k).1 Jiang and
Zhu [19] proved that RHMC2 has a weak kernel with at most 5k clusters. Zhang
et al. [25] posed the question of whether RHMCd is fixed-parameter tractable for
any integer constant d > 3.

In this paper, we answer Zhang et al.’s [25] question in the affirmative by
showing that RHMCd is fixed-parameter tractable for any d ∈ N. Our approach
proceeds as follows. With any instance of RHMCd, we associate an auxiliary
graph defined based on the set of markers and the set of clusters in the in-
stance. We first show that, for any yes-instance of RHMCd, the pathwidth of
the auxiliary graph associated with this instance must be upper bounded by a
function of d and k only. We then use Bodlaender’s [1] algorithm to compute a
path decomposition of this auxiliary graph whose width meets the proven upper
bound (if such a path decomposition does not exists, we reject); this algorithm
is fixed-parameter tractable with the pathwidth as the parameter, and hence is
fixed-parameter tractable in k. Finally, we apply a sophisticated dynamic pro-
gramming algorithm based on the computed path decomposition whose running
time is fixed-parameter tractable in the width of the computed path decompo-
sition, and hence in k.

The paper is organized as follows. Section 2 presents the necessary background
and notations. Section 3 proves that a yes-instance of the problem must have the
pathwidth of its auxiliary graph upper bounded by a function of the parameter.
Section 4 presents the dynamic programming algorithm that is based on the
path decomposition of the auxiliary graph. Section 5 concludes the paper with
some questions that remain open.

2 Preliminaries

We assume familiarity with basic graph theory and parameterized complexity no-
tation and terminology. Formore information, we refer the reader to [11, 18, 21, 26].

A parameterized problem is a set of instances of the form (x, k), where x ∈ Σ∗

for an alphabet Σ, and k is a non-negative integer called the parameter. A
parameterized problem Q is fixed-parameter tractable, or simply FPT, if there
exists an algorithm that on input (x, k) decides if (x, k) is a yes-instance of Q

1 O∗(t(n)) denotes time complexity of the form O(t(n) · p(n)), where p(n) is a poly-
nomial.

8 I. Kanj, G. Xia, and B. Zhu

in time f(k)|x|O(1), where f is a computable function independent of |x|. By
fpt-time, we denote time complexity of the form f(k)|x|O(1), where |x| is the
input length, k is the parameter, and f is a computable function of k.

For a graph G, V (G) and E(G) denote the vertex-set and the edge-set of
G, respectively. A tree is a connected acyclic graph. The maximum degree of a
graph G will be denoted by Δ(G). A graph G is said to be an interval graph if
there exists a set of (real) intervals I whose intervals correspond to the vertices
of G, and such that for any two vertices u, v ∈ G: (u, v) ∈ E(G) if and only if
the two intervals corresponding to u and v in I intersect.

A path decomposition of G is a sequence P = (B1, . . . , Bt), where Bi ⊆ V (G),
i = 1, . . . , t, that satisfies the following conditions:

(i) each vertex v ∈ V (G) is contained in some Bi, i ∈ {1, . . . , t};
(ii) for each edge uv ∈ E(G) there exists i ∈ {1, . . . , t} such that both u, v ∈ Bi;

and
(iii) if a vertex v is contained in Bi and Bj , where i, j ∈ {1, . . . , t} and i < j, then

v ∈ Br for every r satisfying i ≤ r ≤ j. (Put it differently, Bi ∩Bj ⊆ Br.)

We call each Bi in P , i = 1, . . . , t, a bag. The width of a path decomposition P =
(B1, . . . , Bt) of G, denoted pw(P), is max{|Bi| : i = 1, . . . , r}−1. The pathwidth
of G, denoted pw(G) is the minimum width over all path decompositions of
G. A path decomposition of G is said to be nice [4] if: |B1| = 1, and either
|Bi\Bi−1| = 1 or |Bi−1\Bi| = 1, for i = 2, . . . , t; in the case when |Bi\Bi−1| = 1
we say that Bi is an introduce bag, otherwise (|Bi−1 \ Bi| = 1), we say that Bi

is a forget bag [4]. It is well known [4] that, given a path decomposition P of
G with O(V (G)) bags and width w, there is an O(|V (G)|)-time algorithm that
computes a nice path decomposition of G of width at most w and with at most
2|V (G)| bags. Therefore, without loss of generality, we will always consider nice
path decompositions in this paper.

3 Bounding the Pathwidth

Let (M, C, k) be an instance of the RHMCd problem, where M = {m1, . . . ,m�}
is a set of markers, C = {C1, . . . , Cn} is a set of clusters each of cardinality
at most d, where d ≥ 1 is an integer constant, and k is a nonnegative integer.
Without loss of generality, we shall assume that every marker in M appears in
some cluster in C (otherwise the marker can be discarded), and that every cluster
in C has a nonempty intersection with at least one other cluster in C (otherwise,
the markers in C can be prefixed/suffixed to any valid ordering).

We define two auxiliary graphs, one is defined based on the set of clusters
C and is denoted GC , and the other is defined based on the set of markers M
and is denoted by GM. The graph GC has a vertex for each cluster in GC , and
two vertices in GC are adjacent if and only if their corresponding clusters have a
nonempty intersection (i.e., overlap). The graph GM has a vertex for each marker
in M, and two vertices in GM are adjacent if and only if their corresponding
markers appear together in at least one cluster in C. For simplicity, we will often

The RHMC Problem Is FPT 9

refer to the vertices of GC by their corresponding clusters, and to the vertices in
GM by their corresponding markers. We have the following lemma:

Lemma 1. If the instance (M, C, k) is yes-instance of RHMCd then there exists
a path decomposition of GC with nO(1) bags and whose width is at most k + 2d2.

Proof. Suppose that (M, C, k) is yes-instance of the problem. Then there exists
a subset C′ ⊆ C of cardinality at most k, and a linear ordering L on the markers
in M for which the markers in every cluster in C \C′ are adjacent with respect to
L. Let C− = C \ C′, M− be the set of markers that appear in the clusters in C−,
and let GC− be the subgraph of GC induced by the set of vertices corresponding
to the clusters in C−.

We claim that G−
C is an interval graph whose maximum degree is at most 2d2.

In effect, consider the linear ordering L : mi1 ≺ . . . ≺ mip on the markers in
M−. Label the markers mi1 , . . . ,mip with the integers 1, . . . , p, respectively. For
every cluster C in C−, the markers in C appear adjacently with respect to L;
let mir and mis be the first and last markers in C, respectively, with respect to
the ordering L. We associate with C the interval [r, s] with integer endpoints.
Because the markers in each cluster C appear adjacently in L, it is easy to see
that two clusters in GC− are adjacent if and only if their corresponding inter-
vals intersect. It follows that GC− is the intersection graph of a set of intervals,
and hence, is an interval graph. Moreover, since each cluster contains at most
d markers, the length of the corresponding intervals is bounded by d. Since the
intervals have integer endpoints, it is easy to verify that every interval can inter-
sect with at most 2d2 other intervals. It follows from this observation that the
maximum degree of GC− , Δ(GC−), is at most 2d2.

Because G−
C is an interval graph, there exists an ordering of its maximal cliques

M1, . . . ,Mt such that if a cluster C appears in Mj ∩Mq, where j < q, then C
must appear in every Mi where j ≤ i ≤ q [17]. Noting that every edge in G−

C
appears in some maximal clique, it is easy to see that the above ordering on the
maximal cliques of GC− gives a path decomposition of GC− , P− = (B1, . . . , Bt),
where bag Bi, i = 1, . . . , t, consists of the clusters contained in Mi. Since any two
clusters in a bag Bi, i ∈ {1, . . . , t}, of P− are adjacent, and since Δ(GC−) ≤ 2d2,
it follows that each bag Bi contains at most 2d2 vertices (clusters), and hence
pw(P−) ≤ 2d2. Moreover, since each bag contains at most 2d2 clusters, the total

number of bags in P− is at most
∑2d2

i=1

(
n
i

)
= nO(1).

To show that the pathwidth of GC is O(k), consider the path decomposition
P− of G−

C , and add to every bag Bi, i ∈ {1, . . . , t}, of P− all the clusters in C′.
It is easy to verify that we obtain a path decomposition P of GC with nO(1) bags
and whose width is at most k + 2d2. This completes the proof. �	

Remark 1. The proof of Lemma 1 may suggest to the reader that we can reduce
the RHMCd problem to the problem of testing whether we can delete k vertices
from GC so that the resulting graph is an interval graph, which is known as the
k-Interval Vertex Deletion problem, and was very recently proven to be
FPT [22]. This intuition, however, is incorrect, because the statement that we
can delete k vertices from GC so that the resulting graph is an interval graph

10 I. Kanj, G. Xia, and B. Zhu

is not a sufficient condition for the corresponding instance of RHMCd to be a
yes-instance, as can be easily verified by the reader.

Lemma 2. If the instance (M, C, k) is yes-instance of the problem then there
exists a path decomposition of GM with nO(1) bags and whose width is at most
d · (k + 2d2).

Proof. Suppose that the instance (M, C, k) is yes-instance of the problem. By
Lemma 1, there exists a path decomposition of GC with nO(1) bags and whose
width is at most k + 2d2; let P = (B1, . . . , Bt) be such a path decomposition of
GC . Consider the following decomposition PM = (B′

1, . . . , B
′
t), where B′

i is the
set of markers contained in the clusters in bag Bi; that is, B

′
i = {m ∈ M | m ∈

C for some C ∈ Bi}. We prove that PM is a path decomposition of GM.
First, every marker in M appears in some cluster in GC , and hence, must

appear in some bag in PM. An edge in GM corresponds to two markers that
appear together in some cluster. Since P is a path decomposition of GC , each
cluster appears in a bag in P , and hence, any two adjacent markers in GM appear
together in some bag of PM. Suppose now that a marker m appears in bags B′

i

and B′
j , i < j, in PM. We will show that m ∈ B′

r for every r satisfying i ≤ r ≤ j.
Sincem ∈ B′

i, there exists a cluster Ci containingm such that Ci ∈ Bi. Similarly,
there exists a cluster Cj containing m such that Cj ∈ Bj . If Ci = Cj , then since
P is a path decomposition of GC , every bag Br, i ≤ r ≤ j, contains Ci = Cj ,
and hence every bag B′

r, i ≤ r ≤ j, contains m. Assume that Ci
= Cj . Since
m ∈ Ci ∩ Cj , Ci and Cj are adjacent, and hence must appear together in some
bag Bq in P . If q ≤ i, then every bag Br, i ≤ r ≤ j, contains Cj , and hence
every bag B′

r, i ≤ r ≤ j, contains m. On the other hand, If q ≥ j, then every
bag Br, i ≤ r ≤ j, contains Ci, and hence every bag B′

r, i ≤ r ≤ j, contains
m. If i < q < j, then every bag Br, i ≤ r ≤ q contains Ci and every bag Br,
q ≤ r ≤ j contains Cj ; therefore, every bag B′

r, i ≤ r ≤ j, contains m. It follows
from the above that PM is a path decomposition for GM.

Finally, the number of bags in PM is the same as that in P . Since each cluster
has size at most d, the width of each bag in PM is at most d times the width of
the corresponding bag in P . The statement of the lemma follows. �	
By Lemma 2, if (M, C, k) is yes-instance of the problem then there exists a path
decomposition of GM with nO(1) bags whose width is at most d · (k+2d2). Given
an instance (M, C, k), we can call the algorithm in [1] to check if the pathwidth of
GM is at most d ·(k+2d2); the algorithm in [1] runs in fpt-time in the pathwidth
parameter d · (k + 2d2), and hence, in fpt-time in k. If the algorithm rejects
(i.e., the pathwidth is larger than d · (k + 2d2)) then we reject; otherwise, the
algorithm returns a path decomposition of GM of width at most d · (k + 2d2);
we can assume, without loss of generality, that this path decomposition is nice.
Therefore, we have:

Theorem 1. There is an algorithm running in fpt-time that takes an instance
(M, C, k) of RHMCd and either decides correctly that the instance is a no-
instance of RHMCd, or returns a nice path decomposition P = (B1, . . . , Bt) of
GM of width at most d · (k + 2d2), and nO(1) nodes.

The RHMC Problem Is FPT 11

We will see in the next section how we can use this nice path decomposition to
solve the instance (M, C, k) in fpt-time.

4 An FPT Algorithm for RHMCd

Given an instance (M, C, k) of RHMCd, by Theorem 1, we can assume that a
nice path decomposition P = (B1, . . . , Bt) of GM with width w ≤ d · (k + 2d2)
has been computed.

We proceed with a dynamic programming approach based on the path de-
composition P . During the dynamic programming, each bag Bi keeps a table
Ti of strings of length at most 4w + 3 (see Corollary 1), composed of markers
that appear in Bi, and two special symbols: � and �. The � symbol represents
a nonempty string of markers that have been “forgotten” during the dynamic
programming process. When a � is adjacent to a marker, as in u� or �u, it
indicates that the place next to u on the right-hand or the left-hand side, respec-
tively, is already occupied by markers that have been forgotten (in the dynamic
programming process). The � symbol represents an open space, which may be
filled with any number of markers. When a � is adjacent to a marker, as in
u� or �u, it indicates that the space on the right-hand side or left-hand side
of u, respectively, is open and hence can be filled with markers to fulfill the
requirements imposed by the clusters.

A string S can be simplified as follows:

– Rule 1. Replace any two or more consecutive �’s in S by a single � and
replace any two or more consecutive �’s in S by a single �.

– Rule 2. Remove every � that appears between two �’s.

The correctness of the simplification rules will be proven in Lemma 5.
A simplified string has the following property.

Corollary 1. Let S be a simplified string whose markers are m1, . . . ,mp ap-
pearing in S in this order. Then S = s0m1s1m2s2 . . .mtsp where each si, for
0 ≤ i ≤ p, is an element of {ε (empty string), �,�,��,��,���}. In particu-
lar, if p ≤ w, then the length of S is at most w + 3(w + 1) = 4w + 3.

Lemma 3. The size of any table Ti is at most 6w+1w!.

Proof. The number of markers in Bi is at most w. By Corollary 1, any string
in the table Ti contains a permutation of the markers in Bi as a subsequence.
There are at most w! such permutations. For each permutation, there are at
most w+1 places to insert special symbols. By Corollary 1, for each place, there
are 6 possible strings of special symbols: ε, �, �, ��, ��, ���. Therefore, the
total number of different strings in table Ti is at most 6w+1w!. �	

In the following, we define a table Ti for every bag Bi of the path decomposition.
The table Ti contains a set of strings S. Each string S is associated with a set US

and an integer vS . Intuitively, US captures the set of clusters whose statuses are

12 I. Kanj, G. Xia, and B. Zhu

undecided in the computation leading to S, and vS is the number of clusters that
are violated in the computation leading to S. After enumerating all valid strings
for the leaf bag B1, at each step of the dynamic programming, we compute the
table Ti for Bi based on the table Ti−1 for Bi−1. In particular, we will compute
strings S ∈ Ti based on strings S′ ∈ Ti−1. The set US and the value vS are
computed from US′ and vS′ . Each cluster C ∈ US′ is at one of following three
statuses with respect to the string S:

– A cluster C is satisfied by a string S if all markers of C appear as a continuous
block in S.

– A cluster C is violated by a string S if (1) all markers of C appear in S but
they do not form a continuous block, or (2) there are two markersmi,mj ∈ C
such that there is a marker ml /∈ C or a � appearing between mi and mj in
S.2

– A cluster C is uncertain with respect to a string S if it is neither satisfied
nor violated by S.

The details of the computation are given below in three cases.

Case 1 (Leaf bag). For the leaf bag B1, we enumerate all possible simplified
strings in T1 as described in Lemma 3. Note that in a nice path decomposition,
B1 has only one marker m and T1 = {m,�m,m�,�m�}. Recall that for each
string S, vS is the number of clusters that are violated by S and US is the set
of clusters that are uncertain with respect to S. For each string S in T1, we
associate with it the set US and the value vS . Note that for the leaf bag and for
a given S, both US and vS can be easily calculated.

Case 2 (Forget bag). Now let us consider a forget bag Bi, where a marker m is
forgotten, i.e. Bi = Bi−1\{m}. The table Ti is created from Ti−1 as follows:

(a) For each string S ∈ Ti−1, replace the occurrence of m in S by a � and
simplify S; then add the resulting string S′ to Ti.

(b) For every string S′ ∈ Ti, choose a string S ∈ Ti−1 with the minimum value
vs from among all the strings in Ti−1 that yielded S′, and associate US′ = US

and vS′ = vS with S′.

Case 3 (Introduce bag). Finally, let us consider an introduce bag Bi, where a
marker m is introduced, i.e., Bi = Bi−1∪{m}. The table Ti is created from Ti−1

as follows:

(a) For each string S ∈ Ti−1, replace every occurrence of � in S by one of the
following four choices: m, �m, m�, and �m� and add the resulting strings
to Ti.

2 While it is clear that a cluster C is violated by a string if there are two markers
mi,mj ∈ C such that there is a marker ml /∈ C appearing between mi and mj in
the string, the same is true if ml is replaced by a �, because of the property of the
path decomposition, as we will show in Lemma 4.

The RHMC Problem Is FPT 13

(b) For each string S′ ∈ Ti that resulted from S ∈ Ti−1 by (1), let US′ be US

minus the set of clusters in US that are satisfied or violated by S′, and let
vS′ be vS plus the number of clusters in US that are violated by S′.

(c) Purge every string S′ ∈ Ti with vS′ > k.

Finally, if Tt is non-empty, then the instance is a yes-instance, as justified in
Lemma 7.

The following lemmas are needed for the correctness of algorithm.

Lemma 4. If a marker m is forgotten at a bag Bi, then any cluster containing
m is not uncertain with respect to any string in Tj where j ≥ i− 1.

Proof. Suppose that a marker m is forgotten by a bag Bi and C is a cluster
containing m. Since the markers in C form a clique in the graph GM, there
must exist a bag Bl, l ≤ i− 1, such that all markers in C appear in Bl (see [21]
for a proof). By the definition of the three statuses, every string in table Tl will
either satisfy or violate C, and hence C is not uncertain for any string in Bl.
According to the rules for creating the tables for bags Bi, i > l, C will not be
uncertain for any string in the bags after Bl. The lemma follows. �	

Lemma 5. The simplification rules for strings are correct.

Proof. The simplification Rule 1 is clearly correct by the definition of � and �.
Now suppose that a � appears between two �’s in a string S, as in ���.

Suppose that a marker m is later introduced into the � (if no marker is ever
introduced into the �, then it can be safely removed) and m′ is a forgotten
marker in one of the two adjacent �’s. Then m and m′ cannot belong to the
same cluster. This is because if m and m′ belong to the same cluster, then by
Lemma 4, m should have already been introduced before m′ is forgotten. This
means that the content of this � is isolated from the contents of the two adjacent
�’s and from the rest of the string S. In other words, the content of this � can
be safely moved to the beginning or the end of the linear order. So Rule 2 is
correct. �	

Lemma 6. Let Bi, Bi−1,m be as in Case 2 (Forget bag) of the algorithm. If
more than one string S1, . . . , Sq ∈ Ti−1 yield the same string S at the forget bag
Bi in Case 2(a), then US1 = US2 = . . . = USq .

Proof. Suppose that the statement is not true. Then there are two strings Si

and Sj , 1 ≤ i, j ≤ q, such that USi − USj
= ∅. Let C ∈ USi − USj be a cluster.
Since C ∈ USi , by Lemma 4, C does not contain m or any forgotten marker.
On the other hand, C /∈ USj , which means that C is satisfied or violated by Sj .
Since C does not contain m or any forgotten marker, the fact that C is satisfied
or violated by Sj can be determined by the markers in S. In other words, C is
satisfied (or violated) by Sj if and only if it is satisfied (or violated) by S. For a
similar reason, C is satisfied (or violated) by Si if and only if it is satisfied (or
violated) by S. Therefore, C is satisfied (or violated) by Sj if and only if it is
satisfied (or violated) by Si. This is a contradiction to C ∈ USi − USj . �	

14 I. Kanj, G. Xia, and B. Zhu

Lemma 7. If the table Tt for the last bag Bt of the path decomposition is non-
empty, then the instance is a yes-instance.

Proof. After the last bag Bt of the path decomposition is processed, the status
of every cluster C is decided. This is true because either at least one marker
in C is forgotten and by Lemma 4 the status of C is decided, or all markers in
C appear in Bt and by the definition of the three statuses the status of C is
decided. Therefore if Tt is non-empty then there is a string S ∈ Tt such that
US = ∅ (i.e. all clusters are not uncertain with respect to S) and vS ≤ k. This
means that there is an ordering of the markers that violates at most k clusters
and satisfies all other clusters, and hence the instance is a yes-instance. �	

Theorem 2. Let (M, C, k) be an instance of RHMCd. Given a nice path decom-
position of GM of width w and nO(1) bags (n is the number of clusters), the
dynamic programming algorithm described above decides the instance (M, C, k)
in time O∗(6ww!).

Proof. It is clear that Case 1 (Leaf bag) of the algorithm is correct because it
enumerates all valid simplified strings for the bag B1. Case 3 (Introduce bag)
is correct because it enumerates all possible valid ways for inserting a marker
m into a string S, and updates US and vS accordingly. Case 2 (Forget bag) is
justified because, by Lemma 6, all strings S1, . . . , Sq ∈ Ti−1 that yield the same
string S have the same set of uncertain clusters US1 = US2 = . . . = USq , and
hence we can safely pick the string S ∈ {S1, . . . , Sq} with the minimum value
vs. This proves the correctness of the algorithm.

By Lemma 3, the size of table Ti for every bag Bi is at most 6w+1w!. Since the
number of bags is nO(1), and all other operations can be executed in polynomial
time, the running time of the algorithm is O∗(6ww!). �	

Combining Theorem 1 with Theorem 2, we get:

Corollary 2. For any d ∈ N, the RHMCd problem is FPT.

5 Conclusion

In this paper, we proved that the RHMCd problem is fixed-parameter tractable
for any d ∈ N, answering a question posed by Zhang et al. [25]. Several interesting
questions remain open. The obvious question is whether the (general) RHMC
problem is fixed-parameter tractable or not (that is, with no upper bound on
the cluster size). The approach used in the current paper does not seem to be
applicable to the RHMC problem. In particular, the pathwidth of the auxiliary
graph for an instance of RHMC may be unbounded. On the other hand, we point
out that, due to the fact that one can control the resolution of the radiation
dosage, in some applications d is quite small. For instance, Slonim et al. [24]
only considered the case when d = 3.

Another interesting question that is worth pursuing is studying kernelization
algorithms for the RHMCd problem. A kernelization algorithm for a parame-
terized problem is a polynomial-time algorithm that maps an instance (x, k)

The RHMC Problem Is FPT 15

to an equivalent instance (x′, k′) such that both |x′| and k′ are bounded by a
computable function of k. It is well known that a parameterized problem is fixed-
parameter tractable if and only if the problem is kernelizable [12]. Therefore, the
results in this paper, combined with [12], prove that the RHMCd problem is ker-
nelizable; however, the upper bound on the kernel size is only of a theoretical
interest. Zhang et al. [25] proved that RHMC3 (and RHMC2) has a linear-size
kernel (O(k)). It is interesting to study whether or not RHMCd, for any d > 3,
admits a linear, quadratic, or a polynomial kernel.

Finally, it would be interesting to seek O∗(ck) parameterized algorithms for
the problem. We leave those as open questions for future research.

References

1. Bodlaender, H.: A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

2. Bodlaender, H., Fellows, M., Hallett, M., Wareham, H.: Parameterized complexity
analysis in computational biology. Computer Applications in the Biosciences 11,
49–57 (1995)

3. Bodlaender, H., Fellows, M., Hallett, M., Wareham, H.: The parameterized com-
plexity of the longest common subsequence problem. Theoretical Computer Sci-
ence 147, 31–54 (1995)

4. Bodlaender, H.L., Thilikos, D.M.: Computing Small Search Numbers in Linear
Time. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS,
vol. 3162, pp. 37–48. Springer, Heidelberg (2004)

5. Cesati, M., Wareham, H.: Parameterized complexity analysis in robot motion plan-
ning. In: Proceedings of the 25th IEEE International Conference on Systems, Man
and Cybernetics, pp. 880–885 (1995)

6. Chen, Z.-Z., Lin, G., Wang, L.: An approximation algorithm for the minimum
co-path set problem. Algorithmica 60(4), 969–986 (2011)

7. Cheng, Y., Cai, Z., Goebel, R., Lin, G., Zhu, B.: The radiation hybrid map con-
struction problem: recognition, hardness, and approximation algorithms (2008)
(unpublished manuscript)

8. Cox, D., Burmeister, M., Price, E., Kim, S., Myers, R.: Radiation hybrid mapping:
a somatic cell genetic method for constructing high resolution maps of mammalian
chromosomes. Science 250, 245–250 (1990)

9. De Givry, S., Bouchez, M., Chabrier, P., Milan, D., Schiex, T.: Carh ta Gene: multi-
population integrated genetic and radiation hybrid mapping. Bioinformatics 21(8),
1703 (2005)

10. Downey, R., Evans, P., Fellows, M.: Parameterized learning complexity. In: Pro-
ceedings of the 6th ACM Workshop on Computational Learning Theory, pp. 51–57
(1993)

11. Downey, R., Fellows, M.: Parameterized complexity. Springer, New York (1999)
12. Downey, R., Fellows, M., Stege, U.: Parameterized complexity: a framework for

systematically confronting computational intractability. In: Roberts, F., Kra-
tochvil, J., Nešetřil, J. (eds.) Contemporary Trends in Discrete Mathematics, AMS-
DIMACS Proceedings, pp. 49–99. American Mathematical Society (1999)

13. Faraut, T., De Givry, S., Chabrier, P., Derrien, T., Galibert, F., Hitte, C., Schiex,
T.: A comparative genome approach to marker ordering. Bioinformatics 23(2), e50
(2007)

16 I. Kanj, G. Xia, and B. Zhu

14. Fellows, M., Hallett, M., Wareham, H.: DNA physical mapping: three ways of
difficult. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 157–168. Springer,
Heidelberg (1993)

15. Fellows, M., Hallett, M., Wareham, H.: Fixed-parameter complexity and cryptog-
raphy. In: Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673,
pp. 121–131. Springer, Heidelberg (1993)

16. Fellows, M., Langston, M.: On search, decision and the efficiency of polynomial-
time algorithms. In: Proceedings of the 21st ACM Symposium on Theory of Com-
puting (STOC), pp. 501–512 (1989)

17. Fishburn, P.: Interval orders and interval graphs: A study of partially ordered sets.
Wiley-Interscience Series in Discrete Mathematics, New York (1985)

18. Flum, J., Grohe, M.: Parameterized complexity theory. Springer-Verlag New York
Inc. (2006)

19. Jiang, H., Zhu, B.: Weak Kernels. Electronic Colloquium on Computational Com-
plexity (ECCC) 17, 5 (2010)

20. Kaplan, H., Shamir, R., Tarjan, R.: Tractability of parameterized completion prob-
lems on chordal, strongly chordal, and proper interval graphs. SIAM Journal on
Computing 28, 880–892 (1999)

21. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press,
USA (2006)

22. Rafiey, A.: Single Exponential FPT Algorithm for Interval Vertex Deletion and
Interval Completion Problem, http://arxiv.org/pdf/1211.4629v1.pdf

23. Richard, C., Withers, D., Meeker, T., Maurer, S., Evans, G., Myers, R., Cox, D.: A
radiation hybrid map of the proximal long arm of human chromosome 11 containing
the multiple endocrine neoplasia type 1 (MEN-1) and bcl-1 disease loci. American
Journal of Human Genetics 49(6), 1189 (1991)

24. Slonim, D., Kruglyak, L., Stein, L., Lander, E.: Building human genome maps with
radiation hybrids. Journal of Computational Biology 4(4), 487–504 (1997)

25. Zhang, C., Jiang, H., Zhu, B.: Radiation hybrid map construction problem param-
eterized. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 127–137. Springer,
Heidelberg (2012)

26. West, D.: Introduction to graph theory. Prentice Hall Inc., Upper Saddle River
(2006)

http://arxiv.org/pdf/1211.4629v1.pdf

Reconstructing Ancestral Genomic Orders Using

Binary Encoding and Probabilistic Models

Fei Hu1,2, Lingxi Zhou2, and Jijun Tang1,2,�

1 School of Computer Science and Technology, Tianjin University, China
2 Department of Computer Science & Engineering, Univ. of South Carolina, USA

jtang@cse.sc.edu

Abstract. Changes of gene ordering under rearrangements have been
extensively used as a signal to reconstruct phylogenies and ancestral
genomes. Inferring the gene order of an extinct species has the potential
in revealing a more detailed evolutionary history of species descended
from it. Current tools used in ancestral reconstruction may fall into par-
simonious and probabilistic methods according to the criteria they follow.
In this study, we propose a new probabilistic method called PMAG to infer
the ancestral genomic orders by calculating the conditional probabilities
of gene adjacencies using Bayes’ theorem. The method incorporates a
transition model designed particularly for genomic rearrangement sce-
narios, a reroot procedure to relocate the root to the target ancestor
that is inferred as well as a greedy algorithm to connect adjacencies with
high conditional probabilities into valid gene orders.

We conducted a series of simulation experiments to assess the per-
formance of PMAG and compared it against previously existing proba-
bilistic methods (InferCARsPro) and parsimonious methods (GRAPPA).
As we learned from the results, PMAG can reconstruct more correct an-
cestral adjacencies and yet run several orders of magnitude faster than
InferCARsPro and GRAPPA.

Keywords: ancestral genome, gene order, probabilistic method.

1 Introduction

1.1 Overview

Evolutionary biologists have had a long tradition in reconstructing genomes of
extinct ancestral species. Mutations in a genomic sequence are made up not only
at the level of base-pair changes but also by rearrangement operations on chro-
mosomal structures such as inversions, transpositions, fissions and fusions [1].
Over the past few years, ancestral gene-order inference has brought profound
predictions of protein functional shift and positive selection [2].

Methods for ancestral genome reconstruction either assume a given phylogeny
that represents the evolutionary history among given species, known as the small

� Corresponding author.

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 17–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 F. Hu, L. Zhou, and J. Tang

phylogeny problem (SPP); or search the most appropriate tree along with a set
of ancestral genomes to fit the observed data, called the big phylogeny problem
(BPP). Most of parsimony methods (such as GRAPPA [3], MGR [4,5]) typically solve
the SPP exactly by searching a set of ancestral gene orders to minimize the sum of
the rearrangement distance over the entire edges of the phylogeny. Ma proposed
another method for the SPP in the probabilistic framework (InferCARsPro [6])
by approximating the conditional probabilities for all possible gene adjacencies
in an ancestral genome.

Current methods such as GRAPPA and InferCARsPro are capable to handle
modern whole-genome data due to their intrinsic high complexity. In this paper,
we propose a new probabilistic method called PMAG to reconstruct ancestral ge-
nomic orders given a phylogeny. We conducted extensive experiments to evaluate
the performance of PMAG with other existing methods. According to the results,
our new method can outperform all the other methods under study and still run
at least hundreds of times faster than GRAPPA and InferCARsPro.

1.2 Genome Rearrangement

Given a set of n genes labeled as {1, 2, · · · , n}, a genome can be represented by
an ordering of these genes. Each gene is assigned with an orientation that is
either positive, written i, or negative, written −i. Two genes i and j form an
adjacency if i is immediately followed by j, or, equivalently, −j is immediately
followed by −i. An breakpoint of two genomes is defined as an adjacency appears
in one but not in the other.

Genome rearrangement operations can change the ordering of genes. An in-
version operation (also called reversal) reverses a segment of a chromosome. A
transposition is an operation that swaps two adjacent segments of a chromo-
some. In the case of multiple chromosomes, translocation breaks a chromosome
and reattaches a portion of it to another chromosome. Later Yancopoulos et
al. [8] proposed a universal double-cut-and-join (DCJ) operation that accounts
for all common events which resulted in a new genomic distance that can be
computed in linear time.

1.3 Parsimony Methods for Ancestral Gene-Order Reconstruction

To find a solution for SPP, parsimony algorithms typically iterate over each inter-
nal node to solve for the median genomes until the sum of all edge distances (tree
score) is minimized. The median problem can be formalized as follows: give a set
of m genomes with permutations {xi}1≤i≤m and a distance measurement d, find
another permutation xt such that the median score defined as

∑m
i=1 d(xi, xt) is

minimized. GRAPPA and MGR (as well as their recently enhanced versions) are two
widely-referenced methods that implemented a selection of median solvers for
phylogeny and ancestral gene-order inference. However solving even the simplest
case of median problem when m equals to three is NP-hard for most distance
measurements.

Reconstructing Ancestral Genomic Orders 19

Exact solutions to the problem of finding a median of three genomes can
be obtained for the inversion, breakpoint and DCJ distances. Among all the
median solvers, the best one is the DCJ median solver proposed by Xu and
Sankoff (ASMedian [9]) based on the concept of adequate subgraph. Adequate
subgraphs allow decompositions of an multiple breakpoint graph into smaller
and easier graphs. Though the ASMedian solver could remarkably scale down
the computational expenses of median searching, it yet runs very slow when the
genomes are distant.

1.4 Reconstructing the Ancestral Gene Order in Probabilistic
Frameworks

The probabilistic approach InferCARsPro proposed by Ma [6] is based on Bayes’
theorem such that every possible predecessor and successor of a signed gene i
denoted as Xi in the ancestral genome x, given Dx representing the observed
data, can be expressed as

P (Xi in x|Dx) =
P (Dx|Xi in x)P (Xi in x)∑q

j=1 P (Dx|Xj in x)P (Xj in x)
=

P (Dx|Xi in x)∑q
j=1 P (Dx|Xj in x)

where priors are assumed equal and the likelihood P (Dx|Xi in x) can be calcu-
lated recursively in a post-order traversal fashion summed over q possible con-
figurations. Its transition matrix is defined as an extension of the Jukes-Cantor
model such that probability of transition from any character to any different
character is always equal.

Let sx(·) denote the successor of a gene and px(·) denote the predecessor of
a gene, an adjacency pair Ax(i, j) can be viewed as sx(i) = j and px(j) = i
simultaneously. After finishing the calculation of conditional probabilities for
every successor and predecessor relationships, the conditional probability of an
adjacency Ax(i, j) in genome x can be approximated as

P (Ax(i, j)|Dx) = P (px(j) = i|Dx)× P (sx(i) = j|Dx)

Finally a fast greedy algorithm is adopted to connect adjacencies into contiguous
ancestral regions. Although InferCARsPro showed good results and speedup over
parsimonious methods, it is still too slow and inaccurate when dealing with even
small number of distant genomes.

We investigated the following intrinsic characteristics of InferCARsPro that
account for its difficulties in handling complex datasets, which in turn motivated
us to propose our new method.

– InferCARsPro uses a neutral model accounting for all changes of adjacencies,
however biased model for phylogeny reconstruction has been successfully
applied for genome rearrangement scenarios [11].

– The total number of states for each gene is exactly equal to 2×n−2 where n is
the number of genes. Thus computing the likelihood score on such excessive
number of states clearly incurs huge computational burden.

20 F. Hu, L. Zhou, and J. Tang

– The conditional probability of an adjacency is approximated from the pre-
decessor and successor relations. Although such approximation is intuitive,
it is more desirable to directly calculate the conditional probability of an
adjacency.

– InferCARsPro requires branch lengths of a given phylogeny as part of its
inputs, but it is not always handy to obtain in practice.

2 Algorithm Detail

Given the topology of a model tree and a collection of gene orders at the leaves,
our approach first encodes the gene orders into binary sequences and estimates
the parameters in the transition model for adjacency changes. Ancestral nodes
in the model tree are inferred independently and in each inference, we reroot
the model tree to have the target ancestor as the root of a new tree. Then we
utilize a probabilistic inference tool to compute the conditional probabilities of
all the adjacencies encoded in the binary sequence of the target ancestor. At last
we use a greedy algorithm as used in Ma’s work to connect the adjacencies into
contiguous regions. We call our new approach Probabilistic Method of Ancestral
Genomics (PMAG).

2.1 Encoding Gene Orders into Binary Sequences

A gene order can be expressed as a sequence of adjacency information that
specifies presence or absence of all the adjacencies [10,11]. Denote the head of
a gene i by ih and its tail by it. We refer +i as an indication of direction from
head to tail (ih → it) and otherwise −i as (it → ih). There are a total of four
scenarios for two consecutive genes a and b in forming an adjacency: {at, bt},
{ah, bt}, {at, bh}, and {ah, bh}. If gene c is at the first or last place of a linear
chromosome, then we have a corresponding singleton set, {ct} or {ch}, called
a telomere. A genome can then be expressed as a multiset of adjacencies and
telomeres. For instance, a linear chromosome consists of four genes, (+1,+2,-
3,-4,) can be represented by the multiset of adjacencies and telomeres {{1h},
{1t, 2h}, {2t, 3t}, {3h, 4t}, {4h}}. We further write 1 (0) to indicate presence
(absence) of an adjacency and we consider only those adjacencies and telomeres
that appear at least once in the input genomes. Table 1 shows an example of
encoding two artificial genomes into binary sequences.

Given a dataset D with m species and each of n genes, let k indicate the total
number of linear chromosomes in D, then there are up to

(
2n+2

2

)
distinct adja-

cencies and telomeres. However in reality if the length of the binary sequences
extracted from D is l, then l is typically far smaller. In fact, in the extreme
case when genomes in D share no adjacency and telomere, l equals at most to
n×m+k, and since m and k are commonly much smaller than n, thus the length
of the binary sequences for a dataset is usually linear rather than quadratic to
the number of genes.

Reconstructing Ancestral Genomic Orders 21

Table 1. Example of encoding gene orders into binary sequences

G1 : (1, 2,−3)

G2 : (3,−2, 1)

(a) Two signed linear genomes

{1h} {1t, 2h} {2t, 3t} {3h} {2h, 1h} {1t}
G1 1 1 1 1 0 0
G2 0 0 1 1 1 1

(b) Binary sequences

2.2 Estimating Transition Parameters

Since we are handling binary sequences with two characters, we use a general
time-reversible framework to simulate the transitions from presence (1) to ab-
sence (0) and vice versa. Thus the rate matrix is

Q = {qij} =

[
· a
a ·

] [
π0 0
0 π1

]
The matrix involves 3 parameters: the relative rate a, and two frequencies π0

and π1.
Severl models have been proposed to probabilistically characterize the changes

of gene adjacencies by common types of rearrangement operations such as in-
version, transposition as well as DCJ [7,11]. In this study, we use the model
that has been successfully applied for phylogeny reconstruction in the context
of genome rearrangement as suggested in [11]. In particular, every DCJ opera-
tion breaks two random adjacencies uniformly chosen from the gene-order string
and subsequently creates two new ones. Since each genome contains n + O(1)
adjacencies and telomeres where n is the gene number and O(1) equals to the
number of linear chromosomes in the genome, thus the probability that an adja-
cency changes from presence (1) to absence (0) in the sequence is 2

n+O(1) under

one operation. Since there are up to
(
2n+2

2

)
possible adjacencies and telomeres,

the probability for an adjacency changing from absence (0) to presence (1) is
2

2n2+O(n) . Therefore we come to the conclusion that the transition from 1 to 0

is roughly 2n times more likely than that from 0 to 1.

2.3 Inferring the Probabilities of Ancestral Adjacencies for the
Root Node

In principle, our probabilistic inference is categorized as marginal reconstruction
which assigns characters to a single ancestral genome at a time. Once we have
the tree topology and binary sequences encoding the input gene orders, we use

22 F. Hu, L. Zhou, and J. Tang

the extended probabilistic approach for sequence data described by Yang [12] to
infer the ancestral gene orders at the root node. In the binary sequences, each
site represents an adjacency with character either 0 (absence) or 1 (presence)
and for each site we seek to calculate the conditional probability of observing
that adjacency. As the true branch lengths are not available, we take advantage
of the widely-used maximum-likelihood estimation from the binary sequences at
the leaves to estimate the branch length.

Suppose x is the root of a model tree, then the conditional probability that
node x has the character sx at the site, given Dx representing the observed data
at the site in all leaves of the subtree rooted at x, is

P (sx|Dx) =
P (sx)P (Dx|sx)

P (Dx)
=

πsxLx(sx)∑
sx

πsxLx(sx)

where πsx is the character frequency for sx. The conditional probability in the
form of Lx(sx) is defined as the probability of observing the leaves that belong
to the subtree rooted at x, given that the character at node x is sx. It can be cal-
culated recursively in a post-order traversal fashion suggested by Felsenstein [13]
as:

Lx(sx) =

⎧⎪⎨⎪⎩
1 if x is a leaf with character = sx at the site
0 if x is a leaf with character
= sx at the site[∑

sf
psxsf (tf)Lf (sf)

]
×
[∑

sg
psxsg (tg)Lg(sg)

]
otherwise

where f and g are the two direct descendants of x. pij(t) defines the transition
probability that character i changes to j after an evolutionary distance t. Fol-
lowing the deduction of transition probability in [13], our transition-probability
matrix can be written as

pij(t) = πj + e−t(δij − πj)

Here the δij is 1 if i = j, otherwise δij is 0. In order to set up the 2n ratio, we
simply set the rate a to 1 and add a direct assignment of the two frequencies in
the code. For instance, if the character frequencies are π0 = 0.1 and π1 = 0.9,
then the rate of 0 to 1 transitions is 10 times as high as the rate of transitions
in the other direction under the same evolutionary distance.

RAxML [14,15] is one of the most widely used program for sequence-data anal-
ysis which implements the method for ancestral sequence inference developed by
Yang [12]. In this study, we modified RAxML to infer the conditional probabilities
of gene adjacencies at all sites. Once we obtain the conditional probability of
every adjacency for the target ancestor x, we can construct an adjacency graph
for x in which each gene i corresponds to two nodes, ih and it, and each adja-
cency is connected by an edge with weight equal to the conditional probability
of seeing that adjacency in x. The problem of searching the longest path in such
a graph by visiting each gene’s head and tail exactly once is indeed NP-hard
as shown in Tang and Wang’s study [16]. As a trade-off for time efficiency in
dealing with large-scale datasets, we adopted the same greedy algorithm used in
Ma’s work [18] to connect adjacencies into contiguous ancestral regions.

Reconstructing Ancestral Genomic Orders 23

2.4 Rerooting the Tree Topology

To infer the genomic order of a non-root ancestral node x, if x is taken as the
root of the tree such that only the leaves in the subtree of x are considered into
the recursive calculation of likelihood, potentially many good adjacencies in the
outgroup of the subtree will be neglected and result in a loss of information. To
minimize the influence, we incorporate the technique of rerooting so that original
tree is rearranged and the target node x becomes the root of a new tree. The
procedure of rerooting is a standard procedure implemented in many phyloge-
netic tools and it also has found to be useful for ancestral genome reconstruction
in [6].

3 Experimental Results

3.1 Experimental Design

Since actual ancestors are rarely known for sure, it is difficult to evaluate ances-
tral reconstruction methods with real datasets. In order to carry out a complete
evaluation over a group of methods under a wide range of configurations, we
conducted a collection of simulation experiments following the standard steps of
such tests that have been extensively adopted [17,11].

In particular, a group of tree topologies were firstly generated with edge
lengths representing the expected number of evolutionary operations. An initial
gene order was assigned at the root so it can evolve down to the leaves following
the tree topology mimicking the natural process of evolution, by carrying out a
number of predefined evolutionary events. In this way, we obtained the complete
evolutionary history of the model tree and the whole set of genomes it has.

We utilized the simulator proposed by Lin et al. [20] to produce birth-death
tree topologies. With a model tree, we were able to produce genomes of any
size and difficulty by simply adjusting three main parameters: the number of
genomes m, the number of genes n, and the tree diameter d.

Predicted ancestral genomes produced from a method were evaluated in terms
of the total number of correctly inferred adjacencies (i.e. those also appear in
the true ancestral genomes) divided by the total number of adjacencies in both
true genome and predicted genome. In particular, if D represents the set of gene
adjacencies in the real genome and D′ the predicted genomes. We calculate C,
the rate of correct adjacency by:

C =
|D ∩D′|
|D ∪D′| × 100%

Errors are in two parts. If a gene adjacency in D is missing in D′, such a gene
adjacency is called a false negative (FN) adjacency. The false negative rate
measures the proportion of false negative adjacencies with respect to the total
number of gene adjacencies in D and D′. The false positive (FP) rate is
defined similarly, by swapping D and D′.

24 F. Hu, L. Zhou, and J. Tang

3.2 Comparing the Performance with Existing Probabilistic
Method

Though probabilistic methods of ancestral reconstruction for rearrangement data
are relatively new, they have shown great potential in both scalability and effi-
ciency. As we have mentioned, InferCarsPro and PMAG both aim to formulate
the conditional probabilities of gene adjacencies, however due to excessive num-
ber of states InferCarsPro has to handle, it is much more computationally
demanding than PMAG. In this section, we compared the performance of PMAG to
InferCarsPro.

Figure 1 (left) shows the assessment result of the two methods using datasets
of 10 genomes and each of 1000 genes. From the figure, PMAG achieved better
accuracies than InferCarsPro in all tests, with about 5 percentage points of im-
provements. Given datasets containing more genomes and genes, InferCarsPro
encountered great difficulty to finish, while PMAG scales well to handle them
within a few hours of computation (Figure 1 right).

Fig. 1. Comparison between PMAG and InferCARsPro. X-axis represents the tree diam-
eters from 1 to 4 times the number of genes.

3.3 Comparing the Performance with Parsimonious Methods

Parsimonious methods are in general time-consuming but very accurate. Their
performances are sometimes referred as the upper bound of all methods [21], but
such methods (GRAPPA for example) that directly optimize for the exact solution
of the genome median problem suggested by Blanchette et al. [22] are NP-hard.

We compared the performance of PMAG, InferCarsPro and one direct opti-
mization method GRAPPA with Xu’s ASMedian solver [9] (GRAPPA-DCJ). Figure 2
shows the result of comparison. Because datasets are relatively easy, all methods
can in average reconstruct more than 95% of true adjacencies and the differ-
ences among methods are not significant. However it is worth noting that PMAG
receives less effect on tree diameters based on the observation that although
PMAG performs sightly worse than GRAPPA methods under 0.6n tree diameter, it

Reconstructing Ancestral Genomic Orders 25

Fig. 2. Comparison among PMAG, InferCARsPro and GRAPPA with DCJ median solvers.
X-axis represents the tree diameters that are 0.6, 0.9 and 1.2 times the number of
genes.

can outperform the other methods at higher tree diameters. InferCARsPro is
inferior to both PMAG and GRAPPA methods in the test which is consistent with
the simulation results in Zhang et al.’s study [21].

3.4 Time Consumption

All tests were conducted on a workstation with 2.4Ghz CPUs and 4 GB RAM.
We summarizes the running time of each method in the tests of Figure 1 and
Figure 2 in Table 2 and Table 3 respectively. From table 2, we can see appar-
ently InferCARsPro is computationally more demanding than PMAG, and hence
restricted to handle small dataset. In table 3, both InferCARsPro and GRAPPA

suffered significantly from high tree diameters, but tree diameter shows little
impact on the running time of PMAG.

Table 2. Comparison of average time cost between two methods in seconds

Method Genome# Gene# Tree Diameter

1n 2n 3n 4n

10 1000 10 11 13 15PMAG

10 1000 5.4× 103 1.4× 104 2.9× 104 7.2× 104InferCARsPro

20 10000 2.4× 103 3.6× 103 5.7× 103 9.5× 103PMAG

26 F. Hu, L. Zhou, and J. Tang

Table 3. Comparison of average time cost between four methods in seconds

Tree Diameter PMAG InferCARsPro GRAPPA-DCJ

0.6 1 300 8
0.9 1 1200 820
1.2 1 2600 7000

4 Conclusion

We introduced a new probabilistic method PMAG for ancestral gene-order infer-
ence. PMAG determines the state of each adjacency in the binary encoding to
be either present or absent in an ancestral genome according to the conditional
probability. Final ancestral genome is retrieved by connecting individual adjacen-
cies into continuous regions. Experimental results show that ancestral genomes
can be accurately inferred by PMAG. PMAG is also significantly faster in running
time than InferCarsPro and parsimonious methods using direct optimization
such as GRAPPA.

Much work remains to be done. In particular, we will try to extend our evolu-
tionary model from rearrangements to a more general one in which other opera-
tions such as insertion (addition), duplication, or deletion (gene loss) are possible
and hence introduce a new challenge to this study.

Acknowledgements. FH, LZ and JT are supported by grant NSF 0904179.

References

1. Kent, W., Baertsch, R., Hinrichs, A., Miller, W., Haussler, D.: Evolutions caul-
dron: duplication, deletion, andrearrangement in the mouse and human genomes.
Proceedings of the National Academy of Sciences 100(20), 11484–11489 (2003)

2. Muller, K., Borsch, T., Legendre, L., Porembski, S., Theisen, I., Barthlott, W.:
Evolution of carnivory in Lentibulariaceae and the Lamiales. Plant Biology 6(4),
477–490 (2008)

3. Moret, B., et al.: A New Implmentation and Detailed Study of Breakpoint Analysis.
In: Pacific Symposium on Biocomputing (2001)

4. Guillaume, B., Pevzner, P.: Genome-scale evolution: reconstructing gene orders in
the ancestral species. Genome Research 12(1), 26–36 (2002)

5. Max, A., Pevzner, P.: Breakpoint graphs and ancestral genome reconstructions.
Genome Research 19(5), 943–957 (2009)

6. Ma, J.: A probabilistic framework for inferring ancestral genomic orders. In: 2010
IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE
(2010)

7. Sankoff, D., Blanchette, M.: Probability models for genome rearrangement and
linear invariants for phylogenetic inference. In: Proceedings of the Third Annual
International Conference on Computational Molecular Biology. ACM (1999)

Reconstructing Ancestral Genomic Orders 27

8. Sophia, Y., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by
translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346
(2005)

9. Xu, A.W., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid
exact solutions to the median problem. In: Crandall, K.A., Lagergren, J. (eds.)
WABI 2008. LNCS (LNBI), vol. 5251, pp. 25–37. Springer, Heidelberg (2008)

10. Hu, F., et al.: Maximum likelihood phylogenetic reconstruction using gene order
encodings. In: 2011 IEEE Symposium on Computational Intelligence in Bioinfor-
matics and Computational Biology (CIBCB). IEEE (2011)

11. Lin, Y., Hu, F., Tang, J., Moret, B.: Maximum likelihood phylogenetic reconstruc-
tion from high-resolution whole-genome data and a tree of 68 eukaryotes. In: Proc.
18th Pacific Symp. on Biocomputing, PSB 2013, pp. 285–296 (2013)

12. Yang, Z., Sudhir, K., Masatoshi, N.: A new method of inference of ancestral nu-
cleotide and amino acid sequences. Genetics 141(4), 1641–1650 (1995)

13. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. Journal of molecular evolution 17(6), 368–376 (1981)

14. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analy-
ses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690
(2006)

15. Stamatakis, A.: New standard RAxML version with marginal ancestral state com-
putationas, https://github.com/stamatak/standard-RAxML

16. Tang, J., Wang, L.: Improving genome rearrangement phylogeny using sequence-
style parsimony. In: Fifth IEEE Symposium on Bioinformatics and Bioengineering,
BIBE 2005, pp. 137–144. IEEE (2005)

17. Jahn, K., Zheng, C., Kováč, J., Sankoff, D.: A consolidation algorithm for genomes
fractionated after higher order polyploidization. BMC Bioinformatics 13(suppl. 19),
S8 (2012)

18. Ma, J., Zhang, L., Suh, B., Raney, B., Burhans, R., Kent, W., Blanchette, M.,
Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome.
Genome Research 16(12), 1557–1565 (2006)

19. Lin, Y., Rajan, V., Moret, B.: Bootstrapping phylogenies inferred from rearrange-
ment data. BMC Algorithms for Molecular Biology 7, 21 (2012)

20. Lin, Y., Rajan, V., Moret, B.: Fast and accurate phylogenetic reconstruction from
high-resolution whole-genome data and a novel robustness estimator. J. Computa-
tional Biology 18(9), 1131–1139 (2011) (special issue on RECOMB-CG 2010)

21. Zhang, Y., Hu, F., Tang, J.: A mixture framework for inferring ancestral gene
orders. BMC Genomics 13(suppl. 1), S7 (2012)

22. Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. Genome Infor-
matics 8, 25–34 (1997)

https://github.com/stamatak/standard-RAxML

Computational Methods for the Parallel 3D

Simulation of Biochemical Kinetics
at the Microscopic Scale

Laurent Crépin1,2, Fabrice Harrouet1, Sébastien Kerdélo1,2,
Jacques Tisseau1, and Pascal Redou1

1 Lab-STICC, UMR 6285 CNRS, UEB/ENIB/CERV, France
2 Diagnostica Stago, Gennevilliers, France

crepin@enib.fr

Abstract. This work takes place in the context of biochemical kinetics
simulation for the understanding of complex biological systems such as
hæmostasis. The classical approach, based on the numerical solving of
differential systems, cannot satisfactorily handle local geometrical con-
straints, such as membrane binding events. To address this problem, we
propose a particle-based system in which each molecular species is rep-
resented by a three-dimensional entity which diffuses and may undergo
reactions. Such a system can be computationaly intensive, since a small
time step and a very large number of entities are required to get signifi-
cant results. Therefore, we propose a model that is suitable for parallel
computing and that can especially take advantage of recent multicore
and multiprocessor architectures. We present our particle-based system,
detail the behaviour of our entities, and describe our parallel computing
algorithms. Comparisons between simulations and theoretical results are
exposed, as well as a performance evaluation of our algorithms.

Keywords: Particle-based system, parallel computing, biochemical ki-
netics, microscopic scale simulation.

1 Introduction

A common way to improve the understanding of complex biological systems is
to run experiments on models in order to test hypotheses. The results are then
extrapolated from the models to the real systems they represent. One usually
distinguishes in vivo experimentation, taking place in a living organism, from in
vitro experimentation, run in test tubes. One challenge for the upcoming years
would be to save the various expenses of some of these experiments by running
reliable computer simulations of predictive numerical models.

Complex biological systems necessarily involve the occurence of biochemical
events such as chemical reactions; numerical simulations of these complex sys-
tems thus imply the modelisation of their kinetics. Biochemical kinetics can be
simulated in many ways, but this is originally done by implementing empirical

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 28–39, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Computational Methods for the Parallel 3D Simulation 29

laws, e.g. mass-action or Henri-Michaelis-Menten [1], into a set of ordinary dif-
ferential equations that is solved using a numerical method [2]. The presence of
biological material, such as membranes, can induce heterogeneity in the medium
where the biochemical events occur. Partial differential equations are thereby re-
quired to take into account this spatial heterogeneity. The differential equation
approach relies on the hypothesis that the medium is large enough to provide sig-
nificant results. When it comes to small volumes, e.g. inside a biological cell, this
assumption fails, which makes this approach only suitable for macroscopic scale
simulations. Gillespie [3, 4] thus introduced stochastic simulation algorithms to
mimic accurately the behaviour of the solution of the chemical master equation
that describes biochemical kinetics at the mesoscopic scale. This approach takes
into account the discrete and stochastic aspects of biochemical reactions [5] and
makes the numerical simulation of biochemical kinetics possible, whatever the
volume. The case of heterogeneous media has also been treated [6].

It is now widely accepted that, in addition to the discrete and stochastic as-
pects, spatial constraints must also be taken into account in order to simulate
accurately biochemical kinetics [7]. As an example, the blood coagulation cascade
[8] involves enzymatic reactions that take place both in solution and on a mem-
brane surface. Moreover, as the clotting process goes on, a fibrin mesh is formed
and the medium becomes insoluble: classical enzyme kinetics no longer applies.
Simulations of such complex phenomena are typically achieved using particle-
based methods that intend to describe biochemical kinetics at the microscopic
scale [9]. These methods track individual molecules, named particles or entities,
as they diffuse in three dimensions, collide and react. The main drawbacks with
particle-based methods stand in the small time steps and the very large number
of particles required to obtain significant results, which makes the simulations
computationaly intensive. Although other particle-based simulations of biochem-
ical kinetics at the microscopic scale already exist [10–13], none of them, to our
knowledge, focused on a noteworthy gain of computational performances.

This work addresses this issue using a particle-based method for the simula-
tion of biochemical kinetics at the microscopic scale that is suitable for parallel
computing and that can especially take advantage of recent multicore and mul-
tiprocessor architectures. We present our model in two steps. First, we introduce
our particle-based system and detail the behaviour of our entities, as well as their
specific scheduling scheme. Then, we describe the cache-aware simulation engine
and the parallel computing algorithms that we developed for performance pur-
pose. This description is followed by a validation section in which we illustrate
our approach on both a reversible and an enzymatic reactions and compare the
results of our method with those obtained with the classical approach. As our
work intends to improve the performances of the simulations, we then show the
computational gain that our algorithms offer. Finally, we discuss our choices and
give some perspectives for our work.

30 L. Crépin et al.

2 Model

2.1 Particle-Based System

Our method uses a particle-based approach, illustrated on Fig. 1, to simulate
the kinetics of biochemical systems with spatial and stochastic details [14]. Two
kinds of biochemical species can be represented: the Species3D entities which
diffuse in solution (in a Volume) and the Species2D entities which diffuse along
a physiological membrane (on a Surface). Each molecular species is represented
by its geometrical shape, i.e. an ellipsoid for the 3D species in solution and a
disc for the 2D species bound to a membrane.

Fig. 1. UML class diagram of our model – The Species class represents an entity
diffusing in a Volume or on a Surface, and which may undergo a Reaction.

Each entity diffuses in the reactional volume according to Brownian motion,
with a diffusion coefficient computed from the entity’s radii, the volume tempera-
ture and viscosity. It can also undergo two main biochemical reactions: unimolec-
ular ones or bimolecular ones. These reactions are responsible for the creation
or the destruction of other entities and, as a result, they govern the variations
of the chemical concentrations in the system. The whole life cycle of an entity
is detailed in Fig. 2 algorithm. The following sections describe each step of this
algorithm.

Unimolecular Reactions. Unimolecular reactions are phenomena which can
transform a biochemical species (the reagent) into one or more products. A
reaction R converting a molecular species C in a couple A and B is represented
by the scheme:

k
R : C → A+ B

(1)

where k is the reaction rate characterising the velocity of the phenomenon.
A molecular species can take part in one or many reactions. In order to sim-

ulate a system of n reactions, it is necessary to compute the probability of each

Computational Methods for the Parallel 3D Simulation 31

Begin

End

Unimolecular
reaction

Bimolecular
reaction

Brownian
motion

Unimolecular
reaction?

Time step
elapsed?

Bimolecular
reaction?

Collision
detected?

No

No No

Yes

Yes Yes

Yes

No

Fig. 2. Life cycle of an entity – This diagram summarises the global behaviour of an
entity during one simulation step. First, the entity checks if an unimolecular reaction
should happen. If not, the entity diffuses in the environment according to Brownian
motion. Then, if a collision happens, the entity tries to react with the collided one and
undergoes a bimolecular reaction if necessary. This process is repeated until the time
step allocated to the entity is elapsed.

one, i.e. the probability P (Ri) of the event “the reaction Ri occurs on a given
time step Δt” and the probability P (R) of the event “no reaction occurs”. These
probabilities, also detailed in [15], are given by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P (Ri) =
ki

n∑
j=1

kj

×
(
1− exp(−

n∑
j=1

kj ×Δt)
)

P (R) = exp(−
n∑

j=1

kj ×Δt) .

(2)

This system determines which reaction will occur during the current time step
Δt thanks to uniform random sampling.

Brownian Motion and Collision Detection. Brownian motion characterises
the erratic motion of an entity within a fluid. It arises from the collisions between
the solvent particles and the entity itself which seems to move randomly under
these impacts [16]. The theory associated with the brownian motion of ellipsoidal
molecules is studied in [17, 18]. At the microscopic scale, this phenomenon is
usually modeled using three-dimensional random walks, i.e. Markov processes
defined by a succession of random elementary steps. The future position and
orientation of the entity solely depend on its current location, which means the
process is memoryless. This succession of elementary steps can be approximated
by random Gaussian sampling. As a matter of fact, during a time step Δt,

32 L. Crépin et al.

each three-dimensional translation and rotation are computed from six random
variables following a Gaussian law with a zero mean and a standard deviation
of

√
2DΔt, where D is the diffusion coefficient of the entity.

During its diffusion step, an entity may encounter one of its close neighbours.
To determine if a collision occured between two molecular species, we use the
collision detection algorithms for ellipsoids presented in [19]. Then we use a
dichotomy algorithm to manage the collision and avoid the overlap of the entities.
Such collisions can lead to bimolecular reactions.

Bimolecular Reactions. As opposed to unimolecular ones, bimolecular re-
actions can only occur when collisions happen in the system. As a result, two
reagents are necessary to create a product. A reaction R between two species A
and B, producing C, can be represented as follows:

k
R : A + B → C

(3)

where k is the reaction rate. To simulate such reactions, the probability P (R)
that a reaction occurs upon a collision between the species A and B has to be
determined. This probability is maximal, i.e. P (R) = 1, when all the collisions
between the reagents lead to the creation of a product. The corresponding max-
imum rate constant kmax can easily be computed by using our simulator and by
fitting the concentrations with the solution of the mass action law equation. It is
worth noting that the values we obtain for different simulations are rather con-
sistent with Von Smoluchowski theory [1] which states that the maximum rate
constant is kmax = 4π(DA+DB)(rA+rB)NA, where DA and rA are respectively
the diffusion coefficient and the radius of the species A (likewise for B), and
NA is the Avogadro number. Once kmax has been determined, the probability
P (R) is given by the ratio k

kmax
where k is the rate constant that we want to

simulate. A reaction R occurs only if the value of a random variable X , following
a standard uniform distribution, is less than P (R).

However, if two entities do not react the first time they collide, there is a
very high probability that they will during the next simulation steps. This is
due to the fact that the entities are still very close to each other after their first
encounter. To avoid the bias introduced by this recollision problem, we decide
to consider only the first collision in a sequence of encounters.

Scheduling. The interactions between our entities are not predetermined and
the overall behaviour of the system is unknown. Because these entities are not
just numerical equations which results could be added, as in a synchronous
system, they introduce concurrency in the simulation. When two entities collide
and react in one place, a third one cannot pretend having reacted with one
of them (which could have just disappeared) in another place during the same
time step; the state of the system has been irreversibly changed by the preceding
reaction and all the following actions have to consider this new state. Therefore
we chose to use an asynchronous and chaotic iteration scheme to schedule the

Computational Methods for the Parallel 3D Simulation 33

Entities

Time

Entity 1

Entity 3
Entity 2

step

Fig. 3. Asynchronous and chaotic scheduling – This figure shows the execution order
of three entities scheduled according to the asynchronous and chaotic iteration scheme.
Three simulation steps are represented. The scheduler executes every entity exactly
once in a time step, randomly reordering the sequence at each new step.

entities [20]. Although a common time step ensures the temporal consistency of
the entities, the asynchronous scheduler executes every entity one after another
inside this time step in order to take into account every single event. However,
since every entity is affected by the previous ones actions, a fixed scheduling
order would have implied an unwanted priority between them. As shown on Fig.
3, the chaotic scheduler gets rid of this artifact with a random reordering at
each new step. The convergence and stability of such a scheduling scheme in the
context of differential system solving were strictly validated in [21].

2.2 Parallel Asynchronous Scheduler

According to the law of large numbers, a particle-based biochemical kinetics sim-
ulation requires many entities (approximately 105) to be significant. Moreover,
the microscopic scale implies the use of very short time steps (approximately 10
nanoseconds) and therefore, many iterations are required to compute the whole
simulation. To speed up such intensive computations, we developed algorithms
suitable for parallel computing on multicore and multiprocessor architectures.

Background: Cache-Aware Simulation Engine. As detailed in [22], we
previously designed a simulation engine that can harness the full potential of all
the Central Processing Units (CPUs) (would they be processors, physical cores,
or logical cores) in a parallel computer.

To prevent cache-memory trashing, the whole set of entities to schedule is
subdivided in as many subsets as there are CPUs. Since our simulations imply a
common repetitive time step, some work-stealing [23] is used at the end of each
step to dynamically balance the CPU workloads, keeping all of them busy until
the end. This stealing relies on the knowledge of the cache-memory hierarchy to
minimise trashing. The assignment of every entity to the CPU in charge of its
execution is arbitrary at first but is dynamically adjusted: each executed entity
keeps track of its neighbours’ current CPU and moves to the most represented
one for the next simulation step. It is then very likely for an entity and its
neighbours to be run on the same CPU, and thus to find their respective data

34 L. Crépin et al.

already up to date in the same cache-memory. This solution is more generic
than a spatial partitioning and offers a better load balancing when it comes to
heterogeneous spatial distributions or gregarious behaviours.

This cache-aware simulation engine shows a very good scalability related to
the number of CPUs used [22]. However, it was formerly dedicated to syn-
chronous simulations and, as stated in section 2.1, our particle-based biochemical
model relies on an asynchronous scheduling scheme.

From Synchronous to Asynchronous Parallel Scheduling. The first issue
we have to deal with consists in keeping the consistency of any entity when ac-
cessed by many CPUs simultaneously. Each entity has its own reader-writer-lock
[23] which is locked for writing (one at a time) when its behaviour is executed.
When an entity collects informations from its neighbours, it locks them for read-
ing (many reader-lock operations are allowed at the same time on a given lock).
In case it needs to modify a neighbour, the reader-lock is promoted to writer-lock
(one at a time). Even though the consistency is now guaranteed for concurrent
accesses, the main drawback with overlapped lock operations stands in dead-
lock situations: several entities having to lock themselves and one another, thus
waiting endlessly for these locks to become free.

To prevent this new issue from happening, we turn the locking operations
into attempts that may immediately fail if the lock is not free. This requires
that the behaviour of the entities has to be written so that all the decision
making takes place in local variables; the entities are finally modified only if
all the chain of locking operations succeeds. When a locking failure occurs, the
currently executed behaviour is simply given up as if it has never been started; it
will be rescheduled later in the same time step. Nevertheless, when approaching
the end of the step, a live-lock situation may occur: the rescheduled entities which
interact with one another on different CPUs are probably the only remaining
ones and will forever miss their locking attempts.

To get around this situation, as soon as an entity fails twice to be scheduled in
the same time step, we postpone its execution to the next step. As the scheduling
follows a random order, it is very unlikely for these concurrent entities, amongst
many other ones now, to be scheduled simultaneously one more time. Of course,
a postponed entity has to be scheduled twice in this next step to ensure a long
term temporal consistency between entities.

Although these locking attempts, rescheduling and postponing decisions may
seem to raise the computation workload, they actually do not so much. Since our
scheduler tends to assign the entities to the CPUs according to their neighbour-
hood, most of the time a whole set of interacting entities is scheduled by only
one CPU. Consequently, the locking attempts are serialised and mostly succeed,
thus it is scarcely ever necessary to reschedule or even postpone some entities.

3 Results

This section presents some results which validate our algorithms on simple simu-
lations. We achieve this validation by comparing the simulation results obtained

Computational Methods for the Parallel 3D Simulation 35

with our approach with the ones determined by solving the differential equations
of the mass action law. Then, we study how simulation speed scales related to
the number of CPUs involved.

3.1 Validation

We chose to illustrate our approach on a reversible reaction and an enzymatic
reaction as they are the most frequent in biochemical kinetics. These reactions
are modeled by one bimolecular reaction and one or two unimolecular reactions.
As an example for the simulation of a reversible reaction, our approach is illus-
trated on the interaction of blood coagulation factor Xa with its tight-binding
inhibitor, tissue factor pathway inhibitor (TFPI). The whole biochemical de-
scription of this interaction can especially be found in [24]. Then, we illustrate
our method on the activation of prothrombin (II) into thrombin (IIa) by an enzy-
matic complex (PTPtex) that can be found in the venom of the Australian snake
Pseudonaja textilis. This interaction is fully detailed in [25]. Table 1 gathers all
the data we used to set up our validation simulations.

Table 1. Validation parameters – This table presents the validation conditions of our
model. It gathers every data necessary to reproduce our results. It should be noted
that the shape of factors Xa and II are assumed to be prolate ellipsoids whereas the
other species have a spherical shape.

Reversible reaction Enzymatic reaction

kon
Xa + TFPI ←→ Xa · TFPI

koff

KM kcat
PTPtex + II ←→ PTPtex · II → PTPtex + IIa

kon = 0.9 × 106 M−1 · s−1

koff = 3.6 × 10−4 s−1
KM = 1.83 × 10−6 M
kcat = 5.87 s−1

Initial concentrations

[Xa]0 = 170 nM
[TFPI]0 = 2.5 nM

[PTPtex]0 = 100 nM
[II]0 = 1.4μM

Dimensions

Xa TFPI Xa·TFPI PTPtex II PTPtex · II IIa

rx = 26.0 Å rx = 22.5 Å
ry = 26.0 Å r = 22.5 Å r = 35.9 Å r = 39.3 Å ry = 22.5 Å r = 45.0 Å r = 25.0 Å
rz = 51.5 Å rz = 60.0 Å

The results computed from our simulations are illustrated on Fig. 4, and are
consistent with the ones coming from reference laws: the mean relative errors at
steady state are about 1% for both reversible and enzymatic reactions. These
two validations are essential before addressing more complex simulations. One
may notice that we do not deal with membrane binding events in these examples.
This point will be developed in the perspective section.

36 L. Crépin et al.

 167

 167.5

 168

 168.5

 169

 169.5

 170

 0 7 14 21 28 35
 0

 0.5

 1

 1.5

 2

 2.5

[X
a]

 (
nM

)

[T
F

P
I],

 [X
a⋅

T
F

P
I]

(n
M

)

Time (sec)

Reversible reaction

[Xa]
[TFPI]

[Xa⋅TFPI]

 0

 250

 500

 750

 1000

 1250

 1500

 0 5 10 15 20

[II
a]

 (
nM

)

Time (sec)

Enzymatic reaction

[IIa]

Fig. 4. Reversible and enzymatic reaction validation – These curves illustrate the val-
idation of our model on two kinds of reaction. Smooth curves are computed from mass
action law whereas noisy ones are the results of our simulations.

3.2 Performances

We ran many simulations, similar to the preceding ones, on a single computer
with two Intel R© Xeon R© X5680 processors at 3.33 GHz clockspeed and a 12-
Mbyte level-3 cache each. Thanks to the 2-way SMT technology, the twelve
CPU cores provided here can be seen as twenty four logical CPUs running si-
multaneously. Figure 5 reports the computational frequency, i.e. the number of
simulation steps per second, as well as the number of simulated entities running
at a given rate, depending on the number of CPUs used. Both curves seem to
scale linearly but with a slight change in the slopes around twelve CPUs. When
using only the first dozen of CPUs, the physical cores fully exploit their respec-
tive hardware resources and cache hierarchy, but when it comes to the second
dozen of CPUs, the 2-way SMT technology is involved and implies the sharing of
the same resources for twice as much workload. This explains the slightly lower
efficiency.

These results show that, as long as the CPUs come along with some cache
memory, the simulation performances scale linearly with the number of CPUs
involved. This lets us foresee that the cache-aware design of our simulator would
enable even bigger simulations when using over twenty four CPUs.

4 Discussions and Perspectives

4.1 Alternatives for Computing Power

Intensive computations can be handled by several technologies involving many
computing units. Some of these parallel solutions are local, taking place in a
single computer, such as multicore and multiprocessor computers or graphical
processing units (GPUs), whereas others are distributed, implying communi-
cation through a network (dedicated or not), such as computer clusters, grid
computing or cloud computing.

Computational Methods for the Parallel 3D Simulation 37

0

50

100

150

200

250

300

350

400

450

500

1 4 8 12 16 20 24
0

5000

10000

15000

20000

25000

30000

35000

Fr
eq

ue
nc

y
(H

z)

N
um

be
ro

fe
nt

iti
es

Number of CPUs

C

B

A

Efficiency for:

· 12 CPUs: B
12A = 1.11

· 24 CPUs: C
24A = 0.91

Frequency
Entities

Fig. 5. Performance scaling – One curve illustrates the scaling of the computational
frequency, depending on the number of CPUs used, for a simulation with 22438 entities.
The other one shows the number of entities that our simulator can handle at a given
computational frequency (280 Hz).

While distributed solutions are flexible and may provide a huge amount of
computing units, the communication delays make them only suitable for com-
putational problems which can be naturally subdivided into many independent
subproblems requiring very little or even no synchronisation. Our simulations are
made of multiple recurrent interactions which cannot be split in fixed and inde-
pendent subsets beforehand; they require intensive synchronisations between the
computing units. Because the hardware of general purpose parallel computers
ensures very efficiently the cache-memory coherency, we decided to focus on this
technology in the design of our simulation engine. Even in this favourable local
context, our experiments showed that the slightest clumsiness in synchronisation
and cache usage impacted significantly the overall computing performance; this
definitely discouraged us from investigating distributed solutions.

GPUs are local to a computer and provide much more computing units than
CPUs do. Our experiments highlighted that, not only the data transfer delay
with the GPUs was far from being negligible compared to the computation du-
ration, but also the programming model associated with this technology [26]
was well-suited for a synchronous simulation scheme in which thousands of en-
tities can compute simultaneously an identical behaviour without taking care of
any unexpected data change in their neighbourhood. Unfortunately, as stated
in section 2.2, the asynchronous simulation scheme associated with our model
implies a careful synchronisation strategy. Although some synchronisation prim-
itives are available on GPUs, their usage totally contradicts the programming
model of these devices and tends to ruin dramatically the raw computing per-
formance they are capable of. Consequently, we prefer saving this technology for
synchronous simulations of physical phenomena which could however interact
with our particle-based asynchronous simulations.

38 L. Crépin et al.

4.2 Perspectives and Future Work

Due to the fact that we chose the microscopic scale, our diffusion algorithm
requires a very short time step in order not to miss collisions (approximately
10 nanoseconds). This constraint somewhat limitates the performances of the
simulations. As a matter of fact, two main parameters govern these performances:
the number of entities executed during each simulation step and the length of
this time step. Parallel computing enables us to increase the first parameter by
using more computational units. However, it has no impact on the second one.
We are currently working on a statistical method to address this problem. For the
time being, we recommend the use of our simulator for short time applications,
i.e. biochemical processes lasting no longer than ten seconds.

Beside this time step optimisation, a part of our model still needs to be thor-
oughly validated. As stated previously in section 2.1, the molecular species in
solution may bind with membranes. Altough such bindings (and unbindings)
are fully implemented, we still have to ensure the consistency of our results with
experimental ones. In the present situation, our simulator provides nothing more
than the classical approach. Nevertheless, this method is the only one capable
of handling local geometrical constraints in biochemical systems. We will there-
fore focus our future work on modeling and validating these membrane binding
events.

References

1. Purich, D., Allison, R.: Handbook of biochemical kinetics. Academic Press (2000)
2. Alves, R., Antunes, F., Salvador, A.: Tools for kinetic modeling of biochemical

networks. Nature Biotechnology (6), 667–672 (2006)
3. Gillespie, D.T.: A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions. Journal of Computational Physics 22(4),
403–434 (1976)

4. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25), 2340–2361 (1977)

5. Van Kampen, N.: Stochastic processes in physics and chemistry. North Holland
(March 2007)

6. Stundzia, A.B., Lumsden, C.J.: Stochastic simulation of coupled reaction-diffusion
processes. Journal of Computational Physics 127(1), 196–207 (1996)

7. Resat, H., Costa, M.N., Shankaran, H.: Spatial aspects in biological system simu-
lations. In: Johnson, M.L., Brand, L. (eds.) Computer Methods, Part C. Methods
in Enzymology, vol. 487, pp. 485–511. Academic Press (2011)

8. Marder, V.J., Aird, W.C., Bennett, J.S., Schulman, S., White, G.C.: Hemostasis
and Thrombosis: Basic Principles and Clinical Practice. Lippincott Williams &
Wilkins (November 2012)

9. Tolle, D.P., Le Novère, N.: Particle-based stochastic simulation in systems biology.
Current Bioinformatics 1(3), 315–320 (2006)

10. Andrews, S.S., Addy, N.J., Brent, R., Arkin, A.P.: Detailed simulations of cell
biology with smoldyn 2.1. PLoS Computational Biology 6(3) (March 2010)

11. Stiles, J.R., Bartol, T.M.: 4. In: Monte Carlo Methods for Simulating Realistic
Synaptic Microphysiology Using MCell. CRC Press (2001)

Computational Methods for the Parallel 3D Simulation 39

12. Plimpton, S.J.: Chemcell: a particle-based model of protein chemistry and diffusion
in microbial cells. Technical report, Sandia National Laboratories (December 2003)

13. Van Zon, J., Ten Wolde, P.: Green’s-function reaction dynamics: a particle-based
approach for simulating biochemical networks in time and space. The Journal of
Chemical. Physics 123, 234910, 1–16 (2005)

14. Kerdélo, S.: Méthodes informatiques pour l’expérimentation in virtuo de la
cinétique biochimique - Application à la coagulation du sang. PhD thesis, Uni-
versité de Rennes 1 (January 2006)

15. Andrews, S.S., Bray, D.: Stochastic simulation of chemical reactions with spatial
resolution and single molecule detail. Physical Biology 1(3), 137 (2004)

16. Berg, H.C.: Random Walks in Biology. Princeton University Press (September
1993)

17. Perrin, F.: Mouvement brownien d’un ellipsöıde (i): Dispersion diélectrique pour
des molécules ellipsoidales. Journal de Physique et le Radium 5(10), 497–511 (1934)

18. Perrin, F.: Mouvement brownien d’un ellipsöıde (ii): Rotation libre et
dépolarisation des fluorescences. translation et diffusion des molécules ellipsöıdales.
Journal de Physique et le Radium 7(1), 1–11 (1936)

19. Wang, W., Wang, J., Kim, M.S.: An algebraic condition for the separation of two
ellipsoids. Computer Aided Geometric Design 18(6), 531–539 (2001)

20. Harrouet, F.: oRis: s’immerger par le langage pour le prototypage d’univers virtuels
à base d’entités autonomes. PhD thesis, Université de Bretagne Occidentale (De-
cember 2000)

21. Redou, P., Gaubert, L., Desmeulles, G., Béal, P.A., Le Gal, C., Rodin, V.: Absolute
stability of chaotic asynchronous multi-interactions schemes for solving ode. CMES:
Computer Modeling in Engineering & Sciences (December 2010)

22. Harrouet, F.: Designing a multicore and multiprocessor individual-based simulation
engine. IEEE Micro. 32(1), 54–65 (2012)

23. Padua, D.A.: Encyclopedia of Parallel Computing. Springer (2011)
24. Baugh, R.J., Broze, G.J., Krishnaswamy, S.: Regulation of extrinsic pathway fac-

tor Xa formation by tissue factor pathway inhibitor. Journal of Biological Chem-
istry 273(8), 4378–4386 (1998)

25. Bos, M.H.A., Boltz, M., St. Pierre, L., Masci, P.P., de Jersey, J., Lavin, M.F.,
Camire, R.M.: Venom factor V from the common brown snake escapes hemostatic
regulation through procoagulant adaptations. Blood 114(3), 686–692 (2009)

26. NVIDIA: NVIDIA CUDA C best practice. Technical report, NVIDIA (October
2012)

A Tool for Non-binary Tree Reconciliation

Yu Zheng and Louxin Zhang

Department of Mathematics, National University of Singapore, Singapore 119076

Abstract. Tree reconciliation has been widely used to study the im-
portant roles of gene duplication and loss, and to infer a species tree
from gene trees in evolutionary biology. Motivated by the fact that both
reference species trees and real gene trees are often non-binary, we de-
velop a novel computer program to reconcile two non-binary trees. Such
a program extends the usefulness of tree reconciliation greatly, as it can
be used for gene duplication inference and species tree inference.

1 Introduction

Genes are usually gained through duplication and are lost via deletion or pseu-
dogenization throughout evolution. Because of gene duplication and loss, the
evolutionary history of a gene family – the gene tree – is often not concordant
with the evolutionary history of the species – the species tree – in which the genes
are present. Hence, a gene tree and the corresponding species tree are often com-
pared using a procedure known as tree reconciliation to study the roles of gene
duplication and loss, and to infer the species tree from gene trees in evolutionary
biology. Gene tree and species tree reconciliation are parsimonious approaches
that formalize the following intuition: If the offspring of a gene tree node is dis-
tributed in the same set of species as that of one of its direct descendants, then
the node corresponds to a gene duplication event.

Tree reconciliation was originally proposed for binary trees [10,18]. Real gene
trees, however, often contain non-binary nodes or weakly supported branches,
as there is not enough signal in the gene sequence data to date gene divergence
events. On top of ambiguity in a gene tree, there are also uncertainties in the
species tree. The reference species trees in the NCBI taxonomy database are
frequently non-binary due to the unresolved order of species divergence. There-
fore, it is important and much more challenging to study the reconciliation of
non-binary trees [3,9,21]. The reconciliation problem is solvable in linear time
if the input gene and species trees are all binary [6,22], solvable in polynomial
time for binary species trees [8,4], and NP-hard for non-binary species trees as
shown here.

We shall study the general reconciliation problem in the binary refinement
model [9]. The binary refinement model was first used for non-binary tree recon-
ciliation in [3]. However, their tool, Softparsmap, has limitations. For example,
Softparsmap may overestimate the number of gene loss events for a non-binary
gene tree node. In the present paper, we present a novel approach for reconciling
non-binary trees. Our approach has been implemented into a computer tool call
TxT, for which the online server is on http://phylotoo.appspot.com.

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 40–51, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Tool for Non-binary Tree Reconciliation 41

a b c d e f h

A

 a b a d e a h d e f h a c

B Duplication
Gene loss

C

Fig. 1. (A) A binary species tree S over species a, b, c, d, e, f, h. (B) A binary gene tree
G of a gene family, which contains four genes present in a, two genes in d, e, f , and one
gene in b, c, f . (C) A duplication history of three duplication and eight loss events is
inferred from λS

G.

2 Basic Concepts and Notation

2.1 Gene Trees and Species Trees

Gene or species trees are rooted graphs in which there is exactly one distinguished
‘root’ node such that there is a unique path from it to any other node. A species
tree represents the evolutionary history of a set of modern species. Its leaves are
nodes with degree one and labeled uniquely by modern species. A leaf or the
branch incident to it represents the labeling species. Non-leaf nodes are internal
nodes. A branch between two internal nodes represents an ancestral species.
Here, a species tree also contains a ‘branch’ entering the root to represent the
common ancestor of all the extant species (Fig 1A).

A gene tree represents the evolutionary relationships of a gene family, in which
a leaf represents a family member. Here, we assume that the multiple gene family
members that are present in a species are products of gene duplication. Gene
tree and species tree reconciliations are used to infer the duplication history of
the corresponding gene family. In the study of tree reconciliation, a gene tree leaf
is labeled with the species in which the corresponding gene is present. Note that
the leaves of the gene tree of a multiple-gene family are not uniquely labeled.

Given a gene or species tree T , r(T) denotes its root; LV(T),
◦
V (T), V (T),

and E(T) denote the sets of its leaves, internal nodes, all the nodes and all the
branches, respectively. For u, v ∈ V (T), v is said to be an ancestor of u and u is
an descendant of v if v is in the unique path from r(T) to u; v is the parent of
u and u is a child of v if v is an ancestor of u and (v, u) ∈ E(T). We use p(u)
to denote the parent of u if u is a non-root node. The induced subtree of T of
all the descendants of u is written T (u). The subset of the labels of the leaves
in T (u) is called a cluster of T and denoted by L(u).

Each u ∈
◦
V (T) has two or more children. It is binary if it has two children.

A tree is binary if all its internal nodes are binary and non-binary otherwise.

42 Y. Zheng and L. Zhang

2.2 Tree Reconciliation

Consider the gene tree G of a gene family and the corresponding species tree S
such that L(G) ⊆ L(S). The least common ancestor (lca) reconciliation λS

G is a
map from V (G) to V (S) defined as:

λS
G(u) =

{
v such that L(v) = L(u) if u ∈ LV(G),

lca{λS
G(x) : x ∈ LV(G(u))} if u ∈

◦
V (G),

(1)

where lca{· · · } denotes the most recent common ancestor of the species in the
set. Clearly, for g ∈ V (G) with k children gi, λ

S
G(g) = lca{λS

G(gi) : i ≤ k}. We
shall write λ when no confusion is likely to arise after G and S are dropped.

Assume that both G and S are binary. A node u ∈
◦
V (G) is a duplication

node if λS
G(u) = λS

G(u
′) for some child u′ of u. If we assume that the duplication

event corresponding to a duplication node u occurs in the ancestral species cor-
responding to (p(λS

G(u)), λ
S
G(u)), we obtain a hypothetical duplication history of

the gene family [10] (Fig 1). The number of inferred duplication nodes is defined
as the duplication cost of λS

G, denoted by D(G,S) [18]. Additionally, gene losses
usually have to be assumed in the inferred duplication history. For instance, for
u ∈ V (G) with a child u′, if λS

G(u)
= λS
G(u

′), we have to assume the correspond-
ing gene has been lost in each branch off the lineage path from λ(u) to λ(u′).
Overall, we have to assume the following number of gene loss events:

L(G,S) =
∑

u∈V (G)

[l(u, u′) + l(u, u′′) + 2(Iu − 2)] , (2)

where u′ and u′′ are the children of u, Iu is 1 if u is a duplication node and 0
otherwise, and l(u, x) = |{v ∈ V (S) : L(λ(x)) ⊆ v ⊆ L(λ(u))}| for x = u′, u′′.
L(G,S) is called the gene loss cost of λS

G. In fact, any duplication history of the
gene family contains at least D(G,S) duplication and L(G,S) loss events [5,11].
Thus λS

G induces a parsimonious duplication history of the corresponding gene
family.

We define the affine duplication cost as the weighted sum of the duplication
and gene loss cost, given the weights of duplication and loss events. Affine costs
have been used in recent studies of tree reconciliation [7,8].

3 Non-binary Tree Reconciliation

For non-binary gene and species trees, the lca reconciliation between them does
not necessarily induce a duplication history that has the fewest duplication and
loss costs [3]. Different models have been proposed to study how to reconcile
non-binary trees for gene duplication inference [4,8,9]. In this work, we study
non-binary tree reconciliation in the binary refinement model [9].

A (binary) tree T is a (binary) refinement of T ′ if every cluster of T ′ is also a
cluster of T or, equivalently, if T ′ can be obtained from T via a series of branch
contractions. Formally, we shall investigate the following problem:

A Tool for Non-binary Tree Reconciliation 43

General Reconciliation
Input: A species tree S, a set of gene trees Gi (1 ≤ i ≤ k), and a reconciliation
cost function c().
Output: The binary refinements Ŝ and Ĝi of S and Gi (1 ≤ i ≤ k), respectively,
such that

∑
1≤i≤k c(Ĝi, Ŝ) is minimized.

The unique binary refinement of a fully binary tree is itself. Hence, the tradi-
tional reconciliation problem is a special case of the above problem. In addition,
the species tree inference problem is also a special case of it, as every binary
tree is a binary refinement of the corresponding star tree (in which all non-root
nodes are leaves). The NP-hardness of the species tree inference proved in [15]
(see also [1]) leads to the following complexity result, which is stronger than the
NP-hardness result given in [3].

Theorem 1. The general reconciliation problem under the duplication cost is
NP-hard even for one binary gene tree when the input species tree is non-binary.

The full proof of this theorem is omitted due to space limits and can be found
in the full version of this work [23].

4 A Heuristic Algorithm for Binary Refinement of A
Species Tree

Consider a gene tree G and the corresponding species tree S such that L(G) ⊆
L(S). To find the best binary refinement of S, we resolves its non-binary nodes
one by one. This is because the gene duplication and loss events associated with
each gene tree node are counted independently.

Let s ∈ V (S) have the children s1, s2, · · · , sn(s), where n(s) ≥ 3. We define
λ−(s) = {g ∈ V (G) : λ(g) = s}. We have the following facts:

– For each g ∈ λ−(s), there are at least two children si and sj of s such that

L(g) ∩ L(si)
= φ, L(g) ∩ L(sj)
= φ.

– For each g ∈ λ−(s) and a child g′ of g, λ(g′) ∈ S(sj) for some j ≤ n(s) if
g′
∈ λ−(s).

To refine s, we need to replace the star tree consisting of s and its children
with a rooted binary tree Ts with root s and n(s) leaves each labeled uniquely
by some si, 1 ≤ i ≤ n(s). It is well known that Ts is equivalent to a partial
partition subset P(Ts) = {[L(u1), L(u2)] : u1 and u2 are siblings in Ts} over
{s1, s2, · · · , sn(s)}. The partition corresponding to the children of r(Ts) is called
the first partition of the tree. Hence, we can refine s by recursively solving the
minimum duplication bipartition (MDB) problem [17]:

Input: A gene tree G.
Output: A bipartition [P1, P2] of L(G) that minimizes the number of internal
nodes g such that we have:

∃g′ ∈ C(v) such that L(g′) ∩ P1
= φ and L(g′) ∩ P2
= φ, (3)

where C(g) is the set of the children of g.

44 Y. Zheng and L. Zhang

We take this approach for two purposes. First, it may reduce the overall du-
plication cost. Second, pushing duplication down in the species tree may reduce
the gene loss cost even if the resulting reconciliation does not have the smallest
duplication cost.

Unfortunately, it is an open problem whether the MDB problem is NP-hard or
polynomial-time solvable. In the rest of this section, we present a novel heuristic
method for it. Consider a gene tree G. Let [P1, P2] be a bipartition of L(G). For

an internal node g ∈
◦
V (G) with children g1, g2, g does not satisfy Eqn. (3) if

and only if, for every i = 1, 2, we have:

L(gi) ⊆ P1 or L(gi) ⊆ P2. (4)

In the rest of this discussion, for clarity, we call L(g1)|L(g2) a split rather than
a partial partition for any gene tree node g. Motivated by this fact, we require
that the partition [P1, P2] does not cut a gene tree split L(g1)|L(g2)| · · · |L(gk)
if and only if for every i,

L(gi) ∩ P1 = φ, or L(gi) ∩ P2 = φ. (5)

Our proposed algorithm for the MDB problem is called the First Partition (FP)
algorithm and summarized below. It attempts to maximize the split
L(g1)|L(g2)| · · · |L(gk) that satisfies the condition given in Eqn. (5) instead of
Eqn. (3).

The FP algorithm is illustrated by an example in Fig. 2, where the compu-
tation flow of the FirstExtension({c}, φ) is outlined. In the example, we try
to find the first partition for a gene tree with the leaf labels a, b, c, d, e, f . The
gene tree splits are used in Step 1 of FirstExtension() and SplitExtension(),
but are not listed explicitly. After the ‘partial’ partition [{c}, {f}] is obtained,
the subprocedure SplitExtension() is called to extend [{c}, {f}] into a partition
[{c, e, b, d}, {f, a}]. Since the computation of FirstExtension() is heuristic, the
partition [{c, e, b, d}, {f, a}] obtained from [{c}, {f}] might not be the optimal
solution. Hence, FirstExtension() is called on [{a, f}, φ] to obtain good partitions
in the case that [{c}, {f}] does not lead to the optimal first partition. As such,
FirstExtension() is recursively called during computation. Overall, the subpro-
cedure FirstExtension() is recursively called five times, outputting the following
partial partitions (in red):

[{c}, {f}], [{c, f}, {b}], [{c, f, b}, {d}], [{c, f, b, d}, {a}], [{c, f, b, d, a}, {e}].

SplitExtension() is called on these partial partitions to produce the five partitions
listed at the bottom (in green). Finally, the algorithm selects the best partition
over all the partitions obtained.

We generated 8,000 random datasets divided into eight groups to evaluate the
FP algorithm. For each dataset, we checked whether it outputted a partition with
the maximum number of splits satisfying Eqn. (5) or not. Here, the maximum
number of splits not cut by a partition was obtained by an exhaustive search for
evaluation purposes. We compared the FP algorithm with the algorithm reported

A Tool for Non-binary Tree Reconciliation 45

First Partition Algorithm

Input: A gene tree G.

S = φ; /* This is used to keep bipartitions */
For each i

FirstExtension([{i}, φ], S);
Output the best partition in S ;

FirstExtension([P,φ], S) {
1. For each i �∈ P

Compute n(i), the # of the gene tree splits not cut by [P, {i}];
2. Select j such that n(j) = maxi n(i);
3. If P ∪ {j} �= L(G) do {

SplitExtension([P, {j}], S); FirstExtension([{j} ∪ P, φ], S);
} else

Add [P, {j}] into S ;
} /* End of FirstExtension */
SplitExtension([P1, P2], S) {

1. For each i �∈ P1 ∪ P − 2
Compute n1(i), the # of the gene tree splits not cut by [P1, P2 ∪ {i}];
Compute n2(i), the # of the gene tree splits not cut by [P1 ∪ {i}, P2];

2. Select j such that max{n1(j), n2(j)} = maxi{n1(i), n2(i)};
3. If (P1 ∪ P2 ∪ {j} �= L(G)) do {

SplitExtension([{j} ∪ P1, P2], S) if n1(j) ≥ n2(j);
SplitExtension([P1, P2 ∪ {j}], S) if n2(j) > n1(j);

} else {
Add [{j} ∪ P1, P2] into S if n1(j) ≥ n2(j);
Add [P1, P2 ∪ {j}] into S if n2(j) > n1(j);

}
} /* End of SplitExtension */

in [17]. We call the latter the HC algorithm, as it is derived from an algorithm
for the hypergraph min cut problem given in [16]. Our tests showed that the FP
algorithm outperformed the HC algorithm for most datasets (Table 1).

The FP algorithm takes O(k3) set operations in the worst case for refining
a non-binary species tree node with k children. Putting all the refinements of
non-binary nodes together, we obtain a good binary refinement Ŝ of the species
tree. It takes less than a minute to resolve a non-binary species tree over 100
species, as the degrees of non-binary nodes are usually small in a species tree.

5 Tool Implementation

In a separate work [23], we presented a linear-time algorithm for reconciling
an arbitrary gene tree and a binary species tree. On an input gene tree G
and the corresponding binary species tree S, the algorithm finds a binary re-
finement G′ of G such that D(G′, S) = minR∈BF D(R,S) and L(G′, S) =
minR∈BF :D(R,S)=D(G′,S) L(R,S), where BF is the set of all the binary refine-
ments of G. Such an optimality criterion is used as a gene lose event is often
attributed to an absence in the species when many species have sparse sampling
of genes [3].

46 Y. Zheng and L. Zhang

{c}, {f}

{c}, { }

{c, f}, {}

{c, f}, {b} {c. f. b}, {}

{c. f. b}, {d} {c. f. b, d}, { }

{c. f. b, d}, {a} {c. f. b, d, a}, { }

{c. f. b, d, a}, {e}

{c}, {f, a}

{c, e}, {f, a}

{c, e, b}, {f, a}

{c, e, d, b}, {f, a} {c, f, b}, {a, d, e}

{c, f, b, a}, {d, e}

{c, f, b, e, d}, {a}

Fig. 2. An illustration of the execution of FirstExtension({c}, φ). Here, the input gene
trees are over the genes present in six species a, b, c, d, e, f . FirstExtension() is re-
cursively executed five times (indicated with black vertical arrows), generating partial
partitions (in red). Light horizontal arrows denote the four recursive calls of FirstEx-
tension(). SplitExtension() is called on each of these partial partitions to produce the
five partitions shown in green, where a diagonal arrow denotes a call and a curved
arrow a series of calls to it. The gene tree topology is irrelevant and thus is not given.

By integrating such an algorithm and the FP algorithm, we obtain a novel tool
named TxT for reconciling non-binary trees. As illustrated in Fig. 3, on a gene
tree G and the corresponding species tree S, TxT computes a binary refinement
Ŝ of S based on the splits of G using the FP algorithm. It then executes the
reconciliation algorithm reported in [23] to compute a binary refinement Ĝ of
G based on Ŝ. Finally, it outputs a duplication history for the corresponding
gene family based on Ĝ and Ŝ. TxT, implemented in Python and available on
http://phylotoo.appspot.com, has the following features:

Table 1. Comparison of the HC [17] and FP algorithms. In each test case, there
are 1,000 datasets each consisting of cs random splits over a fixed set of c species.
An algorithm made an error if it did not output an optimal partition that gave the
smallest number of splits satisfying the condition in Eqn. (3). Each entry in the last
two rows indicates how many times the corresponding algorithm did not output an
optimal partition in the 1,000 tests of the corresponding group.

Test cases I II III IV V VI VII VIII

of species (c) 5 5 10 10 10 15 15 15
of splits (cs) 5 10 5 10 20 7 15 20
of errors made by FP 7 0 0 1 0 0 0 0
of errors made by HC 15 18 4 2 0 3 1 1

A Tool for Non-binary Tree Reconciliation 47

a b c d e f h

S

 ac a de ah ab de fh

G

a b c d e f h

Ŝ

ac a de ah ab de fh

a b c d e f h

ab a de ah ac de fh

Ĝ

 Step 1
 Refine S based on
 the structural inform.
 of G, obtaining Ŝ

Step 2
Refine G based on
the refinement Ŝ
of S, obtaining Ĝ

Step 3
Reconcile Ĝ and Ŝ
to infer the evolution
of the gene family

8 losses
3 duplications

Fig. 3. A schematic view of the proposed method for reconciliation of a gene tree G
and the corresponding species tree S.

1. It provides information on whether an inferred duplication is compulsory or
weakly supported hypothetical, as in [21].

2. For a gene family, it outputs a set of solutions with the same reconciliation
cost.

3. By taking a set of gene trees and a star species tree as input, it outputs a
binary tree over the species. Hence, it can be used for species tree inference.

4. It also has a command-line version to allow for automated analysis of a large
number of gene trees.

6 Validation Tests

6.1 Inference of Tor Gene Duplications

The target of rapamycin (Tor) is a eukaryotic gene responsible for sensing nutri-
ents. In mammals, the unique mTor governs cellular processes via two distinct
complexes: Tor Complex1 (TorC1) and TorC2. In fungal species, however, there
are two Tor genes. Hence, how fungal Tor homologs were produced is an inter-
esting question.

Shertz et al. investigated the evolution of the Tor family in the fungal kingdom
[19]. They reconstructed the Tor tree over 13 fungal species (redrawn in Fig. 4A)
and inferred the duplication events that probably were responsible for the two
Tor genes present in the fungal species. Their work suggests that a whole-genome
duplication event, occurring about one 100 million years (MYS) ago, produced
the two Tors in Saccharomyces cerevisiae, Saccharomyces paradoxus, and sev-
eral other species, whereas three independent lineage-specific duplications were
responsible for the Tor genes in Schizosaccharomyces pombe, Batrachochytrium
dendrobatids and Pleurotus ostreatus. When TxT was applied to the Tor tree
and the non-binary species tree downloaded from the NCBI taxonomy database
(drawn in Fig. 4B), the same duplication events were inferred.

48 Y. Zheng and L. Zhang

B. dendrobatidis
S. punctatus

P. ostreatus
C. neoformans

C. glabrata
S. cerevisiae
S. cryophilus

S. japonicus
S. pombe

R. oryzae
M. circinelloides
P. blakesleeanus

Chytridiomycota

Zygomycota

Basidiomycota

Ascomycota S. octodporus

R.ory Tor1

A

B

Fig. 4. (A) A Tor gene tree over 13 fungal species, redrawn based on the Tor gene tree
reported in [19]. (B) The corresponding reference species tree of the species downloaded
from the NCBI taxonomy database.

6.2 Simulation Data

To study gene duplication in Drosophila species, Hahn et al. obtained 13,376
gene trees over 12 species and the following corresponding species tree [12] (in
Newick format):

((D.gri,(D.vir,D.moj)),(D.wil,((D.pse,D.per),(D.ana,((D.ere,D.yak),(D.mel,(D.sim,D.sec))))))).

We called it the Drosophila tree. The selected species have evolved from their
most recent common ancestor for the past roughly 63 MYS. In the Drosophila
tree, we randomly generated 1,000 gene families in the birth–death model by
setting both duplication and loss rates to 0.002 per MYS, as estimated in [12].
For each random gene family, we obtained its true gene tree from the recorded
duplication events and derived two more approximate gene trees by respectively
contracting branches that were shorter than 2 and 3 MYS in the true tree. We
inferred duplication events by reconciling each of the three trees and the species
tree using TxT.

As a reconciliation method, TxT tends to overestimate duplication events in
‘deep’ branches that are close to the root [13]. In our experiment, it correctly
inferred the true duplication history for all except for one gene family. When
approximate trees were used, however, our program frequently overestimated
duplications. Nevertheless, it still inferred duplication events on all branches
with high accuracy. The accuracy statistics are omitted here and can be found
in the full version of this work [23].

6.3 Accuracy of Species Tree Inference for Drosophila Species

We evaluated the accuracy of TxT in binary refinement of species tree using the
same simulated datasets. We obtained the following non-binary species tree (in
Newick format):

A Tool for Non-binary Tree Reconciliation 49

((D.gri,D.moj,D.vir),D.wil,(D.pse,D.per),(D.mel,D.sec,D.sim,D.ere,D.yak,D.ana)). (6)

by contracting the branches that were shorter than 10 MYS in the Drosophila
tree. We then evaluated the accuracy of TxT by counting how many times we
obtain the Drosophila tree as the binary refinement of the tree given in (6) when
the latter and a set of gene trees were given as input. We observed the following
facts:

1. When true gene trees were used, TxT outputted the Drosophila tree..
2. When contracted gene trees were used, TxT still performed well. For exam-

ple, with more than 15 contracted gene trees with three or less non-binary
nodes, it outputted the tree in about 97% cases (Table 2).

Table 2. Accuracy of TxT, given as a percentage of the tests for which it outputted
the Drosophila tree as the binary refinement of the non-binary species tree given in
(6). Each test case includes 100 tests in which N inputted gene trees were obtained by
contracting random branches in randomly selected gene trees. RE: the average number
of branches that were contracted in each gene tree; MD: the maximum degree of a
non-binary gene tree node; A: the accuracy of TxT.

Cases I II III IV V VI VII VIII IX X XI XII XIII XIV XV

N 5 10 15 20 30 5 10 15 20 30 5 10 15 20 30
RE 0.97 0.99 1.03 0.99 0.99 2.91 2.95 2.90 2.95 2.99 4.83 5.00 4.94 4.91 5.02
MD 2.73 2.75 2.75 2.72 2.73 3.73 3.78 3.75 3.77 3. 80 4.96 5.14 5.09 5.01 5.08
A(%) 90 100 100 100 100 72 90 97 99 100 27 65 66 76 90

Table 3. Accuracy of inferring the unrooted Drosophila tree form unrooted gene trees.
Accuracy0: The accuracy of inferring the tree from the original gene trees in [13];
accuracyX: The accuracy of the inference with the non-binary gene trees obtained
from the original gene trees via branch contraction with a cut-off value X of 60 or 90.

No. of gene trees Accuracy0 (%) Accuracy60 (%) Accuracy90 (%)

5 21 35 34
10 45 72 54
20 61 87 68
30 76 92 84

The accuracy of TxT in inferring an unrooted species tree was again evaluated
by using the Drosophila species tree. We considered the original gene trees as
well as the two classes of rooted non-binary gene trees obtained by contracting
the branches with cut-off support values of 60 and 90. Our results (summarized
in Table 3) suggest that contracting the weakly supported edges (with support
value below 60) improves the accuracy of the inference of unrooted species trees.
It also indicates that contraction of strongly supported branches reduces the
inference accuracy. Which cut-off value achieves the highest accuracy for species
tree inference is worthy for further study.

50 Y. Zheng and L. Zhang

7 Conclusion

The general reconciliation problem is an important and challenging problem in
phylogenetic analysis. Only special cases of it have been studied in different
models [4,8,21]. Here, we have investigated it using the binary refinement model
[9]. By proposing a novel method for refining non-binary species tree nodes based
on the input gene trees, we developed a novel tool for the general reconciliation
problem. This tool can be used for the study of gene duplication as well as for
species tree inference.

Because of low taxon sampling or the long branch attraction phenomena,
deep branches in both gene and species trees are often reconstructed with low
support value [14]. Any error occurring in deep branch estimation might lead
to overestimation of duplications on an incorrectly inferred deep branch. In its
application to gene duplication inference, TxT attempts to reduce error by rec-
onciling non-binary gene and species trees. For species tree inference, it is worth
pointing out that contracting weakly supported gene tree branches improves the
inference of the corresponding species tree from gene trees as indicated by our
validation test.

TxT has several strengths. First, it reconciles two non-binary trees. The cur-
rent version of NOTUNG requires either the gene or the species tree to be
binary [6]. SoftParsmap can take two non-binary trees as input but does not re-
fine species trees [3]. Secondly, our tool can be applied to both gene duplication
inference and species tree inference.

Horizontal gene transfer (HGT) and incomplete lineage sorting (ILS) are two
other mutational events that may cause the discordance of a gene tree and the
corresponding species tree. Recently, simultaneous inference of HGT, ILS, gene
duplication and loss events have been studied [2,20]. As a future research topic,
we shall investigate how to reconcile non-binary trees for detecting HGT, ILS,
gene duplication and loss events.

Acknowledgment. LX Zhang would like to thank David A. Liberles for useful
comments on the preliminary draft of this paper. This work was supported by
Singapore MOE Tier-2 grant R-146-000-134-112.

References

1. Bansal, M.S., Shamir, S.: A note on the fixed parameter tractability of the gene-
duplication problem. IEEE-ACM Trans. Comput. Biol. Bioinform. 8, 848–850
(2010)

2. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation prob-
lem with gene duplication, horizontal transfer and loss. Bioinform. 28, i283–i291
(2012)

3. Berglund-Sonnhammer, A., et al.: Optimal gene trees from sequences and species
trees using a soft interpretation of parsimony. J. Mol. Evol. 63, 240–250 (2006)

4. Chang, W.-C., Eulenstein, O.: Reconciling gene trees with apparent polytomies.
In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 235–244.
Springer, Heidelberg (2006)

A Tool for Non-binary Tree Reconciliation 51

5. Chauve, C., El-Mabrouk, N.: New perspectives on gene family evolution: Losses in
reconciliation and a link with supertrees. In: Batzoglou, S. (ed.) RECOMB 2009.
LNCS, vol. 5541, pp. 46–58. Springer, Heidelberg (2009)

6. Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene
duplications and optimizing gene family trees. J. Comput. Biol. 7, 429–447 (2000)

7. Doyon, J.-P., Ranwez, V., Daubin, V., Berry, V.: Models, algorithms and programs
for phylogeny reconciliation. Briefings Bioinform. 12, 392–400 (2012)

8. Durand, D., Halldorsson, B., Vernot, B.: A hybrid micro- macroevolutionary ap-
proach to gene tree reconstruction. J. Comput. Biol. 13(2), 320–335 (2005)

9. Eulenstein, O., Huzurbazar, S., Liberles, D.: Reconciling phylogenetic trees. In:
Dittmar, K., Liberles, D. (eds.) Evolution After Duplication, pp. 185–206. Wiley-
Blackwell, New Jersey, USA (2010)

10. Goodman, M., et al.: Fitting the gene lineage into its species lineage, a parsi-
mony strategy illustrated by cladograms constructed from globin sequences. Syst.
Zool. 28, 132–163 (1979)

11. Górecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theoret.
Comput. Sci. 359, 378–399 (2006)

12. Hahn, M.W., et al.: Estimating the tempo and mode of gene family evolution from
comparative genomic data. Genome Res. 15, 1153–1160 (2005)

13. Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for
vertebrate genome evolution. Genome Biol. 8(7), R141 (2007)

14. Koonin, E.V.: The origin and early evolution of eukaryotes in the light of phyloge-
nomics. Genome Biol. 11, 209 (2010)

15. Ma, B., Li, M., Zhang, L.X.: From gene trees to species trees. SIAM J. Comput. 30,
729–752 (2000); also in Proc. RECOMB 1998, pp. 182–191 (2000)

16. Mak, W.-K.: Faster min-cut computation in unweighted hypergraphs/circuit
netlists. In: Proc. 2005 IEEE Int’l. Symp. VLSI, Automation and Test, pp. 67–70
(2005)

17. Ouangraoua, A., Swenson, K., Chauve, C.: A 2-approximation for the minimum
duplication speciation problem. J. Comput. Biol. 18, 1041–1053 (2011)

18. Page, R.: Maps between trees and cladistic analysis of historical associations among
genes, organisms, and areas. Syst. Biol. 43, 58–77 (1994)

19. Shertz, C.A., Bastidas, R.J., Li, W., Heitman, J., Cardenas, M.E.: Conservation,
duplication, and loss of the Tor signaling pathway in the fungal kingdom. BMC
Genomics 11, 510 (2010)

20. Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring du-
plications, losses, transfers and incomplete lineage sorting with nonbinary species
trees. Bioinform. 28, 409–415 (2012)

21. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary
species trees. J. Comput. Biol. 15(8), 981–1006 (2008)

22. Zhang, L.X.: On a Mirkin–Muchnik–Smith conjecture for comparing molecular
phylogenies. J. Comput. Biol. 4, 177–187 (1997)

23. Zheng, Y., Wu, T., Zhang, L.X.: Reconciliation of gene and species trees with
polytomies, arXiv:1201.3995, arxiv.org (2012)

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 52–63, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Patterns of Chromatin-Modifications Discriminate
Different Genomic Features in Arabidopsis

Anuj Srivastava1, Xiaoyu Zhang2, Sal LaMarca3, Liming Cai1,3,
and Russell L. Malmberg1,2

1 Institute of Bioinformatics, University of Georgia, Athens, GA 30602-7229
2 Department of Plant Biology, University of Georgia, Athens, GA 30602-7404
3 Department of Computer Science, University of Georgia, Athens, GA 30602

Abstract.

Motivation: Dynamic regulation and packaging of genetic information is
achieved by the organization of DNA into chromatin. Nucleosomal core
histones, which form the basic repeating unit of chromatin, are subject to
various post-translational modifications such as acetylation, methylation,
phosphorylation and ubiquitinylation. These modifications have effects on
chromatin structure and, along with DNA methylation, regulate gene
transcription. The goal of this study was to determine if patterns in
modifications were related to different categories of genomic features, and, if
so, if the patterns had predictive value.

Results: In this study, we used publically available data (ChIP-chip) for
different types of histone modifications (methylation and acetylation) and for
DNA methylation for Arabidopsis thaliana and then applied a machine learning
based approach (a support vector machine) to demonstrate that patterns of these
modifications are very different among different kinds of genomic feature
categories (protein, RNA, pseudogene and transposon elements). These patterns
can be used to distinguish the types of genomic features. DNA methylation and
H3K4me3 methylation emerged as features with most discriminative power.
From our analysis on Arabidopsis, we were able to predict 33 novel genomic
features, whose existence was also supported by analysis of RNA-seq
experiments. In summary, we present a novel approach which can be used to
discriminate/detect different categories of genomic features based upon their
patterns of chromatin modification and DNA methylation.

Keywords: Chromatin Modification, DNA Methylation, Support Vector
Machine, Machine Learning, Arabidopsis.

1 Introduction

In eukaryotic nuclei, DNA associates with proteins to form chromatin. The structure
of chromatin plays an essential role in organization of genome, transcriptional activity
and developmental state memory (Bernstein, et al., 2002). The basic unit is the
nucleosome in which 146 base pairs of DNA are wrapped around an octamer of four

 Patterns of Chromatin-Modifications Discriminate Different Genomic Features 53

core histone proteins (H2A, H2B, H3 and H4) (Luger, et al., 1997). The structures of
core histone protein are predominantly globular with the exception an unstructured
amino-terminal 'tail' of 25-40 residues. A variety of post-translational modifications
(acetylation, phosphorylation and methylation) occurs on these unstructured tails
(Zhang and Reinberg, 2001) and have effects on gene expression. These changes are
referred to as epigenetic modifications as changes in gene expression are caused by
mechanisms other than changes in the underlying DNA sequence.

A second type of epigenetic modification is the addition of methyl groups to the
DNA (DNA methylation), primarily at CpG sites, to convert cytosine to 5-
methylcytosine. Cytosine DNA methylation is a conserved epigenetic silencing
mechanism involved in many important biological processes including defense
against transposon proliferation, heterochromatin formation, control of genome
imprinting, regulation of endogenous gene expression, and silencing of transgenes
(Bender, 2004; Paszkowski and Whitham, 2001; Zhang, et al., 2006). Another type of
epigenetic data (but not a modification) is the enrichment of RNA Pol II in different
genic regions (Chodavarapu, et al., 2010). Relating the multitude of epigenetic
modifications to their regulatory effects poses a complex and fascinating challenge.

In recent years, the use of modification-specific antibodies in chromatin immune-
precipitations (ChIP) coupled to gene array technology (ChIP on CHIP) has become
an important experimental tool to determine these modifications (Kouzarides, 2007).
An advance on ChIP-chip technology is ChIP-Seq which involves chromatin
immune-precipitations followed by sequencing. ChIP-Seq offers greater coverage,
less noise and higher resolution than its predecessor ChIP-chip, owing largely to
advances in next generation sequencing technology (Park, 2009).

In this research, we used chromatin modification data to test their ability to be
markers to discriminate or detect different classes of genomic features (Protein
coding, RNA, Pseudogene and Transposable elements). The two main questions that
we asked here are: 1) Are there differences between the epigenetic modification
patterns of different genomic feature types? 2) Can these patterns be used to find the
new instances of these features from the un-annotated regions of genome? To perform
this analysis, we gathered data for different kinds of epigenetic modifications (DNA
methylation, H3 methylation and H4 acetylation at different lysine residue) and also
RNA Pol II occupancy of Arabidopsis thaliana and then used a machine learning
based approach (support vector machine) to distinguish/detect different genomic
features.

Support vector machines (SVMs) (Vapnik, 1995) are machine learning techniques
widely used to solve classification problems (Barutcuoglu, et al., 2006; Bhardwaj, et
al., 2005; Hoglund, et al., 2006). In bioinformatics, the SVM is a widely used
classification method in studies such as prediction of DNA-binding proteins
(Bhardwaj, et al., 2005), gene function (Barutcuoglu, et al., 2006) and protein
subcellular localization (Hoglund, et al., 2006). We implemented an SVM which
found that there are substantial differences between modification patterns of genomic
feature types which can be readily used to distinguish them. We also showed that
these patterns can be used to classify novel genomic features from the genomic
background whose existence was then confirmed by RNA-seq experiment.

54 A. Srivastava, X. Zhang, and S. LaMarca

2 Methods

Datasets. We obtained data for 7 different types of chromatin modifications for
Arabidopsis thaliana. These datasets were generated using biochemical methods in
combination with whole-genome tiling microarrays at 35bp resolution (Chodavarapu,
et al., 2010; Costas, et al., 2011; Kong, et al., 2007; Zhang, et al., 2006; Zhang, et al.,
2009). The datasets came in the form of probabilities of modification of particular
genomic region. These probabilities were obtained by a two-state hidden Markov
model (HMM) based on probe-level t statistics by tool tilemap (Ji and Wong, 2005).
Prior to analysis, we converted the 35 bp region probability values in the dataset, into
base specific probabilities. The region ± 20bp were assigned the same modification
probabilities and values in adjacent overlapping regions were averaged together. The
detailed methodology used in obtaining datasets can be found in these articles
(Chodavarapu, et al., 2010; Costas, et al., 2011; Kong, et al., 2007; Zhang, et al.,
2006; Zhang, et al., 2009).

In addition, we also had expression information obtained by an RNA-seq
experiment for Arabidopsis thaliana (obtained from 2-week-old seedlings). RNA-seq
was performed as previously described by Lister, et al., 2008. Image analysis and base
calling were performed with the standard Illumina pipeline (Firecrest v1.3.4 and
Bustard v.1.3.4). The resulting reads were aligned to the Arabidopsis genome
(TAIR9) using Tophat (version 1.0.13)/Bowtie (version 0.12.3) with the following
commands: --solexa1.3-quals -F 0 -g 1 -I 5000 (Langmead, et al., 2009; Trapnell, et
al., 2009).

Obtaining the Genomic Features. Prior to obtaining the genomic features, we
adjusted the coordinates of the epigenetic modification probabilities (which was based
on TAIR5) using the assembly update information file obtained from TAIR database
(ftp://ftp.arabidopsis.org/home/tair/Software/UpdateCoord/). This enabled us to use
feature coordinates based upon the latest TAIR release i.e. TAIR10. We obtained
General feature format (GFF) file containing coordinates of genomic features
(protein, RNA, pseudogene and transposable element gene) of Arabidopsis from the
TAIR database (TAIR10) and assigned epigenetic modification probabilities to
genomic features. Overlapping genomic features and features with less than 30% of
the regions covered with modification probabilities were ignored. This cut-off was
decided by plotting the number of features against different spanning thresholds.

Feature Selection. We used the feature selection tool provided in LIBSVM (Chang
and Lin, 2001) to determine which of the initially considered epigenetic features are
actually useful in discriminating different genomic features. An F-score (Chang and
Lin, 2001) was used to measure the discriminating power of each feature value to our
classification problem in different categories. The code used and information
regarding the F-score can be found at the LIBSVM website
(http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#feature_selection_tool).

Creating Datasets for SVM Classification. The 24,872 proteins, 806 RNAs, 803
pseudogenes, and 3006 transposons with their corresponding 7 epigenetic feature
modification probabilities were used to create datasets for 5-fold cross-validation
experiments, for 2-class and 4-class SVMs. The datasets for 5-fold cross-validation

 Patterns of Chromatin-Modifications Discriminate Different Genomic Features 55

for the 4-class SVMs were created by randomly shuffling the data for proteins, RNAs,
pseudogenes, and transposons. After the random shuffling, the first 20% of proteins,
RNAs, pseudogenes, and transposons were extracted and a union of these 4
extractions was used to create the first validation set; the union of the remaining 80%
from each class was used to create the first training set. Similarly, the second 20% of
each class was extracted and combined for the second validation dataset, and the
remaining 80% were used as the second training dataset, and this was continued until
there were 5 independent validation sets and 5 training sets for the 5-fold cross-
validation experiments for the 4-class SVM.

To equalize the number of features of each type, oversampling was applied by
copying all RNAs (30 times), pseudogenes (30 times) and transposons (8 times) in
each dataset, to roughly equalize the number of proteins, RNAs, pseudogenes, and
transposons in each validation and training dataset for the 4-class SVMs. Thus, 5
validation and 5 training oversampled datasets were created that had the properties
that the validation sets were independent of their corresponding training sets, and each
set had roughly an equal number of data points consisting of each class. The “all”
dataset for the 4-class SVM was created by taking the union of the 5 validation sets.
The training sets were used for training 4-class SVMs to predict which of the 4
classes a set of 7 epigenetic feature modifications belong to for 5-fold cross-validation
experiments, the validation sets were used as an unbiased testing set for the trained 4-
class SVMs for 5-fold cross-validation experiments, and the “all” dataset was used to
train the 4-class SVM on 100% of the oversampled data.

For the 2-class SVMs, and the 4-class SVM training and validation, all
oversampled datasets were split into 6 subsets consisting of 6 binary combinations of
the 4 different classes: {protein, RNA}, {protein, pseudogene}, {protein,
transposon}, {RNA, pseudogene}, {pseudogene, transposon}, and {RNA,
transposon}. For example, the {protein, RNA} validation datasets consisted of subsets
of the 4-class SVM validation datasets that contained all of the protein and RNA data
points, but no data points from the other classes. This was also used to create the
training and “all” datasets for the 2-class SVMs that were used to predict if a
sequence is protein or RNA. This process was repeated to create validation, training,
and “all” datasets for the other binary combinations.

SVM Classification Experiments: Six, 2-class SVM classifiers were created using
the LIBSVM package (Chang and Lin, 2001) that was trained on the 2-class training
datasets for each of the 6 binary combinations for 5-fold cross-validation experiments.
The radial basis kernel function and SVM probability estimates were used in the
LIBSVM package. The 4-class SVM was built in a similar fashion using LIBSVM,
but it used the majority vote multi-label class SVM that splits the problem of 4-
classification into a 6 part, 2-classification problem.

The training of the 4-class SVM-based classifier was performed using a standard
procedure provided in LIBSVM (Chang and Lin, 2001) to find values of two parameters
C and γ, where C controls the trade-off between training errors and classification
margins, and γ determines the width of the radial basis kernel (Chang and Lin, 2001). A
grid search using 5-fold cross-validation was used on the training and validation sets for
the 4-class SVM to find the optimal parameters of C = 1 and γ = 2 that yielded the

56 A. Srivastava, X. Zhang, and S. LaMarca

lowest average error (1 – average accuracy) on their independent validation sets without
showing signs of over-fitting as shown in Figure 1. The optimal parameters of C and γ
were used for training the 2-class and 4-class SVMs with LIBSVM using the radial
basis kernel and modification probability estimates aforementioned.

Prediction of Novel Genomic Features: The coordinates and sequences of
intergenic regions were obtained from the TAIR database. Intergenic sequences were
divided into two parts - intergenic transcribed/non-transcribed, based on RNA-seq
expression data. The intergenic regions with at least 2 RNA-seq reads covering at
least 20% of the total intergenic region length were considered to be transcribed. This
threshold was decided after plotting different combinations i.e. number of
reads/spanning length against the number of sequences. We further ignored the
intergenic regions which are less than 200bp and also ignored the sequences ±50bp
from both ends of the intergenic region.

Fig. 1. Fivefold cross-validation results (for the 4- class SVM with γ = 2) indicate the lack of
over fitting which might occur due to over-sampling of the data. At the optimal parameters, the
average error (1- average accuracy) is same for the training and validation sets. These
parameters were used during feature discrimination and detection.

Afterwards, we extracted the chromatin modification probabilities of the intergenic
regions and used them to identify novel features. Potential novel features were
identified by using genomic feature probabilities and intergenic region probabilities as
training and testing datasets during classification, respectively. The multi-level
classifier provides the probability estimates for a test data instance of it belonging to
each of four feature classes. We chose a probability threshold of 0.70 (determined
after plotting the distribution of values of each feature classes) to assign the data
instance to particular feature type. To make our prediction more reliable, we took the
sequences of intergenic regions and checked the coding potential of predicted features
by coding potential calculator (CPC) (Kong, et al., 2007). The regions predicted as
protein coding genes and also predicted as coding by CPC were considered as protein
coding and vice-versa. A similar analysis was performed for both intergenic
transcribed/non-transcribed categories.

 Patterns of Chromatin-Modifications Discriminate Different Genomic Features 57

3 Results

We gathered datasets on different types of epigenetic modifications (DNA
methylation, H3 methylation and H4 acetylation at different lysine residue and RNA
Pol II occupancy) for Arabidopsis thaliana; these were in the form of probabilities for
each type of modification for regions of the Arabidopsis chromosomes. Scripts were
developed which convert the experimentally determined feature probabilities for
regions of the genome to basepair coordinates to match the coordinate system of the
features in the Arabidopiss GFF files. We performed two analyses: first determining
the level of bias in chromatin modification pattern which exists between different
feature classes using an SVM, and then second predicting novel genomic features by
applying the SVM classification method to regions currently labeled as intergenic.

3.1 Binary and Multi-level Classifiers

Binary classifiers (two-class SVMs) were used to determine discrimination in
epigenetic modification patterns of different genomic features and multiple way
classifiers (four-class SVMs) were used to assign the intergenic regions to different
feature classes. We performed 6 different comparisons among 4 different feature
classes (protein, RNA, pseudogenes and transposon element genes) using two-class
SVMs. We obtained modification probabilities for 24,872, 806, 803 and 3006 protein
coding, RNA, pseudogenes and transposable element genes, respectively. In each
classification, SVM based classifiers were used to separate two feature classes and an
F-score was calculated to determine the discrimination power of each epigenetic
feature in every comparison (Table 1). Over-sampling was used by the SVMs to
balance the number of data points for the modification probabilities for the four
classes.

In general, the larger an F-score, the more discriminative the corresponding feature
is. Based upon F-scores, DNA methylation and H3K4me3 emerged as the features
with most discriminative power (Figure 2). The average value of each type of
epigenetic modifications in every feature class determined using their genomic
coordinates is shown in Table 2, and the results of the two-class SVMs, showing the

Table 1. F-score result for each binary classification category

Epigenetic Feature
Protein

RNA

Protein

Pseudo

Protein

Trans

RNA

Pseudo

RNA

Trans

Pseudo

Trans

H3K27me3 0.000945 0.000305 0.011745 0.021394 0.015270 0.075851

H4K5ac 0.000098 0.000042 0.000689 0.000639 0.000642 0.001500

DNA methylation 0.003920 0.015529 0.632277 0.142858 0.601012 0.213082

RNA Pol II 0.001991 0.001688 0.014568 0.031097 0.071851 0.006889

H3K4me1 0.008662 0.004281 0.033849 0.013567 0.001405 0.025655

H3K4me2 0.002330 0.005418 0.03183 0.007523 0.032187 0.010474

H3K4me3 0.000388 0.013048 0.062806 0.135458 0.285946 0.019144

58 A. Srivastava, X. Zhang, and S. LaMarca

Table 2. Average value ± SEM (standard error of mean) of each feature obtained using their
genomic coordinates

Epigenetic feature Protein RNA Pseudogene Transposon

H3K27me3 0.0728 ± 0.00003 0.0748 ± 0.0003 0.1206 ± 0.0003 0.0161 ± 0.00004

H4K5ac 0.0018 ± 0.000003 0.0013 ± 0.00002 0.0014 ± 0.00002 0.0006 ± 0.000006

DNA methylation 0.1231 ± 0.00004 0.0723 ± 0.0003 0.2467 ± 0.0004 0.6569 ± 0.0001

RNA Pol II 0.0778 ± 0.00003 0.1083 ± 0.0004 0.0460 ± 0.0002 0.0175 ± 0.00004

H3K4me1 0.1414 ± 0.00004 0.0364 ± 0.0002 0.0384 ± 0.0001 0.0116 ± 0.00003

H3K4me2 0.1164 ± 0.00003 0.1000 ± 0.0004 0.0546 ± 0.0002 0.0196 ± 0.00005

H3K4me3 0.2051 ± 0.00005 0.2532 ± 0.0006 0.0473 ± 0.0002 0.0094 ± 0.00003

Table 3. Two-class SVM results with C = 1 and γ = 2. Protein (P), RNA (R), Pseudogene (Ps),
Transposon (T), Accuracy (Acc), Precision (Prec), Sensitivity (Sens), Specificity (Spec).

+ - Dataset TP FP FN TN Acc Prec Sens Spec MCC

P R Validation 18352 6030 6520 18150 0.7441 0.7527 0.7379 0.7506 0.4884

Training 73603 20670 25885 76050 0.7627 0.7807 0.7398 0.7863 0.5265

All 18723 5580 6149 18600 0.7609 0.7704 0.7528 0.7692 0.5220

P Ps Validation 16873 5160 7999 18930 0.7312 0.7658 0.6784 0.7858 0.4665

Training 67654 17160 31834 79200 0.7498 0.7977 0.6800 0.8219 0.5064

All 17007 4260 7865 19830 0.7524 0.7997 0.6838 0.8232 0.5113

P T Validation 23199 3312 1673 20736 0.8981 0.8751 0.9327 0.8623 0.7977

Training 92853 12880 6635 83312 0.9003 0.8782 0.9333 0.8661 0.8019

All 23217 3232 1655 20816 0.9001 0.8778 0.9335 0.8656 0.8016

Ps R Validation 15270 5130 8820 19050 0.7110 0.7485 0.6339 0.7878 0.4269

Training 64140 18210 32220 78510 0.7388 0.7789 0.6656 0.8117 0.4826

All 16050 4620 8040 19560 0.7377 0.7765 0.6663 0.8089 0.4802

Ps T Validation 16440 4144 7650 19904 0.7550 0.7987 0.6824 0.8277 0.5156

Training 67740 16152 28620 80040 0.7675 0.8075 0.7030 0.8321 0.5396

All 16860 4032 7230 20016 0.7660 0.8070 0.6999 0.8323 0.5369

T R Validation 21184 1650 2864 22530 0.9064 0.9277 0.8809 0.9318 0.8138

Training 85144 5460 11048 91260 0.9144 0.9397 0.8851 0.9435 0.8302

All 21304 1380 2744 22800 0.9145 0.9392 0.8859 0.9429 0.8303

discrimination between different feature classes, are given in Table 3, where MCC
denotes Matthews correlation coefficient. The Table 1 and Table 2 values are also
shown in the form of bar plots in Figure 2 and Figure 3.

Our testing strategy used a 5-fold cross-validation scheme where the validation
dataset was independent of the training dataset. The “validation” row in Table 3
shows the results from 5 independent validation datasets used in 5-fold cross-
validation on the SVMs trained on their corresponding 5 training datasets; the rows
containing “training” show the results on the training datasets used in 5-fold cross-
validation. The rows labeled as “all” are the results from the SVM trained on all of
the oversampled data. The two-class SVM has the highest accuracy (0.90) and MCC

 Patterns of Chromatin-Modifications Discriminate Different Genomic Features 59

(0.81) on its validation sets for transposon/ncRNA classification. The
protein/transposon and protein/ncRNA classification have accuracies of 0.90, 0.74
and MCC of 0.80, 0.49, respectively and finally, the ncRNA/pseudogenes
classification has the lowest accuracy (0.71) and MCC (0.43) on its validation sets.

We developed a multi-level classifier by combining the binary SVMs after
exploring the optimum parameters for doing this. We first tested the ability of the
SVMs to discriminate between genomic features using a cross-validation approach
similar to that used previously. The results from the 4-class SVM, which is built from
6, 2–class SVMs, are shown in Table 4. In the 4-class SVM, for each data point, each
of the 6, 2-class SVMs makes a prediction and the final prediction from the 4-class is
the majority vote from the 6, 2-class SVMs. In the case of a tie, the 4-class SVM will
predict the class with the highest probability (Wu, et al., 2004).

Table 4 contains three results of the 4-class SVMs in confusion matrix form i.e.
validation sets, training sets results (in 5-fold cross-validation) and the 4-class SVM
results (trained on all oversampled data). As shown in Table 4, the 4-class SVM
(trained on 5 training sets) on the validation datasets has an accuracy of 0.587, 0.709,
0.219 and 0.832 for protein, RNA, pseudogenes and transposon, respectively. The
overall accuracy on the 4-class SVM’s on validation set was 0.587, which is 0.337
above randomly classifying one class out of the four classes (i.e. 0.25). The 4-class
SVMs had the highest and lowest accuracies/reliabilities for predicting transposons
and pseudogenes, respectively.

3.2 Novel Feature Prediction

We used the multi-level classifier to detect novel genomic features by analysis of the
chromatin modification probabilities of Arabidopsis genomic regions currently
annotated as intergenic in the data set. Based upon the number of RNA-seq reads
covering the region, the intergenic data for Arabidopsis was divided into two parts i.e.
intergenic transcribed (617 sequences) and non-transcribed (25331sequences).
Afterwards, these two datasets were used as a testing set in multi-level classification.
The predicted features from the multi-level classification were further filtered by
checking their potential for coding by a coding potential calculator (CPC) (Kong, et
al., 2007). The consensus results of SVM prediction and CPC were included in the
final prediction. In all, we were able to identify 4 protein, 21 ncRNA, 1 pseudogene,
and 7 transposons, respectively in intergenic transcribed category (supplementary file
1) and 15 protein, 479 ncRNA, 8 pseudogenes and 734 transposons, respectively in
the intergenic non-transcribed category (supplementary file 2).

4 Discussion

We used data for different types of epigenetic modification from Arabidopsis and
then used binary SVM classifiers to discriminate the patterns of epigenetic
modification among different genomic features.

60 A. Srivastava, X. Zhang, and S. LaMarca

Table 4. Four-class SVM results (C = 1 and γ = 2) showing the confusion matrices resulting
from a 5-fold cross-validation from the over-sampled datasets

 Predicted by SVM

 Protein RNA Pseudogene Transposon Accuracy

Validation
dataset

Protein 14600 5409 3539 1324 0.587
RNA 3720 17160 2280 1020 0.709
Pseudogene 4020 7440 5280 7350 0.219
Transposon 1024 1776 1232 20016 0.832
Reliability 0.624 0.539 0.428 0.673

Avg. Class Accuracy: 0.505 Avg. Class Reliability: 0.566 Overall Accuracy: 0.587

Training
dataset

Protein 58591 21508 14118 5271 0.588
RNA 13260 70620 8670 4170 0.730
Pseudogene 13560 28500 25290 29010 0.262
Transposon 3976 6960 5056 80200 0.833
Reliability 0.655 0.553 0.476 0.675

Avg. Class Accuracy: 0.527 Avg. Class Reliability: 0.590 Overall Accuracy: 0.603

All data

Protein 14715 5380 3464 1313 0.591
RNA 3360 17640 2130 1050 0.729
Pseudo gene 3420 7140 6240 7290 0.259
Transposon 1008 1736 1232 20072 0.834
Reliability 0.653 0.553 0.477 0.675

Avg. Class Accuracy: 0.526 Avg. Class Reliability: 0.590 Overall Accuracy: 0.603

Fig. 2. The power of each epigenetic feature in discrimination (normalized F-score) different
genomic classes. In the normalized F-score plot, DNA methylation has the maximum F-score
so it is defined to be 1.0 and other feature F-scores were divided by the DNA methylation
values.

For protein/RNA binary classification, the feature with the most discriminative
power is H3K4me1. From the determination of probabilities within the feature region
(Table 2), we found that average modification probabilities for H3K4me1 are higher
for protein coding genes compared to ncRNA genes. Previously, it has been found
that H3K4me1 modification occurs predominantly in the transcribed region of genes
and has positive correlation with length of the genes (Zhang, et al., 2009). The low
value of H3K4me1 for RNA genes could be due to their length as in our dataset 65%
of the RNAs are less than 200bp in length, compared to 2% of protein coding genes
being this short.

 Patterns of Chromatin-Modifications Discriminate Different Genomic Features 61

Fig. 3. The average value of each epigenetic feature in protein, RNA, pseudogene and
transposon element regions. The overall mean and SEM (standard error of mean) values were
obtained using the co-ordinate of genomic features. The standard error is indicated by a fuzzy
area at the top of the bar.

In the protein/transposon comparison, DNA methylation emerged as the feature
with the most discriminative power (Table 1) and was associated with transposons
(Figure 3F). A strong pattern of methylation is known to be associated with
transposable element genes (Bender, 2004; Paszkowski and Whitham, 2001; Zhang,
et al., 2006) and it serves as a defense mechanism against proliferation of transposons
in the genome. In the protein/pseudogene classification, DNA methylation was the top
feature with high F-score (Table 1). Pseudogenes also have overall high DNA
methylation value comparing to protein coding genes (Figure 3F). Similar to
transposable element genes, their high value of DNA methylation is related to
transcriptional silencing of pseudogenes (Zhang, et al., 2006). However, unlike
transposable element genes which are methylated to prevent their deleterious effects,
pseudogenes might be methylated to prevent the cost of transcription of a non-
functional unit of genome.

A strong DNA methylation pattern associated with transposons has also the most
discriminative power in ncRNA/transposon classification (Table 1). The second best
feature, H3K4me3, also has a high F-score and was associated with ncRNA (Figure
3E). Several categories of ncRNA genes (tRNA, miRNA, snoRNA) were previously
shown to have higher H3K4me3 methylation compared to DNA methylation and the
H3K4me2 type of modifications in rice (Li, et al., 2008); sixty-nine percent of the
ncRNA in our dataset were comprised of these 3 types of RNA which explains the
high value of H3K4me3.

62 A. Srivastava, X. Zhang, and S. LaMarca

The H3K4me3 type of modification is found in genes known to be highly
expressed (Zhang, et al., 2009) and these ncRNA genes are likely to be highly
expressed. In the ncRNA/pseudogene comparison, the two features DNA methylation
and H3K4me3 have the most discriminative power and, based on average
modification probabilities, they are found to be associated with pseudogenes and
RNA, respectively (Table 2).

For pseudogenes/transposons, DNA methylation also emerged as a feature with
most power in separating two classes, similarly to the other comparisons involving
transposons. The second best feature in this classification is H3K27me3, which is
associated with gene silencing in Arabidopsis (Kong, et al., 2007), and has high
average modification probabilities (along with DNA methylation) for pseudogenes
(Figure 3A). To determine, whether DNA methylation and H3K27me3 occur in
tandem or mutually exclusively in pseudogenes, we calculated the correlation
coefficient (Spearman) value for the pseudogenes from data extracted from the SVM
feature file and found that these two modifications are inversely related (r = -0.20, p-
value < 0.01). The existence of two alternate mechanisms of gene silencing which
occur largely exclusively suggests the importance of silencing pseudogenes.

In the normalized F-score plot in Figure 2, H4K5ac has the lowest value. This
epigenetic feature also has the lowest average value compared to other epigenetic
modifications in all four feature classes (Figure 3C). Acetylation patterns are
positively correlated with gene expression and in particular H4K5ac modification are
elevated in transcribed regions of active genes in human (Wang, et al., 2008); there is
also enrichment of this modification at origin of replications (Costas, et al., 2011).
The lower average values indicate that this modification is not frequent as compared
to others and particularly is rare in transposons which makes sense as genomes in
general try to silence transposon not activate them.

We predicted novel genomic features from epigenetic modification patterns of
intergenic using the multi-level SVM. Data from an RNA-seq experiment and CPC
was used to further verify the predicted features. The higher number of ncRNA genes
in the intergenic transcribed dataset (RNA-seq reads present) makes biological sense
as protein coding genes are already well annotated in Arabidopsis and therefore
transcribed reads has more likelihood to be associated with ncRNA. In the non-
transcribed class (RNA-seq reads absent), the number of ncRNA genes is second to
transposon element genes. This is reasonable due to the abundance of transposons in
genomes and the lack of transcription evidence in the RNA-seq data.

In conclusion, we provided support for distinctive patterns of chromatin
modifications being associated with different kinds of genomic features, and we
demonstrated a novel approach for discriminating/detecting different genomic
features based upon these modifications. We did not predict many new features in
Arabidopsis as it has already being extensively studied. However, with the continuous
progress in the field of high-throughput sequencing generating this kind of data is
become simpler and cheaper, and this approach might be used to discriminate/detect
novel features in many newly sequenced plant species such as Populus and Vitis.

Acknowledgements. This work was supported by National Science Foundation (IIS
0916250); and The University of Georgia Franklin College of Arts & Science’s
research fund.

 Patterns of Chromatin-Modifications Discriminate Different Genomic Features 63

References

1. Barutcuoglu, Z., Schapire, R.E., Troyanskaya, O.G.: Hierarchical multi-label prediction of
gene function. Bioinformatics 22, 830–836 (2006)

2. Bender, J.: DNA methylation and epigenetics. Annu. Rev. Plant Biol. 55, 41–68 (2004)
3. Bernstein, B.E., et al.: Methylation of histone H3 Lys 4 in coding regions of active genes.

Proc. Natl. Acad. Sci. U.S.A. 99, 8695–8700 (2002)
4. Bhardwaj, N., et al.: Kernel-based machine learning protocol for predicting DNA-binding

proteins. Nucleic Acids Res. 33, 6486–6493 (2005)
5. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001)
6. Chodavarapu, R.K., et al.: Relationship between nucleosome positioning and DNA

methylation. Nature 466, 388–392 (2010)
7. Costas, C., et al.: Genome-wide mapping of Arabidopsis thaliana origins of DNA replication

and their associated epigenetic marks. Nat. Struct. Mol. Biol. 18, 395-400 (2011)
8. Hoglund, A., et al.: MultiLoc: prediction of protein subcellular localization using N-

terminal targeting sequences, sequence motifs and amino acid composition.
Bioinformatics 22, 1158–1165 (2006)

9. Ji, H.K., Wong, W.H.: TileMap: create chromosomal map of tiling array hybridizations.
Bioinformatics 21, 3629–3636 (2005)

10. Kong, L., et al.: CPC: assess the protein-coding potential of transcripts using sequence
features and support vector machine. Nucleic Acids Res. 35, W345–W349 (2007)

11. Kouzarides, T.: Chromatin modifications and their function. Cell 128, 693–705 (2007)
12. Langmead, B., et al.: Ultrafast and memory-efficient alignment of short DNA sequences to

the human genome. Genome Biol. 10, R25 (2009)
13. Li, X.Y., et al.: High-resolution mapping of epigenetic modifications of the rice genome

uncovers interplay between DNA methylation, histone methylation, and gene expression.
Plant Cell 20, 259–276 (2008)

14. Lister, R., et al.: Highly integrated single-base resolution maps of the epigenome in
Arabidopsis. Cell 133, 523–536 (2008)

15. Luger, K., et al.: Crystal structure of the nucleosome core particle at 2.8 A resolution.
Nature 389, 251–260 (1997)

16. Park, P.J.: ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev.
Genet. 10, 669–680 (2009)

17. Paszkowski, J., Whitham, S.A.: Gene silencing and DNA methylation processes. Curr.
Opin. Plant Biol. 4, 123–129 (2001)

18. Trapnell, C., Pachter, L., Salzberg, S.L.: TopHat: discovering splice junctions with RNA-
Seq. Bioinformatics 25, 1105–1111 (2009)

19. Vapnik, N.V.: The Nature of Statistical Learning Theory. Springer (1995)
20. Wang, Z., et al.: Combinatorial patterns of histone acetylations and methylations in the

human genome. Nat. Genet. 40, 897–903 (2008)
21. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification by

pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)
22. Zhang, X., et al.: Genome-wide high-resolution mapping and functional analysis of DNA

methylation in Arabidopsis. Cell 126, 1189–1201 (2006)
23. Zhang, X.Y., et al.: Genome-wide analysis of mono-, di- and trimethylation of histone H3

lysine 4 in Arabidopsis thaliana. Genome Biol. 10 (2009)
24. Zhang, Y., Reinberg, D.: Transcription regulation by histone methylation: interplay

between different covalent modifications of the core histone tails. Genes. Dev. 15, 2343–
2360 (2001)

Inferring Time-Delayed Gene Regulatory

Networks Using Cross-Correlation
and Sparse Regression

Piyushkumar A. Mundra1, Jie Zheng1,5, Niranjan Mahesan2,
Roy E. Welsch3,4, and Jagath C. Rajapakse1,3,6

1 BioInformatics Research Centre, School of Computer Engineering,
Nanyang Technological University, Singapore 639798

2 School of Electronics and Computer Science, University of Southampton,
Southampton, United Kingdom

3 Computation and Systems Biology, Singapore-MIT Alliance,
Nanyang Technological University, Singapore 637460

4 Sloan School of Management, Massachusetts Institute of Technology, Cambridge,
MA 02142, USA

5 Genome Institute of Singapore, Biopolis Street, Singapore 138672
6 Department of Biological Engineering, Massachusetts Institute of Technology, USA

Abstract. Inferring a time-delayed gene regulatory network from mi-
croarray gene-expression is challenging due to the small numbers of time
samples and requirements to estimate a large number of parameters.
In this paper, we present a two-step approach to tackle this challenge:
first, an unbiased cross-correlation is used to determine the probable
list of time-delays and then, a penalized regression technique such as
the LASSO is used to infer the time-delayed network. This approach is
tested on several synthetic and one real dataset. The results indicate the
efficacy of the approach with promising future directions.

Keywords: LASSO, gene regulation, time-delayed interactions,
microarray analysis, cross-correlation.

1 Introduction

The collection of high-throughput molecular data using advanced technology
has enabled researchers to reverse engineer the dynamics of the underlying com-
plex biological system. The inferences of mechanisms are generally achieved by
building the gene regulatory networks (GRNs). Using time-series gene expres-
sion data, gathered by microarray chips, a typical yet simple GRN is inferred
and it consists of interconnected nodes (genes) and edges that demonstrate how
a particular gene is regulated by a set of genes.

With microarrays, it is possible to measure the expressions of thousands of
genes simultaneously. However, the data are only gathered over a few time-
samples for several reasons, such as cost of experiments, availability of subjects,
etc. Sometimes this is also because the biological state we are interested in

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 64–75, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Inferring Time-Delayed GRN 65

cannot be known precisely. For example, while studying development of fruitfly
embryos, hundreds of embryos are bred and gene expressions are measured at
different points in time/stages of development. This results in a variability along
the time axis because not all embryos are going to grow at the same speed [1].
From a computational view, while modeling a GRN, it is assumed that gene
expressions at a given time point only depend on the immediate previous time
point [2–4]. Such an assumption leads to GRN with first order (or delay or lag).
In reality, in many cases, the regulation of one gene by another gene may occur
only after a number of time points, resulting in an invalid first order assumption.
However, modeling higher order GRN is very challenging due to the significant
increase in numbers of parameters which need to be estimated and the reduction
in numbers of available time samples.

In the past, several approaches have been presented to build a first order GRN
using time-series gene-expression data. These approaches include a Bayesian
framework, Dynamic Bayesian Networks (DBN), Boolean Networks and their
probabilistic approaches, ordinary differential equations (ODE), linear or non-
linear regression approaches, information theory based models, etc. The readers
are referred to [2, 3, 5–7] for excellent reviews on this topic. With respect to
time-delayed GRNs, a decision tree with delayed correlation was used to dis-
cover the time-delayed regulations between the genes [8]. A first order DBN
model is extended to a higher-order DBN where mutual information has been
used to determine the best time-delay of an interaction [9, 10]. In another ap-
proach, the ARACNE (Algorithm for the Reconstruction of Accurate Cellular
Networks) model has been extended to TimeDelay-ARACNE by using a station-
ary Markov Random Field [11]. Using protein-protein interaction and microarray
data, a skip chain model was introduced to obtain a GRN [12]. Recently, based
on the mutual information and minimum description length principles, a novel
scoring metric was proposed to infer time delayed GRN [13]. Although several
DBN based approaches were proposed for inference of time-delayed GRN and
show the importance of inferring time-delay edges, these methods are only ap-
plicable to small networks due to high computational cost. In [14], a simple time
delay Boolean networks framework was presented to tackle the computational
complexity. However, many of these approaches need discretization of data to
infer the GRN and hence, possibly suffer from loss of information.

Using continuous data, sparse regression based approaches have been devel-
oped for inferring first-order GRNs [4,15,16]. However, to the best of our knowl-
edge, such regression approaches for inference of higher-order GRN are not yet
developed. In this paper, we propose a simple yet effective solution to model
a higher-order GRN under a sparse linear regression framework. In a two-step
method, we first determine a probable order of regulation using cross-correlation,
and then, a LASSO (least absolute shrinkage and selection operator) regression
in a multivariate autoregression (MVAR) framework is applied to infer a time-
delayed GRN. The efficacy of this approach is tested on both synthetic datasets
with varying numbers of genes and numbers of time points and a real dataset.

66 P.A. Mundra et al.

The rest of the paper is organized as follows: In the next subsection, we
propose the two-step cross-correlation based methodology to infer time-delayed
GRN. Next, details on synthetic as well as real datasets, parameter estimations,
and performance evaluations metrics are presented. Finally, key results, discus-
sion and future directions are discussed.

2 Methods

Let X = {xi(t)}I,Ti=1,t=1 denote expressions of I genes gathered over equally-
spaced T time samples. Here, xi(t) denotes expression of gene i at time t. We
also assume that the gene expressions of all genes at time t are represented by
the vector x(t) = (xi(t))

I
i=1. A higher order fully-connected network of these

I variables (genes) could be derived by using an r-th order multivariate vector
autoregressive (MVAR) model:

x(t) =
r∑

τ=1

βτx(t− τ) + ε(t) (1)

where βτ = {βτ
i,j}

I,I
i=1,j=1 represents the strength of interactions (i.e. regression

coefficients) between all the pairs of genes for a model of order τ , and ε(t) =
(εi(t))

I
i=1 denotes residuals that are assumed to follow a Gaussian distribution

with zero mean and are independently and identically distributed (i.i.d.). For
an r-th order model, I2r coefficients (β1, β2, . . . , βr) need to be estimated from
the given data. This could be easily achieved by using a standard regression
formulation [16].

The above mentioned MVAR model needs to be modified for inference related
to biological networks, such as time-delayed gene regulatory networks for the
following reasons: (1) it is generally assumed that expression time-series are
stationary and no multiple regulation edges with different time lags exist between
two genes; (2) GRNs are sparse in nature while a standard formulation derives
a fully connected network; (3) in a typical gene-expression time-series data, the
numbers of genes whose expressions are measured are far higher than numbers
of time samples. Hence a standard regression technique to derive strength of
connections is inapplicable. In the following, we propose a method to tackle
these challenges. First, we fix the time-delay by using cross correlation and then
a sparse regression technique is used to infer a time-delayed network.

Mathematically, the assumption of a single time-delayed regulation (out of
possible r lags) between two genes i and j implies that for ∃τ if βτ

i,j > 0, then
βτ
i,j = 0 for all other τ . This requirement could be achieved by using the cross-

correlation between two genes and using the lag that gives maximum absolute
cross-correlation. If gene j regulates gene i, the unbiased cross-correlation is
given by [17],

Ĉ(xi, xj , τ) =
1

T − |τ |

T−τ−1∑
t=1

xi(t+ τ)xj(t) τ ≥ 1 (2)

Inferring Time-Delayed GRN 67

Here, Ĉ(xi, xj , τ) is an estimated unbiased cross-correlation for regulation of
gene i by gene j. Such cross-correlation was computed after normalising ex-
pressions of a gene to have zero mean and a standard deviation of one. These
values are computed for all τ = 1, 2, . . . , r and the maximum of the absolute
cross-correlation denotes the probable time lag regulation. Let Cij denotes the

maximum absolute value of Ĉ(xi, xj) vector and it corresponds to a time-lag eij .
Once the probable time lag is fixed, the next step is to identify the relevant

regulators for gene i from all the possible I genes. This can be obtained by
employing sparse linear regression techniques like the LASSO.

Let’s assume that gene j regulates gene i with the time lag kij which is

estimated using cross-correlation. Let y(t) = (xi(t))
I,T
i=1,t=r+1 denote a gene ex-

pression vector of i-th gene at time t and z(t) = (xi(t))
I,T−kij

i=1,t=r−kij+1 denote
the vector of gene expression at the corresponding time lag kij for each gene.
Then, using the multivariate vector autoregressive model, the strength of the
time delayed regulation by each of the genes could be estimated by,

yt = ztβ∗ + εt (3)

β∗ is regulation strength (regression coefficients) matrix of size I × I, and εt =
[ε1(t), ε2(t), . . . εI(t)] the corresponding innovations. If we assume that the t-th
row of matrices Y , Z, and E, are yt, zt, and εt respectively, Eq. (3) could be
written as Y = Zβ+E and the parameters could be estimated using a standard
least square procedure,

β̂ = (ZTZ)−1ZTY (4)

Considering that GRNs are sparse and more importantly, the number of time
samples are significantly smaller than the number of genes in a typical gene-
expression dataset, Eq. (4) can not determine the strength of regulatory connec-
tions. However, by using sparse regression techniques, these inherent constraints
could be solved. By treating each of the genes independently to identify its po-
tential regulators, the LASSO loss function is given by

L (βi., αi) = ||yi − Zβi.||2 + αi |βi.|1 (5)

where αi is a regularization parameter.
The solution provided by Eq. (5) gives only a few non zero βi. coefficients

which denote regulation of i-th gene by a very few genes. Using cross-correlation
and LASSO regression, we obtain a sparse time-delayed linear GRN.

Algorithm 1 describes the complete approach to derive a time-delayed GRN.
This is basically a two-step procedure. Starting with time-series gene-expression
data and a fixed maximum time-delay, for a given gene, cross-correlation is used
to determine the probable time lags of regulations by other genes. In the second
step, LASSO regression is used to derive the regulators. By repeating the same
process for all the genes, a complete time-delayed GRN is derived.

68 P.A. Mundra et al.

Algorithm 1. Time-delayed Gene Regulatory Network with LASSO regression

Begin
Time-series gene expression data X; Maximum possible time-delay r; Final time
delay matrix k = []
for Each gene i do

A temperory vector k∗ = []
for All other gene j do

Compute the cross-correlation Ĉ(xi, xj) between i-th gene and j-th genes using
Eq. (2)
Determine the probable time-delay eij based on maximum absolute cross-
correlation Cij

end for
Store all eij values in temperory vector k∗

Derive dependent variable matrix yi and independent variable matrix Z based on
probable time-delays eij
Using five-fold cross validation, Determine αi parameter for LASSO regression
Determine the LASSO regression coefficients (βi,.) using the best αi value
if βi,j = 0 then

k∗
j = 0

end if
Append time-delay information matrix k = [k k∗]

end for
Output: β (and hence gene regulatory network as a non-zero β denotes an edge)
and time-lag information k for each edge

3 Experiments

The performance of the proposed method was tested using both simulated and
real time-series gene expression datasets. To generate simulated datasets, we ex-
tracted sub-networks of size 20, 50, or 100 genes by using gene net weaver (GNW)
software [18]. These networks are in fact extracted from a global Saccharomyces
cerevisiae network, and hence, the extracted network topologies resemble actual
regulatory networks.

Once the network is extracted, each of the regulatory edges is randomly as-
signed a time-delay. In reality, the maximum time-delay information is unknown.
In the worst case scenario, the longest delayed response can be expected to be
T − 1 time points. However, as discussed earlier, this will make the estimation
of parameters (βij) intractable. Hence, in this study, the maximum time-delay
(r) was fixed at either 3 or 5.

3.1 Simulating Synthetic Data

For a given network topology, the regression coefficients corresponding to no
interactions among genes were set to zero. For all the edges with respective
τ values, MVAR coefficients (βτ

i,j) were obtained by drawing samples from a
uniform distribution on the interval [0.8, 1]. Coefficients for all other time-lags

Inferring Time-Delayed GRN 69

(τ∗ ∈ r where τ∗
= τ) were set to zero, i.e., βτ∗
i,j = 0. For example, if the j-th gene

regulates the i-th gene with 2nd order time delay and r = 5, then β2
i,j ∈ [0.8, 1]

and β1
i,j = β3

i,j = β4
i,j = β5

i,j = 0.
The initial gene expression values at t = 0, 1, ..., r were drawn from a uniform

distribution on the interval [0, 1]. For successive time points, expressions were
generated using a higher-order MVAR model with added i.i.d. Gaussian random
noise Σ = I. The first 10,000 samples were discarded. The numbers of time
points were varied from 20, 30, or 40 and, for each combination of network size
and number of time points, we generated 100 time-series datasets by randomly
initializing the gene expressions.

3.2 Parameter Estimation and Performance Evaluation

In both synthetic and real datasets, expressions of a gene were normalized
to have zero mean and one standard deviation. In the proposed algorithm,
LASSO regression was used to identify regulatory edges and to generate sparse
time-delayed GRNs. The network topology is essentially achieved by I separate
LASSO regressions. The LASSO solutions were achieved by using the GLMNET
package [19] which can generate the whole solution path for αi. For each such re-
gression, the penalty parameter αi was chosen by using five-fold cross-validation.

We evaluated the performance of the proposed approach over a hundred sim-
ulated datasets for each combination of number of genes and number of time-
points. In generating simulated datasets, the network topology was extracted
from GNW software and each regulatory edge was randomly assigned a time-
delay. Hence, the true information (ground truth) of regulatory connection and
their delay was available. Using this information, we employed precision, recall
and F-measure as performance metrics. Let TP, FP, TN, and FN denotes true
positive, false positive, true negative, and false negative between the generated
network and ground truth. TP were computed for exact time delays while FPs
were computed by counting all instances when a false edge (of any time order)
is detected. The precision, recall, and F-measure are defined below:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F −measure = 2× Precision×Recall

Precision+Recall
(8)

We further defined order identification accuracy (OIA) as the number of edges
which were identified with true time-delays divided by total number of identifi-
cation of true edges irrespective of time order, i.e., OIA = TP

w where w denotes
the number of all true edges.

70 P.A. Mundra et al.

Swi4
Cln1

Cdc28

Cd 28

Swi6
Cln2

Cdc28

Cln3

Cdc28

d

Sic1

Mbp1

Clb6

Cdc6

Clb5

Swi6
Cdc28

Clb6Swi6

DNA
BiosynthesisBiosynthesis

Fig. 1. S. cerevisiae KEGG pathway in G1 phase. Dotted line represents indirect
regulation.

3.3 Real Dataset

We selected the Saccharomyces cerevisiae (yeast) cell cycle dataset to test the
performance of the proposed method. Spellman et al. have identified 800 differ-
entially expressed genes for cell-cycle regulation covering four phases (G1,S,G2
and M) of yeast development [20]. For our analysis, eleven genes (Cln3, Cdc28,
Swi4, Swi6, Clb5, Clb6, Cln1, Cln2, Cdc6, Sic1, Mbp1) were specifically selected
from the cdc28 experiment of G1-phase resulting in dataset with 11 genes and 17
time points. As suggested in [11], the first time point is excluded as it is related
to the M step. This dataset is used in two recent studies and is available with
TDARACNE package [11].

In the proposed method, the α parameter plays an important role in determin-
ing regulators of a particular gene. To avoid errors due to parameter estimation
with a five-fold cross validation, we repeated the complete process for 100 times
and used edge stability of 0.75 to infer the final single network structure [16]. An
edge stability of 0.75 implies that an edge is derived at least 75% of the time.

Inferring Time-Delayed GRN 71

Cdc28
Cdc6

Cln3

Cdc6
Clb5

Mbp1

Clb6

Mbp1

Swi6

Swi4

Swi6

Sic1
Cln1

Cln2

1st Order 2nd Order 3rd Order

Fig. 2. An inferred time-delayed gene regulatory network of 11 genes of S. cerevisiae.
The maximum time delay is set to 3.

4 Results and Discussion

Inferring a time-delayed GRN from the gene-expression data is an important step
to understand the dynamics of the underlying gene regulation. In this paper, we
have proposed a two-step approach to infer such a network using cross-correlation
and sparse regression. To evaluate the efficacy of this approach, several synthetic
datasets with varying time points and numbers of genes were generated. By fixing
the maximum delay to 3 or 5, the performances of the proposed approach are
shown in Table 1 and Table 2, respectively.

The results on synthetic datasets show that increase in number of genes and
decrease in length of time series reduces precision, recall and F-measure. The
results also show that within truly identified edges, the correct delay is also
generally identified with a high accuracy. At the same time, by fixing the lower
value of the maximum possible time delay, the performance could be improved,
because a single point increase in maximum delay (r) increases the number
of parameters to be estimated by I2. Moreover, the available number of time
samples is reduced by one. Hence, it is important to not choose too high a

72 P.A. Mundra et al.

Cdc28
Cdc6

Cln3

Cdc6
Clb5

Mbp1

Clb6

Mbp1

Swi6

Swi4

Swi6

Sic1
Cln1

Cln2

1st Order 2nd Order 3rd Order 4th Order 5th order

Fig. 3. An inferred time-delayed gene regulatory network of 11 genes of S. cerevisiae.
The maximum time delay is set to 5.

value of the maximum possible time-delay to get any meaningful results by the
proposed computational algorithm.

As a true underlying network of S. cerevisiae is unknown yet, we use the
KEGG pathway to validate the reconstructed GRN (Figure 1). In yeast cell cy-
cle progression, G1 and G2 phases are gaps between DNA replication (S phase)
and mitosis (M phase). As per KEGG pathway and [21], in G1 phase, an as-
sociation between Cln3 and Cdc28 is needed to initiate the start of the cycle .
After reaching a certain threshold of the Cln3/Cdc28 complex, two transcription
factors SBF and MBF are activated. Swi4 and Swi6 form the SCB complex with
SBF which results in activation of Cln1 and Cln2 genes [22] while Mbp1 and Swi6
form a complex with MBF to promote transcription of other genes required for
S-phase progression. Cln1 and Cln2 interacting with Cdc28 promote the activa-
tion of B-type cyclin associated CDK, which drives DNA replication and entry
into mitosis. Further, Clb1 and Clb2 are associated with Cdc28 and this complex
represses Sic1, which in turn represses the Clb5/Clb6/Cdc28 complex.

Inferring Time-Delayed GRN 73

Table 1. The performance of the proposed method over 100 simulated datasets with
r = 3

Network Size Time Points Precision Recall F-measure OIA

20 20 0.35 0.31 0.32 0.76
30 0.45 0.50 0.47 0.82
40 0.52 0.62 0.56 0.84

50 20 0.24 0.36 0.29 0.92
30 0.30 0.66 0.41 0.96
40 0.35 0.82 0.49 0.97

100 20 0.18 0.14 0.16 0.90
30 0.22 0.31 0.26 0.92
40 0.26 0.47 0.33 0.93

Table 2. The performance of the proposed method over 100 simulated datasets with
r = 5

Network Size Time Points Precision Recall F-measure OIA

20 20 0.21 0.22 0.21 0.57
30 0.28 0.40 0.33 0.67
40 0.36 0.53 0.42 0.74

50 20 0.17 0.25 0.20 0.86
30 0.22 0.57 0.31 0.92
40 0.26 0.75 0.39 0.94

100 20 0.13 0.11 0.12 0.86
30 0.16 0.26 0.20 0.87
40 0.18 0.42 0.25 0.88

The GRNs inferred by the proposed method are shown in Figure 2 and Figure
3. As can be seen, several true gene-gene interactions have been recovered. For
example, in Figure 2, we find interaction between (1) Cln3 and Swi6, (2) Clb6
and Cdc6, (3) interaction of Sic1 with Cln1, Clb6 and Cln2, (4) Swi4 and Swi6,
and (5) interaction of Swi4 and Swi6 with Cln1 and Cln2. However, we also note
that there are few wrong directions of regulation. Further, comparison between
Figure 2 and 3 reveals that few new edges are formed and few are not recovered.
Such phenomenon could be attributed to loss of time samples and increase in
parameter space.

As discussed earlier, building a time-delayed GRN is a very challenging prob-
lem and several future directions may lead to better solutions. In our earlier
work, we proposed a bootstrapping technique for short time-series datasets with
a first-order assumption [23]. Developing such techniques for higher order mod-
els and integrating stability criteria is a promising possible extension of this
work. In the current two-step procedure, cross-correlation is used to determine
the probable time lags. Since cross-correlation may suffer due to small sample
size, developing a robust technique with possibly a single step procedure would

74 P.A. Mundra et al.

be another interesting extension of this work. Last but not least, an extension
of the data integration approach for first-order GRN inference [24,25] to higher
order may help in deriving a highly accurate time-delayed GRN.

Acknowledgments. This work is supported by a AcRF Tier 2 grant MOE2010-
T2-1-056 (ARC 9/10), Ministry of Education, Singapore. The support provided
by the Singapore-MIT Alliance to Roy E. Welsch is also acknowledged.

References

1. Pisarev, A., Poustelnikova, E., Samsonova, M., Reinitz, J.: Flyex, the quantita-
tive atlas on segmentation gene expression at cellular resolution. Nucleic Acid
Research 37, D560–D566 (2009)

2. Huang, Y., Tienda-Luna, I., Wang, Y.: Reverse engineering gene regulatory net-
works. IEEE Signal Processing Magazine 26(1), 76–91 (2009)

3. Kim, S., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray
data using dynamic bayesian networks. Briefings in Bioinformatics 4(3), 228–235
(2003)

4. Fujita, A., Sato, J., Garay-Malpartida, H., Yamaguchi, R., Miyano, S., Sogayar,
M., Ferreira, C.: Modeling gene expression regulatory networks with the sparse
vector autoregressive model. BMC Systems Biology 1, 39 (2007)

5. Chima, C., Hua, J., Jung, S.: Inference of gene regulatory networks using time-
series data: A survey. Current Genomics 10, 416–429 (2009)

6. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature
review. Journal of Computational Biology 9(1), 67–103 (2002)

7. Fogelberg, C., Palade, V.: Machine learning and genetic regulatory networks: A re-
view and a roadmap. In: Hassanien, A.-E., Abraham, A., Vasilakos, A.V., Pedrycz,
W. (eds.) Foundations of Computational, Intelligence 1. SCI, vol. 201, pp. 3–34.
Springer, Heidelberg (2009)

8. Li, X., Rao, S., Jiang, W., Li, C., Xiao, Y., Guo, Z., Zhang, Q., Wang, L., Du,
L., Li, J., Li, L., Zhang, T., Wang, Q.: Discovery of time-delayed gene regulatory
networks based on temporal gene expression profiling. BMC Bioinformatics 7, 26
(2006)

9. Chaitankar, V., Ghosh, P., Perkins, E., Gong, P., Zhang, C.: Time lagged informa-
tion theoretic approaches to the reverse engineering of gene regulatory networks.
BMC Bioinformatics 11(suppl. 6), S19 (2010)

10. Chaturvedi, I., Rajapakse, J.C.: Detecting robust time-delayed regulation in my-
cobacterium tuberculosis. BMC Genomics 10(suppl. 3), S28 (2009)

11. Zoppoli, P., Morganella, S., Ceccarelli, M.: TimeDelayed-ARACNE: Reverse engi-
neering of gene networks from time-course data by an information theoretic ap-
proach. BMC Bioinformatics 11, 154 (2010)

12. Chaturvedi, I., Rajapakse, J.C.: Building gene networks with time-delayed regula-
tions. Pattern Recognition Letters 31(14), 2133–2137 (2010)

13. Morshed, N., Chetty, M., Vinh, N.: Simultaneous learning of instantaneous and
time-delayed genetic interactions using novel information theoretic scoring tech-
nique. BMC Systems Biology 6, 62 (2012)

14. Chueh, T.H., Lu, H.: Inference of biological pathway from gene expression profiles
by time delay boolean networks. PLOS ONE 7(8), e42095 (2012)

Inferring Time-Delayed GRN 75

15. Shimamura, T., Imoto, S., Yamaguchi, R., Fujita, A., Nagasaki, M., Miyano, S.:
Recursive regularization for inferring gene networks from time-course gene expres-
sion profiles. BMC Systems Biology 3, 41 (2009)

16. Rajapakse, J.C., Mundra, P.A.: Stability of building gene regulatory networks with
sparse autoregressive models. BMC Bioinformatics 12(suppl. 13), S17 (2011)

17. Orfanidis, S.: Optimum Signal Processing. An Introduction. Prentice-Hall (1996)
18. Marbach, D., Schaffter, T., Mattiussi, C., Floreano, D.: Generating realistic in silico

gene networks for performance assessment of reverse engineering methods. Journal
of Computational Biology 16(2), 229–239 (2009)

19. Friedman, J., Hastie, T., Tibshirani, R.: glmnet: Lasso and elastic-net regularized
generalized linear models

20. Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown,
P., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle regulated
genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular
Biology of the Cell 9(12), 3273–3297 (1998)

21. Nasmyth, K.: Control of the yeast cell cycle by the cdc28 protein kinase. Current
Opinion in Cell Biology 5(2), 166–179 (1993)

22. Siegmund, R., Nasmyth, K.: The saccharomyces cerevisiae start-specific transcrip-
tion factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28
kinase and through its conserved carboxy terminus with Swi6. Molecular Biology
of the Cell 16(6), 2647–2655 (1996)

23. Mundra, P.A., Welsch, R.E., Rajapakse, J.C.: Bootstrapping of short time-
series multivariate gene-expression data. In: Colubi, A., Fokianos, K., Gonzalez-
Rodriguez, G., Kontaghiorghes, E. (eds.) Proceedings of 20th International Con-
ference on Computational Statistics(COMPSTAT 2012), pp. 605–616 (2012)

24. Chen, H., Maduranga, D., Mundra, P., Zheng, J.: Integrating epigenetic prior in
dynamic bayesian network for gene regulatory network inference. In: IEEE Sympo-
sium on Computational Intelligence in Bioinformatics and Computational Biology
(accepted, 2013)

25. Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., Guthke, R.: Gene regulatory
network inference: Data integration in dynamic models: A review. Biosystems 96,
86–103 (2009)

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 76–86, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Simulation of Synthetic agr System in E.coli

Xiangmiao Zeng, Ke Liu, Fangping Xie, Ying Zhang, Lei Qiao, Cuihong Dai,
Aiju Hou, and Dechang Xu

School of Food Science & Engineering
Harbin Institute of Technology, P.R.C

dcxu@hit.edu.cn

Abstract. Staphylococcus aureus (S.aureus) is an important human pathogen.
Its strong infection ability benefits from the quorum-sensing system agr
(accessory gene regulator). In order to eliminate S.aureus from the
environment, an engineered E.coli was designed. It can sense the extracellular
AIP (auto-inducing peptide) and then, as a response, produce Lysostaphin to
kill S.aureus. To characterizing how E.coli sense S.aureus and secrete
Lysostaphin, a mathematical model was developed. According to the model, it
is at least 2.5 hours for the system to sense the AIP (S.aureus) and then produce
enough Lysostaphin to kill the S.aureus, and therefore keep the AIP
concentration at a relative low condition.

Keywords: S.aureus, E.coli, agr, quorum-sensing system, simulation.

1 Introduction

Staphylococcus aureus (S.aureus) is an important human pathogen. Compared to
single symptom pathogen such as Influenza Virus [1,2], many diseases for example,
osteomyelitis, infective endocarditis, septic arthritis and metastatic abscess
formation[3] are caused by S.aureus infection which are major causes of morbidity
and mortality in community and hospital settings. Many strains have the resistance to
spectrum of antibiotics, making elimination often difficult. Its strong infection
ability benefits from the quorum-sensing system agr (accessory gene regulator)[4].
Quorum-sensing (QS) is the ability of bacteria to communicate and coordinate
behavior via signaling molecules. This signal could be, for example, temperature,
pressure, pH, or the bacterial population density (in the agr system of S.aureus). The
indicator of population density in S.aureus is called auto-inducing peptide (AIP).
When the concentration of the indicator reaches a threshold, bacteria make some
changes in its population as a response to the environment they live in.

The quorum-sensing system mentioned above comprises a sensor protein in the
membrane of the cell and a response regulator within the cell cytoplasm[5]. The
receptor detects the signal in the environment and then triggers auto-phosphorylation
causing the phosphate transfers to the response regulator protein. The phosphorylated
proteins usually show a higher affinity for the relevant DNA binding sites than
un-phosphorylated one. As mentioned above, the agr system like other QS systems is
a cell-to-cell communication mechanism which is usually considered to facilitate the
coordination of gene expression at the population level and control the production of
virulence factors while infection.

 A Simulation of Synthetic agr System in E.coli 77

In S.aureus, the agr operon consists of two transcriptional units, termed RNAII and
RNAIII[6], transcribed from the divergent promoters, agrP2 and agrP3. The agrP2
locus contains four genes agrB, agrD, agrC, agrA. agrC and agrA encode the sensor
and the response regulator, respectively, while agrB and agrD are responsible for the
synthesis of the AIP. In broth cultures, the agr system is activated in mid- to post-
exponential growth, when AIP concentration reaches a threshold. AIP binds to an
extracellular domain of AgrC resulting in auto-phosphorylation at a conserved
cytoplasmic histidine residue[7]. The phosphate group is then transferred to AgrA,
which have a higher affinity for the agrP2 and agrP3 than un-phosphorylated AgrA.
Phosphorylated AgrA trigger transcription from both P2 and P3[8].

In order to eliminate S.aureus from the environment, an engineered Escherichia
coli (E.coli) was invented. The E.coli carries a plasmid containing agrC, agrA, P2, P3
GFP (green fluorescence protein) and Lysostaphin[9] which degrades the cell wall of
Staphylococcus aureus and then make them inactive. To better understanding the
dynamics of the agr system in E.coli, a mathematical model is described below to
characterize the agr system in E.coli.

2 Materials and Methods

Plasmids containing agrA, agrC, agrP2, agrP3 and GFP (Lysostaphin) were
constructed with protocols used at iGEM headquarters. Gene agrA, agrC, agrP2,
agrP3, Lysostaphin were modified with iGEM standard prefixes and suffixes. DNA
assembly and transformation are following protocols of 3A assembly and
transformation, respectively.

Cultures of the E.coli cells were grown in 50ml LB supplemented with 50µg/ml
ampicillin at 37℃ (160r/min) to exponential phase (A600=0.2). S.aureus were cultured
in 30ml tryptic soy broth to steady phase (A600=0.4). Then, the E.coli (A600=0.2)
medium was treated with 5ml supernatant of S.aureus (A600=0.4). After 24 hours of
treatment, cultures were placed under a fluorescence microscope (×1000) to observe
the expression of GFP.

3 Model

The mathematical model is developed to describe how the concentration of
extracellular AIP affects the agr system in E.coli. To be able to calculate the steady-
state levels of Lysostaphin (or GFP) in cells at different extracellular AIP
concentrations, a non-growing homogenous bacterial population is assumed.

The model assumptions are as follows.

(1)The E.coli population contain a number (n) of cells, the volume of a cell’s
cytoplasm is v. The extracellular AIP concentration is P. Neglecting inhibiting AIP.

(2) Concentration of a substance in the cytoplasm is assumed to be homogeneous.
For molecules in the membrane, the concentration by area is scaled to an amount per
cytoplasm volume since total membrane area due to cell division is proportional to
total cytoplasm volume.

(3) All reactions are following mass action principle and saturation kinetics.
(4) The level of translation product is assumed to be proportional to mRNA levels.

78 X. Zeng et al.

(5) The agrP2 promoter activity is high enough to make stochastic effects negligible.
(6) There is a basal amount of AgrA and AgrC.
(7) There is no delay in synthesis of either component or delay because of protein

transportations.
(8) The variables and parameters are described in Table 1 and 2.
(9) The values of variables and parameters are partly obtained from the present

publication on agr system, and partly assumed reasonably.

Fig. 1. A Schematic View of the Joint Metabolic and Gene Regulation Network

Table 1. Variables Used in the Model

Variable Dimension Description Initial
value

C µmol Total amount of un-complex AgrC in the
population

0.1

CCP µmol Total amount of complex between AgrC
and AIP

0

A µmol Total amount of un-phosphorylated AgrA
in the population

0.1

Api µmol Total amount of phosphorylated AgrA in
the population

0

RII µmol Total amount of RNAII in the population 0
RIII µmol Total amount of RNAIII in the population 0
L µmol Total amount of Lysostaphin in the

population
0

 Degradation of the substance 0

 A Simulation of Synthetic agr System in E.coli 79

Table 2. Parameters Used in the Model

Parameter Dimension Description Value
n Number of cells in the E.coli

population

v µm3 Volume of a E.coli cell 1
P µmol·µm-3 Concentration of AIP in the

environment

k1 µmol-1·µm3·hour-1 Association rate of complex CCP 1
k2 hour-1 Dissociation rate of complex CCP 0.1
k3 µmol-1·µm3·hour-1 Phosphorylation rate of AgrA 10
k4 hour-1 Dephosphorylation rate of AgrA 1
D1 hour-1 Degradation rate of complex CCP 2
D2 hour-1 Degradation rate of phosphorylated

AgrA
2

KApi µmol·hour-1 Maximal AgrA dependent
transcription rate of P2/P3

10

kApi µmol·µm-3 Concentration of phosphorylated
AgrA required for half-maximal
AgrA dependent transcription rate of
P2/P3

1

Kb µmol·hour-1 Basal transcription rate of P2 0.1
DR2 hour-1 Degradation rate of RNAII 2
DR3 hour-1 Degradation rate of RNAIII 2
αA Effective factor of AgrA protein

synthesis
1

DA hour-1 Degradation rate of un-
phosphorylated AgrA

2

αC Effective factor of AgrC protein
synthesis

1

DC hour-1 Degradation rate of un-complex AgrC 2
αL Effective factor of Lysostaphin

protein synthesis
1

DL hour-1 Degradation rate of Lysostaphin 2

3.1 Interaction between Sensor AgrC and AIP

We assume that the agr system activates at a low concentration of AIP. AIP (P) binds
to AgrC (C) forming a complex (CCP) at a rate k1 and dissociates at a rate k2. The
complex CCP is assumed to degrade at a rate D1 . Thus, reaction (1) and (2) are

1 1 2:CP CPC C R k CP k C<=> = −

 (1)

and

2 1:CP CPC R D C=> = (2)

80 X. Zeng et al.

3.2 Phosphorylation of AgrA

If the phosphate available is plenty enough, the phosphorylation rate depends on the
amount of complex CCP and un-phosphorylated AgrA and the stability of AgrA.
Complex CCP activates the phosphorylation of AgrA at a rate k3. The AgrA-phosphate
complex dissociates at a rate k4 and degrades at a rate D2. Reaction (3) and (4) are

 3
3 4:pi CP pi

k
A A R C A k A

nv
<=> = − (3)

and

 4 2:pi piA R D A=> = (4)

3.3 Transcription of RNAII

In the model, we assume that phosphorylated AgrA (Api) influences the transcription
of RNAII. The activity of AgrA-dependent agrP2 promoter follows saturation
kinetics. A maximal AgrA-dependent transcription rate of P2/P3 is KApi and half-
maximum as the concentration of phosphorylated AgrA equals kApi. The AgrA-
independent transcription rate of agrP2 is Kb. Reaction of transcription of RNAII is

 5:
II

pi

Api b R II
pi

Api

A

nvRNAII R nK nK D R
A

k
nv

<=> = + −
+

 (5)

3.4 Translation of AgrC and AgrA

The translation of AgrA and AgrC from RNAII is assumed to proceed with an
efficiency of αA and αC. Since AgrA and AgrC are located in the same operon, the
synthesis rate of AgrA and AgrC is assumed to be the same. And AgrA and AgrC
degrade at the rate DA and DC, respectively. So reactions are

6:

pi

A Api A b A
pi

Api

A

nvA R nK nK D A
A

k
nv

α α<=> = + −
+

 (6)

and

 7:

pi

C Api C b C
pi

Api

A

nvC R nK nK D C
A

k
nv

α α<=> = + −
+

 (7)

 A Simulation of Synthetic agr System in E.coli 81

3.5 Transcription of GFP and Lysostaphin

Transcription of GFP and Lysostaphin is similar to RNAII. But here we assumed P3
all depended on phosphorylated AgrA. So the transcription reaction is

8:
III

pi

Api R III
pi

Api

A

nvRNAIII R nK D R
A

k
nv

<=> = −
+

 (8)

3.6 Translation of GFP and Lysostaphin

The efficiency of RNA translating to Lysostaphin is assumed to be αL, and the
translation product of agrP3 degrades at a rate DL.

9:

pi

L Api L
pi

Api

A

nvL R nK D L
A

k
nv

α<=> = −
+

(9)

The whole model described above is summarized below

82 X. Zeng et al.

4 Results

In experimental research, we have managed to construct E.coli that can sense the
extracellular AIP and successfully observed the green fluorescence after 24 hours
treatment. By varying the AIP concentration, we got a series points of GFP expression
state level, and found the threshold time of agr system changing with AIP
concentration. When changed in number (n) of cells, the substance increase
proportionally with n. When AIP concentration is at a high level, the GFP expression
is about 100 times than at a low level.

Fig. 2. Fluorescence in E.coli treated S.aureus

 A Simulation of Synthetic agr System in E.coli 83

A sharp increase of GFP expression can be seen in Figure 3 when treated with
different concentration of AIP. The threshold of 30 hours after treating AIP is about
1.145 (Table 3). When AIP concentration is higher than 1.2, the time for GFP
expression reached a high level is less than 25 hours. While the AIP concentration is
at a high level, for example 100 or more the reaction time of the agr system is at least
2.5 hours (Table 4).

The steady-state level of GFP expression at different AIP concentration is
calculated using SBToolbox2[10] for MatLab.(Figure 5 and 6).

Table 3. State Value of GFP 30 hours after treating AIP

AIP 0 0.25 0.5 0.75 1.0 1.1 1.11 1.12 1.13
GFP 0 0.53 0.117 0.204 0.37 0.64 0.745 0.96 1.6
AIP 1.14 1.145 1.15 1.16 1.17 1.2 1.4 1.6 2.0
GFP 6.5 20 32.5 37 38 38 38 38 38

The fluorescence observed in the E.coli (A600=0.2) medium treating with 5ml supernatant of
S.aureus (A600=0.4) after 24 hours using fluorescence microscope (×1000)

Fig. 3. State Value of GFP 30 hours after treating AIP
We changed the parameter P from 0 to 2 and obtained the response of L at the time 30.

84 X. Zeng et al.

Table 4. Threshold time changing with AIP

AIP 1.08 1.085 1.095 1.1 1.115 1.13 1.145 1.16 1.175
Time 125 86 59 52 41 34 30 27 25
AIP 1.20 1.3 1.5 2 5 10 50 100 200

Time 22 16 11 7 4 3.5 2.7 2.5 2.5

Fig. 4. Threshold time changing with AIP

We changed the parameter P from1.08 to 200 to figure out the time that the system switches
on as a response to the changing AIP.

5 Discussion

We have developed a mathematical model of agr system in an engineered E.coli, and
described how extracellular AIP concentration would influence the GFP (or
Lysostaphin) level in a homogeneous bacterial cell population. The system is a
positive feedback system. The AIP bind to AgrC and then activate the
phosphorylation of AgrA. The phosphorylated AgrA then triggers the production of
AgrA, AgrC and Lysostaphin. As a result, there will be more and more Lysostaphin.
If it is effective enough to kill the S.aureus, the Lysostaphin would reduce the
population of S.aureus which results in the decrease of AIP. According to the model,
it is at least 2.5 hours for the system to sense the AIP (S.aureus) and then produce
enough Lysostaphin to kill the S.aureus, and therefore keep the AIP concentration at a
relative low condition.

 A Simulation of Synthetic agr System in E.coli 85

6 Appendix

Fig. 5. Level of Lysostaphin RNAII and RNAIII when AIP=0.5 in MatLab GUI

Fig. 6. Level of Lysostaphin RNAII and RNAIII when AIP=2.0 in MatLab GUI

86 X. Zeng et al.

Acknowledgment. This work is partially supported by the China Natural Science
Foundation (Grant Number: 30771371, 31271781) , the National High-tech R&D
Program of China (863 Program) (Grant Number: 2001AA231091, 2004AA231071),
Heilongjiang Province Science Foundation (Grant Number: 2004C0314),
Heilongjiang Province key scientific and technological project (Grant Number:
WB07C02), HIT Science Foundation (Grant Number: HIT. 2003. 38), National
MOST special fund (Grant Number: KCSTE- 2000-JKZX- 021, NCSTE- 2007-
JKZX- 022, 2012EG111228).

References

1. Cai, Z., Zhang, T., Wan, X.F.: A computational framework for influenza antigenic
cartography. PLoS Computational Biology 6(10), e1000949

2. Cai, Z., Ducatez, M.F., Yang, J., Zhang, T., Long, L.P., Boon, A.C., Webby, R.J., Wan,
X.F.: Identifying Antigenicity Associated Sites in Highly Pathogenic H5N1 Influenza
Virus Hemagglutinin by Using Sparse Learning. Journal of Molecular Biology 422(1),
145-155 (2012)

3. Edwards, A.M., Massey, R.C.: How does Staphylococcus aureus escape the bloodstream.
Trends in Microbiology 19(4), 184–190 (2011)

4. Queck, S.Y., Jameson-Lee, M., Villaruz, A.E., et al.: RNAIII-Independent Target Gene
Control by the agr Quorum-Sensing System: Insight into the Evolution of Virulence
Regulation in Staphylococcus aureus. Molecular Cell 32(1), 150–158 (2008)

5. Jabbari, S., King, J.R., Williams, P.: A mathematical investigation of the effects of
inhibitor therapy on three putative phosphorylation cascades governing the two-component
system of theagr operon. Mathematical Biosciences 225(2), 115–131 (2010)

6. Gustafsson, E., Nilsson, P., Karlsson, S., et al.: Characterizing the Dynamics of the
Quorum-Sensing System in Staphylococcus aureus. Mol. Microbiology Biotechnology
8(4), 232–242 (2004)

7. Ji, G., Bcavis, R.C., Novick, R.P.: Cell density control of staphylococcal virulence
mediated by an octapepitide pheromone. Proc. Natl. Acad. Sci. USA 92, 12055–12059
(1995)

8. Koenig, R.L., Ray, J.L., Maleki, S.J., Smeltzer, M.S., Hurlburt, B.K.: Staphylococcus
aureus AgrA binding to the RNAIII- agr regulatory region. J. Bacteriol. 186, 7549–7555
(2004)

9. Oldham, E.R., Daley, M.J.: Lysostaphin: Use of a Recombinant Bactericidal Enzyme as a
Mastitis Therapeutic. Journal of Dairy Science 74(12), 4175–4182 (1991)

10. Schmidt, H., Jirstrand, M.: Systems Biology Toolbox for MATLAB: a computational
platform for research in systems biology. Bioinformatics 22, 514–515 (2006)

Gene Regulatory Networks from Gene Ontology

Wenting Liu1,�, Kuiyu Chang1, Jie Zheng1,2,
Jain Divya1, Jung-Jae Kim1, and Jagath C. Rajapakse1,3,4

1 Bioinformatics Research Center, School of Computer Engineering,
Nanyang Technological University, Singapore
2 Genome Institute of Singapore, A*STAR

(Agency for Science, Technology, and Research), Biopolis, Singapore
3 Singapore-MIT Alliance, Singapore

4 Department of Biological Engineering, Massachusetts Institute of Technology, USA
{wliu7,ZhengJie,jungjae.kim,asjagath}@ntu.edu.sg,

kuiyu.chang@pmail.ntu.edu.sg, divyajain.30@gmail.com

Abstract. Gene Ontology (GO) provides a controlled vocabulary and
hierarchy of terms to facilitate the annotation of gene functions and
molecular attributes. Given a set of genes, a Gene Ontology Network
(GON) can be constructed from the corresponding GO annotations and
semantic relations among GO terms. Transitive rules can be applied to
GO semantic relations to infer transitive regulations among genes. Using
information content as a measure of functional specificity, a shortest
regulatory path detection algorithm is developed to identify transitive
regulations in GON. Since direct regulations may be overlooked during
the detection of gene regulations, gene functional similarities deduced
from GO terms are used to detect direct gene regulations. Both direct and
transitive GO regulations are then used to construct a Gene Regulatory
Network (GRN). The proposed approach is evaluated on seven E.coli
sub-networks extracted from an existing known GRN. Our approach was
able to detect the GRN with 85.77% precision, 55.7% recall, and 66.26%
F1-score averaged across all seven networks.

Keywords: gene ontology, gene regulatory network, transitive gene reg-
ulation, semantic similarity, functional similarity.

1 Introduction

Gene regulation denotes the cellular activity that arises when a set of genes inter-
act with one another. Gene regulations can be organized into a gene regulatory
network (GRN), which provides insights into complex biological mechanisms.
However, ground truths of biological regulatory networks are unknown in most
cases. Building a GRN that is accurate and biologically plausible thus remains
an open research problem in functional genomics.

Gene Ontology (GO) provides a controlled vocabulary arranged in a hierarchy
of terms to facilitate the annotation of gene functions and molecular attributes.

� Corresponding author.

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 87–98, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

88 W. Liu et al.

GO has been widely used for validating functional genomics experiments [1],
[2]. In this paper, we present a method to build GRN that captures both direct
and transitive regulations based on GO. The semantic relations of these gene
annotation terms provide some evidences for gene regulations. Applying the
transitive rules of these semantic relations, we can also infer transitive gene
regulations.

A transitive regulation is a regulation between two genes via one or more
transitive genes in the absence of a direct regulation [3]. For example, suppose
gene g1 regulates gene g2 directly and gene g2 have some relation to gene g3.
Then since there is no direct regulation between g1 and g3, if we can infer a
regulatory relation from g1 to g3, we say g1 transitively regulates g3 through
transitive gene g2.

The vast majority of previous research has focused on finding direct regu-
lations between genes, using co-expressions [4]. In our approach, we use the
information content of GO terms to represent the functional specificity and in-
formation flow, thereby determining the most probable transitive regulations
between genes. Zhou et al. [3] linked genes of the same biological pathway based
on the transitive expression similarity among genes. They determine the transi-
tive co-expression genes by shortest path analysis on large-scale yeast microarray
expression data. Instead of finding the shortest path based on distance, we find
the shortest path based not only on distance but also on GO regulatory relations,
which gives more accurate transitive regulations, as shown in our experiments.

Semantic Similarity of gene annotations can provide some clues for direct gene
regulations. Cheng et al. [5] and Kustra et al. [6] incorporate gene similarity
score from GO semantic similarity into gene expression data to cluster genes.
Franke et al. [4] assume functional interactions among similar genes if they share
more GO terms, and incorporate microarray co-expression and protein-protein
interaction data to construct a human gene network. Similarly, in order to detect
direct regulations, we consider the functional similarity of genes based on the
semantic similarity. To better estimate the functional similarity score of gene
pairs, we modify the original term probabilities by taking into consideration the
chances of a term being annotated to both genes. Since these two GO methods
complement each other, we then propose a GO fusion method to combine both
direct and transitive regulations to generate the final GRN.

2 Methods

2.1 Gene Ontology Networks

A gene ontology (GO) is a structured controlled biological vocabulary of various
gene terminologies and their inter-related functional characteristics. It describes
how gene products behave in a cellular context. The ontology covers three do-
mains: biological process (BP), molecular function (MF), and cellular component
(CC). BP is a collection of molecular events, MF defines gene functions in the
biological process, and CC describes gene locations within a cell. A gene is asso-
ciated with GO terms that describe the properties of its products (i.e., proteins).

GRN from GO 89

In our approach, only BP and MF terms are used since the cellular component
(CC) is not directly related to gene regulation.

There are three defined semantic relations between GO terms: is − a is used
when one GO term is a subtype of another GO term, part − of is used to rep-
resent part-whole relationship in the GO terms, and regulate is used when the
occurrence of one biological process directly affects the manifestation of another
process or quality [7]. Let R = {is − a, part − of , regulate} denote the set of
ontological relations. The GO can thus be represented as a hierarchical directed
acyclic graph, where each term is related to one or more terms in the same or
different domain. The GO has three roots at the topmost level: BP, MF, and CC.
Nodes/terms near the root of the directed acyclic graph have broader functions
and are hence shared by many genes; leaf nodes/terms on the other hand convey
more specific biological functions.

GO annotation (GOA) is the process in which GO terms are annotated to
gene products. GOA data can be readily obtained from the GO annotation
database [8]. The GO hierarchical structure also allows annotators to assign
properties to genes or gene products at different levels, depending on the avail-
ability of information about an entity. In general, when inferring information
from a gene that is annotated by some hierarchical GO terms, the more specific
biological functions at the lower levels should be chosen as an inference base due
to its richer information content. As such, we need to come up with a measure
to filter the more informative GO terms at the lower levels. A term in the GOA
hierarchy that occurs less frequently is considered to be more informative as it
has a more specialized function. To capture this frequency-sensitive informative-
ness of GO terms, the information content of the node was measured using their
annotations by [9]. Specifically, the information content I(t) of a GO term t ∈ T
is given by

I(t) = − log p(t) (1)

where p(t) = N(t)/N(root(t)) and root(t) ∈ {BP ,MF} is the GO root of term
t, N(t) is the number of occurrences of term t in the given GOA data. The
information content strongly correlates with the hierarchical depth of the term
from the GO root. If the GO term is less frequent, it is usually located at a
deeper/lower level and therefore has a more specific function.

Consider a set G = {i}ni=1 of n genes with gene i associated to GO term-set

Ti. The total term-set T of all genes is given by T =
⋃I

i=1 Ti. Let r(t, t′) ∈ R
denote a GO relation between terms t, t′ ∈ T . All GO relations between terms
in the term-set T are represented as E = {r(t, t′) : t, t′ ∈ T , ∃ r(t, t′) ∈ R}. The
pair (T , E) thus constitute the GO network (GON).

2.2 GRNs from GO Regulatory Paths

Recall that in GON, regulate denotes the occurrence of one biological process
that directly affects the manifestation of another process or quality, e.g., process
t regulates process t′ means that if both processes occur, t always regulates t′.
Suppose gene i is annotated by GO term t and gene i′ is annotated by GO
term t′. If the GO term t has a regulates term t′, then we can infer that gene i

90 W. Liu et al.

might regulate i′. If this inference comes from more specific terms, gene i should
high likely regulate i′. In the later GRN inference procedure, we choose the most
reliable regulate inference path. There are very few direct regulate relations in the
current GO database, making it difficult to infer a GRN. As such, we propose
to induce transitive regulate relations among GO terms, from which we infer
a GRN based on both direct and transitive gene regulations derived from the
GON.

Consider the transitivity rule:

if ta
r1→ tb and tb

r2→ tc, then ta
r3→ tc (2)

where ta, tb, tc ∈ T and r1, r2, r3 ∈ R. By using the notations of rule deduc-
tion, the above transitive relation is written as r3 = r1 ∧ r2. According to GO
database1, for any r ∈ R = {is − a, part − of , regulates}, the following four
transitivity relations are valid:

r = r ∧ is − a (3)

r = is − a ∧ r (4)

regulates = regulates ∧ part − of (5)

part − of = part − of ∧ part − of (6)

Consider a path (tj)
J
j=0 in GON where t0 and tJ denote the source and destina-

tion terms, respectively; and r(tj , tj+1) is the parent-child relation between par-
ent term tj and child term tj+1. Using parent-child relations { r(tj , tj+1) }J−1

j=1 ,
each term tj can induce a relation from the source term. Denote path πJ =
(tj)

J
j=0, and let r(πJ) = r(t0, tJ) denote the inferred relation along path πJ by

applying transitive rules to parent-child relations, we have

r(πj) = r(πj−1) ∧ r(tj−1, tj). (7)

We then assign a confidence score function σ(π) for each inferred path π by
considering both the number of steps and the information content of the terms
along the inferred paths. The confidence score σ(π) should give preference to
paths with fewer inference steps and more informative terms, defined as

σ(πj) = σ(πj−1) +Δr(tj−1,tj)(tj−1, tj) (8)

where σ(πj) is the score assigned to the inferred path πj from source t0 to term
tj ∈ T , and Δr(t,t′)(t, t

′) is the score assigned to relation r(t, t′) ∈ R between
terms t, t′ ∈ T .

The cost for deducing a relation between two terms should facilitate the se-
lection of the most informative inferred path. Semantic similarity of GO terms
based on their information content, i.e., Lin’s semantic similarity measure [10]
and Jiang’s semantic distance [11] can be used to define the cost of deducing
a relation between two terms. For example, Δr(t,t′)(t, t

′) = 1 − S(t, t′), where

1 http://www.geneontology.org/GO.ontology.relations.shtml

http://www.geneontology.org/GO.ontology.relations.shtml

GRN from GO 91

S(t, t′) is the semantic similarity of terms t, t′. Jiang’s semantic distance can also
be directly used as the cost as Δr(t,t′)(t, t

′).
When there exists no relation r(t, t′), the cost is assigned as Δr(t,t′)(t, t

′) =
∞ to avoid inferring empty relations. Thus, the path with the minimum score
σπ is the path inferred collectively using the fewest steps and along the most
informative terms, i.e., the most reliable inferred path. Dijkstra’s algorithm can
be used to find the shortest inferred path. If an inferred path ends with the
deduced relation regulate at the destination, then there is a regulatory path
(RP) between the source and the destination.

We propose an algorithm to detect the most reliable RP between two terms
s, d ∈ T by using the deduction scores in Dijkstra’s shortest path algorithm [12].
For each node v ∈ T , we use an indicator vector to represent the deduced
relations rv, and σ(rv, v) is a matrix to record the current minimum distance/cost
to deduce rv at term v along path π(rv, v).

Initially, the source term is assigned an is − a relation as it does not change
the first transitive relation. Subsequently for each R ∈ R, SR denotes the
unvisited node set with current relation R, and we iteratively choose u∗ =
argminu∈SR{σ(R, u)} as the starting node of the following iteration. At each
inference step, if σ(ru∗ , u∗) + Δr(u∗,v)(u

∗, v) < σ(rv, v), we update the cur-
rent deduced score for the three relations by rv = ru∗ ∧ r(u∗, v), σ(rv , v) =
σ(ru∗ , u∗) + Δr(u∗,v)(u

∗, v). The iteration stops when all SR are empty. Upon
termination, if σ(regulate, d) < +∞, π(regulate, d) is the most-reliable RP from
term s to d, otherwise no RP from term s to d exists.

Given a source term and target term, Algorithm 1 finds the most reliable RP.

Algorithm 1. Finding the most-reliable Regulatory Path (RP) between two
GO terms

Step 0. Given source term s, target term d, term set T , and inference cost matrix
Δ
Step 1. Set rs(is − a) = 1; ∀u ∈ T , R ∈ R. Set SR = T , π(R,u) = {u}, σ(R,u) =
+∞ except σ(is − a, s) = 0
Step 2. For R ∈ R, If SR �= {}

Choose u∗ = argminu∈SR{σ(R,u)}, set SR = SR\{u∗}
If σ(R,u∗) �= +∞: for each (u∗, v) ∈ E , if σ(ru∗ , u∗)+Δr(u∗,v)(u

∗, v) < σ(rv, v)

Update rv = ru∗ ∧ r(u∗, v), σ(rv, v) = σ(ru∗ , u∗) +Δr(u∗,v)(u
∗, v), π(rv, v) =

{u∗} ∪ π(rv, v)
Step 3. If σ(regulate , d) < +∞, return π(regulate , d) as the most-reliable RP

Up till now, we have only determined the most reliable RP between GO terms.
For genes i, i′ with GO annotations Ti, Ti′ respectively, if there exists a RP from
t ∈ Ti to t′ ∈ Ti′ , we can infer that gene i regulates gene i′. The confidence
score for this inferred path is assigned by the minimum regulatory path score of
all RPs (if any): C(i, i′) = min{σ(π(t, t′))|r(π(t, t′)) = regulate}. Then we can

92 W. Liu et al.

construct a GRN with confidence score based on direct and transitive regulate
relations among the GO terms.

2.3 Complementary GRNs from Functional Similarity

According to the transitive rules, if no regulate path exists between two GO
terms, then no regulate relation can be deduced. As a result, the Regulatory
Path method cannot infer a GRN when there is few regulate relations among
the GO terms in the GOA data.

Recall that Gene Ontology (GO) provides a standard vocabulary of functional
terms and allows for coherent annotation of gene products. Gene products are
functionally similar if they have comparable molecular functions and are in-
volved in similar biological processes. The more similar genes are, the more
likely they belong to the same biological pathway, which involves gene interac-
tions/regulations. We can thus assess the functional similarity of gene products
by comparing sets of GO terms, and then recover the direct regulations missing
from the GO Regulate Paths method based only on genetic function similarity.

Functional Similarity of Genes Based on Semantic Similarity of GO
Annotations. Semantic similarity has been proposed to compare concepts
within an ontology. It can evaluate the specificity of a GO term’s underlying
concept in a given GO annotation. There are three popular semantic similarity
measures: Resnik similarity [13] measures the semantic similarity of two terms
via the information content of their Lowest Common Ancestors (LCA); Lin’s
similarity [10] assesses how close the terms are to their LCA. But it does not
take into account the level of detail of the LCA; The simRel [14] combines the
semantic similarity of Lin’s and Resnik. It takes into account how close terms are
to their LCA as well as how detailed the LCA is, i.e., it distinguishes between
generic and specific terms.

For each term t ∈ T , let p(t) be the probability of finding t’s descendent in
the GO annotation database. If t and t′ are two terms and a (t, t′) represents the
set of parent terms shared by both t and t′, then

p(LCA(t, t′)) = min
t∗∈a(t,t′)

p (t∗) , (9)

The three similarity between two terms is computed as follows

SimResnik (t, t
′) = −log (p(LCA(t, t′))) (10)

SimLin (t, t
′) =

2× log (p(LCA(t, t′)))

log (p (t)) + log (p (t′))
(11)

SimRel (t, t
′) =

2× log (p(LCA(t, t′)))

log (p (t)) + log (p (t′))
[1− p(LCA(t, t′))] (12)

In fact, simRel measure reduces to Lin’s when p(LCA(t, t′)) is very small, i.e.,
1 − p(LCA(t, t′)) approaches to 1. Thus, in our experiments, we consider Lin’s

GRN from GO 93

and Resnik’s measure. Specifically, we consider two genes to be similar if and
only if both measures yield high scores.

Gene products annotated with GO terms can be compared on the basis of
the aforementioned semantic similarity measures. Let GOscore be the measure
of functional similarity between two genes with respect to either their biological
process (BPscore) or molecular function (MFscore). Each gene pair receives two
similarity values, one for each ontology root. The work in [15] defines the func-
tional similarity between two genes i and i′, with annotated GO terms set Ti

and Ti′ , respectively, as the average inter-set similarity of terms in Ti and Ti′ ,
as follows

GOscoreavg (i, i
′) =

1

|Ti| |Ti′ |
∑

t∈Ti,t′∈Ti′

Sim (t, t′) (13)

Themaximum similarity measure is also computed as an upper bound, as follows

GOscoremax (i, i
′) = max

t∈Ti,t′∈Ti′
Sim (t, t′) (14)

Finally, the funSim score is calculated from the BPscore and the MFscore of a
pair of gene products as follows

funSim (i, i′) =
1

2
[(
BPscore (i, i′)

max(BPscore)
)2 + (

MFscore (i, i′)

max(MFscore)
)2] (15)

where max(BPscore) and max(MFscore) denote the maximum score for bio-
logical process and molecular function, respectively.

Modified GO Term Probabilities. GOscore is defined by treating each term
equally in the semantic similarity computation. That is, the semantic similarities
are defined based on the term probabilities p(t) = N(t)/N(root(t)). However,
this ignores the hierarchical structure of GO data. Because N(root(t)) is in fact
the number of genes assigned by root(t) ∈ {BP ,MF}, i.e., two GO trees of
different sizes are involved. N(t) is the number of genes annotated to term t,
thus, the definition of p(t) is in fact the distribution of term t conditioned on a
specific GOA data instead of all GOA.

Consider the case of two genes in a GO term list where some terms are com-
monly assigned to two genes, but some are assigned to only one gene. Clearly,
the two terms should have different term probabilities. To account for this
imbalance, we model the term probability for three different cases as follows:
1) term annotates both genes, 2) term annotates only one gene, and 3) term
annotates none of the two genes. Given two genes and a term t, denote by
m = N(root(t)) and n = N(t), p(n,m) = p(t) = n/m, Probability of term t

annotated to (i) both genes is p(n,m, k = 2) = p(n,m)× (m2)
(n2)

; (ii) only one gene

is p(n,m, k = 1) = p(n,m)× (m1)(n−m
1)

(n2)
; (iii) none of the two genes has the same

defined as the background distribution: p(n,m, k = 0) = p(n,m)× (n−m
2)
(n2)

.

Let us consider an example to illustrate the discriminatory power of this
modified term probability. Given a term, if it is assigned to both genes, its

94 W. Liu et al.

probability is p(n,m, k = 2) = m2×(m−1)
n2×(n−1) ; if it is assigned to only one gene,

its probability is p(n,m, k = 1) = 2m2×(n−m)
n2×(n−1) ; otherwise, its probability is

p(n,m, k = 0) = m×(n−m)×(n−m−1)
n2×(n−1) . For a specific term, m is always signifi-

cantly smaller than n, thus, p(n,m, k = 2) << p(n,m, k = 1) << p(n,m, k = 0).
Similarly, their information content −log(p(n,m, k = 2)) >> −log(p(n,m, k =
1)) >> −log(p(n,m, k = 0)). In other words, the three cases represent three
distinct levels of information content.

Note that the definition p(n,m, k) also considers the prior probability, hence,
our modified term probabilities is consistent with and improves the original
definition. With the modified term probabilities, we can then use the semantic
similarity definition and GOscore computation method in Section 2.3 to compute
the functional similarity of a gene pair.

Deriving GRN from Gene Functional Similarity. We next propose a
method to build a GRN from the computed gene functional similarity scores of
all applicable pairs. If Lin’s average biological similarity between genes exceeds a
threshold θ1, i.e., funSimLin,GOavg(i, i

′) ≥ θ1, and Resnik’s maximum biological
similarity also exceeds some threshold θ2, i.e., funSimResnik,GOmax(i, i

′) ≥ θ2,
then we say that gene i and i′ are functional similar, and there is a possible
regulation between gene i and i′.

The GRN is constructed using the derived gene regulations. In our exper-
iments, we exhaustively evaluated all combinations of semantic measures and
GOscore measures to find the combination that gives the best F1-Score for GRN.

Fused GRN from Functional Similarity and RP. Since the GRN from the
RP and functional similarity methods are complementary, we propose a method
to fuse the two derived regulations into a GRN as: ∀i, i′ ∈ G, (i) If there exists
transitive gene regulation from gene i to i′ detected by GO RP method, then
gene i regulate i′. Or (ii) If gene i, i′ are functional similar, then there is gene
regulation between gene i and i′.

3 Results

We evaluate our GO-inferred GRN against benchmark GRNs from
GeneNetWeaver (GNW) [16]. Specifically, we use the E.coli GRN. Since the com-
plete E.coli network from GNW contains many genes that have no corresponding
GO annotations, we extract seven sub-networks from it, which are summarized
in Table 1. GO terms and relations corresponding to the genes in the networks
are obtained from files associated with the GO annotation database2. The corre-
sponding informative GO terms related to the target genes are also selected from
the gene association files. Only GO terms involved in the molecular function and
biological process are considered. To construct a reliable GRN, we choose specific
GO terms with information content I(t) ≥ θI , i.e., above a threshold θI . We set

2 http://www.geneontology.org/GO.downloads.annotations.shtml

http://www.geneontology.org/GO.downloads.annotations.shtml

GRN from GO 95

Table 1. E.coli sub-networks and their GO relations. Each network has 25 genes.

Net1 Net2 Net3 Net4 Net5 Net6 Net7

No. of edges 18 15 24 11 15 19 29

regulate 2 1 1 1 1 2 4

part-of 3 1 0 2 2 2 2

is-a 26 26 9 28 33 18 36

No. of terms 96 93 44 108 110 82 90

θI to − log 0.25 in the experiments. Each GO annotation is classified into one
of 5 descending order of quality categories: experimental, computational, author
statement, curator statement, and automatic. Annotations derived through di-
rect experiments are deemed higher quality compared to others [17]. We only
consider GO terms with the top two quality levels: computational and experi-
mental.

We evaluate the performance of the three GO-inferred methods on the seven
networks. The evaluation measurements include accuracy, precision, recall, F1-
score, true positive (TP), false positive (FP), true negative (TN), and false neg-
ative (FN) numbers. Averaged results over the seven networks are denoted by
“Avg”. To compare the three GO methods, namely GO Regulatory Path Method
(denoted by “RegPath”), GO Functional Similarity Method (denoted by “Fun-
Sim”), and GO Fusion Method (denoted by “Fusion”), we list their performance
on inferring GRN vs. the seven target networks in Table 2.

From the “RegPath” results in Table 2, we see that our GO RP approach
achieved a high averagedprecision of 87.43%,with correspondingF1-score 62.93%.
In general, very few FP edges were extracted, with two networks (Net4 and Net5)
consistently having zero FPs, and the remaining five networks registering less than
three FPs.We have discovered seven new gene regulations via our GORPmethod:
three self-regulations on gene “argP”, “fadR” and “flhC”; four gene pairs: “argP”
regulate “gyrA”; “argP” regulate “polA”; “dnaA” regulate “dinB”; and “flhC”
regulate “flhD”.We tried to look up evidences for these seven gene regulation pairs
from theMEDLINE database3, but was unable to find any evidence.Wemay even-
tually need experts in the field to confirm or reject these FPs. Moreover, the FPs
could have been generated due to (i) human errors in the GO database: incorrect
gene annotations or GO relations; (ii) incompleteness of the target network. One
limitation of the RP method lies in its poor recall, which averaged only 51.41%.
This shows that the GO RP method could not detect enough gene regulations in
the target GRN, which can be due to (i) gene’s GO annotations are incomplete,
and some GO terms are not involved in GON; (ii) there are not enough annotated
regulate relations among the GO terms; (iii) the other two GO relations, is − a or
part − of are incomplete; (iv) the incompleteness of the target ground truth net-
work itself. Clearly, the incomplete GO informationwill bound the accuracy of our

3 http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov

96 W. Liu et al.

Table 2. Performance of the three GO methods

TP FP FN TN Pre.(%) Rec.(%) F1(%) Acc.(%)
R
eg
P
a
th

Net1 10 3 8 604 76.92 55.56 64.52 98.24
Net2 6 1 9 609 85.71 40.00 54.55 98.40
Net3 20 1 4 600 95.24 83.33 88.89 99.20
Net4 5 0 6 614 100.00 45.45 62.50 99.04
Net5 5 0 10 610 100.00 33.33 50.00 98.40
Net6 5 3 14 603 62.50 26.32 37.04 97.28
Net7 22 2 7 594 91.67 75.86 83.02 98.56
Avg 10.43 1.43 8.29 604.86 87.43 51.41 62.93 98.45

O
:F
u
n
S
im

Net1 7 51 11 556 12.07 38.89 18.42 90.08
Net2 2 2 13 608 50.00 13.33 21.05 97.60
Net3 10 55 14 546 15.38 41.67 22.47 88.96
Net4 4 35 7 579 10.26 36.36 16.00 93.28
Net5 2 4 13 606 33.33 13.33 19.05 97.28
Net6 16 270 3 336 5.59 84.21 10.49 56.32
Net7 19 330 10 266 5.44 65.52 10.05 45.60
Avg 8.57 106.71 10.14 499.57 18.87 41.90 16.79 81.30

M
:F
u
n
S
im

Net1 10 3 8 604 76.92 55.56 64.52 98.24
Net2 6 1 9 609 85.71 40.00 54.55 98.4
Net3 20 1 4 600 95.24 83.33 88.89 99.2
Net4 5 0 6 614 100.00 45.45 62.50 99.04
Net5 5 0 10 610 100.00 33.33 50.00 98.40
Net6 5 3 14 603 62.50 26.32 37.04 97.28
Net7 18 2 11 594 90.00 62.07 73.47 97.92
Avg 9.86 1.43 8.86 604.86 87.20 49.44 61.57 98.35

F
u
si
o
n

Net1 11 3 7 604 78.57 61.11 68.75 98.40
Net2 6 1 9 609 85.71 40.00 54.55 98.40
Net3 20 1 4 600 95.24 83.33 88.89 99.20
Net4 6 0 5 614 100.00 54.55 70.59 99.20
Net5 6 1 9 609 85.71 40.00 54.55 98.40
Net6 6 3 13 603 66.67 31.58 42.86 97.44
Net7 23 3 6 593 88.46 79.31 83.64 98.56
Avg 11.14 1.71 7.57 604.57 85.77 55.70 66.26 98.51

GO Regulatory Path method, which motivates us to use functional similarity to
improve the GRN inference from GO.

The evaluations of GRN predicted from GO Functional Similarity using the
original term probabilities (denoted by “O:FunSim”) and modified term proba-
bilities (denoted by and “M:FunSim”) are shown in Table 2. The “O:FunSim”
method resembles existing works which extract gene interactions based on gene
similarity from GO Semantic Similarity [5,4,6]. It can be seen that “M:FunSim”
outperforms “O:FunSim” notably on the averaged precision, recall, F1-score, and
accuracy. Clearly, the modified term probabilities are more effective in capturing
the functional similarity of genes.

Due to the complementary strengths of last two methods, they can be fused
to capture more information from the GO databases. From the Fusion method in

GRN from GO 97

Table 2, we see that the GO Fusion approach gave the best performance in terms
of F1 measure and accuracy. The overall low recall of the GO Fusion method
is due to the incompleteness of the GO database and the target network. The
extremely high TNs (reflected in the accuracy rates of 98% or higher) suggest
that our GO method is able to filter the vast majority of negative edges. Our GO
method also yields very low false positive rates. As a result, high precision rates
averaging 85.77% are achieved as shown in Table 2. This conservative behaviour
is desirable because gene regulation is hard to validate in general and a GRN
should have as high a precision as possible.

4 Conclusion

We proposed a method to detect both direct and transitive regulations between
genes by using the corresponding GO annotations and their inter-relations. By
developing a novel shortest path detection algorithm, we detected the most likely
regulatory paths from GON. Experimental results show that transitive regula-
tions play an important role in GRN and their detection improves the accuracy
of the generated GRN. We show that GO can be used effectively to detect tran-
sitive regulations.

Due to the incomplete information of the source GO database, the GRN from
the GO Regulate Path method may overlook some important direct regulations.
Inspired by the fact that gene regulations occur between functionally similar genes,
we propose the GO FunSim method to detect direct regulations. Gene function
similarity scores are computed from the semantic similarities of their correspond-
ing GO terms, using their occurrence probabilities. We then modified the term oc-
currence probabilities to account for GO term imbalance, e.g., the likelihood of a
term being assigned to each, both, or neither of the two terms. Experimental re-
sults show that our GO FunSim method based on the modified term probabilities
are extremely adept at capturing pairwise gene function similarities.

Lastly, we proposed a simple fusion method to combine the results of the pro-
posed FunSim and Regulate Path methods to generate a fused GRN. Experiments
show that our GO Fusion method yielded the best GRN in terms of F1-score.

The errors on predicting the networks may arise from (i) the incompleteness
of the target networks; (ii) the incompleteness of the GO database due to lack
of updates; (iii) the erroneous annotations of GO database due to human error;
(iv) GO allows us to annotate genes and their products with a limited set of
attributes, its scope is limited to the three domains, which is not comprehensive.
Hence, the GRN we extracted from GO are in fact based upon partial evidence
provided by the current GO. The false negatives of the networks could be further
reduced by fusing the GO generated GRN with additional data sources such as
wet-lab data. One extension to this work is to identify ontology terms that are
specific to the pathways under consideration, e.g., terms related to cell-cycle
functions in our experiments. The GRN developed by our method could be
useful for validation of networks built by other experimental or computational
approaches.

98 W. Liu et al.

Acknowledgement. This research was supported in part by Singapore’s Min-
istry of Education Academic Research Tier 2 fund MOE2010-T2-1-056 and MOE
AcRF Tier 2 grant of ARC9/11.

References

1. Steuer, R., Humburg, P., Selbig, J.: Validation and functional annotation of
expression-based clusters based on gene ontology. BMC Bioinformatics (2006)

2. Mundra, P.A., Rajapakse, J.C.: SVM-RFE with MRMR filter for gene selection.
IEEE Transactions on Nanobiosciences 9 (2010)

3. Zhou, X.H., Kao, M.J., Wong, W.H.: Transitive functional annotation by shortest-
path analysis of gene expression data. In: PNAS, vol. 99, pp. 12783–12788 (2002)

4. Franke, L., van Bakel, H., Fokkens, L., de Jong, E.D., Egmont-Petersen, M., Wi-
jmenga, C.: Reconstruction of a functional human gene network, with an appli-
cation for prioritizing positional candidate genes. American Journal of Human
Genetics 78, 1011–1025 (2006)

5. Cheng, J., Cline, M., Martin, J., Finkelstein, D., Awad, T., Kulp, D., Siani-Rose,
M.: A knowledge-based clustering algorithm driven by gene ontology. Journal of
Biopharmaceutical Statistics 14, 687–700 (2004)

6. Kustra, R., Zagdański, A.: Data-fusion in clustering microarray data: Balancing
discovery and interpretability. TCBB 7, 59–63 (2010)

7. Ashburner, M., Ball, C.A., Blake, J.A.: Gene ontology: tool for the unification of
biology. Nature Genetics 25, 25–29 (2000)

8. Barrell, D., Dimmer, E., Huntley, R.P.: The goa database in 2009 - an integrated
gene ontology annotation resource. NAR 37, 396–403 (2009)

9. Alterovitz, G., Xiang, M., Mohan, M.: Go pad: the gene ontology partition
database. NAR 35, 322–327 (2007)

10. Lin, D.: An information theoretic definition in similarity. In: ICML, pp. 266–304
(1998)

11. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical
taxonomy. In: ROCLING (1997)

12. Johnson, D.B.: A note on dijkstra’s shortest path algorithm. JACM (1973)
13. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and

its application to problems of ambiguity in natural language. In: JAIR, vol. 11,
pp. 95–130 (1999)

14. Schlicker, A., Domingues, F.S., Rahnenfuhrer, J., Lengauer, T.: A new measure for
functional similarity of gene products based on gene ontology. BMC Bioinformatics
(2006)

15. Lord, P., Stevens, R., Brass, A., Goble, C.A.: Investigating semantic similarity mea-
sures across the gene ontology: the relationship between sequence and annotation.
Bioinformatics 19, 1275–1283 (2003)

16. Schaffter, T., Marbach, D., Floreano, D.: GeneNetWeaver: In silico benchmark gen-
eration and performance profiling of network inference methods. Bioinformatics 27,
2263–2270 (2011)

17. Rhee, S.Y., Wood, V., Dolinski, K.: Use and misuse of the gene ontology annota-
tions. Nature Reviews Genetics 9, 509–515 (2008)

Partitioning Biological Networks
into Highly Connected Clusters
with Maximum Edge Coverage

Falk Hüffner1, Christian Komusiewicz1, Adrian Liebtrau2,
and Rolf Niedermeier1

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{falk.hueffner,christian.komusiewicz,rolf.niedermeier}@tu-berlin.de

2 Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

Abstract. We introduce the combinatorial optimization problem
Highly Connected Deletion, which asks for removing as few edges
as possible from a graph such that the resulting graph consists of highly
connected components. We show that Highly Connected Deletion
is NP-hard and provide a fixed-parameter algorithm and a kernelization.
We propose exact and heuristic solution strategies, based on polynomial-
time data reduction rules and integer linear programming with column
generation. The data reduction typically identifies 85% of the edges
that need to be deleted for an optimal solution; the column generation
method can then optimally solve protein interaction networks with up
to 5 000 vertices and 12 000 edges.

1 Introduction

A key idea of graph-based data clustering is to identify densely connected sub-
graphs (clusters) that have many interactions within themselves and few with
the rest of the graph. Hartuv and Shamir [8] proposed a clustering algorithm pro-
ducing so-called highly connected clusters. Their method has been successfully
used to cluster cDNA fingerprints [9], to find complexes in protein–protein in-
teraction (PPI) data [10], and to find families of regulatory RNA structures [15].
Hartuv and Shamir [8] formalized the connectivity demand for a cluster as fol-
lows: the edge connectivity λ(G) of a graph G is the minimum number of edges
whose deletion results in a disconnected graph, and a graph G with n vertices is
called highly connected if λ(G) > n/2. An equivalent characterization is that a
graph is highly connected if each vertex has degree at least �n/2�+ 1 [5]. Thus,
highly connected graphs are very similar to 0.5-quasi-complete graphs [11], that
is, graphs where every vertex has degree at least (n−1)/2. Further, being highly
connected also ensures that the diameter of a cluster is at most two [8].

The algorithm by Hartuv and Shamir [8] partitions the vertex set of the
given graph such that each partition set is highly connected, thus guaranteeing
good intra-cluster density (including maximum cluster diameter two and the
presence of more than half of all possible edges). Moreover, the algorithm needs

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 99–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

100 F. Hüffner et al.

no prespecified parameters (such as the number of clusters) and it naturally
extends to hierarchical clustering. Essentially, Hartuv and Shamir’s algorithm
iteratively deletes the edges of a minimum cut in a connected component that
is not yet highly connected. While Hartuv and Shamir’s algorithm guarantees
to output a partitioning into highly connected subgraphs, it does not guarantee
to achieve this by minimizing inter-cluster connectivity. Thus, we propose a
formally defined combinatorial optimization problem that additionally specifies
the goal to minimize the number of edge deletions.

Highly Connected Deletion

Instance: An undirected graph G = (V,E).
Task: Find a minimum subset of edges E′ ⊆ E such that in G′ =
(V,E \ E′) all connected components are highly connected.

Note that, by definition, isolated edges are not highly connected. Hence, the
smallest clusters are triangles; we consider all singletons as unclustered. The
problem formulation resembles the Cluster Deletion problem [17], which
asks for a minimum number of edge deletions to make each connected com-
ponent a clique; thus, Cluster Deletion has a much stronger demand on
intra-cluster connectivity. Also related is the 2-Club Deletion problem [13],
which asks for a minimum number of edge deletions to make each connected
component have a diameter of at most two. Since highly connected clusters also
have diameter at most two [8], 2-Club Deletion poses a looser demand on
intra-cluster connectivity.

It could be expected that the algorithm by Hartuv and Shamir [8] yields a good
approximation for the optimization goal of Highly Connected Deletion.
However, we can observe that in the worst case, its result can have size Ω(k2),
where k := |E′| is the size of an optimal solution. For this, consider two cliques
with vertex sets u1, . . . , un and v1, . . . , vn, respectively, and the additional edges
{ui, vi} for 2 ≤ i ≤ n. Then these additional edges form a solution set of size
n − 1; however, Hartuv and Shamir’s algorithm will (with unlucky choice of
minimum cuts) transform one of the two cliques into an independent set by
repeatedly cutting off one vertex, thereby deleting n(n+1)/2−1 edges. This also
illustrates the tendency of the algorithm to cut off size-1 clusters, which Hartuv
and Shamir counteract with postprocessing [8]. This tendency might introduce
systematic bias [12]. Hence, exact algorithms for solving Highly Connected

Deletion are desirable.

Preliminaries. We consider only undirected and simple graphsG = (V,E). We use
n andm to denote the number of vertices and edges in the input graph, respectively,
and k for the minimum size of an edge set whose deletion makes all components
highly connected.The order of a graphG is the number of vertices inG.WeuseG[S]
to denote the subgraph induced by S ⊆ V . Let N(v) := {u | {u, v} ∈ E} denote
the (open) neighborhood of v andN [v] := N(v)∪{v}. A minimum cut of a graphG
is a smallest edge set E′ such that deleting E′ increases the number of connected
components ofG. For the notions of fixed-parameter tractability and kernelization,

Partitioning Biological Networks into Highly Connected Clusters 101

see e. g. [14]. Due to the lack of space, we defer some proofs and details to the
full version of this paper.1

2 Computational Complexity

We can prove the hardness of HighlyConnected Deletion by a reduction from
Partition Into Triangles on 4-regular neighborhood-restricted graphs [19].

Theorem 1. Highly Connected Deletion on 4-regular graphs is NP-hard
and cannot be solved in 2o(k) ·nO(1), 2o(n) ·nO(1), or 2o(m) ·nO(1) time unless the
exponential-time hypothesis (ETH) is false.

Problem Kernel. We now present four data reduction rules that preserve opti-
mal solvability and whose exhaustive application results in an instance with at
most 10 · k1.5 vertices. The first data reduction rule is obvious.

Rule 1. Remove all connected components from G that are highly connected.

The following lemma can be proved by a simple counting argument.

Lemma 1. Let G be a highly connected graph and let u, v be two vertices in G. If
u and v are connected by an edge, then they have at least one common neighbor;
otherwise, they have at least three common neighbors.

A simple data reduction rule follows directly from Lemma 1.

Rule 2. If there are two vertices u and v with {u, v} ∈ E that have no common
neighbors, then delete {u, v} and decrease k by one.

Interestingly, Rules 1 and 2 yield a linear-time algorithm for Highly Con-

nected Deletion on graphs of maximum degree three, which together with
Theorem 1 shows a complexity dichotomy with respect to the maximum degree.

Theorem 2. Highly Connected Deletion can be solved in linear time when
the input graph has degree at most three.

The next two data reduction rules are concerned with finding vertex sets that
have a small edge cut. For S ⊆ V , we use D(S) := {{u, v} ∈ E | u ∈ S and v ∈
V \ S} to denote the set of edges outgoing from S, that is, the edge cut of S.

The idea behind the next reduction rule is to find vertex sets that cannot be
separated by at most k edge deletions. We call two vertices u and v inseparable
if the minimum edge cut between u and v is larger than k. Analogously, a vertex
set S is inseparable if all vertices in S are pairwise inseparable.

Rule 3. If G contains a maximal inseparable vertex set S of size at least 2k,
then do the following. If G[S] is not highly connected, then there is no solution
of size at most k. Otherwise, remove S from G and set k := k − |D(S)|.
1 http://fpt.akt.tu-berlin.de/publications/hcd.pdf

http://fpt.akt.tu-berlin.de/publications/hcd.pdf

102 F. Hüffner et al.

Lemma 2. Rule 3 preserves optimal solvability and can be exhaustively applied
in O(n2 ·mk logn) time.

Note that a highly connected graph of size at least 2k is an inseparable vertex
set. Hence, after exhaustive application of Rule 3, every cluster has bounded size.
While Rule 3 identifies clusters that are large with respect to k, Rule 4 identifies
clusters that are large compared to their neighborhood.

Rule 4. If G contains a vertex set S such that |S| ≥ 4, G[S] is highly connected,
and |D(S)| ≤ 0.3 ·

√
|S|, then remove S from G and set k := k − |D(S)|.

Lemma 3. Rule 4 preserves optimal solvability and can be exhaustively applied
in O(n2 ·mk logn) time.

Proof. We show that there is an optimal solution in which S is a cluster. To
this end, suppose that there is an optimal solution which produces some clus-
ters C1, . . . , Cq that contain vertices from S and vertices from V \ S. We show
how to transform this solution into one that has S as a cluster and needs at
most as many edge deletions. First, we bound the overall size of the Ci’s. Note
that deleting all edges between S and {Ci \ S | 1 ≤ i ≤ q} cuts each Ci. By the
condition of the rule, such a cut has at most 0.3

√
|S| edges. Since each G[Ci] is

highly connected, this implies that
∑

1≤i≤q |Ci| < 0.6
√
|S|.

Now, transform the solution at hand into another solution as follows. Make S
a cluster, that is, undo all edge deletions within S and delete all edges in D(S),
and for each Ci, delete all edges in G[Ci \ S]. This is indeed a valid solution
since G[S] is highly connected, and all other vertices that are in “new” clusters
are now in singleton clusters.

We now compare the number of edge modifications for both edge deletion
sets and show that the new solution needs less edge modifications. To this end,
we consider each vertex u ∈ S that is contained in some Ci. On the one hand,
since G[S] is highly connected, and since there is at least some v ∈ S that is not
contained in any Ci we undo at at least |S|/2 edge deletions between vertices

of S. On the other hand, an additional number of up to 0.3
√
|S| +

(�0.6√|S|	
2

)
edge deletions may be necessary to cut all the Ci’s from S and to delete all edges
in each G[Ci \ S]. By the preconditions of the rule we have

√
|S| ≤ |S|/2 and

thus the overall number of saved edge modifications for u is at least

|S|/2− 0.3
√
|S| −

(
�0.6

√
|S|�

2

)
> |S|/2− 0.6|S|/2− 0.36|S|/2 > 0. (1)

Hence, the number of undone edge modifications is larger than the number of
new edge modifications. Consequently, S is a cluster in every optimal solution.
The running time can be bounded analogously to the running time of Rule 3. �	

Theorem 3. Highly Connected Deletion can be reduced in O(n2 ·mk logn)
time to an equivalent instance, called problem kernel, with at most 10 · k1.5 ver-
tices.

Partitioning Biological Networks into Highly Connected Clusters 103

Proof. Let I = (G, k) be an instance that is reduced with respect to Rules 1, 3
and 4. We show that every yes-instance has at most 10 · k1.5 vertices. Hence, we
can answer no for all larger instances.

Assume that I is a yes-instance and let C1, . . . , Cq denote the clusters of
a solution. Since I is reduced with respect to Rule 3, we have |Ci| ≤ 2k for
each Ci. Furthermore, for every Ci we have D(Ci) ≥ 0.3

√
|Ci| since I is reduced

with respect to Rules 1 and 4. In other words, every cluster Ci “needs” at least
0.3

√
|Ci| edge deletions. Hence, the overall instance size is at most

max
(c1,...,cq)∈Nq

q∑
i=1

ci s. t. ∀i ∈ {1, . . . , q} : ci ≤ 2k,
∑

1≤i≤q

0.3 · √ci ≤ 2k.

A simple calculation shows that there is an assignment to the ci’s maximizing
the sum such that at most one ci is smaller than 2k. Hence, the sum is maxi-
mized when a maximum number of ci’s have value 2k. Each of the correspond-
ing clusters is incident with at least 0.3

√
2k edge deletions. Hence, there are at

most 2k/0.3
√
2k = 10

√
2k/3 such clusters. The overall instance size follows. �	

Fixed-Parameter Algorithm. We sketch a fixed-parameter algorithm for Highly

Connected Deletion. Since any highly connected graph has diameter at most
two, if there is a connected component with diameter three or more, we can find
a shortest path uvwx between two vertices u and x, and then branch into three
cases according to which edge of this path gets deleted. At the leaves of this
search tree, we have a graph where every connected component has diameter
at most two. Using Rule 3, we can ensure that each component has at most 4k
vertices. We can solve an arbitrary Highly Connected Deletion instance by
dynamic programming in O(3n ·m) time; applying this to each component yields
the following theorem.

Theorem 4. Highly Connected Deletion can be solved in O(34k · k2 +
n2mk · logn) time.

3 Further Data Reduction and ILP Formulation

The fixed-parameter tractability results for Highly Connected Deletion

(Theorem 3) are currently mostly of theoretical nature. Hence, we follow an
algorithmic approach that consists of two main steps: First, apply a set of data
reduction rules that exploit the structure of biological networks and yield a new
instance that is significantly smaller than the original one. Second, solve the new,
smaller instance by devising an integer linear programming (ILP) formulation.

Further Data Reduction. As we demonstrate in the computational experiments
presented in Section 4, Rule 2 tremendously simplifies many real-world input
instances. In particular, as shown by Theorem 2, it is useful to reduce vertices of
small degree, as found in protein interaction networks. However, Rules 3 and 4

104 F. Hüffner et al.

that produce a kernel have the downside of requiring relatively large substruc-
tures. To improve performance in practice, we use the following two rules.

We try to identify triangles uvw that must form highly connected clusters.
For a triangle edge {x, y}, let Nxy := (N(x) ∪N(y)) \ {u, v, w} be the common
neighbors of the edge outside the triangle. Let the value of an edge e be 3 if
Ne
= ∅ and 0 otherwise. Let the value of a vertex x be the size of the largest
connected component in G[N(x) \ {u, v, w}], or 0 if this size is 1.

Rule 5. Assume that for a triangle uvw the following conditions hold:

– for no two triangle edges {x, y}, {x, z} ({x, y, z} = {u, v, w}) there is an edge
in G between some vertex in Nxy and some vertex in Nxz;

– for no triangle edge e is there an edge in G[Ne];
– for any {x, y, z} = {u, v, w}, the value of {x, y} plus the value of z is at

most 3;
– the sum of the values of u, v, and w is at most three.

Then isolate the triangle by deleting all edges incident on u, v, and w except the
triangle edges.

Proof (preservation of optimality). By case distinction: if the triangle is not a
solution cluster, then it must be part of a larger cluster, or the vertices are
divided into two or three clusters. The conditions ensure that none of these
situations yield a better solution than isolating the triangle. �	

The following rule reduces some low-degree vertices.

Rule 6. Let u be a vertex and N2(u) be the neighbors of u that have degree 2.
If G[N2(u)] contains an edge, then isolate all vertices of degree 0 in G[N2(u)].
Otherwise, if there is a vertex v that is in G a neighbor of a vertex w in N2(u)
and has degree 3 in G, then delete the edge from v to the neighbor that is not
u or w.

Proof (preservation of optimality). The vertex u can be contained in at most one
triangle. Each of the deleted edges could only be part of a triangle with u, and for
each such triangle there is another triangle which destroys fewer opportunities
of using vertices for other clusters. �	

Integer Linear Programming with Column Generation. We now consider inte-
ger linear programming (ILP) based approaches. With these, we can utilize the
decades of engineering that went into commercial solvers like CPLEX or Gurobi
to be able to tackle large instances. Our main approach is somewhat involved due
to the use of column generation. We additionally tried a more straightforward ap-
proach based on a Clique Partitioning formulation and row generation. Our
experiments show that the extra complexity pays off and the column generation
approach can solve larger instances exactly.

We describe an ILP formulation of Highly Connected Deletion, which in
its basic scheme is similar to that of Aloise et al. [1] for modularity maximization;

Partitioning Biological Networks into Highly Connected Clusters 105

however, we need a new approach for solving the column generation subproblem.
Let T be the set of all vertex sets that induce a highly connected subgraph. We
use binary variables zT to indicate that the cluster T ∈ T is part of the solution.
Then the model is

maximize
∑
T∈T

cT zT , (2)

s. t.
∑

{T∈T |u∈T}
zT = 1 ∀u ∈ V, (3)

zT ∈ {0, 1} ∀T ∈ T , (4)

where cT is the number of edges in the subgraph induced by t. The objective (2)
maximizes the number of edges within clusters, which equivalent to minimizing
the number of inter-cluster edges (deletions). The constraints of type (3) ensure
that each vertex is contained in exactly one cluster.

Due to the large number of variables, this model cannot be solved directly
except for tiny instances. Thus, the idea is to only consider “relevant” variables.
More precisely, we start with an initial set of zT variables that yields a fea-
sible solution (e. g., all singleton clusters). Then we successively add variables
(“columns”) that improve the objective, until this is no longer possible. Due to
the structure of real-world instance, typically only a small subset of possible
variables needs to be added.

Now the improvement of adding a column for cluster T is cT minus the con-
tribution of the vertices in T to the objective function. This contribution for
some vertex u can be calculated as the value of the dual variable λu for the
corresponding constraint of type (3) in the continuous relaxation of the problem
(2)–(4) (see e. g. Aloise et al. [1] for details). The values of the dual variables
can be easily calculated by a linear programming solver. Thus, we need to find a
cluster T that maximizes cT −

∑
u∈T λu. In other words, we need to find a highly

connected cluster that maximizes the number of edges minus vertex weights. For
this, we again use an ILP formulation, using binary edge variables euv and bi-
nary vertex variables vu to describe the cluster selected, and a positive integral
variable d to describe the cluster size:

maximize
∑

{u,v}∈E

euv −
∑
u∈t

λuvu, (5)

s. t. d =
∑
u∈V

vu, (6)

euv ≤ vu, evu ≤ vv ∀{u, v} ∈ E, (7)

if vu then
∑

v∈N(u)

euv > d/2 ∀u ∈ V, (8)

where the constraint (8) can be linearized using the big-M method (that is, by
adding M(1 − vu) on the left-hand side with a sufficiently large constant M);
in our implementation, we instead use indicator constraints as supported by
CPLEX.

106 F. Hüffner et al.

Table 1. Instance properties and data reduction results. Here, K is the number of
connected components, n′ and m′ are the number of vertices and edges in the largest
connected component, respectively, Δk is the number of edges deleted during data
reduction, K′ is the number of connected components after data reduction, and n′′

and m′′ are the number of vertices and edges in the largest connected component after
data reduction, respectively.

n m K n′ m′ Δk Δk [%] K′ n′′ m′′

CE phys. 157 153 39 23 24 100 92.6 137 11 38
CE all 3613 6828 73 3434 6721 5204 80.1 3202 373 1562
MM phys. 4146 7097 114 3844 6907 5659 85.3 3656 426 1339
MM all 5252 9640 135 4890 9407 7609 84.8 4566 595 1893
AT phys. 1872 2828 82 1625 2635 2057 83.1 1605 187 619
AT all 5704 12627 128 5393 12429 8797 79.5 4579 866 3323
SP all 2698 16089 17 2661 16065 2936 ≥ 18.2 1299 1372 13111

We can make use of the fact that it is not necessary to find a maximally im-
proving column. Therefore, we can solve the column generation problem heuris-
tically, and only solve it optimally using the ILP when no improving solution
was found. As heuristic, we use a simple greedy method that starting from each
vertex repeatedly adds the vertex that maximizes the value of the cluster, and
records the best cluster that was highly connected. Further, we abort solving the
column generation ILP as soon as an improving solution is found.

4 Experimental Evaluation

We implemented the data reduction in OCaml and the ILPs in C++ using the
CPLEX 12.4 ILP solver. For the minimum cut subroutine of the algorithm of
Hartuv and Shamir [8] (called min-cut method below), a highly optimized im-
plementation in C was used [6]. Our source code and sample instances are avail-
able at http://www.user.tu-berlin.de/hueffner/hcd/. The test machine is
a 3.6 GHz Intel Xeon E5-1620 with 10 MB L3 cache and 64 GB main memory,
running under Debian GNU/Linux 7.0. Only a single thread was used.

We used protein interaction networks available at the BIOGRID repository
[18]. The three species for which we illustrate our results are A. thaliana, C. ele-
gans, and M. musculus. For each species, we extracted one network with physical
interactions only, and one with all interactions. In Fig. 2, we also consider the net-
work of all interactions of S. pombe. Table 1 shows some basic properties of these
networks. For the computation of the enrichment of annotation terms, we used
the GO:TermFinder tool [3] with A. thaliana annotation data from the TAIR
database [2]. The computed p-values are corrected for multiple hypothesis testing.
We used a significance threshold of p ≤ 0.01.

RunningTimeEvaluation. Table 1 shows the effect of data reduction. Knowing the
optimal k (see Table 2) allows us to state that typically 85 % of the edges that need
to be deleted are identified. Since connected components can be treated separately,

http://www.user.tu-berlin.de/hueffner/hcd/

Partitioning Biological Networks into Highly Connected Clusters 107

Table 2. Results for the instances of Table 1. Here, k is the number of edges deleted,
s and K are the number of singleton and nonsingleton clusters, respectively, n and m
are the number of vertices and edges in the largest cluster, respectively, and t is the
running time in seconds.

min-cut without DR min-cut with DR column generation with DR

k s K n m t k s K n m t k s K n m t

CE-p 111 136 5 9 30 0.01 108 133 6 9 30 0.01 108 133 6 9 30 0.06
CE-a 6714 3589 2 17 94 86.46 6630 3521 22 17 94 6.36 6499 3436 45 19 113 2088.35
MM-p 7004 4116 5 12 57 126.30 6882 4003 41 12 57 7.42 6638 3845 80 11 41 898.13
MM-a 9563 5227 5 13 65 267.63 9336 5044 61 13 65 17.84 8978 4812 120 13 65 3858.62
AT-p 2671 1796 19 14 76 5.82 2567 1723 39 14 76 0.68 2476 1675 49 14 76 60.34
AT-a 12096 5559 23 23 190 434.52 11590 5213 122 23 190 32.09 11069 4944 180 23 190 34121.23

themost important time factor is the size of the largest connected component.Here,
the number of edges is reduced to typically 23 %. This demonstrates the effectivity
of the data reduction, which preserves exact solvability, and suggests it should be
applied regardless of the actual solution method.

Table 2 shows the clustering results and running times. Doing data reduction
before running the min-cut method actually improves the running time, since
it reduces the number of costly min-cut calls. The column generation method
is able to solve all six test instances, although the hardest one takes more than
9 hours. However, it is not able to solve e. g. the network of all interactions of
S. pombe with 1541 vertices and 3036 edges; this is probably because this is a
denser network, making data reduction less effective.

2 4 6 8 10 12 14 16 18 20 22
cluster size

0

20

40

60

80

100

to
ta

l
n
u
m

b
e
r

min-cut without DR

min-cut with DR

column generation

Fig. 1. Clusters in the A. thaliana network
with all interactions. The brighter part of
each bar shows the fraction of clusters with-
out significant enrichment of biological pro-
cess annotation terms.

Biological Evaluation. For the bi-
ological evaluation, we studied the
A. thaliana network with all inter-
actions in more detail since it was
the largest instance for which the
exact algorithm finished. Our find-
ings are summarized in Figure 1. Solv-
ing Highly Connected Deletion

exactly produces more clusters than
using the min-cut algorithm with data
reduction which in turn produces
more clusters than the min-cut algo-
rithm without data reduction. This
behavior can be observed for small
and for larger clusters.

To assess the biological relevance
of these clusters, we determined for
each cluster whether the correspond-

ing protein set has a statistically significant enrichment of annotations describ-
ing processes in which the protein take part. As shown in Fig. 1, for all three

108 F. Hüffner et al.

4 6

cluster size

0

50

100

150

200

250

t
o
t
a
l
n
u
m

b
e
r

mcl I3.0

mcl I2.0

hcd

8 10 12 14 16 18 20

cluster size

0

5

10

15

20

25

t
o
t
a
l
n
u
m

b
e
r

mcl I3.0

mcl I2.0

hcd

Fig. 2. Clusters in the A. thaliana networks produced by the MCL algorithm and our
algorithm (HCD) for small clusters (left) and medium-size clusters (right).

methods a large portion of clusters shows such an enrichment. The min-cut al-
gorithm with data reduction clearly outperforms the min-cut algorithm without
data reduction: it produces more clusters without producing a larger fraction of
nonenriched clusters. For the exact algorithm the results are less clear: it pro-
duces even more clusters, but a larger fraction is nonenriched. This behavior is
particularly pronounced for small clusters of size at most three, but also for some
larger cluster sizes.

Comparison with Markov Clustering. Next, we compare our clustering algo-
rithm with a popular clustering algorithm for protein interaction networks. As
comparison, we choose the so-called Markov Clustering Algorithm (MCL). For
details concerning MCL refer to [7]; in the experiments, we used the MCL-
implementation available at http://micans.org. One parameter that can be
set when using MCL is the “inflation” I. We performed experiments with the
default value of I = 2.0 and with I = 3.0 which produces a more fine-grained
clustering (as does our algorithm). Unless stated otherwise, we use MCL to refer
to the algorithm with default setting.

When comparing the two algorithms, our exact approach (in the following
referred to as HCD) and the MCL algorithm, there are some clear advantages
of the MCL algorithm: MCL finishes within less than a second, MCL assigns
almost all proteins to nonsingleton clusters, and MCL produces more clusters
than HCD. MCL also produces larger clusters than HCD. For instance, it finds
30 clusters of size more than 20, and the largest cluster has size 280. As shown
in Figure 2, the number of produced clusters is higher across all cluster sizes. The
fraction of clusters whose proteins share a significantly enriched GO annotation
term, however, is for small and medium-size clusters much lower in the clustering
produced by MCL than in the clustering produced by HCD. For large clusters
(not shown), 85% of the clusters produced by MCL show a significant enrichment
of some annotation term.

http://micans.org

Partitioning Biological Networks into Highly Connected Clusters 109

To provide a more systematic analysis of the similarity of annotation terms
for the clusters, we computed for each protein pair in the same cluster the seman-
tic similarity score for the GO annotations proposed by Wang et al. [20]. The
computed scores lie in [0, 1]; a higher score indicates higher similarity between
the two considered proteins. The average semantic similarity score for a protein
pair in the same cluster is 0.410 for HCD and 0.192 for MCL. This pure numeric
score, however, could be skewed in favor of HCD. We therefore further examined
the effect of the cluster size on the average semantic score for protein pairs in
the same cluster. We found that across all cluster sizes, the clusters produced by
HCD show better similarity than those produced by MCL. Summarizing, our re-
sults for the A. thaliana network indicate that HCD outperforms MCL in terms
of quality of the reported clusters while MCL shows better coverage and a better
running time.

Variants & Extensions. The comparison of HCD with the MCL clustering al-
gorithm showed that two drawbacks of HCD are the running time explosion
and the fact that a large fraction of proteins remains unclustered in the optimal
HCD solution. We discuss here two strategies to lessen both drawbacks. First,
the exact column generation approach is not able to solve the hardest instances.
Therefore, we consider a heuristic variant, where we stop the column generation
process after a time limit is exceeded. Comparisons with the min-cut algorithm
show that with a time limit of one hour, this heuristic variant can find 120
additional clusters compared to the min-cut algorithm.

Another intrinsic problem of demanding highly-connected clusters is the fact
that biological networks contain many low-degree vertices: these vertices cannot
be contained in any highly connected cluster and HCD computes a clustering of
the dense core of the network. Similar to a post-processing suggested by Hartuv
and Shamir [8], we used the following simple post-processing to “readd” the
proteins not included in any cluster returned by HCD: add each unclustered
protein to some cluster if its interactions are exclusively with proteins of this
cluster. A first examination of the enrichment statistics indicates that this version
of HCD produces better clusters than MCL concerning cluster quality while
clustering a significantly larger number of proteins than the pure HCD approach.

5 Outlook

We conclude with a few promising directions for future work. We plan to per-
form further evaluation of the quality of the clusters found by our approach.
First, we plan to evaluate the column-generation-based heuristic on larger stan-
dard protein interaction networks such as S. cerevisiae and perform comparisons
with further clustering algorithms, for example the RN algorithm [16]. Second, a
main feature of Highly Connected Deletion is that the cluster definition is
easy to interpret. This makes it easy to modify the produced clustering as shown
in Section 4. There, the presented post-processing is just a first step, more sophis-
ticated approaches are conceivable and should be explored to further increase

110 F. Hüffner et al.

clustering quality. Finally, it seems useful to consider edge-weighted Highly

Connected Deletion, that is, to maximize the sum of edge weights in the
clustering. This could be useful to model different degrees of reliability in the
data [4]. Our ILP can be adapted to solve this problem as well.

Acknowledgments. We are indebted to Nadja Betzler and Johannes Uhlmann
for their early contributions in the theoretical part of this research.

References

[1] Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., Liberti, L.: Column
generation algorithms for exact modularity maximization in networks. Physical
Review E 82, 046112 (2010)

[2] Berardini, T.Z., Mundodi, S., Reiser, R., Huala, E., Garcia-Hernandez, M.: et al.
Functional annotation of the Arabidopsis genome using controlled vocabularies.
Plant Physiology 135(2), 1–11 (2004)

[3] Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., Sherlock,
G.: GO:TermFinder–open source software for accessing gene ontology information
and finding significantly enriched gene ontology terms associated with a list of
genes. Bioinformatics 20(18), 3710–3715 (2004)

[4] Chang, W.-C., Vakati, S., Krause, R., Eulenstein, O.: Exploring biological inter-
action networks with tailored weighted quasi-bicliques. BMC Bioinformatics 13(S-
10), S16 (2012)

[5] Chartrand, G.: A graph-theoretic approach to a communications problem. SIAM
Journal on Applied Mathematics 14(4), 778–781 (1966)

[6] Chekuri, C., Goldberg, A.V., Karger, D.R., Levine, M.S., Stein, C.: Experimental
study of minimum cut algorithms. In: Proc. 8th SODA, pp. 324–333 (1997)

[7] van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht (2000)

[8] Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. In-
formation Processing Letters 76(4-6), 175–181 (2000)

[9] Hartuv, E., Schmitt, A.O., Lange, J., Meier-Ewert, S., Lehrach, H., Shamir, R.:
An algorithm for clustering cDNA fingerprints. Genomics 66(3), 249–256 (2000)

[10] Hayes, W., Sun, K., Pržulj, N.: Graphlet-based measures are suitable for biological
network comparison. Bioinformatics (to appear, 2013)

[11] Jiang, D., Pei, J.: Mining frequent cross-graph quasi-cliques. ACM Transactions
on Knowledge Discovery from Data 2(4), 16:1–16:42 (2009)

[12] Koyutürk, M., Szpankowski, W., Grama, A.: Assessing significance of connectiv-
ity and conservation in protein interaction networks. Journal of Computational
Biology 14(6), 747–764 (2007)

[13] Liu, H., Zhang, P., Zhu, D.: On editing graphs into 2-club clusters. In: Snoeyink,
J., Lu, P., Su, K., Wang, L. (eds.) AAIM 2012 and FAW 2012. LNCS, vol. 7285,
pp. 235–246. Springer, Heidelberg (2012)

[14] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. OUP (2006)
[15] Parker, B.J., Moltke, I., Roth, A., Washietl, S., Wen, J., Kellis, M., Breaker, R.,

Pedersen, J.S.: New families of human regulatory RNA structures identified by
comparative analysis of vertebrate genomes. Genome Research 21(11), 1929–1943
(2011)

Partitioning Biological Networks into Highly Connected Clusters 111

[16] Ronhovde, P., Nussinov, Z.: Local resolution-limit-free Potts model for community
detection. Physical Review E 81(4), 046114 (2010)

[17] Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Applied Mathematics 144(1-2), 173–182 (2004)

[18] Stark, C., Breitkreutz, B.-J., Chatr-aryamontri, A., Boucher, L., Oughtred, R., et
al.: The BioGRID interaction database: 2011 update. Nucleic Acids Research 39,
698–704 (2011)

[19] van Rooij, J.M.M., van Kooten Niekerk, M.E., Bodlaender, H.L.: Partition into
triangles on bounded degree graphs. Theory of Computing Systems (to appear,
2013)

[20] Wang, J.Z., Du, Z., Payattakool, R., Yu, P.S., Chen, C.-F.: A new method to
measure the semantic similarity of GO terms. Bioinformatics 23(10), 1274–1281
(2007)

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 112–124, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Reconstructing k-Reticulated Phylogenetic Network
from a Set of Gene Trees

Hoa Vu1, Francis Chin1, W.K. Hon2, Henry Leung1, K. Sadakane3,
Ken W.K. Sung4, and Siu-Ming Yiu1

1 Department of Computer Science, The University of Hong Kong
2 Department of Computer Science, National Tsinghua University, Taiwan

3 Informatics Research Division, National Institute of Informatics, Japan
4 Department of Computer Science, National University of Singapore, Singapore

Abstract. The time complexity of existing algorithms for reconstructing a
level-x phylogenetic network increases exponentially in x. In this paper, we
propose a new classification of phylogenetic networks called k-reticulated
network. A k-reticulated network can model all level-k networks and some
level-x networks with x > k. We design algorithms for reconstructing k-
reticulated network (k = 1 or 2) with minimum number of hybrid nodes from a
set of m binary trees, each with n leaves in O(mn2) time. The implication is that
some level-x networks with x > k can now be reconstructed in a faster way. We
implemented our algorithm (ARTNET) and compared it with CMPT. We show
that ARTNET outperforms CMPT in terms of running time and accuracy. We
also consider the case when there does not exist a 2-reticulated network for the
input trees. We present an algorithm computing a maximum subset of the
species set so that a new set of subtrees can be combined into a 2-reticulated
network.

1 Introduction

The study of evolutionary history of a species plays a crucial role in biomedical
research. For example, understanding the evolutionary history of a virus (e.g. SARS)
may help us deduce the natural reservoirs of the virus, thus identifying the source of
the virus. The details of how the virus evolves may help to uncover clues to treat or
vaccinate the virus and understand how it evolves resistance to existing drugs. A
traditional representation of evolutionary history is phylogenetic tree (a rooted,
unordered tree with distinctly labeled leaves, each represents a species or a strain of
the species). To construct a phylogenetic tree, a common practice is to select a group
of genes, which are believed to be critical for evolution, to represent the species.
However, selecting a different set of genes may end up with a different phylogenetic
tree (called a gene tree). To deal with this issue, researchers may try to extract the
subtrees which are common in all trees (known as the maximum agreement subtree
problems, see [1-3] for examples) and ignore the other non-common parts. This may
result in a small tree. Also, information not in the common subtree will be lost.

It is now well-known that the differences in the gene trees are not due to errors.
There exist evolutionary events (known reticulation events), such as hybridization,

 Reconstructing k-Reticulated Phylogenetic Network from a Set of Gene Trees 113

horizontal gene transfer, and recombination, that may cause the genes to evolve
differently and a phylogenetic tree is not powerful enough to model the resulting
evolutionary history [4]. To model the evolutionary history better, phylogenetic
network is proposed. Phylogenetic network is a generalization of phylogenetic tree
(note that in this paper, we focus on rooted bifurcating (each node has at most 2
descends) phylogenetic tree/network). Phylogenetic network is defined as a rooted,
directed acyclic graph in which (1) exactly one node has indegree 0 (the root), and all
other nodes have indegree 1 or 2; (2) all nodes with indegree 2 (hybrid nodes or
reticulation nodes) have outdegree 1, and all other nodes have outdegree 0 or 2; and
(3) all nodes with outdegree 0 (leaves) are distinctly labeled. For a hybrid node h in a
phylogenetic network, every ancestor s of h such that h can be reached using two
disjoint directed paths starting from the children of s is called a split node of h (and h
is called a hybrid node of s). The edges attached to a hybrid node is called hybrid
edges. Figure 1 shows an example. Typically, a split node is used to represent a
speciation event (two different species are evolved) while a hybrid node is used to
represent the reticulation event between the two descendants of the split node.

Fig. 1. An example phylogenetic network Fig. 2. A level‐4 network but is an
2‐reticulated network for a set of 15 HIV‐1
sequences resulting from 9 gene tr

We say that a phylogenetic network N is compatible with (induces or displays) a

set of gene trees if each tree can be obtained from N by deleting one of the hybrid
edges of each hybrid node and contracting all nodes with outdegree and indegree
equal 1 (see Figure 3 for an example). If there is no restriction, for any given set of
trees, we can always have a phylogenetic network that induces the trees. However,
reticulation events are hard to occur, so a more biological meaningful question is to
ask for such a phylogenetic network with the minimum number of hybrid nodes.

Fig. 3. Network N is compatible with T1, T2. T3

N T1 T2 T3

114 H. Vu et al.

A common classification of phylogenetic network is the level-x network [11 – 12].
A level-x network is one in which each biconnected component (also known as blob
[5]) of the network contains at most x hybrid nodes. A level-0 network is a
phylogenetic tree, a level-1 network is also known as a galled tree [5] or a galled
network [6]. There are algorithms that reconstruct a level-x network, however, the
time complexity increases exponentially in x even if we only consider some restricted
cases. Thus, in practice, if x > 2, the algorithm is not fast enough. On the other hand,
the evolutionary history of quite many viruses can only be modeled by high level
networks (with x > 2). For example, to capture all known reticulation events of HIV
[7], we need to use a level-4 network (Figure 2 shows the network).

In this paper, we propose to consider a new classification of networks by restricting
the maximum number of hybrid nodes each split node may have, namely a k-
reticulated network is one in which each split node can correspond to at most k hybrid
nodes. This new classification is also supported by evidence in real life cases. Several
studies of recombination in bacteria have shown that recombination rates decrease as
sequence divergence increases [8-9]. These studies imply that the number of
recombination events of a split node will be limited as the descendants from the same
split node will diverge more as the number of generations increases. This observation
is also supported by a computer simulation study [10]. Therefore, networks with
limited reticulation events for each split node while no limit on the total number of
reticulation events in each blob seem to be more biologically relevant and can model
the recombination events in nature more appropriately.

Our Contributions. This new classification of phylogenetic networks is more
powerful than level-x networks. By definition, every level-x network is also an x-
reticulated network. And some level-x network can be modeled by a k-reticulated
network with k < x (see Figure 2 for an example of a level-4 network which is also a
2-reticulated network). So, even solving the problem for k-reticulated network with k
as small as 2, some of the meaningful high level networks can be constructed
efficiently. We show that given a set of binary gene trees, one can reconstruct an 1-
reticulated or 2-reticulated network (if one exists) with minimum number of hybrid
nodes compatible with all trees in O(mn2) time where m is the number of trees and n
is the number of leaves. We also consider the problem that when a compatible 2-
reticulated network does not exist, compute a subset of species with maximum size so
that a 2-reticulated network exists. This problem is believed to be NP-hard and we
provide an O(2mmn3m) algorithm to solve it. We implement the 2-reticulated network
reconstruction algorithm (ARTNET) and compare it with the program CMPT [13]
that reports a phylogenetic network with the smallest number of hybrid nodes. We
only consider the case when a 2-reticulated network exists for the input set of trees.
The experiments show that ARTNET is more efficient than CMPT. When the number
of hybrid nodes increases, the running time of ARTNET only increases slightly while
that of CMPT increases rapidly. Regarding accuracy evaluation, ARTNET also
outperforms CMPT.

Related Work. Several methods of constructing phylogenetic networks have been
proposed. Nakhleh et al. [6] have developed an algorithm for constructing a level-1
phylogenetic network from two phylogenetic trees running in polynomial time.

 Reconstructing k-Reticulated Phylogenetic Network from a Set of Gene Trees 115

However, Nakhleh et al.’s algorithm can handle two trees only. Huynh et al. [12]
have succeeded in providing a O(|T|2n2) algorithm reconstructing a galled network
from a set T of multiple phylogenetic trees of arbitrary degree. Huson and Klopper
[14] gave an O(nk) algorithm constructing restricted level-k network from a set of
trees. A rooted phylogenetic tree can be uniquely represented by the set of triplets
obtained by taking all combinations of three leaves in the tree [12]. It takes O(n3)
running time to construct a galled network in the algorithm designed by Jansson,
Nguyen and Sung [15]. Extending to level-2 network, Van Iersel et al. [11] developed
an O(n8) time algorithm. Habib and To [16] have solved the general problem of
constructing level-k network from a dense triplet set T in exponential running-time (| |). Gambette et al. [17] have shown that we can decide in optimal
O(n4) time whether there exists a simple unrooted level-1 network for a set of all
quartets.

Notations. Let u is a node in a tree T, T[u] = the subtree of T rooted at u, and L(T) =
the leaf label set of T. If u is a node in network N, a subnetwork N[u] is obtained from
N by only retaining all nodes and their incident edges which are reachable from u, and
L(N) is the set of leaf labels of N. Given a subtree t of T, T\t is a subtree obtained by
removing t from T. Similarly, with a subnetwork N’ of N, N\N’ is a network obtained
by removing N’ from N. Given a tree T with the leaf set L, and ′ . T|L’ denotes a
subtree obtained by first deleting all nodes which are not on any directed path from
the root to a leaf in L’ along with their incident edges, and then, for every node with
outdegree 1 and indegree less than 2, contracting its outgoing edge.

2 Algorithms for Reconstructing k-Reticulated Network (k = 1, 2)

Denote P(N, Ti, L) the procedure to reconstruct a k-reticulated network N compatible
with T1, T2, …, Tm, where k = 1 or 2. We employ the divide-and-conquer technique.

2.1 Reconstructing 1-Reticulated Network

Base Case: if each input tree is a single node with the same label, return a network
which is that single node of the same label; otherwise consider the following cases:

Case I: Bipartition
{T1,…, Tm} admit a leaf-set-bipartition (L1, L2) if for every tree Ti with root ri and its
children ri1 and ri2, L(Ti[ri1]) = L1 and L(Ti[ri2]) = L2, then find P(N1, Ti[ri1], L1) and
P(N2, Ti[ri2], L2). If N1 and N2 exist, network N is obtained by creating a new node r
becoming the parent of the roots of N1 and N2. (Fig. 4)

116 H. Vu et al.

Fig. 4. The tree set admit a leaf set bipartition

Case II: Tripartition
{T1,…,Tm} admit a leaf-set-tripartition (L1, Lh, L2) if for every tree Ti with root ri and
its children ri1 and ri2, there exists a node hi ≠ ri such that L(Ti[hi]) = Lh; and if hi ≠ ri1
and hi ≠ ri2 for every i = 1…m; {Ti’ = Ti\Ti[hi]} admit a leaf-set-bipartition (L1, L2).
Otherwise, L1 = L(Ti’) and L2 = ∅.

If hi ≠ ri1 and hi ≠ ri2 for i = 1…m, the problem can be divided into 3 subproblems:
P(N1, Ti’[ri1], L1); P(N2, Ti’[ri2], L2); and P(Nh, Ti[hi], Lh). Network N can be combined
from N1, N2 and Nh by first creating a new node r to be the parent of the roots of N1
and N2. Find node u1 in N1 and u2 in N2 such that for i = 1…m, either u1 or u2
corresponds to hi’s sibling si. Let v1 and v2 be the parent of u1 and u2 respectively,
create nodes p1 and p2 on edges (v1, u1) and (v2, u2) respectively. A new hybrid node h
is created, and let h be a child of p1 and p2, and h be the parent of Nh’s root (Fig. 5).

Fig. 5. Combining N1, N2 and Nh to get network N

Given network N compatible with tree T, a node u in N is said to correspond to
a node s in T if T can be converted from N by a series of cuts in which any
edge contraction related to node u will create a new node that is labeled u, then u
becomes s.

 Reconstructing k-Reticulated Phylogenetic Network from a Set of Gene Trees 117

If there is a tree Ti in which hi is a child of the root ri, the network constructed in
this case is skew (i.e., there is a split node such that the path from the split node to its
hybrid node is 1). The problem can be divided into 2 sub-problems: P(N’, Ti’, L1};
and P(Nh, Ti[hi], Lh). If N’ and Nh can be constructed, N can be obtained by first
creating a node r and making r become the parent of the root of N’. Find a node u in
N’ such that for every tree Ti in which hi is not a child of the root ri, u corresponds to
si in Ti’, which is the sibling of hi before removing Ti[hi]. Let v be the parent of u, and
a new node p on edge (v, u), create a hybrid node h that is the child of p and r, and h
is the parent of the root of Nh (Fig. 6).

Fig. 6. Combining N1 and Nh to get a skew network N

2.2 Reconstructing 2-Reticulated Network

To solve this problem, we also consider the base case, Case I and Case II as in the
above. In addition, we need to consider Case III – Quadripartition as follows.

Case III: Quadripartition
The tree set {T1, T2, …, Tm} is said to admit a leaf-set-quadripartition (L1, Lh1, Lh2
L2) if for every tree Ti with root ri and its children ri1 and ri2, there exists a node hi2 ∉
{ri, ri1, ri2} such that L(Ti[hi2]) = Lh2; and {Ti’ = Ti\Ti[hi2], i = 1, 2, …, m} admit a leaf-
set-tripartition (L1, Lh1, L2). If there exist a 2-reticulated network N’ compatible with
{T1’,…, Tm}; and a 2-reticulated network Nh2 compatible with {Ti[hi2], i = 1, …, m}.

If N’ is a non-skew network, N’ is created by combining three 2-reticulated
networks N1, N2 and Nh1 (as case II). Find two nodes a and b in two distinct networks
out of three networks N1, N2 and Nh1 such that either a or b corresponds to node si in
Ti’, which is the sibling of hi2 in Ti, for i = 1, 2,…, m. Attaching Nh2 to N’ is done
similarly to case II by creating a new hybrid node h2 (Fig. 7).

118 H. Vu et al.

Fig. 7. Combining non-skew network N’ and Nh2 to get a 2-reticulated network N

If N’ is a skew-network, N’ is created by combining two 2-reticulated networks N1
and Nh1. Find nodes a and b in N1 and Nh1 respectively such that for i = 1…m, either a
or b corresponds to node si in Ti’, which is the sibling of hi2 in Ti. Attaching Nh2 to N’
by creating a new hybrid node h2. (Fig.8)

Fig. 8. Combining skew network N’ and Nh2 to get a 2-reticulated network N

2.3 Algorithm Correctness

Lemma 1. Given a network N compatible with tree T and a node v in N, if all nodes in
a subnetwork N[v] cannot be reached from any other nodes outside N[v] without
passing through node v, then there exists a node u in T such that its subtree T[u] and
N[v] have exactly the same leaf label set, and N[v] is compatible with T[u].

Theorem 1. The algorithm described in section 3.1 and 3.2 can construct a 2-
reticulated network compatible N with a given set of trees if and only if N exists.

Proof. Assume there is a 2-articulated compatible network N for {T1, T2,…, Tm}.
Consider the root r of N:

Case 1: r is the only node in N. The theorem is obviously correct.
Case 2: r does not correspond to any hybrid node

 Reconstructing k-Reticulated Phylogenetic Network from a Set of Gene Trees 119

Let r1 and r2 be two children of r, and L1 and L2 be the leaf set of N[r1] and N[r2]
respectively. As r does not correspond to any hybrid node, any node outside N[r1]
(resp. N[r2]) has to pass through r1 before reaching any node inside N[r1] (resp. N[r2]
). From Lemma 1, there are nodes u1 and u2 in every tree Ti such that L(T[u1]) = L1,
and L(T[u2]) = L2, and N[r1] and N[r2] are compatible with T[u1] and T[u2]
respectively. We have L1∩L2 = ∅ and L1∪L2 = L, so in N and every tree Ti, their root
is the only common ancestor of any node in L1 and any node in L2. This means the
input tree set admit a leaf set bipartition, corresponding to case I in the algorithm.

Case 3: r corresponds to one hybrid node h
All nodes in N[h] cannot be reached by any other node not in N[h] without passing
through node h, otherwise, there must exist another hybrid node of root r in N[h],
contradicting to the fact that r corresponds to exact one hybrid node. By Lemma 1,
there exists a node hi in every tree Ti such that N[h] is compatible with Ti[hi], and
L(N[h]) = L(Ti[hi]); hence, N\N[h] is compatible with Ti\Ti[hi]. As the root of N\N[h]
does not correspond to any hybrid node, the argument can be turn back to Case 2.
This implies that the tree set admit a leaf set tripartition, corresponding to case 2 of
the algorithm.

Case 4: r corresponds to two hybrid nodes h1 and h2
Let p1 and q1 be the parents of h1, and p2 and q2 be the parents of h2, then either h1 lies
on one of the merge paths from the root r to h2, or none of the merge paths from r to
h2 (resp. h1) go through h1 (resp. h2) (figure 7).

In both cases, all nodes in the subnetwork N[h2] cannot be reached by any other
node outside N[h2] without passing through node h2; otherwise, r would correspond
to another hybrid node in N[h2].

From Lemma 1, there exists a node hi2 in every tree Ti such that N[h2] is
compatible with Ti[hi2], and L(N[h2]) = L(Ti[hi2]). Plus, N\N(h2) is a compatible 2-
articulated network of Ti\Ti[hi2]. As the root of N\N(h2) corresponds to exact 1 hybrid
node h1, the argument can turn back to Case 3 above. This implies the tree set admit a
leaf set quadripartition, corresponding to Case 3 of the algorithm.

2.4 Time Complexity

Lemma 2. Determining whether {T1, T2, …, Tm} admit a leaf set bipartition or
tripartition or quadripartition and partitioning every tree can be done in O(mn).

Proof. Denote LCA(X) the lowest common ancestor of all nodes in set X.
For every tree Ti, i = 1, 2, …, m, denote ri the root of Ti, and ri1 and ri2 are two
children of ri. Define a subset L* ⊂ L:

L* = ∅ if the tree set admit the leaf set bipartition.
L* = Lh if the tree set admit a leaf set tripartition (L1, Lh, L2).
L* = Lh1 ∪ Lh2 if the tree set admit a leaf set quadripartition (L1, Lh1, Lh2, L2).

Determine L*: Let Lc = L(T1[r11]); Ld = L(T1[r12]). It takes O(mn) to divide Lc into two
disjoint subsets Lc1 and Lc2, and Ld into two disjoint subsets Ld1 and Ld2 (Fig. 9). Pick
one leaf node v in Lc, then

120 H. Vu et al.

For every leaf node u ∈ Lc: If LCA(v, u) is not the root of every tree Ti; u is put in
Lc1; else, u is put in Lc2.

For every leaf node w ∈ Ld: If LCA(v, w) is the root of every tree Ti; w is put in Ld1;
else w is put in Ld2.

Fig. 9. Partition the leaf set

Claim 1: The tree set admits a leaf set bipartition iff Lc2 = Ld2 = ∅; otherwise check
tripartition property.

Claim 2: The tree set admits a leaf set tripartition iff either L* = Lc2 ∪ Ld2 or L* = Lc1 ∪ Ld1, and there exists a node hi in every tree Ti such that L(Ti[hi]) = L*, and Ti\Ti[hi]
admit a leaf set bipartition if hi is not a child of ri for every i = 1…m, taking O(mn)
time; otherwise, check quadripartition property.

Claim 3: If the tree set admits a leaf set quadripartition (L1, Lh1, Lh2, L2), one of two
sets Lc1∪Ld1 or Lc2∪Ld2 can be either (1) Lh1, or (2) Lh2, or (3) Lh1∪Lh2.
Pick any tree, say T1, to find the p1 = LCA(Lc1∪Ld1) and p2 = LCA(Lc2 ∪ Ld2).

1. One of two nodes p1 or p2 is the root r1 and the other is not. Assume p1 = r1, and p2
is a proper descendant of r1, then Lc2 ∪ Ld2 = Lh1 or Lc2 ∪ Ld2 = Lh2.

2. If both p1 and p2 are r1, find j = 1 or 2 such that LCA(Lcj) and LCA(Ldj) are the
children of the root r1. If j does not exist, return “null”; otherwise, assume j = 1,
then Lh1∪Lh2 = Lc2∪Ld2.

It takes O(n) time to determine L’ which is either Lh1, or Lh2 or Lh1 ∪ Lh2.

• If L’ is Lh1 or Lh2 → L* = L’
Check if there is a node hi in every tree Ti such that L(Ti[hi]) = L’ in O(mn). If yes,
check if {Ti\Ti[hi], i = 1,…, m} admit a leaf set tripartition (L1, Lh, L2). If yes, Lh2 =
L’ and Lh = Lh1; else return “null”.
If there is a tree Tj in which there does not exist any node w such that L(Tj[w]) = L’
(Fig.10). If hj is LCA(L’), then L’ = Lh1 ∪ Lh2, which is examined as case 2 below.

 Reconstructing k-Reticulated Phylogenetic Network from a Set of Gene Trees 121

Fig. 10. With a leaf set Lh1, find a node w in Tj such that L(Tj[w]) = Lh1 ∪ Lh2

• If L’ = Lh1 ∪ Lh2.
Let Tk be a tree in which there is no node satisfying L’ = L(Tk[w]). If there are exact
two nodes hk1 and hk2 in Tk such that L(Tk[hk1]) ∪ L(Tk[hk2]) = L’, then either
L(Tk[hk1]) or L(Tk[hk2]) is Lh2; otherwise, return “null”. Finding hk1 and hk2 takes
O(n). It then takes O(mn) to determine which one, L(Tk[hk1]) or L(Tk[hk2]), is Lh2,
and partition every tree Ti into Ti’ and Ti[hi2], for i = 1, 2, …, m.

In total, checking whether the input trees admit a leaf set bipartition or tripartition or
quadripartition, and partition every tree into proper subtrees takes O(mn).

Lemma 3. Given a network N compatible with m trees {T1, T2, …, Tm} with the same
leaf label set L of size n, and a node si in Ti, for i = 1, 2, …, m, then finding whether
there is a node u in N corresponding to s1, s2, …, sm can be done in O(n).

Proof. For i = 1, …, m, let ui be a node in N having the lowest height in N such that
L(Ti[si]) ⊆ L(N[ui]).

Claim: Node u exits iff ui is u or a descendant of u such that all nodes on the path
from u to ui are either hybrid node of a skew split node or non-hybrid nodes whose
siblings are hybrid nodes. It takes O(mn) to find the set {u1, u2, …, um} from N (note
that ux can be uy), and O(n) time to check (i) all nodes {u1, u2, …, um} lie on the same
directed path; and (ii) The siblings of ui, i = 1, 2, …, m, are all hybrid nodes. If two
conditions are satisfied, the node u will be the starting node x of the path created by
{u1, u2,…, um} or x’s sibling if x’s sibling is the hybrid node of a skew split node ;
otherwise, return “null”.

Theorem 2. Constructing a k-reticulated network (k = 1 or 2) from a set of m binary
trees with the same leaf label set L of size n can be done in O(mn2).

Proof. From Lemma 2 and Lemma 3, dividing and conquering take O(mn) time
complexity. There are O(n) nodes in a tree with n leaf nodes. Hence the time
complexity of our algorithm is O(mn2).

122 H. Vu et al.

3 Maximum 2-Reticulated Network Compatibility Problem

Given a set of binary trees {T1, T2, … Tm}, compute the maximum leaf set L* such that
there exists a 2-reticulated network N compatible with {T1|L*, T2|L*, …, Tm|L*}.

Using brute-force approach by considering all possible subsets of the leaf set, the
problem can be done in O(2nmn2). However, when m ≪ n, the following algorithm
produces better time complexity.

MCN(Ti) denotes the Maximum compatible 2-reticulated network for T1, T2, …, Tm.
MCLS(Ti) denotes the MCN(Ti)’s Leaf Set

Let v be a node in a tree T, child1(v) and child2(v) denote two children of node v.
Let sib_hyb(l, h) be an array of pointers in which sib_hyb(l, h)[i] is pointing to a

node wi in tree Ti; where l is a positive integer number, and h receives a value of 1 or
2. The following rules are applied in the process of removing nodes and edges when
computing MCLS(Ti):

• If wi is one of the end node of the edge that is contracted, sib_hyb(l, h)[i] will point
to a new node created after doing contraction.

• If a whole subtree rooted at wi is deleted from Ti, sib_hyb(l, h)[i] points to the
sibling of wi.

• If a whole subtree rooted at pi, which is an ancestor of wi, is deleted, sib_hyb(l,
h)[i] points to the sibling of pi.

Theorem 3. Given m trees T1, …, Tm rooted at r1,…, rm respectively. and are
global variables initialized = 0; Base case: there is a tree that is a single node, (, = 1, … ,) = (). () is the set having the maximum size of the following terms:

1. max{ (() ,), (() ,); with i1≥1 and i2≥1 { , = 1 … } ∪ { , = 1 … } = { , … , } { , = 1 … } ∩{ , = 1 … } = ∅};
2. () = max{ () + () ; where (,) ∈ {(1, 2), (2, 1)}, for i = 1, …, m};
3. () = max { 1(\) () ; where is some node

in , The sibling of is pointed by sib_hyb(++l1, 1)[i], for i = 1…m};
4. max { 2(\) (), where is a node in . The sibling

of wi is pointed by sib_hyb(++l2, 2)[i], for i = 1…m};

Before computing () , if there is a tree whose root is pointed by any _ (, 1) (resp. _ (, 2)) with a specific value (resp.), then
for every other tree containing a node that is pointed by _ (, 1)
(resp. _ (, 2)), replace = in computing ().

Time Complexity: By applying dynamic programming, and backtracking on the
recursive equations, the problem can be computed in O(2m mn3m).

 Reconstructing k-Reticulated Phylogenetic Network from a Set of Gene Trees 123

4 Experiments

We evaluate and compare the performance of our method, namely ARTNET, with the
program CMPT [13] which constructs a network with the smallest number in
reticulation from a set of binary trees. NETGET [10] is used to generate random
networks. For every 2-reticulated network simulated, we produce a certain number of
induced binary trees which are the input of both programs ARTNET and CMPT. We
use n (number of leaf node) = 40. Figure 11 shows that we run faster than CMPT.
Following [11], we use split-based false negative (FN) and false positive (FP) rates to
measure the error rates of the methods. Figure 12 shows that ARTNET produces
fewer false positives than CMPT. On the other hand, CMPT and ARTNET have
similar performance in false negative rates.

Fig. 11. Time comparison between ARTNET and CMPT

Fig. 12. Comparing the false positive rate between ARTNET and CMPT

Acknowledgement. The project is partially supported by in part by the General
Research Fund (GRF) of the Hong Kong Government (HKU 719709E) and Kunihiko
Sadakane is supported in part by KAKENHI 23240002.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5

FP
ra
te

The number of Hybrid nodes

FP rate comparison

CMPT

ARTNET

124 H. Vu et al.

References

[1] Lam, T.W., Sung, W.K., Ting, H.F.: Computing the unrooted maximum agreement
subtree in sub-quadratic time. Nordic Journal of Computing 3(4), 295–322 (1996)

[2] Farach, M., Thorup, M.: Sparse dynamic programming for evolutionary-tree comparison.
SIAM Journal on Computing 26(1), 210–230 (1997)

[3] Steel, M., Warnow, T.J.: Kaikoura tree theorems: Computing the maximum agreement
subtree. Information Processing Letters 48, 77–82 (1993)

[4] Ford Doolittle, W.: Phylogenetic classification and the universal tree. Science 284(5423),
2124–2128 (1999)

[5] Gusfield, D., Bansal, V.: A fundamental decomposition theory for phylogenetic networks
and incompatible characters. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner,
P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 217–232.
Springer, Heidelberg (2005)

[6] Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evolution in species –
theory and practice. In: Proceedings of the 8th Annual International Conference on
Research in Computational Molecular Biology (RECOMB 2004), pp. 337–346 (2004)

[7] Lee, W.-H., Sung, W.-K.: RB-finder: An improved distance-based sliding window
method to detect recombination breakpoints. In: Speed, T., Huang, H. (eds.) RECOMB
2007. LNCS (LNBI), vol. 4453, pp. 518–532. Springer, Heidelberg (2007)

[8] Falush, D., Torpdahl, M., Didelot, X., Conrad, D.F., Wilson, D.J., Achtman, M.:
Mismatch induced speciation in salmonella: model and data. Philos. Trans. R Soc. Lond.
B Biol. Sci. 361(1475), 2045–2053 (2006)

[9] Majewski, J.: Sexual isolation in bacteria. FEMS Microbiol. Lett. 199(2), 161–169 (2001)
[10] Fraser, C., Hanage, W.P., Spratt, B.G.: Recombination and the nature of bacterial

speciation. Science 315(5811), 476–480 (2007)
[11] van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., Hagen, F., Boekhout, T.: Constructing

level-2 phylogenetic networks from triplets. In: Vingron, M., Wong, L. (eds.) RECOMB
2008. LNCS (LNBI), vol. 4955, pp. 450–462. Springer, Heidelberg (2008)

[12] Huynh, T.N.D., Jansson, J., Nguyen, N.B., Sung, W.-K.: Constructing a smallest refining
galled phylogenetic network. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner,
P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 265–280.
Springer, Heidelberg (2005)

[13] Zhi-Zhong, C., Lusheng, W.: Algorithms for Reticulate Networks of Multiple
Phylogenetic Trees. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB) 9(2), 372–384 (2012)

[14] Huson, D.H., Klöpper, T.H.: Beyond galled trees - decomposition and computation of
galled networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI),
vol. 4453, pp. 211–225. Springer, Heidelberg (2007)

[15] Jansson, J., Nguyen, N.B., Sung, W.-K.: Algorithms for combining rooted triplets into a
galled phylogenetic network. In: Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 349–358 (2005)

[16] Habib, M., To, T.-H.: Constructing a minimum phylogenetic network from a dense triplet
set. J. Bioinformatics and Computational Biology 10(05) (2012)

[17] Gambette, P., Berry, V., Paul, C.: Quartets and Unrooted Phylogenetic Networks. Journal
of Bioinformatics and Computational Biology (2011)

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 125–136, 2013.
© Springer-Verlag Berlin Heidelberg 2013

LCR_Finder: A de Novo Low Copy Repeat Finder
for Human Genome

Xuan Liu, David Wai-lok Cheung, Hing-Fung Ting,
Tak-Wah Lam*, and Siu-Ming Yiu*

Department of Computer Science, The University of Hong Kong, Hong Kong
{xliu,dcheung,hfting,twlam,smyiu}@cs.hku.hk

Abstract. Low copy repeats (LCRs) are reported to trigger and mediate genom-
ic rearrangements and may result in genetic diseases. The detection of LCRs
provides help to interrogate the mechanism of genetic diseases. The complex
structures of LCRs render existing genomic structural variation (SV) detection
and segmental duplication (SD) tools hard to predict LCR copies in full length
especially those LCRs with complex SVs involved or in large scale. We devel-
oped a de novo computational tool LCR_Finder that can predict large scale
(>100Kb) complex LCRs in a human genome. Technical speaking, by exploit-
ing fast read alignment tools, LCR_Finder first generates overlapping reads
from the given genome, aligns reads back to the genome to identify potential
repeat regions based on multiple mapping locations. By clustering and extend-
ing these regions, we predict potential complex LCRs. We evaluated
LCR_Finder on human chromosomes, we are able to identify 4 known disease
related LCRs, and predict a few more possible novel LCRs. We also showed
that existing tools designed for finding repeats in a genome, such RepeatScout
and WindowMasker are not able to identify LCRs and tools designed for detect-
ing SDs also cannot report large scale full length complex LCRs.

1 Introduction

Complex low copy repeats (LCRs, also termed as segmental duplications), which are
composed of multiple repeat elements either in direct or inverse directions, provide
the structural basis for diverse genomic variations and combinations of variations
(Zhang et al. 2009). Around 5% of sequenced portion of human genome is composed
of LCRs. LCRs usually range from 10Kb to several hundred Kb. Among the copies,
there are common regions (with sequence similarity as high as 95% (Babcock et al.
2007). However, there may also be big gaps between common regions and not all
common regions exist in all copies. This makes the detection process very difficult.
Complex LCRs are found to trigger and mediate genomic rearrangement including
deletion, duplication etc., by altering gene dosage, and result in human genetic dis-
orders (Stankiewicz et al. 2002; Zhang et al. 2009). Several human genetic disorders
caused by genomic recombination are reported to be triggered and mediated by LCRs,

* Joint corresponding authors.

126 X. Liu et al.

such as Familial Juvenile
2.9Mb deletion (Saunier e
(WBS) at chromosome ban
C. et al. 2000; OMIM 1940
et al. 2005; OMIM 11755
17p11.2 (Claudia M.B. Ca
gions of LCRs have a high
of LCRs thus is important a
mechanism of genetic disea

Several computational m
peats and duplications such
(Morgulis et al. 2006). Alth
well studied, there are onl
Masker (Jiang et al. 2007)
especially complex LCRs is

Fig. 1. Illustration of LCR stru
an alternative form of pattern
dem/disconnected blocks. LC
included. LCR size is length s
with the same label in differen
etc. could be introduced to blo

As mentioned in the abov
complex LCRs are higher
transposed to specific gen
architecture of juxtaposed d
pattern is an alternative for
and may even quite differe
different LCR copies vari

Nephronophthisis at chromosome band 2q13 caused
et al. 2000; OMIM 607100), William-Beuren syndro

nd 7q11.23 caused by 1.5Mb to 1.8Mb deletion (Valero,
050), Sotos syndrome (Sos) by 5q35 deletion (Kurotaki
50) and Smith-Magenis syndrome (SMS) by deletion
arvalho et al. 2008 ; OMIM 182290). Genes inside the
h chance to develop into diseases. Identifying the locati
and the pattern of LCRs can help to unveil the complica
ases.
methods have been proposed to identify copy number
h as RepeatScout (Price et al. 2005) and WindowMas
hough detecting repeats on genome sequence is relativ
y a limited number of tools for LCRs/SDs such as D
). The outcome of existing software for detecting LC
s not satisfactory.

ucture. An LCR is composed of several copies, and each cop
n of this LCR. LCR pattern is a combination of several

CR span is defined as the minimum interval that all copies
sum of all copies. There is a high similarity between the blo
nt copies. Insertion, deletion, inversion, translocation, duplica
cks or gaps between blocks to make an alternative form.

ve, LCR structure is complicated (Fig 1). Unlike repe
r level combination of different but associated repe
nomic regions, creating duplication blocks with mos
duplicated segments (Jiang et al. 2007). Each copy of L
rm of block patterns and not necessarily the same as oth
ent in structure. The similarity between block patterns
ies and can range from 30% to 95%. Due to the g

 by
ome
, M.
, N.

n on
e re-
ions
ated

re-
sker
vely

Dup-
CRs,

py is
tan-
 are
ocks
ation

eats,
eats
saic

LCR
hers
s in

gaps

 LCR_Finder: A

between blocks, the similar
not all block patterns appea
and inversion of patterns ar
5, while the repeats it conta

Despite the fact that LC
introduced, Repeat/SV too
variance at the same loci be
single sequence. There are
sequences in a single inp
RepeatScout (Price et al. 20
most of these tools were no
highly repetitive patterns a
LCRs. For example, we ran
165,382 repetitive sequence
with an average length of r
mapped to only 1268 repea
RNAs, low complex seque
patterns together to locate L

On the other hand, there
existing human segmental d
DupMasker reported 47, 62
instead of 3 full length
RepeatMasker as part of the

A de Novo Low Copy Repeat Finder for Human Genome

rity between the whole LCR copies is even lower. Note t
ar in all copies of the LCR and duplication, translocati
re not uncommon. Copy number of LCR is usually bel

ains may either highly or lowly repetitive.
CRs could be considered as repeats combination with S
ols are not able to detect them. SV-targeting tools rev
etween two input sequences, instead of different loci of
e Repeat-targeting methods designed to identify repetit
ut sequence, such as RepeatMasker (Smit et al. 201
005) and WindowMasker (Morgulis et al. 2006). Howev
ot designed for large repeat patterns, thus many small-sc
are reported which cannot be easily grouped to locate
n RepeatMasker on human chromosome 17 (GRCh37.p
es, covering 37,757,301/81,195,210 bp of chromosome
repeat as 228.30 are reported. These 165,382 repeats w
t patterns (55 repeat families, including SINE, LINE, sm
nces and so on). It is not trivial how to “glue” these sh

LCRs.
are database dependent tools that limit the search scope

duplication libraries and are not applicable to other spec
2 and 82 duplicons for each SMS-LCRs copy respectiv
h LCR copies. Also, DupMasker uses the result
e input, it is very time consuming.

Fig. 2. Workflow of LCR_Finder

127

that
ion,
low

SVs
veal
one
tive
11),
ver,
cale
the

p9),
e 17
were
mall
hort

e to
cies.
vely

of

128 X. Liu et al.

In this paper, we introduce a novel de novo LCR detection tool, called
LCR_Finder, which does not rely on known information on segmental duplications
and can large scale LCRs in complex structures, on a given genomic sequence (e.g.
chromosome level). Technical speaking, we exploit existing read alignment tools to
solve the problem as follows. We (1) computationally generate single end reads from
the given genome, (2) align them back to the genome, (3) locate large repetitive pat-
terns using reads with multiple aligned positions, (4) extend copies with large gap
allowed and (5) filter out false positives and report potential LCRs (Fig 2). We eva-
luate LCR_Finder on human chromosomes and show that it can identify four known
diseases related LCR loci and report a few more potential novel LCRs. We also com-
pare the results reported by RepeatScout and WindowMasker and found that their
results are not as good as given by LCR_Finder.

2 Methods

2.1 Problem Definition

We define a block as a DNA pattern with size > 5K. A LCR is defined as a set of
blocks B:={b1,b2,...,bm}, m≥1. A LCR(C) consists of 2 to 5 repeated regions
represented as C:={c1,c2,...,cn} , 2≤n≤5. Each copy is a collection of blocks (with
mutations) in set B, ci :={ b , b , … , b }. Note that the same block can appear more
than once in each copy (probably with different mutations).

For each ik, 1≤ik≤it, b is represented by a pair of genomic locations indicating the
starting and end positions of that block on reference, bi=(si,ei), si<ei. b , b , … , b
are sorted according to increasing starting position order. Note that the same block
that appears in each copy is not exactly the same.

The span of ci is defined as Span(ci) =(e s), and length of ci is defined as

Len(ci) = ∑ e s . Max_span(C):=max{Span(ci)} and Max_len(C):= max{

Len(ci)}.
Each copy ci := { b , b , … , b }={(e s), (e s), … , (e s)} satisfies the

following properties:

i) 0< s e <100K for all j such that it≤j≤ij;
ii) eij -sij>5K;
iii) Len(ci) ≥ 1/2 ×Max_len(C);
iv) Span(ci) ≥1/2 × Max_span(C);
v) The similarity of each block that appears in ci and the corresponding

block in B should be more than 30%.

The problem is to retrieve all LCRs from a human genome. The problem is in high com-
plexity due to a low similarity requirement and a large number of possible mutations and
structural variations, so we designed a heuristic solution to solve the problem.

2.2 Overlapping Reads Generation and Alignments

We generate consecutive overlapping reads from the input genomic sequence. The
locations of where the reads come from are marked. For highly similar repeats, a set

 LCR_Finder: A de Novo Low Copy Repeat Finder for Human Genome 129

of consecutive reads should form a similar sorted overlapping pattern (either in direct
or reverse order) when they were mapped to these repeat regions. Read length, over-
lapping length and mismatches in alignment can be adjusted (default values: 100 bp
read, 20 overlapping length, with 4 mismatches in alignments) according to similarity
requirement. Longer read length and fewer mismatches go with higher similarity
requirement, otherwise lower.

2.3 Small-Size Highly Similar Sequences Detection

We mapped those overlapping reads back to reference sequence using Soap31(Liu et
al. 2012), and selected those reads with multiple alignments. To identify reads from
repetitive sequences, we clustered the reads as follows. Let us start with read x. For
every position read x could be mapped to, we considered the next consecutive read
(x+1). If read (x+1) could be mapped to at least two corresponding locations with ±
10bp, it was chained to x, and we went on with (x+2), otherwise stop and report the
chain starting from x. x is the chain head.

We filtered out chains with less than 50 supporting reads, and sorted the rest in
descending order. Each chain was supposed to correspond to a repeat pattern. So far,
efforts have been put on how to detect repeats using stringent criteria (95%-98%
similarity requirement). In LCR structure, those repeats were acted as skeletons, and
in the next step, we consider each set of repeats as skeleton of a LCR and extend them
one at a time. If a set of repeats were covered by others during extension, this set of
repeats would be eliminated.

2.4 Basic Extension

Given copies of a repeat pattern, we chose the copy with smallest starting coordinates
as model and regarded others as candidates. We applied an extension procedure to
model repeat on two directions, one at a time (Fig 3).

Boundary of model was extended by L = 5 Kb region. All valid alignments of
reads within this region consecutive to model boundary were clustered. Initially, each
alignment was considered as a cluster. Iteratively merge two clusters if there was at
least one alignment in each of them, had a distance below 200 bp (10 times read
overlapping length), until no more clusters could be merged. The minimum interval
on reference sequence that covered all alignments in a cluster was calculated for each
cluster. Only intervals larger than of L/2were kept (Fig 3B).

In order to deal with large SVs – insertion, deletion, inversion and translocation
with large translocated distance, we applied large extending gap G (default 100Kb) to
cover SVs smaller than G. For each candidate, if there was at least one interval whose
gap to this candidate on either side was less than G, then update the corresponding
boundary to include the nearest interval. If at least one candidate was updated, then
this extension step was considered as successful. Once three consecutive unsuccessful
extensions were found, extension to this direction was stopped. Meanwhile, the
corresponding boundary of model scrolled 3 steps back to exclude the last three failed
extensions at the end (Fig 3C).

1 Other alignment tools can be used.

130 X. Liu et al.

Fig. 3. Illustration of basic ext
Candidate regions marked as
unit consecutively to current
distance within boundaries of
and cut the failed extension ta
tive failed units were witnessed
to this direction ceased. Whe
stopped. (D) Output filter. A fi

When both directions re
and candidates to elimi
model/candidate initial size
was defined as the minimu
other extended regions. For
If more than one copy pas
reported (Fig 3D). For exam
4Kb deletion at the end of
away from this candidate.
well as 80Kb non-LCR sequ
½ span filter, X and other c

tension. (A) Example of LCR structure. (B) Extension proc
triangles were input for extension. Each circle was an extens
boundaries. If reads from this unit could cluster within cer
candidates, this extension unit was successful. (C) Call and

ails. One side extension was called to an end when three conse
d at the boundary. These three failed units were cut and exten

en both directions reached an end, the whole extension proc
ilter was applied to eliminate false positives.

eached to an end, size and span were calculated for mo
inate false positives. Size was defined as sum
e and all extended region for this model/candidate. S

um interval that covered the initial model/candidate and
r each copy of LCR, calculate the maximum span and s
ssed ½ span and ½ size filters, those eligible copies w
mple, suppose one LCR pattern was 50Kb, and there wa
f one candidate X but the deletion region appeared 80
During extension, this region was incorrectly included
uence by X (size = 50Kb; span = 130Kb). However, du
opies were abandoned.

cess.
sion
rtain
end

ecu-
sion
cess

odel
of

pan
d all
size.
were
as a
0Kb
d as
e to

 LCR_Finder: A

2.5 Merge Adjacent LC

We merged adjacent LCRs
blocks. If there was novel
copies) with >2.5 L length
sion. However, we were ab
struct the original LCRs (Fi
for each copy in LCR1 ther
within distance < M (defau
copies was reported as a rec
½- span filter to reduce fals

Fig. 4. Merge adjacent LCRs
insertion in Copy I. LCR_1 an

3 Results

In order to evaluate the per
on 4 human chromosomes,
We also compared the resu
RepeatMasker (chr17 only)

3.1 Performance of LC

Human chromosomes
(http://www.ncbi.nlm.nih.g
between repeats, we simula
next one by 20bp. When
mismatches are allowed and

Our experiments were im
Perl. We were able to predi
tively. 15, 9, 16, 9 out of

A de Novo Low Copy Repeat Finder for Human Genome

CRs to Deal with Large Size Novel Sequences

s to deal with large gaps (2.5 L <gap< M) between L
sequence in model (sequence that didn’t appear in ot

made model copy failed to go across the gap during ext
ble to connect LCRs on both sides of the gap and rec
ig 4). If two LCRs 1 and 2 had the same copy number
re was a copy in LCR2 that they were either overlapping
ult 200Kb), the minimum interval that covered the pair
constructed copy. All reconstructed copies were filtered

se positives.

to handle novel insertions. Two LCRs were found around no
nd LCR_2 were merged to form full-length LCR copies.

rformance of LCR_Finder on real data, we tested our t
and to each of them there is a known disease-related LC

ults of LCR_Finder with RepeatScout, windowMasker
) on human chromosomes 2, 5, 7, 17.

CR_Finder

(GRCh37.p9) were downloaded from NC
ov). Considering there is at least 95% sequence simila

ate 100 bp single end reads, and each read overlaps with
they are mapped to reference sequence using Soap3

d both orientations are valid.
mplemented on Linux86 64 system with 8G memory us
ict 59, 34, 86, 44 LCRs for chromosome 2, 5, 7, 17 resp
59, 34, 86, 44 LCRs had LCR copies larger than 100

131

LCR
ther
ten-
con-
and
g or
r of

d by

ovel

tool
CR.
and

CBI
arity

the
3, 4

sing
pec-
0Kb

132 X. Liu et al.

including the 4 known dis
disease-related LCRs (one
known LCRs.

3.2 Supporting Eviden

We further investigated the
some high similarity block
copy when it was
(http://blast.ncbi.nlm.nih.gov)
essarily to be high, but high
copy of LCR as query and
divided into several tandem
trast to the case of one LCR
subject sequences were spar

Fig. 5. Blast results of non-L
dicted LCR sequences. We b
copies of NPHP1 LCR (middle

3.3 LCR_Finder Limit

Limitations of LCR_Finder
dependent on how paramet
lerance G. We compared
=50Kbp, 100Kbp, 200Kbp
chromosome 17 and show
cos (Krzywinski et al., 200
related to extending unit len
Because the extending unit
L /2 non-LCR region being

sease-related LCRs. Comparing our results with 4 kno
for each chromosome), we successfully identified al

ce on Novel LCRs

e 45 novel LCRs (>100Kb copy size). We were able to
ks (>95%) tandem or interspersed arranged in one L
aligned to other LCR copies using BLAS
. The overall similarity between LCR copies was not n
hly similar blocks should be observed. When we used

d Blast other copies (subject) to it, subject sequence w
m/dispersed long highly similar sequences to query. In c
R copy and a non-LCR sequence, a small number of sh
rsely aligned to query (see Fig 5).

LCR sequences, known related disease LCR sequences, and
last NPHP1 copy I to similar size adjacent sequence (top),
e) and two copies of predicted LCR (bottom).

tations

r are discussed in this section. Results of LCR_Finder
ters are set, including extending unit length L and gap
the results under L = 2Kbp, 5Kbp and 10Kbp and

p separately. On each (L ,G) pair, we ran LCR_Finder
visualized results on region chr17:15Mb-21Mb using C
09) (Fig 6). (i) LCR copy size reported by LCR_Finde
ngth L. The higher L is, the less the boundary resolution
at the boundary is limited to at least L /2, there are at m

g counted as part of LCR copy, which means at most L

own
ll 4

see
LCR
STN
nec-
one

were
con-
hort

pre-
two

are
 to-

d G
r on
Cir-
er is
n is.
most
L /2

 LCR_Finder: A

non-LCR region was incorr
example, in SMS proximal
meters (10K,100K) were le
to identify LCRs with nove
in some cases depending on
model copy with deletion s
port full length SMS-REPs
between block A to block C
dle copies. Although 1Kb b
successful extension requir
tensions were found after b
ies. However when (L ,G)
full-length copies were rep
extension successful since i
tensions, the next extension
(iii) Insufficient gap tolera
handle insertion, deletion

Fig. 6. Results of LCR_Find
presented. The outermost cir
the given sequence. Ticks are
,G) were arranged as inner cir
SMS-REPs reported by LCR_F

A de Novo Low Copy Repeat Finder for Human Genome

rectly reported or at most L /2 LCR region was missed.
l copy, it could be seen that boundaries found under pa
ess precise than (5K,100K). (ii) LCR_Finder were not a
el insertion in model copy with length larger than 2.5L
n extending start position) during extension, and deletion
size larger than M. For example, LCR_Finder failed to
when (L ,G) =(5K, 50K), because there was ~10Kb reg

C in model copy (distal copy) deleted in proximal and m
block B existed for all copies, it was too small for minim
rement (L /2=2.5Kb). Three consecutive unsuccessful
block A, so LCR_Finder reported only block A for all c

=(10K, 50K), ~10K gap was smaller than 2L (20K), t
orted. Besides when (L ,G) =(2K, 50K), block B made
it was larger than L /2 (1Kb) and followed by 2 failed
n was successful, so full length SMS-REPs were repor
ance G caused loss of LCR copy. LCR_Finder could
n and inversion larger than G and translocation w

der on various extending parameters. Only >10Kb results w
rcle (in blue) with ticks represents region chr17:15Mb-21Mb
 in Kb scale. Results of LCR_Finder on different parameters

rcles. Copies of the same LCR were marked with the same co
Finder were colored in red. 2 novel LCRs were predicted.

133

For
ara-
able
(2L
n in

o re-
gion
mid-
mum

ex-
cop-
thus
e an
ex-

rted.
not

with

were
b on
s (L
olor.

134 X. Liu et al.

transcending distance large
sion unit was found within
plex structures of LCRs, w
capture LCRs with a wide r

3.4 Tools Comparison

To compare LCR_Finder to
and WM on human chromo
of detected LCRs are listed

RS and WM had lower
of CNVs. But most of CNV
tured LCRs listed in Table
ported intervals covered all
(sum of intervals) and aver
Besides, average patten len
length by LCR_Finder) com
observe from Fig 7 that WM
the average length was sign
length of LCR_Finder wa
CNVs/LCRs LCR_Finder
more efficient in detecting l

Fig. 7. Performance comparis
dowMasker (WM) and Repe
calculated (A) Total Length
dowMasker; and (C)Average
chromosomes were reported w
age pattern length of LCR_Fin

r than G. Successful extension happened only when ext
n G of candidate boundaries (Fig 3). Considering the co
e recommend users to adopt a set of various parameter
range of sizes and structures.

o RepeatScout (RS) and WindowMasker (WM), we ran
osomes 2, 5, 7 and 17, one chromosome at a time. Numb

in Table 1.
time cost than LCR_Finder and predicted a larger num
Vs they predicted were small-scale, and none of them c
e A1. The output of RS was CNV patterns while WM
l copies of a pattern. Thus we calculated the total len
age length (average of intervals) of LCR_Finder and W

ngth (average of patterns reported by RS and average co
mparison was conducted for LCR_Finder and RS. We
M captured larger total length on chromosome 2 and 5,
nificantly lower than out tool. In addition, average patt
as much high than RS. Although the total number
predicted was lower than RS and WM, LCR_Finder w
large-scale LCRs.

on between LCR_Finder and other software. LCR_Finder, W
eatScout (RS) were tested using 4 human chromosomes.

(bp) (B) Average Length (Log2 bp) for LCR_Finder and W
Pattern Length (Log2 bp) for LCR_Finder and RepeatScout.

with larger span covered by WM, but the average span and a
nder reported were significantly larger than WM and RS.

ten-
om-
s to

RS
bers

mber
cap-
 re-

ngth
WM.

opy
can
but

tern
r of
was

Win-
We

Win-
 3/4

aver-

 LCR_Finder: A de Novo Low Copy Repeat Finder for Human Genome 135

Table 1. Time cost of RS, WM and LCR_Finder running on chromosome 2, 5, 7 and 17

Software Running time (min) Number of LCRs/CNVs detected

RS Chr2 59 1,146

Chr5 44 1,331

Chr7 35 1,656

Chr17 18 1,477

WM Chr2 55 323,086

Chr5 41 242,639

Chr7 34 207,383

Chr17 17 94,783

LCR_Finder Chr2 302 59

Chr5 205 34

Chr7 180 86

Chr17 106 44

4 Conclusions and Discussions

Although various genomic structural variation detection tools have been developed
using the next-generation sequencing data, due to the difficulty in capturing the cha-
racteristics of complex low copy repeats, existing methods are not yet satisfactory. In
this paper, we presented a novel tool focusing on complex low copy repeats. Besides
basic repeats discovery, our tool is capable of combine different sets of repeats ac-
cording to their genomic locations and report large-scale complex low copy repeats
coordinates despite their complex structures. Our tool helps to interrogate genomic
coordinates and understand mechanisms of genetic diseases.

Several issues are remained to be better understood and investigated in the future.
A more precise formulation and definition of LCR, a more systematical parameter
setting up in less ad hoc manner and a more comprehensive evaluation method such
as validating putative LCRs with existing LCR database will facilitate the detection of
complex low copy repeats.

References

1. Smit, A.F.A., Hubley, R., Green, P.: unpublished data (2011); Current Version: open-3.3.0
(RMLib: 20110920)

2. Babcock, M., et al.: Hominoid lineage specific amplification of low-copy repeats on
22q11.2 (LCR22s) associated with velo-cardio-facial/digeorge syndrome. Hum. Mol. Ge-
net. 16, 2560–2571 (2007)

3. Bailey, J.A., et al.: Recent segmental duplications in the human genome. Science 297,
1003–1007 (2002)

4. Cheung, V.G., et al.: Integration of cytogenetic landmarks into the draft sequence of the
human genome. Nature 409, 953–958 (2001)

136 X. Liu et al.

5. Jiang, Z., et al.: Ancestral reconstruction of segmental duplications reveals punctuated
cores of human genome evolution. Nat. Genet. 39, 1361–1368 (2007)

6. Kurotaki, N., et al.: Sotos syndrome common deletion is mediated by directly oriented
subunits within inverted Sos-REP low-copy repeats. Hum. Molec. Genet. 14, 535–542
(2005)

7. Krzywinski, M., et al.: Circos: an Information Aesthetic for Comparative Genomics. Ge-
nome Res. 19, 1639–1645 (2009)

8. Li, H., et al.: Mapping short DNA sequencing reads and calling variants using mapping
quality scores. Genome Res. 18, 1851–1858 (2008)

9. Liu, C.M., et al.: SOAP3: Ultra-fast GPU-based parallel alignment tool for short reads.
Bioinformatics 28, 878–879 (2012)

10. Morgulis, A., et al.: WindowMasker: window-based masker for sequenced genomes. Bio-
informatics 22, 134–141 (2006)

11. Park, S.S., et al.: Structure and Evolution of the Smith-Magenis Syndrome Repeat Gene
Clusters, SMS-REPs. Genome Res. 12, 729–738 (2002)

12. Price, A.L., et al.: De novo identification of repeat families in large genomes. Bioinformat-
ics 21, i351–i358 (2005)

13. Saunier, S., et al.: Characterization of the NPHP1 locus: mutational mechanism involved
in deletions in familial juvenile nephronophthisis. Am. J. Hum. Genet. 66, 778–789 (2000)

14. Stankiewicz, P., Lupski, J.R.: Genome architecture, rearrangements and genomic disord-
ers. Trends Genet. 18, 74–82 (2002)

15. Valero, M.C., et al.: Fine-scale comparative mapping of the human 7q11.23 region and the
orthologous region on mouse chromosome 5G: the low-copy repeats that flank the Wil-
liams-Beuren syndrome arose at breakpoint sites of an evolutionary inversion(s). Genom-
ics 69, 1–13 (2000)

16. Zhang, F., et al.: Copy number variation in human health, disease, and evolution. Annu.
Rev. Genomics Hum. Genet. 10, 451–481 (2009)

Heuristic Algorithms

for the Protein Model Assignment Problem

Jörg Hauser1, Kassian Kobert1, Fernando Izquierdo Carrasco1,
Karen Meusemann3, Bernhard Misof3, Michael Gertz2,

and Alexandros Stamatakis1

1 Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
2 Heidelberg University, Institute of Computer Science, Heidelberg, Germany

3 Zentrum für molekulare Biodiversitätsforschung, Zoologisches Forschungsmuseum
Alexander Koenig, Bonn, Germany

Abstract. Assigning an optimal combination of empirical amino acid
substitution models (e.g., WAG, LG, MTART) to partitioned multi-gene
datasets when branch lengths across partitions are linked, is suspected
to be an NP-hard problem. Given p partitions and the approximately 20
empirical protein models that are available, one needs to compute the
log likelihood score of 20p possible model-to-partition assignments for
obtaining the optimal assignment.

Initially, we show that protein model assignment (PMA) matters for
empirical datasets in the sense that different (optimal versus subopti-
mal) PMAs can yield distinct final tree topologies when tree searches
are conducted using RAxML.

In addition, we introduce and test several heuristics for finding near-
optimal PMAs and present generally applicable techniques for reducing
the execution times of these heuristics. We show that our heuristics can
find PMAs with better log likelihood scores on a fixed, reasonable tree
topology than the näıve approach to the PMA, which ignores the fact
that branch lengths are linked across partitions. By re-analyzing a large
empirical dataset, we show that phylogenies inferred under a PMA cal-
culated by our heuristics have a different topology than trees inferred
under a näıvely calculated PMA; these differences also induce distinct
biological conclusions. The heuristics have been implemented and are
available in a proof-of-concept version of RAxML.

Keywords: phylogenetic inference, maximum likelihood, model assign-
ment, protein data.

1 Introduction

An important task in phylogenetics consists in computing the (maximum) like-
lihood score on a given tree topology. Typically, the logarithm of the likelihood
is computed for numerical reasons. Throughout the paper, we use likelihood and
log likelihood as synonyms. The likelihood score represents the probability of
observing the data (a set of aligned molecular sequences), given a strictly bifur-
cating unrooted tree. A statistical model of evolution is required to specify how

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 137–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

138 J. Hauser et al.

the observed data (e.g., an alignment of amino acid sequences) was generated by
the given topology, that is, the model provides transition rates between possible
states (e.g., amino acid characters).

For DNA data, a general time reversible substitution model [1] is typically
being used, which requires a direct maximum likelihood estimate of the transition
rates. For amino acid data, this is mostly not considered, because it may result in
over-parametrizing the model (DNA has 5 rates, protein data has 189 transition
rates). Therefore, a plethora of empirical protein substitution models such as
MTART [2], WAG [3], and LG [4], have been derived from large collections of
real-world protein alignments. Some of these models are intended for general use
(e.g., WAG and LG) and some have been optimized for specific organisms (e.g.,
the MTART model for Arthropoda).

Selecting an appropriate empirical protein substitution model for the data at
hand represents an important and generally non-trivial task. This is because us-
ing an inappropriate model that does not fit the data well, can lead to erroneous
phylogenetic estimates (see, e.g., [5] or [6]).

Here, we consider the case of protein model assignment for partitioned (dif-
ferent sets of sites evolve under distinct evolutionary models) multi-gene amino
acid sequence alignments. Note that, determining an appropriate partitioning
scheme is also a non-trivial problem (e.g., [7]) but outside the scope of this pa-
per. Therefore, we assume that an appropriate partitioning scheme is given. We
denote this task as protein model assignment (PMA) problem. Given a fixed, rea-
sonable (i.e., non-random) tree we want to assign the best-fit empirical protein
substitution model to each partition such that the overall likelihood is maxi-
mized. Note that, using the optimal (with respect to the likelihood score) PMA
does not increase the number of parameters in the model. Hence, over-fitting the
data is not an issue and we can directly obtain the optimal PMA by finding the
assignment that maximizes the likelihood. However, finding the optimal PMA is
challenging if we assume that branch lengths are shared across partitions, that
is, partitions are linked via a joint branch length estimate.

Using a joint branch length estimate across partitions is important because
it drastically reduces the number of free parameters in the model. The number
of inner branches in a strictly binary unrooted tree is 2n − 3, where n is the
number of taxa. Thus, each set of independent branch lengths that is estimated
increases the number of model parameters by 2n − 3. Therefore, joint branch
length estimates can be deployed to avoid over-parametrizing the model.

Simply calculating the maximum likelihood score for all possible PMAs on a
fixed, reasonable (i.e., non-random) tree, for p partitions and the approximately
20 available protein substitution models, is computationally prohibitive because
of the exponential number (20p) of possible assignments. We have already devel-
oped a proof (preprint available at http://www.exelixis-lab.org/Exelixis-
RRDR-2012-9.pdf) that shows that the PMA problem is NP-hard. Here, we
introduce and evaluate three heuristic strategies for computing ’good’ PMAs for
partitioned protein alignments under joint branch length estimates.

http://www.exelixis-lab.org/Exelixis-RRDR-2012-9.pdf
http://www.exelixis-lab.org/Exelixis-RRDR-2012-9.pdf

Heuristics for Protein Model Assignment 139

For small problem instances with p := 3 partitions (extracted from publicly
available real datasets [8] and [9]) we observed substantial differences in final
RAxML-based tree topologies inferred under the optimal PMA obtained from
the exhaustive algorithm and suboptimal PMAs obtained via a näıve approach
that is currently being used for determining the PMA. On simulated datasets,
which generally tend to exhibit stronger signal (see, e.g., [10]), we did not ob-
serve that the PMA has an impact on final tree topologies, presumably because
simulated data tend to be ’too perfect’. As we show here, finding a ’good’ PMA
is important for empirical analyses of real biological data because it changes
the results, that is, the final tree topologies. Our heuristic PMA search strate-
gies consistently find better PMAs, with respect to the likelihood score (without
increasing the number of parameters in the model!) than the commonly used
näıve heuristics that disregard the fact that partitions are linked via the branch
lengths.

The remainder of this paper is organized as follows: In Section 2 we briefly
review related work on the general problem of protein model selection. In Sec-
tion 3 we introduce our heuristics and computational shortcuts for reducing the
computational burden of computing likelihood scores for candidate PMAs. In
Section 4 we discuss the experimental setup and provide experimental results.
We conclude in Section 5 and discuss directions of future work.

2 Related Work

To the best of our knowledge, this paper and the paper addressing the NP-
hardness proof [11] are the first to identify and address the PMA problem.

Hence, we will briefly review work on the protein model selection methods
in phylogenetics. There exists an extensive literature on methods for selecting
models of nucleotide or amino acid substitution (see [12] for an in-depth review).

Initially, model testing pipelines applied likelihood ratio tests for selecting the
best fit model. However, these tests require the models to be nested, which is
not always the case. Therefore, tests relying on the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC), that do not require the
models to be nested, have recently gained momentum.

One of the most widely used tools for selecting protein models is ProtTest [13].
Another, fairly similar tool, for protein model selection is Aminosan [14].

As stated above, none of the existing pipelines address the PMA problem.
Keep in mind that, PMA is essentially not a model selection problem, but an
optimization problem because the number of model parameters is constant for all
20p possible PMAs. As such, computing a ’good’ PMA (finding the optimal PMA
is NP-hard!) for partitions that are linked via a joint branch length estimate
forms part of the general model selection process that is implemented by the
above tools.

140 J. Hauser et al.

3 Heuristics

For all heuristics described here, we assume that a reasonable (i.e., non-random)
tree is given. Such a tree can be obtained by executing a neighbor joining or
parsimony tree search. It is broadly accepted that using a fixed, parsimony or
neighbor joining tree for estimating model parameters is sufficient to obtain
accurate parameter estimates [15]. Hence, given such a reasonable fixed tree and
a data partitioning scheme with p data partitions, our goal is to find the PMA
that maximizes the likelihood. This PMA can then be used for a subsequent
maximum likelihood (ML) tree search using, for instance, RAxML.

Initially, we briefly describe the näıve heuristics that represent a simple and
straight-forward approach to obtain a somewhat reasonable PMA. The näıve
heuristics simply ignore the fact that partitions are linked via branch lengths
and determine the best-scoring protein substitution model independently for
each partition (by looping over the protein models) using a per-partition branch
length estimate. The PMA obtained by this näıve approach can be used as initial
seed for the search algorithms presented in Sections 3.3 and 3.4 to accelerate
convergence.

If the number of partitions is small (e.g., p := 3) one can also perform an
exhaustive search by computing the maximum likelihood scores for all possible
203 = 8000 PMAs to obtain the global maximum, that is, the exact solution.

In our heuristics, we want to explore an as large as possible fraction of the
search space by evaluating as many candidate PMAs as possible. However, com-
puting the likelihood on candidate PMAs is expensive, because model parameters
such as the α shape parameter of the Γ model of rate heterogeneity [16] and the
joint branch lengths need to be re-optimized for each PMA. Therefore, we ini-
tially discuss some general computational shortcuts to reduce the computational
cost of calculating likelihood scores for candidate PMAs.

3.1 Accelerating the Evaluation of Candidate PMAs

In the course of the searches we need to compute the maximum likelihood score
for a large number of candidate PMAs. This entails fully re-optimizing all model
parameters such as the branch lengths and the α shape parameter for each new
PMA from scratch, that is, from some initial default values for α and the branch
lengths. These parameters are optimized via standard numerical optimization
procedures such as Brent’s algorithm (α) and the Newton-Raphson procedure
(branch lengths). Instead of re-optimizing all parameters from scratch, we can,
re-use the parameter values of the current PMA i as initial values for optimizing
the parameters and scoring a new PMA i+ 1. This will generally be faster, be-
cause the parameter estimates (especially the α parameter) for assignment i will
not differ substantially from those of assignment i+ 1. The differences in model
parameter estimates between PMAs i and i + 1 are also small because in the
heuristics presented below, we only change the protein model of one partition
at a time to obtain PMA i+ 1 from PMA i. Hence, the numerical optimization
routines will require less iterations to converge because the initial parameter

Heuristics for Protein Model Assignment 141

values are ’good’. In our tests, this modification only yielded minimal devia-
tions in likelihood scores (less than 0.5 log likelihood units) while improving
execution times by a factor of 2.8 on average (see [17] for details, available at
http://www.exelixis-lab.org/pubs/JoergHauserMasterThesis.pdf).

The second approach to reducing execution times of candidate PMAs strives
to avoid evaluating candidate PMAs that are not promising. In other words,
given a PMA that needs to be scored by computing its maximum likelihood
score, we deploy an inexpensive pre-scoring criterion to determine whether or not
it is worth to evaluate this PMA. To pre-score PMAs we use the per-partition
likelihood scores for each partition and each protein substitution model that
can be computed using the näıve approach outlined above. These scores, albeit
obtained under a per-partition branch length estimate, can be used to pre-score
candidate PMAs because of a strong correlation between the overall (across
all partitions) likelihood scores under a joint branch length estimate and the
likelihood scores under a per-partition branch length estimate. In Figure 1 we
depict the full (left y-axis) and approximate (right y-axis) likelihood scores for
100 random PMAs on a dataset with 50 partitions and 50 taxa that was sub-
sampled from the real biological dataset [8] used in Section 4.

−235,000

−234,000

−233,000

−232,000

p
er
-p
a
rt
it
io
n
sc
o
re

[l
n
L
]

0 20 40 60 80 100
−247,000

−246,000

−245,000

−244,000

−243,000

−242,000

Execution progress

jo
in
t
b
ra
n
ch

le
n
g
th

sc
o
re

[l
n
L
]

Fig. 1. Full likelihoods and approximate likelihoods for 100 random PMAs on a real
biological dataset

Because of this strong correlation, the per-partition likelihood scores as ob-
tained under a per-partition branch length estimate can be used to omit the
evaluation of candidate PMAs that do not appear to be promising. For details
on computing the threshold for deciding which candidate PMA evaluations to
skip, please refer to [17]. By using this technique we were able to accelerate the
heuristics by a factor of 1.5 to 2.

http://www.exelixis-lab.org/pubs/JoergHauserMasterThesis.pdf

142 J. Hauser et al.

3.2 Greedy Partition Addition Strategy

The greedy partition addition heuristics represent a constructive approach that
gradually extends the alignment by adding one partition (and model) at a time.
We start with the first partition and determine and fix the best protein substi-
tution model for this partition. Then, we add the second partition and compute
the likelihood scores for all 20 possible protein model assignments to this second
partition while keeping the model for the first partition fixed. Once we have
determined the best protein model for the second partition, we fix the model for
the second partition as well. Thereafter, we add the third partition and compute
the likelihood scores for all possible 20 model assignments to this third parti-
tion while keeping the models for the first and second partition fixed. Note that,
the per-partition likelihood scores are re-computed for all partitions each time
a new model is assigned to the new partition that is being added because the
joint branch lengths are re-estimated for the entire alignment.

We continue extending the alignment (and PMA) in this way until all parti-
tions have been added to the alignment. For this algorithm, we need to evaluate
p ∗ 20 candidate PMAs, where p is the number of partitions. Note that, the final
PMA obtained by applying this strategy can be different depending on the order
by which we add partitions. Therefore, we have implemented a fixed partition
addition order by sorting the partitions by their length in terms of number of
sites and adding them in descending order (longest partition first). We chose to
optimize the model for the longest partition first because the longest partition
typically contributes most to the overall likelihood score of the full alignment.
However, this had no notable effect on performance of the heuristics with respect
to the final likelihood scores of the best PMA that was found [17].

3.3 Steepest Ascent Strategy

The steepest ascent approach implements a classic neighborhood-based hill climb-
ing strategy. Given some initial PMA, which can either be a random assignment,
the result of the näıve heuristics, or the assignment computed by the greedy ad-
dition strategy (see above), we proceed as follows: We evaluate the likelihood
scores of all PMAs that differ by one model-to-partition assignment from the
current assignment. In other words, we explore a neighborhood of size 1. We
need to calculate the likelihood scores of (20 − 1) ∗ p PMAs to explore the size
1 neighborhood of the current assignment (when not using the pre-scoring ap-
proach). Once all 19 ∗ p scores have been calculated, we select the PMA that
yields the largest likelihood improvement. We then explore the neighborhood of
this new assignment. If there does not exist a PMA in the size 1 neighborhood
that further improves the likelihood, we have reached a local optimum and the
algorithm terminates.

3.4 Simulated Annealing Strategy

We also implemented a simulated annealing algorithm because of its ability to
navigate out of local maxima [18].

Heuristics for Protein Model Assignment 143

We can initialize the PMA for the simulated annealing strategy either at
random or with the result of the näıve heuristics. As for the steepest ascent
algorithm, we explore the size 1 neighborhood of the current PMA. There are
nonetheless some fundamental differences. We iteratively evaluate the neighbor-
ing assignments of the current PMA and compute their corresponding likelihood
scores.

For each neighboring assignment that is evaluated, we carry out an accep-
tance/rejection step. Thus, if the likelihood of the candidate PMA is better
than that of the current PMA, we accept it immediately and use it as current
assignment (in analogy to a greedy hill climbing strategy). If the likelihood of
the candidate PMA is worse than that of the current PMA we need to decide
whether to accept a backward step or not. We accept a PMA that decreases the

likelihood if r < e
− l−l′

Tk , where r is a uniform random number in [0; 1], l is the
likelihood of the current assignment, and l′ the likelihood of the candidate PMA.
Finally, Tk is the temperature of the annealing process at iteration k (evalua-
tion of the kth PMA). This procedure is also known as Metropolis criterion (see
[19]). We implemented a standard cooling schedule Tk = �T0β

k�, where T0 is
the starting temperature and β ∈ [0; 1] represents a parameter that needs to be
tuned. We empirically determined a setting of β := 0.992 (see [17] for details).
The simulated annealing process terminates at iteration n when Tn = 0 and
when a PMA is generated that has a worse likelihood score than the currently
best one.

4 Performance Assessment

ThemodifiedRAxML code, the test datasets, as well as the wrapper scripts (greedy
algorithm) are available at http://exelixis-lab.org/joerg/pma.tar.gz.

4.1 Experimental Setup

We implemented the three search strategies outlined in Sections 3.2 through 3.4
as well as the näıve and exhaustive search algorithms in the standard RAxML
version [20] and via wrapper scripts. We also used RAxML to compute Robinson-
Foulds distances [21] between trees. Computational experiments were performed
on our institutional cluster, which is equipped with 50 48-core AMD Magny-
Cours nodes (equipped with 128GB RAM each) and connected via Infiniband.

4.2 Test-Datasets

We used real (empirical) and simulated datasets to test (i) whether a good PMA
’matters’ with respect to the final tree topology and (ii) to evaluate our heuristic
search strategies. We used three partitioned real-world data sets from two stud-
ies [8,22] that encompass data from all three domains of life. The properties of
the datasets are summarized in Table 1. We simulated datasets using INDELi-
ble [23] on random ’true’ tree shapes with 40 taxa that were generated via a R

http://exelixis-lab.org/joerg/pma.tar.gz

144 J. Hauser et al.

script provided by David Posada (included in the on-line data archive) and 2, 4,
8, 16, 32, 64, and 128 partitions, respectively. Partition lengths were randomly
generated and ranged between 300 and 500 sites. Protein substitution models to
simulate the data along the tree for each partition were also assigned at random.

Table 1. Properties of the empirical datasets

Domain # taxa # partitions length reference

Eukaryotes 117 129 37,476 [8]
Bacteria 992 56 20,609 [22]
Archaea 86 68 17,639 [22]

4.3 Results

Does the PMA Matter? Initially, we address the question whether obtaining
a good PMA actually matters, that is, if it alters the final tree topology when ap-
plying a standard RAxML maximum likelihood tree search. For this purpose, we
randomly sub-sampled 50 datasets containing three partitions and 50 taxa from
each of the three real-world datasets listed in Table 1. We thereby generated
a total of 150 small real-world test datasets. For each sub-sampled alignment
we then computed a PMA using the näıve algorithm and the exhaustive algo-
rithm to obtain the globally optimal PMA. Note that, running the exhaustive
algorithm on more than 3 (203 = 8000 distinct possible PMAs) partitions was
computationally not feasible. Model assignments differed for 86 out of the 150
alignments. Thus, the näıve approach yields suboptimal PMAs for more than
half of the datasets. For those 86 datasets where the PMAs differed we executed
10 standard RAxML tree searches (staring from distinct randomized addition
order parsimony trees) per dataset to obtain the best-known ML tree under the
näıve and optimal PMA. We only obtained topologically identical ML trees for
14% of the 86 datasets. The average topological RF-distance between the trees
inferred under the näıve and the optimal assignment was 9%. As expected the
näıve PMA never yielded a final tree with a better likelihood than the optimal
PMA. Hence, on real data, investing computational effort to finding a ’good’
PMA is important, because it has a noticable impact on the structure of the
final tree topology.

We then also calculated the PMAs using the steepest ascent heuristics on
these 150 datasets. The inferred PMAs differed from the optimal PMA obtained
by the exhaustive algorithm for only 10 out of 150 datasets (7%). Furthermore,
the best-known ML trees inferred on those 10 datasets showed an average RF-
distance of only 3%. We conclude that, (i) the steepest ascent heuristics are able
to infer the optimal PMA in the majority of the cases and (ii) when the heuristics
yield a suboptimal PMA, the inferred PMA nonetheless induces a substantially
smaller topological error than the näıve PMA.

For the simulated datasets, we inferred ML trees using a random PMA, the
näıve assignment, and the known, true PMA under which the data was gener-
ated. Thereafter, we calculated the RF distances between the ML trees inferred

Heuristics for Protein Model Assignment 145

using the random PMA and the true PMA as well as the RF-distance between
the trees inferred under the näıve PMA and the true, known PMA. We found dif-
ferences in RF distance to be negligible in both cases (random and näıve PMAs)
on simulated data. We suspect that this is due to the fact that simulated data
tends to be more perfect than real data [10].

The important finding is that determining a PMA that fits the data well has
a substantial impact on real word data analyses.

Performance of Heuristics. To assess the relative performance and quality of
the three heuristic strategies we propose, we sub-sampled 15 datasets containing
50 taxa and 50 partitions from each of the three real-world datasets. This was
done to reduce the computational burden of these analyses.

We intend to determine which strategy performs best with respect to exe-
cution times and result quality which we quantify as the maximum likelihood
score of the respective PMAs. Note that, the number of free model parameters is
identical for all candidate PMAs, hence a likelihood-based comparison of PMAs
is meaningful. As a reference, we used the likelihood score and the execution
time required by the näıve heuristics. The simulated annealing and steepest as-
cent algorithms were seeded with the PMAs obtained from the näıve heuristics.
These two search strategies were also seeded with a random seed, but performed
worse (results not shown).

We summarize the results in Figure 2. The figure contains average execution
times in seconds and average score improvements in log likelihood units over the
15 test datasets for the three PMA heuristics we propose. The execution times
displayed for the simulated annealing and steepest ascent strategy include the
execution time of the näıve algorithm whose assignment is used as a seed. For
all 15 test datasets, we were able to find a PMA with a better likelihood than
obtained via the näıve algorithm on the same, fixed, reasonable tree topology.
Overall, the steepest ascent algorithm performs best with respect to execution
times and result quality.

Re-analysis of a Biological Dataset. We inferred ML trees and bootstrap
support values on the main empirical dataset used in [8] with (i) the PMA as
used in the original study (WAG assigned to all partitions; denoted as allWAG)
and (ii) the PMA as obtained from the steepest ascent heuristics (denoted as
optimized). The relative RF distance between the resulting best-known ML
trees was 8%. Hence, an optimized PMA can change the shape of final tree
topologies as well as the biological conclusions which we discuss in the following.

The most conspicuous difference between the two trees is the position of the
bristle tail (Lepismachilis ysignata, a wingless insect of the Archaeognatha in-
sect order), which belongs to the primarily wingless hexapods. Insects in the
Archaeognatha order are typically assumed to be a sister group (neighboring
subtree) of the so-called Dicondylia that include all winged insects (the so-called
Pterygota). Therefore, the phylogenetic position of the bristle tail within the
winged insects in the allWAG analysis is rather implausible, since it also shows

146 J. Hauser et al.

500 1,000 1,500 2,000 2,500 3,000

0

50

100

150

GreedySteepest

Annealing

Näıve

Execution time [s]

S
co
re

im
p
ro
v
em

en
t
[l
n
L
]

Fig. 2. Execution times in seconds of the three strategies and average improvement in
terms of log likelihood units over the PMA obtained from the näıve approach

low bootstrap support. Moreover, its position in the optimized phylogeny re-
ceived strong bootstrap support. Its phylogenetic position as a sister group of the
winged insects as obtained from the optimized analysis has also been observed
in prior studies based on molecular and morphological data [8,24,25].

Another notable difference is the placement of Locusta migratoria from the
orderOrthoptera. Orthoptera (grasshoppers, crickets, weta, and locusts) are com-
monly assumed to form a monophyletic clade (be located in a single, distinct
subtree). Hence, the placement of Locusta migratoria is more plausible in the
allWAG analysis in which Orthoptera are monophyletic. However, its position in
the optimized tree only received moderate bootstrap support, such that it is
difficult to draw conclusions regarding its placement based on the dataset at
hand. Note that, the phylogenetic position of Locusta migratoria is generally
considered difficult and hard-to-resolve [8]. The placement of Locusta migrato-
ria highly depends on the dataset being used [26]. There is some evidence that
Locusta migratoria might be a so-called rogue taxon [27].

Overall, from a biological perspective, the tree obtained via the optimized

tree inference has to be favored. Furthermore, our re-analysis shows that bio-
logically meaningful differences can be observed when inferring trees under an
appropriately optimized PMA.

5 Conclusion and Future Work

We addressed the problem of assigning empirical protein substitution models
to partitioned datasets that are analyzed under a joint branch length estimate
across partitions. This paper is the first paper addressing this problem empiri-
cally. We show that obtaining a ’good’ PMA (with respect to the likelihood score)
matters on empirical datasets, because tree inferences under a näıve PMA can

Heuristics for Protein Model Assignment 147

yield a topologically and biologically different phylogeny with worse likelihood
scores than inferences under the optimal PMA. We specifically use the term
’good’ PMA because finding the optimal PMA is NP-hard. While we can com-
pute the globally optimal assignment for datasets with three partitions via an
exhaustive search, finding a ’good’ PMA on datasets with more partitions re-
quires heuristic search strategies. We introduce, make available, and test three
’classic’ search strategies for combinatorial optimization problems and adapt
them to the problem at hand. We show that all three strategies can produce
PMAs with better likelihood scores than the näıve search on all test data sets.
Moreover, we presented two techniques for reducing the computational cost of
our heuristics.

On a large biological dataset [8], we demonstrate that investing computational
effort to optimize the PMA is important because it has an impact on the final
tree topology as inferred with RAxML and on the biological interpretation of
the tree.

We are currently integrating the steepest ascent strategy that performed best
in our experiments into the standard RAxML version. Moreover, we also intend
to parallelize the heuristic strategies by using a hybrid MPI/PThreads approach.
In this setting, the evaluation of candidate PMAs can be distributed among MPI
processes that conduct the likelihood calculations in parallel using the fine-grain
PThreads parallelization of the phylogenetic likelihood function in RAxML.

References

1. Tavaré, S.: Some probabilistic and statistical problems in the analysis of DNA
sequences. Some Mathematical Questions in Biology-DNA Sequence Analysis 17,
57–86 (1986)

2. Abascal, F., Posada, D., Zardoya, R.: Mtart: a new model of amino acid replace-
ment for arthropoda. Mol. Biol. Evol. 24(1), 1–5 (2007)

3. Whelan, S., Goldman, N.: A general empirical model of protein evolution derived
from multiple protein families using a maximum-likelihood approach. Mol. Biol.
Evol. 18(5), 691–699 (2001)

4. Le, S., Gascuel, O.: An improved general amino acid replacement matrix. Mol.
Biol. Evol. 25(7), 1307–1320 (2008)

5. Sullivan, J., Swofford, D.: Are guinea pigs rodents? The importance of adequate
models in molecular phylogenetics. J. Mamm. Evol. 4(2), 77–86 (1997)

6. Keane, T., Creevey, C., Pentony, M., Naughton, T., Mclnerney, J.: Assessment of
methods for amino acid matrix selection and their use on empirical data shows
that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol.
6(1), 29 (2006)

7. Lanfear, R., Calcott, B., Ho, S., Guindon, S.: Partitionfinder: combined selection
of partitioning schemes and substitution models for phylogenetic analyses. Mol.
Biol. Evol. 29(6), 1695–1701 (2012)

8. Meusemann, K., von Reumont, B., Simon, S., Roeding, F., Strauss, S., Kück, P.,
Ebersberger, I., Walzl, M., Pass, G., Breuers, S., et al.: A phylogenomic approach
to resolve the arthropod tree of life. Mol. Biology Evol. 27(11), 2451–2464 (2010)

9. Yutin, N., Puigbò, P., Koonin, E., Wolf, Y.: Phylogenomics of Prokaryotic Ribo-
somal Proteins. PloS ONE 7(5) (2012)

148 J. Hauser et al.

10. Stamatakis, A., Ludwig, T., Meier, H.: RAxML-III: A Fast Program for Maxi-
mum Likelihood-based Inference of Large Phylogenetic Trees. Bioinformatics 21(4),
456–463 (2005)

11. Kobert, K., Hauser, J., Stamatakis, A.: Is the Protein Model Assignment Problem
NP-hard?; Exelixis-RRDR-2012-9; Technical report, Heidelberg Institute for The-
oretical Studies (October 2012),
http://sco.h-its.org/exelixis/pubs/Exelixis-RRDR-2012-9.pdf

12. Posada, D.: In: Selection of Phylogenetic Models of Molecular Evolution. John
Wiley & Sons, Ltd. (2001)

13. Abascal, F., Zardoya, R., Posada, D.: Prottest: selection of best-fit models of pro-
tein evolution. Bioinformatics 21(9), 2104–2105 (2005)

14. Tanabe, A.: Kakusan4 and aminosan: two programs for comparing nonpartitioned,
proportional and separate models for combined molecular phylogenetic analyses of
multilocus sequence data. Mol. Ecol. Resources 11(5), 914–921 (2011)

15. Yang, Z.: Among-site rate variation and its impact on phylogenetic analyses. Trends
Ecol. & Evol. 11(9), 367–372 (1996)

16. Yang, Z.: Maximum likelihood phylogenetic estimation from DNA sequences with
variable rates over sites. J. Mol. Evol. 39, 306–314 (1994)

17. Hauser, J.: Algorithms for Model Assignment in Multi-Gene Phylogenetics. Mas-
ter’s thesis, Ruprecht-Karls University Heidelberg (2012)

18. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220(4598), 671 (1983)

19. Aarts, E., Laarhoven, P.: Simulated annealing: an introduction. Stat. Neer-
land. 43(1), 31–52 (1989)

20. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analy-
ses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690
(2006)

21. Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Math. Biosci. 53(1-2),
131–147 (1981)

22. Yutin, N., Puigbò, P., Koonin, E., Wolf, Y.: Phylogenomics of Prokaryotic Ribo-
somal Proteins. PloS ONE 7(5), e36972 (2012)

23. Fletcher, W., Yang, Z.: Indelible: a flexible simulator of biological sequence evolu-
tion. Mol. Biol. Evol. 26(8), 1879–1888 (2009)

24. Grimaldi, D.: 400 million years on six legs: On the origin and early evolution of
Hexapoda. Arthropod Struct. & Dev. 39(2), 191–203 (2010)

25. Trautwein, M., Wiegmann, B., Beutel, R., Kjer, K., Yeates, D.: Advances in insect
phylogeny at the dawn of the postgenomic era. Ann. R. Entomol. 57, 449–468
(2012)

26. Letsch, H., Meusemann, K., Wipfler, B., Schütte, K., Beutel, R., Misof, B.: Insect
phylogenomics: results, problems and the impact of matrix composition. Proc.
Royal Soc. B 279(1741), 3282–3290 (2012)

27. von Reumont, B., Jenner, R., Wills, M., Dell’Ampio, E., Pass, G., Ebersberger, I.,
Meyer, B., Koenemann, S., Iliffe, T., Stamatakis, A., et al.: Pancrustacean phy-
logeny in the light of new phylogenomic data: support for Remipedia as the possible
sister group of Hexapoda. Mol. Biol. Evol. 29(3), 1031–1045 (2012)

http://sco.h-its.org/exelixis/pubs/Exelixis-RRDR-2012-9.pdf

Alignment of DNA Mass-Spectral Profiles

Using Network Flows�

Pavel Skums1, Olga Glebova2, Alex Zelikovsky2, Zoya Dimitrova1,
David Stiven Campo Rendon1, Lilia Ganova-Raeva1, and Yury Khudyakov1

1 Laboratory of Molecular Epidemiology and Bioinformatics,
Division of Viral Hepatitis, Centers for Disease Control and Prevention,

1600 Clifton Road NE, 30333 Atlanta, GA, USA
2 Department of Computer Science, Georgia State University, 34 Peachtree Str.,

30303, Atlanta, GA, USA

Abstract. Mass spectrometry (MS) of DNA fragments generated by
base-specific cleavage of PCR products emerges as a cost-effective and
robust alternative to DNA sequencing. MS has been successfully applied
to SNP discovery using reference sequences, genotyping and detection of
viral transmissions. Although MS is yet to be adapted for reconstruction
of genetic composition of complex intra-host viral populations on the
scale comparable to the next-generation DNA sequencing technologies,
the MS profiles are rich sources of data reflecting the structure of viral
populations and completely suitable for accurate assessment of genetic
relatedness among viral strains. However, owing to a data structure,
which is significantly different from sequences, application of MS profiles
to genetic analyses remains a challenging task. Here, we develop a novel
approach to aligning DNA MS profiles and assessment of genetic relat-
edness among DNA species using spectral alignments (MSA). MSA was
formulated and solved as a network flow problem. It enables an accurate
comparison of MS profiles and provides a direct evaluation of genetic dis-
tances between DNA molecules without invoking sequences. MSA may
serve as accurately as sequence alignments to facilitate phylogenetic anal-
ysis and, as such, has numerous applications in basic research, clinical
and public health settings.

1 Introduction

Mass spectrometry (MS) of DNA fragments generated by base-specific cleavage
of PCR products is a cost-effective and robust alternative to DNA sequenc-
ing. MS is cheaper and less labor-intensive than most of the next-generation
sequencing technologies [4][8], and also is not prone to the errors characteristic
for these technologies. MS has been successfully applied to the reference-guided
single nucleotide polymorphism (SNP) discovery [1][17][13], genotyping [7][10],

� The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 149–160, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

150 P. Skums et al.

viral transmission detection [8], identification of pathogens and disease suscep-
tibility genes [15][19], DNA sequence analysis [9], analysis of DNA methylation
[18], simultaneous detection of bacteria [14] and viruses [16][20].

MS technology is based on matrix-assisted laser desorption/ ionization time-
of-flight (MALDI-TOF) analysis of complete base-specific cleavage reactions of a
target RNA obtained from PCR fragments [10][17]. RNA transcripts generated
from both strands of PCR fragment are cleaved by RNaseA at either U or C, thus
querying for every of the 4 nucleotides (A, C, U and G) in separate reactions.
Cleavage at any one nucleotide; e.g. U, generates a number of short fragments
corresponding to the number of U’s in the transcript. The mass and size of the
fragments differ based on the number of A, C and G nucleotides residing between
the U’s that flank each short fragment. The fragments are resolved by MALDI-
TOF-MS, resulting in mass spectral profiles, where each peak defines a specific
mass measured in Daltons and has intensity that corresponds to the number of
molecules of identical masses.

It should be noted that in MALDI-TOF-MS technology all molecules are
equally singly charged, so the actual molecular weights could be obtained simply
by subtracting the mass of a single hydrogen from every mass from MS profile.
Therefore, in the paper, we assume that MS profiles reflect molecular weights of
the corresponding DNA molecules.

Unlike sequencing, MS is not readily applicable to reconstruction of the ge-
netic composition of DNA/RNA populations. Algorithms for reconstruction of
sequences from MS data were proposed [2]; but, owing to technological and com-
putational limitations, none is widely used.

MS may serve as a rich source of information about the population structure
and the genetic relations among populations without sequences reconstruction.
One of the most important applications of sequences is to phylogenetic recon-
structions. However, construction of phylogenetic trees requires knowledge of
genetic distances among species rather than sequences, with sequences being
merely used to estimate the distances. Comparison of MS profiles may also ac-
curately approximate genetic distances. The problem of calculating the distance
between two MS samples is known as spectral alignment problem [3][11]. It is
usually formulated as follows: match the masses from two MS profiles in such a
way that some predefined objective function is maximized or minimized. We dis-
cuss the most common objective functions and methods for solving the spectral
alignment problem in section 2.

Spectral alignment is crucial for the most applications of MS based on the
matching of the sample and reference spectra, with the reference MS spectrum
generated in silico. Spectral alignments are also used for MS data of proteins
[12], but the protein technology and, therefore, the problem formulation and
algorithm for its solution are completely different.

In this paper we propose a new formulation of the problem of aligning of
the base-specific cleavage MS profiles (MS-Al) and present a method for its
finding. The method is based on the reduction of the problem to the network
flow problem. MS-Al allows de novo comparison of sampled populations and may

Alignment of DNA Mass-Spectral Profiles Using Network Flows 151

be used for phylogenetic analysis and viral transmission detection. For conserved
genomes (such as human genome) it allows accurate estimation of actual genetic
distance between DNA sequences.

2 Problem Formulation

MSprofileP = {p1, ..., pn} consists ofn peaks, where each peak pi = (m(pi), f(pi))
is represented by a massm(pi) and intensity f(pi). Further without loss of gener-
ality we assume that f(pi) is an integer proportional to the number of occurrences
of the mass m(pi) in the sample. In the simplest version, the spectral alignment
problem could be formulated as follows [3]:

Problem 1
Input: Two MS profiles P 1 = {p11, ..., p1n1

} and P 2 = {p21, ..., p2n2
}

Find: Two subsets P 1
∗ ⊆ P 1 and P 2

∗ ⊆ P 2 of matched peaks and a bijection
π : P 1

∗ → P 2
∗ such that the following objective function is maximized:

score(P 1
∗ , P

2
∗ , π)−

∑
p1
i∈P 1\P 1∗

pen(p1i)−
∑

p2
i∈P 2\P 2∗

pen(p2i) (1)

Here score is a matching score function and pen is a mismatch penalty function.
Usually it is assumed [3] that the function score is additive, which means that
matches between different peaks are independent:

score(P 1
∗ , P

2
∗ , π) =

∑
p1
i∈P 1∗

score(p1i , π(p
1
i)) (2)

Most of known score functions are based on matches of peaks with close masses.
In the simplest case we can put pen ≡ 0 and

score(p1i , p
2
j) =

{
1, |m1

i −m2
j | < ε;

0, otherwise.
(3)

Using these functions and a greedy algorithm for solving Problem 1, authors of
[4][8] accurately identified HCV transmission clusters.

In general, Problem 1 with a score function (2) could be efficiently solved
using dynamic programming [3][11]. However, it assumes that matches between
different peaks are independent. In some cases this is not true, and taking into ac-
count dependencies between peak matches may significantly improve the quality
of an alignment. One such case is MS based on a complete base-specific cleavage.
Further we formulate spectral alignment problem in that case.

Let Σ = {σ1, ..., σ4} = {C,A,G, T } be an alphabet, and let Σ∗ be the set
of strings over Σ. We assume that Σ∗ contains the empty string o. Let s =
(s1, ..., sn) ∈ Σ∗ and let Σk = Σ \ {σk}, k = 1, ..., 4. For each σk ∈ Σ define
s(σk) = s(k) as

s(k) =

{
{s}, si �= σk for every i = 1, ..., n;
{x ∈ Σ∗

k : s ∈ {xσky, zσkx, zσkxσky} for some y, z ∈ Σ∗}, otherwise.
(4)

152 P. Skums et al.

(see [2]). In other words, s(k) is the set of all maximal substrings of s, which
does not contain σk. For s

1, s2 ∈ Σ∗ denote by rs1(s
2) the number of substrings

of s1 equal to s2.
Letm(σk), k = 1, ..., 4 be the mass of the nucleotide σk andm(s) =

∑n
i=1 m(si)

be the mass of molecule represented by a sequence s.
Suppose that S = {s1, ...sm}, sj ∈ Σ∗, is a sample tested using MS with

base-specific cleavage. Let S(k) =
m⋃
j=1

sj(k). MS profile P of S is partitioned

into four subprofiles: P = P (A) ∪ P (G) ∪ P (C) ∪ P (T), where

P (σk) = {pσk

i = (m, f) : m ∈ {m(s) : s ∈ S(k)}, f =
∑

s∈S(k):
m(s)=m

m∑
j=1

rsj (s)} (5)

Example 1. Let S = {s} and R = {r} be two samples each containing one
sequence, s =AAGCTAGTTCA, r =AAGCTCGTTCA. Then

s(C) = {AAG,TAGTT,A}, s(A) = {GCT,GTTC},

s(G) = {AA,CTA,TTCA}, s(T) = {AAGC,AG,CA}

r(C) = {AAG,T,GTT,A}, r(A) = {GCTCGTTC},

r(G) = {AA,CTC,TTCA}, r(T) = {AAGC,CG,CA}

If PS = PS(C) ∪PS(A)∪ PS(G) ∪PS(T) and QR = QR(C) ∪QR(A)∪QR(G)∪
QR(T) are MS profiles of S and R, respectively, then they have the following
form:

PS(C) QR(C)
pC1 =(2m(A)+m(G),1) qC1 =(2m(A)+m(G),1)

pC2 =(3m(T)+m(A)+m(G),1) qC2 =(m(T),1)
pC3 =(m(A),1) qC3 =(2m(T)+m(G),1)

qC4 =(m(A),1)
PS(A) QR(A)

pA1 =(m(G)+m(C)+m(T),1) qA1 =(3m(T)+3m(C)+2m(G),1)
pA2 =(2m(T)+m(G)+m(C),1)

PS(G) QR(G)
pG1 =(2m(A),1) qG1 =(2m(A),1)

pG2 =(m(C)+m(T)+m(A),1) qG2 =(2m(C)+m(T),1)
pG3 =(2m(T)+m(C)+m(A),1) qG3 =(2m(T)+m(C)+m(A),1)

PS(T) QR(T)
pT1 =(2m(A)+m(G)+m(C),1) qT1 =(2m(A)+m(G)+m(C),1)

pT2 = (m(A)+m(G),1) qT2 = (m(C)+m(G),1)
pT3 =(m(C)+m(A),1) qT3 =(m(C)+m(A),1)

Alignment of DNA Mass-Spectral Profiles Using Network Flows 153

6 of 11 peaks from PS could be matched by the equal masses and the cleavage
base with peaks from QR (pC1 and qC1 , p

C
3 and qC4 , p

G
1 and qG1 , p

G
3 and qG3 , p

T
1

and qT1 , p
T
3 and qT3). However, it is easy to see that a single A-C SNP at position

6 between s and r causes the following relations between masses of remaining
peaks:

m(pC2) = m(qC2) +m(qC3) +m(A) (6)

m(pA1) +m(pA2) +m(C) = m(qA1) (7)

m(pG2)−m(A) = m(qG2)−m(C) (8)

m(pT2)−m(A) = m(qT2)−m(C) (9)

If peaks and pairs of peaks are matched according to the relations (6)-(9) (pC2
and (qC2 , q

C
3), (p

A
1 , p

A
2) and qA1 , p

G
2 and qG2 , p

T
2 and qT2), then all peaks from PS

and QR will be matched. Moreover, masses of single nucleotides and subprofiles
involved in (6)-(9) allow to guess the corresponding SNP between s and r and in
some cases the number of such type of matches allows to estimate the number
of SNP’s (in this example 1 SNP).

In general, the relations analogous to (6)-(9) have the following form:

m(p
σk1

i) = m(q
σk1

i1
) +m(q

σk1

i2
) +m(σk2) (10)

m(p
σk2

j1
) +m(p

σk2

j2
) +m(σk1) = m(q

σk2

j) (11)

m(p
σk3

h1
)−m(σk2) = m(q

σk3

h2
)−m(σk1) (12)

m(p
σk4

l1
)−m(σk2) = m(q

σk4

l2
)−m(σk1) (13)

Usually there are many possible alternative matches between peaks according to
(10)-(13). The goal is to choose the optimal assignments such that the alignment
score is maximized. Therefore the problem could be formulated as follows. Let
P(2) be a set of all 2-element subsets of a set P . For p ∈ P denote by P(2)(p)
the set of all 2-subsets containing p. If P is a MS-profile, add to P an auxiliary
empty peak pε = (0,∞) with 0 mass and unbounded intensity. We will call
such profile an extended MS profile. We assume without loss of generality that
all other peaks have intensity 1 (otherwise, if peak pi has intensity f(pi) > 1
replace it with f(pi) peaks of intensity 1). Further, extend an alphabet Σ by
addition of an auxiliary empty symbol ε with m(ε) = 0. Those additional objects
are needed to include insertions, deletions and mutations in homopolymers (i.e.
sequences of identical nucleotides) in the model.

154 P. Skums et al.

Problem 2
Input: Two extended MS profiles P 1 = {p11, ..., p1n1

} = P 1(C) ∪ P 1(A) ∪
P 1(G) ∪ P 1(T) ∪ {pε} and P 2 = {p21, ..., p2n2

} = P 2(C) ∪ P 2(A) ∪ P 2(G) ∪
P 2(T) ∪ {pε}

Find: Two subsets P 1
∗ ⊆ P 1 ∪ P 1

(2) and P 2
∗ ⊆ P 2 ∪ P 2

(2) of matched peaks and

pairs of peaks and a bijection π : P 1
∗ → P 2

∗ such that the following conditions hold:

(i) |P j
∗ ∩ (P(2)(p

j
l) ∪ {pjl })| ≤ 1 for every pjl ∈ P j \ {pjε}, j = 1, 2 (every peak

is matched at most once either as a singleton or as a member of a pair)

(ii) π({p1i , p1j}) ∈ P 2 for every pair {p1i , p1j} ∈ P 1
(2) (pair of peaks should be

matched to a single peak);

(iii) there exists a bijection ψ : P 1
∗ ∩ P 1

(2) → P 2
∗ ∩ P 2

(2) (matchings of pairs of

peaks go in pairs)

and the objective function (1) is maximized. The objective function should be
defined in such a way that

a) a pair of peaks is matched to a peak and vise versa only if (10) and (11)
holds for them; the bijection ψ maps pairs which are conjugate by (10) and
(11);

b) the number of matches involving pairs is as small as possible. Each such
match potentially corresponds to an insertion, deletion or replacement and
we are trying to align MS profiles with the smallest number of involved
mismatches as possible - analogously to alignment of sequences using edit
distance.

In the next section we show how to define such a function and present an algo-
rithm for its calculation. This is a new approach, which, as Example 1 shows,
is more accurate than the approaches based on the direct peak matching, and,
moreover, in many cases allows to estimate the actual number and types of SNPs.

Note that (10)-(13) holds for a certain SNP, if it is isolated, which means
that substrings between it and the closest SNPs contain all four nucleotides. For
the conserved genomes this is a reasonable assumption: it was shown in [1] that
the overwhelming majority of SNPs in human genome are isolated (for the data
analyzed in [1] the average and minimal distance between two neighbor SNPs is
231bp and 14bp, respectively). Therefore for such genomes a solution of Prob-
lem 2 provides a reliable estimation for the number and types of SNPs. If two
mutations happen in close proximity, then the relation between peaks caused by
them is more complex than (10)-(13). Moreover, if sample contains more than
one unknown sequence, it is usually impossible to assign peaks to each sequence.
Therefore for a highly mutable genomes, such as viral genomes, solution of Prob-
lem 2 provides a distance, which specifies and generalizes the most commonly
used distance with the score function (3), instead of direct estimation of the
number of mismatches.

Alignment of DNA Mass-Spectral Profiles Using Network Flows 155

3 Network Flow Method for Spectral Alignment

For a directed graph (or network) N with a vertex set V , an arcs set A, pair of
source and sink s, t ∈ V , arcs capacities cap and possibly arc costs cost a network
flow is a mapping f : A → R+ such that f(a) ≤ cap(a) for every a ∈ A (capacity
constraints) and

∑
uv∈A

f(uv) −
∑

vw∈A

f(vw) = 0 for every v ∈ V \ {s, t} (flow

conservation constraints). The value of flow is |f | =
∑

sv∈A

f(sv). The classical

network flow problem either searches for a flow of maximum value (Maximum
Flow Problem) or for a flow with a given value of a minimum cost (Minimum-cost
Flow Problem).

It is well-known that in discrete optimization many matching-related problems
(such as Maximum Bipartite Matching Problem, Assignment problem, Minimum
Cost Bipartite Perfect Matching Problem, Linear Assignment Problem, etc.)
could be solved using either network flows or shortest path - based algorithms.
It suggests that a similar approach could be used for Problem 2. However, the
formulation of Problem 2 is more complex that of the above-mentioned problems,
so the reduction of Problem 2 to the network flow-based problem appeared to
be rather complex. Below we present that reduction.

Let P 1 = {p11, ..., p1n1
} = P 1(C) ∪ P 1(A) ∪ P 1(G) ∪ P 1(T) ∪ {pε} and P 2 =

{p21, ..., p2n2
} = P 2(C) ∪P 2(A) ∪ P 2(G) ∪P 2(T)∪ {pε} be extended MS profiles.

Let also δ ∈ R+ be the mass precision, g ∈ R+ be the mismatch penalty and
p, q ∈ R+ be the mutation (i.e. replacement, insertion, deletion) penalties cor-
responding to pairs of relations (10),(11) and (12),(13), respectively. Construct
the network

N = (V,A, l,m, cost, cap) (14)

where l : V → Σ∗ is a vertices labels function, m : V → R+ is vertices weights
function, cost : A → R+ and cap : A → R+ are cost and capacity functions of
arcs, respectively. Vertex set

V = {s, t} ∪ V1 ∪ V2 ∪ Vp1 ∪ Vp2 ∪ Va1 ∪ Va2 ∪ Vd1 ∪ Vd2

and arc set A are constructed as follows:

1) s and t are the source and sink, respectively.
2) for each peak pji ∈ P j(σ), j = 1, 2, i = 1, ..., nj , σ ∈ Σ the set Vj contains

f(pij) vertices vij(1), ..., v
i
j(f(p

i
j)). For each vij(k) l(vij(k)) = σ, m(vij(k)) =

m(pji). For an empty peak pε ∈ P j , j = 1, 2, the set Vj contain the unique
vertex vjε with l(vjε) = o and m(vjε) = 0.

3) For each v ∈ V1 \ {v1ε} the set A contains an arc sv with cost(sv) = 0 and
cap(sv) = 1. For each v ∈ V2\{v2ε} A contains an arc vt with cost(vt) = 0 and
cap(vt) = 1. There are also arcs sv1ε and v2ε t with cost(sv1ε) = cost(v2ε t) = 0
and cap(sv1ε) = cap(v2ε t) = ∞.

4) uv ∈ A for each u ∈ V1, v ∈ V2 such that |m(u)−m(v)| < δ and l(u) = l(v);
cost(uv) = 0, cap(uv) = 1.

156 P. Skums et al.

Fig. 1. Edges corresponding to relations (10),(11)

5) For every u, v ∈ V1 and w ∈ V2 such that

a) l(u) = l(v) = l(w),
b) there exists σ ∈ Σ such that |m(u) +m(v) +m(σ)−m(w)| < δ,

the vertex set V contains vertices y ∈ Vp1 and z ∈ Va1 withm(y) = m(z) = 0,
l(y) = o, l(z) = l(u)σ. The set A contains arcs uy, vy, yz, zw with cost(uy) =
cost(vy) = cost(yz) = cost(zw) = 0, cap(uy) = cap(vy) = cap(zw) = 1,
cap(yz) = 2. See Figure 1. The subgraph N [u, v, w, y, z] induced by vertices
u, v, w, y, z will be referred as left fork.

6) Analogously, for every a ∈ V1 and b, c ∈ V2 such that

a) l(a) = l(b) = l(c),
b) there exists σ ∈ Σ such that |m(a)−m(b)−m(c)−m(σ)| < δ,

the set V contains vertices d ∈ Va2 and e ∈ Vp2 with m(d) = m(e) = 0,
l(e) = o, l(d) = σl(b). The set A contains arcs ad, de, eb, ec with cost(ad) =
cost(de) = cost(eb) = cost(ec) = 0, cap(ad) = cap(eb) = cap(ec) = 1,
cap(de) = 2. See Figure 1. Further the subgraphN [a, b, c, d, e] will be referred
as right fork.

7) For vertices u ∈ Va1 , v ∈ Va2 the set A contains an arc uv with cost(uv) = p
and cap(uv) = 1, if l(u) = l(v). See Figure 1.

8) For every u ∈ V1 and v ∈ V2 such that

a) l(u) = l(v),
b) there exists σ1, σ2 ∈ Σ such that |m(u)−m(σ1)−m(v) +m(σ2)| < δ,

the set V contains vertices y ∈ Vd1 and z ∈ Vd2 with m(y) = m(z) = 0,
l(y) = l(z) = σ1σ2. The set A contains arcs uy, yz, zv with cost(uy) =
cost(yz) = cost(zv) = 0, cap(uy) = cap(zv) = 1, cap(yz) = 0. See Figure 2.

9) for all distinct vertices y, a ∈ Vd1 , z, b ∈ Vd2 such that yz, ab ∈ A, cap(yz) =
cap(ab) = 0 and l(y) = l(b), the set A contains arcs yb,az with cost(yb) =
cost(az) = q

2 , cap(yb) = cap(az) = 1. See Figure 2.

Alignment of DNA Mass-Spectral Profiles Using Network Flows 157

10) For every v ∈ V1 there exists an arc vs with cost(vs) = g and cap(vs) = 1.

Let x : A → N, a �→ xa is a flow in the networkN . Problem 2 could be formulated
as the following variant of the network flow problem:

minimize
∑
a∈A

cost(a)xa (15)

Fig. 2. Edges corresponding to relations (12),(13)

subject to ∑
uv∈A

xuv −
∑

vw∈A

xvw = 0, v ∈ V \ {s, t}; (16)

∑
sv∈A,v �=vε

xsv = |V1| − 1; (17)

xuy − xvy = 0, y ∈ Vp1 ; (18)

xeb − xec = 0, e ∈ Vp2 ; (19)

xuy − xzv = 0; yz ∈ A, cap(yz) = cost(uy) = cost(zv) = 0 (20)

0 ≤ xa ≤ cap(a), a ∈ A. (21)

This formulation differs from the classical network flow problem formulation by
additional constraints which require flow to be equal on some prescribed pairs of
arcs.

Arcs from 4) provide the possibility of match between peaks with close masses
with 0 penalty. Vertices and arcs from 5)-7) and constraints (18)-(19) allow to
match peaks with pairs of peaks according to relations (10),(11). The capacities
of arcs defined in 5)-7) are chosen in such a way that if flow goes through the left
fork, then it should also go through the right fork indicating the same mutation,

158 P. Skums et al.

thus forcing a fulfillment of requirement (iii) of Problem 2. Moreover, if flow
goes through some pair of forks, exactly one arc of cost p between those forks
is involved, thus forcing penalty for mutation. Vertices and arcs from 8)-9) and
constraints (20) play the same role for relations (12),(13). Constraint (17) for
total size of the flow ensures that every peak is either matched or penalized for
mismatch, which is encoded by arcs from 10). Moreover, arcs from 10) ensure
that the problem (15)-(21) always has a feasible solution. (16) and (21) are
standard flow conservation and capacity constraints.

If P 1 and P 2 are samples of single genomes with isolated SNPs, then the
number of SNPs could be estimated as |{a ∈ A : xa > 0, cost(a) = p}|.

4 Test Results, Conclusions and Future Work

The algorithm was tested on simulated data. For this, 80 pairs of sequences of
lengths 40-60bp with 2-4 isolated SNPs were randomly generated. For each posi-
tion one of possible symbols was chosen with equal probability to generate first
sequence, and then random mutations were introduced on the prescribed posi-
tions to generate the second sequence. MS profiles of generated sequences were
simulated using masses m(A) = 329.21 DA, m(T) = 306.17 DA, m(G) = 345.21
DA, m(C) = 305.18 DA. The ILP formulation (15)-(21) was solved using GNU
Linear Programming Kit (GLPK) (http://www.gnu.org/software/glpk/) on a
computer with two 2.67GHz processors and 12 GB RAM. Since ILP solution is
usually time-consuming, the time limit 30 seconds per problem was established.
For 90% (72 of 80) of test instances ILP was solved within the time limit. For all
that instances the numbers of SNPs were estimated correctly. Running times for
ILP solution in that cases varies from 0.491 seconds in average with the standard
deviation 0.968 seconds for 40bp sequences to 3.434 seconds with the standard
deviation 5.824 seconds for 60bp sequences.

Thus the proposed approach enables an accurate comparison of MS profiles
and provides a direct evaluation of genetic distances between DNA molecules
without invoking sequences. It is potentially more accurate than the approaches
based on the direct peak matching, and, moreover, in many cases allows to
estimate the actual number and types of SNPs.

The proposed spectral alignment method is expected to be highly effective in
evaluating genetic relatedness among viral samples and identifying transmission
clusters in viral outbreaks. The reasons behind this presumption is based on the
fact, that simple Hamming distance between samples could be calculated using
a special case of our model with p = q = ∞. Hamming distance (which corre-
sponds to the score function (3)) was shown to effectively separate transmission
clusters [4][8]. Thus, the developed model allows for generating a large spectrum
of distances in addition to the special case and as such offers a more general
framework for measuring genetic distances using MS profiles.

The ILP-based approach to solving the problem (15)-(21) is time-consuming.
Therefore more computationally effective approaches may be required to handle
larger samples. It is expected that direct applications of network flow-based

Alignment of DNA Mass-Spectral Profiles Using Network Flows 159

methods, Lagrangian relaxations or other methods should dramatically increase
performance of the algorithm. The generalizations of relations (10)-(13) in order
to obtain a model allowing for estimation of the actual number of mutations in
highly heterogeneous samples is an important direction for the future research.

References

1. Böcker, S.: SNP and mutation discovery using base-specific cleavage and MALDI-
TOF mass spectrometry. Bioinformatics 19(suppl. 1), i44–i53 (2003)

2. Böcker, S.: Sequencing from Compomers: Using Mass Spectrometry for DNA de
novo Sequencing of 200+ nt. Journal of Computational Biology 11(6), 1110–1134
(2004)

3. Böcker, S., Kaltenbach, H.-M.: Mass spectra alignments and their significance.
Journal of Discrete Algorithms 5(4), 714–728 (2007)

4. Dimitrova, Z., Campo, D.S., Ramachandran, S., Vaughan, G., Ganova-Raeva, L.,
Lin, Y., Forbi, J.C., Xia, G., Skums, P., Pearlman, B., Khudyakov, Y.: Evaluation
of viral heterogeneity using next-generation sequencing, end-point limiting-dilution
and mass spectrometry. Silico Biology 11, 183–192 (2011/2012)

5. Ehrich, M., Böcker, S., van den Boom, D.: Multiplexed discovery of sequence poly-
morphisms using base-specific cleavage and MALDI-TOF MS. Nucleic Acids Res.
33(4), e38 (2005)

6. Ehrich, M., Nelson, M.R., Stanssens, P., Zabeau, M., Liloglou, T., Xinarianos, G.,
Cantor, C.R., Field, J.K., van den Boom, D.: Quantitative high-throughput analy-
sis of DNA methylation patterns by base-specific cleavage and mass spectrometry.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 102, 15785–15790 (2005)

7. Ganova-Raeva, L., Ramachandran, S., Honisch, C., Forbi, J.C., Zhai, X.,
Khudyakov, Y.: Robust Hepatitis B Virus Genotyping by Mass Spectrometry. J.
Clin. Microbiol. 48(11), 4161 (2010)

8. Ganova-Raeva, L., Dimitrova, Z., Campo, D.S., Yulin, L., Ramachandran, S., Xia,
G.-L., Honisch, C., Cantor, C., Khudyakov, Y.: Detection of hepatitis C virus
transmission using DNA mass spectrometry. J. Infect Dis. (January 31, 2013)

9. Kirpekar, F., Nordhoff, E., Larsen, L.K., Kristiansen, K., Roepstorff, P., Hil-
lenkamp, F.D.: sequence analysis by MALDI mass spectrometry. Nucleic Acids
Research 26, 2554–2559 (1998)

10. Lefmann, M., Honisch, C., Böcker, S., Storm, N., von Wintzingerode, F.,
Schlötelburg, C., Moter, A., van den Boom, D., Göbel, U.B.: Novel Mass
Spectrometry-Based Tool for Genotypic Identification of Mycobacteria. Journal
of Clinical Microbiology, 339–346 (January 2004)

11. Mäkinen, V.: Peak alignment using restricted edit distances. Biomolecular Engi-
neering 24(3), 337–342 (2007)

12. Pevzner, P.A., Dancik, V., Tang, C.L.: Mutation-tolerant protein identification by
mass-spectrometry. Journal of Computational Biology 7, 777–787 (2000)

13. Pusch, W., Kraeuter, K.O., Froehlich, T., Stalgies, Y., Kostrzewa, M.: Genotools
SNP manager: a new software for automated high-throughput MALDI-TOF mass
spectrometry SNP genotyping. Biotechniques 30, 210–215 (2001)

14. Rees, J.C., Voorhees, K.J.: Simultaneous detection of two bacterial pathogens
using bacteriophage amplification coupled with matrix-assisted laser desorp-
tion/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spec-
trom 19, 2757–2761 (2005)

160 P. Skums et al.

15. Sampath, R., Hall, T.A., Massire, C., Li, F., Blyn, L.B., Eshoo, M.W., Hofstadler,
S.A., Ecker, D.J.: Rapid identification of emerging infectious agents using PCR
and electrospray ionization mass spectrometry. Ann. NY Acad. Sci. 1102, 109–120
(2007)

16. Sjoholm, M.I., Dillner, J., Carlson, J.: Multiplex detection of human herpesviruses
from archival specimens by using matrix-assisted laser desorption ionization-time
of flight mass spectrometry. J. Clin. Microbiol. 46, 540–545 (2008)

17. Stanssens, P., Zabeau, M., Meersseman, G., Remes, G., Gansemans, Y., Storm,
N., Hartmer, R., Honisch, C., Rodi, C.P., Böcker, S., van den Boom, D.:
High-Throughput MALDI-TOF Discovery of Genomic Sequence Polymorphisms.
Genome Res. 14(1), 126–133 (2004)

18. Tost, J., Schatz, P., Schuster, M., Berlin, K., Gut, I.: Analysis and accurate quan-
tification of CpG methylation by MALDI mass spectrometry. Nucleic Acids Res.
31, e50 (2003)

19. vonWintzingerode, F., Bocker, S., Schlotelburg, C., Chiu, N.H., Storm, N., Jurinke,
C., Cantor, C.R., Gobel, U.B., van den Boom, D.: Base-specific fragmentation of
amplified 16S rRNA genes analyzed by mass spectrometry: a tool for rapid bacterial
identification. Proc. Natl. Acad. Sci. USA 99, 7039–7044 (2002)

20. Yang, H., Yang, K., Khafagi, A., Tang, Y., Carey, T.E., Opipari, A.W., Lieber-
man, R., Oeth, P.A., Lancaster, W., Klinger, H.P., Kaseb, A.O., Metwally, A.,
Khaled, H., Kurnit, D.: Sensitive detection of human papillomavirus in cervical,
head/neck, and schistosomiasis-associated bladder malignancies. Proc. Natl. Acad.
Sci. USA 102, 7683–7688 (2005)

A Context-Driven Gene Prioritization Method

for Web-Based Functional Genomics

Jeremy J. Jay1, Erich J. Baker2, and Elissa J. Chesler1

1 The Jackson Laboratory, Bar Harbor, ME 04605, USA
2 Baylor University, Waco, TX 76798, USA

Abstract. Functional genomics experiments often result in large sets of
gene centered results associated with biological concepts such as dis-
eases. Prioritization and interpretation of these results involves eval-
uation of the relevance of genes to various annotations or associated
terms and is often executed through the use of prior information in bi-
ological databases. These diverse databases are frequently disconnected,
or loosely federated data stores. Consequently, assessing the relations
among biological entities and constructs, including genes, gene products,
diseases, and model organism phenotypes is a challenging task typically
requiring manual intervention, and as such only limited information is
considered. Extracting and quantifying relations among genes and dis-
ease related concepts can be improved through the quantification of the
entire contextual similarity of gene representations among the landscape
of biological data. We have devised a suitable metric for this analysis
which, unlike most similar methods requires no user-defined input pa-
rameters. We have demonstrated improved gene prioritization relative to
existing metrics and commonly used software systems for gene prioriti-
zation. Our approach is implemented as an enhancement to the flexible
integrative genomics platform, GeneWeaver.org.

1 Introduction

High-throughput functional genomics experimental techniques have made it pos-
sible to rapidly generate vast amounts of genomic data in the context of disease
related inquiry. Thousands of potential gene-disease associations must be prior-
itized to identify viable candidates for experimental validation and translation.
Evaluation of the disease implications of gene lists and gene networks that re-
sult from genomic experimentation can be an inefficient, complex task due to the
current separation of biological data stores, where typical queries must overcome
barriers imposed by heterogeneous data frameworks.

There are numerous approaches to gene prioritization for functional genomics.
(27; 10). Several approaches estimate the similarity of a set of candidate genes to
those with known disease-gene associations (15; 2; 20; 8; 7; 26). They make use
of a variety of data sources including literature, sequence, gene expression, pro-
tein domains, or annotations to curated ontology associations such as the Gene
Ontology (GO) or Human Phenotype (HP) ontology(3; 25). Many resources are

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 161–172, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

162 J.J. Jay, E.J. Baker, and E.J. Chesler

designed with a focus on a single data source or pivot point, and provide mean-
ingful results when the density of biological associations within the data source
is high (19; 22; 21).

The density and quality of available data for gene prioritization continues to
improve. However, curated biological associations, such as ontology annotations
from individual hypothesis driven experiments, remain sparse, while the dense
data afforded by functional genomics analysis is noisy and gathered in limited
contexts. Manually curated gene annotations do not typically involve data sur-
veys of all genes or processes; rather, depth of knowledge is created around spe-
cific areas of interest or well-supported hypotheses, creating an uneven landscape
highlighting particular genes or gene products and specific aspects of disease
function. There are limited empirical associations among the vast majority of
genes and diseases. Efforts like GeneWeaver build empirical context for relevant
genes through a framework where gene-disease relationships are self-organized
into a hierarchical format; however, even these emergent structures cannot ac-
curately provide prioritization among the many possible relationships(4).

Contextual information about a disease or gene has been shown to improve
gene-disease associations, but typically relies on very limited data such as co-
occurrence or co-expression information (15; 14). Contextual information can
also include topics that are often concurrently studied, such as comorbid dis-
eases, symptoms or other conditions that have irregular associations with the
disease, but are highly relevant to its study. We describe an efficient method
for incorporating diverse data context into gene-disease similarity measurement
designed for use in web-based genomics analysis tools, such as GeneWeaver. Our
parameter free design ensures users can get good results without mastering the
method or underlying data. We evaluate a dataset consisting of associations
among Entrez Gene, PubMed and Medical Subject Headings against existing
similarity quantification metrics and related bioinformatics resources.

2 Background

2.1 Counting-Based Similarity Metrics

There are several metrics for quantifying the strength of a relationship between
two concepts, such as a gene and a disease, based on the similarity of the set of
entities associated with each. These include the widely used Jaccard Similarity
Coefficient and the Rand Index(17; 23). For the Rand Index, the value is the
sum of positive and negative match pairs between the two sets of associations,
A and B, divided by the total number of possible matches (Eq. 1). The Jac-
card Coefficient performs a similar calculation, but only includes true positive
matches, withholding the true negative matches from numerator and denomina-
tor (Eq. 2). The Rand Index is ideal for measuring correspondence of two sets
when knowledge is complete (in other words, that all negative associations are
known definitively). The Jaccard coefficient is better suited to a genome-wide
analysis because there are typically a high number of negatives (many of them
presumably false) within genomic studies and few true negative assertions in the

A Context-Driven Gene Prioritization Method 163

literature (16). Thus, any metric that rewards negative matches, including the
widely used hypergeometric test, is upwardly biased and can be misleading in
the context of functional genomics.

RandIndex(A,B) =
TP + TN

TP + TN + FP + FN
(1)

=
|U \ (A ∩B)|

|U |

Jaccard(A,B) =
TP

TP + FP + FN
(2)

=
|A ∩B|
|A ∪B|

Many biological annotations are organized into structured vocabularies, pro-
viding subsuming terms and annotation sets which are not accounted for by
simple set-based counting methods. A method that extends Jaccard to account
for these subsuming terms is referred to as SimUI (13). Given a set of terms A,
this method collects the closure set (all subsuming terms, denoted A+) to in-
clude more general descriptors in the comparison (Eq. 3). For example, a “DNA
binding” gene and a “RNA binding” gene would not match using the Jaccard
Coefficient or Rand Index, but with SimUI they would be able to match on the
subsuming “nucleotide binding” term. This allows a more accurate depiction of
the similarity of terms, but requires more knowledge and human intervention to
collect all possible concepts and relationships into the structured vocabularies.

SimUI(A,B) =
|A+ ∩B+|
|A+ ∪B+| (3)

Simple intersection counting-based metrics like these work well for small and
dense data sets, but large and sparse data sets have fewer possible overlaps
and many more empty pairings, producing a limited resolution for comparison.
Additionally, a human can easily determine that “nucleotide binding” is a more
generic term than “RNA binding”, but these counting-based metrics will weight
them equally when a comparison is done. Techniques that quantify the amount
of information conveyed by a term can distinguish terms such as these.

2.2 Information Content

The Information Content (IC) of a concept is based on the probability of a con-
cept’s occurrence within a document corpus (24). Initially this corpus was defined
by prose such as biomedical abstracts, but it can be generalized further to include
any knowledge base (KB) of associations. Intuitively, concepts that occur more
frequently, such as “Child”, in the KB provide less informative annotation than
those that are infrequent, such as “Quintuplets”, measured using Equation 4).

164 J.J. Jay, E.J. Baker, and E.J. Chesler

To compare two genes, we can now look at the difference between the IC values
of their relations (Eq. 5) using a method called SimGIC(21).

IC(t) = −log

(
|KB ∩ t|
|KB|

)
(4)

SimGIC(A,B) =

∑
x∈(A+∩B+) IC(x)∑
y∈(A+∪B+) IC(y)

(5)

3 Materials and Methods

In the present study, we develop a method for unsupervised context-based analy-
sis that handles multiple diverse data sources, is easily maintainable to add new
data sources and keep them up-to-date, and is performant enough to execute
queries in real time. These attributes are critical for integration of the method
with the type of real time, web-based tools used by bench biologists, including
systems like GeneWeaver.org

To provide flexibility in the types of features that can be used to characterize
context, the available data formats and structures are decomposed to a graph
format for analysis. Nodes consisting of entities such as genes, terms, concepts,
publications, etc. are connected by edges representing associations found in the
various data repositories. In addition, closure inferences are automatically ex-
tended into the graph structure to simplify later processing steps.

3.1 Data Sources

The National Center for Biotechnology Information houses multiple databases
containing gene identifiers (Entrez Gene), publication abstracts (PubMed), and
controlled vocabulary terms (Medical Subject Headings, MeSH). Both genes and
MeSH terms are associated to hundreds of thousands of publications through
automated and manual processes. All of these data are freely accessible through
the NCBI FTP site and e-utilities for use in offline analyses.

Human Entrez Gene associations to PubMed identifiers were made using
the gene2pubmed flat file downloaded from the NCBI FTP site on 21 Jan
2012. To retrieve MeSH associations to PubMed, the PubMed IDs found in
the gene2pubmed file were then fetched through the NCBI e-utilities API. In
total, there were 818,887 Gene to PubMed associations, and 6,918,405 MeSH
to PubMed assocations fetched, linking 31,308 Entrez Gene IDs, 18,588 MeSH
terms, and 368,357 PubMed identifiers into the dataset.

To evaluate the prioritized gene rankings from each method, a gold standard
enables a test for precision and recall of true positive associations. For this we
used two publicly available databases of curated human disease gene associa-
tions. One, the Online Mendelian Inheritence in Man (OMIM) project, is an
extensively curated catalog of Human Genes and Genetic Disorders (12). This
resource has been used to validate previous prioritization methods (7; 8; 2), and

A Context-Driven Gene Prioritization Method 165

a comprehensive mapping from OMIM terms to MeSH terms is publicly available
and maintained (9). However, the OMIM data is somewhat sparse, covering only
546 MeSH disease terms and 1,244 associations, because the resource is intended
as more of an encyclopedia than a gold standard. The second resource is the Ge-
netic Association Database (GAD), which contains a larger collection of disease
gene associations covering 1,489 MeSH terms and 13,357 total associations, but
has less descriptive text than the OMIM collection(5).

3.2 Methods

To develop a quantitative estimate for contextual relevance to an entity, we be-
gin with some observations about the IC (See Eq. 4). First, a concept with low
IC has a high occurrence rate in the knowledge base, and highly informative
concepts (high IC value) have a lower occurrence rate. In terms of contextual
pertinence, concepts found at each extreme of this spectrum provide little addi-
tional information to any particular idea. This appears counter-intuitive to the
phrase “high information content” until one observes that high IC terms impart
a highly restricted subset of the knowledge base (the “information” contained is
the subset, not any individual feature). Thus the best terms for imparting con-
textual information are those with moderate IC, as they can restrict the subset
enough to drop spurious results, but do not restrict it enough to discard all data
with meaningful signal. A second observation is that concepts that are relevant
to each other often co-occur, and will share a high similarity value through non-
semantic similarity methods. Combining these two observations, we present the
Context Content (CC) metric, Eq. 6.

CC(t, z) = log
(
1.0 + e−IC(t) · SimGIC(nbrs(t), nbrs(z))

)
(6)

The prior usage of the term “moderate IC” can also be interpreted as “moderate
prevalence,” and is easier to work with due to the unbounded nature of IC val-
ues. Note that in practice, prevalence and similarity, as measured by SimGIC,
measure inversely differing values (a high prevalence is observed when signifi-
cance values are low) and converge only in the special case where the context
term covers all items in the data set. As a result, if prevalence is low or sim-
ilarity is low, then the term in question should not weigh significantly in the
context. By taking the product of these terms, we are in effect weighting the
prevalence by the similarity to the context term. Because each of these values
range from 0.0 - 1.0, their product occupies the same range. We then add one
and take the logarithm in order to map the values into a positive range with
similar characteristics to the information content.

We must take one further step to apply this method to all possible entities
in our data. The SimGIC method only works when there are shared neighbors
between two concepts. This works well for Genes and MeSH terms because they
can use shared PubMed publications, however PubMed publications do not share
neighbors with either Gene or MeSH terms (they are directly associated). An
arithmetic mean of associated CC values would negate much of the benefit of

166 J.J. Jay, E.J. Baker, and E.J. Chesler

context by equally weighting low-CC terms and high-CC terms; instead, we
selected a sum of squares average to bias higher CC values without adding
additional algorithmic complexity (Eq. 7).

CC(p, z) =

√∑
n∈nbrs(p) CC(n, z)2

|nbrs(p)| (7)

Armed with this information, we can determine the strength of a gene’s rela-
tionship to a disease by calculating the weight of its neighbors’ associations to
the disease. We build a metric similar to SimGIC by substituting the CC for
the IC and again using a sum of squares approach to allow high-CC terms to
influence the result more (Eq. 8). Where a higher-IC term may have provided
a better score previously, if that same term does not have high relevance to the
disease of interest, it will not contribute prominently to the ranking of a gene.

SimGCC(A,B, z) =

√∑
x∈(A+∩B+) CC(x, z)2√∑
y∈(A+∪B+) CC(y, z)2

(8)

The end result of this process is that gene rankings will be less influenced by
associations that have little relevance to the disease of interest, and likewise less
influenced by very specific associations with little corroborating evidence.

3.3 Implementation

In order to implement this method efficiently, a number of data processing steps
were performed. First, as previously described, the various data sets were fetched
from their respective repositories and converted into a graph format of nodes
and edges. To aid data updates and queries, this graph is loaded into a high-
performance datastore called Redis (1). When ready to perform an analysis, the
contents of the datastore can be interactively accessed or dumped to a file. The
simplicity of this arrangement allows new data to be added easily.

To perform a global analysis of the ranked similarity of all genes to a term,
our implementation iterates over each disease, calculates the CC for all nodes in
the graph, and then calculates and outputs the SimGCC (and other methods)
scores for every gene to the selected disease. These scores are then sorted to
produce a gene prioritization for the disease.

Significant speedups over a näıve implementation have been achievedwith a few
modifications. First, individual nodes in the dataset graph are mapped onto dis-
tinct integers, which are constructed such that a simple bitmask can be used to de-
termine the node’s data partition (1=Gene, 2=MeSH, 3=PubMed). By mapping
entities to integers, memory usage is significantly decreased and cache consistency
is improved, in addition to making node identifier comparisons significantly faster.
Second, many of the underlying equations used require the intersection and/or
union of two sets of neighbors. After the initial loading stage, these neighbor rela-
tionships do not change, so they are stored in sorted order in main memory. This

A Context-Driven Gene Prioritization Method 167

allows for a straightforward O(n) mergesort-like algorithm to iterate all common
and distinct neighbors efficiently. Finally, due to the embarrassingly parallel na-
ture of this algorithm and the low output synchronization necessary, significant
real-time speedups were obtained through the use of shared memory and multi-
threading – a technique well suited to modern multicore architectures. The graph
structure, neighbor lists and IC values can be easily shared across processor cores
since they do not change during the lifetime of the analysis. The only thread-local
storage allocations required areO(n) on the total number of nodes in the dataset.
This allows an optimized implementation to use all available processor cores with
a parallel for loop, achieving a nearly linear speedup.

4 Results and Discussion

The Receiver Operating Characteristic (ROC) plots reveal improved recall for
genes associated to a selection of MeSH terms (Inset, Table 1), in addition to
an overall improvement when averaged across all MeSH Mental Disorders terms
in the GAD gold standard. In both instances SimGCC consistently outperforms
the other ranking methods tested. Detailed gene-level rankings for OMIM disease
genes also show that the improvement extends past the top 20 genes, which often
consist of the highly published and highly associated disease genes (Table 1).

There are a number of online gene prioritization tools, enabling us to compare
the performance of our approach to existing methods. Similar to SimGCC, many
methods aggregate multiple data sources to build a quantitative measure of gene
relevance. Unlike SimGCC, many of them begin the process with a set of user-
defined training genes. SimGCC saves its users this added step of collecting
training genes, but at the expense of hindering a power user with a specific set
of genes or blocking the study of an unannotated disease.

Three tools were selected because they have a similar objective of ranking
gene-disease relations, are readily available online, and have input and output
formats amenable to comparison. One of the earliest attempts at gene priori-
tization was started over a decade ago with the Genes2Diseases project(20). It
combines measures derived from MeSH Chemicals and Diseases, the Gene On-
tology, RefSeq, and PubMed using a product of Jaccard scores and manually
defined weights. Another method named ENDEAVOUR prioritizes genes using
a large concert of data sources and metrics individually tailored to each data
set, and then uses rank-order statistics and manually defined weights to com-
bine the many rankings into a single final aggregate ranking (2). Because the
data sources are separated, they can be enabled or disabled at will by the user,
which allows more fine-grained control of the types of data the user wants to
use. The last method in this comparison is ToppGene, which uses functional
associations and protein-protein interactions to rank specific features and build
a statistical model for prioritization (8). Like ENDEAVOUR, individual data
sources can be enabled/disabled at will. Of the three methods, it is the most
similar to SimGCC because of its use of feature-level relevance measures. How-
ever, like the other methods it has the drawback that these individual features
cannot be correlated to each other in any way.

168 J.J. Jay, E.J. Baker, and E.J. Chesler

Table 1. Selected OMIM disease gene rankings and ROC Plots. Rankings
show that SimGCC repeatedly ranks known genes higher. ROC plots of the first 1000
genes show better recall values for SimGCC using the larger GAD gold standard.

MeSH Disease Entrez ID simgcc simgic jaccard rand

Alcoholism ADH1B 1 1 1 27 Alcoholism
Alcoholism ADH1C 2 3 3 23

0.00

0.25

0.50

0.75

1.00
Alcoholism GABRA2 8 8 8 110
Alcoholism HTR2A 26 28 29 537
Alcoholism TAS2R16 152 174 180 396
Alcoholism avg 37.8 42.8 44.2 218.6
Alzheimer Disease A2M 1 3 3 132
Alzheimer Disease APP 3 1 1 279
Alzheimer Disease PSEN1 10 6 6 1454 Alzheimer Disease
Alzheimer Disease ACE 29 72 83 2510

0.00

0.25

0.50

0.75

1.00
Alzheimer Disease APBB2 32 73 87 218
Alzheimer Disease SORL1 43 80 97 1661
Alzheimer Disease HFE 63 177 231 1324
Alzheimer Disease NOS3 76 235 265 3609
Alzheimer Disease BLMH 98 257 285 328
Alzheimer Disease PLAU 126 307 314 1527
Alzheimer Disease MPO 132 333 338 1446 Autistic Disorder
Alzheimer Disease AD5 351 630 648 1816

0.00

0.25

0.50

0.75

1.00
Alzheimer Disease AD6 421 659 702 2944
Alzheimer Disease AD9 1286 1987 3540 3524
Alzheimer Disease PAXIP1 1692 2154 2649 2483
Alzheimer Disease avg 290.9 464.9 616.6 1683.7
Autistic Disorder EN2 2 40 48 154
Autistic Disorder CNTNAP2 25 117 121 716
Autistic Disorder MET 50 156 168 1000 Schizophrenia
Autistic Disorder SHANK2 442 569 716 648

0.00

0.25

0.50

0.75

1.00
Autistic Disorder avg 129.8 220.5 263.2 629.5
Schizophrenia COMT 1 1 1 418
Schizophrenia DRD3 5 4 4 277
Schizophrenia NRG1 6 5 5 432
Schizophrenia HTR2A 13 14 13 603
Schizophrenia DAO 17 15 14 211
Schizophrenia AKT1 18 50 51 529 Tobacco Use Disorder
Schizophrenia DTNBP1 21 25 24 1595

0.00

0.25

0.50

0.75

1.00
Schizophrenia DISC1 25 26 25 1365
Schizophrenia DAOA 44 42 44 1696
Schizophrenia MTHFR 58 77 91 1789
Schizophrenia CHI3L1 63 74 76 171
Schizophrenia PRODH 71 73 75 690
Schizophrenia SCZD2 234 332 350 748
Schizophrenia SCZD1 251 333 349 743 Overall
Schizophrenia RTN4R 293 331 335 1602

0.00

0.25

0.50

0.75

1.00

method

jaccard

rand

simgcc

simgic

Schizophrenia SCZD6 325 376 382 924
Schizophrenia SYN2 373 515 532 845
Schizophrenia SCZD7 423 481 490 668
Schizophrenia SCZD3 481 631 656 744
Schizophrenia DISC2 622 566 583 1313
Schizophrenia SCZD8 643 712 737 971
Schizophrenia APOL4 708 702 734 949
Schizophrenia APOL2 730 753 795 1307
Schizophrenia SCZD11 964 1496 1748 1713
Schizophrenia SCZD12 1038 1530 1747 1720
Schizophrenia avg 297.1 366.6 394.4 960.9

A Context-Driven Gene Prioritization Method 169

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000

method

gene2diseases

endeavour

toppgene

simgcc

Alzheimer Disease

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000

method

gene2diseases

toppgene

endeavour

simgcc

Alcoholism

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000

method

toppgene

endeavour

gene2diseases

simgcc

Autistic Disorder

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000

method

toppgene

endeavour

gene2diseases

simgcc

Schizophrenia

Gene Rank

R
ec

al
l

Fig. 1. External Method Comparison. Selected OMIM Disease genes were used to
train recent gene prioritization methods, and then compared to SimGCC using ROC
curves from the GAD gold standard. The training genes were then prepended to the
results from ToppGene, ENDEAVOUR, and Genes2Diseases since these methods do
not include them in rankings.

Fig. 2. SimGCC Example Application. Results from this analysis were used to
highlight Phenome Map nodes in red based on their contextual intersection with Al-
coholism. Darker red indicates a higher contextual association, pink indicates a small
association, and green nodes indicate no contextual association could be made.

170 J.J. Jay, E.J. Baker, and E.J. Chesler

To compare SimGCC to these online gene prioritization tools, a few well-
studied diseases were selected. Training genes for each method were taken from
the OMIM gold standard because of its higher curation stringency. When techni-
cally feasible, all Human Entrez Gene IDs were ranked by each method. However,
ToppGene was unable to rank the entire set without crashing, so a subset con-
sisting of all the genes scored above 0.0 by the Jaccard, SimGIC, and SimGCC
methods was used as the input test set. The size of this subset varied by disease
tested, but was typically 20-50% of the 31,308 Entrez Gene IDs available.

Results from each method were collected and converted into a standard for-
mat. Unlike the results from SimGCC for which no training set is required, the
results of these methods do not contain the genes from the provided training
set, so would automatically be at a disadvantage in the prior ROC analysis.
To alleviate this issue in a conservatively biased way, we prepended all of the
OMIM training genes to the beginning of the rankings for each of the three on-
line methods before determining ROC curves, in effect giving them a left biased
ROC curve. The larger GAD gold standard powered the ROC curves, since it
encompasses the OMIM data. Even with the training gene handicap, SimGCC
is able to outperform these methods on 3 of the 4 selected diseases (Fig. 1).

A hierarchical intersection of 31 sets of genes empirically related to alcoholism
was generated using the Phenome Map tool in GeneWeaver (4). This graph fea-
tures individual gene sets in the lowest level, and higher order intersections of
the gene sets at higher levels (Fig. 2). Red nodes contain genes with contextual
similarity to Alcoholism based on SimGCC results. A previously published anal-
ysis of these 31 gene sets reveals that highly connected genes are not currently
annotated to alcoholism (6), but the present study demonstrates that with in-
clusion of contextual information, some of the highly connected genes are found
in an alcoholism relevant context.

5 Conclusion

We have described a novel method for extracting and quantifying contextual
information content and demonstrated its application on a literature-centered
human data set. Because this method requires no training set, it can be readily
applied in new areas of investigation for which true positive data is sparse.
By building upon the information content and extending similarity methods
to assess the value of related associations, SimGCC was shown to provide a
meaningful improvement over existing classification methods.

The extent of improvement made by SimGCC is dependent on the nature of
the terms being compared and the state of data for each. The greatly improved
performance for both ‘Alzheimer’s Disease’ and ‘Schizophrenia’ show the value
of contextual information in neurological disorders because high comorbidity
and/or genetic relationships to similar disorders provide rich context in which to
find similar genes. The smaller performance increase for ‘Alcoholism’ illustrates
the heterogeneity inherent in this disorder (and many behavioral disorders) due
to the effects of diverse sources of genetic predisposition and environmental vari-
ation (18). Finally, the research landscape for ‘Autistic Disorder’, with very large

A Context-Driven Gene Prioritization Method 171

studies of many genes and very small studies of few genes, provides little contex-
tual information for gene prioritization. As in the discussion of the CC metric
(Eq. 6), data restrictions that are too loose or too narrow cannot provide enough
information about individual genes or terms to extract contextual relevance.

Context similarity can be a powerful extension to the limitations of direct rela-
tional queries or bipartite gene-function prioritization familiar to bioinformatics
inquiry. SimGCC facilitates analysis beyond filtered searches and into quantita-
tive assessment of the contextual relationships of biological entities across data
partitions. The SimGCC metric can be readily adapted to weighted relations,
such as gene expression and other functional genomics experimental results. In-
tegrating this method into the model organism databases, the Neuroinformatics
Framework(11), and a wealth of other federated biological data resources can
enable automatic discovery of related entities across data resources.

Acknowledgement. The authors gratefully acknowledge funding from NIH
AA 18776.

References

[1] Redis, http://redis.io
[2] Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F.,

Tranchevent, L.C., De Moor, B., Marynen, P., Hassan, B., et al.: Gene prioritiza-
tion through genomic data fusion. Nature biotechnology 24(5), 537–544 (2006)

[3] Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-
Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald,
M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology.
Nature Genetics 25(1), 25–29 (2000)

[4] Baker, E.J., Jay, J.J., Bubier, J.A., Langston, M.A., Chesler, E.J.: GeneWeaver:
a web-based system for integrative functional genomics. Nucleic Acids Research
(November 2011)

[5] Becker, K.G., Barnes, K.C., Bright, T.J., Wang, S.A.: The genetic association
database. Nature Genetics 36(5), 431–432 (2004)

[6] Bubier, J., Chesler, E.: Accelerating discovery for complex neurological and behav-
ioral disorders through systems genetics and integrative genomics in the laboratory
mouse. Neurotherapeutics, 1–11 (2012)

[7] Chen, C., Mungall, C.J., Gkoutos, G.V., Doelken, S.C., Köhler, S., Ruef, B.J.,
Smith, C., Westerfield, M., Robinson, P.N., Lewis, S.E., Schofield, P.N., Smedley,
D.: MouseFinder: candidate disease genes from mouse phenotype data. Human
Mutation 33(5), 858–866 (2012)

[8] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: ToppGene suite for gene list
enrichment analysis and candidate gene prioritization. Nucleic Acids Research 37,
W305–W311 (2009)

[9] Davis, A.P., Wiegers, T.C., Rosenstein, M.C., Mattingly, C.J.: MEDIC: a practical
disease vocabulary used at the comparative toxicogenomics database. Database:
The Journal of Biological Databases and Curation 2012 (February 2012)

[10] Fernald, G.H., Capriotti, E., Daneshjou, R., Karczewski, K.J., Altman, R.B.: Bioin-
formatics challenges for personalized medicine. Bioinformatics 27(13), 1741–1748
(2011)

http://redis.io

172 J.J. Jay, E.J. Baker, and E.J. Chesler

[11] Gardner, D., Akil, H., Ascoli, G.A., Bowden, D.M., Bug, W., Donohue, D.E.,
Goldberg, D.H., Grafstein, B., Grethe, J.S., Gupta, A., Halavi, M., Kennedy, D.N.,
Marenco, L., Martone, M.E., Miller, P.L., Müller, H., Robert, A., Shepherd, G.M.,
Sternberg, P.W., Van Essen, D.C., Williams, R.W.: The neuroscience information
framework: a data and knowledge environment for neuroscience. Neuroinformat-
ics 6(3), 149–160 (2008)

[12] McKusick-Nathans Institute of Genetic Medicine, J.H.U.B.: Online mendelian in-
heritance in man, OMIM�, http://omim.org

[13] Gentleman, R.: Visualizing and distances using GO (2005),
http://bioconductor.fhcrc.org/packages/2.11/bioc/vignettes/GOstats/

inst/doc/GOvis.pdf

[14] Hibbs, M.A., Hess, D.C., Myers, C.L., Huttenhower, C., Li, K., Troyanskaya, O.G.:
Exploring the functional landscape of gene expression: directed search of large
microarray compendia. Bioinformatics 23(20), 2692–2699 (2007)

[15] Homayouni, R., Heinrich, K., Wei, L., Berry, M.W.: Gene clustering by latent
semantic indexing of MEDLINE abstracts. Bioinformatics 21(1), 104–115 (2005)

[16] Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1),
193–218 (1985)

[17] Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes
et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579
(1901)

[18] Kreek, M., Nielsen, D., LaForge, K.: Genes associated with addiction: alcoholism,
opiate, and cocaine. NeuroMolecular Medicine 5(1), 85–108 (2004)

[19] Lord, P.W., Stevens, R.D., Brass, A., Goble, C.A.: Investigating semantic simi-
larity measures across the gene ontology: the relationship between sequence and
annotation. Bioinformatics 19(10), 1275–1283 (2003)

[20] Perez-Iratxeta, C., Bork, P., Andrade, M.A.: Association of genes to genetically
inherited diseases using data mining. Nature Genetics 31(3), 316–319 (2002)

[21] Pesquita, C., Faria, D., Bastos, H., Falcáo, A., Couto, F.: Evaluating go-based
semantic similarity measures. In: Proc. 10th Annual Bio-Ontologies Meeting, pp.
37–40 (2007)

[22] Pesquita, C., Faria, D., Bastos, H., Ferreira, A.E., Falcáo, A.O., Couto, F.M.:
Metrics for GO based protein semantic similarity: a systematic evaluation. BMC
Bioinformatics 9(S5), S4 (2008)

[23] Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical association, 846–850 (1971)

[24] Resnik, P.: Using information content to evaluate semantic similarity in a tax-
onomy. In: Proceedings of the 14th International Joint Conference on Artificial
Intelligence, pp. 448–453 (1995)

[25] Robinson, P.N., Köhler, S., Bauer, S., Seelow, D., Horn, D., Mundlos, S.: The
human phenotype ontology: A tool for annotating and analyzing human hereditary
disease. The American Journal of Human Genetics 83(5), 610–615 (2008)

[26] Tiffin, N., Adie, E., Turner, F., Brunner, H.G., van Driel, M.A., Oti, M., Lopez-
Bigas, N., Ouzounis, C., Perez-Iratxeta, C., Andrade-Navarro, M.A., Adeyemo, A.,
Patti, M.E., Semple, C.A.M., Hide, W.: Computational disease gene identification:
a concert of methods prioritizes type 2 diabetes and obesity candidate genes.
Nucleic Acids Research 34(10), 3067–3081 (2006)

[27] Tranchevent, L., Capdevila, F.B., Nitsch, D., Moor, B.D., Causmaecker, P.D.,
Moreau, Y.: A guide to web tools to prioritize candidate genes. Briefings in Bioin-
formatics 12(1), 22–32 (2011)

http://omim.org
http://bioconductor.fhcrc.org/packages/2.11/bioc/vignettes/GOstats/inst/doc/GOvis.pdf
http://bioconductor.fhcrc.org/packages/2.11/bioc/vignettes/GOstats/inst/doc/GOvis.pdf

Exploiting Dependencies of Patterns in Gene

Expression Analysis Using Pairwise
Comparisons�

Nam S. Vo and Vinhthuy Phan��

Department of Computer Science, The University of Memphis,
Memphis, TN 38152, USA

{nsvo1,vphan}@memphis.edu

Abstract. In using pairwise comparisons to analyze gene expression
data, researchers have often treated comparison outcomes independently.
We now exploit additional dependencies of comparison outcomes to show
that those with a certain property cannot be true patterns of genes’
response to treatments. With this result, we leverage p-values obtained
from comparison outcomes to predict true patterns of gene response to
treatments. Functional validation of gene lists obtained from our method
yielded more and better functional enrichment than those obtained from
the conventional approach. Consequently, our method promises to be
useful in designing cost-effective experiments with small sample sizes.

Keywords: gene expression, pairwise comparison, sample size, partially
ordered set.

1 Introduction

Various methods using pairwise comparisons (e.g. [4, 7, 11, 13]) have been in-
troduced to analyze gene expression data. The goal is to compare the expression
of genes at various time points, or when treated with various chemical com-
pounds. In case of studies involving multiple treatments of chemical compounds,
researchers are interested in understanding not only the effects of certain drugs
(compared to untreated) but also the differences and similarities among the drugs
themselves. In the simplest case, one would like to know the effects of treatment
t versus untreated (control). Pairwise comparisons would identify genes that are
up-regulated or down-regulated by treatment t. But as the number of treatments
increases, it becomes harder to interpret patterns observed from pairwise com-
parisons. Additionally, instead of making

(
n
2

)
measurements (n is the number

of treatments), to save cost, researchers such as Sutter et al. [13] made only n
measurements and then used post hoc computations to determine the outcomes
of

(
n
2

)
comparisons. In exploring dependencies among

(
n
2

)
comparisons under a

� The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

�� Corresponding author.

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 173–184, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

174 N.S. Vo and V. Phan

simple model of comparison, Longacre et al. [10] demonstrated that only 2n− 1
measurements would be needed to compute results of all

(
n
2

)
comparisons.

Researchers have recognized that each treatment requires many samples mea-
sured independently to account for biological variation. Having a sufficient sam-
ple size for accurate measure of gene expression is critical for both microarray
and RNA-seq technologies [8, 5]. Statistical methods such as [9, 15], calculate a
sample size with respect to a prescribed portion of type I/type II error rates, or to
ensure that a given proportion of genes are significantly differentially expressed.
Consequently, a characteristic of these high-throughput technologies is that one
sample size is calculated for all genes; measurements taken from 5 microarrays
would mean than all studied genes have exactly 5 samples. Having one sam-
ple size for all genes means that observed patterns of highly-variantly-expressed
genes might not be accurate.

We introduce a method that employs pairwise comparisons and post hoc cal-
culations (similarly to [13, 11]) to address the problem of having one sample size
for all genes in gene expression analysis. The first novel aspect of our method
is in the characterization of pattern of response to treatments of each gene as
a strict partially ordered set (poset). Using this characterization, the main re-
sult indicates that, under some reasonable assumptions, true response patterns
must be linearly orderable posets and that many observed patterns might not
be linearly orderable because of small sample sizes. Consequently, we devise a
strategy to predict most likely (least erroneous) linearly orderable extensions of
those patterns that are not linearly orderable. The rationale is that these linearly
orderable extensions are most likely true patterns. We validated this strategy by
scoring functional enrichment of resulting gene lists. As a result, this approach
can help design more effective and efficient experiments.

2 Method

2.1 Gene Response Patterns Obtained from Pairwise Comparisons

Suppose that we are given a set of significantly expressed genes and must deter-
mine the patterns of response of these genes; gene expression may be collected
using procedures such as Kruskal-Wallis with permutation resampling [3] and
false discovery rate control [1, 2]. The approach of using pairwise comparisons
to characterize the pattern of gene response to treatments has been long estab-
lished [10, 4, 7, 11, 13, 14]. In the simplest case, we have 2 treatment groups, for
example, a control group c and a treatment group t. To determine which genes
are up-regulated (t > c), down-regulated (t < c) or unaffected by t, we compare
two groups of samples {c1, · · · , cr} and {t1, · · · , ts}. When there are many treat-
ments, we seek to understand the effects being treated versus untreated as well
as differences and similarities among different treatments. This makes it harder
to describe and analyze patterns of comparison outcomes.

Additionally, researchers showed that in order of obtain accurate patterns,
sample sizes (r and s) must be sufficiently large to account for technical and
biological variations; this is necessary for both microarray [8] and RNA-seq [5]

Exploiting Dependencies of Patterns in Gene Expression Analysis 175

technologies. Statistical tests such as MannWhitney U test or Wilcoxon rank-
sum test can be used to compare two groups of samples. The basic idea is to
order samples from both groups in a non-decreasing order and assign each sample
the corresponding rank in this order. The observed sum of ranks, wt, of samples
in the t group will tell us if samples in t are statistically larger or smaller than
those in c. More specifically, if the p-value1(i.e. the probability of observing a
rank-sum for t that is at most wt) is less than a false positive rate α, then the
alternative hypothesis H1 : t < c is accepted. Conventionally, α is set to be 0.05
or even 0.01; the smaller α is, the less likely we make a mistake.

In general, given expression data of a given gene for two treatment groups A
and B, comparing A versus B yields one of three possible outcomes (patterns):

A ≺ B: the gene responds more significantly to A than to B if the pairwise
test H0 : A = B is rejected in favor of H1 : A < B.

B ≺ A: the gene responds more significantly to B than to A if the pairwise
test H0 : A = B is rejected in favor of H1 : A > B.

A ∼ B: If H0 is accepted because the sample sizes are too small to sufficiently
determine the order at the given α.

Note that the outcome of a comparison is a function of two things: (1) the
sample sizes of the two groups, and (2) α. Larger α’s yield more outcomes of
types A ≺ B and B ≺ A, but having larger α’s also means higher error rates.
We will show how to vary α intelligently to predict true patterns.

2.2 Comparison Outcomes Are Strict Partially Ordered Sets
(Posets)

Given a gene g treated with n measurements for n treatments, define the pattern
Pg of g to be the collective outcomes obtained from

(
n
2

)
post hoc comparison tests

on all different treatment pairs. Each comparison yields one of three outcomes
as described above. Note that Pg is a (strict) partially ordered set, with respect
to the relation ≺ defined by the comparison test procedure. This is because a
valid test procedure, e.g. the Wilcoxon rank-sum test, yields outcomes that are:

1. Antisymmetic: either A ≺ B or B ≺ A, but not both, may be obtained.
2. Transitive: if A ≺ B and B ≺ C are obtained, then A ≺ C must be obtained.

Our goal is to exploit the structure of Pg to determine if it is accurate and if
not, what the true pattern might be. To do this, we make a few assumptions.
First, given any two treatments A and B, a gene must either (1) it must respond
more (higher expression) to B than to A, or (2) to more to A than to B, or
(3) identically to both. Second, for the first two cases, we can determine the
true response pattern (A ≺ B or B ≺ A) with a sufficiently large (but finite)
sample size; and for the third case, no matter how large the sample size, only
the outcome A ∼ B can be obtained.

1 These p-values can be calculated exactly using a recursive procedure [12].

176 N.S. Vo and V. Phan

These assumptions mean that when the outcome A ∼ B is observed, either
there are too few samples or the gene responds identically to both treatments.
For only 2 treatments, it is impossible to tell which is the scenario. But for 3 or
treatments, the following lemma can help identify the two cases.

Lemma 1. Given treatments A,B,C, suppose Δ is the pattern defined by the
following outcomes: A ≺ C,A ∼ B,B ∼ C. Then Δ is not the true pattern of
response to the 3 treatments due to an insufficiently small sample size.

Proof. Suppose, to the contrary, that the number of samples are sufficiently large
and the pattern Δ is a true pattern. As the number of samples is sufficient, we
are able to resolve all differences among treatments if such differences exist. And
if no difference exists between two treatment groups, then they must be identical.
Therefore, the outcomes A ∼ B and B ∼ C mean that A ≡ B and B ≡ C (i.e.
the gene responds identically to A and B, and to B and C, respectively). But,
this would imply that A ≡ C, which is a contradiction to the observed outcome
A ≺ C. Therefore, Δ is not true, and further we need more samples to determine
accurately either the outcome A versus B, or B versus C, or both.

2.3 Linearly Orderable Patterns

The same reasoning as in Lemma 1 shows that if a pattern Pg – obtained from
pairwise comparing n treatment groups – contains Δ as a sub-pattern, then Pg

is not a true pattern and more samples would be needed to obtain the true
response pattern of g. This can be seen more easily in a visual representation.
Fig 1a shows Δ. Fig 1b shows a pattern that contains Δ as a sub-pattern, which
involves treatments a, b, and e. Thus, we can conclude, based on Lemma 1, that
the pattern in Fig 1b is not a true response pattern (for any gene).

x z

y

(a)

a

b

d

c

e

(b)

a
b

c

d
e

(c)

{a, e} {b, c, d}

(d)

Fig. 1. Response patterns as posets. (a) Δ = {x ≺ z, x ∼ y, y ∼ z} cannot be a true
response pattern. (b) A not-true pattern as it contains Δ. (c) A linearly orderable
pattern. (d) the linear order of the pattern in (c).

We cannot, however, disqualify the pattern shown in Fig 1c as untrue. The
following definition helps to characterize patterns that are possibly true.

Exploiting Dependencies of Patterns in Gene Expression Analysis 177

Definition 1. A pattern P based on n elements t1, · · · , tn is linearly order-
able if ∀i, j such that ti ∼ tj, G(ti) = G(tj) and L(ti) = L(tj).

where G(ti) = {tk|ti ≺ tk} is the set of elements “larger” than ti, and similarly
L(ti) = {tk|tk ≺ ti} is the set of elements “smaller” than ti.

Lemma 2. A pattern is linearly orderable if and only if it does not contain Δ.

Proof. If a pattern P contains Δ, e.g is the pattern in Fig 1a. We see x ∼ y,
but {z} = G(x)
= G(y) = ∅, implying P is not linearly orderable. Conversely,
suppose that P does not contain Δ, then given any pair of x and y such that x ∼
y, there cannot exist a z such that x ≺ z and y ∼ z. This implies G(x) = G(y).
By symmetry, we can show that L(x) = L(y). Thus, P is linearly orderable.

Lemmas 1 and 2 implies that

Theorem 1. True patterns must be linearly orderable.

If an observed pattern P is not linearly orderable, then it does not represent a
true response. Although it must be linearly orderable, without additional sam-
ples, we cannot know what the true pattern is. If, however, we assume that
already observed outcomes of types A ≺ B are correct (they are with high prob-
abilities), then additional samples do not change these and consequently the true
pattern must be an extension of P . To be precise, we introduce a definition.

Definition 2. Q is a linearly orderable extension of P if (1) Q is linearly
orderable, and (2) ∀i, j if P contains ti ≺ tj, then Q also contains ti ≺ tj.

For instance, if the pattern in Fig 1c is observed, then the true pattern are likely
among its 39 linearly orderable extensions. (Additional samples can result in any
of 3 linearly orderable sets out of {a, e}; and any of 13 linearly orderable sets
out of {b, c, d}. This gives a total of 3*13=39 combinations.)

2.4 Determining True Response Patterns Using ad hoc Thresholds

As true patterns must be linearly orderable, a linearly orderable pattern obtained
with least assumptions might most likely be true patterns. To see the important
role of α, recall that in determining the outcome for A versus B, if H1 : A < B is
accepted with p-value ≤ α, then the outcome is A ≺ B. Otherwise, ifH1 : B < A
is accepted with p-value ≤ α, then the outcome is B ≺ A. Otherwise, the
outcome is A ∼ B. For example, if the p-value for hypothesis H1 : A < B is
found to be 0.07, and α = 0.1, then the outcome A ≺ B is obtained. On the
other hand, if α = 0.05, then the outcome A ∼ B is likely obtained.

Conventionally, pairwise comparisons are tested independently and α is set
to a fixed small number (e.g. 0.05) to reduce false positives. But, if we consider
altogether the collective outcomes of

(
n
2

)
pairwise comparisons, we can exploit

the fact that true response patterns must be linearly orderable. Thus, instead of
using a global, fixed α for all genes, we could gain more by using an ad hoc α
that works best for each individual gene.

178 N.S. Vo and V. Phan

a

b.03

d

.02

c

.02

e .04

.04

(a)

a
b

c

d
e

(b)

a

b

c

d

e

(c)

Fig. 2. (a) Pattern shown in Fig 1b with outcomes labeled by p-values, (b)-(c) Two of
39 possible linearly orderable extensions of the pattern shown in (a)

An example shown in Fig 2 helps explain our strategy. Fig 2a shows the
pattern previously shown in Fig 1b with some additional information. Each
outcome of type A ≺ B is labeled with the p-value at which the outcome is
obtained. For example, the outcome a ≺ b is obtained with p-value 0.03, and
a ≺ d is obtained with p-value 0.02. With α = 0.05, the pattern in Fig 2a is
observed. It is not linearly orderable and hence is not a true pattern; the true
pattern is likely among the 39 linear orderable extensions of this pattern. But
which one among these is most likely the true pattern?

Consider a hypothetical scenario in which the p-value for H1 : e < b is 0.09. If
this p-value is the smallest p-value that is greater than 0.05, we can deduce that
the pattern in Fig 2b is most likely to be true. Thus, setting α = 0.09, we would
observe correctly this linearly orderable pattern. In addition, suppose that the p-
value for H1 : a < e is 0.07. Then, the pattern in Fig 2c is more likely to be true.
Essentially, our strategy, as described in Algorithm 1, is to find the minimal
threshold α that yields a non-trivial linearly orderable pattern.

For a given gene g, this procedure increments the ad hoc threshold αg (ini-
tially set at αmin) until a non-trivial linearly orderable pattern is obtained. The
procedure returns both αg and the linearly orderable pattern. If there are too
few samples, it is not possible to determine the order of any treatment pair. For
large numbers of treatments, it is necessary to start with a very small αmin to
control false positives. Techniques to control false positives and false discovery
rates such as Bonferrroni or Benjamini-Hochberg [1, 2] require hypothesis tests
be independent. These methods, unfortunately, do not apply because as we have
shown these tests’ outcomes are highly dependent of each other.

3 Experimental Results

3.1 Data and Method of Validation

To validate our method, we used a gene expression data set (GEO accession
number GSE8880 [11]), which came from a controlled study of samples of liv-
ers of Sprague-Dawley rats treated with either control diet or one of three

Exploiting Dependencies of Patterns in Gene Expression Analysis 179

Algorithm 1. GetPattern(gene g)

1: Given each pair of treatment groups A and B for the gene g, compute two p-values
p1 and p2 for the alternative hypotheses H1 : A < B and H2 : B < A.

2: Sort L, the list of these 2 ·
(
n
2

)
p-values, in increasing order (duplicates removed).

3: αmin = 0.05.
4: if αmin > L[m], where m is the last index of L then
5: return (∅, L[m])
6: else
7: j be the index such that L[j] ≤ αmin < L[j + 1]; or j = 1 if αmin < L[1]
8: end if
9: for i = j to m do
10: αg = L[i]
11: Let Pαg be the pattern obtained from having the threshold αg.
12: if Pαg is not ∅ and is linearly orderable then
13: return (Pαg , αg)
14: end if
15: end for
16: return (∅, αg)

chemopreventive compounds with well understood pharmacological activi-
ties, 5,6-benzoflavone (BNF), 3H-1,2-dithiole-3-thione (D3T) and 4-methyl-5-
pyrazinyl-3H-1,2-dithiole-3-thione (OLT). There were 5 samples in each of 4
treatment groups. Pairwise comparisons were performed to determine patterns
of response for 1737 significantly differentially expressed genes.

To compare our approach (Algorithm 1) of using an ad hoc threshold for each
gene against the conventional approach of having a fixed global threshold α, we
placed genes into lists that are labelled by those genes’ patterns; genes having
the same patterns are placed into the same lists. We did not use any conventional
clustering methods (e.g. hierarchical clustering or k-mean) because we did not
want to introduce additional biases from any clustering method.

Thus, we have two sets of poset-labelled gene lists. The first set was produced
by observing patterns using a fixed threshold α (0.05). We observed that 1252
(72%) genes acquired 45 linearly orderable patterns and were placed into 45
gene lists; 485 (28%) genes acquired 69 non-linearly orderable patterns and were
placed into 69 gene lists. The second set of clusters were produced by observing
linearly orderable patterns using ad hoc α for each individual gene (Algorithm 1).
Using this method, all 1737 significantly differentially expressed genes acquired
a total of 55 linearly orderable patterns and were placed into 55 gene lists. These
55 linearly orderable patterns include all 45 linearly orderable patterns observed
with fixed α at 0.05, plus 10 new patterns.

We evaluated and compared the functional enrichment of the two sets of gene
lists using DAVID [6], which is a resource aimed at systematically extracting
biological meaning from large gene or protein lists. DAVID integrates biological
information from all major public bioinformatics resources. We used the Gene
Functional Classification tool of DAVID to extract highly-enriched clusters from

180 N.S. Vo and V. Phan

each gene list. To quantify the degree of enrichment, we counted the number of
functionally enriched clusters and calculated the total as well as average enrich-
ment score that DAVID returned. We expect biologically meaningful assignments
of patterns to genes will yield many and better functionally enriched clusters.

3.2 Analysis of Linearly Orderable Extensions

As described, fixing α at 0.05 resulted in 485 genes acquiring 69 non-linearly
orderable patterns. By relaxing α, our method reassigned the pattern of each
of these 485 genes to its most likely linearly orderable extension. We observe
that many linearly orderable extensions can be obtained by modestly raising α
beyond 0.05. Shown in Fig 3a, with α = 0.05, patterns of 72% of genes linearly
orderable; with α ≤ 0.075, patterns of 84% of genes were linearly orderable; with
α ≤ 0.15, 97% of genes had linearly orderable patterns.

Fig 3a shows an important aspect of our method. Conventionally, it would be
unthinkable to set α at something higher than 0.15 as there would be too many
false positives. Our method allow flexible α, but in a strategically progressive
manner. For this data set, patterns for 72% genes were determined with α set
at 0.05. Patterns for the next 12% (for a total of 84%) of genes were determined
with α at 0.075. And the next 13% (total of 97%) were determined with α at 0.15.
Thus, although our method considers large values of α’s, this is done only for
very few genes whose patterns remain not-linearly orderable at smaller values.

To compare the structural difference between patterns not linearly order-
able when α is 0.05 and their linearly orderable extensions (as obtained by our
method), we define the difference between two pattern P and Q as d(P,Q) =∑(n2)

i=1 δ(pi, qi), where δ(pi, qi) is 0 if the ith outcome of P and Q is the same, and
1 if it is different. For example, if P and Q are the patterns shown in Fig 1b and
1c, then d(P,Q) = 1 as they differ only in the comparison of b and e.

(a) (b)

Fig. 3. (a) fraction of linearly orderable patterns at increasing values of α. (b) struc-
tural difference between patterns acquired at α = 0.05 and at higher values.

Exploiting Dependencies of Patterns in Gene Expression Analysis 181

Fig 3b shows the structural difference (on average) between a pattern observed
at α = 0.05 and its linearly orderable extension at increasing values of α. This
difference is denoted in the figure as μ(d1). As this number is well below 0.4 for
all values of α, we see that on average a pattern is only very slightly different from
its linearly orderable extension. This number, however, does not tell the whole
story, because 72% of genes acquired linearly orderable patterns at α = 0.05
(meaning they are trivially their own linearly orderable extensions).

Thus, we proceed to analyze patterns that were not linearly orderable at
α = 0.05. The structural difference between these patterns and their linearly
orderable extensions is denoted in the figure as μ(d2). We see that this number
is roughly 1.2 at all values of α. This means that on average adding roughly 1
outcome (of type A ≺ B) to these patterns would make them linearly orderable.

Given that patterns determined with α fixed at 0.05 and patterns determined
by our method do not differ structurally very much, is there any resulting bio-
logical difference? We examine this question next.

3.3 Functional Analysis Using DAVID

Validating against Random Assignment of Patterns. As described in Al-
gorithm 1, patterns not linearly observable with α fixed at 0.05 are extended
to linearly orderable patterns. This is equivalent to taking these patterns and
strategically assign them with certain linearly orderable patterns. We demon-
strate that this strategy is biologically meaningful by comparing it to a random
strategy. Suppose that our method assigned all 485 not-linearly-orderable pat-
terns to k linearly orderable patterns P1, · · · , Pk; this would yield k corresponding
gene lists L1, · · · , Lk (Li includes all genes having pattern Pi). To compare, we
created k lists R1, · · · , Rk by randomly placing genes into these lists in such a
way that Pi has the same number of genes as Ri (i.e. |Pi| = |Ri|) for all i.

Then, the gene lists L1, · · · , Lk and R1, · · · , Rk would be given to DAVID for
functional analyses. (Technically, these lists only consist of genes whose patterns
are not linearly orderable at α = 0.05. Together with these, we also gave to
DAVID the lists of genes whose patterns are linearly orderable at α = 0.05.) In
response, for each gene list, DAVID would return a non-negative number enriched
clusters; each of these enriched cluster is also given an enrichment score.

Table 1 shows the results of comparing our method against the random as-
signment strategy. We see that compared to the random strategy, the gene lists
based on linearly orderable extensions yield more and larger enriched clusters

Table 1. Our method versus random assignment. μR and σR are mean and standard
deviation of the random assignment strategy.

Our method μR σR

No. of enriched clusters 23 16.60 1.90

No. of genes in enriched clusters 119 88.90 7.87

Total enrichment score 46.71 28.70 4.86

182 N.S. Vo and V. Phan

(a) (b)

Fig. 4. (a) Total enrichment scores and number of enriched clusters for gene lists
obtained at various values of α. (b) Number of genes in enriched clusters obtained by
our method vs. fixing α at 0.05.

as well as higher total enrichment score. (We averaged the score of the random
strategy over 20 different runs.) The fact that our method performed about 3
standard deviations better than random suggests that the strategy of assigning
linearly orderable extensions is biologically meaningful.

Comparing with Assignment of Patterns with Fixed α. Ultimately, we
expect that allowing a flexible α to obtain linearly orderable patterns yields
better prediction of true response patterns. As mentioned in Section 3.1, fixing
α at 0.05 yielded 45 gene lists, each of which corresponded to a linearly orderable
pattern, and 69 gene lists, each of which corresponded to a not-linearly orderable
pattern. On the other hand, Algorithm 1 yielded 55 gene lists corresponding to
linearly orderable patterns. If a gene list is biologically meaningful, it should be
functionally enriched, and we would expect such result from DAVID.

We found that for gene lists obtained with α fixed at 0.05, DAVID retrieved 12
enriched clusters, with a total enrichment score approximately 20.8. Meanwhile,
as shown in Fig 4a, for gene lists obtained from our method, DAVID retrieved
up to 23 enriched clusters with a total enrichment score of 46.70. Thus, gene
lists produced by our method are twice as enriched. Additionally, Fig 4b shows
functional enrichment of 8 gene lists, corresponding to 8 linearly orderable pat-
terns. Genes having these 8 patterns were observed both with α = 0.05 and with
our method. The figure shows that the reassignment of genes to these 8 patterns
(Algorithm 1) increased functional enrichment noticeably.

Fig 4a also shows the number of enriched clusters and total enrichment scores
for gene lists obtained at various α ranging from 0.05 to 0.5. We can see that gene
lists obtained with α ≤ 0.15 were most enriched. This suggests that genes whose
patterns are not linearly orderable at α ≤ 0.15 did not add to the functional
enrichment of the existing gene lists, and might be removed from consideration.
With other data sets, it might be necessary to impose an upper bound on α,
e.g. 0.15, to reduce false positives. This result suggests that doing so does not
negatively affect functional enrichment very much if at all.

Exploiting Dependencies of Patterns in Gene Expression Analysis 183

4 Conclusion and Discussion

The proposed approach to gene expression data analysis exploits dependencies
in outcomes of pairwise comparing gene response to treatments. We showed that
observed patterns are true if and only they are linearly orderable. For genes that
have too few samples, linearly orderable extensions of their observed patterns
might be inferred as true patterns. This process is accomplished by allowing the
error rate α to be flexible instead of being fixed at a constant. We demonstrated
that a small α (≤ 0.15) are sufficient to obtain linearly orderable patterns for
most (97%) genes. Importantly, we demonstrated that this method yielded more
and larger enriched gene lists in comparison to conventional analysis that holds
α at a constant value of 0.05, thus validating the effectiveness of the method.

The method should be useful in helping designing cost-effective experiments.
Statisticians continually introduce sample-size calculations that guarantee low
type I & type II errors while retrieving as many significantly differentially ex-
pressed genes as possible. And yet, there is an inherent characteristic in high-
throughput technologies that measure expressions of tens of thousands of genes
in one batch: one sample size is used for all genes. Thus, large sample sizes
yield accurate patterns for many genes, but are expensive. Small sample sizes,
however, do not yield true patterns for highly variantly expressed genes.

This method suggests middle ground, whereby we only need to have a reason-
able sample size that yields true patterns for most genes. For highly-variantly
expressed genes, their patterns are supposedly not linearly orderable. Never-
theless, their linearly orderable extensions can be predicted using the proposed
technique. These linearly orderable extensions are more likely to be true patterns
of response. Using functional enrichment as the basis of biological validation, we
have shown that this technique has a better chance of making correct predictions.

Finally, partially ordered sets (posets) as patterns can serve as a pre-filtering
step for subsequent clustering analysis. They can also serve as meaningful labels
of gene lists, as we did in this paper. These posets describe precisely interactions
of how genes having such patterns respond to treatments. They provide a level of
expressiveness beyond the simplistic upregulation/downregulation description.

Acknowledgement. We would like to thank the anonymous reviewers for their
insightful comments.

References

1. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. R. Statist. 57(1), 289–300 (1995)

2. Benjamini, Y.: Discovering the false discovery rate. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 72(4), 405–416 (2010)

3. Davidson, A.C., Hinkley, D.V.: Bootstrap methods and their application. Cam-
bridge University Press, Cambridge (1997)

184 N.S. Vo and V. Phan

4. Geman, D., d’Avignon, C., Naiman, D., Winslow, R.: Classifying gene expression
profiles from pairwise mrna comparisons. Statistical Applications in Genetics and
Molecular Biology 3(article19) (2004)

5. Glaus, P., Honkela, A., Rattray, M.: Identifying differentially expressed transcripts
from rna-seq data with biological variation. Bioinformatics 28(13), 1721–1728
(2012)

6. Huang, D., Sherman, B., Lempicki, R.: Systematic and integrative analysis of large
gene lists using david bioinformatics resources. Nature Protocols 4(1), 44–57 (2008)

7. Hulshizer, R., Blalock, E.M.: Post hoc pattern matching: assigning significance to
statistically defined expression patterns in single channel microarray data. BMC
Bioinformatic 8, 240 (2007)

8. Lee, M.L., Kuo, F.C., Whitmore, G.A., Sklar, J.: Importance of replication in mi-
croarray gene expression studies: statistical methods and evidence from repetitive
cdna hybridization. Prot. Natl. Acad. Sci. 97(18), 9834–9839 (2000)

9. Lin, W.J., Hsueh, H.M., Chen, J.J.: Power and sample size estimation in microarray
studies. BMC Bioinformatics 11, 48–48 (2010)

10. Longacre, A., Scott, L., Levine, J.: Linear independence of pairwise comparisons
of dna microarray data. J. Bioinform. Comput. Biol. 3(6), 1243–1262 (2005)

11. Phan, V., George, E.O., Tran, Q.T., Goodwin, S., Bodreddigari, S., Sutter, T.R.:
Analyzing microarray data with transitive directed acyclic graphs. Journal of Bioin-
formatics and Computational Biology 7(1), 135–156 (2009)

12. Ross, M.S.: Simulation, 3rd edn. Academic Press, San Diego (2002)
13. Sutter, T.R., He, X.R., Dimitrov, P., Xu, L., Narasimhan, G., George, E.O., Sut-

ter, C.H., Grubbs, C., Savory, R., Stephan-Gueldner, M., Kreder, D., Taylor, M.J.,
Lubet, R., Patterson, T.A., Kensler, T.W.: Multiple comparisons model-based clus-
tering and ternary pattern tree numerical display of gene response to treatment:
procedure and application to the preclinical evaluation of chemopreventive agents.
Mol. Cancer Ther. 1(14), 1283–1292 (2002)

14. Tran, Q.T., Xu, L., Phan, V., Goodwin, S., Rahman, M., Jin, V., Sutter, C.H.,
Roebuck, B., Kensler, T., George, E.O., Sutter, T.R.: Chemical genomics of cancer
chemopreventive dithiolethiones. Carcinogenesis 30(3), 480–486 (2009)

15. van Iterson, M., ’t Hoen, P.A., Pedotti, P., Hooiveld, G.J., den Dunnen, J.T., van
Ommen, G.J., Boer, J.M., Menezes, R.X.: Relative power and sample size analysis
on gene expression profiling data. BMC Genomics 10(1), 439 (2009)

Cloud Computing

for De Novo Metagenomic Sequence Assembly

Xuan Guo, Xiaojun Ding, Yu Meng, and Yi Pan

Department of Computer Science
Georgia State University

Atlanta, GA, 30303
pan@cs.gsu.edu

Abstract. In metagenomics, the population sequencing is an approach
to recover the genomic sequences in the genetically diverse environment.
Combined with the recently developed next generation sequencing plat-
form, mategenomics data analysis has greatly enlarged the size of sequenc-
ing datasets and decreased the cost. The complete and accurate assembly
of sequenced reads from an environmental sample improves the efficiency
of genome functional and taxonomical classification. A common bottle-
neck of the available tools is the high computing requirement for efficiently
assembling vast amounts of data generated from large-scale sequencing
projects. To address these limitations, we developed a parallel strategy to
accelerate computation and boost accuracy.We also presented an instance
of this strategy for a state-of-the-art assembly tool, Genovo, on Apache
hadoop platform. As a demonstration of the capability of our approach,
we compared the performance of our method to two other short read as-
sembly programs on a series of synthetic and real datasets created using
the 454 platform, the largest of which has 683k reads. Under the parallel
strategy, the ability of reconstruction of bases outperformed other tools
both on speed and several assembly evaluation metrics.

Keywords: Metagenome, NGS, Sequence Assembly, Cloud Computing.

1 Introduction

Metagenomics is the study of all micro-organisms coexistent in an environment
area, including environmental genomics, ecogenomics or community genomics.
In the past, microbial genomic studies usually focused on one single individual
bacterial strain which is suitable to be separately cultivated [1]. Due to exper-
imental limitations, most of the microbes could not be isolated in laboratory
conditions and, in fact, all micro-organisms in a habitat have various functional
effects on one another and their hosts, such as human gut [2] and larger ecosys-
tems [3]. Furthermore, recent research [4] [5] has shown the strong association
between common diseases and the diversity of microbes in humans, like inflam-
matory bowel disease and gastrointestinal disturbance. Population sequencing is
an essential tool for recovering the genomic sequences in a genetically diverse

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 185–198, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

186 X. Guo et al.

environmental sample, which is known as metagenomics and also known as envi-
ronmental genomics or community genomics. These studies are fundamental for
identifying and discovering novel genes, studying ecosystems by utilizing other
bioinformatics tools, like multiple sequence alignment services [6] and hence ad-
vancing our systemic understanding of biological processes and communities.

With high-throughput next generation sequencing (NGS) technology, like the
454 technology, it becomes possible to give solutions for metagenomics analysis[7].
The high coverage of fragmented reads increased the size of sequencing datasets
for large projects. Current methods for metagenomics sequencing recovery are
deficient in both the scale of data they can handle and the quality of assem-
bly contigs, particularly for terascale metagenomics projects. For example, 454
Roche GS Titanium system could collect 200 Mbp to 300 Mbp data within five
hours. As far as we know, there are a few de novo assemblers aimed at metage-
nomics [8], like MetaVelet [9], Genovo [10] and MetaIDBA [11], and these assem-
ble tools have been plagued by the issues mentioned above. Our approach was to
utilize recent high-performance computing (HPC) technology–cloud computing.
One of the advantages of cloud based technologies is that execution environ-
ment and experiment conditions can be easily and completely customized; the
large distributed infrastructures could be accessed by non-distributed comput-
ing experts. Moreover, since the infrastructure is rented on a pay-per-use basis,
when the experiments have finished, immediate access and release to required re-
sources become possible without planning beforehand. For the parallel assembly
procedure, we designed a clustering and merging strategy to execute adjusted
Genovo software on the cloud environment.

In this paper, we designed a cloud based de novo metagenomic assembly algo-
rithm to address the aforementioned problems. The rest of the paper is organized
as follows: a briefly introduction of MapReduce model and sequencing assem-
bly problem was given in Section 2; our framework of the cloud based assembly
algorithm was described in Section 3 with the design of Map-Reduce model im-
plantation; experiment results of the reads clustering was listed in Section 4;
Section 5 gave our conclusion and future works.

2 Preliminaries

In this section, we briefly reviewed the MapReduce model, and some basic con-
cepts, notations of the short reads de novo assembly problem for metagenomes.

2.1 The Map-Reduce Model

Map-Reduce is a programming model for processing and generating large data
sets in a distributed computing environment. It was first proposed and imple-
mented by Google. Some instances of MapReduce implementations, like Apache
Hadoop, removed the burden of managing I/O explicitly and hidden its low-
level details from programmers. Thus, map-reduce applications are amenable

Cloud Computing for De Novo Metagenomic Sequence Assembly 187

to a broad variety of real-world tasks and make them more accessible to users
who are not HPC experts. Dean and Ghemawat [12] illustrated the MapReduce
programming model as follows:

– A map function first takes a collection of user defined key/value pairs as input, executes a
designed processes and outputs a collection of key/value pairs. A hidden sorting procedure will
arrange pairs according to the order of their keys and allocate them to reducers.

– A reduce function receives a collection of key/value pairs, which share the same key, to conduct
some calculations and finally yields results collected by the MapReduce framework.

Figure 1 shows the data flow and different phases of the MapReduce framework
with only one round MapReduce iteration. In our design of parallel De Novo as-
sembly strategy, multiple rounds of MapReduce iteration were employed, which
meant the consequent task directly used the result from the previous job.

Fig. 1. The MapReduce programming model

2.2 De Novo Assembly of Metagenomes

TheDeNovo sequencing assembly problem is defined to find the shortest common
superstring of a given set of sequences as follows: Given strings {s1, s2, · · · }, find
the shortest string T such that every si is a substring of T . For the metagenomes
assembly, the target is to improve the accuracy of genetic functional and taxo-
nomical classification by assembled contigs of genomes of multiple species Gener-
ally, there are four aspects which are required to pay attention to in metagenomes
assembly: (1) the components of an environmental sample are complicated with
related species different from high to low taxonomies; (2) genome alternations
are uncertain, like horizontal gene transfer which is widespread among co-existent
species; (3) the coverages of genomes are various owning to the unequal abundance
of distinct species; (4) the number of reads in one dataset is in millions. The intu-
itive tactic to import those algorithms based on overlap-layout to parallel mode is
to split and balance input short reads according to the ranking of overlap, which
indicates the possibility of whether they come from the same part of the consensus
sequence, then to execute transitional assembly software on each partition. In the
present study, we addressed the problem of de novo short read metagenomes as-
sembly by a parallel strategy to adjust and improve overlap-layout based method,
which can be framed in MapReduce model to speed up the computation and en-
hance the assembly quality.

188 X. Guo et al.

3 Algorithm for De Novo Assembly

In this section, we presented a parallel De Novo assembly method, which is a
cloud based algorithm with four phases: weight-edge construction (Phase I) to
separated sequenced reads into small groups using 4 Map-Reduce jobs, clustering
(Phase II) to hierarchically cluster reads as potential contigs, parallel-Genovo
(Phase III) to yield a set of candidate contigs by executing adjusted Genovo and
post-merge (Phase IV) designed to combine the candidate contigs together if
their overlaps meet a predefined requirement. Figure 2 outlines the four phases
of our method.

Fig. 2. The pipeline of Cloud De Novo assembly is divided into four major phases:
Weight-Edge Construction, Clustering, Parallel-Genovo and Post-Merge.

3.1 Phase I: Weight-Edge Construction

Our algorithm for weight-edge construction was adapted from two alignment
methods: ZEBRA algorithm [13], a fast scan rule to skip non-match reads, the
local alignment algorithm, like Smith-Waterman (SW) dynamic programming
algorithm [14]. Two steps were designed in Phase I: (1) scanning, that every
l-mer (short DNA sub-strings of length l) of every read additionally with its
location was store in a hash-position table HP , then an approximate offset for
further pair sequences alignment operation was calculated if two reads shared at
least K common l-mers and (2) aligning, that the approximate entry point from
scanning were used to do the SW alignment of a pair of reads. In practice, we
used the weak requirement for the parameterK that at least six common 10-mers
shared by two reads were filter out as candidate alignment reads. Our solution
adapted from ZEBRA algorithm and SW algorithm is given in Algorithm 1,
which is written in a sequential way for easy understanding. The Map-Reduce
implementation with 4 round Map-Reduce jobs will be discussed in next part.
A threshold τalign was used to remove bad alignments:

Cloud Computing for De Novo Metagenomic Sequence Assembly 189

τalign = max (smis, sins, sdel)× lalign × 2perr + shit × lalign × (1 − 2perr)

= lalign(shit + 2perr(max(smis, sins, sdel)− shit))

This weak threshold could effectively reject those pairs of reads whose proba-
bility that both reads were sequenced from the same segment of genome were
extremely low. It promised that the rest of pairs should be further considered to
be connected.

Algorithm 1. Weight-Edge Construction
Input: Reads set R = {ri} , i ∈ [0, |R|]
Output: Weight array W = {Wi} (with i ∈ [0, |R|])

1 Maintain a hash-position table HP =
{〈

h1,
{
ph1
rj

, rj , . . .
}〉

,
〈
h2,

{
ph2
rj

, rj, . . .
}〉

. . .
}

;

2 for ri ∈ R do

3 hash every constituent l-mer to a integer h and store the position of ph
ri

and the id of ri

in HP ;

4 end
5 for hj ∈ HP do

6 For all pairs of
〈
p
hj
ri

, ri
〉
,
〈
p
hj
rj

, rj
〉

; generate
〈
(ri, rj), p

hj
ri

− p
hj
rj

〉
;

7 end

8 Merge and count all pairs
〈
(ri, rj), count, p

hj
ri

− p
hj
rj

〉
;

9 for every pair
〈
(ri, rj), count, p

hj
ri

− p
hj
rj

〉
do

10 if count > β then
11 Calculate Wij = SW (ri, rj) on position pri

− prj
; Store Wij in Wi and Wij in

Wj ;

12 end

13 end
14 return Weight array W = {Wi} ;

Map-Reduce Implementation. In the Map-Reduce framework, we used the
notation < key, value > to denote a key/value pair. In task 1, the input was
index of read, ri, and sequence of read, rsi; In task 2, the mapper used ap-
proximated entry point pi,j for each pair of read as value. In task 3, entry point
information (one pair just needs one entry point) and the original sequences were
treated as input. In task 4, it regenerated pairs of reads as key to guild the se-
quence of these two reads to the same reducer and implemented SW algorithm to
obtain the similarity scores for the phase II. The similarity score was calculated
as Equation 1. lhit, lmis, lins, ldel were the count of the four base alignments.

score = shitlhit + smislmis + sinslins + sdelldel (1)

Task 1:
Input: < ri, rsi >
Map: Generate hash values of all l-mers in ri; For each h emit < h, ph

ri
ri >.

Reduce: < h, [IRi, · · · , IRj] > . (with IRi = (ph
ri
, ri))

190 X. Guo et al.

Task 2:

Input:< h, [IRi, , IRj] >
Map: For pair < IRi, IRj >, i �= j,, emit < (min(ri, rj),max(ri, rj)), pi,j >

Reduce: < (min(ri, rj),max(ri, rj)),
{
p0
i,j , p

1
i,j , . . . , p

m
i,j

}
>; if m ≥ mincount,

emit < (min(ri, rj),max(ri, rj)), pi,j > (with pi,j is the approximate start point).

Task 3:

Input: < ri, rsi >, < min(ri, rj), {max(ri, rj), pi,j} > and < max(ri, rj),min(ri, rj) >
Map: For pair < ri, rsi >, emit each input entry as it is;

For pair < (min(ri, rj),max(ri, rj)), pi,j >,
emit < min(ri, rj), {max(ri, rj), pi,j} > and < max(ri, rj),min(ri, rj) >

Reduce: Emit < min(ri, rj),
{
max(ri, rj), pi,j , rsmin(ri,rj)

}
> and

< max(ri, rj),
{
min(ri, rj), rsmax(ri,rj)

}
>

Task 4:

Input:<min(ri, rj),

{
max(ri, rj), pi,j , rsmin(ri,rj)

}
>and < max(ri, rj),

{
min(ri, rj), rsmax(ri,rj)

}
>

Map: Emit < (min(ri, rj), max(ri, rj)),

{
pi,j , rsmin(ri,rj)

}
> and

< (max(ri, rj), min(ri, rj))

{
rsmax(ri,rj)

}
>

Reduce: Banded align ri, rj from pi,j ; If scorei,j > τalign , emit < (min(ri, rj), max(ri, rj)), scorei,j >

3.2 Phase II: Clustering

The basic idea in the clustering was to partition the set of reads into disjoint
subsets and maintain the property that reads in the same subset possess larger
weights among them than the reads from different subsets. The weight was com-
ing from local alignment in the previous phase. Our method were presented in
Algorithm 2. When two reads were assigned into one subsets, it can be considered
as one read was extended on either its 3

′
end or 5

′
end. Thus two things were

required to address: (1) when to stop extension and (2) what kind of clusters
can be further combined. For the first question, we exerted a threshold weight
τc on the extension of reads, based on optimal stopping theory (OST). There
was a 1/e-law of best choice in OST to determine the worst case; here e was
the Euler’s constant and τc was the worst weight among the first 1/e part of ex-
tended reads. The first 1/e of extensions of 1/e+1 reads would be accepted. The
process of extension would be terminated when the first subsequent combination
whose weight was less than τc and we store the current cluster c as a candidate
for next step. For the second question, a user defined upper bound of clusters N
was given at the begin of clustering, which was related to the hardware informa-
tion of clusters, like the number of computing nodes and the type of CPU they
equipped. Each read in R =

{
r1, r2, . . . , r|R|

}
was appended a weight set Wi,

i ∈ [1, 2, . . . , |R|]. The weight set Wi = {wij} consisted of the score of alignment
of read ri to rj . For each ri, wi∗ stood for the high score in Wi. First, a list of
weight L composed of largest weight from each read ri was produced and sorted
descendent (line 1). τc was determined by count, which was less than (1/e×nave)
(line 2-10). Each cluster may have different τc. We tended to allocate the rest
of read, i.e. not belonging to any candidate cluster, to the current cluster, if
they met the specific value of τc (line 11-19). The forcing combination further
merged the candidate clusters to reduce the number of cluster for satisfying the
pre-defined N (line 20-25). In this phase, each read was merged only once, so
the complexity of phase II in computing clusters is O(|R|). In our experiment,

Cloud Computing for De Novo Metagenomic Sequence Assembly 191

Algorithm 2. Clustering
Input: A family of Weight W = {Wi} (with i ∈ [0, |R|]); Designed number of clusters N ;
Output: Cluster C = {c1, c2, . . . , cN} (with c = {ri})

1 Generate a list of weight L =
{
w∗

ij

}
, where w∗

ij is the largest weight for read ri and it

incidents to read ri and read rj ; k ← 0 ;

2 while ∃r /∈ c
k
′ , k

′
∈ [0, |C|] do

3 Pop the largest w∗
ij in L; ck = ∪{ri, rj}, Wck

= ∪Wi, update Wj ; C = ∪ck,

count ← 1; τc ← −∞ ;
4 while count < (1/e× nave) do
5 Get the largest w∗

i
′
j
′ from Wck

;

6 if τc > w∗
i
′
j
′ then

7 τc ← w∗
i
′
j
′

8 end
9 Extend ck by read r

i
′ , r

j
′ and weight w∗

i
′
j
′ ; Update list L, W

j
′ and Wck

;

10 end
11 while |Wck

| > 0 do
12 Get the largest w∗

i
′
j
′ from Wck

;

13 if w∗
i
′
j
′ < τc and j is a index of read then

14 Stop extend current cluster ck break ;
15 else
16 Extend ck by read r

i
′ , r

j
′ and weight w∗

i
′
j
′ ; Update list L, W

j
′ and Wck

;

17 end

18 end

19 end
20 while |C| > N and |L| > 0 do
21 Pop the largest w∗

cxcy
in L ;

22 if |cx| + |cy| < nup then
23 cx ← cx ∪ cy ; update Wcx , Wcy and L

24 end

25 end
26 return C = {c1, c2, . . . , cN};

it showed that the clustering can be done very fast (less than 120 seconds) on
one computing node and the clustering is implemented sequentially.

3.3 Phase III: Parallel-Genovo

Our algorithm for parallel-Genovo was adapted from the metagenomes De Novo
assembly approach Genovo [10]. The reason for us to choose Genovo was that
it can reconstruct more bases and produce a assembly with better quality es-
pecially for the low-abundance dataset comparing to other methods. Genovo
was an instance of iterated conditional modes (ICM) algorithm, which sequen-
tially performed a random walk on states corresponding to different assemblies
for maximizing local conditional probabilities. The drawback of Genovo was the
computation time. Take middle size of metagenomic dataset for example, which
had 220k reads of 400 bp average length, Genovo consumed more than 37 hours.
The Parallel-Genovo was modified to run on hadoop platform and to produce
a set of contigs with the count information with the structure as shown in Fig-
ure 3. The count information were coming from those reads covering the current
base. The frequency was also employed to compute the post-merge in Phase IV.

192 X. Guo et al.

Fig. 3. Count of each deoxyribonucleic acid of base on contig

The parallel-Genovo took the clustered reads as input. Each cluster was fetched
by a mapper in our Map-Reduce version parallel-Genovo and all mappers were
simultaneously performing the previous described three steps by certain times of
iterations. The reduce phase of Map-Reduce simply gathered the reconstructed
contigs with count information on each base.

3.4 Phase IV: Post-Merge

The post-merge phase was designed to further merge contigs for achieving higher
quality of contigs. In this phase, two general questions were required to address
beforehand: (1) identify and correct indel bases on overlapping ends of two con-
tigs; (2) remove chimeric reads, i.e. a prefix or a suffix matching distant locations
in the genome [16]. For identifying indel bases, we treated the process of sequenc-
ing as a binomial distribution with error rate perr for miss matching, insertion
and deletion for each base. The random variable x was the number of count of
insertion or deletion base, while the total trials nt was the largest total count
on that base or neighbours of that base. The probability to give an error with
exactly x insertion or deletion was Pr(X = x) =

(
nt

x

)
pxerr(1−perr)

nt−x. The null
hypothesis that the original sequence did have the insertion or deletion could be
tested according to the significance level of the possibility Pr(X = x). In our
implementation, we set the level of significance to be 5%. For removing chimeric
reads, we aligned two ends of contigs without those bases whose total counts of
four bases were equal to one. Thus correct ends of contigs can be aligned for
merging when the scores of alignment excessed a certain threshold. Since the
end of one contig can be considered into two state, either keeping or removing
bases with counts equal to one, four different aligning patterns need to be calcu-
lated. A list L of values of alignment scores and merging locations were stored
and continuously updated along with the procedure. In L, a contig only kept
the best alignment and merging information which gave the highest alignment
score among four aligning patterns. The process of post-merge was given in Al-
gorithm 3. It took contigs of the count information as input and generated the
final assembly as output. A list L was constructed at the initiation, where ti, tj
were index of contigs (line 1). The score Scoreijk was a ratio of the original
alignment score to the length of that alignment. In our alignment score matrix
setting, when τmerge was equal to 0.4, the algorithm can obtain the best result.
Along with the process of merging of contigs, the list L would be updated until
no more score was larger than τmerge (line 2-7).

Cloud Computing for De Novo Metagenomic Sequence Assembly 193

Algorithm 3. Post-Merge
Input: Contigs Set T = {ti} , i = [1, |T |]; Merge Threshold τmerge;

Output: Merged Contigs Set T =
{
t
′
i

}
, i =

[
1, |T ′ |

]

1 Generate a list L of potential merge location, L =
{
(lkti

, lktj
, Scoreijk)

}
;

2 while min(L) > τmerge do

3 Pop the (lkti
, lktj

, Scoreijk) in L with the largest Score;

4 Merge Contig ti and tj as new Contig t
′
i ;

5 T = T − {ti, tj} +
{
t
′
i

}
;

6 Update L ;

7 end

8 return Merged Contigs Set T =
{
t
′
i

}
, i =

[
1, |T

′
|
]

4 Results

4.1 Compared Methods and Experimental Environment

To assess the efficiency of our cloud-based assembly approach, we performed
a set of experiments on simulated and real metagenomic datasets which were
sequenced using the 454 machine to the other two tools, the MetaVelvet [9] and
the Genovo [10]. Both tools were designed for short metagemomic reads assembly.
Note that MetaVelvet was designed for the Illumina Genome-Analyzer platform,
but supported the 454 reads as well and both of them were freely available on
line. There two methods were used under their default parameters setting in
our experiments. After running on a set of reads, the assembly output, a list of
contigs (sequences), were evaluated for completeness and correctness in several
metrics: the number of contigs, the total length of contigs (TLC), the longest
length of contigs (LLC), N50, N90 and the coverage of genomes (CG), that it
was calculated as the union of all matching segments with the length more than
400bp on the reference. In addition to these, the running time of genovo and our
method were also listed for illustrating the speed-up.

We deployed our cloud based de novo assembler on a ten nodes hadoop cluster
where each node was equipped a 16 GB main memory. The cluster also had a
625 GB secondary storage under the control of the HDFS. Additionally, each
computing node had a quad-core Opteron(tm) processor 2376 with 2.3Ghz and
was interconnected through Network File System. The typical hadoop configu-
rations were left without any changes, including the default 64 MB block size, 3
HDFS replication factor, one master node for controlling and the rest of nodes
serving as workers for executing computations and storing data blocks.

4.2 Experiment on a Single Sequence Dataset

First we benchmarked the evaluation of our approach on a single sequence
dataset, E. coli whose reference strand can be accessed from NCBI short read
archive. This dataset was sequenced by the 454 Titanium and the total length of

194 X. Guo et al.

the genome of E. coli was 4.6 Mb, which contained 110k reads with the average
length 351 bp. As shown in Table 1, our method outperformed both the Genovo
and the MetaVelvet on every evaluation metric.

Table 1. Comparing the Methods on a Single Sequencing Task

Our method Genovo MetaVelvet

No. contigs 88 93 412
TLC (kb) 4587 4687 4676
LLC(kb) 281.3 205.7 186.5
N50 (kb) 94.2 87.6 10.4
N90 (kb) 32.9 25.9 3.7
CG(%) 89.0 88.4 87.9

4.3 Experiments on Multi-species Simulated Datasets

We used the software, MetaSim [17], to artificially construct two metagenome se-
quence reads datasets with the different complexity. According to the simulation
conducted in [8], we also selected 112 different species from the NCBI bacteria
genome library. The first dataset, named LC, had only two dominant organisms
which were strongly related taxonomically; the second dataset, named HC, did
not have a dominant organism, that is all the species had equal weight for ob-
taining a similar coverage rate. The summary of these two datasets are shown in
Table 2. We used the coverage of contigs (CC) as the evaluation metric instead
of the coverage of genome, by calculated the union of all matching intervals on
that contig with the length longer than 500bp aligning against the reference. The
summary of the statistics of final assemblies of two simulated datasets are listed
in Table 3. We can obviously see that our method generated better assembly
results than those from Genovo and MetaVelvet. On both datasets, MetaVel-
vet did not perform very well, because the total contigs’ lengths were too small
compared to our method and Genovo. This was the main reason that we did not
choose the MetaVelvet to parallel on cloud. The difference between our method
and the original sequential algorithm Genovo was not too much. But we could
still see some improvement on N50 and N90. However, our method gave higher
coverage on contigs and the total contigs length and the number of contigs were
subtle. In terms of higher contigs coverage, N50 and N90, a lower number of
contigs may mean a better assembly result.

Table 2. Summary of the simulated and real datasets used in this study

Dataset Number of species Number of base pairs Number of reads

LC 112 89.5Mb 220288

HC 112 92.8Mb 220288

Mb NA 32.2Mb 135205

NTS NA 254.5Mb 683082

Cloud Computing for De Novo Metagenomic Sequence Assembly 195

Table 3. Summary of the assembly statistics of the simulated dataset

Assemblers Our method Genovo MetaVelvet

LC

No. contigs 9004 10315 1430
TLC (kb) 13808.0 13612.6 958.6
LLC (kb) 172.3 153.1 1.4
N50 (kb) 1.6 1.2 0.6
N90 (kb) 0.7 0.6 0.5
CC (%) 94.7 84.7 97.2

HC

No. contigs 29352 31743 3827
TLC (kb) 21193.2 22932.2 2746.4
LLC (kb) 4.2 3.8 1.7
N50 (kb) 0.8 0.7 0.6
N90 (kb) 0.6 0.5 0.5
CC (%) 91.1 82.3 90.6

4.4 Experiments on Real Metagenomic Datasets

We also conducted comparison on two dataset from real metagenomic projects.
The first dataset, named Microbes (Mb), was sampled from the Rios Mesquites
stromatolites in Cuatro Cienagas, with accession numbers SRR:001043 in NCBI
Short Read Archive. The number of total reads in this samples was about 135k.
Another real dataset, hot springs microbial with name NTS, was from Los
Alamos National Laboratory, and it was available at . http://metagenomics.anl
. gov/linkin.cgi?project=223. The summary of these two real metagenomic
datasets were listed in Table 2. The statistic analysis appears in Table 4. Once
again, our method achieved the best results on both real datasets among three as-
semblers. To obtain a comprehensive comparison on the real datasets, we adopted
the same evaluation metric utilized in [10], i.e. BLAST-score-per-base (Bspb).
The calculation process of Bspb was to first BLAST the contigs to the GenBank
and use the outcome BLAST hits to compile a pool of genomes which best rep-
resented the consensus sequences among the results. Each hit represented one
GenBank sequence. Then it filtered out those non-significant BLAST hits whose
E-value were less than 10−9. The computation of Bspb was simply to divide the
BLAST score of one hit by the half of the length of that hit. The highest Bspb
reached near 2.0 in our study. Thus a BLAST profile can be plotted by moving
the threshold of Bspb from low to high and from which it can be easy to find
out how many bases could be covered by one method. Based on this definition,
Figure 4(a) and Figure 4(b) show the BLAST profile for two real datasets. In the
Figure 4(a), our method covered more bases than the others along the decreas-
ing of alignment threshold on the dataset of Microbes. The MetaVelvet nearly
covered nothing when the threshold raised to 0.8. Similarly our method gained
more covered bases on the whole range of align threshold, which meant that it
produced contigs with higher quality.

http://metagenomics.anl.gov/linkin.cgi?project=223
http://metagenomics.anl.gov/linkin.cgi?project=223

196 X. Guo et al.

Table 4. Summary of the assembly statistics of the real datasets

Assemblers Our method Genovo MetaVelvet

Mb

No. contigs 50 47 7
TLC (kb) 58.9 54.7 4.2
LLC (kb) 4.1 3.8 0.7
N50 (kb) 1.5 1.2 0.6
N90 (kb) 0.7 0.6 0.5

NTS

No. contigs 98044 101783 4040
TLC (kb) 67982.2 69789.2 2434.2
LLC (kb) 10.5 8.7 1.3
N50 (kb) 0.7 0.6 0.6
N90 (kb) 0.6 0.5 0.5

(a) BLAST profile on Microbes for
three methods

(b) BLAST profile on NTS for three
methods

Fig. 4. BLAST-score-per-base profiles for two real datasets

4.5 Time Comparison

We were also interested to know how much speed up has been achieved by
our framework compared to Genovo, which was shown in Table 5. We did not
consider the MetaVelvet here since MetaVelvet could not give us satisfactory
results. In Table 5, our method was quite faster than Genovo. For the E. coli,
our method did not explore the power of all computing nodes (only ten cores
were used), due to the size of background contigs were relatively small (from
100 to 200) and in Phase II, only coarse partition was execrated. Similar results
came from the Microbes. For the other two simulated datasets, the speed-ups
were significant, owning to the number of contigs were actually larger than the

Table 5. Comparing the Methods on a Single Sequencing Task

Dataset E. coli LC HC Mb NTS

Our method 1027s 253m 301m 1723s 667m

Genovo 9750s 2271m 2485m 4248s 232h

Cloud Computing for De Novo Metagenomic Sequence Assembly 197

number of CPU cores used in our framework. For the dataset of NTS, the size of
reads is more than 600k and Genovo shown its weakness to deal with the huge
metagenomic data since it consumed lots of time on solving the assembly. It was
because every read will be checked on the consensus sequence in the Genovo, and
the length of consensus sequences were linear to the number of reads. Therefore,
the time complexity would be more than O(n2) in reality. On the contrary, with
our parallel strategy, the input data can always be kept in a small size and as a
result, it gained a great speed up on large datasets.

5 Conclusion

Sequence assembly of large-scale environmental samples is considered a difficult
and challenging problem in metagenomics, especially with the advance in se-
quencing technology, which leads to high coverage of genomes and huge numbers
of reads. Our work was motivated by the computational and accurate issues of
existing methods when they were applied to large scale metagenomics projects.
Our approach was implemented based on the MapReduce model by the widely
available Hadoop platform. By utilizing the parallel strategy, our framework has
both accelerated and improved sequence assembly results on simulated and real
metagenomics datasets.

Acknowledgments. This study is supported by the Molecular Basis of Disease
(MBD) at Georgia State University.

References

1. Wu, X., Cai, Z., Wan, X.F., Hoang, T., Goebel, R., Lin, G.: Nucleotide composition
string selection in hiv-1 subtyping using whole genomes. Bioinformatics 23(14),
1744–1752 (2007)

2. Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S.,
Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., Nelson, K.E.: Metagenomic anal-
ysis of the human distal gut microbiome. Science 312(5778), 1355–1359 (2006)

3. Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen,
J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W., Fouts, D.E., Levy, S., Knap,
A.H., Lomas, M.W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons,
R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y.H., Smith, H.O.: Environmental
genome shotgun sequencing of the sargasso sea. Science 304(5667), 66–74 (2004)

4. Qin, J.: A human gut microbial gene catalogue established by metagenomic se-
quencing. Nature (2009)

5. Khachatryan, Z.A., Ktsoyan, Z.A., Manukyan, G.P., Kelly, D., Ghazaryan, K.A.,
Aminov, R.I.: Predominant Role of Host Genetics in Controlling the Composition
of Gut Microbiota. PLoS ONE 3(8), e3064 (2008)

6. Nguyen, K.D.: On the edge of web-based multiple sequence alignment services.
Tsinghua Science and Technology 17(6), 629–637 (2012)

7. Turnbaugh, P.J.: A core gut microbiome in obese and lean twins. Nature (2009)

198 X. Guo et al.

8. Pignatelli, M., Moya, A.: Evaluating the Fidelity of De Novo Short Read Metage-
nomic Assembly Using Simulated Data. PLoS ONE 6(5), e19984 (2011)

9. Namiki, T., Hachiya, T., Tanaka, H., Sakakibara, Y.: Metavelvet: an extension
of velvet assembler to de novo metagenome assembly from short sequence reads.
In: Proceedings of the 2nd ACM Conference on Bioinformatics, Computational
Biology and Biomedicine, BCB 2011, pp. 116–124. ACM, New York (2011)

10. Laserson, J., Jojic, V., Koller, D.: Genovo: de novo assembly for metagenomes.
In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 341–356. Springer,
Heidelberg (2010)

11. Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L.: Meta-idba: a de novo assembler
for metagenomic data. Bioinformatics 27(13), i94–i101 (2011)

12. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

13. Grillo, G., Attimonelli, M., Liuni, S., Pesole, G.: Cleanup: a fast computer pro-
gram for removing redundancies from nucleotide sequence databases. Computer
Applications in the Biosciences: CABIOS 12(1), 1–8 (1996)

14. Smith, T., Waterman, M., Fitch, W.: Comparative biosequence metrics. Journal
of Molecular Evolution 18, 38–46 (1981)

15. Lander, E.S., Waterman, M.S.: Genomic mapping by fingerprinting random clones:
A mathematical analysis. Genomics 2(3), 231–239 (1988)

16. Lasken, R., Stockwell, T.: Mechanism of chimera formation during the multiple
displacement amplification reaction. BMC Biotechnology 7(1), 19 (2007)

17. Richter, D.C., Ott, F., Auch, A.F., Schmid, R., Huson, D.H.: MetaSim–A Sequenc-
ing Simulator for Genomics and Metagenomics. PLoS ONE 3(10), e3373 (2008)

Protein Closed Loop Prediction

from Contact Probabilities

Liang Ding1,�, Joseph Robertson2,�,
Russell L. Malmberg2,3, and Liming Cai1,��

1 Department of Computer Science
2 Institute of Bioinformatics

3 Department of Plant Biology,
University of Georgia, GA 30602, USA

{lding,josephr}@uga.edu, russell@plantbio.uga.edu, cai@cs.uga.edu

Abstract. According to the theory of Trifonov [1] a subset of closed
loops found in globular proteins, descriptively named loop-n-lock (LNL)
structures, are returns of a polypeptide chain trajectory to close con-
tact with itself. These closed loops are distinguished by a characteristic
length, 20 to 35 residues, and a ”lock” that stabilizes the loop. Evi-
dence supports their contention that globular proteins are composed of
linear combinations of such closed loops. Occupying an intermediate posi-
tion in protein structure hierarchy i.e., between secondary structure and
domain, makes these loops good candidates for units of a hierarchical
folding model.

In this study we investigated the potential utility of such closed loops
in protein structure prediction. We first proposed a method to predict
closed loops using sequence information, specifically interaction potential
and secondary structure potential. As far as we know, this is the first
program to predict closed loops solely based on sequence information.
Then to support their use in a hierarchical folding model, we explored
the placement of secondary structure elements with respect to closed
loops. Our investigations showed that 80% of secondary structures do not
cross a closed loop boundary, lending support to the hypothesis that the
closed loop is a higher level intermediate structure of proteins. Moreover,
we explored the relationship between closed loops and aligned segments
from protein chain pairs from the Dali data set . The results showed
protein pairs which exhibited significant structural similarity were more
likely to have conserved closed loops.

1 Introduction

Protein structure is typically described in terms of the four levels first proposed
in the early fifties by Linderstrom-Lang [2]: primary, secondary, tertiary and
quaternary. However, this hierarchy is now considered overly simplified, hence

� These authors, listed alphabetically, contributed equally.
�� To whom correspondence should be addressed.

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 199–210, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

200 L. Ding et al.

Fig. 1. A loop-n-lock in protein chain 1a0cA with two secondary structures α helix and
β strand, and the ”lock”, or contacting, residues shown as filled spheres. The figure
was generated using PyMOL (http://www.pymol.org/).

the addition of intermediate levels of structure e.g., super-secondary and domain.
Such intermediate structure levels may alleviate the issue known as Levinthal’s
paradox [3] i.e., the time to fully sample conformation space yields folding times
many orders of magnitude greater than those observed. That is, substructures
composed of relatively short contiguous sequences i.e., tens of residues, have
only a relatively small conformational space to explore, and once established
significantly restrict the conformation space for the entire chain.

One such structure type, namely loop-n-lock (LNL), was proposed by Tri-
fonov’s group [1]; it is a closed loop, typically consisting of 20 to 35 amino
acid residues, stabilized by van der Waals, as well as other, interactions among
residues at its C and N termini [12]. These substructures, an example of which
is shown in figure 1. are hypothesized to have their origin in the physical char-
acteristics of the polypeptide chain, in particular the length at which it becomes
highly probable that the chain will make contact with itself. Additionally, un-
der the hypothesis, these loops are proposed to represent the original functional
protein units, and that globular protein domains [13], and thus entire globular
proteins, as found now are derived from the concatenation of such loops e.g. ,by
duplications, and latterly also deletions.

More detailed models of protein structure hierarchy clearly can facilitate
more efficient and accurate protein structure prediction, hence such interme-
diate structures could have significant utility. However, the added complexities
introduced are a potential liability for computational efficiency, thus the need for
easily computed features, based on local information. These benefits are readily
apparent, and here derive from the characteristics of LNL structure composition,
in that they are composed of contiguous short sub-sequences, and there are de-
tectable signals of the ”locks” in the sequences. Thus straightforward approaches
to prediction, based solely on sequence analysis for interaction potential between
pairs of residues, may be used to select candidate loops. To this end we propose a
method based on contact prediction to generate candidate loop elements, which
may then be processed algorithmically to find an optimal non-conflicting subset.
As we know, this is the first program to predict closed loops from sequence.

Protein Closed Loop Prediction from Contact Probabilities 201

Although such predictions in themselves are not generally sufficiently accurate
to call a majority of loops in any given instance, if a subset with relatively high
confidence can be identified, they may be used as anchors. Even a small number
of such candidates could help refine the selection of the remaining candidates
for inclusion in a putatively optimal subset.

With reference to the proposed origins and evolutionary significance of such
loops, we also argue that deletions and insertions should be enriched for unit
sizes and positions corresponding to LNL sizes and positions in alignments be-
tween orthologous proteins. Further, the positions of LNLs should be conserved
for structurally similar, orthologous pairs e.g., from the Dali data set, and in
particular the locks, due to their higher conservation [4]. These assertions are
also examined here.

2 Methods

2.1 Contact Probability Based Closed Loop Prediction

In this section, we describe a new method to decompose a protein sequence
into closed loops, which as far as we know, is the first approach to predicting
closed loop structures solely from sequence information. The basic idea is that a
weighted candidate set containing all plausible closed loops is first constructed.
Next, a greedy strategy is used to select the best subset by selecting the locally
optimal loop with largest weight. Due to the known major limitation of such
strategies for selecting global optima i.e., becoming trapped in a local minimum,
we also tested a dynamic programming based approach. Results from both were
then compared with decompositions generated by DHcL [7] to determine which
performed better. Note that for the purposes of this investigation it is assumed
DHcL generates the correct set of closed loops for each of the known protein
structures in its database.

We first give a brief definition of contact map: a square matrix where rows
and columns represent sequence positions, where protein residue-residue contact,
often using Cα-Cα distance as a proxy, is shown by placing a one in each cell
where the distance is below a threshold, and a zero otherwise. For two residues
i and j in a protein sequence with length n, and 1 ≤ i, j ≤ n, if the two residues
are closer than a predetermined threshold (e.g., 8Å), the element of the contact
map matrix at position i, j is 1, and 0 otherwise. This idea is trivially extended
to represent predicted contact by instead filling the cells with probabilities. Such
matrices have formed the basis for several distanced-based algorithms for recon-
structing protein 3D structures.

For our investigation we chose NNcon [5] to generate the contact potentials
maps, based on its strong performance in the Eighth Critical Assessment of Tech-
niques for Protein Structure Prediction (CASP8). By default NNcon generates
maps based on thresholds of 8Å and 12Å. However, because close contacts are
the determinant of a closed loop, we used only 8Å maps.

Once the map for a given polypeptide was generated, we obtained the weighted
candidate set by including all the chain segments having 15− 45 residues, whose

202 L. Ding et al.

contact potential between the two ends was greater than a chosen threshold.
Three different weight schemes were used to generate candidate sets: single
weight, sum weight, and median weight. Let M be the contact map generated by
NNcon, then M [i, j] represents the contact potential between residues i and j.
The single weight method simply set M [i, j] as the weight of closed loop candi-
date [i, j], while the sum weight was set to

∑
i−2≤i≤i+2,j−2≤j≤j+2 M [i, j], and if

we let sw be the sum weight, then the median weight was defined as sw/25. For
the generated closed loop candidates, secondary structures of lock parts are also
considered as an additional factor of weight based on the fact that lock parts of
majority of closed loops are within some secondary structure (either α-helix or
β-sheet)[4]. We used a linear equation W1 ·M [i, j]+W2 ·(S[i]+S[j]), where S[t] is
the potential that position t is within some secondary structure, to incorporate
secondary structure factor into the weights of the candidates.

Our greedy strategy iteratively selects the closed loop candidate with the
greatest weight, while simultaneously excluding all overlapping candidates. The
algorithm halts when either no more candidates can be inserted into the solution
set, or all the candidates have been inserted. Suppose a polypeptide sequence
has length n, then according to the definition of the closed loop, it can have at
most n/15 closed loops. Thus the running time is bounded by O(n2).

We now briefly introduce the interval graph, which is a graph theoretical con-
struct derived from a multiset of intervals on the real line. It has one vertex for
each interval in the multiset, and edges between all pairs of vertices correspond-
ing to intervals that intersect. Given the closed loop candidate set, it is easy to
see that each candidate can be represented by an interval on the real line, and
since, according to Trifonov et al ’s theory [1], globular proteins are composed of
linear combinations of closed loops, the closed loops prediction problem can be
reduced to the maximum weight independent set problem on an interval graph.
We implemented a version the dynamic programming algorithm by Hsiao [10],
with time complexity O(n log n), to compute a globally optimal solution.

Candidate sets, once generated, were then processed to select a nonconflicting
subset using either the greedy algorithm defined above, or a dynamic program-
ming approach utilizing Hsiao’s algorithm. To estimate prediction accuracy we
selected two sets of protein chains. The first set contains 722 random X-ray crys-
tallographic polypeptide chain models derived from more than 74, 000 proteins
of Protein Data Bank. To reduce the effects of sequence similarities, we chose an
ASTRAL [8] sequence subset with 802 protein chains as the second test set. Each
sequence in the second test set is a representative of a superfamily in SCOP [6].
Both test sets exclude proteins with duplicated or missing atoms, and structural
gaps. We compared the prediction results with the closed loops decompositions
from DHcL. The average prediction accuracy (APA) was used to provide a mea-
sure of correspondence with DHcL predictions. Let n be the number of sequences
to predict. For i-th sequence, let TPi and FNi be the number of true positive
and false negative results respectively. Then the sensitivity for the prediction
of the i-th sequence is TPi/(TPi + FNi). And the APA among n sequences is
defined as (1/n) ·

∑
1≤i≤n TPi/(TPi + FNi).

Protein Closed Loop Prediction from Contact Probabilities 203

Hereafter, when referring to a closed loop structure the notation [sgi , e
g
i] will

be used, where “s” and “e” are the start and end positions of the loop having
index “i” in the set identified by “g”. So, assuming we had a predicted closed
loop [spi , e

p
i], it is a true prediction if there was a closed loop [sdi , e

d
i] in the result

set from DHcL whose start and end positions satisfied spi − 5 ≤ sdi ≤ spi + 5 and
spi − 5 ≤ sdi ≤ spi + 5 respectively. In the above inequalities, the error gap was
defined to be 5, because the locks stabilizing closed loops are typically formed
from 3-5 contacting residues at each end.

2.2 Closed Loop Conservation for Structurally Similar Proteins

In this section we describe tests to support the hypothesis that closed loops could
act as a higher level structure, relative to secondary structure, in a hierarchical
folding model for proteins. In the first, we investigated the relationship of closed
loops with aligned segments from polypeptide chain pairs from the Dali data set
[9] in the same structural neighborhood. In the second, described in section 2.2, we
explored the connection between closed loop gaps and pairwise alignment gaps.

Closed Loop Matching. Conservation of closed loop structures for orthol-
ogous, structurally similar proteins would lend support to the hypothesis that
they are a higher level structure in a hierarchical model of protein folding. We
performed two experiments based on 5000 randomly selected pairs from the Dali
data set. In the first experiment, for each Dali pair (P,Q), we treated the first
chain P as the basis. Suppose f is a function reflecting the Dali pairwise align-
ment which aligns chain P to chain Q. Then for each closed loop (sPi , e

P
i) of the

first chain, we calculate the corresponding aligned position (f(sQi), f(e
Q
i)) of the

second chain. Two segments (si, ei) and (f(si), f(ei)) are considered matching
closed loops if either (f(si), f(ei)) is a closed loop or (f(si), f(ei)) contains a
closed loop. In Table 6 the matching described above is called strict matching.

In addition to the strict matching, we defined less stringent matching crite-
ria, based on the definition of closed loops, which as defined, have at most 5
close contacts among residues at their two ends. On that basis we used 5 as
the cutoff for what we termed ”loose matching”. So formally, given (si, ei) and
(f(si), f(ei)), they are loosely matched, if there is a loop with start between
f(si) − 5 and f(si) + 5 and end between f(ei)− 5 and f(ei) + 5. As a control,
we randomly generated 5000 pairs with which to compare the results obtained
using the 5000 Dali pairs, and analyzed them using the same criteria.

Closed Loop Unit Test. To assess the utility of closed loops as a unit for
structural alignment of proteins, we investigated the relation between closed
loop gaps and Dali pairwise alignment gaps. A closed loop gap is defined as
the polypeptide segment between two continuous closed loops. Let n be the
number of gaps and E = {(e11, e12), · · ·, (en1 , en2)} contain the end points of the
gaps derived from Dali pairwise alignment. We calculate the probability that an
end point of E is included in a closed loop gap. This experiment was based on

204 L. Ding et al.

Table 1. Average accuracies of predictions for the random test set and the ASTRAL
derived test set based on both the greedy method and the dynamic programming
method. Three weight calculations used: single, sum and median.

Avg Pred. Acc. Single Sum Median

Random Set Greedy 52.76% 52.14% 54.19%

Dynamic Progr. 58.31% 56.62% 56.46%

ASTRAL Set Greedy 46.06% 46.84% 47.38%

Dynamic Progr. 50.14% 50.72% 50.65%

Table 2. Average accuracies of the predictions for other error gaps of the ASTRAL
derived test set

Avg Pred. Acc. Error Gap 4 Error Gap 3 Error Gap 2

Greedy 42.42% 33.64% 23.78%

Dynamic Progr. 44.75% 35.55% 24.78%

5413 polypeptide chains. The probability that such gaps will align by chance is
calculated by dividing the total length of closed loop gaps by the total length of
all the sequences, which is less than 31%.

2.3 Closed Loops and Secondary Structures

This test was intended to help assess LNL structures as units in a structure
hierarchy, specifically their relation to secondary structure elements. In brief, this
consisted of simply checking both ends of secondary structure elements against
LNLs’ positions to determine the proportions of secondary structure elements
that do, and do not, straddle LNL boundaries.

3 Results

3.1 Contact Probability Based Closed Loop Prediction

Tests on randomly selected data utilizing both the greedy and dynamic pro-
gramming approaches yielded similar results for the three weighting schemes, as
can be seen in Table 1, which shows the average prediction accuracies(APA).
Using the second test set, derived from ASTRAL with low sequence identity,
the results achieved by same methods are almost comparable to the random set,
shown in Table 1. The APAs derived with other error gaps settings are shown in
table 2. Two examples of well predicted polypeptide chains are shown in Table
3, along with the corresponding results from DHcL.

Average prediction accuracies for three weight values and the percentages of
the total they represent are given in Table 5. In addition to overall accuracies,
we determined the proportions of chains with one or more LNL with weight

Protein Closed Loop Prediction from Contact Probabilities 205

Table 3. The closed loops of protein chain 1aw2A and 1cm7B: a comparison with
DHcL’s results. Protein chain 1aw2A has 8 closed loops, 7 of them are predicted cor-
rectly. Protein chain 1cm7B has 11 closed loops, 8 of them are predicted correctly.

Protein DHcL loops Len. Pred. loops Len. DHcL loops Len. Pred. loops Len.

1aw2A 7-39 33 4-37 34 39-62 24 37-61 25
64-92 29 61-92 32 92-124 33 92-124 33
— – 124-164 41 133-172 40 — –

169-212 44 164-208 45 211-232 22 208-231 24
231-251 21 231-246 16

1cm7B 6-39 34 8-39 32 — – 44-75 32
46-90 45 — – — – 71-107 37
112-133 22 107-135 29 — – 136-151 16
144-165 22 148-163 16 — – 162-191 30
176-192 17 — – 191-222 32 189-223 35

— – 223-243 21 226-249 24 — –
— – 243-269 27 268-282 15 266-281 16

282-300 19 281-297 17 — – 293-309 17
306-322 17 305-321 17 325-358 34 321-354 34

Table 4. This table shows the percentage of protein chains containing one or more
LNL with weight at least that given. These results come from the random set and the
ASTRAL set.

Weight Wt(>0.4) Wt(>0.2) Wt(>0.15) Wt(>0.1)

Random Set 64.69% 98.35% 99.31% 99.58%

ASTRAL Set 44.65% 71.71% 75.12% 82.21%

equal to or higher than the threshold for the random test set and the SCOP test
set with the results given in Table 4. For example, the second column for the
ASTRAL set in Table 4 shows that 44.65% of the protein chains in the SCOP
test set have at least one LNL with weight greater than 0.4.

Both the random test set and the ASTRAL based set showed similar relation-
ships between the weights and accuracies of the predictions, which appears to
be approximately linear. Figure 2 show the accuracies for selected weight values
from each of the three weighting schemes for the random set. Both methods
perform relative better for protein chains which have LNL with higher weight.
However, for protein chains which have LNL with higher weight, the dynamic
programming method performs much better than the greedy method. For exam-
ple, for protein chains which don’t have LNL with weight greater than 0.4, the
dynamic programming method has APA 32.25%, whereas the greedy method
only has APA 14.39%.

Besides interaction potential, the secondary structures factor of lock parts
are considered. We trained this factor using the ASTRAL set. The prediction
results show at best 1.5% improvement in terms of average prediction accuracy
by considering secondary structure factor, which agrees the definition of the

206 L. Ding et al.

Table 5. This table shows the percent of closed loops (corresponding to total number
of closed loops) with weight greater than the thresholds in the corresponding columns

Random Set Weight Setting Wt(>0.4) Wt(>0.2) Wt(>0.15) Wt(>0.1)

Single Wt 11.13% 35.20% 39.69% 44.23%

Sum Wt 7.93% 16.24% 21.29% 30.23%

Median Wt 7.96% 16.56% 21.76% 31.34%

ASTRAL Set Single Wt 11.24% 24.58% 28.28% 31.39%

Sum Wt 8.18% 14.05% 16.51% 22.03%

Median Wt 8.17% 14.26% 16.91% 22.54%

50

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

0.4 0.38 0.36 0.34 0.32 0.3 0.28 0.26 0.24 0.22 0.2 0.18 0.16 0.14 0.12 0.1

A
v
er
a
g
e
P
re
d
ic
ti
o
n
A
cc
u
ra
cy

(%
)

Minimum Weight

Single Weight

Sum Weight or Median Weight
� �

� �
�

�

�
�

�
�

�
�

�
� �

�

� � �
� �

�

� �
�

�

�
�

�

�

�

�

Fig. 2. Relationship between average prediction accuracy and the minimum weight of
the closed loop candidates for the three weighting methods: cyan for the prediction
results using single weight, and yellow for sum weight and median weight. The results
are from the random test set.

closed loops. This explains interaction potential of the lock part is the key factor
of the closed loops and secondary structure potential is less important than
interaction potential.

3.2 Closed Loop Conservation for Structurally Similar Proteins

Figure 3 shows the probability both end points of a Dali pairwise alignment gap
are included in some closed loop gap, plotted against minimum gap lengths for
Dali pairwise alignments.

Protein Closed Loop Prediction from Contact Probabilities 207

Table 6. Comparison of closed loops matching between Dali pairs and random pairs
in terms of total number of closed loops

Dali Pairs Total CLs Match CLs Percent

Strict Match 11418 5527 48.40%

Loose Match 11418 8420 73.74%

Rand. Pairs Total CLs Match CLs Percent

Strict Match 4014 1782 44.39%

Loose Match 4014 2960 73.74%

Table 7. Comparison of closed loops matching between Dali pairs and random pairs
in terms of Dali alignment. In the 3-rd column, aligned pairs (0.7) shows the number
of pairs with 70% of closed loops matching. Similarly, aligned pairs (0.5) is the number
of pairs with 50% of closed loops matching.

Dali Pairs Aligned
Pairs (0.7)

Percent (0.7) Aligned
Pairs (0.5)

Percent (0.5)

Strict Match 2738 633 23.11% 1503 54.89%
Loose Match 2738 1509 55.11% 2302 84.07%

Rand. Pairs Aligned
Pairs (0.7)

Percent (0.7) Aligned
Pairs (0.5)

Percent (0.5)

Strict Match 5000 117 2.34% 371 7.42%
Loose Match 5000 260 5.20% 607 12.14%

3.3 Closed Loops and Secondary Structures

Results for the secondary structure were derived from analysis of closed loop
positions with respect to placement of secondary structure elements for 25, 869
X-ray crystal protein models. The results show that almost 80% of closed loops
entirely contain one or more secondary structure elements. And the percent is
irrelevant to the length of the closed loops.

4 Discussion

Three things were investigated in this work: prediction potential for closed loop
structures, whether loop conservation correlated with fold conservation, and ev-
idence to support the use of the closed loop in a hierarchical model. All of these
were aimed at determining the utility of these structures for improving protein
folding models. Any structure to be used must have some foundation in biology
which is provided by the work of Trifonov et al [1]. for their hypotheses con-
cerning the closed loops, and supported by analysis of experimental results. If
they are to be part of a hierarchical model, then they must fit sensibly into a
hierarchy, and the work of Berezovsky et al. has supported this, as well as one
part of this work. More importantly, there must be some way to predict them
based on computational analysis of sequence information.

208 L. Ding et al.

30

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

P
er
ce
n
t(
%
)

Minimum Length of Dali Gaps

�
�

�
�

�
�

� � �
�

�
� �

� �

Fig. 3. The minimum length of Dali gap shows a linear relationship with the probability
that both end points of a Dali pairwise alignment gap are included in some closed loop
gap. Total number of testing chains is 5, 413. Horizontal coordinates represent the
minimum length of Dali gaps, which are the cutoffs for determining gaps. Vertical
coordinates represent the percentages calculated by dividing the number of end points
of Dali pairwise alignment gaps which are included in the gaps of closed loops, by the
total number of end points.

No matter how much potential a new structural definition has for improving
protein folding models, it is no use unless there is a straightforward prediction
method. Our results show prediction accuracy of about half of true closed loops
(averages 54% and 47% for random and SCOP tests, compared with DHcL). As
the biases that DHcL have, our results cannot clearly identify the boundries of
the true closed loops. Hence this to some extent affected the overall prediction
accuracy. Despite of it, our approach yields a subset of high accuracy closed
loops with convincing agreement between the predicted closed loops and those
generated by DHcL. Correlating the results in Figure 2, those LNLs with weight
greater than 0.18 have average prediction accuracy greater than 72%. We be-
lieve that sufficient to improve structure prediction in itself, as even a relatively
small number of good predictions could provide sufficient information to usefully
restrict the solution space to be explored. From tables 1 median weight setting
has the best average prediction accuracy, the dynamic programming method
performs almost 10% better than the greedy strategy. Our observation was hat
to achieve the globally optimal solution, the dynamic programming approach
tended to decompose long closed loops, i.e., those with length greater than 35,
into two or three shorter loops, in contrast to DHcL. Therefore, other objective
functions which could better address closed loops with large potentials should
be incorporated in the future.

Protein Closed Loop Prediction from Contact Probabilities 209

In addition to the primary goal of prediction, tests for enrichment for con-
served loops in structurally similar orthologous pairs (Dali), and for support
of closed loop as a higher order structure, i.e., super-secondary, were made. As
would be expected, pairs with conserved structure, shared more conserved loops
than those without. Compared to the results obtained for the Dali pairs, the
random pairs showed no evidence of conservation, in particular note the last
column in Table 7, where it can be seen that 84.07% of Dali pairs have about
half of their closed loops matching, whereas for random pairs, the proportion is
only 12.14%. Further testing to better quantify this difference is needed, but the
results here are sufficiently promising to warrant the additional work. Finally, in
support of the closed loop’s candidacy for super-secondary structure, we found
that over 80% of closed loops had no secondary structure element only partially
contained. This too should be further examined, in particular with reference
to the assertion that the locks are more highly conserved, and tend to be in
secondary structure elements themselves [4].

5 Conclusion

Overall the results support the inclusion of the closed loop structure as a putative
intermediate structure in a hierarchical model of protein structure. The support-
ing evidence from the conservation and secondary structure element containment
warrants further investigation. LNLs good prediction potential makes them also
good candidates for inclusion in computational models, where this is critical. Ad-
ditionally, analysis by one group [4] showed that consideration of LNL structures
yields better agreement with experimental evidence relating to folding order and
nucleation, lending further support for their use in folding models.

In considering the LNL as a unit of structure, the enrichment for insertions and
deletions within Dali gaps supports closed loops’ potential as units for protein
structure prediction. That is, the closed loops could replace secondary structures
to do insertion or deletion in many current prediction implementations.

Acknowledgments. We thank Xingran Xue and Yingfeng Wang of the RNA
Informatics Lab for sharing literature and data. This work is supported in part
by NSF IIS grant (No: 0916250).

References

1. Trifonov, E.N., Berezovsky, I.N.: Proteomic Code. Molecular Biology 36(2), 315–
319 (2002)

2. Linderstrom-Lang, K.U.: Proteins and Enzymes. In: Lane MedicalLectures. Uni-
versity Series, Medical Sciences, vol. 6. Stanford University Publications, Stanford
University Press (1952)

3. Levinthal, C.: How to Fold Graciously. Mossbauer Spectroscopy in Biological Sys-
tems. In: Proceedings of a Meeting Held at Allerton House, Monticello, Illinois, pp.
22–24 (1969)

210 L. Ding et al.

4. Chintapalli, S.V., Yew, B.K., Illingworth, C.J.R., Upton, G.J.G., Reeves, P.J.,
Parkes, K.E.B., Snell, C.R., Reynolds, C.A.: Closed Loop Folding Units from
Structural Alignments: Experimental Foldons Revisited. J. Comput. Chem. 31,
2689–2701 (2010)

5. Tegge, A.N., Wang, Z., Eickholt, J., Cheng, J.: NNcon: Improved Protein Contact
Map Prediction Using 2D-Recursive Neural Networks. Nucleic Acids Research 37,
w515–w518 (2009)

6. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural clas-
sification of proteins database for the investigation of sequences and structures.
Jounral Molecular Biology 247, 536–540 (1995)

7. Koczyk, G., Berezovsky, I.N.: Domain Hierarchy and closed Loops (DHcL): a
server for exploring hierarchy of protein domain structure. Nucl. Acids. Res. 36,
W239–W245 (2008)

8. Chandonia, J.M., Hon, G., Walker, N.S., Lo Conte, L., Koehl, P., Levitt, M.,
Brenner, S.E.: The ASTRAL compendium in 2004. Nucleic Acids Research 32,
D189–D192 (2004)

9. Holm, L., Rosenstrom, P.: Dali server: conservation mapping in 3D. Nucl. Acids
Res. 38, W545–W549 (2010)

10. Hsiao, J.Y., Tang, C.Y., Chang, R.S.: An efficient algorithm for finding a maximum
weight 2-independent set on interval graphs. Information Processing Letters 43(5),
229–235 (1992)

11. Kogan, S.B., Kupervasser, O.: Domain Hierarchy of Protein Loop-Lock Structure
(DHoPLLS): a server for decomposition of a protein structure on set of closed
loops. CoRR. abs/1106.1356 (2011)

12. Aharonovsky, E., Trifonov, E.N.: Sequence Structure of van der Waals Locks in
Proteins. Journal of Biomolecular Structure Dynamics 22(5), 545–553 (2005)

13. Berezovsky, I.N.: Discrete structure of van der Waals domains in globular proteins.
Protein Engineering 16(3), 161–167 (2003)

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 211–223, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Graph Approach to Bridge the Gaps in Volumetric
Electron Cryo-microscopy Skeletons

Kamal Al Nasr, Chunmei Liu, Mugizi Robert Rwebangira, and Legand L. Iii Burge

Department of Systems and Computer Science
Howard University

Washington, DC 20059
{kalnasr,chunmei,rweba,blegand}@scs.howard.edu

Abstract. Electron Cryo-microscopy is an advanced imaging technique that is
able to produce volumetric images of proteins that are large or hard to crystall-
ize. De novo modeling is a process that aims at deriving the structure of the pro-
tein using the images produced by Electron Cryo-microscopy. At the medium
resolutions (5 to 10Å), the location and orientation of the secondary structure
elements can be computationally identified on the images. However, there is no
registration between the detected secondary structure elements and the protein
sequence, and therefore it is challenging to derive the atomic structure from
such volume data. The skeleton of the volume image is used to interpret the
connections between the secondary structure elements in order to reduce the
search space of the registration problem. Unfortunately, not all features of the
image can be captured using a single segmentation. Moreover, the skeleton is
sensitive to the threshold used which leads to gaps in the skeleton. In this paper,
we present a threshold-independent approach to overcome the problem of gaps
in the skeletons. The approach uses a novel representation of the image where
the image is modeled as a graph and a set of volume trees. A test containing
thirteen synthesized images and two authentic images showed that our approach
could improve the existent skeletons. The percent of improvement achieved
were 117% and 40% for Gorgon and MapEM, respectively.

1 Introduction

Electron Cryo-microscopy (CryoEM) technique is an advanced imaging technique
that aims at visualizing and interpreting unstained nanostructures from biological
complexes such as viruses [1-4]. Unlike X-ray Crystallography or Nuclear Magnetic
Resonance (NMR), CryoEM is able to produce volumetric images of proteins that are
poorly soluble, large, and hard to crystallize. Due to various experimental difficulties,
many proteins have been resolved to the medium resolution range (5-10Å). Many
volumetric images (henceforth affectionately referred to as density maps) of large
protein complexes have been generated [3, 5-9].

In de novo modeling, the atomic structure of the protein is derived using the infor-
mation obtained from the 3-D density map and the 1-D structure of the protein. At
medium resolution range, the atomic structure of the protein can’t be derived directly

212 K. Al Nasr et al.

from the density map. Fort
ing. The location and the
density map (SSEs-V) suc
other hand, the location of
predicted [15, 16] (see Fig.
and direction of assigning S
mination problem. Topolo
NP-Hard [17]. The total nu
number of SSEs-S and
protein, the correct topolog
bone of the protein can be d

Fig. 1. Helical SSEs-V and th
resolution using protein 1FLP
Two alternative topologies are
the virtual loops (in blue) in t
SSEs-S of the protein are mark

Many de novo modelin
CryoEM volumetric skelet
compact density volume th
simplified form. The skelet
lem or to derive the final a
are overlaid with the skeleto

Many methods have been
Many of 3-D skeletonizat
present [28]. Three tools w
binary skeletonizer [29], gr
Binary skeletonizer is com
pruning [29]. On the other h
ing the binary skeletonizatio

(a)

(d)

tunately, other information can be used in de novo mod
orientation of major secondary structure elements on

ch as helices and β-sheets are detectable [10-14]. On
secondary structure elements on sequence (SSEs-S) can
 1). The early step in de novo modeling is to find the or
SSEs-S to SSEs-V. Such a problem called topology de
ogy determination is challenging and is proven to
umber of possible topologies is ! 2 , where is
is the number of SSEs-V. To derive the backbone of
y of the SSEs has to be determined first and then the ba

derived for further optimization [18-20].

he topologies. (a) The density map (gray) was simulated to
P (PDB ID). The seven SSEs-V were detected using SSETra
e shown. A portion of the sequence is threaded to the SSEs-V
the correct topology in (b) and a wrong topology in (c). (d)
ked as H1 to H7.

ng tools use CryoEM volumetric skeleton [20, 21]. T
on (henceforth affectionately referred to as skeleton) i
hat represents the shape of the original density map i
ton is used to reduce the search space of the topology pr
atomic structure of the protein. When the detected SSE
on the connection relationship among them is reviewed.
n developed to extract the skeleton of a 3-D object [22-2
tion algorithms still have limitations when the noise

were developed to extract the skeleton of the density ma
rayscale skeletonizer [30] and interactive skeletonizer [3

mposed of two algorithms: iterative thinning and skele
hand, the grayscale skeletonizer [30] is generated by app
on on a range of segmentations at different thresholds. T

(c)

(b)

del-
the
the

n be
rder
eter-

be
the
the

ack-

10Å
acer.
and
The

The
is a
in a
rob-
s-V
.
27].
e is
aps:
31].
eton
ply-
The

A Graph Approach to Bridge the Gaps in Volumetric Electron Cryo-microscopy Skeletons 213

threshold used to extract the skeleton still plays a major role in the final quality of the
skeleton in both methods. Remarkably, no single threshold can be used to capture all
features of the density map. When a less selective density threshold is used, more
misleading connections appear in the skeleton (Fig. 2b). In contrast, the use of more
selective threshold will result in discontinuities (Fig. 2a).

Fig. 2. An example of a skeleton (in green) produced by Gorgon for the authentic density map
at 6.8Å resolution (EMDB ID 5100) and the corresponding Protein “Scorpion Hemocyanin
resting state” (PDB ID 3IXV). The red cylinders represent helical SSEs-V. (a) The skeleton is
extracted at 1.2 threshold and one gap is shown in the black box. (b) The skeleton is extracted
at 1.1 threshold. The SSEs-V are over-connected. More outgoing connections can be visually
seen clearly.

The quality of the density map obtained from the CryoEM experiments determines
the quality of the skeleton. When the resolution of the density map is high, the skele-
ton is well resolved. At the medium resolution, the skeleton can be ambiguous. The
skeleton sometimes suffers from the problem of incompleteness. Skeleton incom-
pleteness, or skeleton gaps, can be defined as the absence of the skeleton connectivity
when a real connection exists either on the density map or the structure of the protein.
In this paper, we present a graph-based approach to help overcome the incomplete-
ness problem of the skeleton using the original density map. The approach relies on a
novel representation of the density map, where the map is modeled as a graph and a
number of volume trees.

2 Materials and Methods

2.1 Basic Notions

The density map and the skeleton are examples of volumetric images. The volume
image defined on an orthogonal grid, . In the grid cell model, the cells of a cube in
a 3-D volume are 3-D voxel locations with integer coordinates. The voxel can be
referred to by its orthogonal location (, ,). The 6-neighborhood of voxel is a set

(a) (b)

214 K. Al Nasr et al.

defined with () = {(, ,): | | | | | | 1 }. The value
saved in the cell corresponding to voxel represents the associated magnitude of the
electron density of the protein at that location and is denoted by (). The voxel is
called end voxel if only one voxel with density greater than zero can be found in ()/{ }.

Let be the grid cell model of the original density map and let =(,) denote the corresponding undirected graph for , where ={ : () 0} is the set of nodes and = {(,): ∈ (), } is the set
of undirected edges. In this paper, the terms node and voxel are used interchangeably
to refer to the nodes of the graph. Similarly, let be the grid cell model of
the original skeleton and let = (,) denote the corresponding undi-
rected graph for where = { : () 0} is the set of nodes and = {(,): ∈ (), } is the set of undirected edges. In the graph
model, voxel is called end voxel if it is connected to only one other voxel. Finally, a
path between two voxels and in the graph is denoted by , .

2.2 Method

A possible solution to the problem of incompleteness is to develop a skeletonizer that
uses different local thresholds. Instead, we present a threshold-independent approach
to overcome the incompleteness problem of the skeletons extracted from the density
maps. The first step in our approach is to preprocess in order to keep only vox-
els with high density in a small neighborhood. We observe that such voxels are good
representatives for local regions. We apply the concept of a screening filter called
local-peak-counter (LPC) proposed in sheettracer [32]. The LPC rewards voxels with
high local density values and thereby tolerates the variations in the magnitude of den-
sities throughout the density map. In LPC, for each voxel , the average density of a
cube centered at and with edge length of seven is calculated. Those voxels in the
cube with density value greater than the calculated average have their counter incre-
mented. At the end of counting, each voxel with density magnitude greater than 99%
of the average densities calculated for the 343 cubes formed around it is saved in a
new grid model called . The voxels saved in are the strongest voxels
that can be found locally in the density map. Each voxel is a peak of its local neigh-
borhood. The intensity value of the peak voxels is set to the LPC counter while it is
set to zero for other voxels.

The process of gap bridging starts by locating the end voxels in . End
voxels are good candidates because they are more likely to be around the gaps. Voxel

 is out of our interest if | ()/{ }| 1, which means that is located on a conti-
nuous path of the skeleton. The essential idea used in this approach is to locate the
local volume peaks around the end voxels in . To do so, the map around
that end voxels will need to be split into volumes that satisfy certain properties. Vo-
lume-based split was used by helix tracer [12]. The insight of the split process is to
recognize the clusters of voxels that are of high local density. The split of the
can be accomplished by building the corresponding directed graph =(,), where = { : () 0} is the set of nodes and = (,): ∈

A Graph Approach to Bridge the Gaps in Volumetric Electron Cryo-microscopy Skeletons 215

 (), () = max ∈ () (), } is a set of directed edges from the voxel
to the highest-density voxel in its 6-adjacent neighborhood. is a directed-
acyclic-graph and it is, if a linear asymptotic running time function is used to invert
the direction of edges, a forest of trees is produced. The root of each tree is the voxel
with the highest density in the volume tree. For the voxel , let the volume tree
contains be denoted by (). Given and any voxel ∈ , the
construction of () is simple and asymptotically linear. Fig. 3 depicts an
example of (in pink) for the authentic density map (EMDB ID 5030).

Fig. 3. Local peaks and volume trees. The graph of local peaks is shown in pink for the authen-
tic density map 5030 (EMDB ID). The graph of skeleton voxels is also shown in blue. The
detected end voxels are colored in red. In the augmented portion of the map (boxed), some
dashed lines are drawn to show some examples of close voxels found for some pendant voxels
in the volume tree. The root of the volume tree is colored in black (also is marked).

Let denote the end voxels determined for . Some of these end
voxels may not be part of . In such case, a nearby voxel that belongs to

 and is picked up and marked as a new end voxel. After
is found, a list of candidate voxels, denoted by for the end voxel ∈ is
determined. The voxels that belong to are good representatives for the high
local density volumes surrounding the gap. To find voxels in , the process
starts by constructing the volume tree () and then marking the pendant
nodes of the tree. For each pendant node , the closest voxel ∈ that is not part of () is added to and () is constructed. If two voxels in

 belong to the same volume tree, the farthest should be removed from
. Furthermore, for each voxel ∈ , the voxel should be removed

from if there is a path of length less than Ɛ between the voxel and any node
in () in . The value of Ɛ used in this paper is 15Å.

The final phase of our approach is to connect each end voxel with the candidate
voxels in . The voxels in are called candidates because not necessari-
ly all of them will be connected with . The phase involves two steps. The first step is
to find a candidate path to bridge the gap. For each ∈ , we find the path ,
where is the root voxel of () in . The path , actually is a
concatenation of the three subpaths , , , , and , , where is the pendant node of

Root node

216 K. Al Nasr et al.

() that is closest to . The paths , and , can be calculated directly
from if the direction is ignored. The subpath , is the part of the path that
is located at the gap. To calculate , , the approach finds a path between and in

 in a greedy manner. A best first search is applied to calculate the path with the
highest local density. The counters used in LPC previously are used in such a search.
When , is calculated, the process stops if for any voxel ∈ , , ∈ . That means
that the process successfully finds a candidate path to bridge the gap. If no voxel in , is located on the skeleton, the method continues the search for a path of high local
density starting from and ends at any voxel of . Again, a best first
search is used. The process stops when either it reaches a voxel that is part of the
skeleton or cannot find a path at all. If a path is found, it will be added to the skeleton
and will be updated. The bridged skeleton of the authentic map shown
in Fig. 3 is overlaid with the original skeleton in Fig. 4. Fig. 5 illustrates the main
steps of the proposed algorithm.

Fig. 4. The bridged skeleton. The original skeleton is shown in green. The generated bridged
skeleton after applying our approach is shown in purple. The original density map is also
shown (transparent gray).

3 Results

A set of fifteen density maps and their associated skeletons were used to evaluate the
performance of our approach. Thirteen of the density maps were synthesized to 10Å
resolution using the structure of the protein and the molmap command in Chimera
package [33]. Two other density maps (EMDB ID 5100 with 6.8Å resolution and
EMDB ID 5030 with 6.4Å resolution) are the authentic data downloaded from the
EMDB. The backbone structures (3IXV_A and 3FIN_R) of the authentic density
maps are available in the PDB and are aligned with the density maps in EMDB. The
first 222 residues in the n-terminal of 3IXV are used in this test. The thirteen proteins
selected for the synthesized maps are helical due to the fact that helices are often de-
tected more accurately than the β-sheets in the medium resolution density maps. It is
still a challenging problem to detect the SSEs-V from the medium resolution data

A Graph Approach to Bridge the Gaps in Volumetric Electron Cryo-microscopy Skeletons 217

when β-sheets are involved. Therefore, sheet-type SSEs-V are not considered in this
test. For each density map, we use SSETracer [14] to detect the helical SSEs-V sticks.
The true location of the helical SSEs-S was generated from the PDB file of the protein
structures.

Fig. 5. The proposed algorithm. The pseudo code illustration of the core steps in the proposed
algorithm that bridges the gaps of the skeletons extracted from CryoEM density maps.

The skeleton was obtained using Gorgon 2.1 [34]. Two kinds of the skeletons were
extracted and used in testing: the binary skeleton and the grayscale skeleton. The
binary skeleton was used as the base to extract the grayscale skeleton. In general,
the skeletons were extracted from density maps at a threshold that visually minimizes
the sheet planes in the skeleton and shows the connections between helical sticks.
Gorgon 2.1 and MapEM [17, 21, 35] were used to evaluate the impact of our ap-
proach on the accuracy of final ranking of the true topology for each protein. The
topologies were ranked before and after the bridging process of the gaps. The correct-
ness evaluation of the two methods was carried out by comparing the produced topol-
ogies with the correct topology of each protein obtained from the PDB. The rank of

GapBridging (,)
Input: the grid model of the CryoEM map and skeleton
Output: the grid model of the bridged CryoEM skeleton

build
find
build
for each ∈

if ∉
find a nearby voxel ’ ∈ and ′ ∈
let = ’

 endif
endfor
for each ∈
 find

for each ∈
 let be the pendant node of ()
 let be the root of ()

find the paths , , , and ,
 let , = , ∘ , ∘ ,

if any ’ ∈ , and ’ ∈
 accept , and add it to and
else
 find the path , " from to any node ’’ ∈
 if , " is found
 add it to and
 endif
endifelse

endfor

endfor

return

218 K. Al Nasr et al.

the true topology is then reported in Table 1. A failure is reported (N/A in Table 1) if
the tool cannot find the true topology within the top 35 topologies. Even though, the
native topology can be found after the 35th topology, a failure is reported. Note that
the gap problem may cause the problem of memory failure because of the size of the
search space. When the skeleton quality is good enough, the search space of the
problem is significantly reduced and large proteins can be tested. The present of gap
problem negatively impacts the reduction of the search space and the entire de novo
modeling as well.

We used the same skeleton and same helical SSEs-V sticks detected by SSETracer
for both tools. A Max Euclidian Loop Distance parameter (ε) was set to 15Å. All
other parameters are default parameters in Gorgon. The gap tolerance threshold used
in MapEM was set to 10Å. MapEM can overcome the problem of the gap in skeletons
for a particular length. The gap tolerance is the length of the gaps that MapEM can
deal with. The top 35 ranked topologies were generated for each protein using Gorgon
and MapEM before and after applying our approach on the skeleton. The binary ske-
leton used for protein 1HG5 is shown in Fig. 6. The original skeleton is extracted for
1HG5 (row 7, Table 1) at a threshold of 0.36. The skeleton consists of misleading
points and gaps (circled in Fig. 6) as commonly seen in typical skeletons.

Fig. 6. The bridged skeleton for 1HG5. (a) The detected helical SSEs-V sticks (red) is superim-
posed on the original skeleton (green) and the synthesized original density map (gray) at 10Å
resolution. Certain gaps (circled) in the skeleton are shown. (b) The local peaks generated from
the original density map. (c) The bridged skeleton (purple) is superimposed on the original
skeleton. The gaps found on the original skeleton are bridged and shown in purple.

We first tested the two tools using fifteen cases of two different kinds of skeletons
obtained by Gorgon. There is a minor significant difference in accuracy between the
two kinds of skeletons. The grayscale skeleton performs slightly better in certain cas-
es as shown in Columns 6 and 10 of Table 1. The difference is clear when Gorgon is
used as shown in Column 10. Gorgon was not able to find the true topology within the
top 35 topologies for all binary skeletons as shown in column 9. On the contrary, it
can predict the true topology when the grayscale skeleton is used for 40% of the set.
Similarly, MapEM was able to find the native topology within the top 35 ranked to-
pologies for ten of the fifteen test cases when a binary skeleton was used. On the other
hand, it was able to find the true topology for the thirteen of the fifteen maps when the

(a) (b) (c)

A Graph Approach to Bridge the Gaps in Volumetric Electron Cryo-microscopy Skeletons 219

grayscale skeleton was used. MapEM performs better than Gorgon on original skele-
tons because it takes the gaps of the skeletons into consideration. MapEM successful-
ly deals with gaps of length 10Å or shorter. If the gap is longer than 10Å or there is
multiple small gaps on the skeleton between the SSEs-V, MapEM fails to find the true
topology. For instance, MapEM fails to find the true topology for 3XIN because of
two small consecutive gaps on the skeleton between the first two helices. Therefore,
the performance of the two tools proves that the quality of the grayscale skeletons is
better than binary skeletons.

Table 1. The accuracy of ranking true topology using density maps

N
o. IDa

#SSE
-S

b

#SSE
-V

c

MapEM

Original

Skeletons

MapEM

Bridged

Skeletons

Gorgon

Original

Skeletons

Gorgon

Bridged

Skeletons

Binaryd Graye Binary Gray Binary Gray Binary Gray

1 1ENK 3 3 7 (0.32) 23 (0.30) 15 15 N/A 6 5 5
2 3FIN* 4 4 1 (3.70) 9 (2.50) 1 1 N/A 3 1 1
3 3THG 4 4 7 (0.32) 2 (0.28) 3 1 N/A 1 4 1
4 1GV2 6 6 19 (0.37) 21 (0.33) 5 4 N/A N/A 1 1
5 1FLP 7 7 1 (0.33) 1 (0.28) 2 1 N/A 1 1 1
6 3IEE 9 8 4 (0.38) 4 (0.35) 4 4 N/A N/A 3 4
7 1HG5 11 9 1 (0.36) 2 (0.32) 1 5 N/A 1 N/A 1
8 2OVJ 12 9 N/A (0.39) 6 (0.35) 3 3 N/A N/A 5 4
9 2XB5 13 9 11 (0.35) 9 (0.29) 13 24 N/A 1 N/A 1

10 1P5X 13 9 4 (0.40) 4 (0.37) 4 5 N/A N/A 12 10
11 3XIN* 14 10 N/A (1.20) 13 (1.10) 3 9 N/A N/A N/A N/A
12 1QAZ 18 13 N/A (0.37) N/A (0.32) 7 3 N/A N/A 18 10
13 1HV6 18 13 N/A (0.36) N/A (0.29) N/A N/A N/A N/A N/A N/A
14 1WER 20 15 N/A (0.36) 4 (0.31) 4 1 N/A N/A 5 1
15 3HJL 20 20 1 (0.31) 7 (0.25) 1 1 N/A N/A 2 2
a: Protein PDB ID, proteins with * are the proteins for authentic density maps.
b: The number of actual helical SSEs-S in the protein.
c: The number of detected helical SSEs-V from the density map.
d: The rank of the true topology using binary skeleton. The value in () is the threshold used to extract the
skeleton.
e: The rank of the true topology using grayscale skeleton. The value in () is the threshold used to extract
the skeleton.

Table 1 shows the performance of the tools after applying our approach on skele-

tons. Our approach was applied on both skeletons and the new skeletons were tested
using the same tools. Similar to the performance with the original skeletons, the tools
perform better for grayscale skeletons as shown in Columns 8 and 12. Gorgon could
find the true topologies of eleven of the fifteen proteins that represent 73.3% of the set
when the binary skeleton was used. However, the four cases that Gorgon fails to find
the true topology for were successfully bridged using our approach. 86.7% of the
topologies of the set were recognized correctly when the grayscale skeleton was used
as shown in Column 12. The percentage of improvement of the number of true topol-
ogies recognized correctly for the grayscale skeletons is 117% (Columns 10 and 12).

220 K. Al Nasr et al.

For example, the true topology of the protein 1GV2 was correctly recognized when
the bridged binary and grayscale skeletons were used (ranked 1 and 1 respectively,
Row 4, Table 1). However, Gorgon fails to recognize the correct topology within the
top 35 topologies when the original skeletons are used (Row 4, Table 1). Likewise,
the performance of MapEM is improved by 40% when the binary skeletons are used
(Columns 5 and 7). No significant improvement is found in the performance of Ma-
pEM for the grayscale skeletons other than the improved rank of some proteins. For
example, the rank of the true topology for 3THG was moved from the second (Col-
umn 6, Row 3) to the first (Column 8, Row 3) position for the grayscale skeleton. The
enhancement is expected to be less for MapEM since it tolerates the gaps of certain
length.

Fig. 7. Failure in topology determination. (a) The wrong skeleton connection of the protein
1HV6. The trace deviates from the structure to connect with the wrong helix. (b) The graph of
the local peaks shows the relatively strong density on the correct trace.

MapEM and Gorgon fail to rank the true topology of 1HV6 (Row 13) within the
top 35 topologies. In addition to the gaps, the skeletons contain wrong skeleton con-
nections (Fig. 7). The skeletons of the protein wrongly deviate from the correct trace
of the structure to reach a wrong helix (Fig. 7a). The skeletons have no end voxel at
this region that indicates an existence of a gap. Hence, our approach will fail to bridge
the trace. Interestingly, the graph of local peaks (Fig. 7b) shows some volume trees on
the empty region of the skeleton. The local peaks indicate a relatively strong density
on the map at the region after the skeleton deviates. Therefore, we believe that local
peaks can be used to extract the skeleton of the density maps. The current skeletoniz-
ers are implemented using general thinning and pruning techniques. They may be
acceptable for other domains where the quality of the descriptive skeleton is not cru-
cial. In contrast, the connections between the SSEs-V are very important to the topol-
ogy determination problem in de novo modeling. Thus, the quality of the skeleton
becomes essential. Missing one connection may mislead the entire process. On the
other hand, a vast tolerance of such errors may lead to miss the true topology in the
top ranked list.

(a) (b)

A Graph Approach to Bridge the Gaps in Volumetric Electron Cryo-microscopy Skeletons 221

4 Conclusion

CryoEM is becoming an important structure determination technique. More density
maps are being produced by the CryoEM experiments and many of them arrive at the
medium resolution range. The topology of the secondary structure elements detected
from the density map is a critical piece of information for deriving the atomic struc-
tures from such maps. Several tools for de novo prediction use the skeleton of the
density map in order to reduce the search space of the topology problem or to derive
the final atomic structure of the protein. The skeleton sometimes suffers from the
problem of incompleteness that misleads the prediction process. In this paper, we
presented a threshold-independent approach to overcome the incompleteness problem.
The approach relies on a novel representation of the density map, where the map is
modeled as a graph of local peaks and a set of volume trees.

We tested the approach using fifteen protein density maps in which thirteen are
synthesized and two are authentic. Two kinds of the skeletons were extracted and
used in testing: the binary skeleton and the grayscale skeleton. Gorgon 2.1 and Ma-
pEM were used to evaluate the impact of our approach on the accuracy of final rank-
ing of the true topology for each protein. The topologies were ranked before and after
the bridging process of the gaps. In general, the performance of the tools is better for
grayscale skeletons. The test shows that our approach can improve the performance of
the tools used in de novo modeling. The percentages of improvement are 117% and
40% for Gorgon and MapEM, respectively. Interestingly, local peaks are found to be
an enhanced meter for local densities than the thinning and pruning techniques.

Acknowledgment. This work was supported by NSF Science & Technology Center
grant (CCF-0939370) and NSF CAREER (CCF-0845888).

References

[1] Chiu, W., Schmid, M.F.: Pushing back the limits of electron cryomicroscopy. Nature
Structural Biology 4, 331–333 (1997)

[2] Zhou, Z.H., Dougherty, M., Jakana, J., He, J., Rixon, F.J., Chiu, W.: Seeing the herpesvi-
rus capsid at 8.5 A. Science 288(5467), 877–880 (2000)

[3] Ludtke, S.J., Song, J.L., Chuang, D.T., Chiu, W.: Seeing GroEL at 6 A resolution by sin-
gle particle electron cryomicroscopy. Structure 12(7), 1129–1136 (2004)

[4] Chiu, W., Baker, M.L., Jiang, W., Zhou, Z.H.: Deriving folds of macromolecular com-
plexes through electron cryomicroscopy and bioinformatics approaches. Current Opinion
in Structural Biology 12(2), 263–269 (2002)

[5] Conway, J.F., Cheng, N., Zlotnick, A., Wingfield, P.T., Stahl, S.J., Steven, A.C.: Visuali-
zation of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy.
Nature 386(6620), 91–94 (1997)

[6] Zhang, X., Jin, L., Fang, Q., Hui, W.H., Zhou, Z.H.: 3.3 Å Cryo-EM Structure of a Non-
enveloped Virus Reveals a Priming Mechanism for Cell Entry. Cell 141(3), 472–482
(2010)

222 K. Al Nasr et al.

[7] Baker, M.L., Jiang, W., Wedemeyer, W.J., Rixon, F.J., Baker, D., Chiu, W.: Ab initio
modeling of the herpesvirus VP26 core domain assessed by CryoEM density. PLoS
Computational Biology 2(10), e146 (2006)

[8] Martin, A.G., Depoix, F., Stohr, M., Meissner, U., Hagner-Holler, S., Hammouti, K.,
Burmester, T., Heyd, J., Wriggers, W., Markl, J.: Limulus polyphemus hemocyanin:
10 A cryo-EM structure, sequence analysis, molecular modelling and rigid-body fitting
reveal the interfaces between the eight hexamers. Journal of Molecular Biology 366(4),
1332–1350 (2007)

[9] Villa, E., Sengupta, J., Trabuco, L.G., LeBarron, J., Baxter, W.T., Shaikh, T.R., Grassuc-
ci, R.A., Nissen, P., Ehrenberg, M., Schulten, K., Frank, J.: Ribosome-induced changes in
elongation factor Tu conformation control GTP hydrolysis. Proceedings of the National
Academy of Sciences of the United States of America (PNAS) 106(4), 1063–1068 (2009)

[10] Lasker, K., Dror, O., Shatsky, M., Nussinov, R., Wolfson, H.J.: EMatch: discovery of
high resolution structural homologues of protein domains in intermediate resolution cryo-
EM maps. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(1),
28–39 (2007)

[11] Jiang, W., Baker, M.L., Ludtke, S.J., Chiu, W.: Bridging the information gap: computa-
tional tools for intermediate resolution structure interpretation. Journal of Molecular
Biology 308(5), 1033–1044 (2001)

[12] Del Palu, A., He, J., Pontelli, E., Lu, Y.: Identification of Alpha-Helices from Low Reso-
lution Protein Density Maps. In: Proceeding of Computational Systems Bioinformatics
Conference (CSB), pp. 89–98 (2006)

[13] Baker, M.L., Ju, T., Chiu, W.: Identification of secondary structure elements in interme-
diate-resolution density maps. Structure 15(1), 7–19 (2007)

[14] Si, D., Ji, S., Al Nasr, K., He, J.: A machine learning approach for the identification
of protein secondary structure elements from cryoEM density maps. Biopolymers 97,
698–708 (2012)

[15] Jones, D.T.: Protein secondary structure prediction based on position-specific scoring ma-
trices. Journal of Molecular Biology 292(2), 195–202 (1999)

[16] Pollastri, G., McLysaght, A.: Porter: a new, accurate server for protein secondary struc-
ture prediction. Bioinformatics 21(8), 1719–1720 (2005)

[17] Al Nasr, K., Ranjan, D., Zubair, M., He, J.: Ranking Valid Topologies of the Secondary
Structure elements Using a constraint Graph. Journal of Bioinformatics and Computa-
tional Biology 9(3), 415–430 (2011)

[18] Al Nasr, K., Sun, W., He, J.: Structure prediction for the helical skeletons detected from
the low resolution protein density map. BMC Bioinformatics 11(suppl. 1), S44 (2010)

[19] Lindert, S., Staritzbichler, R., Wötzel, N., Karakaş, M., Stewart, P.L., Meiler, J.: EM-
Fold: De Novo Folding of α-Helical Proteins Guided by Intermediate-Resolution Electron
Microscopy Density Maps. Structure 17(7), 990–1003 (2009)

[20] Lindert, S., Alexander, N., Wötzel, N., Karaka, M., Stewart, P.L., Meiler, J.: EM-Fold:
De Novo Atomic-Detail Protein Structure Determination from Medium-Resolution Den-
sity Maps. Structure 20(3), 464–478 (2012)

[21] Al Nasr, K., Chen, L., Si, D., Ranjan, D., Zubair, M., He, J.: Building the initial chain of
the proteins through de novo modeling of the cryo-electron microscopy volume data at
the medium resolutions. In: Proceedings of the ACM Conference on Bioinformatics,
Computational Biology and Biomedicine, Orlando, Florida, pp. 490–497 (2012)

[22] Khromov, D., Mestetskiy, L.: 3D Skeletonization as an Optimization Problem. In: The
Canadian Conference on Computational Geometry, Charlottetown, pp. 259–264 (2012)

A Graph Approach to Bridge the Gaps in Volumetric Electron Cryo-microscopy Skeletons 223

[23] Dey, T.K., Zhao, W.: Approximate medial axis as a voronoi subcomplex. In: Proceedings
of the Seventh ACM Symposium on Solid Modeling and Applications, Saarbrücken,
Germany, pp. 356–366 (2002)

[24] Foskey, M., Lin, M.C., Manocha, D.: Efficient Computation of A Simplified Medial
Axis. Journal of Computing and Information Science in Engineering 3(4), 274–284
(2003)

[25] Tam, R., Heidrich, W.: Shape simplification based on the medial axis transform,
pp. 481–488

[26] Tran, S., Shih, L.: Efficient 3D binary image skeletonization, pp. 364–372
[27] She, F.H., Chen, R.H., Gao, W.M., Hodgson, P.H., Kong, L.X., Hong, H.Y.: Improved

3D Thinning Algorithms for Skeleton Extraction, pp. 14–18
[28] van Dortmont, M.A.M.M., van de Wetering, H.M.M., Telea, A.C.: Skeletonization and

distance transforms of 3D volumes using graphics hardware. In: Kuba, A., Nyúl, L.G.,
Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 617–629. Springer, Heidelberg
(2006)

[29] Ju, T., Baker, M.L., Chiu, W.: Computing a family of skeletons of volumetric models for
shape description. Computer-Aided Design 39(5), 352–360 (2007)

[30] Abeysinghe, S.S., Baker, M., Wah, C., Tao, J.: Segmentation-free skeletonization of
grayscale volumes for shape understanding, pp. 63–71

[31] Abeysinghe, S.S., Ju, T.: Interactive skeletonization of intensity volumes. Vis. Comput.
25(5-7), 627–635 (2009)

[32] Kong, Y., Zhang, X., Baker, T.S., Ma, J.: A Structural-informatics approach for tracing
beta-sheets: building pseudo-C(alpha) traces for beta-strands in intermediate-resolution
density maps. Journal of Molecular Biology 339(1), 117–130 (2004)

[33] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C.,
Ferrin, T.E.: UCSF Chimera—A visualization system for exploratory research and
analysis. Journal of Computational Chemistry 25(13), 1605–1612 (2004)

[34] Baker, M.L., Abeysinghe, S.S., Schuh, S., Coleman, R.A., Abrams, A., Marsh, M.P.,
Hryc, C.F., Ruths, T., Chiu, W., Ju, T.: Modeling protein structure at near atomic resolu-
tions with Gorgon. Journal of Structural Biology 174(2), 360–373 (2011)

[35] Al Nasr, K.: De novo protein structure modeling from cryoem data through a dynamic
programming algorithm in the secondary structure topology graph. Dissertation, Depart-
ment of Computer Science, Old Dominion University (2012)

Measure the Semantic Similarity of GO Terms

Using Aggregate Information Content

Xuebo Song1, Lin Li1, Pradip K. Srimani1, Philip S. Yu2,
and James Z. Wang1,�

1 School of Computing, Clemson University, Clemson, SC 29634–0974
{xuebos,ll,srimani,jzwang}@clemson.edu

2 Department of Computer Science, University of Illinois, Chicago, IL 60607
psyu@uic.edu

Abstract. The rapid development of Gene Ontology (GO) and huge
amount of biomedical data annotated by GO terms necessitate compu-
tation of semantic similarity of GO terms and, in turn, measurement
of functional similarity of genes based on their annotations. This paper
proposes a novel and efficient method to measure the semantic similar-
ity of GO terms. This method addresses the limitations in existing GO
term similarity measurement methods by using the information content
of all ancestor terms of a GO term to determine the GO term’s semantic
content. The aggregate information content of all ancestor terms of a
GO term implicitly reflects the GO term’s location in the GO graph and
also represents how human beings use this GO term and all its ancestor
terms to annotate genes. We show that semantic similarity of GO terms
obtained by our method closely matches the human perception. Exten-
sive experimental studies show that this novel method outperforms all
existing methods in terms of the correlation with gene expression data.

1 Introduction

Gene Ontology (GO) [1] describes the attributes of genes and gene products (ei-
ther RNA or protein, resulting from expression of a gene) using a structured and
controlled vocabulary. GO consists of three ontologies: biological process (BP),
cellular component (CC) and molecular function (MF), each of which is modeled
as a directed acyclic graph. In recent past, many biomedical databases, such as
Model Organism Databases (MODs) [2], UniProt [3], SwissProt [4], have been
annotated by GO terms to help researchers understand the semantic meanings
of biomedical entities. With such a large diverse biomedical data set annotated
by GO terms, computing functional or structural similarity of biomedical enti-
ties has become a very important research topic. Many researchers have tried to
measure the functional similarity of genes or proteins based on their GO anno-
tations [5–16]. Since different biomedical researchers may annotate the same or
similar gene function with different but semantically similar GO terms based on

� Corresponding author.

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 224–236, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Measure the Semantic Similarity of GO Terms 225

their research findings, an accurate measure of semantic similarity of GO terms
is critical to accurate measurement of gene functional similarities.

While those existing studies have proposed differentmethods tomeasure the se-
mantic similarity of GO terms, they all have their limitations. In general, there are
three types of methods for measuring the semantic similarity of GO terms: node-
based [9, 17–19], edge-based [10, 20, 21], and hybrid [6, 11] methods. See section 2
for a brief discussion of some most representative methods and their limitations.

In this paper, we propose a novel method to measure the semantic similarity
of GO terms. This method is based on two major observations: (1) In general,
the dissimilarity of GO terms near the root (more general terms) of GO graph
should be larger than that of the terms at a lower level (more specific terms); (2)
the semantic meaning of one GO term should be the aggregation of all semantic
values of its ancestor terms (including the term itself). The first observation
follows the human perception of term semantic similarity at different ontology
levels. The second observation agrees with how human beings use the term to
annotate genes.

The rest of the paper is organized as follows. We review existing most repre-
sentative methods for semantic similarity measurement of GO terms in section 2;
we introduce our proposed Aggregate Information Content based approach (AIC)
in section 3. Section 4 provides details of experimental evaluation of AIC, while
section 5 concludes the paper with a summary of unique charateristics of AIC.

2 Related Prior Work

A large number of studies [5–14] have appeared in the literature in the last 15
years to measure the semantic similarity of GO terms. All of these methods can be
broadly classified into three categories: node-based, edge-based, and hybrid meth-
ods. The three most cited representative methods [17–19] were originally designed
to measure the semantic similarity of natural language terms. While each of them
has its limitations they have been widely adopted by bioinformatics researchers to
measure the semantic similarity of GO terms. In 2007, Wang [6] proposed a new
measure of the semantic similarity of GO terms: this new hybrid method consid-
ers both the GO structure and the semantic content (biological meaning) of the
GO terms in measuring the semantic similarity of GO terms, and many studies
[5, 11, 15, 16] have shown the superiority of this hybrid method. Besides, it has
been widely accepted by biomedical researchers [11] since it was published.

2.1 Limitations of Current Methods

Node-based measures (e.g. Resnik’s [17], Lin’s [18], Jiang and Conrath’s [19],
Schlicker’s [9]) rely mainly on Information Content (IC) of the GO terms to rep-
resent their semantic values; IC of a GO term is derived from the frequency of
its presence (including the presence of its children terms) in a certain corpus
(e.g. SGD database, GO database). Resnik’s [17] method concentrates only on
the Maximum Information Contained in Ancestors (MICA) of the compared GO

226 X. Song et al.

terms, but ignores the locations of these terms in the GO graph, e.g., a GO
term’s distance from the root of the ontology, and the semantic impact of other
ancestor terms. A term’s distance to the root of the ontology shows the special-
ization level of this term in human perception. If a term is far from the root in
the ontology, it means biomedical researchers know more details about this term
and the meaning of the term is more specific. On the other hand, if a term is
closer to the root of the ontology, it means the term is a more general term, such
as cellular process or metabolic process, which does not provide too much details
about the related biomedical entities. Ignoring the specialization level of a term
is the principal reason that the semantic similarity obtained by these methods
is inconsistent with human perception; they suffer from “shallow annotation”
problem [8, 13, 6] in which the semantic similarity of GO terms near the root of
the ontology are sometimes measured very high.

Edge-based approaches [10, 20, 21] are based on the length of graph paths con-
necting the terms being compared. Some edge-based approaches [20] treat all edges
equally, ignoring the levels of edges in the ontology. This simple edge-based ap-
proach also suffers from “shallow annotation” because based on this approach,
the semantic similarity of two terms with a certain graph distance near the root
would be equal to the semantic similarity of two terms with the same graph dis-
tance but away from the root. To address the “shallow annotation” problem, other
edge-based methods [10, 21] assign different weights to the edges at the different
levels of the ontology, assuming that the edges at the same level of the ontology
have the sameweight. However, the terms at the same level of the GO graph do not
always have the same specificity because different gene properties demand differ-
ent levels of detailed studies. It means the edges at the same level of the GO graph
but in different GO branches do not necessarily have the same weights.

The hybrid method [6] considers both the GO structure and the semantics
(biological meanings) of GO terms at different ontological levels. However, this
method uses two semantic contribution factors, obtained from empirical study
of gene classification of certain species, to calculate the semantic values of GO
terms. Semantic contribution factors obtained by empirical studies on genes from
certain species may not be suitable for genes of other species.

2.2 Review of Existing Representative Methods

We provide a brief overview of the four most representative methods for GO
term semantic similarity measure: Method A by Resnik [17], Method B by Lin
[18], Method C by Jiang and Conrath [19], and Method D by Wang et. al [6].
We use these four methods as benchmarks to evaluate the relative performance
of our proposed AIC method in this paper in the next sections.

Method A. The frequency of a GO term is recursively defined as,

freq(t) = annotation(t) +
∑

i∈child(t)

freq(i) (1)

Measure the Semantic Similarity of GO Terms 227

Fig. 1. GO terms at different ontology levels sharing the same LCA

where annotation(t) is the number of gene products annotated with term t in
the GO database. child(t) is the set of children of term t. For each term t ∈ T ,
p(t) denotes the probability that term t occurs in the GO database,

p(t) = freq(t)/freq(root) (2)

Information Content(IC) of term t is defined as

IC(t) = − log p(t) (3)

Method A usesMaximum Information Contained in Ancestors (MICA) of two terms
to measure the semantic similarity between them.

simGO(a, b) = max
c∈P (a,b)

IC(c) (4)

where P (a, b) denotes the set of common ancestor terms of term a and term b in
the ontology graph. Based on the definition of IC in Method A (Equations 1, 2,
3), MICA often happens to be the IC value of the Least Common Ancestor LCA
of terms a and b.

The principal limitation of method A derives from the fact that it considers
only MICA of two terms while ignoring the distances of the two terms to their
LCA and the semantic contribution of other ancestor terms. For example, terms
a and b have the same LCA with terms c and b in the partial GO graph shown
in Figure 1. Using method A, the semantic similarity between term a and b
would be equal to the semantic similarity between term c and d, inconsistent
with human perception.

Methods B & C. Method B is based on the ratio between IC values of two
terms and that of their MICA; the semantic similarity between two terms a and
b is defined as,

simGO(a, b) =
2 ∗maxc∈P (a,b) IC(c)

IC(a) + IC(b)
(5)

Method C introduces the concept of term distance into the semantic similarity
calculation. The intuition is that two terms closer in the GO graph should be

228 X. Song et al.

more similar than two terms farther in the GO graph. The distance between two
terms a and b is defined as

DisGO(a, b) = IC(a) + IC(b)− 2 ∗ max
c∈P (a,b)

IC(c) (6)

The semantic similarity of two terms a and b are then defined as

simGO(a, b) =
1

1 +DisGO(a, b)
(7)

Note: Methods B and C ameliorated the principal limitation of Method A by
implicitly considering the graph distance of the two terms in the semantic sim-
ilarity measure. Consider the example in Figure 1; simGO(c, d) should be less
than simGO(a, b) according to human perception because the graph distance
between c and d is greater than the graph distance between a and b. Since term
a is a parent of term c, we have freq(a) > freq(c) and p(a) > p(c) (Equations 1
and 2). According to the definition of IC in Equation 3, we have IC(c) > IC(a).
Similarly, we have IC(d) > IC(b). Therefore, the semantic similarity values ob-
tained by both methods B and C are consistent with human perception in this
aspect.

However, it is possible that a GO term has multiple parent terms with differ-
ent semantic relations; using MICA alone does not account for multiple parents.
Also, two terms at a higher level (more general terms) of GO graph should be,
as is perceived by humans, semantically more dissimilar than two terms with
the same graph distance at a lower level (more specific terms). Because methods
B and C do not consider the specialization level of two terms’ LCA in the se-
mantic similarity measure, the semantic similarity values obtained by these two
methods may still be inconsistent with the human perception as demonstrated
in our experiment in Section 4.

Method D. Method D attempts to address the shortcomings of other existing
methods by aggregating the semantic contributions of ancestor terms in the GO
graph. The S-value of GO term t related to term a (where term t is an ancestor
of term a) is defined as,

Sa(t) =

{
1 if t = a
max{we ∗ Sa(t

′)| t′ ∈ children of t} if t
= a
(8)

where we is the semantic contribution factor of an edge. Then the semantic value
(SV) of a GO term a is,

SV (a) =
∑
t∈Ta

Sa(t) (9)

where Ta is the set of GO terms in DAGa (Directed Acyclic Graph consisting
all the ancestors of the term including the term itself). Finally, the semantic
similarity between two GO terms a, b is defined as,

simGO(a, b) =

∑
t∈Ta∩Tb

(Sa(t) + Sb(t))

SV (a) + SV (b)
(10)

Measure the Semantic Similarity of GO Terms 229

where Sa(t) is the S-value of GO term t related to term a and Sb(t) is the S-
value of GO term t related to term b. While this method combines both the
semantic and the topological information of GO terms to address weaknesses
of methods A, B and C, it still suffers from two disadvantages. First, it needs
to use a semantic contribution factor value (weight) empirically obtained from
gene classification to calculate the semantic values of GO terms. Using a semantic
contribution factor obtained from the classification of genes from certain species
may not be suitable for measuring the functional similarity of genes in other
species. Second, some biomedical studies need to obtain the similarity matrix
for a large group of GO terms or genes. Dynamically calculating the semantic
values of GO terms is time consuming and may result in a long user response
time, which will be shown in our experimental studies.

3 Proposed Aggregate Information Content Based
Method (AIC)

We address the limitations of the existing methods using an aggregate informa-
tion content approach.

3.1 GO Similarity

This aggregate information content based similarity measurement method (
Method AIC) considers the aggregate contribution of the ancestors of a GO
term (including this GO term) to the semantics of this GO term, and takes into
account how human beings use the terms to annotate genes. We use a term’s IC
value, as defined before (Equations 1, 2, 3), to represent their semantic contri-
bution values. Given the fact that terms at upper levels (more general terms) of
ontology graph are less specific than those at lower levels, we define the weight
of a term t as,

W (t) = 1/IC(t) (11)

We further propose a logarithmic model to normalize W(t) into a semantic weight
SW (t):

SW (t) =
1

1 + e−W (t)
(12)

We then compute semantic value SV (a) of the GO term a by adding the se-
mantic weights of all its ancestors (i.e., aggregating semantic contribution of the
ancestors).

SV (a) =
∑
t∈Ta

SW (t) (13)

where Ta is the set of all of its ancestors including a itself. We define the semantic
similarity between GO terms a and b, based on their aggregate information
content (AIC), as follows.

simGO(a, b) =

∑
t∈Ta∩Tb

2 ∗ SW (t)

SV (a) + SV (b)
(14)

230 X. Song et al.

Fig. 2. GO Graph containing terms
GO:0050794 and GO:0007154

Table 1. IC values & Semantic Weights of
GO terms

Go Terms IC value SW value

0050794 1.2931 0.6842

0007154 2.0939 0.6172

0050789 1.1339 0.7072

0065007 1.0343 0.7245

0009987 0.4346 0.9090

0008150 0 1

where SW (t) is the semantic weight of term t defined in Equation 12, and SV(t)
is the semantic value of term t defined in Equation 13. Aggregating the semantic
contribution of all ancestor terms implicitly factors in the position of the term
in the GO graph, and overcomes the weakness of the MICA based approaches.

We demonstrate how to use the AIC method to compute the semantic similar-
ity between two terms, GO:0050794 and GO:0007154, shown in Figure 2.(All the
similarity comparison figures showed in this paper are retrieved from the tools
in [22].) First, we use the GOSim R package [23] to retrieve the IC information
for all related GO terms, shown in Table 1. Second, we calculate the seman-
tic weight for each GO term using Equation 12. Finally, we use Equation 13
and Equation 14 to get the semantic similarity of GO terms GO:0050794 and
GO:0007154 as simGO(0050794, 0007154) = 0.5828.

3.2 Gene Similarity

There are several methods [6, 8, 12] to measure the functional similarity of gene
products based on the semantic similarity of GO terms. The common methods
are: MAX [6, 8] and AVE [12] methods; they define functional similarity between
gene products as the maximum or average semantic similarity values over the
GO terms annotating the genes respectively. In this paper, we use AVE method
as follows,

simAVE(g1, g2) = average
t1∈annotation(g1)
t2∈annotation(g2)

sim(t1, t2) (15)

where annotation(g) is the set of GO terms that annotates gene g. Although
some studies [6, 8] use the MAX method to compute the functional similarity of
genes, people [5] found that the AVE method is more stable and less sensitive
to outliers. In addition, the AVE method is more compatible with our original
objective of capturing all available information while the MAX method often
ignores the contribution of other GO terms.

Measure the Semantic Similarity of GO Terms 231

4 Experimental Evaluation of AIC

It is well known, as demonstrated in [7, 5, 8], that there is a high correlation be-
tween gene expression data and the gene functional similarity obtained from GO
term similarities, i.e., genes with similar expression patterns should have high sim-
ilarity in GO based measures because they should be annotated with semantically
similar GO terms. We use the correlation of genes obtained from gene expression
data to validate the gene functional similarities obtained by GO based similar-
ity measures. As in many existing studies [13, 24–26], we use gene expression data
from Spellman dataset [27], which comprises of 6178 genes, to obtain the gene cor-
relation patterns. The gene annotation data used to calculate the gene functional
similarity is obtained from the GO database (2012-07). In the next two subsec-
tions, we provide comparison of our method (AIC) with the state-of-the-art cur-
rent methods: Method A [17], Method B [18], Method C [19], and Method D [6]
in terms of GO term semantic similarity and gene functional similarity.

4.1 Evaluating AIC Method Using GO Term Semantic Similarity

From human perspective, we know that two GO terms at higher levels of the
gene ontology should have larger dissimilarity than two GO terms with the
same graph distance at lower levels. Our AIC method is compatible with this
observation in that two GO terms with the same graph distance at the lower
levels of the gene ontology usually share more common ancestors. Therefore, the
semantic similarity of GO terms obtained by our AIC method is consistent with
human perception as shown in an illustrative example from our experimental
results in Figure 3 and Table 2.

Consider the two GO terms GO:0005739 and GO:0005777 as shown in Figure 3.
The semantic similarity values obtained byMethods A, B, C, D andAIC are shown
in Table 2. These two very specific GO terms have only one different ancestor term
GO:0042579; the semantic similarity between them should be very high. However,
the semantic similarity values obtained by Method A [17], Method B [18], and
Method C [19] fail to exhibit this expected behavior while Method D [6] and the
proposed AIC method correctly exhibit this expected behavior. This observation
reinforces our previous contention that use of MICA alone in computing similarity
is not sufficient because of loss of important information.

Now, we check whether all these semantic similarity measurement methods
agree with the human perspective: two GO terms at higher levels of the gene
ontology should have larger dissimilarity than two GO terms with the same
graph distance at lower levels. We calculate the semantic similarity between
GO:0044424 and GO:0005622 (Group 1) and the semantic similarity between
GO:0044444 and GO:0005737 (Group 2). The semantic similarity values are
shown in Table 2. These two groups of GO terms have similar structure in the
GO graph except group 1 is closer to the root of the GO graph. Based on human
perception, the semantic similarity of GO terms in group 1 should be less than
that in group 2 since GO terms in group 2 are at a lower level of the GO graph.
However, only methods A, D and our AIC method satisfy this property. The

232 X. Song et al.

Fig. 3. GO graph of terms GO:0005739 and
GO:0005777

Table 2. Semantic similarity values of GO
term pairs obtained by different methods

Dataset Method Similarity

SW(GO:0005739,
GO:0005777)

A 0.135

B 0.335

C 0.464

D 0.797

AIC 0.915

SW(GO:0044424,
GO:0005622)

A 0.049

B 0.948

C 0.990

D 0.845

AIC 0.902

SW(GO:0044444,
GO:0005737)

A 0.104

B 0.872

C 0.960

D 0.879

AIC 0.942

semantic similarity values obtained by methods B and C are inconsistent with
the human perception because these two methods do not consider the specializa-
tion level of two terms’ LCA in the semantic similarity measure. The “shallow
annotation” problem is clearly shown in these experiments.

4.2 Evaluating AIC Using Correlation with Gene Expression Data

In our next set of experiments, we first use Pearson’s correlation to compute the
gene expression similarity with the Spellman dataset [27]. Then, we calculate
the correlation between the functional similarity of these genes obtained from
BP ontology and the gene expression similarity. The objective is, as stated in
[7], to test the hypothesis that pairs of genes exhibiting similar expression levels
which are measured by the absolute correlation values in gene expression data
tend to have high functional similarities between each other. The average of
correlation coefficients between genes within an expression similarity interval
estimates the mean of the statistical distribution of correlations; and it shows
the underlying trend that relates expression similarity and functional similarity.
We split the gene pairs into groups with equal intervals according to the absolute

Measure the Semantic Similarity of GO Terms 233

Table 3. Pearson’s correlation coefficients between gene expression data and gene
functional similarities obtained by different semantic similarity measurement methods

Groups Method B [18] Method C [19] Method A [17] Method D [6] Proposed AIC

4 0.789 0.930 0.614 0.929 0.966

5 0.717 0.889 0.561 0.802 0.850

6 0.569 0.700 0.413 0.745 0.774

7 0.622 0.761 0.519 0.725 0.733

8 0.597 0.675 0.496 0.706 0.714

9 0.659 0.664 0.417 0.745 0.778

10 0.620 0.730 0.403 0.733 0.772

11 0.665 0.691 0.419 0.725 0.761

12 0.485 0.722 0.246 0.716 0.782

13 0.525 0.715 0.321 0.709 0.791

Table 4. Computation Efficiency of Methods D and AIC

Execution Time (seconds)

of Gene Pairs 200 500 2000

Method D 173 3506 36123

Method AIC 56 261 7632

gene expression correlation values between gene pairs, as in previous studies
[13, 5, 7, 8], and then compute Pearson’s correlation coefficient between the
mean of gene functional similarities and the mean of gene expression correlation
values in each group. We split gene pairs into 4-13 groups respectively. We again
compare the results obtained using four existing methods (Methods A, B, C
and D) and those obtained using our AIC method, as shown in Table 3. The
experimental results show that our AIC method generally outperforms other four
methods with higher correlation coefficients between gene functional similarity
and gene expression similarity.

4.3 Evaluating the Computation Efficiency of the AIC Method

While methods D and AIC show superiority to other three methods in agreement
with human perception and in correlation with gene expression data, Method
D is computationally expensive due to the recursive computation of semantic
values of GO terms. On the other hand, our proposed AIC method uses the
aggregate IC value, which can be precomputed, to represent the semantic value
of a GO term. Thus, method AIC should be computationally more effective.
We use the execution time of computing the functional similarities of a large

234 X. Song et al.

number of gene pairs to evaluate the computation efficiency of our proposed
AIC method. In this experiment, we use methods D and AIC to compute the
functional similarities of three sets of gene pairs. The numbers of genes in these
sets are 200, 500 and 2000 respectively. The experiment was conducted on a
Linux box with a i7-2600K CPU @ 3.40GHz, 8G memory. The execution time
are shown in Table 4. As demonstrated by the experimental results, method AIC
is considerably faster than method D.

5 Conclusion

Experimental results in Section 4 demonstrate the superiority of the proposed
AIC method over the current ones. Method AIC is characterized with the fol-
lowing unique features:

– It does not suffer from “shallow annotation”. Note that, in Equation 14 the
denominator is smaller when terms are annotated at the top levels, i.e., the
equal difference on the numerator will result in a larger difference in the
semantic similarity value. Thus, the semantic similarity value of two terms
at top levels is less than that of two terms with the same graph distance at
lower levels. This is consistent with human perspectives.

– It exhibits high correlation coefficient between the gene expression similarity
and the GO based functional similarity.

– It is computationally much faster than the popular hybrid method [6].

In summary, the proposed method AIC is very promising in that it outperforms
all existing state-of-the-art methods in terms of consistency with human percep-
tion, correlation with gene expression data and computational efficiency.

Acknowledgement. The work was partially supported by NSF Awards DBI-
0960586, DBI-0960443 and CCF 0832582, and NIH award 1 R15 CA131808-01.

References

1. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology.
Nature Genetics 25, 25–29 (2000)

2. Stein, L.D., Mungall, C., Shu, S., Caudy, M., Mangone, M., Day, A., Nickerson,
E., Stajich, J.E., Harris, T.W., Arva, A., Lewis, S.: The generic genome browser:
A building block for a model organism system database. Genome Research 12,
1599–1610 (2002)

3. The UniProt Consortium. The uniprot consortium: The universal protein resource
(uniprot). Nucleic Acids Research, pp. 190–195 (2008)

4. Kriventseva, E.V., Fleischmann, W., Zdobnov, E.M., Apweiler, R.: Clustr: a
database of clusters of swiss-prot+trembl proteins. Nucleic Acids Research 29,
33–36 (2001)

5. Xu, T., Du, L., Zhou, Y.: Evaluation of go-based functional similarity measures
using s.cerevisiae protein interaction and expression profile data. BMC Bioinfor-
matics 9, 472 (2008)

Measure the Semantic Similarity of GO Terms 235

6. Wang, J.Z., Du, Z., Payattakool, R., Yu, P.S., Chen, C.-F.: A new method to
measure the semantic similarity of go terms. Bioinformatics 23, 1274–1281 (2007)

7. Wang, H., Azuaje, F., Bodenreider, O., Dopazo, J.: Gene expression correlation
and gene ontology-based similarity: An assessment of quantitative relationships.
In: Proc. of the 2004 IEEE Symposium on Computational Intelligence in Bioinfor-
matics and Computational Biology, pp. 25–31 (2004)

8. Sevilla, J.L., Segura, V., Podhorski, A., Guruceaga, E., Mato, J.M., Martinez-
Cruz, L.A., Corrales, F.J., Rubio, A.: Correlation between gene expression and
go semantic similarity. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 2, 330–338 (2005)

9. Schlicker, A., Domingues, F.S., Rahnenfuhrer, J., Lengauer, T.: A new measure for
functional similarity functional similarity of gene products based on gene ontology.
BMC Bioinformatics 7, 302 (2006)

10. Cheng, J., Cline, M., Martin, J., Finkelstein, D., Awad, T., Kulp, D., Siani-Rose,
M.A.: A knowledge-based clustering algorithm driven by gene ontology. Journal of
Biopharmaceutical Statistics 14(3), 687–700 (2004)

11. Pesquita, C., Faria, D., Falcao, A.O., Lord, P., Couto, F.M.: Semantic similarity
in biomedical ontologies. PLoS Computational Biology 5(7), e1000443 (2009)

12. Azuaje, F., Wang, H., Bodenreider, O.: Ontology-driven similarity approaches to
supporting gene functional assessment. In: Proc. of the ISMB 2005 SIG Meeting
on Bio-ontologies, pp. 9–10 (2005)

13. Li, B., Wang, J.Z., Luo, F., Feltus, F.A., Zhou, J.: Effectively integrating informa-
tion content and structural relationship to improve the gene ontology similarity
measure between proteins. In: The 2010 International Conference on Bioinformat-
ics & Computational Biology (BioComp 2010), pp. 166–172 (2010)

14. Pesquita, C., Faria, D., Bastos, H., Falcao, A.O., Couto, F.M.: Evaluating go-based
semantic similarity measures. In: Proc. of the 10th Annual Bio-Ontologies Meeting
2007, pp. 37–40 (2007)

15. Ravasi, T., et al.: An atlas of combinatorial transcriptional regulation in mouse
and man. Cell 140(5), 744–752 (2010)

16. Washington, N.L., Haendel, M.A., Mungall, C.J., Ashburner, M., Westerfield, M.,
Lewis, S.E.: Linking human diseases to animal models using ontology-based phe-
notype annotation. PLoS Biology 7(11), e1000247 (2009)

17. Resnik, P.: Semantic similarity in taxonomy: An information-based measure and
its application to problems of ambiguity in natural language. Journal of Artificial
Intelligence Research 11, 95–130 (1999)

18. Lin, D.: An information-theoretic definition of similarity. In: Proc. Int. Conf. on
Machine Learning, pp. 296–304 (1998)

19. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and
lexical taxonomy. In: Proc. Int. Conf. on Research in Computational Linguistics,
pp. 19–33 (1997)

20. Pekar, V., Staab, S.: Taxonomy learning: factoring the structure of a taxonomy
into a semantic classification decision. In: Proc. Int. Conf. on Computational Lin-
guistics, vol. 2, pp. 786–792 (2002)

21. Wu, H., Su, Z., Mao, F., Olman, V., Xu, Y.: Prediction of functional modules based
on comparative genome analysis and gene ontology application. Nucleic Acids Re-
search 33(9), 2822–2837 (2005)

22. Du, Z., Li, L., Chen, C.-F., Yu, P.S., Wang, J.Z.: G-sesame: web tools for go-term-
based gene similarity analysis and knowledge discovery. Nucleic Acids Research 37,
W345–W349 (2009)

236 X. Song et al.

23. Froehlich, H., Speer, N., Poustka, A., Beissbarth, T.: Gosim - an r-package for com-
putation of information theoretic go similarities between terms and gene products.
BMC Bioinformatics 8, 166 (2007)

24. Heyer, L.J., Kruglyak, S., Yooseph, S.: Exploring expression data: Identification
and analysis of coexpressed genes. Genome Research 9, 1106–1115 (1999)

25. Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: A survey.
IEEE Transactions on Knowledge and Data Engineering 16, 1370–1386 (2004)

26. Gibbons, F.D., Roth, F.P.: Judging the quality of gene expression-based clustering
methods using gene annotation. Genome Research 12, 1574–1581 (2002)

27. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B.,
Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-
regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization.
Molecular Biology of the Cell 9, 3273–3297 (1998)

Scalable and Versatile k-mer Indexing

for High-Throughput Sequencing Data

Niko Välimäki1,� and Eric Rivals2,��

1 Genome-Scale Biology Research Program, and Department of Medical Genetics,
Faculty of Medicine, University of Helsinki, Finland

niko.valimaki@helsinki.fi
2 LIRMM and Institut de Biologie Computationelle,

CNRS & Université Montpellier 2, France
rivals@lirmm.fr

Abstract. Philippe et al. (2011) proposed a data structure called Gk
arrays for indexing and querying large collections of high-throughput
sequencing data in main-memory. The data structure supports versatile
queries for counting, locating, and analysing the coverage profile of k-
mers in short-read data. The main drawback of the Gk arrays is its space-
consumption, which can easily reach tens of gigabytes of main-memory
even for moderate size inputs. We propose a compressed variant of Gk
arrays that supports the same set of queries, but in both near-optimal
time and space. In practice, the compressed Gk arrays scale up to much
larger inputs with highly competitive query times compared to its non-
compressed predecessor. The main applications include variant calling,
error correction, coverage profiling, and sequence assembly.

1 Introduction

High Throughput Sequencing (HTS) gives access to the whole complement of
DNA or RNA sequences present in a biological sample. A single machine yields
hundreds of million of short sequencing reads in a short time for a price that
is steadily decreasing. Large sequencing centers produce daily tens of terabytes
of data, and for instance the Beijing Genome Institute has launched in 2012 a
project for sequencing 3 millions of genomes. Applications of HTS go far beyond
genome sequencing, and are now used in the medical context for diagnostic
and disease follow-up, or in ecology for monitoring biodiversity. In the later
context, HTS sequence all DNA/RNA coming from all species present in an
environmental sample (i.e., a soil, a sea, or a gut sample). In such meta-genomics
or -transcriptomics experiments, one aims at identifying the species or the genes
they expressed in this environment, which is achieved by clustering and mining
the reads based on sequence similarity.

� Funded by Academy of Finland CoE in Cancer Genetics Research (No 250345).
�� Funded by the ANR Colib’read, MASTODONS, PICS.

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 237–248, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

238 N. Välimäki and E. Rivals

HTS pushes life sciences in a Big Data era and fosters the development of
efficient and scalable algorithms for analyzing huge read sets. A variety of com-
putational questions need to be solved from genome assembly, to read clustering
by similarity, going through read mapping (i.e. alignment) on a reference genome.
Many tasks require indexing data structures that allow querying the reads for
an exact or approximate sequence pattern. Most efficient programs for mapping
reads onto a reference genome resort to a FM-index of the genome [7], which
is small enough to fit in memory (e.g. [16,20]). However, in many applications,
a reference genome is missing and the read set must be mined on its own (de
novo genomics, transcriptomics, or in meta-genomics), but the volume of reads
is much larger than a reference genome. Let us review shortly existing work on
read indexing data structures.

Error Correction and k-mer Counting. Sequencing errors cause important dif-
ficulties for read analysis or genome assembly. The correction or elimination of
erroneous reads is made possible by the redundancy due to high sequencing cov-
erage. The solution is to monitor the occurrence number of all k-mers within
the reads to see if they conform to the expected coverage. For the task of k-mer
counting, efficient hashing techniques have been developped using parallel algo-
rithms or Bloom filters [17,18]. However, their lack of scalability hinders indexing
all 27-mers of typical Human sequencing data set [22]. A recent paper achieves
scalability by partitioning the index between memory and disk [22]. Some assem-
blers use a parallel k-mer counting index to discard erroneous reads during the
deBruijn graph construction [4]. Various error correction methods implement the
same strategy using a hash table. For example, Coral [23] identifies sequencing
errors by indexing k-mers into a hash table and then computing multiple align-
ments over reads that share a common k-mer. The hash table requires Θ(n log n)
bits [23], which can make the approach infeasible for HTS data.

Read Indexing in Mapping. Following the idea of error correction, it has been
proposed to compute the local coverage of any k-mer in a read, that is the number
of reads in which in appears. Inspecting the local coverage profile of k-mers along
the read enables the tool CRAC to distinguish erroneous positions from point
mutations directly during the mapping [20] (http://crac.gforge.inria.fr).
For this, CRAC resorts to a data structure called Gk arrays which indexes all
k-mers occurring within each read of the collection1 using a modified suffix array
and complementary tables [21]. It takes advantage from the fact that reads are
often compared against themselves and that queried k-mers are taken from a
read and can be given by a starting position rather than in extenso. Gk arrays
offers seven types of locate and counting queries: either for getting the read
identifiers in which a k-mer occurs (Q1/Q2), occurs at most once (Q5/Q6), and
the occurrence positions with (Q7) or without this restriction (Q3/Q4). Table 1
gives an overview of the queries and theoretical properties of the data structure.

1 In a collection, each read sequence can occur many times, but differ by their identifier,
sequence quality, or mate partner. It is a multi-set rather than a set.

http://crac.gforge.inria.fr

Scalable and Versatile k-mer Indexing for High-Throughput Sequencing Data 239

Table 1. Theoretical time and space complexities. Here n is the input size, f is the
query k-mer, σ is the alphabet size, and Hh ≤ H0 ≤ log σ denotes the h-th order
entropy. The output size of each query is denoted by |Q7| = |Q5| ≤ |Q1| ≤ |Q3|,
where |Q3| is the total number of occurrences and, thus, can be significantly larger
than the others. Philippe et al. [21] reported a linear time construction, but omitted
their worst-case time of radix-sorting over �log n�-bit integers.

Compressed
Data structure Gk arrays Gk arrays

Construction time O(n log n) O(n log n)
space (bits) O(n(H0 + 1)) Θ(n log n)

Final index size (bits) nHh log logσ n+O(n) Θ(n log n)
Query time for a k-mer O(k log σ + polylog(n)) O(k log n)

a position O(log log n) O(1)

Additional query time to answer:
Q1 In which reads does f occur? O(|Q1| log log n) O(|Q3|)
Q2 In how many reads does f occur? O(1) O(|Q3|)
Q3 What are the occurrence positions of f? O(|Q3| log log n) O(|Q3|)
Q4 What is the number of occurrences of f? O(1) O(1)
Q5 In which reads does f occur only once? O(|Q5| log log n) O(|Q3|)
Q6 In how many reads does f occur only once? O(1) O(|Q3|)
Q7 What are the occurrence positions of f O(|Q7| log log n) O(|Q3|)

in the reads where it occurs only once?

Gk arrays uses a space proportional to the length of the read collection. Hence,
indexing for instance a metagenomics dataset will exhaust the main memory of
most computers. Gk arrays are also limited to queries on a single k value.

For Similarity Searching for Assembly and Clustering. When many transcribed
RNAs are sequenced in proportion of their abudance, it is useful to reduce the
data by clustering reads or ESTs that originate from the same molecule. EST
clustering was already critical before the advent of HTS [3]. The effiency and
scalabilty of clustering algorithms rely on their indexing strategy. Kaboom im-
plements a modified suffix array for this task [10], but cannot scale up to nowa-
days huge read sets (as shown in [21]). The detection of similarity between reads
is also used to discover overlaps and then build the overlap graph for genome as-
sembly. The sparse representation of the relations between substrings and reads
is major issue for scalable assembly programs, as exemplified by [6].

2 Compressed Gk Arrays

We aim at supporting the same set of queries as the original Gk arrays [21]. See
Table 1 for the definition of each query Q1–Q7. Notice that Q3 and Q4 are the
typical queries found in full-text indexes such as suffix trees and suffix arrays,

240 N. Välimäki and E. Rivals

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T B A N A N A $1 A N A N A S $2
SA 7 14 6 4 2 8 10 12 1 5 3 9 11 13

SA−1 8 5 11 4 10 3 1 6 12 7 13 8 14 2

LCP 0 0 0 1 3 5 3 1 0 0 2 4 2 0

Blcp 1 1 1 1 0 0 0 1 1 1 1 0 1 1

Blast 0 0 0 1 0 0 1 0 1 0 1 1 1 0

Bonce 0 0 1 1 1 1

T [SA[i] . . n] $1 $2 A A A A A A B N N N N S

$1 N N N N S A A A A A $2
A A A A $2 N $1 N N S

$1 N N S A A A $2
A A $2 N $1 S

$1 S A $2
$2 $1

Fig. 1. An example of the (inverse) suffix array and LCP array for the input string
T = BANANA$1ANANAS$2 and resulting bit-vectors Blcp, Blast and Bonce for k = 3. Notice
that the size of Bonce is equal to rank1(Blast, n) and it is queried via the 1-bits in Blast.

and in their compressed variants (see [19] for a survey). Q1 and Q2 are also
known as the document listing problem in the field of information retrieval [13].

At the core of our data structure is a compressed suffix array (CSA) [9] built
on top of all the input reads. More precisely, the collection of reads is given as
a (multi-)set3 of strings R = {r1, r2, . . . , rd}. We assume that the strings are
from ordered alphabet Σ of size |Σ| = σ = O(polylog(n)). We represent R as
one long concatenated string, say T = r1$1r2$2 · · · kd$d, where each $i denotes
a special separator-symbol having the lexicographical order $i−1 < $i < c ∈ Σ
for all i ∈ [1, d]. Let n denote the total length of T . Substrings of T are denoted
by T [i . . j] = T [i]T [i+1] · · ·T [j] for any 1 ≤ i ≤ j ≤ n. The suffix array SA[1, n]
of string T stores all suffixes of T in lexicographical order. The lexicographically
i-th suffix is given by T [SA[i] . . n]. The inverse suffix array is SA−1[j] = i iff
SA[i] = j. The Longest Common Prefix (lcp) table, denoted LCP[1, n], stores in
LCP[i] the length of the lcp of suffixes T [SA[i − 1] . . n] and T [SA[i] . . n] for any
1 < i ≤ n, and LCP[1] = 0. Fig. 1 gives an example of the SA, SA−1, and LCP
values. The compressed suffix array [9] requires nHh log logσ n+O(n) bits2 and
allows tSA = O(log logσ n+ log σ) = O(log logn) time access to SA and SA−1.

We aim to support two query-types, that is, queries for both a given k-mer
and for a given position p in the set of indexed reads. Let f denote the given
k-mer or the k-mer at the given position p, say f = T [p . . p + k − 1] for any
p ∈ [1, n − k + 1]. Our first problem is to identify the suffix array range [s, e],
which covers all the suffixes of T that have f as a prefix. If the query-type is

2 We denote the empirical entropy of a string T with H0(T) (or simply H0 if T is clear
from the context). The h-th order entropy is denoted by Hh(T) (or simply Hh).
Notice that 0 ≤ Hh+1(T) ≤ Hh(T) ≤ log σ for all h ≥ 0.

Scalable and Versatile k-mer Indexing for High-Throughput Sequencing Data 241

a k-mer, we can simply utilize the search functionality built into the CSA to
identify the range [s, e] in O(k log σ + polylog(n)) time [9]. In order to support
queries for given read positions, we propose the following data structure:

Lemma 1. Given the CSA of the string T [1 . . n], a fixed constant k and a query
position p ∈ [1, n−k+1], we can identify the suffix array range [s, e], which covers
all the suffixes of T that have f = T [p . . p + k − 1] as a prefix, using n + o(n)
additional bits and O(log logn) time.

Proof. We introduce a bit-vector Blcp[1, n], which is set to Blcp[i] = 1 if and only
if LCP[i] < k. Fig. 1 gives an example of the arrays SA, SA−1 and LCP and
the resulting Blcp. See the following subsection on details about constructing
Blcp. Recall that the CSA can simulate the inverse suffix array in O(log logn)
time. We compute j = SA−1[p], which gives us a position j in the suffix array.
It follows that s ≤ j and e ≥ j, because f is a prefix of suffix T [SA[j] . . n] =
T [SA[SA−1[p]] . . n] = T [p . . n]. Now we need to identify the suffixes surrounding
j that also have f as a prefix. If such suffixes exists, they are identified by taking
the smallest s ∈ [1, j] and largest e ∈ [j, n] such that LCP[i] ≥ k holds for all
i ∈ [s + 1, e]. Notice that the bit-vector Blcp encodes this information, and it is
accessible in constant time using rank and select queries: The rankb(B, i) query
over a bit-vector B[1 . . n] returns, for any i ∈ [1, n], the number of times the bit
b ∈ {0, 1} occurs in B[1 . . i]. The inverse query, selectb(B, j), returns the position
of the j-th bit b in B (moreover, if j > rankb(B, n), we agree that selectb(B, j)
returns n + 1). We first compute r = rank1(Blcp, j), which leads us to the final
answer [s, e] = [select1(Blcp, r), select1(Blcp, r+1)−1]. The rank and select queries
over Blcp can be computed in constant time using n+ o(n) bits [14]. �	

Notice that the range [s, e] immediately reveals the total number of occurrences
f has in the reads, which is e − s + 1. The occurrence positions can be enu-
merated by outputting SA[j] for each j ∈ [s, e]. That said, the above lemma
allows us to reveal the correct range [s, e] and answer queries Q3 and Q4 in
additional O(|Q3| log logn) and O(1) time, respectively. We introduce another
data structure to answer Q1 and Q2:

Lemma 2. Given the CSA of the string T [1 . . n], a fixed constant k and a suffix
array range [s, e] covering all the suffixes that have f as a prefix, we can answer
the query Q1 (resp. Q2) using n+o(n) additional bits and O(|Q1| log logn) time
(resp. O(1) time), where |Q1| is the number of reads having an occurrence of f .

Proof. Let Blast[1, n] denote a bit-vector, which is initialized as follows: we set
Blast[j] = 1 if and only if the k-mer f = T [SA[j]..SA[j] + k − 1] starting from
text position p = SA[j] is the last occurrence of f within the corresponding read.
That is, we mark the ”unique” k-mers for each read and, as an important detail,
this marking is stored in the suffix array order. See the following subsection on
details about constructing Blast. Furthermore, k-mers that span over a separator-
symbol are never marked. We can use Blast to directly count and enumerate the
reads that contain at least one occurrence of f . Recall that [s, e] covers all the
suffixes that have f as a prefix. Now Q2 can be answered in constant time simply

242 N. Välimäki and E. Rivals

by computing rank1(Blast, e) − rank1(Blast, s − 1). For Q1, we first compute r =
rank1(Blast, s−1)+1, and then output the values SA[i] for all i = select1(Blast, r

′)
such that r′ ≥ r and i ≤ e. This requires in total O(|Q1| log logn) time, where
|Q1| is the number of reads having one or more occurrences of f . Finally, n+o(n)
bits are required to compute rank and select over Blast in constant time [14]. �	

To answer the queries Q5–Q7, we employ yet another data structure:

Lemma 3. Given the CSA of the string T [1 . . n], a fixed constant k and a suf-
fix array range [s, e] covering all the suffixes that have f as a prefix, we can
answer the queries Q5 and Q7 (resp. Q6) using n + o(n) additional bits and
O(|Q5| log log n) time (resp. O(1) time), where |Q5| = |Q7| is the number of
reads having exactly one occurrence of f .

Proof. Let Bonce denote a bit-vector of length rank1(Blast, n). We set Bonce[i] = 1
if and only if the k-mer starting from text position p = SA[select1(Blast, i)] occurs
only once within the corresponding read. The following subsection describes how
to construct the bit-vector Bonce. Now, similar to previous lemma, the query Q6
can be answered in constant time by first computing s′ = rank1(Blast, s− 1) + 1
and e′ = rank1(Blast, e). Then the result for Q6 is given by rank1(Bonce, e

′) −
rank1(Bonce, s

′ − 1). For Q5 and Q7, we output the values SA[select1(Blast, i
′)]

for all i′ ∈ [s′, e′] such that Bonce[i
′] = 1. Such positions can be found using one

select1 operation (over Bonce) per outputted element. Thus, the query is solved
in O(|Q5| log logn) time using rank1(Blast, n)(1 + o(1)) ≤ n+ o(n) bits. �	

Theorem 1. Given a set of reads R = {r1, r2, . . . , rd} of total length n, and a
fixed constant k, there exists a data structure that requires nHh log logσ n+O(n)
bits of space and supports the queries Q1–Q7 with the time complexities given
in Table 1. If the query is a k-mer (resp. a position in R), the queries require
additional O(k log σ + polylog(n)) time (resp. O(log logn) time).

Proof. See the above lemmas about supporting each query Q1–Q7. The com-
bined space complexity of the required bit-vectors and their rank and select data
structures is 3n + o(n) bits. The space complexity is dominated by the com-
pressed suffix array, which requires nHh log logσ n+O(n) bits of space [9]. �	

2.1 Construction

We propose a construction algorithm that can build the above data structures
in O(n log n) time and O(n(H0 + 1)) bits of space, assuming that the largest
read-length in the collection is limited, that is, � = max{|ri| : ri ∈ R} =
O(n/ logn). The theoretical complexities can be achieved by (1) building the
CSA, (2) building the LCP array, (3) scanning through the LCP array once to
construct Blcp, and finally (4) scanning through the (implicit) suffix array once
to construct Blast and Bonce. In practice, Blcp is constructed directly (see Sect. 3).

More precisely, the compressed suffix array can be constructed O(n logn) time
using O(n(H0 +1)) bits [11]. The final index requires nHh log logσ n+O(n) bits

Scalable and Versatile k-mer Indexing for High-Throughput Sequencing Data 243

and supports random access to the SA[i] and SA−1[j] values in tSA = O(log logn)
time for polylog-sized alphabets [9]. The LCP array can then be constructed in
O(n · tSA) time and in 4n + o(n) bits of space on top of the CSA [12]. The
resulting LCP array admits access to values LCP[i] in O(tSA) time, thus, we can
also construct Blcp in O(n · tSA) time. The bit-vectors Blast and Bonce can be
attained as follows:

Lemma 4. Given the CSA of the string T [1 . . n], a fixed constant k and the
bit-vector Blcp, we can construct the bit-vectors Blast and Bonce in O(n log logn)
time and 2n+ o(n) +O(� log n) additional bits. If the largest read-length is � =
O(n/ logn), the additional space is O(� logn) = O(n) bits.

Proof. Let Blast[1, n] and B′
once[1, n] denote two bit-vectors. We initialize Blast to

all zeros, and B′
once to all ones. We traverse over the suffixes of T in backwards

order, say T [n− 1 . . n], T [n− 2 . . n], . . . , T [1 . . n]. At each step i of the traversal,
we first compute j = SA−1[i] (in practice, we replace SA−1 with LF-mapping; see
Sect. 3). Then we compute r = rank1(Blcp, j) and check if the key r exists in a y-
fast trie [25]. If it does not yet exists, we set Blast[j] = 1, and insert the key-value
pair 〈r, j〉 into the y-fast trie. Moreover, if the key r already exists in the y-fast
trie with value j′, we set B′

once[j
′] = 0. Finally, if T [i] is a separator-symbol,

we remove all elements in the current y-fast trie, thus, the maximum number of
elements in the trie is bounded by O(�). Since we traverse T in backwards order,
we can easily keep track of the position of the nearest separator-symbol, and
avoid marking Blast for k-mers that overlap a separator-symbol. All this requires
O(tSA+log logn) time per each step (with the exception of the removal of all trie
elements, which can be amortized to O(n log logn) time over all steps). The trie
size is at most O(� log n) bits at any step of the construction. After traversing the
whole text, we can construct the final bit-vector Bonce of length rank1(Blast, n).
We set Bonce[rank1(Blast, j)] = B′

once[j] for each j such that Blast[j] = 1. �	

Corollary 1. Given a set of reads R = {r1, r2, . . . , rd} of total length n, and a
fixed constant k, the data structure in Theorem 1 can be constructed in O(n log n)
time and O(n(H0 + 1)) bits of space.

2.2 Query Extensions

Read Coverage Profile. The coverage profile of a read r gives, for each position
i ∈ [1, |r| − k + 1] in the read r, the number of reads that share the k-mer
r[i . . i+ k− 1]. The coverage profile can be utilized, for example, to discriminate
between sequencing errors and SNVs/SNPs [20]. The read coverage profile can
be efficiently computed for any r ∈ R by resorting to |r| − k + 1 calls to Q2,
which requires in total O(|r| log logn) time. (In practice, we use LF-mapping
and backward search, and answer Q2 at each step via constant time query over
Blcp and Blast. The resulting time complexity is O(|r| · tLF).)

Queries over Multiple k. We can support queries over multiple k1, k2, . . . , kz by
building separate bit-vectors for each ki. Now, the final index consists of one CSA

244 N. Välimäki and E. Rivals

built for the input reads, and z sets of bitvectors requiring in total 3nz + o(nz)
bits of space. For any z = O(log σ), the total index size becomes O(n log σ) bits,
which is still less than the original Gk arrays require for one fixed k. For large
z, another time–space tradeoff is to replace all the LCP bit-vectors with the full
LCP array, which requires just 4n+o(n) bits [12], and resort to Previous Smaller
Value and Next Smaller Value queries over the LCP table similar to [8]. PSV
and NSV can solved in sublogarithmic time with o(n) extra bits of space.

3 Experiments

We implement the compressed Gk arrays (CGkA) using the FM-index concept
[7] and Huffman-shaped wavelet trees [19]. We use Heng Li’s implementation of
the BCR algorithm [15,1] to construct the Burrows–Wheeler Transform (BWT)
for the input reads. The resulting FM-index requires nH0(T) + o(n log σ) bits
of space and supports LF-mapping in average tLF = O(H0(T)) = O(log σ) time.
We build the Blcp bit-vector directly from the wavelet tree in O(nσ) time by
adapting the algorithm of [2]. For Lemma 4, we use LF-mapping instead of
explicitly computing j = SA−1[i] for each step. It allows us to construct bit-
vectors Blast and Bonce simultaneously with the (inverse) suffix array samples,
using one pass over the text. We store (inverse) suffix array samples for every s
text positions, which allows an tSA = O(s · tLF) time access to SA (SA−1). We
test the sampling rates s ∈ {2, 4, 8, 16, 32}.

We compare the compressed Gk arrays against a performant hash table Jel-
lyfish 1.1.6 [17], a Run-Length Compressed Suffix Array (RLCSA3 Jan. 2013
version) [24], and the original Gk arrays (GkA4 version 1.0.1) [21]. GkA offer
a native support for queries Q1–Q7, the RLCSA supports only queries Q3–Q4,
and Jellyfish the counting query Q4. We run the RLCSA using sampling rates
s ∈ {3, 4, 8, 16} (the construction ran out of memory for s = 2) and nibble en-
coded bit-vectors, which are faster and, in our experiments, require only around
2% more space. We use block size 16 for the internal bit-vectors.

Remark 1. Claude et al. [5] proposed a compressed k-mer index for indexing
highly-repetitive biological sequences. However, their experimental results show
that RLCSA is faster and uses less space for any k ≥ 6 [5]. Also, the construction
space of Claude et al. is about twice larger than RLCSA. We omit the compressed
k-mer index of Claude et al. from our experiments for these reasons.

The input reads are taken from a set of 151bp Illumina reads sequenced from
an E. Coli strain MG16555. We truncate the low-quality tails, using a Phred
threshold of 10, and include only the full-length reads in the final set. This

3 http://www.cs.helsinki.fi/group/suds/rlcsa/ The latest RLCSA package in-
cludes an unpublished data structure to solve Q1, however, its construction time
and space do not yet scale up gracefully (J. Sirén, Personal communication, 2013).

4 http://crac.gforge.inria.fr/gkarrays/
5 http://www.illumina.com/systems/miseq/scientific_data.ilmn

http://www.cs.helsinki.fi/group/suds/rlcsa/
http://crac.gforge.inria.fr/gkarrays/
http://www.illumina.com/systems/miseq/scientific_data.ilmn

Scalable and Versatile k-mer Indexing for High-Throughput Sequencing Data 245

filtering leaves a total of 8.5 million reads. All experiments are ran using a single
core of an Intel Xeon E5540 2.53GHz processor equipped with 32GB of main
memory, Linux 3.2.0 (Ubuntu x86 64) and gcc 4.6.3. We report the final index
size, average query times for Q1–Q4, and the construction time and space for
each data structure.

The final index size of CGkA represents 10% to 60% of the size of the original
Gk arrays depending on the sampling rate. CGkA require 5.6 GB for s = 2 and
1.3 GB for s = 32, while the non-compressed GkA require between 9.0–9.2 GB
depending on k. Jellyfish and RLCSA have the smallest index sizes at the cost
of supporting only Q4 and Q3–Q4, respectively.

Remark 2. The RLCSA implementation could be extended to support Q1–Q7
by adding the bit-vectors Blcp, Blast and Bonce over the RLCSA. It would then
give yet another time–space trade-off for the compressed Gk arrays: a smaller
index size, but slightly slower query times as the results in Fig. 2 suggest.

Fig. 2 gives an overview of the average query times for Q1–Q4, when querying a
set of 1–100 million randomly chosen k-mers (depending on size of the k-mer).
Jellyfish is the most space-efficient and also the fastest, since its hash table is
tailored for simple counting queries (Q4). The compressed data structures are
still competitive regarding both query time and space, while providing a more
versatile set of queries. The differences for Q2 are more significant with k = 11
due to the O(|Q3|) worst-case time of GkA. Regarding the locate queries (Q1
and Q3), the sampling rates s ≤ 8 are competitive against the non-compressed
GkA for k = 22. This is mostly due to small numbers of occurrences (i.e. large
k) and faster backward search. For smaller k, the numbers of occurrences are
significantly higher, and the time to locate the suffix array interval has a smaller
impact on the average query times. Fig. 3 gives the query times for Q1–Q3,
when the query is given as a randomly chosen position from the indexed read
set. The query times are averaged over 1–100 million randomly chosen positions
(depending on query). The compressed representation is slower for all queries
but Q2, mostly because the (inverse) suffix array values must be computed via
the sampled array. CGkA have O(tSA) = O(s · tLF) time access to inverse SA,
which is notably slower than the constant time access within GkA. However, for
Q2 the compressed representation can be faster due to the worst-case O(|Q3|)
query time of GkA. RLCSA and Jellyfish do not support these types of queries.

Construction Time and Space. We also measure the construction time and space
for all data structures. For RLCSA, we use the fastest construction method
in the Jan. 2013 package [24]. As a second hash table approach, we include
Coral version 1.4 [23], which use the GNU C++ hash map for storing a list of
occurrence positions for each k-mer. Table 2 reports the construction times and
maximum memory usages for the 8.5 million 151bp Illumina reads, including the
figures for each construction step of the compressed Gk arrays.

Here, CGkA take roughly the same construction time as RLCSA, but use less
memory. CGkA require only twice the construction time of non-compressed data
structures, and achieves the most space-efficient construction (Jellyfish could use

246 N. Välimäki and E. Rivals

●
●

●

●

●

0.
0

0.
4

0.
8

1.
2

T
im

e
pe

r
oc

cu
rr

en
ce

 (
µs

)
Q1

● CGkA, k=11
CGkA, k=22
GkA, k=11
GkA, k=22

●
●

●

●

●

0.
0

0.
4

0.
8

1.
2

T
im

e
pe

r
oc

cu
rr

en
ce

 (
µs

)

Q3
RLCSA, k=11
RLCSA, k=22

●●●●●

0 2 4 6 8 10

0
10

20
30

40

Size (GB)

T
im

e
(µ

s)

Q2

●●●●●

0 2 4 6 8 10

0
10

20
30

40

Size (GB)

T
im

e
(µ

s)

Q4
RLCSA, k=11
RLCSA, k=22
Jellyfish, k=11
Jellyfish, k=22

Fig. 2. Average query times and the index size when the query is given as a k-mer.
RLCSA supports queries Q3 and Q4, and Jellyfish only a counting query (Q4).

●
●

●

●

●

0 2 4 6 8 10

0.
0

0.
4

0.
8

1.
2

Size (GB)

T
im

e
pe

r
oc

cu
rr

en
ce

 (
µs

)

Q1 / Q3
● CGkA, k=11

CGkA, k=22
GkA, k=11
GkA, k=22

●●●

●

●

0 2 4 6 8 10

0
5

10
15

20

Size (GB)

T
im

e
(µ

s)

Q2

Fig. 3. Average query times and the index size when the query is given as a read
position. RLCSA and Jellyfish do not support these types of queries.

Scalable and Versatile k-mer Indexing for High-Throughput Sequencing Data 247

Table 2. Construction time and space for 8.5 million 151bp Illumina reads

k Time (s) Memory usage (MB)

Gk arrays [21] 11 611 9,452
Gk arrays 22 605 9,251
RLCSA [24] (s = 16) n/a 1,095 16,446
Coral [23] (GNU C++ hash map) 11–22 861 16,016
Jellyfish [17] (counting only, M = 224) 11 88 2,911
Jellyfish [17] (counting only, M = 224) 22 405 2,965

Compressed Gk arrays (s = 16) 11 957 2,881
Compressed Gk arrays (s = 16) 22 1,086 2,881

CGkA construction steps:
ropebwt+BCR [15,1] n/a 288 506
Wavelet tree (Huffman) n/a 44 1,471
Blcp 11 10 1,471
Blcp 22 139 1,471
Blast, Bonce, sampling SA, SA−1 n/a 615 2,881

less memory by balancing between the hash table size and merge cost). Hence,
the CGkA achieve a much better scalability in term of memory requirements
than its uncompressed version, while still offering competitive query times.

4 Discussion

We presented a space-efficient data structure for indexing all k-mers in HTS data.
The data structure supports a comprehensive set of locate and count queries
with competitive query times. It is also more scalable than its non-compressed
predecessor, the Gk arrays [21], due to the time–space trade-off we achieve: for
a fixed amount of main memory, the compressed representation can index up
to seven times more data (regarding the final index size). Both the construction
and query algorithms are completely different from those of Gk arrays. It also
allows queries over multiple k1, k2, . . . , kz with an overhead of 3.19 bits per input
character per ki. A parallized, secondary memory [1] construction, as well as
enhancements to allow navigation in a de Bruijn graph belong to future work.

References

1. Bauer, M.J., Cox, A.J., Rosone, G.: Lightweight BWT construction for very large
string collections. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661,
pp. 219–231. Springer, Heidelberg (2011)

2. Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the longest com-
mon prefix array based on the burrows-wheeler transform. In: Grossi, R., Sebas-
tiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 197–208. Springer,
Heidelberg (2011)

248 N. Välimäki and E. Rivals

3. Burkhardt, S., Crauser, A., Ferragina, P., Lenhof, H.-P., Rivals, E., Vingron, M.:
q-gram Based Database Searching Using a Suffix Array (QUASAR). In: 3rd Int.
Conf. on Computational Molecular Biology, pp. 77–83. ACM Press (1999)

4. Chikhi, R., Lavenier, D.: Localized genome assembly from reads to scaffolds: Prac-
tical traversal of the paired string graph. In: Przytycka, T.M., Sagot, M.-F. (eds.)
WABI 2011. LNCS, vol. 6833, pp. 39–48. Springer, Heidelberg (2011)

5. Claude, F., Fariña, A., Mart́ınez-Prieto, M.A., Navarro, G.: Compressed q-gram
indexing for highly repetitive biological sequences. In: Proc. 10th IEEE Intl. Conf.
on Bioinformatics and Bioengineering, pp. 86–91 (2010)

6. Conway, T.C., Bromage, A.J.: Succinct Data Structures for Assembling Large
Genomes. Bioinformatics 27(4), 479–486 (2011)

7. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. 41st Annual Symposium on Foundations of Computer Science (FOCS), pp.
390–398. IEEE Computer Society (2000)

8. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix
trees. Theor. Comput. Sci. 410(51), 5354–5364 (2009)

9. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: 14th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 841–850 (2003)

10. Hazelhurst, S., Lipták, Z.: Kaboom! a new suffix array based algorithm for clus-
tering expression data. Bioinformatics 27(24), 3348–3355 (2011)

11. Hon, W.-K., Lam, T.-W., Sadakane, K., Sung, W.-K., Yiu, S.-M.: A space and time
efficient algorithm for constructing compressed suffix arrays. Algorithmica 48(1),
23–36 (2007)

12. Hon, W.-K., Sadakane, K.: Space-economical algorithms for finding maximal
unique matches. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373,
pp. 144–152. Springer, Heidelberg (2002)

13. Hon, W.-K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string re-
trieval problems. In: FOCS, pp. 713–722. IEEE Computer Society (2009)

14. Jacobson, G.: Succinct Static Data Structures. PhD thesis, Carnegie–Mellon (1989)
15. Li, H.: Implementation of BCR, https://github.com/lh3/ropebwt
16. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics 25(14), 1754–1760 (2009)
17. Marçais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting

of occurrences of k-mers. Bioinformatics 27(6), 764–770 (2011)
18. Melsted, P., Pritchard, J.: Efficient counting of k-mers in dna sequences using a

bloom filter. BMC Bioinformatics 12(1), 333 (2011)
19. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39(1)

(2007)
20. Philippe, N., Salson, M., Commes, T., Rivals, E.: CRAC: an integrated approach

to read analysis. Genome Biology (in press, 2013)
21. Philippe, N., Salson, M., Lecroq, T., Léonard, M., Commes, T., Rivals, E.: Query-

ing large read collections in main memory: a versatile data structure. BMC Bioin-
formatics 12, 242 (2011)

22. Rizk, G., Lavenier, D., Chikhi, R.: DSK: k-mer counting with very low memory
usage. Bioinformatics, page Advance access (January 2013)

23. Salmela, L., Schröder, J.: Correcting errors in short reads by multiple alignments.
Bioinformatics 27(11), 1455–1461 (2011)

24. Sirén, J.: Compressed Full-Text Indexes for Highly Repetitive Collections. PhD
thesis, Dept. of Computer Science, Report A-2012-5, University of Helsinki (2012)

25. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space
Theta(N). Inf. Process. Lett. 17(2), 81–84 (1983)

https://github.com/lh3/ropebwt

POMAGO: Multiple Genome-Wide Alignment Tool

for Bacteria

Nicolas Wieseke1, Marcus Lechner2, Marcus Ludwig3, and Manja Marz3

1 University of Leipzig, Faculty of Mathematics and Computer Science,
Augustusplatz 10, 04109 Leipzig, Germany
wieseke@informatik.uni-leipzig.de

2 Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher
Weg 6, 35032 Marburg, Germany
lechner@staff.uni-marburg.de

3 Friedrich-Schiller-University Jena, Faculty of Mathematics and Computer Science,
Leutragraben 1, 07743 Jena, Germany

{m.ludwig,manja}@uni-jena.de

Abstract. Multiple Genome-wide Alignments are a first crucial step to
compare genomes. Gain and loss of genes, duplications and genomic re-
arrangements are challenging problems that aggravate with increasing
phylogenetic distances. We describe a multiple genome-wide alignment
tool for bacteria, called POMAGO, which is based on orthologous genes and
their syntenic information determined by Proteinortho. This strategy
enables POMAGO to efficiently define anchor points even across wide phy-
logenetic distances and outperform existing approaches in this field of
application. The given set of orthologous genes is enhanced by several
cleaning and completion steps, including the addition of previously unde-
tected orthologous genes. Protein-coding genes are aligned on nucleotide
and protein level, whereas intergenic regions are aligned on nucleotide
level only. We tested and compared our program at three very different
sets of bacteria that exhibit different degrees of phylogenetic distances:
1) 15 closely related, well examined and described E. coli species, 2) six
more divergent Aquificales, as putative basal bacteria, and 3) a set of
eight extreme divergent species, distributed among the whole phyloge-
netic tree of bacteria. POMAGO is written in a modular way which allows
extending or even exchanging algorithms in different stages of the align-
ment process. Intergenic regions might for instance be aligned using an
RNA secondary structure aware algorithm rather than to rely on se-
quence data alone. The software is freely available from http://www.

rna.uni-jena.de/supplements/pomago

Keywords: Multiple Genome Alignment, Synteny, Annotation.

1 Introduction

Multiple Genome-wide Alignments (MGAs) are a first crucial step for the com-
parison of genomes, and subsequent analysis, such as annotation of non-coding

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 249–260, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.rna.uni-jena.de/supplements/pomago
http://www.rna.uni-jena.de/supplements/pomago

250 N. Wieseke et al.

genes [20], discovery of functional elements [13] or structure conservation [16].
Many MGA generating programs exist already, such as Mugsy [2], NcDNAlign
[20], TBA [3], progressiveMauve [11], CHAOS [8], or Mavid [7]. Most of the soft-
ware packages are written for a specific class of organisms or problems and
therewith have their specific advantages and disadvantages. However, there is
still an urgent need for more practicability and accuracy [20,10,15].

Nowadays, common algorithms use some kind of anchored alignment. Most of
them use pairwise alignment scores of homologous subsequences as anchors, e.g.
calculated by Blast [1], on nucleotide or amino acid level. TBA is an accurate
state of the art multiple genome alignment tool which is based on threaded
blocksets that are aligned. The approach was designed to align as many regions as
possible. progressiveMauve on the other hand is a very different approach that
uses pairwise alignment scores and iteratively determines homologous single-
copy subsequences that can be aligned and merged. While we are not aware of
any other approach that directly facilitates orthologous genes, this concept is
closest to the strategy we propose here.

POMAGO is a multiple genome-wide alignment approach for bacteria, which
is based on orthologous genes and their syntenic information determined by
Proteinortho [18]. Obtained orthologous genes are enhanced by several clean-
ing and completion steps, including the addition of previously undetected or-
thologs. We align our protein anchors with a modified version of CAUSA [21] and
intergenic regions, as well as 5’ and 3’ UTRs with ClustalW [17]. While less
advanced algorithms for determination of anchor points are sufficient for closely
related species, this approach is efficient and robust irrespective of species relat-
edness. Improved in this way, MGAs can enhance the discovery and analysis of
genes, functional elements and structure conservation beyond the level of related
species. They might also enable deeper insights into the evolution of species.

To illustrate the improvement regarding more diverged species sets, we tested
and compared our program with progressiveMauve and TBA at three very dif-
ferent sets of bacteria that exhibit different degrees of phylogenetic distances:
1) 15 closely related, well examined and described E. coli species, 2) six more
diverged Aquificales, as putative basal bacteria, and 3) a set of eight extreme
divergent species, distributed among the whole phylogenetic tree of bacteria.

2 Methods

The approach proposed here is based on preannotated subsequences of whole
genomes to compute a genome wide alignment. Therefore, e.g. annotated protein
sequences from the NCBI can be used. In a first step Proteinortho is applied,
which predicts co-orthologous groups by performing a pairwise all-against-all
Blast followed by spectral partitioning. To complement for potentially incom-
plete annotations, all groups are reviewed. For every species where no member
was found, the genome is scanned for a member that was not present in the given
annotation using tblastn. The highest scoring alignment to an ORF above a
fairly high E-value threshold of 1e−20 is used to complement the initial annota-
tion. Proteinortho is applied a second time using the extended annotation.

POMAGO 251

6

6A A A A AA

B B BBBB

CC C C

2

3

3

3

4

41 2

51

1 2 4 5

6

6

A 1

C 1

B 1
A 4

B 3

C 3

A 5

B 5

C4

A 2

B 2

A

B

C 2

A 3 B 4

Fig. 1. Example of input data and its graph representation. Top: Each horizontal line
represents a genome of species A, B or C. Accordingly, Ai, Bi, and Ci represent genes
encoded in these genomes. Non-horizontal lines show the estimated orthologous rela-
tionships predicted by Proteinortho. Bottom: Graph G of the above given example.

After this preprocessing step, a set of coding sequences is obtained together
with an estimation of the pairwise orthologies. This data can be interpreted as
a colored graph G = (V,E) with V being the set of coding sequences and E
the estimated orthology relation, see Fig. 1. Nodes are colored according to the
species they belong to. Nodes of the same color are ordered with respect to the
position of the respective gene within its genome. The node Ai therefore refers
to the i-th gene in species A. This graph is called the orthology graph.

2.1 Orthology Cleaning

As the initial orthology graph is just an estimate of the orthology relations in
the dataset, it will be noisy. Due to sequence similarities, orthologs and paralogs
might be clustered together or some relations are missing. Therefore, several
cleaning steps are performed to prepare the data before it can be used to align
the genomes. These cleaning steps are described in the following subsections.

Gene Duplication. Whenever a gene duplication occurs in one species the two
copies Ai and Aj might be orthologous to a gene Bk from another species and
therefore both copies will be connected to Bk within the orthology graph. This

252 N. Wieseke et al.

is consistent with the definition of orthology by Fitch [14], but when it comes
to an alignment it is unclear which of the sequences Ai or Aj has to be aligned
against Bk. Therefore, we refer to Braga et al. [6] who assume the sequence
which remains in its genomic context to be the ’more’ correct ortholog. We first
extend the orthology graph by transitivity to obtain all candidates of orthologs,
i.e., in each connected component of the graph new edges are inserted such that
all pairs of nodes from different species are connected, see Fig. 2 Left.

To select groups of genes which have to be aligned against each other, a
decomposition of the connected components has to be done, such that each
connected component contains only nodes with different colors, i.e., it will be a
clique in the resulting orthology graph with one gene per species at maximum.

The decomposition of the connected components is done with a greedy strat-
egy taking into account the similarity of each two orthologous sequences Ai and
Bk as well as their synteny regarding neighboring genes. For the sequence similar-
ities each edge is weighted by the E-value taken from the pairwise all-against-all
Blast computed in the preprocessing step. For synteny, each edge is weighted
by the number of orthologous pairs of genes Ai±x and Bk±x in a certain neigh-
borhood x around Ai and Bk. Such pairs are counted whenever the nucleotide
distance of Ai and Ai±x is similar to the distance of Bk and Bk±x. As a default,
the neighborhood was defined to be ten genes upstream and downstream of a
gene (x = 10). Nucleotide distances were assumed to be similar if they do not
differ by a factor of more than two.

6

6

6

6

A 2

B 2

A

B

C 2

A 2

B 2

A

B

C 2

6

6

6

6

A 2

B 2

A

B

C 2

A 2

B 2

A

B

C 2

Fig. 2. Left: Extension of the orthology graph by transitivity. Whenever two nodes
of the same connected component are colored differently, they get connected. Right:
Decomposition of connected components. Connected components are decomposed into
cliques according to synteny and pairwise similarity of sequences. Each subset contains
no more than one node of each color.

The decomposition Di of a connected component Ci into cliques is constructed
as follows. Starting with an empty graph Di = (VCi , ∅) on nodeset VCi the best
edge according to its synteny weight is chosen. For two edges with the same
synteny value the one with the better E-value is selected. This edge is added to
the new graph whenever it results in a graph where all connected components
have no more than one node of each color. Otherwise the edge is rejected. This
step is repeated until all edges were selected, see e.g. Fig. 2 Right. Finally, each

POMAGO 253

connected component in the orthology graph is replaced by its decomposition.
The pseudocode for this step is given in Algorithm 1 in the supplement.

Synteny-BasedOrthology Insertion. Whenever two related coding sequences
differ by more than the allowed threshold of Proteinortho, they are not detected
as direct orthologs in the preprocessing step. However, if these sequences are lo-
cated within syntenic regions a different threshold should be used. We account for
that by considering the following two cases:

In the first case a pair of orthologous genes Ai, Bk exists and therefore an
edge e = (Ai, Bk) in the orthology graph. Furthermore, there are two nodes Ai±1

and Bk±1 which refer to neighboring genes, which are not connected and belong
to connected components with node sets of distinct colors. For the sequences of
Ai±1 and Bk±1 a pairwise alignment is computed. If the score of this alignment
is better than a user defined threshold, the respective connected components are
merged by graph join.

In the second case two pairs of orthologous genes and therefore the two edges
e1 = (Ai, Bk) and e2 = (Aj , Bl) exist. Let |i−j| < x and |k− l| < x with x being
the size of the assumed syntenic region. Furthermore, let the intermediate nodes
An, Bm with n ∈ (i, j) and m ∈ (k, l) be pairwise disconnected in the orthology
graph. For all pairs of nodes An and Bm alignments are computed. Whenever the
score of one of these alignments is better than the threshold and the node sets
of the respective connected components have distinct colors, these components
are merged by graph join, see Fig. 3 Top. The pseudocode for synteny-based
insertion is given in Algorithm 2 in the supplement.

Pairwise alignments are computed on a combined nucleotide-amino acid level
using a modified version of CAUSA [21] and ClustalW [17] by default. An align-
ment is rejected if the ClustalW score is below 20. This is approximately one half
of the average alignment score of orthologous coding sequences. The alignment
approach is described in detail in section 2.2.

In some cases this approach might be to strict, as it only allows the insertion of
an edge between two nodes An and Bm whenever the respective connected com-
ponents are color distinct. Alternatively, one can add such an edge for connected
components which are not color distinct. This will result in a new connected com-
ponent which does not fulfill the property of having no more than one node of
each color/species. However, this can be curated with the same decomposition
approach described in the previous section. It is not guaranteed that the edge
between An and Bm will be contained in the decomposition, but the edge will be
added if there is sufficient syntenic support among the genes of that component.

Synteny-Based Sequence Annotation. Synteny is also used to annotate
new coding sequences which are orthologous to already annotated sequences.

Assume there are two pairs of orthologous genes resulting in the two edges
e1 = (Ai, Bk) and e2 = (Ai+1, Bl) with 1 < |k − l| < x in the orthology graph,
i.e., the two genes of species A are next to each other while there are 1 to
x − 1 other genes between those of species B. If the nucleotide distance of Ai

and Ai+1 is similar to the distance of Bk and Bl, then all sequences Bm with

254 N. Wieseke et al.

d

d B

Ad

d B

A

B 1 B 2

A 2A 1 A 3 A 4

B 3 B 4B 1 B 2

A 2A 1 A 3 A 4

B 3 B 4

d

d B

A

B 1 B 2

A 1

B 3 B 4

A 2A12
’ A12

’’

B 1 B 2

A 1

B 3 B 4

A 2

Fig. 3. Top: Synteny-based orthology insertion. If distances dA and dB (in nucleotides
or number of genes) are sufficiently similar, each gene within dA of species A is com-
pared to each gene within dB of species B. New edges are added to the orthology graph.
Bottom: Synteny-based sequence annotation. If dA and dB (in nucleotides or number
of genes) are similar, the genomic subsequence of dA of species A is compared to each
gene within dB of species B. New nodes and edges are added to the orthology graph.

m ∈ (k, l) are aligned against the intermediate sequence between Ai and Ai+1

considering all three possible reading frames. For each alignment between Bm

and the intermediate sequence of Ai and Ai+1 with a score above a user defined
threshold, a new node Ai′ is added to the orthology graph. The final graph
includes the edge en = (Ai′ , Bm), see Fig. 3 Bottom. Pairwise alignments are
computed in the same way as in the orthology insertion step. The pseudocode
for synteny-based annotation is given in Algorithm 3 in the supplement.

2.2 Anchored Multiple Genome Alignment

After the cleaning and completion steps mentioned above, the orthology graph
consists of several cliques, each representing a set of orthologous genes. These
genes have to be aligned in a sophisticated way to each other in order to achieve
a convincing genome wide alignment.

The final alignment is calculated with respect to a chosen reference species.
Therefore, cliques containing nodes from this genome are ordered according to
the position of the respective genes therein. For the gene sequences of each clique
a multiple sequence alignment is computed with a modified version of CAUSA [21].
CAUSA computes combined nucleotide-amino acid sequences such that after three
nucleotides the respective amino acid is inserted. Furthermore, these sequences
are aligned with ClustalW using a customized substitution matrix to ensure that
nucleotides are not mistakenly aligned against amino acids. We modified CAUSA

to deal with genomic sequences containing characters c /∈ {A,C,G, T, U,N}.

POMAGO 255

These are converted into N . Each character U is converted into T . If a character
of a nucleotide is detected to be an N and the assignment of the amino acid is
not affected by this letter, the appropriate amino acid is chosen.

For each group of orthologous genes, i.e., each clique in the orthology graph,
a multiple sequence alignment is computed and truncated such that there is no
overlap with consecutive genes and no gaps at the borders of the alignment.
Each of these alignments is used as an anchor to additionally align the inter-
genic regions between the respective genes. Whenever possible, two consecutive
gene alignments are connected by extending the alignments across the intergenic
regions between them. Therefore, a pairwise similarity of each non-reference in-
tergenic region with the reference sequence is computed using ClustalW. The
regions with a score above a certain threshold (by default 40) are aligned and
added between both single gene alignments. Note that two gene alignments can
only be merged if the genes of all species are consecutively within their genome
and all intergenic regions could be aligned. Otherwise the two alignment blocks
remain separated and the intergenic regions are appended in the same manner,
either at the end of the previous block or at the beginning of the next block, see
Fig. 4. The final output is returned in multiple alignment format (MAF).

������������

������������������������ ��������������������

���������������������� ��������������������

����������

������������������

������

������

������������

������������ ����������

��������������������

����������

����������

��������������������

����������

������������ ���������� ���������������������� ���������� ������

��������

����������

Block 1 Block 3 Block 4

Block 5Block 2

6

6 7 8 9 10

6

7 98 106

A 1 A 2

B 1 B 2

C 3 C4

B 3 B 4

A A 3 A 4

B 5 B

C 1

B B B B

C 5 C 6 C 7 C 8 C 9C 2

B 1 B 2

A 1 A 2

C 3

B 3

C4

B 5

C 1 C 5

A A 3 A 4

B

C 6 C 7 C 8

BB B

C 9

B

C 2

Species C

Species B

Species A

Fig. 4. The final anchored multiple genome alignment is calculated with a modified
version of CAUSA for protein-coding genes (vertical lines between genes) and ClustalW

for intergenic regions (zigzag lines between genes). In this example species B is chosen
as reference organism, containing consecutive genes from B1 to Bn. The final alignment
consists of five blocks as outlined at the bottom.

3 Results

To illustrate the performance and improvement of POMAGO regarding more di-
verged species sets, we used three datasets with largely varying diversity: 1)
A set of E. coli stains, being very closely related and well examined. 2) A set
of Aquificales species, discussed to be phylogenetically located at the root of

256 N. Wieseke et al.

bacteria [12,9]. 3) A set of extremely diverged bacteria distributed among the
whole phylogenetic tree.

The first dataset was taken from [19] and contained very closely related se-
quences consisting of 15 Escherichia coli genomes: E. coli APEC O1, E. coli
BW2952, E. coli CFT073, E. coli IAI1, E. coli K12 DH10B, E. coli K12 MG1655,
E. coli K12 W3110, E. coli O103 H2 12009, E. coli O111 H 11128, E. coli O157
H7 EDL933, E. coli O157 H7 Sakai, E. coli O157 H7 TW14359, E. coli S88, E.
coli SMS and E. coli UTI89. E. coli K12 MG1655, as well examined and least
genetically manipulated strain [4], was selected as reference. Nearly the complete
reference genome (99.9%) was aligned to one or more non-reference sequences.
Moreover, 95.2% of the reference sequence could be aligned to at least half the
sequences and 77.3% to all sequences of the dataset. On average each of the
1,554 alignment blocks contained 13.91 out of 15 species with a mean length of
2,982 nt. The alignment covered 18 continuous intervals of the reference genome
with an average length of 257,486 nt and a median of 209,015 nt.

The second dataset contained six hyperthermophile bacteria from the Aquifi-
cales group, which are believed to contain many archeal genes obtained by hori-
zontal gene transfer [5]: Aquifex aeolicus, Hydrogenobaculum sp., Persephonella
marina, Sulfurihydrogenibium azorense, Sulfurihydrogenibium YO3AOP1 and
Thermocrinis albus. This set exhibits a number of interesting criteria making
a multiple genome alignment worthwhile but harder than for the E. coli set. In
comparison, the genomes are poorly examined and annotated, they have a high
number of invading genes (due to horizontal gene transfer) and possibly form
a root group. We selected Aquifex aeolicus as reference genome for this group.
A. aeolicus appeared to be the most rearranged genome and asks therewith for
a critical inspection of POMAGO.

The computed alignment consisted of 1,202 alignment blocks covering 187
continuous intervals with an average length of 7,097 nt and a median of 4,957
nt. The longest sequence of consecutive genes conserved in the same order and
present in all the six genomes consists of 13 genes, respectively 9,000 nt. Taking
any of the other species as reference resulted in a much longer maximal alignment
block consisting of 23 (with T. albus as reference), respectively 45 (with any of
the other four species), consecutive genes and around 22,000 nt, respectively
35,000 nt. Nevertheless, more than 83% of the Aquifex aeolicus genome was
alignable to at least one of the other species. Furthermore, the alignment blocks
contained 4.97 out of the 6 species on average.

For the third dataset the following very distant bacterial genomes were se-
lected: Aquifex aeolicus, Borrelia burgdorferi B31, Burkholderia gladioli BSR3,
Escherichia coli K12 W3110, Geobacter sulfurreducens PCA, Helicobacter py-
lori PeCan4, Methylobacterium extorquens DM4 and Streptococcus mutans GS5.
This group is interesting due to diversity. Only a low number of genes conserved
in a syntenic range is expected. As in the second dataset Aquifex aeolicus was
selected as reference.

Despite the diversity of sequences more than half of the Aquifex aeolicus
genome (56.1%) could be aligned to at least one of the other sequences and

POMAGO 257

11.4% could be aligned to all other genomes. On average an alignment block
contains 5.61 out of 8 genomes. The alignment consisted of 808 blocks with an
average length of 1,104 nt spanning over 346 continuous intervals with an aver-
age length of 2,578 nt and a median of 1,844 nt. As expected, most of the blocks
covered only a single gene and the surrounding intergenic regions (98%). None
of the alignment blocks spanned more than four genes in a row.

4 Discussion

We compared our results with progressiveMauve and TBA, see Table 1. We
achieved the highest coverage of the reference genome within the alignment for
nearly all sets. The only exception was the closely related E. coli dataset where
POMAGO aligned 0.1% (4,933 nt) less than progressiveMauve. The advantage of
our new approach increased the more diverged the species sets became. POMAGO
obtained a coverage of 99.9% for the E. coli group, 83.4% for Aquificales group
and 56.1% for the ’Divergent Group’, compared to 100%, 37.0% and 29.4%, resp.
97.2%, 79.6% and 32.8% for progressiveMauve and TBA, respectively.

Table 1. Comparison of genome-wide alignments of closely related E. coli strains,
more distant Aquificales, and a set of extreme divergent species (’Divergent Group’)
calculated by progressiveMauve, TBA and POMAGO.

E. coli (15) Aquificales (6) Divergent Group (8)
pMauve TBA POMAGO pMauve TBA POMAGO pMauve TBA POMAGO

No. of blocks 86 1693 1554 343 2475 1202 49 1372 808
Coverage (%) 100 97.2 99.9 37.0 79.6 83.4 29.4 32.8 56.1
Block length (nt) 53949 2663 2982 1715 512 1104 9534 381 1104
Mean no. of seq. 14.83 13.62 13.91 5.05 4.70 4.97 3.96 4.92 5.61
Gap rate 0.43 0.01 0.04 0.50 0.07 0.09 0.71 0.10 0.14
Weighted SoP 12.21 13.19 13.20 2.70 2.78 2.81 1.92 2.68 2.71
CPU time (min) 183 597 1098 46 12 41 128 41 42

The three tools perform apparently different in terms of number and length of
produced alignment blocks. While progressiveMauve produces much less but
longer alignment blocks than POMAGO, the number of blocks from TBA is generally
higher but the blocks are shorter. Although POMAGO achieved a moderate number
of alignment blocks, the average block length was relatively high.

POMAGO was able to align on average 13.91 out of 15 organisms, 4.97 out of 6
and 5.61 out of 8, for the E. coli, Aquificales and ’Divergent Group’, respectively.
This is slightly more compared to TBA. For the E. coli and Aquificales dataset
more organisms are alignable using progressiveMauve. This is due to the fact
that progressiveMauve generates lots of gaps within the alignment. 43%, re-
spectively 50% and 71%, of the progressiveMauve alignment consisted of gaps
while TBA and POMAGO had only 7% to 14% gaps. POMAGO always had a slightly

258 N. Wieseke et al.

higher gap rate than TBA. The huge number of gaps in the progressiveMauve

alignment on the other hand results in much less but longer alignment blocks.
In addition to coverage and fraction of gaps, we computed the length-weighted

Sum-of-Pairs score (WSoP) [20] to compare the quality of alignments:

σ =
1

n− 1

∑
x,y∈A

1

l(A)

l(A)∑
i=1

δ(xi, yi),

where δ(p, q) is Kronecker’s delta and l(A) denotes the length of alignment A.
For all datasets POMAGO outperformed the other tools in terms of the WSoP

score, although there is only a small difference between TBA and POMAGO.
While progressiveMauve tends to fill huge parts of the alignment with gaps

the alignments of TBA and POMAGO are quite similar. Especially, when aligning
very closely related sequences the differences are small, except that TBA is much
faster. On the other hand if the sequences are only distantly related, POMAGO
was able to align a much higher percentage of nucleotides (56.1%) with more
sequences (5.61) on average and with a better WSoP score (2.71), compared to
both other tools. In this case POMAGO clearly benefits from selecting orthologous
genes as anchor points and obtains a run time similar to TBA (42 minutes).

In general POMAGO consumed more CPU time in comparison to both other
tools. However, less than 5% of the runtime was used for the cleaning and com-
pletion steps. Faster methods than ClustalW may speed up the alignment step
and compensate this difference.

To evaluate the influence of the selected reference sequence on the alignment
quality we computed the alignments with each of the six genomes from the Aquif-
icales dataset as reference. The results are given in Table S1 in the supplement.
While the alignments are quite similar in terms of number of blocks (ranging
from 1,101 to 1,330), average block lengths (1,045 to 1,186), mean number of
sequences per alignment block (4.83 to 5.16), gap rate (0.07 to 0.12) and WSoP
score (2.77 to 2.95), there is a significant difference in the coverage (70.3% to
88.9%). This difference comes with no surprise, as the coverage of the reference
genome within the alignment mainly depends on the most closely related species
in the dataset. Therefore, selecting one of the closely related species S.azorense
and S.YO3AOP1 as reference results in the highest coverage.

Although different reference genomes are chosen, the same (cleaned) orthol-
ogy graph and hence the same anchors are used for the alignment. In turn, the
alignment of the coding sequences does not depend on the reference. When se-
lecting a different genome. However, alignment blocks can be divided or merged,
depending on the similarity ofintergenic regions to the reference sequence.

5 Conclusion

With POMAGO we present a multiple genome-wide alignment program for bacte-
ria. We used an orthology based graph obtained by Proteinortho, which was
extended and decomposed in order to obtain a biological meaningful alignment.

POMAGO 259

Protein-coding regions are aligned on nucleotide and amino acid level, whereas
intergenic regions are aligned on nucleotide level only. Additionally, we provide
the possibility of exchangeable methods. Therewith, intergenic alignments might
be performed with tools based on secondary RNA structure.

In terms of weighted SoP score POMAGO outperforms progressiveMauve and
even TBA, which we consider the reference alignment tool so far. We could show
that our approach delivers outstanding coverage while maintaining good block
lengths. This advantage scales with increasing phylogenetic distances. It appears
that with the use of synteny information POMAGO is most suitable for datasets
with distantly related species where orthologous sequences can be detected even
if the sequence similarity is quite small.

Further improvements in runtime are desirable when an application to eu-
karyotic species is intended. This is currently possible as well, but would take
rather long. Improvements can be conducted, e.g. by choosing different align-
ment methods. Also, several processing steps do not yet use multiple CPUs.
Moreover, an extension to handle introns correctly should improve the results
for these genomes. Additional extensions for repeats and pseudogenes are not
necessary as these are already covered by our method.

We plan to extend the orthology graph to not only contain nodes for coding
sequences but also for the intergenic regions. The additional nodes will be divided
into groups to differentiate between several types of sequences, including different
classes of ncRNAs. Each group should be aligned with a different method, e.g.
structure-based alignment using LocaRNA [22].

The POMAGO software and supplementary material is available at http://www.
rna.uni-jena.de/supplements/pomago.

Acknowledgements. This work was funded by the Carl-Zeiss-Stiftung, DFG
GRK-1384, MA5082/1-1 and MI439/14-1.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

2. Angiuoli, S.V., Salzberg, S.L.: Mugsy: fast multiple alignment of closely related
whole genomes. Bioinformatics 27(3), 334–342 (2011)

3. Blanchette, M., Kent, W.J., Riemer, C., Elnitski, L., Smit, A.F., Roskin, K.M.,
Baertsch, R., Rosenbloom, K., Clawson, H., Green, E.D., Haussler, D., Miller, W.:
Aligning multiple genomic sequences with the threaded blockset aligner. Genome
Res. 14(4), 708–715 (2004)

4. Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M.,
Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis,
N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B., Shao, Y.: The com-
plete genome sequence of Escherichia coli K-12. Science 277(5331), 1453–1462
(1997)

5. Boussau, B., Guéguen, L., Gouy, M.: Accounting for horizontal gene transfers ex-
plains conflicting hypotheses regarding the position of aquificales in the phylogeny
of bacteria. BMC Evol. Biol. 8, 272–272 (2008)

http://www.rna.uni-jena.de/supplements/pomago
http://www.rna.uni-jena.de/supplements/pomago

260 N. Wieseke et al.

6. Braga, M.D., Machado, R., Ribeiro, L.C., Stoye, J.: Genomic distance under gene
substitutions. BMC Bioinformatics 12(suppl. 9) (2011)

7. Bray, N., Pachter, L.: MAVID: constrained ancestral alignment of multiple se-
quences. Genome Res. 14(4), 693–699 (2004)

8. Brudno, M., Chapman, M., Göttgens, B., Batzoglou, S., Morgenstern, B.: Fast and
sensitive multiple alignment of large genomic sequences. BMC Bioinformatics 4,
66–66 (2003)

9. Burggraf, S., Olsen, G.J., Stetter, K.O., Woese, C.R.: A phylogenetic analysis of
Aquifex pyrophilus. Syst. Appl. Microbiol. 15(3), 352–356 (1992)

10. Chen, X., Tompa, M.: Comparative assessment of methods for aligning multiple
genome sequences. Nat. Biotechnol. 28(6), 567–572 (2010)

11. Darling, A.E., Mau, B., Perna, N.T.: progressiveMauve: multiple genome alignment
with gene gain, loss and rearrangement. PLoS One 5(6) (2010)

12. Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L., Graham,
D.E., Overbeek, R., Snead, M.A., Keller, M., Aujay, M., Huber, R., Feldman, R.A.,
Short, J.M., Olsen, G.J., Swanson, R.V.: The complete genome of the hyperther-
mophilic bacterium Aquifex aeolicus. Nature 392(6674), 353–358 (1998)

13. Dieterich, C., Wang, H., Rateitschak, K., Luz, H., Vingron, M.: CORG: a database
for COmparative Regulatory Genomics. Nucleic Acids Res. 31(1), 55–57 (2003)

14. Fitch, W.M.: Distinguishing homologous from analogous proteins. Syst. Zool. 19,
99–113 (1970)

15. Frith, M.C., Hamada, M., Horton, P.: Parameters for accurate genome alignment.
BMC Bioinformatics 11, 80–80 (2010)

16. Gruber, A.R., Findeiß, S., Washietl, S., Hofacker, I.L., Stadler, P.F.: RNAz 2.0:
improved noncoding RNA detection. Pac. Symp. Biocomput. 15, 69–79 (2010)

17. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A.,
McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D.,
Gibson, T.J., Higgins, D.G.: Clustal W and Clustal X version 2.0. Bioinformat-
ics 23(21), 2947–2948 (2007)

18. Lechner, M., Findeiss, S., Steiner, L., Marz, M., Stadler, P.F., Prohaska, S.J.: Pro-
teinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformat-
ics 12, 124–124 (2011)

19. Qi, Z.-H., Du, M.-H., Qi, X.-Q., Zheng, L.-J.: Gene comparison based on the repeti-
tion of single-nucleotide structure patterns. Computers in Biology and Medicine 42,
975–981 (2012)

20. Rose, D., Hertel, J., Reiche, K., Stadler, P.F., Hackermüller, J.: NcDNAlign: plausi-
ble multiple alignments of non-protein-coding genomic sequences. Genomics 92(1),
65–74 (2008)

21. Wang, X., Fu, Y., Zhao, Y., Wang, Q., Pedamallu, C.S., Xu, S.Y., Niu, Y.: Accurate
reconstruction of molecular phylogenies for proteins using codon and amino acid
unified sequence alignments (CAUSA). Nature Proceedings (2001)

22. Will, A., Joshi, T., Hofacker, I.L., Stadler, P.F., Backofen, R.: LocARNA-P: accu-
rate boundary prediction and improved detection of structural RNAs. RNA 18(5),
900–914 (2012)

Effect of Incomplete Lineage Sorting

on Tree-Reconciliation-Based Inference
of Gene Duplication

Yu Zheng and Louxin Zhang

Department of Mathematics, National University of Singapore,
10 Lower Kent Ridge, Singapore 119076

Abstract. Incomplete lineage sorting (ILS) gives rise to stochastic vari-
ation in the topology of a gene tree and hence introduces false duplication
events when gene tree and species tree reconciliation method is used for
inferring the duplication history of a gene family. We quantify the effect
of ILS on inference of gene duplication by examining the expected num-
ber of false duplication events inferred from reconciling a random gene
tree, which occurs with a probability predicted in coalescent theory, and
the given species tree. We computationally analyze the relationships be-
tween the number of false duplication events inferred on a branch and
its length in a species tree, and the relationships between the expected
number of false duplication events in a species tree and its topological
parameters. This study provides evidence that inference of gene duplica-
tion based on tree reconciliation was affected by ILS to a greater extent
on an asymmetric species tree than on a symmetric one. Our findings also
suggest that the bias caused by ILS in reconciliation-based inference of
gene duplication might not be negligible. Hence, when gene duplication
is inferred via tree reconciliation or any other method that takes gene
tree topology into account, the ILS-induced bias should be examined
cautiously.

1 Background

A gene tree is the phylogenetic tree of a family of homologous genes. A species
tree is the phylogenetic tree of a collection of species. In population genomics
and phylogenetics, it is important to distinguish gene trees and species trees, as
a gene tree reconstructed from the DNA sequences of the given gene family is
sometimes discordant with the species tree that contains it [31,33]. The incon-
gruence of gene trees and species trees can be caused by gene duplication and
loss, horizontal gene transfer, hybridization, or incomplete lineage sorting (ILS)
[17,21,29]. Accordingly, the relationships between gene trees and species trees
have been the focus of many studies over the past two decades [10,18]. Gene
trees have been used to estimate the species trees [8,12,19,20,22], to estimate
species divergence time [4] and ancestral population size [11,16,34], and to infer
the history of gene duplication [1,3,5,6,13,23,32].

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 261–272, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

262 Y. Zheng and L. Zhang

One popular approach for gene duplication inference is gene tree and species
tree reconciliation. It is formalized from the following fact: If the descendants
of a node in a gene tree are distributed in the same set of species as one of its
children, then the node corresponds to a gene duplication event [12,23]. Clearly,
this approach takes gene tree topology into account. If incorrect gene trees are
used, duplication events are often mis-inferred [14].

In a species tree, each internodal branch represents an ancestral population;
each internal node represents a time point at which the ancestral population split
into two subpopulations. It is assumed that there was no gene flow between the
subpopulations after split. When the population of each species is large, the DNA
sequences sampled from two species are more unlikely to have their common
sequence ancestor living at the moment that the most recent common ancestor
(MRCA) of the two species split; instead, the time back to the common sequence
ancestor is uncertain and typically longer than the time back to the MRCA of
the species. This evolutionary phenomenon is ILS or deep coalescence. Clearly,
ILS gives rise to considerable stochastic variations in gene tree topology [27,31],
implying that different unlinked loci might have different genealogical histories,
and different samplings might also lead to different gene tree topologies for the
same gene. Consider the two different gene tree topologies in Fig. 1. The gene
topology in red is concordant to the species tree; reconciling this gene tree and
the species tree does not infer any gene duplication events, whereas reconciliation
with the gene tree in green gives one (false) duplication event. Hence, ILS affects
gene duplication inference. To the best of our knowledge, the effects of ILS on
gene duplication inference has not been examined quantitatively although they
have been noticed for long time (see [21] for example).

The present paper examines quantitatively the effect of ILS on inference of
gene duplication. Here, we assume that no genetic exchange has occurred be-
tween unrelated species and there is no sequence error to facilitate our quantita-
tive study. Notice that the effects of horizontal gene transfer and hybridization
events on gene duplication inference have been studied by proposing general
evolutionary models to coordinate these events or by computational simulation
[2,9,36].

2 Results and Discussion

In our study, we shall consider only gene trees over single-gene families. In other
words, we assume only one gene is sampled from each species. Under such an
assumption, any inferred gene duplication event is a false one, and the gene tree
distribution can be computed using coalescent theory [7,27]. Accordingly, the
assumption greatly simplifies our discussion and allows us to find out crucial
connections between the effect of ILS and species tree topologies.

When calculating the probability that a gene tree is seen in the corresponding
species tree, we consider a simple coalescent model each species has a constant
diploid effective population size N during its entire existence and evolutionary
time of t generations equals T = t/(2N) coalescent time units [31].

Effect of Incomplete Lineage Sorting on Tree-Reconciliation-Based Inference 263

.

.

.

.

.
.

. .

A B C

A B C

A B C

Fig. 1. Schematic view of two different coalescent histories in a species tree.
The species tree (light blue) of three species is given in the left panel. DNA sequences
sampled from different individuals within a species may give different collapsed gene
trees (red and green, right panel) for a gene family. If the green gene tree is used, a
gene duplication event is inferred in the branch entering the species tree root and a
gene loss event is inferred in the lineage leading to C.

2.1 Measuring the Effect of ILS on Gene Duplication Inference

Consider a single-gene family F sampled from a set X of species. Let S be the
phylogeny over X . If no gene duplication occurred to the gene family during the
evolution of the species, the tree of the gene family has the same topology as S.
If ILS events have occurred, however, the gene tree reconstructed from the gene
sequences might be different from S. To quantify the effect of ILS on inference of
gene duplication for a gene family on S, we use the expected number D(S) (or
L(S)) of false gene duplication (or loss) events output from the lca reconciliation
of a random gene tree and S. For a gene tree G, we use cdup(G,S) (or c loss(G,S))
to denote the gene duplication (or loss) cost of the lca reconciliation between G
and S (Materials and Methods). Since cdup(G,S) = c loss(G,S) = 0 if G = S.
D(S) and L(S) are simply:

D(S) =
∑
G∈G

cdup(G,S)Pr[G | S], (1)

L(S) =
∑
G∈G

c loss(G,S)Pr[G | S], (2)

where G is the set of all possible gene tree topologies, and Pr[G | S] the probabil-
ity that G is the collapsed gene tree of a coalescent history of the sampled genes
from the species belonging to X (see Fig. 1 for an illustration of a coalescent
history and its collapsed gene tree).

Let H(G) be the set of all possible coalescent histories that give the gene tree
G. For each H ∈ H(G), we use Pr[H | S] to denote the probability that H occurs
in S. By definition, we compute Pr[G | S] by:

Pr[G | S] =
∑

H∈H(G)

Pr[H | S], (3)

where Pr[H | S] can be computed efficiently given H and S [7,35].

264 Y. Zheng and L. Zhang

2.2 The Case of Four Species

In the case of four species, there are only two different topologies

S1 = ((A,B) : t1, (C,D) : t2),

S2 = (((A,B) : τ1, C) : τ2, D),

in Newick phylogeny format (Fig. 2). For the sake of brevity, we use p(x, y) to
denote the parental node of two siblings x and y in each of these two species trees.
In S1, the evolutionary time of p(A,B) is t1 generations, whereas that of p(C,D)
is t2 generations. Let G be an arbitrary gene tree of a gene family. Consider the
lca reconciliation between G and S1. Any gene tree node is mapped to p(A,B) if
and only if its two children are mapped to A and B respectively (Materials and
Methods). This fact also holds for p(C,D). Therefore, false duplication events
can only be inferred on the branch entering the root in S1. Set Ti = ti/(2N) for
i = 1, 2. By calculating the distribution of the gene trees [24,27], we obtain:

D(S1) =
2

3
(e−T1 + e−T2), (4)

L(S1) = 2(e−T1 + e−T2) +
2

9
e−(T1+T2) (5)

from Eqn. (1) and (2).
Now, we switch to consider S2. Setting T̄i = τi/(2N) for i = 1, 2, we have:

D(S2) =
2

3

(
e−T̄1 + e−T̄2

)
− 1

3
e−(T̄1+T̄2) +

5

18
e−(T̄1+3T̄2), (6)

L(S2) = 2
(
e−T̄1 + e−T̄2

)
− 1

3
e−(T̄1+T̄2) +

5

6
e−(T̄1+3T̄2). (7)

Since e−x < 1 for any x > 0, we have:

D(S1) < 1
1

3
and L(S1) < 4

2

9
;

D(S2) < 1
5

18
and L(S2) < 4

1

2
.

If all branches have equal length (i.e. T1 = T2 = T̄1 = T̄2 = T), D(S1) ≥ D(S2)
for any T . However, L(S1) ≥ L(S2) only if T ≥ 1

2 ln(3/2).

A B C D A B C D

t1
t2

τ1

τ2

Fig. 2. Two topologies S1 (left) and S2 (right) of the species trees of 4 species

Effect of Incomplete Lineage Sorting on Tree-Reconciliation-Based Inference 265

Assume S1 and S2 are ultrametric and have the same height. We further
assume that T1 = T2 = 2T and T̄1 = T̄2 = T , implying that τ1 + τ2 = t1 = t2
and that A and B diverged at the same time in both trees. Then,

D(S1) =
4

3
e−2T and L(S1) = 4e−2T +

2

9
e−4T;

D(S2) =
4

3
e−T − 1

3
e−2T +

5

18
e−4T and L(S2) = 4e−T − 1

3
e−2T +

5

6
e−4T.

Using numerical computation, we obtained D(S1) < D(S2) only if T > 0.0649,
but L(S1) < L(S2) for any T . This analysis suggests that the effect of ILS is
closely related to species tree structure.

2.3 Effect Analysis on a Drosophila Species Tree

Genome-wide analysis provides strong evidence for the prevalence of ILS events
in Drosophila evolution [25]. Here, we examined the expected number of false
duplication events caused by ILS in the phylogeny of 12 Drosophila species [15],
in which evolutionary time is dated for all branches. Since the effective popula-
tion size N for the Drosophila species is unknown, we considered four different
effective population sizes (2 × 106, 6 × 106, 10 × 106, and 14 × 106) and set the
generation time to be 1/10 years [25]. The expected numbers of false duplication
events caused by ILS for different effective population sizes are plotted (Fig. 3).
Here, we point out that our conclusion does not depend on the specific effective
population sizes we used.

Since only one gene is sampled from the population of each species, no gene
duplication is inferred on branches connecting to the leaves. In other words,

A B

Effective population size N (in million)

D0

D4

D2

D5
D6

D1
D3

D. virillis
D. mojavensis

D. willistoni
D. grimshawi

D. persimillis
D. pseudoobscura
D. ananassae

D. melanogaster

D. sechellia
D. simulans

D. erecta
D. yakuba S3

S1

S0

S2

S6

S4

S5

M
ea

n
ge

ne
 d

up
lic

at
io

n
no

.

Fig. 3. Effect analysis for a Drosophila species tree. (A). A tree of 12 Drosophila
species given in [15]. All the branches are drawn in proportion to evolutionary time.
False duplication events caused by ILS can only be inferred on seven branches that
enter S0–S6 respectively for single gene families. (B). The expected number Di of false
gene duplication events on the branch entering Si is plotted against the effective pop-
ulation size N , with the generation time being set to 1

10
years. Four different effective

population sizes (2 × 106, 6 × 106, 10 × 106 and 14 × 106) were examined. It shows
that the number of false gene duplication events on a branch correlates largely with its
evolutionary time.

266 Y. Zheng and L. Zhang

false gene duplication events can only be inferred on the seven branches that
are denoted by their end nodes Si (0 ≤ i ≤ 6) (Fig. 3A). The expected total
number of false gene duplication events in the tree can range from 0.0534 to
1.7663 for each of the selected effective population sizes. Let Di be the expected
number of false gene duplication events on the branch Si for each i. Although
the exact values of these Di are different for the different effective population
sizes, their relative ranks remain almost the same, correlating well with the
branches’ evolutionary time. For instance, D0 has the largest value for each
effective population size. This is because the branch entering the root is assumed
to be long enough that all the lineages coexisting at the moment that the MRCA
of all the extant species split will coalesce on it. For the longest branch entering
S4, D4 is the second largest for effective population sizes of 10 and 14 million,
and the third largest for other sizes.

Another finding is that on the branches close to the root, the expected number
of false gene duplication events is relatively large. For example, for the shortest
branch S1, D1 is not the smallest; instead, it is larger than D3, probably due to
the closeness of S1 to the tree root. Similarly, branch S6 is longer than S2, but
D6 is smaller than D2 for each effective population size because S6 is closer to
the tree root.

We now switch to 6698 gene trees in the Drosophila species tree [14]. We in-
ferred gene duplication events for the corresponding gene families by reconciling
the gene trees and the species tree (Fig. 3A). In total, we inferred 10,264 gene
duplication events that are distributed on the seven branches as: 1.8% (S3),
6.5% (S0), 7.4% (S2), 8.0% (S5), 15.1% (S1), 20.5% (S6) and 40.6% (S4). Such
a distribution is not quite consistent with the computational analysis presented
above. The proportion of inferred duplication events on the branches entering
S0 and S2 is significantly lower than what the analysis suggests, whereas those
on branches entering S1 and S6 are much higher. Possible reasons for this are ei-
ther because sequence sampling and alignment errors influenced gene tree recon-
struction, leading to incorrect topology for some gene trees, or because effective
population size varies for different ancestral species. At this stage, we are unable
to assess the effect of these factors, as the estimation of ancestral population
sizes remains as a challenging problem.

2.4 The Upper Bound of D(S) and L(S)

To interrogate the impact of species tree topology on the effect of ILS for in-
ference of gene duplication, we considered 10 ultrametric tree topologies over
10 species (Fig. 4). In each of the 5 asymmetric species trees, the two subtrees
rooted at the children of the root are linear trees. In each of the 5 symmetric
trees, the subtrees are balanced binary trees instead.

We define the height of a ultrametric species tree to be the coalescent time
of a path from the root to a leaf, measured in coalescent time units. D(S) and
L(S) for these 10 topologies with heights of 2 and 10 units are respectively
presented in two panels in Fig. 4. Although each path from the root to a leaf
has the same evolutionary time, the number of branches contained in each path

Effect of Incomplete Lineage Sorting on Tree-Reconciliation-Based Inference 267

a b c d e f g h i j a b c d e f g h i j

a b c d e

f g h i j

Fig. 4. D(S) and L(S) for asymmetric topologies (first row) and symmetric
topologies (second row). Branches in each of 10 ultrametric topologies are drawn
in proportion to their length. In the bottom row, the left and right plots are drawn to
different scales for the topologies of heights 2 and 10, respectively. In each plot, the
white and black bars represent L(S) and D(S), respectively.

varies. For each leaf, we define its depth to be the number of branches in the
unique path from it to the root. Although each path from the root to a leaf
has the same evolutionary time, different leaves may have different depths. The
Sackin index of a species tree is defined as the average depth of a leaf in the tree
[28]. The ten tree topologies listed in the figure have the following Sackin indexes:

Tree a b c d e f g h i j

Sackin index 5.4 4.7 4.2 3.9 3.8 3.9 3.8 3.5 3.4 3.4

Hence, our experiments suggest that:

– D(S) and L(S) increase with the Sackin index of a species tree S;
– Asymmetric trees have a larger D(S) and L(S) than symmetric ones of the

same height.

In [7], the authors studied the probability distribution of all the gene trees in
a species tree over 5 species. Since our study focuses the mean duplication and
gene loss costs of a gene tree defined in (1) and (2), the facts reported here are
not direct consequences of those reported in [7].

268 Y. Zheng and L. Zhang

Size of the species tree S

• D(S)
• L(S)

M
ea

n
ge

ne
 d

up
lic

at
io

n
no

.

Fig. 5. Regression of D(S) and L(S). Given the size of S, D(S) varies with the
topology of S in a narrow range, whereas L(S) varies in a wide range. For each size,
we generated 20 random species trees in the Yule model.

It is natural to ask to what extent ILS influences gene duplication inference.
To answer this question, we compute the limit of D(S) and L(S) for an arbitrary
ultrametric species tree S by allowing the branches of S to be extremely short.
Fix the effective population size for each branch of S. When all branches of S
become very short, two lineages are unlikely to coalesce in any branch below the
tree root; in other words, there is a high probability that any pair of lineages will
coalesce in the branch entering the root. Therefore, in the limit case, for each
gene tree G:

Pr[G | S] ∼
∑

H∈H′(G)

Pr[H | S],

where H′(G) is the set of the coalescent histories of n lineages whose collapsed
gene tree is G in the root branch. Based on this fact, we computed the limit
of D(S) and L(S) for 20 random species tree for each size (i.e. the number of
species) from 4 to 10 (Fig. 5). We found that D(S) varies in a narrow range
for each tree size and linearly increases with species tree size. However, L(S)
changes in a different manner. First, L(S) varies in a wide range for a fixed
species tree size. Secondly, although L(S) also fits a linear function for the tree
size in the range of 4 to 10, it remains unclear if it grows linearly or not because
of its wide range for a fixed tree size.

3 Conclusion

ILS introduces stochastic variation into the topology of the gene tree of a gene
family. For the first time, we have quantified the effect of ILS on gene duplication
inference by examining the expected number of false gene duplication events
inferred from reconciling a random gene tree and the species tree that contains
it. In this preliminary study, we have also analyzed the connection between the

Effect of Incomplete Lineage Sorting on Tree-Reconciliation-Based Inference 269

topological parameters of the corresponding species tree and the effect of ILS on
gene duplication inference.

One of our findings is that inference of gene duplication based on tree recon-
ciliation was affected by ILS to a greater extent on an asymmetric species tree
than on a symmetric one. Considering gene duplication events arising from ILS
on different species tree branches separately, we also found that the longer an in-
ternodal branch is, the more likely gene duplication events are to be mis-inferred
on it. Additionally, gene duplication events are more likely to be mis-inferred on
a branch close to the species tree root.

In analyzing the limit of D(S) and L(S) for a species tree S when its branches
are extremely short, we found that D(S) increases linearly with the species tree
size in the range of 4 to 10. This fact indicates that D(S) increases with |S|,
the size of S in general and hence it is not bounded above. It also raises a the-
oretical problem: D(S) ≤ 0.6|S|? Since L(S) ≥ 3D(S) for a species tree [37],
L(S) is not bounded above by a constant if D(S) is not. Our findings imply that
the bias caused by ILS in reconciliation-based gene duplication inference is not
negligible. Therefore, when gene duplication is inferred via tree reconciliation or
any other method that takes gene tree topology into account, the ILS-induced
bias should be examined cautiously. Alternatively, one may use a unified recon-
ciliation approach that considers gene duplication, loss and ILS simultaneously
[26,30].

Finally, we remark that ILS also affect the gene trees for genes which are from
different genera. How much ILS is expected to affect gene duplication inference
for gene families cross different genera is definitely a research topic for future
study.

4 Material and Methods

4.1 Computing the Gene Tree Distribution in a Species Tree

The probability that a gene tree occurs in a given species tree is computed by
Eqn. (3). For the purpose of computing the gene tree distribution in a species
tree, COAL is too slow to be used, although it has many useful features [7]. Our
analysis used a home-made computer program implemented in C. It speeds up
computation via the dynamic programming technique, which had also been used
by Wu in STELLS [35]. Presently, it allows us to examine the effect of ILS on
gene duplication inference for species trees of up to 12 species. For the case of
12 species, one needs to consider about 13.7 billion gene trees for the analysis.

4.2 Gene Duplication Inference

Consider a collection X of extant species. The species tree of the given species
is a rooted tree in which each leaf uniquely represents (and hence is labeled by)
an extant species. Here, we further assume species trees are fully binary and
branch-weighted. Therefore, in a species tree, each non-leaf node has exactly

270 Y. Zheng and L. Zhang

two children; each internodal branch represents an ancestral species and has the
evolutionary time of the ancestral species as its length.

For a gene family sampled from X , its gene tree is a rooted tree in which each
leaf represents a gene and is labelled by the species where the gene is found.
Since the gene family is assumed to have one gene sampled from each species,
the gene tree is uniquely leaf-labelled in our study.

Let S be the species tree ofX and let G be a binary gene tree for a gene family
F over X . For any two nodes x, y of S, we use lca(x, y) to denote the MRCA
of x and y in S. The lca reconciliation R between S and G is a node-to-node
mapping from V (G) to V (S) defined as:

R(g) =

{
the unique leaf in S that has the same label as g, if g is a leaf;
lca (R(g1),R(g2)) , otherwise,

for any gene tree node g, where g1 and g2 are the children of g.
The duplication history of F can be inferred through the lca reconciliation R

[12,23]. For a non-leaf node g of G, if R(c(g)) = R(g) for some child c(g) of g,
then a duplication event is inferred in the branch entering R(g) in S.

The number of the gene duplication events inferred by using the lca reconcil-
iation is denoted by cdup(G,S). All the inferred gene duplication events form a

putative duplication history of F in which some genes might become lost. The
number of gene loss events assumed in the gene duplication history is computed
as follows.

For any two nodes s and t such that s is below t in S, we write s ⊂ h ⊂ t to
denote that h is a node in the path from t to s for a node h. We define:

l(s, t) = |{h ∈ S | s ⊂ h ⊂ t}|.

Note that l(s, t) is equal to the number of lineages off the evolutionary path from
t to s. For a non-leaf node g with children g1 and g2 of G, define:

l(g) =

⎧⎨⎩
0, if R(g) = R(g1) = R(g2),
l(R(g1),R(g2)) + 1, if R(lg) ⊂ R(g) = R(rg),
l(R(g1),R(g)) + l(R(g2),R(g)), if R(g1) ⊂ R(g) ⊃ R(g2).

The number of genes that have to be assumed to be lost in the inferred dupli-
cation history is equal to

∑
g∈G l(g), denoted by c loss(G,S) and called the gene

loss cost of the lca reconciliation between G and S.
In this work, we used our computer program to compute the gene duplication

and loss costs for a gene tree and a species tree [38].

Acknowledgements. The work was supported by Singapore AcRF Tier-2
Grant R-146-000-134-112.

Effect of Incomplete Lineage Sorting on Tree-Reconciliation-Based Inference 271

References

1. Åkerborg, Ö., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous bayesian
gene tree reconstruction and reconciliation analysis. Proc. Natl. Acad. Sci. U. S.
A. 106(14), 5714–5719 (2009)

2. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation prob-
lem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12),
i283–i291 (2012)

3. Berglund-Sonnhammer, A.C., Steffansson, P., Betts, M.J., Liberles, D.A.: Optimal
gene trees from sequences and species trees using a soft interpretation of parsimony.
J. Mol. Evol. 63(2), 240–250 (2006)

4. Cann, R.L., Stoneking, M., Wilson, A.C.: Mitochondrial DNA and human evolu-
tion. Nature 325(6099), 31–36 (1987)

5. Chauve, C., El-Mabrouk, N.: New perspectives on gene family evolution: Losses in
reconciliation and a link with supertrees. In: Batzoglou, S. (ed.) RECOMB 2009.
LNCS, vol. 5541, pp. 46–58. Springer, Heidelberg (2009)

6. Chen, K., Durand, D., Farach-Colton, M.: Notung: a program for dating gene
duplications and optimizing gene family trees. J. Comput. Biol. 7(3-4), 429–447
(2000)

7. Degnan, J.H., Salter, L.A.: Gene tree distributions under the coalescent process.
Evolution 59(1), 24–37 (2005)

8. Doyle, J.J.: Gene trees and species trees: molecular systematics as one-character
taxonomy. Syst. Botany 17, 144–163 (1992)

9. Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry,
V.: An Efficient Algorithm for Gene/Species Trees Parsimonious Reconciliation
with Losses, Duplications and Transfers. In: Tannier, E. (ed.) RECOMB-CG 2010.
LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010)

10. Edwards, S.V.: Is a new and general theory of molecular systematics emerging?
Evolution 63(1), 1–19 (2008)

11. Edwards, S.V., Beerli, P.: Perspective: gene divergence, population divergence,
and the variance in coalescence time in phylogeographic studies. Evolution 54(6),
1839–1854 (2000)

12. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.:
Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by
cladograms constructed from globin sequences. Syst. Biol. 28(2), 132–163 (1979)

13. Górecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theor. Com-
put. Sci. 359(1), 378–399 (2006)

14. Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for
vertebrate genome evolution. Genome Biol. 8(7), R141 (2007)

15. Hahn, M.W., Han, M.V., Han, S.G.: Gene family evolution across 12 Drosophila
genomes. PLoS Genetics 3(11), e197 (2007)

16. Hey, J., Nielsen, R.: Multilocus methods for estimating population sizes, migra-
tion rates and divergence time, with applications to the divergence of Drosophila
pseudoobscura and D. persimilis. Genetics 167(2), 747–760 (2004)

17. Keeling, P.J., Palmer, J.D.: Horizontal gene transfer in eukaryotic evolution. Nat.
Rev. Genet. 9(8), 605–618 (2008)

18. Knowles, L.L., Kubatko, L.S.: Estimating Species Trees: Practical and Theoretical
Aspects. Wiley-Blackwel, New Jersey (2010)

19. Liu, L., Yu, L., Kubatko, L., Pearl, D.K., Edwards, S.V.: Coalescent methods for
estimating phylogenetic trees. Mol. Phylogenet. Evol. 53(1), 320–328 (2009)

272 Y. Zheng and L. Zhang

20. Ma, B., Li, M., Zhang, L.X.: From gene trees to species trees. SIAM J. Com-
put. 30(3), 729–752 (2000)

21. Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)
22. Maddison, W.P., Knowles, L.L.: Inferring phylogeny despite incomplete lineage

sorting. Syst. Biol. 55(1), 21–30 (2006)
23. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations

among genes, organisms, and areas. Syst. Biol. 43(1), 58–77 (1994)
24. Pamilo, P., Nei, M.: Relationships between gene trees and species trees. Mol. Biol.

Evol. 5(5), 568–583 (1988)
25. Pollard, D.A., Iyer, V.N., Moses, A.M., Eisen, M.B.: Widespread discordance of

gene trees with species tree in Drosophila: evidence for incomplete lineage sorting.
PLoS Genet. 2(10), e173 (2006)

26. Rasmussen, M.D., Kellis, M.: Unified modeling of gene duplication, loss, and coa-
lescence using a locus tree. Genome Research 22(4), 755–765 (2012)

27. Rosenberg, N.A.: The probability of topological concordance of gene trees and
species trees. Theor. Popul. Biol. 61(2), 225–247 (2002)

28. Sackin, M.J.: Good and bad phenograms. Syst. Zool. 21, 225–226 (1972)
29. Sang, T., Zhong, Y.: Testing hybridization hypotheses based on incongruent gene

trees. Syst. Biol. 49(3), 422–434 (2000)
30. Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring du-

plications, losses, transfers and incomplete lineage sorting with nonbinary species
trees. Bioinformatics 28(18), i409–i415 (2012)

31. Takahata, N.: Gene genealogy in three related populations: consistency probability
between gene and population trees. Genetics 122(4), 957–966 (1989)

32. Wehe, A., Bansal, M.S., Burleigh, J.G., Eulenstein, O.: Duptree: a program for
large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics 24(13),
1540–1541 (2008)

33. Wong, K.M., Suchard, M.A., Huelsenbeck, J.P.: Alignment uncertainty and ge-
nomic analysis. Science 319(5862), 473–476 (2008)

34. Wu, C.I.: Inferences of species phylogeny in relation to segregation of ancient poly-
morphisms. Genetics 127(2), 429–435 (1991)

35. Wu, Y.: Coalescent-based species tree inference from gene tree topologies under
incomplete lineage sorting by maximum likelihood. Evolution 66, 763–775 (2012)

36. Yu, Y., Than, C., Degnan, J.H., Nakhleh, L.: Coalescent histories on phylogenetic
networks and detection of hybridization despite incomplete lineage sorting. Syst.
Biol. 60(2), 138–149 (2011)

37. Zhang, L.X.: From gene trees to species trees ii: Species tree inference by mini-
mizing deep coalescence events. IEEE-ACM Trans. Comput. Biol. Bioinform. 8(6),
1685–1691 (2011)

38. Zheng, Y., Wu, T., Zhang, L.X.: Reconciliation of gene and species trees with
polytomies. arXiv preprint, arXiv:1201.3995 (2012)

Ellipsoid-Weighted Protein Conformation

Alignment

Hyuntae Na and Guang Song

Department of Computer Science, Iowa State University,
226 Atanasoff Hall, Ames, IA 50011, USA

{htna,gsong}@iastate.edu

Abstract. Conformation alignment is a critical step for properly inter-
preting protein motions and conformational changes. The most widely
used approach for superposing two conformations is by minimizing their
root mean square distance (RMSD). In this work, we treat the align-
ment problem from a novel energy-minimization perspective. To this end
we associate each atom in the protein with a mean-field potential well,
whose shape, ellipsoidal in general, is to be inferred from the observed
or computed fluctuations of that atom around its mean position. The
scales and directions of the fluctuations can be obtained experimentally
from anisotropic B-factors for crystal structures or computationally. We
then show that this “ellipsoid-weighted” RMSD alignment can be refor-
mulated nicely as a point-to-plane matching problem studied in com-
putational geometry. This new alignment method is a generalization of
standard RMSD and Gaussian-weighted RMSD alignment. It is heavily
weighted by immobile regions and immobile directions of the protein and
hence highlights the directional motions of the flexible parts. It has an
additional advantage of aligning conformations of proteins along their
preferred directions of motions and could be applied to order protein
conformations along its trajectory.

Keywords: conformation alignment, conformation change, root mean
square distance, ellipsoid-weighted alignment, ensemble alignment, point-
to-plane matching, computational geometry.

1 Introduction

Proteins are one of the fundamental units of living organisms. Besides exper-
imental structure determination using methods such as X-ray crystallography
or NMR, many computational methods have been developed with the aim to
predict protein structure from sequence, using homology modeling, threading,
or ab initio methods. Proteins are not static and protein dynamics plays an
important role in the realization of protein function. Therefore much effort has
been devoted also to study and understand protein dynamics and conformation
changes [1–6].

In the process of studying different conformations of a protein and under-
standing its dynamic behavior and conformation changes, one inevitably runs

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 273–285, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

274 H. Na and G. Song

into a fundamental question – what is the best way to align a set of conforma-
tions? The question is important since the interpretation of many conformation
changes depends to a large extent on the alignment method used.

The most widely-used method for aligning a pair of conformations or struc-
tures is based on the root mean-square distance (RMSD) [7, 8]. This purely
geometry-based approach is widely-used since its problem definition is the sim-
plest and efficient analytical solutions exist [9, 10]. Its major drawback is that
it treats all the atoms in a structure equally. To overcome this, a number of
methods have been developed over the years that identify only an appropriate
subset of the structures for alignment and structure comparison [11–13]. One
problem with many of these approaches is that the choices of the subsets are
somewhat arbitrary. To address this, other methods were developed that include
all the atoms in the alignment but different weights are assigned to the atoms
according to their mobility, such as in Gaussian-weighted RMSD alignment [14]
and alignment by the maximization of statistical likelihood [15–17].

In this work, we treat the alignment problem from a new energy-minimization
perspective and provide a set of alignment methods that are a generalization of
RMSD alignment. To this end we associate each atom in the protein with a mean-
field potential well, whose shape is ellipsoidal in general and is inferred from the
observed or computed fluctuations of the atom around its mean position. The
magnitudes and directions of the fluctuations can be obtained from experimental
anisotropic/isotropic B-factors for crystal structures or computationally. When
viewed from this perspective, the optimal alignment is achieved by minimizing the
energy cost to transit from one conformation to the other. This new set of align-
ment methods remove one major constraint of the RMSD alignment – that the
centers of mass of the conformations being aligned have to be overlapped. When
provided with right potential fields, these new energy-minimization based meth-
ods have the flexibility to align conformations at immobile regions (such as hinge
regions) or other places that are more appropriate for understanding the motion.

The paper is organized as follows. Section 2 describes a set of conformation
alignment methods, all of which are developed under the idea of energy min-
imization. These methods can be used to align a pair of conformations or an
ensemble of many conformations. In Section 3, the proposed methods are ap-
plied to a number of protein systems. The paper is concluded in Section 4.

2 Methods

RMSD alignment treats atoms in a protein as points and assumes that all points
contribute to the alignment equally. It is purely geometrical and the goal of
alignment is to minimize root mean squared distances between the points in the
two aligned conformations. It is the geometry-driven dissimilarity minimization
method.

However, proteins and atoms are physical objects and their displacements are
influenced by physical laws. If we associate each atom in the protein with a mean-
field potential well and assume the fluctuation of each atom is dictated by its poten-
tial, then the alignment problem can be rephrased as finding the optimal alignment

Ellipsoid-Weighted Protein Conformation Alignment 275

that minimizes the energy cost to transit from one conformation to the other. It is
noted that in such a mean-field potential model the correlated motions of atoms
are not considered, and each atommoves independently under the influence of the
potential field surrounding it. Under this formulation, RMSD alignment is a spe-
cial case where the mean field potential for each atom is identical and spherical.
Improvement overRMSDalignment can thus be achievedbyfinding a bettermean-
field potential model that is more suited for a given protein system. To this end,
we explore several possibilities for the potential model, and investigate their ad-
vantages in understanding protein conformation changes and motions.

2.1 Alignment by Energy Minimization

Let X be a conformation of a given protein with the coordinates of its atoms de-
noted by x1, ...,xn. Similarly, denote another conformation of the same protein as
Y . In this work, the mean-field potential well around each atom i is treated to be
ellipsoid-shapedwhose spring constant is represented by a spring tensorKi, a 3×3
matrix. The relative potential energy V (x,y,K), when an atom is positioned at
x at conformation X and y at conformation Y , can be computed by

V (x,y,K) =
1

2
(x− y)tK(x− y) , (1)

where vt denotes the transpose of a vector v. Under this formulation, the best
alignment between conformations X and Y is defined as finding the optimal
rotation R and translation b that transform X so that the energy cost to transit
from X to Y is minimized:

AlignPair(X,Y,K) = argmin
R,b

1

N

n∑
i=1

Vi(Rxi + b,yi,Ki) , (2)

where K represents a set of spring tensors, {K1, ...,Kn}.
Now to solve the alignment problem, One needs to: (i) provide appropriate

potential wells for all the atoms, in the form of Ki, 1 ≤ i ≤ n, (ii) solve the
minimization problem Eq. (2) once Ki are known. Depending on the choice of
Ki and thus the shape of the potential it represents, different algorithms may
be used to solve the minimization problem.

Fig. 1 illustrates the idea of viewing conformation alignment as an energy
minimization problem. The atoms in one conformation (conformation Y) are
represented by the cross marks, the mean-field potentials surrounding which are
depicted by the gray ellipses. The atoms in the other conformation (conformation
X , blue filled circles) are overlaid onto the mean-field potentials of conformation
Y in such a way that the total potential energy of X relative to Y is minimized.
The red open circles are another superposition of X onto Y , using RMSD align-
ment, which minimizes the root mean-square distance between atoms in X and
Y . The blue filled circles, though having a larger root mean square distance
to the cross marks than the read open circles, fall into places where the total
potential energy is the lowest.

276 H. Na and G. Song

Fig. 1. Comparison of the alignment by energy minimization with the RMSD align-
ment. Under the perspective of energy minimization, atoms at conformation X (repre-
sented by the blue filled circles) are overlaid onto the mean-field potentials surrounding
atoms at conformation Y (the black ’x’ marks) in such a way that the total potential
energy of X relative to Y is minimized. The contours of the mean-field potentials are
shown in gray ellipses. The red open circles are another superposition of X onto Y ,
using the standard RMSD alignment.

In this work, we have explored a few different models for the potential wells.
Common to all of these models, the magnitude of the potential surrounding each
atom is chosen to reflect, to some degree or other, that atom’s scale of flexibility.
The intuition is that atoms that have larger scale of fluctuations should have a
mean-field potential that is more flat, while atoms with small scale of fluctuations
should have a potential that increases sharply as they deviate from their mean
positions. Apparently, choices of potential models are not limited to what we
explore here. For some alignment cases, other potential models may be more
appropriate.

In the following section, we present the details of several potential models Ki.
Their implementations are presented in Section 2.3.

2.2 Potential Models for Alignment

Spherical Potentials. As aforementioned, RMSD alignment is a special case
under the current formulation, where the potential for every atom is identical
and its spring tensor is an identity matrix, i.e., Ki = I. Indeed, under such a
potential, Eq. (2) becomes

AlignPair(X,Y,K) = argmin
R,b

1

n

n∑
i=1

(Rxi + b− yi)
2 , (3)

which indeed is the same as the standard RMSD alignment.

Alignment by Temperature B-factor. In reality each atom in a protein has differ-
ent scale of flexibility, as commonly observed in X-ray crystallography B-factors.
Taking this into consideration, we could use a spherical mean-field potential
whose Ki is inversely proportional to Bi, the temperature factor of ith atom.
The temperature factor, or the mean-square fluctuations, of each atom can be ob-
tained directly from the PDB files for proteins determined by X-ray crystallogra-
phy, or computationally, from the hessian matrix [3]. Each isotropic temperature

Ellipsoid-Weighted Protein Conformation Alignment 277

factor represents a spherical fluctuation and is proportional to the mean-square
fluctuations of the atom (〈u2

i 〉 = Bi/8π
2). Thus, define a spherical potential

whose spring constant Ki,iso is

Ki,iso =
1

Bi
· I , (4)

where I is the 3× 3 identity matrix. Under such a potential, Eq. (2) becomes

AlignPair(X,Y,K) = argmin
R,b

1

n

n∑
i=1

(Rxi + b− yi)
2

Bi
, (5)

which is a weighed RMSD alignment and whose solution can be easily obtained
by using the same Kabsch’s algorithm [7].

Ellipsoidal Potentials. There are increasingly more protein structures that are
determined at atomic or near-atomic resolutions by X-ray crystallography. And
for many of these structures, anisotropic B-factors have been reported in a 3× 3
symmetric matrix form, which represents an anisotropic, ellipsoidal fluctuation.
They thus include not only the magnitudes of atomic fluctuations but also their
directional preference.

Let Ui be the 3 × 3 symmetric positive definite matrix that represents the
anisotropic mean-square fluctuation of the ith atom. Now define a mean-field
potential whose Ki is inversely proportional to the scale of the anisotropic fluc-
tuations. Specifically, let Ki be the inverse matrix of Ui:

Ki,ani = U−1
i . (6)

Note that the isotropic thermal fluctuation is a special case of this. Since Ki is
ellipsoid-shaped in general, the alignment problem can no longer be solved by
Kabsch’s algorithm. Fortunately, the problem can be reformulated nicely as a
point-to-plane matching problem studied in computational geometry. The full
algorithm is given in Section 2.3.

Ensemble Alignment. For problems where an ensemble of conformations need
to be aligned, such as for an NMR ensemble, there exists another way to con-
struct the potential wells – that is by estimating the scale of fluctuations directly
from the structure variations existing in the ensemble. This is an iterative pro-
cess. First, the ensemble of conformations are initially aligned, for example, using
the RMSD alignment. This can be achieved by picking one reference structure
from the ensemble (which could be any of the conformations or the confor-
mation that is the closest to the geometrically-averaged mean structure of the
ensemble), and align the rest of the conformations to the reference structure
using pairwise RMSD alignment. Second, pseudo anisotropic B-factors are com-
puted from the aligned ensemble [18]. Then, the ensemble is realigned using the
pseudo anisotropic B-factors just computed and the anisotropy-weighted align-
ment method described above. The whole process is repeated until it converges
to a final alignment. The detailed implementation of this process is given in the
next section.

278 H. Na and G. Song

2.3 Implementations

Alignment Using Spherical Potentials. As aforementioned, the minimiza-
tion problem (Eq. (2)) with spherical potentials is the same to the weighted
RMSD alignment problem, with the weight factor of ith atom being 1/Bi (see
Eq. (5)). The optimal translation b can be determined using the weighted cen-
troids of X and Y : b =

∑n
i=1 (yi − xi)/(nBi). The optimal rotation matrix R

can be obtained by extending methods that use SVD [7, 9, 17] or the quater-
nion [19, 20].

Alignment Using Ellipsoidal Potentials. The minimization problem
(Eq. (2)) with ellipsoidal potentials (see Eq. (6)) seems a little intimidating
at the first glance. However, it turns out that this problem can be nicely re-
formulated into a point-to-plane alignment problem studied in computational
geometry. To do so, we first denote ui,j and λi,j as the jth eigenvector and
eigenvalue of Ki,ani, respectively, where 1 ≤ i ≤ n and 1 ≤ j ≤ 3. Using ui,j

and λi,j , Eq. (2) can be rewritten as follows:

AlignEllipsoid(X,Y,Kani) = argmin
R,b

n∑
i=1

3∑
j=1

λi,j(ui,j · (Rxi + b− yi))
2 , (7)

where Kani = {K1,ani, ...,Kn,ani}, and u · v is the dot product of two vectors u
and v.

Now let P(y,u) be the plane that contains a point y and whose unit normal
vector is u. Then the value (ui,j · (Rxi + b− yi))

2 in Eq. (7) can be thought of
as the squared distance from a transformed point Rxi+b to a plane P(yi,ui,j).
Thus, the minimization problem in Eq. (7) is the same as the point-to-plane
alignment problem from 3n points to 3n planes, with weight factors λi,j . This
problem can be solved using the well-known ICP (iterative closest point) [21]
algorithm.

Algorithm 1 lists the steps to solve the minimization problem in Eq. (7) using
the ICP algorithm. In step 11, we use AlignSphere(P,Q,Λ) to find the best
superposition between two point sets P and Q with weight factors Λ (i.e., by
applying Kabsch’s algorithm). If we let k be the number of iterations needed to
update the transformation 〈R, b〉, the algorithm takes O(nk) computation time.

Ensemble Alignment. Denote by Ui,psu the pseudo anisotropic B-factor [18]
of ith atom in the ensemble, where 1 ≤ i ≤ n. The potential well Ki,ens is
determined in the same way as in Eq. (6), i.e., Ki,ens = U−1

i,ens. Let λi,j and
ui,j be the jth eigenvalue and eigenvector of the potential well Ki, respectively,
where 1 ≤ j ≤ 3. The minimization problem in Eq. (2) can be rewritten as
follows:

AlignEnsemble(X1,..., Xm)=argmin
R,b,Y

m∑
i=1

n∑
j=1

3∑
k=1

λj,k(uj,k ·(Rixi,j+bi−yj))
2, (8)

Ellipsoid-Weighted Protein Conformation Alignment 279

Algorithm 1. AlignEllipsoid(X,Y,Kani)

1: Determine eigenvalues λi,1, λi,2, λi,3 and eigenvectors ui,1, ui,2, ui,3 of Ki,ani for
all i ∈ {1, 2, ..., n}

2: 〈R, b〉 ← 〈I, (0, 0, 0)t〉
3: Λ ← (λ1,1, λ1,2, λ1,3, λ2,1, ..., λn,3)
4: repeat
5: for all (i, j) ∈ {1, 2, ..., n} × {1, 2, 3} do
6: pi,j ← Rxi + b
7: qi,j ← point in P(yi,ui,j) closest to pi,j

8: end for
9: P ← (p1,1,p1,2,p1,3,p2,1, ...,pn,3)
10: Q ← (q1,1, q1,2, q1,3, q2,1, ..., qn,3)
11: 〈R′, b′〉 ← AlignSphere(P,Q,Λ)
12: 〈R, b〉 ← 〈R′R, R′b+ b′〉
13: until 〈R, b〉 no longer changes

where xi,j is the coordinate of jth atom at conformation Xi, yj is the coordinate
of jth atom at the mean conformation Y , and Ri (and bi) are the rotation (and
translation) needed to align Xi to Y .

To solve Eq. (8), we iteratively update rotation R, translation b, and the

mean conformation Y . Denote by R
(k)
i the rotation for the ith conformation Xi

at the kth iteration. Similarly are b
(k)
i and Y (k) defined. Given the values at kth

iteration, the new mean value y
(k+1)
i that minimizes the summations in Eq. (8)

can be determined as follows:

y
(k+1)
i =

1

m

m∑
j=1

(R
(k)
i xj,i + b

(k)
i) . (9)

Subsequently, the rotation R
(k+1)
i and translation b

(k+1)
i can be determined,

using the ellipsoid-weighted alignment, as follows:

〈R(k+1)
i , b

(k+1)
i 〉 = AlignEllipsoid(Xi, Y

(k+1),Ki,ens) , (10)

where Ki,ens is the potential well determined from the pseudo anisotropic B-
factors [18]. The iteration continues until it converges to the final solution.

This iterative optimization requires an initial value for the mean conformation
Y (0), which is set to be the first conformation X1 of the ensemble. The iteration
is repeated until Y (k) converges. Algorithm 2 outlines the procedure for aligning
an ensemble of conformations, where AlignRMSD(X,Y) stands for the standard
RMSD alignment.

3 Results

The ensemble alignment described in Algorithm 2 is tested over 196 NMR en-
sembles that contain more than 5 conformations. Among 196 ensembles, about

280 H. Na and G. Song

Algorithm 2. AlignEnsemble(X1, X2, ..., Xm)

1: Y ← X1

2: 〈Ri, bi〉 ← AlignRMSD(Xi, Y) ∀1 ≤ i ≤ m

3: repeat
4: determine Y according to (9)
5: determine pseudo anisotropic B-factor and their inverseKi,ens ∀1 ≤ i ≤ m

6: 〈Ri, bi〉 ← AlignEllipsoid(Xi, Y,Ki,ens) ∀1 ≤ i ≤ m
7: until Y converges

half of them show distinct alignment differences between our method and the
standard RMSD alignment. We present the results for a few selected ensembles
here, while the rest of the results are given at the following website: http://
www.cs.iastate.edu/~gsong/CSB/Alignment/list.html.

3.1 Identify Immobile Regions in Structures

Fig. 2 shows that the ellipsoid-based ensemble alignment is able to identify the
immobile regions of the structure and renders the motions of the flexible parts
more pronounced. Fig. 2(a) shows the 10 conformations of an NMR ensemble as
they are initially superimposed using the standard RMSD alignment. The initial
alignment is iteratively refined using the proposed ensemble alignment method,
until it converges to the final alignment displayed in (b).

(a) (b)

Fig. 2. Immobile regions determined by the ensemble alignment. The 10 conformations
in an NMR ensemble of a long-sarafotoxin protein (pdbid: 2LDE) are aligned using the
proposed ensemble alignment and all of its 384 atoms. In (a), the cartoon image of
the 10 conformations that are initially superimposed using the RMSD alignment. The
colors of the cartoon image represent the mean square fluctuations of backbone atoms,
ranging from blue (small fluctuation, ∼ 0.40Å2) to red (large fluctuations, ∼ 12Å2).
The final superposition by the ensemble alignment is displayed in (b) using the same
color scheme, with a pronounced rigid region in blue.

http://www.cs.iastate.edu/~gsong/CSB/Alignment/list.html
http://www.cs.iastate.edu/~gsong/CSB/Alignment/list.html

Ellipsoid-Weighted Protein Conformation Alignment 281

The result from RMSD alignment in Fig. 2(a) are less informative, as the align-
ment is greatly skewed by the protein’s flexible tails. The result from iterative
ensemble alignment, as shown in Fig. 2(b), on the other hand, clearly identifies a
stable secondary structure (a helix) in themiddle.With a consistent core as the ref-
erence frame, the tail motions become more pronounced and are more accurately
portrayed. A similar phenomenon has been observed by Damm and Clarson [14] in
aligning conformation pairs using Gaussian-weighted RMSD alignment.

3.2 Mine Directional Motion Tendency of a Protein from Its
Ensemble

Besides being able to align properly pairs of protein conformations and pro-
tein ensembles by assigning more weights to the immobile regions, our ellipsoid-
weighted alignment has the additional advantage of being capable of identifying
the directional motions of a protein.

��

��
�

(a) (b) (c)

Fig. 3. The loop motions of stromal cell-derived factor-1 protein (pdbid: 2SDF, 30
conformations) as portrayed by the RMSD alignment (a), where no clear motion pat-
tern of the protein is visible, and by ellipsoid-weighted alignment (b), where it is clearly
seen that most of the protein motion takes place at the loops or the tails. The motion
tendency of the loop is then portrayed using ellipsoids in (c).

Fig. 3 shows the alignment results of stromal cell-derived factor-1 protein
using (a) standard RMSD and (b) our ellipsoid-weighted ensemble alignment
method. The alignment in (a) portrays the protein with a near-uniform scale
of fluctuations along its chain and with little visible motion pattern. On the
contrary, ellipsoid-weighted alignment shown in (b) recognizes that the protein
chain is mostly immobile except at the tails and the loop region. The anisotropic
mean-square fluctuations of the Cα in the loop region are drawn using ellipsoids
and shown in Fig. 3(c). The directions of the axes of these ellipsoids point towards
the probable motion directions of these residues. And in the case of this protein,
the ellipsoids clearly display the loop’s motion tendency: swinging up and down,
and to a lesser extent, in and out of the paper, with little tendency of stretching
away or pressing towards the body of the protein.

282 H. Na and G. Song

(a) (b) (c)

Fig. 4. Six intrinsic motions of the kDa receptor associated protein (pdbid: 1OV2,
39 conformations). (a) displays the backbones in gray lines, which are superimposed
using the ellipsoid-weighted alignment, and the anisotropic mean-square fluctuation of
Cα atoms in ellipsoids. The backbone is roughly divided into six segments due to the
difference in their motion patterns, which are colored with orange, blue, cyan, green,
red, or magenta. (b) and (c) show in an enlarged view two of these segments.

The ellipsoids of the anisotropic fluctuations present themselves as a way
to visualize the directional motions of a protein. In the following example, we
show how these ellipsoids can help display the motion tendency of secondary
structures also. Some of these motions appear to be screw-like, while others
sliding motions [22].

In Fig. 4(a), after applying ellipsoid-based alignment, the anisotropic fluctu-
ations of Cα atoms of the kDa receptor associated protein (pdbid: 1OV2) are
drawn using ellipsoids along its backbone. The backbone is roughly divided into
six segments due to the difference in their motion patterns. Two of these seg-
ments are further shown in (b) and (c) in an enlarged view. For the orange seg-
ment shown in Fig. 4(b), it is seen that the longest axes of most of the ellipsoids
lie along the direction of the backbone trace, thus displaying a screw-like motion
pattern. The blue portion in Fig. 4(c), on the other hand, displays a back and
forth sliding motion tendency along the direction marked by the arrows, prob-
ably due to the fact that it is being dragged along by the large fluctuations of
the nearby tail.

It is worth pointing out that eigenvectors-based decomposition methods such
as NMA (normal mode analysis) or PCA (principal component analysis) have
also been used to analyze collective motion tendencies existing in a structure or
in a structure ensemble. But usually it is difficult for them to capture, with a
single mode or a principal component, a localized screw-like motion or sliding
motion as displayed here.

4 Discussion and Conclusion

Protein conformation alignment is an essential step in understanding protein
motion and conformational changes. An appropriate alignment can help correctly
identify the nature of protein motion.

Ellipsoid-Weighted Protein Conformation Alignment 283

In this work, we treat the alignment problem from an energy-minimization
perspective. To this end we associate each atom in the protein with a mean-field
potential well, whose shape, ellipsoidal in general, is inferred from the observed
or computed fluctuations of that atom around its mean position. We show that
this “ellipsoid-weighted” RMSD alignment can be reformulated nicely as a point-
to-plane matching problem studied in computational geometry [23, 24]. This
new alignment method is a generalization of standard RMSD and Gaussian-
weighted RMSD alignments. It is able to identify and distinguish the immobile
regions of a protein from the flexible components. One end result of such an
alignment is a description of the anisotropic movements of the atoms in protein,
which are represented by ellipsoids. These ellipsoids present themselves as a way
to visualize the directional motions of the protein. We have shown that these
ellipsoids can help display not only the motion tendency of the loops or the tails,
but also that of the secondary structures, some of whose motions appear to be
screw-like, while others are sliding motions.

The functional processes of many proteins involve little overall structural
change but localized motions of a small piece of the structure, such as that of a
loop. The rest of the structure thus provides a reference frame for describing the
motions of the flexible part. Standard RMSD alignment aligns conformations at
the universal frame, using the center of mass as the origin, unwittingly assuming
the motion of the protein is always a motion of the whole protein. While this
may be the right choice for proteins that go through global conformation changes
as whole, for proteins with localized motions, RMSD alignment is not able to
provide the best reference frame for describing the conformation changes.

Our proposed alignment method, however, is able to correctly identify the im-
mobile portions of a protein and use them as the reference frame. As a result, the
motions of the flexible part(s) can be more clearly portrayed. Such an alignment
has a few advantages. First, by isolating the motions mostly to the tails or loops,
it identifies what are the key movable parts of the protein in its dynamic process.
Second, when the motions are isolated to a small part of a protein instead of
being expressed through the whole body, their behavior may be describable in a
lower dimension of space and may thus become more tractable to elastic network
model studies, using fewer modes [3, 25]. Lastly, since the ellipsoids provide a
description of the motion tendency, it is perceivable that such a method may be
used to order conformations along the directions of motions, or even to recon-
struct a trajectory from a number of isolated conformations. Another advantage
of formulating the alignment problem as an energy-minimization problem is that
this weighted RMSD measure is linearly proportional to the effective mean field
potential. Consequently, this alignment has the nice property that the effective
energy of a conformation is perfectly correlated with its weighted RMSD dis-
tance to the native state conformation. Such a weighted RMSD measure thus
may be useful for evaluating the quality of predicted structures.

284 H. Na and G. Song

Acknowledgments. The authors would like to thank Santhosh Vammi for valu-
able discussions. Funding from National Science Foundation (CAREER award,
CCF-0953517) is gratefully acknowledged.

References

1. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules.
Nat. Struct. Biol. 9, 646–652 (2002)

2. Tama, F., Sanejouand, Y.H.: Conformational change of proteins arising from nor-
mal mode calculations. Protein Eng. 14, 1–6 (2001)

3. Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.:
Anisotropy of fluctuation dynamics of proteins with an elastic network model.
Biophys J. 80, 505–515 (2001)

4. Song, G., Jernigan, R.L.: An enhanced elastic network model to represent the
motions of domain-swapped proteins. Proteins 63, 197–209 (2006)

5. Henzler-Wildman, K., Kern, D.: Dynamic personalities of proteins. Nature 450,
964–972 (2007)

6. Dror, R.O., Dirks, R.M., Grossman, J.P., Xu, H., Shaw, D.E.: Biomolecular simu-
lation: a computational microscope for molecular biology. Annu. Rev. Biophys 41,
429–452 (2012)

7. Kabsch, W.: Solution for Best Rotation to Relate 2 Sets of Vectors. Acta Crystal-
logr. A 32, 922–923 (1976)

8. Mclachlan, A.D.: Rapid Comparison of Protein Structures. Acta Crystallogr. A 38,
871–873 (1982)

9. Kabsch, W.: Discussion of Solution for Best Rotation to Relate 2 Sets of Vectors.
Acta Crystallogr. A 34, 827–828 (1978)

10. Coutsias, E.A., Seok, C., Dill, K.A.: Using quaternions to calculate RMSD. J.
Comput. Chem. 25, 1849–1857 (2004)

11. Khazanov, N.A., Damm-Ganamet, K.L., Quang, D.X., Carlson, H.A.: Overcoming
sequence misalignments with weighted structural superposition. Proteins 80, 2523–
2535 (2012)

12. Wriggers, W., Schulten, K.: Protein domain movements: Detection of rigid do-
mains and visualization of hinges in comparisons of atomic coordinates. Proteins-
Structure Function and Genetics 29, 1–14 (1997)

13. Irving, J.A., Whisstock, J.C., Lesk, A.M.: Protein structural alignments and func-
tional genomics. Proteins 42, 378–382 (2001)

14. Damm, K.L., Carlson, H.A.: Gaussian-weighted RMSD superposition of proteins:
A structural comparison for flexible proteins and predicted protein structures. Bio-
physical Journal 90, 4558–4573 (2006)

15. Theobald, D.L., Wuttke, D.S.: Empirical Bayes hierarchical models for regularizing
maximum likelihood estimation in the matrix Gaussian Procrustes problem. Proc.
Natl. Acad. Sci. U S A 103, 18521–18527 (2006)

16. Theobald, D.L., Wuttke, D.S.: THESEUS: maximum likelihood superpositioning
and analysis of macromolecular structures. Bioinformatics 22, 2171–2172 (2006)

17. Liu, Y.S., Fang, Y., Ramani, K.: Using least median of squares for structural
superposition of flexible proteins. BMC Bioinformatics 10, 29 (2009)

18. Yang, L., Song, G., Jernigan, R.L.: Comparisons of experimental and computed
protein anisotropic temperature factors. Proteins 76, 164–175 (2009)

Ellipsoid-Weighted Protein Conformation Alignment 285

19. Liu, P., Agrafiotis, D.K., Theobald, D.L.: Fast determination of the optimal rota-
tional matrix for macromolecular superpositions. J. Comput. Chem. 31, 1561–1563
(2010)

20. Horn, B.K.P.: Closed-Form Solution of Absolute Orientation Using Unit Quater-
nions. J. Opt. Soc. Am A 4, 629–642 (1987)

21. Besl, P.J., Mckay, N.D.: A Method for Registration of 3-D Shapes. IEEE T Pattern
Anal. 14, 239–256 (1992)

22. Gerstein, M., Krebs, W.: A database of macromolecular motions. Nucleic Acids
Res. 26, 4280–4290 (1998)

23. Chen, Y., Medioni, G.: Object Modeling by Registration of Multiple Range Images.
Image Vision Comput. 10, 145–155 (1992)

24. Low, K.-L.: Linear Least-Squares Optimization for Point-to-Place ICP Surface
Registration. Chapel Hill, University of North Carolina (2004)

25. Yang, L., Song, G., Jernigan, R.L.: How well can we understand large-scale protein
motions using normal modes of elastic network models? Biophys J. 93, 920–929
(2007)

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 286–297, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Construction of Uncertain Protein-Protein Interaction
Networks and Its Applications

Bihai Zhao1,2, Jianxin Wang1, Fang-Xiang Wu 1,3, and Yi Pan4

1 School of Information Science and Engineering, Central South University,
Changsha, 410083, China

2 Department of Information and Computing Science, Changsha University,
Changsha, 410003, China

3 Department of Mechanical Engineering and Division of Biomedical Engineering,
University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

4 Department of Computer Science, Georgia State University, Atlanta, GA 30302-4110, USA

Abstract. Recent developments in experiments have resulted in the publication
of many high-quality, large-scale protein-protein interaction (PPI) data.
Unfortunately, a significant proportion of PPI networks have been found to
contain false positives, which have negative effects on the further research of
PPI networks. We construct an uncertain protein-protein interaction (UPPI)
network, in which each protein-protein interaction is assigned with an existence
probability using the topology of the PPI network solely. Based on the
uncertainty theory, we propose the concept of expected density to assess the
density degree of a subgraph, the concept of the relative degree to describe
the relationship between a protein and a subgraph in a UPPI network. To verify
the effectiveness of the UPPI network, we propose a novel complex prediction
method named CPUT (Complex Prediction based on Uncertainty Theory). In
CPUT, the expected density combined with the absolute degree is used to
determine whether a mined subgraph from the UPPI network can be represented
as a core component with high cohesion and low coupling while the relative
degree is the criterion of binding an attachment protein to a core component to
form a complex. We employ CPUT and the existing competitive algorithms on
two yeast PPI networks. Experimental results indicate that CPUT performs
significantly better than the state-of-the-art methods.

Keywords: Protein-protein interaction, Uncertainty, Protein complex, Core-
attachment.

1 Introduction

Recent developments in experiments such as yeast two-hybrid [1], tandem affinity
purification [2] and mass spectrometry [3] have resulted in the publication of many
high-quality, large-scale PPI data. These data provide a stepping stone for finding
protein complexes, which are very important for understanding the cell’s functional
organization, to carry out their biological functions.

Unfortunately, a significant proportion of PPI networks obtained from these high-
throughput biological experiments have been found to contain false positives [4], due

 Construction of Uncertain Protein-Protein Interaction Networks and Its Applications 287

to the limitations of the associated experimental techniques and the dynamic nature of
protein interaction maps. The research [5] shows that for a filtered yeast two-hybrid
data set, the fraction of false positives has also been predicted to be of the order of
50%. These errors in the experimental PPI data will have negative effects on the
further study of PPI networks. Several computational approaches have been proposed
to predict protein interactions for false positive reduction in PPI networks. Numerous
approaches have been proposed using a variety of biological information [6, 7], some
others rely on statistical scoring functions [8, 9] to calculate the extent of similarity of
protein phylogenetic profiles, employ machine learning techniques [10, 11] to predict
PPIs or use support vector machines method [12] to construct supervised classifiers
for identifying interacting proteins.

To assess the reliability of high-throughput protein interactions, many
computational approaches have been proposed. Some methods are designed to
estimate the overall error rate of PPIs identified in yeast [13, 14]. Comparing
interaction data is difficult, because they are often derived under different conditions
and are presented in different format. Therefore, some more complicated approaches
try to assess the reliability of individual interactions [15, 16]. Several pieces of
genomic information such as gene annotations, gene expression etc. have been used in
these methods, while others use solely the topology of PPI networks.

In spite of the advances in these computational approaches and experimental
techniques, it is still impossible to construct an absolutely reliable PPI network. So,
for applications on PPI networks, such as functional module identifications [17, 18],
protein function predictions [19, 20], essential protein discoveries [21], protein
complexes detections [22, 23, 24, 25] etc, the tolerance of false positives is more
meaningful and important than the assessment of reliability or the reduction of false
positives. To improve the prediction accuracy, some algorithms take into account the
reliability of PPI networks and weight interactions in PPI networks. For example,
CDdistance [26] and FSWeight [27] are two measures calculated based on the number
of common neighbors of two proteins. They have been shown to perform well. Even
for these algorithms running on weighted PPI networks, the weight of interactions
usually represents the priority of proteins or interactions and the criterion of
describing a subgraph or a protein is still similar to the un-weighted algorithms.
Weighted degree is introduced into some methods [28, 29]. However, these methods
are not sufficient to deduce satisfactory conclusions when a large amount of protein
interaction data appears.

In this paper, we take into account the reliability of PPIs and construct an uncertain
protein-protein interaction (UPPI) network, in which the reliability of each interaction is
represented as a probability. Great contribution of our work is the proposed concepts for
assessing the density of a subgraph and the relationship between a protein and a
subgraph in a UPPI network based on the uncertainty theory. To test the effectiveness of
the UPPI network, we propose a novel complex prediction method named CPUT
(Complex Prediction based on Uncertainty Theory). We compare our CPUT approach
to a representative set of state-of-the-art complex prediction algorithms: MCODE [22],
MCL [23], CFinder [25], CMC [26], SPICi [28], HC-PIN [29], COACH [30] and
Cluste-rONE [31]. The experimental results show that our CPUT approach outperforms
these algorithms in terms of accuracy and statistical significance.

288 B. Zhao et al.

2 Constructing UPPI Networks

Based on the uncertainty theory, which is the cornerstone of our work, we construct
an UPPI network. Some definitions are described firstly.

Definition 1. The uncertain PPI network Consider a PPI network IG= (V, E), where V
= {v1, v2,..., vn} is a set of proteins; E = {e1, e2,... , em} is a set of interactions. An
uncertain PPI network is defined as UG= (V, E, P), where P(E= ei) =pi, i=1, 2…m, P
is a probability function denoting the existence of an interaction in E and defined as
follows:

pi =Nic/Nimax, where Nic is the number of common neighbors of the two proteins of
interaction ei and Nimax is the maximum possible number of common neighbors of the
two proteins. Nimax equals to the minimum degree of the two proteins minus 1.

In this paper, we assume that the existence probabilities of different interactions in
an uncertain PPI network are independent to each other.

Definition 2. The possible PPI network G= (VG, EG) is an instantiation of an uncertain
PPI network UG= (V, E, P), where VG = V, EG ⊆ E. We denote the relationship
between G and UG as UG→G, and then the sampling probability of G is given by:

(\)

Pr() () (1 ())
G Ge E e E E

UG G p e p e
∈ ∈

→ −∏ ∏ (1)

According to the uncertainty theory,
1

Pr() 1
n

i
i

UG g
=

→ = (gi is a possible PPI

network of the UPPI network UG, n= 2|E|). From the definition 2, we can see that a
possible PPI network is a certain network with certain interactions and a whole
sampling probability actually. In other words, an uncertain PPI network consists of a
large amount of certain PPI networks with sampling probabilities. So, prediction from
an UPPI network is transformed to the prediction from a lot of certain PPI networks,
but it is different from the current handling of PPI networks, due to the sampling
probabilities of possible PPI networks.

Based on the uncertainty theory, the relationship between a protein and an UPPI
network is described by the concept of relative degree.

Definition 3. The relative degree Given an uncertain PPI network UG= (V, E, P) and
a protein vertex va∈ V, PG= {g1, g2 ,…, gn} (n=2|E|) is a set of possible PPI
networks, which are instantiations of UG. Pr (gi) is the sampling probability
associated with instance gi (gi ∈PG). The relative degree of vertex va in UG is
defined as:

1

(,) (Pr() /(| | 1))
n

a i i
i

RD v UG g m V
=

= × − (2)

Where mi is the number of PPIs between va and other protein vertices in possible PPI
network gi.

 Construction of Uncertain Protein-Protein Interaction Networks and Its Applications 289

According to Definition 2, with the increase of the number of interactions in PPI
networks, the number of possible PPI networks would grow exponentially. To get the
relative degree of a protein vertex from the above definition is becoming more and
more computationally demanding. The following theorem gives a simple formula to
compute the relative degree. Let p(vi, vj) denote the probability of the interaction
between vi and vj. If there is not an interaction between vi and vj, p(vi, vj)=0.

Theorem 1. Given an uncertain PPI network UG= (V, E, P) and a protein vertex
va∈ V, the relative degree of vertex va in UG can be represented as:

| |

1

(,) 1/ (| | 1) (,)
= ∧ ≠

= −
V

a a i
i i a

RD v UG V p v v (3)

Proof. Assume that the protein vertices of UG that connect to va is {v1, v2 ,... , vk},
probability values of these interactions are p(va, v1), p(va, v2) ,... , p(va, vk) (1≤k≤|V|).

1 2
1

(,) 1/ (| | 1) [1 (,)] [1 (,)] (,) [1 (,)]
=

= − − − − +
k

a a a a i a k
i

RD v UG V p v v p v v p v v p v v

1 2
1

2 /(| | 1) [1 (,)][1 (,)] (,) (,) [1 (,)]
k k

a a a i a j a k
i j i

V p v v p v v p v v p v v p v v
= >

− − − − +

1 2 1/(| | 1) (,) (,) (,) (,) (,)a a a i a k a kk V p v v p v v p v v p v v p v v−+ −
1 1 1

1 1 1
1 1

1/ (| | 1) [1 (,)] (,) [1 (,)] 2 / (| | 1) [1 (,)]
− − −

−
= = >

= − − − + − −
k k k

a a i a k a
i i j i

V p v v p v v p v v V p v v

1 1(,) (,) [1 (,)] (1) /(| | 1) (,) (,)a i a j a k a a ip v v p v v p v v k V p v v p v v−− + + − −

1 1(,) (,) /(| | 1){[1 (,)]...[1 (,)]...[1 (,)]a k a k a a i a kp v v p v v V p v v p v v p v v− + − − − − +

1 1
1 1

[1 (,)]... (,)...[1 (,)] [1 (,)] (,)
k k k

a a i a k a a i
i i j i

p v v p v v p v v p v v p v v
= = >

− − + −

1(,) [1 (,)] ... (,)... (,)}a j a k a a kp v v p v v p v v p v v− + +
1 1 1

1 1 1
1 1

1 / (| | 1) [1 (,)]... (,) [1 (,)] 2 / (| | 1) [1 (,)]
− − −

−
= = >

= − − − + − −
k k k

a a i a k a
i i j i

V p v v p v v p v v V p v v

1 1(,) (,) [1 (,)] (1) /(| | 1) (,) (,)a i a j a k a a ip v v p v v p v v k V p v v p v v−− + + − −

1(,) (,) /(| | 1)a k a kp v v p v v V− + −
2 2 2

1 2 1
1 1

1/ (| | 1) [1 (,)] (,) [1 (,)] 2 / (| | 1) [1 (,)]
− − −

−
= = >

= − − − + − −
k k k

a a i a k a
i i j i

V p v v p v v p v v V p v v

2 1(,) (,) [1 (,)] (2) /(| | 1) (,) (,)a i a j a k a a ip v v p v v p v v k V p v v p v v−− + + − −

2 1(,) [(,) (,)] /(| | 1)a k a k a kp v v p v v p v v V− −+ + − =

1 2 2 1 1 21/(| | 1){ (,)[1 (,)] (,)[1 (,)]} 2 /(| | 1) (,) (,)a a a a a aV p v v p v v p v v p v v V p v v p v v= − − + − + −

1 2
3 3 1

(,)/(| | 1) [(,) (,)]/(| | 1) (,)/(| | 1) (,)/(| | 1)
k k k

a i a a a i a i
i i i

p v v V p v v p v v V p v v V p v v V
= = =

+ − = + − + − = −

Algorithm 1 illustrates the procedure of constructing UPPI network.

290 B. Zhao et al.

Algorithm 1. Constructing UPPI network
Input: the PPI network IG=(V, E);
Output: the uncertain network UG=(V, E, P), attachment threshold AVG_RD
1: for each edge (u, v)∈E compute its probability value p(u, v);
2: generate UG and the set of possible PPI network PG= {g1, g2 ,…, gn}
3: for each vertex v∈V
 compute RD(v, NG);// NG is the neighborhood graph of v

4. _ (,), (,) 0i i i i iAVG RD RD v NG v V and RD v NG= ∈ > ;

In this process, protein vertices are inserted into queue ordered by their relative

degree within neighborhood graph descendant and Avg_RD as the average value of all
protein vertices’ relative degree is computed, which is a threshold value used in the
subsequent section.

3 The CPUT Method

Taking into account the inherent organization for extracting dense subgraphs, recent
analysis [32, 33] of experimentally detected protein complexes has revealed that a
complex consists of a core component and attachments. Core proteins are highly co-
expressed and share high functional similarity, each attachment protein binds to a
subset of core proteins to form a biological complex. Because of the demonstrated
significance of the structure in predicting protein complexes, our CPUT method is
based on the core-attachment concept.

Different from the current core-attachment based approaches, we use the concept
of expected density to measure whether a subgraph can be selected as a core, instead
of the concept of density. To describe the relationship between an attachment protein
and a core, we use the concept of relative degree, firstly. We believe that a subgraph
representing a core component should contain many reliable PPIs between its subunits
and be well separated from their neighbor subgraphs. In other words, a core should be
high cohesion and low coupling.

Definition 4. The expected density Given an uncertain PPI network UG= (V, E, P),
PG= {g1, g2 ,…, gn} (gi = (V, Ei), n=2|E|) is a set of possible PPI networks, which
are instantiations of UG, Pr(gi) is the probability associated with instance gi ∈PG.
The expected density of UG is defined as follow:

1

() Pr() 2 | | /(| | (| | 1))
n

i i
i

ED UG g E V V
=

= × × × − (4)

Theorem2 is a simple formula to compute the expected density.

Theorem 2. Given an uncertain PPI network UG= (V, E, P), V = {v1, v2,..., vn}, E =
{e1, e2,... , em}, P = {p(e1), p(e2) ,... , p(em)}. The expected density of UG can be

computed by
1

() () 2 /(| | (| | 1))
m

i
i

ED UG p e V V
=

= × × −

 Construction of Uncertain Protein-Protein Interaction Networks and Its Applications 291

Proof. It is similar to the proof of theorem 1.
Our CPUT method consists of three major steps.

(1) Starting from the first protein vertex, a greedy procedure adds protein vertices
to form a candidate core with high cohesion and low coupling. The growth process is
repeated from all vertices to form non-redundant core sets.

(2) Add attachment vertices to core sets to form complexes, where the relative
degree of an attachment vertex within the core is above a specified threshold.

(3) Quantify the extent overlap between each pair of complexes and discard the
complex with lower density or smaller size, and whose overlap value is above a
specified threshold.

3.1 Core Detection

The first stage of our method is protein core detection, which takes as input the UPPI
network UG and an expected density threshold CT.

In our core detection algorithm, every protein has the same probability of being
drawn as a seed. The algorithm consists of three steps as shown in Algorithm 2 below.

Algorithm 2. Core detection
Input: UPPI network UG= (V, E, P);expected density threshold CT
Output: SC: the set of protein cores;
1: for each protein v∈V
2. Insert v into CS;// Candidate core set
3: Q ={ | (,) 1i i iv v V dis v v∈ ∧ = }

4. for each element q∈ Q insert q into CS; If ED (CS)< CT remove q from
CS;
5. NS={ | (,)i i j j iv v v E v CS v CS∈ ∧ ∈ ∧ ∉ };

6. for each vertex vc∈CS
7. if RD(vc , CS)*Size (CS) <= RD(vc , NS) *Size (NS) then
8. remove vc from CS; label vc with DISCARDED;
9. if i iCS s s CS⊄ ∧ ⊄ , where is SC⊂ then insert CS into SC;

Step 1: Inserted the seed into the candidate set CS in lines 3, and then all neighbors

of the seed are put into the queue. Finally, we get a protein from the queue in order
and insert into CS, if the expected density less than the threshold CT, remove the
protein vertex from CS. A high expected density of a subgraph indicates that the
subgraph can be represented as a high cohesion core. After the queue is empty, a high
cohesion candidate set is formed.

Step 2: The neighbor set NS is consist of neighbors of protein vertices in the
candidate set CS. For each protein vertex of CS, we compute an internal absolute
degree of the vertex with CS and an external absolute degree of the vertex with NS.
The absolute degree of a vertex in a subgraph equals to the relative degree of the
vertex in the subgraph multiplied by the total number of vertices in the subgraph. If

292 B. Zhao et al.

the internal absolute degree less than the external absolute degree, we believe that the
protein vertex has high coupling and should be removed from CS. At the same time,
the protein vertex is labeled with DISCARDED.

Step 3: If a candidate set CS is not a subset of elements in the set protein cores SC,
CS can be represented as a core and inserted into SC.

The procedure repeats Step 1-3, until all protein vertexes are handled.

3.2 Attachment Detection

The second stage is the attachment detection. Algorithm 3 gives the detail of
attachment detection.

Algorithm 3. Attachment detection
Input: UPPI network UG= (V, E, P);SC: the set of protein cores;
Output: SC: the set of protein complexes;
1: for each vertex v∈V
2. if v labeled with DISCARDED
3: for each core S∈SC if RD(v , S)> Avg_RD insert v into S ;
4. compute ED(S);

For each candidate attachment protein v, if the relative degree between v and a core

is greater than the threshold Avg_RD, insert v into the core and compute the expected
density of the core again. The threshold Avg_RD is self-adjustable with the UPPI
network according to the average value of all protein vertices’ relative degree, which
obtained in the Algorithm 1 of CPUT.

3.3 Redundancy-Filter

The last stage is redundancy-filter. Although some redundancy may have biological
importance, complexes overlapping to a very high extent in comparison to their
expected density and size should be discarded. With quantifying the extent of overlap
between each pair of complexes, complex with smaller expected density or size is
discarded for which overlap score of the pair is above the threshold. In our CPUT
method, the overlap threshold is typically set as 0.8 [31], where the overlap score of
two complexes A and B is defined as follows [34].

2(,) | | /(| || |)NA A B A B A B= ∩ (5)

4 Results and Discussion

We have applied our CPUT method and other eight competing algorithms on two yeast
PPI networks, including DIP data [35] and Krogan data [36]. The DIP dataset consists of
5023 proteins and 22,570 interactions among the proteins, and the Korgan dataset

 Construction of Uncertain Protein-Protein Interaction Networks and Its Applications 293

consists of 3672 proteins and 14317 interactions. To evaluate the protein complexes
predicted by our method, a benchmark set is adopted from CYC2008 [37], which consist
of 408 complexes. For comprehensive comparisons, we employ several evaluation
criteria, such as F-measure and functional enrichment of GO terms. For all those
competitive algorithms, the optimal parameters are set as recommended by their authors.

4.1 Results on DIP Data

To assess the quality of the produced complexes, we match the generated complexes
with the benchmark complex set. Specificity (Sp) and sensitivity (Sn) are the
commonly used measures to evaluate the performance of protein complex prediction
methods. Specificity is the fraction of predicted complexes that are true complexes
while sensitivity is the fraction of benchmark complexes that are retrieved.

Given the predicted complex set PC= {pc1, pc2,...,pcn} and the benchmark complex
set BC= {bc1, bc2,...,bcm}.

| { | , (,) } |i j i jTP pc PC bc BC NA pc bc T= ∈ ∃ ∈ ≥ (6)

|{ | , (,) } |i j i jFP pc PC bc BC NA pc bc T= ∈ ∀ ∈ < (7)

|{ | , (,) }|i j i jFN bc BC pc PC NA pc bc T= ∈ ∀ ∈ < (9)

From (6)-(9), TP is the number of correctly predicted complexes and FP is the
number of incorrectly predicted complexes, while TN is the number of predicted
benchmark complexes and FN is the number of unpredicted benchmark complexes.

/(), /()Sp TP TP FP Sn TP TP FN= + = + (10)

Generally T is set as 0.2 [34], which is also used in this paper. F-measure is another
measure to evaluate the performance of a method synthetically.

2 /()F measure Sn Sp Sn Sp− = × × + (11)

The basic information about predicted complexes by various algorithms running on
DIP data is presented in Table 1. In Table 1, #PC is the total number of predicted
complexes, while AS is the average size of the complexes detected by each algorithm
and MS is the maximum size of predicted complexes. PMC is the number of
complexes perfectly matching the known complexes. From Table 1, we can see that
our CPUT method contains the second-biggest number of correctly predicted
complexes and predicted benchmark complexes after the COACH method, while #PC
of CPUT is far less than COACH’s. Table 1 show that CPUT achieves the largest
value of F-measure and Sp, the second-largest value of Sn after the COACH. The F-
measure of CPUT is 375%, 119%, 128%, 54%, 26.7%, 128%, 58.3% and 46.2%
higher than MCODE, MCL, CFinder, CMC, COACH, SPICi, HC-PIN and
ClusterONE.

To evaluate the statistical and biological significance of the predicted complexes,
functional enrichment of GO terms is employed. GO annotation is a useful
information resource to measure the reliability of protein interaction pairs.
GO::TermFinder [38] is a set of software modules to determine statistically

294 B. Zhao et al.

Table 1. Basic information of predicted complexes by various algorithms

Algorithms #PC AS MS TN TP PMC Sn Sp F-measure

CPUT 581 8.5 52 214 306 16 0.61 0.53 0.57

MCODE 59 13.59 82 30 28 2 0.07 0.47 0.12
MCL 928 5.15 122 195 174 12 0.45 0.19 0.26
CFinder 197 13.31 1821 83 75 12 0.19 0.38 0.25
CMC 235 6.13 32 124 119 8 0.30 0.51 0.37
COACH 902 9.18 59 219 319 15 0.63 0.35 0.45
SPICi 574 4.7 48 143 118 7 0.31 0.21 0.25
HC-PIN 277 5.67 118 149 119 20 0.31 0.43 0.36
ClusterONE 371 4.9 24 136 155 6 0.36 0.42 0.39

significant GO terms shared by a set of genes and to access GO information and
annotation information. To determine whether any GO terms annotate a specified list
of genes at a frequency greater than that expected by chance, GO::TermFinder
calculates a P-value using the hyper geometric distribution:

A low P-value of a predicted complex indicates that those proteins in the complex
do not happen merely by chance, so the complex has high statistical significance.
Generally a complex is considered to be significant with corrected P-value<0.01 [39].

Research shows that the proportion of significant complexes over all predicted
ones can be used to evaluate the overall performance of various algorithms. In
addition, P-score is also used as an effective evaluation measure, which is defined as:

1

1
lg() |

n

i i
i

P score p value p value Y
n =

− = − − − < (12)

Y is set as 0.01 mentioned above. Table 2 shows the comparison results based on
these measures on the whole by various algorithms on the DIP data. In Table 2, #PC
is the number of predicted complexes, and #SC is the number of significant
complexes. Our method achieves the largest value of P-score and the second-largest
value of proportion after MCODE. P-score of our method is 31.61%, 80.21%,
41.86%, 16.31%, 27.66%, 66.4%, 12.83% and 24.7% higher than MCODE, MCL,
CFinder, CMC, COACH, SPICi, HC-PIN and ClusterONE, respectively.

Table 2. Statistical significance of predicted complexes by various algorithms

Algorithms #PC #SC Proportion(%) P-score
CPUT 581 501 86.24% 10.2
MCODE 59 55 93.22% 7.75
MCL 928 414 44.41% 5.66
CFinder 197 122 61.93% 7.19
CMC 235 196 83.4% 8.77
COACH 902 736 81.6% 7.99
SPICi 574 297 51.74% 6.13
HC-PIN 277 176 63.54% 9.04
ClusterONE 371 253 68.19% 8.18

 Construction of Uncertain Protein-Protein Interaction Networks and Its Applications 295

4.2 Results on Krogan Data

To further investigate the results obtained by our method, we also perform our CPUT
algorithm on Krogan data mentioned above. The results of each algorithm using
Krogan dataset are shown in Table 3, including Sn, Sp and F-measure. In Table 3,
CPUT still performs the best and the F-measure of CPUT is 260%, 100%, 157.14%,
68.75%, 10.2%, 74.19%, 184.21% and 42.11% higher than MCODE, MCL, CFinder,
CMC, COACH, SPICi, HC-PIN and ClusterONE, respectively.

Table 3. Results of various algorithms on Krogan data

Algorithms Sn Sp F-measure

CPUT 0.47 0.63 0.54
MCODE 0.08 0.67 0.15
MCL 0.39 0.21 0.27
CFinder 0.14 0.45 0.21
CMC 0.23 0.55 0.32
COACH 0.51 0.47 0.49
SPICi 0.3 0.31 0.31
HC-PIN 0.11 0.51 0.19
ClusterONE 0.3 0.53 0.38

4.3 Effect of Parameter CT

In Algorithm 2, in order to evaluate the expected density of cores detected by our
CPUT method, we employ a user-defined parameter CT. As CT is used to describe
the expected density of a subgraph, according to Definition 4, CT∈ [0,1]. Figure 1
show how the F-measure of CPUT method fluctuates under various value of CT.
From the figure, we can easily see that the F-measure reach the maximum value when
CT is assigned to 0.1. In our experiment, we set CT=0.1.

Fig. 1. The effect of threshold CT

296 B. Zhao et al.

5 Conclusion

We have constructed an uncertain protein-protein interaction (UPPI) network and
introduced some new concepts to assess subgraphs or proteins based on the
uncertainty theory. To test the effectiveness, we have proposed a protein complex
detection method named CPUT based on the UPPI network. CPUT first mines cores
from neighbor graphs of all protein vertices with high cohesion and low coupling, and
then binds attachment proteins to form complexes with cores.

Comprehensive comparisons among the state-of-the-art methods and CPUT
method have been made on two yeast PPI networks. Experimental results have shown
higher accuracy and more significant biological meaning of our CPUT than others.

Acknowledgements. This work is supported in part by the National Natural Science
Foundation of China under Grant No. 61232001, No. 61128006, No. 61073036 the
Program for New Century Excellent Talents in University (NCET-10-0798).

References

1. Ito, T., et al.: A comprehensive two-hybrid analysis to explore the yeast protein
interactome. PNAS 98, 4569–4574 (2001)

2. Rigaut, G., et al.: A generic protein purification method for protein complex
characterization and proteome exploration. Nature Biotechnology 17, 1030–1032 (1999)

3. Ho, Y., et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae
by mass spectrometry. Nature 405, 180–183 (2002)

4. Mrowka, R., Patzak, A., Herzel, H.: Is There a Bias in Proteome Research? Genome
Research 11, 1971–1973 (2001)

5. Mering, C.V., et al.: Comparative assessment of large-scale data sets of protein-protein
interactions. Nature 417, 399–403 (2002)

6. Tsoka, S., Ouzounis, C.A.: Prediction of protein interactions: metabolic enzymes are
frequently involved in gene fusion. Nature Genetics 26, 141–142 (2000)

7. Wojcik, J., Schächter, V.: Protein–protein interaction map inference using interacting
domain profile pairs. Bioinformatics 17, 296–305 (2001)

8. Yamada, T., Kanehisa, M., Goto, S.: Extraction of phylogenetic network modules from the
metabolic network. BMC Bioinformatics 7, 130 (2006)

9. Wu, J., Kasif, S., DeLisi, C.: Identification of functional links between genes using
phylogenetic profiles. Bioinformatics 19, 1524–1530 (2003)

10. Albert, I., Albert, R.: Identification of functional links between genes using phylogenetic
profiles. Bioinformatics 20, 3346–3352 (2004)

11. Bock, J.R., Gough, D.A.: Identification of functional links between genes using
phylogenetic profiles. Bioinformatics 19, 125–135 (2003)

12. Lo, S.L., et al.: Effect of training datasets on support vector machine prediction of protein-
protein interactions. Proteomics 5, 876–884 (2005)

13. Deane, C.M., et al.: Protein interactions: two methods for assessment of the reliability of
high throughput observations. Molecular & Cellular Proteomics 1, 349–356 (2002)

14. D’haeseleer, P., Church, G.M.: Estimating and improving protein interaction error rates.
In: Proc. IEEE Computational Systems Bioinformatics Conference, USA, pp. 216–223
(2004)

15. Gilchrist, M.A., et al.: A statistical framework for combining and interpreting proteomic
datasets. Bioinformatics 20, 689–700 (2004)

 Construction of Uncertain Protein-Protein Interaction Networks and Its Applications 297

16. Mering, V.C., et al.: Comparative assessment of large-scale data sets of proteinprotein
interactions. Nature 417, 399–403 (2002)

17. Hwang, W., et al.: A novel functional module detection algorithm for protein-protein
interaction networks. Algorithms for Molecular Biology 1, 24 (2006)

18. Ulitsky, I., Shamir, R.: Identifying functional modules using expression profiles and
confidence-scored protein interactions. Bioinformatics 25, 1158–1164 (2009)

19. Gabow, A.P., et al.: Improving protein function prediction methods with integrated
literature data. BMC Bioinformatics 9, 198 (2008)

20. Hu, L., et al.: Predicting Functions of Proteins in Mouse Based on Weighted Protein-
Protein Interaction Network and Protein Hybrid Properties. PLoS ONE 6, e14556 (2011)

21. Peng, W., et al.: Iteration method for predicting essential proteins based on orthology and
protein-protein interaction networks. BMC Systems Biology 6, 87 (2012)

22. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in
large protein interaction networks. BMC Bioinformatics 4, 2 (2003)

23. Enright, A.J., Dongen, S.V., Ouzounis, C.A.: An efficient algorithm for large-scale
detection of protein families. Nucleic Acids Research 30, 1575–1584 (2002)

24. Palla, G., et al.: Uncovering the Overlapping Community Structure of Complex Networks
in Nature and Society. Nature 435, 814–818 (2005)

25. Adamcsek, B., et al.: CFinder: locating cliques and overlapping modules in biological
networks. Bioinformatics 22, 1021–1023 (2006)

26. Liu, G., Wong, L., Chua, H.N.: Complex discovery from weighted PPI networks.
Bioinformatics 25, 1891–1897 (2009)

27. Chua, H.N., Sung, W.K., Wong, L.: Exploiting indirect neighbours and topological
weight to predict protein function from protein–protein interactions. Bioinformatics 22,
1623–1630 (2006)

28. Jiang, P., Singh, M.: SPICi: a fast clustering algorithm for large biological networks.
Bioinformatics 26, 1105–1111 (2010)

29. Wang, J.X., et al.: A Fast Hierarchical Clustering Algorithm for Functional Modules
Discovery in Protein Interaction Networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 8, 607–620 (2011)

30. Wu, M., et al.: A core-attachment based method to detect protein complexes in ppi
networks. BMC Bioinformatics 10, 169 (2009)

31. Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in protein-
protein interaction networks. Nature Methods 9, 471–475 (2012)

32. Dezso, Z., Oltvai, Z.N., Barabási, A.L.: Analysis of Experimentally Determined Protein
Complexes in the Yeast Saccharomyces cerevisiae. Genome Research 13, 2450–2454
(2003)

33. Gavin, A.C., et al.: Proteome survey reveals modularity of the yeast cell machinery.
Genome Research 440, 631–636 (2006)

34. Li, X.L., Foo, C.S., Ng, S.K.: Discovering protein complexes in dense reliable
neighborhoods of protein interaction networks. In: Proc. CSB, pp. 157–168 (2007)

35. Xenarios, X., et al.: DIP: the database of interacting proteins. Nucleic Acids Research 28,
289–291 (2000)

36. Krogan, N.J., et al.: Global landscape of protein complexes in the yeast Saccharomyces
cerevisiae. Nature 440, 637–643 (2006)

37. Pu, S., et al.: Up-to-date catalogues of yeast protein complexes. Nucleic Acids
Research 37, 825–831 (2009)

38. Boyle, E.I., et al.: GO:TermFinder-open source software for accessing GeneOntology
information and finding significantly enriched Gene Ontology terms associated with a list
of genes. Bioinformatics 20, 3710–3715 (2004)

39. Hu, H., et al.: Mining coherent dense subgraphs across massive biological networks for
functional discovery. Bioinformatics 25, 213–221 (2005)

Does Accurate Scoring of Ligands against

Protein Targets Mean Accurate Ranking?

Hossam M. Ashtawy and Nihar R. Mahapatra�

Department of Electrical and Computer Engineering, Michigan State University
East Lansing, Michigan 48824, USA

{ashtawy,nrm}@egr.msu.edu

Abstract. Accurately predicting the binding affinities of large sets of
protein-ligand complexes efficiently is a key challenge in computational
biomolecular science, with applications in drug discovery, chemical bi-
ology, and structural biology. Since a scoring function (SF) is used to
score, rank, and identify potential drug leads, the fidelity with which it
predicts the affinity of a ligand candidate for a protein’s binding site has
a significant bearing on the accuracy of virtual screening. Despite intense
efforts in developing conventional SFs, which are either force-field based,
knowledge-based, or empirical, their limited scoring and ranking accu-
racies have been a major roadblock toward cost-effective drug discovery.
Therefore, in this work, we examine a range of SFs employing differ-
ent machine-learning (ML) approaches in conjunction with a variety of
physicochemical and geometrical features characterizing protein-ligand
complexes. We compare the scoring and ranking accuracies of these ML
SFs as well as those of conventional SFs in the context of the diverse test
sets of the 2007 and 2010 PDBbind benchmarks. We also investigate the
influence of the size of the training dataset and the number of features
used on scoring and ranking accuracies. We find that the best perform-
ing ML SF has a scoring power of 0.807 in terms of Pearson correlation
coefficient between predicted and measured binding affinities compared
to 0.644 achieved by a state-of-the-art conventional SF. Despite this sub-
stantial improvement (25%) in binding affinity prediction, the ranking
power improvement is only 6% from a success rate of 58.5% achieved by
the best conventional SF to 62.2% obtained by the best ML approach
when ligands were ranked for 65 unique proteins.

1 Introduction

1.1 Background

Protein-ligand binding affinity (BA) is the principal determinant of many vital
processes, such as cellular signaling, gene regulation, metabolism, and immunity,
that depend upon proteins binding to some substrate molecule. Consequently, it
has a central role in drug design, which involves two main steps: first, the enzyme,

� Corresponding author.

Z. Cai et al. (Eds.): ISBRA 2013, LNBI 7875, pp. 298–310, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Does Accurate Scoring of Ligands Mean Accurate Ranking? 299

receptor, or other protein responsible for a disease of interest is identified; second,
a small molecule or ligand is found or designed that will bind to the target
protein, modulate its behavior, and provide therapeutic benefit to the patient.
Typically, high-throughput screening (HTS) facilities with automated devices
and robots are used to synthesize and screen ligands against a target protein.
However, due to the large number of ligands that need to be screened, HTS is
not fast and cost-effective enough as an in silico hit identification method in the
initial phases of drug discovery. Therefore, computational methods referred to
as virtual screening are employed to complement HTS by narrowing down the
number of ligands to be physically screened. In virtual screening, information
such as structure and physicochemical properties of a ligand, a protein, or both,
are used to estimate binding affinity (or binding free energy), which represents
the strength of association between the ligand and its receptor protein. The
most popular approach to predicting BA in virtual screening is structure-based
in which physicochemical interactions between a ligand and receptor are deduced
from the 3D structures of both molecules. This in silico method is also known
as protein-based as opposed to the alternative approach, ligand-based, in which
only ligands that are biochemically similar to the ones known to bind to the
target are screened.

Ligand 1

Ligand 2

Ligand Database

Ligand 3

…

Ligand N

Docking Phase

Pose
Generation

Ligand i, Pose 01

Ligand i, Pose 02

Ligand i, Pose 03

Ligand i, Pose ...

Ligand i, PoseM

Docking
SF

3.25

6.14

1.23

...

4.32

Protein

Ligand 1, Pose 08

Ligand 2, Pose 32

Ligand 3, Pose 02

…

Ligand N, Pose 42

12.32

34.25

38.93

…

16.11

Ranking Phase

Li
ga

nd
i

A
ll
M

po
se

s

To
p

ra
nk

ed
po

se

To
p

ra
nk

ed
lig

an
d

A
ll
N

lig
an

ds

Ranking
SF

Top pose for
every ligand

Fig. 1. Protein-ligand docking and ranking workflow

In this work, our focus will be on protein-based drug design, wherein ligands
are placed into the active site of the receptor. The 3D structure of a ligand, when
bound to a protein, is known as ligand active conformation. Binding mode refers
to the orientation of a ligand relative to the target and the protein-ligand confor-
mation in the bound state. A binding pose is simply a candidate binding mode.
In molecular docking, a large number of binding poses are evaluated using a scor-
ing function (SF), which is a mathematical or predictive model that produces a
score representing the binding free energy of a binding pose. The outcome of the
docking run, therefore, is a ligand’s top pose ranked according to its predicted
binding score as shown in Figure 1. Typically, this docking and scoring step is
performed iteratively over a database containing thousands to millions of ligand
candidates. After predicting their binding modes, another scoring round is per-
formed to rank ligands according to their predicted binding free energies. The

300 H.M. Ashtawy and N.R. Mahapatra

top-ranked ligand, considered the most promising drug candidate, is synthesized
and physically screened using HTS.

Most commercial molecular docking tools use by default one SF for both the
docking and ranking phases as shown in Figure 1. Even though in some cases
users may be provided with other scoring options for both phases, almost all the
provided SFs are generally similar to the ones we develop and compare in this
study. This work focuses on the ranking phase shown in the figure wherein ligands
are scored first before being ranked. This approach, however, is extensible to the
docking stage since it involves scoring binding poses and then ranking them for
each ligand.

1.2 Related Work

Most SFs in use today can be categorized as either force-field-based [1], empir-
ical [2], or knowledge-based [3] SFs. Despite intense efforts into these conven-
tional scoring schemes, several recent studies report that the predictive power
of existing SFs is quite limited. Cheng and co-workers recently conducted an
extensive test of sixteen SFs from these three categories that are employed in
mainstream docking tools and researched in academia [4]. The team analyzed
the performance of each SF in predicting the binding energy of protein-ligand
complexes whose high resolution structures and binding constants are experi-
mentally known. The main test set used in this study consisted of 195 diverse
protein-ligand complexes and four other protein-specific test sets. Considering
different evaluation criteria and test datasets, they concluded that no single SF
was superior to others in every aspect. In fact, the best SF in terms of predicting
binding constants that are most correlated to the experimentally calculated ones
was not even in the top five when the goal was to identify the correct binding
pose of the ligand. SFs examined in their study were force-field-based, empiri-
cal, or knowledge-based, but none were based on sophisticated machine learning
(ML) algorithms. Based on this work, we separately studied the scoring and
ranking problems by comparing ML and conventional SFs [5,6]. In this work,
however, our focus is on comparing the scoring performance of SFs, both con-
ventional ones and those based on ML approaches, to their ranking performance
in various test scenarios.

1.3 Key Contributions

One of the main challenges of scoring and ranking is modeling the unknown
relationship correlating BA to interactions between a ligand and its receptor.
Conventional empirical SFs rest on the hypothesis that a linear regression model
is capable of capturing the BA. Such an assumption fails to explain intrinsic
nonlinearities latent in the data on which such models are calibrated. Instead
of assuming a predetermined theoretical function that governs the unknown
relationship between different energetic terms and BA, one can employ more
accurate methodologies that are generally referred to as nonparametric models.
In these techniques, the underlying unknown function is driven from the data

Does Accurate Scoring of Ligands Mean Accurate Ranking? 301

itself and no assumption regarding its statistical distribution is made. Such an
approach has been shown to work well by Ballester and Mitchell [7].

Various nonparametric ML methods inspired from statistical learning theory
are examined in this work to model the unknown function that maps structural
and physicochemical information of a protein-ligand complex to a corresponding
BA value. Ours is the first work to perform a comprehensive assessment of
the scoring and ranking accuracies of conventional and ML SFs side by side
across a diverse test set of proteins using a common diverse set of features
across the ML SFs. We show that the best ML SF has a scoring power of 0.807
(in terms of Pearson correlation coefficient) and a ranking power of 62.2% (in
terms of success rate of correctly ranking ligands within clusters of protein-
ligand complexes featuring a common protein) compared to 0.644 and 58.5%,
respectively, for the best conventional SF for a benchmark test set—this is a
significant improvement in predictive power. The only prior related work of this
kind is the recent one by Ballester andMitchell [7]. However, they only considered
the scoring problem by constructing one ML SF (random forests) on a subset
of the features we consider, although they also report very good results with
their method (which has a scoring power of 0.776). Here, we consider a diverse
test set and assess the impact of increasing training set size and the number of
features used in different ways. Our results show the similarities and differences
in behavior of conventional and ML SFs when they are used for scoring vs. when
they are used for ranking ligands and shed light on whether improving scoring
accuracy necessarily improves ranking accuracy and to what extent.

The remainder of the paper is organized as follows. Section 2 presents the
compound database used for the comparative assessment of SFs, the features ex-
tracted to characterize the compounds, the training and test datasets employed,
and the conventional and ML SFs we study. Next, in Section 3, we describe mea-
sures used to assess the performance of SFs and present results comparing the
scoring and ranking accuracies of conventional and ML SFs on a diverse test set.
We also analyze how ML SFs are impacted by training set size and the number
of features used. Conclusions are in Section 4.

2 Materials and Methods

Compound Database: We used the same complex database that Cheng et al.
used as a benchmark in their recent comparative assessment of sixteen popular
conventional SFs [4]. They obtained the data from the 2007 version of PDBbind
[8], which is a selective compilation of the Protein Data Bank (PDB) database
[9]. Both databases are publicly accessible and continually updated. The PDB is
periodically mined and only complexes that are suitable for drug discovery are
filtered into the PDBbind database. In PDBbind, a number of filters are imposed
to obtain high-quality protein-ligand complexes with both experimentally-known
BA and three-dimensional structure from PDB. A set of 1300 protein-ligand
complexes meeting the filtering criteria are compiled into a set referred to as the
refined set. The PDBbind curators compiled another list out of the refined set. It

302 H.M. Ashtawy and N.R. Mahapatra

is called the core set and is mainly intended to be used for benchmarking docking
and scoring systems. The core set is composed of diverse protein families and
diverse BAs. BLAST [10] was employed to cluster the refined set based on protein
sequence similarity with a 90% cutoff. From each resultant cluster, three protein-
ligand complexes were selected to be its representatives in the core set. A cluster
must fulfill the following criteria to be admitted into the core set: (i) it has at least
four members and (ii) the BA of the highest-affinity complex must be at least
100-fold of that of the complex with the lowest one. The representatives were
then chosen based on their BA rank: the complex having the highest rank, the
middle one, and the one with the lowest rank. The approach of constructing the
core set guarantees unbiased, reliable, and biologically rich test set of complexes.
We also take advantage of the newly-deposited complexes in the 2010 version of
the database in some of our experiments.

Training and Test Sets: In order to be consistent with the comparative frame-
work used to assess the sixteen conventional SFs mentioned above [4], we too
consider the 2007 version of PDBbind. We extracted physicochemical and ge-
ometrical features for the complexes in the core set of PDBbind 2007 and we
stored them in a dataset called the core test set which is denoted by Cr and
includes 195 complexes. A primary training set, denoted by Pr, was built by re-
moving all Cr complexes from the 1300 complexes in the refined set of the same
year. As a result, Pr (for PDBbind 2007) contains 1105 complexes that are com-
pletely disjoint from Cr complexes. The refined sets of PDBbind 2007 and 2010
(with 2061 complexes), after removing Cr complexes, were the source of another
set that comprises 1989 complexes. We refer to this set as the secondary training
set or Sc for short.

Compound Characterization: For each protein-ligand complex, we extracted
physicochemical features used in the empirical SFs X-Score [2] (a set of 6 features
denoted by X) and AffiScore [11] (a set of 30 features denoted by A), and
geometrical features used in the ML SF RF-Score [7] (a 36-feature set denoted
by R). The software packages that calculate X-Score, AffiScore (from SLIDE),
and RF-Score features were available to us in an open-source form from their
authors and a full list of these features are provided in the appendix of [6]. By
considering all seven combinations of these three types of features (i.e., X , A, R,
X∪A,X∪R, A∪R, andX∪A∪R), we generated seven versions of the Pr, Sc, and
Cr datasets, which we distinguish by using appropriate subscripts identifying the
features used. For instance, PrXR denotes the version of Pr comprising the set
of features X∪R (referred to simply as XR) and experimentally-determined BA
data for complexes in the Pr dataset.

Conventional Scoring Functions: A total of sixteen popular SFs are com-
pared to ML-based SFs in this study. The sixteen functions are either used in
mainstream commercial docking tools and/or have been developed in academia.
The functions were recently compared against each other in a study conducted

Does Accurate Scoring of Ligands Mean Accurate Ranking? 303

by Cheng et al. [4]. This set includes five SFs in the Discovery Studio soft-
ware [12]: LigScore, PLP, PMF, Jain, and LUDI. Five SFs in SYBYL software
[13]: D-Score, PMF-Score, G-Score, ChemScore, and F-Score. GOLD software
[14] contributes three SFs: GoldScore, ChemScore, and ASP. GlideScore in the
Schrödinger software [15]. Besides, two standalone SFs developed in academia
are also assessed, namely, DrugScore [16] and X-Score [2]. Some of the SFs have
several options or versions, these include LigScore (LigScore1 and LigScore2),
PLP (PLP1 and PLP2), and LUDI (LUDI1, LUDI2, and LUDI3) in Discov-
ery Studio; GlideScore (GlideScore-SP and GlideScore-XP) in the Schrödinger
software; DrugScore (DrugScore-PDB and DrugScore-CSD); and X-Score (HP-
Score, HMScore, and HSScore). For brevity, we only report the version and/or
option that yields the best performance on the PDBbind benchmark that was
considered by Cheng et al. [4].

Machine Learning Methods: We utilize a total of six regression techniques
in our study: multiple linear regression (MLR), multivariate adaptive regression
splines (MARS), k-nearest neighbors (kNN), support vector machines (SVM),
random forests (RF), and boosted regression trees (BRT) [17]. We choose MLR
because it resembles empirical SFs that are in fact multiple linear regressionmod-
els. MARS is an extension of MLR that can model non-linearities and hence it is
selected to show how scoring and ranking accuracies are affected by dropping the
linearity constraint of empirical SFs. We build kNN and SVM SFs due to their
solid theoretical properties and successful applications in drug-development re-
lated problems such as QSAR modeling. The state-of-the-art performance of RF
and BRT is the primary reason behind our choosing them to construct SFs. In
addition to their excellent predictive power, they also offer exceptional descrip-
tive and interpretive capabilities to drug designers to gain invaluable insights
regarding different complex interactions between proteins and ligands. These six
ML techniques are implemented in the following R language packages that we
use [18]: the package stats readily available in R for MLR, earth for MARS [19],
kknn for kNN [20], e1071 for SVM [21], random forests for RF [22], and gbm
for BRT [23]. These methods benefit from some form of parameter tuning prior
to their use in prediction. The optimal parameters we use to build our mod-
els resulted from a grid search associated with 10-fold cross validation over the
training set Pr and are provided in [6]. We applied these six ML methods to all
seven combinations of the X, A, and R features (viz., X, A, R, XA, XR, AR,
and XAR) for the datasets Pr , Sc, and Cr . Therefore, for each dataset, we con-
sidered (6 × 7 =) 42 different ML SFs. We distinguish them using the notation
ML technique::tools used to calculate features . For instance, kNN::XA implies
that the SF is a k-nearest neighbor (kNN) model that is trained and tested
on datasets (say primary training set and the core set, respectively) described
by XA features (i.e., features extracted using the X-Score and AffiScore tools).
Again, as in the case of conventional SFs, for brevity, for each ML technique
(unless otherwise noted), we report results only for the feature combination (out
of the seven possible) that yields the best performance.

304 H.M. Ashtawy and N.R. Mahapatra

3 Results and Discussion

In this section, we compare the scoring and ranking accuracies of conventional
and ML SFs. We first define the metrics we use to gauge these accuracies and
then present results on a diverse test set. This is followed by an assessment of
the impact of training set size and the number of features used.

3.1 Evaluation of Scoring Functions

This study focuses on comparing SFs in terms of their scoring and ranking
powers. In our experiments, we measure the scoring power of SFs using Pearson
correlation coefficient (denoted by Rp) between predicted and measured BAs.
Values of Rp range between -1 and 1. The SF that achieves the highest correlation
coefficient for some dataset is considered more accurate (in terms of scoring
power) than its counterparts that realize smaller Rp values.

Calculating the ranking power of an SF on the core test set is straightforward
due to its construction. First, each protein-ligand complex is scored, i.e., its
BA is predicted. Then, for each protein cluster (i.e., the three protein-ligand
complexes associated with a common protein), complexes are ordered according
to their predicted BA scores. Any given cluster is considered correctly ranked
if its predicted-affinity-based order matches its corresponding measured-affinity-
based order. We denote this order by “1-2-3” which implies that the strongest-
binding ligand is ranked as the first candidate drug, the second strongest binding
one is ranked second by the SF, and the weakest binder is ranked last—the
number in the ordering corresponds to the true measured rank and the position
in the ordering corresponds to the predicted rank. The percentage of clusters
with “1-2-3” ordering is referred to as the 1-2-3 ranking rate, denoted by R1-2-3,
and is used as a measure of the ranking power of a given SF as in [4].

3.2 ML vs. Conventional Approaches on the Core Test Set

In Table 1, we report the scoring and ranking performances of six ML and six-
teen conventional SFs on the core test Cr comprising 65 three-complex clusters
corresponding to 65 diverse protein families. The ML SFs were trained on Pr
and then used to predict BAs for the core test Cr, while the results for the
conventional SFs were calculated in [4] based on their predicted BA values for
the same test complexes in Cr. The table is divided into two column groups. In
the left column group, SFs are ordered based on their scoring power in terms
of Pearson correlation coefficient. For each SF, the option and/or variation that
results in the highest Rp value is used as a representative for it. In the right
column group, SFs are ordered based on their R1-2-3 ranking statistic. Similar to
scoring, for each SF we report results only for the option that yields the highest
R1-2-3 value. For example, among all the seven possible feature sets for RF, the
feature set XR results in the highest scoring power of Rp = 0.807. However, the
feature set XAR yields a higher ranking success rate of 62.2% for RF compared

Does Accurate Scoring of Ligands Mean Accurate Ranking? 305

Table 1. Comparison of the scoring and ranking powers of 6 ML and 16 conventional
SFs on the core test set Cr

Scoring Power Based Order Ranking Power Based Order

Scoring Function Rp R1-2-3 (%) Scoring Function R1-2-3 (%) Rp

RF::XR 0.807 57.4 RF::XAR 62.2 0.800
BRT::XAR 0.799 58.2 SVM:XAR 61.5 0.773
SVM::XAR 0.773 61.5 BRT::X 59.4 0.718
kNN::XA 0.740 44.6 X-Score::HSScore 58.5 0.619
MARS::XAR 0.710 44.6 DS::PLP1 54.7 0.545
MLR::XA 0.689 41.5 kNN::XR 53.8 0.736
X-Score::HMScore 0.644 52.3 DrugScoreCSD 52.3 0.569
DrugScoreCSD 0.569 52.3 MARS::AR 50.8 0.657
SYBYL::ChemScore 0.555 47.7 MLR::R 50.8 0.600
DS::PLP1 0.545 54.7 SYBYL::ChemScore 47.7 0.555
GOLD::ASP 0.534 43.1 SYBYL::G-Score 46.2 0.492
SYBYL::G-Score 0.492 46.2 SYBYL::D-Score 46.2 0.392
DS::LUDI3 0.487 43.1 GOLD::ASP 43.1 0.534
DS::LigScore2 0.464 35.4 DS::LUDI3 43.1 0.487
GlideScore-XP 0.457 33.8 DS::PMF 41.5 0.445
DS::PMF 0.445 41.5 DS::Jain 41.5 0.316
GOLD::ChemScore 0.441 36.9 SYBYL::PMF-Score 38.5 0.268
SYBYL::D-Score 0.392 46.2 GOLD::ChemScore 36.9 0.441
DS::Jain 0.316 41.5 DS::LigScore2 35.4 0.464
GOLD::GoldScore 0.295 23.1 GlideScore-XP 33.8 0.457
SYBYL::PMF-Score 0.268 38.5 SYBYL::F-Score 29.2 0.216
SYBYL::F-Score 0.216 29.2 GOLD::GoldScore 23.1 0.295

to a ranking success rate of 57.4% obtained using XR features. Hence, RF::XAR
is reported in the right column group.

From the table, it is evident that ML SFs perform very well on both scoring
and ranking tasks compared to conventional SFs, with RF, BRT, and SVM being
the top three in both cases and the six ML SFs being the best ones at scoring and
among the nine best ones out of 22 at ranking. In particular, the best ML SF and
the best conventional SF on both tasks are RF and X-Score, respectively, and the
former provides more than 25% better scoring accuracy and more than 6% better
ranking accuracy compared to the latter. When we consider the SF method as
well as its feature set or variant, there are a total of 28 different SFs in the two
lists (in the left and right column groups) of Table 1. We find that better scoring
accuracy, in general, leads to better ranking accuracy. For example, the Pearson
correlation coefficient and the Spearman correlation coefficient (which measures
correlation in terms of the position in two ranked lists) of Rp to R1-2-3 values of
the 28 different SFs in Table 1 are 0.795 and 0.788, respectively. Similarly, we find
that among the top 14 (50%) of the 28 SFs based on scoring power, 11 out of 14

306 H.M. Ashtawy and N.R. Mahapatra

appear in the top 50% of SFs based on ranking power. Therefore, in relative terms,
across all 28 SFs, an SF with a higher scoring power compared to that of another
SF is also likely to have higher ranking power. However, upon closer inspection, we
find that high scoring performance does not necessarily translate to high ranking
performance in absolute terms.While the highest scoring accuracy is 0.807 for RF,
its ranking accuracy, which is also the highest (although for a different feature set),
is only 62.2%. Consequently, the improvement obtained by using the best ML SF
compared to a conventional one in terms of scoring power is significantly higher
(> 25%) than in terms ranking power (> 6%). Furthermore, when considering the
actual feature set used, the most accurate SF in predicting absolute BA values,
RF::XR, is outperformed by the less accurate XScore::HSScore in ranking ligands
for 65 protein targets. It should be noted that correct ranking of ligands for each
protein does not necessarily follow from linear correlation between predicted and
measuredBAs across all proteins . This could partially explain why some empirical
SFs such as XScore::HSScore and DS::PLP1 outperformed kNN and MARS even
though these ML SFs perform better in scoring. The particular features employed
by the aforementioned empirical SFs could have also played a role in giving them
an edge over some ML techniques in ranking. Focusing specifically on the 42 ML
SFs that we built, the correlation between their scoring and ranking accuracies
is only a modest 0.55. This underlines the challenge of obtaining highly accurate
ranking even using an SF with high scoring accuracy.

3.3 Impact of Training Set Size

Experimental information about 3D structure and BA of new protein-ligand
complexes is regularly determined. This contributes to the growing size of public
biochemical repositories and corporate compound banks. To assess the impact
that a larger training set size would have on the scoring as well as the ranking
accuracies of ML SFs, we consider the annually updated database PDBbind
that is based on PDB—more than 750 new protein-ligand complexes have been
deposited into this database from the year 2007 to 2010. To be able to use
a greater range of training set sizes, we choose the larger dataset Sc to build
and test different ML scoring models. For a given number of training complexes
x, x = 1× 178, 2× 178, . . . , 10× 178, we select x complexes randomly (without
replacement) from Sc to train the six ML models that were tested on the disjoint
core set Cr . This process is repeated 100 times to obtain robust average scoring
(Rp) and ranking (R1-2-3) performance values, which are plotted in Figure 2.

In both scoring and ranking cases, we observe that performance of almost
all models improves as the size of the training data increases. When the size of
training data is small relative to the number of features (XAR corresponds to a
maximum of 72 features), we notice relatively poor accuracy for some SFs such
as MLR and SVM. This is perhaps a consequence of overfitting since the ratio
of training data size to number of features is small. The slopes of RF and BRT
based SFs indicate that they benefit the most from increasing the size of training
set in scoring and ranking. On the other hand, the ranking performance of SFs

Does Accurate Scoring of Ligands Mean Accurate Ranking? 307

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Number of training complexes
(a)

Pe
ar

so
n

co
rr

el
at

io
n

co
ef

fi
ci

en
t (

R
p)

●

●

●
●

●
●

●
● ● ●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

178 356 534 712 890 1068 1246 1424 1602 1780

●

RF
BRT
SVM
kNN
MARS
MLR

30
40

50
60

70
80

90

Number of training complexes
(b)

R
an

ki
ng

 s
uc

ce
ss

 r
at

e
(R

1−
2−

3
in

 %
)

●

●

●
●

●
●

●
●

● ●

30
40

50
60

70
80

90

178 356 534 712 890 1068 1246 1424 1602 1780

●

RF
BRT
SVM
kNN
MARS
MLR

Fig. 2. Dependence of (a) scoring and (b) ranking accuracies of ML scoring models
on training set size when the training complexes are selected randomly from ScXAR

and then tested on the disjoint core set CrXAR

based on kNN, MARS, and MLR appear to be less responsive to including more
and more training complexes.

SF designers can conduct similar experiments to estimate accuracy enhance-
ment when their proposed functions are recalibrated on larger number of data
instances. Take, for example, the RF model. We can approximately project its
scoring and ranking powers on the core test set after a few years from now. If we
averaged its improvement slope over the last three increments in training size, we
obtain roughly 0.01 and 1.26% increase in terms of Rp and R1-2-3, respectively,
for each 178 increase in number of training records. By assuming that extra
1780 protein-ligand complexes will be deposited into PDBbind in the next few
years, one can then optimistically expect (because of diminishing returns with
increasing training data size) the scoring and ranking powers of RF::XAR on the
test set Cr to go up to about Rp = 0.9 and R1-2-3 = 74.8% from their current
values of 0.8 and 62.2%, respectively. Such an enhancement would certainly have
a great impact when the goal is to only choose promising drugs from databases
that contain millions of drug-like molecules.

3.4 Impact of the Number of Features

The BA of a protein-ligand complex depends on many physicochemical inter-
action factors that are too complex to be accurately captured by any one ap-
proach. We perform an experiment to investigate how utilizing different types of
features from different scoring tools, X-Score, AffiScore, and RF-Score, with an
increasing number of them affects the performance of the various ML models.
A pertinent issue when considering a variety of features is how well different
SF models exploit an increasing number of features. The features we consider
are the X, A, and a larger set of geometrical features than the R feature set
available from the RF-Score tool. RF-Score counts the number of occurrences
of 36 different protein-ligand atom pairs within a distance of 12 Å. In order to
have more features of this kind for this experiment, we produce 36 such counts

308 H.M. Ashtawy and N.R. Mahapatra

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Number of features
(a)

Pe
ar

so
n

co
rr

el
at

io
n

co
ef

fi
ci

en
t (

R
p)

●

●
● ● ● ● ● ● ● ●

20 40 60 80 100 120 140 160 180 200

●

RF
BRT
SVM
kNN
MARS
MLR

30
40

50
60

70
80

90

Number of features
(b)

R
an

ki
ng

 s
uc

ce
ss

 r
at

e
(R

1−
2−

3
in

 %
)

●

●
●

●
● ●

● ● ● ●

20 40 60 80 100 120 140 160 180 200

●

RF
BRT
SVM
kNN
MARS
MLR

Fig. 3. Dependence of (a) scoring and (b) ranking accuracies of ML scoring models
on the number of features, with the features drawn randomly (without replacement)
from a pool of X, A, and R-type features and used to train the ML models on the Sc
dataset and then tested on the disjoint core set Cr

for five contiguous distance intervals of 4 Å each: (0 Å, 4 Å], (4 Å, 8 Å], . . . , (16
Å, 20 Å]. This provides us 6 X, 30 A, and (36 × 5 =) 180 geometrical features
or a total of 216 features. We randomly select (without replacement) x features
from this pool, where x = 20, 40, 60, . . . , 200, and use them to characterize the
Sc dataset, which we then use to train the six ML models. These models are
subsequently tested on the Cr dataset characterized by the same sampled fea-
tures. This process is repeated 100 times to obtain robust average Rp and R1-2-3

statistics, which are plotted in Figure 3.
Clearly, the various SFs have very different response in scoring and ranking

performance to increase in the number of features. For several of them, peak
scoring performance is attained at 60 (kNN and MLR) or 120 (SVM) features
and then there generally tends to be a drop or saturation in performance at
larger number of features. Although the features we used are distinct, they have
varying degrees of correlation between them. This combined with larger number
of features may lead to overfitting problems for some of the SFs. The overfitting
problem is clearly manifested in the scoring performance plot of MLR model.
The ranking accuracies of MLR as well as those based on kNN and MARS are
consistently poor over all feature sizes. SVM ranking performance peaks at 60
features, flattens, and then starts to fall at 120 features. The meta-parameters
of all ML models are not tuned for every number of features chosen. This espe-
cially affects the performance of SVM which we have found to be very sensitive
to its parameter values. However, tuning SVM parameters for every number of
features is computationally intensive, and therefore we did not attempt to search
for the optimal parameter values for every feature set size for it. In contrast to
these models, the performance of RF and BRT benefits from increasing number
of features especially in their ranking accuracies. Based on these results, utiliz-
ing as many relevant features as possible in conjunction with ensemble based
approaches like BRT and RF is the best option. The higher accuracy of these
two ensemble techniques in this experiment and the previous ones are due to

Does Accurate Scoring of Ligands Mean Accurate Ranking? 309

their low bias and variance errors and their resilience to overfitting even with
the use of large number of features [24].

4 Conclusion

In this paper, we considered the problem of scoring and ranking ligands based on
how tightly they bind to their receptor proteins and comprehensively assessed
sixteen conventional and six ML SFs in various test scenarios. We found that
better scoring accuracy, in general, leads to better ranking accuracy. However,
high scoring performance does not necessarily translate to high ranking perfor-
mance in absolute terms. Our results showed that ML SFs based on ensemble
prediction methods (viz. RF and BRT) surpass others in scoring and ranking ac-
curacy. On the diverse core test set, using the best ML SF as opposed to the best
conventional SF improved scoring performance in terms of Pearson correlation
coefficient from 0.644 to 0.807. The improvement, however, is less pronounced in
ranking accuracy in which case the best ML model achieved 62.2% ranking suc-
cess rate compared to the 58.5% rate obtained by the best conventional SF. We
also observed steady gains in scoring and ranking performance of some ML SFs,
in particular for those based on RF and BRT, as the training set size and type
and number of features were increased. SFs based on MLR, which resemble em-
pirical models, and to some extent kNN and SVM, for a variety of reasons, were
not as effective at exploiting a larger training set size and their performance
degraded due to overfitting as the number of features was increased. Overall,
based on our results, we expect continued gains in scoring and ranking accuracy
of ML SFs, especially RF- and BRT-based, as the training set size and number
of features used increase in the future.

Acknowledgments. This material is based upon work supported by US Na-
tional Science Foundation under Grant No. 1117900.

References

1. Ewing, T.J.A., Makino, S., Skillman, A.G., Kuntz, I.D.: Dock 4.0: search strate-
gies for automated molecular docking of flexible molecule databases. Journal of
Computer-Aided Molecular Design 15(5), 411–428 (2001)

2. Wang, R., Lai, L., Wang, S.: Further development and validation of empirical
scoring functions for structure-based binding affinity prediction. Journal of
Computer-Aided Molecular Design 16, 11–26 (2002), doi:10.1023/A:1016357811882

3. Gohlke, H., Hendlich, M., Klebe, G.: Knowledge-based scoring function to predict
protein-ligand interactions. Journal of Molecular Biology 295(2), 337 (2000)

4. Cheng, T., Li, X., Li, Y., Liu, Z., Wang, R.: Comparative assessment of scor-
ing functions on a diverse test set. Journal of Chemical Information and Model-
ing 49(4), 1079–1093 (2009)

5. Ashtawy, H.M., Mahapatra, N.R.: A comparative assessment of conventional and
machine-learning-based scoring functions in predicting binding affinities of protein-
ligand complexes. In: 2011 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pp. 627–630. IEEE (2011)

310 H.M. Ashtawy and N.R. Mahapatra

6. Ashtawy, H.M., Mahapatra, N.R.: A comparative assessment of ranking accuracies
of conventional and machine-learning-based scoring functions for protein-ligand
binding affinity prediction. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB) 9(5), 1301–1313 (2012)

7. Ballester, P., Mitchell, J.: A machine learning approach to predicting protein-ligand
binding affinity with applications to molecular docking. Bioinformatics 26(9), 1169
(2010)

8. Wang, R., Fang, X., Lu, Y., Wang, S.: The PDBbind database: Collection of binding
affinities for protein-ligand complexes with known three-dimensional structures.
Journal of Medicinal Chemistry 47(12), 2977–2980 (2004); PMID: 15163179

9. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig,
H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Re-
search 28(1), 235–242 (2000)

10. Madden, T.: The blast sequence analysis tool. The NCBI Handbook. National
Library of Medicine (US), National Center for Biotechnology Information (2002)

11. Schnecke, V., Kuhn, L.A.: Virtual screening with solvation and ligand-induced com-
plementarity. In: Klebe, G. (ed.) Virtual Screening: An Alternative or Complement
to High Throughput Screening? pp. 171–190. Springer, Netherlands (2002)

12. Accelrys Inc., The Discovery Studio Software, San Diego, CA (2001) (version 2.0)
13. Tripos, Inc., The SYBYL Software, 1699 South Hanley Rd., St. Louis, Missouri,

63144, USA (2006) (version 7.2)
14. Jones, G., Willett, P., Glen, R., Leach, A., Taylor, R.: Development and validation

of a genetic algorithm for flexible docking. Journal of Molecular Biology 267(3),
727–748 (1997)

15. Schrödinger, L.: The Schrödinger Software, New York (2005) (version 8.0)
16. Velec, H.F.G., Gohlke, H., Klebe, G.: DrugScore CSD - knowledge-based scoring

function derived from small molecule crystal data with superior recognition rate
of near-native ligand poses and better affinity prediction. Journal of Medicinal
Chemistry 48(20), 6296–6303 (2005)

17. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning (2001)
18. R Development Core Team: R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria (2010)
19. Stephen Milborrow, T.H., Tibshirani, R.: earth: Multivariate Adaptive Regression

Spline Models (2010) (R package version 2.4-5)
20. Hechenbichler, K.S.K.: Kknn: Weighted k-Nearest Neighbors (2010) (R package

version 1.0-8)
21. Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.: e1071: Miscel-

laneous Functions of the Department of Statistics (e1071), TU Wien (2010) (R
package version 1.5-24)

22. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
23. Ridgeway, G.: Gbm: Generalized Boosted Regression Models (2010) (R package

version 1.6-3.1)
24. Breiman, L.: Bias, variance, and arcing classifiers (technical report 460). Statistics

Department, University of California (1996)

Author Index

Al Nasr, Kamal 211
Ashtawy, Hossam M. 298

Baker, Erich J. 161
Berger-Wolf, Tanya 3
Burge, Legand L. Iii 211

Cai, Liming 52, 199
Campo Rendon, David Stiven 149
Chang, Kuiyu 87
Chen, Luonan 2
Chesler, Elissa J. 161
Cheung, David Wai-lok 125
Chin, Francis 112
Crépin, Laurent 28

Dai, Cuihong 76
Dimitrova, Zoya 149
Ding, Liang 199
Ding, Xiaojun 185
Divya, Jain 87

Ganova-Raeva, Lilia 149
Gertz, Michael 137
Glebova, Olga 149
Guo, Xuan 185

Harrouet, Fabrice 28
Harvey, Stephen C. 4
Hauser, Jörg 137
Hon, W.K. 112
Hou, Aiju 76
Hu, Fei 17
Hüffner, Falk 99

Izquierdo-Carrasco, Fernando 137

Jay, Jeremy J. 161

Kanj, Iyad 5
Kerdélo, Sébastien 28
Khudyakov, Yury 149
Kim, Jung-Jae 87

Kobert, Kassian 137
Komusiewicz, Christian 99

Lam, Tak-Wah 125
LaMarca, Sal 52
Lechner, Marcus 249
Leung, Henry 112
Li, Lin 224
Liebtrau, Adrian 99
Liu, Chunmei 211
Liu, Ke 76
Liu, Wenting 87
Liu, Xuan 125
Ludwig, Marcus 249

Ma, Bin 1
Mahapatra, Nihar R. 298
Mahesan, Niranjan 64
Malmberg, Russell L. 52, 199
Marz, Manja 249
Meng, Yu 185
Meusemann, Karen 137
Misof, Bernhard 137
Mundra, Piyushkumar A. 64

Na, Hyuntae 273
Niedermeier, Rolf 99

Pan, Yi 185, 286
Phan, Vinhthuy 173

Qiao, Lei 76

Rajapakse, Jagath C. 64, 87
Redou, Pascal 28
Rivals, Eric 237
Robertson, Joseph 199
Rwebangira, Mugizi Robert 211

Sadakane, K. 112
Skums, Pavel 149
Song, Guang 273
Song, Xuebo 224
Srimani, Pradip K. 224

312 Author Index

Srivastava, Anuj 52
Stamatakis, Alexandros 137
Sung, Ken W.K. 112

Tang, Jijun 17
Ting, Hing-Fung 125
Tisseau, Jacques 28

Välimäki, Niko 237
Vo, Nam S. 173
Vu, Hoa 112

Wang, James Z. 224
Wang, Jianxin 286
Welsch, Roy E. 64
Wieseke, Nicolas 249
Wu, Fang-xiang 286

Xia, Ge 5
Xie, Fangping 76
Xu, Dechang 76

Yiu, Siu-Ming 112, 125
Yu, Philip S. 224

Zelikovsky, Alex 149
Zeng, Xiangmiao 76
Zhang, Louxin 40, 261
Zhang, Xiaoyu 52
Zhang, Ying 76
Zhao, Bihai 286
Zheng, Jie 64, 87
Zheng, Yu 40, 261
Zhou, Lingxi 17
Zhu, Binhai 5

	Preface
	Organization
	Table of Contents
	Peptide Identification from Mass Spectrometry
	Identifying Critical Transitions of BiologicalProcesses by Dynamical Network Biomarkers
	Computational Behavioral Ecology
	Unusual RNA Structures: Information Contenti n RNAs from the ”Prebiotic Ribosome”to Modern Viruses
	The Radiation Hybrid Map ConstructionProblem Is FPT
	1 Introduction
	2 Preliminaries
	3 Bounding the Pathwidth
	4 An FPT Algorithm for RHMCd
	5 Conclusion
	References

	Reconstructing Ancestral Genomic Orders UsingBinary Encoding and Probabilistic Models
	1 Introduction
	1.1 Overview
	1.2 Genome Rearrangement
	1.3 Parsimony Methods for Ancestral Gene-Order Reconstruction
	1.4 Reconstructing the Ancestral Gene Order in ProbabilisticFrameworks

	2 Algorithm Detail
	2.1 Encoding Gene Orders into Binary Sequences
	2.2 Estimating Transition Parameters
	2.3 Inferring the Probabilities of Ancestral Adjacencies for theRoot Node
	2.4 Rerooting the Tree Topology

	3 Experimental Results
	3.1 Experimental Design
	3.2 Comparing the Performance with Existing ProbabilisticMethod
	3.3 Comparing the Performance with Parsimonious Methods
	3.4 Time Consumption

	4 Conclusion
	References

	Computational Methods for the Parallel 3D Simulation of Biochemical Kineticsat the Microscopic Scale
	1 Introduction
	2 Model
	2.1 Particle-Based System
	2.2 Parallel Asynchronous Scheduler

	3 Results
	3.1 Validation
	3.2 Performances

	4 Discussions and Perspectives
	4.1 Alternatives for Computing Power
	4.2 Perspectives and Future Work

	References

	A Tool for Non-binary Tree Reconciliation
	1 Introduction
	2 Basic Concepts and Notation
	2.1 Gene Trees and Species Trees
	2.2 Tree Reconciliation

	3 Non-binary Tree Reconciliation
	4 A Heuristic Algorithm for Binary Refinement of A Species Tree
	5 Tool Implementation
	6 Validation Tests
	6.1 Inference of Tor Gene Duplications
	6.2 Simulation Data
	6.3 Accuracy of Species Tree Inference for Drosophila Species

	7 Conclusion
	References

	Patterns of Chromatin-Modifications DiscriminateDifferent Genomic Features in Arabidopsis
	1 Introduction
	2 Methods
	3 Results
	3.1 Binary and Multi-level Classifiers
	3.2 Novel Feature Prediction

	4 Discussion
	References

	Inferring Time-Delayed Gene Regulatory Networks Using Cross-Correlationand Sparse Regression
	1 Introduction
	2 Methods
	3 Experiments
	3.1 Simulating Synthetic Data
	3.2 Parameter Estimation and Performance Evaluation
	3.3 Real Dataset

	4 Results and Discussion
	References

	A Simulation of Synthetic agr System in E.coli
	1 Introduction
	2 Materials and Methods
	3 Model
	3.1 Interaction between Sensor AgrC and AIP
	3.2 Phosphorylation of AgrA
	3.3 Transcription of RNAII
	3.4 Translation of AgrC and AgrA
	3.5 Transcription of GFP and Lysostaphin
	3.6 Translation of GFP and Lysostaphin

	4 Results
	5 Discussion
	6 Appendix
	References

	Gene Regulatory Networks from Gene Ontology
	1 Introduction
	2 Methods
	2.1 Gene Ontology Networks
	2.2 GRNs from GO Regulatory Paths
	2.3 Complementary GRNs from Functional Similarity

	3 Results
	4 Conclusion
	References

	Partitioning Biological Networks into Highly Connected Clusterswith Maximum Edge Coverage
	1 Introduction
	2 Computational Complexity
	3 Further Data Reduction and ILP Formulation
	4 Experimental Evaluation
	5 Outlook
	References

	Reconstructing k-Reticulated Phylogenetic Networkfrom a Set of Gene Trees
	1 Introduction
	2 Algorithms for Reconstructing k-Reticulated Network (k = 1, 2)
	2.1 Reconstructing 1-Reticulated Network
	2.2 Reconstructing 2-Reticulated Network
	2.3 Algorithm Correctness
	2.4 Time Complexity

	3 Maximum 2-Reticulated Network Compatibility Problem
	4 Experiments
	References

	LCR_Finder: A de Novo Low Copy Repeat Finderfor Human Genome
	1 Introduction
	2 Methods
	2.1 Problem Definition
	2.2 Overlapping Reads Generation and Alignments
	2.3 Small-Size Highly Similar Sequences Detection
	2.4 Basic Extension
	2.5 Merge Adjacent LCRs to Deal with Large Size Novel Sequences

	3 Results
	3.1 Performance of LCR_Finder
	3.2 Supporting Evidence on Novel LCRs
	3.3 LCR_Finder Limitations
	3.4 Tools Comparison

	4 Conclusions and Discussions
	References

	Heuristic Algorithmsfor the Protein Model Assignment Problem
	1 Introduction
	2 Related Work
	3 Heuristics
	3.1 Accelerating the Evaluation of Candidate PMAs
	3.2 Greedy Partition Addition Strategy
	3.3 Steepest Ascent Strategy
	3.4 Simulated Annealing Strategy

	4 Performance Assessment
	4.1 Experimental Setup
	4.2 Test-Datasets
	4.3 Results

	5 Conclusion and Future Work
	References

	Alignment of DNA Mass-Spectral ProfilesUsing Network Flows
	1 Introduction
	2 Problem Formulation
	3 Network Flow Method for Spectral Alignment
	4 Test Results, Conclusions and Future Work
	References

	A Context-Driven Gene Prioritization Methodfor Web-Based Functional Genomics
	1 Introduction
	2 Background
	2.1 Counting-Based Similarity Metrics
	2.2 Information Content

	3 Materials and Methods
	3.1 Data Sources
	3.2 Methods
	3.3 Implementation

	4 Results and Discussion
	5 Conclusion
	References

	Exploiting Dependencies of Patterns in Gene Expression Analysis Using PairwiseComparisons
	1 Introduction
	2 Method
	2.1 Gene Response Patterns Obtained from Pairwise Comparisons
	2.2 Comparison Outcomes Are Strict Partially Ordered Sets (Posets)
	2.3 Linearly Orderable Patterns
	2.4 Determining True Response Patterns Using ad hoc Thresholds

	3 Experimental Results
	3.1 Data and Method of Validation
	3.2 Analysis of Linearly Orderable Extensions
	3.3 Functional Analysis Using DAVID

	4 Conclusion and Discussion
	References

	Cloud Computingfor De Novo Metagenomic Sequence Assembly
	1 Introduction
	2 Preliminaries
	2.1 The Map-Reduce Model
	2.2 De Novo Assembly of Metagenomes

	3 Algorithm for
	3 Algorithm for De NovoAssembly
	3.1 Phase I: Weight-Edge Construction
	3.2 Phase II: Clustering
	3.3 Phase III: Parallel-Genovo
	3.4 Phase IV: Post-Merge

	4 Results
	4.1 Compared Methods and Experimental Environment
	4.2 Experiment on a Single Sequence Dataset
	4.3 Experiments on Multi-species Simulated Datasets
	4.4 Experiments on Real Metagenomic Datasets
	4.5 Time Comparison

	5 Conclusion
	References

	Protein Closed Loop Predictionfrom Contact Probabilities
	1 Introduction
	2 Methods
	2.1 Contact Probability Based Closed Loop Prediction
	2.2 Closed Loop Conservation for Structurally Similar Proteins
	2.3 Closed Loops and Secondary Structures

	3 Results
	3.1 Contact Probability Based Closed Loop Prediction
	3.2 Closed Loop Conservation for Structurally Similar Proteins
	3.3 Closed Loops and Secondary Structures

	4 Discussion
	5 Conclusion
	References

	A Graph Approach to Bridge the Gaps in VolumetricElectron Cryo-microscopy Skeletons
	1 Introduction
	2 Materials and Methods
	2.1 Basic Notions
	2.2 Method

	3 Results
	4 Conclusion
	References

	Measure the Semantic Similarity of GO TermsUsing Aggregate Information Content
	1 Introduction
	2 Related Prior Work
	2.1 Limitations of Current Methods
	2.2 Review of Existing Representative Methods

	3 Proposed Aggregate Information Content Based Method (AIC)
	3.1 GO Similarity
	3.2 Gene Similarity

	4 Experimental Evaluation of AIC
	4.1 Evaluating AIC Method Using GO Term Semantic Similarity
	4.2 Evaluating AIC Using Correlation with Gene Expression Data
	4.3 Evaluating the Computation Efficiency of the AIC Method

	5 Conclusion
	References

	Scalable and Versatile k-mer Indexingfor High-Throughput Sequencing Data
	1 Introduction
	2 Compressed
	Arrays
	Lemma 1.
	Lemma 2.
	Lemma 3.
	Theorem 1.
	2.1 Construction
	Lemma 4.
	Corollary 1.
	2.2 Query Extensions

	3 Experiments
	4 Discussion
	References

	POMAGO: Multiple Genome-Wide Alignment Toolfor Bacteria
	1 Introduction
	2 Methods
	2.1 Orthology Cleaning
	2.2 Anchored Multiple Genome Alignment

	3 Results
	4 Discussion
	5 Conclusion
	References

	Effect of Incomplete Lineage Sorting on Tree-Reconciliation-Based Inferenceof Gene Duplication
	1 Background
	2 Results and Discussion
	2.1 Measuring the Effect of ILS on Gene Duplication Inference
	2.2 The Case of Four Species
	2.3 Effect Analysis on a Drosophila Species Tree
	2.4 The Upper Bound of D(S) and L(S)

	3 Conclusion
	4 MaterialandMethods
	4.1 Computing the Gene Tree Distribution in a Species Tree
	4.2 Gene Duplication Inference

	References

	Ellipsoid-Weighted Protein ConformationAlignment
	1 Introduction
	2 Methods
	2.1 Alignment by Energy Minimization
	2.2 Potential Models for Alignment
	2.3 Implementations

	3 Results
	3.1 Identify Immobile Regions in Structures
	3.2 Mine Directional Motion Tendency of a Protein from Its Ensemble

	4 Discussion and Conclusion
	References

	Construction of Uncertain Protein-Protein InteractionNetworks and Its Applications
	1 Introduction
	2 Constructing UPPI Networks
	3 The CPUT Method
	3.1 Core Detection
	3.2 Attachment Detection
	3.3 Redundancy-Filter

	4 Results and Discussion
	4.1 Results on DIP Data
	4.2 Results on Krogan Data
	4.3 Effect of Parameter CT

	5 Conclusion
	References

	Does Accurate Scoring of Ligands againstProtein Targets Mean Accurate Ranking?
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Key Contributions

	2 Materials and Methods
	3 Results and Discussion
	3.1 Evaluation of Scoring Functions
	3.2 ML vs. Conventional Approaches on the Core Test Set
	3.3 Impact of Training Set Size
	3.4 Impact of the Number of Features

	4 Conclusion
	References

	Author Index

