
Accountable Trapdoor Sanitizable Signatures

Junzuo Lai1,2, Xuhua Ding1, and Yongdong Wu3

1 School of Information Systems, Singapore Management University, Singapore
{junzuolai,xhding}@smu.edu.sg

2 Department of Computer Science, Jinan University, China
3 Institute for Infocomm Research, Singapore

wydong@i2r.a-star.edu.sg

Abstract. Sanitizable signature (SS) allows a signer to partly delegate
signing rights to a predetermined party, called sanitizer, who can later
modify certain designated parts of a message originally signed by the
signer and generate a new signature on the sanitized message without
interacting with the signer. One of the important security requirements of
sanitizable signatures is accountability, which allows the signer to prove,
in case of dispute, to a third party that a message was modified by
the sanitizer. Trapdoor sanitizable signature (TSS) enables a signer of a
message to delegate the power of sanitization to any parties at anytime
but at the expense of losing the accountability property. In this paper,
we introduce the notion of accountable trapdoor sanitizable signature
(ATSS) which lies between SS and TSS. As a building block for con-
structing ATSS, we also introduce the notion of accountable chameleon
hash (ACH), which is an extension of chameleon hash (CH) and might
be of independent interest. We propose a concrete construction of ACH
and show how to use it to construct an ATSS scheme.

Keywords: Trapdoor Sanitizable Signature, Accountability, Chameleon
Hash.

1 Introduction

Ateniese et al. [1] introduced the notion of sanitizable signature (SS) and pre-
sented a generic construction based on chameleon hash (CH) [18]. Sanitizable
signatures allow a signer to partly delegate signing rights to a predetermined
party, called a sanitizer. During signature generation on a message, the signer
chooses a specific sanitizer who, with the knowledge of the putative signature,
can later modify certain designated parts of the message and generate a new
signature on the sanitized message without interacting with the signer. The
capability of modification renders sanitizable signatures useful in many applica-
tions, such as authenticated multicast, authenticated database outsourcing and
authenticated multimedia content distribution.

Sanitizable signatures are required to possess the following five security prop-
erties [1]:

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 117–131, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



118 J. Lai, X. Ding, and Y. Wu

Unforgeability. An outsider (i.e., neither the signer nor the sanitizer) should
not be able to forge the signer’s or the sanitizer’s signature.

Immutability. The sanitizer should not be able to produce valid signatures
for messages where it has modified other than the designated parts.

Privacy. Sanitized messages and their signatures should not reveal the original
data.

Transparency. An outsider should not be able to decide whether a message
has been sanitized or not.

Accountability. In case of a dispute, the signer can prove to a trusted third
party that a certain message was modified by the sanitizer.

Subsequently Canard et al. [8] introduced the notion of trapdoor sanitizable
signature (TSS), which is an extension of SS. TSS enables a signer to delegate
the power of sanitization for a signed message to any party. They also proposed
a generic construction of TSS based on identity-based chameleon hash (IBCH)
[2]. However, TSS does not satisfy the security requirement of accountability.

In this paper, we introduce the notion of accountable TSS (ATSS) which lies
between TSS and SS. Like SS, our ATSS scheme satisfies the accountability
property; it allows a signer to generate an ATSS signature on a message for a
predetermined candidate sanitizer. The ATSS signature alone does not provide
the candidate sanitizer the power to modify the underlying message and generate
a valid signature on the modified message. In order to generate a valid signature
on a modified message, similar to TSS, the candidate sanitizer needs to obtain
a trapdoor from the signer, in addition to the signer’s signature.

One possible application of ATSS is content authentication in tiered multi-
media distribution systems [12]. Such a system consists of a top-tier primary
content provider and a number of lower-tier affiliating providers each with its
own users. An example is a movie distributer in Hollywood that has a num-
ber of country distributers worldwide. Whenever a new movie is released, the
Hollywood distributer signs the video stream for a country distributor using
ATSS and sends the video stream and the signature to the country distributor
for previewing. Upon receiving the video stream, the country distributor verifies
the authenticity of the movie using the signature. If the country distributor is
interested in distributing the movie, it enters a contract with or make a pay-
ment to the Hollywood distributor. The latter in turn sends a trapdoor to the
former. With the knowledge of the trapdoor, the country distributor can then
modify/adapt the movie for its local market (e. g., adding subtitles in the local
language) and generate a valid signature on the modified video stream.

1.1 Our Contribution

Contributions of the paper can be summarized as follows:

1. We introduce the notion of ATSS. In an ATSS scheme, a signer needs to prede-
termine a user as a candidate sanitizer during the signature generation. This
signature alone does not allow the candidate sanitizer to produce a new signa-
ture on a sanitized message. To generate a new signature on a sanitized mes-
sage, the candidate sanitizer needs to obtaina trapdoor fromtheoriginal signer.



Accountable Trapdoor Sanitizable Signatures 119

2. We extend the notion of CH by introducing the notion of accountable CH
(ACH) and define its security requirements. We propose a concrete construc-
tion of ACH that satisfies the security requirements in the random oracle
model [6].

3. Based on ACH, we present a generic construction of ATSS. Instantiating the
generic construction with our concrete ACH scheme, we can obtain the first
ATSS scheme.

1.2 Related Work

Sanitizable Signature. The notion of SS was introduced by Ateniese et al. [1].
Such signatures allow a sanitizer to modify certain designated parts of a signed
message and generate a new signature on the sanitized message without inter-
acting with the signer. Klonowski and Lauks [17] presented several extensions of
SS, including limitation of the set of possible modifications of a single mutable
block and limitation of the number of modifications of mutable blocks. Pöhls et
al. [22] integrated SS schemes into the XML signature specification.

Ateniese et al. [1] identified five security requirements of SS schemes, un-
forgeability, immutability, privacy, transparency and accountability. Brzuska et
al. [7] revisited these security requirements and investigated their relationships,
showing for example that transparency implies privacy.

Miyazaki et al. [21] used the notion of SS in a slightly different vein. Their
SS schemes [21,15,20] allow a sanitizer to only delete predetermined parts of a
signed message.

The notion of incremental cryptography [5] and homomorphic signatures,
which encompass transitive [19], redactable [16] and context-extraction signa-
tures [24], are also related to SS. We refer the reader to [1] for details.

Trapdoor Sanitizable Signature. Canard et al. [8] introduced the notion of TSS,
in which the power of sanitization is given to possibly several entities. Based on
IBCH, Canard et al. [8] proposed a generic construction of TSS. Recently, Yum
et al. [25] presented another generic construction of TSS from ordinary signature
schemes; therefore, one-way functions imply TSS. Bao et al. [4] extended TSS
for the hierarchical setting.

Chameleon Hash. Our work is also related to CH functions, which are random-
ized collision-resistant hash functions with the additional property that given
a trapdoor, one can efficiently generate collisions. CH was first introduced by
Krawczyk and Rabin [18]. Other CH constructions were proposed subsequently
[9,3,14,13,11] .

Ateniese and Medeiros [2] extended CH to identity-based setting [23] and
introduced the notion of IBCH. Zhang et al. [26] and Chen et al. [10] followed
their work.



120 J. Lai, X. Ding, and Y. Wu

1.3 Organization

The rest of the paper is organized as follows. Some preliminaries are given in
Section 2. The notion and security requirements of ATSS are introduced in Sec-
tion 3. In Section 4, we present the notion and security requirements of ACH,
and propose a concrete construction. In Section 5, we propose a generic con-
struction of ATSS from ACH and present a specific ATSS scheme based on our
ACH scheme. Finally, we state our conclusion in Section 6.

2 Preliminaries

If L is a positive integer, then [1, L] = {1, 2, . . . , L}. If A,B are two sets,
A\B = {x ∈ A|x /∈ B}. If x1, x2, . . . are strings, then x1‖x2‖ . . . denotes their
concatenation. We denote byR the range of random number. We say that a func-
tion f(λ) is negligible if for every c > 0 there exists an λc such that f(λ) < 1/λc

for all λ > λc.

2.1 Bilinear Pairings

Let G be a cyclic multiplicative group of prime order p and GT be a cyclic
multiplicative group of the same order p. A bilinear pairing is a map e : G×G→
GT with the following properties:

– Bilinearity: ∀g1, g2 ∈ G, ∀a, b ∈ Z∗
p, we have e(ga1 , g

b
2) = e(g1, g2)

ab;
– Non-degeneracy: There exist g1, g2 ∈ G such that e(g1, g2) �= 1;
– Computability: There exists an efficient algorithm to compute e(g1, g2) for
∀g1, g2 ∈ G.

2.2 Computational Diffie-Hellman (CDH) Assumption

The security of our ACH scheme will be reduced to the hardness of the com-
putational Diffie-Hellman (CDH) problem in the bilinear map group system
〈p,G,GT , e〉 in which the ACH scheme is constructed.

Definition 1. Given a bilinear map group system 〈p,G,GT , e〉, a generator g
of G and elements ga, gb ∈ G where a, b are selected uniformly at random from
Z∗
p, the CDH problem in the bilinear map group system is to compute gab. We

say that the CDH assumption holds in a bilinear map group system 〈p,G,GT , e〉
if no probabilistic polynomial-time algorithm can solve the CDH problem in the
bilinear map group system with non-negligible probability.

3 Accountable Trapdoor Sanitizable Signature and Its
Security Requirements

ATSS lies between sanitizable signature and trapdoor sanitizable signature. Like
a TSS scheme, an ATSS scheme includes the algorithms: GlobalSetup, KeyGen,



Accountable Trapdoor Sanitizable Signatures 121

Sign, Trapdoor, Sanitize and Verify. However, in ATSS, besides the private key of
the signer, the inputs of the Sign algorithm include the public key of a candidate
sanitizer and a transaction identifer TID. In order to generate a new signature
on a sanitized message, in ATSS, the inputs of the Sanitize algorithm include
the private key of the candidate sanitizer and a trapdoor associated with the
transaction identifier TID generated by the signer using Trapdoor algorithm, not
just a trapdoor associated with the transaction identifier as in TSS or just the
private key of the sanitizer as in SS.

In addition, to settle disputes about the origin of a message-signature pair, an
algorithm Proof enables the signer to produce a proof π. The proof π is generated
from a set of previously signed messages. A Judge algorithm then uses the proof
π to decide if a valid message-signature pair was created by the signer or the
sanitizer (the lack of such a proof is interpreted as a signer origin).

Concretely, an ATSS scheme is a tuple of algorithms described as follows:

GlobalSetup takes as input a security parameter λ. It produces a common public
parameter param to be used by all parties in the system.

KeyGen takes as input a security parameter λ and the common public parameter
param. It generates a public/private key pair (pk, sk). Every party in the
system uses this randomized algorithm to generate a private/public key pair
himself or herself.
For presentation simplicity, we assume there exist a single singer and multiple
sanitizers in the system. We denote by (pksig , sksig) the key pair of the signer,
and by (pksan, sksan) the key pair of a sanitizer.

Sign takes as input a sanitizer’s public key pksan, a message m = m1‖ · · · ‖mL,
a set of indices I ⊆ [1, L] that are sanitizable, a transaction identifier TID
and the signer’s private key sksig . It outputs a signature σ on m.
We assume that each message signed has a unique transaction identifier.

Trapdoor takes as input a message m, a set of indices I that are sanitizable,
a transaction identifier TID, a valid signature σ on (pksig , pksan,m, I,TID)
and the signer’s private key sksig . It outputs a trapdoor tdTID.

Sanitize takes as input the signer’s public key pksig, a message m, a set of the
indices I that are sanitizable, a transaction identifier TID, a valid signature
σ on (pksig , pksan,m, I,TID), a trapdoor tdTID associated with TID, the san-
itizer’s private key sksan and a new message m′. It outputs a new signature
σ′ on (pksig, pksan,m

′, I,TID).
Verify takes as input param, the signer’s public key pksig , a sanitizer’s public key

pksan, a message m, a set of the indices I that are sanitizable, a transaction
identifier TID and a putative signature σ. It outputs 1 if the signature σ on
m is valid and 0 otherwise.

Proof takes as input param, the signer’s private key sksig, a valid signa-
ture σ on (pksig , pksan,m, I,TID), and a set of (polynomially many) addi-

tional message-signature pairs ((pksig , pk
(i)
san,m(i), I(i),TID(i)), σ(i))i=1,2,...,q.

It outputs a proof π ∈ {0, 1}∗.
Judge takes as input param, the signer’s public key pksig, the sanitizer’s public

key pksan, a valid signature σ on (pksig , pksan,m, I,TID) and a proof π. It



122 J. Lai, X. Ding, and Y. Wu

outputs a decision d ∈ {Sig/San} indicating whether the message-signature
pair ((pksig , pksan,m, I,TID), σ) was created by the signer or the sanitizer.

The usual correctness properties should hold for an ATSS scheme, saying that
genuinely signed or sanitized messages are accepted. Formally, for any secu-
rity parameter λ, any message m = m1‖ · · · ‖mL, any set of indices I ⊆ [1, L],
any transaction identifier TID, param ← GlobalSetup(λ), (pksig, sksig) ←
KeyGen(λ, param), (pksan, sksan) ← KeyGen(λ, param), σ ← Sign(pksan,m, I,
TID, sksig), tdTID ← Trapdoor(m, I,TID, σ, sksig), and σ′ ← Sanitize(pksig ,m, I,
TID, σ,m′, tdTID, sksan), we must have Verify(param, pksig , pksan,m, I,TID, σ) =
1 and Verify(param, pksig , pksan,m

′, I,TID, σ′) = 1.
The security requirements of an ATSS scheme include unforgeability, indis-

tinguishability and accountability. The unforgeability and indistinguishability re-
quirements of ATSS are extended from the security requirements of TSS [8].
Informally, unforgeability requires that an outsider be not able to forge a signa-
ture on the original or the sanitized message, and indistinguishability requires
that an outsider be not able to decide whether a message has been sanitized or
not.

Accountability requires that the origin of a (sanitized) signature be undeni-
able. We distinguish between sanitizer- and signer-accountability, as did in [7].
Informally, sanitizer-accountability implies that if a message has not been signed
by the signer, then even a malicious sanitizer should not be able to make a judge
accuse the signer, and signer-accountability implies that if a signed message has
not been sanitized, then even a malicious signer should not be able to make the
judge accuse the sanitizer.

Unforgeability: An ATSS scheme is existentially unforgeable under adaptive
chosen message attacks, if for any probabilistic polynomial-time adversaryA, the
probability that A succeeds in the following game between A and a challenger
is negligible in the security parameter λ:

Setup. The challenger runs param ← GlobalSetup(λ), (pksig , sksig) ← KeyGen
(λ, param), (pksan, sksan) ← KeyGen(λ, param), and sends the common
public parameter param, the signer’s public key pksig and the sanitizer’s
public key pksan to the adversary A.

Query Phase. The adversary A adaptively issues queries:
1. OSign

ATSS query on (m, I,TID), where I ⊆ [1, L] is a set of indices and TID
is a transaction identifier: The challenger forwards the valid signature σ
on (pksig , pksan,m, I,TID) to the adversary.

2. OTrapdoor
ATSS query on (m, I,TID, σ), where σ is a valid signature on (pksig ,

pksan,m, I,TID): The challenger forwards the corresponding trapdoor
tdTID to the adversary.

3. OSanitize
ATSS query on (m, I,TID, σ,m′), where mi = m′

i for all
i /∈ I: The challenger forwards the new valid signature σ′ on
(pksig , pksan,m

′, I,TID) to the adversary.
Output. A outputs (m∗, I∗,TID∗, σ∗) and succeeds if the following conditions

hold.



Accountable Trapdoor Sanitizable Signatures 123

1. Verify(param, pksig , pksan,m
∗, I∗,TID∗, σ∗) = 1.

2. A never queries OSign
ATSS oracle on (m∗, I∗,TID∗).

3. (m∗, σ∗) does not come from OSanitize
ATSS oracle, i.e., A never queries OSanitize

ATSS

oracle on (m, I∗,TID∗, σ,m∗), where σ is a valid signature on (pksig, pksan,
m, I∗,TID∗) andmi = m∗

i for all i /∈ I∗.
4. A never queries OTrapdoor

ATSS oracle on (m, I∗,TID∗, σ), where σ is a valid
signature on (pksig , pksan,m, I∗,TID∗) and mi = m∗

i for all i /∈ I∗.

Indistinguishability: The indistinguishability of an ATSS scheme requires
that the output distributions of Sign algorithm and Sanitize algorithm be com-
putational indistinguishable. In other words, for all sufficiently large λ, any
param ← GlobalSetup(λ), (pksig , sksig) ← KeyGen(λ, param), (pksan, sksan) ←
KeyGen(λ, param), any set of indices I ⊆ [1, L], any message pairs m,m′ such
that mi = m′

i for all i /∈ I, any transaction identifier TID, the following distri-
bution ensembles DSanitize and DSign are computational indistinguishable:

DSanitize = {(m′, σ̂)|σ ← Sign(pksan,m, I,TID, sksig),

tdTID ← Trapdoor(m, I,TID, σ, sksig),

σ̂ ← Sanitize(pksig,m, I,TID, σ,m′, tdTID, sksan)}λ,param,pksig ,pksan,I,TID,

DSign = {(m′, σ′)|σ′ ← Sign(pksan,m
′, I,TID, sksig)}λ,param,pksig ,pksan,I,TID.

Sanitizer-accountability: An ATSS scheme is sanitizer-accountable, if for any
probabilistic polynomial-time adversary A, the probability that A succeeds in
the following game between A and a challenger is negligible in the security
parameter λ:

Setup. The challenger runs param ← GlobalSetup(λ), (pksig , sksig) ← KeyGen
(λ, param), and sends the common public parameter param and the signer’s
public key pksig to the adversary A.

Query Phase. The adversary A adaptively issues queries:
1. OSign

ATSS query on (pksan,m, I,TID), where pksan is a sanitizer’s public key
chosen by A, I ⊆ [1, L] is a set of indices and TID is a transaction identi-
fier: The challenger forwards the valid signature σ on (pksig , pksan,m, I,
TID) to the adversary.

2. OTrapdoor
ATSS query on (pksan,m, I,TID, σ), where σ is a valid signature on

(pksig , pksan,m, I,TID): The challenger forwards the corresponding trap-
door tdTID to the adversary.

Output. A outputs (pksig , pk
∗
san,m

∗, I∗,TID∗, σ∗) and succeeds if the following
conditions hold.
1. Verify(param, pksig , pk

∗
san,m

∗, I∗,TID∗, σ∗) = 1.

2. ((pksig , pk
∗
san,m

∗, I∗,TID∗), σ∗) �= ((pksig , pk
(i)
san,m(i), I(i),TID(i)), σ(i))

for all i = 1, 2, . . . , q, where (pk
(i)
san,m(i), I(i),TID(i)) and σ(i) for i =

1, 2, . . . , q denote the queries and answers to and from oracle OSign
ATSS .

3. Sig ← Judge(param, ((pksig , pk
∗
san,m

∗, I∗,TID∗), σ∗), π∗), where π∗ ←
Proof(param, sksig , ((pksig , pk

∗
san,m

∗, I∗,TID∗), σ∗), ((pksig , pk
(i)
san,m(i),

I(i),TID(i)), σ(i))i=1,2,...,q).



124 J. Lai, X. Ding, and Y. Wu

Signer-accountability: An ATSS scheme is signer-accountable, if for any prob-
abilistic polynomial-time adversaryA, the probability that A succeeds in the fol-
lowing game between A and a challenger is negligible in the security parameter
λ:

Setup. The challenger runs param← GlobalSetup(λ), (pksan, sksan)← KeyGen
(λ, param), and sends the common public parameters param and the sani-
tizer’s public key pksan to the adversary A.

Query Phase. The adversary A adaptively issues OSanitize
ATSS query on (pksig ,m,

I,TID, σ, tdTID,m
′), where pksig is a singer’s public key chosen by A, σ is a

valid signature on (pksig , pksan,m, I,TID), tdTID is the trapdoor associated
with TID and mi = m′

i for all i /∈ I: The challenger forwards the new valid
signature σ′ on (pksig , pksan,m

′, I,TID) to the adversary.
Output. A outputs (pk∗sig , pksan,m

∗, I∗,TID∗, σ∗, π∗) and succeeds if the fol-
lowing conditions hold.
1. Verify(param, pk∗sig , pksan,m

∗, I∗,TID∗, σ∗) = 1.
2. San← Judge(param, ((pk∗sig , pksan,m

∗, I∗,TID∗), σ∗), π∗).

3. ((pk∗sig , pksan,m
∗, I∗,TID∗), σ∗) �= ((pk

(i)
sig , pksan,m

(i), I(i),TID(i)), σ(i))

for all i = 1, 2, . . . , q, where ((pk
(i)
sig , pksan,m

(i), I(i),TID(i)), σ(i)) for i =

1, 2, . . . , q denote the answers from oracle OSanitize
ATSS .

4 Accountable Chameleon Hash and Its Construction

In this section, we first introduce and formulate accountable chameleon hash
(ACH). Then, we present a construction of ACH and analyze its security in the
random oracle model.

4.1 Accountable Chameleon Hash

ACH is a new paradigm which lies between chameleon hash (CH) and identity-
based chameleon hash (IBCH). The inputs of the Hash algorithm of an ACH
include two users’ public keys and a transaction identifier TID, not just the
public key of a single user as in a CH scheme or just an identity as in an IBCH
scheme. In order to find a collision, the inputs of the Forge algorithm of an ACH
scheme include one user’s private key and a trapdoor information associated
with the transaction identifer TID generated by the other user, not just a single
user’s private key as in a CH scheme or just a trapdoor information associated
with an identity as in an IBCH scheme.

Concretely, an ACH scheme consists of the following algorithms:

GlobalSetup takes as input a security parameter λ. It produces a common public
parameter param to be used by all parties in the system.

KeyGen takes as input a security parameter λ and the common public parameter
param. It generates a public/private key pair (pk, sk). All parties in the
system use this randomized algorithm to generate a private/public key pair
himself or herself.



Accountable Trapdoor Sanitizable Signatures 125

Hash takes as input param, user i’s public key pki, user j’s public key pkj , a
message m and a unique transaction identifier TID. It chooses a random r
and outputs a hash value h.

Trapdoor takes as input user i’s private key ski and a transaction identifier TID.
It outputs the trapdoor information tdi,TID associated with user i and the
transaction identifier TID.

Forge takes as input user j’s private key skj , the trapdoor information tdi,TID
associated with user i and a transaction identifier TID, the hash value h on a
messagem with user i’s public key pki, user j’s public key pkj , the transaction
identifier TID, random r, and a messagem′. It outputs a random r′.

For correctness, we require that Hash(param, pki, pkj ,TID,m, r) = h = Hash
(param, pki, pkj ,TID,m

′, r′) and m′ �= m, where r′ ← Forge(skj , tdi,TID, pki, pkj ,
TID,m, r, h,m′), tdi,TID ← Trapdoor(ski,TID). The security of an ACH scheme
consists of two requirements: resistance to collision forgery under active attacks
and forgery indistinguishability.

Resistance to collision forgery under active attacks: The accountable
chameleon hash scheme is secure against (existential) collision forgery under ac-
tive attacks if, for any probabilistic polynomial-time algorithmA, the probability
that A succeeds in the following game between A and a challenger is negligible
in the security parameter λ:

Setup. The challenger runs param ← GlobalSetup(λ), (pki, ski) ← KeyGen(λ,
param), (pkj , skj)← KeyGen(λ, param), and sends the common public pa-
rameter param, user i’s public key pki and user j’s public/private key pair
(pkj , skj) to the adversary A.

Query Phase. The adversary A adaptively issues queries OTrapdoor
ACH on a trans-

action identifier TID. The challenger forwards the trapdoor information tdi,TID
associated with user i and the transaction identifier TID to the adversary.

Output. A outputs (TID∗,m, r,m′, r′) and succeeds if the following conditions
hold.
1. Hash(param, pki, pkj,TID

∗,m, r) = Hash(param, pki, pkj ,TID
∗,m′, r′)

and m′ �= m.
2. A never queries OTrapdoor

ACH on TID∗.

Forgery indistinguishability: An ACH scheme is said to be forgery indistin-
guishable if, for all sufficiently large λ, any param ← GlobalSetup, (pki, ski) ←
KeyGen(λ, param), (pkj , skj) ← KeyGen(λ, param), all transaction identifier
TID, and all pairs of messages m and m′, the following distribution ensembles
are computational indistinguishable:

DForge = {(m′, r̂, h)|r $←R, h← Hash(param, pki, pkj,TID,m, r),

tdi,TID ← Trapdoor(ski,TID),

r̂← Forge(skj , tdi,TID, pki, pkj ,TID,m, r, h,m′)}λ,param,pki,pkj ,TID,

DHash = {(m′, r′, h′)|r′ $←R,
h′ ← Hash(param, pki, pkj ,TID,m

′, r′)}λ,param,pki,pkj ,TID.



126 J. Lai, X. Ding, and Y. Wu

4.2 Construction

Our specific construction of an ACH scheme consists of the following algorithms:

GlobalSetup Given a security parameter λ, it first generates a bilinear map
group system 〈p,G,GT , e〉. Then, it picks a generator g of G and chooses a
cryptographic hash functionH : {0, 1}∗ → G. The common public parameter
is param = (p,G,GT , e, g,H).

KeyGenGiven a security parameter λ and the common public parameter param,
user i first chooses xi ∈ Z∗

p randomly. Then, set his public key as pki = gxi ,
and the private key as ski = xi.

Hash Given param, user i’s public key pki, user j’s public key pkj , a message
m ∈ Z∗

p and a unique transaction identifier TID, it chooses R ∈ G uniformly
at random and computes h = e(R, g) · e(H(TID)m, pki · pkj). Finally, it
outputs the hash value h.

Trapdoor Given user i’s private key ski = xi and a transaction identifier TID,
it computes tdi,TID = H(TID)ski = H(TID)xi , and outputs the trapdoor
information tdi,TID associated with user i and transaction identifier TID.

Forge Given user j’s private key skj , the trapdoor information tdi,TID associated
with user i and transaction identifier TID, the hash value h on a message m
with user i’s public key pki, user j’s public key pkj , transaction identifier TID,
random R, and a message m′, it computes and outputs R′ = R · (H(TID)skj ·
tdi,TID)

m−m′
.

Note that, for a forgery, we have

Hash(param, pki, pkj ,TID,m
′, R′)

= e(R′, g) · e(H(TID)m
′
, pki · pkj)

= e(R · (H(TID)skj · tdi,TID)m−m′
, g) · e(H(TID)m

′
, pki · pkj)

= e(R, g) · e(H(TID)m, pki · pkj)
= Hash(param, pki, pkj ,TID,m,R).

So, the above scheme satisfies correctness. We now state the security theorems
of the scheme. The proofs will be given in the full version of the paper due to
the space limitation.

Theorem 1. In the random oracle model, the above construction of accountable
CH is secure against (existential) collision forgery under active attacks, assuming
that the CDH assumption holds in the bilinear map group system 〈p,G,GT , e〉.
Theorem 2. The above construction of ACH is forgery indistinguishable.

5 Generic Construction of ATSS from ACH

Based on IBCH, Canard et al. [8] proposed a generic construction of TSS.
In their construction, to sign a message m = m1‖ · · · ‖mL, the signer first



Accountable Trapdoor Sanitizable Signatures 127

sets m̃ = m̃1‖ · · · ‖m̃L, where m̃i = mi if i /∈ I and otherwise, m̃i = hi =
IBCH.Hash(param, ID,mi, ri). The set of indices I ⊆ [1, L] that are sanitizable
and the identity ID associated with the transaction are generated by the signer.
Then, the signer signs the message m̃ using a conventional signature scheme.
Obviously, an entity with the trapdoor associated with ID generated by the
signer can modify mi and generate a new signature on the sanitized message.
Our construction of ATSS is similar to the construction proposed by Canard et
al. [8], but in order to achieve accountability we use ACH in place of IBCH. In
order to generate a new signature on a sanitized message, the sanitizer need to
use his private key and a trapdoor information associated with the transaction
identifier generated by the signer to find a collision of the ACH. The signer can
then use the collision to convince a trusted third party that a message is sani-
tized, as nobody apart from the sanitizer has more than a negligible probability
of successfully finding a second message that produces the same signing value.

Now, given a regular signature scheme Σ = (Σ.KeyGen, Σ.Sign, Σ.Verify), and
an ACH scheme Π = (Π.GlobalSetup, Π.KeyGen, Π.Hash, Π.Trapdoor, Π.Forge),
we define the 8-tuple algorithms (GlobalSetup,KeyGen, Sign,Trapdoor, Sanitize,
Verify,Proof, Judge) of an ATSS scheme as follows:

GlobalSetup Given a security parameter λ, it first runs paramΠ ← Π.
GlobalSetup(λ), and chooses two cryptographic hash functionsH1 : {0, 1}∗ →
{0, 1}λ, H2 : {0, 1}∗ → R. Then, it publishes the common public parameter
param = (paramΠ , H1, H2).

KeyGenGiven a security parameterλ and the commonpublic parameterparam, it
first runs (pkΣ , skΣ)← Σ.KeyGen(λ), (pkΠ , skΠ)← Π.KeyGen(λ, paramΠ).
Then, it picks a key κsig ∈ {0, 1}λ for the hash function H1, sets the public
key pk = (pkΣ , pkΠ) and the private key sk = (skΣ , skΠ , κsig). Finally, it
publishes pk and keeps sk secret. We denote by pksig = (pksig,Σ , pksig,Π) and
sksig = (sksig,Σ , sksig,Π , κsig) the public key and private key of the signer, and
by pksan = (pksan,Σ , pksan,Π) and sksan = (sksan,Σ , sksan,Π , κsan) the public
key and private key of a sanitizer.

Sign Given a sanitizer’s public key pksan = (pksan,Σ , pksan,Π), a message m =
m1‖ · · · ‖mL, a set of indices I ⊆ [1, L] that are sanitizable, a transaction
identifier TID and the signer’s private key sksig = (sksig,Σ , sksig,Π , κsig), it
proceeds as follows.

1. Compute z = H1(κsig ,TID); for all i ∈ [1, L]\I, set m̃i = mi.
2. For all i ∈ I, compute ri = H2(z, i) and hi = Π.Hash(param, pksig,Π ,

pksan,Π , TID,mi, ri) and set m̃i = hi. Let r be the concatenation of all
ri, i ∈ I.

3. Set m̃ = m̃1‖ · · · ‖m̃L and run σ̃ ← Σ.Sign(m̃, sksig,Σ).
4. Finally, set σ = σ̃‖r and output the signature σ on m.

Trapdoor Given a message m, a set of the indices I that are sanitizable, a
transaction identifier TID, a valid signature σ on (pksig , pksan,m, I,TID)
and the signer’s private key sksig = (sksig,Σ , sksig,Π , κsig), it runs tdTID ←
Π.Trapdoor(sksig,Π ,TID), and outputs the trapdoor tdTID associated with
TID.



128 J. Lai, X. Ding, and Y. Wu

Sanitize Given the signer’s public key pksig = (pksig,Σ , pksig,Π), a message
m = m1‖ · · · ‖mL, a set of indices I ⊆ [1, L] that are sanitizable, the
transaction identifier TID, a valid signature σ = σ̃‖r on (pksig , pksan =
(pksan,Σ , pksan,Π),m, I,TID), a trapdoor tdTID associated with TID, the san-
itizer’s private key sksan = (sksan,Σ , sksan,Π , κsan) and a new message
m′ = m′

1‖ · · · ‖m′
L, it proceeds as follows.

1. Let I ′ = {i ∈ [1, L]|mi �= m′
i}. Check whether I ′ ⊆ I. If not, output ⊥,

denoted an error.
2. Retrieve {ri, i ∈ I} from the signature σ = σ̃‖r.
3. For all i ∈ I ′, compute hi ← Π.Hash(param, pksig,Π , pksan,Π ,TID,mi, ri)

and r′i ← Π.Forge(sksan,Π , tdTID, pksig,Π , pksan,Π ,TID,mi, ri, hi,m
′
i).

4. For all i ∈ I\I ′, set r′i = ri. Let r
′ be the concatenation of all r′i, i ∈ I.

5. Setσ′ = σ̃‖r′ and output the new signatureσ′ on (pksig , pksan,m′, I,TID).
Verify Given param, the signer’s public key pksig = (pksig,Σ , pksig,Π), a sani-

tizer’s public key pksan = (pksan,Σ , pksan,Π), a message m = m1‖ · · · ‖mL, a
set of indices I ⊆ [1, L] that are sanitizable, a transaction identifier TID and
a putative signature σ = σ̃‖r, it proceeds as follows.
1. Retrieve {ri, i ∈ I} from the signature σ = σ̃‖r.
2. For all i ∈ [1, L]\I, set m̃i = mi.
3. For all i ∈ I, compute hi = Π.Hash(param, pksig,Π , pksan,Π ,TID,mi, ri)

and set m̃i = hi.
4. Set m̃ = m̃1‖ · · · ‖m̃L and output Σ.Verify(pksig,Σ , m̃, σ̃).

Proof Given param, the signer’s private key sksig = (sksig,Σ , sksig,Π , κsig), a
valid message-signature pair ((pksig = (pksig,Σ , pksig,Π), pksan = (pksan,Σ ,
pksan,Π),m, I,TID), σ), and a set of (polynomially many) additional message-

signature pairsMesSigS = ((pksig , pk
(i)
san,m(i), I(i),TID(i)), σ(i))i=1,2,...,q gen-

erated originally by the signer, it first searches the setMesSigS to find a tuple

((pksig , pk
(i)
san,m(i), I(i),TID(i)), σ(i)) such that

1. pksan = pk
(i)
san, I = I(i) and TID = TID(i).

2. I ′ ⊆ I, where I ′ = {j ∈ [1, L]|mj �= m
(i)
j }. Note that, m = m1‖ · · · ‖mL

and m(i) = m
(i)
1 ‖ · · · ‖m(i)

L .
3. Π.Hash(param, pksig,Π , pksan,Π ,TID,mj, rj) = Π.Hash(param, pksig,Π ,

pk
(i)
san,Π , TID,m

(i)
j , r

(i)
j ) for all j ∈ I ′, where σ = σ̃‖r, r = {rj , j ∈ I},

σ(i) = σ̃‖r(i) and r(i) = {r(i)j , j ∈ I}.
Then, it computes zi = H1(TID

(i), κsig). Finally, it outputs the proof π =

(pksig , pk
(i)
san,m(i), I(i),TID(i), σ(i), zi).

Judge Given param, the signer’s public key pksig = (pksig,Σ , pksig,Π), the san-
itizer’s public key pksan = (pksan,Σ , pksan,Π), a valid message-signature

pair ((pksig , pksan,m, I,TID), σ) and a proof π = (pksig , pk
(i)
san,m(i), I(i),

TID(i), σ(i), zi). Let σ = σ̃‖r where r = {rj , j ∈ I}, and σ(i) = σ̃‖r(i) where

r(i) = {r(i)j , j ∈ I}, it first checks whether the following conditions hold:

1. pksan = pk
(i)
san, I = I(i) and TID = TID(i);

2. (m,σ) �= (m(i), σ(i));



Accountable Trapdoor Sanitizable Signatures 129

3. I ′ ⊆ I, where I ′ = {j ∈ [1, L]|mj �= m
(i)
j }. Note that, m = m1‖ · · · ‖mL

and m(i) = m
(i)
1 ‖ · · · ‖m(i)

L ;
4. Π.Hash(param, pksig,Π , pksan,Π ,TID,mj, rj) = Π.Hash(param, pksig,Π ,

pksan,Π , TID,m
(i)
j , r

(i)
j ) for all j ∈ I ′;

5. r
(i)
j = H2(zi, j) for all j ∈ I.

If so, it outputs San indicating the message-signature pair ((pksig , pksan,m,
I, TID), σ) was created by the sanitizer; else it outputs Sig indicating the
message-signature pair ((pksig , pksan,m, I,TID), σ) was created by the signer.

It is obvious that the above ATSS scheme satisfies correctness. We now state the
security theorems of the scheme, including unforgeability, indistinguishability and
accountability. The proofs will be given in the full version of the paper due to
the space limitation.

Theorem 3 (Unforgeability). If the signature scheme Σ is existential un-
forgeable under adaptive chosen message attacks and the ACH scheme Π is re-
sistant to collision forgery under active attacks, the above construction of ATSS
is existential unforgeable under adaptive chosen message attacks.

Theorem 4 (Indistinguishability). If the ACH scheme Π is forgery indis-
tinguishable, in the random oracle model, the following distributions DSanitize

and DSign are computational indistinguishable for all sufficiently large λ, any
param ← GlobalSetup, (pksig , sksig) ← KeyGen(λ, param), (pksan, sksan) ←
KeyGen(λ, param), any set of indices I ⊆ [1, L], any message pairs m,m′ such
that mi = m′

i for all i /∈ I, and any transaction identifier TID:

DSanitize = {(m′, σ̂)|σ ← Sign(pksan,m, I,TID, sksig),

tdTID ← Trapdoor(m, I,TID, σ, sksig),

σ̂ ← Sanitize(pksig,m, I,TID, σ,m′, tdTID, sksan)}λ,param,pksig ,pksan,I,TID,

DSign = {(m′, σ′)|σ′ ← Sign(pksan,m
′, I,TID, sksig)}λ,param,pksig ,pksan,I,TID.

Theorem 5 (Sanitizer-accountability). If the signature scheme Σ is exis-
tential unforgeable under adaptive chosen message attacks, the above construc-
tion of ATSS is sanitizer-accountable.

Theorem 6 (Signer-accountability). If the ACH scheme Π is resistant to
collision forgery under active attacks, in the random oracle model, the above
construction of ATSS is signer-accountable.

6 Conclusion and Future Work

In this paper, we motivated and introduced the notion of accountable trapdoor
sanitizable signature (ATSS). As a building block of ATSS and that might be
of independent interest, we also introduced the notion of accountable chameleon
hash (ACH), which is an extension of chameleon hash. We defined the secu-
rity requirements for ACH, and proposed a concrete construction that satisfies



130 J. Lai, X. Ding, and Y. Wu

the requirements based on the CDH assumption in the random oracle model. Fi-
nally, Based on ACH, we proposed a generic construction of ATSS. Instantiating
the generic construction with our ACH scheme, we constructed the first ATSS
scheme. An important future research problem is to construct ACH schemes
(and thus accordingly, ATSS schemes) in the standard model.

Acknowledgement. The authors thank the anonymous reviewers for their
helpful comments. This work is in part supported by the Office of Research,
Singapore Management University. The first author is partially supported by
Natural Science Foundation of China (No. 61272453).

References

1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

2. Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In:
Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg (2004)

3. Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes.
In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179.
Springer, Heidelberg (2005)

4. Bao, F., Deng, R.H., Ding, X., Lai, J., Zhao, Y.: Hierarchical identity-based
chameleon hash and its applications. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011.
LNCS, vol. 6715, pp. 201–219. Springer, Heidelberg (2011)

5. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

7. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

8. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their
application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg
(2008)

9. Chen, X., Zhang, F., Kim, K.: Chameleon hashing without key exposure. In: Zhang,
K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 87–98. Springer, Heidelberg
(2004)

10. Chen, X., Zhang, F., Susilo, W., Tian, H., Li, J., Kim, K.: Identity-based chameleon
hash scheme without key exposure. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.
LNCS, vol. 6168, pp. 200–215. Springer, Heidelberg (2010)

11. Chen, X., Zhang, F., Tian, H., Wei, B., Kim, K.: Key-exposure free chameleon
hashing and signatures based on discrete logarithm systems. Cryptology ePrint
Archive, Report 2009/035 (2009), http://eprint.iacr.org/

http://eprint.iacr.org/


Accountable Trapdoor Sanitizable Signatures 131

12. Deng, R.H., Yang, Y.: A study of data authentication in proxy-enabled multime-
dia delivery systems: Model, schemes and application. ACM T. on Multimedia
Computing, Communications and Applications 5(4), 28.1–28.20 (2009)

13. Gao, W., Li, F., Wang, X.: Chameleon hash without key exposure based on schnorr
signature. Computer Standards & Interfaces 31(2), 282–285 (2009)

14. Gao, W., Wang, X., Xie, D.: Chameleon hashes without key exposure based on
factoring. J. Comput. Sci. Technol. 22(1), 109–113 (2007)

15. Izu, T., Kanaya, N., Takenaka, M., Yoshioka, T.: PIATS: A partially sanitizable
signature scheme. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 72–83. Springer, Heidelberg (2005)

16. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

17. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee, B.
(eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

18. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS (2000)
19. Micali, S., Rivest, R.L.: Transitive signature schemes. In: Preneel, B. (ed.) CT-RSA

2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002)
20. Miyazaki, K., Hanaoka, G., Imai, H.: Invisibly sanitizable digital signature scheme.

IEICE Transactions 91-A(1), 392–402 (2008)
21. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S.,

Imai, H.: Digitally signed document sanitizing scheme with disclosure condition
control. IEICE Transactions 88-A(1), 239–246 (2005)

22. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable signatures in xml signature -
performance, mixing properties, and revisiting the property of transparency. In:
Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer,
Heidelberg (2011)

23. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

24. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

25. Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In:
Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Hei-
delberg (2010)

26. Zhang, F., Safavi-Naini, R., Susilo, W.: Id-based chameleon hashes from bilinear
pairings. Cryptology ePrint Archive, Report 2003/208 (2003),
http://eprint.iacr.org/

http://eprint.iacr.org/

	Accountable Trapdoor Sanitizable Signatures
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Bilinear Pairings
	2.2 Computational Diffie-Hellman (CDH) Assumption

	3 Accountable Trapdoor Sanitizable Signature and Its Security Requirements
	4 Accountable Chameleon Hash and Its Construction
	4.1 Accountable Chameleon Hash
	4.2 Construction

	5 Generic Construction of ATSS from ACH
	6 Conclusion and Future Work
	References




