
Robert H. Deng
Tao Feng (Eds.)

 123

LN
CS

 7
86

3

9th International Conference, ISPEC 2013
Lanzhou, China, May 2013
Proceedings

Information Security
Practice and Experience

Lecture Notes in Computer Science 7863
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Robert H. Deng Tao Feng (Eds.)

Information Security
Practice and Experience

9th International Conference, ISPEC 2013
Lanzhou, China, May 12-14, 2013
Proceedings

13

Volume Editors

Robert H. Deng
Singapore Management University
School of Information Systems
Singapore 178902, Singapore
E-mail: robertdeng@smu.edu.sg

Tao Feng
Lanzhou University of Technology
School of Computer and Communication
Lanzhou 730050, China
E-mail: fengt@lut.cn

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38032-7 e-ISBN 978-3-642-38033-4
DOI 10.1007/978-3-642-38033-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013936104

CR Subject Classification (1998): E.3, D.4.6, C.2.0, K.6.5, K.4.4, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 9th International Conference on Information Security Practice and Experi-
ence (ISPEC 2013) was held during May 12–14, 2013, Lanzhou, China.

The ISPEC conference series is an established forum that brings together
researchers and practitioners to provide a confluence of new information security
technologies, including their applications and their integration with IT systems
in various vertical sectors. In previous years, ISPEC took place in Singapore
(2005), Hangzhou, China (2006), Hong Kong, China (2007), Sydney, Australia
(2008), Xi’an, China (2009), Seoul, Korea (2010), Guangzhou, China (2011)
and Hangzhou, China (2012). For all the conferences in the series, as this one,
the proceedings were published by Springer in the Lecture Notes in Computer
Science.

Acceptance into the conference proceedings was very competitive. The Call
for Papers attracted 71 submissions, out of which 27 were selected for inclusion
in the proceedings. The accepted papers cover multiple topics in information
security, from technologies to systems and applications. Each submission was
anonymously reviewed by at least three reviewers.

This conference was made possible through the contributions from many indi-
viduals and organizations. We would like to thank all the authors who submitted
papers. We are grateful to the Program Committee as well as all external review-
ers for their time and valuable contribution to the tough and time-consuming
reviewing process. We heartily thank Jianying Zhou and Hui Li for their ex-
tremely interesting and informative keynote speeches. We sincerely thank the
Honorary Chairs Xiaoming Wang and Zhanting Yuan for their generous and
strong support. Special thanks are due to Ying Qiu for managing the conference
website and to the Organizing Committee for handling all the logistics for the
conference.

We are grateful to Lanzhou University of Technology, Lanzhou, China, for
organizing and hosting ISPEC 2013. Finally, we would like to thank all the
participants for their contribution toward making ISPEC 2013 a success.

May 2013 Feng Bao
Robert H. Deng

Tao Feng
Xiaohong Hao

ISPEC 2013

9th Information Security
Practice and Experience Conference

Lanzhou, China
May 12–14, 2013

Organized by Lanzhou University of Technology (LUT), China

Supported by Institute for Infocomm Research, Singapore

Honorary Chairs

Xiaoming Wang Lanzhou University of Technology, China
Zhanting Yuan Lanzhou University of Technology, China

General Chairs

Feng Bao Huawei Technologies Pte. Ltd., Singapore
Xiaohong Hao Lanzhou University of Technology, China

Program Chairs

Robert Deng Singapore Management University, Singapore
Tao Feng Lanzhou University of Technology, China

Program Committee

Joonsang Baek KUSTAR, UAE
Rohit Chadha ENS Cachan, France
Kostas Chatzikokolakis École Poly., France
Sherman Chow Chinese University of Hong Kong, SAR China
Jason Crampton Royal Holloway, UK
Xuhua Ding Singapore Management University, Singapore
Dingyi Fang Northwest University, China
Debin Gao Singapore Management University, Singapore
Dieter Gollmann Hamburg University of Technology, Germany
Dawu Gu Shanghai Jiaotong University, China
Aiqun Hu Southeast University, China

VIII ISPEC 2013

Xinyi Huang Fujian Normal University, China
Lucas Hui Hong Kong University, SAR China
Chunfu Jia Nankai University, China
Boris Köpf IMDEA Software Institute, Spain
Steve Kremer INRIA Nancy, France
Heejo Lee Korea University, Korea
Chao Li National University of Defense Tech., China
Fenghua Li Chinese Academy of Sciences, China
Tieyan Li Huawei Technologies Pte. Ltd., Singapore
Weihua Li Northwestern Polytechnical University, China
Yingjiu Li Singapore Management University, Singapore
Zhenkai Liang National University of Singapore, Singapore
Jianwei Liu BeiHang University, China
Mixia Liu Lanzhou University of Technology, China
Javier Lopez University of Malaga, Spain
Changshe Ma South China Normal Univ., China
Di Ma University of Michigan-Dearborn, USA
Jianfeng Ma Xidian University, China
Subhamoy Maitra Indian Statistical Inst., India
Kanta Matsuura University of Tokyo, Japan
Atsuko Miyaji JAIST, Japan
Yi Mu University of Wollongong, Australia
Qingqi Pei Xidian University, China
Yong Qi Xi’an Jiaotong University, China
Douglas Reeves North Carolina State University, USA
Kui Ren University at Buffalo, USA
Kouichi Sakurai Kyushu University, Japan
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Kyushu University, Japan
Shaohua Tang South China University of Technology, China
Guilin Wang University of Wollongong, Australia
Huaxing Wang Nanyang Technological University, Singapore
Jingsong Wang Tianjin University of Technology, China
Lina Wang Wuhan University, China
Jian Weng Jinan University, China
Duncan Wong City University of Hong Kong, SAR China
Hongjun Wu Nanyang Technological University, Singapore
Yondong Wu Institute for Infocomm Research, Singapore
Yang Xiang Deakin University, Australia
Zheng Yan Aalto University, Finland
Yanjiang Yang Institute for Infocomm Research, Singapore
Sung-Ming Yen National Central University, Taiwan
Hongbo Yu Tsinghua University, China
Fangguo Zhang Sun Yat-Sen University, China
Yuqing Zhang Chinese Academy of Sciences, China
Yunlei Zhao Fudan University, China

ISPEC 2013 IX

Dong Zheng Shanghai Jiao Tong University, China
Jianying Zhou Institute for Infocomm Research, Singapore
Jiliu Zhou Sichuan University, China
Qingsheng Zhu Chongqing University, China

Organizing Chairs

Baicheng Wang Lanzhou University of Technology, China
Yong Zhang Lanzhou University of Technology, China

Organizing Committee

Laicheng Cao Lanzhou University of Technology, China
Yixin Liang Lanzhou University of Technology, China
Mixia Liu Lanzhou University of Technology, China
Peng Liu Lanzhou University of Technology, China
Jianbing Xue Lanzhou University of Technology, China
Yan Yan Lanzhou University of Technology, China
Yong Yu Lanzhou University of Technology, China
Fuqing Zhao Lanzhou University of Technology, China

External Reviewers

Ahmed, Mahbub
Au, Man Ho
Cai, Shaoying
Chen, Jiageng
Chu, Cheng-Kang
Dong, Xinshu
Gao, Wei
Gong, Boru
Gorantla, Choudary
Guo, Fuchun
Haghighi, M. Sayad
Hamadou, Sardaouna
Han, Jinguang
Hu, Hong

Huang, Tao
Konidala, Divyan
Lai, Junzuo
Li, Nan
Liang, Kaitai
Liu, Ya
Liu, Zhen
Ma, Jianfeng
Martin, Keith
Nishide, Takashi
Omote, Kazumasa
Sarkar, Santanu
Shi, Jie
Smyth, Ben

Tan, Xiao
Tsang, Ww
Wan, Zhiguo
Wang, Meiqin
Wang, Mingjun
Xu, Jia
Xu, Lingling
Yasunaga, Kenji
Yoneyama, Kazuki
Yuen, Tsz Hon
Zhang, Bingsheng
Zhu, Youwen

Table of Contents

Network Security

Enhancing False Alarm Reduction Using Pool-Based Active Learning
in Network Intrusion Detection . 1

Yuxin Meng and Lam-For Kwok

Trusted Identity Management for Overlay Networks 16
Stefan Kraxberger, Ronald Toegl, Martin Pirker,
Elisa Pintado Guijarro, and Guillermo Garcia Millan

Situational Awareness for Improving Network Resilience
Management . 31

Mixia Liu, Tao Feng, Paul Smith, and David Hutchison

Optimal Defense Strategies for DDoS Defender Using Bayesian Game
Model . 44

Yuling Liu, Dengguo Feng, Yifeng Lian, Kai Chen, and
Yingjun Zhang

Identity-Based Cryptography

Attribute Specified Identity-Based Encryption . 60
Hao Xiong, Tsz Hon Yuen, Cong Zhang, Yi-Jun He, and
Siu Ming Yiu

Leakage-Resilient Attribute-Based Encryption with Fast Decryption:
Models, Analysis and Constructions . 75

Mingwu Zhang, Wei Shi, Chunzhi Wang, Zhenhua Chen, and Yi Mu

Identity-Based Multisignature with Message Recovery 91
Kefeng Wang, Yi Mu, and Willy Susilo

Improving the Message-Ciphertext Rate of Lewko’s Fully Secure IBE
Scheme . 105

Dingding Jia, Bao Li, Yamin Liu, and Qixiang Mei

Cryptographic Primitives

Accountable Trapdoor Sanitizable Signatures . 117
Junzuo Lai, Xuhua Ding, and Yongdong Wu

XII Table of Contents

A Conditional Proxy Broadcast Re-Encryption Scheme Supporting
Timed-Release . 132

Kaitai Liang, Qiong Huang, Roman Schlegel, Duncan S. Wong, and
Chunming Tang

About Hash into Montgomery Form Elliptic Curves 147
Wei Yu, Kunpeng Wang, Bao Li, and Song Tian

Joint Triple-Base Number System for Multi-Scalar Multiplication 160
Wei Yu, Kunpeng Wang, Bao Li, and Song Tian

Security Protocols

Anonymous Authentication of Visitors for Mobile Crowd Sensing at
Amusement Parks . 174

Divyan Munirathnam Konidala, Robert H. Deng, Yingjiu Li,
Hoong Chuin Lau, and Stephen E. Fienberg

Secure RFID Ownership Transfer Protocols . 189
Nan Li, Yi Mu, Willy Susilo, and Vijay Varadharajan

Leakage Resilient Authenticated Key Exchange Secure in the Auxiliary
Input Model . 204

Guomin Yang, Yi Mu, Willy Susilo, and Duncan S. Wong

Simplified PACE|AA Protocol . 218
Lucjan Hanzlik, �Lukasz Krzywiecki, and Miros�law Kuty�lowski

System Security

Expressing User Access Authorization Exceptions in Conventional
Role-Based Access Control . 233

Xiaofan Liu, Natasha Alechina, and Brian Logan

Efficient Attack Detection Based on a Compressed Model 248
Shichao Jin, Okhee Kim, and Tieming Chen

A Digital Forensic Framework for Automated User Activity
Reconstruction . 263

Jungin Kang, Sangwook Lee, and Heejo Lee

Increasing Automated Vulnerability Assessment Accuracy on Cloud
and Grid Middleware . 278

Jairo Serrano, Eduardo Cesar, Elisa Heymann, and Barton Miller

Table of Contents XIII

Software Security DRM

VulLocator: Automatically Locating Vulnerable Code in Binary
Programs . 295

Yingjun Zhang, Kai Chen, and Yifeng Lian

Software Protection with Obfuscation and Encryption 309
Vivek Balachandran and Sabu Emmanuel

Secure Content Delivery in DRM System with Consumer Privacy 321
Dheerendra Mishra and Sourav Mukhopadhyay

Cryptanalysis and Side Channel Attacks

Systematic Construction and Comprehensive Evaluation of
Kolmogorov-Smirnov Test Based Side-Channel Distinguishers 336

Hui Zhao, Yongbin Zhou, François-Xavier Standaert, and
Hailong Zhang

Cryptanalysis of the OKH Authenticated Encryption Scheme 353
Peng Wang, Wenling Wu, and Liting Zhang

Security Evaluation of Rakaposhi Stream Cipher . 361
Mohammad Ali Orumiehchiha, Josef Pieprzyk, Elham Shakour, and
Ron Steinfeld

Improved Algebraic and Differential Fault Attacks on the KATAN
Block Cipher . 372

Ling Song and Lei Hu

Author Index . 387

Enhancing False Alarm Reduction Using Pool-Based
Active Learning in Network Intrusion Detection

Yuxin Meng and Lam-For Kwok

Department of Computer Science,
City University of Hong Kong, Hong Kong, China

ymeng8@student.cityu.edu.hk

Abstract. Network intrusion detection systems (NIDSs) are an important and
essential defense mechanism against network attacks. However, during their de-
tection, a large number of NIDS false alarms could be generated, which is a major
challenging problem for these systems. To mitigate this issue, machine-learning
based false alarm filters have been developed to refine false alarms, but it is very
laborious and difficult for security experts to provide many labeled examples to
train a classifier. In this paper, we therefore attempt to investigate the performance
of active learning, which can make the optimal use of the given datasets, in this
particular field of NIDS false alarm reduction. After analyzing the relationship
between the process of false alarm reduction and the process of intrusion detec-
tion, we design a simple but efficient pool-based active learning algorithm in a
false alarm filter and evaluate its performance by comparing it with several tra-
ditional supervised machine learning algorithms. The experimental results show
that the designed pool-based active learner can generally achieve a better outcome
than a traditional machine learning algorithm, and that the designed scheme can
approximatively reduce the required number of labeled alarms by half.

Keywords: Network Security, Active Learning and Its Applications, False
Alarm Reduction, Intrusion Detection.

1 Introduction

With the rapid development of computer networks, network intrusion detection systems
(NIDSs) are being widely implemented in current network environments (e.g., an insur-
ance company) to defend against various network attacks (e.g., Trojan, malware) [23].
Traditionally, these network intrusion detection systems can be generally classified into
two types: signature-based NIDS and anomaly-based NIDS. For the type of signature-
based NIDS [18,25], it mainly detects an attack by examining packets and comparing
them to known signatures1. On the other hand, an anomaly-based NIDS [5,24] identi-
fies a potential attack by comparing network events with pre-established normal profile.
The normal profile is used to represent a normal behavior or network events.

Problem. A big suffering issue for current detection systems is that a large number
of NIDS alarms, especially false alarms, non-critical alarms2 may be generated during

1 The signature (or called rule) is a kind of descriptions for a known attack and is generated
based on expert knowledge for this attack or exploit.

2 A non-critical alarm is either a false alarm or a non-critical true alarm [14].

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 Y. Meng and L.-F. Kwok

the detection process [3], which could significantly decrease the efficiency of detection
and heavily increase the burden of analyzing NIDS alarms [10,12]. Thus, this problem
is a key limiting factor to impede the development of these systems [3]. Take anomaly-
based NIDSs for an example, some traffic accidents can easily cause such detection
systems to generate a lot of NIDS alarms, most of which are false alarms [21].

To mitigate this problem, designing and constructing an appropriate false alarm filter
is a promising solution (i.e., flexible to deploy). In [13], we have proposed an adap-
tive false alarm filter by applying different machine learning algorithms to filtering out
NIDS false alarms. By intelligently selecting the most appropriate machine learning
algorithm, in the experiments, we found that the alarm filter could achieve a good and
stable filtration accuracy (i.e., above 80 percent). The adaptive selection can avoid the
fluctuant performance of a single algorithm. However, for the filter, it requires an expert
to label alarms periodically to guarantee its filtration accuracy. In real settings, it is very
laborious and difficult for security experts to label a large number of alarms (e.g., true
or false) for training a machine learning classifier. In addition, labeling good quality
data is very expensive since the cost of manual annotation is very high.

To further resolve this issue, in this work, we mainly attempt to apply active learn-
ing to the specific field of NIDS false alarm reduction. In particular, active learning
usually assumes that the learner has some control over the input space, and it is able
to interactively query a user for useful information. Note that active learning has been
investigated in improving the performance of detecting potential network attacks, while
it has not been extensively studied in the aspect of constructing a false alarm filter.

Contributions. As active learning can achieve desirable performance using a small
training dataset, in this paper, we therefore attempt to explore its performance in our
designed false alarm filter (named active-learning based false alarm filter) by compar-
ing it with some traditional machine learning algorithms. The contributions of our work
can be summarized as follows:

– In this work, we analyze the real scenarios of false alarm generation in intrusion de-
tection, illustrate the relationship between the false alarm reduction and the process
of intrusion detection, and identify the practicality of our work.

– To evaluate the performance of active learning in false alarm reduction, we design a
pool-based active learning algorithm and use this algorithm to construct an active-
learning based false alarm filter. The designed algorithm can choose the desirable
unlabeled data and query a security expert to label.

– In the experiment, we compared the performance of the active learner with several
traditional machine learning classifiers, and evaluated the designed false alarm filter
in a network environment. The experimental results show that the active learner can
achieve a better outcome with only a small number of labeled NIDS alarms (i.e.,
reducing the required number of labeled alarms by half).

The remaining parts of this paper are organized as follows. In Section 2, we introduce
the background of active learning and present some related work about using active
learning in network intrusion detection; Section 3 analyzes the real scenarios of false
alarm problem and describes the pool-based active learning algorithm in detail; Sec-
tion 4 describes the experimental settings and analyzes the experimental results; finally,
we conclude our work with future directions in Section 5.

Enhancing False Alarm Reduction Using Pool-Based Active Learning 3

2 Background and Related Work

In this section, we briefly introduce the notion of active learning and describe its appli-
cations in network intrusion detection.

2.1 Active Learning

In general, active learning is a form of supervised machine learning in which a learning
algorithm has the capability of interactively querying a user for some useful information
and thus to obtain the desired outputs. It usually consists of two components [2]: a clas-
sifier and a query function. The classifier can be any type of schemes such as Bayesian
networks and support vector machines. For the query function, it mainly decides the
next examples that should be labeled. The query function is the most significant part
of active learning and is also the major difference from a traditional machine learn-
ing algorithm. By labeling the most relevant examples (or instances), the active learner
can minimize the number of queries required. That is, active learning can achieve good
performance by only using as few labeled examples as possible.

In the field of intrusion detection, Lee et al. [8] first proposed a framework using data
mining and machine learning algorithms to identify misuse features if given good qual-
ity labeled data. However, obtaining good quality labeled examples is very expensive
and it is very hard to collect so many attack examples in network intrusion detection
(i.e., the known malicious instances are limited). Therefore, it is a desirable property
of active learning that only a small number of labeled instances are required to achieve
good performance (e.g., a better classification accuracy).

2.2 Related Work

In order to reduce false alarms in network intrusion detection, a lot of machine learning
algorithms have been studied. Pietraszek [16] proposed an adaptive alert classifier sys-
tem that used both of the analysts’ feedback and machine learning techniques to reduce
false positives. Then, Law and Kwok [7] proposed and designed a false alarm filter by
means of a KNN (k-nearest-neighbor) classifier and their filter achieved a good filtration
rate in the experiment. Later, Alharbt et al. [1] proposed a method of using continuous
and discontinuous sequential patterns to detect and filter out abnormal alarms.

To train these classifiers for achieving a better filtration accuracy, a sufficient num-
ber of labeled alarms are required. But in real deployment, a large number of labeled
instances are usually unavailable in network intrusion detection. To mitigate this issue,
active learning has been investigated in improving the performance of an intrusion de-
tection system. For example, Almgren and Jonsson [2] conducted some experiments to
investigate whether an active learning algorithm could perform better than a traditional
self-learning algorithm by using less labeled data. Their experimental results showed
that the active learning algorithm could indeed outperform other traditional algorithms
given the same amount of data. Then, Li and Guo [9] designed an algorithm of active
learning based TCM-KNN that could effectively detect anomalies with high detection
rate, low false positives by using much fewer selected data. Stokes et al. [22] proposed
an approach of using active learning combined with rare class discovery and uncertainty

4 Y. Meng and L.-F. Kwok

identification to train a classifier. Once trained, their system could be run as a fixed
classifier with no further learning. Their experimental results showed that their system
could identify more rare classes with a fewer number of labels required. Later, Görnitz
et al. [6] rephrased anomaly-based detection as an active learning task and proposed an
algorithm of ActiveSVDDs to achieve a perfect separation of normal and attack data.
Seliya and Khoshgoftaar [19] then conducted a case study of combining active learn-
ing with neural networks on DARPA KDD99 datasets and their results showed positive
effect of active learning on instance selection.

Note that in the above work, active learning is mainly applied to improving the capa-
bility of detecting potential network attacks whereas not much work has directly studied
the effect of active learning on the particular field of false alarm reduction. In real-world
applications, we find that the false alarm problem has its own characteristics compared
to the process of intrusion detection. In this work, our motivation is therefore to explore
the effect of a pool-based active learner on constructing a false alarm filter. The exper-
imental results show that our designed active learner is efficient by requiring only half
labeled alarms compared to several other traditional supervised classifiers.

3 Our Proposed Method

In this section, we analyze the real scenarios of false alarm generation in network intru-
sion detection, describe the design of pool-based active learning algorithm and present
the architecture of the active-learning based false alarm filter in detail.

3.1 False Alarm Problem

False alarms are a big challenge for network intrusion detection systems in which a lot
of false alarms could be produced during the detection. These false alarms can greatly
lower the efficiency and effectiveness of detection, and make a negative impact on the
analysis result. In real deployment, we identify that this issue stems primarily from the
inherent limitations of detection approaches.

– Signature-based NIDS. The detection capability of these systems is mainly depend-
ing on the stored signatures. That is, the detection accuracy is limited to the number
and content of their available signatures. But in real settings, the number of signa-
tures is limited and these available signatures are difficult to cover all known attacks
and exploits. For example, through simply modifying attack forms (i.e., modifying
flag values in a packet format), a signature-based NIDS may generate a lot of false
alarms. In addition, massive non-critical alarms could be generated when detecting
multi-step attacks.

– Anomaly-based NIDS. The detection accuracy of these detection systems depends
heavily on the pre-established normal profile. As described above, the normal pro-
file is used to present a normal event. However, it is very hard to establish a good
quality normal profile in most cases since network traffic is too flexible and is very
hard to predict [21]. Therefore, a lot of generated alarms are false alarms in real
network environment. For example, some traffic mutations can easily violate the
normal profile and cause an anomaly-based NIDS to produce many false alarms.

Enhancing False Alarm Reduction Using Pool-Based Active Learning 5

In terms of the above analysis, we find that the false alarm generation and the process
of intrusion detection have a close relationship. From the view of a machine learning
classifier, the process of intrusion detection and the process of false alarm reduction
can be both regarded as a learning task. That is, it is very similar to classify incoming
network events or incoming NIDS alarms as positive instances or negative instances.
Here an alarm is positive if it is a true alarm while an alarm is negative if it is a false
alarm. Referred to the features in information retrieval [27], we identify and summarize
some common characteristics for both the process of false alarm reduction and the
process of intrusion detection.

– Limited samples. This characteristic is due to the fact that few security experts can
provide a large number of attack examples or false alarm examples. In actual, the
number of attack examples, especially for some novel attacks, is very small in real
scenarios. This situation is the same for the false alarm reduction: massive unla-
beled alarms are available while only a few labeled alarms can be obtained. There-
fore, with an extremely small number of training examples, it is a very difficult task
for many supervised machine learning algorithms to achieve a high accuracy.

– Asymmetrical training samples. Typical machine learning schemes usually assume
that both positive and negative examples are distributed approximately equally.
However, in the aspect of network intrusion detection, positive (or normal) exam-
ples are easily obtained and widely available. But the number of available negative
(or malicious) examples is very small, and these examples can be further divided
into many different sub-classes. This situation is also similar in false alarm reduc-
tion. With only a few negative examples, it is very hard for training an algorithm to
achieve a high accuracy of detecting negative instances.

Although the process of intrusion detection and the process of false alarm reduction
are similar, the latter has its distinctive characteristics in real deployment such as less
complexity, relatively more samples and less reduction flexibility.

– Less complexity. Compared with detecting network attacks, the process of false
alarm reduction is relatively less complex since the types of false alarms are usually
smaller than the types of attacks. For example, there are 4 general attack types with
39 sub-classes in the DARPA KDD99 datasets [4], in which the types of attacks
are far more than the types of false alarms. Due to fewer types (or sub-classes), a
machine learning classifier is more likely to achieve a higher accuracy of detecting
false alarms than network attacks.

– Relatively more samples. As illustrated above, the false alarm problem is less com-
plicated than the process of detecting intrusions where the types of false alarms
are relatively lower. In this case, it is feasible to identify and obtain more samples
of false alarms. For example, it is applicable to retrieve more false alarm samples
from the historical data in an organization. With more samples, it is easier to build
an accurate classifier in identifying false alarms.

– Less reduction flexibility. In order to response to an attack timely, both a signature-
based NIDS and an anomaly-based NIDS should examine incoming network
packets on-line so that a very powerful self-learning algorithm is desirable (i.e.,
sometimes this algorithm is complicated due to high requirements). But for the

6 Y. Meng and L.-F. Kwok

process of false alarm reduction, it can be conducted either on-line or off-line in
which a relatively simple algorithm may be more efficient.

On the whole, based on the analysis of the false alarm problem, we identify that a com-
pact active learning algorithm is feasible and can be applied to the field of reducing
false alarms rather than a complicated scheme, with the purpose of reducing the com-
putational burden (i.e., deploying on a resource-limited platform).

3.2 Pool-Based Active Learning Algorithm

As discussed above, we find that the process of false alarm reduction has its own char-
acteristics, and that applying a relatively simple machine learning scheme may be more
efficient and effective in this particular field. In this section, we therefore design a sim-
ple pool-based active learning algorithm to help reduce NIDS false alarms. Note that
the term of pool-based active learning was used in text classification which aims to
choose the best input points to gather output values from a pool of input samples [11].
In this work, a pool is just a collection of labeled data during the process of expert clas-
sification and its size limits the number of instances that are required to label. We use
the term of pool since it is a key parameter for our designed algorithm.

Formally, for the active learner AL, let pl denotes a pool, f denotes a classifier, q
denotes a query function, U denotes the unlabeled dataset and L denotes the labeled
dataset. In this case, we can have L = P ∪ N where P and N denote the sets of la-
beled positive examples and negative examples respectively. Originally, U is the whole
unlabeled database. In the area of false alarm reduction, security experts should label
several alarm examples including both positive and negative examples. If let P ′ and N ′

denote the new labeled positive and negative examples respectively, then the positive
set will be P ∪P ′ and the negative set will be N ∪N ′. The labeled dataset is obviously
L = P ∪ P ′ ∪N ∪N ′ while the remaining unlabeled data is U − (P ′ ∪N ′).

For the classifier f , in this work, we use the KNN (k-nearest neighbor) algorithm to
cluster and classify incoming NIDS alarms. The KNN algorithm can classify objects
based on closest training examples in the feature space. The reasons for selecting this
classifier are described as below:

– The KNN algorithm is easily to implement and causes relatively lower computa-
tional burden (i.e., comparing to neural network classifiers). In addition, this algo-
rithm can achieve a fast speed in the process of training and classification.

– In [15], we find that the KNN classifier is good at clustering and classifying incom-
ing NIDS alarms, and in [13], we find that it could achieve a high filtration accuracy
of false alarms (i.e., to be competitive with LibSVM and J48).

For the query function q, we use a method of uncertainty sampling in which the query
function is desirable to identify the most uncertain unlabeled examples with regard to
the classifier f . Based on this method, we should measure the uncertainty among differ-
ent unlabeled examples. In this work, the KNN algorithm is selected as the classifier f
so that it is applicable to measure the uncertainty by calculating the Euclidean distance.
The calculation of the Euclidean distance is described as below:

Enhancing False Alarm Reduction Using Pool-Based Active Learning 7

Positive

d1

Negative

d2W1

Fig. 1. An example of an unlabeled data point (white point W1) and its Euclidean distance (d1, d2)
from both the positive cluster and the negative cluster respectively

[Distance (P1, P2)]2 =

N∑
0

(P1i − P2i)
2 (1)

P1i and P2i are the values of the ith attribute of points P1 and P2 respectively. In-
tuitively, from the view of the classifier f , the points which have the same or approxi-
mately the same Euclidean distance from both the closest positive point and the closest
negative point, could be regarded as the most uncertain unlabeled instances.

To better illustrate the measurement of uncertainty, we give an example of calculating
the Euclidean distance in Fig. 1. We assume that there are two clusters: positive cluster
and negative cluster. Note that in real-world applications, the number of examples in
the negative cluster is far less than those in the positive cluster. For the unlabeled white
point W1, we assume that its Euclidean distance from the closest point in the positive
cluster is d1 while its Euclidean distance from the closest negative point is d2. There
are three possible situations for d1 and d2:

– d1 = d2, the white point W1 has the same Euclidean distance from both the positive
and the negative cluster.

– d1 < d2, the white point W1 is closer to the positive cluster.
– d1 > d2, the white point W1 is closer to the negative cluster.

Obviously, if we have d1 = d2, then the white point W1 will be regarded as the most
uncertain instance. For the other situations (e.g., d1 �= d2), we should compare the
absolute value of |d1 − d2| among other unlabeled instances. We therefore define a
metric of EDistance to measure the uncertainty as below:

EDistance = |PDistance −NDistance| (2)

Where PDistance means the Euclidean distance from the closest point in the positive
cluster while NDistance means the Euclidean distance from the closest point in the
negative cluster. Intuitively, a smaller EDistance means more uncertain the unlabeled

8 Y. Meng and L.-F. Kwok

Table 1. Pseudo code: our designed pool-based active learning algorithm

Input: (1) Let U denotes the unlabeled dataset, L denotes the labeled dataset, pl denotes a pool,
|pl| denotes the size of the pool, PDistance denotes the Euclidean distance from the closest point
in the positive cluster and NDistance denotes the Euclidean distance from the closest point in
the negative cluster. (2) Let A = {A1, A2, ..., Ai, ...} denotes an incoming alarm stream.

Phase1:
Query function: initiate the pool pl.

While (U �= ∅).
{ for i=1 to |U | do
calculate P i

Distance, N i
Distance and Ei

Distance = |P i
Distance −N i

Distance|
end for }

for i=1 to |pl| do
for j=1 to |U | do
{find the smallest Ej

Distance,
query for labeling this instance j,
add j to pl and remove j from U . }

end for
end for
Output: pool pl.

Phase2:
Classifier: classify incoming alarm stream.

for all labeled instances x in L, from i=1 to |L| do
calculate d(xi, A) and order d(xi, A) from lowest to highest.
select the K nearest instances to A.
assign A the most frequent class in L.

end for
Output: labeled alarm stream A.

instance. By only labeling these most uncertain instances (which are also the least con-
fident instances for the classifier f), the burden for a security expert can be greatly
reduced and the process of algorithm training can be further enhanced. The query func-
tion, which utilizes the metric of EDistance, is described as follows:

1. Setting the pool size |pl| for the function.
2. Calculating the Euclidean distance and EDistance for all the unlabeled instances in

the dataset.
3. Finding the unlabeled instance(s) that has (have) the smallest EDistance.
4. Providing a security expert with this unlabeled instance for determining the correct

label, and then adding this labeled instance to pl.

In Table 1, we describe the pseudo code of the designed pool-based active learning
algorithm. We initially have a labeled dataset L so that we can have two clusters of

Enhancing False Alarm Reduction Using Pool-Based Active Learning 9

Active-Learning based False Alarm Filter

True Alarms

Pool-based Active Learning Algorithm

Data Standardization

False Alarm Filtration

Data Storage

N
ID

S
 A

la
r
m

s

Security Expert

Fig. 2. The high-level architecture of the active-learning based false alarm filter

positive and negative instances. After labeling |pl| uncertain instances, the KNN clas-
sifier can be trained and be used to classify the incoming alarm stream A. Note that
d(xi, A) means the distance between labeled instances and the target alarm in the KNN
classifier while EDistance means the distance calculated in the query function.

3.3 Active-Learning Based False Alarm Filter

In [13], we proposed an adaptive false alarm filter to reduce false alarms at a high and
stable level by intelligently selecting the most appropriate machine learning algorithm
from an algorithm pool. The most appropriate machine learning algorithm is defined as
the algorithm which conducts the best single-algorithm performance. In this work, we
advocate the approach of reducing alarms by constructing a false alarm filter, and de-
sign an active-learning based false alarm filter by implementing the pool-based active
learning classifier. The high-level architecture of the alarm filter is shown in Fig. 2.

In the figure, there are four major components in the alarm filter: Data Standardiza-
tion, Data Storage, Pool-based Active Learning Algorithm, and False Alarm Filtration.
The component of Data Standardization is responsible for converting incoming NIDS
alarms into a common format by representing with some pre-defined features. The con-
version is very important to ensure the appropriate training for a classifier. For example,
we can use a 8-feature set to represent a Snort alarm [13]. We denote the converted
alarms as standard alarms. The component of Data Storage is used to store all the stan-
dard alarms. The Pool-based Active Learning Algorithm is responsible for interacting
with security experts in labeling necessary alarms for training the active learner. Finally,
the component of False Alarm Filtration is responsible for filtering out false alarms by
means of the trained pool-based active learner and outputting true alarms.

10 Y. Meng and L.-F. Kwok

4 Evaluation

In this section, we mainly attempt to evaluate the proposed pool-based active learner
by comparing it with several traditional supervised machine learning classifiers (e.g.,
SVM, KNN, decision tree). In the remaining parts, we briefly describe our experimental
methodology, and analyze the experimental results.

4.1 Experimental Methodology

In this evaluation, we mainly perform two experiments (named Experiment1 and Ex-
periment2) to explore the performance of the pool-based active learning algorithm and
the active-learning based false alarm filter respectively.

– Experiment1: In this experiment, we deployed the active-learning based false alarm
filter off-line. We provided three different pool sizes (e.g., 200, 500, 1000) for com-
paring the active learning algorithm with other three traditional supervised machine
learning algorithms. Note that the traditional machine learners can be simulated by
means of a random query [2,27].

– Experiment2: In this experiment, the active-learning based false alarm filter was
deployed in a network environment and performed the process of false alarm re-
duction on-line. In the phase of training, we provided the alarm filter with a labeled
alarm dataset (including 456 true alarms and 216 false alarms) to train the classifier.
Then in the evaluation, we evaluated the active-learning based false alarm filter in
the network environment for 3 days.

Overall, the first experiment attempts to investigate the initial performance of the pool-
based active learning algorithm compared with traditional machine learning algorithms,
whereas the second experiment aims to explore the practical performance of the active-
learning based false alarm filter in a network environment.

4.2 Experiment1

In this experiment, we used the Snort alarms to evaluate the pool-based active learning
algorithm. Snort [17,20] is an open-source signature-based NIDS, and it is very popular
and widely adopted in the research of network intrusion detection. The same as [13],
a Snort alarm can be represented with a 8-feature set: description, classification, pri-
ority, packet type, source IP address, source port number, destination IP address and
destination port number. We used three pool sizes such as 200, 500 and 1000 in the
evaluation. For the dataset, the occupancy rate of false alarms and true alarms is nearly
2:1 (note that the number of false alarms is usually bigger than that of true alarms [12]
while the occupancy rate may vary with specific network settings). The specific feature
extraction of Snort alarms and the classifier training can be referred to [13].

To evaluate the performance, we used two metrics: classification accuracy and hit
rate. These two metrics are defined as below:

Classification accuracy =
the number of correctly classified alarms

the number of alarms
(3)

Enhancing False Alarm Reduction Using Pool-Based Active Learning 11

Table 2. The results with different pool sizes of 200, 500 and 1000 in Experiment1

Pool Size of 200 Accuracy (%) Hit Rate (%) Sample Stable Point

Pool-based Active Learning (K=5) 94.75 93.52 35
KNN (IBK-Random Query) 91.54 90.25 66

SVM (LibSVM-Random Query) 88.74 86.54 70
Decision Tree (J48-Random Query) 91.67 90.55 63

Pool Size of 500 Accuracy (%) Hit Rate (%) Sample Stable Point

Pool-based Active Learning (K=5) 95.68 94.12 43
KNN (IBK-Random Query) 92.86 90.88 83

SVM (LibSVM-Random Query) 89.58 87.90 95
Decision Tree (J48-Random Query) 92.87 91.05 80

Pool Size of 1000 Accuracy (%) Hit Rate (%) Sample Stable Point

Pool-based Active Learning (K=5) 95.80 94.53 48
KNN (IBK-Random Query) 92.76 90.54 90

SVM (LibSVM-Random Query) 90.28 88.75 100
Decision Tree (J48-Random Query) 92.67 91.85 93

Hit rate =
the number of false alarms classified as false alarm

the number of false alarms
(4)

The metric of classification accuracy is to measure the capability of identifying both
true alarms and false alarms, while the metric of hit rate is to measure the capability
of detecting false alarms. Intuitively, a better classifier is desirable to have a higher
classification accuracy and a higher hit rate.

We used three specific traditional supervised learners such as IBK-Random Query,
LibSVM-Random Query and J48-Random Query in the comparison. The experimental
results are described in Table 2. We set K = 5 for the KNN classifier. It is visible that
the pool-based active learning algorithm can achieve a better classification accuracy
and hit rate. For the pool size of 200, the pool-based active learning algorithm achieves
a classification accuracy of 94.75% that is greatly better than the other three machine
learning algorithms (e.g., KNN 91.54%, SVM 88.74% and decision tree 91.67%). The
pool-based active learner also achieves a better hit rate of 93.52% than the others (e.g.,
KNN 90.25%, SVM 86.54% and decision tree 90.55%).

Through increasing the pool size, that is, increasing the number of labeled examples,
we find that both classification accuracy and hit rate of the pool-based active learning
algorithm can be further improved. For instance, the classification accuracy is increased
to 95.68% and 95.80% if the pool size is enlarged to 500 and 1000 respectively, and the
hit rate is increased to 94.12% and 94.53% respectively. Note that the other three algo-
rithms are improved as well, but the pool-based active learning algorithm can overall
outperform them in the aspect of both classification accuracy and hit rate.

Referred to [2], we similarly defined a sample stable point as the point where its cur-
rent accuracy remains greater than a certain limit of 0.1% regarding the final accuracy
of the run. This point can be used to measure an algorithm when it achieves its best

12 Y. Meng and L.-F. Kwok

SnortWireshark

Network traffic
Internal Network

Alarms

Active-Learning based False Alarm Filter

Fig. 3. The deployment of the active-learning based false alarm filter in a network environment

performance, namely accuracy versus the number of labeled examples. In Table 2, for
the pool size of 200, the pool-based active learning algorithm can achieve this point
by only using 35 labeled examples, where the number is nearly half compared with
the required numbers for the other three algorithms (i.e., 66 for IBK-Random Query,
70 for LibSVM-Random Query and 63 for J48-Random Query). For the pool size of
500, the active learner only requires 43 labeled examples to achieve its sample stable
point, whereas IBK-Random Query, LibSVM-Random Query and J48-Random Query
require 83, 95 and 80 respectively. It is the same for the pool size of 1000. These ex-
perimental results show that the designed pool-based active learner can achieve better
performance, compared with the other three supervised machine learning schemes, in
false alarm reduction through decreasing the required number of labeled examples, and
that the required number of labeled examples is nearly reduced by half.

4.3 Experiment2

In this experiment, we implemented the active-learning based false alarm filter in a
network environment and explored the performance of the pool-based active learner
on-line. The network deployment is illustrated in Fig. 3. The network environment was
deployed in a CSLab and it mainly constructed by means of Snort [20], Wireshark [26]
and the active-learning based false alarm filter. The Snort was deployed in front of
the internal network to examine network packets, and the active-learning based false
alarm filter was deployed close to the Snort. The Wireshark is responsible for recording
network packets and providing statistical data.

During the experiment, all generated Snort alarms were forwarded into the active-
learning based false alarm filter. In the phase of training, we constructed a labeled Snort
alarm dataset (extracted from the historical data), which consisted of 456 true alarms
and 216 false alarms, and used this dataset to train the classifier. By training with these
labeled examples, the pool-based active classifier could achieve an initial classification
accuracy of 90.56% and a hit rate of 90.15%. The construction of this labeled dataset

Enhancing False Alarm Reduction Using Pool-Based Active Learning 13

87

88

89

90

91

92

93

94

95

96

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (h)

A
c
c
u

r
a

c
y

 (
%

)

Classification Accuracy

Hit Rate

Fig. 4. The 24-hour’s results of classification accuracy and hit rate in the network environment

can be referred to [13]. The pool size in this experiment is set to 200 and this experiment
was conducted for 3 days. The selection of the pool size 200 is based on the following
two major points:

– To use a small pool size can reduce the burden of a security expert (i.e., labeling a
smaller number of alarms).

– The active learner could achieve a relatively high accuracy regarding the pool size
of 200, based on the results in Table 2.

The initial 24-hour’s results regarding classification accuracy and hit rate are described
in Fig. 4. In this figure, it is visible that the active-learning based false alarm filter can
achieve a high classification accuracy and a high hit rate (i.e., both rates are higher than
90%). At the end of the first day, the alarm filter could achieve a classification accuracy
of nearly 95% and a hit rate of 93.5%. For the other two days, the alarm filter could
achieve an average classification accuracy of 93.3% and 94.6%, and an average hit rate
of 92.1% and 93.6% respectively. In these cases, these results indicate that the pool-
based active learner and the active-learning based false alarm filter can perform well
in a network environment.

Note that in the experiment, we only explore the practical performance of the active-
learning based false alarm filter in a network environment, and we find that the alarm
filter can achieve promising results in real deployment. To evaluate the alarm filter in a
large-operational network, we leave it as an open problem in our future experiments.

5 Concluding Remarks

False alarms are a big challenge in intrusion detection. In past few years, many machine
learning algorithms have been applied to reducing NIDS false alarms by constructing a

14 Y. Meng and L.-F. Kwok

false alarm filter. However, it is a big problem that a large number of labeled alarms are
required to train these supervised classifiers.

To mitigate this issue, in this paper, we attempt to apply active learning to the partic-
ular field of NIDS false alarm reduction. Specifically, we first analyzed the relationship
between the process of false alarm reduction and the process of intrusion detection,
and identified distinctive characteristics regarding the false alarm reduction in real de-
ployment. We then designed a pool-based active learning algorithm and implemented
it into a false alarm filter (called active-learning based false alarm filter). In the evalu-
ation, we conducted two major experiments to investigate the performance of both the
pool-based active learner and the designed false alarm filter. The experimental results
of the first experiment showed that the active learner could achieve a better classifica-
tion accuracy and hit rate than several other traditional supervised classifiers, and that
the active learner could approximatively reduce the required number of labeled alarms
by half. In addition, the second experiment indicated that the designed false alarm fil-
ter was encouraging and could perform well in a network environment, achieving both
classification accuracy and hit rate above 90%.

In this paper, we designed a simple but efficient pool-based active learning algo-
rithm on reducing NIDS false alarms (note that enhancing the detection capability of
NIDSs is beyond the scope of this paper). There are many possible topics in our follow-
ing work. Future work could include using larger and more alarm datasets to validate
our obtained results, and exploring the performance of the alarm filter in a large-scale
network environment. In addition, future work could also include investigating other
machine learning schemes (i.e., combining semi-supervised learning with active learn-
ing) in the field of false alarm reduction and conducting a comparative study.

References

1. Alharby, A., Imai, H.: IDS False Alarm Reduction Using Continuous and Discontinuous
Patterns. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 192–205. Springer, Heidelberg (2005)

2. Almgren, M., Jonsson, E.: Using Active Learning in Intrusion Detection. In: Proceedings of
the 17th IEEE Computer Security Foundations Workshop (CSFW), pp. 88–98 (2004)

3. Axelsson, S.: The Base-rate Fallacy and the Difficulty of Intrusion Detection. ACM Trans-
actions on Information and System Security, 186–205 (August 2000)

4. DARPA: KDD Cup 1999 Data, http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html

5. Ghosh, A.K., Wanken, J., Charron, F.: Detecting Anomalous and Unknown Intrusions
Against Programs. In: Proceedings of the 1998 Annual Computer Security Applications Con-
ference (ACSAC), pp. 259–267 (1998)

6. Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Active Learning for Network Intrusion De-
tection. In: Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence
(AISec), pp. 47–54 (2009)

7. Law, K.H., Kwok, L.F.: IDS False Alarm Filtering Using KNN Classifier. In: Lim, C.H.,
Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 114–121. Springer, Heidelberg (2004)

8. Lee, W., Stolfo, S.J., Mok, K.W.: A Data Mining Framework for Building Intrusion Detection
Models. In: Proc. of the 1999 IEEE Symposium on Security and Privacy, pp. 120–132 (1999)

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Enhancing False Alarm Reduction Using Pool-Based Active Learning 15

9. Li, Y., Guo, L.: An Active Learning based TCM-KNN Algorithm for Supervised Network
Intrusion Detection. Computers and Security 26(7-8), 459–467 (2007)

10. Lippmann, R.P., et al.: Evaluating Intrusion Detection Systems: the 1998 DARPA off-line In-
trusion Detection Evaluation. In: Proceedings of the 2000 DARPA Information Survivability
Conference and Exposition (DISCEX), pp. 12–26 (2000)

11. McCallum, A., Nigam, K.: Employing EM and Pool-Based Active Learning for Text Classi-
fication. In: Proceedings of the 15th International Conference on Machine Learning (ICML),
pp. 350–358 (1998)

12. McHugh, J.: Testing Intrusion Detection Systems: a Critique of the 1998 and 1999 DARPA
Intrusion Detection System Evaluations as Performed by Lincoln Laboratory. ACM Trans-
actions on Information System Security, 262–294 (2000)

13. Meng, Y., Kwok, L.-f.: Adaptive False Alarm Filter Using Machine Learning in Intrusion
Detection. In: Wang, Y., Li, T. (eds.) Practical Applications of Intelligent Systems. AISC,
vol. 124, pp. 573–584. Springer, Heidelberg (2011)

14. Meng, Y., Li, W.: Constructing Context-based Non-Critical Alarm Filter in Intrusion Detec-
tion. In: Proceedings of the 7th International Conference on Internet Monitoring and Protec-
tion (ICIMP), pp. 75–81 (2012)

15. Meng, Y., Li, W., Kwok, L.-f.: Intelligent Alarm Filter Using Knowledge-based Alert Veri-
fication in Network Intrusion Detection. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.)
ISMIS 2012. LNCS, vol. 7661, pp. 115–124. Springer, Heidelberg (2012)

16. Pietraszek, T.: Using Adaptive Alert Classification to Reduce False Positives in Intrusion
Detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp.
102–124. Springer, Heidelberg (2004)

17. Roesch, M.: Snort: Lightweight Intrusion Detection for Networks. In: Proceedings of the
13th Large Installation System Administration Conference (LISA), pp. 229–238 (1999)

18. Scarfone, K., Mell, P.: Guide to Intrusion Detection and Prevention Systems (IDPS), pp.
800–894. NIST Special Publication (2007), http://csrc.nist.gov/
publications/nistpubs/800-94/SP800-94.pdf

19. Seliya, N., Khoshgoftaar, T.M.: Active Learning with Neural Networks for Intrusion Detec-
tion. In: Proceedings of the 2010 IEEE International Conference on Information Reuse and
Integration (IRI), pp. 49–54 (2010)

20. Snort. (May 2012), http://www.snort.org/
21. Sommer, R., Paxson, V.: Outside the Closed World: On Using Machine Learning for Network

Intrusion Detection. In: Proceedings of the 2010 IEEE Symposium on Security and Privacy,
pp. 305–316 (2010)

22. Stokes, J.W., Platt, J.C.: ALADIN: Active Learning of Anomalies to Detect Intrusion. Tech-
nique Report. Microsoft Network Security Redmond, WA 98052 USA (2008)

23. Symantec Corp., Internet Security Threat Report, vol. 16 (July 2012),
http://www.symantec.com/business/threatreport/index.jsp

24. Valdes, A., Anderson, D.: Statistical Methods for Computer Usage Anomaly Detection Using
NIDES. Technical Report, SRI International (January 1995)

25. Vigna, G., Kemmerer, R.A.: NetSTAT: a Network-based Intrusion Detection Approach. In:
Proceedings of the 1998 Annual Computer Security Applications Conference (ACSAC), pp.
25–34. IEEE Press, New York (1998)

26. Wireshark, (May 2012), http://www.wireshark.org
27. Zhou, Z.-H., Chen, K.-J., Dai, H.-B.: Enhancing Relevance Feedback in Image Retrieval

using Unlabeled Data. ACM Transactions on Information Systems 24(2), 219–244 (2006)

http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://www.snort.org/
http://www.symantec.com/business/threatreport/index.jsp
http://www.wireshark.org

Trusted Identity Management

for Overlay Networks

Stefan Kraxberger, Ronald Toegl, Martin Pirker, Elisa Pintado Guijarro,
and Guillermo Garcia Millan

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria
stefan.kraxberger@gmail.com, {rtoegl,mpirker}@iaik.tugraz.at,

{epintadoguijarro,ggarciamillan}@student.tugraz.at

Abstract. A critical requirement in overlay networks is to have unique,
undeniable and verifiable identifiers for each node in the system. Without
them, every node in such an overlay network would be able to imperson-
ate other nodes or create an arbitrary amount of bogus nodes. Thus,
a node or a group of nodes, could easily gain control over an overlay
network by orchestrating such artificial nodes. Most proposed solutions
are based on public key cryptography and public key infrastructures.
Unfortunately, the process of issuing and distributing certificates is not
solved for large scale overlay networks. In this work we provide a solution
for creating unique, undeniable and verifiable identifiers for large-scale
overlay networks using mechanisms provided by the Trusted Computing
Group. We facilitate the use of a unique asymmetric key pair which has
been created on a Trusted Platform Module and is vouched for by the
manufacturer.

1 Introduction

Overlay networks commonly provide an abstraction from the underlying physical
and logical network resources. Consequently, nodes in an overlay are addressed
using an artificial identifier rather than a physical address. Using artificial iden-
tifiers offers advantages as they can be of arbitrary structure and length, and
easily enable multi-homing. Overlay networks are often found in virtual private
networks, cloud computing structures and peer-to-peer networks.

A large amount of research in overlay networks already exists. However, the
issue of security has not been addressed adequately. The results of [5, 22, 28]
have outlined security problems in overlay networks and provided some initial
solutions especially for structured overlay networks. In [3], Bellovin has shown
that additional security challenges exist in unstructured overlay networks. As
one of the most fundamental problems in overlays, the issue of providing unique
and verifiable node identifiers has been identified. This is due to the fact that
all proposed mechanisms for designing and building secure overlay networks are
based on the assumption that unique, trustworthy and unforgeable identifiers do
exist. A critical weakness of this assumption is that arbitrary identifiers allow an

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 16–30, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Trusted Identity Management for Overlay Networks 17

attack called Sybil attack [7]. A Sybil attack is one in which an attacker subverts a
overlay network by creating a large number of pseudonymous entities, using them
to gain a disproportionately large influence, for instance in reputation systems. In
essence, the Sybil attack refers to the capability of creating an arbitrary amount
of new nodes without physical foundation.

The common solution for providing unique and verifiable identities is to use
public key cryptography and to have a Certificate Authority (CA) issue cer-
tificates. The certificate authority issues a public key certificate for each node
identifier by signing the node’s public key. Thus, one can be assured that the node
identifier is unique and through cryptographic protocols it is possible to verify
the identity and authenticity of every node. To achieve a strong binding between
users and their respective digital identifier, elaborate and expensive enrollment
processes, such as presenting oneself with a passport to a CA’s representative,
are needed. Yet, such a manual process of issuing and distributing certificates
is not trivial for large scale open overlay networks found for instance in content
distribution systems and cloud computing. A technical solution without human
interaction is therefore needed.

To ensure non-repudiable identities for platforms, not users, in overlay net-
works, a hardware identity token individually certified by the manufacture can
be considered a robust solution. With the Trusted Platform Module (TPM), the
Trusted Computing Group (TCG) has specified such a hardware identity token.
The TPM has extensive support for identity and anonymity services, such as
certified key pairs, and PrivacyCA and Direct Anonymous Attestation (DAA)
protocols. Hundreds of millions of desktop and server PCs ship with TPMs ev-
ery year [21]. However, the readily deployed TPM devices are rarely put to use
and the identity mechanisms offered have not been designed to comply with the
specifics of overlay networks.

In this paper we propose a solution for deriving and providing unique and
verifiable identifiers for large-scale overlay networks using concepts, mechanisms
and resources stemming from the Trusted Computing paradigm. We propose a
modification of the PrivacyCA concept to provide unique identifiers protected
by the tamper resilient TPM to denominate the peers in our network. We de-
scribe and implement two variants of a Trusted Authentication Protocol (TAP)
based on these mechanisms, which provide unique and verifiable identities and
mutual authentication for nodes in overlay networks. We report on our prototype
implementation and discuss performance and security results.

2 Background and Related Work

A multitude of different overlay networks have been developed and studied over
the last decade. In recent research, issues such as selfishness, reliability and
security have been of high interest. This interest is related to the observation that
in open overlay networks not all users or nodes are committing equal amounts
of resources to the system or even actively disturb the system’s execution. The
problems in overlay networks in terms of security and trust can be separated
into two domains: application specific and system intrinsic.

18 S. Kraxberger et al.

In the application domain of overlay networks, several proposals address the
problems of selfishness, reliability and security. The majority of the work has
been concerned with establishing trust between nodes on the basis of reputa-
tion systems [1, 10, 11]. Using reputation allows one to tackle selfish behavior
of individual nodes by applying metrics on their resource-sharing habits. Other
proposed mechanisms are based on Byzantine Fault Tolerance (BFT) to provide
reliability and mitigate selfishness and malicious behavior [4,5] or the forming of
pseudonymous groups [27]. An alternative way of dealing with selfish behaviour
is for instance to use bandwidth as a shadow currency [8], thus creating a fairer
behavior. However, a solution which not only focuses on application specific prob-
lems is needed as explained subsequently.

Castro et al. [5] identified three major system intrinsic requirements, which
are essential to ensure security and reliability of the overlay and to provide a
solid basis to build application specific solutions. These three requirements are:

1. a secure identifier assignment mechanism,

2. secure routing table maintenance, and

3. secure message forwarding.

If these requirements are not addressed, any overlay network is vulnerable to
insider attacks such as route fabrication and disruption, message interception
and corruption, Sybil [7] and Eclipse attacks [5] performed by Byzantine or
rational nodes. This is because all the application specific solutions assume that
all nodes in the system have unique identifiers which can be verified remotely
from all other nodes. Thus, the first point in the requirements list is the most
important one, since all application specific as well as the other system intrinsic
requirements are based on secure identifiers.

Balfe et al. [2] show how Trusted Computing can be used to establish a
pseudonymous authentication scheme for peers and extend this scheme to build
secure channels between peers for future communications. They propose the use
of the Direct Anonymous Attestation mechanism of the TPM [26], to create
pseudonyms for each peer and use them for authentication. Their solution is
more concerned with privacy and anonymity than with preventing Sybil and
Eclipse attacks. Also, Pirker et al. [19] use the unique endorsement key of a
TPM to establish a secure connection between two attested Cloud devices.

Dinger et al. [6] propose a system to tackle the issue of Sybil attacks which is
based on two premises. First, they classify the overlay identifier assignment pro-
cess and separate network participants from network nodes. Two challenges in
the context of Sybil attacks are identified. The first is stability over time, and the
second is identity differentiation. Thereafter, they propose an identity registra-
tion procedure called self-registration that makes use of the inherent distribution
mechanisms of an overlay network. Using this self-registration mechanism they
assume that it might be possible to effectively limit the number of identities per
participant. But they also clearly state that their approach is not Sybil-proof,
but that offers increased resistance, albeit with unknown effectivenss. They also
concluded that still several questions remain unsolved within their solution such

Trusted Identity Management for Overlay Networks 19

as how long the time period lasts in which one can safely assume the network to
be dominance-free.

Jyothi and Janakiram [12] propose a solution that enables all honest peers to
protect themselves from Sybils with high probability in large structured over-
lay networks. In their proposed Sybil defense system they associate every peer
with another non-Sybil peer known as SyMon. A given peer’s SyMon is chosen
dynamically such that the chances of both of them being Sybils are very low.
The chosen SyMon is entrusted with the responsibility of moderating the trans-
actions involving the given peer and hence makes it almost impossible for Sybils
to compromise the system. In contrast to our system, where each node has only
one unique identity and thus Sybils attacks are not possible, their system allows
Sybils in the system but it is built on the probabilistic premises that no Sybil
nodes are chosen as SyMon.

Martucci et al. [16] introduce self-certified pseudonyms which are computed
by the nodes themselves from a cryptographic longterm identity. Based on a
CA-issued membership certificate, users can create pseudonyms, each valid for
one single identity domain. In the scheme, each overlay node performs a com-
putationally expensive verification each other’s pseudonymous identity, while
preserving privacy.

Ryu et al. propose to use identity-based cryptography to assign node iden-
tifiers [20]. In different light-weight protocols, a connection between a public
parameter derived from unique node features, such as network adresses, and a
private key is established. However, the authors consider only weak authentica-
tion through IP-callbacks.

Srivatsa and Liu [23] study the probabilistic properties of attacks on the node
identity and suggest to add additional security checks into a central, trusted
bootstrap server that joins nodes into a network. They consider the computa-
tional costs of creating IDs and conclude that an overlay network may use weak
secure IDs only as long as spoofing a large number of identifiers also requires a
relatively long computational time.

Of these secure identifier assignment mechanism, none provides a cryptograph-
ically robust way, i.e. based on strong hardware authentication mechanisms to
ensure unique, platform bound identities in overlay networks. In this paper, we
now move on to describe how existing and already rolled-out infrastructures,
based on Trusted Computing, can be modified to achieve this goal.

3 Trusted Computing Background

Trusted Computing as envisioned by the TCG promises a solution to the problem
of establishing a trust relationship between otherwise unrelated platforms and
enables the authentication of a computing platform’s software configuration. The
software configuration is measured and mapped to a set of so-called Platform
Configuration Registers (PCRs). The authenticity of the values of these registers
is documented by signing them with a unique private key. This protocol is called
remote attestation. Attestation allows a verifying entity to query the software

20 S. Kraxberger et al.

configuration of a platform and correlate it with a configuration that enforces a
set of required policies.

To provide the necessary hardware anchor for trust, the TCG has specified
the Trusted Platform Module (TPM). Similar to a Smart Card, the TPM fea-
tures cryptographic primitives, but is physically bound to a specific platform.
A tamper-resilient casing contains hardware implementations of cryptographic
operations for public-key cryptography, key generation, hashing, and random-
number generation. With these components the TPM is able to enforce security
policies on cryptographic keys, such as the Endorsement Key (EK) which pro-
vides it with a unique identity. Note that the EK RSA-key pair is not designed
to be user accessible and that it cannot be used to directly sign or encrypt data.
The motivation behind this is to prevent the correlation of user activities through
the public key across different services.

Therefore the TPM alows the creation of anonymous keys which are referred to
as Attestation Identity Keys (AIKs) and used for signing attestation reports. The
TCG specification guarantees that these private keys never leave the protection
of a standard-compliant TPM. To ensure that the signature on an attestation
report is actually made by a TPM-protected AIK, the used key must be vouched
for within the framework of a Public Key Infrastructure (PKI). AIK certificates
thus guarantee that the AIK is a key controlled by some TPM, but they do not
unveil in which specific chip. Another use for AIKs is to certify other keys and
their attributes.

The TCG specifications [25] define the PrivacyCA service to protect the pri-
vacy of the users. As a trusted third party, it issues AIK certificates, which
guarantee that a given AIK is owned and secured by a TPM that enforces the
TCG-specified policies for AIKs. It is crucial that the issued AIK certificates do
not contain any kind of link to the identity of the specific TPM. By employing
more than one AIK per TPM it becomes possible to mask the identity of the
users. According to the TCG’s key policies, AIKs are not able to perform encryp-
tion or decryption operations. They may only sign TPM-created data structures,
such as machine configuration reports or selected other keys.

According to the TCG specifications, at first, a RSA key pair is generated
locally at a node, but within the protection of the node’s TPM. In order to
obtain an AIK certificate for it, the node and the PrivacyCA execute a crypto-
graphic protocol. The AIK’s public key and certificates that describe the EK is
transmitted. The PrivacyCA checks the information. If the request conforms to
the CA’s policy, an AIK certificate is returned. It is however encrypted with the
EK so that only the TPM indicated in the request can extract it using the so-
called TPM_ActivateIdentity command. TPM_ActivateIdentity, is therefore
originally intended to “activate“ an AIK by decrypting a certificate that is issued
by a third party. The node subsequently requests this operation on the response
package. Now the AIK key can be used, together with its certificate whenever
an attester requests the attestation of the node. A practical implementation of
a PrivacyCA is described by Pirker et al. [18].

Trusted Identity Management for Overlay Networks 21

4 Trusted Identity Management for Overlay Networks

In the following sections we outline the TCG specified components and proce-
dures that facilitate the realization of a trusted identity management service for
overlay networks. We will discuss specific keys, certificates and protocols and
their intended role. For brevity, we only consider the elements relevant to the
identity creation and management. We propose two different approaches to cre-
ate unique node identities. The first solution is simple and elegant, and directly
incorporates the EK. Still, this approach might raise privacy concerns in some
scenarios and so we also present a privacy-preserving alternative which is based
on a PrivacyCA concept.

4.1 TPM Identity Mechanisms

Many of-the-shelf PCs come with a built-in TPM on the mainboard. As Trusted
Computing is an opt-in technology, the TPMs are not activated per default.
In order to use a TPM it must be initialized and the user must explicitly take
ownership of the TPM. In this simple process, assisted by mainstream operating
systems, a fresh key hierarchy is rooted. Following this, AIKs may be created.

Remember that arbitrarily many AIKs may be derived from an EK, so we
cannot use an AIK to identify a platform uniquely. Instead, we need to create a
cryptographic binding to the EK, a feature not intended by the TPM designers.
To this end, we use the TPM_ActivateIdentity command in a slightly abusive
way. This enables us to send arbitrary data, encrypted with the public key of
the TPM’s EK, to the TPM which then decrypts the data and returns it to the
user. This function only works when the public key used to encrypt the data
corresponds to the TPM’s private EK and thus implicitly provides a proof of
possession of the EK.

In order to use TPM_ActivateIdentity for our purpose, we first need to create
a normal RSA AIK pair on the TPM with the TPM_MakeIdentity command.
Since we do not actually use the AIK but rather require it only to exist later for
the TPM_ActivateIdentity command, we omit further details about the AIK
and the AIK certification process for now. Once an AIK has been created the
TPM_ActivateIdentity command can be used an unlimited amount of times to
receive data under encryption of the EK.

In theory, every TPM should be equipped with a corresponding TPM EK
certificate. This certificate contains the public part of the EK pair, which serves
as TPM identity. The private part is stored permanently inside the TPM and can
not be retrieved once created or inserted on the production line. The certificate
is signed by the TPM manufacturer and vows that the specific TPM conforms
with the required specifications and the private EK is kept safe by a real, physical
TPM. The appropriate X.509 certificate chain to verify the authenticity of the
EK certificate needs to be publicly available.

A remaining issue is the case of a TPM shipped without a manufacturer-issued
EK-certificate. The creation of such a certificate is expensive, as it requires on-
chip key-pair generation, certificate issuing and injection on the time-critical chip

22 S. Kraxberger et al.

production line. To the best of our knowledge, at the time of writing, only a few
major manufacturers such as Infineon and STMicroelectronics ship TPMs with
accompanying certificates. For other selected scenarios, late construction of an
EK certificate may be applicable, e.g. a limited deployment in a department-
wide setup within an enterprise. Yet, this seem not feasibly for Internet-scale,
open overlays, where we need to assume all nodes participating to come with a
proper manufacturer provided EK certificate. All other nodes cannot take part
in our system because self-created EK certificates cannot be verified without
establishing another globally trusted registration authority.

4.2 TAP1: EK-Based Authentication Protocol

We now propose a first protocol (TAP1), that performs an the authentication
process using the EK. The basic requirements are that both nodes have each
other’s EK certificate in order to verify the identity of each other. Since the TPM
is involved each time the EK is used to decrypt data and each node can only have
one EK we can guarantee that each node can only have one representation in
the overlay network and that it is the one he has provided. An additional AIK is
also used in this process due to the requirements of the TPM_ActivateIdentity
function.

This protocol assures that the initiator possesses the private EK which matches
the specified identity. In consequence the verifier can also be sure that no identity
attacks such as Sybil has been performed since the used identity has only a one
to one relation to the keys used for authentication. Thus, it is possible to assure
that only legitimate nodes with only one identity exist in an overlay network if
this solution is used for authentication and joining.

This first proposal therefore replaces the TCG’s anonymity mechanism, as it
unveils the public part of the EK to the overlay network. This is only acceptable
if the EK is not further used in other services.

4.3 TAP2: PrivacyCA-Based Approach

We now present an alternative protocol, TAP2, that preserves the pseudonymity
of users, but at the cost of higher complexity.

As an alternative to the unique and privacy sensitive EK, the TCG introduced
AIKs and the associated AIK certificates. AIK certificates do not contain any
information that links the certificates to the specific platform hosting the AIKs.
The AIK certificates assure that the identity keys are indeed TPM hosted. Thus,
using AIK certificates would enable us to provide trusted identities without
compromising privacy. Unfortunately, the original intention of the PrivacyCA
was to provide an unrestricted amount of AIKs for a particular endorsement
certificate or TPM. Thus, it would again be possible to mount identity attacks
such as the Sybil or Eclipse attack.

Therefore, in our PrivacyCA solution we must ensure that for one particular
TPM or EK certificate only one AIK key-pair is issued at a time. This can easily
be solved at the organizational level by modifying the PrivacyCA configuration.

Trusted Identity Management for Overlay Networks 23

Since in our case we want to protect the system from identity attacks we limit
the PrivacyCA to only issue one AIK per TPM for a defined period of time.
Thus, every user can obtain one AIK from the PrivacyCA at a time. The user
can revoke the AIK by leaving the overlay network and can thereafter obtain a
new AIK by joining the overlay network again.

Currently we achieve revocation by issuing short-lived certificates only. When
the user does not leave the network properly (e.g.: the users computer crashes)
she must wait until the AIK is revoked automatically at the specified expiration
date. Thus, each host can only obtain and possess one identity in the overlay
network and is not able to perform a Sybil attack.

In contrast to the EK solution, the joining node must first obtain a AIK
certificate from the PrivacyCA. The PrivacyCA ensures that only one AIK cer-
tificate is issued per EK at a given time period. The nodes inside the network
must only verify that the AIK certificate is still valid and if the issuer is the
trusted PrivacyCA. The AIK and the AIK related TPM commands can then be
used for identity verification inside the network. We use the Needham-Schroeder-
Lowe [15] protocol as underlying authentication protocol.

This proposed use of a PrivacyCA is a slight but distinct deviation from
the original intend behind this mechanism, as in theory, the issued AIK certifi-
cate could be reused for different applications than identification to one overlay
network only. However, in our experience, which includes the creation and main-
tenance of a TCG-compliant PrivacyCA service [18], AIKs are scarcely used in
practice. Especially, there currently appears to be no Internet-wide use of AIKs.
Enterprises rather tend to prefer proprietary internal certification mechanisms,
while private users, arguably the the main consumers of peer-to-peer technol-
ogy today, hardly ever activate their TPMs at all. This approach therefore uses
a system resource, the EK-provided identity, which would in many cases have
been wasted, i.e. not used at all.

An advantage of this protocol is, that the EK is only known to one node, the
overlay network’s PrivacyCA. Given that this is a trusted third party, the same
EK, and therefore TPM, can be reused in interaction with other PrivacyCAs,
thus ensuring continued privacy protection.

5 Protocol Specification and Implementation

In this section we outline the details of the two Trusted Authentication Protocols
(TAP1, TAP2) and report on our implementation. We describe the approach
using the EKs, AIKs and the PrivacyCA, and thereafter the one using only EKs.
We have implemented a Java software component that handles communication
with the TPM hardware. To this end, we modified several libraries from the
IAIK jTSS and jTT framework1.

1 http://trustedjava.sourceforge.net/

http://trustedjava.sourceforge.net/

24 S. Kraxberger et al.

5.1 TAP1: Direct Trusted Authentication without PrivacyCA

In this authentication mode we begin with an initial exchange of keys, the AIK
public key and the EK public key with the EK certificate. For each peer with its
respective TPM, the authentication challenge will be encrypted. Only the target
machine is able to decrypt this information. Thus, if the TPM hosts the actual
AIK key that was specified then it will be able to use the EK for decryption.

The Trusted Authentication Protocol without PrivacyCA is illustrated in
Figure 1 and outlined below.

Fig. 1. TAP1: Trusted Authentication Protocol without PrivacyCA

1. Peer 1 invokes TMP_CollateIdentityRequest2 to generate an AIK key pair
called AIK1. It sends its Endorsement Public Key (EKPUB1) and the At-
testation Public Identity Key (AIKPUB1) together with the EK1 certificate.

2. Peer 2 invokes TMP_CollateIdentityRequest2 to generate a key pair called
AIK2. It sends its Endorsement Public Key (EKPUB2) and the Attestation
Public Identity Key (AIKPUB2) together with the EK2 certificate.

3. Peer 1 generates a random number (R1) and a symmetric key. The symmetric
key, along with a hash of AIKPUB2 is encrypted with EKPUB2, which must
be certified through the EK2 certificate, obtained in the initial phase (2).
The resulting structure is called asymmetric blob. R1, among other data, is
encrypted with the symmetric key creating the symmetric blob. The result
package formed by the symmetric and asymmetric blobs assure that the
request can only be decrypted by the intended recipient TPM. The hybrid
symmetric/asymmetric scheme is needed to fit the required information into
the TPM data structures, which just allow enough space for a short (typically
128-bit) symmetric key.

Trusted Identity Management for Overlay Networks 25

4. Peer 2 invokes receiveResponse2 to decrypt the data calling
TMP_ActivateIdentity2. This way we obtain R1. Afterwards, peer 2 gener-
ates a random number R2 and encrypts R1 and R2 following the same process
as peer 1, using a different symmetric key to require mutual authentication
on the EK1.

5. Peer 1 receives R1 and R2 decrypting in the same way as peer 2 did. Then
it checks that the received R1 corresponds with the R1 that was sent before.
Finally, peer 1 sends R2 without any encryption to peer 2, who will check if
R2 matches. This exchange of nonces R1, R2 assures that this is done in a
fresh session and that there is no attempt of replaying as part of an attack.

Thus, authentication of peer 1 is achieved over R1 and R2 for joining the overlay
network. This fully automatic process ensures that only nodes with a strong
hardware-identity, i.e. their unique, TPM-manufacturer-certified EKs can join
the network.

5.2 TAP2: Trusted Authentication with PrivacyCA

The process starts when a user, called attestant, wants to connect to a network.
This attestant has an associated AIK certificate that does not contain any in-
formation that could link to the specific platform hosting the AIK. To avoid the
creation of possible identity attacks, our PrivacyCA has to make sure that a
certain TPM or EK certificate can only issue one single AIK certificate.

Fig. 2. TAP2: Trusted Authentication Protocol with PrivacyCA

1. The client prepares a request to send to the PrivacyCA:

– In the first step the client calls the method createRequest that collates
identity request data such as EK and platform certificates to initiate a
new AIK creation.

26 S. Kraxberger et al.

– The client invokes the TPM_MakeIdentity TPM function to create the
new AIK.

– The TPM returns a structure containing the public AIK, signed with the
private AIK key. Then a request is created where the data is stored in
an identityProof structure containing the signed blob returned by the
TPM, the first random number R1 and the EK certificate for the TPM
of the platform.

– This data is encrypted with the public key of the PrivacyCA.

– The client sends this request to the PrivacyCA.

2. The PrivacyCA prepares a response to send to the client:

– The PrivacyCA calls the method processRequestwhere it decrypts the
data, and then it validates its content and the certificates contained in
the request. The PrivacyCA ensures that it has not yet issued an AIK
for the given EK certificate in the current time frame.

– On successful validation the PrivacyCA issues an AIK certificate, en-
crypted with a symmetric key.

– This symmetric blob also contains the random number R1 that was
received before and a new random number generated by the PrivacyCA
(R2).

– The symmetric key, along with a hash of the public AIK, is encrypted
with the public key of the EK of the TPM, obtained from the EK cer-
tificate of the request. This structure is called asymmetric blob.

– The resulting package formed by the symmetric and asymmetric blobs
assures that the response can only be decrypted by the intended recipient
TPM.

– After building the response, it is sent back to the client.

3. The client checks the received data from the PrivacyCA:

– Then, the client calls the receiveResponse method that invokes the
TPM_ActivateIdentity function where it decrypts the response.

– The TPM subsequently decrypts the response package with the private
part of the EK. If the referenced AIK is available on the TPM, the
symmetric key is returned and it is used to decrypt the symmetric blob
contained in the response. The AIK certificate is now available on the
Client.

– The client checks if the random number received from the PrivacyCA is
the same number that was generated. Finally, the client sends R2 to the
PrivacyCA, in this case without encryption.

Through this protocol, an AIK and the corresponding AIK certificate are uniquely
established at the client. The AIK certificate can then be used in any asym-
metric authentication protocol to join an overlay network, without revealing the
actual hardware identity. Due to the time-frame mechanism and the already pre-
distributed EK certificates, no manual intervention is needed and this process
can be performed automatically.

Trusted Identity Management for Overlay Networks 27

6 Evaluation and Performance

In this section we analyze the two approaches and provide time measurements
on the authentication process. As the two protocols fit two different application
scenarios, we outline the possible benefits and trade-offs. For strong privacy, only
the PrivacyCA concept is workable. On the other hand, if simple deployment and
performance are more of a concern, for instance in a closed system within a com-
pany, the better choice may be performing the authentication process utilizing
the EK directly.

6.1 TAP1: Trusted EK Authentication without PrivacyCA

The following section shows the test results for the Trusted Authentication Pro-
cess without PrivacyCA. We have done a series of consecutive tests to measure
times between the following different parts of execution.

The initial createRequest2 method, which creates the AIK credential using
the TPM. In this phase we also obtain the Endorsement public key of the TPM.
When this is done, the AIK public key and the Endorsement public key is ex-
changed between machines. encrypt generates the random number R1, and pre-
pares the encryption with AIK public key and the Endorsement public key of
the other TPM. This way the intended TPM alone will be able to decrypt the
data. receiveResponse2 decrypts with its TPM the encryption blob received
from the other machine. This encryption blob consists in a symmetric and asym-
metric blob structure as seen in the authentication with the PrivacyCA.

For this process, a short series of measurements was taken on an HP dc7900CMT
Core 2 duo E8400 3.0GHz with an Infineon TPM version 1.2, Firmware version
3.16 with Java 1.6 and the IAIK JCE cryptography library. The average time
for createRequest2 was 3.40[s], for encrypt 0.20[s] and 2.43[s] for receiveRe-
sponse2. The overall average total processing time was 6.02[s].

This process adds little overhead when joining an overlay network. These
results indicate that this authentication type for peer-to-peer networks is faster
than using authentication with PrivacyCA, as we will see in the next section.

6.2 TAP2: Trusted Authentication with PrivacyCA

The following section shows again test results for the Trusted Authentication
process, this time with the PrivacyCA. We have done a series of consecutive
tests to measure times between the following different parts of execution.

createRequest implements the creation of AIK credentials and builds an en-
crypted request using the PrivacyCA public key. doPrivacyCA decrypts the re-
quest received from the client, it extracts the first random number (R1) and
also the certificates of the client. Thereafter, it generates a new random number

28 S. Kraxberger et al.

(R2), and the PrivacyCA creates a response composed of two parts. The sym-
metric part contains a PrivacyCA credential, R1 and R2; and the asymmetric
part contains among other data the symmetric key, which is used to decrypt
the symmetric part. The asymmetric part is encrypted with the endorsement
public key of the client and using the AIK public key to assure that only the
intended client will be able to decrypt the response. receiveResponse receives
the response from the PrivayCA and decrypts it using the private key stored
inside the TPM.

For this process, a short series of measurements was taken as well. The average
time for createRequest was 3.50[s], for doPrivacyCA 19.91[s] and 2.40[s] for
receiveResponse. The overall average total processing time was 25.78[s].

The PrivacyCA in our prototype requires a lot of time in preparing the en-
crypted data structure to allow a correct decryption in the TPM. The process of
creating a fresh X.509 credential for the AIK is rather costly as a lot of entropy
from a true random number generator is used. A more optimized implementation
including entropy bufferingis likely to reduce this overhead.

7 Security and Privacy Analysis

First and foremost, the security of our solution depends on the integrity and
tamper-resilience of the TPM. Although the TPM has been designed and man-
ufactured with the protection of key material in mind, some attacks on the
integrity of the data stored on the TPM or transmitted during the communica-
tion have been reported [9, 13, 14]. Currently only one successful attack on the
the private key material within the TPM exists [24]. Still, this attack is very
resource (electron microscope) and time (1 year) intensive and for most appli-
cation scenarios it is still reasonable to assume that the TPM is a tamper-proof
device and can be trusted for the TAP proposals.

Secondly, our solution depends on the security of the AIK and the used authen-
tication protocol. The authentication protocol uses well-known, TCG-specified
cryptographic procedures for transmitting data in a confidential and integrity
ensuring manner. The authentication protocol of the EK solution itself is based
on the Needham-Schroeder-Lowe [15, 17] protocol which is a well-understood
and verified mutual authentication protocol commonly used. Thus, the process
of joining the overlay with either the normal EK solution or the PrivacyCA
solution follows best cryptographic practices.

The most important security issue, which was the intention of the whole work,
the provision of unique identities which are not subject to Sybil attacks, is en-
sured through the reliance on the uniqueness of the EKs and the simple registra-
tion process in the overlay. Since the manufacturer of the TPM provides the EKs
for each platform and signs them their authenticity can be verified by checking
the signature in the EK certificate. The possession of the corresponding private
key as well as the retention of the keys in the TPM is ensured by the TCG’s
specifications.

Trusted Identity Management for Overlay Networks 29

8 Conclusion

In this paper we show how mechanisms available by Trusted Computing can be
used to enable the provision of unique trustworthy platform identities beyond ex-
isting PrivacyCA specifications. We presented two distinct variants of a Trusted
Authentication Protocol which can be used in overlay networks. One solution
provides simple authentication using solely the nodes’ unique EKs. Although
this is a simple, elegant solution it may raise privacy concerns due to the use of
globally unique public keys. Thus, we provide a second solution which refines the
concept of a PrivacyCA in order to provide anonymous credentials which have
no relation to each other but still provide the same level of assurance in terms
of authentication for overlay networks. Both approaches guarantee the creation
of unique, undeniable, and verifiable identifiers in large-scale overlay networks.
This effectively prevents Sybil attackers from pretending to offer more physical
platform than they actually control. Our implementation demonstrates the fea-
sibility of the approach using the readily available but hitherto nearly unused
hardware identities of the TPM.

Acknowledgments. The authors thank the anonymous reviewers for their
helpful comments. This work was supported by the EC, through projects FP7-
ICT-SEPIA no. 257433 and FP7-SEC-SECRICOM, no. 218123.

References

1. Aberer, K., Despotovic, Z.: Managing trust in a peer-2-peer information system.
In: Proc. CIKM 2001, pp. 310–317. ACM, New York (2001)

2. Balfe, S., Lakhani, A.D., Paterson, K.G.: Trusted computing: providing security
for peer-to-peer networks. In: Proc. Fifth IEEE Int. Conf. Peer-to-Peer Computing,
P2P 2005, pp. 117–124 (2005)

3. Bellovin, S.M.: Security aspects of Napster and Gnutella. In: Proc. USENIX (2001)

4. Bickson, D., Reinman, T., Dolev, D., Pinkas, B.: Peer-to-peer secure multi-party
numerical computation facing malicious adversaries. Peer-to-Peer Networking and
Applications 3(2), 129–144 (2010)

5. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing
for structured peer-to-peer overlay networks. SIGOPS Oper. Syst. Rev. 36(SI),
299–314 (2002)

6. Dinger, J., Hartenstein, H.: Defending the sybil attack in p2p networks: taxonomy,
challenges, and a proposal for self-registration. In: Proc. ARES 2006 (2006)

7. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

8. Eger, K., Killat, U.: Bandwidth trading in bittorrent-like p2p networks for content
distribution. Comput. Commun. 31(2), 201–211 (2008)

9. Grawrock, D.: Dynamics of a Trusted Platform: A Building Block Approach. Intel
Press (February 2009) ISBN 978-1934053171

10. Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense techniques
for reputation systems. ACM Comput. Surv. 42(1), 1:1–1:31 (2009)

30 S. Kraxberger et al.

11. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

12. Jyothi, B.S., Dharanipragada, J.: Symon: Defending large structured p2p systems
against sybil attack. In: Proc. IEEE Ninth Int. Conf. Peer-to-Peer Computing, P2P
2009, pp. 21–30 (2009)

13. Kauer, B.: Oslo: improving the security of trusted computing. In: SS 2007: Pro-
ceedings of 16th USENIX Security Symposium on USENIX Security Symposium,
pp. 1–9. USENIX Association, Berkeley (2007)

14. Kursawe, K., Schellekens, D., Preneel, B.: Analyzing trusted platform communica-
tions. In: Cryptographic Advances in Secure Hardware Workshop (2005)

15. Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using fdr.
In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166.
Springer, Heidelberg (1996)

16. Martucci, L.A., Kohlweiss, M., Andersson, C., Panchenko, A.: Self-certified sybil-
free pseudonyms. In: Proceedings of the First ACM Conference on Wireless Net-
work Security, pp. 154–159. ACM, Alexandria (2008)

17. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

18. Pirker, M., Toegl, R., Hein, D., Danner, P.: A PrivacyCA for anonymity
and trust. In: Chen, L., Mitchell, C.J., Martin, A. (eds.) Trust 2009. LNCS,
vol. 5471, pp. 101–119. Springer, Heidelberg (2009)

19. Pirker, M., Winter, J., Toegl, R.: Lightweight Distributed Heterogeneous Attested
Android Clouds. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Re-
iter, M., Zhang, X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 122–141. Springer,
Heidelberg (2012)

20. Ryu, S., Butler, K., Traynor, P., McDaniel, P.: Leveraging identity-based cryptog-
raphy for node id assignment in structured p2p systems. In: Proc. AINAW 2007,
pp. 519–524 (2007)

21. Shim, R., Mainelli, T., O’Donnell, B., Chute, C., Pulskamp, F., Rau, S.: Worldwide
interfaces and technologies embedded in PCs 2010-2014 forecast. Tech. rep., IDC
(2010)

22. Sit, E., Morris, R.: Security considerations for peer-to-peer distributed hash ta-
bles. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS,
vol. 2429, pp. 261–269. Springer, Heidelberg (2002)

23. Srivatsa, M., Liu, L.: Vulnerabilities and security threats in structured overlay
networks: a quantitative analysis. In: 20th Annual Computer Security Applications
Conference, pp. 252–261 (2004)

24. Tarnovsky, C.: Hacking the smartcard chip. Blackhat Conference (2010)
25. Trusted Computing Group: TCG infrastructure specifications,

https://www.trustedcomputinggroup.org/specs/IWG/

26. Trusted Computing Group: TCG TPM specification version 1.2 revision 103 (2007)
27. Wakeman, I., Chalmers, D., Fry, M.: Reconciling privacy and security in pervasive

computing: the case for pseudonymous group membership. In: Proceedings of the
5th International Workshop on Middleware for Pervasive and Ad-Hoc Computing:
Held at the ACM/IFIP/USENIX 8th International Middleware Conference, pp.
7–12. ACM (2007)

28. Wallach, D.S.: A survey of peer-to-peer security issues. In: Okada, M., Babu, C. S.,
Scedrov, A., Tokuda, H. (eds.) ISSS 2002. LNCS, vol. 2609, pp. 42–57. Springer,
Heidelberg (2003)

https://www.trustedcomputinggroup.org/specs/IWG/

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 31–43, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Situational Awareness for Improving Network Resilience
Management

Mixia Liu1, Tao Feng2, Paul Smith3, and David Hutchison4

1 E-government Research Center, Chinese Academy of Governance, Beijing, China
liumix@163.com

2 College of Computer and Communication, Lanzhou University of Technology,
Lanzhou, China
Fengt@lut.cn

3 AIT (Austrian Institute of Technology), Vienna, Austria
paul.smith@ait.ac.at

4 School of Computing and Communication, Lancaster University, Lancaster, UK
d.hutchison@lancaster.ac.uk

Abstract. Computer networks, widely used by enterprises and individuals
nowadays, are still vulnerable when facing traffic injection, human mistakes,
malicious attacks and other failures though we spend much more time and cost
on security, dependability, performability, survivability, and risk assessment to
make the network provide resilient services. This is because these measures are
commonly viewed as closely related but a practical means of linking them is
often not achieved. Network resilience research brings together all the planning
that the network can be managed at a holistic view of resilience management.
This paper focuses on network resilience management from “reactive”
paradigm to a “proactive” one through Situational Awareness (SA) of internal
factors of network and external ones of complex, dynamic and heterogeneous
network environment. After surveying the research of network resilience and
resilience assessment in the network, we give a model to discuss how to
construct awareness of resilience issues which includes four stages. The first
step is to get the situational elements about what we are interested in. Second,
to understand what happened and what is going on in the networks, pattern
learning and pattern matching are exploited to identify challenge. Then, to make
proactive resilience management, we need to predict challenges and look for
potential ones at this stage. At the fourth stage, resilience management can help
take actions of remediation and recovery according to the policy of defender
and attacker. After that, the two players’ behaviors of defender and attacker are
modeled in the same model by using Extended Generalized Stochastic Game
Nets (EGSGN) which combines Game theory into Stochastic Petri Nets.
Finally, we give a case study to show how to use EGSGN to depict the network
resilience situation in the same model.

Keywords: resilience, situation awareness, resilience situation, Petri net.

32 M. Liu et al.

1 Introduction

Resilience is a semantically overloaded term in the sense that it means somewhat
different things in different fields, such as ecological resilience, economics and
business resilience, industrial and organizational resilience, psychological resilience,
socio-ecological resilience and networks resilience [1]. Resilience in the network,
which is defined as the ability of the networks to provide and maintain an acceptable
level of service in the face of various faults and challenges to normal operation, must
be viewed as an essential design and operational characteristic of future networks in
general, and the Global Internet in particular [2]. In case of network failures,
restoration and protection switching mechanism can reroute traffic from broken paths
to backup ones provided that the networks are still physically connected. Therefore, the
majority of the research focuses on the availability of the network in terms of
disconnection probability and efficient calculation of network’s resilience after nodes
or links fail. However, the network is still vulnerable when facing traffic injection,
human mistakes, malicious attacks and other failures though we spend much more time
and cost on security, dependability, performability, survivability, and risk assessment
to make the networks provide resilient services. This is because these measures are
commonly viewed as closely related but a practical means of linking them is often not
achieved. In [2], we presented strategies, principles and disciplines for network
resilience. [3] continued providing a dynamic adaptation architecture for realizing
these strategies as a holistic view of resilience problem. Based on the previous
research, in this paper, we use Situation Awareness (SA) to construct awareness of
network resilience issues to make network resilience management move from a
“reactive” paradigm to a “proactive” one. SA exists to inform administrators or
operators at all levels of the status of the network in order for them to recognize,
understand, decide and act on any incident or event which is used here for improving
the network resilience management and assessing it easily.

In light of the foregoing, this paper is organized as follows. Section 2 reviews the
related work of network resilience and resilience assessment. Section 3 discusses how
to make network resilience management based on SA from four stages. A case study is
illustrated in section 4, and then the last part is about the conclusion and future work.

2 Related Work

2.1 Network Resilience

Networks resilience NR(p) was at first as probabilistic measure of potential
disconnections in a network [4]. Joseph [5] provides a method for resilient and
reliable end-to-end connectivity in heterogeneous networks. Cholda [6] made the first
extensive survey of ideas related to differentiation of communication services with
respect to resilience, which needs to provide services with different resilience
characteristics such as the availability, continuity and duration of downtimes in the

 Situational Awareness for Improving Network Resilience Management 33

same network. Menth [7] presents a framework for resilience analysis of packet-
switched communication networks about ingress-egress unavailability and link
congestion due to failures, changes of user behavior and changed interdomain routing.
Rerouting in networks is considered as resilience for networks failure [8,9].

Resilience is also defined as a mechanism to assure service robustness, by ensuring
that resources are re-established in case of failures [10]. This re-establishment is
possible due to protection (actions before failure) and/or restoration schemes (action
after failure). Resilience is a function of availability and recovery, which are
determined based on the protection scheme supported.

A systematized ResiliNets strategy is presented in [2] which describes a real-time
control loop to allow dynamic adaptation of networks in response to challenges, and a
nonreal time control loop that aims to improve the design of the network, including
the real-time loop operation, reflecting on past operational experience. And then, a
systematic approach to building resilient networked systems is presented in [3]. A
framework for the design and evaluation of network resilience management was
presented in [11].

From what I mentioned above, network resilience was measured passively by lost
traffic, disabled nodes, and network state transition which cannot meet the
requirements of recovery for resilience management from “reactive” paradigm to a
“proactive” one. Resilience is not only the performance to measure the system, but it
provides a systemic method to make the system maintain service after failure
happening by anticipation, adaptation, detection and recovery. Therefore, we looked
network resilience management as a function of SA in a complex, dynamic and
heterogeneous network environment.

2.2 Resilience Evaluation

Quality of resilience is decided by recovery switching from different ways, such as
layers in which recovery operates, recovery resources setup method, recovery
resources sharing level, scope of recovery, and domains crossed by recovery [12].
Multi Protocol Label Switching (MPLS) is as an object of assessing resilience in
Resilience-Differentiated Quality of Service (RD-QoS) framework [13] and Quality
of Resilience (QoR) [12]. QoR combines QoS metrics (e.g. packet loss, delay) with
resilience metrics (e.g. steady-state availability, mean downtime). The Resilience
Evaluation Framework (REF) [10] is suitable for general protocol resilience
evaluations and defines a more realistic evaluation framework than QoR. REF can be
employed to assess the resilience of any given protocol as long as the protection
model (1:1 or 1+1) is taken into consideration. These resilience assessment methods
aim at protocol resilience and focus on recovery techniques.

Besides assessing protocol’s resilience as mentioned above, Bursztein [14]
presented a logical-based framework to evaluate the resilience of computer networks
in the face of incidents, i.e. attacks from malicious intruders as well as random faults.
It is futile to evaluate resilience by modeling incidents only. It also needs to model
response, typically by administrators. However, this assessment method has no figure
description of the actions of the two plays in the network, cannot give the network
resilience situation, and does not include probabilistic transitions.

34 M. Liu et al.

Sterbenz et al [15] evaluated network resilience based on a two-dimensional state
space: the horizontal axis representing the operational state of the network and the
vertical axis describing the service delivered in which node and link failures are
simulated as challenges. It is clear that systematic, automatic, self-adaptive, self-
learning and decision making resilience networks are needed [16,17] to provide
resilient service to the applications. However, there is no previous resilience
assessment which can look this problem from a holistic view. QoR and REF focus on
availability and recovery based on protection model, and Sterbenz’s resilience
framework [15] quantified network resilience as a measure of service degradation in
the presence of challenges that are perturbations to the operational state of the
network.

The challenges like malicious attack may destroy or damage critical components in
the network services, or disable network infrastructure which have been becoming
more and more seriously. It is important to predict these challenges before they
happen and impact the networks. So we use SA to get resilience management
automatically. Endsley’s definition of SA [18], which includes the perception of the
elements of the environment, the comprehension of their meaning and the projection
of their status in order to enable decision superiority, can meet the dynamical
resilience requirements.

3 Network Resilience Management Based on SA

To estimate resilience of networks, many factors will be considered in the process of
perception not only including network internal data such as topology, traffic, resource,
security, fault and vulnerabilities in the network, but the external factors from the
environment of the network.

From all the frameworks or models of SA [19, 20], it is clear that SA can be used
for realizing resilience management dynamically. Therefore, we use SA for improving
the network resilience management. And then we analyze the factors that affect the
resilience and define potential situation that we are looking for in the first stage. Such
situation can be divided into attacks and failures or interruptions. Once we have
defined a set of situations that we are interested in and the set of data sources
available we will store the necessary data and the processes required by each source to
translate and cleanse the data. According to the network resilience situation
management model, challenges affecting resilience will be analyzed and anticipated.
After identifying the challenges by fusing the information we obtained, it is necessary
to define the state transition and recovery. The most important here is to estimate the
resilient state based on the state transition model.

3.1 Model of Network Resilience Management

To improve resilience management, SA was used here for fusing data from the
internal and external factors of the networks to get awareness of resilience issues,
which is revised from [21] as shown in Fig. 1. The result of detection will be stored in

 Situational Awareness for Improving Network Resilience Management 35

DISco (Distributed Store for challenges and their outcome) [3], according to which
the networks resilience manager can make decision using remediation and recovery
by policy of “Us” and policy of “Them”. Policy of “Us” is from our work in [22]
which can be changed according to the adversary’s policy. Policy of “Them” comes
from the awareness issues of resilience. When we take measures by remediation, the
state of networks described by S00, Sij to Snn as shown in Fig. 2 will change from one
to another. S00 denotes that the system is in an initial state of “normal” for which
acceptable service is delivered during normal operations.

Fig. 1. Situational Awareness (SA) model for resilience management

In the process of perception of the model, it will involve perceiving the status,
attributes and dynamics of task-related elements in the surrounding environment. At
this stage, the data are merely perceived. It is well known that the future network will
be more complex, diverse, and more heterogeneous including fiber, mobile and
wireless networks etc. Therefore, to improve resilience management of the networks,
it is necessary for the administrators to consider more factors in the first level
including internal sensors of the networks, and also external sensors of the
environment. This is because wireless signals travel through the atmosphere, which
are more susceptible to different types of interference than standard wired network,
such as radio frequency interference, electrical interference, weather conditions. The
internal elements consist of fault, security, topology, traffic, vulnerabilities, and
resource. Fault collects data of mis-configuration or not following correct policy
which will lead to accidents [2]. Security collects alerts from different security tools
such as IDS, firewall, malware detector, etc, which will result in malicious attack
[23]. Changes of topology will be detected in the topology module. The root causes of

36 M. Liu et al.

higher layer problems may be located in a different protocol layer or on a different
network host, which is frequently not visible to the higher layer. Fault localization
technology will be used here [24]. The onset of either a DDoS attack or a flash crowd
could be initially detected by measuring traffic at the destination networks [25]. In the
resource module, the missions or importance of the computers within the networks
will be considered. In the vulnerabilities module, weak points in the network will be
detected. In this stage, we can get lots of original data of different challenges which
are incomplete information. How to understand these challenges and their impact to
the network is the second stage’s content.

3.2 Challenges Awareness of Resilience Issues

In the process of comprehension, the decision maker will form a holistic picture of the
environment, comprehending the significance of objects and events. One way in
accomplishing this is to build a graph from the evidence. In the resilient networks, to
analyze challenges, we need to know the levels of our service, the states of our
networks, state transition, and triggered condition. There are two steps to analyze the
challenges: (1) Information extraction: we need to find, filter and categorize relevant
data and extract facts and entities to understand what is happening of the networks;
(2) Model generation and learning algorithms: it is necessary to generate predefined
model and train model to recognize patterns of activity. To identify challenges, data
fusion can be used here to get evidences from other sensors. In the wireless network,
the environment elements can also give evidence of challenges which will result in
good remediation. In this stage, we also construct challenges scenario if there is
causal relationship among them. From this causality consequence, we can predict
potential challenges in the next step before they lead to serious impact to the network.
So it is necessary to define a set of resilience situation classification. Once we have
defined a set of situations that we are interested in we next can store them in our
DISco which can be matched with the challenge analysis.

In the stage of anticipation, we can anticipate the potential challenges which will
have a possibility to lead to the transition of the network state by combing the
knowledge from perception and comprehension. Attacker’s action can be described in
this situation which is not enough in resilient network. Therefore, game theory [20]
can be exploited here which can model both the actions each player decides to take
and the resulting consequences, which may not be controlled by the players.
According to the model of comprehension, an analyst may wish to search for
information that is missing from a particular model or use the model to project or
anticipate where and what new data might exist.

3.3 Resilience Estimate and Analysis According to SA and Remediation

In the stage of action, the resilience management will perform resource allocation and
provide feedback information to the previous stages, and the state of the network will
change from one to another because of the behaviors of the attacker and the defender
which comes from the result of game in the anticipation stage. Moitra [26] argued that

 Situational Awareness for Improving Network Resilience Management 37

system states of measuring survivability {S} may be {normal, under attack,
compromised, recovered, and nonfunctional}. Evaluating networks resilience in this
way effectively quantifies it as a measure of service degradation in the presence of
challenges to the operational state of the networks. Network can be viewed (at any
layer) as consisting of two orthogonal dimensions as illustrated in Fig.2: one is the
operational state of network, which consists of its physical infrastructure and their
protocols; the second dimension is the service being provided by the network and its
requirements [2]. Sterbenz et al [27] quantified network resilience as a measure of
service degradation in the presence of challenges that are perturbations to the
operational state of the network. They focus on impact of link failure to the service
provided in which the critical nodes or links are shut down for the duration of the
challenge period to simulate an attacker with knowledge of the network structure. To
describe the different states of the network, serial numbers are used in the set of nine
(3×3) regions. If there is a challenge or a serial challenges happening, it will make the
state change from the best state S00 to the worse state Sij or else. Each region may
contain multiple states if the service demands such a fine granularity. If necessary, the
states can be added from Sij to Snn. In the limiting case, each region represents just one
state. S00 denotes that the system is in an initial state of “normal” for which acceptable
service is delivered during normal operations. Network resilience can be evaluated in
terms of the various network state transitions under the presence of challenges. When
the operation is affected by challenged, which in turn may result in degradation of the
service. Therefore, S22 denotes the state “non-functional” which means challenges
make the operation severely degraded leading to unacceptable service provided in the
system.

Fig. 2. Resilience state space [2]

3.4 Extended Generalized Stochastic Game Net for Resilience State Transition

Lin [28] presented Stochastic Game Nets (SGN) by extending Stochastic Petri nets
with game theory and applied the SGN method to investigate the network attacks,
compute the Nash equilibrium to each player. Zakrzewska [29] extended Petri Net to
allow real-time cyber conflicts to be modeled. However, they all have not mentioned

38 M. Liu et al.

how to get the action of the attackers. We add observable place and observable arc in
Lin’s SGN to describe inflection from security tools’ alerts to attack action, add
immediate transition to represent a choice between two alternatives which have exactly
the same input places (firing conditions), and the probabilities assigned to them will
reflect the relative probabilities of the two choices, and use it to describe and recognize
resilience situation. An Extended Generalized Stochastic Game Net (EGSGN) is
represented as the ten-tuple vector (P, S, O, T,π , F, R, λ , U, M0), where

(1) P= {Player1, Player2, …, Playern}is the finite nonempty set of players. In the
network, player1 denotes attacker, and player2 denotes defender in the network;

(2) S= {S1, S2, …, Sn} is a finite set of state of different players;
(3) O = {O1, O2, …, On} is the finite set of alerts from security tools;
(4) T = T1 ∪ T2∪…∪ Tk is a finite set of transitions, where T1 is the set of

transitions with respect to Player1, T2 is the set of transitions of Player2, Tk is the
transition set of Playerk;

(5) π :T→[0, 1] is a rate of transition happening which represents the probability of
choosing a particular transition,

(6) (() ()) ()F P T O T T P= × ∪ × ∪ × is the set of arcs between transitions and places;
(7) R is a reward function for the player taking each transition;
(8) 1 2{ , ,..., }wλ λ λ λ= is a set of transition firing rates in the transition set, where w is

the number of transitions;
(9) U is the utility function of players;
(10) M0 is the initial marking.

To represent resilience of networks, the Nash equilibrium can correspond to the
optimal strategy of each play. First, it needs to construct a reachability tree with respect
to the EGSGN, and then find out the Nash equilibrium. A situation of resilience
includes a lot of steps of attacks and defenses. Resilience situation recognition is to
find the transition sequence of attacker and defender in reachability tree of the EGSGN
model.

4 Case Study

To provide clients with a reliable and responsive service, redundant Web service is
used in Amazon, Google and MSN [14]. The two HTTP nodes HTTP[1]:1 and
HTTP[1]:2 serve the Web pages index.php[1]:1 and index[1]:2 respectively. The
index.php [1]:1 file depends of the FTP[1] service for being updated. The HTTP[1]:1
service depends on index.php[1]:1, as the service will fail if the file index.php to be
served does not exist. We use Stochastic Petri net to establish the resilience model as
shown in Fig. 3. There are two types of transition: generalized white rectangles
represent timed transitions, and black rectangles represent instantaneous transitions. If
FTP[1] failed because of attack or other reasons, Failure1 will be activated and take
token form FTP[1], and then HTTP[1]:1 cannot provide service. If SSH[1] failed,
Failure2 will be fired and take token form SSH[1], so the copy transition will not be
fired and lead to the failure of HTTP[1]:2.

 Situational Awareness for Improving Network Resilience Management 39

Fig. 3. Petri model of resilient Web service

According to [14], there are attacker rules t1 and defender rules t2 which can be
extended as follows:

t1= {Defunct, DefunctProp, Comp1, Comp2, CServProp1, CervProp2, CFileProp1,
CFileProp2}. Defunct is a typical accidental fault: any file or service that is subject to
faults (e.g., bugs) and is available can become unavailable. DefunctProp states that a
vertex may crash when all vertices it depends on crashed, taking into account
equivalent vertices. Comp1 models the case where the attack is completely successful,
and the target vertex is compromised. Comp2 models a typical case where, e.g., the
attack is by code injection, but the attack fails and instead the target service crashes.
The remaining rules represent incident propagation. CServProp1 states how locally
vulnerable services depending on compromised files. CServProp2 is the case where the
service crashed instead. CFileProp1 states that non-encrypted files depending on
compromised vertices may get compromised. The CFileProp2 rule here would have a
larger delay, and represents compromission of encrypted (Crypt) files with a weak key
(VulnLocal).

t2= {Patch, Deny, Allow, ORest, OReco, PReco, PRest1, PRest2}. Patch is that the
defender may update services. Deny is to configure network devices so as to make a
service unreachable. Allow is to configure network devices so as to make a service
reachable. ORest states that defender can always repair the damage. OReco is an
optimistic vertex recovery rule. PReco is a pessimistic recovery rule where a
compromised vertex is recovered thanks to an available, uncompromised equivalent
vertex. PRest1 states that the vertex is also made available. PRest2 states that vertex is
unfortunately recovered from another compromised vertex.

40 M. Liu et al.

We construct the simulation EGSGN model for the resilient Web service as shown
in Fig. 4. Each transition in the model is considered to be a Poisson distribution with a
rate of for a unit of time. The time until the transition fires has an exponential
probability distribution. At the first step only the state vulnerability has token, so we
have the S0= {1 0 }. With the happening of
transitions, tokens will be removed from the input state of the transition and be added
to the output state of the transition which will lead to the change of marking from S0 to
S1, S2, ….,Sn. To simplify the reachability tree, we use the defense policy to replace the
steps of the defender because when the defender takes measures to the attacker’s
action, different policies will lead to different results. PIPE (Platform Independent Petri
Net Editor 2) [30] is used to model the interactive process of attacker and defender
based on policy as Fig. 5. T5 and T6 in Fig.5 represent immediate transitions which are
alternative policy of Patch FTP or Deny FTP in defending. An inhibitor arc from a
place to a transition indicates that the transition cannot fire if there is a token in the
place; it can fire when there is no token in the place if the places connected to its input
arcs do contain tokens. Inhibitor arcs in Fig. 5 represent if the response speed is faster
than the attacker’s, the actions of the attack T3 and T4 cannot happen.

Fig. 4. Attacker and defender’s action model based on EGSGN

Fig. 6 shows the reachability tree about that when FTP is compromised the defender
takes two different policies to defend no considering the inhibitor arcs. Using
algorithm to recognize resilience situation, we got the situation as follows: {T0, T6, T1,
T2, T3, T4, T8}, {T0, T6, T8, T1, T2, T3, T4}, {T0, T6, T1, T8, T2, T3, T4}, {T0, T6, T1, T2,
T8, T3, T4}, {T0, T6, T1, T2, T3,T8, T4}, { T0, T5, T1, T2, T3, T4, T8}, { T0, T5, T8, T1, T2,
T3, T4}, { T0, T5, T1, T8, T2, T3, T4}, { T0, T5, T1, T2, T8, T3, T4}, { T0, T5, T1, T2, T3, T8,
T4}. From these resilience situations, we can find where we should take measure and
optimize policy which will improve the resilience of the network.

 Situational Awareness for Improving Network Resilience Management 41

Fig. 5. EGSGN model based on policy

Fig. 6. Reachability tree of the Petri model

5 Conclusion and Future Work

Resilience is a dynamic and systematical property of networks which provides and
maintains acceptable service level after failure happening. SA is intended to improve
the network resilience management in this paper. After surveying of resilient system
and resilience assessment in the network, we have addressed resilience management
model through SA, which is a part of our dynamic adaptation architecture realizing
resilience control loop. Four stages can obtain the resilience situation. Stage 1 is
challenge data collecting from internal factors in the network including fault,
topology, security, traffic, vulnerabilities, and resource and external factors from
environment. The data is analyzed in stage 2 for challenge identification, and in the
stage 3 we can predict the threat by game theory. To decide which action will be
done, policies of attacker and defender are considered in the stage 4. We also give a
case study of resilience analysis, from which we can see that the state of network will
change from one to another because of the actions of the attacker and the defender.

42 M. Liu et al.

As future work, we will research formalization methods for network resilience
situation awareness and resilience situation classification which can be useful for
judging whether the networks are resilient. Furthermore, optimizing the strategies of
the attacker and defender to help the administrator to find the best way against
challenges and improving the resilience of the network is our next step.

Acknowledgements. This research was supported by the European Union Research
Framework Programme 7 via the ResumeNet project with contract number FP7-
224619 and National Natural Science Foundation of China 60972078.

References

1. Madni, A.M., Jackson, S.: Towards a conceptual framework for resilience engineering.
IEEE Systems Journal 3(2) (2009)

2. Sterbenz, J.P.G., Hutchison, D., Cetinkaya, E.K., et al.: Resilience and Survivability in
Communication Network: Strategies, Principles, and Survey and Disciplines. Computer
Networks 54, 1245–1265 (2010)

3. Smith, P., Scholler, M., Fessi, A., et al.: Network Resilience: A Systematic Approach.
Submitted to IEEE Communication (December 2010)

4. Najjar, W., Gaudiot, J.: Network resilience: A measure of fault tolerance. IEEE Trans.
Comput. 39(2), 174–181 (1990)

5. Joseph, D., Franks, J.K., Freeman, C.N., et al.: Reliable and Resilient End-to-End
Connectivity for Heterogeneous Networks. US 2011/0038256 A1 (2011)

6. Cholda, P., Mykkltveit, A., et al.: A survey of resilience differentiation frameworks in
communication network. IEEE Communications Surveys & Tutorials 9(4) (2007)

7. Menth, M., Duelli, M., Martin, R., Milbrandt, J.: Resilience analysis of packet-witched
communication networks. IEEE/ACM Transactions on Networking (2009)

8. Keralapura, R., Moerschell, A., Chuah, C.N., et al.: A Case for Using Service Availability
to Characterize IP Backbone Topologies. Journal of Communications and Networks 8(2)
(2006)

9. Haider, A., Harris, R.: Recovery Techniques in Next Generation Networks. IEEE
Communications Surveys & Tutorials 9(3) (2007)

10. Sousa, B., Pentikousis, K., Curado, M.: REF: Resilience Evaluation Framework. In: 2010
International Congress on Ultra Modern Telecommunications and Control Systems and
Workshops (ICUMT) (2010)

11. Schaeffer-Filho, A., Smith, P., Mauthe, A., Hutchison, D., Yu, Y., Fry, M.: A Framework
for the Design and Evaluation of Network Resilience Management. In: 13th IEEE/IFIP
Network Operations and Management Symposium (2012)

12. Cholda, P., Tapolcai, J., Cinkler, T., et al.: Quality of Resilience as a Network Reliability
Characterization Tool. IEEE Network (2009)

13. Autenrieth, A.: Differentiated Resilience in IP-Based Multilayer Transport Networks.
Ph.D. dissertation. Technische University Munchen, Munchen (2003)

14. Bursztein, E., Goubault-Larrecq, J.: A Logical Framework for Evaluating Network
Resilience against Faults and Attacks. In: Cervesato, I. (ed.) ASIAN 2007. LNCS,
vol. 4846, pp. 212–227. Springer, Heidelberg (2007)

 Situational Awareness for Improving Network Resilience Management 43

15. Sterbenz, J.P.G., Cetinkaya, E.K., Hameed, M.A., et al.: Evaluation of, Network
Resilience, Survivability and Disruption Tolerance: Analysis, Topology Generation,
Simulation and Experimentation. Springer Telecommunication Systems Journal (2011)

16. Dove, R.: Patterns of Self-Organizing Agile Security for Resilient Network Situational
Awareness and Sensemaking. In: 8th International Conference on Information
Technology: New Generations (ITNG) (2011)

17. Mayron, L.M., Bahr, G.S., et al.: A Hybrid Cognitive- Neurophysiological Approach to
Resilient Cyber Security. In: The 2010 Militay Communicatons Conference – Cyber
Security and Network Management (2010)

18. Endsley, M.R.: Toward a Theory of Situation Awareness in Dynamic Systems. Human
Factors Journal 37(1), 32–64 (1995)

19. Bass, T.: Intrusion systems and multisensor data fusion: Creating cyberspace situational
awareness. Communications of the ACM 43(4), 99–105 (2000)

20. Chen, G., Shen, D., et al.: Game Theoretic Approach to Threat Prediction and Situation
Awareness. Journal of Advances in Information Fusion 2(1) (2007)

21. Liu, M., Hutchison, D.: Towards Resilient Networks Using Situation Awareness. In: The
12th Annual Post Graduate Symposium on the Convergence of Telecommunications,
Networking and Broadcasting (2011)

22. Schaeffer-Filho, A., Smith, P., Mauthe, A.: Policy-driven Network Simulation: a
Resilience Case Study. In: SAC 2011, March 21-25 (2011)

23. Zhai, Y., Ning, P., Iyer, P., et al.: Reasoning About Complementary Intrusion Evidence.
In: Proceedings of 20th Annual Computer Security Applications Conference (2004)

24. Steinder, M., Sethi, A.S.: Probabilistic Fault Localization in Communication Systems
Using Belief Networks. IEEE/ACM Transactions on Networking 12(5) (2004)

25. Michael, F., Mathias, F., Paul, S., David, H.: Challenge Identification for Network
Resilience. In: 2010 6th EURO-NF Conference on Next Generation Internet (NGI) (2010)

26. Moitra, S.D., Konda, S.L.: The Survivability of Network Systems: An Empirical Analysis.
CMU/SEI-2000-TR-021 (2000)

27. Sterbenz, J.P.G., Cetinkaya, E.K., Hameed, M.A., et al.: Evaluation of Network Resilience,
Survivability and Disruption Tolerance: Analysis, Topology Generation, Simulation and
Experimentation. Springer Telecommunication Systems Journal (2011)

28. Lin, C., Wang, Y., Wang, Y.: A Stochastic Game Nets Based Approach for Network
Security Analysis. In: Proc. of the 29th International Conference on Application and
Theory of Petri Nets and other Models of Concurrency, Concurrency Methods: Issues and
Applications 2008 Workshop (2008) (invited paper)

29. Zakrzewska, A.N., Ferragut, E.M.: Modeling Cyber Conflicts Using an Extended Petri Net
Formalism. In: 2011 IEEE Symposium on Computational Intelligence in Cyber Security
(CICS) (2011)

30. Imperial College DoC MSc Group And MSc Individual Project,
http://pipe2.sourceforge.net/

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 44–59, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Optimal Defense Strategies for DDoS Defender
Using Bayesian Game Model

Yuling Liu1,2, Dengguo Feng1, Yifeng Lian1,2, Kai Chen2, and Yingjun Zhang1,2

1 Laboratory of Trusted Computing and Information Assurance, Institute of Software,
Chinese Academy of Science, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
{ylliu,feng,lianyf,chenk,yjzhang}@is.iscas.ac.cn

Abstract. In a typical DDoS attack and defense scenario, both the attacker and
the defender will take actions to maximize their utilities. However, each player
does not know his opponent’s investment and cannot adopt the optimal
strategies. We formalize a Bayesian game model to handle these uncertainties
and specify two problems usually faced by the defender when choosing defense
measures. A nonlinear programming method is proposed to handle policies’
permutation in order to maximize the defender’s utility. Followed the Nash
equilibrium, security administrators can take optimal strategies. Finally, the
practicality and effectiveness of the model and method are illustrated by an
example.

Keywords: DDoS defense, Bayesian game, Nonlinear Programming.

1 Introduction

Distributed denial-of-service (DDoS) attacks have become a widely-spread threat
to network security, especially in the industry of high real time requirement, e.g.
online game, VOD (video-on-demand), video conferencing. When DDoS attacks
happened, a critical resource usually network bandwidths were exhausted. More
seriously, through disrupted the normal service, DDoS attacks lead to corporations
lost revenue, public reputation embarrassment and law penalty [1, 2]. Arora et al.
have illustrated the impact of recent DDoS attacks [3]. Based on the type of victim,
DDoS attacks can be divided into the following five categories: application attacks,
host attacks, resource attack, network attacks and infrastructure attacks [7]. In this
paper, we mainly study network attacks which consumed the victim’s bandwidth with
flooding DDoS attack packages. This is also the principal form of DDoS attacks.

Due to DDoS attacks’ enormous destructive, many defense mechanisms such as
statistical filtering [4, 5], traceback [6] have been proposed. Mirkovic et al. [7] and
Douligeris et al. [8] summarized various protective mechanisms and analyzed their
classification. Their work could guide security administrators to choose and deploy
suitable mechanisms to defeat DDoS attacks. However, defense strategies selection is
a systematic, economic related work. Security administrators should compare and

 Optimal Defense Strategies for DDoS Defender Using Bayesian Game Model 45

evaluation every mechanism’s performance, coverage and other factors. There were
already many models and methods for assessing DDoS defense strategies from
technical level which can be used as a reference for security administrators [4, 5, 6,
12, 13, 14, 15].

However, security budget constraints are also very important and the chosen
strategy or strategy profile should maximize the protective effect. Many methods have
been proposed to select policies with economic aspects. Bulter [2] presented a cost-
benefit approach SAEM to compare and select the suitable security designs. Based on
this work, Dewri et al.[1] formalized a multi-objective optimization on attack tree
model to solve the problem how to select security hardening measures within the
security budget. Böhme [9] discussed the problem of security investment planning
from a high-level. He described the mapping relations between security cost, security
level and security benefit and provided a model to measure security investment. At
some level the above works could enlighten security administrators on planning
DDoS protection investment and choosing applicable defense policies, but they have
some drawbacks. First of all, existing works assessed the effectiveness of defense
mechanisms or security investment from the perspective of the defender and lacked
the attacker side’s considerations. Actually, in order to choose protection measures
well, we should comprehensive consideration of both the cost and benefits of the
attacker and the defender. Because when expenses surpass gains, a rational attacker
will not carry out an attack. Secondly, the works above did not discussed how to deal
with residual risks. Cyber-insurance has been introduced into the field of information
security and provided a way to transfer the residual risk for security administrators in
practice [10, 11]. So, we treat cyber-insurance as an important choice when defeat
DDoS attacks in this paper. Last but not least, the problem that how to select DDoS
defense strategies with limit information security investment budget has not been
resolved. How to schedule the budget to maximize the defender’s rewards is remain a
challenge. Security administrators on the one hand can only deals with similar
problems from personal experiences, on the other hand cannot report to their superiors
the effect of investment quantitatively.

In view of the above problems, we propose a Bayesian game model to characterize
the relationship between DDoS attacker and defender, and quantitative evaluate of
rational attacker and defender’s utility by calculating the equilibrium under different
investments. When computing the utilities of defender, cyber-insurance is considered
and a nonlinear programming method is used to allocate security investment budgets.

In summary, this paper makes the following contributions:

-it formulizes a Bayesian game model for DDoS attack and defense (BGM-DAD),
and the Nash equilibrium results of this game can guide defense mechanisms
selection;

-it proposes a nonlinear programming method, which is useful when scheduling
investment budgets in order to maximize defense mechanisms’ performance;

-it specifies two problems usually faced by security administrators when selecting
defense policies and modeled these problems into BGM-DAD;

-and it demonstrates experimental results under different offensive and defensive
scenarios.

46 Y. Liu et al.

The rest of paper is structured as fellows. In section 2, we discuss the related work of
ours. Section 3 formalizes the Bayesian game model for DDoS attack and defense and
we present calculation methods of the attacker and the defender’s utility functions in
section 4. Two problems usually faced by security administrators are described in
Section 5. Section 6 shows our experiments results and the final section concludes our
paper.

2 Related Work

Because the number of DDoS defense mechanisms is multitudinous, researchers have
proposed various methods to compare and evaluate the performance of strategies,
with the aim of providing a quantitatively method to guide security administrators
choosing appropriate policies. Li et al. [5] formulated DDoS attacks on statistical-
based filtering, and evaluated the effectiveness of static filter and adaptive filter
against static attackers and dynamic attackers respectively. Kuznetsov et al.[6] first
put forward four evaluation metrics: number of packets required for reconstruction,
computation overhead, robustness and deployment overhead and cost, and then used
these metrics to analyze and assess primary traceback approaches quantitatively.
Direct measurements of flow-level information have been regarded as a major
element in above methods, but indirect measurements was neglected. Due to this, a
method using multiple data sources was proposed, which could improve the
measurement accuracy [12]. Mirkovic et al. [13] presented a universal evaluation
method for DDoS, and developed a benchmarks suite which can depict the basic
elements of assessment scenarios: the attack, the legitimate traffic and the network
topology. Besides attack flows elimination, prevention and resistance were also
effective solutions to defeat DDoS/DoS attacks. A client-puzzles-based prevention
protocol was presented and a game-based formal method was used to verify the
network’s availability [14]. Based on Meadows’s cost-based framework,
Ramachandran [15] analyzed the performance of JFK protocol which is a DoS-
resistant protocol. The methods above assessed the performance from defender’s
perspective only [5, 6, 12, 14, 15], and lacked cost considerations [5, 12, 13, 14].

DDoS defense is an economic-related problem. To withstand the DDoS attacks,
security administrators should schedule their security budgets. Information security
investment decision-making was a promising research field and has been previously
addressed in a variety of ways. The difficult problem of this decision-making process
is how to deal with the dynamic uncertainty. In a botnet attack, virtual bots could
produce uncertainty, so Li et al. [16] modeled botnet masters and renters’ relation as a
profit-maximizing problem and given a solving method. Entrepreneurs who provided
services to privacy-concerned consumers faced a decision on privacy preserving
technology (PPT). It would made customers churn if no PPT measure was taken.
Kantarcioglu et al. [17] solved this puzzle by using a framework, which combined
copula functions and a Stackelberg leader-follower game. Penetration testing was also
used to gathering decision-making information to reduce uncertainty in security
investment [18]. The above methods have their specific application scenarios and

 Optimal Defense Strategies for DDoS Defender Using Bayesian Game Model 47

these preconditions have limited their use in DDoS defense strategies selection. In
addition to reduce the uncertainty of the decision making process, how to balance
between multiple goals was also a big research hot spot. Researchers have modeled
and analyzed security investment trade-off based on linear programming method [1]
and i* framework [19]. Böhme et al. [9] reviewed and summarized existing
approaches.

Cyber-insurance provided a way to transfer financial risk associated with network
and computer incidents to a third party [10]. Although cyber-insurance was an
effective risk-averse method and was proposed more than 10 years ago [11], it only
attracted wide attention from scientists recently. Lelarge et al. [11] discussed how
insurance can encourage entities to increase security investment. Böhme et al. [20]
studied the cyber-risks’ correlation and modeled the market for cyber-insurance from
both the supply-side and the demand-side. A comprehensive framework towards
cyber-insurance was proposed, which formalized five primary elements: network
environment, demand side, supply side, information structure and organizational
environment [10]. These methods confirmed cyber-insurance’s impact on security
investment, but they assumed that security administrators considered security
insurance as the only strategy. However, cyber-insurance was only a risk-averse
option [21]. In this paper, we introduced cyber-insurance into DDoS defense and put
it as an optional strategy for defenders.

Game theory is a subject that discusses one player how to choose its strategy while
taking other players’ strategies into account. It has been applied in many fields of
information security. Mahimkar et al. [14] used a game-based formal method to
analyze DoS prevention protocols. Static and dynamic Bayesian game approaches
were respectively used for intrusion detection in wireless ad hoc networks [22]. To
encourage security administrators to increase information security investment, various
game-based methods were presented [17, 21, 23]. Wang et al. [24] analyzed the
confidentiality and integrity of enterprise networks with a stochastic game nets model,
while Lin et al. [25] employed a repeated two-way signaling game to model the multi-
step attack-defense scenarios on confidentiality. Roy et al. [26] summarized the major
game-based works in information security. These works were enlightening to our
work, but every model has its own scope of application, and cannot be used in DDoS
attack and defense scenarios. As a result, we formalized a Bayesian game model for
DDoS attack and defense and given the definition of Bayesian Nash equilibrium
which could be used for strategies selection.

3 Bayesian Game Model for DDoS Attack and Defense

In this section, a Bayesian game model for DDoS attack and defense is described. We
also present how to compute the Nash equilibrium.

During DDoS attacks, the attacker employs many clients to flood a target network,
while the defender who is usually the security administrator of the target network
adopts many measures to defeat the attack and guarantees the regular business of the
network. Each player does not know his opponent’s investment budget and can only

48 Y. Liu et al.

get a probability distribution of another player’s investment budget. We also assume
every player is rational, which means he will take the action that could maximize his
utility respecting another player’s type and actions.

Definition 1 (Bayesian Game Model for DDoS Attack and Defense). A Bayesian
game model for DDoS attack and defense (BGM-DAE) is represented as an eight-
tuple vector BGM-DAE= (Ta, Td, Aa, Ad, Pa, Pd, Ua, Ud) and the attacker and the
defender are represented as a and d respectively. The meaning of every element is as
follows.

(1) Ta={ti, 1<=i<=n and n is a positive integer} denotes the type space of the
attacker where the attacker’s type number is n and ti is the i-th type. In this
paper we put the investment of a DDoS attack as the attacker’s type. Similarly,
Td={tj, 1<=j<=m and m is a positive integer } is the type space of the defender
and we use the information security investment budget as the defender’s type.

(2) Aa={aa(ti)} and Ad={ad(tj)} represent the action space of the attacker and the
defender separately, where aa(ti) (or ad(tj)) is an action that can be adopted by
the attacker(or the defender) based on its type ti (or tj). aa(ti)={Attack, Not
Attack}, which means the attacker can take the following actions according to
its type ti: Attack or Not attack. ad(tj) should fulfill the following requirements:
-ad(tj)={{DP1, DP2 ,…, DPk ,…, DPl}}, where DPk represents the budget
invested into the k-th defense policy and the number of defense policies can be
adopted by the defender is l.
-DPk∈[0, Maxb], if the information security investment budget of the defender
is Maxb,
-∑DPk≤Maxb.

(3) Pa and Pd are the priori belief space for each player respectively. Pa= {pa(ti)}
and stratifying:
- pa(ti) is the prior probability that the defender think the attacker belongs to
the type ti,
-∑pa(ti)=1.
Pd is similar to Pa and we will not repeat the details.

(4) Ua and Ud stand for the utility function of each player separately. We will
explain their calculation methods in later chapters.

Players of different types have different utility functions. Every player knows its own
type but it only has a prior probability of other player’s type. Specify to a
representative DDoS attack and defense scenario, the attacker does not know the
defending effect which is determined by defender’s information security investment
budget. Similarly, the defender does not know the attacker’s type which is determined
by attacker’s investment.

Before given the definition of Bayesian Nash equilibrium, we first define strategy
of the BGM-DAE.

Definition 2 (Strategy). In the BGM-DAE, a strategy of the attacker (or the defender)
is a function sa(ti) (or sd(tj)), which means when the attacker’s (or the defender’s) type
is ti(or tj), it will perform an action aa(ti)(or ad(tj)) in the action set Aa(or Ad).

 Optimal Defense Strategies for DDoS Defender Using Bayesian Game Model 49

All strategies of a player constitute its strategy set and each player can select any
strategy form its strategy set. However given another player’s strategy, a rational
player tends to choose the strategy which can maximize its utility and this strategy is
called its optimal strategy. If all players choose their optimal strategy, the game will
reach its equilibrium.

Definition 3 (Bayesian Nash Equilibrium). Bayesian Nash equilibrium of the BGM-
DAE is a strategy vector s=(s*

a, s
*
d), satisfying:

-For the attacker (or the defender), given every type ti(or tj) of its type space Ta(or
Td), the strategy s*

a (or s*
d) maximizes its utility function; i.e., s*

a(ti) solves

()
max { [(), * ();] ()}
a i a

j

a a i d j i a j i
A t A

t

u a t s t t p t t
∈

and s*
d(tj) solves

()
max { [* (), ();] ()}

d j d
i

d a i d j j d i j
A t A t

u s t a t t p t t
∈

where pa(tj/ti) (or pd(ti/tj)) is the probability that when the attacker’s (or the defender’s)
type is ti(or tj), he think the defender’s(or the attacker’s) type is tj(or ti).

Bayesian Nash equilibrium is a type dependent strategic combination. In other
words, given its own type and the probability distribution of another player’s type,
each player chooses the strategy which can maximize its expected payoff. For a
Bayesian Nash Equilibrium, no player has an incentive to deviate from its equilibrium
strategy. So Bayesian Nash equilibrium of the BGM-DAE can guide security
administrators to select the most applicable defense strategies.

4 Utility Function

The previous chapter presents definitions of the BGM-DAE and we next will explain
the utility functions. In a DDoS attack and defense scenario, both the attacker and the
defender have cost and rewards and the different between these two is the utility. The
attacker employs attack flows but gets rewards from the attack. The defender invests
to adopt defense measures and suffers the attack which is also economic-related.

4.1 Utility Function of the Attacker

In DDoS attacks, the attacker makes use of many compromised hosts to send plentiful
packets to the target network with the aim of exhausting the bandwidth resources. The
attacker can compromise hosts one by one and then use them as attack-client, but this
work is challenging and time-consuming. Meanwhile, highly social division of labor
has made some people or organizations to provide attack flows and services [27] and
this is the mainstream of current DDoS attacks. So, in this paper we only consider the
latter attack form.

50 Y. Liu et al.

The utility function Ua of the attacker is defined as follows:

1

() - (,) * - * *
m

a a a a a x x
x

U r v c b d v b dα β
=

= = (1)

where ra(.) represents the attacker’s rewards function of the DDoS attacks and ca(.) is
the implementation cost function of these attacks. There are total m attacks, and ca(.)
is a function of bandwidth and duration time of the attack flow[27]. For the attacker,
ra(.) is proportional to the estimated value of the victim’s value. α and β are constant
adjustment parameter.

4.2 Utility Function of the Defender

Different from the attacker, the defender can take many defense measures to reduce
impact of an attack. However, every defense measure has its own cost and
performance. Numerous researchers have analyzed and evaluated the performance of
DDoS defense policies [5, 6, 12, 13, 14, 15]. These works evaluate the performance
of DDoS defense measures from the point of technical efficiency, but rarely consider
the implementation cost. Moreover, no security measures can achieve absolute
security and the above works do not consider how to handle the residual risk. Because
cyber-insurance is an effective risk-averse method for residual risks, so we introduce
cyber-insurance into DDoS defense to make up for the deficiency of traditional
defense measures.

If the number of defense measures is n, then the utility function of the defender Ud
can be defined as follows:

1

(() - ())
n

d i i i i
i

U f s h s
=

= (2)

where the i-th measure is represented by si. Function fi(.) is used for computing
rewards from a measure while function hi(.) expresses the cost of a measure. It should
be noted that when a measure is not adopted by the security administrators, then its
cost and rewards are zero.

The DDoS defense measures can be used alone or in combination, which depends
on the concrete attack and defense scene, the security budget and benefit of every
measure. So security administrators should compute the utility of every possible
measure permutation and choose the one that can maximize the defender’s expected
utility. Before given the calculation method, we should review the definition of DDoS
defense strategies in this paper. Given the defender’s type (represented by its
information security investment budget), a defense strategy is a possible measure or
measures combination with which the cost of these measures is within the budget.

 Optimal Defense Strategies for DDoS Defender Using Bayesian Game Model 51

1

1

max (() - ())

. . ()

 ()

 0

n

d i i i i
i

n

i i
i

i i i

i

U f s h s

s t h s B

h s B

B

=

=

 =

 <=

 >=
 >=

 (3)

Nonlinear programming (NLP) is an important branch of Operations Research and
provides powerful mathematical method for optimization choice. Therefore, we can
use it to solve the optimal defense strategy selection problem. A typical NLP for
DDoS defense strategies selection is shown in formula 3. Ud is the maximum
expected utility of the combined defense strategies. B is the security budget and every
measure has a minimum investment which is denoted by Bi. Other constraints may
also exist according to the actual situation. There is not a general method suitable for
all kinds of NLP problems, so we will choose the appropriate method based the
algorithm’s performance and the application environment.

Every possible DDoS defense measure has its own cost and rewards calculation
formula. In this paper, we select three major measures: increasing network bandwidth
(I-N-B), deploying DDoS filter (D-D-F) and adopting cyber-insurance (A-C-I). The
reason we select these three defense measures is that they are typical defense
mechanisms. DDoS defense mechanisms can be divided into attack prevention and
attack reactive based on the active level [7]. Therefore, we use I-N-B as a
representative of attack prevention and select D-D-F as a typical attack reactive
measure. In order to handle the residual risk well, we employ A-C-I as an option
strategy for the DDoS defender. It should be point that the defender can use a
combination of the three defense strategies.

(1) Utility Function of Increasing Network Bandwidth
The defense measure I-N-B means that security administrators should continue to rent
much more bandwidth, in order to provide an abundance of bandwidth to defeat
DDoS threats. So its utility function Ud1 is defined as follows:

1 1 1(- -) (- -)dU f I N B h I N B= − (4)

where h1(I-N-B) is used for computing the rewards and f1(I-N-B) is the calculation
formula of the total cost.

Defense measures can reduce the potential damage of attacks, so its utility can be
computed through the damage before and after adopting this measure. Potential
damages can be calculated from economic, time and legal aspects [1, 2], so security
administrators can compute the damages of a successful DDoS attack (denoted by v0)
if he knows the attack information. Several metrics have been proposed to evaluate
the effectiveness of the DDoS defense measures, such as the percentage of attack
packages dropped [13]. As bandwidth is the critical resources, we use the bandwidth

52 Y. Liu et al.

consumed by attack flows as the evaluation metric in our paper and other metrics can
be used but the calculated methods will not be changed. So, f1(I-N-B) is computed by
the following formula:

1 0
1

(- -) * * * -
24

0

c i x

m
x x x

x c x c i
x c c i

c x

if b b b

d b b
f I N B v p if b b b b

b b b

if b b

θ

=

 + <

= ≤ ≤ + +
 >

（ ）

（ （ ）） （ ）(5)

If the sum between current network bandwidth bc and increased network bandwidth bi
is less than the network bandwidth consumed by the attack flow, the reward of
deploying I-N-B is θ where θ is a very small number. When bc is already bigger than
bx which means increased network bandwidth is useless for DDoS defense, the reward
is zero. Otherwise, we compute the reward using the formula in the middle, where the
DDoS attack number is m, the x-th attack’s duration tome is dx, the frequency of this
attack is px and the attack flow (the flow that crossed the filter if a filter is deployed)
is bx. The total cost of deploying I-N-B is computed by following formula:

1(- -) / *i u ih I N B c N c b= + (6)

where ci is cost of network rollout, cu is cost of the annual fee for renting unit
bandwidth and N is the using years.

(2) Utility Function of Deploying DDoS Filter
Similarly to the utility function of I-N-B, the utility function of D-D-F is defined as
follows.

2 2 2U = (- -) (- -)d f D D F h D D F− (7)

Deploying DDoS filter usually means buying or updating a filter. The cost of D-D-F
consists of two parts: deploying and maintaining cost cd and purchase fee cp, so its
formula is:

2 () (1) /N
d ph D D F c c I N− − = + + (8)

where rate of interest is I and the filter can be used for N years.
If the maximum throughput Maxt of this filter is lowered than the attack traffic, the

reward of D-D-F is a small value θ. Otherwise, the reward depends on the filter’s
efficiency. As the attack traffic that crossed the filter consumed the network
bandwidth, so we employ false negative rate (FNR) to depict the filter’s efficiency.

f
2
(0

1

(1)*
* (* *)

24- -

m
x x

x x t
x c i

d FNR b
v p if b Max

b bD D F

elseθ
=

− < +=

） (9)

 Optimal Defense Strategies for DDoS Defender Using Bayesian Game Model 53

(3) Utility Function of Adopting Cyber-Insurance
When adopting cyber-insurance, security administrators expend premium (the cost)
and obtain compensation (the reward) from insurance company. Therefore, when
DDoS attacks happen, the formula of A-C-I is as follows:

3 3 3 3(- -) - (- -) ()dU f A C I h A C I f e e= = − (10)

where the insurance expenses is e. As different insurance ways have different
calculation formulas. Security administrator need to calculation the utility of adopting
cyber-insurance according to the actual situation, we denote the calculation function
as f3(e) here.

5 Two Problems

In section 3, we model typical DDoS attack and defense scenarios into the BGM-
DAD and illustrate how to calculate the attacker and the defender’s utility in chapter
4. Next, we will specify two problems usually faced by security administrators when
choosing suitable defense strategies and give the problem-solving process using our
model and methods above.

Problem 1. (Investment Budget and Budget Allocation (IBBA)). If the defender
knows information about the attacker’s investment (e.g. the information of the attack
flow), security administrators should be how to choose the right budget and how to
allocate its budget in order to maximize its payoff.

Fig. 1. The network topology Fig. 2. The Bayesian game tree of IBBA problem

54 Y. Liu et al.

Problem 2. (Maximum Attack Information Estimation (MAIE)). If the defender’s
information security investment budget is known to the attacker, how to solve the
attacker’s most possible attacks.

In fact, the two problems above are two sides of a coin. The first problem assumes that
the attacker’s investment is fixed, so that the type of the attacker is known to the defender.
In contrast, the type of the defender is common information in the second problem.

First of all, problem IBBA (or MAIE) can be modeled into the BGM-DAE in
section 3 where the attacker (or the defender) only has one type and the defender (or
the attacker) has a type set, of which the elements are the possible budgets (or the
possible attack investment). Secondly, utilities of the attacker and the defender are
computed using the formulas in chapter 4. And lastly, through computing the
Bayesian Nash equilibrium of this BGM-DAE, we can get the solution of problem
IBBA (or MAIE), which is the optimal strategy of the defender (or the attacker). We
will illustrate the process in detail in the next chapter.

6 Experiment and Results

In this section, we will use an example to test and verify our model and methods. We
borrowed a network topology from [28], of which 64 comprised hosts trying to flood
a victim network with a bottleneck in bandwidth (2Mbps). The topology was
implemented in simulator NS-2 [29]. We choose ns-2 because it can simulate the
network topology and network flow well which is needed in our paper. The initial
parameters of our experiments were described in table 1. The values of the initial
parameters are adopted from a real experiment scene.

As described in section 5, security administrators usually confront two problems: IBBA
and MAIE. We will next use IBBA as an example to illustrative our model and methods.

Table 1. Initial value and meaning of parameters in our experiments

Parameters Meaning of parameters Initial Value
α Adjustment parameter of attacker’s reward 0.1
β Adjustment parameter of attacker’s cost 0.1
θ Reward of defense measures when they fail 0.01
bc Current bandwidth of the victim’s network(Mbps) 2
bi Increased bandwidth by adopting I-N-B(Mbps) 1
Bi Minimum budget of the i-th defense measure 0
va Estimated value of the victim’s value 100,000
v0 Damages of a successful DDoS attack 10,000
ci Cost of network rollout 100
cu Annual network lease cost of unit bandwidth 1,000
cd Cost of deploying the filter 100
cp Cost of purchasing the filter 10,000
I Annual interest rates 0.05

Maxt Maximum throughput of the filter(Mbps) 1,000
FNR False negative rate of the filter 0.02

N Used years of the defense measure 5

 Optimal Defense Strategies for DDoS Defender Using Bayesian Game Model 55

(1) Resolving Process of IBBA
IBBA means the attacker’s type is known to the defender. An estimate of the number
of DDoS attacks was presented using a survey data from Arbor, McAfee and
Forrester [30]. We use a similar data: there are two DDoS attacks, one happened 3.6
times and has a duration time 6 hours, the other happened 1.75 times and has a
duration time 24 hours. Both these two attacks’ traffic was 100Mbps. The results in
this paper have been rounded to integer.

In this DDoS attack and defense scenario, the type (the attack investment) of the
attacker is common information, which is equal to 0.1*100*(3.6*6+1.75*24) =636.
The actions of the attacker are Attack and Not Attack. When the attacker chooses Not
Attack, its utility is zero; otherwise its utility is 0.1*100000-636=9364. The type of
the defender is its possible investment budgets and we assume there are three possible
budgets, which are $5,000, $8,000 and $10,000. The defender should schedule its
information security investment budgets based on its type in order to maximize its
expected utility. When investment budget is $5,000, an NLP problem is showed in
NLP1. Here we assume that f3(e)=3e. Through resolving NLP1, we get its optimal
solution, which is also the defender’s maximum utility (22721). The optimal defense
measures (determined by the investment of every defense measures) that the defender
should be taken are: increasing network bandwidth with 2Mbps, deploying the DDoS
filter and adopting cyber-insurance with premium $407. Similarly, the maximum
utilities of the defender are 31554(investment budget is $8,000) and 35554
(investment budget is $10,000) respectively. When the attacker does not carry out
DDoS attacks, the utility of the attacker is zero and the payoff of the defender is its
information security investment budget. Using the results above, we can form the
following game tree using Gambit [31]. We assume the prior probability of the
attacker is Pa= {1/3, 1/3, 1/3}.

 (NLP1)

Through computing the Bayesian Nash equilibrium of the Bayesian game tree in
Figure 2 using the definition 3, a strategy pair (Attack, (Not Defend with $5,000, Not
Defend with $8,000, Defend with $10,000), (1/3, 1/3, 1/3)) was found. This Nash
equilibrium means: when the attacker chooses attack and the defender chooses defend
with the security budget $10,000, both the attacker and the defender gain their
maximum utilities. Therefore, security administrators should choose defeat DDoS
attacks with a budget $10000 and deploying defense measures(denoted by P($10000)
in the Bayesian game tree) are the optimal measures (determined by the investment of
every defense measures: increasing network Bandwidth with $4020, deploying DDoS
filter with $2573 and adopting cyber-insurance with premium $3407) when the
information security investment budget is $10,000: increasing network Bandwidth
(4Mbps), deploying the DDoS filter and adopting cyber-insurance (premium $3407).
So the model and methods in our paper can guide security administrators to select and
deploy optimal strategies.

56 Y. Liu et al.

(2) The Effect of A-C-I
Cyber-insurance provides an effective way to transfer the residual risk to third-party.
We next show its effect using an example.

We assume the DDoS attack flow is 1.2Gbps and the information security
investment budget is $10,000. When security administrators did not employ A-C-I, its
optimal strategies are: increasing network Bandwidth (I-N-B) with $7020, deploying
DDoS filter (D-D-F) with $2573. As the maximum throughput of the filter is
1,000Mbps and the current network bandwidth is 9Mbps (the sum of current
bandwidth(2Mbps) and increased bandwidth(7Mbps)), the utility of the defender
is 2*θ=0.02. However, when cyber-insurance is used as a measure option, the
optimal defense measures are showed above. The utility of the defender is
2*θ+3407*3-3407=6814.02, which is much more bigger than 2*θ. So cyber-
insurance is an effective defense strategy for risk-averse, especially when attacks
do not occur as predicted.

(3) Resolving Process of MAIE
MAIE means the defender’s type is known to the attacker and its optimal defense
measures are common information. We still assume the defender’s budget is $10,000,
so its utility is 35554 and its optimal measures are not changed. The type of the
attacker is its possible attack investments which are related to the attack traffics and
the duration time. We assume there are four possible attacks, of which the attack
traffics are 100Mbps, 400Mbps, 700Mbps and 1Gbps. The duration time of these
attacks are the same, which is 24 hours. The utilities of these attacks can be computed
using formula 1 and the results are 9760, 9040, 8320, and 7600.

When the attack traffic is 100Mbps, the utility of the defender is 13554, which is
computed by the following formula:

10000*1*(24/24)*(100*0.02/2-100*0.02/ (2+4))+10000*1*(24/24)*(1-100*0.02/(2+
4))+3*3407-10000

When the attack traffic is 400Mbps and 700Mbps, the utilities are equal to 6888.01.
This is because the traffics crossed the DDoS filter are already bigger than the
network bandwidth. When the attack traffic is 1Gbps, both I-N-B and D-D-F have
failed, so the utility of the defender changes to 221.02. We assume the prior
probability of the defender is Pd= {1/4, 1/4, 1/4, 1/4} and get a Bayesian Nash
equilibrium ((Not Attack with 100Mbps, Attack with 400Mbps, Not Attack with
700Mbps, Not Attack with 1Gbps), Defend with $10,000, (1/4, 1/4, 1/4, 1/4)). The
Nash equilibrium means: the attacker chooses attack with 400Mbps and the defender
chooses defend. This is because the target network’s bottleneck is its bandwidth.
Actually, when the attack traffic is equal to 300Mbps, the defense measure I-N-B has
failed. As a result, if security administrators decide to increase its investment budgets,
they should invest to increase the network bandwidth. Through resolve the problem
MAIE, security administrators can get the most possible attacks (attacks with flow
400Mbps in this example) and find the way how to schedule his increased investment
budgets.

Through the above experiments, we verified the effectiveness of model and
methods in this paper and illustrated how the Bayesian Nash equilibrium can guide
security administrators choose and deploy defense strategies.

 Optimal Defense Strategies for DDoS Defender Using Bayesian Game Model 57

7 Conclusion and Future Work

We formalize a Bayesian game model for DDoS attack and defense to help security
administrators to choose the suitable defense measures. In the BGM-DAE, the
attacker’s private information is its investment and the security investment budget is
the defender’s type. Then two problems that security administrators usually faced
when choose defense strategies are described, which can be model into our Bayesian
game. Through compute the Nash equilibrium of the Bayesian game, security
administrators can choose the optimal defense measures. Using a typical DDoS attack
and defense scenario, our model and methods are verified.

The utility of attacker and defender depends on many factor, we will introduce
much more influence factors, such as reputation and law penalty. In the practical
environment, there may be more than one attack flow simultaneously and the attack
flow can be changed over time, so we should extend our game model to include these
scenarios. We will also carry out much more studies to improve the efficiency of our
method.

Acknowledgement. This work was supported by the National Science-technology
Support Plan of China (Grant No.2012BAK26B01), the National High-Tech Research
and Development Plan of China (Grant No. SQ2013GX02D01211, 2011AA01A203),
the National Natural Science Foundation of China (Grant No.61100226, 60970028),
the Beijing Natural Science Foundation of China (Grant No.4122085).

References

1. Dewri, R., Poolsappasit, N., Ray, I., Whitley, D.: Optimal Security Hardening Using
Multi-objective Optimization on Attack Tree Models of Networks. In: Proceedings of the
14th ACM Conference on Computer and Communications Security (CCS), pp. 204–213
(2007)

2. Butler, S.: Security Attribute Evaluation Method: A Cost-Benefit Approach. In: Proceedings
of ICSE 2002 International Conference on Software Engineering, pp. 232–240 (2002)

3. Arora, K., Kumar, K., Sachdeva, M.: Impact Analysis of Recent DDoS Attacks.
International Journal on Computer Science and Engineering (IJCSE) 3(2), 877–884 (2011)

4. Feinstein, L., Schnackenberg, D., Balupari, R., Kindred, D.: Statistical Approaches to
DDoS Attack Detection and Response. In: Proceedings of the DARPA Information
Survivability Conference and Exposition (2003)

5. Li, Q., Chang, E., Chan, M.: On the Effectiveness of DDoS Attacks on Statistical Filtering.
In: Proceedings of INFOCOM 2005, pp. 1373–1383 (2005)

6. Kuznetsov, V., Sandström, H., Simkin, A.: An evaluation of Different IP Traceback
Approaches. In: Deng, R., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513,
pp. 37–48. Springer, Heidelberg (2002)

7. Mirkovic, J., Reiher, P.: A Taxonomy of DDoS Attack and DDoS Defense Mechanisms.
ACM SIGCOMM Computer Communications Review 34(2), 39–54 (2004)

8. Douligeris, C., Mitrokotsa, A.: DDoS Attacks and Defense Mechanisms: Classification
and State–of–the–Art. Computer Networks 44, 643–666 (2004)

58 Y. Liu et al.

9. Böhme, R.: Security Metrics and Security Investment Models. In: Echizen, I., Kunihiro,
N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 10–24. Springer, Heidelberg
(2010)

10. Böhme, R., Schwartz, G.: Modeling Cyber-Insurance: Towards A Unifying Framework.
In: Workshop on the Economics of Information Security (WEIS). Harvard University,
Cambridge (2010)

11. Lelarge, M., Bolot, J.: Economic Incentives to Increase Security in the Internet: The Case
for Insurance. In: IEEE INFOCOM 2009, pp. 1494–1502 (2009)

12. Mao, Z., Sekar, V., Spatscheck, O., et al.: Analyzing Large DDoS Attacks Using Multiple
Data Sources. In: Proceedings of the 2006 SIGCOMM Workshop on Large-Scale Attack
Defense (LSAD), pp. 161–168 (2006)

13. Mirkovic, J., Arikan, E., Wei, S., Thomas, R., Fahmy, S., Reiher, P.: Benchmarks for
DDoS defense evaluation. In: Military Communications Conference (2006)

14. Mahimkar, A., Shmatikov, V.: Game-based Analysis of Denial-of-Service Prevention
Protocols. In: 18th IEEE Computer Security Foundations Workshop (CSFW), Aix-en-
Provence, France, pp. 287–301. IEEE Computer Society, Los Alamitos (2005)

15. Ramachandran, V.: Analyzing DoS-Resistance of Protocols Using a Cost-Based
Framework. Technical report, DCS/TR-1239, Yale University (2002)

16. Li, Z., Liao, Q., Striegel, A.: Botnet Economics: Uncertainty Matters. In: Johnson, M.E.
(ed.) Managing Information Risk and the Economics of Security, pp. 245–267. Springer,
New York (2008)

17. Kantarcioglu, M., Bensoussan, A., Hoe, S(C.): Investment in Privacy-Preserving
Technologies under Uncertainty. In: Baras, J.S., Katz, J., Altman, E. (eds.) GameSec 2011.
LNCS, vol. 7037, pp. 219–238. Springer, Heidelberg (2011)

18. Böhme, R., Félegyházi, M.: Optimal Information Security Investment with Penetration
Testing. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442,
pp. 21–37. Springer, Heidelberg (2010)

19. Elahi, G., Yu, E.: Modeling and Analysis of Security Trade-Offs - A Goal Oriented
Approach. Data and Knowledge Engineering 68(7), 579–598 (2009); Special Issue: Parent,
C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.): ER 2007. LNCS, vol. 4801.
Springer, Heidelberg (2007)

20. Böhme, R., Kataria, G.: Models and Measures for Correlation in Cyber-Insurance. In:
Proceedings of the Fifth Annual Workshop on Economics and Information Security (WEIS
2006), Cambridge, UK (2006)

21. Johnson, B., Böhme, R., Grossklags, J.: Security Games with Market Insurance. In: Baras,
J.S., Katz, J., Altman, E. (eds.) GameSec 2011. LNCS, vol. 7037, pp. 117–130. Springer,
Heidelberg (2011)

22. Liu, Y., Comaniciu, C., Man, H.: A Bayesian Game Approach for Intrusion Detection in
Wireless AD Hoc Networks. In: International Workshop on Game Theory for
Communications and Networks (GameNets), pp. 3–14 (2006)

23. Huang, Y., Xianjun, G., Whinston, A.: Defeating DDoS Attacks by Fixing the Incentive
Chain. ACM Transactions on Internet Technology 7(1), 1–5 (2007)

24. Wang, Y.Z., Lin, C., Wang, Y., Meng, K.: Security analysis of enterprise network based
on Stochastic game nets model. In: ICC 2009 Communication and Information Systems
Security Symposium (2009)

25. Lin, J., Liu, P., Jing, J.: Using Signaling Games to Model the Multi-step Attack-defense
Scenarios on Confidentiality. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS,
vol. 7638, pp. 118–137. Springer, Heidelberg (2012)

 Optimal Defense Strategies for DDoS Defender Using Bayesian Game Model 59

26. Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V., Wu, Q.: A Survey of Game
Theory as Applied to Network Security. In: 43rd Hawaii International Conference on
System Sciences (HICSS), pp. 1–10 (2010)

27. Segura, V., Lahuerta, J.: Modeling the Economic Incentives of DDoS Attacks: Femtocell
Case Study. In: Moore, T., et al. (eds.) Economic of Information Security and Privacy
2010, pp. 107–119. Springer Science + Business Media, LLC (2010)

28. Liu, P., Zang, W.: Incentive-based Modeling and Inference of Attacker Intent, Objectives,
and Strategies. In: Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS 2003), pp. 179–189. ACM, New York (2003)

29. Network Simulator, ns-2,
http://nsnam.isi.edu/nsnam/index.php/Main_Page

30. Arbor Networks: The business Value of DDoS Protection. White Paper (2011)
31. McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: Software Tools for Game

Theory, Version 0.2010.09.01 (2010), http://www.gambit-project.org

Attribute Specified Identity-Based Encryption

Hao Xiong1, Tsz Hon Yuen1, Cong Zhang1�, Yi-Jun He2,��, and
Siu Ming Yiu1

1 Department of Computer Science, The University of Hong Kong, Hong Kong
{hxiong,thyuen,czhang2,smyiu}@cs.hku.hk
2 Hong Kong R&D Centre for Logistics and

Supply Chain Management Enabling Technologies, Hong Kong
ahe@lscm.hk

Abstract. Fine-grained access control of encrypted data without trusted
third party is a challenging task. Using the simple attribute-based encryp-
tion has the problem of key escrow, since there exists a trusted authority
who is able to generate the secret keys of all users. Delegating this ability
to multiple authorities can only minimize the risk, but not eliminating the
possibility that all authorities may collude. We develop a new cryptosys-
tem calledAttribute Specified Identity-Based Encryption (AS-IBE) to solve
this problem.We employ the idea of certificateless encryption and extend it
to the attribute-based setting. Each user chooses his own public and secret
key pairs to use, in addition to his attribute-based secret key. Therefore,
the authority cannot decrypt without the knowledge the user’s own secret
key. Yet, the resulting AS-IBE system has some fundamental differences
with the original attribute-based encryption. In this paper, we give the se-
curity model for the new AS-IBE cryptosystems, and propose two variants
for the construction, namely the key policy AS-IBE and ciphertext policy
AS-IBE.

Keywords: identity-based encryption, attributes, certificateless public
key encryption, key escrow.

1 Introduction

Identity-based cryptography was proposed by Shamir [12] in 1984. The public
key is the identity of the user, such as his name, job title or email address. The
advantage of identity-based cryptography is that the identity of the user is easily
recognised by his public key, and hence it avoids the use of digital certificate to
validate the public key in traditional public key cryptography. However, there
are still some shortcomings for identity-based cryptography. Firstly, the identity-
based secret key for every identity must be generated by a trusted third party
called the Private Key Generator (PKG) using its own master secret key. There-
fore the PKG can decrypt ciphertexts for all users in the system. This is known

� Supported by the National Natural Science Foundation of China under Grant No.
60970135 and 61170282.

�� Corresponding author.

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 60–74, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Attribute Specified Identity-Based Encryption 61

as the key escrow problem. Secondly, simply using the identity for encryption
may not be sufficient for fine-grained access control. One may wants to encrypt
a message to someone who satisfy a number of criteria at the same time.

There are some researches that works on the aforementioned problems. For
the key escrow problem, the first practical identity-based encryption (IBE) [3]
suggested to use multiple PKGs at the same time, such that the master secret
key is distributed among multiple PKGs by a secret sharing scheme. Unless all
PKGs collude, the users are protected from the key escrow problem. However,
this does not provide complete protection against colluding PKGs. In addition,
it requires an extra infrastructure and communication cost between users and
different PKGs. Another line of research is to detect malicious PKGs. A malicious
PKG can be caught if it sells the identity-based secret key of a victim [6], a
blackbox which can decrypt arbitrary ciphertexts encrypted to the victim [7], or
a signature signed on behalf of the victim [14]. However, there is no method to
prevent or even detect if the PKG simply decrypts a ciphertext for the victim
and reveals the plaintext.

For the problem of fine-grained access control, attributed-based encryption
(ABE) [11] was proposed to allow messages to be encrypted by some policy or
attributes, such that any user holding satisfying secret key can decrypt. For key
policy ABE [8], ciphertexts are labeled with sets of attributes and secret keys are
associated with access structures (i.e. policy) that control which ciphertexts a
user is able to decrypt. For ciphertext policy ABE [2], an access structure would
be associated to each ciphertext, while a user’s secret key would be associated
with a set of attributes. We demonstrate the power of ABE by the following
example. Suppose Alice wants to encrypt a message to “Manager of Depart-
ment A” or anyone in “Department B”. Using ciphertext policy ABE, Alice can
encrypt using the policy “(Manager AND Dept A) OR Dept B”. Then Bob,
having the attributes “Manager” and “Dept A” in his secret key, can decrypt
the ciphertext. On the other hand, a manager in Department C and a secretary
in Department A cannot collude to decrypt the ciphertext.

Similar to IBE, ABE also suffers from the key escrow problem, since the PKG
is responsible to generate the secret keys for all users. The multi-authority solu-
tion is also extended to the ABE setting. Chase [4] proposed the use of multiple
attribute authorities (AA) for managing each user’s attributes. [4] assumed the
presence of a single trusted central authority (CA) in addition to the AAs. This
CA did not manage any attributes, but was responsible for issuing each user a
unique key. Therefore, the key escrow problem does not apply to the AAs. Liu
et al. [10] extended the multi-authority setting to the CAs. Chase and Chow [5]
demonstrated how to remove the CA using a distributed pseudorandom function.
Lewko and Waters [9] showed that any party can become an authority and there
is no requirement for any global coordination other than the creation of an initial
set of common reference parameters. In the security models of these schemes, it
still requires the assumption that some authorities remain uncorrupted.

Our Contribution. In this paper, we avoid the key escrow problem and retain
the benefit of attribute-based encryption at the same time. The motivation of our

62 X. Hao et al.

scheme can be illustrated by the following example. We consider the applications
that absolute secrecy is required and the sender wants to encrypt the message
according to some policy (or attributes). For example, Carol wants to send a
letter of complaint for a staff in the IT department of the company. Carol wants
the letter to be read by “(Senior Manager AND HR Department) OR Company
Director”. Since the secret keys for all staff in the company may be distributed by
the IT department, Carol does not want to simply use ABE with respect to the
aforementioned policy. Eventually Carol is given a public key by someone from
the company who claimed to satisfy the above policy. Now Carol faces a dilemma,
either encrypts the message by ABE which faces the key escrow problem, or
encrypts the message by certificateless encryption which the ciphertext may be
decrypted by someone who actually does not satisfy the policy.

We propose the notion of attribute specified identity-based encryption (AS-
IBE) as the solution to this problem. Only the person who has the secret key
corresponding to both the public key and the attributes can decrypt the cipher-
text. This feature cannot be achieved by either the certificateless encryption or
ABE.

The proposed AS-IBE notion is similar to the certificateless encryption [1],
except that we extend the identity-based construction to the more expressive
attributes and policy. Therefore, AS-IBE provides a more fine-grained access
control. In addition, the sender does not need to know the exact attributes held
by the secret key owner; he only requires that his policy is satisfied by the secret
key owner. The attribute specified identify-based encryption will also provide
some benefits to the receiver. Certificateless encryption requires the identity to
be tightly coupled with the public key. AS-IBE, on the other hand, is more
flexible when there is multiple attributes (or identities) for an user. Using the
aforementioned example of Bob, he needs to generate three different identity-
based secret keys for “Manager”, “Dept A” and “Manager AND Dept A” when
using certificateless encryption, since Bob is not sure which identity the sender
will use to encrypt a message in the future.

In this paper, we first define the notion of attribute specified identity-based
encryption and the security model for it. Our notion is defined upon the cipher-
text policy version, such that an access structure is associated to each ciphertext,
while the secret key is associated with a set of attributes. We then give a con-
struction of ciphertext policy AS-IBE. After that, we extend our definition to
key policy and gives a construction of key policy AS-IBE.

Although our scheme is attribute specific, our AS-IBE has some fundamental
differences with ABE, apart from the key escrow problem. We can view ABE
as a one-to-many encryption scheme, since one sender can encrypt a message
according to a policy (or a set of attributes) and multiple users with satisfying
secret keys can decrypt. On the other hand, our AS-IBE is a one-to-one encryp-
tion scheme, since the sender also requires a specific public key to encrypt a
message. Only the user with the secret key corresponding to the public key and
a set of satisfying attributes (or a satisfying policy) can decrypt. We leave the
one-to-many version of AS-IBE as an interesting open problem.

Attribute Specified Identity-Based Encryption 63

2 Backgrounds

2.1 Notation of Bilinear Groups

Let G and GT are cyclic groups of prime order p, and e : G × G → GT is a
bilinear map such that for all g ∈ G, a, b ∈ Zp, we have e(ga, gb) = e(g, g)ab.
We require that the group operations in G and GT , and the bilinear map e are
computable in polynomial time.

Decisional q-parallel Bilinear Diffie-Hellman Exponent (BDHE) Assumption [13].

Given the following groupG elements: g, gs, ga, . . . , ga
q

, ga
q+2

, . . . , ga
2q

, {gasbk/bj ,
. . . , ga

qsbk/bj}j,k∈[1,q],j �=q, {gsbj , ga/bj . . . , ga
q/bj , ga

q+2/bj , . . . , ga
2q/bj}j∈[1,q] and

T ∈ GT , for some unknown a, s, b1, . . . bq ∈ Zp, no polynomial time adversary

can decide if T = e(g, g)a
q+1s or T

R← GT .

Decisional Bilinear Diffie-Hellman (BDH) Assumption. Given g, ga, gb, gc ∈ G for
some unknown a, b, c ∈ Zp, no polynomial time adversary can decide if T =

e(g, g)abc or T
R← GT .

2.2 Access Structure

We review some definitions related to access structures from [13].

Definition 1. (Access Structure) Let {P1, P2, ..., Pn} be a set of parties. A
collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B, C: if B ∈ A and B ⊆ C then C
∈ A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of {P1, P2, ..., Pn},
i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A are called the authorized sets, and
the sets not in A are called the unauthorized sets.

In our context, the role of the parties is taken by the attributes. Thus, the
access structure A will contain the authorized sets of attributes. We restrict
our attention to monotone access structures. General access structures can be
realized from them [13].

2.3 Linear Secret Sharing Schemes

We will make essential use of linear secret-sharing schemes on our first construc-
tion, ciphertext-policy AS-IBE. We adapt the definitions in [13]:

Definition 2. (Linear Secret-Sharing Schemes (LSSS)) A secret-sharing
scheme Π over a set of P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix an M with � rows and n columns called the share-

generating matrix for Π. For all i = 1, ..., �, the i’th row of M we let the
function ρ defined the party labeling row i as ρ(i). When we consider the
column vector v = (s, r2,...,rn), where s ∈ Zp is the secret to be shared, and
r2,...,rn ∈ Zp are randomly chosen, then Mv is the vector of � shares of the
secret s according to Π. The share (Mv)i belongs to party ρ(i).

64 X. Hao et al.

Every LSSS scheme Π for the access structure A enjoys the linear reconstruction
property, defined as follows: Let S ∈ A be any authorized set, and let I := {i :
ρ(i) ∈ S} ⊂ {1, 2, ..., �}. Then, there exist constants {wi ∈ Zp}i∈I such that,
if {λi} are valid shares of any secret s according to Π , then

∑
i∈I wiλi = s.

Furthermore, these constants {wi} can be found in time polynomial in |M |. We
define the Lagrange coefficient Δi,S(x) =

∏
j∈S,j �=i

x−j
i−j for i ∈ Zp, S ⊂ Zp.

Note on Convention. We use the convention that the vector (1, 0, 0, . . . , 0)
is the “target” vector for any LSSS. For any satisfying set of rows I in M , the
target vector is in the span of I. For any unauthorized set of rows I, the target
vector is not in the span of the rows of the set I. Moreover, there will exist a
vector w such that w · (1, 0, 0, . . . , 0) = −1 and w ·Mi = 0 for all i ∈ I.

2.4 Access Trees

Prior works on ABE (e.g., [8]) typically described access formulas in terms of
binary trees. We will also use access tree for our second construction, key-policy
AS-IBE. We review the definition of access tree from [8]. Let T be a tree repre-
senting an access structure. Each non-leaf node of the tree represents a threshold
gate, described by its children and a threshold value. If numx is the number of
children of a node x and kx is its threshold value, then 0 < kx ≤ numx. When
kx = 1, the threshold gate is an OR gate and when kx = numx, it is an AND
gate. Each leaf node x of the tree is described by an attribute and a threshold
value kx = 1. To facilitate working with the access trees, we define a few func-
tions. We denote the parent of the node x in the tree by parent(x). The function
att(x) is defined only if x is a leaf node and denotes the attribute associated with
the leaf node x in the tree. The access tree T also defines an ordering between
the children of every node, that is, the children of a node are numbered from 1
to num. The function index(x) returns such a number associated with the node
x. Where the index values are uniquely assigned to nodes in the access structure
for a given key in an arbitrary manner.

Satisfying an Access Tree. Let T be an access tree with root r. Denote by
Tx the subtree of T rooted at the node x. Hence T is the same as Tr. If a
set of attributes γ satisfies the access tree Tx, we denote it as Tx(γ) = 1. We
compute Tx(γ) recursively as follows. If x is a non-leaf node, evaluate Tx′(γ) for
all children x′ of node x. Tx(γ) returns 1 if and only if at least kx children return
1. If x is a leaf node, then Tx(γ) returns 1 if and only if att(x) ∈ γ.

Conversion. Using standard techniques one can convert any monotonic boolean
formula into an LSSS representation. An access tree of � nodes will result in an
LSSS matrix of � rows. This conversion is in the appendix of [9].

3 Security Model

An attribute specific attribute-based encryption (AS-IBE) scheme consists of
the algorithms: Setup, Extract-Partial-Private-Key, Set-Secret-Value,
Set-Private-Key, Set-Public-Key, Encrypt and Decrypt.

Attribute Specified Identity-Based Encryption 65

– Setup(1λ, U). It takes as input a security parameter 1λ and an attribute
universe description U . It outputs the public parameters mpk and a master
key msk.

– Extract-Partial-Private-Key(msk, S). It takes as input msk and a set of
attributes S that describe the key. It outputs a private key dS .

– Set-Secret-Value(mpk, S): It takes as input mpk and a set of attributes S.
It outputs a secret value wS .

– Set-Private-Key(mpk, dS , wS): It takes as input mpk, dS , wS and outputs
a full private key skS .

– Set-Public-Key(mpk, wS): It takes as input mpk, wS , and outputs his public
key pkS .

– Encrypt(mpk,M,A, pkS). It takes as input mpk, a message M, an access
structure A over the universe of attributes and a public key pkS . It encrypts
M and produces a ciphertext CT for a user pkS such that only a user that
possesses a set of attributes S satisfying the access structure will be able to
decrypt the message. Assume that the ciphertext implicitly contains A.

– Decrypt(mpk, CT, skS). It takes as input mpk, a ciphertext CT , which con-
tains an access structure A, and a private key skS for a set S of attributes.
If S satisfies A then it decrypts the ciphertext and return a messageM.

3.1 Chosen Plaintext Security for AS-IBE

We now define the security model for the AS-IBE scheme. It is a modified version
of the usual IND-CPA security for certificateless encryption.

We first define a list of oracles that the attacker can query. With a Create
query, the attacker asks the challenger C to create a public key, a partial private
key and a full private key for a set of attributes S. The attacker receives a unique
handle-reference to the generated keys, so that the attacker can refer to it later.
The challenger keeps a counter for the handle H and a set Υ that holds tuples of
handles, attributes, public keys, partial private keys and full private keys. The
oracles are described as follows:

Create: On input S, C runs dS ← Extract-Partial-Private-Key (msk, S),
wS ← Set-Secret-Value(mpk, S), skS ← Set-Private-Key(mpk, dS , wS)
and pkS ← Set-Public-Key(mpk, wS). It adds (H + 1, S, pkS , wS , dS , skS)
to the set Υ and returns H + 1. It updates the handle counter H ← H + 1.

Extract Partial Private Key: On input a handle h, C scans Υ to find the
requested entry and returns the corresponding partial private key dID.

Extract Private Key: On input a handle h, C scans Υ to find the requested
entry and returns the corresponding full private key skS . It is unreasonable
to expect the C to return the private key if the corresponding pkS is replaced.

Request Public Key: On input a handle h, C scans Υ to find the requested
entry and returns the corresponding public key pkS .

Replace Public Key: A can repeatedly replace the public key for any set of
attributes S with any value pk′ of its choice. C scans Υ to find the entry for
(h, S, pkS , wS , dS , skS) and replaces it with (h, S, pk′, wS , dS ,⊥).

66 X. Hao et al.

Denote the challenge public key as pk∗ and the corresponding entry in Υ as
(h, S∗, pk∗, w∗

S , d
∗
S , sk

∗
S). Note that (h, pk∗) cannot be the input to the Replace

Public Key oracle by A before the challenge phase and extract the partial key
for the set of attributes S which satisfies the challenge access structure A∗ in
some phase: this would enable A to receive a challenge ciphertext under a public
key for which it would compute the private key.

We will specify two types of adversary as follows:

Type I Adversary: Such an adversary AI does not have access to the master
secret key. However AI may create handles, request public keys and replace
public keys, extract partial private key and private keys. We make several
restrictions on such a AI adversary:
– AI cannot extract the private key for S∗ at any point.
– AI cannot both replace the public key pk∗ for S∗ before the challenge

phase and extract the partial private key for the set of attributes S which
satisfies A∗ in some phase.

Type II Adversary: Such an adversary AII does have access to master key,
but cannot replace any public keys of entities. AII can compute partial
private keys for itself by using master key. It can create handles and extract
full private keys. The restrictions on this type of adversary are:
– AII cannot extract the private key for S∗ at any point.
– AII cannot replace public key at any point.

We say that a AS-IBE scheme is semantically secure against an adaptive chosen
plaintext attack if no polynomially bounded adversary A of Type I or Type II
has a non-negligible advantage in the following game:

– Setup: The challenger C takes the security parameters 1λ and runs Setup(1λ).
It givesA themaster public keympk. IfA is of Type I, then the challenger keeps
the msk to itself. IfA is of Type II, C givesmsk to A.

– Phase 1: A issues a sequence of requests which can be adaptive subject to
the restrictions defined above.

– Challenge Phase: Once A decides that Phase 1 is over, it outputs two
challenge messagesM∗

0,M∗
1, the challenge public key pk∗, and the challenge

access structure A∗. C then picks a random bit b ∈ {0, 1} and computes
C∗ ← Encrypt(mpk,M∗

b ,A
∗, pk∗). It returns C∗ to A.

– Phase 2:A issues a second sequence of request as in Phase 1, against subject
to the rules on defined above. Furthermore, no leak query is allowed.

– Guess: Finally, A outputs a guess b′ ∈ {0, 1}.
The adversary wins the game if b = b′. We define the advantage of A in this
game as AdvA(1

λ) = |Pr[b = b′] − 1
2 |, where the probability is over all random

bits used by the challenger and the adversary.

Definition 3. An AS-IBE is Type I IND-CPA secure if for all PPT Type I
adversaries AI , it is true that AdvAI (1

λ) ≤ negl(λ).
An AS-IBE is Type II IND-CPA secure if for all PPT Type II adversaries

AII , it is true that AdvAII (1
λ) ≤ negl(λ).

We say that a system is selectively secure if we add an Init phase before Setup
where the adversary commits to the challenge access structure A∗.

Attribute Specified Identity-Based Encryption 67

3.2 Extension to Key Policy

The above definition uses the ciphertext policy version of AS-IBE. We can simi-
larly define the key policy version for AS-IBE, simply by interchanging the posi-
tion of attributes and access structures in the previous section. That is, each key
is now associated with an access structure, and each ciphertext is now encrypted
by a set of attributes.

For the chosen plaintext security game, the adversary A will output a set
of challenge attributes S∗ (instead of the challenge access structure). A cannot
extract the private key for any access structure A such that S∗ satisfies A. All
other restrictions to A are changed similarly. The selective security is defined as
A commits to the set of challenge attributes S∗ before the Setup phase.

4 Our Ciphertext Policy AS-IBE Construction

We now give our main construction that is efficient , realizes expressive func-
tionality and is provably secure under a concrete, non-interactive assumption.
Our construction is based on the ciphertext policy ABE in [13].

In our construction the encryption algorithm will take as input a LSSS access
matrix M , a function ρ (as defined as §2.3) and distribute a random exponent
s ∈ Zp according to (M,ρ). Private keys are randomized to avoid collusion
attack. Our construction is as follows.

Setup(1λ, U). It takes as input the number of attributes in the system. It then
chooses a bilinear group G of prime order p, a generator g and U random group
elements h1, ..., hU ∈ G that are associated with the U attributes in the system.
In addition, it chooses random exponents α, a ∈ Zp.

The authority sets msk = gα as the master secret key. The public key is
published as mpk = (g, e(g, g)α, ga, h1, ..., hU).

Extract-Partial-Private-Key(msk, S). It takes as input the master secret key
and a set S of attributes. The algorithm first chooses a random t ∈ Zp. It creates
the partial private key dS as

K = gαgat, L′ = gt, ∀x ∈ S Kx = ht
x.

Set-Secret-Value(mpk, S). It takes as input mpk and a set of attributes S. It
randomly choose a number b ∈ Zp and sets the a secret value wS = b.

Set-Private-Key(mpk, dS , wS): It takes as input mpk, dS , wS and outputs a full
private key

skS = (K = gαgat, L = L′b = gbt, Kx = ht
x ∀x ∈ S).

Set-Public-Key(mpk, wS). It takes as input mpk, wS , and outputs his public
key pkS = (e(g, g)αb, gb).

Encrypt(mpk,M, (M,ρ), pkS). It takes as input mpk, a message M, an LSSS
access structure (M,ρ) and the user’s public key pkS . Let M be an �×n matrix.

68 X. Hao et al.

and the function ρ associates rows ofM to attributes. The algorithm first chooses
a random vector v = (s, y2, ..., yn) ∈ Zn

p . These values will be used to share the
encryption exponent s. For i = 1 to �, it calculates λi = v ·Mi, where Mi is the
vector corresponding to the ith row of M . In addition, the algorithm chooses
random r1, ..., r� ∈ Zp. The ciphertext is CT =

(C1 = gaλ1h−r1
ρ(1), D1 = gbr1), . . . , (C� = gaλ�h−rn

ρ(�) , D� = gbr�),

C =M· e(g, g)αbs, C′ = gs,

along with a description of (M,ρ).

Decrypt(mpk, CT, skS). It takes as input a ciphertext CT for access structure
(M,ρ) and a private key for a set S. Suppose that S satisfies (M,ρ) and let I :=
{i : ρ(i) ∈ S} ⊂ {1, 2, ..., �}. Then, let {wi ∈ Zp}i∈I be a set of constants such
that if {λi} are valid shares of any secret s according to M , then

∑
i∈Iwiλi = s.

(Note there could potentially be different ways of choosing the wi values.)
The decryption algorithm first computes

e(C′,K)
/∏

i∈I
(e(Ci, L)e(Di,Kρ(i)))

wi)

=e(g, g)
αbs

e(g, g)
abst

/∏
i∈I

e(g, g)
tabλiwi = e(g, g)αbs.

It can then divide out this value from C and obtain the messageM.

Theorem 1. Suppose the decisional q-parallel BDHE assumption holds. Then
our ciphertext-policy AS-IBE is selectively secure against IND-CPA Type I ad-
versary with a challenge matrix of size �∗ × n∗, where �∗, n∗ ≤ q.

Proof. Suppose we have an adversary A with non-negligible advantage ε in the
selective security game against our construction. Moreover, suppose it chooses
a challenge matrix M∗ where both dimensions are at most q. There are two
possible ways for A to win:

1. Win by the public key pk∗ replaced by A. Therefore A is not allowed to ask
for the partial private key for the set of attributes S which satisfies A∗.

2. Win by the public key pk∗ which was not replaced by A.

We show how to build a simulator, B, to handle both cases. We first show the
simulation for the first case.

Init. The simulator B takes in a decisional q-parallel BDHE problem instance.
The adversary A gives the challenge access structure (M∗, ρ∗), where M∗ is a
�∗ × n∗ matrix. Denote M∗

i as the ith row of M∗.

Setup. B chooses random α′ ∈R Zp and implicitly sets α = α′ + aq+1 by letting

e(g, g)α = e(ga, ga
q

)e(g, g)α
′
. For each x ∈ [1, U], choose a random value zx. Let

X denote the set of indices i, such that ρ∗(i) = x. B programs hx as:

hx = gzx
∏
i∈X

gaM
∗
i,1/bi · ga2M∗

i,2/bi · · · ga
n∗

M∗
i,n∗/bi .

Attribute Specified Identity-Based Encryption 69

Note that if X = ∅, then we have hx = gzx . Also note that the parameters are
distributed randomly due to the gzx value.

Phase 1. Consider the Create query. The simulator B runs Set-Secret-Value,
Set-Private-Key and Set-Public-Key honestly according to the algorithm. B
does not need to calculate the partial private key for the set of attributes S
which satisfies A∗. It leaves a ⊥ symbol in the corresponding entry in Υ .

The simulator B only needs to calculate the partial private key for the set of
attributes S which does not satisfy A∗. B first chooses a random r ∈ Zp. Then
it finds a vector w = (w1, . . . , wn∗) ∈ Zn∗

p such that w1 = −1 and for all i where
ρ∗(i) ∈ S we have that M∗

i ·w = 0. By the definition of a LSSS such a vector
must exist. The simulator begins by setting

L′ = gr
n∗∏
i=1

(ga
q+1−i

)wi , K = gα
′
gar

n∗∏
i=2

(ga
q+2−i

)wi .

It implicitly defines t = r + w1a
q + w2a

q−1 + . . . + wn∗aq−n∗+1. Now we must
calculate Kx∀x ∈ S. First, we consider x ∈ S for which there is no i such that
ρ(i) = x. For those we can simply let Kx = Lzx for some zx ∈R Zp. Let X be the
set of all i such that ρ∗(i) = x. The simulator creates Kx in this case as follows.

Kx = Lzx
∏
i∈X

n∗∏
j=1

(
g(a

j/bi)r
∏

k=1,...,n∗

k �=j

(gaq+1+j−k/bi)wk

)M∗
i,j

.

Observe that there are no terms of the form ga
q+1/bi since M∗

i ·w = 0. Therefore
the partial private key is correctly generated for S.

Challenge. The adversary gives two messagesM∗
0,M∗

1 and the challenge public
key pk∗ to B. B flips a coin β and retrieves the corresponding w∗

S from Υ .

It creates C = M∗
β · (T · e(gs, gα

′
))w

∗
S and C′ = gs. B will choose random

y′2, . . . , y
′
n∗ , r′1, . . . , r

′
�∗ ∈ Zp. For i = 1, . . . , �∗, we define Ri as the set of all k �= i

such that ρ∗(i) = ρ∗(k). In other words, the set of all other row indices that have
the same attribute as row i. B calculates

Ci = h
r′i
ρ∗(i)

(n∗∏
j=2

(ga)M
∗
i,jy

′
j

)
(gbis)−zρ∗(i) ·

(∏
k∈Ri

n∗∏
j=1

(ga
j·s·(bi/bk))M

∗
k,j

)
.

and Di = g−r′iw
∗
Sg−sbiw

∗
S Then it implicitly sets ri = −r′i − sbi and v = (s, sa+

y′2, . . . , sa
n∗−1 + y′n∗).

Phase 2. Same as phase 1.

Output. A will eventually output a guess β′ of β. B then outputs 0 to guess
that T = e(g, g)a

q+1s if β′ = β; otherwise, it outputs 1 to guess that T is a
random group element in GT . If A can win this game with advantage ε, than B
can solves the decisional q-parallel BDHE problem with probability ε.

70 X. Hao et al.

We now show the simulation for the second case, where the public key pk∗

was not replaced by A.

Init. The simulator B takes in a decisional BDH challenge (y = (g, gα, gβ, gγ), T).
The adversary A gives the challenge access structure (M∗, ρ∗), where M∗ is a
�∗ × n∗ matrix. Denote M∗

i as the ith row of M∗.

Setup. B uses gα as msk and generates mpk accordingly. B sends mpk to A.

Phase 1. Consider the Create query. On input a set of attributes S, the simulator
B randomly picks tS , rS ∈ Zp and calculates

dS = (K = gαgatS , L′ = gtS , ∀x ∈ S Kx = htS
x),

skS = (K,L = gβrStS , ∀x ∈ S Kx), pkS = (e(gα, gβ)rS , gβrS). It adds the tuple
(H +1, S, pkS ,⊥, dS, skS) to the set Υ and returns H +1. It updates the handle
counter H ← H + 1.

Challenge. The adversary gives two messagesM∗
0,M∗

1 and the challenge public
key pk∗ = (e(gα, gβ)r

∗
S , gβr

∗
S) to B. B knows r∗S since the public key was not

replaced by A. B flips a coin b. It creates C =M∗
b · T r∗S and C′ = gγ . B chooses

some random y2, . . . , yn∗ , r1, ..., r�∗ ∈ Zp. Then for i ∈ [1, �∗], calculate

Ci = (gγ)aMi,1ga
∑n∗

j=2 yjM
∗
i,jh−ri

ρ(i), Di = gβr
∗
Sri .

It implicitly defines v = (γ, y2, . . . , yn∗).

Phase 2. Same as phase 1.

Output. The adversary will eventually output a guess b′ of b. The simulator
then outputs 0 to guess that T = e(g, g)αβγ if b′ = b; otherwise, it outputs 1
to guess that T is a random group element in GT . If A can win this game with
advantage ε, than B can solves the decisional BDH problem with probability ε.

Note that if one can solve the decisional BDH problem with the input instance
(g, ga, ga

q

, gs, T), then he can solve the decisional q-parallel BDHE problem.
Therefore we only need the decisional q-parallel BDHE assumption holds. �

Theorem 2. Suppose the decisional BDH assumption holds. Then our ciphertext-
policy AS-IBE is selectively secure against IND-CPA Type II adversary.

Proof. It is almost the same as the second case of the above proof, except that
msk can be given to A directly in the Setup phase. �

5 Our Key Policy AS-IBE Construction

Apart from the ciphertext policy AS-IBE, it is constructive to give a concrete key
policy AS-IBE scheme, since these two schemes are useful in different contexts.
Our construction is based on the key policy ABE in [8]. The partial secret key

Attribute Specified Identity-Based Encryption 71

is defined upon certain access tree defined as §2.4, while the ciphertexts are
associated with attributes. We give our construction as follows.

Setup(1λ, U). It takes as input the number of attributes in the system. Now,
for each attribute i ∈ [1, U], choose a number ti uniformly at random from Zp.
Finally, choose y uniformly at random in Zp. The master key msk = (t1, ..., tU , y).
The public parameters are mpk = (T1 = gt1 , ..., TU = gtU , Y = e(g, g)y).

Extract-Partial-Private-Key(msk, T). It takes as input msk and a policy T
and outputs a partial secret key that enables the user to decrypt a message
encrypted under a set of attributes γ if and only if T (γ) = 1. The algorithm
proceeds as follows. First choose a polynomial qx for each node x (including the
leaves) in the tree T . These polynomials are chosen in the following way in a
top-down manner, starting from the root node r.

For each node x in the tree, set the degree dx of the polynomial qx to be one
less than the threshold value kx of that node, that is, dx = kx − 1. Now, for the
root node r, set qr(0) = y and dr other points of the polynomial qr randomly to
define it completely. For any other node x, set qx(0) = qparent(x)(index(x)) and
choose dx other points randomly to completely define qx.

Once the polynomials have been decided, for each leaf node x, we give the
following secret key to the user:

D′
x = g

qx(0)
ti where i = att(x).

The set of above secret values is the partial private key dT . Observe that these
computation can be done by the knowledge of gy only.

Set-Secret-Value(mpk, T). It takes as input mpk and a policy T . It randomly
choose a number a ∈ Zp and sets the a secret value wT = a.

Set-Private-Key(mpk, dT , wT). It takes as input mpk, dT , wT and outputs a
full private key skT = {Dx = (D′

x)
a}.

Set-Public-Key(mpk, wT). It takes as input mpk, wT , and outputs his public
key pkT = (e(g, g)ay).

Encrypt(mpk,M, γ, pkT). It takes as input mpk, a messageM to encrypt, a set
of attributes γ and the user’s public key pkT . It chooses a random value s ∈ Zp

and publishes the ciphertext as:

CT = (γ, E′ =M· e(g, g)ays, {Ei = T s
i }i∈γ).

Decrypt(mpk, CT, skT). It takes as input a ciphertext CT for the attributes γ
and a private key for a tree T . We specify our decryption procedure as a recursive
algorithm. We first define a recursive algorithm DecryptNode(CT, skT , x) that
takes as input the ciphertext CT = (γ,E′, {Ei}i∈γ), the private key skT (we
assume the access tree T is embedded in the private key), and a node x in the
tree. It outputs a group element of GT or ⊥.

72 X. Hao et al.

Let i = att(x). If the node x is a leaf node then:

DecryptNode(CT, skT , x) =

{
e(g

a·qx(0)
ti , gs·ti) = e(g, g)a·s·qx(0) if i ∈ γ,

⊥ otherwise.

When x is a non-leaf node, the algorithm DecryptNode(CT , skT , x) proceeds as
follows: For all nodes z that are children of x, it calls DecryptNode(CT , skT , z)
and stores the output as Fz . Let Sx be an arbitrary kx-sized set of child nodes z
such that Fz �= ⊥. If no such set exists then the node was not satisfied and the
function returns ⊥. Otherwise, we return:

Fx =
∏
z∈Sx

F
Δi,S′

x
(0)

z ,where
i = index(z)

S′
x = {index(z) : z ∈ Sx}

=
∏
z∈Sx

(e(g, g)
a·s·qparent(z)(index(z)))Δi,S′

x
(0) (by construction)

= e(g, g)a·s·qx(0)(using polynomial interpolation)

Now that we have defined our function DecryptNode, the decryption algorithm
simply calls the function on the root of the tree. We observe that DecryptNode
(CT, skT , r) = e(g, g)ays if and only if the ciphertext satisfies the tree. Since,
E′ =M · e(g, g)asy the decryption algorithm simply divides out e(g, g)asy and
recovers the messageM.

Theorem 3. Suppose the decisional BDH assumption holds. Then our key-
policy AS-IBE is selectively secure against IND-CPA Type I adversary.

Proof. Suppose we have an adversary A with non-negligible advantage ε in the
selective security game against our construction. Moreover, suppose it chooses a
challenge set of attributes γ∗. There are two possible ways for A to win:

1. Win by the public key pk∗ replaced by A. Hence A is not allowed to ask for
the partial private key for the access structure T such that γ∗ satisfies T .

2. Win by the public key pk∗ which was not replaced by A.

We show how to build a simulator, B, to handle both cases. We first show the
simulation for the first case.

Init. The simulator B takes in a decisional BDH challenge (y = (g, ga, gb, gc), T).
The adversary A gives the challenge set of attributes γ∗.

Setup. B sets Y = e(ga, gb). For i ∈ [1, U], if i ∈ γ∗, it chooses random ri ∈ Zp

and sets Ti = gri ; otherwise, it chooses random βi ∈ Zp and sets Ti = gbβi . B
returns mpk to A.
Phase 1. Consider the Create query. The simulator B runs Set-Secret-Value,
Set-Private-Key and Set-Public-Key honestly according to the algorithm. B
does not need to calculate the partial private key for the access structure T such
that γ∗ satisfies T . It leaves a ⊥ symbol in the corresponding entry in Υ .

Attribute Specified Identity-Based Encryption 73

B only needs to calculate the partial private key for the access structure T
such that γ∗ does not satisfy T . The simulation follows the proof of Theorem 1
in [8] and we omit it due to the space limit.

Challenge. The adversary gives two messagesM∗
0,M∗

1 and the challenge public
key pk∗ to B. B flips a coin β and retrieves the corresponding w∗

T from Υ . It
creates E′ =M∗

β · Tw∗
T and Ei = gcri for all i ∈ γ∗.

Phase 2. Same as phase 1.

Output. A will eventually output a guess β′ of β. B then outputs 0 to guess
that T = e(g, g)abc if β′ = β; otherwise, it outputs 1 to guess that T is a random
group element in GT . If A can win this game with advantage ε, than B can solves
the decisional BDH problem with probability ε.

We now show the simulation for the second case, where the public key pk∗ was
not replaced by A.
Init. The simulator B takes in a decisional BDH challenge (y = (g, ga, gb, gc), T).
The adversary A gives the challenge set of attributes γ∗.

Setup. B sets Y = e(g, gb) which implies gy = gb. B generates the rest of msk
and mpk accordingly. B sends mpk to A.
Phase 1. Consider the Create query. On input an access tree T , B can compute
most keys honestly using gb. Except for one time, B implicitly sets the secret
value of T ∗ as a by setting pkT ∗ = e(ga, gb). B can still compute the partial
private key dT using gb, but it cannot compute skT ∗ . It adds the tuple (H +
1, T ∗, pkT ∗ ,⊥, dT ∗ ,⊥) to the set Υ and returns H + 1. It updates the handle
counter H ← H + 1.

If there is an Extract Private Key query for the handle H + 1 in the future,
B declares failure and exits.

Challenge. The adversary gives two messagesM∗
0,M∗

1 and the challenge public
key pk∗ to B. If pk∗ �= pkT ∗ , B declares failure and exits. B flips a coin β. It
creates E′ =M∗

β · T and Ei = (gc)ti . It implicitly defines s = c.

Phase 2. Same as phase 1.

Output. A will eventually output a guess β′ of β. B then outputs 0 to guess
that T = e(g, g)abc if β′ = β; otherwise, it outputs 1 to guess that T is a random
group element in GT . If A wins this game with advantage ε, than B solves the
decisional BDH problem with probability ε/qC , where qC is the number of create
query asked by A.
Therefore our scheme is selectively secure under the Type I IND-CPA adversary
if the decisional BDH assumption holds. �
Theorem 4. Suppose the decisional BDH assumption holds. Then our key-
policy AS-IBE is selectively secure against IND-CPA Type II adversary.

Proof. It is almost the same as the second case of the above proof, except that
msk can be given to A directly in the Setup phase. �

74 X. Hao et al.

6 Conclusion

In this paper, we propose the notion of attribute specified identity-based encryp-
tion for fine-grained access control of encrypted data without trusted third party.
We propose two variants, namely the ciphertext policy and the key policy, which
are useful in different contexts. We define formal security models and prove the
security of our schemes under these models. We consider the construction of fully
secure AS-IBE as an interesting open problem.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer
Society (2007)

3. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

4. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

5. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) CCS
2009, pp. 121–130. ACM (2009)

6. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg (2007)

7. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-
based encryption. In: Ning, P., Syverson, P.F., Jha, S. (eds.) CCS 2008, pp. 427–436.
ACM (2008)

8. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) CCS 2006, pp. 89–98. ACM (2006)

9. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

10. Liu, Z., Cao, Z., Huang, Q., Wong, D.S., Yuen, T.H.: Fully secure multi-authority
ciphertext-policy attribute-based encryption without random oracles. In: Atluri,
V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 278–297. Springer, Hei-
delberg (2011)

11. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

12. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

13. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

14. Yuen, T.H., Susilo, W., Mu, Y.: How to construct identity-based signatures with-
out the key escrow problem: Formal definitions and constructions. Int. J. Inf.
Secur. 9(4), 297–311 (2010)

Leakage-Resilient Attribute-Based Encryption

with Fast Decryption: Models, Analysis
and Constructions

Mingwu Zhang1,3, Wei Shi1, Chunzhi Wang1, Zhenhua Chen2, and Yi Mu4

1 School of Computers, Hubei University of Technology
2 School of Computers, Shaanxi Normal University

3 College of Information, South China Agricultural University
4 Centre for Computer and Information Security Research,

School of Computer Science and Software Engineering, University of Wollongong
csmwzhang@gmail.com, ymu@uow.edu.au

Abstract. Traditionally, in attribute-based encryption (ABE), an ac-
cess structure is constructed from a linear secret sharing scheme (LSSS),
a boolean formula or an access tree. In this work, we encode the ac-
cess structure as its minimal sets, which is equivalent to the existence
of a smallest monotonic span program for the characteristic function of
the same access structure. We present two leakage-resilient attribute-
based encryption schemes, ciphertext-policy ABE (LR-CP-ABE) and
key-policy ABE (LR-KP-ABE), that can tolerate private key and master
key to be partially leaked. By using our encoding mechanism, we obtain
short ciphertext in LR-CP-ABE and short key in LR-KP-ABE. Also, our
schemes have higher decryption efficiency in that the decryption cost is
independent to the depth of access structures. Meanwhile, our proposed
schemes provide the tolerance of both master key leakage and continual
leakage in the sense that there are many master keys for universal set
Σ and many private keys per attribute set S. We explicitly employ a re-
fresh algorithm to update a (master) key while the leakage information
will beyond the allowable leakage bound. The schemes are proven to be
adaptively leakage-resilient secure in the standard model under the static
assumptions in composite order bilinear groups.

Keywords: Leakage resilience, Attribute-based encryption,Minimal set,
Monotone access structure.

1 Introduction

In encryption systems, we could imagine encrypting a data under a policy which
specifies under what conditions key-holder is allowed to decrypt the data. Attack-
ers are modeled as probabilistic polynomial time machines with input/output
access to the algorithm, and the algorithm is considered secure if it is infeasible
for any such adversary to break the system. Most existing public key encryptions
allow a party to encrypt data to a particular user, but are unable to efficiently
handle more expressive types of encrypted access policy. In attribute-based

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 75–90, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

76 M. Zhang et al.

encryption (ABE), ciphertexts and keys are associated with sets of attributes
and access policies over attributes. A key holder is able to decrypt a ciphertext
if and only if the attributes satisfies the associated access policy. There are two
kinds of ABE systems: cipertext-policy ABE (CP-ABE), where ciphertexts are
associated with access policies and keys are associated with sets of attributes,
and key-policy ABE (KP-ABE), where keys are associated with access policies
and ciphertexts are associated with sets of attributes.

The original ABE construction proposed by Sahai and Waters [21] was limited
to specify as threshold access policies, which was limited to implement formula
consisting of one threshold gate. Goyal et al. [12] subsequently improved the
expressibility of access policy by allowing the key to express any monotonic
access structure over attributes. To achieve a more expressive access policy over
many attributes, some ABE systems make use of techniques from linear secret-
sharing schemes (LSSS) or boolean formulas as access policies.

Lewko et al. [15] employed monotone span programs (MSPs) as access struc-
ture and then constructed a CP-ABE and a KP-ABE respectively that are proven
to be adaptively secure in composite bilinear groups. However, the ciphertext
in CP-ABE and the key in KP-ABE are polynomial in size of MSPs, and the
decryptions are inefficient since the pairings of decryption are linearly to the
number of rows in MSPs. In [23], Waters introduced a new technique for re-
alizing CP-ABE under concrete and noninteractive cryptographic assumptions,
which allow any encryptor to specify access control in terms of an LSSS ma-
trix. Goyal et al. [11] presented a bounded CP-ABE construction, in which they
showed how to transform a KP-ABE system into a CP-ABE one. In particular,
they provided a mapping onto a universal access tree of up to depth d formulas
consisting of threshold gates of input size m.

Considering the attributes in access formulae or LSSS matrices, an attribute
can be used once in an access policy. Although we can obtain multi-show at-
tribute by setting a fixed bound on the maximum times of an attribute be used,
however, this is inefficient since it causes the larger scale size of public key as
well as the size of key in CP-ABE. Recently, Lewko and Waters [14] proposed
a new selective proof technique to support multi-show attribute and obtains an
adaptive security in CP-ABE system.

Many access policies in ABE are specified as LSSS. However, there is a close
relation between LSSS and MSP. Beimel [4] proved that the existence of an
efficient LSSS for a specific MSP access structure is equivalent to the existence
of a smallest MSP. Later, Nikova et al. [19] provided a theoretical lower bound
for any MSP by using some linear algebraic machineries, where the size of a
MSP is at least the size of the critical set of minimal sets for the corresponding
monotone access structure plus the size of the critical set for the minimal sets
of the dual of access structure minus one, i.e., the computation complexity for
an access structure Γ is bounded by |H|+ |H⊥|− 1 where H and H⊥ denote the
critical set of minimal sets for an access structure Γ and Γ⊥ respectively. Pandit
and Barua [20] used minimal sets to describe general access structure in ABE
systems and constructed the corresponding (hierarchical) encryption schemes.

Leakage-Resilient Attribute-Based Encryption with Fast Decryption 77

Recent research shows that many cryptographic schemes are vulnerable to
side-channel attacks on the keys by the interaction of an adversary by measur-
ing the timing, power-consumption, temperature, radiation, acoustics and so on
[1,2,3,6,8,9,10,24,25]. The concept of leakage resilience models security of a cryp-
tographic algorithm in the presence of an adversary who uses non-traditional way
learn information about the private key. The adversary is strengthened in this
model and is allowed to observe leakage from the content of private key. Leakage-
resilient cryptosystems are designed to remain secure even if some information
about the private key is leaked. Instead, we should take into account the key
leakage in ABE system and then construct leakage-resilient ABE schemes. Also,
in order to provide an efficient decryption cost, we use the minimal set to describe
the monotone access structure in our leakage-resilient ABE systems.

In this work, we focus on the model of memory attacks or relative-leakage
model [1]. In this model, the attacker can learn any efficiently computable func-
tion of any private key, subject only to the restriction that the total amount of
information learned is bounded by predetermined parameter �. Our goal is to
devise ABE schemes resilient to key leakage with: (i) comparable efficiency to
previously known systems, (ii) construction and security in the standard model,
and (iii) better leakage rate.

2 Mathematical Backgrounds

2.1 Monotone Access Structure and Minimal Set

Definition 1. (Access structure(AS)) Let P1, · · · , Pn be a set of parties. A col-
lection Γ ⊆ 2P1,··· ,Pn is monotonic if ∀B ∈ Γ and B ⊆ C, then C ∈ Γ . An
access structure is a collection Γ of non-empty subsets of {P1, · · · , Pn}, i.e.,
Γ ⊆ 2P1,··· ,Pn\{∅}. The member in Γ is called authorized set, and the set not in
Γ is called unauthorized set.

Remark 1. In an attribute-based encryption, the attributes will play the role
of parties in set {P1, · · · , Pn}. In the remainder of the paper, we use Σ =
{a1, a2, · · · , an} to describe a finite attribute set.

Definition 2. (Minimal set of a monotonic access structure) Let Γ be a mono-
tonic access structure over the set of attributes Σ = {a1, a2, · · · , an}. B ∈ Γ is a
minimal authorized set if ∀A ∈ Γ\{B}, we have A �⊂ B. The set of all minimal
sets in Γ is called the basis of Γ .

Definition 3. (Dual of access structure) The dual access structure Γ⊥ of an
access structure Γ over Σ is defined as the collection of sets A ⊂ Σ such that
Σ\A = Ac �∈ Γ .

Definition 4. (Critical set of minimal sets)[19] Let B = {X1, · · · , Xr} be the set
of minimal set of an access structure Γ , and H ⊂ B be a subset of minimal sets.
H is called a critical set of minimal sets for B, if every Xi ∈ H contains a set
Bi ⊂ Xi, |Bi| ≥ 2, and the following conditions hold:

78 M. Zhang et al.

1. The set Bi uniquely determines Xi in the set H. i.e., no other set in H
contains Bi;

2. ∀Y ⊂ Bi, set SY = ∪Xj∈H,Xj∩Y �=∅(Xj\Y) does not contain any element of
B.

Assume that Σ = {a1, a2, a3, a4} is the set of attributes, and B = {X1 =
{a1, a2}, X2 = {a3, a4}} is the set of minimal sets for a monotone access structure
Γ , then H(= B) is a critical set of minimal sets. Also, B⊥ = {{a1, a3},{a1, a4},
{a2, a3}, {a2, a4}}. We can find a critical setH⊥ for Γ⊥ to be {{a1, a3}, {a1, a4}}.
As instantiating as above, we have the following theorem that was proven in [19].

Theorem 1. Let Γ be an access structure and Γ⊥ be its dual, and H and H⊥

be the critical set of minimal sets for Γ and Γ⊥ respectively. The size of any
monotone span program computing Γ is bounded by |H|+ |H⊥| − 1.

Remark 2. There existence of an efficient LSSS for a specific monotonic access
structure is equivalent to existence of the smallest monotonic span program for
the characteristic function of the same access structure [4].

2.2 Random Subspaces for Leakage Resilience over Arbitrary
Functions

We provide an algebraic tool that is crucial to our leakage resilient constructions.
More specifically, we give an algebraic theorem and its claim that essentially say
that random subspaces are resilient to continual leakage.

Theorem 2. [7] Let m, l, d ∈ N, 2d ≤ l ≤ m and p be a large prime. Let X1
$←−

Zm×l
p and X2

$←− Zm×d
p , and T

$←− Rankd(Z
l×d
p). For any function f : Zm×d

p → ϕ,
there exists

Dist((X1, f(X1T)), (X1, f(X2))) ≤ negl(·), |ϕ| ≤ 4(1− 1

p
) · pl−2d+1

2 · negl(·)2

(1)

We note that, if the leakage f(X1T) reveals bounded information X1, then
(X1, f(X1T)) and (X1, f(X2)) are statistically close. X2 is a random vector
and the leakage function f(X2) reveals nothing about the space X1. By setting
d = 1 and l = m− 1, we have the following claim.

Claim. Let Δ,μ
$←− Zm

p and μ′ be selected uniformly randomly from the set of
vector in Zm

p which are orthogonal to Δ under the dot product modulo p. For

any function f : Zm
p → {0, 1}�, where the function output is bounded by the

length �, there exists

Dist((Δ, f(μ)), (Δ, f(μ′))) ≤ negl(·), � ≤ 4pm−3
2 (p− 1) · negl(·)2 (2)

Leakage-Resilient Attribute-Based Encryption with Fast Decryption 79

2.3 Hardness Assumptions

Bilinear groups of composite order are groups with an efficient bilinear map
where the group order is a product of two or more distinct primes. Such groups
are constructed from pairing friendly curves over a finite field. The following
hardness assumptions are based on the static subgroup decisional problems that
have been analyzed in [17,15]

Definition 5. (1-SDP assumption) 1-class Subgroup Decision Problem (1-SDP)
is hard relative to Θ = (N = p1p2p3,G,GT , ê)← £(κ) if for all PPT algorithm
A , there exists a negligible function negl such that

|Pr[A (Θ, g1, X3, T1) = 1]− Pr[A (Θ, g1, X3, T2) = 1]| ≤ negl(κ)

where the probabilities are taken over the choices of g1 ∈ Gp1 , X3 ∈ Gp3 , T1 ∈
Gp1p2 and T2 ∈ Gp1 .

Definition 6. (2-SDP assumption) 2-class Subgroup Decision Problem (2-SDP)
is hard relative to Θ = (N = p1p2p3,G,GT , ê)← £(κ) if for all PPT algorithm
A , there exists a negligible function negl such that

|Pr[A (Θ, g1, X1X2, X3, Y2Y3, T1) = 1]

− Pr[A (Θ, g1, X1X2, X3, Y2Y3, T2) = 1]| ≤ negl(κ)

where the probabilities are taken over the choices of g1 ∈ Gp1 , X2, Y2 ∈ Gp2 ,
X3, Y3 ∈ Gp3 , T1 ∈ Gp1p2 and T2 ∈ G.

Definition 7. (BSDP assumption)[17,15] Bilinear Subgroup Decision Problem
(BSDP) is hard relative to Θ = (N = p1p2p3,G,GT , ê) ← £(κ) if for all PPT
algorithm A , there exists a negligible function negl such that

|Pr[A (Θ, g1, g
α
1X2, X3, g

s
1Y2, Z2, T1) = 1]

− Pr[A (Θ, g1, g
α
1X2, X3, g

s
1Y2, Z2, T2) = 1]| ≤ negl(κ)

where T1 = ê(gα1 , g
s
1) and the probabilities are taken over the choices of s, α ∈ ZN ,

g1 ∈ Gp1 , X2, Y2, Z2 ∈ Gp2 , X3 ∈ Gp3 , and T2 ∈ GT .

3 Leakage-Resilient Attribute-Based Encryption

In this section, we give the model and security defintion of leakage-resilient
ciphertext-policy ABE (LR-CP-ABE), where the key is associated with an at-
tribute set and the ciphertext is associated with an access structure. In section
6.2, we will give the model and concrete construction of leakage-resilient key-
policy ABE (LR-KP-ABE).

80 M. Zhang et al.

3.1 Model of LR-CP-ABE

Definition 8. (LR-CP-ABE) A leakage-resilient ciphertext-policy attribute-based
encryption (LR-CP-ABE) for the general access structure Γ over the attribute
universe Σ is comprised of five probabilistic polynomial-time algorithms.

1. (MPK, MSK) ←Setup(1κ, Σ, �) The system setup algorithm takes a security
parameter κ, a universe of attributes Σ and an allowable private-key leakage
bound � as inputs, and outputs system public key MPK and master key MSK.
Note that the system public key can be seen by all participants in the system
and will be the input in all other algorithms.

2. SKS ←KeyGen(MSK, S) The key generation algorithm takes the master key
MSK, and a set of attributes S ⊆ Σ as inputs, and outputs a private key SKS.

3. SK′
S
←KeyUpd(SKS, S) The key update algorithm takes a private key SKS as

input and outputs a updated and re-randomized key SK′
S
.

4. CTΓ ←Enc(M,Γ) The encryption algorithm takes a message M and an ac-
cess structure Γ as inputs, and outputs a ciphertext CTΓ .

5. M ←Dec(CTΓ , SKS) The decryption algorithm takes a ciphertext CTΓ and
a key SKS as inputs, and outputs M if and only if the set of attributes S
satisfies the access structure Γ , i.e, Γ (S) = 1.

3.2 Security Properties in the Presence of Leakage

We follow the natural leakage-resilient security definition from [1], which roughly
states that an encryption is �-leakage-resilient if it remains secure despite the
fact that an adversary can learn up to � bits of arbitrary information on the
private key of being attacked.

An attribute-based encryption scheme is key-leakage resilient if it is semanti-
cally secure when the adversary obtain partial information on the key. We model
the key leakage by providing the adversary a function that taking the private
key as input and obtaining the output of the key. In order to record the queried
and leaked keys, we set two initially empty lists: R = 〈hd, S〉, Q = 〈hd, S, SKS, lb〉
to store the records, where all records are associated with a handle hd.

Definition 9. (Leakage-resilient experiment) The leakage-resilient experiment
GameR(1

κ, Σ, �) works between a challenger C and an adversary A as follows.

Setup. The challenger C runs setup algorithm to generate public key MPK and
master key MSK, and starts the interaction with A by providing the public key
MPK.

Lunch Query. In this stage, adversary A can perform the following queries:

- Key extraction query (ΩE): A provides an attribute set S to request a key
SKS, and C answers with SKS ← KeyGen(MSK, S), and adds (hd, S, SKS, 0) into
queue Q.Notice that in this query, the leaked bit of extracted key SKS is 0,
which means that a new created key has no leakage.

Leakage-Resilient Attribute-Based Encryption with Fast Decryption 81

- Key leakage query (ΩL): A issues a key leakage query for SKS with a function
f : SK→ {0, 1}∗. C at first seeks the record in Q, and responds with f(SKS)
if lb+ f(SKS) ≤ �, and updates lb with lb+ f(SKS); Outputs φ otherwise.

- Key update query (ΩU): A issues a key update query for SKS. C finds the
record in Q. If not found, C returns the key with key extraction oracle ΩE and
sets lb = 0. Otherwise, C returns with SK′

S
← KeyUpd(SKS, S) and updates

the corresponding lb with 0.

Challenge. A outputs two messages (M (0),M (1)) and an access structure Γ
such that for all S ∈ R Γ (S) = 0. C at random picks a bit b ∈ {0, 1} and then
returns the challenge ciphertext CT(b) = Enc(M (b), Γ).

Supper Query. A continues to issues the queries like in Lunch query.

Response. Finally, A outputs a bit b′ ∈ {0, 1} as the guess for the random coin b
in the challenge phase. Adversary A ’s advantage in experiment GameR(1

κ, Σ, �)
is defined as AdvA (1κ, Σ, �) = |2Pr[(b = b′)]− 1|.

Definition 10. (Adaptively leakage-resilient security) Suppose that the leakage
bound is � and a polynomial-time adversary has at most Q queries for keys.
An attribute-based encryption scheme is adaptively (Q, �, �

|SK|)-leakage-resilient

secure if the advantage of the adversary in winning GameR(κ,Σ, �) is less than
negl(κ) in security parameter κ and leakage bound �.

Definition 11. (Selectively leakage-resilient security) An attribute-based encryp-
tion scheme is selectively (Q, �, �

|SK|)-leakage-resilient secure, if in experiment

GameR(κ,Σ, �) the challenge pair had to provide before the system public key
and master key build, and the advantage of the adversary in the experiment is
less than negl(κ) in security parameter κ and leakage bound �.

Definition 12. (Leakage rate) The leakage rate γ = �/|SK| is defined as the
relative leakage of a private key SK, where � is an allowable leakage bound and
|SK| is the number of bits needed to efficiently store private key SK.

4 Construction of LR-CP-ABE

Let Σ be an attribute set, we denote the cardinality of set Σ by |Σ|. Let vectors
ρ = (ρ1, ρ2, · · · , ρn) and σ = (σ1, σ2, · · · , σn), we denote the inner product of
vectors ρ and σ by 〈ρ,σ〉 and the bilinear group inner product by ên(g

ρ, gσ).
i.e.,

〈ρ,σ〉 =
∑
i∈[n]

ρiσi

and
ên(g

ρ, gσ) =
∏
i∈[n]

ê(gρi , gσi) = ê(g, g)〈ρ,σ〉.

LR-CP-ABE.Setup(1κ, Σ, �) At first PKG runs the bilinear group generator to
produce Θ = (N = p1p2p3,G,GT , ê), where p1, p2 and p3 are distinct primes

82 M. Zhang et al.

and defines negl = p−τ
2 as the allowable maximum probability in succeeding in

leakage guess1, and then computes2

ω = �1 + 2τ +
�

log2 p2
�

Also, PKG selects random generators g1 ∈ Gp1 and g3 ∈ Gp3 , and for each
attribute i ∈ Σ, at random picks ti ∈ ZN and sets Ti = gaiti

1 . It chooses α ∈
ZN , a, t, y2, y3 ∈ ZN and sets Y = ê(g1, g1)

α. For i = 1, · · · , ω, it selects ρi, y1,i ∈
ZN , and for j = 1, · · · , |Σ|, selects y4,j ∈ ZN , and then sets the master key as

MSK = 〈Σ,w1, w2, w3,w4〉 = 〈Σ, gσ1 g
y1

3 , g
α+at+〈ρ,σ〉
1 gy2

3 , gt1g
y3

3 , ∀i ∈ Σ T t
i g

y4,i

3 〉
(3)

Finally, PKG publishes the system public key

MPK = 〈Θ, g1, g3, g
a
1 , g

ρ
1 , Y, (Ti)i∈Σ〉 (4)

LR-CP-ABE.KeyGen(MSK, S) On input an attribute set S and the master key
MSK = 〈Σ,w1, w2, w3,w4〉, this algorithm selects�t,�y2,�y3 ∈ ZN , and selects
y1,i ∈ ZN for i ∈ [ω], and picks y4,j ∈ ZN for j ∈ [|S|] randomly, and returns the
key SKS as:

SKS = 〈S,k1, k2, k3,k4〉

=

⎛⎜⎜⎜⎜⎜⎝
S,

w1 ∗ g�σ
1 ∗ g�y1

3 ,

w2 ∗ ga�t+〈ρ,�σ〉
1 ∗ g�y2

3 ,

w3 ∗ g�t
1 ∗ g

�y3

3 ,

∀i ∈ S w4,i ∗ T�t
i ∗ g�y4,i

3

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
S,

gσ+�σ
1 gy1+�y1

3 ,

g
α+a(t+�t)+〈ρ,σ+�σ〉
1 g

y2+�y2
3 ,

gt+�t
1 gy3+�y3

3 ,

∀i ∈ S T t+�t
i g

y4,i+�y4,i

3

⎞⎟⎟⎟⎟⎟⎠

(5)

Note that the components of private key are ω + |S| + 2 elements in subgroup
Gp1p3 .

LR-CP-ABE.KeyUpd(SKS, S) Let a private key SKS = 〈S,k1, k2, k3,k4〉 =

〈S, gσ1 g
y1

3 , g
α+at+〈ρ,σ〉
1 gy2

3 , gt1g
y3

3 , (T t
i g

y4,i

3)i∈S〉. The key update algorithm at ran-
dom selects �t,�y2, �y3 ∈ ZN , and selects y1,i ∈ ZN for i ∈ [ω], and y4,j ∈ ZN

for j ∈ [|S|], and outputs a new key SK′
S
:

SK′S = 〈S,k′
1, k

′
2, k

′
3,k

′
4〉

=

⎛⎜⎜⎜⎜⎜⎝
S,

k1 ∗ g�σ
1 ∗ g�y1

3 ,

k2 ∗ ga�t+〈ρ,�σ〉
1 ∗ g�y2

3 ,

k3 ∗ g�t
1 ∗ g

�y3

3 ,

∀i ∈ S k4,i ∗ T�t
i ∗ g�y4,i

3

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
S,

gσ
′

1 g
y′
1

3 ,

g
α+at′+〈ρ,σ′〉
1 g

y′
2

3 ,

gt
′

1 g
y3

3 ,

(T t′

i g
y4,i

3)i∈S

⎞⎟⎟⎟⎟⎟⎠

(6)

1 We can denote this probability as the entropy loss when the private key leaks.
2 As τ is a small positive constant, in practice we can eliminate this parameter in ω,
i.e., ω ≈ �1 + �

log2 p2
�.

Leakage-Resilient Attribute-Based Encryption with Fast Decryption 83

where t′ = t+�t, σ′ = σ+�σ, y′
1 = y1 +�y1, y

′
2 = y2 +�y2, y

′
3 = y3 +�y3,

and y4 = y4 +�y4.

Remark 3. If S = Σ and SKΣ = MSK, then the update algorithm can refresh the
master key that generates a same distributed master key. Thus, we can consider
the master key MSK as a special private key for universal set Σ.

Remark 4. In our scheme, we allow many private keys per attribute set S and
many master keys for universal attribute set Σ.

LR-CP-ABE.Enc(M,Γ) At first, this algorithm converts the monotone access
structure Γ to the set of minimal sets B = {B1, B2, · · · , Bm}, where Bi ⊂ Σ
for i = 1, · · · ,m. The algorithm also at random selects s, s1, · · · , sm ∈ ZN , and
outputs the ciphertext CTΓ :

CTΓ = 〈B, c0, c1, c2, c3, c4〉 = 〈B,MY s, gsρ1 , g−s
1 , gas1 (

∏
j∈Bi

Tj)
si
i∈[m], (g

si
1)i∈[m]〉

(7)

LR-CP-ABE.Dec(CTΓ , SKS) If attributes set S satisfies the access structure Γ
specified by B, then S must be a superset of a minimal set in B. Let Sk ⊂ S for
some k ∈ [m]. This algorithm calculates:

M ← c0
êω(c1, k1)ê(c2, k2)ê(c3,k, k3)

ê(c4,k,
∏

i∈Bk
k4,i)

(8)

Remark 5. In our scheme, we are equipped with an update algorithm KeyUpd
that takes in a (master) private key and outputs a new and re-randomized key
from the same distribution generated by a fresh call to KeyGen algorithm, then
the security will yield resilience to continual leakage “for free”. In particular, the
many master keys for universal set Σ and the many private keys per attribute
set S allow to leak can be interpreted as refreshed versions of corresponding
master/private keys.

Correctness. The correctness is described as follows:

(1) ê(c1, k1) = ê(gsρ1 , gσ1 g
y1

3) = ê(gsρ1 , gσ1) = ê(g1, g1)
s〈ρ,σ〉

(2) ê(c2, k2) = ê(g−s
1 , g

α+at+〈ρ,σ〉
1 gy2

3) = ê(g1, g1)
−sα−ast−s〈ρ,σ〉

(3) ê(c3,k, k3) = ê(gas1 (
∏
j∈Bk

Tj)
sk , gt1g

y3

3) = ê(g1, g1)
astê(

∏
j∈Bk

Tj, g1)
skt

(4) ê(c4,k,
∏
j∈Bk

k4,j) = ê(gsk1 ,
∏
j∈Bk

T t
j g

y4,j

3) = ê(g1,
∏
j∈Bk

Tj)
skt

Then, the blind factor is calculated by

ê(c1, k1)ê(c2, k2)ê(c3,k, k3)

ê(c4,k,
∏

j∈Bk
k4,j)

= ê(g1, g1)
−sα = Y −s (9)

84 M. Zhang et al.

Remark 6. In the decryption, the algorithm only performs ω+3 pairing opera-
tions, which is more efficient than the construction that uses LSSS to specify the
access structure in [16]. We will discuss and compare the decryption performance
in section 6.2.

5 Security

We will prove the adaptive security of LR-CP-ABE with the technique of dual
system encryption. Our analysis of leakage resilience of our system will rely on
Theorem 2 in [7], which is proven using the techniques in [5].

Our security employs the dual system encryption mechanism of [22,17]. Let Q
be the number of key queries that the adversarymakes, then our proof considers a
sequence of 2Q+4 games between an adversary A and a challenger C . By means
of dual system encryption, we at first give the semi-functional ciphertext/key
generation algorithms and convert the challenge ciphertext and queried keys
into semi-functional form. We also define two types of semi-functional key. The
semi-functional key and ciphertext algorithms are presented as follows:

- KeyGenSF. Let SKS = 〈S,k1, k2, k3,k4〉 be a normal key, a semi-functional
key is constructed as:
1. Type 1: SKS = 〈S,k1∗gd1

2 , k2∗gd2
2 , k3∗gd3

2 ,k4∗gd4
2 〉, where g2 is a random

generator of Gp2 and di(i = 1, . . . , 4) is randomly picked from ZN .

2. Type 2: SKS = 〈S,k1, k2 ∗ gd2
2 , k3,k4〉.

- EncSF. Let CTΓ = 〈B, c0, c1, c2, c3, c4〉 be a normal ciphertext, a semi-
functional ciphertext is converted as: CTΓ = 〈B, c0, c1 ∗ ge1

2 , c2 ∗ ge22 , c3 ∗
ge3
2 , c4〉, where e1, e2, e3 are random elements in ZN .

Obviously, if we use a type-1 semi-functional key to decrypt a semi-functional
ciphertext, we will obtain extra term ê(g2, g2)

〈d1,e1〉+d2e2+d3e3,k . If 〈d1, e1〉 +
d2e2 + d3e3,k = 0, we call the semi-functional key is a nominally semi-functional
key w.r.t the ciphertext, otherwise we call the semi-functional key is truly semi-
functional.

Our security proof has two steps: At first we use a series of indistinguishable
games to prove that the scheme is adaptively secure in non-match key/ciphertext
situation, which is derived from the idea of dual system encryption [22,17,14].
We do so by proving that, in the view of the adversary, the valid private keys
are indistinguishable from keys that are random in the subgroup in which the
message is embedded. Secondly, we prove that, even the adversary has at most �
bits leakage on each match key, he also has only negligible advantage to decrypt
the challenge ciphertext. We give the following theorem:

Theorem 3. If a dual system∏
D

= (Setup,KeyGen,KeyUpd,Enc,Dec,KeyGenSF,EncSF)

Leakage-Resilient Attribute-Based Encryption with Fast Decryption 85

has semi-functional ciphertext invariance, semi-functional key invariance, and
semi-functional security under the leakage bound �, then the LR-CP-ABE scheme∏

= (Setup,KeyGen,KeyUpd,Enc,Dec) is an (Q, �, �
|SK|)-leakage secure attribute-

based encryption scheme.

Proof. We prove this theorem by a series of claims listed in Tab.1. The key and
the ciphertext in real construction in Section 4 are normal forms. At first we
show that the update procedure can be considered as a special key extraction
procedure, and then we only consider key extraction oracle instead of update
oracle. Next we convert the challenge ciphertext into semi-functional form, and
then convert the keys into semi-functional forms one by one. By these con-
versions, all ciphertexts and keys are semi-functional. We also give a Claim 5
to demonstrate that an adversary has no advantage in changing a truly semi-
functional key (can not decrypt a semi-functional ciphertext) to a nominally
semi-functional key (can decrypt a semi-functional ciphertext). Finally, we also
show that the message is indistinguishable from a random message in the chal-
lenge ciphertext, which means that the challenge message is fully hidden in the
ciphertext. We provide the security by Claim 1 – Claim 6 and hybrid argument
over the sequence of games to demonstrate the real security game GameR is
computationally indistinguishable from Game4, in which the challenge message
M (b) is masked with a random element in GT . We leave the detail proof in the
full version.

Table 1. Claims from indistinguishable games

Claim Result Functionality

Claim 1 ΩU can be answered by ΩE Update invariance

Claim 2 AdvGameR
A − AdvGame1

A ≤ ε1
Claim 3 AdvGame2

A − AdvGame1
A ≤ ε2 Semi-functional ciphertext invariance

Claim 4 Adv
Game3,k+1

A − Adv
Game3,k
A ≤ ε3,k Semi-functional key invariance

Claim 5 Adv
GameL3,k
A − Adv

Game3,k
A ≤ εL3,k Truly/nominally semi-functional

inconvertibility

Claim 6 AdvGame4
A − Adv

Game3,Q
A ≤ ε4 Message hiding

6 Performance and Discussion

6.1 Master Key Leakage Tolerance

In our construction, we design the same key structure of master key MSK and
user private key SKS. Actually, the master key MSK can be considered as a special
key of universal attribute set Σ. Implicitly, we can call KeyUpd algorithm to
update and refresh the master key that takes the master key MSK and attribute
set Σ as inputs. As we only re-randomize the randomness in the master key, the
refreshed master key does not impact on the previous user key generated by it.

86 M. Zhang et al.

6.2 Leakage-Resilient Key-Policy ABE
In this section, we give the construction of key-policy attribute-based encryption
with leakage resilience (LR-KP-ABE), which uses the same technique in section
4, i.e., using the set of minimal sets to describe the monotone access structure.
In key-policy ABE, a key is associated with access structure and a ciphertext
is associated with a set of attributes. The construction has the similar security
proof method with LR-CP-ABE.

LR-KP-ABE.Setup(1κ, Σ, �) Like in section 4, this algorithm generates the
description of composite-order bilinear group Θ, and selects randomness and
then sets the master key and the master public key as:

MPK = 〈Θ, g1, g3, g
a
1 , g

ρ
1 , Y, (Ti)i∈Σ〉 (10)

MSK = 〈w1, w2,w3,w4〉

= 〈gσ1 g
y1

3 , g−t
1 gy2

3 , (g
α+at+〈ρ,σ〉
1 (

∏
j=[|Σ|]

Tj)
tig

y3,i

3)i∈[|Σ|], (g
ti
1 g

y4,i

3)i∈[|Σ|]〉 (11)

LR-KP-ABE.KeyGen(MSK, Γ) Let MSK = 〈w1, w2,w3,w4〉. This algorithm first
converts the monotone access structure Γ to the set of minimal sets
B = {B1, B2, · · · , Bm}, where Bi ⊂ Σ for i = 1, · · · ,m, and then generates
the private key SKΓ as

SKΓ = 〈B,k1, k2,k3,k4〉
= 〈B,w1 ∗ g�σ

1 ∗ g�y1

3 , w2 ∗ g−�t
1 ∗ g�y2

3 ,

(w3,i ∗ ga�t+〈ρ,�σ〉
1 (

∏
j∈Bi

Tj)
�ti ∗ g�y3,i

3)i∈[m],

(w4,i ∗ g�ti
1 ∗ g�y4,i

3)i∈[m]〉

=

⎛⎜⎜⎜⎝
B, gσ+�σ

1 gy1+�y1

3 ,

g−t−�t
1 ∗ gy2+�y2

3 ,

(g
α+a(t+�t)+〈ρ,σ+�σ〉
1 (

∏
j∈Bi

Tj)
ti+�ti ∗ gy3,i+�y3,i

3)
i∈[m]

(gti+�ti
1 g

y4,i+�t4,i
3)i∈[m]

⎞⎟⎟⎟⎠

(12)

where �t,�σ,�ti,�y1, · · · ,�y4 are picked from ZN randomly.
LR-KP-ABE.KeyUpd(SKΓ , Γ) This algorithm at random selects �σ,�t,

�y1,�y2, �y3,�y4 from ZN , and performs the refresh procedure like in LR-
KP-ABE.KeyGen(MSK, Γ).

LR-KP-ABE.Enc(M, S) Output the ciphertext for attribute set S as

CTS = 〈S, c0, c1, c2, c3, c4〉 = 〈S, MY s, gsρ1 , gas1 , gs1, ∀i ∈ S T s
i 〉 (13)

where s is picked from ZN randomly.
LR-KP-ABE.Dec(CTS, SKΓ) If S satisfies Γ specified by B, then S must be a

superset of a minimal set in B. Find Sk ⊂ S for some k ∈ [m], and calculate:

M ← c0
êω(c1, k1)ê(c4,k,

∏
i∈Bk

k4,i)

ê(c2, k2)ê(c3,k, k3)
(14)

Leakage-Resilient Attribute-Based Encryption with Fast Decryption 87

Table 2. Performance

schemes lrw11[16] lr-cp-abe lr-kp-abe

Encrypt 2(ω + 2n1)Mu (ω + 2m)Mu (ω + |S|+ 2)Mu

Decrypt (ω + 2n1 + 1)Pr + 1Ex (ω + 3)Pr (ω + 3)Pr

KeyUpdate 2(ω + |S|+ 2)Mu 2(ω + |S|+ 2)Mu 2(ω + 2m+ 1)Mu

of MSK (ω + |Σ|+ 2)|G| (ω + |Σ|+ 2)|G| (ω + 2|Σ|+ 1)|G|
of SKS (ω + |S|+ 2)|G| (ω + |S|+ 2)|G| (ω + 2m+ 1)|G|
of CTΓ (ω + 2n1 + 1)|G|+ |GT | (ω + 2m+ 1)|G| + |GT | (ω + |S|+ 2)|G|+ |GT |

Master key leakage
√ √ √

User key leakage
√ √ √

Continual leakage
√ √ √

Multi-show attr X
√ √

Leakage bound � 2 + (ω − 1− 2τ) log p2 2 + (ω − 1− 2τ) log p2 2 + (ω − 1− 2τ) log p2
Allowable probability p−τ

2 p−τ
2 p−τ

2

Leakage rate γ ω−1−2τ
(1+β1+β3)(ω+2+|S|)

ω−1−2τ
(1+β1+β3)(ω+2+|S|)

ω−1−2τ
(1+β1+β3)(ω+2m+1)

ω: leakage parameter; τ : allowable leakage probability parameter; �: leakage bound of a key;

γ: leakage rate, i.e., γ = �/|SK|; Pr: computation cost of pairing; Ex: exponent cost in GT ;

Mu: point multiplication; |G|: size of an element in G; |GT |: size of an element in GT ; Σ:

universal attribute set; S: attribute set; I: minimum #rows labeled by user’s attributes to

compute target vector in LSSS matrix with n1 rows and n2 columns; β1, β3: value of |Gp1 |/|G|
and |Gp3/|G|;

6.3 Performance

In this section, we give the performance analysis and comparison between [16]
and ours schemes, which are listed in Tab. 2.

[16] and our LR-CP-ABE are all ciphertext-policy attribute-based encryption
schemes in the presence of key leakage model. [16] uses LSSS to denote the
access structure, but it does not support attribute multi-show functionality[14].
Our schemes use the minimal set to denote the access structure and support
attribute multi-show ability.

We evaluate the computation cost in decryption since it mainly depends on
the bilinear pairing operation in this algorithm but the pairing operation is very
time-consuming compared to the other operations such as point multiplication,
exponent and so on. To express an access structure, row number n1 in LSSS has
the approximate size with the number of set m in minimal set method. However,
as far as the decryption in our two schemes, they need constant ω + 3 pairing
operation which is independent to the scale of access structure Γ and are more
efficient than [16] that describes the access structure as LSSS.

On the side of leakage resilience, all schemes support master key leakage,
user private key leakage and continual leakage. Also, the schemes have the same
leakage bound � = 2 + (ω − 1 − 2τ) log p2 and allowable probability p = p−τ

2 .
Thus, the leakage rate of our LR-CP-ABE and [16] are

γ =
ω − 1− 2τ

(1 + β1 + β3)(ω + 2 + |S|) (15)

88 M. Zhang et al.

The leakage rate of LR-KP-ABE is

ω − 1− 2τ

(1 + β1 + β3)(ω + 2m+ 1)
(16)

Obviously, higher values of ω give a better leakage rate, but leads to larger public
parameters, private keys, and ciphertexts. Smaller values of β1 and β3 provide a
better leakage rate, but also give fewer bits of security in subgroup Gp1 and Gp3 .
We must choose the security parameter κ so that β1κ and β3κ are sufficiently
large.

In the setup algorithm, we set

ω = �1 + 2τ +
�

log p2
� (17)

In particular, if ω = 1 then � = 0 and τ = 0. In this case, the scheme is simplified
to be a fully secure non-leakage attribute-based encryption like in [14], which is
straightforward to see that allowable leakage is zero.

7 Conclusions

We proposed two leakage-resilient attribute-based encryptions that can toler-
ate leakage on the master key, as well as leakage on several keys for each at-
tribute set. We explicitly employ a update algorithm to periodically update the
master/private key so that it tolerates continual (master) key leakage. In our
schemes, the access structures are converted as the minimal set, which can pro-
vide fast decryption ability. We can give our construction in prime order groups
by using the transformation mechanism from [13].

Grants. This work is supported by the National Natural Science Foundation
of China under Grants (61272404, 61170135, 61103232), and the Guangdong
Natural Science Foundation under Grant S2012010010383.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key en-
cryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 36–54. Springer, Heidelberg (2009)

4. Beimel, A., Gal, A., Paterson, M.: Lower bounds for monotone span programs.
Computational Complexity 6(1), 29–45 (1997)

Leakage-Resilient Attribute-Based Encryption with Fast Decryption 89

5. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

6. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-Key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

7. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Publickey cryptography resilient to continual memory leakage. In:
FOCS 2010, pp. 501–510 (2010)

8. Chow, S., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-
based encryption from simple assumptions. In: ACM-CCS 2010, pp. 152–161 (2010)

9. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

10. Dodis, Y., Lewko, A., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: FOCS 2011, pp. 688–697 (2011)

11. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM-CCS 2006, pp. 89–98 (2006)

13. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

14. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R. (ed.) CRYPTO
2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

15. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: attribute-based encryption and (hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

16. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011)

17. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

18. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

19. Nikov, V., Nikova, S., Preneel, B.: On the size of monotone span programs. In:
Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 249–262. Springer,
Heidelberg (2005)

20. Pandit, T., Barua, R.: Efficient fully secure attribute-based encryption schemes for
general access structures. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y. (eds.)
ProvSec 2012. LNCS, vol. 7496, pp. 193–214. Springer, Heidelberg (2012)

21. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

90 M. Zhang et al.

22. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE un-
der simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009)

23. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

24. Yang, B., Zhang, M.: LR-UESDE: A continual-leakage resilient encryption with
unbounded extensible set delegation. In: Takagi, T., Wang, G., Qin, Z., Jiang, S.,
Yu, Y. (eds.) ProvSec 2012. LNCS, vol. 7496, pp. 125–142. Springer, Heidelberg
(2012)

25. Zhang, M., Yang, B., Takagi, T.: Bounded leakage-resilient funtional encryption
with hidden vector predicate. The Computer Journal (2012),
doi: www.doi.org/comjnl/bxs133

www.doi.org/comjnl/bxs133

Identity-Based Multisignature

with Message Recovery

Kefeng Wang, Yi Mu, and Willy Susilo�

Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Wollongong NSW 2522, Australia
{kw909,ymu,wsusilo}@uow.edu.au

Abstract. We present a new notion of short identity-based multisigna-
ture scheme with message recovery. We propose a concrete identity-based
multisignature with message recovery scheme based on bilinear pairing
in which multiple signers can generate a constant size multisignature on
same message regardless of the number of signers. There is no require-
ment to transmit the original message to the verifier, since the origi-
nal message can be recovered from the multisignature. Therefore, this
scheme minimizes the total length of the original message and the ap-
pended multisignature. The proposed scheme is proven to be existentially
unforgeable against adaptively chosen message attacks in the random or-
acle model under the assumption that the Computational Diffie-Hellman
problem is hard.

Keywords: Multisignature, Message Recovery, ID-based Cryptography.

1 Introduction

In networks with limited bandwidth and lightweight mobile devices, long digital
signatures will obviously be a drawback. Apart from shortening the signature
itself, the other effective approach for saving bandwidth is to eliminate the need
to transmit the signed original message for verifying a digital signature. In this
work, we consider on the latter approach.

Consider n different signers. In order to allow any subgroup of them to pro-
duce a joint signature on a message m and convince a verifier that each member
of the stated subgroup signed the message, two or more signers cooperate to
generate a single compact digital signature in a multisignature scheme. A sin-
gle multisignature can greatly save communication costs instead of transmitting
several individual signatures. To verify the validity of a multisignature, one still
needs public keys of all signers. In most applications these public keys will have
to be transmitted along with the multisignature. In this case, it partially defeats
the primary purpose of using a multisignature scheme, namely to save band-
width. But the inclusion of some information that uniquely identifies the signers

� This work is supported by the ARC Future Fellowship (FT0991397).

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 91–104, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

92 K. Wang, Y. Mu, and W. Susilo

seems inevitable for verification. Fortunately, in an identity-based setting, this
information can be represented in a more succinct way.

An identity-based signature scheme allows any pair of users to verify each
other’s signatures without exchanging public key certificates. It resembles an
ideal mail system: If you know somebody’s name and address you can send him
messages that only he can read, and you can verify the signatures that only he
could have produced. Compared to the public key of the signer is essentially
a random bit string picked from a given set in traditional public key signature
algorithms, in the identity-based scenario, the public key of a signer is simply his
identity such as his name, email or IP address. The associated private key can
only be computed by a trusted Private Key Generator (PKG) using a master
secret. It can avoid using certificates which is a big burden to bandwidth in the
verifying process of a signature. These features make the identity-based concept
particularly appealing for use in conjunction with multisignatures.

When bandwidth is at a premium, another potential problem is that the
combined length of the original message and the signature is too large. Signature
schemes with total or partial message recovery provide a solution to this problem
by embedding all or part of the message within the signature itself. That is, the
message does not need to be hashed or sent along with the signature, which
saves storage space and communication bandwidth.

Our Contributions. For the first time, this paper presents a provably secure
(existentially unforgeable against adaptively chosen message attacks) identity-
based multisignature with message recovery scheme based on bilinear pairing un-
der the Computational Diffie-Hellman assumption in the random oracle model.
Because the original message can be recovered from the multisignature, there is
no need to transmit the original message to the verifier. This scheme minimizes
the total length of the original message and the multisignature. We also present
a concrete analysis of the reduction to prove the security of the proposed mul-
tisignature scheme. More precisely, we can show that if there is an attacker who
can forge a valid multisignature to pass the verification, then the Computational
Diffie-Hellman problem is solved.

Paper Organization. The rest of this paper is organized as follows: In Section
2, we introduce some related works that have been studied in the literature.
In Section 3, we introduce some preliminaries used throughout this paper. In
Section 4, we propose a notion of identity-based multisignature with message
recovery scheme and present a concrete scheme based on bilinear pairing. We
also present a security model and security proof of our scheme in this section.
Section 5 concludes the paper.

2 Related Works

In 1984, Shamir introduced the notion of identity-based cryptography to simplify
key management of certificate-based public key infrastructures and proposed an
identity-based signature scheme [13]. Since then several practical identity-based

Identity-Based Multisignature with Message Recovery 93

signature schemes have been devised [4,6,3,8]. Cha and Cheon [3] proposed an
identity-based signature scheme using gap Diffie-Hellman (GDH) groups, and
proved their scheme is secure against existential forgery on adaptively chosen
message and ID attack under the random oracle model. Hess [8] also proposed
an efficient identity-based signature scheme based on pairings. The security of
their scheme relies on the hardness of the Diffie-Hellman problem in the random
oracle model.

The notion of multisignatures was introduced by Itakura and Nakamura [9].
Several works on this topic have been done [2,10,12]. In [10], the first formalized
strong notion of security for multisignatures was proposed. They modified the
Schnorr-signature-based multisignature scheme originally proposed by Ohta and
Okamoto [12] and proved its security. Gangishetti et al. [5] presented identity-
based serial and parallel multisignature schemes using bilinear pairings. Harn
and Ren [7] proposed an efficient RSA multisignature scheme based on Shamir’s
identity-based signature.

In order to minimize the total length of the original message and the appended
signature, the message recovery schemes were introduced (e.g. [11]). Zhang et
al. [14] proposed an identity-based message recovery signatures scheme. Their
scheme can be regarded as the identity based version of Abe-Okamoto’s scheme
[1]. Their scheme was also extended to achieve an identity-based partial message
recovery signature scheme. Based on the scheme due to Zhang et al. [14], we
achieved the goal of minimizing the total length of the original message and the
appended multisignature in an identity-based setting.

3 Preliminaries

3.1 Bilinear Pairing

Let G1,G
′
1 be cyclic additive groups generated by P1, P

′
1, respectively, whose

order are a prime q. Let G2 be a cyclic multiplicative group with the same order
q. We assume there is an isomorphism ψ : G′

1 → G1 such that ψ(P ′
1) = P1. Let

ê : G1 ×G′
1 → G2 be a bilinear mapping with the following properties:

– Bilinearity: ê(aP, bQ) = ê(P,Q)ab for all P ∈ G1, Q ∈ G′
1, a, b ∈ Zq.

– Non-degeneracy: There exists P ∈ G1, Q ∈ G′
1 such that ê(P,Q) �= 1.

– Computability: There exists an efficient algorithm to compute ê(P,Q) for all
P ∈ G1, Q ∈ G′

1.

For simplicity, hereafter, we set G1 = G′
1 and P1 = P ′

1. We note that our scheme
can be easily modified for a general case, when G1 �= G′

1.

3.2 CDH Problem

Let G1 and G2 be two groups of order the same prime order q. Let P be a
generator of G1. Suppose there exists a bilinear map ê : G1 × G1 → G2. Let A
be an attacker. A tries to solve the following problem: Given (P, aP, bP) for
some unknown a, b ∈ Z∗

q , compute abP .

94 K. Wang, Y. Mu, and W. Susilo

The success probability of A, which is polynomially bounded with a security
parameter l, is defined as

SuccCDH
G1,A (l) = Pr[A(P, aP, bP, abP) = 1; a, b ∈ Z∗

q]

The CDH problem is said to be intractable, if for every probabilistic polynomial
time algorithm A, SuccCDH

G1,A (l) is negligible.

4 Identity-Based Multisignature with Message Recovery

4.1 Definitions

In an identity-based multisignature with message recovery scheme, there is a
trusted party Private Key Generator (PKG). PKG is required to generate all
the users’ private keys.

There are three parties in the system, the PKG, the signer and the verifier.
The scheme is ideal for closed groups of users such as the executives of a multi-
national company or the branches of a large bank, since the headquarters of
the corporation can serve as a key generation centre that everyone trusts. This
scheme consists of the following four algorithms.

Setup: PKG sets up its secret key s with respect to a security parameter q
as the master key of this scheme and publishes the corresponding public key
Ppub. PKG should generate related groups and point out the generator of these
groups. PKG also should describe which bilinear mapping and hash functions
will be used in this scheme and publish these public information to all interested
principals.

Extract: When a principal requires its private key SID corresponding its iden-
tity ID, this algorithm generates the private key using the master key and the
principal’s identity, and returns the private key to the principal.

Sign: This is an interactive algorithm. Several principals who got their private
keys from the Extract algorithm can firstly generate their individual signatures
(vi, r, Ui) on a messagem respectively, and one of them or other specified trusted
principal can generate a single compact multisignature (r, U) on the message m
corresponding to these principals who participate in this algorithm.

Verify: On receiving a multisignature (r, U) and several principal’s identities
ID1, ID2, · · · , IDn, this algorithm checks whether the multisignature is a valid
multisignature corresponding to these principal’s public keys. If the multisig-
nature is checked as valid, the original message m can be recovered from this
multisignature.

4.2 Security Model

Boldyreva [2] defined the notion of security for multisignature as no valid mul-
tisignature should keep an honest player that part of the alleged subgroup ac-
countable if it did not participate in signing. That is to say, no adversary can

Identity-Based Multisignature with Message Recovery 95

forge an alleged multisignature of some message corresponding to an alleged
subgroup of signers so that a verifier can check the multisignature as valid when
not all signers of the alleged subgroup did sign the message. In order to achieve
its goal, an adversary is allowed to corrupt players and send arbitrary messages
during multisignature generation process.

We use a similar definition of existential unforgeability against a chosen mes-
sage attack of [2]. Our definition is strong enough to capture an adversary who
can simulate and observe the scheme. It is defined using the following game
between an adversary A and a challenger C.

Assume in a subgroup of n signers who want to participate in generating
a multisignature, there is only one honest signer. All other n − 1 members of
the subgroup have been corrupted by the adversary. This means the adversary
can get secret keys and public keys of corrupted signers. But the adversary only
knows the public key of the single honest signer. The adversary can participate in
the multisignature generation process on behalf of these n− 1 corrupted signers.
Its goal is to frame the honest signer.

Firstly, challenger C runs Setup algorithm to get the system’s master-key
s with respect to a security parameter l and sends the system’s public key
Ppub = sP and other public parameters {G1,G2, ê, q, P,H1, H2, F1, F2, k1, k2}
to adversary A.
A can access the following oracles to start an attack.

H1 Oracle: For each H1 hash query with respect to elements v1, v2, · · · , vn in
G2 and a message m, C returns a hash value H1(v) ∈R Z∗

q corresponding to the
product v =

∏n
i=1 vi of these elements v1, v2, · · · , vn.

H2 Oracle: For each H2 hash query with respect to an user IDi, C returns a
hash value QIDi ∈R G1 as the user IDi’s public key.

Extract Oracle: For each Extract query with respect to a user IDi except for
the honest user ID∗, C returns SIDi = sQIDi as the user’s private key, in which
the QIDi is the H2 hash value of the user IDi’s identity.

Sign Oracle: For each Sign query on arbitrary message m with respect to a
subgroup of n signer’s identities ID1, ID2, · · · , IDn, this oracle can be divided
into two phases.

In the first phase, n − 1 signers generate their individual vi by randomly
selecting an element Ki from G1 and then computing vi = ê(Ki, P). These n−1
signers send their vi and a target signer’s identity IDt to C. C outputs a random
element vt ∈R G2 corresponding to the target signer IDt.

In the second phase, these n − 1 signers compute v using vt and all vi as
v =

∏n−1
i=1 vi · vt. At the same time, C computes the same v using the same

method. These n− 1 signers generate and send their own individual signatures
(vi, r, Ui) and message m to C. C returns a valid multisignature (r, U) on message
m with respect to n signers include these n− 1 signers and the target signer.

Output: A outputs an alleged multisignature (r, U) on a target message m∗

with respect to a subgroup of n signers ID1, · · · , ID∗, · · · , IDn in which includes

96 K. Wang, Y. Mu, and W. Susilo

an honest signer ID∗ who did not participate in the multisignature generation
process. If there was no Sign queries with respect to the target message m∗ and
a subgroup of signers in which includes the honest signer ID∗ have been queried
to Sign Oracle, and there was no Extract query with respect to the honest signer
ID∗ has been queried to Extract Oracle, A wins the game if the multisignature
(r, U) can be verified as a valid multisignature.

If there is no such polynomial-time adversary that can forge a valid multisig-
nature with respect to a subgroup of signers which includes an honest signer,
while the honest signer did not participate in the multisignature generation pro-
cess in the game described above, we say that the multisignature scheme is secure
against existential forgery under chosen message attack.

The success probability of an adversary to win the game is defined by

SuccUF−IDMMR−CMA
A (l).

We say that an identity-based multisignature with message recovery scheme is
existentially unforgeable under a chosen message attack if the success probability
of any polynomially bounded adversary in the above game is negligible. In other
words,

SuccUF−IDMMR−CMA
A (l) ≤ ε.

4.3 Proposed Scheme

Let G1 and G2 be two groups of the same prime order q. Let P be a generator
of G1. Suppose there exists a bilinear map ê : G1 ×G1 → G2.

Setup: PKG chooses a random number s ∈ Z∗
q and keeps it as the master-

key of this system. This master-key is known only by PKG itself. PKG sets
Ppub = sP as the system’s public key and publishes this public key and other
system parameters {G1,G2, ê, q, P,H1, H2, F1, F2, k1, k2}.

Here |q| = k1 + k2. H1 : {0, 1}∗ → Z∗
q , H2 : {0, 1}∗ → G∗

1, F1 : {0, 1}k2 →
{0, 1}k1 and F2 : {0, 1}k1 → {0, 1}k2 are four cryptographic hash functions.

Extract: A user submits his/her identity information IDi to PKG. PKG com-
putes the user’s public key as QIDi = H2(IDi), and returns SIDi = sQIDi to
the user as his/her private key.

Sign: Let the message be m ∈ {0, 1}k2.
Each signer randomly selects an elementKi inG1 and computes vi = ê(Ki, P).

vi is broadcast to other signers.
Once each signer’s vi are available through the broadcast channel. They com-

pute their individual signatures as follows:

v =

n∏
i=1

vi = ê(K1, P)ê(K2, P) · · · ê(Kn, P) = ê(

n∑
i=1

Ki, P)

f = F1(m)||(F2(F1(m)) ⊕m)

r = H1(v) + f

Ui = Ki − rSIDi

Identity-Based Multisignature with Message Recovery 97

In the above computation, the symbol || denotes concatenation of two operands.
Each signer transmits its individual signature (vi, r, Ui) to the clerk who may

be one of these signers or other specified trusted principal.
Once the clerk receives an individual signature (vi, r, Ui), he needs to verify

the validity of this individual signature. The verification procedure of the clerk
checks that

vi = ê(Ui, P)ê(QIDi , Ppub)
r.

Once all individual signatures are received and verified by the clerk as valid, the
multisignature of message m with respect to these signers who generate these
individual signatures can be generated as (r, U), where

U =

n∑
i=1

Ui =

n∑
i=1

Ki − r

n∑
i=1

SIDi

Verify: Given a multisignature (r, U) and n signer’s identity ID1, ID2, · · · , IDn

who stated have signed a message, a verifier computes

r −H1(ê(U, P)ê(

n∑
i=1

QIDi , Ppub)
r) = f

and

m = [f]k2 ⊕ F2([f]
k1).

In the above computation, the subscript k2 of f denotes the least significant k2
bits of f , and the superscript k1 of f denotes the most significant k1 bits of f .

The verifier checks whether [f]k1 = F1(m) holds. If this equation holds, the
verifier accepts this multisignature and recovers the original message m from
this multisignature. Otherwise, the verifier rejects the multisignature.

4.4 Security Analysis

Theorem 1. This identity-based multisignature with message recovery scheme
is correct and sound.

Proof. The correctness of this identity-based multisignature with message recov-
ery scheme can be shown as follows.

When the individual signature (vi, r, Ui) is verified,

ê(Ui, P)ê(QIDi , Ppub)
r

= ê(Ki − rSIDi , P)ê(QIDi , sP)r

= ê(Ki − rSIDi , P)ê(sQIDi , P)r

= ê(Ki − rSIDi , P)ê(SIDi , P)r

= ê(Ki − rSIDi , P)ê(rSIDi , P)

= ê(Ki, P)

= vi

98 K. Wang, Y. Mu, and W. Susilo

This means if the individual signature (vi, r, Ui) is indeed generated by signer
IDi, the equation vi = ê(Ui, P)ê(QIDi , Ppub)

r will always hold.
When the multisignature (r, U) is verified, we can recover v which is used by

each signer in the multisignature generation from the following computation.

ê(U, P)ê(

n∑
i=1

QIDi , Ppub)
r

= ê(

n∑
i=1

Ki − r

n∑
i=1

SIDi , P)ê(

n∑
i=1

QIDi , sP)r

= ê(

n∑
i=1

Ki − r

n∑
i=1

SIDi , P)ê(s

n∑
i=1

QIDi , P)r

= ê(

n∑
i=1

Ki − r

n∑
i=1

SIDi , P)ê(

n∑
i=1

SIDi , P)r

= ê(

n∑
i=1

Ki − r

n∑
i=1

SIDi , P)ê(r

n∑
i=1

SIDi , P)

= ê(
n∑

i=1

Ki, P)

= v

Then, using this v and part of the multisignature r, we can recover f from the
following computation.

r −H1(ê(U, P)ê(

n∑
i=1

QIDi , Ppub)
r)

= r −H1(v)

= H1(v) + f −H1(v)

= f

Since f is computed from f = F1(m)||(F2(F1(m)) ⊕m), we will try to recover
the original message m from f like this:

[f]k2 ⊕ F2([f]
k1)

= [F1(m)||(F2(F1(m))⊕m)]k2 ⊕ F2([F1(m)||(F2(F1(m))⊕m)]k1)

= F2(F1(m))⊕m⊕ F2(F1(m))

= m

As previously declared, the subscript k2 and the superscript k1 of f denote the
least significant k2 and the most significant k1 bits of f respectively.

After recovering the alleged original message m, we need to check whether
[f]k1 = F1(m) to verify the validity of the multisignature. If this equation holds,
the multisignature (r, U) is valid and the original message m is recovered. Oth-
erwise, the multisignature (r, U) is a forged one. �

Identity-Based Multisignature with Message Recovery 99

Theorem 2. This identity-based multisignature with message recovery scheme
is existentially unforgeable under a chosen message attack in the random oracle
model, under the assumption that the Computational Diffie-Hellman problem is
hard.

Proof. Assume there is an algorithm A that can forge a multisignature under
a chosen message attack. There will be another algorithm B that can run the
algorithm A to solve the CDH problem.

In the process of B using A to solve the CDH problem, B needs to simulate
all the oracles that A can query as follows.

Setup: B sets up Ppub = aP as the system’s public key and sends Ppub and
other system parameters {G1,G2, ê, q, P,H1, H2, F1, F2, k1, k2} to adversary A.
In this case, B only knows the system’s public key is aP , but he does not know
the corresponding master-key s which is actually a in this concrete situation.
Two hash functions F1, F2 of the four hash functions used in this scheme are
published as normal hash functions. The other two hash functions H1, H2 are
both treated as random oracles.

H1 Queries: B creates and keeps two lists of tuples to simulate H1 Oracle. At
the beginning of the simulation, both of these lists are empty.

One list is called Hvn-List which is used to store tuples like

(v1, v2, · · · , vn, h).

In this type of tuples, the first n elements come from group G2 and the last
element comes from Z∗

q .
After receiving a H1 hash query with respect to several elements v1, v2, · · · , vn

in G2 and a message m, if the first n elements v1, v2, · · · , vn are not as a record
in the v∗-List which is constructed in the Sign Oracle and not in a record in
this Hvn-List, B randomly selects h ∈ Z∗

q and returns h as the H1 hash value of
v =

∏n
i=1 vi. Then, B records the tuple (v1, v2, · · · , vn, h) in this Hvn-List. If the

first n elements v1, v2, · · · , vn are already in a record in this Hvn-List, B only
returns the corresponding h in the record as the H1 hash value. All in all, this
list matches the situation that the honest signer is not required to participate in
the multisignature generation.

The other list is called Hv∗-List which is used to store tuples like

(m, v1, v2, · · · , vn−1, v
∗, y − f).

In this type of tuples, the first element m is an arbitrary message to be signed
by a subgroup which includes the honest signer. The next n elements come from
group G2 and the last element comes from Z∗

q .
After receiving anH1 hash query with respect to several elements v1, v2, · · · , v∗

in G2 and a message m, if the first n elements v1, v2, · · · , vn−1, v
∗ are as a record

in the v∗-List which is constructed in the Sign Oracle but not as a record in this
Hv∗-List, B returns y − f as the H1 hash value of v =

∏n−1
i=1 vi · v∗ in which y

is got from the corresponding record in the v∗-List and f is computed by the

100 K. Wang, Y. Mu, and W. Susilo

equation f = F1(m)||(F2(F1(m)) ⊕m) with respect to the message m. Then, B
records the tuple (m, v1, v2, · · · , vn−1, v

∗, y−f) in thisHv∗-List. Note that for the
same n elements v1, v2, · · · , vn−1, v

∗ but different message m, the value y is same
because it comes from the same record in the v∗-List, but the value f is different
because it is computed by the equation f = F1(m)||(F2(F1(m))⊕m) for different
message. So, the returned hash value y − f is different. In this case, we need to
add a new record in this Hv∗-List. If these elements m, v1, v2, · · · , vn−1, v

∗ are
already in a record in this Hv∗-List, B only returns the corresponding y − f in
the record as the H1 hash value. In a word, this list matches the situation that
the honest signer is required to participate in the multisignature generation.

H2 Queries: B creates and keeps one list H2-List to simulate H2 Oracle. At the
beginning of the simulation, this list is empty.

For each H2 hash query with respect to a signer IDi except for the honest
signer ID∗, if IDi is not in a record in this H2-List, B randomly selects ki ∈ Z∗

q

and returns QIDi = kiP as the H2 hash value of IDi. Then, B records the tuple
(IDi, ki, QIDi) in this H2-List. If IDi is already in a record in this H2-List, B
only returns the corresponding QIDi in the record as the H2 hash value.

For the H2 hash query with respect to the honest signer ID∗, B returns
QID∗ = bP as the H2 hash value of ID∗.

Extract Queries: B creates and keeps one list Ex-List to simulate Extract
Oracle. At the beginning of the simulation, this list is empty.

For each Extract query with respect to a signer IDi except for the honest
signer ID∗, if IDi is not in a record in this Ex-List, B looks up the H2-List
which is created by H2 Oracle to find the record about IDi. Because a signer
needs to query H2 Oracle prior to its any other operation, the Extract Oracle
can always find out the record with respect to IDi in the H2-List. Using the ki
value in the record in the H2-List with respect to IDi, B returns

SIDi = kiPpub = kiaP = akiP = aQIDi

as the signer IDi’s private key. Then, B records the tuple (IDi, SIDi) in this Ex-
List. If IDi is already in a record in this Ex-List, B only returns the corresponding
SIDi in the record as the signer IDi’s private key.

Sign Queries: B creates and keeps two lists of tuples to simulate Sign Oracle.
At the beginning of the simulation, both of these lists vn-List and v∗-List are
empty. vn-List matches the situation that the honest signer is not required to
participate in the multisignature generation. v∗-List matches the situation that
the honest signer is required to participate in the multisignature generation.
Without loss of generality, we assume that the target signer is always the last
signer IDn.

For each Sign query with respect to an arbitrary message m and a subgroup
of n signers ID1, ID2, · · · , IDn, this oracle are divided into two phases.

In the first phase, n−1 signers ID1, ID2, · · · , IDn−1 generate their individual
vi = ê(Ki, P) in which Ki is randomly selected from group G1 and send their vi
and the target signer’s identity IDn to B.

Identity-Based Multisignature with Message Recovery 101

If IDn is not the honest signer ID∗, B can randomly select an element Kn

from group G1 and compute vn = ê(Kn, P). B returns vn to A and records the
tuple

(v1, v2, · · · , vn−1, vn,Kn)

in the vn-List.
If IDn is the honest signer ID∗, B can randomly select two integers x, y ∈R Z∗

q .
Then B computes

v∗ = ê(aP, bP)y · ê(P, P)x = ê((yab + x)P, P)

and returns this v∗ to A. In this case, the corresponding random element from
group G1 is

K∗ = (yab+ x)P.

B records the tuple
(v1, v2, · · · , vn−1, v

∗, y, x)

in the v∗-List.
In the second phase, A computes f = F1(m)||(F2(F1(m)) ⊕ m) with re-

spect to message m. A queries H1 Oracle the H1 hash value with respect to
(v1, v2, · · · , vn−1, vn) or (v1, v2, · · · , vn−1, v

∗) and message m and uses this H1

hash value to compute the second part of n − 1 signer’s individual signature
(vi, r, Ui) as r = H1(v) + f . A computes the third part

Ui = Ki − rSIDi = Ki − raQIDi

of n− 1 signer’s individual signatures by the real Sign algorithm using the pre-
vious r and the corresponding private key SIDi = aQIDi got from the Extract
Oracle and sends these n− 1 individual signatures and message m to B.
B needs to compute f = F1(m)||(F2(F1(m)) ⊕ m) at first. If IDn is not

the honest signer ID∗, B computes the individual signature (vn, r, Un) by the
real Sign algorithm using the corresponding r which is computed the same as
previous process and SIDn which is got from Extract Oracle. Then, B computes
U =

∑n
i=1 Ui and returns (r, U) as the multisignature on messagem with respect

to n signers ID1, ID2, · · · , IDn. In this case, both of the individual signature
(vn, r, Un) of IDn and the multisignature (r, U) can pass their own verification
process. These verifications can be checked by using the method in Theorem 4.1.

If IDn is the honest signer ID∗, B computes r by using H1 Oracle as

r = H1(v) + f = y − f + f = y,

and simulates the third part of the honest signer ID∗’s individual signature as

U∗ = K∗ − rSID∗ = (yab+ x)P − y · abP = xP

in which the corresponding x can be found out in the v∗-List.
Then, B computes

U =

n−1∑
i=1

Ui + U∗

102 K. Wang, Y. Mu, and W. Susilo

and returns (r, U) as the multisignature on message m with respect to n signers
ID1, ID2, · · · , IDn−1, ID

∗.

Verify: Both of the individual signature and the multisignature can pass the
verifications. The individual signature (v∗, r, U∗) can pass the verification as
follows.

ê(U∗, P)ê(QID∗ , Ppub)
r

= ê(xP, P)ê(bP, aP)y

= ê(xP, P)ê(yabP, P)

= ê((yab+ x)P, P)

= v∗

The multisignature (r, U) can also pass the verification as follows.

ê(U, P)ê(
n∑

i=1

QIDi , Ppub)
r

= ê(
n−1∑
i=1

Ui + U∗, P)ê(
n−1∑
i=1

QIDi +QID∗ , aP)y

= ê(
n−1∑
i=1

Ui, P)ê(U∗, P)ê(
n−1∑
i=1

QIDi , aP)y ê(QID∗ , aP)y

= ê(
n−1∑
i=1

Ui, P)ê(
n−1∑
i=1

QIDi , aP)y ê(U∗, P)ê(QID∗ , aP)y

= ê(
n−1∑
i=1

Ki − ya
n−1∑
i=1

QIDi , P)ê(ya
n−1∑
i=1

QIDi , P)ê(xP, P)ê(yabP, P)

= ê(
n−1∑
i=1

Ki, P)ê((yab+ x)P, P)

=
n−1∏
i=1

vi · v∗

Since we have assumed that adversary A can forge a multisignature under a
chosen message attack, after the simulation process above, A can output a valid
multisignature (r1, U1) on message m with respect to a subgroup of n signers
which includes the honest signer ID∗ who did not participate in the multisigna-
ture generation. There are two restrictions about this multisignature generation.
The first one is there is no query to Extract Oracle with respect to the honest
signer ID∗. The second one is there is no query to Sign Oracle with respect to
the message m and a subgroup of signers which includes the honest signer ID∗.
B can compute the third part U∗

1 of the honest signer ID∗’s individual signature
(v∗i , r

∗
1 , U

∗
1) from the valid multisignature (r1, U1) as follows.

Identity-Based Multisignature with Message Recovery 103

U∗
1 = U −

n−1∑
i=1

Ui

All these Ui come from A in the second phase of the Sign Query.
B can reset all the oracles and runs A for the second time. At the end of

the simulation, with a non-negligible probability B can get another different
individual signature (v∗2 , r

∗
2 , U

∗
2) on the same message m and with respect to

the same honest signer ID∗ when v∗1 equals to v∗2 . That means for two different
random integer pairs (x1, y1) and (x2, y2),

K∗
1 = (y1ab+ x1)P is equal to K∗

2 = (y2ab+ x2)P.

Both (r∗1 , U
∗
1) and (r∗2 , U

∗
2) can pass the verification process, and K∗

1 equals K∗
2 .

So,

ê(U∗
1 , P)ê(QID∗ , Ppub)

r∗1 = ê(U∗
2 , P)ê(QID∗ , Ppub)

r∗2

ê(U∗
1 + r∗1SID∗ , P) = ê(U∗

2 + r∗2SID∗ , P)

U∗
1 + r∗1SID∗ = U∗

2 + r∗2SID∗

(r∗1 − r∗2)SID∗ = U∗
2 − U∗

1

SID∗ = (r∗1 − r∗2)
−1(U∗

2 − U∗
1)

In this case, B can compute the honest signer ID∗’s private key SID∗ when he
only knows the honest signer ID∗’s public key QID∗ and the system’s public
key Ppub. Because SID∗ is expressed as abP , QID∗ is expressed as bP , Ppub

is expressed as aP , B can solve an CDH problem if A is able to forge valid
multisignatures.

If there is no such polynomial-time adversary that can forge a valid multisig-
nature corresponding to a subgroup of signers that include an honest signer,
we say that this identity-based multisignature with message recovery scheme is
secure against existential forgery under chosen message attack. �

5 Conclusion

We proposed a new notion of short identity-based multisignature scheme. The
notion of short identity-based multisignature scheme can be viewed as identity-
based multisignature with message recovery scheme. In order to sign short mes-
sages using a scheme that minimizes the total length of the original message and
the appended signature, we proposed an concrete identity-based multisignature
with message recovery scheme based on bilinear pairing in which multiple signers
can generate a constant size multisignature on same message regardless the num-
ber of signers and there is no need to transmit the original message to verifier,
because it can be recovered from the multisignature. We also proved that our
scheme is secure against existential forgery on adaptively chosen message attack
in the random oracle model, under the hardness assumption of CDH problem.

104 K. Wang, Y. Mu, and W. Susilo

References

1. Abe, M., Okamoto, T.: A signature scheme with message recovery as secure as
discrete logarithm. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT
1999. LNCS, vol. 1716, pp. 378–389. Springer, Heidelberg (1999)

2. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

3. Cha, J., Cheon, J.: An identity-based signature from gap diffie-hellman groups. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg
(2002)

4. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

5. Gangishetti, R., Gorantla, M., Das, M., Saxena, A.: Identity based multisignatures.
Informatica 17(2), 177–186 (2006)

6. Guillou, L.C., Quisquater, J.-J.: A paradoxical indentity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, Heidelberg (1990)

7. Harn, L., Ren, J.: Efficient identity-based rsa multisignatures. Computers & Secu-
rity 27(1), 12–15 (2008)

8. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidel-
berg (2003)

9. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisig-
natures. NEC Research & Development 71, 1–8 (1983)

10. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures. In: Pro-
ceedings of the 8th ACM Conference on Computer and Communications Security,
pp. 245–254. ACM (2001)

11. Nyberg, K., Rueppel, R.: A new signature scheme based on the dsa giving message
recovery. In: Proceedings of the 1st ACM Conference on Computer and Commu-
nications Security, pp. 58–61. ACM (1993)

12. Okamoto, T.: Multi-signature schemes secure against active insider attacks. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences 82(1), 21–31 (1999)

13. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

14. Zhang, F., Susilo, W., Mu, Y.: Identity-based partial message recovery signa-
tures (or how to shorten ID-based signatures). In: S. Patrick, A., Yung, M. (eds.)
FC 2005. LNCS, vol. 3570, pp. 45–56. Springer, Heidelberg (2005)

Improving the Message-Ciphertext Rate

of Lewko’s Fully Secure IBE Scheme�

Dingding Jia1, Bao Li1, Yamin Liu1, and Qixiang Mei2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

University of Chinese Academy of Sciences
2 College of Information, GuangDong Ocean University

{ddjia,lb,ymliu}@is.ac.cn,nupf@163.com

Abstract. In Eurocrypt 2012, Lewko presented a fully secure IBE scheme
in the prime order setting based on the decisional linear assumption. We
note that inLewko’s scheme, some random factor involved in the ciphertext
can further be used to hide yet another message, and hence get a new fully
secure IBE schemewith bettermessage-ciphertext rate. Similar to Lewko’s
scheme, we use dual pairing vector space in prime order bilinear groups to
simulate the canceling and parameter hiding properties of composite order
settings. The security of our scheme is based on the subspace assumption,
which can be reduced to the decisional linear assumption. We employ the
dual system encryption technique in our security proof.

Keywords: DLIN assumption, fully secure IBE, canceling, parameter
hiding, dual system encryption.

1 Introduction

In 1984, Shamir [16] introduced the notion of Identity-Based Encryption (IBE).
An IBE is a public key encryption scheme in which the public key can be set to
any string representing one’s identity. A trusted authority holds a master secret
key which allows it to create secret keys for any identity. There are two kinds of
security requirements for IBE schemes: a weaker one called selective-ID security
in which the adversary selects an ID priori to other moves and attacks the fixed
ID; and a stronger one called fully security in which the adversary adaptively
selects the ID to be attacked during the security game. IBE schemes are first
realized in the random oracle model, by Boneh and Franklin [3] using bilinear
groups and Cocks [7] under quadratic residue assumption. Later, realization in
the standard model was proposed by Boneh and Boyen [2] and Canetti, Halevi
and Katz [6], but only selective-ID security was achieved in [2,6].

� This work is Supported by the National Basic Research Program of China (973
project)(No.2013CB338002), the National Nature Science Foundation of China
(No.61070171, No.61272534), the Strategic Priority Research Program of Chinese
Academy of Sciences under Grant XDA06010702 and the State Key Laboratory of
Information Security IIEs Research Project on Cryptography (No. Y2Z0021103).

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 105–116, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

106 D. Jia et al.

The first fully secure IBE scheme that has a tight reduction in the standard
model was proposed by Waters in 2009 [17], in which a new proof technique
called dual system encryption was used. The IBE scheme of [17] was constructed
with bilinear maps in the prime order setting, and its security was based on
the decisional linear (DLIN) assumption and bilinear decisional Diffie-Hellman
(BDDH) assumption. However, the scheme was bothered by too long parameters
and complicated structure. In [15] Ramannal, et al. gave a simplification of
Waters’ scheme in asymmetric bilinear groups, but based on assumptions which
are not so standard.

Shortly later another fully secure IBE scheme was given by Lewko and Waters
in 2010 [12] in the composite order setting. Their scheme has simple structure
resembles that of [2]. In the security proof they used two properties of com-
posite order groups: one is called “canceling”, that is, for any g1 ∈ Gp1 , g2 ∈
Gp2 , e(g1, g2) = 1; the other is called “parameter hiding”, which means ga1
information-theoretically hides a mod p2.

Since the computation of bilinear map in composite order groups is less ef-
ficient, much effort has been contributed to finding transformations to prime
order settings. In 2010, Freeman [8] provided a generic method for transform-
ing schemes in composite order settings [4,9,11] to prime order settings, but
the method can not be applied to some schemes. Lewko [10] observed that the
method of [8] perfectly simulated the “canceling” property, yet was not a use-
ful approach to achieve the “parameter hiding” property. Lewko [10] used dual
pairing vector space which was proposed by Okamoto and Takashima [13,14] to
simulate both properties in the prime order setting, and got a fully secure IBE
scheme akin to the one in [2]. Specially, to achieve the canceling property, a pair
of dual orthonormal bases (B,B∗) was used in [10]; to achieve the parameter
hiding property, for a matrix A to be hidden, a pair of random dual orthonor-
mal bases (B,B∗) was chosen, then A was embedded in (B,B∗), and a new pair
of dual orthonormal bases (BA,B

∗
A) was generated, which looks random to the

adversary who does not know (B,B∗). The scheme in [10] has simple structure
and its security is based on the DLIN assumption.

In the IBE sheme in [10], both ciphertext and secret key employ two param-
eters, s1, s2 and r1, r2. The two exponents play almost the same roles, except
that in the ciphertext, the element hiding the message only uses s1. We find that
both parameters could be used to hide messages, thus more messages could be
encrypted without adding too many elements to the ciphertext.

Our Result. In this paper, we improve the IBE scheme presented in [10] by
using both parameters to hide messages in the ciphertext, hence get an IBE
scheme that can encrypt two elements in the target group simultaneously. As
in [10], we use dual orthonormal bases of dimension 6. Compared to Lewko’s
scheme, we only add one element from the target group to the public parame-
ters and ciphertexts, double the length of the decryption key. In Table 1. we give
a comparison of Lewko’s scheme and ours. The columns #msg, #cpr, #key pro-
vide the number of group elements in the messages, ciphertexts and decryption
keys. Encryption efficiency counts the number of scalar multiplications in G for

Improving the Message-Ciphertext Rate of Lewko’s IBE Scheme 107

encrypting every group element while decryption efficiency counts the number
of pairings that are required for decrypting every group element. Key genera-
tion efficiency is given by the number of scalar multiplications in G. We can
see that we encrypt double messages on the cost of double key length, and our
scheme has better message-ciphertext rate. Similar to Lewko’s paper, we use
dual pairing vector space in prime order bilinear groups to realize the canceling
and parameter hiding properties.

Table 1. A comparison of Lewko’s IBE scheme and ours

Scheme #msg #cpr #key enc eff dec eff keygen eff msg-cpr rate

Lewko’s 1 7 6 25 6 6 1:7

Ours 2 8 12 13 6 12 2:8

In the security proof we use the dual system encryption technique. Firstly we
change the challenge ciphertext to be semi-functional. Secondly answers to key
extraction queries are changed to be semi-functional one by one. Here we change
every key in two steps: temporary semi-functional first, then semi-functional.
Finally we change the challenge ciphertext to a semi-functional encryption of a
random message. We argue that any polynomial time adversary can not tell the
difference between two adjacent games.

Moreover, in the last game the challenge ciphertext is independent of the
identity, so our scheme is anonymous. The IBE scheme in Lewko’s paper is also
anonymous for the same reason. Anonymous IBE [5] is a useful component to
construct public key encryption with keyword search (PEKS) schemes [1].

The rest of our paper is organized as follows: in section 2 we give the formal
definition of IBE and the security definition; in section 3 we give the complexity
assumptions; in section 4 we describe our construction and prove its security;
section 5 is the conclusion of the whole paper.

2 Definitions

2.1 IBE

Definition 1 (IBE). An Identity-Based Encryption scheme (IBE) [16] is a
tuple of four probabilistic polynomial time (PPT) algorithms: (Setup, Keygen,
Encrypt, Decrypt.)

Setup(1λ): take as input the security parameter λ and output public parameters
PP and the master secret key Msk.

Keygen(Msk, ID): take as input the master secret key Msk, identity ID and
output a private key SkID.

Encrypt(PP,M, ID): take as input public parameters PP , message M and
identity ID and output a ciphertext C.

108 D. Jia et al.

Decrypt(C, SkID): take as input the ciphertext C and secret key SkID and out-
put the message M .

For correctness, we require that all properly generated ciphertexts can be de-
crypted correctly.

2.2 Security Definition

Here we give the fully security definition of IBE. The security of an IBE scheme
is defined using the following game between an adversary A and a challenger.

Setup: The challenger runs the Setup algorithm, gives public parameters PP
to the adversary A and keeps the master secret key Msk to itself.

Phase 1: A adaptively issues identity queries ID, the challenger responds with
SkID by calling the Keygen algorithm.

Challenge: A gives two messages and a challenge identity (M0,M1, ID
∗) to the

challenger. The challenge identity should never be queried in phase 1. The
challenger picks a random bit b and responds with Encrypt(PP,Mb, ID

∗).
Phase 2: A adaptively issues additional queries as in Phase 1, with the restric-

tion that ID∗ is never allowed to be queried.
Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvIBE
A =

∣∣∣Pr[b′ = b]− 1
2

∣∣∣.
Definition 2 (Fully Security). An IBE scheme is fully secure if for all PPT
adversary A, AdvIBE

A is negligible in λ.

3 Complexity Assumptions

In this section we introduce the complexity assumptions that will be used in our
proof. As in [10], we use dual pairing vector space to achieve the canceling and
parameter hiding properties in the prime order setting.

3.1 Prime Order Symmetric Bilinear Maps

Let G,GT be cyclic groups of prime order p, with a bilinear map e : G×G→ GT

satisfying the following properties:

– (Bilinear) ∀u1, u2 ∈ G, ∀a, b ∈ Zp, e(u
a
1 , u

b
2) = e(u1, u2)

ab.
– (Non-degenerate) ∃g ∈ G such that e(g, g) has order p in GT .

We assume that group operations in G and GT as well as the bilinear map e can
be efficiently computed.

Improving the Message-Ciphertext Rate of Lewko’s IBE Scheme 109

Vector computation rules are defined as follows:

– For v = (v1, v2, ..., vn) ∈ Zn
p and g ∈ G, gv := (gv1 , gv2 , ..., gvn).

– For any a ∈ Zp and v,w ∈ Zn
p ,

gav := (gav1 , ..., gavn), gv+w := (gv1+w1 , ..., gvn+wn).

– en is used to denote the product of the component-wise pairings:

en(g
v, gw) :=

n∏
i=1

e(gvi , gwi) = e(g, g)v·w.

Dual Pairing Vector Spaces. Next let us review the concept of dual pairing vector
spaces from [13,14,10]. For a dimension n, we say two random chosen bases
B := (b1, ...,bn),B

∗ := (b∗
1, ...,b

∗
n) are dual orthonormal if for i �= j,

bi · b∗
j = 0(mod p)

and bi · b∗
i = ψ for all i, where ψ is a uniformly random element in Zp. In

the following we let Dual(Zn
p) be the set of dual orthonormal bases and let

(B,B∗)
R← Dual(Zn

p) denote choosing random dual orthonormal bases B and B∗

from Zn
p .

Canceling Property. For a generator g ∈ G, we note that en(g
bi , gb

∗
j) = 1 when-

ever i �= j. We call this property as “canceling” and it will play an important
role in our scheme.
Parameter Hiding Property. Next we will introduce the other property called
“parameter hiding”. Generally speaking, one can apply an invertible matrix A

to a random pair of dual orthonormal bases (B,B∗)
R← Dual(Zn

p), and get a new
pair of dual orthonormal bases which is randomly distributed for adversaries who
do not know (B,B∗). Hence the newly generated bases information-theoretically
hide the matrix A. Next we describe how the new pair of dual orthonormal bases
is generated.

For (B,B∗)
R← Dual(Zn

p), let m < n be a fixed number, and A be an invertible
m×mmatrix.WeuseSm to denote a subset of [n] satisfying |Sm| = m, letBm be an
n×mmatrix consists ofbi for i ∈ Sm. Associatedwith Sm we defineBA as follows:
for i /∈ Sm, keep bi unchanged; for i ∈ Sm, swap bi for the corresponding column
in BmA. We get B∗

A in a similar way except that for i ∈ Sm, we swap b∗
i for the

corresponding column in B∗
m(A−1)T . From Lemma 1 in [10] we get that (BA,B

∗
A)

is distributed as random dual orthonormal bases as long as (B,B∗) is randomly
chosen. Especially, the pair (BA,B

∗
A) information-theoretically hides A.

3.2 Complexity Assumptions

Decisional Linear Assumption (DLIN). To formally define our assumption, we
let G denote a group generation algorithm, which takes in a security parameter
λ and outputs a symmetric bilinear map e together with G,GT of order p.

110 D. Jia et al.

Let G be a group generator, run G(1λ) to get (p,G,GT , e), and randomly
choose g, f, v ∈ G, c1, c2, w ∈ Zp, T0 = gc1+c2 , T1 = gw. The advantage of A is
defined as

AdvDLIN
A =

∣∣∣Pr[A(g, f, v, f c1 , vc2 , T1) = 1]− Pr[A(g, f, v, f c1 , vc2 , T0) = 1]
∣∣∣.

Definition 3 (DLIN). We say that G satisfies DLIN assumption if for all PPT
algorithm A, AdvDLIN

A is negligible in λ.

Next we describe the subspace assumption in [10], here we require that k ≤ n
3 .

Subspace Assumption. Let G be a group generator algorithm as above, run G(1λ)
to get (p,G,GT , e), and randomly choose

(B,B∗)
R← Dual(Zn

p), g
R← G,

η, β, μ1, μ2, μ3, τ1, τ2, τ3
R← Zp,

U1 := gμ1b1+μ2bk+1+μ3b2k+1 , ..., Uk := gμ1bk+μ2b2k+μ3b3k ,

V1 := gτ1ηb
∗
1+τ2βb

∗
k+1 , ..., Vk := gτ1ηb

∗
k+τ2βb

∗
2k ,

W1 := gτ1ηb
∗
1+τ2βb

∗
k+1+τ3b

∗
2k+1 , ...,Wk := gτ1ηb

∗
k+τ2βb

∗
2k+τ3b

∗
3k ,

D := (gb1 , gb2, ..., gb2k , gb3k+1 , ..., gbn , gηb
∗
1 , ..., gηb

∗
k ,

gβb
∗
k+1, ..., gβb

∗
2k , gb

∗
2k+1 , ..., gb

∗
n , U1, ..., Uk, μ3)

The advantage of A is defined as

AdvSA
A =

∣∣∣Pr[A(D,V1, ..., Vk) = 1]− Pr[A(D,W1, ...,Wk) = 1]
∣∣∣.

In this paper we use subspace assumption with n = 6 and k = 2 or k = 1.

Definition 4. We say that G satisfies the subspace assumption if for all PPT
algorithm A, AdvSA

A is negligible in λ.

It was shown in [10] that the subspace assumption can be reduced to DLIN
assumption.

Lemma 1. [10] If there is an adversary A that can break the subspace assump-
tion with probability ε, then we can build an algorithm B having the same ad-
vantage in solving the DLIN problem.

4 An IBE Scheme with Better Message-Ciphertext Rate

4.1 Our Construction

In this section we describe our construction of IBE scheme. The structure of our
scheme is similar to that in [10], however, by using both random parameters in
the ciphertext to hide messages, we can get an IBE scheme that can encrypt two
elements from GT . Also we note that in Lewko’s scheme they used θ, σ along

Improving the Message-Ciphertext Rate of Lewko’s IBE Scheme 111

with d∗
i , i = 1, ..., 4, but these two parameters is useless in the proof, so we avoid

using θ, σ in our scheme. This modification does not decrease the efficiency, and
results in a more elegant structure.

Here we assume messages are from the target group G2
T and identities are

from Zp.

Setup(1λ) : The setup algorithm runs G(1λ) to obtain (p,G,GT , e). It sam-

ples random dual orthonormal basis (D,D∗)
R← Dual(Z6

p), chooses random

α1, α2 ∈ Zp and computes Ω1 = e(g, g)α1d1·d∗
1 and Ω2 = e(g, g)α2d1·d∗

1 . The
public parameters are: PP = (G, p,Ω1, Ω2, g

d1 , gd2, gd3 , gd4).
The master secret key is Msk = (gd

∗
1 , gα1d

∗
1 , gd

∗
2 , gd

∗
3 , gα2d

∗
3 , gd

∗
4).

Keygen(Msk, ID) : The key generation algorithm chooses random r1, r2, r3, r4 ∈
Zp and sets the secret key SkID as:

K1 = g(α1+r1ID)d∗
1−r1d

∗
2+r2IDd∗

3−r2d
∗
4 ,

K2 = gr3IDd∗
1−r3d

∗
2+(α2+r4ID)d∗

3−r4d
∗
4 .

Encrypt(PP,M1‖M2, ID) : The encryption algorithm chooses random s1, s2 ∈
Zp and computes the ciphertext C as:

C1 = M1Ω
s1
1 , C2 = M2Ω

s2
2 , C3 = gs1d1+s1IDd2+s2d3+s2IDd4 .

Decrypt(C, SkID) : The decryption algorithm computes the message as:

M1 = C1/en(C3,K1),M2 = C2/en(C3,K2).

Correctness can be easily verified since e(C3,K1) = Ωs1
1 , e(C3,K2) = Ωs2

2 . Here
d5 and d6 are used in the proof to form semi-functional ciphertexts and keys.

4.2 Security Proof

In the security proof of our IBE scheme, we use semi-functional ciphertexts and
semi-functional keys, which are widely used in previous literatures [12,17,10,15].

Semi-functional Ciphertexts. To create a semi-functional ciphertext, we first
choose random s1, s2, , z1, z2 ∈ Zp and set

C1 = M1Ω
s1
1 , C2 = M2Ω

s2
2 , C3 = gs1d1+s1IDd2+s2d3+s2IDd4+z1d5+z2d6 .

Semi-functional Keys. To create a semi-functional key, we first choose random
r1, r2, r3, r4, t1, t2, t3, t4 ∈ Zp and set:

K1 = g(α1+r1ID)d∗
1−r1d

∗
2+r2IDd∗

3−r2d
∗
4+t1d

∗
5+t2d

∗
6 ,

K2 = gr3IDd∗
1−r3d

∗
2+(α2+r4ID)d∗

3−r4d
∗
4+t3d

∗
5+t4d

∗
6 .

We can see that a normal ciphertext can be correctly decrypted by a semi-
functional key, and a semi-functional ciphertext can be correctly decrypted by a
normal key, but when a semi-functional key is used to decrypt a semi-functional
ciphertext, we will get the blinding factor multiplied by the additional term
e(g, g)d1·d∗

1(t1z1+t2z2) and e(g, g)d1·d∗
1(t3z1+t4z2).

112 D. Jia et al.

Theorem 1. If DLIN assumption holds, then our IBE scheme is fully secure.

Proof. To prove the security of our scheme, we define a sequence of games that
any PPT adversary can not tell the difference between two adjacent games. Let
q denote the number of key extraction queries that the adversary makes during
the whole game.

GameReal : the real fully security game.
Game0 : the same as GameReal except that the challenge ciphertext is semi-

functional.
Gamej : for j from 1 to q, Gamej is like Game0 except that the first j key

extraction queries are answered with semi-functional keys. The rest of the
keys are normally generated.

GameFinal : the same as Gameq, except that the challenge ciphertext is a semi-
functional encryption of a random message.

Let AdvReal
A denote A’s advantage in GameReal, Adv

i
A denote A’s advantage

in Gamei and AdvFinal
A denote A’s advantage in GameFinal. It is clear that

AdvFinal
A = 0.

Lemma 2. Suppose that there exists a PPT adversary A such that AdvReal
A −

Adv0A = ε, then there exists a PPT adversary B with advantage ε in breaking the
subspace assumption, with n = 6 and k = 2.

Proof. B receives

D = (gb1 , ..., gb4, gηb
∗
1 , gηb

∗
2 , gβb

∗
3 , gβb

∗
4 , gb

∗
5 , gb

∗
6 , U1, U2, μ3),

along with T1, T2, and its task is to decide whether T1, T2 is independent of
gb

∗
5 , gb

∗
6 . B picks random invertible matrix A ∈ Z2×2

p . We define dual orthonor-
mal bases F,F∗ as follows:

f1 = ηb∗
1, f2 = ηb∗

2, f3 = βb∗
3, f4 = βb∗

4, f5 = b∗
5, f6 = b∗

6,

f∗1 = η−1b1, f
∗
2 = η−1b2, f

∗
3 = β−1b3, f

∗
4 = β−1b4, f

∗
5 = b5, f

∗
6 = b6.

Then B implicitly sets D = FA,D
∗ = F∗

A, that is, for i = 1, 2, 3, 4,di = fi,d
∗
i =

f∗i , (d5,d6) = (f5, f6)A, (d
∗
5,d

∗
6) = (f∗5 , f

∗
6)(A

−1)T . Following from Lemma 1 in
[10], we get that (D,D∗) is randomly distributed and reveals no information
about A.

Next B chooses random α′
1, α

′
2 and implicitly sets α1 = ηα′

1, α2 = βα′
2, then

B can compute e(g, g)α1d1·d∗
1 = en(g

b1 , gηb
∗
1)α

′
1 , e(g, g)α2d1·d∗

1 = en(g
b3 , gβb

∗
3)α

′
2 .

Thus B sets up the public parameters and sends them to A. B only knows the
gα1d

∗
1 , gα2d

∗
3 part of the master secret key and gηd

∗
1 , gηd

∗
2 , gβd

∗
3 , gβd

∗
4 . When A

submits a key extraction query ID, B first chooses r′1, r
′
2, r

′
3, r

′
4 and implicitly

sets r1 = ηr′1, r2 = βr′2, r3 = ηr′3, r4 = βr′4. B sets the secret key as:

K1 = g(α
′
1+r′1ID)ηd∗

1−r′1ηd
∗
2+r′2IDβd∗

3−r′2βd
∗
4 ,

Improving the Message-Ciphertext Rate of Lewko’s IBE Scheme 113

K2 = gr
′
3IDηd∗

1−r′3ηd
∗
2+(α′

2+r′4ID)βd∗
3−r′4βd

∗
4 .

At some point, A sends B the challenge identity ID∗ and (M0,M1). B chooses
a random bit b ∈ {0, 1} and computes the challenge ciphertext as follows:

C1 = Mb,1en(T1, g
b1)α

′
1 , C2 = Mb,2en(T1, g

b3)α
′
2 , C3 = T1(T2)

ID∗
.

and gives the answer to A.
If (T1, T2) = (V1, V2), then the respond is a normal ciphertext with s1 =

τ1, s2 = τ2. If (T1, T2) = (W1,W2), then the respond is a semi-functional ci-
phertext with s1 = τ1, s2 = τ2, and (z1, z2)

T = τ3A
−1(1, ID∗)T . Thus when

(T1, T2) = (V1, V2) we properly simulateGameReal and when (T1, T2) = (W1,W2)
we simulate Game0. So B can leverageA’s advantage in distinguishing GameReal

and Game0 to achieve the same advantage against the subspace assumption. �

Lemma 3. Suppose that there exists a PPT algorithm A such that Advj−1
A −

AdvjA = ε, then there exists a PPT algorithm B with advantage ε in breaking the
subspace assumption with n = 6 and k = 2.

To prove the lemma, we define Game′j as an intermediate game and let Advj
′

A
be A’s advantage in Game′j.

Game′j : for j from 1 to q, Game′j is like Gamej−1 except that the j-th key query
is answered by a temporary semi-functional key. A temporary semi-functional
key is generated as follows: we first choose random r1, r2, r3, r4, t1, t2 ∈ Zp and
set:

K1 = g(α1+r1ID)d∗
1−r1d

∗
2+r2IDd∗

3−r2d
∗
4+t1d

∗
5+t2d

∗
6 ,

K2 = gr3IDd∗
1−r3d

∗
2+(α2+r4ID)d∗

3−r4d
∗
4 .

Note that half part of the temporary semi-functional key is generated like semi-
functional keys, and the other half is like normal keys. Here we change the
extracted key to semi-functional in 2 steps to make r1, r2, r3, r4 randomly dis-
tributed.

Lemma 4. Suppose that there exists a PPT algorithm A such that Advj−1
A −

Advj
′

A = ε, then there exists a PPT algorithm B with advantage ε in breaking the
subspace assumption with n = 6 and k = 2.

Proof. B receives

D = (gb1 , ..., gb4, gηb
∗
1 , gηb

∗
2 , gβb

∗
3 , gβb

∗
4 , gb

∗
5 , gb

∗
6 , U1, U2, μ3),

along with T1, T2, and its task is to decide whether T1, T2 is independent of
gb

∗
5 , gb

∗
6 . B picks random invertible matrix A ∈ Z2×2

p . We implicitly set dual
orthonormal bases D = BA,D

∗ = B∗
A, that is, for i = 1, 2, 3, 4,di = bi,d

∗
i =

b∗
i , (d5,d6) = (b5,b6)A, (d

∗
5,d

∗
6) = (b∗

5,b
∗
6)(A

−1)T .
Next B chooses random α′

1, α
′
2 and implicitly sets α1 = ηα′

1, α2 = βα′
2, then

B can compute e(g, g)α1d1·d∗
1 = en(g

b1 , gηb
∗
1)α

′
1 , e(g, g)α2d1·d∗

1 = en(g
b3 , gβb

∗
3)α

′
2 ,

so B sets up the public parameters and sends them to A.
When A submits key extraction queries:

114 D. Jia et al.

For i < j, B can answer it since B can create normal keys as in Lemma 2 and
knows d∗

5,d
∗
6.

For i > j, B can answer it as in Lemma 2.
For i = j, B first chooses random r′3, r

′
4 ∈ Zp and sets:

K1 = gα
′
1ηd

∗
1 (T

IDj

1)T−1
2 ,K2 = gr

′
3IDjηd

∗
1−r′3ηd

∗
2+(α′

2+r′4IDj)βd
∗
3−r′4βd

∗
4 .

At some point, A sends B the challenge identity ID∗ and (M0,M1). B chooses
a random bit b ∈ {0, 1} and computes the challenge ciphertext as follows:

C1 = Mb,1en(U1, g
ηb1

∗
)α

′
1 , C2 = Mb,2en(U1, g

βb3
∗
)α

′
2 , C3 = U1(U2)

ID∗
.

and gives the answer to A. Here we implicitly set s1 = μ1, s2 = μ2, (z1, z2)
T =

μ3A
−1(1, ID∗)T .

When (T1, T2) = (V1, V2) we properly simulate Gamej−1 and when (T1, T2) =
(W1,W2) we simulate Gamej′ . So B can leverage A’s advantage in distinguish-
ing Gamej−1 and Gamej′ to achieve the same advantage against the subspace
assumption. �

Lemma 5. Suppose that there exists a PPT algorithm A such that Advj
′

A −
AdvjA = ε, then there exists a PPT algorithm B with advantage ε in breaking the
subspace assumption with n = 6 and k = 2.

Proof. The proof of this lemma is similar to that of Lemma 4.

Lemma 6. Suppose that there exists a PPT algorithm A such that AdvqA −
AdvFinal

A = ε. Then there exists a PPT algorithm B with advantage ε in breaking
the subspace assumption with n = 6 and k = 1.

In order to prove this lemma, we define Gameqa , Gameqb , Gameqc as intermedi-
ate games:

Gameqa : It is exactly like Gameq except that in the C∗
3 part of the challenge

ciphertext, the coefficient of d2 is changed to a random value in Zp instead
of s1ID

∗.
Gameqb : It is exactly like Gameqa except that in the C∗

3 part of the challenge
ciphertext is independent of s1.

Gameqc : It is exactly like Gameqb except that in the C∗
3 part of the challenge

ciphertext, the coefficient of d4 is changed to a random value in Zp instead
of s2ID

∗.

We denote the advantage in these games as AdvqaA , AdvqbA , AdvqcA .

Lemma 7. Suppose that there exists a PPT algorithm A such that AdvqA −
AdvqaA = ε, then there exists a PPT algorithm B with advantage ε in breaking
the subspace assumption with n = 6 and k = 1.

Lemma 8. Suppose that there exists a PPT algorithm A such that AdvqaA −
AdvqbA = ε, then there exists a PPT algorithm B with advantage ε in breaking the
subspace assumption with n = 6 and k = 1.

Improving the Message-Ciphertext Rate of Lewko’s IBE Scheme 115

Lemma 9. Suppose that there exists a PPT algorithm A such that AdvqbA −
AdvqcA = ε, then we can construct a PPT algorithm B with advantage ε in break-
ing the subspace assumption with n = 6 and k = 1.

Lemma 10. Suppose that there exists a PPT algorithm A such that AdvqcA −
AdvFinal

A = ε, then there exists a PPT algorithm B with advantage ε in breaking
the subspace assumption with k = 1 and n = 6.

The proof of the above lemmata is similar to that of lemmata in [10] and readers
can refer to our full version for details.

The previous lemmata show that the real security game is indistinguishable
from GameFinal, in which the value of b is information-theoretically hidden from
the attacker, hence the attacker can only get negligible advantage in breaking
the security of our IBE scheme.

4.3 Anonymity

We note that in the final game, the challenge ciphertext is independent of the
challenge identity, so our scheme is anonymous. Lewko’s IBE scheme is anony-
mous for the same reason. Anonymous IBE is a useful component to construct
public key encryption with keyword search (PEKS) schemes.

5 Conclusion

In this paper, we improve the IBE scheme presented by Lewko in [10], and get
a fully secure anonymous IBE scheme in the prime order setting that has a
better message-ciphertext rate. Similar to Lewko’s scheme, we use dual pairing
vector space in prime order bilinear groups to realize the canceling and parameter
hiding property. The security of our scheme is based on the subspace assumption,
which can be reduced to the decisional linear assumption. We use the dual system
encryption in the security proof.

Acknowledgments. We are very grateful to anonymous reviewers for their help-
ful comments. We also thank Xianhui Lu and Yu Chen for helpful discussions.

References

1. Abdalla, M., et al.: Searchable Encryption Revisited: Consistency Properties, Re-
lation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

3. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

116 D. Jia et al.

4. Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with
Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

5. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-based Encryption (With-
out Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
290–307. Springer, Heidelberg (2006)

6. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext Security from Identity-based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

7. Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

8. Freeman, D.M.: Converting Pairing-based Cryptosystems from Composite-order
Groups to Prime-order Groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

9. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and New Techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006)

10. Lewko, A.: Tools for Simulating Features of Composite Order Bilinear Groups in
the Prime Order Setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

11. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute based Encryption and (Hierarichical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

12. Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

13. Okamoto, T., Takashima, K.: Homomorphic Encryption and Signatures from Vec-
tor Decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 57–74. Springer, Heidelberg (2008)

14. Okamoto, T., Takashima, K.: Hierarchical Predicate Encryption for Inner Prod-
ucts. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231.
Springer, Heidelberg (2009)

15. Ramanna, S.C., Chatterjee, S., Sarkar, P.: Variants of Waters’ Dual System Prim-
itives Using Asymmetric Pairings. In: Fischlin, M., Buchmann, J., Manulis, M.
(eds.) PKC 2012. LNCS, vol. 7293, pp. 298–315. Springer, Heidelberg (2012)

16. Shamir, A.: Identity-based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) Advances in Cryptology - CRYPTO 1984. LNCS, vol. 196,
pp. 47–53. Springer, Heidelberg (1985)

17. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE Un-
der Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009)

Accountable Trapdoor Sanitizable Signatures

Junzuo Lai1,2, Xuhua Ding1, and Yongdong Wu3

1 School of Information Systems, Singapore Management University, Singapore
{junzuolai,xhding}@smu.edu.sg

2 Department of Computer Science, Jinan University, China
3 Institute for Infocomm Research, Singapore

wydong@i2r.a-star.edu.sg

Abstract. Sanitizable signature (SS) allows a signer to partly delegate
signing rights to a predetermined party, called sanitizer, who can later
modify certain designated parts of a message originally signed by the
signer and generate a new signature on the sanitized message without
interacting with the signer. One of the important security requirements of
sanitizable signatures is accountability, which allows the signer to prove,
in case of dispute, to a third party that a message was modified by
the sanitizer. Trapdoor sanitizable signature (TSS) enables a signer of a
message to delegate the power of sanitization to any parties at anytime
but at the expense of losing the accountability property. In this paper,
we introduce the notion of accountable trapdoor sanitizable signature
(ATSS) which lies between SS and TSS. As a building block for con-
structing ATSS, we also introduce the notion of accountable chameleon
hash (ACH), which is an extension of chameleon hash (CH) and might
be of independent interest. We propose a concrete construction of ACH
and show how to use it to construct an ATSS scheme.

Keywords: Trapdoor Sanitizable Signature, Accountability, Chameleon
Hash.

1 Introduction

Ateniese et al. [1] introduced the notion of sanitizable signature (SS) and pre-
sented a generic construction based on chameleon hash (CH) [18]. Sanitizable
signatures allow a signer to partly delegate signing rights to a predetermined
party, called a sanitizer. During signature generation on a message, the signer
chooses a specific sanitizer who, with the knowledge of the putative signature,
can later modify certain designated parts of the message and generate a new
signature on the sanitized message without interacting with the signer. The
capability of modification renders sanitizable signatures useful in many applica-
tions, such as authenticated multicast, authenticated database outsourcing and
authenticated multimedia content distribution.

Sanitizable signatures are required to possess the following five security prop-
erties [1]:

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 117–131, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

118 J. Lai, X. Ding, and Y. Wu

Unforgeability. An outsider (i.e., neither the signer nor the sanitizer) should
not be able to forge the signer’s or the sanitizer’s signature.

Immutability. The sanitizer should not be able to produce valid signatures
for messages where it has modified other than the designated parts.

Privacy. Sanitized messages and their signatures should not reveal the original
data.

Transparency. An outsider should not be able to decide whether a message
has been sanitized or not.

Accountability. In case of a dispute, the signer can prove to a trusted third
party that a certain message was modified by the sanitizer.

Subsequently Canard et al. [8] introduced the notion of trapdoor sanitizable
signature (TSS), which is an extension of SS. TSS enables a signer to delegate
the power of sanitization for a signed message to any party. They also proposed
a generic construction of TSS based on identity-based chameleon hash (IBCH)
[2]. However, TSS does not satisfy the security requirement of accountability.

In this paper, we introduce the notion of accountable TSS (ATSS) which lies
between TSS and SS. Like SS, our ATSS scheme satisfies the accountability
property; it allows a signer to generate an ATSS signature on a message for a
predetermined candidate sanitizer. The ATSS signature alone does not provide
the candidate sanitizer the power to modify the underlying message and generate
a valid signature on the modified message. In order to generate a valid signature
on a modified message, similar to TSS, the candidate sanitizer needs to obtain
a trapdoor from the signer, in addition to the signer’s signature.

One possible application of ATSS is content authentication in tiered multi-
media distribution systems [12]. Such a system consists of a top-tier primary
content provider and a number of lower-tier affiliating providers each with its
own users. An example is a movie distributer in Hollywood that has a num-
ber of country distributers worldwide. Whenever a new movie is released, the
Hollywood distributer signs the video stream for a country distributor using
ATSS and sends the video stream and the signature to the country distributor
for previewing. Upon receiving the video stream, the country distributor verifies
the authenticity of the movie using the signature. If the country distributor is
interested in distributing the movie, it enters a contract with or make a pay-
ment to the Hollywood distributor. The latter in turn sends a trapdoor to the
former. With the knowledge of the trapdoor, the country distributor can then
modify/adapt the movie for its local market (e. g., adding subtitles in the local
language) and generate a valid signature on the modified video stream.

1.1 Our Contribution

Contributions of the paper can be summarized as follows:

1. We introduce the notion of ATSS. In an ATSS scheme, a signer needs to prede-
termine a user as a candidate sanitizer during the signature generation. This
signature alone does not allow the candidate sanitizer to produce a new signa-
ture on a sanitized message. To generate a new signature on a sanitized mes-
sage, the candidate sanitizer needs to obtaina trapdoor fromtheoriginal signer.

Accountable Trapdoor Sanitizable Signatures 119

2. We extend the notion of CH by introducing the notion of accountable CH
(ACH) and define its security requirements. We propose a concrete construc-
tion of ACH that satisfies the security requirements in the random oracle
model [6].

3. Based on ACH, we present a generic construction of ATSS. Instantiating the
generic construction with our concrete ACH scheme, we can obtain the first
ATSS scheme.

1.2 Related Work

Sanitizable Signature. The notion of SS was introduced by Ateniese et al. [1].
Such signatures allow a sanitizer to modify certain designated parts of a signed
message and generate a new signature on the sanitized message without inter-
acting with the signer. Klonowski and Lauks [17] presented several extensions of
SS, including limitation of the set of possible modifications of a single mutable
block and limitation of the number of modifications of mutable blocks. Pöhls et
al. [22] integrated SS schemes into the XML signature specification.

Ateniese et al. [1] identified five security requirements of SS schemes, un-
forgeability, immutability, privacy, transparency and accountability. Brzuska et
al. [7] revisited these security requirements and investigated their relationships,
showing for example that transparency implies privacy.

Miyazaki et al. [21] used the notion of SS in a slightly different vein. Their
SS schemes [21,15,20] allow a sanitizer to only delete predetermined parts of a
signed message.

The notion of incremental cryptography [5] and homomorphic signatures,
which encompass transitive [19], redactable [16] and context-extraction signa-
tures [24], are also related to SS. We refer the reader to [1] for details.

Trapdoor Sanitizable Signature. Canard et al. [8] introduced the notion of TSS,
in which the power of sanitization is given to possibly several entities. Based on
IBCH, Canard et al. [8] proposed a generic construction of TSS. Recently, Yum
et al. [25] presented another generic construction of TSS from ordinary signature
schemes; therefore, one-way functions imply TSS. Bao et al. [4] extended TSS
for the hierarchical setting.

Chameleon Hash. Our work is also related to CH functions, which are random-
ized collision-resistant hash functions with the additional property that given
a trapdoor, one can efficiently generate collisions. CH was first introduced by
Krawczyk and Rabin [18]. Other CH constructions were proposed subsequently
[9,3,14,13,11] .

Ateniese and Medeiros [2] extended CH to identity-based setting [23] and
introduced the notion of IBCH. Zhang et al. [26] and Chen et al. [10] followed
their work.

120 J. Lai, X. Ding, and Y. Wu

1.3 Organization

The rest of the paper is organized as follows. Some preliminaries are given in
Section 2. The notion and security requirements of ATSS are introduced in Sec-
tion 3. In Section 4, we present the notion and security requirements of ACH,
and propose a concrete construction. In Section 5, we propose a generic con-
struction of ATSS from ACH and present a specific ATSS scheme based on our
ACH scheme. Finally, we state our conclusion in Section 6.

2 Preliminaries

If L is a positive integer, then [1, L] = {1, 2, . . . , L}. If A,B are two sets,
A\B = {x ∈ A|x /∈ B}. If x1, x2, . . . are strings, then x1‖x2‖ . . . denotes their
concatenation. We denote byR the range of random number. We say that a func-
tion f(λ) is negligible if for every c > 0 there exists an λc such that f(λ) < 1/λc

for all λ > λc.

2.1 Bilinear Pairings

Let G be a cyclic multiplicative group of prime order p and GT be a cyclic
multiplicative group of the same order p. A bilinear pairing is a map e : G×G→
GT with the following properties:

– Bilinearity: ∀g1, g2 ∈ G, ∀a, b ∈ Z∗
p, we have e(ga1 , g

b
2) = e(g1, g2)

ab;
– Non-degeneracy: There exist g1, g2 ∈ G such that e(g1, g2) �= 1;
– Computability: There exists an efficient algorithm to compute e(g1, g2) for
∀g1, g2 ∈ G.

2.2 Computational Diffie-Hellman (CDH) Assumption

The security of our ACH scheme will be reduced to the hardness of the com-
putational Diffie-Hellman (CDH) problem in the bilinear map group system
〈p,G,GT , e〉 in which the ACH scheme is constructed.

Definition 1. Given a bilinear map group system 〈p,G,GT , e〉, a generator g
of G and elements ga, gb ∈ G where a, b are selected uniformly at random from
Z∗
p, the CDH problem in the bilinear map group system is to compute gab. We

say that the CDH assumption holds in a bilinear map group system 〈p,G,GT , e〉
if no probabilistic polynomial-time algorithm can solve the CDH problem in the
bilinear map group system with non-negligible probability.

3 Accountable Trapdoor Sanitizable Signature and Its
Security Requirements

ATSS lies between sanitizable signature and trapdoor sanitizable signature. Like
a TSS scheme, an ATSS scheme includes the algorithms: GlobalSetup, KeyGen,

Accountable Trapdoor Sanitizable Signatures 121

Sign, Trapdoor, Sanitize and Verify. However, in ATSS, besides the private key of
the signer, the inputs of the Sign algorithm include the public key of a candidate
sanitizer and a transaction identifer TID. In order to generate a new signature
on a sanitized message, in ATSS, the inputs of the Sanitize algorithm include
the private key of the candidate sanitizer and a trapdoor associated with the
transaction identifier TID generated by the signer using Trapdoor algorithm, not
just a trapdoor associated with the transaction identifier as in TSS or just the
private key of the sanitizer as in SS.

In addition, to settle disputes about the origin of a message-signature pair, an
algorithm Proof enables the signer to produce a proof π. The proof π is generated
from a set of previously signed messages. A Judge algorithm then uses the proof
π to decide if a valid message-signature pair was created by the signer or the
sanitizer (the lack of such a proof is interpreted as a signer origin).

Concretely, an ATSS scheme is a tuple of algorithms described as follows:

GlobalSetup takes as input a security parameter λ. It produces a common public
parameter param to be used by all parties in the system.

KeyGen takes as input a security parameter λ and the common public parameter
param. It generates a public/private key pair (pk, sk). Every party in the
system uses this randomized algorithm to generate a private/public key pair
himself or herself.
For presentation simplicity, we assume there exist a single singer and multiple
sanitizers in the system. We denote by (pksig , sksig) the key pair of the signer,
and by (pksan, sksan) the key pair of a sanitizer.

Sign takes as input a sanitizer’s public key pksan, a message m = m1‖ · · · ‖mL,
a set of indices I ⊆ [1, L] that are sanitizable, a transaction identifier TID
and the signer’s private key sksig . It outputs a signature σ on m.
We assume that each message signed has a unique transaction identifier.

Trapdoor takes as input a message m, a set of indices I that are sanitizable,
a transaction identifier TID, a valid signature σ on (pksig , pksan,m, I,TID)
and the signer’s private key sksig . It outputs a trapdoor tdTID.

Sanitize takes as input the signer’s public key pksig, a message m, a set of the
indices I that are sanitizable, a transaction identifier TID, a valid signature
σ on (pksig , pksan,m, I,TID), a trapdoor tdTID associated with TID, the san-
itizer’s private key sksan and a new message m′. It outputs a new signature
σ′ on (pksig, pksan,m

′, I,TID).
Verify takes as input param, the signer’s public key pksig , a sanitizer’s public key

pksan, a message m, a set of the indices I that are sanitizable, a transaction
identifier TID and a putative signature σ. It outputs 1 if the signature σ on
m is valid and 0 otherwise.

Proof takes as input param, the signer’s private key sksig, a valid signa-
ture σ on (pksig , pksan,m, I,TID), and a set of (polynomially many) addi-

tional message-signature pairs ((pksig , pk
(i)
san,m(i), I(i),TID(i)), σ(i))i=1,2,...,q.

It outputs a proof π ∈ {0, 1}∗.
Judge takes as input param, the signer’s public key pksig, the sanitizer’s public

key pksan, a valid signature σ on (pksig , pksan,m, I,TID) and a proof π. It

122 J. Lai, X. Ding, and Y. Wu

outputs a decision d ∈ {Sig/San} indicating whether the message-signature
pair ((pksig , pksan,m, I,TID), σ) was created by the signer or the sanitizer.

The usual correctness properties should hold for an ATSS scheme, saying that
genuinely signed or sanitized messages are accepted. Formally, for any secu-
rity parameter λ, any message m = m1‖ · · · ‖mL, any set of indices I ⊆ [1, L],
any transaction identifier TID, param ← GlobalSetup(λ), (pksig, sksig) ←
KeyGen(λ, param), (pksan, sksan) ← KeyGen(λ, param), σ ← Sign(pksan,m, I,
TID, sksig), tdTID ← Trapdoor(m, I,TID, σ, sksig), and σ′ ← Sanitize(pksig ,m, I,
TID, σ,m′, tdTID, sksan), we must have Verify(param, pksig , pksan,m, I,TID, σ) =
1 and Verify(param, pksig , pksan,m

′, I,TID, σ′) = 1.
The security requirements of an ATSS scheme include unforgeability, indis-

tinguishability and accountability. The unforgeability and indistinguishability re-
quirements of ATSS are extended from the security requirements of TSS [8].
Informally, unforgeability requires that an outsider be not able to forge a signa-
ture on the original or the sanitized message, and indistinguishability requires
that an outsider be not able to decide whether a message has been sanitized or
not.

Accountability requires that the origin of a (sanitized) signature be undeni-
able. We distinguish between sanitizer- and signer-accountability, as did in [7].
Informally, sanitizer-accountability implies that if a message has not been signed
by the signer, then even a malicious sanitizer should not be able to make a judge
accuse the signer, and signer-accountability implies that if a signed message has
not been sanitized, then even a malicious signer should not be able to make the
judge accuse the sanitizer.

Unforgeability: An ATSS scheme is existentially unforgeable under adaptive
chosen message attacks, if for any probabilistic polynomial-time adversaryA, the
probability that A succeeds in the following game between A and a challenger
is negligible in the security parameter λ:

Setup. The challenger runs param ← GlobalSetup(λ), (pksig , sksig) ← KeyGen
(λ, param), (pksan, sksan) ← KeyGen(λ, param), and sends the common
public parameter param, the signer’s public key pksig and the sanitizer’s
public key pksan to the adversary A.

Query Phase. The adversary A adaptively issues queries:
1. OSign

ATSS query on (m, I,TID), where I ⊆ [1, L] is a set of indices and TID
is a transaction identifier: The challenger forwards the valid signature σ
on (pksig , pksan,m, I,TID) to the adversary.

2. OTrapdoor
ATSS query on (m, I,TID, σ), where σ is a valid signature on (pksig ,

pksan,m, I,TID): The challenger forwards the corresponding trapdoor
tdTID to the adversary.

3. OSanitize
ATSS query on (m, I,TID, σ,m′), where mi = m′

i for all
i /∈ I: The challenger forwards the new valid signature σ′ on
(pksig , pksan,m

′, I,TID) to the adversary.
Output. A outputs (m∗, I∗,TID∗, σ∗) and succeeds if the following conditions

hold.

Accountable Trapdoor Sanitizable Signatures 123

1. Verify(param, pksig , pksan,m
∗, I∗,TID∗, σ∗) = 1.

2. A never queries OSign
ATSS oracle on (m∗, I∗,TID∗).

3. (m∗, σ∗) does not come from OSanitize
ATSS oracle, i.e., A never queries OSanitize

ATSS

oracle on (m, I∗,TID∗, σ,m∗), where σ is a valid signature on (pksig, pksan,
m, I∗,TID∗) andmi = m∗

i for all i /∈ I∗.

4. A never queries OTrapdoor
ATSS oracle on (m, I∗,TID∗, σ), where σ is a valid

signature on (pksig , pksan,m, I∗,TID∗) and mi = m∗
i for all i /∈ I∗.

Indistinguishability: The indistinguishability of an ATSS scheme requires
that the output distributions of Sign algorithm and Sanitize algorithm be com-
putational indistinguishable. In other words, for all sufficiently large λ, any
param ← GlobalSetup(λ), (pksig , sksig) ← KeyGen(λ, param), (pksan, sksan) ←
KeyGen(λ, param), any set of indices I ⊆ [1, L], any message pairs m,m′ such
that mi = m′

i for all i /∈ I, any transaction identifier TID, the following distri-
bution ensembles DSanitize and DSign are computational indistinguishable:

DSanitize = {(m′, σ̂)|σ ← Sign(pksan,m, I,TID, sksig),

tdTID ← Trapdoor(m, I,TID, σ, sksig),

σ̂ ← Sanitize(pksig,m, I,TID, σ,m′, tdTID, sksan)}λ,param,pksig ,pksan,I,TID,

DSign = {(m′, σ′)|σ′ ← Sign(pksan,m
′, I,TID, sksig)}λ,param,pksig ,pksan,I,TID.

Sanitizer-accountability: An ATSS scheme is sanitizer-accountable, if for any
probabilistic polynomial-time adversary A, the probability that A succeeds in
the following game between A and a challenger is negligible in the security
parameter λ:

Setup. The challenger runs param ← GlobalSetup(λ), (pksig , sksig) ← KeyGen
(λ, param), and sends the common public parameter param and the signer’s
public key pksig to the adversary A.

Query Phase. The adversary A adaptively issues queries:
1. OSign

ATSS query on (pksan,m, I,TID), where pksan is a sanitizer’s public key
chosen by A, I ⊆ [1, L] is a set of indices and TID is a transaction identi-
fier: The challenger forwards the valid signature σ on (pksig , pksan,m, I,
TID) to the adversary.

2. OTrapdoor
ATSS query on (pksan,m, I,TID, σ), where σ is a valid signature on

(pksig , pksan,m, I,TID): The challenger forwards the corresponding trap-
door tdTID to the adversary.

Output. A outputs (pksig , pk
∗
san,m

∗, I∗,TID∗, σ∗) and succeeds if the following
conditions hold.
1. Verify(param, pksig , pk

∗
san,m

∗, I∗,TID∗, σ∗) = 1.

2. ((pksig , pk
∗
san,m

∗, I∗,TID∗), σ∗) �= ((pksig , pk
(i)
san,m(i), I(i),TID(i)), σ(i))

for all i = 1, 2, . . . , q, where (pk
(i)
san,m(i), I(i),TID(i)) and σ(i) for i =

1, 2, . . . , q denote the queries and answers to and from oracle OSign
ATSS .

3. Sig ← Judge(param, ((pksig , pk
∗
san,m

∗, I∗,TID∗), σ∗), π∗), where π∗ ←
Proof(param, sksig , ((pksig , pk

∗
san,m

∗, I∗,TID∗), σ∗), ((pksig , pk
(i)
san,m(i),

I(i),TID(i)), σ(i))i=1,2,...,q).

124 J. Lai, X. Ding, and Y. Wu

Signer-accountability: An ATSS scheme is signer-accountable, if for any prob-
abilistic polynomial-time adversaryA, the probability that A succeeds in the fol-
lowing game between A and a challenger is negligible in the security parameter
λ:

Setup. The challenger runs param← GlobalSetup(λ), (pksan, sksan)← KeyGen
(λ, param), and sends the common public parameters param and the sani-
tizer’s public key pksan to the adversary A.

Query Phase. The adversary A adaptively issues OSanitize
ATSS query on (pksig ,m,

I,TID, σ, tdTID,m
′), where pksig is a singer’s public key chosen by A, σ is a

valid signature on (pksig , pksan,m, I,TID), tdTID is the trapdoor associated
with TID and mi = m′

i for all i /∈ I: The challenger forwards the new valid
signature σ′ on (pksig , pksan,m

′, I,TID) to the adversary.
Output. A outputs (pk∗sig , pksan,m

∗, I∗,TID∗, σ∗, π∗) and succeeds if the fol-
lowing conditions hold.
1. Verify(param, pk∗sig , pksan,m

∗, I∗,TID∗, σ∗) = 1.
2. San← Judge(param, ((pk∗sig , pksan,m

∗, I∗,TID∗), σ∗), π∗).

3. ((pk∗sig , pksan,m
∗, I∗,TID∗), σ∗) �= ((pk

(i)
sig , pksan,m

(i), I(i),TID(i)), σ(i))

for all i = 1, 2, . . . , q, where ((pk
(i)
sig , pksan,m

(i), I(i),TID(i)), σ(i)) for i =

1, 2, . . . , q denote the answers from oracle OSanitize
ATSS .

4 Accountable Chameleon Hash and Its Construction

In this section, we first introduce and formulate accountable chameleon hash
(ACH). Then, we present a construction of ACH and analyze its security in the
random oracle model.

4.1 Accountable Chameleon Hash

ACH is a new paradigm which lies between chameleon hash (CH) and identity-
based chameleon hash (IBCH). The inputs of the Hash algorithm of an ACH
include two users’ public keys and a transaction identifier TID, not just the
public key of a single user as in a CH scheme or just an identity as in an IBCH
scheme. In order to find a collision, the inputs of the Forge algorithm of an ACH
scheme include one user’s private key and a trapdoor information associated
with the transaction identifer TID generated by the other user, not just a single
user’s private key as in a CH scheme or just a trapdoor information associated
with an identity as in an IBCH scheme.

Concretely, an ACH scheme consists of the following algorithms:

GlobalSetup takes as input a security parameter λ. It produces a common public
parameter param to be used by all parties in the system.

KeyGen takes as input a security parameter λ and the common public parameter
param. It generates a public/private key pair (pk, sk). All parties in the
system use this randomized algorithm to generate a private/public key pair
himself or herself.

Accountable Trapdoor Sanitizable Signatures 125

Hash takes as input param, user i’s public key pki, user j’s public key pkj , a
message m and a unique transaction identifier TID. It chooses a random r
and outputs a hash value h.

Trapdoor takes as input user i’s private key ski and a transaction identifier TID.
It outputs the trapdoor information tdi,TID associated with user i and the
transaction identifier TID.

Forge takes as input user j’s private key skj , the trapdoor information tdi,TID
associated with user i and a transaction identifier TID, the hash value h on a
messagem with user i’s public key pki, user j’s public key pkj , the transaction
identifier TID, random r, and a messagem′. It outputs a random r′.

For correctness, we require that Hash(param, pki, pkj ,TID,m, r) = h = Hash
(param, pki, pkj ,TID,m

′, r′) and m′ �= m, where r′ ← Forge(skj , tdi,TID, pki, pkj ,
TID,m, r, h,m′), tdi,TID ← Trapdoor(ski,TID). The security of an ACH scheme
consists of two requirements: resistance to collision forgery under active attacks
and forgery indistinguishability.

Resistance to collision forgery under active attacks: The accountable
chameleon hash scheme is secure against (existential) collision forgery under ac-
tive attacks if, for any probabilistic polynomial-time algorithmA, the probability
that A succeeds in the following game between A and a challenger is negligible
in the security parameter λ:

Setup. The challenger runs param ← GlobalSetup(λ), (pki, ski) ← KeyGen(λ,
param), (pkj , skj)← KeyGen(λ, param), and sends the common public pa-
rameter param, user i’s public key pki and user j’s public/private key pair
(pkj , skj) to the adversary A.

Query Phase. The adversary A adaptively issues queries OTrapdoor
ACH on a trans-

action identifier TID. The challenger forwards the trapdoor information tdi,TID
associated with user i and the transaction identifier TID to the adversary.

Output. A outputs (TID∗,m, r,m′, r′) and succeeds if the following conditions
hold.
1. Hash(param, pki, pkj,TID

∗,m, r) = Hash(param, pki, pkj ,TID
∗,m′, r′)

and m′ �= m.
2. A never queries OTrapdoor

ACH on TID∗.

Forgery indistinguishability: An ACH scheme is said to be forgery indistin-
guishable if, for all sufficiently large λ, any param ← GlobalSetup, (pki, ski) ←
KeyGen(λ, param), (pkj , skj) ← KeyGen(λ, param), all transaction identifier
TID, and all pairs of messages m and m′, the following distribution ensembles
are computational indistinguishable:

DForge = {(m′, r̂, h)|r $←R, h← Hash(param, pki, pkj,TID,m, r),

tdi,TID ← Trapdoor(ski,TID),

r̂← Forge(skj , tdi,TID, pki, pkj ,TID,m, r, h,m′)}λ,param,pki,pkj ,TID,

DHash = {(m′, r′, h′)|r′ $←R,
h′ ← Hash(param, pki, pkj ,TID,m

′, r′)}λ,param,pki,pkj ,TID.

126 J. Lai, X. Ding, and Y. Wu

4.2 Construction

Our specific construction of an ACH scheme consists of the following algorithms:

GlobalSetup Given a security parameter λ, it first generates a bilinear map
group system 〈p,G,GT , e〉. Then, it picks a generator g of G and chooses a
cryptographic hash functionH : {0, 1}∗ → G. The common public parameter
is param = (p,G,GT , e, g,H).

KeyGenGiven a security parameter λ and the common public parameter param,
user i first chooses xi ∈ Z∗

p randomly. Then, set his public key as pki = gxi ,
and the private key as ski = xi.

Hash Given param, user i’s public key pki, user j’s public key pkj , a message
m ∈ Z∗

p and a unique transaction identifier TID, it chooses R ∈ G uniformly
at random and computes h = e(R, g) · e(H(TID)m, pki · pkj). Finally, it
outputs the hash value h.

Trapdoor Given user i’s private key ski = xi and a transaction identifier TID,
it computes tdi,TID = H(TID)ski = H(TID)xi , and outputs the trapdoor
information tdi,TID associated with user i and transaction identifier TID.

Forge Given user j’s private key skj , the trapdoor information tdi,TID associated
with user i and transaction identifier TID, the hash value h on a message m
with user i’s public key pki, user j’s public key pkj , transaction identifier TID,
random R, and a message m′, it computes and outputs R′ = R · (H(TID)skj ·
tdi,TID)

m−m′
.

Note that, for a forgery, we have

Hash(param, pki, pkj ,TID,m
′, R′)

= e(R′, g) · e(H(TID)m
′
, pki · pkj)

= e(R · (H(TID)skj · tdi,TID)m−m′
, g) · e(H(TID)m

′
, pki · pkj)

= e(R, g) · e(H(TID)m, pki · pkj)
= Hash(param, pki, pkj ,TID,m,R).

So, the above scheme satisfies correctness. We now state the security theorems
of the scheme. The proofs will be given in the full version of the paper due to
the space limitation.

Theorem 1. In the random oracle model, the above construction of accountable
CH is secure against (existential) collision forgery under active attacks, assuming
that the CDH assumption holds in the bilinear map group system 〈p,G,GT , e〉.

Theorem 2. The above construction of ACH is forgery indistinguishable.

5 Generic Construction of ATSS from ACH

Based on IBCH, Canard et al. [8] proposed a generic construction of TSS.
In their construction, to sign a message m = m1‖ · · · ‖mL, the signer first

Accountable Trapdoor Sanitizable Signatures 127

sets m̃ = m̃1‖ · · · ‖m̃L, where m̃i = mi if i /∈ I and otherwise, m̃i = hi =
IBCH.Hash(param, ID,mi, ri). The set of indices I ⊆ [1, L] that are sanitizable
and the identity ID associated with the transaction are generated by the signer.
Then, the signer signs the message m̃ using a conventional signature scheme.
Obviously, an entity with the trapdoor associated with ID generated by the
signer can modify mi and generate a new signature on the sanitized message.
Our construction of ATSS is similar to the construction proposed by Canard et
al. [8], but in order to achieve accountability we use ACH in place of IBCH. In
order to generate a new signature on a sanitized message, the sanitizer need to
use his private key and a trapdoor information associated with the transaction
identifier generated by the signer to find a collision of the ACH. The signer can
then use the collision to convince a trusted third party that a message is sani-
tized, as nobody apart from the sanitizer has more than a negligible probability
of successfully finding a second message that produces the same signing value.

Now, given a regular signature scheme Σ = (Σ.KeyGen, Σ.Sign, Σ.Verify), and
an ACH scheme Π = (Π.GlobalSetup, Π.KeyGen, Π.Hash, Π.Trapdoor, Π.Forge),
we define the 8-tuple algorithms (GlobalSetup,KeyGen, Sign,Trapdoor, Sanitize,
Verify,Proof, Judge) of an ATSS scheme as follows:

GlobalSetup Given a security parameter λ, it first runs paramΠ ← Π.
GlobalSetup(λ), and chooses two cryptographic hash functionsH1 : {0, 1}∗ →
{0, 1}λ, H2 : {0, 1}∗ → R. Then, it publishes the common public parameter
param = (paramΠ , H1, H2).

KeyGenGiven a security parameterλ and the commonpublic parameterparam, it
first runs (pkΣ , skΣ)← Σ.KeyGen(λ), (pkΠ , skΠ)← Π.KeyGen(λ, paramΠ).
Then, it picks a key κsig ∈ {0, 1}λ for the hash function H1, sets the public
key pk = (pkΣ , pkΠ) and the private key sk = (skΣ , skΠ , κsig). Finally, it
publishes pk and keeps sk secret. We denote by pksig = (pksig,Σ , pksig,Π) and
sksig = (sksig,Σ , sksig,Π , κsig) the public key and private key of the signer, and
by pksan = (pksan,Σ , pksan,Π) and sksan = (sksan,Σ , sksan,Π , κsan) the public
key and private key of a sanitizer.

Sign Given a sanitizer’s public key pksan = (pksan,Σ , pksan,Π), a message m =
m1‖ · · · ‖mL, a set of indices I ⊆ [1, L] that are sanitizable, a transaction
identifier TID and the signer’s private key sksig = (sksig,Σ , sksig,Π , κsig), it
proceeds as follows.

1. Compute z = H1(κsig ,TID); for all i ∈ [1, L]\I, set m̃i = mi.
2. For all i ∈ I, compute ri = H2(z, i) and hi = Π.Hash(param, pksig,Π ,

pksan,Π , TID,mi, ri) and set m̃i = hi. Let r be the concatenation of all
ri, i ∈ I.

3. Set m̃ = m̃1‖ · · · ‖m̃L and run σ̃ ← Σ.Sign(m̃, sksig,Σ).
4. Finally, set σ = σ̃‖r and output the signature σ on m.

Trapdoor Given a message m, a set of the indices I that are sanitizable, a
transaction identifier TID, a valid signature σ on (pksig , pksan,m, I,TID)
and the signer’s private key sksig = (sksig,Σ , sksig,Π , κsig), it runs tdTID ←
Π.Trapdoor(sksig,Π ,TID), and outputs the trapdoor tdTID associated with
TID.

128 J. Lai, X. Ding, and Y. Wu

Sanitize Given the signer’s public key pksig = (pksig,Σ , pksig,Π), a message
m = m1‖ · · · ‖mL, a set of indices I ⊆ [1, L] that are sanitizable, the
transaction identifier TID, a valid signature σ = σ̃‖r on (pksig , pksan =
(pksan,Σ , pksan,Π),m, I,TID), a trapdoor tdTID associated with TID, the san-
itizer’s private key sksan = (sksan,Σ , sksan,Π , κsan) and a new message
m′ = m′

1‖ · · · ‖m′
L, it proceeds as follows.

1. Let I ′ = {i ∈ [1, L]|mi �= m′
i}. Check whether I ′ ⊆ I. If not, output ⊥,

denoted an error.
2. Retrieve {ri, i ∈ I} from the signature σ = σ̃‖r.
3. For all i ∈ I ′, compute hi ← Π.Hash(param, pksig,Π , pksan,Π ,TID,mi, ri)

and r′i ← Π.Forge(sksan,Π , tdTID, pksig,Π , pksan,Π ,TID,mi, ri, hi,m
′
i).

4. For all i ∈ I\I ′, set r′i = ri. Let r
′ be the concatenation of all r′i, i ∈ I.

5. Setσ′ = σ̃‖r′ and output the new signatureσ′ on (pksig , pksan,m
′, I,TID).

Verify Given param, the signer’s public key pksig = (pksig,Σ , pksig,Π), a sani-
tizer’s public key pksan = (pksan,Σ , pksan,Π), a message m = m1‖ · · · ‖mL, a
set of indices I ⊆ [1, L] that are sanitizable, a transaction identifier TID and
a putative signature σ = σ̃‖r, it proceeds as follows.
1. Retrieve {ri, i ∈ I} from the signature σ = σ̃‖r.
2. For all i ∈ [1, L]\I, set m̃i = mi.
3. For all i ∈ I, compute hi = Π.Hash(param, pksig,Π , pksan,Π ,TID,mi, ri)

and set m̃i = hi.
4. Set m̃ = m̃1‖ · · · ‖m̃L and output Σ.Verify(pksig,Σ , m̃, σ̃).

Proof Given param, the signer’s private key sksig = (sksig,Σ , sksig,Π , κsig), a
valid message-signature pair ((pksig = (pksig,Σ , pksig,Π), pksan = (pksan,Σ ,
pksan,Π),m, I,TID), σ), and a set of (polynomially many) additional message-

signature pairsMesSigS = ((pksig , pk
(i)
san,m(i), I(i),TID(i)), σ(i))i=1,2,...,q gen-

erated originally by the signer, it first searches the setMesSigS to find a tuple

((pksig , pk
(i)
san,m(i), I(i),TID(i)), σ(i)) such that

1. pksan = pk
(i)
san, I = I(i) and TID = TID(i).

2. I ′ ⊆ I, where I ′ = {j ∈ [1, L]|mj �= m
(i)
j }. Note that, m = m1‖ · · · ‖mL

and m(i) = m
(i)
1 ‖ · · · ‖m

(i)
L .

3. Π.Hash(param, pksig,Π , pksan,Π ,TID,mj, rj) = Π.Hash(param, pksig,Π ,

pk
(i)
san,Π , TID,m

(i)
j , r

(i)
j) for all j ∈ I ′, where σ = σ̃‖r, r = {rj , j ∈ I},

σ(i) = σ̃‖r(i) and r(i) = {r(i)j , j ∈ I}.
Then, it computes zi = H1(TID

(i), κsig). Finally, it outputs the proof π =

(pksig , pk
(i)
san,m(i), I(i),TID(i), σ(i), zi).

Judge Given param, the signer’s public key pksig = (pksig,Σ , pksig,Π), the san-
itizer’s public key pksan = (pksan,Σ , pksan,Π), a valid message-signature

pair ((pksig , pksan,m, I,TID), σ) and a proof π = (pksig , pk
(i)
san,m(i), I(i),

TID(i), σ(i), zi). Let σ = σ̃‖r where r = {rj , j ∈ I}, and σ(i) = σ̃‖r(i) where

r(i) = {r(i)j , j ∈ I}, it first checks whether the following conditions hold:

1. pksan = pk
(i)
san, I = I(i) and TID = TID(i);

2. (m,σ) �= (m(i), σ(i));

Accountable Trapdoor Sanitizable Signatures 129

3. I ′ ⊆ I, where I ′ = {j ∈ [1, L]|mj �= m
(i)
j }. Note that, m = m1‖ · · · ‖mL

and m(i) = m
(i)
1 ‖ · · · ‖m

(i)
L ;

4. Π.Hash(param, pksig,Π , pksan,Π ,TID,mj, rj) = Π.Hash(param, pksig,Π ,

pksan,Π , TID,m
(i)
j , r

(i)
j) for all j ∈ I ′;

5. r
(i)
j = H2(zi, j) for all j ∈ I.

If so, it outputs San indicating the message-signature pair ((pksig , pksan,m,
I, TID), σ) was created by the sanitizer; else it outputs Sig indicating the
message-signature pair ((pksig , pksan,m, I,TID), σ) was created by the signer.

It is obvious that the above ATSS scheme satisfies correctness. We now state the
security theorems of the scheme, including unforgeability, indistinguishability and
accountability. The proofs will be given in the full version of the paper due to
the space limitation.

Theorem 3 (Unforgeability). If the signature scheme Σ is existential un-
forgeable under adaptive chosen message attacks and the ACH scheme Π is re-
sistant to collision forgery under active attacks, the above construction of ATSS
is existential unforgeable under adaptive chosen message attacks.

Theorem 4 (Indistinguishability). If the ACH scheme Π is forgery indis-
tinguishable, in the random oracle model, the following distributions DSanitize

and DSign are computational indistinguishable for all sufficiently large λ, any
param ← GlobalSetup, (pksig , sksig) ← KeyGen(λ, param), (pksan, sksan) ←
KeyGen(λ, param), any set of indices I ⊆ [1, L], any message pairs m,m′ such
that mi = m′

i for all i /∈ I, and any transaction identifier TID:

DSanitize = {(m′, σ̂)|σ ← Sign(pksan,m, I,TID, sksig),

tdTID ← Trapdoor(m, I,TID, σ, sksig),

σ̂ ← Sanitize(pksig,m, I,TID, σ,m′, tdTID, sksan)}λ,param,pksig ,pksan,I,TID,

DSign = {(m′, σ′)|σ′ ← Sign(pksan,m
′, I,TID, sksig)}λ,param,pksig ,pksan,I,TID.

Theorem 5 (Sanitizer-accountability). If the signature scheme Σ is exis-
tential unforgeable under adaptive chosen message attacks, the above construc-
tion of ATSS is sanitizer-accountable.

Theorem 6 (Signer-accountability). If the ACH scheme Π is resistant to
collision forgery under active attacks, in the random oracle model, the above
construction of ATSS is signer-accountable.

6 Conclusion and Future Work

In this paper, we motivated and introduced the notion of accountable trapdoor
sanitizable signature (ATSS). As a building block of ATSS and that might be
of independent interest, we also introduced the notion of accountable chameleon
hash (ACH), which is an extension of chameleon hash. We defined the secu-
rity requirements for ACH, and proposed a concrete construction that satisfies

130 J. Lai, X. Ding, and Y. Wu

the requirements based on the CDH assumption in the random oracle model. Fi-
nally, Based on ACH, we proposed a generic construction of ATSS. Instantiating
the generic construction with our ACH scheme, we constructed the first ATSS
scheme. An important future research problem is to construct ACH schemes
(and thus accordingly, ATSS schemes) in the standard model.

Acknowledgement. The authors thank the anonymous reviewers for their
helpful comments. This work is in part supported by the Office of Research,
Singapore Management University. The first author is partially supported by
Natural Science Foundation of China (No. 61272453).

References

1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

2. Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In:
Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg (2004)

3. Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes.
In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179.
Springer, Heidelberg (2005)

4. Bao, F., Deng, R.H., Ding, X., Lai, J., Zhao, Y.: Hierarchical identity-based
chameleon hash and its applications. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011.
LNCS, vol. 6715, pp. 201–219. Springer, Heidelberg (2011)

5. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

7. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

8. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their
application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg
(2008)

9. Chen, X., Zhang, F., Kim, K.: Chameleon hashing without key exposure. In: Zhang,
K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 87–98. Springer, Heidelberg
(2004)

10. Chen, X., Zhang, F., Susilo, W., Tian, H., Li, J., Kim, K.: Identity-based chameleon
hash scheme without key exposure. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.
LNCS, vol. 6168, pp. 200–215. Springer, Heidelberg (2010)

11. Chen, X., Zhang, F., Tian, H., Wei, B., Kim, K.: Key-exposure free chameleon
hashing and signatures based on discrete logarithm systems. Cryptology ePrint
Archive, Report 2009/035 (2009), http://eprint.iacr.org/

http://eprint.iacr.org/

Accountable Trapdoor Sanitizable Signatures 131

12. Deng, R.H., Yang, Y.: A study of data authentication in proxy-enabled multime-
dia delivery systems: Model, schemes and application. ACM T. on Multimedia
Computing, Communications and Applications 5(4), 28.1–28.20 (2009)

13. Gao, W., Li, F., Wang, X.: Chameleon hash without key exposure based on schnorr
signature. Computer Standards & Interfaces 31(2), 282–285 (2009)

14. Gao, W., Wang, X., Xie, D.: Chameleon hashes without key exposure based on
factoring. J. Comput. Sci. Technol. 22(1), 109–113 (2007)

15. Izu, T., Kanaya, N., Takenaka, M., Yoshioka, T.: PIATS: A partially sanitizable
signature scheme. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 72–83. Springer, Heidelberg (2005)

16. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

17. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee, B.
(eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

18. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS (2000)
19. Micali, S., Rivest, R.L.: Transitive signature schemes. In: Preneel, B. (ed.) CT-RSA

2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002)
20. Miyazaki, K., Hanaoka, G., Imai, H.: Invisibly sanitizable digital signature scheme.

IEICE Transactions 91-A(1), 392–402 (2008)
21. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S.,

Imai, H.: Digitally signed document sanitizing scheme with disclosure condition
control. IEICE Transactions 88-A(1), 239–246 (2005)

22. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable signatures in xml signature -
performance, mixing properties, and revisiting the property of transparency. In:
Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer,
Heidelberg (2011)

23. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

24. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

25. Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In:
Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Hei-
delberg (2010)

26. Zhang, F., Safavi-Naini, R., Susilo, W.: Id-based chameleon hashes from bilinear
pairings. Cryptology ePrint Archive, Report 2003/208 (2003),
http://eprint.iacr.org/

http://eprint.iacr.org/

A Conditional Proxy Broadcast Re-Encryption

Scheme Supporting Timed-Release

Kaitai Liang1, Qiong Huang2,�, Roman Schlegel1, Duncan S. Wong1,
and Chunming Tang3

1 Department of Computer Science, City University of Hong Kong, China
kliang4@student.cityu.edu.hk, rschlegel@gmx.ch, duncan@cityu.edu.hk

2 College of Informatics, South China Agricultural University, Guangzhou, China
csqhuang@alumni.cityu.edu.hk

3 School of Mathematics and Information Science, Guangzhou University, China
ctang@gzhu.edu.cn

Abstract. To allow a delegator not only to delegate the keyword-
controlled decryption rights of a broadcast encryption to a set of spec-
ified recipients, but also to control when the decryption rights will be
delegated, in this paper, for the first time, we introduce a new notion
called Timed-Release Conditional Proxy Broadcast Re-Encryption (TR-
CPBRE). We also propose a concrete construction for TR-CPBRE which
can be proven selective identity adaptive CCA secure under the (P,Q, f)-
general decisional Diffie-Hellman exponent assumption, and chosen-time
period chosen-ciphertext secure under the bilinear Diffie-Hellman as-
sumption. When compared with the existing CPBRE and Timed-Release
Proxy Re-Encryption (TR-PRE) schemes, our scheme achieves better ef-
ficiency, and enables the delegator to make a fine-grained delegation of
decryption rights to multiple delegatees.

Keywords: timed-release encryption, unidirectional conditional proxy
broadcast re-encryption, bilinear map.

1 Introduction

Introduced by May [24] and further elaborated by Rivest et al. [26], Timed-
Release Encryption (TRE) is a kind of time-dependent encryption where even
a designated recipient cannot decrypt a ciphertext before a semi-trusted time
server releases a trapdoor associated with the release time of the encryptor’s
choice. It has been found to have many real-world applications, such as sealed-
bid auctions [11] and electronic-voting. To date, there have been some pa-
pers [12,13,20,23,25] that have proposed different variants of TRE.

� Q. Huang is supported by the National Natural Science Foundation of China (No.
61103232), the Research Fund for the Doctoral Program of Higher Education of
China (No. 20114404120027), and the Foundation for Distinguished Young Talents
in Higher Education of Guangdong, China (No. LYM11033).

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 132–146, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Conditional Proxy Broadcast Re-Encryption Scheme Supporting TR 133

The traditional TRE only supports single recipient that seems undesirable in
practice as a message might be intended for several recipients simultaneously.
In 2005, Cathalo et al. [10] proposed an efficient TRE scheme, in which an
encryptor is allowed to encrypt a message to multi-recipient with the same release
time. The scheme is applicable to many network applications. Suppose there is
an international programming contest, such as ACM-ICPC1 and Google Code
Jam2. The participating teams that are located all over the world are managed
by different universities. All teams will be granted access to the problem set in a
specified time. To prevent some unfair issues incurred by the network congestion
or delivery delay, the contest organizer might prefer to allow all universities and
teams to receive the problem set before the beginning of the contest, but not to
open the set prior to the pre-specified time.

The above problem can be solved by using [10] as follows. The organizer first
specifies a release time RT for a semi-trusted time server. With knowledge of the
public keys of all registered universities and teams, the organizer encrypts the
problem set m (as well as RT) (e.g., Enc(PKA,m,RT), Enc(PKG1,m,RT)),
and further sends the resulting ciphertexts to each university. Upon receiving the
ciphertexts from the organizer, the university keeps its own ciphertext locally,
and then forwards the rest of ciphertexts to the corresponding teams (whose
identities are recorded in the register list). When the release time has arrived,
the time server will release a trapdoor τ (corresponding to RT) such that the
universities and teams can access the problem set simultaneously (See Fig. 1).

Fig. 1. Timed-Release Encryption for International Programming Contest

The above solution, however, comes at a price that the organizer has to per-
form n1× (n2+1) encryptions; meanwhile, (n2+1) ciphertexts are needed to be
sent from the organizer to each university, where n1 is the total number of uni-
versity, and n2 is the maximum number of team supervised by each university.

1 http://icpc.baylor.edu/
2 http://code.google.com/codejam/

http://icpc.baylor.edu/
http://code.google.com/codejam/

134 K. Liang et al.

This might be undesirable in practice due to the incurred linear communication
complexity and computation cost.

To reduce the complexity, we might employ some existing cryptographic prim-
itives in the above scenario. Intuitively, Broadcast Encryption (BE) that ad-
dresses the problem of confidentially broadcasting a message to a group of
recipients might be one of candidates. Despite there exist some BE schemes
(e.g., [6,7,18]) in the literature, it is unknown that whether these schemes can
be extended to support timed-release property or not.

Proxy Re-Encryption (PRE) proposed by Blaze, Bleumer and Stauss [3],
which increases the flexibility of data sharing, allows a semi-trusted proxy to
transform a ciphertext intended for Alice into another ciphertext intended for
Bob. The proxy, however, can learn nothing of the plaintext. PRE is applica-
ble to many network applications, such as secure distributed files systems [1]
and email forwarding encryption [3]. Since its introduction, many classic PRE
schemes (e.g., [8,22,19]) have been proposed.

To employ PRE in the context of TRE, Emura et al. [17] proposed the first
Timed-Release Proxy Re-Encryption (TR-PRE) that might be another candi-
date to solve the linear complexity problem. In TR-PRE, the proxy is allowed
to re-encrypt a ciphertext with a release time under a public key to the one with
the same release time under another public key by using a re-encryption key
given by the delegator. Here we use University A as an example. By upload-
ing n2 re-encryption keys (e.g., rkA→Group 1, ..., rkA→Group S) and its ciphertext
Enc(PKA,m,RT) to the cloud (i.e. the proxy), University A (i.e. the delegator)
can request the proxy to re-encrypt the ciphertext to the ones intended for the
teams under A’s control (denoted the team set as IA = {Group 1, ..., Group S}).

Despite TR-PRE allows the proxy to fulfill the re-encryption so as to relieve
the workload of the organizer (who does not need to generate (n1 × n2) ci-
phertexts), the organizer still needs to generate n1 encryptions for universities,
and each university has to construct n2 re-encryption keys. Moreover, without
supporting any keyword (conditional) control on re-encryption, once given a re-
encryption key (e.g., rkA→Group 1), the proxy can re-encrypt all ciphertexts of
University A to Group 1. This will incur the potential risk for access control.

Conditional Proxy Broadcast Re-Encryption (CPBRE), which was proposed
by Chu et al. [14], can further reduce the cost incurred by TR-PRE. Specifically,
CPBRE allows a delegator to delegate the decryption rights of a broadcast encryp-
tion to a set of delegatees, and to specify a condition to control the re-encryption
power of the proxy. In CPBRE, only one (instead of n2) re-encryption key is re-
quired to be generated by each university. Besides, the organizer only needs to
generate one (instead of n1) ciphertext for the university set (denoted as IU =
{University A, ..., University Z}). Thus CPBRE is an appropriate primitive for
solving the linearly complexity problem. Nevertheless, the existing CPBRE3

cannot be trivially extended to support timed-release property due to the limi-
tation of its proof technique. In the security proof given in [14], the challenger

3 The only and available CPBRE due to Chu et al. is secure against Replayable Chosen
Ciphertext Attacks (RCCA) [9].

A Conditional Proxy Broadcast Re-Encryption Scheme Supporting TR 135

outputs a valid challenge ciphertext with the help of the challenger of an Hierar-
chical Identity-Coupling Broadcast Encryption (HICBE) [2]. To support timed-
release, the challenge ciphertext has to be modified accordingly. This is out of the
capability of the HICBE’s challenger, that is, the challenger cannot output the
corresponding challenge ciphertext. Therefore, a new CPBRE supporting timed-
release property (i.e. Timed-Release Conditional Proxy Broadcast Re-Encryption
(TR-CPBRE)) is desirable.

1.1 Our Contributions

In this paper, we formalize the definition and security models for TR-CPBRE.
Specifically, a release time is required as an auxiliary input to the encryption and
re-encryption key algorithms; meanwhile, this release time and its corresponding
timed-release key are required in the input to the decryption algorithms. Note
that a timed-release key is generated by a timed-release key generation algorithm
that takes in the secret key of a semi-trusted time server and a given release time.

For security models, we consider two different aspects: one is to allow the
adversary to get the timed-release key but not the secret key, that is, even if
given the timed-release key, the adversary cannot decrypt a ciphertext without
the appropriate secret key; the other is the inverse case, that is, even if given
the secret key, the adversary cannot decrypt a corresponding ciphertext without
the appropriate timed-release key. As of [14,17], we refer to the security of the
former and the latter as chosen ciphertext security and chosen-time-period and
chosen-ciphertext security, respectively.

Besides, we propose the first TR-CPBRE that is selective ID CCA (IND-sID-
CCA) secure (under the (P,Q, f)-general decisional Diffie-Hellman exponent as-
sumption), and is secure against chosen-time period chosen-ciphertext attacks
(CTCA) (under the bilinear Diffie-Hellman assumption) in the random oracle
model. In our scheme, the organizer is only needed to generate one ciphertext
(with a release time RT and some condition c) for the university set IU (i.e.
Enc(IU ,m,RT, c)). To delegate the decryption rights of the broadcast encryp-
tion to its team set IA, University A first specifies to which group’s broadcast
encryption it would like to delegate (IU), and next generates a re-encryption key
from itself to IA under c and RT (e.g., rkA→IA|c,RT) for the proxy. The proxy
then re-encrypts the ciphertext to the one (Enc(IA,m,RT, c)) that can be only
decrypted by the members of IA (See Fig. 2). Note that the release time is still
effective after the re-encryption. To the best of our knowledge, no TRE and PRE
scheme (in general) capture timed-release and broadcast encryption properties
simultaneously. TR-CPBRE is the first of its type.

Our scheme solves the limitations incurred by [17] in the sense that it only
requires one re-encryption key and one re-encryption ciphertext rather than
n2 copies of them for each set of teams; meanwhile, it supports conditional
control on re-encryption (i.e. conditional delegation). Thus our scheme enjoys
improvement in communication compared to [17].

136 K. Liang et al.

Fig. 2. Timed-Release Conditional Proxy Broadcast Re-Encryption

We argue that TR-CPBRE has many other real world applications, such as
on-line learning systems (IXL4). For example, in an on-line learning system,
the service provider can broadcast the learning materials in terms of different
semesters with different release times to the universities which support on-line
teaching, such that each university can accordingly open the classes in different
semesters for its on-line learners.

We summarize the comparison of properties between our scheme, [14] and [17]
in Table 1. While conditional delegation, broadcast re-encryption and timed-
release property have been partially achieved by previous schemes, there is no
CCA-secure proposal that achieves such properties simultaneously. However, this
paper achieves the goal.

Table 1. Property Comparison

Schemes Security Selective Conditional Broadcast Timed-Release
Security Delegation Re-Encryption Property

CPBRE [14] RCCA � � � �

TR-PRE [17] RCCA � � � �

Our TR-CPBRE CCA � � � �

2 Definition and Security Models

2.1 Definition of TR-CPBRE

Definition 1. A (single-hop unidirectional) Timed-Release Conditional Proxy
Broadcast Re-Encryption (TR-CPBRE) scheme consists of the following
algorithms:

4 http://www.ixl.com/

http://www.ixl.com/

A Conditional Proxy Broadcast Re-Encryption Scheme Supporting TR 137

1. (param,msk, skTS)← Setup(1λ, n): on input a security parameter λ and n,
which indicates the maximum allowable number of receivers, output a public
key param, a master secret key msk, a secret key skTS and a public key TP
of a Time Server. Note that TP is regarded as one part of param.

2. skID ← KeyGen(param,msk, ID): on input param, msk, and an identity
ID ∈ {0, 1}∗, output a secret key skID for identity ID.

3. τ ← TS(skTS , RT): on input skTS and a release time RT ∈ {0, 1}λ, output
a timed-release key τ .

4. rkIDi→S|RT,c ← ReKeyGen(param, IDi, skIDi , S, S, c, RT): on inputparam,
an identity IDi and the corresponding secret key skIDi , two identity sets S and
S, a condition c ∈ {0, 1}∗ and a release time RT , output a re-encryption key
rkIDi→S|RT,c, where IDi ∈ S.

5. C ← Enc(param, S, c, RT,m): on input param, an identity set S, c, RT
and a message m ∈ {0, 1}λ, output an original ciphertext C.

6. CR ← ReEnc(param, rkIDi→S|RT,c, IDi, S, S, c, RT,C): on input param, a
re-encryption key rkIDi→S|RT,c, an identity IDi, an identity set S such that

IDi ∈ S, an identity set S, c, RT and C, output a re-encrypted ciphertext
CR or ⊥ for failure.

7. m← Dec(param, skIDi , IDi, S, c, RT,C, τ): on input param, skIDi , IDi, S
such that IDi ∈ S, c, RT , an original ciphertext C and τ , output a message
m or ⊥ for failure.

8. m ← DecR(param, skIDi′
, IDi, IDi′ , S, S, c, RT,CR, τ): on input param, a

delegatee’s secret key skIDi′
, a delegator’s identity IDi, a delegatee’s identity

IDi′ , an identity set S such that IDi ∈ S, an identity set S such that
IDi′ ∈ S, c, RT , a re-encrypted ciphertext CR and τ , output a message m
or ⊥ for failure.

For simplicity, hereafter we omit param in the expression of the algorithms input.

Correctness: For any λ, n ∈ N, any identity sets S, S, any identities IDi, IDi′ ∈
{0, 1}∗ such that IDi ∈ S, IDi′ ∈ S, any condition c ∈ {0, 1}∗, any release
time RT ∈ {0, 1}λ and any message m ∈ {0, 1}λ, if (param,msk, skTS) ←
Setup(1λ, n), τ ← TS(skTS, RT), skID ← KeyGen(msk, ID), for all ID used in
the system, rkIDi→S|RT,c ← ReKeyGen(IDi, skIDi , S, S, c, RT), C ← Enc(S,

c, RT , m), and CR ← ReEnc(rkIDi→S|RT,c, IDi, S, S, c, RT,C), we have

Dec(skIDi , IDi, S, c, RT,C, τ) = m;

DecR(skIDi′
, IDi, IDi′ , S, S, c, RT,CR, τ) = m.

2.2 Security Models

There are two main security requirements for TR-CPBRE: IND-sID-CCA se-
curity and CTCA security. Here we only give the security notions of original
ciphertext. Note that the security notions of re-encrypted ciphertext can be
defined in the same manner, we hence omit the details. We start with the for-
malization of IND-sID-CCA security. For capturing timed-release feature, in the

138 K. Liang et al.

model, we require that an adversary A is not able to win the game even if the
time server’s secret key skTS is known.

Definition 2. A (single-hop unidirectional) TR-CPBRE scheme is IND-sID-
CCA-secure at original ciphertext if no probabilistic polynomial time (PPT) ad-
versary A can win the game below with non-negligible advantage. In the game,
C is the game challenger, λ and n are the security parameter and the maximum
allowable number of receivers, respectively.

1. Initialization. A outputs a challenge identity set S∗ = {ID∗
1 , ..., ID

∗
s},

where s ≤ n.
2. Setup. C runs Setup(1λ, n) and sends param, skTS to A.
3. Phase 1. A is given access to the following oracles.

(a) Osk(ID): on input an identity ID, output skID ← KeyGen(msk, ID).
If Extract(ID′) is queried, we say that ID′ is corrupted. One restriction
is that A cannot query Extract(ID) for any ID ∈ S∗.

(b) Ork(IDi, S, S, c, RT): on input an identity IDi, two sets S and S, a con-
dition c and a release time RT , output rkIDi→S|RT,c ← ReKeyGen(IDi,

skIDi , S, S, c, RT), where skIDi ← KeyGen(msk, IDi), IDi ∈ S.
(c) Ore(IDi, S, S, c, RT,C): on input an identity IDi, two sets S and S,

a condition c, a release time RT , and an original ciphertext C, output
CR ← ReEnc(rkIDi→S|RT,c, IDi, S, S, c, RT , C), where rkIDi→S|RT,c

← ReKeyGen (IDi, skIDi , S, S, c, RT), skIDi ← KeyGen(msk, IDi),
IDi ∈ S.

(d) Odec(IDi, S, c, RT,C): on input an identity IDi, an identity set S, a
condition c, a release time RT , and an original ciphertext C, output m←
Dec(skIDi , IDi, S, c, RT , C, τ), where skIDi ← KeyGen(msk, IDi),
τ ← TS(skTS, RT), IDi ∈ S.

(e) Odecr(IDi, IDi′ , S, S, c, RT , CR): on input two identities IDi and IDi′ ,
two identity sets S and S, a condition c, a release time RT , and a re-
encrypted ciphertext CR, output m← DecR(skIDi′

, IDi, IDi′ , S, S, c,

RT , CR, τ), where skIDi′
← KeyGen(msk, IDi′), τ ← TS(skTS, RT),

IDi′ ∈ S, IDi ∈ S.
4. Challenge. A outputs two equal length messages m0, m1, a challenge con-

dition c∗ and a challenge release time RT ∗ to C. If the queries Ork(IDi, S
∗,

S, c∗, RT ∗) and Osk(IDi′) are never made, C returns C∗ = Enc(S∗, c∗,
RT ∗, mb) to A, where b ∈R {0, 1}, IDi ∈ S∗ and IDi′ ∈ S.

5. Phase 2. A continues making queries as in Phase 1 except the following:
(a) Osk(ID) for any ID ∈ S∗;
(b) Ork(IDi, S

∗, S, c∗, RT ∗) and Osk(IDi′) for any IDi ∈ S∗ and IDi′ ∈ S;
(c) Odec(IDi, S

∗, c∗, RT ∗, C∗) for any IDi ∈ S∗;
(d) Ore(IDi, S

∗, S, c∗, RT ∗, C∗) and Osk(IDi′) for any IDi ∈ S∗, IDi′ ∈ S;
(e) Odecr(IDi, IDi′ , S

∗, S, c∗, RT ∗, CR) for any CR, IDi ∈ S∗, IDi′ ∈ S,
where (S, c∗, RT ∗, CR) is a derivative of (S∗, c∗, RT ∗, C∗). As of [8],
the derivative of (S∗, c∗, RT ∗, C∗) is defined as follows.

A Conditional Proxy Broadcast Re-Encryption Scheme Supporting TR 139

i. (S∗, c∗, RT ∗, C∗) is a derivative of itself.
ii. If A has issued a re-encryption key query on (IDi, S

∗, S, c∗, RT ∗)
to obtain rkIDi→S|RT∗,c∗ , and CR ← ReEnc(rkIDi→S|RT∗,c∗ , IDi,

S∗, S, c∗, RT ∗, C∗), then (S, c∗, RT ∗, CR) is a derivative of (S∗,
c∗, RT ∗, C∗), where IDi ∈ S∗.

iii. If A has issued a re-encryption query on (IDi, S
∗, S, c∗, RT ∗, C∗)

and obtained CR, then (S, c∗, RT ∗, CR) is a derivative of (S∗, c∗,
RT ∗, C∗).

6. Guess. A outputs a guess bit b′ ∈ {0, 1}. If b′ = b, A wins.

The advantage of A is ε = AdvIND−sID−CCA−Or
TR−CPBRE,A (1λ, n) = |Pr[b′ = b]− 1

2 |.

We now proceed to the IND-CTCA security.

Definition 3. A (single-hop unidirectional) TR-CPBRE scheme is IND-CTCA-
secure at original ciphertext if the advantage AdvIND−CTCA−Or

TR−CPBRE,A (1λ, n) is negli-
gible for any PPT adversary A in the following experiment. Set O = {Osk, Ork,
Ots, Ore, Odec, Odecr}.

AdvIND−CTCA−Or
TR−CPBRE,A (1λ, n) = |Pr[b′ = b : (param,msk, skTS)← Setup(1λ, n);

(m0,m1, S
∗, RT ∗, c∗, State)← AO(param); b ∈R {0, 1};C∗ ← Enc(S∗, c∗, RT ∗,

mb); b
′ ← AO(C∗, State)]− 1

2
|,

where State is the state information, Osk,Ork,Ore,Odec,Odecr are the oracles
defined in Definition 2. Ots is the timed-release key extraction oracle that takes
as input a release time RT (except for the challenge release time RT ∗) and
outputs a timed-release key τ . The constraints for Odec and Odecr remain the
same as those in Definition 2, while there is no restriction for Osk and Ork.
Besides, Ore outputs ⊥ if it is queried on a re-encrypted ciphertext.

3 Preliminaries

Bilinear Maps. Let BSetup be an algorithm that on input the security parame-
ter λ, outputs the parameters of a bilinear map as (q, g, h,G1,G2,GT ,GT ′ , e, ē),
where G1, G2, GT and GT ′ are multiplicative cyclic groups of prime order q,
where |q| = λ, and g, h are random generators of G1 and G2, respectively. The
mappings e : G1 × G2 → GT and ē : G1 × G1 → GT ′ have three properties:
(1) Bilinearity: for all a, b ∈R Z∗

q , e(g
a, hb) = e(g, h)ab, e(ga, gb) = e(g, g)ab; (2)

Non-degeneracy: e(g, h) �= 1GT , e(g, g) �= 1GT ′ , where 1GT and 1GT ′ are the unit
of GT and GT ′ ; (3) Computability: e and ē can be efficiently computed.

The General Decisional Diffie-Hellman Exponent Assumption. We re-
view the general decisional Diffie-Hellman exponent problem in the symmet-
ric case so that G1 = G2 = G as in [16]. Let (q, g,G,GT , e) ← BSetup(1λ),
and set g1 = e(g, g) ∈ GT , where G,GT are two multiplicative cyclic groups

140 K. Liang et al.

with prime order q and g ∈ G is a generator. Let s, n be positive integers
and P,Q ∈ Fq[X1, ..., Xn]

s be two s-tuples of n-variate polynomials over Fq.
We write P = (p1, ..., ps), Q = (q1, ..., qs) and set p1 = q1 = 1. For any
function h : Fq → Ω and vector (x1, ..., xn) ∈ Fn

q , h(P (x1, ..., xn)) denotes
(h(p1(x1, ..., xn)), ..., h(ps(x1, ..., xn))) ∈ Ωs. Note that a similar notation can be
used for Q. Let f ∈ Fq[X1, ..., Xn]. If there exists the following linear decompo-

sition: f =
∑

1≤i,j≤s
ai,jpipj +

∑
1≤i≤s

biqi, where ai,j , bi ∈ Zq. We say that

f depends on (P,Q), i.e. f ∈ 〈P,Q〉. The (P,Q, f)-General Decisional Diffie-
Hellman Exponent ((P,Q, f)-GDDHE) problem [16] is defined as follows. Note
that we let P,Q be as above and f ∈ Fq[X1, ..., Xn].

Definition 4. (P,Q,f)-GDDHE Assumption. Given the tuple H(x1, ...,

xn) = (gP (x1,...,xn), g
Q(x1,...,xn)
1) ∈ Gs ×Gs

T and T ∈R GT , the (P,Q,f)-GDDHE

problem is to decide whether T = g
f(x1,...,xn)
1 . Define Adv

(P,Q,f)−GDDHE
A =

|Pr[A(H(x1, ..., xn), g
f(x1,...,xn)
1) = 0] − Pr[A(H(x1, ..., xn), T) = 0]| as the ad-

vantage of A in wining the (P,Q,f)-GDDHE problem. We say that the (P,Q, f)-
GDDHE assumption holds in G if no PPT algorithm has non-negligible advan-
tage.

Definition 5. Bilinear Diffie-Hellman (BDH) Assumption [5]. Given
the tuple (g, ga, gb, gc) ∈ G4, the BDH problem is to compute e(g, g)abc, where
a, b, c ∈ Z∗

q . Define AdvBDH
A = Pr[A(g, ga, gb, gc) = e(g, g)abc] as the advantage

of A in winning the BDH problem. We say that the BDH assumption holds in
G if no PPT algorithm has non-negligible advantage.

Target Collision Resistant Hash Function. Target Collision Resistant
(TCR) hash function was introduced by Cramer and Shoup [15]. A TCR hash
function H guarantees that given a random element x which is from the valid
domain of H , a PPT adversary A cannot find y �= x such that H(x) = H(y).
We let AdvTCR

H,A = Pr[(x, y) ← A(1λ) : H(x) = H(y), x �= y, x, y ∈ DH] be the
advantage of A in successfully finding collisions from a TCR hash function H ,
where DH is the valid input domain of H . If a hash function is chosen from a
TCR hash function family, AdvTCR

H,A is negligible.

4 A New TR-CPBRE Scheme

In this section, we start with a new CPBRE scheme which is considered as a
basic scheme for constructing a TR-CPBRE. The new scheme has two building
blocks: an IBBE [16] and a TCR hash function [15] where we employ the CHK
technique [4] using a TCR hash function to make a “signature” on the ciphertext
and including a “verifying key” in the ciphertext. To extend the new scheme
to a TR-CPBRE, we employ Boneh and Franklin (BF) IBE scheme [5], and
regard a release time as an identity and a timed-release key as the secret key
corresponding to the identity. We then use IBE to re-encrypt the ciphertext
output such that the decryption of the underlying plaintext requires two pieces

A Conditional Proxy Broadcast Re-Encryption Scheme Supporting TR 141

of secret information: one is the secret key of the delegatee generated in our
CPBRE, the other is the secret key of an identity generated in the IBE scheme.

Our technique is different from that of [14]. We begin with an IBBE scheme
which is used to construct a new CCA-secure CPBRE, then we propose a TR-
CPBRE by combining the new CPBRE with an IBE. In [14], Chu et al. started
with an HICBE [2] and extended the HICBE to a RCCA-secure CPBRE. In the
following, we provide the details of our construction.

1. Setup(1λ, n). Let c ∈ {0, 1}∗ be a condition and RT ∈ {0, 1}λ be a release
time. Choose γ, r̄ ∈R Z∗

q , three generators g, g′ ∈ G1, h ∈ G2 and hash

functions: H0 : {0, 1}2λ → Z∗
q , H1 : {0, 1}∗ → Z∗

q , H2 : GT → {0, 1}2λ,
H3 : {0, 1}∗ → G1, H4 : {0, 1}∗ → G1, H5 : {0, 1}λ → Z∗

q , H6 : {0, 1}∗ →
G1, H7 : {0, 1}λ → G1, H8 : GT ′ → {0, 1}2λ, H9 : {0, 1}4λ → Z∗

q , H10 :

{0, 1}2λ → {0, 1}2λ. The master secret key is msk = (g′, γ), the public key
is param = (g, h, w, v, hγ , . . ., hγn

, H0, H1, H2, H3, H4, H5, H6, H7, H8,
H9, H10, TP), and the secret key of time server is skTS = r̄, where w = g′γ ,
v = e(g′, h) and TP = gr̄. Hereafter let s and s′ be two maximum numbers
of receivers in two identity sets S and S, respectively, where s ≤ n, s′ ≤ n.

2. KeyGen(msk, ID). Given msk = (g′, γ) and an identity ID, output the

secret key skID = g
′ 1
γ+H1(ID) .

3. TS(skTS, RT). Given skTS and a release time RT , output a timed-release
key τ = H7(RT)r̄.

4. Enc(S, c, RT,m).Chooseα ∈R {0, 1}λ,σ ∈R {0, 1}2λ, computek = H0(m,α),

set C1 = w−k, C2 = h
k·
∏s

i=1
(γ+H1(IDi))5, C3 = (m||α) ⊕ H2(e(g

′, h)k),
C̄3 = C3 ⊕ H10(σ), C4 = H3(c, S,RT)k, C5 = H4(C1, C̄3, C4, C6, C7)

k,
C6 = gk̄, C7 = σ ⊕H8(ē(H7(RT), TP)k̄), and output C = (RT , C1, C2, C̄3,
C4, C5, C6, C7), where k̄ = H9(σ,C3), IDi ∈ S,m ∈ {0, 1}λ.

5. ReKeyGen(IDi, skIDi , S, S, c, RT). Choose ρ ∈R Z∗
q , {θ, α′} ∈R {0, 1}λ,

compute k′ = H0(θ, α
′), rk0 = sk

H5(θ)
IDi

· (H3(c, S,RT)ρ), rk1 = w−k′
, rk2 =

h
k′·
∏s′

i′=1
(γ+H1(IDi′))

, rk3 = (θ||α′)⊕H2(e(g
′, h)k

′
), rk4 = H6(RT , c, rk1,

rk2, rk3)
k′
, rk5 = h

ρ·
∏s

i=1
(γ+H1(IDi))

, and output the re-encryption key
rkIDi→S|RT,c = (rk0, rk1, rk2, rk3, rk4, rk5), where IDi ∈ S, IDi′ ∈ S.

6. ReEnc(rkIDi→S|RT,c, IDi, S, S, c, RT,C).
(1) Verify the validity of original ciphertext C

e(w−1, C2)
?
= e(C1, h

∏s

i=1
(γ+H1(IDi))

),

ē(w−1, C4)
?
= ē(C1, H3(c, S,RT)),

ē(w−1, C5)
?
= ē(C1, H4(C1, C̄3, C4, C6, C7)), IDi

?
∈ S.

(1)

If Eq. (1) does not hold, output ⊥. Otherwise, proceed.

5 The encryptor can compute C2 with knowledge of param, k and S.

142 K. Liang et al.

(2) Compute C′
2 = e(rk0, C2)/e(C4, rk5), output CR = (RT , C1, C

′
2, C̄3,

C4, C6, C7, rk1, rk2, rk3, rk4).
7. Dec(skIDi , IDi, S, c, RT,C, τ).

(1) Verify Eq. (1). If the equation does not hold, output ⊥. Otherwise, pro-
ceed.

(2) Compute σ = C7 ⊕H8(ē(τ, C6)), C3 = C̄3 ⊕H10(σ), e(g
′, h)k = (e(C1,

hBi,s(γ))e(skIDi , C2))
β , and m‖α = C3 ⊕H2(e(g

′, h)k), where

β = 1∏s

j=1,j �=i
H1(IDj)

, and Bi,s(γ) = 1
γ · (

∏s

j=1,j �=i
(γ +H1(IDj)) −∏s

j=1,j �=i
H1(IDj))

6. If C6 = gH9(σ,C3) and C1 = w−H0(m,α), output

m. Otherwise, output ⊥.
8. DecR(skIDi′

, IDi, IDi′ , S, S, c, RT,CR, τ).

(1) Compute e(g′, h)k
′
= (e(rk1, h

Bi′,s′(γ))e(skIDi′
, rk2))

β′
, and θ‖α′ = rk3⊕

H2(e(g
′, h)k

′
), where β′ = 1∏s′

j′=1,j′ �=i′
H1(IDj′)

, and Bi′,s′(γ) = 1
γ ·

(
∏s′

j′=1,j′ �=i′
(γ +H1(IDj′))−

∏s′

j′=1,j′ �=i′
H1(IDj′)).

(2) Verify

rk1
?
= w−H0(θ,α

′), rk2
?
= h

H0(θ,α
′)·
∏s′

i′=1
(γ+H1(IDi′))

,

rk4
?
= H6(RT, c, rk1, rk2, rk3)

H0(θ,α
′), IDi′

?
∈ S.

(2)

If Eq. (2) does not hold, output ⊥. Otherwise, proceed.
(3) Compute σ = C7 ⊕ H8(ē(τ, C6)) and C3 = C̄3 ⊕ H10(σ). If IDi ∈

S, compute M = (e(C1, h
Bi,s(γ))(C′

2)
H5(θ)

−1

)β ,m||α = C3 ⊕ H2(M),

where β = 1∏s

j=1,j �=i
H1(IDj)

, Bi,s(γ) =
1
γ · (

∏s

j=1,j �=i
(γ +H1(IDj)) −∏s

j=1,j �=i
H1(IDj)). If C1 = w−H0(m,α), C4 = H3(c, S,RT)H0(m,α), and

C6 = gH9(σ,C3), output m. Otherwise, output ⊥.

Correctness: It is easy to verify that the underlying plaintexts of the original
and re-encrypted ciphertexts can be recovered correctly if the ciphertexts are
computed via the description above. We hence skip the details.

Theorem 1. Suppose (P,Q, f)-GDDHE assumption holds, our TR-CPBRE
scheme for n receivers is IND-sID-CCA-secure at original ciphertext in the
random oracle model. If there is a PPT adversary A, who issues at most qHi

queries to Hi and breaks the (t̄, qsk, qrk, qre, qd2, qd1, ε)-IND-sID-CCA-Or se-
curity of our TR-CPBRE scheme, then we can construct a PPT adversary C to
solve the (t′, ε′)-(P,Q, f)-GDDHE problem with

6 With knowledge of param, IDi and S, the decryptor is able to compute hBi,s(γ) .
More details can be found in [16].

A Conditional Proxy Broadcast Re-Encryption Scheme Supporting TR 143

ε′ ≥ 1

qH2

(
ε

2ė(1 + qrk)
− qH0 + (qH0 + qH2)(qd1 + qd2)

22λ
− 2(qd1 + qd2) + qre

q
),

t′ ≤ t̄+O(1)(qHi + qsk + qrk + qre + qd2 + qd1) + te(qsk + qH0(2qre + 2qd2

+ 8qd1) + (2n+ 9)qrk + (3n+ 8)qre + (n+ 2)qd2 + (2n+ 4)qd1)

+ tp(7qre + 7qd2 + 2qd1),

where ė denotes the base of the natural logarithm, te denotes the running time of
an exponentiation, tp denotes the running time of a pairing, qsk, qrk, qre, qd2, qd1
denote the total number of secret key extraction queries, re-encryption key ex-
traction queries, re-encryption queries, the original and re-encrypted ciphertexts
decryption queries, respectively, i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Due to limited space, the proof of Theorem 1 is provided in the full paper [21].

Theorem 2. Suppose the BDH assumption holds and H7, H8, H9, H10 are TCR
hash functions, our TR-CPBRE scheme for n receivers is IND-CTCA-secure
at original ciphertext.

Please refer to the full paper [21] for the proof of Theorem 2.

5 Comparison

We compare our scheme with [14] and [17] in terms of property and efficiency.
We first define the notations and parameters used in the Tables. Let tp, te, tv, ts
denote the computation cost of a bilinear pairing, an exponentiation, one verifi-
cation and one signature of a one-time signature, respectively. Suppose [14], [17]
and our scheme share the same number (N) of delegatees for each delegation.

Table 1 generally shows that our scheme achieves all properties with CCA
security under the (P,Q, f)-GDDHE assumption. Specifically, [14] is RCCA se-
cure under the n-BDHE assumption [6], whereas our scheme is CCA secure and
additionally supports timed-release property. Compared to [17], which is secure
against RCCA under the 3-QDBDH assumption [22], our scheme provides con-
ditional delegation and broadcast re-encryption without losing CCA security. In
conclusion, our scheme enables the delegator to implement a more fine-grained
delegation of decryption rights in cloud storage systems where CCA security is
required, but its security relies on random oracles. The problem of proposing a
TR-CPBRE scheme with CCA security in the standard model remains open.

From Table 2, we see that [14] suffers from the largest number of pairings
and [17] suffers from O(N) complexity in pairings. Compared with [14], our
TR-CPBRE requires one additional tp in Enc and Dec, and 2tp in ReEnc,
respectively, but significantly reduces the number of pairings (16tp) in DecR
without requiring more pairings with regard to ReKey. As opposed to [17], our
scheme achieves a constant cost of parings in ReEnc, and has the same number
of pairings in the sum of cost of other metrics (except for ReKey). In conclusion,
our scheme requires less number of pairings when compared with [14] and [17].

144 K. Liang et al.

Table 2. Computation Cost Comparison

Schemes
Computation Cost

Enc ReEnc Dec DecR ReKey

CPBRE [14] (N + 6)te + tp (N + 3)te + 6tp 2Nte + 8tp (4N − 1)te + 20tp (N + 7)te + tp

TR-PRE [17] ts + 10te + 4tp (4te + tv)N + 2Ntp 5te + tv + 5tp 5te + tv + 7tp Nte

Our scheme (N + 8)te + 2tp (N + 1)te + 8tp (2N + 4)te + 9tp (3N + 9)te + 4tp (2N + 9)te + tp

Table 3. Communication Cost Comparison

Schemes
Ciphertexts and Re-Encryption Key Length (Group of elements)

Re-Encrypted Ciphertext Original Ciphertext ReKey

CPBRE [14] 13 groups 5 groups 6 groups

TR-PRE [17] 11 groups 9 groups 1 group

Our scheme 11 groups 8 groups 6 groups

Table 3 shows that [14] has the smallest number of group elements in orig-
inal ciphertext, while it suffers from the largest number of group elements in
re-encrypted ciphertext. When compared with [14], our scheme reduces 2 group
elements in re-encrypted ciphertext. Besides, the number of group elements of
our scheme in the original ciphertext is 1 group less than that of [17]; meanwhile,
both of schemes share the same number of group elements in re-encrypted ci-
phertext. However, in ReKey our TR-CPBRE and [14] need 5 more groups
compared to [17]. It is worth mentioning that, when compared with [17], [14]
and our scheme enjoy better efficiency in communication as N increases.

6 Concluding Remarks

In this paper, we introduced a new variant of PRE, named TR-CPBRE, which
achieves conditional delegation, broadcast re-encryption and timed-release prop-
erty simultaneously. To the best of our knowledge, our TR-CPBRE is the first
of its kind. We also showed that our scheme can be proved IND-sID-CCA secure
in the random oracle model under the (P,Q, f)-GDDHE assumption. Moreover,
when compared with the existing CPBRE and TR-PRE schemes, our scheme
not only requires less number of pairings and achieves better efficiency in com-
munication, but also enables the delegator to make a fine-grained delegation of
decryption rights to multiple delegatees without losing CCA security.

This paper also motivates some interesting open problems, for example, how
to construct a CCA-secure TR-CPBRE scheme in the adaptive identity model,
i.e. achieving IND-aID-CCA security.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

A Conditional Proxy Broadcast Re-Encryption Scheme Supporting TR 145

2. Attrapadung, N., Furukawa, J., Imai, H.: Forward-secure and searchable broadcast
encryption with short ciphertexts and private keys. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 161–177. Springer, Heidelberg (2006)

3. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

4. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

5. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

6. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005),
http://dx.doi.org/10.1007/11535218_16

7. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: Proceedings of the 13th ACM Conference on Computer and Commu-
nications Security, CCS 2006, pp. 211–220. ACM, New York (2006),
http://doi.acm.org/10.1145/1180405.1180432

8. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM Conference on Computer and Communications Se-
curity, CCS 2007, pp. 185–194. ACM, New York (2007),
http://doi.acm.org/10.1145/1315245.1315269

9. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(2003)

10. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and non-interactive timed-
release encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005),
http://dx.doi.org/10.1007/11602897_25

11. Chalkias, K., Hristu-Varsakelis, D., Stephanides, G.: Improved anony-
mous timed-release encryption. In: Biskup, J., López, J. (eds.) ES-
ORICS 2007. LNCS, vol. 4734, pp. 311–326. Springer, Heidelberg (2007),
http://dx.doi.org/10.1007/978-3-540-74835-9_21

12. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Provably secure timed-release public
key encryption. ACM Trans. Inf. Syst. Secur. 11(2) (2008)

13. Chow, S.S.M., Yiu, S.M.: Timed-release encryption revisited. In: Baek, J., Bao,
F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 38–51. Springer,
Heidelberg (2008)

14. Chu, C.-K., Weng, J., Chow, S.S.M., Zhou, J., Deng, R.H.: Conditional proxy
broadcast re-encryption. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009.
LNCS, vol. 5594, pp. 327–342. Springer, Heidelberg (2009)

15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. IACR Cryptology ePrint
Archive 2001, 108 (2001)

16. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 200–215. Springer, Heidelberg (2007)

17. Emura, K., Miyaji, A., Omote, K.: A timed-release proxy re-encryption scheme.
IEICE Transactions 94-A(8), 1682–1695 (2011)

18. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

http://dx.doi.org/10.1007/11535218_16
http://doi.acm.org/10.1145/1180405.1180432
http://doi.acm.org/10.1145/1315245.1315269
http://dx.doi.org/10.1007/11602897_25
http://dx.doi.org/10.1007/978-3-540-74835-9_21

146 K. Liang et al.

19. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao, Y.:
Generic construction of chosen ciphertext secure proxy re-encryption. In: Dunkel-
man, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer, Heidelberg
(2012)

20. Kikuchi, R., Fujioka, A., Okamoto, Y., Saito, T.: Strong security notions for timed-
release public-key encryption revisited. In: Kim, H. (ed.) ICISC 2011. LNCS,
vol. 7259, pp. 88–108. Springer, Heidelberg (2012)

21. Liang, K., Huang, Q., Schlegel, R., Wong, D.S., Tang, C.: A conditional proxy
broadcast re-encryption scheme supporting timed-release (full paper). Cryptology
ePrint Archive, http://eprint.iacr.org/

22. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

23. Matsuda, T., Nakai, Y., Matsuura, K.: Efficient generic constructions of timed-
release encryption with pre-open capability. In: Joye, M., Miyaji, A., Otsuka, A.
(eds.) Pairing 2010. LNCS, vol. 6487, pp. 225–245. Springer, Heidelberg (2010)

24. May, T.: Timed-release cryptography (February 1993),
http://www.hks.net.cpunks/cpunks-0/1560.html (unpublished manuscript)

25. Nakai, Y., Matsuda, T., Kitada, W., Matsuura, K.: A generic construction of
timed-release encryption with pre-open capability. In: Takagi, T., Mambo, M. (eds.)
IWSEC 2009. LNCS, vol. 5824, pp. 53–70. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-04846-3_5

26. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Tech. rep., Cambridge, MA, USA (1996)

http://eprint.iacr.org/
http://www.hks.net.cpunks/cpunks-0/1560.html
http://dx.doi.org/10.1007/978-3-642-04846-3_5

About Hash into Montgomery

Form Elliptic Curves�

Wei Yu1,2, Kunpeng Wang2, Bao Li2, and Song Tian2

1 Department of Electronic Engineering and Information Science,
University of Science and Technology of China, Hefei, 230027, China

yuwei 1 yw@163.com
2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100093

Abstract. Montgomery-form elliptic curves are widely used for efficient
arithmetic calculations and immunity from timing attacks. Constructing
hash function to hash messages into Montgomery-form elliptic curves
is important, and this paper proposes four deterministic encoding algo-
rithms to perform this transformation. One is based on finding a cube
root, whereas the other three are based on finding square roots. We
prove that the four algorithms are all hash functions. Moreover, we pro-
vide new functions indifferentiable from a random oracle based on our
deterministic encodings.

Keywords: Hash, Random Oracle, Montgomery Form Elliptic Curves.

1 Introduction

Many algebraic curve cryptosystems require messages to be hashed into an al-
gebraic curve. Boneh-Franklin’s identity-based encryption scheme [1] proposes a
one-to-one mapping f from the base field Fp to a particular supersingular elliptic
curve. This enables us to construct a hash function f(h(m)) where m ∈ {0, 1}∗ is
a message and h a classical hash function. There are many other identity-based
schemes that need messages hashed into an algebraic curve, such as encryption
schemes [2,3,4], signature schemes [5,6,7,8], signcryption schemes [9,10], and Lin-
dell’s recent universally composable commitment scheme [11].

Password-based authentication protocols also require hashing messages into
elliptic curves. The simple password exponential key exchange [12] (SPEKE) and
the password authenticated key exchange [13] (PAK) protocols both require a
hash algorithm to map the password into a point of the curve. Being probabilis-
tic, the algorithms are susceptible to timing attacks [14]. Therefore, being able
to hash into an elliptic curve within a constant number of operations would be
beneficial.

� Supported in part by National Basic Research Program of China(973) under Grant
No.2013CB338002, in part by National Research Foundation of China under Grant
No. 60970153 and 61070171, and in part by the Strategic Priority Research Program
of Chinese Academy of Sciences under Grant XDA06010702.

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 147–159, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

148 W. Yu et al.

The algorithm in [1], which maps an element of Fpn to an ordinary elliptic
curve, is probabilistic and fails to return a point for a fraction 2−k of the inputs,
where k is a predetermined bound. One drawback of the algorithm is that the
number of steps of the algorithm depends on the input u. Thus, the number
of operations is not constant. If in practice the input u has to be secret, this
circumstance may lead to a timing attack.

Various algorithms mapping Fpn to an elliptic curve in deterministic polyno-
mial time were reported by Shallue and Woestijne [15] in ANTS 2006 and T.
Icart [16] in Crypto 2009. Shallue and Woestijne’s algorithm is based on Skalba’s
equality [17] and uses a modification of the Tonelli-Shanks algorithm for comput-
ing square roots. This algorithm runs in time O(log3 q) when q ≡ 3 mod 4 and
in time O(log4 q) otherwise. T. Icart’s algorithm is based on computing a cube
root, which can be implemented in time O(log3 q) and in a constant number of
operations over Fq, when q = pn ≡ 2 mod 3. The algorithms encode an element
of a finite field into Weierstrass-form elliptic curves. Later, hashing into twisted
Edwards-form elliptic curves [18] and Hessian curves [19] were proposed.

There are some methods hashing into hyperelliptic curves such as [20,21].
The main idea is to compute square roots. A hash function from plaintext to
C34-curves by finding a cube root is constructed in [22].

Montgomery-form elliptic curves are widely used for efficient arithmetics and
immunity of the timing attacks. Constructing hash functions that hash into
Montgomery-form elliptic curves is a very urgent issue that falls within the
context of finding general methods for hashing into elliptic curves of other forms
according to birational equivalence.

In this paper, we describe four deterministic encoding algorithms to hash into
Montgomery-form elliptic curves. The first deterministic algorithm is based on
finding a cube root called the cube-root algorithm, which among the four algo-
rithms that we proposed is very efficient. The second algorithm, called Legendre
algorithm, is based on computing Legendre symbols; the third, called Shallue-
Woestijne-Ulas (SWU) algorithm, is based on Skalba’s equality [17]; and the
fourth, the SWU algorithm, is the simplified SWU algorithm. We prove that
the four algorithms are all hash functions. Finally, based on our deterministic
encodings, we provide new functions indifferentiable from a random oracle.

2 Montgomery Form

In [23], Montgomery considered elliptic curves, defined over Fq where q = pn, p
is a prime, p > 3, that can be written in what has since become known as
Montgomery form:

Ea,b : by
2 = x3 + ax2 + x, (1)

where a, b ∈ Fq, b is the non-quadratic residue.
Montgomery originally introduced this type of curve for speeding up the Pol-

lard and elliptic curve methods ECM for integer factorization. However, not all
elliptic curves have the Montgomery-form, because the order of any elliptic curve

About Hash into Montgomery Form Elliptic Curves 149

of Montgomery-form is divisible by 4. Recent ECC-standards [24] recommend
that for cryptographic applications the cofactor of the elliptic curve should be no
greater than four. The elliptic curve cryptosystems based on the Montgomery-
form ECM : by2 = x3+ax2+x are immune to timing attacks using a randomized
projective coordinate technique of K. Okeya, H. Kurumatani and K. Sakurai [25],
where they also present an efficient algorithm for generating Montgomery-form
elliptic curves with cofactor 4.

3 Cube Root Method

In this section, a deterministic encoding f1 is constructed by finding a cube
root. We call this method the cube-root algorithm. When q = pn ≡ 2 mod 3,
the function

x �→ x3

is a bijection with inverse function

x �→ x
1
3 = x

2pn−1
3 = x

2q−1
3 ,

which enables the construction of f1 from Fpn to a subset of elliptic curve Ea,b.
That is, f1(u) = (x, y) where

x =

(
27bv2 + (a− bu2)3

)1/3 − a+ bu2

3
,

y =ux+ v.

where v =
3− (a− bu2)2

6bu
. (2)

It is easy to check that (x, y) satisfies theMontgomery equation by2 = x3+ax2+x.

3.1 Properties of Cube Root Algorithm

Lemma 1. LetP (x, y) be a point on the curveEa,b.The solutionsus of fa,b(u) = P
are the solutions of the polynomial equation:

Ha,b(x, y) : b
2u4 − (2ab+ 6bx)u2 + 6byu+ a2 − 3 = 0.

Proof: In equation (2), v = 3−(a−bu2)2

6bu . From the definition of f1, we have{
by2 = x3 + ax2 + x

Ha,b(x, y) = 0
⇔
{
by2 = x3 + ax2 + x

6buy = 6bu2x+ 3− (a− bu2)2

⇔
{
by2 = x3 + ax2 + x

y = ux+ v
⇔
{
b(u2x2 + 2uvx+ v2) = x3 + ax2 + x

y = ux+ v

150 W. Yu et al.

⇔
{
3x3 + 3x2(a− bu2) + x(a− bu2)2 = 3bv2

y = ux+ v

⇔
{
(3x+ a− bu2)3 = 27bv2 + (a− bu2)3

y = ux+ v
⇔
{
x =

(27bv2+(a−bu2)3)
1/3−a+bu2

3

y = ux+ v

The discriminant of Ha,b(x, y): Δa,b = 144b6(−27a2x4 − 27x6 − 54ax5 − 54x4 +
18ax3 + 117x2 − 48 + 16a2 + 24ax − 24a2x2 − 16a3x3) is not a square. Let D
be the number of affine points (x, y) ∈ E(Fq) with Δ(a,b)(x, y) = 0. It is easy
to check D � 12. The splitting field La,b of the irreducible separable polynomial
Ha,b is a Galois extension of Fq(Ea,b). Let ga,b be the genus of the function field
La,b. From the Hurwitz formula, ga,b = 7 (see appendix). Let Ra,b(x, y, u) be
the resolvent cubic of the quartic polynomial Ha,b. Rab is b

2u3 +4b(a+3x)u2 +
12(3x2 + 2ax+ 1)u+ 36b4y2.

The discriminant of Rab: ΔR = 144b2(−48+16a2−192ax−288x2+648ab3x2+
216a2b3x− 432x4− 64a3b4+216b3x6+216b4x3− 96a2x2− 486b7x3− 64a3b3x3−
64a4b3x+216ab3x5+216a2b3x3+216ab4x2−144a2b3x4−144a3b3x2−144a2b4x+
216ab3x4−486ab6x4−243a2b6x2−486ab7x−243b8−243b6x6−576ax3+64a3x+
144a2x4 + 64a4x2 + 192a3x3 + 216ab3x3 + 648b3x4 + 648b4x + 216ab4) is not a
square. Let C be a smooth projective curve whose function field is the quartic
extension La,b. Then, the Galois group of the quartic extension Fq(C)/Fq(E) is
S4.

Using Theorem 3 in [26], for any nontrivial character χ of E(Fq), the character
sum Sf(χ) � (2× 7− 2)

√
q + 3, which is shown in Appendix. u has three poles

on C. Thus, fab is a well-distributed encoding.

3.2 One-Way

We prove the construction H1(m) = f1(h(m)) is one-way if h is one-way. We
define one-way as follows:

Definition 1. A hash function h is (t, ε) one-way, if any algorithm running in
time t, when given a random y ∈ im(h) as input, outputs m such that h(m) = y
with probability at most ε. If ε is negligible for any polynomial time t in the
security parameter, then the hash function h is one-way.

Proposition 1. If h is a (t, ε) one-way function, then H1 is (t′, ε′) one-way
where H1(m) = f‘(h(m)) and ε′ = 16ε.

Proof: In the proof of lemma 5 in [16], we take L = 4, then we have our propo-
sition. If ε is negligible, then ε′ = 16ε is also negligible. Then if h is one-way,
H1 is one-way.

About Hash into Montgomery Form Elliptic Curves 151

3.3 Collision-Resistant

We prove that given a classical hash function h the construction H1(m) =
f1(h(m)) is collision-resistant if h is collision-resistant. The definition of collision-
resistant is:

Definition 2. A hash function h is (t, ε) collision-resistant, if any algorithm
running in time t, when given random messages m,m′, returns h(m) = h(m′)
with probability at most ε. If ε is negligible for any polynomial time t in the
security parameter, then the hash function h(m) is collision-resistant.

Proposition 2. If h : {0, 1}∗ �→ {0, 1}k is a (t, ε) collision-resistant, then H ′

is a (t′, ε′) collision-resistant hash function where H ′
1(m) = f1(c ◦ h(m) + d) for

c, d ∈ Fq selected randomly and

ε′ = ε+
22k+2

q

Proof: We use Theorem 3 [16] setting L is 4. We then have our proposition.
In practice, ε is about 2−k, then ε′ is approximately 2−k+2 if the size of q is at
least 5k/2 bits. If ε is negligible, then ε′ = 64ε is also negligible. Then if h is
collision-resistant, H ′

1 is collision-resistant.

Let c = 1, d = 1, then H1(m) is collision-resistant.

4 Legendre Method

Let f be an odd monic polynomial over a finite field Fq with q ≡ 3 mod 4,
which has a simple root in F̄q,

y2 = f(x) =
x3 + x

b
.

Let
f2 : Fq → E0,b.

u �→
(
−ε(u)u, ε(u)

√
ε(u)f(u)

−b

)
, ε(u) �= 0

where ε(u) =
(

f(u)
q

)
, and by

(
·
q

)
the Legendre symbol over Fq. If ε(u) = 0,

u �→ (u, 0).
Let W ⊂ E0,b be the set of Fq-rational Weierstrass points on E0,b, and T ⊂ Fq

the set of roots of f2.

Lemma 2. [20] The function f2 is well defined, maps all points in T to (u, 0) ∈
W , and induces a bijection Fq\T → E0,b\W .

Proof: The proof of bijection Fq\T → E0,b\W is in [20]. If ε(u) = 0, u �→ (u, 0)
is also a bijection and (u, 0) ∈W , then F is a bijection Fq → E0,b\∞.

152 W. Yu et al.

Lemma 3. The cardinality of E0,b is q + 1.

Proof: From the above, we obtain #E0,b = #(Fq\T) + #W = q − #T + #W .
However, W consists of the point at infinity on E0,b, and all points of the form
(x, 0), x ∈ T . Thus, #W = #T + 1, and E0,b = q + 1.

It is easy to check that the function f2(h(m)) is i) one way when h is one way,
and ii) collision-resistant when h is collision-resistant.

5 SWU and Brief SWU

5.1 Equivalence with Weierstrass Form Elliptic Curves

Any elliptic curve is homogeneous with a Weierstrass-form elliptic curve.
The elliptic curve in Montgomery form is written

by2 = x3 + ax2 + x.

Replacing s = x
b + a

3b , t =
y
b , we obtain

t2 = s3 +
3− a2

3b2
s+

2a3 − 9a

27b3
,

with the reverse map (t, s) �→ (x, y):

x = bs− a

3
, y = bt.

Next, we construct the deterministic encoding u �→ (t, s), u ∈ Fq, and use the
reverse map. Then, f3 : u �→ (x, y), called the SWU algorithm.

5.2 SWU Algorithm

Let

g(s) = s3 +
3− a2

3b2
s+

2a3 − 9a

27b3
.

X1(u, r) = r,

X2(u, r) = −
b

a

(
1 +

1

u4g(r)2 + u2g(r)

)
,

X3(u, r) = u2g(r)X2(u, r),

U(u, r) = u3g(r)2g(X2(u, r)).

Thus
U(u, r)2 = g(X1(u, r))g(X2(u, r))g(X3(u, r)). (3)

From equation (3), at least one of g(X1(u, r)), g(X2(u, r)), g(X3(u, r)) is a
quadratic residue.Then, one ofX1(u, r), X2(u, r), X3(u, r) is the abscissa of a point
on the curve t2 = g(s).

About Hash into Montgomery Form Elliptic Curves 153

If g(X1(u, r)) is a residue, then s = X1(u, r), t =
√
g(X1(u, r)), else if

g(X2(u, r)) is a residue, then s = X2(u, r), t =
√
g(X2(u, r)), else s =

X3(u, r), t =
√
g(X3(u, r)). Then

x = bs− a

3
, y = bt.

If q ≡ 3 mod 4,
√
x is simply an exponentiation x

1
2 = ±x q+1

4 . This map forms
the basis of the modified SWU method in which the main idea is to compute
square roots (see [15,21]). Then, our map is called an SWU map.

This map u �→ (x, y) is denoted f3. We simplify f3 in the following.

5.3 Brief SWU

Note that knowing the value of r is not required in computing X2, X3 and
U ; indeed, these only depend on g(r). For this reason, r does not have to be
explicitly computed and we can take g(r) = −1, where −1 is a quadratic non-
residue because q ≡ 3 mod 4. Even if the value of r does not necessarily exist
in Fq, it exists in Fq3 . With that value of r, the Ulas’ formulae are still correct.
Rewriting the SWU maps as a single variable with g(r) = −1 gives the following
maps. Let

g(s) = s3 +
3− a2

3b2
s+

2a3 − 9a

27b3
,

where ab �= 0, and

X2(u) = −
b

a

(
1 +

1

u4 − u2

)
,

X3(u) = −u2X2(u),

U(u) = u3g(X2(u)).

Thus
U(u)2 = −g(X2(u))g(X3(u)). (4)

Therefore either g(X2(u)) or g(X3(u)) must be a quartic residue. This leads to
the simplified SWU algorithm.

If g(X2(u)) is a residue, then s = X2(u), t =
√
g(X2(u)) else s = X3(u), t =√

g(X3(u)). Then

x = bs− a

3
, y = bt.

These maps are denoted by f4 : u �→ (x, y). Because degX2(t) = 4 and
degX3(t) = 4, each equation then has at most four solutions; therefore a point
has at most eight pre-images that can be efficiently computed.

5.4 One-Way

We prove that the construction H4(m) = f4(h(m)) is one-way if h is one-way.

Proposition 3. If h is a (t, ε) one-way function, then H4 is (t′, ε′) one-way
where H4(m) = f4(h(m)) and ε′ = 64ε.

154 W. Yu et al.

Proof: In the proof of Lemma 5 in [16], we take L = 8, then we have our
proposition. If ε is negligible, then ε′ = 64ε also can be negligible. Then if h is
one-way, H4 is one-way.

5.5 Collision-Resistant

We prove that the construction H4(m) = f4(h(m)) is collision-resistant if h is
collision-resistant.

Proposition 4. If h : {0, 1}∗ → {0, 1}k is a (t, ε) collision-resistant, then H ′
4

is a (t′, ε′) collision-resistant hash function where H ′
4(m) = f4(c ◦ h(m) + d) for

c, d ∈ Fq selected randomly and

ε′ = ε+
22k+2

q

Proof: We use Theorem 3 [16] for L is 8 and our proposition then follows. In
practice, ε is about 2−k, then ε′ is approximately 2−k+3 when the size of q is at
least 5k/2 bits. If ε is negligible, then ε′ = 64ε also is negligible. Then if h is
collision-resistant, H ′

4 is collision-resistant.

Let c = 1, d = 1, the H4(m) is collision-resistant.

6 Indifferentiable from Random Oracle

6.1 First Construction

As a consequence, if f : S → G is any weak encoding [27] to a cyclic group G
with generator G, then the hash function HR : {0, 1}∗ → G is defined by

HR(m) = f(h1(m)) + h2(m)G,

where h1 : {0, 1}∗ → Fp and h2 : {0, 1}∗ → ZN are two hash functions. HR(m)
is indifferentiable from a random oracle in the random oracle model for h1 and
h2.

We only need to prove f1, f2, f4 are all weak encodings. It is easy to show: f1
is an α1-weak encoding from Fq to Ea,b(Fq), with α1 = 4N/q, where N is the
order of Ea,b(Fq). Similarly, f2 is an α2-weak encoding from Fq to Ea,b(Fq), with
α2 = N/q, and f4 is an α4-weak encoding from Fq to Ea,b(Fq), with α4 = 8N/q.
As α1, α2, α4 are polynomial function of the security parameter, f1, f2, f4 are
all weak encodings. Thus, HRi(m) = fi(h1(m)) + h2(m)G, i = 1, 2, 4 are all
indifferentiable from a random oracle in the random oracle model for h1 and h2.

About Hash into Montgomery Form Elliptic Curves 155

6.2 Second Construction

The second construction is:

H ′
R(m) = f1(h1(m)) + f1(h2(m)).

Using Corollary 2 of [26]: f1 is a well-distributed encoding, then H ′
R(m) is well

behaved i.e. H ′
R(m) is indifferentiable from a random oracle.

In Section 3.1, we have proved that f1 is a well-distributed encoding; hence,
H ′

R(m) is indifferentiable from a random oracle, where h1 and h2 are regarded
as independent random oracles with values in Fq.

7 Time Complexity

7.1 Theoretical Analysis of Hash

Let M denote field multiplication, S field squaring, MA multiplication by a
constant number, I field inversion, EC the cube root, ES the square root, D a
determination of the square residue, and K the security parameter. We make
the usual assumptions that EC = EB = K

2 M,S = MA = M, I = 10M . f1 needs

I + EC + 2M + 3S + 3MA = (K2 + 18)M ; f2 needs ES +MA +M + S +D =

(K2 + 3)M +D; f4 needs I + ES + 4MA + 2M + 2S + 1D = (K2 + 8)M + 1D;
Using Icart’s function [16] with birational equivalence requires [2S+4MA]+ [I+
4MA+2M +3S+EC]+ [2M +MA] = I+EC +4M +5S+9MA = (K2 +28)M .
The cost of f1 is 10M less than Icart’s function with birational equivalence. f4 is
slower than f1 because |D| is greater than 15M . If K is 196, f1 is 10

196/2+28 = 8%

faster than Icart’s function.

7.2 Theoretical Analysis of Random Oracle

The construction: H(m) = f(h1(m)) + h2(m)G needs one hash and one scalar
multiplication. The second construction H(m) = f(h1(m)) + f(h2(m)) needs
two hash times. The second method is more efficient.

7.3 Practical Implementations

The running time of various encodings into Montgomery-form elliptic curves
is discussed. The implementation has been done with the NIST-recommended
192-bit prime P192 and the 384-bit prime P384 (Table 1).

Hash Time. We give the experimental results for the different hash methods
f1, f2, f4, and Icart’s function with birational equivalence. We have run all items
1000 times and obtained the average values listed in Table 2. From Table 2, f1
runs fastest, being in particular 0.181

2.296 = 7.9% faster than Icart’s function.

156 W. Yu et al.

Table 1. NIST

Prime value residue mod 3 residue mod 4

P192 2192 − 264 − 1 2 3

P384 2384 − 2128 − 296 + 232 − 1 2 3

Table 2. Time cost of different method on NIST

Prime P192 P384

f1 2.115 5.226

f2 2.410 5.885

f4 2.496 5.984

Icart’s function 2.296 5.453

Random Oracle Time. The calculation time kP was 60 ms for P192 and
284ms for P384. The cost for method HRi(m) = fi(h(m)) + h2(m)G, i = 1, 2, 4
was about 60 ms for P192 and 290 ms for P384. The cost for method H ′

R(m) =
f1(h1(m))+f1(h2(m)) was about 4 ms in P192 and 10 ms for P384. The second
method, H ′

R(m), is clearly more efficient than the first, HRi(m), i = 1, 2, 4.

8 Conclusion

This paper described four deterministic encoding algorithms fi, (i = 1, 2, 3, 4) for
hashing into Montgomery-form elliptic curves. We also gave proof that the four
algorithms determine hashing functions. Moreover, we provided new functions
indifferentiable from a random oracle based on our deterministic encodings.

References

1. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

2. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg
(2004)

3. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

4. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

5. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.)
PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

About Hash into Montgomery Form Elliptic Curves 157

6. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

7. Cha, J.C., Cheon, J.H.: An identity-based signature from gap-Diffie-Hellman
groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2002)

8. Zhang, F., Kim, K.: Id-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002)

9. Boyen, X.: Multipurpose identity-based signcryption. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003)

10. Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from gap
Diffie-Hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 187–200. Springer, Heidelberg (2004)

11. Lindell, Y.: Highly-efficient universally-composable commitments based on the
DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 446–466. Springer, Heidelberg (2011)

12. Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Com-
put. Commun. Rev. 26(5), 5–26 (1996)

13. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

14. Boyd, C., Montague, P., Nguyen, K.: Elliptic curve based password authenticated
key exchange protocols. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS,
vol. 2119, pp. 487–501. Springer, Heidelberg (2001)

15. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic
curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS,
vol. 4076, pp. 510–524. Springer, Heidelberg (2006)

16. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)

17. Skalba, M.: Points on elliptic curves over finite fields. Acta Arith. 117, 293–301
(2005)

18. Yu, W., Wang, K.: How to Hash into Twisted Edwards Form Elliptic Curves. In:
Lai, X. (ed.) Information Security and Cryptology, Inscrypt 2010, pp. 35–43 (June
1, 2011)

19. Farashahi, R.R.: Hashing into Hessian curves. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 278–289. Springer, Heidelberg (2011)

20. Fouque, P.-A., Tibouchi, M.: Deterministic encoding and hashing to odd hyper-
elliptic curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS,
vol. 6487, pp. 265–277. Springer, Heidelberg (2010)

21. Ulas, M.: Rational points on certain hyperelliptic curves over finite fields. Bull.
Polish Acad. Sci. Math. 55, impan, 97–104 (2007)

22. Yu, W., Wang, K., Li, B., Tian, S.: Construct Hash Function from Plaintext to
C34 Curves. Chinese Journal of Computers 35(9), 1868–1873 (2012)

23. Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factoriza-
tion. Math. Comp. 48, 243–264 (1987)

24. Standards for Efficient Cryptography, Elliptic Curve Cryptography Ver.0.5 (1999),
http://www.secg.org/drafts.htm

25. Okeya, K., Kurumatani, H., Sakurai, K.: Elliptic Curves with the Montgomery-
Form and Their Cryptographic Applications. In: Imai, H., Zheng, Y. (eds.) PKC
2000. LNCS, vol. 1751, pp. 238–257. Springer, Heidelberg (2000)

http://www.secg.org/drafts.htm

158 W. Yu et al.

26. Farashahi, R.R., Fouque, P.-A., Shparlinski, I.E., Tibouchi, M., Voloch, J.F.: Indif-
ferentiable deterministic hashing to elliptic and hyperelliptic curves. Math. Comp.
82, 491–512 (2013)

27. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010)

Appendix

Let Ea,b : by
2 = x3 + ax2 + x be an elliptic curve of Montgomery form defined

over finite field Fq, where a, b ∈ Fq, b(a
2 − 4) �= 0. We extend fa,b to P 1, the

projective line over Fq, by setting fa,b(∞) =∞. Then the graph of fa,b

Gfa,b
= {(u,w) ∈ P 1 × Ea,b|fa,b(u) = w}

is a closed subscheme of P 1 × Ea,b defined by

b2u4 − (2ab+ 6bx)u2 + 6byu+ a2 − 3 = 0.

We assume that charFq �= 2, 3. The geometry of Gfa,b
can be described in the

following lemma.

Lemma 4. If a2 �= 3, 16a6 − 144a4 + 351a2 − 108 �= 0, and 4a4 − 28a2 + 63 �=
0, the subscheme Gfa,b

is a geometrically integral curve on P 1 × Ea,b with no
singular point except the triple point at infinity. Its normalization C is a smooth,

geometrically integral curve of genus 7. The natural map ϕ : C → Gfa,b

pr2−−→ Ea,b

is a morphism of degree 4 ramified at twelve distinct finite points of Ea,b(F̄q),
with ramification index 2.
Proof: The affine patch of Gfa,b

given by u �=∞ and w �=∞ can be represented
as the algebraic set {(u, x, y) ∈ A3|b2y−(x3+ax2+x) = 0, b2u4−(2ab+6bx)u2+
6byu+ a2 − 3 = 0}. Because Ea,b is smooth, the Jacobian matrix(

0 −3x2 − 2ax− 1 2by
4b2u3 − 4b(a+ 3x)u + 6by −6bu2 6bu

)
is of rank less than 2 if and only if⎧⎪⎪⎨⎪⎪⎩

b2y − (x3 + ax2 + x) = 0,
b2u4 − (2ab+ 6bx)u2 + 6byu+ a2 − 3 = 0,
4b2u3 − 4b(a+ 3x)u+ 6by = 0,
6bu(−3x2 − 2ax− 1 + 2byu) = 0.

As a2 �= 3, u �= 0 and 2byu = 3x2 + 2ax+ 1. We substitute this into the second
equation, then bu2 = a+ 3x. Thus, x3 + ax2 + x = 3x2 + 2ax+ 1 = 0, which is
impossible. Therefore, there is no singular point in this affine patch.

Let v be the local coordinate 1
u on P 1 in a neighborhood of ∞ and (z, t) =

(1y ,
x
y) the local coordinate on Ea,b in a neighborhood of ∞.

About Hash into Montgomery Form Elliptic Curves 159

As v = 0 is not a root of equation (a2 − 3)v4 +6byv3− 2b(a+3x)v2 + b2 = 0,
there is no point (∞, w) with w �=∞. Next, we compute points of the form(u,∞)
with u �= ∞. The point(0, 0, 0) is the only one in the algebraic set {(u, z, t) ∈
A3|t3+at2z+ tz2− bz = 0, b2u4z− (2abz+6bt)u2+6bu+(a2− 3)z = 0} of form
(u, 0, 0). The Jacobian matrix at (0, 0, 0) is of rank 2, then (0,∞) is regular.

Let O =
Fq [v,z,t]

(t3+at2z+tz2−bz) (v,z,t)
be the local ring of P 1 × Ea,b at (∞,∞), m =

(v, z, t) the maximal ideal of O. The local equation of Gfa,b
in the neighborhood

of (∞,∞) is given by b2z−2b(az+3t)v2+6bv3+(a2−3)zv4, which is in m3\m4.
Therefore, the multiplicity of (∞,∞) is 3.

From the above, the normalization C of Gfa,b
is a smooth, geometrically in-

tegral curve. The morphism C → Gfa,b
is an isomorphism outside (∞,∞). The

fiber over (∞,∞) consists of 3 points. Because degϕ = 4 = #ϕ−1(∞), ϕ is un-
ramified at ∞ ∈ Ea,b. The possible ramification points are those finite points of
Ea,b, where �a,b = 0. The discriminant of �a,b is � = 253333(a2 − 4)2(16a6 −
144a4+351a2− 108). We assume that � �= 0, then �a,b has six simple roots. If
4a4 − 28a2 + 63 �= 0, the system {�a,b = 0, x3 + ax2 + x = 0} has no solutions.
Hence ϕ has twelve distinct ramification points on Ea,b(F̄q). Ha,b has nonzero
second derivatives which leads to no triple point. It follows that all ramification
points have ramification index 2. Therefore, the genus of C is g(C) = 7 by the
Hurwitz formula.

Joint Triple-Base Number System

for Multi-Scalar Multiplication�

Wei Yu1,2, Kunpeng Wang2, Bao Li2, and Song Tian2

1 Department of Electronic Engineering and Information Science,
University of Science and Technology of China, Hefei, 230027, China

yuwei 1 yw@163.com
2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100093

Abstract. At present, the joint sparse form and the joint binary-ternary
method are themost efficient representation systems for calculating multi-
scalar multiplications [k]P +[l]Q, where k, l are scalars and P,Q are points
on the same elliptic curve. We introduce the concept of a joint triple-base
chain. Our algorithm, named the joint binary-ternary-quintuple method,
is able to find a shorter joint triple-base chain for the sparseness of triple-
base number systems. With respect to the joint sparse form, this algo-
rithm saves 32% of the additions, saving 13% even compared with the joint
binary-ternary method. The joint binary-ternary-quintuple method is the
fastest method among the existing algorithms, which speeds up the signa-
ture verification of the elliptic curve digital signature algorithm. It is very
suitable for software implementation.

Keywords: Elliptic Curve Cryptography, Multi-Scalar Multiplication,
Hamming Weight, Joint Triple-Base Chain.

1 Introduction

Since there are no general-purpose sub-exponential algorithms known for the
elliptic curve discrete logarithm problem, more and more attention has been
focused on the use of elliptic curves in public key cryptography. In particular,
increasing the speed of multi-scalar multiplication is significant as it is required
in the signature verification of the elliptic curve digital signature algorithm
(ECDSA).

Shamir’s trick, which was actually introduced by Straus [1], speeds up the
computation of the product of powers of two elements in the same group. His
trick was designed for finite field arithmetic and is based on binary expansions of
integers. This simple and powerful trick also works for speeding up the operation
of multi-scalar multiplication, [k]P + [l]Q, on elliptic curves. If k and l are n-bit
long integers, computing [k]P , [l]Q separately and adding them together costs

� Supported in part by National Basic Research Program of China(973) under Grant
No.2013CB338002, in part by National Research Foundation of China under Grant
No. 60970153 and 61070171, and in part by the Strategic Priority Research Program
of Chinese Academy of Sciences under Grant XDA06010702.

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 160–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Joint Triple-Base Number System for Multi-Scalar Multiplication 161

2n doublings and n additions on average, whereas using Shamir’s trick with one
pre-computed point P +Q costs only n doublings and 3

4n additions.
In 2001, Solinas [2] introduced the joint sparse form (JSF), which reduces the

number of doublings and additions to n doublings and n
2 additions using two

pre-computed points P +Q and P −Q. Later, Adikari, Dimitrov and Imbert [3]
gave a hybrid method for computing multi-scalar multiplication with a density of
0.3209 using 14 pre-computed points, where density is defined as the Hamming
weight divided by n.

The double-base number system (DBNS) was first introduced by Dimitrov,
Imbert and Mishra [4]. Doche, Kohel and Sica [5] described a joint double-base
number system (JDBNS), a generalization of DBNS, for computing multi-scalar
multiplication using the so-called joint binary-ternary method (JBT). They also
introduced the concept of a joint double-base chain. The density of JBT using
two pre-computed points P +Q and P −Q is approximately 0.3945. The density
of generalized JBT with 10 pre-computed points is 0.3120, which is even lower
than the density of the hybrid method with 14 pre-computed points.

The triple-base number system was first introduced by Mishra and Dimitrov
[6], who used bases 2, 3 and 5 to compute scalar multiplication efficiently. Longa
[7] used a multi-base non-adjacent form (mbNAF) to calculate scalar multipli-
cation over prime fields in his master thesis. Although the Hamming weight of
mbNAF is not as low, the method is very efficient. Recently, Purohit and Rawat
[8] have calculated scalar multiplication efficiently using bases 2, 3 and 7.

In this paper, we introduce the joint triple-base number system, which is a
generalization of the triple-base number system, to calculate multi-scalar multi-
plication by exploiting the sparseness and high redundancy of the representation
integer pairs. The joint triple-base number system is able to represent integer
pairs using fewer items than the JDBNS . We first introduce the concept of a
joint triple-base chain (JTBC). As a special case, we use the 2,3,5-base with the
joint binary-ternary-quintuple method (JBTQ), which calculates multi-scalar
multiplication with a density less than 0.35. The Hamming weight is one of the
most important factors influencing the speed of multi-scalar multiplication. The
Hamming weight of Shamir’s trick with one pre-computed point is 0.75n, JSF
with two pre-computed points is 0.5n, JBT with two pre-computed points is ap-
proximately 0.3945n, JBTQ with two pre-computed points is less than 0.35n, the
hybrid method with 14 pre-computed points is 0.3209n, generalized JBT with
10 pre-computed points is approximately 0.3120n and generalized JBTQ with
10 pre-computed points is about 0.27n. It is obvious that JBTQ has the lowest
Hamming weight among JSF, JBT, JBTQ when using same number of pre-
computed points. The Hamming weight of JBTQ with 10 pre-computed points
is even lower than the hybrid method with 14 pre-computed points. Compared
with JSF, this algorithm with two pre-computed points saves 32% of the ad-
ditions and gains about 12% in overall multi-scalar multiplication performance
using Jacobian coordinates on standard elliptic curves. Compared with JBT,
this algorithm saves about 13% of the additions and gains about 5% in overall
performance when both algorithms use two pre-computed points. JBTQ is a

162 W. Yu et al.

simple and natural generalization of JBT, but we prove that it is more efficient
and has almost the same cost as JTBC. We give efficient quintupling formulae
for two types elliptic curves, and believe that there is room for improvement in
these formulae. To our knowledge, the cost of JBTQ is less than that of existing
algorithms.

2 Preliminary

2.1 Triple-Base Chain

Mishra and Dimitrov [6] introduced the triple-base number system motivated by
its sparseness and the efficient computation of scalar multiplication. An integer
z can be represented as a triple-base chain:

z =

m∑
i=1

sib
e1i
1 be2i2 be3i3 ,

where si ∈ {±1}, e1m � e1(m−1) � . . . � e12 � e11 � 0, e2m � e2(m−1) � . . . �
e22 � e21 � 0, e3m � e3(m−1) � . . . � e32 � e31 � 0.

More specifically, using the 2,3,5-base, z is represented as

z =

m∑
i=1

si2
bi3ti5qi ,

where si ∈ {±1}, bm � bm−1 � . . . � b2 � b1 � 0, tm � tm−1 � . . . � t2 � t1 �
0, qm � qm−1 � . . . � q2 � q1 � 0.

2.2 Multi-Scalar Multiplication

Multi-scalar multiplications [k]P +[l]Q are mainly required in signature verifica-
tion for ECDSA. We use the same integers, k = 542788 = (100001001000010001
00)2, l = 462444 = (1110000111001101100)2, as in [5]. To use Shamir’s trick, k, l
are written as (

k
l

)
=

(
10000100100001000100
1110000111001101100

)
.

Computing [k]P and [l]Q separately and adding them together costs 15 additions
and 39 doublings, whereas 12 additions and 20 doublings are required using
Shamir’s trick.

Let 1̄ denote -1. The JSF [2] representation of k, l is(
k
l

)
=

(
10000100100001000100
1001̄0001001̄01001̄01̄00

)
JSF

.

The JSF has the smallest density of all joint signed-binary representations for
(k, l), and the computation costs 20 doublings and 9 additions.

Joint Triple-Base Number System for Multi-Scalar Multiplication 163

The JBT representation [5] of k, l is(
k
l

)
=

(
1
1

)
21135 +

(
1
1̄

)
2934 +

(
0
1

)
2734 +

(
1
1̄

)
2733

+

(
0
1̄

)
2533 +

(
1
1

)
2532 −

(
1
1

)
253

+

(
0
1

)
24 +

(
1
1̄

)
22,

and requires 8 additions, 11 doublings and 5 triplings.

2.3 Joint Triple-Base Chain

The joint triple-base number system (JTBNS) represents an integer pair (k, l)
as (

k
l

)
=

m∑
i=1

(
di
ei

)
2bi3ti5qi ,where di, ei ∈ {0,±1}.

We define the density of a JTBNS expansion as the number of items in the
expansion divided by the binary length of max(k, l). The exponents in the joint
triple-base chain must satisfy bm � bm−1 � . . . � b2 � b1 � 0, tm � tm−1 �
. . . � t2 � t1 � 0, qm � qm−1 � . . . � q2 � q1 � 0. The pair k, l above can be
represented as:(

k
l

)
=

(
1
1

)
2123351 +

(
0
1̄

)
2113251 +

(
1̄
0

)
283251

+

(
1
1

)
253251 +

(
0
1

)
253250 −

(
1
1

)
253150

+

(
0
1

)
243050 +

(
1
1̄

)
223050,

which requires 7 additions, 12 doublings, 3 triplings and 1 quintupling. In the
following subsection, we present the cost of these elliptic curve point operations.

2.4 Cost of Elliptic Curve Point Operations

An elliptic curve E over a prime field Fp, denoted by E(Fp) is defined by the
Weierstrass equation [9]:

y2 = x3 + ax+ b,

where a, b ∈ Fq and Δ = 4a3 + 27b2 �= 0.
We assume that a = −3, which is the parameter of the NIST standard elliptic

curve, and take Jacobian coordinates. The point representation (x, y) is known
as affine coordinates, while the form (X : Y : Z) is known as projective coordi-
nates and is inversion-free. Jacobian coordinates are a special case of projective

164 W. Yu et al.

coordinates that have very efficient point operations. The equivalence class of a
Jacobian projective point (X : Y : Z) is

(X : Y : Z) = {(λ2X,λ3Y, λZ) : λ ∈ F∗
p},

and (X : Y : Z) corresponds to the affine point (X/Z2, Y/Z3).
Jacobi quartic curves are another form elliptic curve defined by the projective

curve
Y 2 = X4 + 2aX2Z2 + Z4,

where a ∈ Fq and a2 �= 1. The projective point (X : Y : Z) corresponds to the
affine point (X/Z, Y/Z2).

Table 1 shows the cost of elliptic curve point operations with no stored values,
as summarized by Longa and Gebotys [10], on standard elliptic curves using Ja-
cobian coordinates (Jacobian) and on Jacobi quartic curves using an extended
coordinate system of the form (X : Y : Z : X2 : Z2) (JQuartic). Finding the
remainder, doubling (2P), tripling (3P), quintupling (5P) and mixed addition
(P+Q) are denoted by D, T, Q and A respectively, where mixed addition means
that one of the addends is given in affine coordinates [11]. Formulae for these
point operations for Jacobian are shown in Appendix A, and can also be found in
[10], while those for JQuartic can be found in [10] and [12]. Costs are expressed
in terms of field multiplications (M) and field squarings (S). We make the usual
assumption that 1S = 0.8M, and disregard field additions/subtractions and dis-
card multiplications/divisions by small constants for simplification purposes.

Table 1. Cost of elliptic curve point operations

computation Jacobian cost/M JQuartic cost/M

A 7M+4S/10.2 6M+3S/8.4

D 3M+5S/7 2M+5S/6

T 7M+7S/12.6 8M+4S/11.2

Q 10M+12S/19.6 14M+4S/17.2

The new quintupling formulae are very efficient for both Jacobian and JQuar-
tic. We can also compute 5P = 2(2P) + P with cost 2 × 7 + 10.2 = 24.2M for
Jacobian and 2 × 6 + 8.4 = 20.4 for JQuartic, or 5P = 3P + 2P with cost
7 + 12.6 + 15 = 34.6M for Jacobian and 6 + 11.2 + 10.2 = 27.4M for JQuartic.
In the computation of 5P = 3P + 2P , the addition is not a mixed addition but
rather a full addition. The cost of a full addition is 11M + 5S for Jacobian and
7M + 4S for JQuartic. Thus, these quintupling formulae are efficient for both
Jacobian and JQuartic.

In the next section, we give our main algorithm for computing a joint triple-
base chain using bases 2,3 and 5.

Joint Triple-Base Number System for Multi-Scalar Multiplication 165

3 Joint Triple Base Algorithm and Generalizations

Before giving the main algorithm, we introduce some notation. For a positive
prime p, let vp(x) denote the p-adic evaluation of x and let vp(x, y) denote
min(vp(x), vp(y)) for an integer pair (x, y). We define vp(0) =∞.

Definition 1. The gather C is the set of all pairs of positive integers (x, y) such
that v2(x, y) = v3(x, y) = v5(x, y) = 0. (2, 3) is an element of C.

The JBTQ to find a JTBC is shown in Table 3. In JBTQ, we take two positive
integers k and l as the input. The pair (k, l) is divided by 2v2(k,l) 3v3(k,l)5v5(k,l)

to obtain (x, y) ∈ C. We then use the function gain to find the coefficients d
and e that maximize the factor g that has the form 2b3t5q where b, t, q are non-
negative integers. (x − di, y − ei) is divided by the gain g to obtain a new pair
in C. Thus, we can iterate the process until x � 1 and y � 1. The pair (x, y) is
the coefficients of the last item in the JTBC representation.

The function gain is shown in Table 2, where we choose (d, e) ∈ {−1, 0, 1}2
\(0, 0). In the function gain, we need to compute the 2,3,5-part of the gcd (great-
est common divisor) 8 times, returning the largest value and the relevant coeffi-
cients. Computing the 2,3,5-part of the gcd does not require computing the gcd,
and can be done as follows. Check whether both x − i and y − j are divisible
by 2. If they are, then divide by 2 and repeat; else check whether both x − i
and y − j are divisible by 3. If they are, then divide by 3 and repeat; else check
whether both x− i and y− j are divisible by 5. If they are, then divide by 5 and
repeat. The cost of gain will be considered in the cost of algorithm JBTQ.

We define the 2,3,5-part of gcd(0,0) to be∞. Because JBTQ calls the function
gain only when x > 1 or y > 1, the pair (0,0) will not appear in the call of JBTQ.

The cost of JBTQ, which also is the recoding cost, contains of two main parts:
calling the function gain and the divisions in lines 3 and 6 of JBTQ. The product
of all divisors is approximately equal to the larger of k and l. The division is
not in fact needed, that is, the result of line 6 in JBTQ is contained in the
computation of the 2,3,5-part of the gcd in the function gain. Thus the main
cost of JBTQ is the cost of calling the function gain. In the function gain, we
compute the 2,3,5-part of the gcd eight times, and select the largest as g. The
product of (2b13t15q1) and all g is approximately equal to the larger of k and l.
In total, there are at most 8n divisions with the divisor 2, 3 or 5. Thus the total
cost of the recoding is about 8 binary expansions. That is, the recoding cost of
JBTQ is trivial relative to multi-scalar multiplication.

A simple example of JBTQ is shown in Section 2.3 where k = 542788, l =
462444.

The generalizations of JBTQ are similar to the generalizations of JBT. One
generalization is to choose (d, e) ∈ {0,±1 ± 7}2\(0, 0). In this case, JBTQ re-
quires 10 pre-computed points including P±Q, 7P, 7Q, 7P±Q,P±7Q, 7P±7Q.
In the next section, we will give the density of this generalization, as well as anal-
yses of the function gain and of the algorithm JBTQ for computing multi-scalar
multiplication.

166 W. Yu et al.

Table 2. Function gain

Input: Two integers x and y satisfying (x, y) ∈ C
Output: Coefficients d and e, and the max gain g

1. g = 0, d = 0, e = 0
2. for i=-1 to 1
3. for j=-1 to 1
4. find z, b, t and q such that z is the 2,3,5-part of gcd(x− i, y − j)

(except the case i = j = 0)
5. if z > g
6. g = z,d = i, e = j
7. return (g, d, e)

Table 3. Joint Binary-Ternary-Quintuple Algorithm

Input: Two integers k and l such that k > 1 or l > 1

Output: A joint 2,3,5 chain computing k and l simultaneously

1. i = 1
2. b1 = v2(k, l),t1 = v3(k, l),q1 = v5(k, l)
3. x = k/(2b13t15q1),y = l/(2b13t15q1)
4. while x > 1 or y > 1 do
5. (g, di, ei) =gain(x, y)
6. x = (x− di)/g, y = (y − ei)/g
7. i = i+ 1
8. bi = bi−1 + v2(g),ti = ti−1 + v3(g),qi = qi−1 + v5(g)
9. di = x,ei = y

10. return
((

di
ei

)
2bi3ti5qi

)
, which is a triple-base chain

4 Analysis and Comparison

We analyze the complexity of the algorithm JBTQ for computing multi-scalar
multiplication and compare this with other algorithms using the same number
of pre-computed points.

4.1 Complexity Analysis

Let Sα,β,γ denote the set [1, 2α3β5γ]2, where [a, b] denote all integers from a to
b. Let gain(x, y) denote the value g returned by the function gain. We determine
the probability pα,β,γ that gain(x, y) = 2α3β5γ in the following part.

Lemma 1. Given three integers α, β, γ, the cardinality of C ∩Sα,β,γ is 22α+432β

52γ−2.

Proof: The cardinality of Sα,β,γ is 22α32β52γ . The cardinality of C ∩ Sα,β,γ is
equal to 22α32β52γ × (1− 1

4)× (1− 1
9)× (1− 1

25) = 22α+432β52γ−2.

Joint Triple-Base Number System for Multi-Scalar Multiplication 167

Lemma 2. Let α, β and γ be three nonnegative integers. Suppose that gain(x, y) =
2α3β5γ, and that μ satisfies 2μ > 2α3β5γ, ν satisfies 3ν > 2α3β5γ and ω satisfies
5ω > 2α3β5γ. We have

gain(x+ i2μ3ν5ω, y + j2μ3ν5ω) = gain(x, y), ∀i, j ∈ Z.

Proof: It is easy to show that gain(x + i2μ3ν5ω, y + j2μ3ν5ω) � gain(x, y). We
will show that gain(x+ i2μ3ν5ω, y+ j2μ3ν5ω)> gain(x, y) is impossible. Assume
that gain(x + i2μ3ν5ω, y + j2μ3ν5ω) = 2α13β15γ1 > gain(x, y) = 2α3β5γ. Then
there exist c, d satisfying

v2(x− c+ i2μ3ν5ω) � α1 and v2(y − d+ j2μ3ν5ω) � α1,
v3(x− c+ i2μ3ν5ω) � β1 and v3(y − d+ j2μ3ν5ω) � β1,
v5(x− c+ i2μ3ν5ω) � γ1 and v5(y − d+ j2μ3ν5ω) � γ1.

If v2(x − c) �= v2(i2
μ3ν5ω), then v2(x − c) � α1. If v2(x − c) = v2(i2

μ3ν5ω),
then v2(x − c) � μ, and thus v2(x− c) = min(α1, μ). In the same way, we have
v2(y−d) = min(α1, μ), and so v2(x− c, y−d) = min(α1, μ). We can also obtain
v3(x−c, y−d) = min(β1, ν) and v5(x−c, y−d) = min(γ1, ω). Because μ satisfies
2μ > 2α3β5γ, ν satisfies 3ν > 2α3β5γ, ω satisfies 5ω > 2α3β5γ and 2α13β15γ1 >
2α3β5γ, we have gain(x, y) � 2min(α1,μ)3min(β1,ν)5min(γ1,ω) > 2α3β5γ, which is
impossible. Thus, gain(x+ i2μ3ν5ω, y + j2μ3ν5ω)=gain(x, y).

Lemma 3. The probability pα,β,γ is bounded above by 1
22α+432β−252γ−2 for any

nonnegative integers α, β, γ.

Proof: There are 30 integers in the interval [1, 2α+13β+15γ+1] that are divisible
by 2α3β5γ. There are a total of 90 elements x0 such that one of x0, x0 − 1 and
x0+1 is divisible by 2α3β5γ. In the square Sμ,ν,ω, the pairs having a gain equal to
2α3β5γ are of the form (x0+ i2α+13β+15γ+1, y0+ j2α+13β+15γ+1), where x0, y0
is one of the 90 elements above and (i, j) ∈ [0, 2μ−α−13ν−β−15ω−γ−1−1]2. There
are 22(μ−α)32(ν−β+1) 52(ω−γ) pairs at most, which we divide by the cardinality
of C ∩ Sμ,ν,ω = 22μ+432ν52ω−2. Thus pα,β,γ � 1

22α+432β−252γ−2 .

In Lemma 3, gain(1, 1) is one of the few situations that the gain is not 2α3β5γ

for all α, β, γ. The number of these items is negligible compared with 22(μ−α)

32(ν−β+1)52(ω−γ), and so equality in Lemma 3 cannot be guaranteed.

Theorem 1. Let k, l be two integers with gcd(k, l) coprime to 30. The average
density of JBTQ returned by Algorithm JBTQ is in the interval [0.3374, 0.3494].
The average values of the largest power of 2, 3 and 5 in the corresponding chain
are approximately equal to 0.42 log2 k, 0.23 log2 k and 0.09 log2 k, respectively.

Proof: We use Lemmas 1 and 2 to determine the first probabilities pα,β,γ and
Lemma 2 to calculate the μ, ν, ω. As shown in Lemma 3, we need to investigate
22(μ−α)32(ν−β+1)52(ω−γ) pairs. Take p1,1,1 for example. Using Lemma 2 to obtain
μ = 5, ν = 4, ω = 3, we need to investigate 283854 = 1.04976× 109 pairs.

Let ᾱ, β̄ and γ̄ denote the average value of the largest power of 2, 3 and 5
respectively in the JBTQ expansion. To analyze the density of JBTQ and deduce

168 W. Yu et al.

2ᾱ3β̄5γ̄, we give in Table 4 the probability pα,β,γ that z = 2α3β5γ is returned by
the function gain for integers z < 32. For z � 32, the upper bound follows from
Lemma 3.

In fact, pz�32 is equal to 1 minus the sum of the probabilities listed in Table 4.

Table 4. Probability pα,β,γ for integers z = 2α3β5γ < 32

number/probability number/probability number/probability

1:p0,0,0 = 0 2:p1,0,0 = 0 3:p0,1,0 = 4
33

4:p2,0,0 = 5
33

5:p0,0,1 = 41
213252

6:p1,1,0 = 653
213452

8:p3,0,0 = 11
213351

9:p0,2,0 = 521
233551

10:p1,0,1 = 953
233452

12:p2,1,0 = 71
213352

15:p0,1,1 = 41
233252

16:p4,0,0 = 4759
253552

18:p1,2,0 = 1639
223652

20:p2,0,1 = 7
3451

24:p3,1,0 = 71
233352

25:p0,0,2 = 73
203453

27:p0,3,0 = 300383
253754

30:p1,1,1 = 19
243351

pz�32 = 0.0855128.
Let K denote the average number of bits eliminated at each step of JBTQ.

Then

K =
∞∑

α=0

∞∑
β=0

∞∑
γ=0

pα,β,γ(α+ β log2 3 + γ log2 5).

Let z = 2α3β5γ. Defining

Kz�32 =
∞∑

z=32

pα,β,γ(α+ β log2 3 + γ log2 5),

we obtain

K =

31∑
z=1

pα,β,γ(α+ β log2 3 + γ log2 5) +Kz�32

=(1.02105+ 0.579467 log2 3 + 0.213216 log2 5) +Kz�32

=2.43456+Kz�32.

(1)

It is obvious that
Kz�32 � pz�32 log2 32 = 0.427564.

Thus, we obtain K � 2.86212.
Using Lemma 3, we determine an upper bound for Kz�32 of

Kz�32 �
∞∑

z=32

1

22α+432β−252γ−2
(α+ β log2 3 + γ log2 5)

=0.24273+ 0.101364 log2 3 + 0.0541211 log2 5

=0.529053.

(2)

This gives K � 2.96361, and thus 2.86212 � K � 2.96361. The average den-
sity is the inverse of K, which is in the interval [0.3374,0.3494]. Thus, the

Joint Triple-Base Number System for Multi-Scalar Multiplication 169

Hamming weight of JBTQ is 0.3374n to 0.3494n for n-bit long integers k, l.
Using the results above, it is easy to show that ᾱ ∈ [1.02105, 1.26378], β̄ ∈
[0.579467, 0.680831] and γ̄ ∈ [0.213216, 0.2673371]. The average of the largest
power of 2 is equal to ᾱ multiplied by the average length of the expansion, which
is about 0.42 log2 k. The same is true for the largest powers of 3 and 5, which
come to about 0.23 log2 k and 0.09 log2 k, respectively.

We can use more pre-computed points in JBTQ. As mentioned in Section 3, if
we allow d, e ∈ {0,±1,±7} as the coefficients, JBTQ requires 10 pre-computed
points. Following the ideas of Theorem 1, the density of the modified JBTQ with
10 pre-computed points is approximately equal to 0.27, which is smaller than
the density of JBT with 10 pre-computed points and of the hybrid method [3]
with 14 pre-computed points, which are equal to 0.3120 and 0.3209 respectively.

4.2 Experimental Results

To compare JBTQ with other methods such as JSF and JBT, we present some
experimental results. We make the comparison with JSF and JBT for integers
ranging in size from 256 bits to 512 bits, using two or four pre-computed points.
Even with one more pre-computed point, the performance of computing multi-
scalar multiplication is improved greatly. We show (d, e) ∈ {−1, 0, 1}2\(0, 0) in
Table 2. When we allow (d, e) ∈

{
{−1, 0, 1}2\(0, 0)

}
∪ {(7, 0), (−7, 0), (0,−7),

(0, 7)} in function gain, the modified JBTQ with four pre-computed points P +
Q,P − Q, 7P, 7Q is denoted by JBTQ7. The costs of different point operations
on elliptic curves are shown in Table 1. We refer to [10] for the explicit formulae
for Jacobian and refer to [12,13] for the explicit formulae for JQuartic.

Assume that k, l are n-bit numbers. We run every item using the same 1000
random integer pairs for different methods, including JSF, JBT, JBTQ, Tree-
JBT5 [5] and JBTQ7, and derive the average shown in Tables 5, 6 and 7 for
different sizes of k, l. JBTQ7 is an extension of JBTQ, and Tree-JBT5 is an
extension of JBT. The main difference between them is that JBTQ7 uses one
more base 5 than Tree-JBT5. 5 is one of the bases of JBTQ, and we choose 7P
and 7Q as the pre-computed points in JBTQ7.

The notation #P is the number of pre-computed points, #A is the number
of mixed additions, which is the average Hamming weight, #D is the number of
doublings, #T is the number of triplings, and #Q is the number of quintuplings.

The data in Tables 5, 6 and 7 show that JBTQ saves 32% of the additions com-
pared with JSF, and 13% compared with JBT. It is about 11% faster than JSF
and 4% faster than JBT when each uses Jacobian coordinates on standard ellip-
tic curves. When Tree-JBT5 and JBTQ7 use four pre-computed points, JBTQ7

is about 3% faster than Tree-JBT5.
In Tables 5, 6 and 7, setting n = #D + #T log2 3 + #Q log2 5, the density

#A
n is very significant to the performance of multi-scalar multiplication. When

we use Jacobian coordinates, the cost of doubling is only about 7M which is
very cheap, but the cost of quintupling is 19.6M > 7 log2 5M . If the cost of

170 W. Yu et al.

Table 5. Cost of multi-scalar multiplication for different methods at 256 bits

method #P #A #D #T #Q Jacobian JQuartic(M)

JSF 2 128.98 255.88 0 0 3106.76 2618.71

JBT 2 101.26 138.81 73.76 0 2933.9 2509.56

JBTQ 2 87.58 114.45 59.08 20.57 2842.05 2437.87

Tree-JBT5 4 85.25 134.09 76.7 0 2774.6 2379.68

JBTQ7 4 76.09 104.69 55.03 27.46 2740.54 2355.94

Table 6. Cost of multi-scalar multiplication for different methods at 384 bits

method #P #A #D #T #Q Jacobian JQuartic(M)

JSF 2 196.93 383.89 0 0 4695.92 3957.55

JBT 2 152.88 208.09 110.80 0 4412.09 3773.69

JBTQ 2 130.91 170.95 88.64 31.14 4259.14 3653.72

Tree-JBT5 4 127.93 200.88 115.33 0 4164.2 3571.59

JBTQ7 4 115.93 156.77 83.07 41.03 4130.75 3550.53

Table 7. Cost of multi-scalar multiplication for different methods at 521 bits

method #P #A #D #T #Q Jacobian JQuartic(M)

JSF 2 260.53 520.88 0 0 6303.57 5313.73

JBT 2 207.48 281.57 150.88 0 5988.37 5122.11

JBTQ 2 180.05 232.31 119.48 42.65 5804.07 4978.04

Tree-JBT5 4 175.37 271.4 157.3 0 5670.55 4863.27

JBTQ7 4 157.16 205.77 112.72 54.82 5538.17 4760.13

quintupling is log2 5 that of doubling and the cost of tripling is log2 3 that of
doubling, then the total cost of JSF is (15 × 0.5 + 7)n = 14.5n, that of JBT is
(15×0.4+7)n = 13n and that of JBTQ is (15×0.35+7)n = 12.2n. JBTQ gains
even more: 1 − 12.2n

14.5n = 16% compared with JSF and 1 − 12.2n
13n = 6% compared

with JBT.

5 Conclusion

In this paper, we introduced a new algorithm for computing multi-scalar mul-
tiplication called JBTQ. This algorithm uses two pre-computed points, saving
32% of the additions compared with JSF and 13% compared with JBT. It is
about 12% faster than JSF and 5% faster than JBT when using Jacobian coor-
dinates on standard elliptic curves. When both Tree-JBT5 and JBTQ7 use four
pre-computed points, JBTQ7 is about 3% faster than Tree-JBT5. The algorithm
JBTQ can greatly increase the speed of signature verification for ECDSA.

Joint Triple-Base Number System for Multi-Scalar Multiplication 171

References

1. Straus, E.G.: Addition chains of vectors (problem 5125). American Mathematical
Monthly 70, 806–808 (1964)

2. Solinas, J.A.: Low-weight binary representations for pairs of integers. Combina-
torics and Optimization Research Report CORR 2001-41, University of Waterloo
(2001)

3. Adikari, J., Dimitrov, V.S., Imbert, L.: Hybrid binary ternary number system for
elliptic curve cryptosystems. IEEE Transactions on Computers 60, 254–265 (2011)

4. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and Secure Elliptic Curve Point
Multiplication using Double-Base Chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

5. Doche, C., Kohel, D.R., Sica, F.: Double Base Number System for multi scalar mul-
tiplications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 502–517.
Springer, Heidelberg (2009)

6. Mishra, P.K., Dimitrov, V.S.: Efficient Quintuple Formulas for Elliptic Curves and
Efficient Scalar Multiplication Using Multibase Number Representation. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779,
pp. 390–406. Springer, Heidelberg (2007)

7. Longa, P.: Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems
over Prime Fields, Master Thesis, University of Ottawa (2007)

8. Purohit, G.N., Rawat, A.S.: Fast Scalar Multiplication in ECC Using The Multi
base Number System, http://eprint.iacr.org/2011/044.pdf

9. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer (2004)

10. Longa, P., Gebotys, C.: Fast multibase methods and other several optimizations
for elliptic curve scalar multiplication. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 443–462. Springer, Heidelberg (2009)

11. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

12. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Faster group operations on ellip-
tic curves. In: Australasian Information Security Conference (AISC 2009), Welling-
ton, New Zealand. Conferences in Research and Practice in Information Technology
(CRPIT), vol. 98, pp. 7–19 (January 2009)

13. Hisil, H., Wong, K., Carter, G., Dawson, E.: An Intersection Form for Jacobi-
Quartic Curves. Personal Communication (2008)

Appendix A: The Formulae for Jacobian over Prime Fields

Elliptic curve formula:

Y 2 = X3 + aXZ4 + bZ6, where a = −3.

The following formulae can also be found in [10].

http://eprint.iacr.org/2011/044.pdf

172 W. Yu et al.

Doubling

2(X1, Y1, Z1) = (X3, Y3, Z3) can be computed as follows:
X3 = A2 − 2B, Y3 = A(B −X3)− 8Y 4

1 , Z3 = C,
where A = 3X2

1 + aZ4, B = 4X1Y
2
1 , C = 2Y1Z1.

In standard elliptic curves, a=-3, so A = 3(X1 − Z2)(X1 + Z2), B = 4X1Y
2
1

and C = (Y1 + Z1)
2 − Y 2

1 − Z2
1 .

The total cost is 3M+5S.

Addition

(X1, Y1, Z1) + (X2, Y2, Z2) = (X3, Y3, Z3) is given by:
X3 = A2 − 4B3 − 8Z2

2X1B
2, Y3 = A(4Z2

2X1B
2 −X3)− 8Z3

2Y1B
3, Z3 = BC,

where A = 2(Z3
1Y2 − Z3

2Y1), B = Z2
1X2 − Z2

2X1, C = 2Z1Z2 = (Z1 + Z2)
2 −

Z2
1 − Z2

2 .
The total cost is 11M+5S.

Mixed Addition

(X1, Y1, Z1) + (X2, Y2) = (X3, Y3, Z3), Z2 = 1 is given by:
X3 = A2 − 4B3 − 8X1B

2, Y3 = A(4X1B
2 − X3) − 8Y1B

3, Z3 = BC, where
A = 2Z3

1Y2 − Y1, B = Z2
1X2 −X1, C = 2Z1B = (Z1 +B)2 − Z2

1 −B2.
The total cost is 7M+4S.

Tripling

(X3, Y3, Z3) = 3(X1, Y1, Z1) is given by:

X3 =16Y 2
1 (2B − 2A) + 4X1D

2,

Y3 =8Y1[(2A− 2B)(4B − 2A)−D3],

Z3 =2Z1D = (Z1 +D)2 − Z2
1 −D2,

where

2A =2CD = (C +D)2 − C2 −D2,

2B =16Y 4
1 ,

C =3X2
1 + aZ4

1 = 3(X1 − Z2
1)(X1 + Z2

1),

D =12X1Y
2
1 − C2 = 6[(X1 + Y 2

1)
2 −X2

1 − Y 4
1]− C2.

The total cost is 7M+7S.

Joint Triple-Base Number System for Multi-Scalar Multiplication 173

Quintupling

(X5, Y5, Z5) = 5(X1, Y1, Z1) can be computed as follows:

X5 =D2 − 4E3 − 8X ′
2E

2,

Y5 =D(4X ′
2E

2 −X5)− 8Y ′
2E

3,

Z5 =2Z2[(B + E)2 −B2 − E2],

where

A =3(X1 + Z2
1)(X1 − Z2

1),

B =X ′
1 −X2,

C =2Y ′
1 − 2Y2,

D =C2 + E2 − (C + E)2 − 4Y ′
2 ,

E =C2 − 4B3 − 3X ′
2,

X ′
1 =4X1Y

2
1 ,

Y ′
1 =8Y 4

1 ,

X2 =A2 − 2X ′
1,

2Y2 =2AB − 2Y ′
1 = (A+B)2 −A2 −B2 − 2Y ′

1 ,

Z2 =2Y1Z1 = (Y1 + Z1)
2 − Y 2

1 − Z2
1 ,

X ′
2 =4X2B

2,

Y ′
2 =8Y2B

3.

The total cost is 10M+12S.

Anonymous Authentication of Visitors

for Mobile Crowd Sensing at Amusement Parks

Divyan Munirathnam Konidala1, Robert H. Deng1, Yingjiu Li1,
Hoong Chuin Lau1, and Stephen E. Fienberg2

1 School of Information Systems, Singapore Management University,
80 Stamford Road, Singapore 178902

{divyanmk,robertdeng,yjli,hclau}@smu.edu.sg
2 Department of Statistics, Machin Learning Department, Heinz College, and Cylab

Carnegie Mellon University, Pittsburgh, PA, 15213-3890 USA
fienberg@stat.cmu.edu

Abstract. In this paper we focus on authentication and privacy as-
pects of an application scenario that utilizes mobile crowd sensing for
the benefit of amusement park operators and their visitors. The scenario
involves a mobile app that gathers visitors’ demographic details, pref-
erences, and current location coordinates, and sends them to the park’s
sever for various analyses. These analyses assist the park operators to effi-
ciently deploy their resources, estimate waiting times and queue lengths,
and understand the behavior of individual visitors and groups. The app
server also offers visitors optimal recommendations on routes and attrac-
tions for an improved dynamic experience and minimized wait times. We
propose a practical usable solution we call an anonymous authentication
of visitors protocol that protects the privacy of visitors even while collect-
ing their details, preferences and location coordinates; deters adversaries
outside the park from sending in huge amounts of false data, which lead
to erroneous analyses and recommendations and bring down the app
server. We utilize queuing theory to analyze the performance of a typi-
cal app server receiving numerous simultaneous requests from visitors to
process a core function of our protocol.

Keywords: Mobile crowd sensing, Amusement park, Anonymous au-
thentication, False data, Partially blind signature scheme.

1 Introduction

Smart mobile devices allow users to download, install, and run mobile (soft-
ware) applications (apps) that allow users to receive locations based services.
For example, mobile apps use the Global Positioning System (GPS) sensor ex-
tensively to provide information specific to the users’ current location. For mobile
crowd sensing [12], [20], a mobile app periodically collects a device’s sensor data
from a large group of people and transmits them to the app server. Analyses at
the server can provide location specific information directly to individuals and
groups.

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 174–188, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

AAV for Mobile Crowd Sensing at Amusement Parks 175

Amusement and theme parks, such as Disneyland, Universal Studios, and
LEGOLAND, offer a variety of attractions, including rides, shows, dining, and
other forms of entertainment. Since they attract a large number of visitors, the
major inconvenience faced by visitors is long wait times, and park operators are
always exploring and implementing ways and means to minimize/control queue
lengths and enhance visitor experiences.

1.1 Current Situation

Park operators have several options to minimize visitors’ wait times and to
improve their overall experience. In the following, we briefly describe three most
common approaches, where visitors’ involvement is required.

Special/Express Pass Approach. Parks can sell special admission tickets, at
a premium which allow purchasers to bypass the regular lines and gain priority
entrance [22]. This approach may create a feeling of frustration when the special
pass holders bypass those visitors who are waiting in the regular lines for a long
time.

Timed Ticket Approach. The visitor inserts his/her admission ticket into a
machine (located near the attraction) that issues a timed ticket with the return
time window printed on it [9]. Now the visitor is free to enjoy the rest of the park
and need to reach the attraction within the return time window. Since visitors
cannot purchase such timed tickets, this approach gives any visitor inside the
park equal opportunity to pick up a timed ticket. Typically timed tickets are
issued in limited number; visitors must be able to physically reach the machine
before they are all issued; otherwise they need wait in the regular lines. At any
point of time, a visitor cannot possess more than one valid timed ticket and if
the visitor fails to reach the attraction around his/her return time window, the
timed ticket will be wasted. As a result this approach is neither scalable, flexible
nor dynamic with respect to the total number of visitors and their movements
in the park.

Mobile App Approach. Some park operators deploy mobile apps [23], [18],
which display the map of the park, offer directions, provide information about
promotions, shopping and dining options, and most importantly information
about various attractions and their wait times. Such apps push notifications
from the app server to the visitors’ smart mobile devices. They do not generally
aggregate the mobile crowd sensed data and visitors’ personal preferences, nor
analyze them in order to recommend optimal routes and attractions, for an
enhanced dynamic visitor experience and to minimize wait times.

1.2 Application Scenario

Building upon the mobile app approach, we envision an application scenario,
which is based on the mobile crowd sensing and would eliminate the drawbacks
of the previously described approaches and offers other great benefits to both
the park operators and their visitors.

176 D.M. Konidala et al.

Visitor Alice downloads, installs and runs a mobile app developed by the park
operator. The mobile app prompts Alice to enter demographic details such as her
age, gender, nationality, height (used to determine access to certain attractions),
dietary restrictions and other health issues, as well as preferences for rides; must
go and must skip attractions, etc. The app would not ask for Personal Identifying
Information (PII) such as name, social security number, and address. The app
then sends these details and preferences to the app server managed by the park
operator. Henceforth, the app would also periodically collect Alice’s current GPS
location coordinates and send them to the app server, and Alice would receive
communications from the server.

Benefits to the Visitors. Based on Alice’s current location and her demo-
graphic details and preferences, the server would periodically and dynamically
calculate an updated personalized itinerary for Alice to visit various attractions
that minimize her wait times. Alice can follow the itinerary to visit an attrac-
tion during the recommended time slot, and tap her smart device or an RFID
enabled device at the entrance/exit of the attraction for validation. Incentives
(such as points that can be redeemed for gifts) can be used to encourage Alice
to follow the recommended route.

With this approach, visitors need not physically visit a machine to obtain a
return timed ticket. All visitors using the mobile app have equal opportunity to
receive personalized time slots and recommended routes. If the server analyzes
that a particular visitor, based on his/her current location cannot reach the
attraction within his/her recommended time slot, the server would dynamically
recalibrate new time slots for that visitor. Therefore this scenario is scalable,
dynamic, and certainly not wastage prone.

Benefits to the Park Operators. By dynamically analyzing the visitors’
crowd-sensed GPS data, the app server assists the park operators to manage
and deploy their resources efficiently, manage traffic flows and congestion, ana-
lyze various key performance indices such as the queue information, and aver-
age/maximum wait times at each attraction, etc. Similarly by analyzing visitors’
demographic details, preferences and activities, the app server also assists park
operators to gain insight into the behavior of groups and individual visitors based
common preferences, and background characteristics. This then allows for new
approaches to meet visitor needs as well as dynamic optimal recommendations
and routes to improve their overall experience in the park.

2 Threats and Security Requirements

From our application scenario, we identified the following threats to privacy and
certain security requirements to alleviate these threats.

2.1 Threats

Visitor Privacy Violation. In our application scenario the mobile app gath-
ers visitors’ demographic details, preferences and current location coordinates;

AAV for Mobile Crowd Sensing at Amusement Parks 177

therefore, we have to make sure that all these details do not reveal and cannot be
linked to the true identities of the visitors; otherwise the app server or a hacker
who has hacked into the app server, can generate detailed profiles of the visitors,
their buying interests, track all their activities and current locations and carry
out malicious acts such as identity fraud, stalking, and sending spam adverts.

False Data. Adversaries outside the park, for various malicious reasons (extor-
tion, blackmail) can attempt to emulate the mobile app in a computer and create
an unlimited number of fake virtual visitors with their location coordinates in-
side the park. The app sever might unsuspectingly consider all these fake virtual
visitors to be actual visitors inside the park. Sending huge amounts of such false
data to the app server would result in erroneous analyses and recommendations
that could confuse and frustrate the visitors and also overwhelm, degrade and
eventually bring down the server.

Greedy Visitors. Greedy park visitors could attempt to tamper with their
smart mobile devices [15], to send false location coordinates in order to cheat
the process, obtain unfair preferential treatment, rewards, and earlier time slots
for the attractions of their choice.

Man-In-Middle-Attacks. The channel between the mobile app and the app
server is potentially prone to eavesdropping, data capture, and data corruption
by hackers. Since the channel is carrying potentially sensitive data, such attacks
would violate visitors’ privacy and lead to erroneous analyses at server.

2.2 Security Requirements

Use of Pseudonyms. Visitors must interact with the app server using
pseudonyms to decouple visitors’ data from their true identities.

Visitor Authentication. To prevent adversaries outside the park from supply-
ing large volume of false data, the app server needs to verify whether the data
it receives is indeed from a visitor inside the park. To accomplish this, the app
server must authenticate the visitors inside the park and receive data from only
such authenticated visitors.

Data Auditing. The app server needs to audit the data it receives in order to
detect any anomalies or false data from greedy visitors.

Secure Communication Channel. The channel between the mobile app and
the app server must be secure enough to provide app server authentication to
the mobile app, and data protection and integrity for communications.

3 Proposed Anonymous Authentication of Visitors
(AAV) Protocol

Nothing would stop an adversary outside the park from supplying a large volume
of false data. Therefore, we need to authenticate the information reported by

178 D.M. Konidala et al.

a visitor inside the park without divulging the visitor’ identity. In this paper
we apply the cryptographic notion of anonymous authentication: authenticating
the visitor without revealing his/her identity. The fundamental idea here is to
interact with the visitor using a pseudonym instead of his/her true identity.

3.1 Naive Approaches

One naive approach would be to use the admission ticket ID as the visitor’s
pseudonym. The mobile app would send to the app server, the visitors’ demo-
graphic details, preferences, and current location coordinates referring the ticket
ID. Linking these details to the ticket ID proves that the visitor is genuine and is
indeed inside the park. The adversary must purchase a sufficiently large number
of valid admission tickets to launch a successful attack, but this would not be
economical as the tickets are very expensive. This naive approach would greatly
limit the adversary’s power; however it does not protect the privacy of the vis-
itor. A vast majority of the visitors buy their tickets using their credit cards.
In which case the issued ticket IDs are recorded and linked to the credit card,
which is in turn linked to the true identity of the visitor. Therefore, this naive
approach does not truly address the requirement of anonymous authentication.

A second naive approach is for the app server to accept communications that
come only through the Wi-Fi network of the park. Once again here, without
authentication, nothing would prevent the adversary to use the park’s Wi-Fi
network to create unlimited number of fake virtual visitors. Furthermore, most
of the visitors may hesitate using an unsecured open Wi-Fi network and instead
prefer to use their own 3G/4G network.

3.2 Background

Our proposed AAV protocol utilizes pseudonyms and partially blind signature
scheme.

Blind Signature. In 1982, David Chaum proposed a new cryptographic primi-
tive called the blind signature [5], which could be used as a primer tool to design
electronic payment and electronic voting schemes with user privacy-protection
in mind. Blind signature is a special kind of digital signature [17], which allows
users to get signatures on their messages from authorized entities/signature is-
suers (e.g. banks, trusted third parties) without revealing the message contents
to the authorized entity. Furthermore, if malicious signature issuers and verifiers
(e.g. service providers, merchants) collude, they cannot discover the real identity
of the user who actually holds the signatures.

Partially Blind Signature. Blind signatures provide total privacy for users by
fully hiding messages (to be signed) from the signer. This property is not desired
from the signer’s point of view, because he is responsible for his signatures and
he needs to know what he would be signing on. To achieve a solution acceptable
for both the signer and users, Abe and Fujisaki proposed the idea of partially

AAV for Mobile Crowd Sensing at Amusement Parks 179

blind signature [1], which was later formally proved by Abe and Okamato [2].
A partially blind signature scheme has two portions: one portion consists of the
message that is hidden by the user (as in blind signature scheme) and in the
other portion, the signer can explicitly embed necessary information such as
issuing date, expiry date, signer’s identity etc. Users should be made aware of
the information that the signer wishes to embed into the signature. Users must
also be able to verify that only the agreed-upon information has been embedded
by the signer; otherwise the signer may secretly embed undisclosed information
into the signature that could reveal the true identity of the users at a later stage.

3.3 AAV Protocol Description

The AAV protocol is executed in two phases: “Certified Pseudonym Issuing
Phase”, followed by the “Subsequent Interaction Phase”.

In the “Certified Pseudonym Issuing Phase”, Alice’s mobile app generates a
pseudonym P and utilizes the partially blind signature scheme to hide P in a
blinded message B. The mobile app then sends the ticket ID along with B to
the app server. The app server verifies the validity of ticket ID, and inputs an
expiry date while digitally signing B. As a result the app server has no clue
about Alice’s pseudonym and cannot link the future communications from this
pseudonym to Alice. The mobile app would unblind the signature on B, in order
to recover the signature S to the bare pseudonym P , thus making S the certified
pseudonym by the app server.

In the “Subsequent Interaction Phase”, the mobile app no longer uses the
ticket ID, instead it uses the P and the S to send Alice’s demographic details,
preferences, current location coordinates. Since the signature on B from the
app server has been unblinded to the bare pseudonym P , the app server can
easily verify whether the pseudonym P sent by the mobile app matches with the
pseudonym signed in the signature S and also whether it is within the expiry
date. As a result the app server can make sure that it is communicating with a
certified pseudonym/visitor inside the park.

Setup. We construct our protocol using the RSA-based partially blind signature
scheme proposed by Abe and Fujisaki [1]. The mobile app and the app server
share a secure one-way hash function h(.) whose length is k bits. The app server
executes RSA function as follows: N is a product of two large primes p and q. N
satisfies Si � λ for all prime Si(3 ≤ Si ≤ 2k − 1), where λ is the LCM of (p− 1)
and (q − 1). The prime e is an RSA public component, which is larger than or
equal to 2k − 1. The corresponding private key is d given by ed = 1modλ. The
mobile app has the knowledge of e and N .

It is a known fact that a one day admission ticket would expire by the end
of that day the visitor enters the park and a two day admission ticket would
expire by the end of the second day of the visitor’s visit to the park. Therefore,
we assume that both the mobile app and the app server have the knowledge of
the expiry date of an admission ticket. Let x be the expiry date of the admission
ticket, whose length is k−2 bits and both the mobile app and the app server are

180 D.M. Konidala et al.

capable of calculating: τ(x) = 2k−1 + 2h(x) + 1. τ(x) is a formatting function
designed to keep its domain in 2k−1 < τ(x) < 2k so that τ(xi) does not divide
τ(xj) where i �= j. Also, it is designed to produce odd numbers only so that it
becomes relatively prime with λ.

The mobile app can also generate pseudonyms of length k bits and the com-
munication channel between the mobile app and the app server is secured via
the standard HTTPS (Hypertext Transfer Protocol Secure) protocol [16].

Certified Pseudonym Issuing Phase depicted in the Fig.1 is self explana-
tory; however, we elaborate some of the steps here. Step 3 executes the blinding
procedure of the partially blind signature scheme, which hides P in B. No one
else other than the mobile app knows the value of P , i.e., the blinded message
B is statistically or perfectly indistinguishable from P as long as blinding factor
R is not revealed. Step 6 validates whether tktid is a valid unused ticket and
has not been previously used to generate a partially blind signature. In Step 3,
eτ(x) has become the public key that contains the common information between
the mobile app and the app server, i.e., the expiry date. Therefore, in step 7,
the app server calculates the corresponding private key dx. Step 8 executes the

Alice’s Secure Channel Park’s
Mobile App HTTPS App Server

Hash function: h(.) Hash function: h(.)
Large primes: p, q; N = pq

λ = LCM(p− 1, q − 1)
ed = 1modλ

Server’s public key: e,N Private key: d,N
Ticket’s expiry date: x Ticket’s expiry date: x

τ (x) = 2k−1 + 2h(x) + 1 τ (x) = 2k−1 + 2h(x) + 1

1. Scan ticket barcode: tktid
2. Generate pseudonym: P
3. Randomly choose a blind factor: R ∈ Z∗

N

4. blind(P): B = h(P)Reτ(x)modN

5. (tktid,B)
−−−−−−−−−−−−−−−−−−−−−−→

6. Validate: tktid
7. Calculate private key: dx = 1/eτ (x)modλ(N)

8. ParBlindSign(B): Φ = BdxmodN

9. (Φ)
←−−−−−−−−−−−−−−−−−−−−−−

10. unblind(Φ): S = Φ/R ≡ P dxmodN
11. Verify: S using eτ (x)

Fig. 1. Certified Pseudonym Issuing Phase of AAV Protocol

AAV for Mobile Crowd Sensing at Amusement Parks 181

signing procedure of the partially blind signature scheme to generate the blinded
signature Φ. Step 10 executes the unblinding procedure of the partially blind sig-
nature scheme on Φ, which unblinds B to reveal P in the signature S. From here
on S certifies the pseudonym P .

Subsequent Interaction Phase (Fig.2). In this phase, the mobile app sends
the visitor’s demographic details and preferences (DetPre), and current GPS
coordinates (Gps) using the S, P, x. The app server computes h(P) and verifies
the signature on S using x, h(P), dx, this validates that P has been indeed cer-
tified in S. With P being the reference index in the database, the app server
records and analyzes the DetPre, and the periodic (T ime : Gps) data, and
Rewards calculations. The server would now keep track and communicate with
the mobile app using this P . The mobile app would receive the optimal route
(Route), and the dynamically calibrated personalized time slots (TSlots) for
various attractions (Attrs) in the park, as well as Rewards.

Alice’s Secure Channel Park’s
Mobile App HTTPS App Server

1. Enter demographic details and preferences: DetPre
2. Obtain current GPS location: Gps
3. Retrieve: {S, P, x}

4. ({S, P, x}, DetPre,Gps)
−−−−−−−−−−−−−−−−−−−−−−−−→

5. Verify: S using x, h(P), dx and validate: P
6. Store and analyze:

p : DetPre
p : (T ime1 : Gps1, · · · , T imen : Gpsn)

7. Compute and Store:
p : Route

p : (Attr1 : TSlot1, · · · , Attrn : TSlotn)
p : Rewards

8. (Route,Attrs : TSlots,Rewards)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9. View:
Optimal Route
Attr1 : TSlot1, · · · , Attrn : TSlotn
Rewards

Fig. 2. Subsequent Interaction Phase of AAV Protocol

3.4 Anonymous Authentication of a Group

In our application scenario, the app server would assist the park operators to
understand the behavior of groups moving together by constantly analyzing

182 D.M. Konidala et al.

the visitors’ demographic details, preferences and activities; however, our AAV
protocol is only applicable to individual visitors. Therefore, we extend the AAV
protocol to accommodate anonymous authentication of a group. The basic idea
here is that the pseudonyms of individual members of a group would all be linked
to a single common group pseudonym. With this approach the app server can
carry out behavioral analysis of individual members of a group based on their
individual unique pseudonyms and also the behavioral analysis of the entire
group based on their single common group pseudonym.

We can slightly modify the “Certified Pseudonym Issuing Phase”, so that
the head/leader of the group’s mobile app would generate two pseudonyms; one
representing the group pseudonym (GP) and the second representing his/her
own individual pseudonym (P). Both the GP and P , would be hidden in the
blinded message B. The head of the group would then inform the rest of the
group members about the group pseudonym, e.g., via email. The rest of the group
members’ mobile apps would then include this GP along with their individual
pseudonyms during their “Certified Pseudonym Issuing Phase”. Finally, during
the “Subsequent Interaction Phase”, the app server would record both the group
pseudonym and the individual pseudonyms.

4 Security Analysis

This section provides security analysis of our AAV protocol with respect to the
threats described in section 2.

4.1 Use of Pseudonyms to Protect Visitors’ Privacy

Our proposed AAV protocol successfully utilizes pseudonyms to decouple visi-
tors’ data from their true identities. The app server has no role in generating
the pseudonyms for the visitors. The blinding procedure of the partially blind
signature scheme does not reveal the visitor’s pseudonym to the app server, yet
the scheme allows us to obtain the signature of the app server on the pseudonym.
The app server cannot link the pseudonym to neither the ticket ID nor the credit
card used to purchase the ticket. Both the mobile app and the app server can
independently produce x, τ(x), and eτ(x); therefore the mobile app can precisely
verify (step 11 of the “Certified Pseudonym Issuing Phase”) that apart from the
expiry date x, the app server has not included any hidden message to distinguish
the transaction later.

Restricted Privacy. Our AAV protocol provides only restricted privacy, but
not complete visitor anonymity and unlinkability. Our application scenario re-
quires that the visitor be tracked with a particular pseudonym, so that his/her
preferences and current GPS location data can be gathered, analysed, and used
to recommend optimal route, award rewards, and send dynamically calibrated
personalized time windows for various attractions in the park.

AAV for Mobile Crowd Sensing at Amusement Parks 183

Physical Layer Anonymity. Even though we use the AAV protocol, visitors
may be tracked based on their smart device’s MAC (Media Access Control)
address, which is a unique fixed identifier assigned to network interfaces for
communications on the physical network. However, if the visitor is using the
device’s 3G/4G network to communicate with the app server, the operator of
the 3G/4G network would assign a different IP address each time a connection
is made and the MAC address is made known only to the operator. The app
server would only know the dynamic IP address, which cannot be used to track
the device.

On the other hand if the visitor is using the free Wi-Fi network provided
by the park operator, there are chances that the app server may retrieve and
store the MAC addresses off the Wi-Fi access points. This situation is very
rare and would require considerable amount of resources on the part of the app
server to record the MAC address of every communication. However, there are
ways to circumvent this problem; the visitor may choose to communicate with
the app server through anonymity networks like the mix network [11], and Tor
onion routing network [21]. Such networks direct user’s internet traffic through
a worldwide volunteer network of servers to conceal a user’s location or guard
against network surveillance or traffic analysis. There exists an open source client
for the Tor network on Android mobile devices called the “Orbot” [19].

4.2 Visitor Authentication to Deter False Data from Adversaries
Outside the Park

Our AAV protocol achieves anonymous authentication, whereby the app server
accepts data only from pseudonyms that have been certified during the “Certi-
fied Pseudonym Issuing Phase”. The function τ(x) prevents a visitor to obtain
multiple signatures on the same pseudonym with different expiry dates [1]. The
h(P) in the step 4: blind(P): B = h(P)Reτ(x)modN , prevents two visitors with
valid certified pseudonyms to collude and forge a new valid certified pseudonym.

Uniqueness of Ticket ID. In our “Certified Pseudonym Issuing Phase” we
depend on the ticket ID to be unique and non-sequential. The app server verifies
whether the ticket ID is un-used, un-expired, and was not previously used to
obtain the partially blind signature. But, if the park operators do not issue
unique and non-sequential tickets, any one could produce and sell fake tickets
and can also misuse our protocol. It is a problematic situation for both the park
operators and for our protocol. In cases where the ticket ID is already on the
ticket and not uniquely generated and printed at the time of issuing, we can
expect sequential IDs. We suggest that the park operators generate and print
another unique number (for example the current date and time) on every ticket
at the time of issuing. In such a scenario, the mobile app would prompt the
visitor to type in that unique number and send it along with the (tktid, B), step
5 of “Certified Pseudonym Issuing Phase”. This approach would ensure that we
are dealing with unique and non-sequential ticket IDs.

184 D.M. Konidala et al.

4.3 Data Auditing: Heuristics, Thresholds, and Revocation to
Deter Greedy Visitors

Following the approach of [15], which used heuristics to detect fake-location
attacks against location-based services, we suggest that the app server would
formulate and put in place certain heuristics such as calculating the time elapsed
between the visitors’ previous location and the current location. If this time
matches with the average time taken by other visitors to commute between the
same two locations, then the data is considered legitimate. Minimum threshold
values must also be put in place, to detect false data. Whenever the app server
identifies a particular pseudonym sending in data that does not match these
heuristics and threshold values, it could be a greedy visitor, in which case the
app server can immediately black list that particular certified pseudonym and
deny all future communications.

4.4 Secure Channel to Counter Man-in-the-middle Attacks

In our AAV protocol, the communication channel between the mobile app and
app server is secured using the standard HTTPS protocol [16]. The HTTPS
authenticates the app server, and guarantees confidentiality and integrity for
the data communicated between the mobile app and app server. The developers
of the mobile app must carefully implement the HTTPS protocol; recent works
[10], [13], have shown that improper implementations and over looking of various
critical settings of HTTPS have resulted in complete breakdown of certificate
verification, which can lead to successful man-in-the-middle attacks.

5 Related Work

There exist other cryptographic solutions such as the group signature schemes
[7], and anonymous credential schemes [6], [8]. These schemes allow a member
of a group to sign on a message on behalf of the group. The verifier of the signed
message can prove that the message has come from the group, but cannot deduce
the true identity of the group member who signed the message. At the outset
these schemes seem suitable, but for the following reasons they are not practical
for our application scenario. These schemes require all the visitors in the park
to have a public and private key pair. They also require a group manager to add
members into the group, issue group public key and to certify the groupmembers’
credentials. The group manager, if the need arises, can also trace and identify
the member who signed a particular message. In our application scenario, the
visitors enter the park in huge numbers in an unpredictable manner; we cannot
expect the visitors to generate public and private key pairs; it is impossible
for the visitors to establish a group manager among themselves and to execute
complex operations of these signature schemes. The park operator cannot be a
group manager, in which case the true identities of the visitors are revealed.

There also exist anonymous e-token schemes [4], where an user is initially
issued a certain number of certified pseudonyms or anonymous e-tokens by the

AAV for Mobile Crowd Sensing at Amusement Parks 185

server. At a later phase, every time the user communicates with the server,
he/she uses a different anonymous e-token. This scheme does not reveal the true
identity of the user, yet the server can confirm if the data has come from an
authorized user possessing certified anonymous e-token. As mentioned in our
security analysis section—Restricted Privacy—this scheme is also not practical
for our application scenario because it provides complete anonymity and unlink-
ability of pseudonyms.

6 App Server Performance Results

In our proposed AAV protocol, the app server executes two core cryptographic
procedures; the “partially blind signing procedure” (during the Certified
Pseudonym Issuing Phase) and the “signature verification procedure” (during
the Subsequent Communication Phase). Similar to the typical RSA-based sign-
ing and signature verification procedures [17]; both the RSA-based partially
blind signing and signature verification procedures [1] include one hash opera-
tion and one exponentiation operation. We relied on [24] for the speed bench-
marks of some of the most commonly used cryptographic algorithms. A 1024
bit RSA-based signing procedure and signature verification procedures take 0.67
milliseconds (ms) and 0.04 ms respectively, when executed on an AMD Opteron
8354, 2.2 GHz processor under Linux. We can assume that a 1024 RSA-based
partially blind signing procedure and signature verification procedures would not
take more than 0.67 ms and 0.04 ms respectively, when executed on an AMD
Opteron 8354, 2.2 GHz processor under Linux.

Amusement parks attract large numbers of visitors. For example, the Magic
Kingdom at Walt Disney World Resort, Florida, USA is the largest amusement
park worldwide in order of annual attendance [3]; 17 million visitors in the
year 2011, averaging 46,000 visitors a day. As a result, thousands of visitors’
mobile apps would concurrently access the app server. Since a 1024 bit RSA-
based partially blind signing procedure requires longer time (0.67 ms), when
compared to the signature verification procedure (0.04 ms), we are particularly
interested in the number of simultaneous partially blind signing requests that
could be handled by an app server. Therefore we applied queuing theory [14] to
analyze the performance of the app server by predicting its response times while
executing the 1024 bit RSA-based partially blind signing procedure.

In queuing theory, a system consists of a single queue of jobs submitted to one
or more servers. We used the stochastic M/M/C queuing model, where the M
represents the Markov or memory less or exponential nature of the job arrival
and job service rates, and C is the number of servers attached to the queue.
Initially we considered 1 app server, i.e., M/M/1 queuing model. A single server
can process approximately 1,492 partially blind signing requests per second at
the rate of 0.67 ms per request. We subjected this M/M/1 queuing model with
increasing number of requests per second and calculated the respective server’s
average response time. The average response time is the sum of the average
amount of time that it takes a server to process such a request, and the average
amount of time a request spends in the queue.

186 D.M. Konidala et al.

0
2
4
6
8

10
12
14
16
18

200 400 600 800 1000 1200 1400 1431

Re
sp

on
se

 T
im

e
(m

s)

Number of Requests per Second

Fig. 3. Average Response Time of App Server with M/M/1 Queuing Model

0

1

2

3

4

5

6

7

1000 1500 2000 3000 4000 4200 4300

Re
sp

on
se

 T
im

e
(m

s)

Number of Requests per Second

Fig. 4. Average Response Time of App Server with M/M/3 Queuing Model

Fig.3 depicts the chart of server’s average response time with respect to the
increasing number of requests per second. It shows that as the number of requests
per second gets close to 1,492, the app sever becomes unstable, exponentially
reaching: maximum utilization capacity and maximum number of requests that
can be processed and are waiting in the queue, leading to a dead lock, and
finally the average response time reaching one second per request, frustrating
the visitors of the park. Fig.3 also points to the fact that the arrival rate of
1,000 requests per second allows the app server to be stable and process all
the requests efficiently with an average response time of just 2 ms. However,
considering the huge number of visitors in the park, we estimate that at least
3,000 (partially blind signing) requests per second must be processed by the app
server. Therefore, we must increase the number of app servers, i.e., the value of

AAV for Mobile Crowd Sensing at Amusement Parks 187

C in the M/M/C queuing model. Our calculations as depicted via the chart in
Fig.4 show that the M/M/3 queuing model, where a single queue of requests is
now handled by 3 app servers, can efficiently process 3,000 requests per second,
with an average response time of just 1 ms.

7 Conclusion

In this paper, we analyzed the authentication and privacy aspects of an appli-
cation scenario that utilizes mobile crowd sensing for the benefit of amusement
park operators and their visitors. We proposed a simple and practical anony-
mous authentication of visitors protocol that utilizes pseudonyms and partially
blind signature scheme. The protocol protects the privacy of the visitors while
authenticating them to the park’s server and also prevents adversaries outside
the park from bombarding the server with huge amounts of false data. We have
utilized M/M/C queuing model to analyze the server performance while receiv-
ing a large number of simultaneous partially blind signing requests (per second)
from the visitors and recommended a minimum of 3 servers to handle 3,000
such requests per second for an optimal server response time. We offered several
security discussions that need to be considered while deploying the application
scenario. In fact, the contributions of this paper would be applicable to other
types of similar application scenarios that are based on mobile crowd sensing
and incentivizing the visitors.

Acknowledgement. This research/project is supported by the Singapore Na-
tional Research Foundation under its International Research Centre @ Singapore
Funding Initiative and administered by the IDM Programme Office.

References

1. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto,
T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg
(1996)

2. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000)

3. AECOM, TEA-AECOM 2011 Theme Index The Global Attractions Attendance
Report, Themed Entertainment Association (TEA) (2011)

4. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.:
How to win the clone wars: Efficient periodic n-times anonymous authentication.
In: CCS 2006, pp. 201–210 (2006)

5. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982,
pp. 199–203 (1982)

6. Chaum, D.: Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM 28(10), 1030–1044 (1985)

7. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

188 D.M. Konidala et al.

8. Damg̊ard, I.B.: Payment systems and credential mechanisms with provable secu-
rity against abuse by individuals. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 328–335. Springer, Heidelberg (1990)

9. Disney’s FASTPASS Service, http://disneyworld.disney.go.com/
guest-services/fast-pass/

10. Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgartner, L., Freisleben, B.:
Why Eve and Mallory love Android: An analysis of Android SSL (In)security. In:
CCS 2012, pp. 50–61 (2012)

11. Berthold, O., Federrath, H., Köpsell, S.: Web mixes: A system for anonymous
and unobservable internet access. In: Federrath, H. (ed.) Anonymity 2000. LNCS,
vol. 2009, pp. 115–129. Springer, Heidelberg (2001)

12. Ganti, R., Ye, F., Lei, H.: Mobile crowdsensing: Current state and future challenges.
IEEE Communications Magazine 49(11), 32–39 (2011)

13. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
most dangerous code in the world: Validating SSL certificates in non-browser soft-
ware. In: CCS 2012, pp. 38–49 (2012)

14. Gross, D., Shortle, J.F., Thompson, J.M., Harris, C.M.: Fundamentals of Queueing
Theory. Wiley (2008)

15. He, W., Liu, X., Ren, M.: Location cheating: A security challenge to location-based
social network services. In: ICDCS 2011, pp. 740–749 (2011)

16. Internet Engineering Task Force (IETF), Network Working Group, HTTP Over
TLS, RFC2818 (2000), http://tools.ietf.org/html/rfc2818

17. Menezes, A.J., vaz Oorschot, P.C., Vanstone, S.A.: Digital Signatures. In: Hand-
book of Applied Cryptography, ch.11. CRC Press (1997)

18. Merlin Entertainments iTunes App., LEGOLAND California (2012),
https://itunes.apple.com/us/app/legoland-california-official/

id452395530

19. Orbot: Tor on Android, The Tor Project (2012),
https://guardianproject.info/apps/orbot/

20. Sherchan, W., Jayaraman, P.P., Krishnaswamy, S., Zaslavsky, A.B., Loke, S.W.,
Sinha, A.: Using on-the-move mining for Mobile crowdsensing. In: MDM 2012, pp.
115–124 (2012)

21. Tor, Anonymity Online, https://www.torproject.org/
22. Universal Express Passes, Universal Orlando Resort,

http://www.universalorlando.com/Theme-Park-Tickets/Universal-Express/

Express-Passes.aspx

23. Walt Disney iTunes App., Disney Mobile Magic (2012),
https://itunes.apple.com/us/app/disney-mobile-magic/id500000336

24. Dai, W.: Speed Comparison of Popular Crypto Algorithms,
http://www.cryptopp.com/benchmarks.html

http://disneyworld.disney.go.com/guest-services/fast-pass/
http://disneyworld.disney.go.com/guest-services/fast-pass/
http://tools.ietf.org/html/rfc2818
https://itunes.apple.com/us/app/legoland-california-official/id452395530
https://itunes.apple.com/us/app/legoland-california-official/id452395530
https://guardianproject.info/apps/orbot/
https://www.torproject.org/
http://www.universalorlando.com/Theme-Park-Tickets/Universal-Express/Express-Passes.aspx
http://www.universalorlando.com/Theme-Park-Tickets/Universal-Express/Express-Passes.aspx
https://itunes.apple.com/us/app/disney-mobile-magic/id500000336
http://www.cryptopp.com/benchmarks.html

Secure RFID Ownership Transfer Protocols�

Nan Li1, Yi Mu1, Willy Susilo1,��, and Vijay Varadharajan2

1 Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Wollongong, Australia
{nl864,ymu,wsusilo}@uow.edu.au

2 Information and Networked Systems Security Research
Department of Computing, Faculty of Science

Macquarie University, Sydney, Australia
vijay.varadharajan@mq.edu.au

Abstract. An RFID tag could change hands many times during its
lifetime. In a retail chain, the ownership of the tag is instituted by the
supplier who initially owns the tag. In the view of a buyer, the validity
of the current tag ownership and the originality of supplier are most im-
portant. In typical RFID ownership transfer protocols, the knowledge of
the tag’s authentication key proves the ownership. However, it is insuf-
ficient against an active attacker, since tags are usually lack of tamper-
proof protections. Ownership transfer relies on a successful verification
of tag’s supplier and current ownership. In this paper, we formally define
the security model of ownership transfer protocols and propose a secure
ownership transfer protocol. In our scheme, current owner provides a
new owner with the evidence of transfer and a proof of tag origin. Key
management becomes easy in our system, since the one asymmetric ver-
ification key of the owner can be used to verify multiple tags that belong
to the owner.

1 Introduction

A basic RFID system comprises three components: RFID reader, RFID tag,
and backend database. RFID has exhibited many practical applications such as
serving as identity of an object in supply chains, supermarkets and hospitals. A
tag attached to a product has a unique identifier stored in its backend database.
In practice, a product (with a tag) is owned by a user. Often, the product needs
to change hands due to selling or buying. This process is referred to as ownership
transfer.

In the lifetime of a tag, its ownership is likely to be transferred from one owner
to another. An ownership transfer protocol runs between the current owner and
the new owner. Generally speaking, the protocol is considered in two phases,

� This work is supported by the Australian Research Council Discovery Project
DP110101951.

�� This work is supported by ARC Future Fellowship FT0991397.

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 189–203, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

190 N. Li et al.

namely ownership verification and ownership transfer. A new owner firstly ver-
ifies the current ownership of the tag. If the current ownership is confirmed, he
can request the ownership transfer. After a successful ownership transfer, the
current owner who becomes the previous owner of the tag can no longer access
the tag and the new owner who becomes the current owner of the tag can prove
the ownership of the tag. According to the current ownership of the tag, a user
can be a previous owner, current owner or new owner of the tag.

The security of RFID ownership transfer protocols is considered in threefold:
the secure ownership, exclusive ownership and secure ownership transfer [3].
The first two are related to the phase of the ownership verification. Informally,
they guarantee that the actual owner always has the ownership of a tag and no
others can simultaneously obtain the ownership. The criteria of secure ownership
transfer evaluates the phase of the tag ownership transfer. A new user who is
unauthorized by the current owner cannot gain the ownership of the tag. A
secure ownership transfer protocol should satisfy all these requirements.

The traditional RFID ownership transfer protocols are based on the light-
weight symmetric key authentication schemes. The backend server and a tag
share a predefined symmetric key and the tag’s identity. The tag’s ownership is
checked by implementing the authentication protocol. However, most (passive)
tags are not tamper-resistant, so that adversaries can launch active attacks. It is
possible to physically corrupt or clone a tag and obtain the internal state. Once
the internal state is leaked, the adversary can control the tag as the real owner.
Therefore, it can prove the ownership and even transfer the tag to others.

1.1 Motivation

The aim of this paper is to propose a secure RFID ownership transfer protocol. In
most previous RFID ownership transfer protocols, the proof of ownership relies
on the knowledge of the tag’s authentication key. If the user can provide a valid
secret key, the verifier accepts its ownership of the tag. While it is insufficient
against the attacker who compromises the tag. In practice, we call the party who
currently owns the tag as a seller and the party who receives the ownership as a
buyer. The symmetric authentication key shared between the seller and the tag
provides no identity information of the seller. Anyone who has the key is able to
prove the ownership and transfer it to other parties. It may injure the rights of
seller and buyer. As a buyer, it usually concerns the origin of the product and
the validity of the seller. He expects to check them during a purchase. The key
management in large RFID system is also an issue. A tag normally requires a
unique key for proving the ownership. The buyer has to obtain a large number
of keys to check ownerships of tags. It not only requires a secure channel in
communication, but also hard to maintain the records of these transactions. It
would be desirable that one verification key can do the job. With this key, anyone
can verify the ownership of tags that belong to the owner.

We look into an RFID system, where a supplier obtains products from a
manufacturer. The supplier authorizes the manufacturer, via a warrant, to make
specific products. After the products are ready for the supplier, the manufacturer

Secure RFID Ownership Transfer Protocols 191

setups RFID tags and attaches them to products, respectively. When a buyer
purchases the product from the supplier, the ownership transfer is required. The
buyer checks the information of supplier and the product prior to making a
payment. Once the deal is complete, the buyer owns the tag and supplier can
no longer claim the ownership. Meanwhile, the seller provides the undeniable
transfer proof which includes the information of seller, buyer and tag. The buyer
can also resell the product in the future. One aim in this paper is to construct
an ownership transfer scheme in this scenario.

Symmetric key based protocols are insufficient to reach a strong security level
for ownership transfer protocols. It is a challenge to resist an active attack. We
assume that the tag authentication can be done by using a traditional RFID au-
thentication protocol, while we only focus on the ownership transfer protocol. An
owner is usually a powerful entity which can perform public key cryptographic
algorithms for ownership transfer, which does not rely on the computation power
of tag.

1.2 Our Contributions

In this paper, we enhance the security of ownership transfer protocols by con-
sidering some strong attacks, such as the replacement attacks. In our model, the
ability of an adversary is assumed by allowing more oracle queries. A formal
definition of security model is given in this paper. An RFID ownership transfer
protocol which is secure against the presented model is proposed. We consider
a chain of the ownership transfers. It guarantees the actual ownership even if
the internal state of the tag is disclosed. The protocol prevents an unauthorized
owner from transferring the ownership to another. In other words, the validity of
the current owner is verified during the ownership transfer. As a feature of our
protocol, instead of using different authentication key to check the ownership
of each tag, a buyer can use the seller’s public key to check the all the tags.
We analyse the security of proposed ownership transfer protocol and provide a
formal security proof.

2 Related Work

Saito, Imamoto and Sakurai [13] introduced an ownership transfer protocol using
two approaches. Both provide the privacy and security protection of the current
owner and the new owner. One is based on the three-party model and the other is
on two-party model. Since the schemes are based on symmetric key cryptographic
algorithms, the secret key of tag is pre-shared with the owner. In the three-party
model, the second key is shared between the trusted third party (TTP) and the
tag. In ownership transfer, the TTP helps the new owner to update the tag’s new
secret. While the online TTP is required during the ownership transfer. Once
the tag is compromised, the shared secret key between the tag and the TTP is
also disclosed.

192 N. Li et al.

Independently, Molnar, Soppera and Wagner [9] proposed an ownership trans-
fer protocol of RFID tags. The protocol addresses the privacy problems of own-
ership transfer through the pseudonym. The proposed scheme employs a tree
based key structure to enable the time-limited delegation for temporarily owner-
ship transfer. It is that the current owner can temporarily delegate the ownership
of the tag to another party. After a period of time, the ownership is returned to
the original owner without the agreement of the delegatee. However, the scheme
needs a counter which is in the non-volatile memory to count the number of
authentications. A Trusted Center (TC) who controls all the secret of tags as-
sists the readers to authenticate the tag. Unfortunately, most trusted third party
based ownership transfer protocols [6,8,11,9] suffer from the similar issues as in
[13].

Several security properties of ownership transfer protocols were introduced by
Ng, Susilo, Mu and Safavi-Naini [10], where they introduced four new properties:
tag assurance, current ownership proof, undeniable ownership transfer and owner
initiation. The proposed scheme satisfies most security properties of ownership
transfer while only some hash calculations are required on the tag. Elkhiyaoui,
Blass and Molva [4] presented the problem of issuer verification during the own-
ership transfer. In this paper, the privacy and security of ownership transfer
protocols are formally defined and the proposed scheme achieves the constant
time authentication. The scheme prevents the attacker from injecting fake tags in
the supply chains. The origin of the tag is verified prior to the transfer. Abyaneh
[2] shows that the forward and backward privacy are broken if the attacker was
an owner of the tag. Additionally, the definition of the security model does not
allow the adversary to rewrite the tag’s content. It may be vulnerable against
some active attacks.

A scalable authentication protocol which supports the ownership transfer was
proposed in [5]. The protocol provides the controlled delegation without using
the non-volatile memory to store a counter. The feature of desynchronization
engages the protocol runs without the TTP. It employs a table which consists
of two hash chains to identify a tag. While, the cost of storage on the server is
questionable when the maximum size of the hash chains increased. Meanwhile,
it also suffers form the denial-of-service attack.

Deursen, Mauw, Radomirović and Vullers [3] introduced a formal definition
of secure ownership transfer in RFID systems. They described two roles: the
tag owner and the tag holder. Basically, both of them can pass the ownership
test but only the owner is engaged to transfer the ownership. It was claimed
that the tag owner and holder are coincide in the notion of secure ownership.
However, the holder of the tag may not be the owner in decentralized systems.
Since the security of ownership is based on the authentication of the tag, most
symmetric-key ownership transfer protocols [14,13,9,12] assume that the tag is
incorruptible. In [10] and [4], a tag is allowed to be compromised. Nevertheless,
the content of the tag cannot be rewrite after the adversary disclosed the key.

Secure RFID Ownership Transfer Protocols 193

3 System Model

In this section, we formally define the ownership transfer protocols using the
retail chain as an instance.

3.1 Entities

– Tag Ti: An object is attached by one tag T . The tag has a small memory
which stores the current state si of the tag. Ti is a low-cost device which can
at most calculate the hash function F .

– Manufacturer Mi: The manufacturer is the one who makes the products
for suppliers. One manufacturer can cooperate with many different suppliers
while the product must be authorized by the specific supplier.

– Supplier Si: The supplier is the one who sales the products to customers. It
handles the first ownership transfer of the tag. The supplier authorizes the
manufacturer to produce expected number of products meanwhile S provides
a unique warrant for each product.

– Previous Owner O(ti,k−1): The previous owner O(ti,k−1) is the one who
previously owns the tag Ti at the time k−1. It provides the proof of transfer
Σ(t,k−1,k) to the current owner.

– Current Owner O(ti,k): The current owner O(ti,k) is the one who currently
owns the tag Ti at the time k. It maintains a database which stores the states
of tags and authenticates tags though a reader Rk. The current owner can
prove the current ownership σ(ti,k) of the tag and show the valid transfer
obtained from the previous owner. O(ti,k) is allowed to transfer the current
ownership of Ti to the new owner.

– New Owner O(ti,k+1): The new owner O(ti,k+1) is the one who is a potential
owner of the tag Ti. Prior to accepting the ownership of tag Ti, the new owner
verifies the tag’s supplier S, the previous transfer proof Σ(t,k−1,k) and the
current ownership σ(ti,k). It provides an evidence of the acceptance once the
transfer is completed.

Remark 1. The supplier can be considered as a special owner of tag and the
manufacturer is an agent of particular supplier. The previous owner, current
owner and new owner are roles which are changeable in different periods of the
tag ownership. That means the new owner becomes a current owner or previous
owner once he receives or transfers the tag ownership, respectively.

3.2 RFID Ownership Transfer Systems

In our system model, we do not employ the centralized server which is normally
a trusted third party. Instead, we adopt the two-party mode that each party
maintains an isolated database and readers. A party who engages in the owner-
ship transfer is an owner of a tag. From now on, we refer to an owner as an entity
which is supported by RFID readers and a backend database. While one owner
has a public/private key pair where the public key is known to anyone. In the

194 N. Li et al.

model, we only need the secure communication channel during the authentica-
tion key exchange. Since the proposed scheme applies symmetric-key based tag
authentication, it is impossible to securely update the key with shared secret [7].
The key update of the protocol should be performed outside the control range
of the previous owner.

The ownership transfer system is described in Fig. 1. Different from the pre-
vious models, we consider the ownership of the tag as a chain. To handle an
ownership transfer, the information of tag’s supplier, previous owner, current
owner and new owner are all required. Nevertheless, only the current owner
needs to provide its secret.

In the model, the ownership transfer stems from the supplier. Let one owner
be a level. Level 0 is the supplier of the tag. The manufacturer generates the
proof of ownership under the supplier’s warrant and stores it on the tag. Anyone
who has the supplier’s public key can verify the ownership of the product. In this
level, the supplier simultaneously plays the role of the previous owner since the
product is brand new. Then, it transfers the ownership to a new owner who is in
level 1. Owner 1 accepts the ownership from the supplier and takes the role of
the current owner. At this time, the supplier transferred the current ownership
but remains the role of supplier and previous owner of the tag. Following the
process, the ownership of the tag is generally in the k-th level.

Fig. 1. Ownership transfer systems

A complete ownership transfer process has two phases: ownership verification
and ownership transfer. In the ownership verification phase, the buyer checks
the supplier of the tag, previous authenticated transfer proof and the validity of
current ownership. Only if all the verifications are successful, two owners play
the game of the ownership transfer. In the completion of an ownership transfer,
the seller outputs a new authenticated transfer proof and the buyer outputs a
proof of new ownership.

Secure RFID Ownership Transfer Protocols 195

3.3 Ownership Transfer Protocols

An RFID ownership transfer protocol consists of seven algorithms: system setup
(Setup), key generation (KeyGen), tag initiation (TagInit), authentication (Auth),
ownership transfer (Transfer), ownership prove (OwnerProve) and ownership ver-
ification (OwnerVerify). The seven algorithms in RFID ownership transfer pro-
tocols are defined as follows.

– params ← Setup(λ): Taking as input a security parameter λ, outputs a set
of public parameters params.

– (pk, sk)← KeyGen(params): Taking as input the system parameters params,
outputs a pair of public and private keys (pk, sk).

– (c, σ(t,0)) ← TagInit(T, pks, sks, pkm, skm): Taking as input a tag T , a pair
(pks, sks) of supplier’s public/private keys and a pair (pkm, skm) of manu-
facturer’s public/private keys, outputs the tag’s initial state c and ownership
proof σ(t,0). It runs between a manufacturer and a supplier.

– Info ← Auth(T,O(t,k)): Taking as input a tag T and the current owner
O(t,k), outputs a set of information Info of tag. It runs between the current
owner and the tag.

– Σ(t,k,k+1) ← Transfer(IDt, pks, pkk−1, pkk, skk+1, Σ(t,k−1,k)): Taking as in-
put a tag’s identity IDt, the public key pks of supplier, a pair of pub-
lic/private key (pkk, skk) of current owner and a new owner’s public key
pkk+1, outputs an authenticated transfer proof Σ(t,k,k+1). It is run by the
current owner.

– σ(t,k) ← OwnerProve(IDt, skk, Σ(t,k−1,k), σ(t,k−1)): Taking as input a tag’s
identity IDt, a private key skk of current owner and an authenticated trans-
fer proof Σ(t,k−1,k), outputs a proof σ(t,k) of ownership. It is run by the
current owner.

– {true, false} ← OwnerVerify(IDt, pks, pkk−1, pkk, σ(t,k)): Taking as input a
tag’s identity IDt, the supplier’s verification key pks, the previous owner’s
verification key pkk−1 and the current owner’s verification key pkk and a
proof σ(t,k) of ownership, outputs true if the proof is valid, outputs false
otherwise.

Without loss of generality, we describe the Auth algorithm in the protocol. While,
it is unnecessary to the security of ownership transfer protocols. In the paper,
Auth is assumed to be a privacy-preserving authentication protocol. The inter-
action of one ownership transfer is depicted as in Fig.2.

4 Proposed Protocol

Themathematical preliminaries and concrete construction of the proposed scheme
are presented in the section.

196 N. Li et al.

Tag T Owner O(t,k+1) Owner O(t,k)

Query←−−−−−−−−
Auth()

Response−−−−−−−−→
Query,Response−−−−−−−−−−→

Auth()
Owner′s poof←−−−−−−−−−−

OwnerVerify()

Transfer()
Transfer T←−−−−−−−−→ Transfer()

OwnerProve()

Fig. 2. Ownership transfer protocol

4.1 Preliminaries

Bilinear Maps. Let G1, G2 and GT be three multiplicative cyclic groups of
same prime order p. g and h are generators of groupG1 and G2, respectively. The
map e : G1×G2 → GT is a bilinear mapping (pairing) and (g, h, p, e,G1,G2,GT)
is a bilinear group. Let ψ be a computable isomorphism from G2 to G1 that
ψ(h) = g. We say it is a symmetric bilinear group if G = G1 = G2. A bilinear
pairing satisfies the properties as follows:

– Bilinearity: for all g ∈ G1, h ∈ G2 and a, b ∈ Z∗
p, we have the equation

e(ga, hb) = e(u, v)ab.
– Non-Degeneracy: for all g ∈ G1, h ∈ G2, if g, h are generators respectively,

we have e(g, h) �= 1 is a generator of GT .
– Efficiency: There is an efficient algorithm to calculate e(g, h) for all g ∈ G1,

h ∈ G2.

Definition 1 (Computational Diffie-Hellman (CDH) assumption). Let
g be a generator of group G1. Given a tuple < g, ga, gb >, where a, b ∈R Z∗

p,

the CHD problem is to output gab ∈ G1. We say that the (ε, t)-CDH assumption
is hold in G1, if no t-time algorithm A can solve the CDH problem in G1 with
advantage at least ε.

4.2 Construction

– Setup: Select a symmetric bilinear paring e : G× G→ GT , where the order
of group G and GT are the same p. Let g, h ∈ G be two generators. H1 :
G× {0, 1}∗ → Z∗

p, H2 : G×G× {0, 1}∗ → Z∗
p and F : {0, 1}∗ → {0, 1}l,

where l is a security parameter, are collision-resistant cryptographic hash
functions. Sets the public parameters params = (G,GT , g, h, p, e,H).

Secure RFID Ownership Transfer Protocols 197

– KeyGen: Randomly chooses x ∈ Z∗
p and sets the public/private key pair as

(pk, sk) = (x, gx).
– TagInit: Let the public/private key pairs of a manufacturer M and a supplier

respectively be (pkm, skm) = (x, gx) and (pks, sks) = (α, gα). Firstly, the
manufacturer and the supplier interacts as in Fig.3. The manufacturer gen-
erates an ownership proof σ0 for the supplier. It randomly chooses an authen-
tication key y from the key space S and sets the tag state c = (y, F (σ(t,0)).
The supplier is the owner O(t,0).

O(t,0)(α, g
α) M(x, gx, IDt)

r ∈R Z∗
p

gr−−−−−−−−−−→
e(t,0) = H2(g

r, gx, IDt)
Y = (gα)e(t,0)gr

Y,IDt←−−−−−−−−−−
(gα)e(t,0)gr

?
= Y

s = αe(t,0) + r
s−−−−−−−−−−→

sm = s+ x,
σ(t,0) = (u(t,0), v(t,0), w(t,0))

= (hsm , gr, gx)

Fig. 3. Ownership initiation

– Auth: It is a general symmetric-key based authentication protocol. The cur-
rent owner O(t,k) interacts the tag T using a pre-shared symmetric authenti-
cation key y. Once the authentication protocol outputs 1, the owner collects
the tag’s information info which includes the tag’s identity IDt, ownership
proof σ(t,k), etc.

– Transfer: To transfer the ownership, the current owner O(t,k) interacts with
the new owner O(t,k+1). If the current owner is a supplier, it follows the
description as in Fig.4. Otherwise, it follows the description as in Fig.5.
Assume that the identity of tags and public information of two owners are
mutually known.

– OwnerProve: To generate a proof of ownership, the current owner O(t,k) re-
trieves the proof Σ(t,k−1,k) = (s(t,k−1,k), R(t,k−1,k)) of authenticated trans-
fer and the ownership poof σ(t,k−1) of owner O(t,k−1). Computes s(t,k) =
s(t,k−1,k) + skk, where skk is the private key of O(t,k), and sets the proof
σ(t,k) = (u(t,k), v(t,k), w(t,k)) = (hs(t,k) , v(t,k−1), R(t,k−1,k)). In the case k = 1,
set v(t,1) = grt , where grt is from Fig.4.

– OwnerVerify: On input a proof σ(t,k) = (u(t,k), v(t,k), w(t,k)) of tag T , there
are three cases. The verifier checks as follows

198 N. Li et al.

O(t,0)(α, g
α) O(t,1)(β, g

β, gα)

r(t,0,1) ∈R Z∗
p

R(t,0,1) = gr(t,0,1)
R(t,0,1)−−−−−−−→

e(t,0,1) = H2(R(t,0,1), g
β, IDt)

Y = gαe(t,0,1)R(t,0,1)
Y←−−−−−−−

gαe(t,0,1)R(t,0,1)
?
= Y

rt ∈R Z∗
p, st = αet + rt

et = H1(g
rt , IDt)

s(t,0,1) = αe(t,0,1) + r(t,0,1) + st
s(t,0,1) ,g

rt

−−−−−−−→
gs(t,0,1)

?
= gαetgrtY

Σ(t,0,1) = (s(t,0,1), R(t,0,1))

Fig. 4. Transfer from supplier to new owner

O(t,k)(skk, pkk, pks, Σ(t,k−1,k)) O(t,k+1)(skk+1, pkk+1, pks)

r(t,k,k+1) ∈R Z∗
p

et = H1(v(t,k), IDt)
r = r(t,k,k+1) + s(t,k−1,k)

R(t,k,k+1) = gr(pket
s v(t,k))

−1

R(t,k,k+1)−−−−−−−→
Y = pk

e(t,k,k+1)

k R(t,k,k+1), e(t,k,k+1)

= H2(R(t,k,k+1), pkk+1, IDt)
Y←−−−−−−−

pk
e(t,k,k+1)

k R(t,k,k+1)
?
= Y

s(t,k,k+1) = skke(t,k,k+1) + r
s(t,k,k+1)−−−−−−−→

gs(t,k,k+1)
?
= pket

s v(t,k)Y
Σ(t,k,k+1) = (s(t,k,k+1), R(t,k,k+1))

Fig. 5. General transfer from current owner to new owner on level k

Secure RFID Ownership Transfer Protocols 199

• Case 1 (k = 0):

e(t,0) = H2(v(t,0), w(t,0), IDt), e(g, u(t,0))
?
= e(pk

e(t,0)
s v(t,0)w(t,0), h).

• Case 2 (k = 1):

et = H1(v(t,1), IDt), e(t,0,1) = H2(w(t,1), pk1, IDt),

e(g, u1)
?
= e(pk

et+e(t,0,1)
s pk1v(t,1)w(t,1), h).

• Case 3 (k > 1):

et = H1(v(t,k), IDt), e(t,k−1,k) = H2(w(t,k), pkk, IDt),

e(g, u(t,k))
?
= e(pkets pkkpk

e(t,k−1,k)

k−1 v(t,k)w(t,k), h).

Outputs true if any equation holds, otherwise outputs false.

Correctness. Without loss of generality, we show the correctness of our RFID
ownership transfer protocol in Case 3 as follows:

e(g, u(t,k)) = e(g, hs(t,k−1,k)+skk)

= e(g, hskk−1e(t,k−1,k)+r+skk))

= e(pk
e(t,k−1,k)

k−1 grpkk, h)

= e(pkets grtpk
e(t,k−1,k)

k−1 grpkk(pk
et
s grt)−1, h)

= e(pkets pkkpk
e(t,k−1,k)

k−1 v(t,k)w(t,k), h).

5 Security Models of Ownership Transfer Protocols

The security of a RFID ownership transfer protocol usually relies on the un-
derlining authentication protocols. It is extremely hard to provide the strong
security if a symmetric-key authentication protocol is employed. Typically, the
security model of symmetric-key based ownership transfer protocols does not
provide corruption oracle which outputs the state of a tag. Once the key is
exposed, the security of tag is completely compromised. Elkhiyaoui, Blass and
Molva [1] recently presented a ROTIV protocol secure against the key corrup-
tion. It applies the public key cryptography in the authentication while the tag
is only required to compute a hash function. However, the proposed security
model cannot capture the adversary who can rewrite the content of a tag. It is
possible when an adversary gains the key of tag. In this section, we enhance the
security models of ownership transfer protocols. A general assumption is that
owners are not able to launch collusion attacks in an ownership transfer [10].

200 N. Li et al.

5.1 Adversaries and Oracles

The ability of the adversary is essentially restricted by the actions that he is
allowed to carry out. In security models, we specify the actions of adversary
via the oracle queries. We now define the oracles which are used in the security
models of ownership transfer protocols in this paper.

Definition 2 (Oracles). The adversary plays with a challenger by given public
information of the system and the following oracle calls.

– (O, pk) ← SetupOwner(ID): Taking as input an identity ID, it creates an
owner O and runs the algorithm KeyGen to output a public key pk.

– T ← TagInit(IDt): Creates a tag T with the identity IDt and sets the au-
thentication key y. It runs the algorithm TagInit and outputs the tag T .

– (IDt, σ(t,k)) ← Auth(T,Ok): Taking as input a current owner Ok and a tag
T , it outputs the identity IDt of tag and its ownership proof σ(t,k) if T is
valid, outputs ⊥ otherwise.

– c ← CorruptTag(T): Taking as input a tag T , and outputs the complete
internal state c of T . Note that the oracle does not destroy the tag T and the
tag is available in the future oracle calls.

– sk ← CorruptOwner(ID): Taking as input an owner’s identity ID, and out-
puts the private key sk of the owner.

– {0, 1} ← Rewrite(T, c′, y): Taking as input a tag T , a new state c′ and an
authentication key y, it rewrites the state by c′ and outputs 1 if the key is
valid, 0 otherwise.

– σ(t,k) ← OwnerProve(T, IDs, IDk−1, IDk): Taking as input a tag T , an iden-
tity IDs of supplier, an identity IDk−1 of previous owner and an identity
IDk of current owner, it outputs an ownership proof σ(t,k) of the tag.

– Σ(t,k,k+1) ← Transfer(T, IDk, IDk+1): Taking as input a tag T , an identity
IDk of current owner and an identity IDk+1 of new owner, it outputs an
authenticated ownership transfer proof Σ(t,k,k+1) of the tag.

Definition 3 (Type I and Type II adversary). The adversary is defined by
the oracle calls and the goal of the experiment.

– Type I Adversary(AI): is also allowed to query all above oracles except the
CorruptOwner. It aims to output a valid proof of authenticated transfer which
cannot be detected during the transfer.

– Type II Adversary(AII): is allowed to query all above oracles. It aims to output
a valid proof of ownership of the target tag which cannot be detected in the
ownership verification.

5.2 Security Models

We define the security models of ownership transfer protocols in this section.
Each model captures the capability of different adversaries. A security model is
defined as an experiment which plays between the adversary and the challenger.

Secure RFID Ownership Transfer Protocols 201

We denote that the security parameters as r, s and n, which are respectively
the number of owner initiations, the number of oracle calls and the number of
tag initiations. There are two experiments defined in our security model. An
RFID ownership transfer protocol is secure iff it is secure in both experiments.
The security models defined in this section are suitable to ownership transfer
protocols in the two-party model.

Security against Type I Attack. Type I adversary is a person who attempts
to forge a valid proof of authenticated transfer. AI interacts with the challenger
via oracle calls and outputs a proof of transfer. It is described as in experiment
Expsecure

AI ,S [r, s, n] in Fig.6.

Experiment Expsecure
AI ,S [r, s, n]:

– Setup: The challenger runs the algorithm Setup to generate public parameters
params and returns to AI . It initiates a supplier S∗.

– Phase 1(Learning):
• AI can query all above oracles except CorruptOwner to C.
• Outputs two sets T = {T1, . . . , Tn} and O = {O1, . . . , Or}, which are

created tags and owners.
– Phase 2(Forge):

• AI submits a target tag T∗ ∈ T , current owner O∗
k and new owner O∗

k+1

to C, such that (O∗
k, O

∗
k+1) ∈ O ∪ {S∗}.

• AI queries oracles Auth, CorruptTag, Rewrite, Transfer and OwnerProof to
C.

• AI outputs a proof Σ∗ of authenticated ownership transfer.

Exp outputs success if true ← OwnershipVerify(ID∗
t , pk

∗
s , pk

∗
k, pk

∗
k+1,OwnerProve

(ID∗
t , sk

∗
k+1, Σ

∗, σ∗)), such that Σ∗ � Transfer(ID∗
t , ID

∗
k, ID

∗
k+1).

Fig. 6. Type I security experiment of the ownership transfer protocols

Definition 4. An ownership transfer protocol is (r, s, n, ε)-secure against the
Type I attack, if any AI who succeeds in Expsecure

AI ,S [r, s, n] has advantage

Pr[success← Expsecure
AI ,S [r, s, n]] ≤ ε,

where ε is negligible.

Security against Type II Attack. The Type II adversary acts as a person who
attempts to forge a valid proof of ownership. AII interacts with the challenger C
via oracle calls and outputs a proof of ownership at the end of the experiment.
The experiment Expsecure

AII ,S [r, s, n] is defined as in Fig. 7.

Definition 5. An ownership transfer protocol is (r, s, n, ε)-secure against the
Type II attack, if any AII who succeeds in Expsecure

AII ,S [r, s, n] has advantage

Pr[success← Expsecure
AII ,S [r, s, n]] ≤ ε,

where ε is negligible.

202 N. Li et al.

Experiment Expsecure
AII ,S [r, s, n]:

– Setup:The challenger runs the algorithm Setup to generate public parameters
params and returns to AII . It initiates a supplier S∗.

– Phase 1(Learning):
• AII can query all above oracles to C.
• Outputs two sets T = {T1, . . . , Tn} and O = {O1, . . . , Or}, which are

created tags and owners.
– Phase 2(Forge):

• AII submits a target tag T∗ ∈ T , previous owner O∗
k−1 and current owner

O∗
k to C, such that (O∗

k−1,O
∗
k) ∈ O ∪ {S∗}.

• AII queries oracles Auth, CorruptTag, Rewrite, Transfer and OwnerProve
to C.

• AII outputs a proof σ∗ of ownership.

Exp outputs success if it satisfies the restrictions as follows,

1. true ← OwnershipVerify(ID∗
t , pk

∗
s , pk

∗
k−1, pk

∗
k, σ

∗),
2. σ∗ � OwnerProve(ID∗

t , ID
∗
s , ID

∗
k−1, ID

∗
k),

3. sk∗
k � CorruptOwner(ID∗

k) ∨ (Σ∗ � Transfer(ID∗
t , ID

∗
k−1, ID

∗
k) ∧ sk∗

k−1 �
CorruptOwner(ID∗

k−1)).

Fig. 7. Type II security experiment of the ownership transfer protocols

Lemma 1. If an ownership transfer protocol is secure against the Type II attack,
it is secure against the Type I attack.

Due to the page limitation, the proof of Lemma 1 is referred to the full version.

6 Security Analysis

An ownership transfer protocol is secure if it is against two types of attacks
defined in Section 5.2. Without loss of generality, we analyse the security of
proposed protocol on the k-th level. According to Lemma 1, we only show the
security proof of the proposed protocol in Type II experiment.

Theorem 1. The proposed ownership transfer protocol is (r, s, n, ε)-secure
against the Type II attack if the CDH assumption is held.

Due to the page limitation, the proof of Theorem 1 is referred to the full version.

7 Conclusion

In this paper, we defined a new secure model of ownership transfer protocols.
It enhances the existing security models. We provided a definition of RFID
ownership transfer and proposed a secure ownership transfer protocol. It achieves
a single verification key to all the tags from an owner. The protocol satisfies all
the security requirements. A formal proof of our proposed protocol was given.

Secure RFID Ownership Transfer Protocols 203

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002)

2. Abyaneh, M.R.S.: On the privacy of two tag ownership transfer protocols for
RFIDs. CoRR abs/1202.4663 (2012)

3. van Deursen, T., Mauw, S., Radomirović, S., Vullers, P.: Secure ownership and
ownership transfer in RFID systems. In: Backes, M., Ning, P. (eds.) ESORICS
2009. LNCS, vol. 5789, pp. 637–654. Springer, Heidelberg (2009)

4. Elkhiyaoui, K., Blass, E.-O., Molva, R.: ROTIV: RFID ownership transfer with
issuer verification. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055,
pp. 163–182. Springer, Heidelberg (2012)

5. Fernàndez-Mir, A., Trujillo-Rasua, R., Castellà-Roca, J., Domingo-Ferrer, J.: A
scalable RFID authentication protocol supporting ownership transfer and con-
trolled delegation. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055,
pp. 147–162. Springer, Heidelberg (2012)

6. Fouladgar, S., Afifi, H.: An effcient delegation and transfer of ownership protocol
for RFID tags. In: First International EURASIP Workshop on RFID Technology.
ACM (2007)

7. Kapoor, G., Zhou, W., Piramuthu, S.: Multi-tag and multi-owner RFID ownership
transfer in supply chains. Decision Support Systems 52(1), 258–270 (2011)

8. Kulseng, L., Yu, Z., Wei, Y., Guan, Y.: Lightweight mutual authentication and
ownership transfer for RFID systems. In: INFOCOM, pp. 251–255. IEEE (2010)

9. Molnar, D., Soppera, A., Wagner, D.: A scalable, delegatable pseudonym protocol
enabling ownership transfer of RFID tags. In: Preneel, B., Tavares, S. (eds.) SAC
2005. LNCS, vol. 3897, pp. 276–290. Springer, Heidelberg (2006)

10. Ng, C.Y., Susilo, W., Mu, Y., Safavi-Naini, R.: Practical RFID ownership transfer
scheme. Journal of Computer Security 19(2), 319–341 (2011)

11. Osaka, K., Takagi, T., Yamazaki, K., Takahashi, O.: An efficient and secure RFID
security method with ownership transfer. In: Wang, Y., Cheung, Y., Liu, H. (eds.)
CIS 2006. LNCS (LNAI), vol. 4456, pp. 778–787. Springer, Heidelberg (2007)

12. Rizomiliotis, P., Rekleitis, E., Gritzalis, S.: Security analysis of the song-mitchell
authentication protocol for low-cost RFID tags. Comm. Letters. 13(4), 274–276
(2009)

13. Saito, J., Imamoto, K., Sakurai, K.: Reassignment scheme of an RFID tag’s key
for owner transfer. In: Enokido, T., Yan, L., Xiao, B., Kim, D., Dai, Y., Yang,
L.T. (eds.) EUC-WS 2005. LNCS, vol. 3823, pp. 1303–1312. Springer, Heidelberg
(2005)

14. Song, B.: RFID tag ownership transfer. In: 4th Workshop on RFID Security -
RFIDSec (2008)

Leakage Resilient Authenticated Key Exchange

Secure in the Auxiliary Input Model�

Guomin Yang1, Yi Mu1, Willy Susilo1, and Duncan S. Wong2

1 Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
{gyang,ymu,wsusilo}@uow.edu.au
2 Department of Computer Science

City University of Hong Kong
duncan@cityu.edu.hk

Abstract. Authenticated key exchange (AKE) protocols allow two par-
ties communicating over an insecure network to establish a common se-
cret key. They are among the most widely used cryptographic protocols
in practice. In order to resist key-leakage attacks, several leakage re-
silient AKE protocols have been proposed recently in the bounded leak-
age model. In this paper, we initiate the study on leakage resilient AKE in
the auxiliary input model. A promising way to construct such a protocol
is to use a digital signature scheme that is entropically-unforgeable un-
der chosen message and auxiliary input attacks. However, to date we are
not aware of any digital signature scheme that can satisfy this require-
ment. On the other hand, we show that in the random oracle model,
it is sufficient to use a digital signature scheme that is secure under
random message and auxiliary input attacks in order to build a secure
AKE protocol in the auxiliary input model, while the existence of such
a digital signature scheme has already been proven. We will also give a
comparison between the existing public-key encryption based and digital
signature based leakage resilient AKE protocols. We show that the latter
can provide a higher level of security than the former.

Keywords: Leakage resilient cryptography, authenticated key exchange,
auxiliary input model.

1 Introduction

Leakage Resilient Cryptography. Traditional cryptographic systems al-
ways assume that the user secret keys are absolutely secure and out of the ad-
versary’s reach. However, in recent years, various kinds of side-channel attacks
[21,9,22,19] have shown that we can extract some partial information of the user
secret keys stored in a computing device by observing the physical output of a
computation (e.g. running time, power consumption, radiation, etc.). In order

� This work is supported by the ARC Future Fellowship (FT0991397).

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 204–217, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Leakage Resilient AKE Secure in the Auxiliary Input Model 205

to defend against different types of side-channel (or more general, key leakage)
attacks, leakage resilient cryptography have become a popular research topic in
recent years.

Before constructing a leakage resilient cryptosystem, we must first build an
appropriate security model to define the information an adversary can learn in
a key leakage attack. There are several leakage models that have been defined
in the literature. In the relative leakage model [2], the leakage function h can
be any polynomial-time computable function with bounded output length. More
specifically, let k denote the size of a user secret key sk, then size of h(sk) must
be significantly smaller than k (e.g. the size of h(sk) is less than k/2). Later, in
[26], the restriction on the size of h(sk) is relaxed by requiring that the secret key
sk should still have a sufficient amount of min-entropy left after the adversary
has observed h(sk).

Another leakage model that has been extensively studied in the literature is
the bounded retrieval model (BRM) [13,17,3]. In BRM, the size of the leakage
can be arbitrarily large, however, users can increase their secret key size flexibly
so as to allow for a large amount of leakage. The main goal of this setting is
to ensure that increasing the size of the user secret key should not result in
significant increase in the computation or communication cost.

Recently, Dodis et al. [16,14] defined another leakage model named the auxil-
iary input model. In this model, an adversary is allowed to see a computationally
hard-to-invert function (e.g. a one-way permutation) of the secret key. In other
words, the auxiliary input model has eliminated the leakage bound, and therefore
can capture a larger class of leakage functions.

Authenticated Key Exchange. Authenticated Key Exchange (AKE) pro-
tocols are mechanisms that allow two parties communicating over an insecure
network to establish a common secret key. They are a central piece for building
secure communication channels. The design and analysis of AKE protocols have
been extensively studied in the last three decades for different network settings
(e.g. [6,7,5,11,1,24,27,10,29,28]). The first formal security model for AKE was
proposed by Bellare and Rogaway [6]. The Bellare-Rogaway (or BR, for short)
model and its variants are nowadays the de facto standard for analyzing the
security of an AKE protocol. In particular, the Canetti-Krawczyk (CK) model
[11], which can be considered as a combination of the BR model and the Bellare-
Canetti-Krawczyk (BCK) model [4], has been used to prove the security of many
practical AKE protocols such as the ISO protocol [20] (named SIG-DH in [11])
and the Internet Key Exchange (or SIGMA) protocol [12,23]. In FC’11, Yang et
al. [28] extended the CK model to consider AKE under bad randomness. Two
new models were proposed in [28], one formalized the reset attacks, and the
other one formalized the bad randomness attacks. Some generic methods for en-
hancing the security of existing AKE protocols (such as ISO and SIGMA) were
also proposed.

Leakage Resilient AKE. Several leakage resilient AKE protocols have been
proposed recently. In [3], Alwen et al. extended the CK model to the bounded
retrieval setting, and showed that in BRM, a leakage resilient AKE protocol can

206 G. Yang et al.

be constructed from an entropically-unforgeable digital signature scheme secure
under chosen-message attacks. Later, in [15], Dodis et al. showed that we can also
construct leakage resilient AKE protocols based on public-key encryption (PKE)
schemes secure in the bounded leakage model. In Sec. 4, we will review these
two constructions and give a comparison between PKE-based and signature-
based leakage resilient AKE protocols. In ASIACCS’11, based on the eCK se-
curity model proposed by LaMacchia, Lauter, and Mityagin [24], Moriyama and
Okamoto [25] presented a new bounded leakage model for AKE protocols. They
also proposed a two-pass implicitly-authenticated leakage resilient AKE protocol
and proved its security in their security model.

Our Contributions. In this paper, we initiate the study on leakage resilient
AKE in the auxiliary input model. Based on the result in [3], we can expect
that such a protocol can be built by using a digital signature scheme that is
entropically-unforgeable under chosen message and auxiliary input attacks. How-
ever, a problem arises when using this approach: to date we are not aware of
any digital signature scheme that can satisfy the requirement. Although Faust et
al. [18] have recently proposed a signature scheme that is secure under chosen-
message and auxiliary input attacks, they assume the adversary can only see
an exponentially hard-to-invert function, rather than a computationally hard-to-
invert function, of the user secret key.

In this paper, we show that in the random oracle model [8], it is sufficient
to use a digital signature scheme that is secure under Random Message and
Auxiliary Input Attacks in order to build a secure AKE protocol in the auxiliary
input model, while the existence of such a digital signature scheme has recently
been proved in [18]. The key to ensure that this condition is sufficient comes
from the specific design requirement for AKE protocols: an AKE participant
not only receives but also generates random challenges in each AKE session. We
will elaborate on this in Sec. 5.

It is worth noting that we may also use public-key encryption schemes secure
in the auxiliary input model to achieve our goal. However, as we will show in
Sec. 4, in the CK-model, Signature-based AKE protocols will offer better security
than PKE-based protocols when the adversary can reveal the session state of a
party during a protocol execution.

2 Preliminaries

Notations. We only consider probabilistic polynomial time (PPT) algorithms
in this paper. In general, all the PPT algorithms have a security parameter 1k

as input, however, this input is usually omitted. We use x ← S to denote the
operation of randomly selecting x from a set S, and y ← A(x) to indicate that
y is the output of running an algorithm A on input x.

Leakage Functions. We follow the work of Dodis et al. [14] to define the class
of admissible leakage functions H with regard to a public-key cryptosystem.
We define Hpkow(�(k)) as the class of polynomial time computable functions

Leakage Resilient AKE Secure in the Auxiliary Input Model 207

h : {0, 1}|pk|+|sk| → {0, 1}∗ such that given (pk, h(pk, sk)), no PPT adversary
can find sk with probability greater than �(k) ≥ 2k, where (pk, sk) denote a
random key pair generated by running the key generation algorithm of the public-
key cryptosystem. In the rest of the paper, we will simply use Hpkow to denote
Hpkow(negl(k)) where negl(·) can be any negligible function.

Digital Signature. A digital signature scheme DS consists of three polynomial
time algorithms.

– DS.SKG(1k): the key generation algorithm takes a security parameter 1k as
input and outputs a private signing key sk and a public verification key vk.

– DS.Sig(sk,m)): the signing algorithm takes a signing key sk and a message
m from the message spaceM as input and outputs a signature σ.

– DS.Ver(vk,m, σ)): the verification algorithm takes a verification key vk, a
message m, and a signature σ as input and outputs a bit ‘1’ or ‘0’.

Correctness. For any k ∈ N, (vk, sk)← DS.SKG(1k), and m ∈ M, we have

1← DS.Ver(vk,m,DS.Sig(sk,m)).

Unforgeability under Random Message and Auxiliary Input Attacks [18] . We say
DS satisfies Random Message Unforgeability under Random Message and Auxiliary
Input Attacks (RU-RMAA) with respect to a class of admissible leakage functions
H if for any polynomial time algorithm F , and any function h ∈ H,

AdvRU-RMAA
DS,H,F (k) = Pr

⎡⎣ (vk, sk)← DS.SKG(1k);m∗ ←M;
σ∗ ← FO(sk,·)(vk, h(vk, sk),m∗) :

DS.Ver(vk,m∗, σ∗) = 1

⎤⎦
is negligible in k, where the oracles O(sk, ·) is defined as

Oracle O(sk, ·): m←M; return (m,DS.Sig(sk,m)).

Decisional Diffie-Hellman (DDH) Assumption: Let g denote a generator
of a cyclic group G with prime order q. The DDH assumption says for any
polynomial time algorithm D,

AdvDDH
D (k) = Pr[D(g, ga, gb, Z) = 1|Z = gab]− Pr[D(g, ga, gb, Z) = 1|Z = gr]

is negligible in k where a, b, r are randomly selected from Zq.

3 Security Model and Definition

3.1 System Model

An Authenticated Key Exchange (AKE) protocol consists of two probabilistic
polynomial time algorithms: the Long-Lived Key generation algorithm SKG and
a protocol execution algorithm P. In this paper, we focus on the public key

208 G. Yang et al.

setting where the algorithm SKG returns a public key and the corresponding
private key upon each invocation.

Protocol Participants. Let U = {U1, U2, · · · , Un} denote the set of users.
Each user U ∈ U holds a public/private key pair (pkU , skU) that is generated by
honestly executing the Long-Lived Key generation algorithm SKG. A user may
run many instances concurrently. We denote instance i of user U by Πi

U .

Protocol Execution. A protocol execution algorithm P determines how an
instance behaves in response to messages from the environment. Upon receiving
an incoming message Min, an instance executes the protocol P and generates

(Mout, dec, sid
i
U , pid

i
U , ssk, St

i
U)← P(U, pkU , skU , St

i
U ,Min).

The first component Mout corresponds to the responding message, and the sec-
ond component dec denotes the decision of the instance. A session id sidiU and
partner id pidiU may be generated during the protocol execution. When the de-
cision is acc, the instance holds a session key ssk which is to be used by upper
layer applications. The instance may also update its internal state St iU .

Partnership. The partnership between two instances is defined via parter ID
(pid) and session ID (sid). The pid names the party with which the instance
believes it has just exchanged a key, and the sid is an identifier which uniquely
labels the AKE session. We say two instances Πi

U and Πj
V are partners if pidiU =

V, pidjV = U and sidiU = sidjV .

3.2 Security Model

We consider an adversary A with full control over the routing and scheduling
of network messages. Our adversarial model is defined via a game between the
adversary A and a game simulator SIM. SIM first tosses a random coin b
which will be used later in the game. SIM then generates for each U ∈ U a
public/secret key pair (pkU , skU) and gives pkU and auxiliary input hU (pkU , skU)
to A where hU ∈ Hpkow. A is allowed to make the following oracle queries to the
simulator:

– Send(U, i,m): This query allows the adversary to send a message m to
an instance Πi

U . If the message m is sent by another instance Πj
U ′ with

the intended receiver U , then this query models a passive attack. Oth-
erwise, it models an active attack by the adversary. The simulator then
simulates the reaction of Πi

U upon receiving the message m by running
P(U, pkU , skU , St

i
U ,m), and returns to A the response (if there is any) that

Πi
U would generate.

– Corrupt(U): This query allows the adversary to corrupt a party U . By
making this query, the adversary learns the long-term secret key skU of user
U .

– StateReveal(U, i): This query allows the adversary to learn the current
state information St iU held by the instance Πi

U .

Leakage Resilient AKE Secure in the Auxiliary Input Model 209

– Reveal(U, i): This query allows the adversary to learn the session key that
has been generated by the instance Πi

U . If the instance Πi
U does not hold

any session key, then a special symbol ⊥ is returned to the adversary.
– Test(U∗, i∗): This query can only be made to a fresh instance Πi∗

U∗ (as

defined below). If the instance Πi∗

U∗ holds a session key sski
∗

U∗ , then SIM
does the following
• if the coin b = 1, SIM returns sski

∗

U∗ to the adversary;
• otherwise, a random session key is drawn from the session key space and
returned to the adversary.

Otherwise, a special symbol ⊥ is returned to the adversary.

SK-security without PFS. We define session key security without perfect
forward secrecy as follows.

We say an instance Πi
U is fresh if

– A has never made a Corrupt query to U or pidiU ; and
– A has never made a Reveal query to Πi

U or its partner; and
– A has never made a StateReveal query to Πi

U or its partner.

At the end of the game, the adversary outputs a bit b′ as her guess for b. The
adversary’s advantage in winning the game is defined as

AdvAKE
A (k) = |2Pr[b′ = b]− 1|.

Definition 1. We say an AKE protocol is SK-Secure without perfect forward
secrecy in the auxiliary input model if the following conditions hold.

1. If two uncorrupted parties complete matching sessions then they both output
the same key.

2. For any PPT adversary A, and any {hU ∈ Hpkow}U∈U , AdvAKE
A (k) is a

negligible function of k.

SK-security with PFS. In order to define perfect forward secrecy, we follow
the approach of Canetti and Krawczyk [11] by introducing a new type of oracle
query

– Expire(U, i): Upon receiving this query, the simulator erases all the state
information St iU and the session key sskiU held by the instance Πi

U .

The freshness of an instance Πi
U is now redefined as follows:

– A makes a Corrupt(U) query only after an Expire(U, i) query; and
– A has never made a Reveal query to Πi

U ; and
– A has never made a StateReveal query to Πi

U ; and

– if Πi
U has a partner instance Πj

V , then A also obeys the above rules with

respect to Πj
V ; otherwise, A has never made a Corrupt(pidiU) query.

Defined the adversary’s advantage in winning the PFS game as

AdvAKE-PFS
A (k) = |2Pr[b′ = b]− 1|.

210 G. Yang et al.

Definition 2. We say an AKE protocol is SK-Secure with perfect forward se-
crecy in the auxiliary input model if the following conditions hold.

1. If two uncorrupted parties complete matching sessions then they both output
the same key.

2. For any PPT adversary A, and any {hU ∈ Hpkow}U∈U , AdvAKE-PFS
A (k) is

negligible in k.

4 SIG-DH vs PKE-DH

Several leakage resilient AKE protocols [3,15,25] have been proposed recently
in the bounded leakage/retrieval model. In this section, we briefly review the
Signature-based Diffie-Hellman protocol (eSIG-DH) [3] and the PKE-based Diffie-
Hellman protocol (Enc-DH) [15], and give a comparison between them.

A B

(vkA, skA) ← DS.SKG(1k) (vkB , skB) ← DS.SKG(1k)

x ← Zq, α ← gx
A,α

�
y ← Zq, β ← gy, sid ← α‖β

σB ← DS.Sig(skB , A,B, α, β)

ssk ← gxy

erase y

B, β, σB�
sid ← α‖β

σA ← DS.Sig(skA, B,A, α, β)

ssk ← gxy

erase x

A, σA �

Fig. 1. The eSIG-DH Protocol [3]

The eSIG-DH protocol [3] is presented in Fig. 1. It is an extension of the
SIG-DH protocol [11] in the bounded retrieval setting. The protocol makes use of
a digital signature scheme DS that is entropically-unforgeable under chosen mes-
sage attacks in the bounded retrieval model to achieve mutual authentication. In
contrast, the Enc-DH protocol [15] (Fig. 2) is based on a leakage resilient PKE
scheme supporting labels. The idea behind Enc-DH is that only the real user
who has the decryption key can decrypt a ciphertext and answer the challenge.

Deniable Authentication. As pointed out by Dodis et al. in [15], due to the non-
repudiation property of the digital signatures, it is obvious that the eSIG-DH
protocol cannot provide the feature of deniable authentication. On the other
hand, the Enc-DH protocol can achieve such a property, since the messages gen-
erated by user A in fact can be simulated by user B, and vice versa.

Security under StateReveal Query. There is actually another big difference
between the eSIG-DH and Enc-DH protocols: if we consider the full CK model
where the adversary is able to make StateReveal queries, then an adversary
can launch the following attack against the Enc-DH protocol:

Leakage Resilient AKE Secure in the Auxiliary Input Model 211

A B

(pkA, skA) ← PKE .SKG(1k) (pkB , skB) ← PKE .SKG(1k)

x ← Zq, α ← gx

CA ← PKE .EncA(pkB , α) A,CA � y ← Zq, β ← gy

α ← PKE .DecA(skB , CA)

CB ← PKE .EncA,B(pkA, α, β)

sid ← α‖β, ssk ← gxy

erase y

A,B,CB�

(α, β) ← PKE .DecA,B(skA, CB)

sid ← α‖β, ssk ← gxy

erase x

A, β
�

Fig. 2. The Enc-DH Protocol [15]

1. The adversary activates an instance of A to start a new AKE session with
B, and faithfully delivers the first message (A,CA) to B.

2. Upon receiving the response (A,B,CB) from B, the adversary makes a
StateReveal query to B and obtains α.

3. The adversary then generates β′ = gy
′
and C′

B ← PKE .Enc
A,B(pkA, α, β

′),
and sends (A,B,C′

B) to user A.
4. User A would accept the session, send the third message (A, β′), and output

the session key sskA = gxy
′
.

Since the adversary knows the value of y′, she can derive the session key and
win the game. It is worth noting that in the above attack, the instance of user
A does not have a partner, but it is still fresh according to the definition. In
other words, the adversary can successfully break the authentication mechanism
employed under the Enc-DH protocol if she can make StateReveal queries.
On the other hand, it is easy to check that such a problem does not exist in the
eSIG-DH protocol.

5 A Leakage Resilient AKE Protocol Secure in the
Auxiliary Input Model

In this section, we present a leakage resilient AKE protocol that is secure in
the auxiliary input model. The scheme is based on a signature scheme that is
random message unforgeable under random message and auxiliary input attacks
(RU-RMAA) [18].

5.1 The aSIG-DH AKE Protocol

The only difference between our new protocol and the eSIG-DH protocol (Fig. 1)
resides in the computation of the digital signatures. In the eSIG-DH protocol
[3], an entropically-unforgeable signature scheme secure in the bounded-retrieval

212 G. Yang et al.

model is used, while in the aSIG-DH protocol, each party will first compute a
hash digest of the message, and then sign the hash digest using an RU-RMAA
secure digital signature scheme [18]. Another important remark we should make
is that same as the SIG-DH [11] and eSIG-DH [3] protocols, we assume that the
signing operation is an atomic operation done by an independent module.

Why RU-RMAA Security is Sufficient. Readers may wonder that given an RU-
RMAA secure digital signature scheme DS = (SKG, Sig,Ver), if we first hash
the message M and then sign the hash digest H(M) using DS.Sig, will we ob-
tain an entropically-unforgeable signature scheme secure under chosen message
attacks in the random oracle model (i.e. H is modelled as a random oracle)? Un-
fortunately, in general the answer is No! Consider that DS.Sig is a randomized
algorithm, then in a chosen message attack, when the adversary makes two sign-
ing queries with the same message m, two distinct yet valid signatures should be
returned to the adversary. However, such signing queries cannot be answered by
using the signing oracle defined in the RU-RMAA security game. Fortunately,
in an AKE protocol, each participant will generate a fresh challenge in an AKE
session. To impersonate a participant A without knowing A’s signing key, the
adversary needs to forge a valid signature on the fresh challenge sent by B. On
the other hand, to answer the Send queries made by the adversary to the par-
ticipant A, the simulator can make use of the signing oracle in the RU-RMAA
security game since the signed message will also contain a fresh challenge gen-
erated by A (i.e. a message to be signed by A would not appear in two different
sessions).

A B

(vkA, skA) ← DS.SKG(1k) (vkB , skB) ← DS.SKG(1k)

x ← Zq, α ← gx
A,α

�
y ← Zq, β ← gy, sid ← α‖β

σB ← DS.Sig(skB , H(A,B, α, β))

ssk ← gxy

erase y

B, β, σB�
sid ← α‖β

σA ← DS.Sig(skA, H(B,A, α, β))

ssk ← gxy

erase x

A, σA �

Fig. 3. The aSIG-DH Protocol

Theorem 1. The aSIG-DH protocol is SK-secure with perfect forward secrecy
in the auxiliary input model if the digital signature scheme DS is RU-RMAA
secure w.r.t. Hpkow, the DDH assumption holds in group G, and H is a random
oracle.

Leakage Resilient AKE Secure in the Auxiliary Input Model 213

Proof. The first condition in the definition of SK-security is easy to see. Below we
prove that the aSIG-DH protocol also satisfies the second condition. We define a
sequence of gamesGi(i ≥ 0) whereG0 is the original game defined in our security
model with PFS. We also define Advi as the advantage of the adversary in game
Gi (i.e. Adv0 = AdvAKE-PFS

A (k)).

Game G1. Let forge denote the event thatA successfully forges a valid signature of
a userU (i.e. an instanceΠj

V receives amessage/signaturepair ((V, U, α, β), σU) in
a Send query such thatDS.Ver(pkU , (V, U, α, β), σU) = 1 and there is no instance
of U which has sent a valid signature on (V, U, α, β) to theA) before corrupting U .
If a forge event happens, then the simulator aborts the game and outputs a random
bit b′. Then we have

Pr[b′ = b in G0|¬forge] = Pr[b′ = b in G1|¬forge]

and
Pr[b′ = b in G0]− Pr[b′ = b in G1] ≤ Pr[forge].

Therefore, we have
Adv0 ≤ Adv1 + 2Pr[forge].

In the following, we show that the event forge happens only with a negligible
probability.

Claim. The event forge happens only with a negligible probability if DS is
RU-RMAA secure with respect to Hpkow and H is a random oracle.

Proof. Suppose there exists an adversary A and a set of leakage functions S =
{h1, h2, · · · , hn} ⊂ Hpkow w.r.t. the set of users U = {U1, U2, · · · , Un} such that
a forge event would occur with a non-negligible probability, we show that there
exists another algorithm F and a leakage function h ∈ Hpkow such that F can
win the RU-RMAA security game also with a non-negligible probability.

Let h∗ denote a leakage function randomly selected from S, and F is given a
challenge (vk∗, h∗(vk∗, sk∗),m∗) as input where (vk∗, sk∗)← DS.SKG(1k) and
m∗ is randomly selected from the message spaceM of DS. Wlog, assume h∗ is
the i-th function in the set S (i.e. h∗ = hi). F then sets the challenge public key
vk∗ as the public key of the user Ui. F then generates the long-term keys for
all the remaining users in U by running DS.SKG(1k). In addition, F randomly
selects ζ ← [1, qH] where qH denotes the number of hash queries A would make
in the game. F then passes {vkj , hj(vkj , skj)}(1 ≤ j ≤ n) to A and answers A’s
oracle queries as follows.
F answers A’s hash oracle queries as follows: when A submits a hash query, F

first checks if the same input has been queried before. If yes, then the same output
is returned to A. Otherwise, F checks if the input has the format (·, Ui, · · ·). If
not, a random element inM is selected and returned to A; otherwise, F issues
a signing query to its signing oracle to obtain (m,σ), and sets m as the hash
value of (·, Ui, · · ·). When A makes the ζ-th hash query, F sets m∗ as the hash
value and returns m∗ to A.

When A makes a Send query to an instance of Ui, if a signature of Ui on
the hash value of (Uj , Ui, α, β) is required in order to answer this query, F first

214 G. Yang et al.

checks if a signature σ corresponding to H(Uj , Ui, α, β) has been obtained from
its signing oracle before. If yes, σ is returned to A. Otherwise, F first makes a
signing query to obtain (m,σ), then sets m as the hash value of (Uj , Ui, α, β)
and uses σ as the corresponding signature to answer the Send query. Since each
instance of Ui will generate a fresh Diffie-Hellman component (either α or β),
with overwhelming probability, (Uj , Ui, α, β) would never repeat in difference
instances of Ui.
F simulates other operations performed by each instance honestly, and an-

swers all theReveal and StateReveal queries as usual. IfAmakes aCorrupt

(Ui) query during the game, F aborts the game and outputs nothing.
If A successfully forges a signature σ∗ of Ui on the hash value m∗, then F

outputs σ∗ and halts. Otherwise, F outputs nothing and halts when A halts.
Since Ui and ζ are randomly selected, it is clear that

AdvRU-RMAA
DS,Hpkow,F (k) =

1

n · qH
Pr[forge].

Hence, we have

Adv0 ≤ Adv1 + 2nqHAdvRU-RMAA
DS,Hpkow,F(k).

Game G2. In game G2, we change game G1 as follows: the simulator randomly
chooses an instance (say the i-th instance) Πi∗

U∗ among all the instances created
in the game, if the Test query is not performed on Πi∗

U∗ , the simulator aborts
and outputs a random bit b′. Let nI denote the number of instances created in
the game, then we have

Pr[b′ = b] = Pr[b′ = b|Test(U∗, i∗)]Pr[Test(U∗, i∗)]

+Pr[b′ = b|¬Test(U∗, i∗)]Pr[¬Test(U∗, i∗)]

= Pr[b′ = b in G1]
1

nI
+

1

2
(1− 1

nI
)

=
1

2
+

1

nI
(Pr[b′ = b in G1]−

1

2
)

and

Adv1 = nIAdv2.

Game G3. In game G3, we change game G2 by replacing the Diffie-Hellman key
gx

∗y∗
in the test session with a random element gr ∈ G. Below we show that if

the adversary’s advantage changes significantly in game G3 , we can construct a
distinguisher B to break the Decisional Diffie-Hellman (DDH) assumption.
B is given a challenge (ga, gb, Z), in which with equal probability, Z is either

gab or a random element of G. B simulates game G2 honestly by generating all
the long-term secret keys for all the users. When simulating the i-th instance
Πi∗

U∗ and its partner, A sets gx
∗
= ga, gy

∗
= gb and Z as the corresponding

session key. Finally, if A wins the game, B outputs 1, otherwise, B outputs 0.

Leakage Resilient AKE Secure in the Auxiliary Input Model 215

Since a forge event would not happen on pidi
∗

U∗ before pidi
∗

U∗ is corrupted, we
can guarantee that a partner instance of Πi∗

U∗ must exist. So the Diffie-Hellman
components in the test session must be ga and gb. If Z = gab, then A is in game
G2; otherwise, if Z is a random element of G, then A is in game G3. Therefore
we have

AdvDDH
B (k) = Pr[B outputs 1|Z = gab]− Pr[B outputs 1|Z = gr]

= Pr[A wins the game|Z = gab]− Pr[A wins the game|Z = gr]

=
1

2
(Adv2 −Adv3)

and
Adv2 ≤ Adv3 + 2AdvDDH

B (k).

It is clear that the adversary A has no advantage than random guess in game
G3 (i.e. Adv3 = 0). Hence, we have

AdvAKE-PFS
A (k) ≤ 2nIAdvDDH

B (k) + 2nqHAdvRU-RMAA
DS,Hpkow,F(k).

�

6 Conclusion

In this paper, we initiated the study on leakage resilient authenticated key ex-
change in the auxiliary input model. We showed that in the random oracle model,
we can build an AKE protocol secure under auxiliary input attacks based on a
digital signature scheme that is random message unforgeable under random mes-
sage and auxiliary input attacks (RU-RMAA). We also showed the differences
between signature-based and public-key encryption-based Diffie-Hellman proto-
cols and concluded that signatured-based protocols can offer a higher level of
security than encryption-based ones when the adversary is allowed to learn the
state information of a protocol participant. We leave the construction of a se-
cure AKE against auxiliary input attacks without random oracles as our future
work.

References

1. Aiello, W., Bellovin, S.M., Blaze, M., Canetti, R., Ioannidis, J., Keromytis, A.D.,
Reingold, O.: Just fast keying: Key agreement in a hostile Internet. ACM Trans.
Inf. Syst. Secur. 7(2), 242–273 (2004)

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

216 G. Yang et al.

4. Bellare, M., Canetti, R., Krawczyk, H.: Modular approach to the design and anal-
ysis of key exchange protocols. In: ACM STOC 1998, pp. 419–428 (1998)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

6. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

7. Bellare, M., Rogaway, P.: Provably secure session key distribution — the three
party case. In: ACM STOC 1995, pp. 57–66 (1995)

8. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73 (1993)

9. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

10. Boyd, C., Cliff, Y., Gonzalez Nieto, J.M., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008),
http://eprint.iacr.org/2008/007

11. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001),
http://eprint.iacr.org/2001/040/

12. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-exchange
protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161.
Springer, Heidelberg (2002), http://eprint.iacr.org/2002/120/

13. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

14. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

15. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

16. Dodis, Y., Tauman Kalai, Y., Lovett, S.: On cryptography with auxiliary input.
In: ACM STOC 2009, pp. 621–630 (2009)

17. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006)

18. Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes
secure against hard-to-invert leakage. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 98–115. Springer, Heidelberg (2012)

19. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

20. Entity authentication mechanisms - Part 3: Entity authentication using asymmetric
techniques. ISO/IEC IS 9798-3 (1993)

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

http://eprint.iacr.org/2008/007
http://eprint.iacr.org/2001/040/
http://eprint.iacr.org/2002/120/

Leakage Resilient AKE Secure in the Auxiliary Input Model 217

22. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

23. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003)

24. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

25. Moriyama, D., Okamoto, T.: Leakage resilient eCK-secure key exchange protocol
without random oracles. In: ACM ASIACCS 2011, pp. 441–447 (2011)

26. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

27. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007), Full paper available at
http://eprint.iacr.org/2007/473

28. Yang, G., Duan, S., Wong, D.S., Tan, C.H., Wang, H.: Authenticated key exchange
under bad randomness. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 113–126.
Springer, Heidelberg (2012)

29. Yang, G., Wong, D.S., Wang, H., Deng, X.: Two-factor mutual authentication
based on smart cards and passwords. J. Comput. Syst. Sci. 74(7), 1160–1172 (2008)

http://eprint.iacr.org/2007/473

Simplified PACE|AA Protocol�

Lucjan Hanzlik��, Łukasz Krzywiecki, and Mirosław Kutyłowski

Faculty of Fundamental Problems of Technology, Wrocław University of Technology
{firstname.secondname}@pwr.wroc.pl

Abstract. We present SPACE|AA protocol that merges Chip Authentication of
a smart card with card owner authorization via PACE protocol implemented in
German personal identity documents. It is an improvement of PACE|AA proto-
col presented at Financial Cryptography 2012. Moreover, we explicitly formulate
privacy model implicitely used by the authors of PACE|AA.

Keywords: personal ID document, MRTD, chip authentication, active authenti-
cation, PACE, Diffie-Hellman protocol, simulatability, privacy protection.

1 Introduction

We consider authentication protocols for personal identity documents. We focus on
solutions that are efficient enough from the practical point of view and secure in real
world scenarios. Due to severely limited resources of a chip of an identity document and
scale of deployment even slight improvements may have a significant practical impact.

The first important step in this area was introduction of biometric passports – a sub-
stantial improvement against forgeries is due to cryptographic protection mechanisms.
More features are already implemented in personal identity cards in some countries. In
particular, they can be used as travel documents within European Union. For this reason
we shall use name Machine Readable Travel Documents or MRTD for short.

One of frequent design decisions for MRTD is to use contactless communication
interface. This increases durability of a chip as it becomes completely sealed, but at the
same time the document holder looses direct control over chip activation. Since the chip
works in a slave mode responding to a wireless reader, the document holder might be
unaware of interaction between the MRTD chip and the reader. For this reason, many
citizens are reluctant to activation of electronic layers of MRTD. In order to prevent
such an unwelcome interaction, additional protection is necessary.

The primary goal of cryptography in MRTD is to prevent forgery of identity docu-
ments. The simplest solution is to store personal data in chip’s memory together with
the signature of a document issuer. However, the signed data may be stored on a differ-
ent chip when cloning a MRTD. Another problem is that signed data can be presented
to third parties and the signatures serve as an undeniable proof of data authenticity.

Design of MRTD has to take into account many factors, frequently neglected in
the literature: space limitations (size of keys, program code and working space), com-
munication volume and number of rounds (important due to low speed and possible

� Supported by Foundation for Polish Science, Ventures project 2012-9/4 and MISTRZ.
�� Corresponding author.

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 218–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Simplified PACE|AA Protocol 219

faults), strict bound on computation time (necessity to finalize interaction in at most
few seconds), use of standard components (new components mean compatibility prob-
lems, high certification costs, etc.), patent freeness (legal disputes concerning intellec-
tual property rights and patent costs may freeze a project).

1.1 Security Requirements

No Operation without Consent of the Holder. The protocol should guarantee that
the MRTD chip cannot be used unless its holder explicitly agrees and that the reader
communicates only with a reader approved by the card holder. This can be achieved
by password based mechanisms (such as PACE protocol discussed later). First, a pass-
word π is either entered by the document holder to the reader or scanned by the reader
from the surface of the MRTD chip. Then an interaction between the reader and the
MRTD chip is started; during this interaction the chip must become convinced that the
reader is using the same password π as stored inside the chip. There are the following
requirements for password protection:

– probability that a reader not knowing the proper password π succeeds to convince
the MRTD chip that it knows π must be negligible,

– an eavesdropper cannot derive π. So not only the password must not be transmitted
in clear, but also that a brute force attack based on checking each password for
consistency with the protocol transcript should be ineffective.

– a reader may attempt to execute the protocol with an MRTD chip by guessing the
password π (many trials may occur undetected due to wireless communication).
As entropy of passwords is limited, the advantage of this attack is non-negligible.
So we have to guarantee only that an adversary has no substantial advantage over
checking the passwords one by one.

Active Authentication of the MRTD Chip. The reader must become convinced via
execution of a challenge-response algorithm that it communicates with a genuine MRTD
chip holding a secret keyx stored in the MRTD chip. We requireimpersonationresilience:
– probability that a chip not knowing x gets accepted by the reader must be negligible.
Note that an adversary may have access to other parameters (like ephemeral keys derived
in genuine sessions between the MRTD chip holdingx and some readers). Moreover, we
demand key secrecy: an adversary cannot reconstruct x based on interaction between an
MRTD chip holding x and a reader. In particular, the adversary can control the reader
and execute the protocol in a malicious way and may know the passwordπ of the MRTD.

Data Confidentiality. The protocol should guarantee that the data transmitted between
the MRTD chip and the reader are not accessible to an eavesdropper. For this purpose
at the initial phase the reader and the MRTD chip establish a shared key (Key Exchange
Protocol or KE for short), the rest of the interaction is encrypted with the session key.

The protocol should guarantee key secrecy: an adversary cannot learn a session key
established by an reader and an MRTD chip, even if he knows the session keys es-
tablished in different sessions and learns the long time secret keys of the MRTD chip.

220 L. Hanzlik, Ł. Krzywiecki, and M. Kutyłowski

It must also protect against impersonation: after establishing a shared session key the
reader must be sure that the session key is shared with the MRTD chip that was checked
via active authentication, while the chip must be sure that the reader is the one, which
was checked via password knowledge. In particular, an adversary that knows some of
the secrets (password or the active authentication secret key) cannot take over the ses-
sion and establish a session key on behalf of one of the protocol parties.

Privacy Protection. The protocol should guarantee that apart from a legitimate party
nobody may learn which MRTD chip is present at a given place. This concerns resilience
to tracing: an eavesdropper should be unable to check that a certain MRTD participates
in an eavesdropped session. Unlike many KE protocols, the identity of the MRTD chip
should be unknown to the reader till the password authentication terminates success-
fully. This addresses the problem of readers that engage MRTD chips in protocol runs
in order to learn the identities for the sake of tracing the users. In particular, the runs
might be incomplete.

Moreover, the protocol should prevent transfer of authentication proof: a transcript
of communication together with all information that the reader can reveal, should have
no proof value for third parties. Violating this property would cause severe personal
data protection problems. This problem does not arise if a protocol is simulatable, i.e.
everybody can generate fake transcripts that are indistinguishable from the transcripts
from real interactions.

1.2 Related Work and Paper Contribution

SPEKE. Password authenticated key exchange (PAKE) allows two parties to establish
private and authenticated communication based on their shared (low-entropy) password
(see e.g. [1]) and [2]). SPEKE is a version of PAKE based on Diffie-Hellman key ex-
change where the generator g is created by a deterministic function over the password
- e.g. a hash value (see [3], and its security proof in [4]). However, it is susceptible
to password guessing attack, where an adversary is able to test multiple possible pass-
words in a single impersonation attempt [5].

PACE. Password Authenticated Connection Establishment (PACE) protocol [6] was
proposed by the German Federal Office for Information Security (BSI) for the deploy-
ment in MRTD. The purpose of PACE is to establish a secure channel based on weak
passwords, like the personal data of the passport holder. Subsequent run of additional
Active Authentication (AA) protocol verifies the passport’s validity. It has been ap-
proved as a standard solution by International Civil Aviation Organization (ICAO) [7].
A slightly different design proposed by Gemalto and Sagem Securite is called PACE-IM
[7]. This paper concerns the German version PACE v1 Generic Mapping (PACE-GM).

PACE|AA. PACE|AA [8] is an extension of PACE combining it with active authentica-
tion in a single protocol. The main idea is to reuse some randomness from the steps of
PACE protocol to construct a modified Schnorr signature over a card identity and send
it as an active authentication (AA) message at the end of the PACE|AA.

Simplified PACE|AA Protocol 221

Security Models. There are many security models for the problems concerned in this
paper. PACE protocol was proved to be secure in the Abdalla et al. model of authenti-
cated key exchange (AKE) [9], a model stronger than the classical one from [1]. Sev-
eral other papers describe security requirements of AKE protocols in different model
settings; relations between these models were discussed in [10]. Possible attack scenar-
ios including: various key compromising settings e.g. [11,12] and impersonation threats
e.g. [13,14] were addressed accordingly. Another model [15] captures various leakage
threats in AKE protocols of [16,17]. This repeatedly occurring model upgrading shows
that we have to be very careful about their practical relevance and completeness.

Our Contribution. Our goal is to simplify and fine tune the PACE|AA protocol. We
aim to achieve this with minimal changes to both PACE and AA in order to ease imple-
mentation and backward compatibility. We propose a SPACE|AA protocol that

– like PACE|AA, differs from PACE by just one step on each side and one message
sent after executing PACE,

– it is simplified conceptually compared to PACE|AA,
– it has more transparent properties regarding non-tracebility,
– computational complexity is slightly improved compared with PACE|AA,
– secret keys for active authentication are much better protected in case of leakage of

ephemeral secrets from the MRTD chip.

Our idea is to replace modified Schnorr signature with a version static of Diffie-Hellman
authentication with partial disclosure of exponents.

Apart from a new optimized construction, we discuss a security model for this kind of
protocols. We examine protocols in a broader context and in a more application specific
(protocols for MRTD-s) way than the Abdalla et al. model used to analyze PACE and
PACE|AA. We propose an approach that shows how the attack and adversary scenarios
have been found by systematic search over all cases.

We consider rigorously non-transferability of the proof of presence and security
threats concerning tracebility of smart cards. These issues must have been in mind of
designers of PACE, but yet have not been covered by published security models.

2 Simplified PACE|AA Protocol

Our protocols (see specification below) bind one of the ephemeral keys and the private
key xA of a card A in a simplier way than for PACE|AA. The first base construction
is the same as PACE|AA, but instead of sending a modified Schnorr signature the card
sends w := yA/xA, where gxA is the public key of A. Thereby the PACE part of the
protocol remains intact, and the reader can verify the card by checking that Xw

A = YA.
This base version targets the requirements of the full compatibility with PACE part.

However, we recognize the shortcomings of these solutions in case of successful
attacks on ephemeral data. This can be a serious security threat, since a less secure
memory may be used to store ephemeral keys. The leakage of the ephemeral secret
yA makes long-term secret xA easily computable, both in PACE|AA, and in our base
version of the protocol. Therefore we propose the Ephemeral Key Leakage Resilient

222 L. Hanzlik, Ł. Krzywiecki, and M. Kutyłowski

Variant of SPACE|AA, in which the agreement of the first shared key h with Diffie-
Hellman protocol is replaced by a blinded static Diffie-Hellman protocol where the
static long-term key xA is used on the side of the card. Namely, the card sends YA =
gxAyA = XyA

A for yA chosen at random and afterwards discloses w := yA. Note that
our variants differ only by implementation details on the MRTD chip (and not on the
reader).

Table 1. PACE|AA and Simplified PACE|AA (SPACE|AA) protocols

Card Reader
π - password, xA - private key π - password, input from owner
XA = gxA - public key
certA - certificate for XA

G = (a, b, p, q, g, k) - parameters
Kπ := H(0||π) Kπ := H(0||π)
choose at random s ← Zq

z := ENC(Kπ, s)
G,z−−−−−−−−−→ abort if G incorrect

s := DEC(Kπ, z)
choose yA ← Z∗

q choose yB ← Z∗
q

. Version: SPACE|AA, Original PACE Variant .

YA := gyA
YB←−−−−−−−−− YB := gyB

. Version: SPACE|AA, Ephemeral Key Leakage Resilient Variant .

YA := gxAyA
YB←−−−−−−−−− YB := gyB

. Variants End .

abort if YB �∈ 〈g〉\{1} YA−−−−−−−−−→ abort if YA �∈ 〈g〉\{1}
. Version: SPACE|AA, Original PACE Variant .
h := Y yA

B h := Y yB
A

. Version: SPACE|AA, Ephemeral Key Leakage Resilient Variant .
h := Y xAyA

B h := Y yB
A

. Variants End .
ĝ := h · gs ĝ := h · gs
choose y′

A ← Z∗
q choose y′

B ← Z∗
q

Y ′
A := ĝy

′
A

Y ′
B←−−−−−−−−− Y ′

B := ĝy
′
B

check Y ′
B �= YB

Y ′
A−−−−−−−−−→ check Y ′

A �= YA

K := Y ′
B

y′
A K := Y ′

A
y′
B

KENC := H(1||K) KENC := H(1||K)
K′

SC := H(2||K) K′
SC := H(2||K)

KMAC := H(3||K) KMAC := H(3||K)
K′

MAC := H(4||K) K′
MAC := H(4||K)

TA := MAC (K′
MAC , (Y

′
B,G))

TB←−−−−−−−−− TB := MAC (K′
MAC , (Y

′
A,G))

abort if TB invalid
TA−−−−−−−−−→ abort if TA invalid

Simplified PACE|AA Protocol 223

Table 1. (Continued.)

. Version: PACE|AA, Deniable Schnorr Variant .

σ := yA +H(5||YA, Y
′
A,G) · xA

ENC(K′
SC ,(σ.certA))−−−−−−−−−−−−−−→

decrypt the message with K′
SC

check certificate certA
w := σ−1, r := YA

v := gwH(5||YA,Y ′
A,G)Xrw

A

abort if v �= YA

. Version: SPACE|AA .
w := yA/xA

. Version: SPACE|AA, Ephemeral Key Leakage Resilient Variant .
w := yA

. Variants End .
ENC(K′

SC ,(w,certA))−−−−−−−−−−−−−−→ decrypt the ciphertext with K′
SC

check certificate certA
abort if Xw

A �= YA

3 Security

Security of key exchange and authentication protocols have been considered by many
authors, however many essential security features for MRTD applications are frequently
not covered, even if many protocol designers have appropriate properties in mind. Our
goal is a systematic approach which has to be complete in the sense that all relevant
threats and attack scenarios are identified. Despite simplicity of SPACE|AA this leads
to a complex analysis.

Security Targets: As starting point we list the situations where the actors of the system
perform some actions or get secrets and data to which they are not entitled:
Privacy: an adversary may try to trace a MRTD chip (Trace attack), or convince a third
party about an interaction that really took place (Transfer attack).
Forgery: an adversary may try to mimic the MRTD chip and try to convince a reader
that it is talking with this MRTD chip (FakeCard). The second situation is that a reader
mimics the reader holding the right password while talking with an MRTD chip (Fak-
eReader). The target is to allude the consent of document holder to activate the chip.
The attacks of this kind concern man-in-the-middle and hijacking a session.
Confidentiality: an adversary may try to get access to information transferred between
the MRTD chip and the reader in a legitimate communication when the adversary is not
controlling the reader. In particular, the adversary may try to derive the session keys,
analyze session transcripts and modify interaction between a chip and a reader.
Long Term Key: an adversary may try to get the long term key x of a chip, specially
when the ephemeral keys become insecure (e.g. via implementation errors).
Assumptions: For the sake of security analysis we assume that the scheme computa-
tions are done within an appropriate algebraic group where DLP, CDH, DDH assump-
tions hold. Moreover we assume that the hash function H used is modelled by the
random oracle.

224 L. Hanzlik, Ł. Krzywiecki, and M. Kutyłowski

3.1 Adversary Categories

We consider different cases depending on whether the adversary has the secret key x
for authentication and/or the password π. We use notation A, Ax, Aπ, Ax,π to denote
adversaries that have, respectively, neither x nor π, only x, only π, both x and π. A••
denotes adversaries, where • can be set x, π or blank. Note that Aπ scenario is quite
realistic, since the password is revealed to readers. Ax corresponds to the case when
cryptanalysis reveals the private key of the MRTD chip. Ax,π corresponds to the case
when the MRTD issuer misbehaves and retains copies of the secrets of the MRTD chip.

A starting point of an attack might be upgrading the adversary’s category. Note also
that in some scenarios an adversary has obvious advantages. For instance,Ax,π can act
as the MRTD chip holding x and π, while Aπ can start an interaction with the MRTD
chip as a legitimate reader. Our goal is to show that the adversary cannot gain more.

In many cases it suffices to show immunity against an attack in the strongest adver-
sary category: e.g. it suffices to show secrecy of the session key in the model Ax,π.
However, sometimes we cannot make such a reduction. For instance, we cannot do
it for the above mentioned transfer attack – in general more secrets may mean more
capabilities to create a fake protocol transcript.

As in [8], for the first version of SPACE|AA we assume that the ephemeral random
parameters used as auxiliary data for active authentication are secure.

3.2 Privacy Games

Now we formulate games describing attacks aiming to break privacy. Usually security
games involve parameters saying how many times certain operations are executed. In
most cases we omit such parameters as they can be easily derived by the Reader.

Definition 1 (Trace Game). The goal of the adversary is to decide if a traced commu-
nication belongs to a given card.

Phase 1: Challenger picks at random MRTD Chips C0, C1.
Phase 2: ATR

•• can ask for an arbitrary number of interactions between C0 (or C1)
and a reader knowing the password of, respectively, C0 or C1.ATR

•• can arbitrarily
replace any message communicated before it is delivered to the other party of the
protocol (hence he can himself execute the protocol with C0 and C1).

Phase 3: Challenger picks a bit b at random.
Phase 4: ATR

•• performs the same actions as in Phase 2, but now the first group of
interaction is with Cb and the second one is with C1−b. If ATR

•• has the password
of C0 or C1, then in this phase he cannot change any message.

Phase 5: perform the same steps as in Phase 2.
Phase 6: ATR

•• answers with a bit b̄. Finally, ATR
•• wins if b̄ = b.

We can also assume that the adversary knows the keys from all MRTD chips other than
C0 and C1 and can use both the keys and the correcponding MRTD chips arbitrarily.
We define the advantage of winning the Trace Game as |Pr[b̄ = b]− 1

2 |.
Of course, during Phase 4 we cannot letATR

•• to interact with Cb and C1−b, if he has
at least one of the passwords, as in this case he may execute SPACE|AA authenticating

Simplified PACE|AA Protocol 225

one of the chips. Note that it suffices to prove security for the scenarios Ax and Aπ,x,
as the advantage of A is bounded by the advantage of Ax, and the advantage of Aπ is
bounded by the advantage of Aπ,x.

Definition 2 (Transfer Game). There are Prover and Verifier; each of them may hold
some secrets of an MRTD chip C. Prover has to convince Verifier that at a given time it
communicates with C – e.g. by presenting a communication transcript. This is described
by the following game:

Phase 1: The Prover picks MRTD chip C. Prover and Verifier as well may perform any
number of interactions with C. If Prover is interacting with C, then Verifier may
observe the communication and even influence it in any way.

Phase 2: Prover chooses b ∈ {0, 1} at random. If b = 0, then Prover interacts with C
in any way as well as observes interaction between C and third parties. In this case
Prover records the transcript T of his communication with C. If b = 1, then Prover
creates a faked transcript T by itself, in absence of C. Finally, Prover presents T
to Verifier.

Phase 3: Verifier returns a bit b̄. He wins if b̄ = b.

We define the advantage of winning the Transfer Game as |Pr[b̄ = b]− 1
2 |.

Note that Transfer Game must be considered for each type of adversaries, as lack of
secrets might increase the strength of the proof by using the argumnet like: “I could not
create it without the secrets that are used by the protocols parties”. The proof may be
created during a faulty execution as well (e.g. by adversaryA with no secrets). We also
have to consider Verifiers holding x or π, or even both x and π.

3.3 Faking Games

Definition 3 (FakeCard1 Game). The adversary’s goal is to authenticate as an MRTD
chip C against a reader that knows the password of the chip C.

Phase 1: The adversary AFC1
•• chooses an MRTD chip C.

Phase 2: AFC1
•• may listen to an arbitrary number of real interactions between C and a

reader knowing password of C. During the interaction, the adversary may replace
any message sent with a message of his choice. AFC1

•• may also interact with any
other MRTD chips and break their keys.

Phase 3: AFC1
•• executes SPACE|AA with a reader knowing the password π of C.

AFC1
•• wins if the reader executes successfully the whole protocol and does not abort.

We define the advantage of winning FakeCard1 Game as probability that the reader
does not abort. Note that we do not demand AFC1

•• to learn the session key. FakeCard1
does not make sense for AFC1

x,π as in this case the adversary has a fully functional copy
of the MRTD chip. The advantage ofAFC1 is bounded by both the advantage ofAFC1

π

and AFC1
x , so it suffices to consider FakeCard1 Game for AFC1

π and AFC1
x .

Definition 4 (FakeCard2 Game). The adversaries goal is to authenticate as MRTD
chip C against a reader that does not know the password π of C. The game is exactly
the same as in case of FakeCard1 except that the adversary may enter an arbitrary
password π′ to the reader.

226 L. Hanzlik, Ł. Krzywiecki, and M. Kutyłowski

For AFC2
x,π and AFC2

x , as in both cases the adversary succeeds by definition. So it suf-
fices to considerAFC2

π .

Definition 5 (FakeReader Game). The adversary’s goal is to execute SPACE|AA with
an MRTD chip without having the proper password, i.e. pretending a legitimate reader.

Phase 1: The adversary AFR
•• chooses an MRTD chip C.

Phase 2: AFR
•• may listen to an arbitrary number of interactions of C with a reader

knowing the password of C. During the interaction, the adversary may replace any
message sent with a message of his choice. AFR

•• may also interact with any other
MRTD chips and break their keys.

Phase 3: C executes SPACE|AA protocol with AFR
•• .

AFR
•• wins if C terminates SPACE|AA without aborting it prematurely.

The advantage of winning the FakeReader Game is the probability that AFR
•• wins. By

definition, AFR
•,π can win the game. So it suffices to consider AFR

x , as the advantage of
AFR is bounded by the advantage of AFR

x .

3.4 Transmission Security

Since SPACE|AA has to create a secure channel for information exchange between an
MRTD chip and a reader, we have to make sure that there is no information leakage.
We use here a variant of real-or-random paradigm of Abdalla et al. [9]. We formulate a
strong game that encompasses for instance such issues as Perfect Forward Security.

Definition 6 (Transmission Security Game)

Phase 1: Adversary ATS
•• picks an MRTD chip C.

Phase 2: ATS
•• may listen to an arbitrary number of interactions with C of the readers

knowing the password of C. ATS
•• may replace any message sent by a message of

its choice.ATS
•• may also interact with any other MRTD chips and break their keys.

Phase 3: C performs SPACE|AA up to the moment immediately before exchanging
messages TB and TA. ATS

•• may replace or modify any message sent, however
ATS

•,π cannot modify both YB and Y ′
B sent to C by the reader.1

Phase 4: The challenger chooses a bit b. If b = 1, then the session keys KENC , KMAC ,
KSC , K ′

MAC are replaced by the keys RENC , RMAC R′
SC , R′

MAC chosen at
random.

Phase 5: Exchange and verification of TB and TA is executed. Active authentication
step is executed.

Phase 6: The challenger reveals KENC and KMAC , if b = 0, or RENC and RMAC ,
if b = 1.

Phase 7: ATS
•• returns a bit b̄.ATS

•• wins if the interaction between C and the reader is
not aborted and b̄ = b.

1 Note that otherwise ATS
•,π could connect with C and eliminate the attacked reader completely.

However, this is legitimate as ATS
•,π knows π.

Simplified PACE|AA Protocol 227

We define the advantage of winning the Transmission Security Game as |Pr[b̄ = b]− 1
2 |.

It suffices to prove security againstATS
x,π andATS

x , as the advantage ofATS is bounded
by the advantage of ATS

x , and the advantage of ATS
π is bounded by the advantage of

ATS
x,π.
Of course, the Transmission Security Game does not reflect directly the real attack

scenario. However, if the advantage in the game above is negligible, then any attack
against SPACE|AA deriving information from the workload transmission would also
work when the session keys KENC ,KMAC are replaced by random keys (both on the
MRTD chip and on the reader). However, if the session keys are chosen at random, then
the data from SPACE|AA protocol execution bring no advantage for the adversary.

Remark 1. The considered security property is quite strong: even if the adversary holds
a clone of a card C, the only way to get the information sent by C is to replace entirely
the reader. Of course, this is possible only in case of ATS

•,π, which is acceptable in the
application model concerned.

3.5 Long Term Key Security on Ephemeral Data Leakage

Definition 7 (Get-x-Ephemeral-Leakage Game). The adversary’s goal it to get the
authentication key x of a chip, in case the ephemeral keys are leaked.

Phase 1: Adversary AEK
π chooses an MRTD chip C with the public key X = gx.

Phase 2: AEK
π gets all transcripts {Ti}qi=1 of protocol runs of C, including all results

of computations on the chip and the reader, altogether with respective ephemeral
keys, and session keys, except for x. Also, AEK

π may interact with all other MRTD
chips and break their keys.

Phase 3: AEK
π outputs a key x′. AEK

π wins if x′ = x.

We define the advantage ofAEK
π as the probability of its winning the Get-x-Ephemeral-

Leakeage Game. Note that for PACE|AA the adversary may easily win the game.

4 Security Proofs

4.1 Simulatability

One of the fundamental properties of SPACE|AA is that transcripts of interactions with
an MRTD chip can be created or simulated without knowledge of the secrets x and π
of the MRTD chip.

Basic transcript. If the adversary is by monitoring communication with the MRTD
chip, then a basic transcript consists of the following values:

z, YB, YA, Y
′
B, Y

′
A, TB, TA,ENC(K ′

SC, (w, certA)).

Full transcript. A reader can leak all data it creates during an interaction with an MRTD
chip. In this case the transcript of interaction consists of the following data:

π, z, yB, YA, y
′
B, Y

′
A, TB, TA, w, certA.

228 L. Hanzlik, Ł. Krzywiecki, and M. Kutyłowski

Full transcript without password. Transcripts generated when the reader is not using
the correct password. The transcript contains:

z, yB, YA, y
′
B, Y

′
A, TB.

Note that the transcript contains neither TA nor ENC(K ′
SC, (w, certA)) as the MRTD

chip interrupts the communication. Of course, it may happen also when the password
used by the reader was correct and the communication was not interrupted.

Lemma 1. There is a simulator Sfull that creates full transcripts with exactly the same
probability distribution as the full transcripts of real interactions with an MRTD chip
C, provided that the simulator has the password π of C.

Proof. Sfull chooses w at random and computes YA := Xw
A . Also, it chooses the fol-

lowing elements at random: z, Y ′
A, yB, and y′B . The remaining elements are computed

according to the specification of SPACE|AA protocol.
It is easy to see that YA has the same probability distribution as YA generated in

the original way. Indeed, it does not matter whether we choose yA at random or take
yA = xA · w, where w is chosen at random, as the order of the group is a prime. The
same argument applies for y′A. �

Lemma 2. There is a simulator Snopwrd that creates transcripts that have exactly the
same probability distribution as the full transcripts without password for an MRTD
chip A and a reader R executing a strategy St.

Proof. The simulator chooses YA and Y ′
A, z at random. Then it provides the remaining

values created by the reader according to the same strategy St as used by the reader in
a real interaction. As in Lemma 1, we can choose Y ′

A directly. Note that we can choose
YA at random without w, as w will not be included in the transcript. �

Lemma 3. There is a simulator Sbasic that creates transcripts that are indistinguishable
from the basic transcripts for an MRTD chip A provided that DDH Assumption holds.

Proof. The proof is similar to the previous two lemmas, however, there are some prob-
lems, as the simulator cannot derive ĝ according to specification of SPACE|AA. How-
ever, due to DDH Assumption, the simulator can replace the shared key h with a random
key. With the same effect, ĝ = h · gs can be replaced with a random element.

The element YA is computed just as in case of the simulator from Lemma 1. The
elements z, Y ′

B , K are computed at random. The remaining necessary elements are
computed according to the specification of SPACE|AA. Again, note that K derived in
this way is indistinguishable from the key derived according to SPACE|AA. �

Note that the results of Lemmas 1, 2 and 3 hold even if a party trying to distinguish the
transcripts holds π and x of the MRTD chip.

4.2 Drafts of Security Proofs

By Lemmas 1, 2 and 3, Prover may create transcripts of interaction with C that are
indistinguishable from real interactions. Therefore we get easily the following result:

Simplified PACE|AA Protocol 229

Theorem 1. In case of SPACE|AA, probability of winning the TRANSFER Game for
each adversary scenario is negligible.

Theorem 2. Probability of winning Trace Game by ATR
x,π for SPACE|AA protocol is

negligible provided that the DDH Assumption holds and the encryption function is a
semantically secure permutation.

Proof (Draft). According to Lemma 1, Phases 2 and 5 can be omitted, as ATR
x,π can

replace them with a simulator. In Phase 4 ATR
x,π receives only transcripts of communi-

cation performed by Cb and C1−b, since it knows their passwords.
Again by Lemma 1 transcripts from Phase 4 can be created using a simulator. Note

that by definition the simulator chooses the elements z and K at random. Hence, the
only value that can be used to link cards is ENC(K ′

SC , (w, certA)). However, the key
K ′

SC is derived using a random key K thus we can replace the plaintext in
ENC(K ′

SC , (w, certCi)) by a random string U of the same size. �

The second case which we have to consider is slightly different as the adversary can be
active. However, he does not know the correct password and can guess it at most.

Theorem 3. Assume that DDH Problem is hard and that the MAC function is deter-
ministic. Then probability of winning Trace Game by active ATR

x adversary cannot be
non negligibly higher than probability of successful authentication in PACE without
knowing the right password.

Proof (Draft). We shall first show that if the adversary changes at least one message
until delivery of TB , then the MRTD chip Ci aborts after verification of TB.

If only TB is changed, then Ci aborts as derivation of K , K ′
SC and the MAC function

are deterministic. If the adversary does not know discrete logarithm of either YB or Y ′
B ,

then computing either h or K would mean solving CDH Problem. However, we shall
prove in Theorem 9 and 10 that possibility to derive a message TB acceptable by Ci is
equivalent with solving DDH Problem.

In order to know discrete logarithm of YB and Y ′
B sent by the adversary to Ci, the

adversary must replace the values sent by the reader. However, finding the right TB or
reshaping the TB sent by the reader would mean successful execution of PACE with Ci

without knowing the correct password. Thus Ci interrupts the protocol execution with
high probability after receiving TB.

Now observe that since Y ′
A (computed by Ci) and Y ′

B (computed by the reader) are
random values from the point of view of the adversary it remains to show that TB gives
no information about Ci. It is easy to see that the key K used to compute TB depends
on values Y ′

A (possibly changed by the adversary) and y′B (random exponent of the
reader). In case when Y ′

A is transmitted unchanged, then TB is random from the point
of view of the adversary. Finally, notice that if Y ′

A is changed by the adversary, then
TB depends only on values chosen by the adversary and the reader, thus TB can be
computed without communication with Ci i.e. without using the password πi of Ci.

�

Theorem 4. Non-negligible probability of winning the FakeCard1 Game by AFC1
π for

SPACE|AA leads to a non-negligible probability of solving CDH Problem.

230 L. Hanzlik, Ł. Krzywiecki, and M. Kutyłowski

Proof (Draft). We shall consider a malignant reader that tries to force AFC1
π to solve

cases of CDH Problem. Let (g, gx, gy) be the case of CDH, so the goal is to forceAFC1
π

to compute gxy. First, AFC1
π sets the public key of MRTD chip C to XC = gx.

Note that we can eliminate entirely Phase 2 of FakeCard1 Game. Indeed, it can be
performed by AFC1

π without any contact with MRTD chip C but with a simulator (see
Lemma 1) and so the adversary cannot learn anything during this phase.

Now assume that AFC1
π succeeds in Phase 3. The malignant reader tosses a coin,

with probability 1
2 it behaves according to the protocol and computes YB := gyB .

However, with probability 1
2 it uses YB := (gy)r, where r is chosen at random. In this

case the reader is unable to create TB (as it does not know the discrete logarithm of YB

and therefore cannot derive h and consequently cannot derive K) and the interaction
will terminate after sending TB . However, even if AFC1

π knows about the malignant
reader, inevitably it can react as for the correct protocol execution in case when the
reader is using the second option. Note that TB sent by the reader cannot be used by
the adversary to derive the key K ′

SC since this would imply performing a key recovery
attack on the MAC scheme and a preimage attack on the hash function H by AFC1

π .
The only w that is positively verified by the honest reader is ya/x. So no matter

how AFC1
π gets YA, we have yA = x · w. Moreover, in order to derive the key K that

matches the key used by the honest reader, AFC1
π has to compute h = Y yA

B . If the
reader is malignant, then h = (gyr)x·w = gxy·rw. Note that computing h is equivalent
to computing gxy, as w is known by AFC1

π and r can be revealed to AFC1
π . �

The second case is an adversary that knows key x, but not π. Note that AFC1
x can be

immediately converted into an adversary against PACE: the new adversary simply skips
the last active authentication step. The same reasoning can be used in the FakeReader
Game for the adversaryAFR1

x . So we have:

Theorem 5. IfAFC1
x can win FakeCard1 Game with a probability p, then it is possible

to win FakeCard1 Game against PACE protocol with the same probability.

Theorem 6. IfAFR1
x can win FakeReader Game with a probability p, then it is possible

to win FakeReader Game against PACE protocol with the same probability.

The strategy to prove security against Transmission Security Game is the same as in [8].
However, we shall see that it is possible to extend the argument a little bit to incorporate
active attacks.

Theorem 7. Probability of winning the Transmission Security Game by ATS
x,π which is

passive during execution of SPACE|AA is negligible, provided that DDH Problem is
hard.

Proof (Draft). Again Phase 2 can be omited using a simulator. Note that if the adversary
is passive during the execution of SPACE|AA, then by Lemma 3 the challenger can
compute a transcript and present a part of it T1 = (z, YA, YB, Y

′
A, Y

′
B) in Phase 3 to the

adversary. In the next phases the remaining part (TA, TB, ENC(K ′
SC , (w, certA))) is

presented to the adversary, if b = 1, and is recomputed using random keys, if b = 0.
Finally, note that since the simulator from Lemma 3 chooses the key K at random,
hence the keys reaveled in Phase 6 (independently of b) are random and do not depend
on the values from transcript T1. Hence the probability that b̄ = b is equal to 1

2 . �

Simplified PACE|AA Protocol 231

When considering Transmission Security Game for an active adversary, note that before
C sends the active authentication message, it must accept TB. Therefore, it suffices
to consider modifications YB and Y ′

B delivered to the MRTD chip C, as only these
messages influence the key K computed on the side of C.

Theorem 8. Probability of winning Transmission Security Game by ATS
x adversary

which is active during execution of SPACE|AA is at most negligibly higher than proba-
bility of FakeReader Game for PACE (for an adversary not holding the password).

Proof (Draft). Note that in case of SPACE|AA the adversary gets one extra message -
namely the authentication message sent by the card C. However, this message is sent
provided that TB is accepted by C. As the protocol execution up to this step is identical
with PACE and does not depend on active authentication secret x, we get thereby an
adversaryA that succeeds as a reader without the password against PACE. �

The last case is the adversary ATS
π which has to transmit at least one of the original

messages YB , Y ′
B exchanged between the chip C and a reader holding password π.

Theorem 9. Probability of winning Transmission Security Game by ATS
π adversary

which delivers to C the original Y ′
B sent by a reader interacting with C is negligible,

provided that DDH Problem is hard, and that the MAC algorithm is deterministic.

Proof (Draft). Assume that there is an adversary ATS
π winning Transmission Security

Game considered in the theorem. Let (ĝ, Y ′
A, Y

′
B , Z) be an input for DDH Problem. We

can construct a transcript of SPACE|AA protocol up to the moment when TB is sent,
using the elements ĝ, Y ′

A, Y
′
B . Then we apply the strategy of adversaryATS

π to generate
TB . On the other hand, we generate TB for the key Z and check if the results coincide.
If yes, then the algorithm says that (Y ′

A, Y
′
B, Z) is a DH-triple.

It is easy to see that in this way we provide an algorithm having non-negligible
advantage in solving DDH Problem. �

The same holds if ATS
π delivers the original YB instead of Y ′

B . The proof is essentially
the same as in case of Theorem 9:

Theorem 10. Probability of winning Transmission Security Game by ATS
π adversary

which delivers to C the original YB sent by a reader interacting with C is negligible,
provided that DDH Problem is hard, and that the MAC algorithm is deterministic.

Theorem 11. The probability of winning the Get-x-Ephemeral-Leakage Game byAEK
π

for the Ephemeral Key Leakage Resilient Variant of SPACE|AA protocol is negligible,
provided that DLP Assumption holds.

Proof (Draft). Assume that the advantage ofAEK
π is not negligible. Then we break the

DLP assumption, for a given instance ga: we treat the ga as the public key X = gx of
the attacked card. We create transcripts {Ti} by choosing for each Ti ephemeral keys
yA, yB, y

′
A, y

′
B at random, put Y ′

A := XyA

A = (ga)yA , and subsequently compute all
the intermediate protocol values for the chip and the reader. Such transcripts are given
to the adversaryAEK

π ({Ti}qi=1) who yields a with a non negligible probability. �

232 L. Hanzlik, Ł. Krzywiecki, and M. Kutyłowski

Acknowledgment. We would like to thank Jens Bender and Dennis Kügler for discus-
sions and German BSI for cooperation leading to development of the protocol presented
in this paper. In particular, the idea of SPACE|AA emerged independently in BSI.

References

1. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictio-
nary attacks. In: [18], pp. 139–155

2. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key exchange
using diffie-hellman. In: [18], pp. 156–171

3. Jablon, D.P.: Extended password key exchange protocols immune to dictionary attacks. In:
WETICE, pp. 248–255. IEEE Computer Society (1997)

4. MacKenzie, P.: On the security of the SPEKE password-authenticated key exchange protocol.
Cryptology ePrint Archive, Report 2001/057 (2001)

5. Zhang, M.: Analysis of the speke password-authenticated key exchange protocol. IEEE Com-
munications Letters 8(1), 63–65 (2004)

6. Bender, J., Fischlin, M., Kügler, D.: Security analysis of the PACE key-agreement protocol.
In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735,
pp. 33–48. Springer, Heidelberg (2009)

7. ISO/IEC JTC1 SC17 WG3/TF5 for the International Civil Aviation Organization: Supple-
mental access control for machine readable travel documents. Technical Report (2011)

8. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: The PACE|AA protocol for machine read-
able travel documents, and its security. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397,
pp. 344–358. Springer, Heidelberg (2012)

9. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key exchange
in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 65–84.
Springer, Heidelberg (2005)

10. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof models
for key establishment protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788,
pp. 585–604. Springer, Heidelberg (2005)

11. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005)

12. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange proto-
col. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 378–394. Springer, Heidelberg (2006)

13. Chen, L., Tang, Q.: Bilateral unknown key-share attacks in key agreement protocols. J.
UCS 14(3), 416–440 (2008)

14. Tang, Q., Chen, L.: Extended KCI attack against two-party key establishment protocols. Inf.
Process. Lett. 111(15), 744–747 (2011)

15. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A new security model for authenticated key
agreement. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 219–234.
Springer, Heidelberg (2010)

16. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building
secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474.
Springer, Heidelberg (2001)

17. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange.
In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer,
Heidelberg (2007)

18. Preneel, B. (ed.): EUROCRYPT 2000. LNCS, vol. 1807. Springer, Heidelberg (2000)

Expressing User Access Authorization Exceptions
in Conventional Role-Based Access Control

Xiaofan Liu1,2, Natasha Alechina1, and Brian Logan1

1 School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK
2 School of Computer and Communication, Hunan University, Hunan, 410081, P. R. China

{lxx,nza,bsl}@cs.nott.ac.uk

Abstract. In this paper we present a systematic categorization of the user access
authorization exceptions which may occur in conventional role-based access con-
trol models. We propose a slightly revised NIST RBAC model which allows us to
express all the authorization exceptions we consider. We give a formal definition
of the model and show how it can be implemented in DATALOG with negation to
give simple and efficient algorithm for computing authorization decisions. As an
illustration, we present a simple case study from the domain of medical informat-
ics and show how a range of different kinds of authorization exceptions that may
arise in such a domain can be expressed in our approach.

1 Introduction

Role-based access control (RBAC) models have been advocated as a way of reduc-
ing the complexity in discretionary and mandatory access control. In role-based access
control, users are assigned to roles, and roles are associated with sets of permissions.
A user request for access to a particular object (resource) is authorized if the user is
assigned to a role that has the appropriate permission for the object. To simplify the
management of permissions associated with roles, such models frequently utilize a role
hierarchy which allows senior roles to implicitly include all the permissions associated
with junior roles in the hierarchy. Conventional RBAC models, such as RBAC96 [15]
and NIST RBAC [7] (which is based on RBAC96), adopt a closed policy, that is, a user
has a particular permission if one of the user’s roles has the permission, otherwise the
user does not have the permission. However, in many practical applications, the positive
authorizations allowed by an RBAC policy admit user access authorization exceptions,
or authorization exceptions for short. For example:

Example 1. A medical records system has a set of roles including “Doctor” and “Car-
diologist”, some of which are associated with permissions that allow a user to read
a patient’s records. However, patient Alice may stipulate that a particular doctor, Tom
(who happens to be her brother-in-law), should not have access to her records whichever
role Tom is assigned to in order to protect Alice’s privacy.1

1 Experience in the UK suggests that patients sometimes wish to restrict access to their health
records by their relatives or particular health care workers [2].

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 233–247, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

234 X. Liu, N. Alechina, and B. Logan

Conventional RBAC models do not support such authorization exceptions to default
access policies [2,3,13].

In RBAC models with role hierarchies (called Hierarchical RBAC in [7]), a user
assigned to a role may be granted permissions both through their assigned role, and
through junior roles from which their role inherits. In such models, in addition to the au-
thorization exceptions discussed above, authorization exceptions may also result from
role inheritance. Specifically, while users assigned to senior roles inherit all permissions
associated with junior roles, some permissions associated with one or more junior roles
should not be granted to users assigned to a senior role. For example:

Example 2. Assume that the role “IT supervisor” is senior to (and inherits permissions
from) the role “IT professional”. However, a permission that allows a user to alter source
code associated with “IT professional” should not be inherited by “IT supervisor”, be-
cause users assigned to “IT supervisor” have a background in management rather than
in computer science.

Authorization exceptions in Core and Hierarchical RBAC have long been recognized,
and proposals for handling some of those exceptions can be found in the literature
[15,8,11,2,3,6,13]. However, to the best of our knowledge, there has been no systematic
analysis of authorization exceptions in conventional RBAC. In this paper we provide an
analysis of the range of possible authorization exceptions in conventional RBAC and
propose extensions to the RBAC model that allow both core and inherited exceptions to
be formalized. In addition, we show how our formalization of RBAC with exceptions
can be expressed as a stratified program of recursive DATALOG with negation, giving a
simple and efficient algorithm for computing authorization decisions.

The remainder of this paper is organized as follows. We briefly introduce the NIST
RBAC model in Section 2. Authorization exceptions in core RBAC are explored in
Section 3, and authorization exceptions existing in hierarchical RBAC are discussed in
Section 4. In section 5, we introduce DATALOG with negation and show how to express
our model in it. We conduct a case study in Section 6. Then, related work is shown
in Section 7. Finally, we present our conclusions and indicate some potential areas of
future work in Section 8.

2 NIST RBAC

The NIST RBAC model [7] (adopted as ANSI standard ANSI INCITS 359-2004) is
arguably the most influential approach to RBAC. The NIST RBAC reference model is
defined in terms of four model components: Core RBAC, Hierarchical RBAC, Static
Separation of Duty Relations and Dynamic Separation of Duty Relations. We focus on
the first two model components, Core RBAC and Hierarchical RBAC. In Core RBAC
permissions are associated with roles and roles are assigned to users. Core RBAC is
mandatory for all RBAC models. Hierarchical RBAC adds a role hierarchy, which de-
fines an inheritance relation among roles, to Core RBAC. Informally, role r1 inherits
from role r2 if users assigned to r1 have all permissions associated with r2. In what
follows, we broadly follow the principles, definitions and reference models given in the
NIST RBAC model. However, as proposed by Li et al [10] and Power et al [12], we do
not consider sessions as defined in the Core RBAC model.

Expressing User Access Authorization Exceptions 235

3 Authorization Exceptions in Core RBAC

In this section, we introduce the formal definition of the NIST Core RBAC model de-
fined in [7]. We then define authorization exceptions in Core RBAC and show how to
express these exceptions by adding new constructs into the NIST Core RBAC model
definition.

3.1 NIST Core RBAC

The NIST RBAC model defines Core RBAC as follows [7]:

Definition 1. (NIST Core RBAC)

– US ERS , ROLES , ACS , and OBS denote sets of users, roles, actions, and objects,
respectively.

– UA ⊆ US ERS × ROLES is a many-to-many mapping user-to-role assignment
relation.

– assigned users(r : ROLES)→ 2US ERS maps a role r onto a set of users. Formally,
assigned users(r) = {u ∈ US ERS | (u, r) ∈ UA)}.

– PRMS = 2ACS×OBS is the set of permissions.
– PA ⊆ PRMS ×ROLES is a many-to-many mapping permission-to-role assignment

relation.
– assigned permissions(r : ROLES) → 2PRMS maps a role r onto a set of permis-

sions. Formally, assigned permissions(r) = {p ∈ PRMS | (p, r) ∈ PA)}.
– Ac(p : PRMS) → {ac ⊆ ACS } is the permission-to-action mapping, which gives

the set of actions associated with permission p.
– Ob(p : PRMS) → {ob ⊆ OBS } is the permission-to-object mapping, which gives

the set of objects associated with permission p.

The definition of Core RBAC given in Definition 1 is somewhat redundant, as pointed
out in [10]. Given US ERS , ROLES , ACS , OBS , UA and PA, all the other relations
and functions in the NIST definition of Core RBAC are definable. In the interests of
brevity, we therefore omit the definable relations and functions. For technical reasons
(the ease of expressing definitions in first-order logic and translation to DATALOG) we
also “flatten” the set of permissions: instead of PRMS = 2ACS×OBS we set it to be
PRMS ⊆ ACS × OBS .2 This means that PA becomes a relation between a single
permission tuple and a role, rather than between a set of tuples and a role.

More importantly, in the definition above, there is no relation explicitly connecting
a user to a permission. Every user assigned to a role implicitly has all the permissions
associated with that role. This key idea of RBAC allows a compact and transparent
representation of an access control policy. However it does not allow authorization
exceptions to be expressed. We therefore modify the NIST Core RBAC definition as
follows: we add a predicate AUT H which stands for “user is authorized”. We add a
condition (Core RBAC User Authorization) which states that if a user is assigned to a
role, and a role is associated with a permission, then the user has (is authorized for) this
permission:

∀p∀u∀r(UA(u, r)∧ PA(p, r)→ AUT H(p, u))

2 In a given system, there may exist some action-object pairs that are not permissions.

236 X. Liu, N. Alechina, and B. Logan

Definition 2. (Core RBAC with User Authorization Relation)

– US ERS , ROLES , ACS , OBS , UA are as in Definition 1.
– PRMS ⊆ ACS × OBS is a set of permissions (a subset of the set of action-object

pairs).
– PA ⊆ PRMS ×ROLES is a many-to-many mapping permission-to-role assignment

relation.
– AUT H ⊆ PRMS × US ERS is a many-to-many permission-to-user authorization

relation.
– The following condition (Core RBAC User Authorization) holds:

(CRBAC C) ∀p∀u∀r(UA(u, r)∧ PA(p, r)→ AUT H(p, u))

3.2 Authorization Exceptions in Core RBAC

Previous work has focused on a single type of authorization exception in Core RBAC
[2,13], specifically, “a particular user should not be authorized for a particular permis-
sion, such as reading a patient’s record, irrespective of the role the user is assigned to”,
as illustrated in Example 1. We refer to this kind of authorization exception as core
exceptions for all roles. However, for some access control policies, core exceptions for
all roles provide insufficient granularity. For example:

Example 3. Assume that, in addition to roles “Doctor” and “Cardiologist”, a medical
records system has an additional role “Accident & Emergency Doctor”, and Alice is
being treated in the Emergency department. Though Alice may stipulate that “Tom
does not have permission to access Alice’s record”, it is reasonable that Tom can access
Alice’s record when Tom is working in the Emergency department, i.e., when Tom is
assigned to the role “Accident & Emergency Doctor”.

Clearly, in the example above, it is inappropriate to disallow Tom to read Alice’s record
for all roles. Instead, an access control policy should stipulate an authorization excep-
tion for a user when assigned to a particular role. We refer to this kind of authorization
exception as core exceptions for one role, and we refer to core exceptions for a role and
for all roles collectively as core exceptions.

3.3 Expressing Core Exceptions in Core RBAC

Core exceptions can be expressed using a relation CEp,u,r(p, u, r), denoting that u as-
signed to r is not authorized for p. It may seem that core exception for all roles should
be expressed as CEp,u(p, u) meaning u is not authorized for p in any role. However, log-
ically speaking, CEp,u(p, u) can be derived from CEp,u,r(p, u, r), i.e., CEp,u(p, u) =de f

∀r CEp,u,r(p, u, r). We therefore only need to add CEp,u,r(p, u, r) to Definition 2 to ex-
press core exceptions as below:

1. we add CEp,u,r ⊆ PRMS ×US ERS ×ROLES , an authorization exception relation.
2. we replace Core RBAC User Authorization condition (CRBAC C) with Core RBAC

User Authorization with Core Exceptions:

(CRBAC C) ∀p∀u∀r(UA(u, r)∧ PA(p, r) ∧ ¬CEp,u,r(p, u, r)→ AUT H(p, u))

We can now define Core RBAC with core exceptions as follows:

Expressing User Access Authorization Exceptions 237

Definition 3. (Core RBAC with Core Exceptions)

– US ERS , ROLES , ACS , OBS , UA, PRMS , PA and AUT H are the same as in
Definition 2.

– CEp,u,r ⊆ PRMS × US ERS × ROLES is an authorization exception relation.
– The following condition (Core RBAC User Authorization with Core Exceptions)

holds:

(CRBAC C) ∀p∀u∀r(UA(u, r)∧ PA(p, r) ∧ ¬CEp,u,r(p, u, r)→ AUT H(p, u))

Both examples 1 and 3 can be expressed in core RBAC with core exceptions, by stating
core exceptions

CEp,u,r(‘Read Alice’s Record’,Tom,‘Doctor’)
CEp,u,r(‘Read Alice’s Record’,Tom,‘Cardiologist’)

The only difference between the two cases is that in example 3 we do not have the core
exception

CEp,u,r(‘Read Alice’s Record’,Tom,‘Accident & Emergency Doctor’)

so if Tom is assigned to the accident and emergency doctor role, he will be authorized
to read Alice’s record.

4 Authorization Exceptions in Hierarchical RBAC

In the Hierarchical RBAC model, users assigned to a role have the permissions asso-
ciated with the role, as well as permissions associated with all junior roles. In a hier-
archical model, authorization exceptions may result not only from the role the user is
assigned to, i.e., core exceptions, but also from role inheritance, i.e., inheritance excep-
tions.

In this section, we first briefly recall the Hierarchical RBAC model presented in [7]
and discuss authorization exceptions in Hierarchical RBAC in detail. We then add some
new constructs to Definition 3 to incorporate exceptions arising from role inheritance.

4.1 NIST Hierarchical RBAC

In NIST Hierarchical RBAC, roles are hierarchically organized into a role-subrole re-
lationship called a role hierarchy. Based on the role hierarchy, role inheritance is inter-
preted using a graph where each node represents a role and a directed edge from role
r1 to r2 indicates that role r1 inherits the permissions associated with role r2. Role in-
heritance is a partial order that is reflexive, transitive, and antisymmetric. Inheritance
is reflexive because a role inherits its own permissions; transitive because permissions
are inherited along the role hierarchy; and antisymmetry rules out cycles in the role
hierarchy, that is, roles can not inherit from each other.

The NIST RBAC model distinguishes both general and limited role hierarchies.
However, in the interests of generality, we consider only general role hierarchies be-
low. NIST Hierarchical RBAC defined in [7] is introduced as follows:

238 X. Liu, N. Alechina, and B. Logan

Definition 4. (NIST RBAC with General Role Hierarchies)

– US ERS , ROLES , ACS , OBS , UA, PRMS , PA are the same as in Definition 1.
– RH ⊆ ROLES × ROLES is a partial order on ROLES called the inheritance rela-

tion. RH(r1, r2) means r1 inherits from r2.
– The following condition holds: if RH(r1, r2) then any user assigned to r1 is a mem-

ber of r2 and every permission assigned to r2 is assigned to r1. More precisely:

(HRBAC 1) ∀u∀r1∀r2(RH(r1, r2) ∧ UA(u, r1)→ UA(u, r2))

(HRBAC 2) ∀p∀r1∀r2(RH(r1, r2) ∧ PA(p, r2)→ PA(p, r1))

As in NIST Core RBAC, there is no relation explicitly connecting a user with a per-
mission in the definition above. In order to express inheritance exceptions, we therefore
modify the NIST RBAC with General Role Hierarchies definition by adding an addi-
tional condition (Hierarchical RBAC with User Authorization from Role Inheritance)
as follows:

(HRBAC I) ∀p∀u∀r1∀r2(UA(u, r1) ∧ RH(r1, r2) ∧ PA(p, r2)→ AUT H(p, u))

Based on Definition 2 and Definition 4, our revised RBAC model with authorization
both from a single role and role inheritance is as follows.

Definition 5. (Hierarchical RBAC with User Authorization Relation)

– US ERS , ROLES , ACS , OBS , UA, PRMS , PA and AUT H are the same as in
Definition 2.

– The following condition (Core RBAC with User Authorization) holds:

(CRBAC C) ∀p∀u∀r(UA(u, r)∧ PA(p, r)→ AUT H(p, u))

– RH ⊆ ROLES × ROLES is a partial order on ROLES called the inheritance
relation. RH(r1, r2) means r1 inherits r2.

– The following conditions hold: if RH(r1, r2) then any user assigned to r1 is a mem-
ber of r2 and every permission assigned to r2 is assigned to r1. More precisely:

(HRBAC 1) ∀u∀r1∀r2(RH(r1, r2) ∧ UA(u, r1)→ UA(u, r2))

(HRBAC 2) ∀p∀r1∀r2(RH(r1, r2) ∧ PA(p, r2)→ PA(p, r1))

– The following condition (Hierarchical RBAC with User Authorization from Role
Inheritance) holds:

(HRBAC I) ∀p∀u∀r1∀r2(UA(u, r1) ∧ RH(r1, r2) ∧ PA(p, r2)→ AUT H(p, u))

Expressing User Access Authorization Exceptions 239

4.2 Authorization Exceptions in Hierarchical RBAC

It is easy to see that core exceptions may exist for each role in a Hierarchical RBAC
model. In addition, a Hierarchical RBAC model may also have inheritance exceptions.
In this section, we explore inheritance exceptions in detail.

Assume that role r1 is a direct descendent of role r2 in a role hierarchy, i.e., RH(r1, r2),3

P2 = {p1, p2, . . . , pm} is a set of permissions associated with r2 and U1 = {u1, u2, . . . , un}
is a set of users assigned to r1. In hierarchical RBAC, a user from U1 has all permissions
in P2. However, in many cases, it is necessary to specify exceptions, for example, that no
user from U1 has permission pk ∈ P2. We refer to such exceptions as direct inheritance
exceptions for all users since the exception applies to two directly related roles in a role
hierarchy and affects all users assigned to the senior role (see example 2).

Inheritance exceptions have been extensively studied in the access control literature
[15,8,11,6,13]. As far as we know, with the exception of [13], previous work on inher-
itance exceptions has focused on direct inheritance exceptions for all users. However,
we believe that in some situations it can be useful to restrict inheritance exceptions
between two directly related roles to a particular user. Consider the following example:

Example 4. Assume the role “Doctor” is a direct descendant of the role “Clinician”
and hence RH(“Doctor”, “Clinician”). The permission “reading Alice’s record” is as-
sociated with the role “Clinician” and George is assigned to the role “Doctor”. Alice
stipulates that George (who is a friend of Alice) should not be permitted to read Alice’s
record, while other users assigned to the role “Doctor” can.

We refer to such inheritance exceptions as direct inheritance exceptions for one user,
as the exception applies to two directly related roles in a role hierarchy and affects only
a particular user assigned to the senior role.

In a role hierarchy, an inheritance exception may apply not only between a role and
its direct descendant, but also between a role and one of its indirect descendants. For
example:

Example 5. Assume “Nurse in emergency department” is a direct descendant of “Nurse”
and “Nurse” is a direct descendant of “Clinician”, hence “Nurse in emergency depart-
ment” is an indirect descendant of “Clinician”. It may be regulated that users assigned
to the role “Clinician” are authorized for a permission p like “updating patient’s record”
and users assigned to the role “Nurse in emergency department” can not be authorized
for p while users assigned to the role “Nurse” can.

We can formulate the meaning of such inheritance exceptions as follows. Assume R is a
set of roles, r1,. . .,ri, . . ., r j, . . ., rk, . . ., rn is a sequence of directly related roles in a role
hierarchy defined by a partial order RH over R, and Pk is a set of permissions associated
with rk. By default, users assigned to ri are also authorized for Pk. However, assume
that a particular permission p ∈ Pk should not be inherited by ri. We refer to such
inheritance exceptions as indirect inheritance exceptions, as they apply to two indirectly
related roles. As in the case of direct inheritance exceptions, we distinguish two types of

3 r1 is a direct descendent of r2 if there exists no role r3 (r3 � r1, r3 � r2) in the role hierarchy
such that RH(r1, r3) and RH(r3, r2).

240 X. Liu, N. Alechina, and B. Logan

indirect inheritance exceptions: indirect inheritance exceptions for all users and indirect
inheritance exceptions for one user. As with direct inheritance exceptions for a user,
inheritance exceptions between two indirectly related roles have not been studied in the
literature.4

4.3 Expressing Authorization Exceptions in Hierarchical RBAC

We observe that inheritance exceptions, either for all users or a particular user, can be
denoted by a relation IEp,u,r(p, u, r) regardless of whether they are indirect or direct.
It may seem that since inheritance happens between two roles, inheritance exception
should be expressed as IEp,u,r,r′(p, u, r, r′), which means u assigned to r is not autho-
rized for a permission p which is assigned to r′. However, this would stop u being au-
thorized for p in the direct case, but not in the indirect case, since u’s role r will inherit
p from the roles between r and r′ in the role hierarchy. We could specify exceptions
IEp,u,r,r′(p, u, r, r′′) for all such r′′, but in situations where many roles are involved, it
is undesirable to have to explicitly state this for each role which inherits from r′. Thus,
we simply use IEp,u,r to prevent a user assigned to r from inheriting p from any roles.
IEp,r(p, r) denoting that any user assigned to r is not authorized for p is just a special
case of IEp,u,r(p, u, r). Logically speaking, IEp,r(p, r) =de f ∀uIEp,u,r(p, u, r).

Further, we adopt a single authorization exception relation EXPp,u,r(p, u, r) to replace
both IEp,u,r(p, u, r) and CEp,u,r(p, u, r). Otherwise in order to prevent a user u from
being authorized for p we may have to state both IEp,u,r(p, u, r) and CEp,u,r(p, u, r).
For example, assume that UA(u, r) and PA(p, r), and we wish to prevent u from being
authorized for p. If we state CEp,u,r(p, u, r), u will not be authorized for p by the Core
RBAC User Authorization with Core Exception condition. However, the model would
need to have a condition for authorization which stems from role inheritance, along the
lines of

∀p∀r1∀r2(UA(u, r1) ∧ RH(r1, r2) ∧ PA(p, r2) ∧ ¬IEp,u,r(p, u, r)→ AUT H(p, u))

In our example, if we do not state explicitly that IEp,u,r(p, u, r) also holds, we get

UA(u, r) ∧ RH(r, r) ∧ PA(p, r) ∧ ¬IEp,u,r(p, u, r)→ AUT H(p, u)

and since the antecedent holds by the reflexivity of RH, AUT H(p, u) will be derived.
In order to express inheritance exceptions, we believe it is necessary to abandon

condition HRBAC 1 of Definition 5.5 The reason why HRBAC 1 is problematic is as
follows.

Assume R is a set of roles, r1,. . .,ri, . . ., rn is a sequence of directly related roles
such that RH(ri, ri+1), rn has permission p, and hence all roles from r1 to rn also have

4 An exception is [13], in which authors discuss “nesting access policy statements”, which is
just a different expression of inheritance exception between two indirectly related roles.

5 Note that although the NIST RBAC model adopts the most widely used definition of role
hierarchy, many researchers agree that alternative interpretations may be appropriate in partic-
ular circumstances [14]. For example, [10] argues convincingly that only one of HRBAC 1 or
HRBAC 2 should be used to define role inheritance.

Expressing User Access Authorization Exceptions 241

p by HRBAC 2. Assume that u assigned to ri should not be authorized for p. Such an
exception could be expressed as EXPp,u,r(p, u, ri). However, by (HRBAC 1), u could
still get the permission from the roles ri+1 to rn because u is implicitly assigned to
ri+1 . . . , rn by HRBAC 1. An alternative approach would be to retain condition HRBAC
1, and instead add exception statements EXP(p, u, r′) for all roles r′ such that PA(p, r′)
and RH(r, r′) (in other words, all roles r′ which have permission p and to which u is
implicitly assigned by HRBAC 1); however this may involve adding a large number of
additional exceptions.

We now give our full definition of Hierarchical RBAC with authorization exceptions
including core exceptions and inheritance exceptions.6

Definition 6. (Hierarchical RBAC with Unified Authorization Exceptions)

– US ERS , ROLES , ACS , OBS , UA, PRMS , PA and AUT H are the same as in
Definition 2.

– RH ⊆ ROLES × ROLES is a partial order on ROLES called the inheritance
relation. RH(r1, r2) means r1 inherits r2.

– The following condition holds: if RH(r1, r2) then every permission assigned to r2 is
assigned to r1. More precisely:

(HRBAC) ∀p∀r1∀r2(RH(r1, r2) ∧ PA(p, r2)→ PA(p, r1))

– EXPp,u,r ⊆ PRMS × US ER × ROLES .
– The following condition (Hierarchical RBAC with Unified Authorization Excep-

tions) holds:

(HRBAC EXP) ∀p∀u∀r(UA(u, r)∧PA(p, r)∧¬EXPp,u,r(p, u, r)→ AUT H(p, u))

5 Expressing HRBAC with Exceptions in DATALOG

In this section we show how Hierarchical RBAC with Unified Authorization Excep-
tions can be expressed as a stratified program of recursive DATALOG with negation.
In fact, various extensions of DATALOG have been widely adopted in access control
field because of their easy-to-read syntax and precise semantics [9]. For example, in
[4], Bertino et al. show how to express access control models in D-DATALOG program.
Formulating our model in DATALOG immediately gives us a simple and efficient al-
gorithm for computing authorization decisions because DATALOG already has efficient
query evaluation algorithm [1].

We first briefly introduce recursive DATALOG with negation programs and stratified
programs from [1]. Then we show how to express Hierarchical RBAC with Unified
Authorization Exceptions as a stratified program.

6 For simplicity, we leave a single reflexive and transitive inheritance relation RH in our defini-
tion, but in our DATALOG implementation, we use a direct inheritance relation DRH instead
and define RH as its reflexive transitive closure, again as suggested in [10].

242 X. Liu, N. Alechina, and B. Logan

5.1 Backgroud

Definition 7. A recursive DATALOG with negation program is a finite set of rules of the
form

R1(u1)← R2(u2), . . . ,Rn(un)

where

– An atom is a n-ary-predicate with n terms. A literal is an atom or negated atom.
– n ≥ 1, R1, . . . ,Rn are literal names and u1, . . . , un are free tuples of appropriate

arities.
– Each variable occurring in u1 must occur in at least one of u2, . . . , un.
– R1(u1) is called the head of the rule and R2(u2), . . . ,Rn(un) forms the body.
– A rule without a body is called a fact.

Next we introduce the concept of a stratified program. Unlike arbitrary recursive DAT-
ALOG with negation programs, stratified programs have a well-behaved semantics (a
unique minimal model where all the consequences the program are true). Let P be a
DATALOG program. A predicate appearing only in the body of a rule is referred to as
an extensional predicate, while an intentional predicate is a predicate occurring in the
head of a rule. The extensional schema, referred to as edb(P), consists of the set of all
extensional predicate names, whereas intensional schema, denoted as idb(P), consists
of all the intensional ones. The union of edb(P) and idb(P) is called the schema of P
which is denoted as sch(P). The semantics of a DATALOG program is a mapping from
database instances over edb(P) to database instances over idb(P).

Now consider a program P in which idb predicates are defined by one or more rules
of P and negation applies to predicates, such as R, appearing both in the body and the
head of a rule, i.e., R ∈ idb(P). Then program P could be considered as consisting of
several parts. Specifically, for each idb predicate R′, if the part of P defining R′ comes
before the negation of R′ is used, we can simply compute R′ before its negation must
be evaluated. Such a way of treating P is called a stratification of P and is precisely
defined as follows.

Definition 8. A stratification of a recursive DATALOG with negation program P is a
sequence of DATALOG with negation programs P1, . . . , Pn such that for some mapping
σ from idb(P) to [1..n].

– {P1, . . . , Pn} is a partition of P.
– For each predicate R, all the rules in P defining R are in Pσ(R) (i.e., in the same

program of the partition)
– If R(u)← . . .R′(v) . . . is a rule in P, and R′ is an idb predicate, then σ(R′) ≤ σ(R).
– If R(u)← . . .¬R′(v) . . . is a rule in P, and R′ is an idb predicate, thenσ(R′) < σ(R).

Given a stratification P1, . . . , Pn of P, each Pi is called a stratum of the stratification,
andσ is called the stratification mapping. Not all programs are stratifiable [1]. However
it is straightforward to determine whether a program is stratifiable. Specifically, let P
be a DATALOG with negation program. The precedence graph GP of P is the labeled
graph whose nodes are the idb relations of P. Its edges are the following:

Expressing User Access Authorization Exceptions 243

– if R(u) ← . . .R′(v) . . . is a rule in P, then < R′,R > is an edge in GP with label +
(called a positive edge).

– if R(u) ← . . .¬R′(v) . . . is a rule in P, then < R′,R > is an edge in GP with label -
(called a negative edge).

Proposition 1. A recursive DATALOG with negation program P is stratifiable iff its
precedence graph GP has no cycle containing a negative edge.

A proof is given in [1, p.380].

5.2 Result

To express Definition 6 in DATALOG with negation we need the following edb predi-
cates: UA for user-role assignment, DPA (for direct assignment of permissions to roles),
DRH (for direct inheritance relation), EXP (for exceptions), which will be used to state
the facts concerning user assignment etc.7 We also need idb predicates RH, PA and
AUT H defined as follows:

r1 RH(r1, r2) ← DRH(r1, r2)
r2 RH(r1, r2) ← DRH(r1, r3),RH(r3, r2)
r3 PA(a, o, r) ← DPA(a, o, r)
r4 PA(a, o, r1) ← DPA(a, o, r2),RH(r1, r2)
r5 AUT H(a, o, u) ← PA(a, o, r),UA(u, r),¬EXP(a, o, u, r)

Now, we can easily prove that the program implementing Hierarchical RBAC with ex-
ceptions is stratifiable.

Proposition 2. The program implementing Hierarchical RBAC with exceptions is strat-
ifiable.

Proof. It is easy to see that there is no cycle containing a negative edge in the prece-
dence graph. The only negative edge is from EXP to AUT H, and there is no edge from
AUT H for any predicate.

6 Case Study

We illustrate our approach using a simple medical informatics case study. The permis-
sions are taken from the appendix of [5], which defines a vocabulary for permissions in
healthcare information systems. We used the DATALOG Educational System (DES), a
free PROLOG-based implementation of a basic deductive database system.8

In our case study, role “nurse in emergency department” inherits from role “nurse”
and role “nurse” inherits from role “clinician”. In the DATALOG program, the direct
inheritance relation is encoded as follows:

7 We use pairs (action, object) to stand for permissions, and omit a permission relation P(a, o)
for brevity.

8 For more details of DES, see
http://www.fdi.ucm.es/profesor/fernan/DES/index.html

http://www.fdi.ucm.es/profesor/fernan/DES/index.html

244 X. Liu, N. Alechina, and B. Logan

drh(nurse,clinician).
drh(nurse_in_emergency_department,nurse).

We assume three users, Jessica who is a nurse in the Emergency Department, and Kate
and Ellen who are nurses. This corresponds to the following user-role assignment:

ua(jessica,nurse_in_emergency_department).
ua(kate,nurse).
ua(ellen,nurse).

The direct role-permission assignment is given below. Recall that the first two argu-
ments constitute a permission, namely an action and an object (patient in this case), and
the third argument is a role:

dpa(read_patient_test_report,alice,clinician).
dpa(read_patient_test_report,sherry,clinician).
dpa(read_patient_test_report,mina,clinician).
dpa(read_patient_test_report,katherine,clinician).

dpa(sign_history_and_physical,alice,clinician).
dpa(sign_history_and_physical,sherry,clinician).
dpa(sign_history_and_physical,mina,clinician).
dpa(sign_history_and_physical,katherine,clinician).

dpa(create_history_and_physical,alice,clinician).
dpa(create_history_and_physical,sherry,clinician).
dpa(create_history_and_physical,mina,clinician).
dpa(create_history_and_physical,katherine,clinician).

dpa(update_progress_note,alice,nurse).
dpa(update_progress_note,sherry,nurse).
dpa(update_progress_note,mina,nurse).
dpa(update_progress_note,katherine,nurse).

dpa(append_progress_note,alice,nurse_in_emergency_department).
dpa(append_progress_note,sherry,nurse_in_emergency_department).
dpa(append_progress_note,mina,nurse_in_emergency_department).
dpa(append_progress_note,katherine,nurse_in_emergency_department).

We also assume the existence of the following authorization exceptions: users assigned
to the role of nurse should not be authorized to sign a patient’s history and physical. In
addition, Kate should not be authorized to read patient test report of Alice. In DATALOG:

exp(sign_history_and_physical,alice,kate,nurse).
exp(sign_history_and_physical,sherry,kate,nurse).
exp(sign_history_and_physical,mina,kate,nurse).
exp(sign_history_and_physical,katherine,kate,nurse).

exp(sign_history_and_physical,alice,ellen,nurse).
exp(sign_history_and_physical,sherry,ellen,nurse).
exp(sign_history_and_physical,mina,ellen,nurse).

Expressing User Access Authorization Exceptions 245

exp(sign_history_and_physical,katherine,ellen,nurse).

exp(read_patient_test_report,alice,kate,nurse).

The remaining predicates are defined as in the previous section:9

rh(R1,R2) :- drh(R1,R2).
rh(R1,R2) :- drh(R1,R3), rh(R3,R2).
pa(A,O,R1) :- dpa(A,O,R1).
pa(A,O,R1) :- dpa(A,O,R2), rh(R1,R2).
auth(A,O,U) :- pa(A,O,R), ua(R,U), not(exp(A,O,U,R)).

DATALOG computes 43 tuples for the auth predicate, 48 tuples for the pa predicate
and 3 for the rh predicate. Note that even in this small example, the advantage of using
rules to compute the role-permission relation rather than storing it explicitly is obvious:
the size of the program is much smaller and it is easier to maintain (integrity is ensured
by the rules). Note that if we did not use exceptions, we would need to eliminate the
inheritance between Clinician and Nurse and introduce a special role for Kate which
has fewer permissions than Nurse. In the worst case, when every role, and every user
assigned to a role, is involved in some exception, Hierarchical RBAC would collapse
to a non-hierarchical model, losing the advantages of a compact and easy to maintain
formalization.

7 Related Work

Exceptions, or preventing particular users from performing actions which their role
would normally authorize them to perform, have been extensively studied in the litera-
ture, see for example [15,2,3,13]. Bacon et.al. address what we call core exception for
all roles in [3] and propose supplementing an RBAC policy with an exception list in
the OASIS model (which is based on NIST RBAC model). Our approach is similar to

9 The implementation given above is not very efficient — we used it as an illustration as it
closely corresponds to the model. For a more afficient and compact representation, we could
introduce a predicate dpa1which means ‘permitted to perform an action’ (omitting the object)
if a role is given a permission to perform a given action on all possible objects, for example
dpa1(read patient test report, clinician). Similarly, we could introduce a
predicate exp1 to say that a user is not authorized to perform a given action on any object,
for example exp1(sign history and physical, kate, nurse). We would also
need two versions of pa, one of the form pa(Action, Object, Role) and another
pa1(Action, Role), with the obvious definitions. Finally, we need two definitions of
auth:
auth(A,O,U) :-

pa(A,O,R), ua(U,R), not(exp(A,O,U,R)), not(exp1(A,U,R)).
auth(A,O,U) :-

pa1(A,R), ua(U,R), p(A,O),
not(exp(A,O,U,R)), not(exp1(A,U,R)).

where p is a permission predicate.

246 X. Liu, N. Alechina, and B. Logan

theirs in that we adopt an exception table (EXP predicate). They do not deal with the
hierarchical exceptions.

In [15], Sandhu et.al. propose extending the RBAC96 model with “private roles”
which allow direct inheritance exceptions for all users. Specifically, assume role r1 in-
herits permissions from role r2 which is associated with a set of permissions P including
p. To let r1 inherit only the set P \ {p}, a private role r′2 which has permission p can
be introduced. r1 inherits permissions from r2, which is now assigned P \{p}. In this
way, direct inheritance exception for all users is solved. However, indirect inheritance
exception can not be handled by simply adding a “private role”.

In [15], Sandhu et.al. also mention that, in some systems, certain permissions are
blocked to be inherited from any roles. A typical example is a RBAC96-based model
with “oriented” permissions proposed by Crampton in [6]. Namely, a permission p
assigned to role r can be barred from being inherited by any role which is above r in
the hierarchy. It is easy to see that direct inheritance exception for all users could be
solved in such scheme, because no user of the role r′ which is a direct descendant of r
will be authorized for p. However, indirect inheritance exception and direct inheritance
exception for one user can not be handled this way. Indirect inheritance exception for
some indirect descendant r′′ of r is not handled properly because although p is not
inherited by r′′, it is also not inherited by any roles r between r′′ and r in the role
hierarchy. Similarly, we cannot use this mechanism to bar just one user u of a more
senior role from being authorized for p (unless we create a private role just for u).

Reid et.al. [13] propose a modified NIST RBAC model to express so-called “nesting
access policy statements” which are equivalent to what we call indirect inheritance ex-
ceptions. They present an authorization algorithm for the modified model. Their scheme
can handle several types of authorization exceptions. However, core exceptions can not
be expressed in their approach. Our approach, on the other hand, handles all types of
authorization exceptions, and arguably has a simpler way of computing authorization
decisions.

8 Conclusion and Future Work

Though authorization exceptions, which are of practical importance in medical infor-
matics, have been discussed in the literature, to the best of our knowledge there has
been no proposal for a uniform treatment of different types of exceptions. To address
this problem, we propose a systematic classification of user authorization exceptions.
We incorporate these exceptions in the RBAC model and show how to express them in
DATALOG with negation.

In future work, we plan to extend our work to dynamic access control (incorporating
temporal constraints). We also believe that exceptions will be useful in role mining
(extracting roles from Access Control Lists) since this process usually produces too
many too specifically defined roles instead of more “natural” roles precisely due to the
existence of a small number of exceptions for each natural role. We plan to look at
modifying role mining procedures to produce roles with specified sets of exceptions.

Expressing User Access Authorization Exceptions 247

Acknowledgement. We would like to thank Jason Crampton for his suggestions and
comments on earlier version of this article, Bernd Blobel for directing us to the docu-
ments on RBAC in medical informatics.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (November
1994)

2. Bacon, J., Lloyd, M., Moody, K.: Translating role-based access control policy within context.
In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp. 107–119.
Springer, Heidelberg (2001)

3. Bacon, J., Moody, K., Yao, W.: A model of OASIS role-based access control and its support
for active security. ACM Transactions on Information and System Security 5(4), 492–540
(2002)

4. Bertino, E., Catania, B., Ferrari, E., Perlasca, P.: A logical framework for reasoning about
access control models. ACM Transactions on Information and System Security 6(1), 71–127
(2003)

5. HL7 Security Technical Committee. Role Based Access Control (RBAC) Healthcare Permis-
sion Catalog. HL7 Security Technical Committee (January 2010)

6. Crampton, J.: On permissions, inheritance and role hierarchies. In: Proceedings of the 10th
ACM Conference on Computer and Communications Security, pp. 85–92 (2003)

7. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S.I., Kuhn, D.R., Chandramouli, R.: Proposed NIST
standard for role-based access control. ACM Transactions on Information and System Secu-
rity 4, 224–274 (2001)

8. Goh, C., Baldwin, A.: Towards a more complete model of role. In: ACM Workshop on Role-
Based Access Control, pp. 55–62 (1998)

9. Halpern, J.Y., Weissman, V.: Using first-order logic to reason about policies. ACM Transac-
tions on Information and System Security 11, 21:1–21:41 (2008)

10. Li, N., Byun, J.-W., Bertino, E.: A critique of the ANSI standard on role-based access control.
IEEE Security & Privacy 5(6), 41–49 (2007)

11. Moffett, J.D., Lupu, E.: The uses of role hierarchies in access control. In: ACM Workshop
on Role-Based Access Control, pp. 153–160 (1999)

12. Power, D.J., Slaymaker, M., Simpson, A.C.: On formalizing and normalizing role-based ac-
cess control systems. Computer Journal 52(3), 305–325 (2009)

13. Reid, J., Cheong, I., Henricksen, M., Smith, J.: A novel use of RBAC to protect privacy in
distributed health care information systems. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP
2003. LNCS, vol. 2727, pp. 403–415. Springer, Heidelberg (2003)

14. Sandhu, R., Bellare, M., Ganesan, R.: Password-enabled PKI: Virtual smart cards versus
virtual soft tokens. In: PKI Research Workshop (April 2002)

15. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models.
IEEE Computer 29(2), 38–47 (1996)

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 248–262, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Efficient Attack Detection
Based on a Compressed Model*

Shichao Jin1, Okhee Kim1, and Tieming Chen2

1 School of Software and Microelectronics, Peking University, Beijing, China
2 School of Computer Science and Technology, Zhejiang University of Technology,

Hangzhou, China
{shichaojin.cs,anniekim.pku}@gmail.com, tmchen@zjut.edu.cn

Abstract. In order to achieve the goal of high efficiency in intrusion detection
systems, especially in the real-time attack detection environment, a compressed
model is proposed in this paper. With the emergence of the new clustering me-
thods, such as the affinity propagation, the idea of the compressed detection
model tends to be mature as it is unnecessary to define the number of centers
beforehand. The compressed model resulting from both the horizontal compres-
sion and the vertical compression is built with representative training data and
useful attributes in each package. In addition, a distance matrix is extracted
from previous steps for processing complex data. Experimental study based on
two publicly available datasets presents that the compressed model proposed
can effectively speed up the detection procedure (up to 184 times) and most im-
portantly, a minimal accuracy difference is guaranteed as well (less than 1% on
average).

Keywords: Intrusion Detection, Affinity Propagation, Clustering, Model.

1 Introduction

According to the latest survey [4] in the Internet World Stats, Internet users have oc-
cupied 34.3% of the total global population. Due to the ubiquity of Internet, applica-
tions based on it have been an indispensable tool for searching various information
and social interaction, such as Google and Facebook respectively. With the large vo-
lume of information streams, the design of Intrusion Detection System (IDS) specia-
lized for the high efficiency in networks has become much more urgent as the times
require for dealing with the unceasing attacks from the Internet.

Compared with the traditional way of signature-based detection, anomaly detec-
tion has enjoyed great popularity in the academic circles, as it has the potential to
detect unknown attacks. Hence, anomaly detection is our major concern in this pa-
per. Since our research focuses on speeding up the detection process based on a
compressed model, our research is applicable for those model-based detection ap-
proaches. For example, according to several categories of anomaly detection divided

* Paper was partially supported by the National Natural Science Foundation of China under grant

No.61103044, Zhejiang Natural Science Foundation of China under grant No.Y1110576.

 Efficient Attack Detection Based on a Compressed Model 249

by [2], classification based anomaly detection needs to build a model before detec-
tion, where our idea can be easily transplanted.

Being an important factor in detection process, real time must be taken into consid-
eration regarding the practical meaning in the real environment. In this research, in
order to boost detection, we have paid our attention mainly to the building model
process instead of the detection phase. Our proposal is made through inspecting into
the following common natures of the training data:

1. By analyzing the attributes of the training data, we can easily find that the values of
some attributes (features) in the whole training data only range in a small scale,
which may have less impact on the detection accuracy.

2. Some training instances are similar, because they are only different from each oth-
er on several attributes and the values of these attributes are slightly different.

3. For high dimensional training data, computing the similarity of each pair of them is
time-consuming.

Training data are usually in a large scale, which can severely impede the detection
since many detection methods may need to scan all of them in certain cases. Appar-
ently, an effective and direct way to reduce time cost for detection is to minimize the
volume of a model that is used in the detection process. For the purpose of effectively
and efficiently handling these problems, we propose a compressed detection model
lying on the observations above from training data, and the model compression in-
cludes horizontal compression, vertical compression and distance matrix extraction.
The overall idea is presented in Fig. 1, where the first step is to normalize the original
data followed by the horizontal compression and the vertical compression sequential-
ly. In addition to the steps of compressing training data, a distance matrix will also be
contained in the model to further improve the detection performance.

Fig. 1. The main idea of model compression

In this paper, we make the following contributions:

1. We propose a compressed detection model, which is a compact version of the orig-
inal model with regard to dataset volume, and the detection speed can be improved
significantly during the detection stage consequently.

250 S. Jin, O. Kim, and T. Chen

2. We evaluate our approach on two publicly available test beds (CDMC2012 [9] and
KDD99 [8]) and demonstrate both the accuracy difference and the speed of our
method in the attack detection process.

The remainder of this paper is organized as follows. Section 2 explains the recent
related work and in section 3 we describe the methodology of our compressed model
in detail. Experimental performance and corresponding analysis are presented in Sec-
tion 4. Concluding remarks follow in Section 5.

2 Related Work

These decades, researchers in related fields have paid much attention to the intrusion
detection. Signature based detection (e.g. Snort [10]) relies on the knowledge of sys-
tem vulnerabilities and known attack patterns. Thus, it is unable to detect unknown
attacks. Correspondingly, anomaly detection is more dynamic and able to detect novel
and unknown attacks. As a result, anomaly detection has attracted a lot of attention
from researchers.

In 1998, Lee and Stolfo [1] published a data mining approach for the intrusion de-
tection, where they proposed architecture (or a framework) for the agent-based intru-
sion detection, and deployed data mining methods to extract detection rules. After-
wards many researchers also focused on the way of boosting the detection speed.
Sung and Mukkamala [5] improved the detection speed by extracting the useful sub-
set of attributes with ANN and SVM. And Srilatha et al. [6] investigated the perfor-
mance of Bayesian networks (BN) and Classification and Regression Trees (CART)
to build lightweight IDS. In network anomaly detection, the random data sampling
[11] was employed to deal with the massive traffic, but it potentially lost useful data.
Li et al. [12] used the Fuzzy C-Means for the purpose of selecting smaller number of
training data. Besides, with the development of the hardware, Giorgos et al. [13] made
efforts to improve the detection speed by applying graphics processors. According to
the nature of input data, anomalies can be classified into point, contextual and collec-
tive categories [2], where they can be dealt with a specific database algorithm.

In this paper, we attempt to speed up the attack detection through the phase of
model construction. We endeavor to compress training data both horizontally and
vertically, and extract the distance matrix as well for future use. The details about our
compressed model will be specified in the next section.

3 Compressed Model

In this chapter, we will elaborate the details of our proposed detection model. Con-
ventionally, data collection, data analysis, model building and detection are four
sequential steps for constructing the supervised or the semi-supervised anomaly de-
tection system, where the model building step is our major concentration. To build a
compressed model, firstly we horizontally abstract the useful attributes from the train-
ing data that have been normalized. Then, we vertically compress the training data to

 Efficient Attack Detection Based on a Compressed Model 251

further pick up representative ones. Besides, during the vertical compression phase,
we also extract a distance matrix of training data for future detection use.

Prior to the discussion of the compressed model, we firstly introduce the format of
the dataset. The whole training and testing data are made up of a number of instances.
Each instance can be seen as a row, which consists of several attributes, and can be
expressed as , , . . . , , . . . , 1 , 1 , where is the
-th instance of the whole dataset . One of the dataset used in our experiments is the

KDD99 dataset, which is formed through extracting 41 attributes for each network
package from DARPA1998 [15] by Lee et al. [1]. A mapping example of the
attributes and their corresponding values in KDD99 dataset is listed in Table 1 and a
similar mapping method is also employed in another experimental dataset,
CDMC2012.

Table 1. A mapping example of attributes and the corresponding values for KDD99

Basic Attributes Content Attributes Traffic Attributes

Name Value Name Value Name Value

duration [0, 58329] hot [0, 101] count [0, 511]

protocol_type {TCP, UDP, ICMP} logged_in {0, 1} serror_rate [0.00, 1.00]

src_bytes [0, 1379963888] root_shell {0, 1} same_srv_rate [0.00, 1.00]

wrong_fragment [0, 3] num_root [0, 7468] dst_host_count [0, 255]

3.1 Data Normalization

Since the training data are made up of a large number of instances and each instance
has several attributes, a challenge about the training data is that the values of different
attributes are distributed on disparate scales, which may cause a bias toward certain
attributes over others. Here we give an example: consider two vectors with 3
attributes, {(0, 1200, 5), (1, 1000, 10)}. Taking the Euclidean distance for example,
the squared distance between vectors will be (0 - 1)2 + (1200 - 1000)2 + (5 - 10)2,
which is decided mainly by the second attribute. To balance the contribution of every
attribute in the similarity calculation, we first normalize the data to the scale of [0, 1]
through formula (1):

 . (1)

 is the smallest value of attribute among the dataset , while is
the biggest one correspondingly.

3.2 Horizontal Compression

The horizontal compression, as the first step of building a compressed detection mod-
el, mainly explores the relations and correlations of the features within an instance,
and extracts useful features. The horizontal compression is useful because in some
complex classification fields the false correlative features may impede the process of

252 S. Jin, O. Kim, and T. Chen

attack detection. Most importantly, some features may be redundant since they may
not play a role to distinguish the instance from others. Hence, it is worth mentioning
that excessive features may slow down the detection consequently. As we will intro-
duce below, the clustering methods utilized in our experiments will calculate the
distance between two instances to measure their similarity. Given the high dimensio-
nality resulting from numerous attributes in each instance, it is time-consuming to
calculate the distance with all the attributes one by one. For this reason, it is meaning-
ful to horizontally compress the training data no matter in the model building phase or
in the detection process.

There are many ways to realize our horizontal compression idea. Here we choose
OneR [14] as it is easy to understand. We briefly introduce the principle of OneR by
taking the protocol_type attribute of the KDD99 dataset as an example. The process
of compressing the instances horizontally using OneR is shown in Fig. 2.

Fig. 2. An example of how OneR works

OneR extracts the rules by examining the attributes one by one. The attribute in
Fig. 2 is protocol_type. First of all, OneR summarizes the quantitative relationship
between the instance type (normal or attack) and the attribute value (TCP, UDP and
ICMP). By traversing all the instances, it is concluded that there are two normal in-
stances and one attack instance with the TCP protocol_type in Fig. 2. Then OneR
chooses the instance type (normal or attack) with a larger frequency as the prediction
type for a certain attribute value. For example, since two normal instances (one attack
instance) have the TCP value, the prediction type of the TCP is ‘normal’, which
means if the instance has the protocol_type value TCP, we predict that this instance is
a ‘normal’ one. Finally, OneR calculates the total error of every attribute, and chooses
the attributes with lower total error from all attributes as the representative ones.

In our experiments, we extract 10 features out of total number of 14 for
CDMC2012 dataset. As to KDD99 dataset, we select 12 out of 34 numerical attributes
to represent an instance.

 Efficient Attack Detection Based on a Compressed Model 253

3.3 Vertical Compression

Some training instances appear to be duplicate or similar, for example, they are prob-
ably the same packages and do the same business during a certain period of time.
Thus, vertical compression is responsible for extracting a smaller set of representative
training instances from a large scale of ones.

For this purpose, we here employ the recently published affinity propagation [3]
approach, which is actually a cornerstone of our idea. The reason to use the affinity
propagation method instead of other clustering methods, such as k-means, is
straightforward, because the affinity propagation clusters the data without a prede-
fined , which is the number of clusters. In the case of the intrusion detection, we
usually do not know how many clusters will be suitable for the training data. On the
supposition that we have the knowledge about the appropriate number of clusters
beforehand, the classical clustering method k-means, however, will also be taken in
our experiments for a comparison purpose. In order to make the parameters settings in
our experiments understandable, we would like to briefly introduce the affinity prop-
agation and the k-means respectively.

Affinity Propagation. Affinity Propagation (AP) clusters instances by passing mes-
sages between data points iteratively. Define , , . . . , as the instances to
be clustered and let , denote the similarity or distance between instance
and instance . Finally, we should minimize the sum of the distances between in-
stances and their exemplars. The fitness function is listed below:

 ∑ , . (2)

Here is the exemplar of instance , and , is defined as below:

 , , . (3)

Here stands for preference which is used to indicate how much an instance is likely
to be chosen as an exemplar. Please note that an exemplar in AP is just like a repre-
sentative instance of a cluster in k-means. The clustering procedure of AP seeks a
good clustering result that can maximize the fitness function by passing mes-
sages.

K-means. Given a set of instances , , . . . , , where each instance is a real
attribute vector, k-means aims to partition the instances into sets , , . . . , so as to minimize the within-cluster sum of squares:

 ∑ ∑ ∈ . (4)

Here is the mean point in .
K-means firstly selects instances randomly as cluster centroids, and then it as-

signs each of the remaining instances to the cluster whose centroid is the most similar

254 S. Jin, O. Kim, and T. Chen

to this instance. After this, k-means refreshes all the clusters and makes the mean
vector of the entire vectors within the cluster as the new centroid. K-means iteratively
runs the procedure until the fitness function is convergent.

Compare AP with K-means. In summary, instead of requiring the number of clus-
ters pre-specified in k-means, the preference in AP can affect the number of clusters
to be generated as the instance with larger preference is more likely to be chosen as an
exemplar.

3.4 Distance Matrix

In the process of vertical compression through the affinity propagation approach, the
distances between each pair of instances are calculated and form a distance matrix as
a result. These values in the matrix may be reused to further accelerate the detection.

With the nearest neighbor based detection, the new coming instance that may be
normal or not will be compared with every instance stored in the model sequentially
in order to find the most similar one if the brute force strategy, that is, the linear scan
is employed. Otherwise, an index will be built in advance to enhance the search per-
formance later. In both cases, computing the distance between two instances will
occur. When the computational cost of the distance calculation is high, especially for
high dimensional data and complex data types including graphs and strings as used in
the collective anomaly detection [20], lessening the times of distance computations
tends to be essential.

We here would like to briefly talk about the technique that helps to achieve the
goal of reducing the computational cost, since it proves the usefulness of our distance
matrix from a theoretical view. Often the objective is fulfilled by employing the trian-
gle inequality if the distance function defined meets the requirement of metric space
[19] including non-negative, identity of indiscernibles, symmetry and triangle inequa-
lity. In practice, the distance function does meet these rules usually, such as the Eucli-
dean distance, the edit distance [17] for strings and the tree edit distance [18] for
graphs.

Fig. 3. Pruning strategy with the triangle inequality

p1

p3

p4p5

q p2

p1

p4p5

q p2

p1

p3

p4p5

q p2

p3

p1

p3

p4p5

q p2

p1

p3

p4p5

q
p2

p1

p4p5

q p2

p3

(a) (b) (c)

(d) (e) (f)

 Efficient Attack Detection Based on a Compressed Model 255

We now take an example in a 2-dimensional view with the Euclidean distance for
better understanding how to utilize the distance matrix. As shown in Fig. 3,
represents the new coming instance and other points are instances stored in the model.
To find the most similar instance of , all the distances between and other points
will be calculated sequentially if the linear scan is deployed. However if the distance
matrix is provided, we firstly calculate , (see figure b) where stands for
the distance between the first and the second parameter. And next for (figure c),
the minimum of , can be obtained from the triangle inequality ,| , , |. If | , , | , is satisfied, the calcula-
tion of the , can be omitted. Since the inequality is not satisfied, , is
calculated and now is the closest point to . As for , since ,| , , | , , we do not need to calculate , anymore.
And the rest can be done in the same manner that , still need to be calculated
while the calculation of , can be saved.

In summary, pruning with the triangle inequality is the essence of our distance ma-
trix. For a deeper investigation, one can refer to [16]. Please note that the affinity
propagation algorithm is unnecessary to accommodate to the metric space according
to its own explanation.

4 Experimental Evaluation

In this chapter, extensive experiments are conducted to demonstrate the effectiveness
of our idea. We run all experiments on a PC with an AMD Phenom(tm) II N970
Quad-Core 2.20GHz CPU and 4GB of main memory. Please note that only one core
of the CPU is used as our implementation does not support multi-thread currently and
the heap size for Java is set to 1024MB.

4.1 Dataset Description

In order to enhance the credibility of our experimental results, we choose two publicly
available data, KDD99 and CDMC2012 as our test objects.

KDD99 dataset is a well-known intrusion detection evaluation dataset transformed
from DARPA Intrusion Detection Evaluation dataset. Although KDD99 has been
criticized for various reasons, it is still a benchmark for evaluating performance of
intrusion detection. KDD99 is collected in a military network environment and it
contains numerous simulated connections including normal ones and attacks. Each of
the connections in the KDD99 has already been broken down into 41 attributes and
well labeled as normal or a specific attack type. Here we simply classify all the in-
stances into two types, normal and attack. In addition, only numerical data are taken
into consideration. As a result, 34 attributes are considered in our experiments. Due to
the large volume of KDD99 and the limited size of the Java heap, we use randomly
generated 8,000 instances from KDD99 for training and another 300,000 instances for
detection.

256 S. Jin, O. Kim, and T. Chen

Since KDD99 is an old dataset more than ten years ago which cannot reflect the
current network situation to some extent, we also use the CDMC2012 dataset in our
experiments. The real traffic data in CDMC2012 are collected from several types of
honeypots and a mail server over 5 different networks inside and outside of Kyoto
University. The dataset is composed of 14 features including label information which
indicates whether each session is attack or not. Similarly, we classify the dataset into
two categories, normal and attack, and we use the available training data to perform
our experiments, where 5,000 instances are used for training and another 123,720
instances for detection.

4.2 Detection Approaches

After the compressed model is built, two traditional detection methods are adopted in
our experiments to evaluate the resulting performance of the compressed model,
namely KNN and SVM.

KNN (K Nearest Neighbor) is one of the most widely used classification methods
in data mining. It finds nearest neighbors of a given instance among all the training
data. There exist various ways of realizing KNN algorithm, and for the purpose of
comparing traditional KNN with our improved KNN by utilizing distance matrix, a
linear scan is employed in our experiments.

SVM (Support Vector Machine) is one of the recognized machine learning me-
thods for classification, regression and other learning tasks. Here we apply C-SVC
(C–Support Vector Classification), one among the SVMs, to identify whether a pack-
age is abnormal or not. Unlike one-class SVM, which is a frequently used detection
method in intrusion detection using the model built with normal class only, C-SVC is
based on the model with both normal and abnormal instances.

4.3 Parameters Settings

Since parameters of clustering methods and detection approaches can significantly
influence the results, here we will shed light on the way we choose them.

AP. In AP, the only parameter that should be set is the preference. In our experiments,
for a comprehensive evaluation, we choose the preferences between the minimum and
the maximum of the similarities to generate expected number of clusters that are sepa-
rately distributed. The relationship between the number of exemplars generated with
AP and the corresponding preference set is described in Table 2. Since the number of
clusters generated by AP is decided by its preference, it is hardly possible to generate
exactly the wanted number of exemplars. Thus, we endeavor to generate similar num-
bers of exemplars for the conditions with and without OneR respectively for a com-
parison purpose, but not exactly the same. Accordingly, it can be observed from Table
2 that the number of exemplars grows with the increment of the preference within
expectation.

 Efficient Attack Detection Based on a Compressed Model 257

K-means. Since we use k-means here for the comparison purpose with AP, the para-
meter in the k-means should be set the same with the number of exemplars gener-
ated by AP.

Table 2. The relationship between preference and the number of exemplars for CDMC2012
and KDD99 respectively in AP

(a) CDMC2012 (b) KDD99

With OneR Without OneR

Exemplar Preference Exemplar Preference
69 -0.4384616 65 -0.8939194

120 -0.1488941 120 -0.2527850
212 -0.0434867 216 -0.0729020
326 -0.0160566 326 -0.0260614
562 -0.0041900 526 -0.0084119
689 -0.0023318 682 -0.0040380
876 -0.0011680 886 -0.0020661

1215 -0.0003477 1260 -0.0004942
1618 -0.0001059 1634 -0.0001566
2056 -0.0000116 2074 -0.0000412
2512 -0.0000006 2342 -0.0000060

With OneR Without OneR

Exemplar Preference Exemplar Preference
205 -0.0482469 203 -0.4156618
324 -0.0170783 322 -0.1557253
480 -0.0072700 471 -0.0672369
625 -0.0036726 620 -0.0368273
885 -0.0015379 891 -0.0156519

1029 -0.0010654 1092 -0.0090514
1218 -0.0006846 1203 -0.0067543
1537 -0.0003841 1566 -0.0028883
2110 -0.0001585 2072 -0.0011145
3044 -0.0000385 3083 -0.0002925
4043 -0.0000077 4013 -0.0001038

KNN. As to KNN, we set the parameter to be 1, which means that the type for each
tested instance rests with its nearest neighbor in the compressed model. Although this
approach is rather simple, it has shown the high effectiveness practically.

C-SVC. As for C-SVC, since the number of attributes is quite small compared with
the amount of instances, we choose to deploy a nonlinear kernel, namely Radial Basis
Function kernel (RBF kernel), to map data to higher dimensional spaces. To better use
the RBF kernel, one should determine two parameters: and . Since the test data
are unknown in advance, we can only find proper parameters using foregone training
data with the help of cross-validation. LibSVM [7] provides an automatic python code
on “grid-searching” and using cross-validation, through which the best parame-
ters for our training data can be concluded as: for KDD99 dataset, the best ,2048, 1.2207 4 when OneR is deployed and , 32768, 3.05176 5
otherwise, and for CDMC2012 dataset , = 8192, 3.05176 5 for both
with and without OneR.

4.4 Experimental Results

Time Cost for Model Compression. As to horizontal compression, it takes 2.13
seconds to compress 308,000 instances from KDD99 and 0.516 seconds for 128,720
instances from CDMC2012 dataset. The time cost for generating the compressed
model vertically with AP and k-means respectively is described in Table 3. It is can
be concluded from Table 3 that model compression may take relatively long time. As
to CDMC2012 dataset, the average time cost for compressing model vertically is
28.83 seconds. The records in the table give us a hint that the step of vertical com-
pression can be done off-line to meet the requirement in the real-time environment,
which applies to the horizontal compression as well. To be specific, we just need to

258 S. Jin, O. Kim, and T. Chen

provide the original training data to the machine responsible for compressing the
model, from which the generated compact model will be returned to the on-line part.
From Table 3, we can also easily observe that the horizontal compression with OneR
can save time on the vertical compression in most cases.

Table 3. Time cost for vertical compression for CDMC2012 and KDD99 respectively

(a) CDMC2012
With OneR Without OneR

Num AP KM Num AP KM
69 38.175 2.745 65 83.539 3.479

120 54.400 3.276 120 41.403 5.336
212 39.703 5.726 216 46.520 5.600
326 36.739 6.552 326 35.429 7.394
562 46.598 11.295 526 48.565 11.850
689 37.254 13.525 682 50.748 13.354
876 33.619 15.866 886 31.358 21.262

1215 41.185 19.671 1260 43.432 26.208
1618 33.729 23.853 1634 41.543 31.761
2056 25.694 33.369 2074 30.734 33.462
2512 25.390 32.932 2342 30.460 43.742

(b) KDD99
With OneR Without OneR

Num AP KM Num AP KM
205 147.498 34.507 203 175.784 90.669
324 202.770 26.754 322 196.452 149.214
480 104.367 26.270 471 157.984 97.749
625 144.269 32.580 620 175.535 132.725
885 117.100 33.961 891 224.392 163.210

1029 93.866 16.241 1092 152.242 182.536
1218 97.402 56.903 1203 170.630 168.358
1537 108.379 63.698 1566 157.418 190.130
2110 92.181 75.722 2072 147.920 283.839
3044 94.564 98.608 3083 135.892 338.545
4043 95.957 147.188 4013 104.781 275.798

Detection Time. The acceleration of detection is our major contribution in this paper.
The test results about it are shown in Fig. 4, 5 and 6 for both CDMC2012 and
KDD99. Among them, Fig. 4 and Fig. 5 show the experimental results with regard to
our horizontal and vertical compression, and Fig. 6 is mainly used to show the effec-
tiveness of our distance matrix. Please note that baselines in Fig. 4 and Fig. 5, which
do not employ the vertical compression but horizontal compression may be used, are
drawn as well for a comparison purpose, while in Fig. 6 only AP is tested for com-
pressing the model vertically, and linear KNN with and without our distance matrix is
the detection method. By observing these three graphs, we can conclude that:

1. There is an obvious improvement of speed due to our horizontal compression when
we compare every blue line with the dashed red line in each graph, where the max-
imal speed-up factor reaches to around 4 in KDD99 with KNN method.

2. It is reasonable to see from all of these figures that the smaller amount of clusters
is, the shorter time it will take for detection for both KNN and SVM. To put it dif-
ferently, one may tend to use smaller number of training instances to meet the need
of real time if only the detection accuracy can be ensured.

3. In Fig. 6, comparing the line of linear KNN with the line of KNN with distance ma-
trix, we can find that using our distance matrix can significantly improve the detec-
tion speed especially for the KDD99 dataset without the horizontal compression. One
of the possible reasons is that since the original KDD99 dataset has more attributes, it
will take a relatively long time to calculate the distance between instances, where our
pruning strategy with distance matrix will play a more important role.

In summary, if we consider the baseline without the horizontal compression and the
record with our full compressed model, the speedup reaches to around 132 times
(172.363 versus 1.3) for CDMC2012 and almost 184 times (2907.775 versus 15.718)
for KDD99 when KNN is used as the detection method.

 Efficient Attack Detection Based on a Compressed Model 259

 (a) KNN (b) SVM

Fig. 4. Comparative results of detection time with KNN and SVM respectively for CDMC2012

 (a) KNN (b) SVM

Fig. 5. Comparative results of detection time with KNN and SVM respectively for KDD99

 (a) CDMC2012 (b) KDD99

Fig. 6. Comparative results of detection time with and without distance matrix for CDMC2012
and KDD99 respectively

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

150

160

170

180
T
i
m
e

(
s
)

Number of items

 Without OneR
 With OneR
 KNN (AP)
 KNN (K-means)
 KNN (Base)

0 500 1000 1500 2000 2500
4

5

6

7

8

9

10

11

12

13

T
i
m
e

(
s
)

Number of items

 Without OneR
 With OneR
 SVM (AP)
 SVM (K-means)
 SVM (Base)

0 500 1000 1500 2000 2500 3000 3500 4000

0

200

400

600

800

1000

1200

1400

1600

2900

3000

T
i
m
e

(
s
)

Number of items

 Without OneR
 With OneR
 KNN (AP)
 KNN (K-means)
 KNN (Base)

0 500 1000 1500 2000 2500 3000 3500 4000

14

16

18

20

22

24

26

28

30

32

T
i
m
e

(
s
)

Number of items

 Without OneR
 With OneR
 SVM (AP)
 SVM (K-means)
 SVM (Base)

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

T
i
m
e

(
s
)

Number of items

 Without OneR
 With OneR
 KNN (Linear)
 KNN (Distance Matrix)

0 500 1000 1500 2000 2500 3000 3500 4000

0

200

400

600

800

1000

1200

1400

1600

T
i
m
e

(
s
)

Number of items

 Without OneR
 With OneR
 KNN (Linear)
 KNN (Distance Matrix)

260 S. Jin, O. Kim, and T. Chen

Accuracy Difference. Although the resulting efficiency that has been empirically
proved above is our major focus in this paper, the detection accuracy is another im-
portant factor for a real detection system. However, we will concentrate on the differ-
ence of detection accuracy (with and without the compressed model) instead of the
direct detection accuracy, because our compressed model is not proposed to contri-
bute to the accuracy improvement, and the detection methods which are related to the
direct detection accuracy are still the common ones. We would like to survey the dif-
ference with two standard measures here, namely recall and false positive rate. Recall
is the ratio between the number of correctly detected anomalies and the total number
of anomalies. False positive rate is the ratio between the number of data records from
normal class that are misclassified as anomalies and the total number of data records
from normal class. Table 4 and Table 5 record the recall and the false positive rate
(not the relative difference) respectively for CDMC2012, and results of KDD99 are
shown in Table 6 and Table 7. The last row of every table below is the benchmark
without vertical compression.

Table 4. Recall with and without horizontal compression for CDMC2012

(a) With horizontal compression (b) Without horizontal compression

R
Num

KNN SVM
AP K-means AP K-means

69 97.1653 95.2388 97.9342 93.2254
120 96.7909 95.8339 97.0098 93.4226
212 96.2301 96.9319 96.9320 94.3126
326 95.9425 96.0365 95.0868 93.4243
562 95.6024 89.9765 94.2782 93.8766
689 95.6458 90.1013 94.3886 93.9074
876 95.8755 90.2768 94.4935 93.9707

1215 95.9280 77.8365 94.7739 94.0503
1618 95.9443 78.5709 94.7395 94.3614
2056 95.8430 62.8817 94.7467 94.3813
2512 95.8068 64.4736 94.5279 94.3849
5000 96.0980 94.3126

R
Num

KNN SVM
AP K-means AP K-means

65 95.7145 95.3075 96.5955 94.6834
120 95.7308 78.0481 97.0785 87.6411
216 94.9855 79.8101 95.8412 90.6983
326 95.0054 78.9110 94.3343 93.9743
526 94.9602 79.1842 94.5333 94.2873
682 95.0217 76.0836 94.8860 94.7902
886 95.1954 87.6972 94.8444 94.8318

1260 95.1592 90.2840 94.9367 94.7684
1634 95.1592 88.6849 95.0000 94.8082
2074 95.1429 62.7985 95.6078 94.9331
2342 95.0742 62.8636 95.1302 94.9729
5000 95.4016 96.5955

Table 5. False positive rate with and without horizontal compression for CDMC2012

(a) With horizontal compression (b) Without horizontal compression

FPR
Num

KNN SVM
AP K-means AP K-means

69 2.1786 2.1581 2.3042 2.2881
120 2.2735 2.0894 2.3042 2.2808
212 2.1815 2.0617 2.3042 2.2589
326 2.0967 2.0295 2.2881 2.1800
562 1.9798 1.7928 2.2750 2.2443
689 1.9842 1.8162 2.2750 2.2443
876 1.9258 1.7840 2.2443 2.2443

1215 1.9535 1.5079 2.2794 2.2443
1618 1.8907 1.5108 2.2487 2.2443
2056 1.8717 1.2946 2.2443 2.2443
2512 1.8498 1.3004 2.2443 2.2443

5000 1.8279 2.2443

FPR
Num

KNN SVM
AP K-means AP K-means

65 1.1338 1.1163 2.2560 2.1625
120 1.1455 0.7715 2.3042 1.9740
216 1.1163 0.8358 2.2911 1.9959
326 1.1178 0.0801 2.2677 2.1376
526 1.1192 0.8022 2.2662 2.2691
682 1.1222 0.7905 2.2691 2.2721
886 1.1178 1.0243 2.2735 2.2428

1260 1.1178 1.0491 2.2428 2.2428
1634 1.1178 1.0184 2.2443 2.2428
2074 1.1178 0.5611 2.2458 2.2443
2342 1.1002 0.5625 2.2443 2.2443

5000 1.0929 2.2531

 Efficient Attack Detection Based on a Compressed Model 261

Table 6. Recall with and without horizontal compression for KDD99

(a) With horizontal compression (b) Without horizontal compression

R
Num

KNN SVM
AP K-means AP K-means

205 98.6538 98.9963 97.1988 97.2399
324 98.0899 99.1644 97.2186 97.1364
480 98.5229 99.2246 97.2194 97.1600
625 98.8182 99.1226 97.2148 97.1783
885 99.0708 99.0237 97.2109 97.1631

1029 98.8250 99.2344 97.1905 97.1783
1218 98.9400 99.2786 97.1889 97.1958
1537 99.1515 99.4003 97.1912 97.1943
2110 98.9970 99.4551 97.1927 97.1927
3044 99.3730 99.4909 97.1904 97.1889
4043 99.3577 99.5099 97.1889 97.1882

8000 99.5738 97.2255

R
Num

KNN SVM
AP K-means AP K-means

203 99.4422 99.3577 97.5557 97.5329
322 99.5487 99.4513 97.9530 97.5291
471 99.6157 99.4331 97.5702 97.5420
620 99.6355 99.6872 98.9635 98.6645
891 99.6545 99.6850 98.2315 99.2558

1092 99.7085 99.6796 99.0160 99.0648
1203 99.7192 99.6926 99.1089 99.1972
1566 99.7177 99.7260 99.1850 99.1819
2072 99.7162 99.7245 99.2550 99.2421
3083 99.7177 99.7238 99.2306 99.2459
4013 99.7184 99.7207 99.2558 99.2383

8000 99.7215 99.2436

Table 7. False positive rate with and without horizontal compression for KDD99

According to these tables, we can find that both of two measures (recall and false

positive rate) from the k-means have a larger difference compared to the ones result-
ing from the affinity propagation (averaged at less than 1% for all the cases) which is
actually the cornerstone of our idea.

5 Conclusion

In order to effectively handle the real-time problem in attack detection, a compressed
model is introduced in this paper to shorten the detection time. Actually, we have made
efforts to improve the performance from both compression and distance matrix extrac-
tion. To be specific, the first endeavor is to horizontally select useful attributes of the
training data and then vertically extract the representative data from a larger dataset
through clustering methods. Sequentially, we have proposed the idea that we can extract
the distance matrix during the vertical compression phase for future detection use.

Comprehensive experiments have been conducted to demonstrate the high perfor-
mance resulting from the compressed model we proposed. In the best case, it runs 184
times faster than the traditional one without our model compression, and neither the
recall (detection rate) nor the false positive rate sacrifices, both of which are differen-
tiate from traditional ones only in a very small range (less than 1% on average).

(a) With horizontal compression (b) Without horizontal compression
FPR

Num
KNN SVM

AP K-means AP K-means
205 0.2699 0.7509 0.0196 0.0273
324 0.1857 0.5932 0.0219 0.0125
480 0.3138 0.6780 0.0225 0.0136
625 0.3073 0.5131 0.0225 0.0136
885 0.3779 0.4561 0.0225 0.0142

1029 0.2746 0.4146 0.0214 0.0196
1218 0.2533 0.3553 0.0219 0.0237
1537 0.3345 0.3262 0.0219 0.0231
2110 0.2906 0.4217 0.0225 0.0231
3044 0.2841 0.4336 0.0243 0.0255
4043 0.3001 0.4288 0.0255 0.0249

8000 0.3565 0.0326

FPR
Num

KNN SVM
AP K-means AP K-means

203 0.0552 0.0908 0.0338 0.0486
322 0.0374 0.0634 0.0279 0.0522
471 0.0996 0.1453 0.0285 0.0344
620 0.1311 0.2118 0.0409 0.0303
891 0.0919 0.2776 0.0350 0.0611

1092 0.0913 0.2052 0.0480 0.0469
1203 0.0747 0.2058 0.0623 0.0694
1566 0.0629 0.1975 0.0712 0.0706
2072 0.0581 0.1548 0.0605 0.0730
3083 0.0581 0.1530 0.0700 0.0694
4013 0.0581 0.0996 0.0706 0.0736

8000 0.0991 0.0937

262 S. Jin, O. Kim, and T. Chen

As future work, we plan to extend our compressed model to other related fields. If
possible, a feasible framework could be proposed to tackle those similar problems.

References

1. Wenke, L., Salvatore, J.S.: Data Mining Approaches for Intrusion Detection. In: USENIX
Security Symposium (1998)

2. Varun, C., Arindam, B., Vipin, K.: Anomaly Detection: A Survey. ACM Computing Sur-
veys 41(3), 1–58 (2009)

3. Frey, B.J., Dueck, D.: Clustering by Passing Messages between Data Points. Science
315(5814), 972–976 (2007)

4. World Internet Usage Statistics,
http://www.internetworldstats.com/stats.htm

5. Srinivas, M., Andrew, H.S.: Feature Selection for Intrusion Detection Using Neural Net-
works and Support Vector Machines. Annual Meeting of the Transportation Research
Board (2003)

6. Srilatha, C., Ajith, A., Johnson, P.T.: Feature Duduction and Ensemble Design of Intrusion
Detection Systems. Computer & Security – COMPSEC 24(4), 295–307 (2005)

7. Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines. ACM Transac-
tions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

8. Information and Computer Science of University of California,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

9. The 3rd Cybersecurity Data Mining Competition,
http://www.csmining.org/cdmc2012/

10. Martin, R.: Snort: Lightweight Intrusion Detection for Networks. In: USENIX Systems
Administration Conference LISA, pp. 229–238 (1999)

11. Daniela, B., Kavé, S., Margin, M.: A Signal Processing View on Packet Sampling and
Anomaly Detection. In: IEEE INFOCOM, pp. 713–721 (2010)

12. Yang, L., Tian-Bo, L., Li, G., Zhi-Hong, T., Lin, Q.: Optimizing Network Anomaly Detec-
tion Scheme Using Instance Selection Mechanism. In: Global Telecommunications Confe-
rence, pp. 1–7 (2009)

13. Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.: Gnort:
High Performance Network Intrusion Detection Using Graphics Processors. In: Lippmann,
R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 116–134. Sprin-
ger, Heidelberg (2008)

14. Holte, R.C.: Very Simple Classification Rules Perform Well on Most Commonly Used Da-
tasets. Machine Learning 11(1), 63–90 (1993)

15. Lincoln Laboratory, Massachusetts Institute of Technology,
http://www.ll.mit.edu/mission/communications/
ist/corpora/ideval/data/index.html

16. Enrique, V.: New Formulation and Improvements of the Nearest-neighbor Approximating
and Eliminating Search Algorithm. Pattern Recognition Letters 15(1), 1–7 (1994)

17. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Rever-
sals. Soviet Physics Doklady 10 (1966)

18. Joseph, B.K.: An Overview of Sequence Comparison: Time Warps, String Edits, and Ma-
cromolecules. Siam Review 25(2) (1983)

19. Victor, B.: Metric Spaces: Iteration and Application. Cambridge University Press (1985)
20. Noble, C.C., Cook, D.J.: Graph-based Anomaly Detection. In: 9th ACM SIGKDD,

pp. 631–636 (2003)

A Digital Forensic Framework

for Automated User Activity Reconstruction

Jungin Kang, Sangwook Lee, and Heejo Lee

Division of Computer and Communication Engineering,
Korea University

Seoul, Republic of Korea
{keijin,ook7777,heejo}@korea.ac.kr

Abstract. User activity reconstruction is a technique used in digital
forensic investigation. Using this technique, digital forensic investigators
extract a list of user activities from digital artifacts confiscated at the
crime scene. Based on the list, explicit knowledge about the crime, such
as motive, method, time, and place, can be deduced. Until now, activ-
ity reconstruction has been conducted by manual analysis. This means
that the domain of the reconstructed activities is limited to the personal
knowledge of the investigators, so the result exhibits low accuracy due to
human errors , and the process requires an excessive amount of time. To
solve these problems, this paper proposes a digital forensic framework-
SigDiff for automated user activity reconstruction. This framework uses
a signature-based approach. It comprises an activity signature genera-
tion module, signature database, digital artifact collection module, and
activity reconstruction module. Using SigDiff, the process of user activ-
ity reconstruction can be performed accurately with a high retrieval rate
and in a reduced time span.

Keywords: digital forensic framework, activity reconstruction, signature-
based forensics.

1 Introduction

With the increasing use of personal digital devices, the number of crimes that
use digital devices as tools is rising. Criminals use digital devices to find in-
formation about victims or buy drugs and weapons. In some cases, the digital
devices are used as tools for cybercrimes, such as information leakage and phish-
ing. To respond to such crimes, investigators from governments and enterprises
use digital forensic techniques. The investigators analyze digital devices to ex-
tract digital artifacts such as Web search histories and program histories . These
artifacts can be evidence of user activities that were performed on the device.
Using the extracted activity information, the investigators plan the direction of
the investigation or present the artifacts to a court as proof of the guilt of a
suspect.

According to FBI statistics [1], the number of digital forensic investigations
and the storage size per case are increasing (Fig.1).The rise in storage size means

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 263–277, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

264 J. Kang, S. Lee, and H. Lee

Fig. 1. Increases in the number of digital forensic examinations and storage size

that the time required for each analysis is increasing. Garfinkel [2] classified this
problem as the upcoming digital forensic crisis that needs to become a focus.

To solve the problem, digital forensic investigators use digital forensic tools
to analyze digital artifacts. These tools abstract the digital data into easily
understandable formats or automatically extract some important information.
For example, listing the files on a disk or extracting an Internet history are
frequently used functions of digital forensic tools.

However, the current tools only list the artifacts that are extracted from dig-
ital devices. This means that the reasoning process about what user activity
generated the artifact is still manual work for an investigator. For example,
when a user executes a messenger software on a digital device, the software will
leave file and registry artifacts on the device. Current digital forensic tools only
display the list of file and registry artifacts to the investigator. To deduce the
messenger activity, the investigator should have additional knowledge about the
relationship between the artifacts and the messenger activity.

The manual process causes the following problems: first, the domain of the
reconstructed activities is highly limited by the personal knowledge and expe-
rience of the investigators; second, the activity reconstruction process is time-
consuming, and the results suffer from low accuracy.

In this paper, we propose a digital forensic framework SigDiff to solve the
problems of manual user activity reconstruction. This framework adopts the
signature-based approach that is widely used for rapid but precise identification
of data in numerous systems, such as antivirus engines or intrusion detection
systems. SigDiff comprises an activity signature generation module, activity sig-
nature database, digital artifact collection module, and activity reconstruction
module. Using these components, SigDiff accumulates user activity signatures
based on a predefined activity model with corresponding artifacts. The activity
signatures are used in digital forensic investigation for automated user activity
reconstruction with a higher retrieval rate, increased accuracy, and reduced time.

The remainder of this paper is organized as follows: Section 2 presents the
background on digital forensics and user activity reconstruction. Section 3 intro-
duces previous work on signature-based user activity reconstruction. Section 4
provides a detailed description of SigDiff and its components. Section 5 presents

A Digital Forensic Framework for Automated User Activity Reconstruction 265

the proof-of-concept tools and evaluation results. Finally, in Section 6 we list
future research directions with our conclusions.

2 Background

When a digital device is used , the user gives the device some input for a spe-
cific purpose. The digital device processes the series of inputs and displays the
respective results to the user. In the process, some artifacts will be left on the
physical media of the device.

For example(Fig.2), the user may want to send messages to someone. Web
browser software is used to access the Website of a messenger, download a client
installer package, install the messenger, logon to the messenger, and send mes-
sages. When this series of user activities is conducted, the Web browser software,
messenger installation package, and messenger client may leave Internet history,
registry, and file artifacts [3].

Digital forensics is the process in which investigators collect digital devices
from a crime scene, recover artifacts from the devices, reconstruct suspect activ-
ities from the artifacts, and present the artifacts or devices to a court as evidence
for the activities.

Fig. 2. Example of process for digital device utilization

In the previous example, the user may be under indictment for technology
leakage. Investigators confiscate the digital device of the user and extract ar-
tifacts from the device. From the artifacts, the investigators can reconstruct a
series of user activities that are related to the instant messaging.

The digital forensic investigation is performed by means of a predefined inves-
tigational procedure(Fig.3). Numerous procedural models have been published

266 J. Kang, S. Lee, and H. Lee

Fig. 3. DFRWS model with readiness phase

and adopted by various organizations. In this paper, the DFRWS model [4] pro-
posed in the first Digital Forensic Research Workshop (DFRWS) is adopted,
with an additional forensic readiness phase [5].

First, in the readiness phase, the organization prepares detailed procedures,
tools, and human resources to prepare for an investigation. In the identifica-
tion phase, the organization identifies an incident and arranges resources for an
investigation. Subsequently, investigators preserve the crime scene and collect
digital devices during preservation and collection phases. In the examination
and analysis phases, the investigators gather meaningful information from the
media seized. Finally, in the presentation phase, the investigators present the
information and evidence to the court for a decision.

Typically, the collected evidence consists of physical media that store data
in a bitwise manner. In the analysis phase, the investigators should interpret
sequences of bits to obtain more meaningful information. In other words, the
investigators abstract the data from bit level to a higher level. This process has
been defined as digital forensic abstraction by Carrier [6].

Fig. 4. Example of Carriers abstraction layers with a user layer for an HTML file

In Carriers model, the data on physical media can be successively abstracted
into a media management layer, file system layer, and application layer. For
some digital forensic investigations, there are requirements for one or more layers
that describe user activity. For example(Fig.4), HTML data abstracted in the

A Digital Forensic Framework for Automated User Activity Reconstruction 267

application layer may be interpreted as a temporary Internet file that was created
by user activity for email composition. The data abstracted in the user layer
are useful for digital investigations that target a person. Using the abstracted
activities, such as for Web searches, email, and SNS, the investigators can easily
deduce information such as the characteristics, mentality, or recent location of
the suspect.

To move efficiently up the abstraction levels, some digital forensic tools such as
EnCase [7] and FTK [8] have been developed. These tools are widely used in the
field by real forensic investigators. The tools interpret the collected physical-level
digital data into a human readable format, mostly at the application level.

However, most current tools do not support abstraction from the application
level to the user level. Consequently, investigators necessarily analyze millions of
application-level artifacts by a manual process. These circumstances cause the
following problems:

1. Excessive Time Consumption
The investigators primarily identify application-level artifacts individually.
In the example of the HTML file, the investigator first extracts some mean-
ingful words from the file name and file data. After that, information is
gathered from the words and the source activity is deduced. Although there
are keyword-based searching techniques [9], timeline-based approaches [10]
and visualization techniques [11] for reducing the amount of data to analyze,
this manual process still requires an excessive amount of time.

2. Low Retrieval Rate
To deduce the source activity, investigators should have previous knowledge
of the activity. In other words, investigators are unlikely to retrieve activi-
ties for domains that are unfamiliar. Moreover, in most cases, no meaning-
ful words from an artifact can be recognized by the investigator, causing a
disregard of the artifact. For these reasons, a considerable number of user
activities are omitted in the analysis phase, resulting in a low retrieval rate.

3. Decreased Accuracy
The fact that the activity reconstruction process is performed manually
means that there can be human errors. Investigators may misunderstand
the meaning of extracted words, resulting in an incorrect result. Although
there are examination environments such as Vise [12], the examination is
difficult to perform for the entire reasoning process due to the limitation of
available time.

3 Related Work

To solve the problems of time consumption, retrieval rate, and accuracy, there
has been work that shares information about artifacts and source activities. The
researchers have analyzed user activities with frequently used applications such
as messengers [13] and Internet download managers [14]. With the information
gathered, some tools have started to support limited user activity abstraction; for
example, the extraction of USB storage activities [15] or Internet activities[16].

268 J. Kang, S. Lee, and H. Lee

Despite the efforts that have been made, the amount of shared information is
still insufficient, and the tools that provide fixed extraction functions have lim-
ited scalability. Thus, a scalable automated digital forensic system that rapidly
performs activity reconstruction with a high retrieval rate and high accuracy is
required. James[17] and Hargreaves[18] adopted a signature-based approach to
solve the problems. Using the signature-based approach, the signature of infor-
mation is stored in a database that is queried when the information is required.
This approach has the advantage that known information can be searched in a
fast but accurate way, and it has been adopted in various identification systems
such as antivirus software and IDS/IPS . Although the retrieval rate is limited by
the size of the database, at least this system is scalable and retrieves information
effectively.

James[17] has proposed a novel approach to signature-based activity recon-
struction. A simple activity is performed repeatedly in a virtual machine, and
then artifacts with changed timestamps are filtered out. The signature is gener-
ated using the generalized path string of the artifact. Hargreaves [18] proposed
a script-based signature generation method. The signature is applied to the ar-
tifact super-timeline to reconstruct higher-level events.

The previous work on signature-based user activity reconstruction was fo-
cused on adopting the approach for digital forensics, thus simple methods of
activity signature generation were proposed. In this paper, we continue the work
to describe a signature-based digital forensic framework that covers the entire
procedure for user activity reconstruction. Using this framework, investigators
can automatically reconstruct complex user activities in a significantly reduced
timespan, but with a higher retrieval rate and increased accuracy.

4 SigDiff: Signature-Based Digital Forensic Framework

SigDiff, the signature-based digital forensic framework, is composed of the follow-
ing parts (Fig.5): an activity signature generation module, an activity signature
database, a digital artifact collection module, and an activity reconstruction
module.

The activity signature generation module is used to construct the activity sig-
nature database. This module is used in the forensic readiness phase. It generates
signatures using a predefined user activity model and sends those signatures to
the database. The digital artifact collection module is used in the collection phase
of a digital investigation. It extracts artifacts from a collected digital device or
directly collects artifacts from a live digital device. The activity reconstruction
module matches the collected artifacts to the signatures stored in the database
and reconstructs the user activity timeline. This module is used in the forensic
examination and analysis phase.

4.1 Activity Signature Generation

The activity signature generation module performs a series of processes to gen-
erate a user activity signature (Fig.6).

A Digital Forensic Framework for Automated User Activity Reconstruction 269

Fig. 5. SigDiff architecture

Fig. 6. Procedures for activity signature generation

First, in the activity model definition phase, the investigator defines the user
activity model. Using the model, the module extracts artifacts of the activity
model, generates the signature, and stores the signature in the activity signature
database.

Activity Model Definition. When a user generates events such as mouse
or keyboard input, the application processes the corresponding tasks. In the
process, the application may leave artifacts on physical media. A user activity is
a series of user-level events(Fig.7) performed for a single purpose. For example,
when a user performs an activity defined as Install messenger software, a series of
user inputs from clicking on Next and Finish buttons will be sent to the software
installer. The software installer receives the inputs and writes messenger files on
the physical media of the device. After the activity has been performed, there
will be installed files. In other words, the Activity artifacts.

The ideal case of user activity definition is that the defined user activity
includes only a single user-level event. For example, user inputs for clicking
buttons of the installer may be defined as multiple activities such as first clicking
the Next button and then clicking the Finish button. However, in this case, the
number of activities defined will be too large, and the time required for defining

270 J. Kang, S. Lee, and H. Lee

Fig. 7. Model for user activity and its artifacts

activities will be excessive. Thus, the investigator may bind a series of events
that are performed for the same purpose, and define this as one activity.

There are two approaches for defining user activities with respect to corre-
sponding user events: the model-first approach and the event-first approach.

Model-First Approach. In the model-first approach, the user activity model for
a topic is first defined. The activity model is a sort of usage scenario and is
formulated in a finite-state machine (FSM). Each state of the FSM is a state
after some activity has been conducted. Each transition function represents an
activity, which is a series of user events. For example, a simple activity scenario
for a messenger can be defined with the model in (Fig.8). Once an activity model
is defined, a series of user events is defined for each transition function.

Using the model-first approach, the activity artifact required by the investiga-
tion can be extracted quickly and with flexibility. In other words, this approach
is adequate when the investigator has a crime situation composed of a series of
activities.

Event-First Approach. In the event-first approach, a series of user-level events
for a topic is first collected. The activity model FSM is defined with refined
events. If the user events are collected from a large number of users, then the
activity model can reflect a trend in user activity. Monitoring, collecting user
events, and interpreting the events as user behavior at the user interface are
research areas of human-computer interfaces[19]. Further research is required
from a digital forensics perspective.

Activity Artefacts Extraction. The activity artifacts extraction process is
performed on the basis of the predefined user activity model. In this framework,
the user events are replicated on a virtual machine to extract the respective
activity artifacts. In the virtual machine, an extraction method based on either
state comparison or system monitoring is used to extract activity artifacts.

A Digital Forensic Framework for Automated User Activity Reconstruction 271

Fig. 8. Example of a messenger activity model

State-Comparison-Based Extraction. Using the state-comparison-based extrac-
tion method (Fig.9), a set of virtual machine snapshots is generated correspond-
ing to the states in the predefined user activity model. Thus, the differences
between two connected snapshots can be regarded as artifacts of an activity.

Fig. 9. State-comparison-based extraction

System-Monitoring-Based Extraction. The system-monitoring-based extraction
method (Fig.10) does not save all the snapshots. A series of user inputs from the
activity model is performed continuously. However, the alterations generated in
the virtual machine are monitored in real time. For example, system tracking
functions such as CreateFile or RegCreateKey in Windows are called to extract
artifacts. Once all the activities in a model are performed, sets of artifacts and
user activities are matched.

272 J. Kang, S. Lee, and H. Lee

Fig. 10. System-monitoring-based extraction

The comparison-based extraction method has the advantage of scalability. If
the source activity model is extended, the new activities and states can easily
be added to the saved virtual machine snapshots. However, additional time is
consumed for creating and comparing the snapshots. The monitoring-based ap-
proach is good for rapid artifact extraction, because the time consumption for
snapshots can be reduced. Moreover, it can track the source applications of ar-
tifacts for background noise filtering. However, this approach does not respond
easily to extension of the source activity model. For all approaches, the artifact
refinement process is required for eliminating background noises, as mentioned
by James [17]. However, the artifacts that rarely appear cannot simply be omit-
ted, because such an artifact may be a unique sign of a specific activity. In this
framework, the artifact extraction for an activity model is performed multiple
times. The frequency of an artifact for all repetitions is counted as the appear-
ance probability and will be provided to the investigator. The background noise
artifact, which is defined as the artifact that matches multiple activities in the
database, is eliminated in the reconstruction phase.

Activity Signature Generation. An artifact is generally composed of times-
tamps, metadata, and data. For example, a file artifact in a file system is com-
posed of the file data, the file path, the size as metadata, and timestamps of
reading, writing, and creation. The activity signature is generated using these
elements. For example, the NSRL of the NIST [20] uses hashed file data as the
signature, James [17] used the path string, and Hargreaves [18] used various
sources to generate a script as the signature.

In this paper, we use a predefined variable table to partially automate the sig-
nature generation procedure. First, the investigator defines a table that contains
multiple variables such as environment values, specific paths, or user informa-
tion. Each variable is composed of a tag and a value. The tag is simply the
name of the variable. The value is a regular expression that describes the corre-
sponding artifact string, which can be metadata such as the file path or a string
extracted from the data. The source of the artifact string is dependent on the
type of artifact. Table 1 is an example of a variable table.

A Digital Forensic Framework for Automated User Activity Reconstruction 273

Table 1. Example of variable table

Tag Value

<name> Investigator12

<userID> invID12

<keywords> KeywordA|KeywordB

<%TEMP%> C:\\Users\\Investigator12\\AppData\\Local\\Temp

<%IE TEMP%> C:\\Users\\Investigator12\\AppData\\Local\\
Microsoft\\Windows\\Temporary Internet Files\\

Content.IE5\\[a-zA-Z0-9]{8}

Algorithm 1. Signature generation algorithm

1: procedure Signature Generation(Artifact strings A[0...n], Variables V [0...m])
2: while i from 0 to n do
3: while j from 0 to m do
4: S[i] ← Replace Matched(A[i], V [j]) � S = list of signatures
5: end while
6: end while
7: return S
8: end procedure
9: procedure Replace Matched(Artifact string a, Variable v)
10: find matching part of a, v.regex
11: s ← replace matching part of a to v.tag � s = signature
12: return s
13: end procedure

Using the predefined variable table, each artifact string is compared with a
regular expression for every variable. If a matching part of the artifact string is
found, then that part is replaced with the tag of the matching variable. The activ-
ity signature is the processed artifact string. Algorithm 1 describes the process.
Table 2 contains examples of artifact strings and the corresponding signatures
that are generated using the variable table described in table 1. The generated

Table 2. Examples of artifact strings and signatures

Artifact string Signature

C:\Users\Investigator12\AppData\ <%TEMP%>\<keywords>\<userID>.log
Local\Temp \keywordA\invID12.log

C:\Users\Investigator12\AppData\ <%IE TEMP%>siteLogo.gif
Local\Microsoft\Windows\

Temporary Internet Files\Content.IE5\
ZG8IPVA7\siteLogo.gif

Computer\HKEY CURRENT USER\ Computer\HKEY CURRENT USER\
Software\keywordA\invID12\key Software\<keywords>\<userID>\key

http://www.keywordA.com/view.php? http://www.<keywords>.com/view.php?
userid=invID12&mode=sendFile userid=<userID>&mode=sendFile

274 J. Kang, S. Lee, and H. Lee

activity signatures are sent to the activity signature database with some infor-
mation, such as the activity model topic, activity model, and corresponding user
inputs.

4.2 Digital Artefact Collection Module

The digital artifact collection module lists artifacts from media acquired at the
crime scene. This can be performed on a live system or from a media image. The
listed artifacts are generated as signatures by the method, which is exactly the
same as the method that was used in the activity signature generation phase
before the incident. The extracted artifact signatures are sent to the activity
reconstruction module for analysis.

4.3 Activity Reconstruction Module

The activity reconstruction module queries the activity signature database with
the artifact signatures extracted from the crime scene. If matching signatures are
found, the database sends the corresponding information about the activities.
Typically, the number of artifact signatures extracted from the crime scene ex-
ceeds one million. Although the reconstruction can be performed automatically,
the time consumption is still excessive.

Traditional searching techniques based on time, category, or keyword can
be applied to accelerate the reconstruction. Based on the timestamps of the
artifacts, the investigator can request the information for an artifact that is
used in a specific or recent timeline. To perform the search based on a category
or keyword, the investigator submits a specific keyword to the database and
receives a list of all related signatures. The acquired list of signatures is searched
for the artifact signatures extracted from the crime scene. If a matching signature
is found, then the information about the signature will be requested from the
activity signature database. The reconstruction time can also be reduced by a
frequency-based method. First, the database calculates the list of frequently used
artifacts of directory or registry paths, such as the %Program Files% directory or
the HCU\Software registry key. After that, the list is sent to the reconstruction
module in order of priority. Using these acceleration methods, the extracted
artifacts can be automatically abstracted as user activities with a high retrieval
rate and high accuracy in a reduced time.

5 Implementation and Evaluation

For proof-of-concept, tools were implemented for each module. Figure 11 is a
screenshot of the activity signature generation tool that modeled user activities
on the topic TrueCrypt. The tool is based on the model-first approach with
activity artifacts extraction based on state comparison. It supports automated
signature generation for files, registry, and Internet history. The generated sig-
natures are sent to a signature database.

A Digital Forensic Framework for Automated User Activity Reconstruction 275

Fig. 11. Activity signature generation tool

Figure 12 is a result screen of the activity reconstruction tool after some
messenger activities were automatically reconstructed. The tool compares arti-
fact signatures extracted from the crime scene with those stored in the activity
signature database.

Fig. 12. Activity reconstruction tool

Using the tools, we designed multiple user activity models, including Google
search, Gmail, MSNMessenger, Dropbox, and TrueCrypt as well as some popular
Korean applications and Web services. During the signature generation phase,
we generated 5000 more file artifact signatures from the activity models. For an
evaluation, the signatures were tested on a machine so that all the modeled
activities were performed. As a result, 100% of the activity signatures were
successfully extracted from 85,000 file artifacts in 19.5 s on average.

6 Conclusion and Future Research Directions

In this paper, we proposed a novel signature-based digital forensic framework that
assists investigators to reconstruct user activities automatically.We presented not
only the processes in each module of the framework but also techniques for effi-
cient and effective user activity reconstruction.Research on signature-baseddigital

276 J. Kang, S. Lee, and H. Lee

forensic approaches is still in the early stages. We propose the following directions
for future research:

– Definition of criminal user behavior on digital devices. The research will
focus on what kind of user activities should be defined as the user activity
model.

– User activityevent matching algorithm. Since the collected sequences of user
events are varying, it is difficult to define an activity as a sequence of events.
Thus, a formalized algorithm for activityevent matching is required.

– Research on efficient activity signature databases. The database could involve
technologies such as cloud computing and in-memory computing to improve
the query speed.

– Automated and generalized signature generation algorithm. In this paper, the
signature generation still requires investigators to define variables manually.
In future work, the generation procedure could be automated using a string
pattern recognition approach with improved retrieval rate and accuracy.

– Fast signature matching algorithm. Querying all the signatures extracted
from a crime scene still requires an excessive amount of time. It is necessary
to develop a fast signature algorithm without sacrificing the accuracy and
retrieval rate.

Acknowledgements. This research was supported by the R&BD Support Cen-
ter of SeoulDevelopment Institute and the SouthKorean government (WR080951)
and the Public welfare&Safety research program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (2012M3A2A1051118 2012051118).

References

1. Regional Computer Forensics Laboratory: Annual report for fiscal year 2003-2011
(2011)

2. Garfinkel, S.L.: Digital forensics research: The next 10 years. Digital Investiga-
tion 7, S64–S73 (2010)

3. Van Dongen, W.S.: Forensic artefacts left by Windows Live Messenger 8.0. Digital
Investigation 4(2), 73–87 (2007)

4. Palmer, G.: A road map for digital forensics research-report from the first Digital
Forensics Research Workshop (DFRWS), Utica, New York (2001)

5. Rowlingson, R.: A ten step process for forensic readiness. International Journal of
Digital Evidence 2(3), 1–28 (2004)

6. Carrier, B.: Defining digital forensic examination and analysis tools using abstrac-
tion layers. International Journal of Digital Evidence 1(4), 1–12 (2003)

7. EnCase forensic, http://www.guidancesoftware.com/forensic.htm
8. Forensic toolkit, http://accessdata.com/products/computer-forensics/ftk
9. Beebe, N.L., Clark, J.G.: Digital forensic text string searching: Improving infor-

mation retrieval effectiveness by thematically clustering search results. Digital In-
vestigation 4, 49–54 (2007)

10. log2timeline, http://log2timeline.net/

http://www.guidancesoftware.com/forensic.htm
http://accessdata.com/products/computer-forensics/ftk
http://log2timeline.net/

A Digital Forensic Framework for Automated User Activity Reconstruction 277

11. Teelink, S., Erbacher, R.F.: Improving the computer forensic analysis process
through visualization. Communications of the ACM 49(2), 71–75 (2006)

12. Arnes, A., Haas, P., Vigna, G., Kemmerer, R.: Digital forensic reconstruction and
the virtual security testbed ViSe. Detection of Intrusions and Malware & Vulner-
ability Assessment, 144–163 (2006)

13. Reust, J.: Case study: AOL instant messenger trace evidence. Digital Investiga-
tion 3(4), 238–243 (2006)

14. Yasin, M., Cheema, A.R., Kausar, F.: Analysis of Internet Download Manager for
collection of digital forensic artefacts. Digital Investigation 7(1), 90–94 (2010)

15. Carvey, H., Altheide, C.: Tracking USB storage: Analysis of windows artifacts
generated by USB storage devices. Digital Investigation 2(2), 94–100 (2005)

16. Oh, J., Lee, S., Lee, S.: Advanced evidence collection and analysis of web browser
activity. Digital Investigation 8, S62–S70 (2011)

17. James, J.I., Gladyshev, P., Zhu, Y.: Signature Based Detection of User Events for
Post-mortem Forensic Analysis. Digital Forensics and Cyber Crime, 96–109 (2011)

18. Hargreaves, C., Patterson, J.: An automated timeline reconstruction approach for
digital forensic investigations. Digital Investigation 9, S69–S79 (2012)

19. Hilbert, D.M., Redmiles, D.F.: Extracting usability information from user interface
events. ACM Computing Surveys (CSUR) 32(4), 384–421 (2000)

20. National Institute of standards and technology, National software reference library,
http://www.nsrl.nist.gov/

http://www.nsrl.nist.gov/

Increasing Automated Vulnerability Assessment

Accuracy on Cloud and Grid Middleware�

Jairo Serrano1, Eduardo Cesar1, Elisa Heymann1, and Barton Miller2

1 Computer Architecture & Operating Systems
Universitat Autònoma de Barcelona

Barcelona, Spain
{jairodavid.serrano,eduardo.cesar,elisa.heymann}@uab.es

2 Computer Sciences Department
University of Wisconsin-Madison

Madison, WI, USA
bart@cs.wisc.edu

Abstract. The fast adaptation of Cloud computing has led to an
increase in novel information technology threats. The targets of these
new threats range from large scale distributed system, such as the Large
Hadron Collider by the CERN, to industrial (water, power, electricity, oil,
gas, etc.) distributed systems, i.e. SCADA systems. The use of automated
tools for vulnerability assessment is quite attractive, but while these
tools can find common problems in a program’s source code, they miss
a significant number of critical and complex vulnerabilities. In addition,
middleware systems frequently base their security on mechanisms such as
authentication, authorization, and delegation. While these mechanisms
have been studied in depth and can control key resources, they are not
enough to assure that all application’s resources are safe. Therefore,
security of distributed systems have been placed under the watchful
eye of security practitioners in government, academia, and industry.
To tackle the problem of assessing the security of critical middleware
systems, we propose a new automated vulnerability assessment approach,
called Attack Vector Analyzer (AvA), which is able to automatically
hint at which middleware components should be assessed and why.
AvA is based on automating part of the First Principles Vulnerability
Assessment, an analyst-centric (manual) methodology that has been used
successfully to evaluate many production middleware systems. AvA’s
results are language-independent, provide a comprehensive assessment
attack vector in the middleware, and it is based on the Common
Weakness Enumeration (CWE) system, a widely-use labeling of security
weaknesses. Our results are contrasted against a previous manual
vulnerability assessment of the CrossBroker grid resource manager, and
corroborate which middleware components should be assessed and why.

Keywords: Vulnerability Assessment, Security, Weakness, Attack
Vector, Cloud, Grid, Middleware.

� This research has been supported by the MEC-MICINN Spain under contract
TIN2007-64974 and by Department of Homeland Security grant FA8750-10-2-0030.

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 278–294, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 279

1 Introduction

Vulnerability assessment is a security task that is insufficiently addressed in
most existing Grid and Cloud projects, and even in Supervisory Control and
Data Acquisition (SCADA) [1] systems it is an afterthought. Such projects
use middleware software which usually bases its security on mechanisms such
as authentication, authorization, and delegation. These mechanisms have been
studied in depth and carry out control of key resources, but they are not enough
to assure that all middleware resources are safe. However, middleware systems
usually do not undergo a thorough vulnerability assessment during their life
cycle, resulting in overlooked security flaws. One possible solution would be to
use existing automated tools such as Coverity Prevent [2] or HP Fortify SCA [3]
to analize source code for previously known threats, but even the best of these
tools may find only a small percentage of the serious vulnerabilities [4].

A thorough vulnerability assessment requires a systematic approach that
focuses on the key resources to be protected and allows for a detailed
analysis of those parts of the code related to those resources and their trust
relationships. First Principles Vulnerability Assessment (FPVA) [5] was designed
to address these requirements. FPVA have been successfully applied to many
large and widely-used middleware systems, such as Condor [6], a high-throughput
scheduling system; Storage Resource Broker (SRB) [7], a data grid management
system; Crossbroker [8], a Grid resource management for interactive and parallel
applications, among others [9].

FPVA starts with an architectural analysis. This step identifies key structural
components in a middleware system, including modules, threads, processes, and
hosts. The second step is a resource analysis, which identifies the key resources
accessed by each component, and the operations supported on those resources.
Privilege analysis is the next step; it identifies the trust assumptions about each
component, answering such questions as how are they protected or who can
access them. A complex but crucial part of trust assumptions and privilege
analysis is evaluating trust delegation. By combining the information from the
first two steps, we determine what operations a component will execute on behalf
of another. The results of these steps are documented in diagrams that provide
a roadmap for the last stage of the analysis, the manual middleware source code
inspection. This top-down, architecture-driven analysis, can also help to identify
more complex vulnerabilities that are based on the interaction of multiple system
components and are not amenable to local code analysis.

In our use of FPVA, we have noticed that there is a gap between the three
initial steps and the manual source code inspection. The security practitioner
must provide expertise about the kind of security problems that the systems
may present during the last stage of the analysis (e.g. depending on the language
used the analyst might look for different kinds of vulnerabilities) and be creative
enough to discover new vulnerabilities. Hence, this gap directly affects the quality
of the vulnerability assessment, because security flaws may be overlooked due to
either incomplete analyst knowledge or insufficient time for an in-depth analysis.
We have observed that the security practitioner’s knowledge is similar to that

280 J. Serrano et al.

described by several vulnerability classification systems, such as the Common
Weakness Enumeration (CWE) [10], Seven Pernicious Kingdoms [11], OWASP
Top Ten [12], and Microsoft SDL [13]. So, much of this information can be
codified in the form of rules, metrics, and scores to be applied automatically.
The proposed Attack Vector Analyzer (AvA) presented in this paper automates
the generation of hints for middleware vulnerabilities based on codified expert
knowledge. AvA’s results include a prioritized alert list of likely weaknesses,
which can lead to exploitable vulnerabilities. Results are based on a detailed
joint analysis of complex of the relationship between middleware components,
which could be potentially attractive targets for the attackers.

This paper discusses how to address the FPVA ”gap” without looking at
the middleware source code, or parsing it, and the automatic AvA tool for
systematically indicating which middleware components should be assessed and
why, before the analyst shifts to the source code inspection.

The remainder of this paper is structured as follows. Section 2 introduces
Attack Vector Analyzer and its components. Section 3 discusses a case study:
AvA applied to CrossBroker, and its results compared to the ones obtained by
a manual assessment of the same middleware. Related work is introduced in
Section 4, and conclusions and future work are shown in Section 5.

2 The Attack Vector Analyzer

Before proceeding with the description of AvA, first we describe relevant aspects
of the FPVAmethodology. One of these aspects is the FPVA aim of concentrating
the analyst’s attention on the components and resources of the middleware
system that are most likely to have critical vulnerabilities. The artifacts produced
during the initial steps of FPVA include the architectural analysis that produces
diagram of the structure of the system and the interactions among the different
components and with the end users. In this diagram, the Attack Surface of the
system can be defined.

The Attack Surface is the set of interfaces from which an attack might
start; it tells security practitioners where to start looking for the attacker’s
initial behavior. The resource analysis step produces a description of each
resource and its value as an end target (such as a database with personnel
or proprietary information) or as an intermediate target (such as a file that
stores access-permissions). These resources are the target of an exploit. We then
define the Impact Surface as the set of locations in the code where exploits or
vulnerabilities might be possible. Finally, the artifact produced by the privilege
analysis step is a further labeling of the previous diagrams with trust levels and
labeling of interactions with delegation information. In this diagram the Attack
Vectors can be identified. An Attack Vector is a path from a point in the
attack surface to a point in the impact surface.

Despite all the information gathered during the intial steps of FPVA, finding
actual vulnerabilities in system during the component analysis depends on
the implementation details of each component and the analyst’s expertise.

Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 281

As previously disscused, much of this knowledge can be found in several existing
vulnerability classifications [10–13], and that, in consequence, can be codified
to help automatically indicate which attack vectors of a given system should be
analyzed and why. We have developed a methodology that follows this approach,
and have implemented this methodology in a prototype tool called Attack Vector
Analyzer (AvA) for demostrating how the FPVA gap can be reduced.

Fig. 1. Attack Vector Analyzer Architecture

In the following subsections, we describe our automated approach, depicted
in Figure 1. It shows the components of the AvA architecture, composed of
the (attack vector) analyzer engine, which receives as inputs a single modified
version of the FPVA diagrams called the component-resource graph, and a
knowledge base (KB) with codified rules. The KB is based on three elements: the
most current knowledge about vulnerabilities (the CWE), a scoring system for
these weaknesses (the CWSS), and outstanding information that characterizes
middlewares in terms of safety (the system attributes). The outcome of the
analyzer engine will be security alerts on what components of the system should
be analyzed.

2.1 Building the Knowledge Base

In this section we describe the process followed for defining the propositions
included in the AvA knowledge base (KB) based on the information provided
by the Common Weakness Enumeration [10] system, the Common Weakness
Scoring [14] system, and the system attributes extracted from the experience
using FPVA. The information depicted in Figure 2 is used to build the set of
rules that will guide the analysis of a target system.

CommonWeakness Enumeration.CWE is a community initiative of security
practitioners, used to describe common software weaknesses that can occur
in software’s architecture, design, code or implementation, and that can lead
to exploitable security vulnerabilities. CWE could be roughly described as a
three tiered approach, the first tier consisting of the full CWE list (hundreds of

282 J. Serrano et al.

Fig. 2. AvA’s Knowledge Base

nodes); the second tier consisting of groupings of individual CWEs, called the
Development View; and the third tier consisting of high level groupings (pillars)
of the intermediate nodes to define strategic classes of vulnerabilities, called the
ResearchView. The Attack Vector Analyzer is based on the CWEResearchView.

Common Weakness Scoring System. CWSS is a part of the CWE project,
providing a scoring mechanism for weaknesses. CWSS scoring CWE’s with 18

Table 1. AvA’s System Attributes

Name Description
Owner The owner’s component
User The user’s component

User-Admin Interface Is the component part of the user or admin interface
Sanitize Determines if the component performs data sanitizing operations

Transform Data Determines if the component performs data transforming operations
Transfer Data Determines if the component performs data transfering operations

Trust Determines if the component performs trustworthy operations
Server Interaction Determines if the component performs a DB, LDAP, etc., server operations

Timeout Determines if the component performs timeout operations
Max/Min Determines if the component performs data restriction operations
Third-party Determines if the component performs local/remote third-party operations
Spoofing Determines if the component performs operations against spoofing
Tampering Determines if the component performs operations against tampering
Encryption Determines if the component performs encryption operations
Attachment Determines if the component performs attachment operations

Error Handling Determines if the component performs operations against unexpected error
Client-Server Determines if the component is installed on client or server host

Web Determines if the component is a web service or application
Log-Backup Determines if the component performs Log and/or Backup operations

Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 283

different factors in three metric groups: (1) the Base Finding group, which
captures the inherent risk of the weakness, confidence in the accuracy of the
finding, and strength of controls; (2) the Attack Surface group, which captures
the barriers that an attacker must cross to exploit the weakness; and (3) the
Environmental group, which includes factors that may be specific to a particular
operational context, such as business impact, likelihood of exploit, and existence
of external controls.

System Attributes. System attributes [15, 16] are based on the information
provided by several FPVA diagrams, developer team interviews, and user,
administrator, and API documentation. The attributes included in AvA, shown
in Table 1, have been derived from our experience with several different
middleware systems, including Condor, SRB, MyProxy [17], gLExec [18], VOMS-
admin [19], and CrossBroker.

Rule Generation. We use the CWE, CWSS, and system attributes to define
assessment rules (propositions). First, we gathered twelve relevant elements from
CWE’s:

1. The weakness identificator
2. The weakness name
3. The weakness description
4. The weakness extended description
5. The programming language in which the weakness may occur
6. The consequence scope, which identifies an individual consequence that may

be associated to the weakness
7. The consequence technical impact, which describes the technical impacts

that can arise if an attacker attempts to exploit the weakness
8. The consequence notes, which provides additional commentary about its

consequence
9. The mitigation description, which contains a single method for mitigating

the weakness
10. The mapped node names, which identifies the name of the entry to which

this weakness is being mapped in other taxonomies or classifications
11. The relationship, which contains a note regarding the relationships between

CWE entries.
12. The observed example description, which presents an unambiguous

correlation between the example being described and the weakness which
it is meant to exemplify.

Second, a comprehensive search over the above twelve elements is conducted
on the 682 CWE weaknesses to find the set of weaknesses related to each
system attribute. For example, for the system attribute ”Owner”, 150 different
weaknesses related to resource ownership were found; among these weaknesses we
have the ”CWE-282: Improper Ownership Management”. It says ”The software
assigns the wrong ownership, or does not properly verify the ownership, of an
object or resource”. Similarly, we found between 20 to 150 relationships between
each of the remaining system attributes and the weaknesses.

284 J. Serrano et al.

Table 2. CWSS Metric groups

Base Finding Attack Surface Environment

Technical Impact (TI) Required Privilege (RP) Business Impact (BI)

Acquired Privilege (AP) Required Privilege Layer (RL) Likelihood of Discovery (DI)

Acquired Privilege Layer (AL) Access Vector (AV) Likelihood of Exploit (EX)

Internal Control Effectiveness (IC) Authentication Strength (AS) External Control Effectiveness (EC)

Authentication Instances (AI) Prevalence (P)

Level of Interaction (IN)

Deployment Scope (SC)

Table 3. TI Scoring (CWSS adaptation)

Technical Impact Critical High Medium Low None Default Unknown Not Applicable

Score 1.0 0.9 0.6 0.3 0 0.6 0.5 0.3

Once the system attributes have been related to the weaknesses, we use a
customized version of CWSS for producing the final set of rules. Rules consist of
defining logical propositions for each value of each system attribute, to obtain a
quantitative measurement of how the attribute influences to each of its related
weaknesses.

More precisely, we verify this influence through the three metrics groups of
the customized CWSS scoring system, linking up the system attributes with its
relevant factors, and scoring accordingly to them. The relevant factors for the
customized CWSS metrics groups are shown in Table 2. Thus, each factor has
a list of possible values, and its corresponding score, e.g., the technical impact
(TI) factor is shown in the Table 3.

Finally, we illustrate the kind of propositions in the KB with the next
examples.

– Example I. Rule for the Owner attribute

If ”Owner” == ”Administrator” then:
”TI” == ”Critical”, ”AP” ==”Administrator”
”AL”==”Enterprise”, ”AV”==”Private Network”

– Example II. Rule for the User-Admin Interface attribute

If ”User-Admin Interface” == ”Yes” then:
”TI” == ”High”, ”AV”==”Local”, ”IN”==”Automated”
”DI”==”High”, ”EX”==”High”, ”AS”==”Moderate”

It can be appreciated in both examples that the ”Owner” and ”User-Admin
Interface” attributes are related with particular CWSS factors such as the TI
factor, which are influenced by their corresponding values. In the first example,
the TI factor answers with the ”Critical” value when the ”Owner” attribute

Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 285

corresponds with the ”Administrator” value. On the other hand, for the ”User-
Admin Interface” rule example, the TI factor assumes a ”High” value, because
the component being assessed is part of the attack surface. Then, with the
knowledge base of rules stated, we proceed to describe the analysis process of
the attack vectors of a middleware system.

2.2 Analyzing Attack Vectors

This section describes how the AvA engine analysis works on the attack vectors,
the inputs required, and the security alerts produced. Below, we present the
component-resource graph, which is the input of the AvA engine, and then we
proceed with the AvA engine, as we can see depicted in Figure 3.

Component-Resource Graph. with the stated objective of reducing the
gap between the outcomes from the initial FPVA stages, and the manual
FPVA component code analysis, we have defined a structure called Component-
Resource graph [20] for representing the results of these initial stages in a more
suitable and readable format, which also includes relevant information about
middleware components such as the system attributes. A component-resource
graph is aimed to depict all attack vectors between middleware components,
given that most of the generated FPVA diagrams describe particular operations
of the middleware, such as submitting a job in a workload management system.
Thereby, the order in which an attack vector is built is also quite clear because
every edge in the diagrams is labeled with a number indicating when the
interaction represented by the edge takes place, and also indicating if a node
in the diagrams belong either to the attack or the impact surface.

To represent a component-resource graph we have chosen the GraphML
format [21]. Basically, a component-resource graph is an XML file composed
by the information gathered from the FPVA diagrams. Once the component-
resource graph is correctly depicted in the graphml format, we proceed to apply
the analysis process on it.

Fig. 3. AvA Engine

286 J. Serrano et al.

The AvA Engine Analysis. algorithm 1 shows the AvA engine analysis
process. It begins reading the component-resource graph, this step allows the
AvA engine to identify and to load the attack vectors of the middleware been
assessed. Then, the AvA knowledge base is read, in order to load both the
rules and the weaknesses - system attributes relationships. The next step of the
engine is to start traversing each attack vector, component by component. For
each component, its system attributes are fetched, and then assessed accordingly
to the KB-rules, taking into account our customized CWSS system. Hence, the
weaknesses related to the system attributes are assessed too. As a result of
this step, a mark is obtained for each attribute associated to every weakness
in every component of all identified attack vectors in the component-resource
graph. For example, for a weakness CWE-X with associated attributes X0, X1,
and X2 (such as: owner, user, tampering, etc.) and an attack vector composed by
components C0, C1, C2, the results shown in table 4 can be obtained. After this
first assessment, with the objective of obtaining a single score for each weakness
associated to the attack vector, the algorithm applies the following steps:

(1) assign to each attribute the minimum score obtained by any component
of the attack vector (line 12). Using the same example of table 4, the score
of attribute X0 for the weakness CWE-X will be min(SC00,SC10,SC20). We
have choosen the minimun value because it means that in that component at
least, a weakness mitigation has been implemented; (2) once the minimum
scores are computed then proceed to weigh them accordingly to the CWE
research view (line 13) because the system attributes might have a different
impact for each weakness depending of one pillar or another, i.e., a system
attribute such as owner has a high weight regarding the ”CWE-693 Protection
Mechanism Failure” pillar, while the encryption attribute has a low weight. On
the contrary, for the ”CWE-330 Use of Insufficiently Random Values” pillar the
encryption attribute has a high weight, while the owner has a low weight; at
last, (3) the maximum weighed score for the weakness is computed, bearing in
mind how was the score of its child weaknesses (line 14). It means that child
weaknesses provide more information to the top-level weaknesses. Once all the
weaknesses are processed, the last step is to sort them into the eleven pillars of
the CWE research view accordingly to their maximum weighed score. Finally,
the security alerts for the assessed attack vector are delivered as a hierarchical
list of weighed weaknesses for each CWE pillar. Thus, we are systematically
providing comprehensive information to the security practitioner, pointing out
not only which vulnerabilities should be analyzed, but also why we should pay
attention to them in the assessed attack vector.

Table 4. Individual marks

CWE-X��������Component
Attribute

X0 X1 X2

C0 SC00 SC01 SC02

C1 SC10 SC11 SC12

C2 SC20 SC21 SC22

Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 287

Algorithm 1.
1. Read the Component-Resource graph
2. Load the Attack Vectors
3. Read the Knowledge Base
4. Load the Rules
5. Load the Weaknesses
6. For each Attack Vector
7. For each Component
8. Fetch the system attributes
9. Parse the system attributes with KB-rules
10. Assess the weaknesses related
11. For each Weakness
12. Compute the minimum score components
13. Weigh the computed score for the weakness
14. Compute the max weighed score based on CWE
15. For each Pillar at the CWE research view
16. Sort weaknesses in order of max weighed score
17. Write the sorted security alert lists

3 Case Study

This case study shows the benefits of AvA approach by using it on a grid
middleware system and then verifying the results against the previous FPVA
assessment on the same middleware. CrossBroker is a Grid resource management
system for interactive and parallel appplications used in various european
projects, including Crossgrid [22] the Interactive European Grid [23], and it
is being used by the Spanish Grid Initiative. CrossBroker was built by extending
the functionality provided in LCG [24] and gLite WMS [25].

3.1 FPVA Applied to CrossBroker

The manual vulnerability assessment following the FPVA guidelines on
CrossBroker identified serious and complex vulnerabilities affecting high value
assets. A completed and detailed information about them can be found on
previous work [15], which is out of scope for this paper. Below, we introduce
a summarized description of the CrossBroker FPVA found vulnerabilities:

Vulnerability 1: If CrossBroker is used in an environment where the user can
control certain attributes of the jdl submission file, but the executable to run
must be selected from a white list of valid executables, then there exists a flaw
that allows the user to run arbitrary code as the execute user beyond the white
listed executables. Cause: Code injection, Improper data validation, Incorrect
authorization. Component: submit, network server.

Vulnerability 2: Certain types of user’s job submitted to CrossBroker are not
protected from manipulation from other user’s jobs. Cause: Incorrect privileges,
Missing authentication, Multiple unique privilege domains. Component:
scheduling agent.

Vulnerability 3: Remote resources are prone to a hijacking through
CrossBroker. If Computing Elements use a firewall/NAT traversal solution

288 J. Serrano et al.

to allow access to grid site elements, attackers will build an independent
high throughput computing system without Crossbroker interactions and
restrictions. Cause: Missing authorization, Misconfiguration. Component:
scheduling agent.

Vulnerability 4: The CrossBroker is prone to a Denial of Service vulnerability.
As a result of this attack, Crossbroker will not be able to process the submission
of the user jobs, being necessary to stop and restart the Crossbroker host.
Cause: Improper error handling, Inability to handle missing/invalid field or
value. Component: submit, logging and bookkeeping, mysql.

Up to now, the security practitioners who applied FPVA on several
middleware provided their own expertise and creativity about different kind
of security problems over the key structural components identified on FPVA
artifacts, without further guidance or information. The goal of the following
subsection is to demonstrate that the AvA concepts can be used to increase
the effectiveness of the FPVA component analysis, with a more comprehensive
guidance to automatically indicate where and why the components should be
assessed.

3.2 AvA Applied to CrossBroker

The validation consists of applying the AvA assessment process to the
CrossBroker component-resource graph (Figure 4), and look for those weaknesses
in the security alerts that are related with the vulnerabilities found manually,
and those weaknesses that can depict likely new vulnerabilities that were not
found initially. CrossBroker has several attack vectors that can be observed from
its graph, and for the sake of simplicity we just introduce two different attack
vectors with completely different impact surfaces. It is worth to state that the
number of attack vectors depends on the number of attack and impact surfaces
components we have identified using a graph editor tool.

Fig. 4. CrossBroker component-resource graph with attack vectors I-II highlighted

Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 289

Attack Vector I. The attack vector I is composed by ten components starting
with the submit component which is the attack surface component in this
case, passing through the network server, input queue, scheduling agent, output
queue, application launcher, condor daemon I, local resource manager, condor
daemon II, until achieve its impact surface the job component. To visualize
the results of asssessing the attack vector I, the AvA security alerts were
clustered in accordance to every hierarchical pillar of the CWE research view,
and regarding to the max score of the weaknesses and the total number of
them belonging to every pillar, as we can see in Figure 5. Therefore, for the
”CWE-664” pillar composed of 150 weaknesses, considering the characterization
of the attack vector components, and the whole assessment process, we found
that around 20 % of weaknesses in the whole pillar can derive into one of
three vulnerabilities found with FPVA, which are distributed as follows: 11
weaknesses related to ”Vulnerability 3”, 17 weaknesses related to ”Vulnerability
2”, and one weakness related to ”Vulnerability 1”. In this attack vector there
are no weaknesses matches for ”Vulnerability 4”, due that its underlying
cause belong to other middleware components. Itemizing, from the 15 first
weaknesses with the highest scores, nine are related to three of the vulnerabilities
found manually, as for example the ”CWE-862: Missing Authorization” whose
description is ”The software does not perform an authorization check when
an actor attempts to access a resource or perform an action”, and reviewing
again the CrossBroker vulnerabilities summary along with the CWE-664 pillar
description ”The software does not maintain or incorrectly maintains control
over a resource throughout its lifetime of creation, use, and release”. Thus,
it can be seen the straight relationship between the weakness-pillar and the
”Vulnerability 3” because although the AvA analysis has taken into account
those system attributes related to authentication and authorization underlying
mechanisms for the attack surface, the attacker is able to handle at will the
impact surface.

The AvA analisys corroborated this relationship, due that there is no more
control found for the same system attributes on any other attack vector

Fig. 5. Security Alerts for attack vector I clustered by CWE-664 pillar

290 J. Serrano et al.

component after a job is submitted in CrossBroker. For some of the remaining
CWE pillars their security alerts also hinted related weaknesses to the same
vulnerabilities, which gives the attack vector I results consistency, and some
others security alerts hinted a likely new vulnerability related to certificate issues.

Attack Vector II. Since the attack vector II has only three components starting
with the submit component which is again the attack surface component, the
logging and bookkeeping component, and its impact surface the mysql component,
then we put together all its AvA security alerts to visualize the results from a
global perspective regarding the whole CWE research view, as we can see in
Figure 6, instead of an individual pillar visualization as in the attack vector
I. By inspecting the security alerts for all the pillars, the assessment of the
attack vector II with the AvA analyzer hinted 19 weaknesses, all of them
related with the ”Vulnerability 4” found with FPVA, which are distributed as
follows: 8 weaknesses in ”CWE-703 Improper Check or Handling of Exceptional
Conditions” , 4 weaknesses in ”CWE-664 Improper Control of a Resource
Through its Lifetime”, 3 weaknesses in ”CWE-691 Insufficient Control Flow
Management” , 1 weakness in ”CWE-710 Coding Standards Violation” , 1
weakness in ”CWE-682 Incorrect Calculation” , 1 weakness in ”CWE-118
Improper Access of Indexable Resource”, 1 weakness in ”CWE-435 Interaction
Error”, and 0 weaknesses for the rest of pillars. Just like in attack vector I
for ”Vulnerability 4”, it happens that there are no weaknesses matching for
”Vulnerabilities 1, 2, and 3”, due that their underlying causes belong to other
middleware components. If we look inside the pillars with hinted weaknesses,
we found that the sum of all the issues, such as improper check for unusual or
exceptional conditions, unexpected status code or return value, return of wrong
status code, missing report of error condition, uncontrolled resource comsuption,
improper resource shutdown or release, insufficient control of network message
volume, uncontrolled recursion, improper validation, or incorrect control flow
scoping, among others are indeed strongly related to the ”Vulnerability 4”
causes. In summary, to focus the security alerts clearly, we visualized from either
individually or globally point of view the hinted weaknesses by the AvA analyzer

Fig. 6. Security Alerts for attack vector II clustered by entire CWE research view

Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 291

in both of the attack vectors illustrated, which are strongly related with the
vulnerabilities found previously with FPVA.

4 Related Work

Vulnerability Assessment of middleware systems is a field that has attracted
the interest of both research and commercial communities, due to the rapid
growth of the use of distributed and high performance computing, as well as the
increasingly rapid growth of threats. Accordingly, in this section we introduce
those vulnerability assessment projects that are most related to the AvA
approach, such as the Microsoft Threat Modeling [13], the Open Vulnerability
and Assessment Language [26] project, and the vulnerability cause graphs [27].

4.1 Microsoft Threat Modeling

The methodology that has the most in common with the AvA approach is
Microsoft Threat Modeling. It is aimed at identifying and rating the most
likely threats affecting applications, based on understanding their architecture
and implementation during the entire development life cycle. While Microsoft’s
methodology is the closest to AvA approach, there is a key difference:
after developing the architectural overview of the application, the Microsoft
methodology applies a list of pre-defined and known possible threats, and tries to
see if the application is vulnerable to these threats. As a consequence only known
vulnerabilities on individual components may be detected, and the vulnerabilities
detected may not refer to high value assets. With AvA, the component evaluation
is performed only on the critical parts of the system, and we may be able to
hint vulnerabilities based on a list of weaknesses, particularly those resulting
from the interaction of complex relationships between attack vector components.
In addition, Microsoft threats identification suggest a brainstorming with the
developers and test teams, these interactions could lead to a biased analysis and
may result in threats going undetected.

4.2 The Open Vulnerabilities and Assessment Language (OVAL)

OVAL is an international, information security, community standard to promote
open and publicly available security content, and to standardize the transfer
of this information across the spectrum of security tools and services. OVAL
includes a language used to encode system details, and an assortment of content
repositories held throughout the community. The repositories are collections
of publicly available and open content that utilize the language. In short it
means that OVAL is an open language to express checks for determining whether
software vulnerabilities and configuration issues, programs, and patches exist on
a system. It is based primarily on known vulnerabilities identified in Common
Vulnerabilities and Exposures (CVE) [28], a dictionary of standardized names
and descriptions for publicly known information security vulnerabilities and

292 J. Serrano et al.

exposures developed by the MITRE Community and stakeholders. In contrast
to OVAL, our effort is neither based on the specific CVE dictionary nor
alleged vulnerabilities according to machine states, instead we claim that AvA
approach works with CWE and CWSS systems, and with nonspecific software
vulnerabilities, also AvA approach is based on FPVA stages, thereby AvA
gathers more meaningful information for the assessment process.

4.3 Vulnerability Cause Graphs

It is based on a thorough analysis of vulnerabilities and their causes, similar
to root cause analysis. The results are represented as a graph, which Byers et
al. [27] called vulnerability cause graph. Vulnerability cause graphs provide the
basis for improving software development best practices in a structured manner.
The structure of the vulnerability cause graph and the analysis of each individual
cause are used to determine which activities need to be present in the software
development process in order to prevent specific vulnerabilities. In a vulnerability
cause graph, vertices with no successors are known as vulnerabilities, and
represent classes of potential vulnerabilities in software being developed. Vertices
with successors are known as causes, and represent conditions or events that may
lead to vulnerabilities. In our case, the most noticeable difference is that we want
to know whether a vulnerability may exist and why, instead Byers’ work knows
the vulnerabilities and looks for their causes.

5 Conclusions

In this paper we described a novel approach for hinting Grid and Cloud
middleware vulnerabilities. The proposed methodology was implemented in
a prototype tool, called the Attack Vector Analyzer (AvA). The absence
of a formal method that attempts to systematically use the information
gathered by the First Principles Vulnerability Assessment (FPVA) methodology,
and the knowledge found on the Common Weakness Enumeration (CWE),
motivated us to develop the AvA prototype, which validates the AvA approach.
AvA demonstrates effectiveness for filling the gap between different steps
of the FPVA methodology; and provides significant guidance for security
practitioners to determine which middleware components should be assessed
and why. We corroborated AvA’s efectiveness with the assessment of the Grid
middleware CrossBroker. In order to get comprehensive and accurate results,
the CrossBroker’s security alerts produced by AvA were analyzed from two
perspectives, the first one, considering them through each CWE pillar, and
the second one, considering them through the whole CWE research view.
Thus, it was possible to correlate previous vulnerabilities found manually with
several attack vector weaknesses, and automatically identify the most likely
vulnerabilities.

AvA will positively impact security practitioners empirical research during
the source code inspection, and consequently its quality and accuracy of

Increasing Automated V.A. Accuracy on Cloud and Grid Middleware 293

vulnerability assessment. Our methodology approach has produced several key
accomplishments that distinguish it from formal related vulnerability assessment
works. A list of our accomplishments include:

– Our assessment methodology has the important characteristic that it focuses
on complex interrelationships among component, and not only on single
components.

– The development of a well defined knowledge base based on rules, which
allows to match system attributes into multiple weaknesses, and quantifying
attack vector weaknesses according to complex component interrelationships.

– A systematic guidance provided for the last FPVA analysis stage, automated
by a software tool. The AvA’s results provide significant guidance to security
practitioner. These results are not sensitive to source code analysis, which
makes results language independent.

Future work around AvA approach will involve considering the use of machine
learning techniques for improvements of the whole knowledge base architecture,
where rules could change in function of new acquired data at middleware
runtime.

References

1. Sommestad, T., Ericsson, G.N., Nordlander, J.: Scada system cyber security - a
comparison of standards. In: Power and Energy Society General Meeting IEEE,
pp. 1–8 (July 2010)

2. Coverity Prevent, http://www.coverity.com

3. Fortify Source Code Analyzer, http://www.fortify.com

4. Kupsch, J., Miller, B.: Manual vs. automated vulnerability assessment: A case
study. In: International Workshop on Managing Insider Security Threats, vol. 469,
pp. 83–97 (June 2009)

5. Kupsch, J., Miller, B., Heymann, E., Cesar, E.: First principles vulnerability
assessment, mist project. tech. rep., UAB & UW (September 2009)

6. Condor Project, http://www.cs.wisc.edu/condor

7. Storage Resource Broker, http://www.sdsc.edu/srb/

8. Fernandez del Castillo, E.: Scheduling for Interactive and Parallel Applications on
Grid. PhD thesis, Universitat Autònoma de Barcelona (2008)

9. MIST Group: Middleware security and testing web site,
http://www.cs.wisc.edu/mist

10. The Common Weakness Enumeration, http://cwe.mitre.org/

11. McGraw, G., Tsipenyuk, K., Chess, B.: Seven pernicious kingdoms: A taxonomy
of software security errors. IEEE Security and Privacy 3, 81–84 (2005)

12. The open web application security project (owasp), https://www.owasp.org/

13. Swiderski, F., Snyder, W.: Threat Modeling. Microsoft Press (2004)

14. The Common Weakness Scoring System, http://cwe.mitre.org/cwss/

15. Serrano Latorre, J.D., Heymann, E., Cesar, E.: Manual vs automated vulnerability
assessment on grid middleware. III Congreso Espanol de Informatica (CEDI 2010)
(September 2010)

http://www.coverity.com
http://www.fortify.com
http://www.cs.wisc.edu/condor
http://www.sdsc.edu/srb/
http://www.cs.wisc.edu/mist
http://cwe.mitre.org/
https://www.owasp.org/
http://cwe.mitre.org/cwss/

294 J. Serrano et al.

16. Serrano Latorre, J.D., Heymann, E., Cesar, E.: Developing new automatic
vulnerability strategies for hpc systems. In: Latinamerican Conference on High
Performance Computing (CLCAR), pp. 166–173 (August 2010)

17. MyProxy, http://grid.ncsa.illinois.edu/myproxy
18. gLExec - Gluing grid computing jobs to the Unix world, https://www.nikhef.nl/
19. The virtual organization membership service (voms),

http://edg-wp2.web.cern.ch/edg-wp2/security/voms/voms.html

20. Serrano Latorre, J.D., Heymann, E., Cesar, E., Miller, B.: Vulnerability assessment
enhancement for middleware. In: 5th Iberian Grid Infrastructure Conference
(IBERGRID) (June 2011)

21. The GraphML File Format, http://graphml.graphdrawing.org/
22. Crossgrid EU Project, http://www.eu-crossgrid.org/
23. Interactive European Grid Project, http://grid.ifca.es/inteugrid_ifca.htm
24. Baud, J.-P.B., Caey, J., Lemaitre, S., Nicholson, C., Smith, D., Stewart, G.: Lcg

data management: From edg to egee (2005)
25. Andreetto, P., et al.: Practical approaches to grid workload and resource

management in the egee project. In: Proceedings of the International Computing
in High Energy and Nuclear Physics, pp. 899–902 (2004)

26. OVAL - Open Vulnerability and Assessment Language, http://oval.mitre.org/
27. Byers, D., Ardi, S., Shahmehri, N., Duma, C.: Modeling software vulnerabilities

with vulnerability cause graphs. In: 22nd IEEE International Conference on
Software Maintenance (ICSM 2006), pp. 411–422 (2006)

28. The Common Vulnerability and Exposures, http://cve.mitre.org/

http://grid.ncsa.illinois.edu/myproxy
https://www.nikhef.nl/
http://edg-wp2.web.cern.ch/edg-wp2/security/voms/voms.html
http://graphml.graphdrawing.org/
http://www.eu-crossgrid.org/
http://grid.ifca.es/inteugrid_ifca.htm
http://oval.mitre.org/
http://cve.mitre.org/

VulLocator: Automatically Locating Vulnerable

Code in Binary Programs

Yingjun Zhang1, Kai Chen2,�, and Yifeng Lian1

1 Institute of Software, Chinese Academy of Sciences
2 Institute of Information Engineering, Chinese Academy of Sciences

chenkai010@gmail.com

Abstract. It usually takes rather long time to generate patches for vul-
nerabilities. For example, an analysis on 21 recent Microsoft patches
shows that it usually takes 115 days on average to generate and release
a patch. The longer it takes to generate a patch, the higher the risk a
vulnerable system needs to take. In patch generation process, perhaps
the core part is to find the vulnerable code in software from zero-day at-
tacks or crash reports. However, this is not easy since there are millions of
instructions in an ordinary execution path. In this paper, we present Vul-
Locator, a system that aims at automatically locating vulnerable code
in software without requiring any source code. VulLocator could analyze
different types of vulnerabilities including stack/heap/integer overflow,
double free, memory corruption, format string and division by zero. By
generating vulnerability dependence tree, it decreases the number of in-
structions that need to be analyzed (from millions of instructions to
dozens of instructions). VulLocator could also generate a sample patch
for temporarily defending against attacks. Analysts could also benefit
from the information given by VulLocator to generate more fine-grained
patches. Several experiments with real-world exploits are made on Vul-
Locator. The results show that VulLocator could successfully find the
vulnerable code in binary programs both effectively and efficiently.

Keywords: Vulnerability locator, Vulnerability dependence tree, Patch
generation.

1 Introduction

Vulnerabilities are a big threat to Internet. Attackers can invade into a system
using vulnerabilities, especially the unknown vulnerabilities. Worms make use of
vulnerabilities to spread and cause damage. For example, the economic damage
caused by the Code Red worms is more than $2 billion [1]. The number of
software vulnerabilities keeps increasing in recent years. But their patches are
released in rather long time. An analysis on 21 recent Microsoft patches (from
MS11-087 to MS12-007) shows that it usually takes 115 days on average to

� Corresponding author.

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 295–308, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

296 Y. Zhang, K. Chen, and Y. Lian

generate and release a patch (the detailed data is shown in Appendix A). No
need to say other small software vendors.

Patch generation is not an easy job. Firstly, software becomes more and more
complex. Analysts should analyze millions of instructions carefully. Thus, it is
very hard to locate the vulnerable code in software. Secondly, vulnerabilities have
different types. Analysts need to be familiar with all of them. Thirdly, since most
programs do not open their sources, only developers could make patches. So it
is very hard for a third-party to fix vulnerabilities and release patches. These
are the reasons why a patch is usually released long after being reported.

People have done much work to solve this problem. 1) Some methods analyze
only one type of vulnerability (e.g., buffer overflow) and generate patches for it.
AutoPaG [2] and PatchGen [3] could generate patches for previously unknown
vulnerabilities if a working out-of-bound exploit is available. But these methods
usually patch only one type of vulnerability. 2) Some methods like ClearView
[4,5] study from normal executions to learn invariants to patch. But these meth-
ods do not try to find the real reason of the vulnerability. 3) Differential slicing [6]
could find the difference between two similar traces. It helps analysts to identify
causal execution differences for security applications. But it needs a normal ex-
ecution trace to compare. Sometimes, it is not easy to generate such a trace. An
arbitrary trace will have so many differences that it is still difficult for analysts
to make patches.

In this paper, we propose a method to automatically locate vulnerable code in
binary programs, which reduces the long delay in software patch generation. By
generating vulnerability dependence tree, we decrease the number of instructions
that need to be analyzed. No source code is needed in this process. Thus analysts
from third-party could make patches themselves. Moreover, sample patches could
be generated for temporarily defending against attacks. Although they may not
work correctly like real patches, we wish the vulnerable code information given
by VulLocator could help analysts to generate the real patch. Different types of
vulnerabilities are used to make evaluations including stack/heap/integer over-
flow, double free, memory corruption, format string and division by zero. In
summary, we make the following contributions.

– We propose a method to locate the vulnerable code in software without any
need for source code. Several types of vulnerabilities (e.g., overflow, double
free, memory corruption, format string and division by zero) are supported.

– We propose vulnerability dependence tree, which decreases the number of
instructions that need to be analyzed.

– We implement a system called VulLocator and make several experiments on
it. The results show that VulLocator could automatically locate vulnerable
code both effectively and efficiently..

The rest of the paper is organized as follows. We first present related work in
Section 2 and compare VulLocator with existing work. Then, we present the
overview of VulLocator in Section 3. In Section 4 and Section 5, we give detailed
implementation of VulLocator. We make some experiments in Section 6 and
make conclusion in Section 7.

VulLocator: Automatically Locating Vulnerable Code in Binary Programs 297

2 Relate Work

Our work is mainly related to three bodies of work as follows.

1) Patch Generation. Genetic programming approach is used to generate
suitable patches [7,8]. Kranakis [9] and Sidiroglou [10] proposed a framework for
patch generation. It places the function that has the problem of stack buffer over-
flow to heap for better control. But these methods do not find the reason of the
vulnerabilities. HOLMES [11] gives scores to paths to indicate the probability of
vulnerability and finds the most likely position of the vulnerability. Sweeper [12]
detects and patches the vulnerability in software by taint analysis and dynamic
backward slicing. ClearView [4] observes normal executions to learn invariants
to patch errors in deployed software. PASAN [13] can detect control-hijacking
attacks automatically and generate corresponding patches. AutoPaG [2] and
PatchGen [3] is able to catch on-the-fly the out-of-bound violation, and then au-
tomatically generate patches without any human intervention. These methods
usually focus on one type of vulnerabilities while we try to find more types of
vulnerabilities. Most methods also need source code to generate patch, which is
not suitable for third-party analysts.

2) Software Analysis Method. Differential slicing [6] could help to locate
vulnerable code in software by analyzing normal execution trace and the failing
execution trace. By comparing them, it could identify causal execution differ-
ences for security applications. But a suitable normal execution trace is not easy
to get. An arbitrary trace will have so many differences that it is still difficult for
analysts to locate vulnerable code. Slicing method is proposed by Mark Weiser,
which can analyze the relationship between variables in program. Typical slic-
ing methods include data flow slicing [14] and graph-based slicing [15]. We also
slice the program to generate vulnerability dependence tree. Different from tra-
ditional slicing methods, we add edge lengths to the tree to show the relevance
between instructions and vulnerabilities.

3) Vulnerability Prevention. Some methods instrument the program source
code to capture all run-time memory errors such as FOC [16]. TaintCheck [17]
performs a dynamic taint analysis so that it can raise an alert when the tainted
data is executed. But these methods do not investigate the vulnerability behind
the attack, high performance overhead is imposed. VSEF [18] only monitors and
instruments those instructions that are related to the exploited vulnerability.
Similar approach is also taken by DACODA [19], Vigilante [20], Argos [21]. The
aim of this class is to prevent vulnerabilities, but is not to locate vulnerable
code, which is the main focus of our system.

3 Overview

Figure 1 shows the overall architecture of VulLocator, which comprises four
phases: attack detection, vulnerability dependence tree (VDT) generation, vul-
nerability code location and sample patch generation.

298 Y. Zhang, K. Chen, and Y. Lian

The attack detection phase contains two steps. First, the program executes
by feeding with attack input data. When the program runs, VulLocator records
the execution trace. Then VulLocator detects the attacks by using taint analysis
or checking whether the program crashes. The last instruction in the trace is
referred to as exploited instruction.

After an attack is detected, slicing method is used to find the related instruc-
tions of vulnerability in the execution trace. Then VulLocator generates vulner-
ability dependence tree. Different from traditional slicing methods, we add edge
lengths to the tree to show the relevance between instructions and the exploited
instruction.

On the basis of VDT, VulLocator locates vulnerable code by using edge
lengths. In this way, not all instructions in the trace need to be analyzed. In
practice, this process is combined with the second phase. When VulLocator finds
the code may be vulnerable, it stops construing VDT and tries to generate a
sample patch.

The last phase is to generate a sample patch. The patch serves as a temporary
solution for defending against attacks. It could also be used as suggestion for
analysts to generate a real vulnerability.

Fig. 1. an Overview of VulLocator

Scope. The aim of the paper is to find the vulnerable code in software without
requiring any source code. It decreases the number of instructions which need to
be analyzed. In this process, VulLocator generates a sample patch to verify the
correctness of the vulnerable code. Note that the sample patch could not replace
the real patch. This is reasonable in the real world. In most cases, only software
vendors could release official patches.

4 Attack Detection

4.1 Execution Trace Recording

When the program runs, VulLocator records the execution trace of the failing
run. Since it is not easy to know the runtime information of indirect index by
static analysis, we record the corresponding concrete address of the memory op-
eration instructions with indirect index dynamically. So do indirect jump/call in-
structions. When we meet branch instructions, we may need lots of computation
to get the branch direction. Sometimes, the taken branch cannot be computed
if the operand of the branch depends on input. Thus, we record every branch
instruction and the arm that it takes.

VulLocator: Automatically Locating Vulnerable Code in Binary Programs 299

In real analysis process, we only record the last 100000 instructions currently.
This is because vulnerabilities are almost always close to the instructions at which
an exploited vulnerability is detected. If we could not find the vulnerable code from
the recorded instructions, we can re-run the programand recordmore instructions.
In this way, we do not waste much time on the recording process and save a lot of
disk space. When a vulnerability is exploited by using more than one instruction
and one of the instructions is after the exploited instruction, ourmethod could still
detect first vulnerable instruction before the exploited instruction.

4.2 Exploited Vulnerability Detection

People have done much work to detect or prevent from vulnerability exploits in
recent years such as address space layout randomization (ASLR) [22], instruc-
tion set randomization [23] and taint analysis [20]. These methods have different
pros and cons. In our current implementation, we employ a simple method to
detect exploited vulnerability. If any one of the following conditions is met, we
think that a vulnerability is exploited: 1) Instruction pointer eip is data depen-
dent on input data; 2) Memory index is data dependent on input data; 3) The
system default exception handler is triggered. In our current implementation,
‘UnhandledExceptionFilter()’ is used as the default exception handler. 4) Divi-
sor is zero. Note that condition 3 catches almost all exploited vulnerabilities that
crash the program. The last instruction in the trace is referred to as exploited
instruction.

We instrument instructions on the basis of Pin [24]. It is a dynamic binary in-
strumentation framework for the IA-32 and x86-64 instruction-set architectures.
Taint analysis is used to catch condition 1 and 2. We set file inputs as taint
source. We check whether condition 1 and 2 are met by checking the taint status
of register eip and memory index. Condition 3 can be checked by instrumenting
the first instruction of ‘UnhandledExceptionFilter()’. Condition 4 can be checked
by instrumenting the ‘div/idiv’ instructions. We could catch different types of
vulnerabilities by using different rules. We will also use more sophisticated rules
to catch more exploited vulnerabilities in the future.

5 Vulnerable Code Location

We first generate VDT by performing dynamic slicing and taint analysis on
the execution trace. After locating the vulnerable code, VulLocator generates a
sample patch.

5.1 Vulnerability Dependence Tree Generation

Since there are lots of instructions in the execution trace, it is not easy to find
vulnerable code from it directly. We try to choose some instructions that are
related to the exploited instruction. In this way, analysts could locate the vul-
nerable code and make patches easily.

300 Y. Zhang, K. Chen, and Y. Lian

Definition 1. [Vulnerability Dependence Tree]: Vulnerability dependence
tree is represented as V DT (V,E). V stands for nodes in V DT and E stands for
edges in V DT . For any v1 and v2 ∈ V , if there is an edge from v1 to v2, then
1) def(v2) ∈ use(v1) and 2) there is no instruction v3 in the execution trace
between v2 and v1 which meets def(v3) ∈ use(v1). The edge could be referred
to as e : v1 → v2. The root of VDT is the exploited instruction. def means the
variables which a statement defines and usemeans the variables that a statement
uses.

Definition 2. [Edge Length]: For an edge e : v1 → v2, its length indicates
the number of branch instructions between v2 and v1 in the trace. Those branch
instructions should be dependent on input data.

Definition 3. [Node Depth]: For a node v ∈ V , its node depth is the edge
length to the root of VDG.

Input: Execution Trace t
Output: VDG v

1 INS i = t.last; // i points to the exploited instruction in t
2 WorkList wl = ∅;
3 v.addNote(i); // add the exploited instruction into VDG
4 wl.add(use(i)); // use(i) consists of the variables that i uses.
5 int branchNum = 0;
6 while i �= NULL and wl �= ∅ do
7 if i is a branch instruction which depends on input data then
8 branchNum++; i = i.prev; continue;
9 end

10 if def(i) ∈ wl then
11 wl.remove(def(i)); wl.add(use(i));
12 INS j = v.node(def(i)); // v.node(var) returns the node that defines var
13 int edgeLen = branchNum - v.len(root, j); // v.len(root,j) returns the

edge length between nodes root and j
14 v.addNode(i);
15 v.addEdge(j, i, edgeLen); // add new edges to v

16 end
17 i = i.prev; // i points to the previous instruction in t

18 end
Algorithm 1. VDG Generation Algorithm

Algorithm 1 shows the pseudo-code to generate a VDG v. It scans the logged
trace from exploited instruction (Line 1) and maintains a worklist wl (Line 2).
The root of v is the exploited instruction itself (Line 3). At first, wl includes the
variables used in exploited instruction (Line 4). We use variable branchNum
to record the number of branches that depend on input in the trace (Line 5).
Note that we count branchNum in the backward direction (Line 7-9). When a
variable var in wl is defined in instruction i (Line 10), we remove var from wl
and add use(i) to wl (Line 11). We also add new nodes (Line 14) and edges to v

VulLocator: Automatically Locating Vulnerable Code in Binary Programs 301

(Line 15). Since the algorithm scans the trace at most once, it is of order O(n). n
is the length of the trace. In practice, we do not need to analyze all instructions
in the trace since part of the trace is enough for locating vulnerable code.

The code below show an example. The entry point is line 9.

1 : mov eax , [e s i] ; subprocedure 14 : j e L20 ; i f ’ x ’ , goto L20
2 : cmp eax , 0 ; copy t i l l 0 15 : mov [edx] , eax ; get input
3 : j e L8 ; jump to L8 16 : in c ecx
4 : mov [ed i] , eax ; copy s t r i n g 17 : cmp ecx , 0x10
5 : in c ed i ; i n c r ea s e des 18 : j e L20 ; at most 0x10
6 : in c e s i ; i n c r e a s e s r c 19 : jmp L11 ; get more chars
7 : jmp L1 ; jump to L1 20 : l e a e s i , [ebp−0x18]
8 : r e t 21 : l e a edi , [ebp−0x2c]
9 : mov [ebp−0x8] , 0x10 22 : c a l l L1 ; copy chars
10 : xor ecx , ecx 23 : mov eax , [ebp−0x1c]
11 : l e a edx , [ebp+ecx−0x18] 24 : mov es i , [eax]
12 : c a l l getch ; getch () 25 : l e a edi , [ebp−0x2c]
13 : cmp eax , 0x78 ; 0 x78 i s ’ x ’ 26 : c a l l L1

Figure 2 shows the logged execution trace and the corresponding VDT for the
example. The nodes with two circles are branch nodes. The nodes with single
circle are assignment nodes. The number ‘0x10’ in the upper part of Figure 2(a)
means that nodes pattern ‘11, 13, 15’ appears 0x10 times. So does the number
‘0x11’. By using Algorithm 1, VulLocator generates VDT as shown in Figure
2(b). We show the worklist beside each node in the analysis process.

At first, we detect that eax is data dependent on input data at statement 24.
So we construct the VDT by using node 24 as the root. Then we add eax to the
worklist according to Algorithm 1 (line 4). We find eax is defined in statement
23. Then we remove eax from the worklist and add ebp and [ebp-0x1c] to it (line
11 in Algorithm 1). Since there is no branch node between statement 23 and
24, the edge length between nodes 23 and 24 is 0 (line 13 in Algorithm 1). We
add node 23 to the VDT and add length 0 between nodes 23 and 24 (line 14, 15
in Algorithm 1). Then we continue to construct the VDT. Note that the edge
length between node 4 and 1 is 1 because eax in statement 2 is data dependent
on input data. The worklist of node 9 contains ‘ebp’. We do not consider stack
pointer variables including ‘ebp’ and ‘esp’ since they are usually not error-prone.
Analysis process finishes at node 9. The numbers beside edges are edge lengths.
Not all nodes in VDT are vulnerable. Thus, we need to find the instruction that
is most likely to be vulnerable code.

5.2 Vulnerable Code Location and Sample Patch Generation

The nodes in VDT are related to the exploited instructions, but not all of them
are vulnerable code. We want to locate vulnerable code from the patching pro-
cess. Note that the method to patch a vulnerability is not unique. Our basic
ideas are as follows. 1) The patched program should not be exploited when fed

302 Y. Zhang, K. Chen, and Y. Lian

Fig. 2. Execution trace of the example and its corresponding VDT

with the same malicious input. 2) The patched program should run normally
when fed with other normal inputs. In other words, the patch will impact the
original program as little as possible. According to these basic ideas, we generate
some rules to locate the vulnerable code.

R1) Choose the node in VDT with ‘smaller’ depth. ‘Smaller’ depth is a value
compared with previous node depth. This rule could locate the vulnerability in
a small code region. It could also make VulLocator to check the code close to the
exploited instruction first. In the VDT, it chooses the nodes closer to the root.

R2) Choose the instruction that changes the value of a variable much more.
These instructions will be more likely to let the program run abnormally. In
real analysis, one could choose how much a variable is changed. He could use
absolute value or relative value, or combine the two values together.

R3) The patched code should execute as little as possible. For example, we
try to patch the code in caller procedure instead of callee procedure. In other
words, if a procedure p is called by different procedures and p does not always
crash by using the same input, we may patch the caller procedure that triggers
the crash.

R1 and R2 could help to locate the vulnerable code region, and R3 could help
to tune the patch position slightly to find the most suitable one. VulLocator also
generates a sample patch for temporarily defending against attacks. Note that
the sample patch cannot replace the real patch. Sometimes, a program with the
sample patch will also crash. But it could prevent from the attack that exploits
the vulnerability. It could also help an analyst to generate a real patch. Since
VulLocator aims to handle different types of vulnerabilities, it is not easy to fix all
vulnerabilities perfectly. Thus, we use a simple method to avoid the attack. Our
basic idea is not to execute the vulnerable code or to make the vulnerable code
run normally. Sometimes, the rules are conflictive when we select a vulnerable
instruction. For example, one instruction changes the value of a variable much
more, but it is far from the root. Another instruction is close to the root, but it
only changes the value a little. Our strategy is to check them one by one from
the node that is closer to the root. This is simple but effective. For an instruction
that is not vulnerable, even if it is removed, the program may still crash. We are
also try to keep the original functionality of the program.

Recall the example in Figure 2, node 4 changes ‘[ebp-0x1c]’ (this could be
gotten dynamically, in the 0x11th execution of the loop) and its depth is 0.

VulLocator: Automatically Locating Vulnerable Code in Binary Programs 303

We choose it as the candidate vulnerable code (R1 and R2). Since node 4 is
in procedure L1 and it is called from other instruction (Line 22/26), we set
the caller instruction as the vulnerable code (R3). To fix the vulnerability, we
use a simple method. We want to change the branch direction at L3. However,
we cannot change the code directly since the branch instruction executes many
times (0x11 times in the trace in Figure 2(a)) and this will make the program
run abnormally. Thus, VulLocator adds code ‘mov [ebp-0xc], 0’ (this could
be gotten dynamically) before L22. After patching, the program runs ‘normally’
when fed with both malicious input and normal input. ‘Normally’ here means
no crash. Then it stops the arbitrary code execution. If we want to generate a
perfect patch that keeps the program having the exactly same functionality, we
still need people’s participation.

There is another two problems need to be considered. One problem is that
the memory address may change in different execution cases. Thus, we should
use relative address. For example, if the memory is in stack, we use the address
offset to the stack base. Another problem is that the patch may not be suitable
for all malicious inputs. We could test whether the other malicious input might
trigger the vulnerability.

6 Evaluation

This section describes the experiments to evaluate VulLocator. We implemented
it on the basis of Pin [24] to perform static analysis and dynamic analysis.
Our experiments were conducted on a single-processor machine with a dual-core
1.86GHz Intel processor and 2GB of RAM.

6.1 Effectiveness and Performance

In this subsection, VulLocator is used to locate vulnerable code of several pro-
grams including Dizzy 1.12, ZipItFast 3, etc. These programs have different
types of vulnerabilities such as stack/heap/integer overflow, double free, mem-
ory corrupt, format string and division by zero. We use the exploit input from
Exploit-DB [25] to evaluate the effectiveness of our method. We detect the ex-
ploited vulnerability by using the method shown in Subsection 4.2. Table 1 shows
the results.

Column 1 and column 2 show the program name and vulnerability type. From
the table, we find that VulLocator could locate vulnerable code of several types.
Column 3 shows the number of all instructions in the execution trace. Column
4 shows the number of all memory instructions and branch instructions in the
execution trace, which is about half the number of all instructions. It is still too
large for people to analyze directly. VDT size is shown in column 5. It is much
smaller than the trace size. Analysts could easily get vulnerability information
from VDT. Using the generated patch, VulLocator prevents from all the exploits
(column 6). We also test whether the patched program could run normally when
fed with abnormal input. The results (column 7) show that not all the patched

304 Y. Zhang, K. Chen, and Y. Lian

Table 1. Evaluation Results on Effectiveness

Program Vul Type T.Len(A) T.Len(S) VDT.S Pv C.E C.N

Dizzy 1.12 Stack Overflow 25360285 11831550 13
√

N N
ZipItFast 3 Heap Overflow 547164959 210754229 10

√
N N

MS Paint 5.1 Integer Overflow 66682422 30828159 31
√

N N
FXSCOVER 5.2 Double Free 162868592 80391484 22

√
N N

VLC 1.1 Memory Corrupt 214299644 94774038 6
√

Y N
RadASM 2.2.1.5 Format String 379353073 151896256 19

√
N N

Zortam MP3 1.5 Division by Zero 1685231785 1205914686 8
√

N N

T.Len(A): Trace Length (All); T.Len(S): Trace Length (Memory/branch operation);
VDT.S: VDT Size; Pv: Prevented; C.E: Crash (abnormal input); C.N: Crash (normal
input)

programs work normally (e.g. VLC). We will talk about this in Section 6.2. We
also use 20 normal inputs to test whether the patches impact the normal run of
those programs. The results show that all the programs run normally (column 8).

We record the time and memory usage in the analysis process including trace
logging, VDT generation and vulnerable code locating. Figure 3 shows the time
and memory usage. Compared with 115 days on average to generate a windows
patch (Appendix A), it is much more efficient. We also measure the performance
impact of our generated patches on the programs as a whole. Figure 4 shows the
results. Since we use three rules to make the patch impact on original program
as little as possible, we find our patch only imposes very little overhead.

Fig. 3. Execution time and memory us-
age of VulLocator

Fig. 4. Performance impact of our gener-
ated patch

6.2 Case Study

In this subsection, we use a case to illustrate our method. We choose VLC 1.1 as
an example here for two reasons. Firstly, we have used a buffer overflow vulnera-
bility as an example in previous section. So we use another type of vulnerability

VulLocator: Automatically Locating Vulnerable Code in Binary Programs 305

here. Secondly, VulLocator does not give a successful patch. We want to know
the reason.

As shown in Figure 5, VulLocator generates a VDT. The left part in the fig-
ure shows part of the corresponding execution trace of the program. At first, Vul-
Locator finds an error in ‘0x50C0C6D0’. It adds the first node to the VDT and
adds ‘edx’ to the worklist. By analyzing the trace, it adds another four nodes
to the VDT and computes the edge lengths. When it finds the edge length be-
tween ‘0x50C0C3E5’ and ‘0x50C0C262’ is 0x37, it tries to locate vulnerable code
in the former four nodes. The four nodes have the same depth. VulLocator finds
the branch instruction at ‘0x50C0C4D3’ that depends on input data. In this fail-
ing trace, eax=0xFFFFFFFF. To fix this problem, VulLocator adds ‘xor eax, eax’
before this branch instruction. We use the same input again and find that no error
happens at ‘0x50C0C6D0’. However, there is another error in the later execution.
VulLocator fails to generate a patch in this case because there are some logic er-
rors in this situation. This problem needs to be analyzed by human manually. We
try to use other methods such as AutoPaG [2] to fix this problem, but they also
fail. Although VulLocator fails to patch, it points out the vulnerable code in the
program. This information could help a lot to fix the error.

Fig. 5. a VLC example

6.3 Discussion

Detection of Vulnerability Exploiting. Currently, we detect whether a vul-
nerability is exploited by checking the following four conditions. 1) eip is data
dependent on input data. 2) Memory index is data dependent on input data. 3)
System default exception handler is triggered. 4) Divisor is zero. If any one of the
four conditions is met, we consider that a vulnerability is exploited. These four
conditions can detect most of the vulnerabilities, especially the arbitrary code
execution vulnerabilities. However, there are still some types of vulnerabilities
that cannot be detected. We could use more complex methods like address space
layout randomization (ASLR) [22], instruction set randomization [23] and taint
analysis [20] in the future.

306 Y. Zhang, K. Chen, and Y. Lian

False Positive and False Negative of Detector. False positive and false
negative may happen in the exploited vulnerability detection phase. For example,
if the program itself allows user to change ‘eip’ or ‘arbitrary memory’, VulLocator
will report a false alarm. In this situation, we can detect attacks by only using
condition 3 (exception handler monitoring). False negative may happen when an
error happens without exception. We could use more sophisticated detectors to
solve this problem.

Correctness of Patch. Since there are many different types of vulnerabilities
including logic errors (e.g., VLC), the sample patch generated by VulLocator may
not work correctly like real patches. It cannot replace the real patch. However, we
wish the vulnerable code information given by VulLocator could help analysts to
generate the real patch. We will pay more attention to patch generation process
in the future.

7 Conclusion

In this paper, we design and develop a proof-of-concept prototype called VulLo-
cator to find vulnerable code from a working exploit which may be previously
unknown. By generating vulnerable dependence tree, VulLocator decreases the
number of instructions which need to be analyzed. Furthermore, VulLocator au-
tomatically generates a sample patch. The patch could not only be used for
temporarily preventing from attacks, but also for analysts to generate more fine-
grained patches. VulLocator does not need any source code. It can locate the
vulnerable code for different vulnerability types including stack/heap/integer
overflow, double free, memory corruption, format string and division by zero.
We use some real exploits to make evaluation. The results show that VulLoca-
tor could find the vulnerable code both efficiently and effectively. We will test
more vulnerability types in the future and we will also try to generate more
fine-grained patches.

Acknowledgements. The authors would like to thank the anonymous re-
viewers for their constructive feedback. This material is based upon work sup-
ported in part by the National Natural Science Foundation of China under
grant no. 61100226 and the National High Technology Research and Develop-
ment Program (863 Program) of China under grant no. SQ2013GX02D01211
and 2011AA01A203 and the Natural Science Foundation of Beijing under grant
no. 4122085.

A Time-Lines of 21 Recent Microsoft Patches

An analysis on 21 recent Microsoft patches (from MS11-087 to MS12-007) shows
that it usually takes 115 days on average to generate and release a patch.

VulLocator: Automatically Locating Vulnerable Code in Binary Programs 307

Table 2. The time-lines of 21 recent Microsoft patches

Advisory CVE# V.P P.R Int Advisory CVE# V.P P.R Int

MS12-007 2012-0007 11/09/2011 01/10/2012 62 MS12-006 2011-3389 09/05/2011 01/10/2012 127

MS12-005 2012-0013 11/09/2011 01/10/2012 62 MS12-004 2012-0003 11/09/2011 01/10/2012 62

MS12-004 2012-0004 11/09/2011 01/10/2012 62 MS12-003 2012-0005 11/09/2011 01/10/2012 62

MS12-002 2012-0009 11/09/2011 01/10/2012 62 MS12-001 2012-0001 11/09/2011 01/10/2012 62

MS11-100 2011-3414 09/09/2011 12/29/2011 111 MS11-100 2011-3415 09/09/2011 12/29/2011 111

MS11-100 2011-3416 09/09/2011 12/29/2011 111 MS11-100 2011-3417 09/09/2011 12/29/2011 111

MS11-099 2011-1992 05/09/2011 12/13/2011 217 MS11-099 2011-2019 05/09/2011 12/13/2011 217

MS11-099 2011-3404 09/09/2011 12/13/2011 95 MS11-098 2011-2018 05/09/2011 12/13/2011 217

MS11-097 2011-3408 09/09/2011 12/13/2011 95 MS11-096 2011-3403 09/09/2011 12/13/2011 95

MS11-095 2011-3406 09/09/2011 12/13/2011 95 MS11-094 2011-3396 09/09/2011 12/13/2011 95

MS11-094 2011-3413 09/09/2011 12/13/2011 95 MS11-093 2011-3400 09/09/2011 12/13/2011 95

MS11-092 2011-3401 09/09/2011 12/13/2011 95 MS11-091 2011-1508 03/23/2011 12/13/2011 264

MS11-091 2011-3410 09/09/2011 12/13/2011 95 MS11-091 2011-3411 09/09/2011 12/13/2011 95

MS11-091 2011-3412 09/09/2011 12/13/2011 95 MS11-090 2011-3397 09/09/2011 12/13/2011 95

MS11-089 2011-1983 05/09/2011 12/13/2011 217 MS11-088 2011-2010 05/09/2011 12/13/2011 217

MS11-087 2011-3402 09/09/2011 12/13/2011 95

V.P: Vulnerability Phrased; P.R: Patch Released; Int: Interval (day)

References

1. CNN:Costof ‘codered’rising(2001),http://articles.cnn.com/2001-08-08/tech/
code.red.II 1 russ-cooper-code-red-ii-internal-networks? s=PM:TECH

2. Lin, Z., Jiang, X., Xu, D., Mao, B., Xie, L.: Autopag: towards automated software
patch generation with source code root cause identification and repair. In: Proceed-
ings of the 2nd ACM Symposium on Information, Computer and Communications
Security, pp. 329–340. ACM (2007)

3. Chen, K., Lian, Y., Zhang, Y.: Automatically generating patch in binary programs
using attribute-based taint analysis. Information and Communications Security,
367–382 (2010)

4. Perkins, J., et al.: Automatically patching errors in deployed software. In: Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, pp.
87–102. ACM (2009)

5. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st International Conference
on Software Engineering, pp. 364–374. IEEE Computer Society (2009)

6. Johnson, N., Caballero, J., Chen, K., McCamant, S., Poosankam, P., Reynaud, D.,
Song, D.: Differential slicing: Identifying causal execution differences for security
applications. In: 2011 IEEE Symposium on Security and Privacy (SP), pp. 347–362.
IEEE (2011)

7. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming ap-
proach to automated software repair. In: Proceedings of the 11th Annual Confer-
ence on Genetic and Evolutionary Computation, pp. 947–954. ACM (2009)

8. Nguyen, T., Weimer, W., Le Goues, C., Forrest, S.: Using execution paths to evolve
software patches. In: Proceedings of the IEEE International Conference on Software
Testing, Verification, and Validation Workshops, pp. 152–153. IEEE Computer
Society (2009)

9. Kranakis, E., Haroutunian, E., Shahbazian, E.: The case for self-healing software.
Aspects of Network and Information Security 47 (2008)

http://articles.cnn.com/2001-08-08/tech/code.red.II_1_russ-cooper-code-red-ii-internal-networks?_s=PM:TECH
http://articles.cnn.com/2001-08-08/tech/code.red.II_1_russ-cooper-code-red-ii-internal-networks?_s=PM:TECH

308 Y. Zhang, K. Chen, and Y. Lian

10. Sidiroglou, S., Keromytis, A.: Countering network worms through automatic patch
generation. IEEE Security & Privacy 3(6), 41–49 (2005)

11. Chilimbi, T., Liblit, B., Mehra, K., Nori, A., Vaswani, K.: Holmes: Effective sta-
tistical debugging via efficient path profiling. In: Proceedings of the IEEE 31st
International Conference on Software Engineering, pp. 34–44. IEEE Computer So-
ciety (2009)

12. Tucek, J., Newsome, J., Lu, S., Huang, C., Xanthos, S., Brumley, D., Zhou, Y.,
Song, D.: Sweeper: A lightweight end-to-end system for defending against fast
worms. ACM SIGOPS Operating Systems Review 41(3), 128 (2007)

13. Smirnov, A., Chiueh, T.: Automatic patch generation for buffer overflow attacks.
In: The Third International Symposium on Information Assurance and Security,
pp. 165–170 (2007)

14. Weiser, M.: Program slicing. IEEE Transaction on Software Engineering, 352–357
(1984)

15. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its
use in optimization. ACM Transactions on Programming Languages and Systems
(TOPLAS) 9(3), 319–349 (1987)

16. Rinard, M., Cadar, C., Dumitran, D., Roy, D., Leu, T., Beebee Jr., W.: Enhanc-
ing server availability and security through failure-oblivious computing. In: Pro-
ceedings of the 6th Conference on Symposium on Opearting Systems Design &
Implementation, vol. 6, p. 21. USENIX Association (2004)

17. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proceedings of the
12th Annual Network and Distributed System Security Symposium (2005)

18. Newsome, J., Brumley, D., Song, D.: Vulnerability-specific execution filtering for
exploit prevention on commodity software. In: Proceedings of the 13th Symposium
on Network and Distributed System Security (NDSS) (2006)

19. Crandall, J., Su, Z., Wu, S., Chong, F.: On deriving unknown vulnerabilities from
zero-day polymorphic and metamorphic worm exploits. In: Proceedings of the 12th
ACM Conference on Computer and Communications Security, pp. 235–248. ACM,
New York (2005)

20. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,
P.: Vigilante: end-to-end containment of internet worms. In: Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles, pp. 133–147 (2005)

21. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for fingerprinting zero-
day attacks for advertised honeypots with automatic signature generation. In: Pro-
ceedings of the 2006 EuroSys Conference, pp. 15–27 (2006)

22. Baratloo, A., Singh, N., Tsai, T.: Transparent run-time defense against stack
smashing attacks. In: Proceedings of the USENIX Annual Technical Conference,
pp. 251–262 (2000)

23. Kc, G., Keromytis, A., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: Proceedings of the 10th ACM Conference on
Computer and Communications Security, pp. 272–280. ACM (2003)

24. Luk, C., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 190–200. ACM (2005)

25. Exploit DB: Exploit database (2012), http://www.exploit-db.com

http://www.exploit-db.com

Software Protection with Obfuscation and Encryption

Vivek Balachandran and Sabu Emmanuel

School of Computer Engineering, Nanyang Technological University
Singapore

vivek2@e.ntu.edu.sg, asemmanuel@ntu.edu.sg

Abstract. Software code released to the user has the risk of reverse engineering
attacks. Software obfuscation is one of the techniques used to make the reverse
engineering of software programs hard. In this paper, we propose an obfuscation
algorithm, which is applied to the assembly code generated by the compiler. Our
method uses both obfuscation and encryption, which complement each other thus
making reverse engineering harder. The main idea of the algorithm is to hide the
control flow information in the data area in encrypted form and removing the con-
trol flow instructions from the program. During execution time, these instructions
are reconstructed, thereby, preserving the semantics of the program. The stored
control flow information is decrypted at runtime and used by self modifying code
to reconstruct the control flow instructions. Experimental results indicate that the
algorithm performs well against automated attacks.

1 Introduction

The 2010 annual study on software piracy [1] conducted by Business Software Alliance
(BSA) and IDC shows that the total loss for the software industry is about 59 billion
US dollars. This figure has nearly doubled in real terms from the year 2003. In many
of the intellectual property thefts reported, some employ software reverse engineering
techniques. In 1992 Atari Games v. Nintendo [2], Sega v. Accolade [6] in 1991, Sony
v. Connectix [3] in 2000 and Blizzard v. bnetd [4,5] in 2002 are some of the law suits
involving software thefts using reverse engineering.

In addition, reverse engineering a binary program, to a higher level abstraction poses
the threat of exposing vulnerabilities of the program. An adversary may exploit it for his
advantage. Inserting Trojans, viruses and worms, denial of service are common attacks
on programs. The threat by these attacks can be lethal; the recent stuxnet attack [7] is an
example. Stuxnet virus was designed to cause damage to Siemens industrial equipment.
It caused damage to the machinery at Irans uranium enrichment facility. In this era of
computerization, where software plays important role in security and business, security
measures against reverse engineering demands high importance.

One of the approaches to make software reverse engineering harder for an attacker is
obfuscation. Obfuscation [8,19] is the process of converting a program into a semanti-
cally equivalent but hard to understand form. In an ideal case, obfuscation should be so
strong that it is easier for an attacker to develop the program from scratch than reverse
engineering it.

Recent papers on obfuscation [9-13] concentrate more on obscuring the control flow
of binary program. Different concepts, like signals [9], dynamic code mutation [10, 11],

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 309–320, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

310 V. Balachandran and S. Emmanuel

control flow flattening [12], are used in attaining binary level control flow obfuscation.
Disrupting the control flow of the program makes it harder for an adversary to under-
stand the logical flow of the program code. The basic idea is to remove the control flow
instructions from the code and store it in a different module, signal handler, stack or
function, and during runtime this module is invoked and control flow is re-established.
An attacker can retrieve the control flow addresses stored in the extra modules and
custom script his own automated de-obfuscation method in conjunction with reverse
engineering tools like IDAPro. We address this problem in our method by encrypting
the stored control flow addresses.

In obfuscation based on signals described in [9], trap instructions are used to replace
control flow instructions like call, jump and return in the binary program. During exe-
cution these trap instructions raises a signal triggering the programmed signal handler,
which directs the system control to the original target address. One of the disadvantages
of this method is that an adversary can find the control flow by analyzing the signal han-
dlers code section. Protecting the new module, the signal handler, is also a concern for
this method.

In [10], a self modifying code based algorithm is proposed.The control flow instruc-
tions like jmp are replaced with normal instructions like mov. Obfuscation algorithm
inserts self modifying code in the program which converts the mov instruction back to
jmp at runtime. A disadvantage of this method is that the target address of the jmp in-
struction is stored in the destination field of mov instruction which is visible when the
code is disassembled.

In the obfuscation method based on dynamically mutating code proposed in [11],
parts of procedures are removed and a stub is placed at the entry point of the procedure.
The stub invokes an editing engine which inserts the missing instructions during run-
time. The extra module, the editing engine, is a disadvantage as it draws the attention of
an attacker. This module has the information needed to de-obfuscate the program and
hence extra protection mechanism should be implemented to protect the editing engine.

Control flow flattening is another control obfuscation method [12] to confuse the dis-
assembler about the execution sequence of the procedure. The idea is that, all the basic
blocks will be assigned with the same predecessor and successor block. Performance
overhead in terms of space and time is high for this method. Instruction disassembly
error is also less for control flow flattening.

In [16], a method which combines obfuscation and encryption is discussed. The basic
method is to replace the control flow jumps with a function call to another procedure
(M-process). M-process acts as a jump table and is encrypted in parts and decrypted on
demand. The advantage of this method is that only a small part of the M-process will
be open at a time. Given the knowledge of the algorithm, an adversary can decrypt the
jump table procedure statically. The encryption keys are stored in M-process and the
part which is open has the key to the next encrypted part. Thus with the knowledge of
the algorithm an attacker can decrypt the M-process statically.

In this paper, we discuss a new binary obfuscation technique, which uses obfuscation
and encryption hand in hand to provide better security to the binary programs. We use
dynamic code mutation to attain control flow obfuscation. The control flow instructions
of the program are replaced by ordinary instructions and the control flow addresses are

Software Protection with Obfuscation and Encryption 311

stored in data area. The obfuscated program is corrected dynamically at run time with
the help of control flow addresses stored in data area. Encryption is used to protect the
stored control flow addresses. The control flow addresses are decrypted on demand and
is re-encrypted after use, by random keys generated dynamically during runtime. Be-
cause of the obfuscations, unreachable code region will look like valid code area to the
attacker. Junk decrypt functions with wrong keys are inserted here, thereby confusing
an attacker who is trying to find a key.

The paper is organized as follows. Our algorithm is discussed in detail in section 2.
Section 3 discusses the experimental evaluation of our method, discussing the perfor-
mace of our algorithm against automated attacks.

2 Proposed Method

Our algorithm takes an assembly program as input and gives the binary program as out-
put. The algorithm has two phases. The first phase is obfuscation. In this phase control
flow obfuscation is achieved using self modifying code obfuscation technique. This ob-
fuscation will change the semantics of the program which is corrected dynamically by
self modifying code. The second phase of the algorithm is encryption, which encrypt
the information required for self modification of the program at runtime. In the first pass
we analyze the program to find the suitable instructions for obfuscation. Obfuscation,
the first phase of our algorithm, as shown in algorithm 1, is described in detail in the
following subsection:

Algorithm 1. Obfuscation pass-1
Require: Assembly program as input
Ensure: Control flow obfuscation

D ← New Data Area
Func List ← Find User Defined Functions
for each Function in Func List do

Jmp List ← Find Jump Instructions to be Obfuscated
for each Jump in Jump List do

Tgt Add ← Extract Target Address
Store Target Address in D
S ← Size of Jump Instruction
N ← Normal Instruction of Size S
Replace Jump Instruction with N
Add Re− construction Instructions
Add Re− obfuscation Instructions

end for
end for

2.1 Obfuscation

Create New Data Area. The first step is to create a new data area to store the target
address of the jump instructions that are going to be obfuscated. The assembly code for

312 V. Balachandran and S. Emmanuel

this has to be added to the input program, during obfuscation time. This data area is
also used to store the encryption keys, used to encrypt and decrypt the target addresses.

Find Functions to Obfuscate. Once the data area is created the algorithm will scan
the assembly program to find suitable functions for obfuscations. A program will have a
set of system procedures and external library calls associated with it. There is no point
in obfuscating these functions as an attacker can always get the unobfuscated binary
version of these functions. Hence, in our implementation we consider the user defined
functions as our targeted functions for obfuscation.

Finding Instructions to Camouflage. An important step of the algorithm is to identify
the instructions that have to be camouflaged. The trivial method is, randomly picking
instructions from the code area. But, in our method the jump instructions are chosen to
be camouflaged for the following reasons.

Jump instructions decide the control flow of a procedure in the program. By obscur-
ing the jump instructions in the procedure we are thus obfuscating the control flow of
the program. Instructions which give information about the control flow of the program
will help the adversary to easily understand the logic of the program. Another motiva-
tion for considering jump instructions to be camouflaged is the scope it provides for
inserting junk bytes in the program as explained in [14].

Storing Target Address to Data Area. Once the jump instruction to be obfuscated
is decided, the next step is to extract the target address from the jump instruction. In
the data area created, space will be allotted to store the target address. The assembly
program is modified in such a manner that the target address is then stored in the data
area.

Obfuscating the Jump Instructions. The jump instruction can be obfuscated after
storing the target address to the data area. The size of the jump instruction is calculated
and the jump instruction is replaced by one or more instructions to fill up the void. The
easiest approach is to replace the jump instruction with nop no operation, instructions.
If the jump instruction is of size 2 bytes then, the jump instruction is replaced by two
nop instructions. We can use other normal instructions like mov, add, mul, etc. The key
factor is that the camouflaging instruction(s) should have size equal to or more than of
that of the jump instruction. This is to ensure that there are enough bytes in the program
that can be modified to re-construct the jump instruction during runtime.

By replacing jump instruction with other normal instruction, the program loses its
control flow information. When an automated disassembler tries to disassemble the
program, it assumes the control flows just to the next address location after the normal
instruction. In figure 1, the camouflaged jmp instruction is at address location A1 in
basic block B1. The jmp instruction is camouflaged into mov instruction and the recon-
struction instructions are added before the camouflaged instruction

Adding Re-construction Instructions. Camouflaging the instructions in the program
as explained in the previous section changes the semantics of the program. Running this
program in this form gives erroneous results and most probably crashes the program.

Software Protection with Obfuscation and Encryption 313

And hence, the program has to be changed back to its original form before it gets exe-
cuted. In our method we do this dynamically at runtime with the help of self modifying
code.

Reconstruction instructions which reconstruct jump instruction at runtime are
inserted in a block that precedes the jump instruction. The block in which the re-
construction instructions are added should be a dominator block. Block A is a domi-
nator block to block B if and only if block A precedes block B in all execution paths.
The insertion of reconstruction instructions are shown in figure 1.

In the example shown in figure 1, the jmp instruction is replaced by mov instruc-
tion. The opcode of jmp instruction is 0xE9 and that of mov instruction 0xB8. We add
an instruction to XOR the address location of mov instruction with 0x00000051. This
changes the instruction to jmp offset 0. Now the next step is to add the address offset
stored in the data area to the instruction. We add an instruction to add the value in the
global variable to the instruction address. Now the exact jmp instruction is created at
the address location of mov instruction.

In figure 1, the camouflaged jmp instruction is at address location A1 in basic block
B1. The jmp instruction is camouflaged into mov instruction and the reconstruction
instructions are added before the camouflaged instruction

Adding Re-obfuscation Instructions. The addition of re-construction instructions
makes sure that the obfuscated program is semantically equivalent to the original pro-
gram. Now, after the execution of the re-construction instructions the camouflaged in-
struction is in its original form. An adversary tracks the image of the program at regular
intervals will be able to find the de-obfuscated instructions.

To address this problem, we introduce the concept of dynamic re-obfuscation. The
jump instruction is dynamically camouflaged at runtime. This can be achieved by
adding extra re-obfuscation instructions in the succeeding blocks of the jump instruction
to camouflage it back to ordinary instructions. Note that, the re-obfuscation instruction
should be inserted in all the successor blocks as the execution path is chosen dynami-
cally at runtime.

In the example shown in figure 1, re-obfuscation is done by XOR-ing the jmp in-
struction with 0x00000051 to get the instruction: mov eax, 0

According to the control flow of the example in figure 1, the basic block B3 fol-
lows after the execution of the jmp instruction. The re-obfuscation instructions for the
program are hence added in the beginning of the basic block B3.

Randomization of Re-construction Instructions. Randomization of the re-
construction instructions are used so that the attacker wont be able to infer any knowl-
edge by searching for particular pattern of instructions. In the example shown in the
paper we use xor and add. We can use various combinations of arithmetic and logical
operations to achieve the same result. The selection of the set of instructions happens at
random during obfuscation time. So, an adversary cannot look at specific instructions
alone to sort out obfuscation points.

Randomization of Re-construction Locations. The only condition for the block in
which the reconstruction instructions are added is that the block should dominate [17]

314 V. Balachandran and S. Emmanuel

Fig. 1. Obfuscation of jump instruction

the instruction to be camouflaged. The reconstruction instruction can be added in any
of the dominators [17] of the camouflaged instruction. The selection of the block from
the list of dominators happens at random during obfuscation time.

2.2 Encryption

Encryption is the second phase of our algorithm. In this phase the stored target addresses
in the newly created data area will get encrypted. In this pass the target addresses in
the newly created data area are encrypted using randomly generated symmetric keys
at obfuscation time. The symmetric keys are stored in the data area and decryption
and re-encryption functions are added to the assembly program to decipher the target
addresses on demand. The output of this pass in the algorithm is the final obfuscated
binary program. Algorithm 2, is the algorithm for second pass. The detailed steps of the
algorithm are as follows

Software Protection with Obfuscation and Encryption 315

Algorithm 2. Obfuscation pass-2
Require: Assembly program from pass-1, D- Data area created in pass 1
Ensure: Control flow obfuscation with encryption

for each Tgt Add in D do
K ← Create Random Key
Add K to D
Encrypt Tgt Add with Key
Instr ← Call Decrypt
Insert Instr before Camouflaged Instruction
Instr ← Call ENcrypt
Insert Instr after Camouflaged Instruction
Jmp List ← Find Jump Instructions to be Obfuscated

end for
Do Randomization
Assemble to Binary Program

Create and Store Random Symmetric Key. For each target address stored in the
newly created data area, we assign one symmetric key. The symmetric key is randomly
assigned during obfuscation time. These keys are used to encrypt the target addresses
stored in the newly created data area. The keys are then stored along with the encrypted
target addresses in the newly created data area. The position of the key and the target
address in the data area are randomly assigned.

Encrypting the Target Address. Once the keys are generated, they are used for en-
crypting the target address in the newly created data area. During obfuscation time, the
target addresses get encrypted using the corresponding key. The encryption method we
use is XOR. The target address is XOR-ed with the key and is then stored in the data
area as shown in Figure 5. The target addresses does not share keys, each target address
use a separate key, and hence the strength of the encryption is as good [18]. Another
advantage of using XOR is its simplicity.

Adding Decryption Method. With the encrypted target address in the newly created
data area if you try to run the program, it will crash. This is because the correct target
address is required for reconstructing the camouflaged jump instruction. Therefore the
target address should be decrypted to its original values before the reconstruction in-
structions use it. The instruction to call the decryption function is thus added before the
camouflaged instruction as shown in figure 2, during obfuscation time. The decryption
function just takes one input parameter, which is the location of key, in the data area.

3.1)Runtime decryption method: We have designed decryption algorithm in such a
manner that not much information about the decrypted data is understood by analyzing
the decryption function. The input to the decryption function is a location in the data
area, where the key to be used for decryption is stored. The decryption algorithm reads
the key from the data area. Then, each element in the newly created data area is XOR-ed
using the key. Since the decryption and encryption functions are both XOR, this will
decrypt the target address. So, the specific target address to which the key was associ-
ated gets decrypted. All other target addresses and keys stored in the newly created data
area changes due to the XOR-ing.

316 V. Balachandran and S. Emmanuel

Fig. 2. Assembly program after obfuscation

One of the advantages of this method is that an attacker will not be able to know
which specific target address the key is associated to. Another advantage is that during a
decryption process every other target address gets modified along with their keys. Since,
every element in the data area is XOR-ed; the other keys are also XOR-ed. Hence both
the keys and the target addresses are XOR-ed with the current key. This changes both
of them in such a way that the new keys can decrypt their target addresses when used
by the decryption algorithm. Algorithm for decryption is shown in algorithm 3.

Algorithm 3. Decryption
Require: Key location - K, Data Area - D
Ensure: Decryption of the target address

KEY ← D [K]
for each Xin D do

X ← XxorKEY
end for

Adding Encryption Method. Call to encryption function is added to the successive
blocks of the camouflaged instruction as shown in figure 2, during obfuscation time.
During program execution, decryption of the target address happens before the execu-
tion of the reconstructed camouflaged jump instruction. At the point of jump instruc-
tion, the target address is decrypted and is in the true form. So after the execution of
the jump instruction, the re-obfuscation instructions in the successive blocks camou-
flage the jump instruction again. Just after this the encryption function is called. The
encryption function randomly generates a new key and encrypts the target address with
the new key, at runtime.

Software Protection with Obfuscation and Encryption 317

4.1)Runtime encryption method: Encryption method randomly generates a key at
runtime. This key is used to encrypt the newly created data area, entirely. In our case,
the new key is XOR-ed with every element in the newly created data area. This will
change the keys and the target addresses dynamically. Algorithm 4, shows the encryp-
tion algorithm.

Algorithm 4. Encryption
Require: Data Area - D
Ensure: Decryption of the target address

KEY ← Random ()
for each Xin D do

X ← XxorKEY
end for

Randomization in Data Area. We use the newly created data area to store both the
keys and the target addresses. There is no specific pattern or location for storage of keys
and the target addresses. Completely random locations are assigned for each key and
target address. Looking just at the pattern of storage one cannot conclude which is a
key and which is target address. Similarly, one cannot find the relationship between a
key and a target address by just looking at the data storage pattern.

Junk Decrypt and Encrypt Call Insertions. The argument to the decryption function
call is the location to a key stored in the data area. So, if an adversary sees a decrypt call
in the program he can infer that the argument used in that call is a location for the key.
This is not desirable. Hence, decryption and encryption calls with wrong key locations,
are inserted in the program. These insertions will be done at unreachable code area so
that it will not affect the semantics of the program.

3 Experimental Evaluation

In this section we evaluate the performance of the proposed algorithm against auto-
mated attacks. We tested the potency of our algorithm with IDAPro 6.2 [15], and mea-
sured the instruction disassembly error and control flow error caused by the obfuscation.
The increase in the size and time complexity due to the addition of self modifying code
and encryption/decryption functions are also measured. Microsoft Visual Studio 10.0 is
used to generate the assembly programs for obfuscation.

Table 1. Experimental Evaluation

Programs Instr. disas. error Control flow error Time overhead Space overhead
Ttotal Tdisasm CFinstr CFGbefore CFGafter CFCFG Tbefore Tafter Timeovh Sbefore Safter Sovh

Qsort 199 28 85.9% 11 5 54.4% 310 420 1.35 44 44.5 1.01
Mergesort 397 114 71.3% 29 10 65.5% 770 1100 1.42 74 75 1.01
Huffman 1904 449 73.6% 191 69 63.9% 1320 1550 1.17 60 66.5 1.10
Encoding

Gauss 348 30 91.4% 40 16 60% 890 1090 1.22 67 69 1.02
Jordan
Mean 78.2% 63.1% 1.26 1.04

318 V. Balachandran and S. Emmanuel

3.1 Instruction Disassembly Error

We evaluate the instruction disassembly error with confusion factor. Confusion factor
is the fraction of instruction address that the disassembler fails to identify [14]. Ttotal is
the total number of actual instruction addresses before obfuscation and Tdisasm is the
total number of instruction addresses properly recognized by the disassembler, then the
confusion factor is defined by the following,

CFinstr =
|Ttotal − Tdisasm|

Ttotal
(1)

Table 1 shows the instruction confusion factor of assembly programs generated by Mi-
crosoft Visual Studio and the obfuscated assembly. The average instruction disassembly
error of the test programs is 78.2%. This means that the disassembler succeeds in re-
covering only 21.8% of the instructions properly, on an average.

3.2 Control Flow Disassembly Errors

We calculated the number of conditional and unconditional jump instructions in the pro-
gram before and after the obfuscation. If CFGbefore is the total number of conditional
and unconditional jump instructions in the program and CFGafter is the total number
of jump instructions in the obfuscated program. CFcfg is the confusion factor in the
control flow of the program,

CFcfg =
|CFGbefore − CFGafter|

CFGbefore
(2)

The ratio gives the control flow confusion caused by the obfuscation as shown in
Table 1.

3.3 Time Overhead

Obfuscation will have effect on the time complexity of the program. With the insertion
of new instructions more instructions are computed during runtime. In this section we
will discuss the increase in the time complexity due to obfuscation. We evaluate the
effect of obfuscation on execution speed with Timeovh defined as,

Timeovh =
Timeafter
Timebefore

(3)

Tbefore refers to the execution time of the original file and Tafter refers to that of the
obfuscated code. An average time overhead of 1.26 is caused by our algorithm.

3.4 Program Size Overhead

Obfuscation will have effect on the size of the program. Spaceovh defines the increase
in the size of the program.

Spaceovh =
Spaceafter
Spacebefore

(4)

Software Protection with Obfuscation and Encryption 319

The average increase of binary programs after obfuscation is 1.04 times of the original
size as shown in Table 1.

3.5 Comparison with Other Algorithms

The performance of our algorithm is compared with three algorithms, namely signal-
based obfuscation [9] (SBC), self modifying code based algorithm [10] (SMC) and
M-Process based obfuscation [16]. Figure 3, shows the comparison on the basis of
instruction disassembly error, control flow error and space and time efficiency of our
algorithm with the other two. Our algorithm has better instruction disassembly error,
control flow error, space efficiency and comparable time efficiency.

Our method has better instruction disassembly error and control flow error and space
efficiency than the other two algorithms. Time overhead of our algorithm is comparable
with the other algorithms. We compared our algorithm with M-Process based obfusca-
tion because it is the only other obfuscation algorithm, we found, which uses encryption
and obfuscation hand in hand. Our algorithm has a better size and time overhead com-
pared to [16]. The measures of instruction disassembly error and control flow error were
not presented in [16] and hence we compare our algorithm with [16] for space and time
efficiency.

Fig. 3. Comparison with other algorithms

4 Conclusion

In this paper we proposed an algorithm to increase the difficulty in reverse engineering
binary programs by combining both software obfuscation and encryption so that it gives
better security. The control flow information from the program are removed from the
code area and stored in the data area and reconstructed dynamically on demand. The
control flow information is stored in an encrypted form in the data area making it hard
for an attacker to infer about the control flow by statically analyzing the data area.
The concept of adding junk bytes and randomization are used to make the disassembly
process harder. The evaluation results show that the proposed method is effective in
confusing professional disassemblers like IDAPro better than the competing algorithms.
An average instruction disassembly error of 78% and control flow error of 63% are
obtained by our method with the overhead in time of 1.26 and space of 1.04.

320 V. Balachandran and S. Emmanuel

References

1. BSA Global Software Piracy Study,
http://portal.bsa.org/globalpiracy2010/ (last accessed June 12, 2012)

2. Digital Law Online, Reverse Engineering,
http://digital-law-online.info/lpdi1.0/treatise25.html
(last accessed June 12, 2012)

3. PR Newswire, http://www.prnewswire.com/news-releases/
siia-files-six-new-software-piracy-lawsuits-against-
fraudulent-online-vendors-across-the-country-69854267.html (last
accessed June 12, 2012)

4. Blizzard, www.blizzard.com (last accessed June 12, 2012)
5. Bnetd, Wikipedia, http://en.wikipedia.org/wiki/Bnetd (last accessed June

12, 2012)
6. Digital Law Online,

http://digital-law-online.info/cases/24PQ2D1561.html
(last accessed June 12, 2012)

7. StuxNet, Wikipedia, http://en.wikipedia.org/wiki/Stuxnet (last accessed
June 12, 2012)

8. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. Tech-
nical Report 148, University of Auckland (1997),
http://www.cs.arizona.edu/collberg/Research/Publications/
CollbergThomborsonLow97a/LETTER.pdf (last accessed June 12, 2012)

9. Popov, I.V., Debray, S.K., Andrews, G.R.: Binary obfuscation using signals. In: USENIX
Security Symposium, pp. 1–16 (2007)

10. Shan, L., Emmanuel, S.: Mobile agent protection with self-modifying code. Journal of Signal
Processing Systems 65, 105–116 (2010)

11. Madou, M., Anckaert, B., Moseley, P., Debray, S., De Sutter, B., De Bosschere, K.: Soft-
ware protection through dynamic code mutation. In: Information Security Applications,
pp. 194–206 (2006)

12. Wang, C., Davidson, J., Hill, J., Knight, J.: Protection of software-based survivability mech-
anisms. In: Dependable Systems and Networks, pp. 193–202 (2001)

13. Balachandran, V., Emmanuel, S.: Software code obfuscation by hiding control flow informa-
tion in stack. In: IEEE Workshop on Information Forensics and Security (2011)

14. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static dis-
assembly. In: ACM Conference on Computer and Communications Security, pp. 290–299
(2003)

15. Hex-Rays, www.hex-rays.com/ (last accessed June 12, 2012)
16. Ge, J., Chaudhari, S.: Control flow based obfuscation. In: ACM Digital Rights Management

(2005)
17. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools,

2nd edn. Addison Wesley (2006)
18. Stallings, W., Brown, L.: Computer Security: Principle and Practice, 2nd edn. Prentice Hall

(2007)
19. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and stealthy

opaque constructs. In: ACM Symposium on Principles of Programming Languages, vol. 25,
pp. 184–196 (1998)

http://portal.bsa.org/globalpiracy2010/
http://digital-law-online.info/lpdi1.0/treatise25.html
http://www.prnewswire.com/news-releases/siia-files-six-new-software-piracy-lawsuits-against-fraudulent-online-vendors-across-the-country-69854267.html
http://www.prnewswire.com/news-releases/siia-files-six-new-software-piracy-lawsuits-against-fraudulent-online-vendors-across-the-country-69854267.html
http://www.prnewswire.com/news-releases/siia-files-six-new-software-piracy-lawsuits-against-fraudulent-online-vendors-across-the-country-69854267.html
www.blizzard.com
http://en.wikipedia.org/wiki/Bnetd
http://digital-law-online.info/cases/24PQ2D1561.html
http://en.wikipedia.org/wiki/Stuxnet
http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborsonLow97a/LETTER.pdf
http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborsonLow97a/LETTER.pdf
www.hex-rays.com/

Secure Content Delivery in DRM System

with Consumer Privacy

Dheerendra Mishra and Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology Kharagpur, India
{dheerendra,sourav}@maths.iitkgp.ernet.in

Abstract. Unauthorized access and illegal content distribution cause
huge revenue loss to the rights holders. Digital Rights Management
(DRM) is a system, which is developed to prevent illegal content con-
sumption. To ensure authorized content consumption, most of the
existing DRM systems lose consumer privacy. However, a scalable DRM
system should maintain secure and flexible content distribution which
can protect privacy without losing accountability. In this article, we
present a secure content distribution mechanism in which involve par-
ties mutually authenticate each other and establish secure session which
offers promise for secure content delivery. Moreover, content delivery
mechanism does not reveal consumers’ preferences and system learns
nothing except what must be learned to achieve accountability, which
ensures consumers’ privacy.

Keywords: Digital rights management, mutual authentication, elliptic
curve cryptography, pairing-free identity based cryptosystem, privacy.

1 Introduction

Digital Rights Management (DRM) has emerged as a solution for the digital con-
tent copyright protection in the response to the piracy threats. It broadly refers
to the set of policies, techniques and tools which manages the access control on
the digital contents [1]. In DRM, content is encrypted using standard content
encryption techniques and the access of these contents is controlled using the dig-
ital license [2]. A remote user achieves the license in the system from the license
server through public channel like Internet. A system should adopts a secure and
authorized content distribution framework such that only authorized consumer
license request should proceeds and can restrict adversary attacks. Moreover, in
traditional DRM systems, consumers content consumption information (prefer-
ences) revels during the license distribution and content consumption tracking.
In general, Preference reveals consumer’s habit which he/she do not want to
make public. This information can be collected and used for future business or
personal benefit. Many papers proposed models and standards for distributing
digital content, a few are, Open Mobile Alliance (OMA), Moving Picture Ex-
perts Group (MPEG), Internet Streaming Media Alliance (ISMA), Coral, Digital

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 321–335, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

322 D. Mishra and S. Mukhopadhyay

Media Project (DMP), Internet Streaming Media Alliance (ISMA), Advanced
Access Control System (AACS), etc., with different approaches, implementa-
tions, names and ways to specify the content usage rules. However, DRM is
being used to accumulate consumers’ tracking habits, surfing habits, personal
information, and technical data; frequently use and disclose of this data for sec-
ondary purposes without informing to the consumer, elevates serious privacy
concern. In general, it is noticed that DRM systems are privacy encroaching and
many times violate privacy [3]. The privacy threats discourage the consumer us-
ing DRM. The maximization of privacy protection gives significant commercial
benefits where these benefits may enhance the public image of DRM system.
It leads to increase in the consumer ratio and makes many more individuals
comfortable taking part in digital business.

Related Work. The traditional DRM systems are the client-server model, i.e.,
the system involves single distributor [2, 4–7]. Existing systems may not be suffi-
cient to provide flexible and scalable business models that can handle geograph-
ical diversity. However, multi-distributor DRM system provides an efficient and
flexible content distribution mechanism that supports existing business models
and flexible enough to extend adopting future business model [8]. The multi-
distributor DRM architecture has been used in [8–13] which is an alternative
to the traditional two party DRM system. It provides the way to implement
different strategies in diverse geographical regions. In addition, it achieves the
flexibility where user can select the distributor of his choice who offers better
services, promotions and discounts. The articles in [11–13] describe secure key
management scheme which restricts insider as well as outsider attacks. However,
these schemes [8–13] do not offer promise for privacy rights management. The
scheme [9] provides the transparent content distribution mechanism while [8, 14]
gives rights violation detection mechanism. Schemes [9, 8] protect consumer’s
privacy during rights violation detection but fail to support during license ac-
quisition process. Thomas et al. [10] provided a secure multimedia content dis-
tribution mechanism that hides consumer’s preferences during content download
but fails to conceal privacy during license acquisition.

Articles [15–21] present privacy preserving digital rights management system.
Anonymous-cash-based scheme in [17], content key is issued to the requester
without verifying his/her authenticity which provides full anonymity to the
consumer during content access. But, anonymous content distribution makes
rights violation detection impossible. Scheme [15] and blind decryption mechan-
ics in [17] verify the authenticity of the user. Although in both the schemes, it
is most likely that the same key can be acquired by two or more users. This
makes the identification of traitor impractical. The schemes [16, 18] issue the
license only for authorized user such that user’s privacy remain preserved dur-
ing the license acquisition but both the system does not hide purchaser’s total
expenses over the digital goods. Win et al. [19] presented a privacy protection
mechanism that protects the consumer preference and hides consumer payment
information using anonymous payment system [22]. However, tracking of traitor
is not possible in this model, as system issues token anonymously to the user and

Secure Content Delivery in DRM System with Consumer Privacy 323

license server only verifies the authentication of the anonymous token instead of
requester. The schemes [20, 21] presents strong privacy protection mechanism
which does not violate accountability requirement. Schemes [15–19, 23] provides
solution to privacy rights management, although do not present secure content
distribution framework. The schemes [24, 25] propose authentication mechanism
that ensure authorized and secure communication between DRM principals but
do not address privacy issue.

Our Contribution. In this paper, we focus on enhancing the functionality
of DRM system by making content distribution flexible and secure. Proposed
content distribution mechanism is suitable for more innovative and scalable
electronic commerce. We consider a DRM model with multi-distributors in-
stead of single-distributor. A local distributor can better explore potentially un-
known market for the owner and make strategies according to the local market
requirement.

Proposed system manages transparent and secure content distribution. To
achieve transparency, owner separates the content key usages information and
key and provides these to independent authorities, respectively license server
and distributor. In otherworld, content key usage information (which key is for
which content) is with the distributor and content key is with license server.
To achieve security, involve parties authenticate each other and established a
common session key for each session. Further, we present an efficient privacy pro-
tection mechanism without violating accountability parameters. Privacy mech-
anism conceals consumers’ preferences from DRM principals such that they do
not come to know “which content a user is achieving in the system”.

The rest of the paper is organized as follows: In Section 2, we describe the
basic framework of DRM system and give brief background of elliptic curve
group. Section 3 presents proposed content distribution framework. Section 4
provides the solution to privacy rights management. We analyze our scheme in
Section 5. Comparison of our scheme with some existing schemes is presented in
Section 6. Finally, in Section 7, we draw a conclusion.

2 Preliminaries

2.1 DRM Framework

Existing DRM systems have different frameworks in terms of implementation,
work-flows, usage rules, component, etc. However, most of the systems have the
similar architecture. A review of general DRM system is presented in [6]. In
general, DRM systems involve four core component: owner, distributor, license
server and consumer [1]. Each component is the collection of some servers, logical
devices and applications. In DRM, owner holds the rights of digital contents.
He encrypts the unprotected contents and provides the protected content with
content information to the distributor and content keys with usage rules to the
license server. Distributor facilitates the distribution of protected content freely
and license server provides the digital license to the authorized consumers.

324 D. Mishra and S. Mukhopadhyay

2.2 Background of Elliptic Curve Group [26, 27]

Let F/Fq denotes an elliptic curve E over a prime finite field Fq, defined by an
equation

y2 = x3 + ax+ b, for a, b ∈ Fq

and with the discriminate

Δ = 4a3 + 27b2 �= 0

The points on E/Fq together jointly an extra point Θ called the point at infinity
form a group

G = {(x, y) : x, y ∈ Fq; (x, y) ∈ E} ∪ {Θ},

For a given point P = (xP , yP), where xP is called the X - coordinate of P ,
and yP is called the Y - coordinate of P . The group addition operation in G is
defined below.

(i) P + Θ = Θ + P = P for all P ∈ G.
(ii) If P = (xP , yP) ∈ G, then −P = (xP ,−yP) and (xP , yP)+(xP ,−yP) =
Θ.
(iii) If P = (xP , yP) ∈ G and Q = (xQ, yQ),where P �= Q, then P + Q =
(x3, y3), where x3 = λ2 − xP − xQ (mod p), y3 = λ(xP − xQ)− yP (mod p)

and λ =
yQ−yP

xQ−xP

The scalar multiplication on the group G is defined as k · P = P + P + . . . +
P (k times). The following problem defined over G is assumed to be intractable
within polynomial time. The security of CL-PKC in e(·, ·) based on the hardness
of following computational problems:

Discrete Logarithm Problem: For a given generator P of G1 and Q ∈ G1,
find an element a ∈ Z∗

q such that aP = Q.

Computational Diffie-Hellman (CDH) Problem: Let P be a generator of
G1. Given 〈P, aP, bP 〉 ∈ G1 compute abP for a, b ∈ Z∗

q .

3 Protocol

3.1 Overview of Multi-distributor DRM System

Multi-distributor DRM system involves namely the system owner (O), license
server (L), distributors (D1, D2, · · · , Dn), and consumer (C). This system works
under following assumptions:

− System accommodates multiple distributors where the deployment of dis-
tributors depends on the requirement of system and diversity of geographical
areas.

− Each entity have public private key pair in the system.

Secure Content Delivery in DRM System with Consumer Privacy 325

− Involve parties mutual authenticate each other and established a session key.
− Distributor receives the payment from the consumer while license server

generates the license over the consumers’ request.
− Owner receives royalty from the the distributors and usages license statistic

from the license server.

3.2 Content Encryption

Owner appoints the distributors, namely D1, D2, . . . , Dn according to system
requirement in the diverse geographical regions to facilitate flexible content dis-
tribution. Let the system have r contents, namely M1,M2,M3, · · · ,Mr with
contents identities IDM1 , IDM2 , IDM3 , . . . , IDMr . Then, the content distribution
mechanism is as follows:

• O generates distinct symmetric keys K1,K2,K3, . . . ,Kr and encrypts all the
contents M1,M2,M3, . . . , Mr with unique keys K1,K2,K3, . . . ,Kr by using
suitable symmetric key encryption algorithm and gets

Esym(Mi|Ki), i = 1, 2, . . . , r).

O also assigns pseudonym unique number U to all the blind version of the
keys, say UKt is the pseudonym identity of keyKt, where pseudonym identity
describe the relationship between key and content identity, i.e., which key is
for which content.
• O establishes a secure communication with L and provides the content keys
{Ki : i = 1, 2, . . . , r} and their name mapping with pseudonym identities
{(Ki, UKi) : i = 1, 2, . . . , r}.
• O sends the protected contents with their name mapping with pseudonym
identity {(UKi, IDMi); i = 1, 2, . . . , r} to all Di, i = 1, 2, . . . , n.

3.3 Private Key Generation

Private key generater (PKG) creates its set up and generates the partial private
keys to license server, distributors and consumers. The process works in the
following three steps:

• Set up.
• Private key extraction
• Consumers’ registration.

Setup: PKG chooses an arbitrary generator P ∈ G, selects a master key mk ∈
Z∗
q and sets PK = mkP . It chooses hash functions H1 : {0, 1}∗ → Z∗

q , H2 :

{0, 1}∗ × {0, 1}∗ × {0, 1}k → {0, 1}n, and H : {0, 1}∗ × {0, 1}∗ × G∗ × G∗ →
{0, 1}k. Then, PKG publishes system parameters 〈E/Fq, G, k, P,PK, H1, H2, H〉
and Keeps master key mk secret.

Private Key Extraction: L and {D1, D2, . . . , Dn} submit their public iden-
tities IDL, IDD1 , IDD2 , . . . , IDDn to the PKG, respectively. PKG verifies the
proof of identities. If verification succeeds, then generates the partial private
keys as:

326 D. Mishra and S. Mukhopadhyay

• Generate xL, xD1 , xD2 , . . . , xDn ∈ Z∗
q .

• Compute XL = xLP and XDi = xDiP, for i = 1, 2, . . . , n.
• Compute hL = H1(IDL||XL) and hDi = H1(IDDi ||XDi), for i = 1, 2, . . . , n.
• By using its master key mk, PKG generates the partial private keys YL =
xL +mkhL and YDi = xDi +mkxDi , for i = 1, 2, . . . , n. Then, PKG delivers
these partial keys to license server and distributors through a secure channel.

On receiving their partial private keys L and Di can verify their partial keys as
follows:

YLP = XL +H1(IDL||XL)PK and YDiP = XDi +H1(IDDi ||XDi)PK

Consumer’s Registration: For the registration,C submits his public identities
IDC to the PKG. Then, PKG verifies the proof of C’s identity. If verification
succeeds, then include C in its database and generates the partial private key
for C as:

• Generate xC ∈ Z∗
q .

• Compute XC = xCP , hC = H1(IDC ||XC) and the partial private keys
YC = xC + mkhC . Then, PKG delivers C’s partial keys through a secure
channel. On receiving the partial private keys, C can verify it as:

YCP = XC +H1(IDC ||XC)PK

3.4 License Acquisition

Consumer visits distributor’s website, selects some content Mt, extract its iden-
tity IDMt and downloads its encrypted file Esym(Mt|Kt) from the media server.
However, the encrypted content can not be played without the valid license. To
achieve the license following steps are required:

Step 1. C selects some distributor D and establishes a secure session with
D. Once the session is established, C can perform any number of transection
to achieve the content. The process is as follows:

− C chooses a random value c ∈ Z∗
q , computes TC = cP , T ′

C = cYCP and
sends 〈IDC , TC , T

′
C , XC , t1〉 to D, where t1 is the current date and time

of C.
− On receiving the user message, D compute t2 − t1 ≤ �t, where t2 is

the message receiving time of server and �t is the valid time delay in
message transmission. If time delay in message transmission is valid, then
D selects a random value d ∈ Z∗

q and gets TD = dP .
− D computes dTC = dcP , T ′

D = dYDP and KDC as:

KDC = YD[T ′
C + d(XC +H1(IDC ||XC)pk)] = cYDYCP + dYDYCP.

Secure Content Delivery in DRM System with Consumer Privacy 327

Then, compute session key sk and and message authentication code mac
as:

sk = H(IDC ||IDD||dcP ||KDC ||t1||t3)
mac = H2(IDC ||IDD||sk||t1||t3),

where t3 is the time and date when distributor send the message
〈IDD, TD, T ′

D, XD,mac, t3〉 to C.
− On receiving the message, C computes t4 − t3 ≤ �t, where t4 is the

message receiving date and time of consumer’s system.
− If time delay in message transaction is valid, then C computes cTD = cdP

and KCD as:

KCD = YC [T
′
D + c(XD +H1(IDD||XD)pk)] = dYCYDP + cYCYDP.

Then, compute session key sk∗ and and message authentication code
mac∗ as:

sk∗ = H(IDC ||IDD||cdP ||KCD||t1||t3)
mac∗ = H2(IDC ||IDD||sk||t1||t3).

Then, C checks the condition mac∗ =? mac. If the condition hold, C also
send mac∗ to D. On receiving the message, D verifies mac =? mac∗.

Step 2. If mutual authentication succeeds, C encrypts required content
identity idM using the session key sk and submits his/her license request
with payment to D. Then, D receives the payment from C and generates a
tuple T , where

T = (UKt , IDC , Esym(IDMt |sk), time).

Step3. D establish a secure session with L. Once the session is established
D can communicate securely with L. The process is as:
− D chooses a random value d ∈ Z∗

q , computes TD = dP and sends
〈IDD, TD, T ′

D, XD, t4〉 to D, where t4 is the current date and time of
D.

− On receiving the user’s message, D compute t5 − t4 ≤ �t, where t5 is
the message receiving time of L. If time delay in message transmission
is valid, then L selects a random value l ∈ Z∗

q and gets TL = lP .
− L computes lTd = ldP , T ′

L = lYLP and KLD as:

KLD = YL[T
′
D + l(XD +H1(IDD||XD)pk)] = dYLYDP + lYLYDP.

Then, compute session sk′ and message authentication code mac′ as:

sk′ = H(IDL||IDD||ldP ||KLD||t4||t6)
mac′ = H2(IDL||IDD||sk′||t4||t6),

where t6 is the L current date and time. Then, L sends 〈IDL, TL, T
′
L, XL,

mac, t6〉 to D.

328 D. Mishra and S. Mukhopadhyay

− On receiving the message, D computes t7 − t6 ≤ �t, where t7 is time
when D receives the message.

− If time delay in message transaction is valid, thenD computes dTL = dlP
and KDL as:

KDL = YD[T ′
L + d(XL +H1(IDL||XL)pk)] = lYDYLP + dYDYLP.

Then, compute sk′∗ and mac′∗ as:

sk′∗ = H(IDL||IDD||ldP ||KDL||t4||t6)
mac′∗ = H2(IDL||IDD||sk′∗||t4||t6).

Then, D checks the condition mac′∗ =? mac′. If the condition hold, D
also send mac′∗ to L. On receiving the message, L verifies mac′ =? mac′∗.

Step 4. If verification succeeds, D encrypts T using secret session key sk′

and sends encrypted message to L.
Step 5. L decrypts the message using secret session key sk′ and gets T .
Then, L extracts the key number UKt , and consumer identity IDC from T .
Step 6. L generates the license by using key Kt which have identity UKt . L
encrypts C’s identity IDC with session key sk′ and associates this encrypted
identity with the license. Then, L establishes secure session with C as:

− L chooses a random value l ∈ Z∗
q , computes TL = lP and sends

〈IDL, TL, T
′
L, XL, t8〉 to C, where t8 is the current date and time of L.

− On receiving the user message, C compute t9 − t8 ≤ �t, where t9 is the
time when C receives the message. If time delay in message transmission
is valid, then C selects a random value c ∈ Z∗

q and gets TC = cP .
− C computes cTL = clP , and KCL as

KCL = YC [T
′
L + c(XL +H1(IDL||XL)pk)] = lYCYLP + cYCYLP

Then, session key sk′′ and mac′′ will be as follows:

sk′′ = H(IDC ||IDL||clP ||KCL||t8||t10)

mac′′ = H2(IDC ||IDL||sk′′||t8||t10),
where t10 is the C’s current date and time. Then, C sends 〈IDC , TC , T

′
C ,

XC ,mac′′, t10〉 to L.
− On receiving the message, L computes t11 − t10 ≤ �t, where t11 is the

date and time when L receives the message.
− If time delay in message transaction is valid, then L computes lTC = lcP

and KLC as:

KLC = YL[T
′
C + l(XC +H1(IDC ||XC)pk)] = cYLYCP + lYLYCP.

Secure Content Delivery in DRM System with Consumer Privacy 329

Then, compute sk′′∗ and mac′′∗ as:

sk′′∗ = H(IDC ||IDL||clP ||KLC||t8||t10)
mac′′∗ = H2(IDC ||IDD||sk′′∗||t8||t10).

Then, L checks the condition mac′′∗ =? mac′′. If the condition holds, L
also sends mac′′∗ to C.

− On receiving the message, C verifies mac′′ =? mac′′∗.

Step 7. L encrypts the license using session key sk′′ and sends the encrypted
license to C. On receiving the message, C decrypts the message using the
session key sk′′ and gets the license.

4 Privacy Rights Management

4.1 Principles

System works under following assumption:

• System does not maintain distinct price to the items. The price of two dif-
ferent categories items may be alike and price of same category item may be
distinct.
• Consumer can visit the website and can access the protected content using
anonymous IP-address. A consumer is allowed to use anonymous networks
such as Tor [28] to hide his originating IP-address in the system.
• An anonymous consumer can achieve the name mapping between the content
identity and content encrypted identity from the owner.
• Owner charge a fix amount to provide name mapping information so that
malicious user can be restricted from collect the name mapping information
after several rounds of request. Owner provides the token of charged amount,
which a consumer can use during license acquisition and can get the discount.

4.2 High Level Description

Mechanism of privacy protection is as follows:

• O constructs a collusion free one way function f(.), which is hard to revert.
O encrypts the contents identities IDM1 , IDM2 , IDM3 , . . . , IDMr using one way
function f(.), and gets f(IDM1), f(IDM2), . . . , f(IDMr) and keeps f(.) secret.
• O sends pseudonym key identity corresponding to the blind version of con-
tents identities f(IDMt), i.e., {(UKi, f(IDMi)); i = 1, 2, . . . , r} to all Di, i =
1, 2, . . . , n via secure channel.

Since, contents are identified by their encrypted identities f(IDMi)), i = 1, 2, . . . , r.
To achieve a content key, a name mapping between content identity and content
encrypted identity is needed. The name mapping acquisition process is as:

• C visits the distributor’s website and selects some content Mt and extracts
its identity IDMt .

330 D. Mishra and S. Mukhopadhyay

• C sends a message to O, which includes IDMt with the name mapping re-
quest.
• O charges a fix amount and encrypts the requested identity IDMt using secret
one way function f(.) and sends the name mapping (IDMt , f(IDMt)) to the
anonymous requester.

Once the consumer gets the name mapping information between the content
original identity and its encrypted identity, he/she comes to know what request
needs to place to the distributor to achieve desire content. As, distributor iden-
tifies the content by their encrypted identities instead of original identity, con-
sumer sends license request to the distributor with respect to encrypted content
identity f(IDMt) instead of IDMt . On receiving the consumer’s request, distribu-
tor verifies the consumer authenticity, if consumer is authorized then distributor
receives the payment and extracts UKt corresponding to f(IDMt) from the key
name mapping file and generates a tuple T as maintained in step 2 of section 3.4
and sends this tuple T to the license server. On receiving the message, license
server generates the license and provides it to the consumer as discussed in the
steps 3, 4, 5, 6 and 7 of section 3.4.

5 Analysis

We design our license distribution scheme by keeping in mind the following
specific security objectives:

• Transparent Content Distribution: Owner assigns the work of payment
collection and license distribution to independent authorities, namely dis-
tributor and license server respectively. Moreover, by separating the content
key and its usages information (which key is for which content) such that
each of the distributor has the key usage information and license server has
the content keys with pseudonym identity. Where, pseudonym key identity
does not reveal content key usage information, i.e., for which content encryp-
tion key is used. As a result, license server never comes to know what key is
for what content. Therefore, the license server cannot issue the key without
the distributor participation. In addition, owner receives the usages license
statistics from the license server and royalties from the distributor. Owner
can monitor the royalty flow with the help of usage license statistics.
• Flexible Content Distribution: Owner appoints multiple distributors
in diverse geographical regions to facilitate content distribution. Proposed
mechanism also reduced the congestion on license server by separating the
payment authority from license server. Moreover, mechanism provides the
freedom to the consumer to select the distributor of his/her own choice that
provides easy access of content, promotions and discounts.
• Contents’ Security: System is relatively secure from insider as well as from
outsider attack as follow.

− Preventing Insider Attacks: Digital content should not be exposed to
unintentional parties with the help of an insider. In proposed scheme,

Secure Content Delivery in DRM System with Consumer Privacy 331

content key and its usage information (which key is for which content)
is separated such that each of the distributor has keys usage informa-
tion while license server has keys with pseudonym identity. Therefore, to
play the content, the participation of license server and a distributor are
needed. Only license server cannot issue the key without the distributor
participation. As a result, mechanism reduces the possibilities of insider
attack.

− Minimizing Attacks by Outsiders: To acquire the content key and its
usage information, an outsider have to break the security of license
server and at least one distributor, which makes system potentially se-
cure against outsider attack.

5.1 Privacy Analysis

Proposed DRM system conceals consumers preferences from all involve principals
in the system. Privacy during some key process is justify below:

• Protected Content Download: When a user visits the website or down-
loads the content, he/she can be tracked. In proposed system, user is allowed
to use an anonymous connection (anonymous IP-address) during content
download. Anonymous connection does not reveal originating IP-address and
consumer can achieve anonymity during content download.
• License Acquisition: Distributor and license server know who is requesting
but both do not know what content consumer is requesting. Anonymity of
content identity hides the consumer’s preference because of the following
facts:
− Consumer makes the license request corresponding to content encrypted

identity instead of content original identity where the content identity
encryption is done by using a strong one-way function which is hard to
revert.

− Distributor verifies the authenticity of user. The authentication process
discloses the consumer’s identity but the anonymity of license request
protects consumer’s privacy.

− Payment does not disclose content identity/category because two dif-
ferent items may have the same price and also two items of different
category may have the same price.

− The license server identifies the decryption key by its pseudonym iden-
tity of content which reveals no information about the content original
identity.

• Total Expense: How much total money a consumer is spending over the
contents can be hidden by selecting different distributors for different trans-
action. Distributors work independently and consumer has the freedom to
select any distributor of his choice. A distributor can only know about the
payment that a consumer makes to him. In addition, license server does not
know the items prices. Hence, by selecting different distributor for different
transaction, a user can hide his overall expenses.

332 D. Mishra and S. Mukhopadhyay

5.2 Security Analysis

In this section, we justify that proposed mutual authentication mechanism is se-
cure against following attacks between any two parties i.e., consumer and license
server, consumer and distributor, and distributor and license server. Instead of
justifying the secure communication between all parties’ pairs, we will show that
used protocol is secure between any two parities, namely consumer and server,
for the rest it will follow the same.

Known-Key Secrecy: If a session key between consumer and server is com-
promised, which does not mean to compromise of other session keys because
every session key evolves arbitrary short-term random values c and s which are
selected arbitrary independent for each session by C and S. In addition, every
session key involves time stamps which are different for each session.

Replay Attack: Replay Attack is most common attack in authentication pro-
cess. However, the common countermeasures are time-stamp scheme and random
number scheme. In our scheme, we adopt both the mechanism the time-stamp
and random number mechanism as a counter-measure. The messages in phase
C → S and S → C are with time-stamp, therefore, replay attack could not work
in any phase.

Perfect Forward Secrecy: If the long term keys of two parties compromise,
one could compute sYCYSP+cYSYCP . However, an adversary could not compute
session key because to compute session key, csP is needed and to compute csP
for given < cP, sP, P > is equivalent to Computational Diffie-Hellman (CDH)
problem. Moreover, to compute c or s, from cP or sP where P is a primitive
element, is equivalent to Discrete Logarithmic Problem on ECC.

PKG Forward Secrecy: If the adversary acquired the PKG’s master key mk, it
means that the adversary can compute the partial private keys of both consumer
and server. Although, it could not be possible to compute the short-term keys
with the help of master key, as both C and S randomly generate the short-term
keys. Besides, to compute short-term keys c or s, from cP or sP where P is
a primitive element, is equivalent to Discrete Logarithmic Problem on ECC.
Therefore, an adversary cannot compute session key because to compute session
key, one has to compute csP for given < cP, sP, P >, which is equivalent to
Computational Diffie-Hellman problem.

Man in the Middle Attack: Consumer and server authenticate each other
without knowing each other. An adversary or malicious PKG can try man in the
middle attack by sending the forge message. However, to authenticate each other,
server and consumer exchange mac and mac∗ . Where, to compute mac requires
the knowledge of long term private keys (xC , xS) and short-term random values
(c, s), which are not known to adversary.

Known Session-Specific Temporary Information Attack: If short term
secret keys c and s are compromised, then adversary can compute csP . However,

Secure Content Delivery in DRM System with Consumer Privacy 333

to compute cYSYCP and sYSYCP for given 〈c, s, P, sYSP, cYCP 〉, is equivalent
to Computational Diffie-Hellman problem on ECC.

Passive Attack: Adversary can collect the information 〈P, sP, cP, YCP, YSP, TS ,
TC〉 which transmits via public channel. However, to compute cYSYCP+sYSYCP
and csP for given information 〈cYCP, sYSP, TS , TC , P 〉 and 〈P, sP, cP 〉 is equiv-
alent to Computational Diffie-Hellman problem.

6 Comparison

The judgment of the proposed privacy protection scheme with existing privacy
rights management DRM systems is illustrated in Table 1. Where, “Y”, “N” and
“−” denote that system supports , system does not support , and system does not
address the issue, respectively. We verifies the schemes in the different scenarios
where privacy can be threaten like during protected content download, license
acquisition, and rights violation detection.

Table 1. Comparison of the proposed scheme with other privacy related works of DRM

Issue Characteristic [23] [8] [10] [16] [19] [15] [18] [24] [25] Proposed scheme

Content download Y N Y N Y N − N N Y
Privacy Total expenses Y N N N Y N − N N Y

License acquisition Y N N Y Y Y Y N N Y

Traitor tracing N Y Y Y N N − − − Y

Mutual authentication N N N N N N N Y Y Y

It is evident from the table 1 that the schemes [15], [18], [19] hide con-
sumer’s preferences but do not manage traitor identification mechanism while
the schemes [8], [10] are able to detect rights violation in the system but fail to
protect consumers’ privacy. The scheme [23]and [16] provides privacy without
violating accountability parameters, but do not secure content delivery mecha-
nism . The proposed scheme maintains secure communication among the involve
parties and achieves all necessary properties of privacy and accountability.

7 Conclusion

Proposed scheme provides a flexible, transparent and secure content distribu-
tion mechanism which protects consumer privacy. It provides the flexibility to
consumer to select a distributor of his/her choice. It achieves transparency by
separating the payment collection and license distribution rights to independent
authorities. Proposed scheme also ensure authorized content distribution by us-
ing pairing-free identity based mutual authentication mechanism. Moreover, pro-
posed scheme restricts the involve parties to know what exactly a consumer is
buying, although it supports accountability parameters.

334 D. Mishra and S. Mukhopadhyay

References

1. Ku, W., Chi, C.: Survey on the technological aspects of digital rights management.
Information Security, 391–403 (2004)

2. Rosset, V., Filippin, C., Westphall, C.: A DRM architecture to distribute and
protect digital contents using digital licenses. In: Proceeding of the Advanced In-
dustrial Conference on Telecommunications/Service Assurance with Partial and
Intermittent Resources Conference/E-Learning on Telecommunications Workshop,
AICT/SAPIR/ELETE 2005, pp. 422–427. IEEE (2005)

3. Cohen, J.: DRM and Privacy. Communications of the ACM 46(4), 46–49 (2003)

4. Jamkhedkar, P., Heileman, G.: Digital rights management architectures. Comput-
ers & Electrical Engineering 35(2), 376–394 (2009)

5. Zhang, Z.: Digital rights management ecosystem and its usage controls: A sur-
vey. JDCTA: International Journal of Digital Content Technology and its Appli-
cations 5(3), 255–272 (2011)

6. Liu, Q., Safavi-Naini, R., Sheppard, N.: Digital rights management for content
distribution. In: Proceedings of the Australasian Information Security Workshop
Conference on ACSW Frontiers 2003, vol. 21, pp. 49–58. Australian Computer
Society, Inc. (2003)

7. Lee, J., Hwang, S., Jeong, S., Yoon, K., Park, C., Ryou, J.: A DRM framework for
distributing digital contents through the Internet. ETRI Journal 25(6), 423–436
(2003)

8. Sachan, A., Emmanuel, S., Das, A., Kankanhalli, M.: Privacy preserving multi-
party multilevel DRM architecture. In: 6th IEEE Consumer Communications and
Networking Conference, CCNC 2009, pp. 1–5. IEEE (2009)

9. Hwang, S., Yoon, K., Jun, K., Lee, K.: Modeling and implementation of digital
rights. Journal of Systems and Software 73(3), 533–549 (2004)

10. Thomas, T., Emmanuel, S., Das, A., Kankanhalli, M.: Secure multimedia content
delivery with multiparty multilevel DRM architecture. In: Proceedings of the 18th
International Workshop on Network and Operating Systems Support for Digital
Audio and Video, pp. 85–90. ACM (2009)

11. Dutta, R., Mukhopadhyay, S., Dowling, T.: Key management in multi-distributor
based DRM system with mobile clients using IBE. In: Second International Confer-
ence on the Applications of Digital Information and Web Technologies, ICADIWT
2009, pp. 597–602. IEEE (2009)

12. Dutta, R., Mishra, D., Mukhopadhyay, S.: Access policy based key management in
multi-level multi-distributor DRM architecture. In: Joye, M., Mukhopadhyay, D.,
Tunstall, M. (eds.) InfoSecHiComNet 2011. LNCS, vol. 7011, pp. 57–71. Springer,
Heidelberg (2011)

13. Dutta, R., Mishra, D., Mukhopadhyay, S.: Vector Space Access Structure and ID
Based Distributed DRM Key Management. In: Abraham, A., Mauri, J.L., Buford,
J.F., Suzuki, J., Thampi, S.M. (eds.) ACC 2011, Part IV. CCIS, vol. 193, pp.
223–232. Springer, Heidelberg (2011)

14. Sachan, A., Emmanuel, S.: DRM violation detection using consumer logs analysis.
In: 2011 IEEE International Conference on Multimedia and Expo, ICME, pp. 1–6.
IEEE (2011)

15. Chong, D., Deng, R.: Privacy-enhanced superdistribution of layered content with
trusted access control. In: Proceedings of the ACM Workshop on Digital Rights
Management, pp. 37–44. ACM (2006)

Secure Content Delivery in DRM System with Consumer Privacy 335

16. Yao, J., Lee, S., Nam, S.: Privacy preserving DRM solution with content classifi-
cation and superdistribution. In: 6th IEEE Consumer Communications and Net-
working Conference, CCNC 2009, pp. 1–5. IEEE (2009)

17. Perlman, R., Kaufman, C., Perlner, R.: Privacy-preserving DRM. In: Proceedings
of the 9th Symposium on Identity and Trust on the Internet, pp. 69–83. ACM
(2010)

18. Yuan, J., Zhang, W., Zhao, F.: Content key acquisition protocols hiding the usage
information in DRM system. In: 2011 IEEE 15th International Symposium on
Consumer Electronics, ISCE, pp. 313–317 (2011)

19. Win, L., Thomas, T., Emmanuel, S.: A privacy preserving content distribution
mechanism for DRM without trusted third parties. In: 2011 IEEE International
Conference on Multimedia and Expo, ICME, pp. 1–6. IEEE (2011)

20. Mishra, D., Mukhopadhyay, S.: Towards a secure, transparent and privacy-
preserving DRM system. In: Thampi, S.M., Zomaya, A.Y., Strufe, T., Alcaraz
Calero, J.M., Thomas, T. (eds.) SNDS 2012. Communications in Computer and
Information Science, vol. 335, pp. 304–313. Springer, Heidelberg (2012)

21. Mishra, D., Mukhopadhyay, S.: Privacy rights management in multiparty multilevel
DRM system. In: Proceedings of the International Conference on Advances in
Computing, Communications and Informatics, pp. 625–631. ACM (2012)

22. Tsiounis, Y.: Anonymity & privacy: The internet cash example, Internet document
(August 2001), http://www.internetcash.com/fgo/0,1383,white02,00.html

23. Win, L., Thomas, T., Emmanuel, S.: Privacy enabled digital rights management
without trusted third party assumption. IEEE Transactions on Multimedia 14(3),
546–554 (2012)

24. Fan, K., Pei, Q., Mo, W., Zhao, X., Li, X.: A novel authentication mechanism
for improving the creditability of DRM system. In: International Conference on
Communication Technology, ICCT 2006, pp. 1–4. IEEE (2006)

25. Yang, Z., Fan, K., Lai, Y.: Trusted computing based mobile DRM authentication
scheme. In: Fifth International Conference on Information Assurance and Security,
IAS 2009, vol. 1, pp. 7–10. IEEE (2009)

26. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

27. Hankerson, D., Menezes, A., Vanstone, S.: Guide to elliptic curve cryptography.
Springer (2004)

28. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th Conference on USENIX Security Symposium,
vol. 13, p. 21. USENIX Association (2004)

http://www.internetcash.com/fgo/0,1383,white02,00.html

Systematic Construction and Comprehensive

Evaluation of Kolmogorov-Smirnov Test Based
Side-Channel Distinguishers

Hui Zhao1, Yongbin Zhou1,�, François-Xavier Standaert2, and Hailong Zhang1

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

89A, Mingzhuang Rd, Beijing, 100093, P.R. China
{zhaohui,zhouyongbin,zhanghailong}@iie.ac.cn

2 UCL Crypto Group, Université catholique de Louvain, Belgium
fstandae@uclouvain.be

Abstract. Generic side-channel distinguishers aim at revealing the cor-
rect key embedded in cryptographic modules even when few assumptions
can be made about their physical leakages. In this context, Kolmogorov-
Smirnov Analysis (KSA) and Partial Kolmogorov-Smirnov analysis (PKS)
were proposed respectively. Although both KSA and PKS are based on
Kolmogorov-Smirnov (KS) test, they really differ a lot from each other in
terms of construction strategies. Inspired by this, we construct nine new
variants by combining their strategies in a systematic way. Furthermore,
we explore the effectiveness and efficiency of all these twelve KS test
based distinguishers under various simulated scenarios in a univariate
setting within a unified comparison framework, and also investigate how
these distinguishers behave in practical scenarios. For these purposes, we
perform a series of attacks against both simulated traces and real traces.
Success Rate (SR) is used to measure the efficiency of key recovery at-
tacks in our evaluation. Our experimental results not only show how to
choose the most suitable KS test based distinguisher in a particular sce-
nario, but also clarify the practical meaning of all these KS test based
distinguishers in practice.

Keywords: Side-Channel Analysis, Distinguisher, Kolmogorov-Smirnov
Test, Construction, Evaluation.

1 Introduction

Side-channel attack aims at identifying the secret information embedded in a
cryptographic device from its physical leakages. One of the most famous side-
channel attacks is Differential Power Analysis (DPA), which was proposed by
Kocher in his seminal work [1]. Generally, DPA employs some type of statistics
(also referred to as distinguisher) to reveal the correct key hypothesis about the
secret key or part of it within a set of candidates. In side-channel attacks, the

� Corresponding author.

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 336–352, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Construction and Evaluation of KS Based Distinguishers 337

most famous two distinguishers known are distance-of-means [1], Pearson cor-
relation coefficient in Correlation Power Analysis (CPA) [3]. Meanwhile, other
variants of these two distinguishers, such as Multi-bit DPA [2] and Partition-
ing Power Analysis (PPA) [4], are also proposed to enhance the performance of
DPA and CPA respectively. Concerning these distinguishers, recent works [5,6]
has shown that DPA, CPA and even PPA are in fact asymptotically equiva-
lent to each other, given that they are provided with the same a priori infor-
mation about the leakages. Therefore, these distinguishers are collectively called
CPA-like distinguishers. Essentially, all these CPA-like distinguishers exploit lin-
ear dependency between key-dependent hypothetical power consumptions and
physical leakages.

Even though CPA-like distinguishers are well capable of measuring linear de-
pendency between hypothetical power consumptions and physical leakages, they
become less efficient when the dependency is not strictly linear [10]. In light of
this, Mutual Information Analysis (MIA) was proposed by Gierlichs in [7] to
measure total dependency (both linear and nonlinear) between the hypothetical
power consumptions and the physical leakages. Consequently, MIA is considered
to be generic because it is capable of dealing with the total dependency. Al-
though MIA is generic, it also bears some technical challenges. For example, the
Probability Density Function (PDF) estimation in MIA is widely accepted to be
a difficult problem [8,9]. Experiments in [10,11] confirmed that the PDF estima-
tion methods have a decisive impact on the performance of MIA. Therefore, the
performance of MIA depends on the accuracy of the estimation methods. Con-
sidering the PDF of MIA is hard to estimate accurately, Kolmogorov-Smirnov
Analysis (KSA) [10] and Partial Kolmogorov-Smirnov analysis (PKS) [13] were
independently proposed. KSA and PKS use Cumulative Density Function (CDF)
estimation, instead of PDF estimation, to avoid explicit PDF estimation. Both
KSA and PKS sound like promising alternatives for MIA, but which one is a
better alternative for MIA in key recovery attacks?

On the one hand, although both KSA and PKS are based on Kolmogorov-
Smirnov (KS) test, they differ a lot from each other in terms of construction
strategies. One natural yet important question is that whether or not we can con-
struct more efficient distinguishers via combining different construction strate-
gies by both KSA and PKS. For all these KS test based distinguishers, how can
we choose the most suitable distinguisher in a certain scenario? For all these
KS test based distinguishers, to what extent do they pose severe threats on the
implementations of cryptographic modules in practice? In order to answer these
questions above, we will investigate the efficiency of all these KS test based
distinguishers in a comprehensive comparison framework. Since it seems diffi-
cult to study the relationship of all KS test based distinguishers theoretically,
we will explore the advantages and limitations of KS test based distinguishers
experimentally.

Note that we only compare KS test based distinguishers in a univariate set-
ting, due to the fact that PKS does not have multivariate extensions.

338 H. Zhao et al.

1.1 Our Contributions

The contributions of this paper are threefold. First, we systematically construct
nine new variants of KS test based distinguishers via combining different con-
struction strategies by both KSA and PKS. Second, we consider the impacts
of leakage function, noise level and power model to twelve KS test based dis-
tinguishers and MIA in a comprehensive comparison framework. Experimental
results show that how to choose the most suitable distinguisher in a certain
scenario. Third, we also demonstrate the practical meaning of all these KS test
based distinguishers in practice.

2 Preliminaries

In this section, we will first introduce KS test, and then briefly recall KSA
distinguisher and PKS distinguisher.

2.1 Kolmogorov-Smirnov Test

In statistics, KS test is a nonparametric test whose main target is to determine
if two distributions differ significantly. Assume that the random variable X has
n samples. Its empirical CDF is Fn(x) = 1

n

∑n
i=1 IAi�x. IAi�x is the indicator

function, where its value is 1 when Ai � x; otherwise, it is 0. For a given CDF
F (x), formula (1) is used to test their similarity.

Dn = supx|Fn(x) − F (x)| (1)

where supx is the supremum of the set of distances. Specifically, the largest dis-
tance between two distributions represents the similarity between them. On the
other hand, p-value can also be used to measure the similarity of two distribu-
tions. The smaller of the p-value, the less similar between them.

2.2 KSA Distinguisher

KSA distinguisher is based on two-sample KS test. Its central idea is to mea-
sure the maximum distance between the global trace distribution L and the
conditional trace distribution L|M , and then average the distances over the pre-
diction space, where M denotes hypothetical power consumption model. Denote
l the leakages, and m the hypothetical power consumption values. Denote Pr
the probability. KSA is shown in the formula (2).

EmεM (DKS(Pr[L = l|M = m]||Pr[L = l])) (2)

KSA can be extended to a normalized version (norm-KSA) that is shown in the
formula (3).

EmεM (
1

|L|M = m|DKS(Pr[L = l|M = m]||Pr[L = l]))) (3)

Both KSA and norm-KSA will produce a large average difference when the key
hypothesis is correct.

Construction and Evaluation of KS Based Distinguishers 339

2.3 PKS Distinguisher

PKS distinguisher is based on single-sample KS test. Its central idea is to measure
the p-value produced by comparing normal distribution and part of conditional
trace distribution L|M . For convenience, leakages L and the hypothetical power
consumptions M are usually processed by Z-score transformation in PKS. p is an
empirical parameter in PKS from zero to one. N(0,1) represents standard normal
distribution. PKS, a two-partialKS test distinguisher, is shown in the formula (6).

DKSl
= Pvalue(DKS(Pr[L = l|M ≤ p]||N(0, 1))) (4)

DKSr = Pvalue(DKS(Pr[L = l|M > p]||N(0, 1))) (5)

DPKS = DKSl
×DKSr (6)

PKS will return the smallest product of p-values when the key hypothesis is
correct.

3 Systematic Construction of KS Test Based
Side-Channel Distinguishers

From section 2, we learn that both KSA and PKS are based on KS test, and
they are able to recover the correct key by partitioning the leakages correctly.
However, KSA and PKS are really different from each other in terms of their
construction strategies. Therefore, we will show how to construct other new
variants of KS test based distinguishers by combining their different construction
strategies in a systematic way. For this purpose, we will analyze the construction
strategies using by KSA and PKS, and then we will present nine new variants
of KS test based distinguishers.

3.1 Construction Strategies of KSA and PKS

In this subsection, we will compare the construction differences between KSA
and PKS in four aspects: partition method, similarity measure used by KS test,
assumption about leakages, and normalization.

Partition Method. In a partition attack [16], leakages are divided into sev-
eral sets p1k, p

2
k, ..., p

n
k according to each key hypothesis k. These sets are built

according to a power model H . In this paper, partition method is classified as
non-cumulative partition method and cumulative partition method. Examples
of hypothetical leakages that can be used to partition 16-element leakages are
shown in Table 1. Specifically, non-cumulative partition used by KSA is shown
in the left part of Table 1, while cumulative partition used by PKS is shown in
the right part of Table 1.

Similarity Measure Used by KS Test. Distance is used by KSA to measure
the similarity of two distributions. In contrast, p-value is adopted in PKS to
indicate whether or not partial leakages follow a normal distribution.

340 H. Zhao et al.

Table 1. Examples of non-cumulative partition (left) and cumulative partition (right)

partition leakages

p1k l5
p2k l2 l7 l9 l16
p3k l1 l4 l8 l10 l11 l15
p4k l3 l6 l12 l13
p5k l14

partition leakages

p1k l5
p2k l5 l2 l7 l9 l16
p3k l5 l2 l7 l9 l16 l1 l4 l8 l10 l11 l15
p4k l5 l2 l7 l9 l16 l1 l4 l8 l10 l11 l15 l3 l6 l12 l13
p5k l5 l2 l7 l9 l16 l1 l4 l8 l10 l11 l15 l3 l6 l12 l13 l14

Assumption about Leakages. PKS distinguisher considers that leakages fol-
low a normal distribution, while KSA makes no assumption about leakages.

Normalization. [10] suggested that normalization could improve the perfor-
mance of KSA. Our question is whether or not the normalization is always effec-
tive in some typical scenarios for KSA. We will also try to answer this question
in this work.

3.2 Nine New Variants of KS Test Based Distinguishers

In subsection 3.1, we analyzed the construction strategies of both KSA and PKS.
We find that KSA and PKS have different choices for a specific construction
strategy. One natural yet pertinent question is that is it possible to construct
other (more efficient) KS test based distinguisher by combining the construction
methods of both KSA and PKS? To answer this question, we combine construc-
tion strategies using by both KSA and PKS to construct nine new variants of
KS test based distinguishers, in a systematic way.

For convenience,wewill label each strategy that was used byKSA andPKS.De-
noteA0 the non-cumulative partition, andA1 the cumulative partition. DenoteB0
the expectation of distance as the similarity measure of KS test, and B1 the prod-
uct of p-values as the similarity measure of KS test. Denote C0 the distinguisher
that makes no assumption about leakage distribution, and C1 the distinguisher
that assumes the leakage follows a normal distribution. Denote D0 that we perform
normalization on a distinguisher, and D1 that we do not.

By combining these strategies systematically, one can, in total, construct six-
teen (16 = 24) KS test based distinguishers. Among these sixteen distinguish-
ers, three are existing and they are KSA (A0,B0,C0,D1), PKS (A1,B1,C1,D1)
and norm-KSA (A0,B0,C0,D0). On the other hand, note that B1 and D0 con-
flict with each other, therefore four combinations (A1,C1,B1,D0; A1,C0,B1,D0;
A0,C1,B1,D0; A0,C0,B1,D0) do not make any sense. Additionally, three combi-
nations , which are (A0, B0, C1, D1), (A0, B0, C1, D0) and (A0,B1,C1,D1), fail
to work in the key recovery attacks. We free the limitation of Z-score on hypo-
thetical power consumptions of D-PKS (A1, B0, C1, D1), norm-D-PKS (A1, B0,
C1, D0) and PKS (A1,B1,C1,D1) to form C-PKS (A1, B0, C1, D1), norm-C-
PKS (A1, B0, C1, D0) and MPC-PKS (A1, B1, C1, D1). Finally, the remaining
combinations are MP-KSA (A0, B1, C0, D1), C-KSA (A1, B0, C0, D1), norm-
C-KSA (A1, B0, C0, D0) and MPC-KSA (A1, B1, C0, D1). Therefore, we only

Construction and Evaluation of KS Based Distinguishers 341

Table 2. Nine new variants of KS test based distinguishers

Distinguisher Equation

MP-KSA log2(
∏

mεM Pvalue(DKS(Pr[L = l|M = m]||Pr[L = l])))

C-KSA EmεM (DKS(Pr[L = l|M � m]||Pr[L = l]))

norm-C-KSA EmεM (1
|L|M=m|DKS(Pr[L = l|M � m]||Pr[L = l]))

MPC-KSA log2(
∏

mεM Pvalue(DKS(Pr[L = l|M � m]||Pr[L = l])))

D-PKS E(DKS(Pr[L = l|M � p]||N(0, 1)))

norm-D-PKS E(1
|L|M�p|DKS(Pr[L = l|M � p]||N(0, 1)))

C-PKS EmεM (DKS(Pr[L = l|M � m]||N(0, 1)))

norm-C-PKS EmεM (1
|L|M�m|DKS(Pr[L = l|M � m]||N(0, 1)))

MPC-PKS log2(
∏

mεM Pvalue(
1

|L|M�m|DKS(Pr[L = l|M � m]||N(0, 1))))

construct nine (9=24−4−3−3+3) new variants. These nine new distinguishers
are summarized in Table 2.

In these nine new variants of KS test based distinguishers, the distinguisher
which contains B0 strategy will return the largest expected distance under the
correct key hypothesis, while the distinguisher which contains B1 strategy will
return the smallest product of p-values. Additionally, in order to avoid arithmetic
underflow, one typically applies the logarithm to the distinguisher which contains
B1 strategy.

4 A Comprehensive Evaluation of All Twelve KS Test
Based Side-Channel Distinguishers

So far, we have constructed nine new variants of KS test based distinguishers.
The performance of these distinguishers in a univariate setting has a huge impact
on how to choose the most suitable distinguisher in a certain scenario. Conse-
quently, we will evaluate the performance of all these distinguishers by amount-
ing key recovery attacks, and analyze their effectiveness and efficiency by using
Success Rate (SR) [15] in typical scenarios. On the one hand, we will evaluate
the performance of these KS test based distinguishers in a unified comparison
framework inspired by [12]. In this framework, we will evaluate the influence of
different factors, such as leakage function, noise level and power model, on the

342 H. Zhao et al.

performance of each KS test based distinguisher. We will compare the attacking
efficiency of these distinguishers in terms of SR. On the other hand, we will
perform a series of attacks against the real traces from both OpenSCA and DPA
Contest v2, respectively. With these practical attacks, we will demonstrate the
practical meaning of all these KS test based distinguishers. Note that we do not
compare the running cost for different distinguishers.

4.1 Simulated Experiments

In simulated scenarios, we choose the output of the first S-box of the first round
AES operation as the target intermediate value. Three typical leakage functions,
i.e. Hamming Weight (HW) leakage function, an Unevenly Weighted Sum of
the Bits (UWSB) leakage function and highly nonlinear leakage function, are
adopted to test the adaptability of KS test based distinguishers and MIA. Noise
level in simulated leakages is measured by Signal-to-noise ratio (SNR). We par-
ticularly employ seven SNRs, i.e. 0.125, 1, 8, 16, 32, 64 and positive infinity, to
test the influence of Gaussian noise on these distinguishers.

In each scenario, we perform key recovery attacks using all twelve KS test
based distinguishers and MIA (MIA(HW,bins=9) and MIA(ID,bins=256)) as
well. For each one of these sixteen kinds of attacks, we repeat it 300 times by
uniformly choosing different plaintexts.

Our experiments are also carefully organized in order to make them under-
stood more easily. Specifically, we divide the results of all these thirteen distin-
guishers into three groups, and denote these groups by A, B and C, respectively.
Group A consists of four existing distinguishers and they are PKS, KSA, norm-
KSA and MIA. For each scenario, we select the most efficient one from Group
A, and the selected one is set to be a benchmark for this scenario. Next, the
other new nine KS test based distinguishers are classified into two groups, ac-
cording to their relative efficiency over the selected benchmark. Namely, for each
scenario, those distinguishers that are more efficient than the benchmark are set
into Group B, while the others that are less efficient than the benchmark are
put into Group C.

Hamming Weight Leakage
In the following scenarios, we assume that the leakage of a cryptographic de-
vice consists of HW of target intermediate value and Gaussian noise. Under this
reasonable assumption, we will investigate the performance of different distin-
guishers with two adversarial characterization abilities.
- An Adversary with a Perfect Power Model. Figure 1 shows the SR of
twelve KS test based distinguishers and MIA using a HW model against HW
leakage of the first AES S-box. When the SNR is 0.125, PKS(HW,p=0.618)
in Figure 1(a) is used as the benchmark for Figure 1(d) and 1(g). Figure 1(d)
shows that, C-KSA(HW), MPC-PKS(HW) and C-PKS(HW) are better than the
benchmark, and C-KSA(HW) is the best distinguisher. Distinguishers in Figure
1(g) are less efficient than the benchmark, so we do not explain them in more

Construction and Evaluation of KS Based Distinguishers 343

details. Due to fact that other SNRs can be analyzed in a similar way as that of
SNR of 0.125, we do not explain them in more details.

In summary, C-KSA(HW) is the best choice in all twelve KS test based dis-
tinguishers when the SNRs are 0.125 and 1 respectively, while MP-KSA(HW)
is the best choice when the SNR is 8 and positive infinity. Additionally, MPC-
PKS(HW) is better than the benchmark when the SNRs are 0.125, 1 and 8
respectively. Another interesting observation is that norm-KSA(HW) is less ef-
ficient than KSA(HW).
- An Adversary with a Generic Power Model. Figure 2 shows the SR
of twelve KS test based distinguishers and MIA using an Identity (ID) model
against HW leakage of the first AES S-box. When the SNR is 0.125,
PKS(ID,p=0.618) in Figure 2(a) is chosen as the benchmark in Figure 2(d) and
2(g). Figure 2(d) shows that C-KSA(ID), norm-C-KSA(ID), MPC-KSA(ID),
C-PKS(ID), norm-C-PKS(ID) and MPC-PKS(ID) are more efficient than the
benchmark, and they have similar performance. Distinguishers in Figure 2(g)
are less efficient than the benchmark, so we do not explain them in more details.
When the SNRs are 1, 8, and positive infinity, they can be analyzed in a similar
way as that of SNR of 0.125.

In a word, although C-KSA(ID), norm-C-KSA(ID), MPC-KSA(ID), C-
PKS(ID), norm-C-PKS(ID) andMPC-PKS(ID) aremore efficient than the bench-
mark and they have similar performance under four noise levels, C-KSA(ID),
norm-C-KSA(ID) andMPC-KSA(ID) are slightlymore efficient than C-PKS(ID),
norm-C-PKS(ID) andMPC-PKS(ID). Another interesting point is thatKSA(ID),
norm-KSA(ID) and MIA(ID) all fail to reveal the correct key, while both
PKS(ID,p=0.25) and PKS(ID,p=0.618) succeeds to do that.

An Unevenly Weighted Sum of the Bits Leakage Scenario
In the following scenarios, we assume that the least significant bit dominates in
the leakage function with a relative weight of 10 and other bits with a relative
weight of 1, and we will investigate the performance of twelve KS test based
distinguishers and MIA with two adversarial characterization abilities.
- An Adversary with an Imprecise Power Model. Figure 3 shows the SR of
twelve KS test based distinguishers and MIA using a HW model against UWSB
leakage of the first AES S-box. When the SNR is 0.125, PKS(HW,p=0.618) in
Figure 3(a) will be chosen as the benchmark for Figure 3(d) and Figure 3(g).
Figure 3(d) shows that C-KSA(HW) exhibits consistently better performance
compared with the benchmark. Distinguishers in Figure 3(g) are less efficient
than the benchmark, so we do not explain them in more details. When the
SNRs are 1, 8, and positive infinity, they can be analyzed in a similar way as
that of SNR of 0.125.

In summary, C-KSA(HW) is the best choice of all twelve KS test based dis-
tinguishers when the SNRs are 0.125, 1 and 8 respectively, while MIA(HW) is
the best choice when the SNR goes into positive infinity. Additionally, MPC-
KSA(HW) is no worse than the benchmark, and KSA(HW) is more efficient
than norm-KSA(HW).

344 H. Zhao et al.

Group A

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(a) SNR=0.125

KSA(HW)
norm−KSA(HW)
PKS(HW,p=0.25)
PKS(HW,p=0.618)
MIA(HW)

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(b) SNR=1

KSA(HW)
norm−KSA(HW)
PKS(HW,p=0.25)
PKS(HW,p=0.618)
MIA(HW)

15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(c) SNR=8

KSA(HW)
norm−KSA(HW)
PKS(HW,p=0.25)
PKS(HW,p=0.618)
MIA(HW)

15 20 25 30 35 40 45
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

S
uc

ce
ss

 r
at

e

(ci) SNR=Positive infinity

KSA(HW)
norm−KSA(HW)
PKS(HW,p=0.25)
PKS(HW,p=0.618)
MIA(HW)

Group B

100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

S
uc

ce
ss

 r
at

e

(d) SNR=0.125

C−KSA(HW)
PKS(HW,p=0.618)
C−PKS(HW)
MPC−PKS(HW)

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(e) SNR=1

MP−KSA(HW)
C−KSA(HW)
MPC−KSA(HW)
PKS(HW,p=0.618)
MPC−PKS(HW)

15 20 25 30 35 40 45
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

S
uc

ce
ss

 r
at

e

(f) SNR=8

KSA(HW)
MP−KSA(HW)
MPC−PKS(HW)

15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

Number of traces

S
uc

ce
ss

 r
at

e

(fi) SNR=Positive infinity

KSA(HW)
MP−KSA(HW)

Group C

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(g) SNR=0.125

MP−KSA(HW)
MPC−KSA(HW)
norm−C−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
PKS(HW,p=0.618)
norm−C−PKS(HW)

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(h) SNR=1

norm−C−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
PKS(HW,p=0.618)
C−PKS(HW)
norm−C−PKS(HW)

15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(i) SNR=8

KSA(HW)
C−KSA(HW)
MPC−KSA(HW)
norm−C−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
C−PKS(HW)
norm−C−PKS(HW)

20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(ii) SNR=Positive infinity

KSA(HW)
C−KSA(HW)
MPC−KSA(HW)
norm−C−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
C−PKS(HW)
norm−C−PKS(HW)
MPC−PKS(HW)

Fig. 1. SRs of different distinguishers against the first AES S-box in HW leakage

Construction and Evaluation of KS Based Distinguishers 345

Group A

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(a) SNR=0.125

KSA(ID)
norm−KSA(ID)
PKS(ID,p=0.25)
PKS(ID,p=0.618)
MIA(ID)

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(b) SNR=1

KSA(ID)
norm−KSA(ID)
PKS(ID,p=0.25)
PKS(ID,p=0.618)
MIA(ID)

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(c) SNR=8

KSA(ID)
norm−KSA(ID)
PKS(ID,p=0.25)
PKS(ID,p=0.618)
MIA(ID)

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(ci) SNR=Positive infinity

KSA(ID)
norm−KSA(ID)
PKS(ID,p=0.25)
PKS(ID,p=0.618)
MIA(ID)

Group B

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(d) SNR=0.125

PKS(ID,p=0.618)
C−KSA(ID)
norm−C−KSA(ID)
MPC−KSA(ID)
C−PKS(ID)
norm−C−PKS(ID)
MPC−PKS(ID)

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(e) SNR=1

PKS(ID,p=0.618)
C−KSA(ID)
norm−C−KSA(ID)
MPC−KSA(ID)
C−PKS(ID)
norm−C−PKS(ID)
MPC−PKS(ID)

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(f) SNR=8

PKS(ID,p=0.618)
C−KSA(ID)
norm−C−KSA(ID)
MPC−KSA(ID)
C−PKS(ID)
norm−C−PKS(ID)
MPC−PKS(ID)

50 100 150 200 250 300

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

S
uc

ce
ss

 r
at

e

(fi) SNR=Positive infinity

PKS(ID,p=0.618)
C−KSA(ID)
norm−C−KSA(ID)
MPC−KSA(ID)
C−PKS(ID)
norm−C−PKS(ID)
MPC−PKS(ID)

Group C

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(g) SNR=0.125

PKS(ID,p=0.618)
MP−KSA(ID)
D−PKS(ID,p=0.25)
norm−D−PKS(ID,p=0.25)
D−PKS(ID,p=0.618)
norm−D−PKS(ID,p=0.618)

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(h) SNR=1

PKS(ID,p=0.618)
MP−KSA(ID)
D−PKS(ID,p=0.25)
norm−D−PKS(ID,p=0.25)
D−PKS(ID,p=0.618)
norm−D−PKS(ID,p=0.618)

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(i) SNR=8

PKS(ID,p=0.618)
MP−KSA(ID)
D−PKS(ID,p=0.25)
norm−D−PKS(ID,p=0.25)
D−PKS(ID,p=0.618)
norm−D−PKS(ID,p=0.618)

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(ii) SNR=Positive infinity

PKS(ID,p=0.618)
MP−KSA(ID)
D−PKS(ID,p=0.25)
norm−D−PKS(ID,p=0.25)
D−PKS(ID,p=0.618)
norm−D−PKS(ID,p=0.618)

Fig. 2. SRs of different distinguishers against the first AES S-box in HW leakage

346 H. Zhao et al.

Group A

500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(a) SNR=0.125

KSA(HW)
norm−KSA(HW)
PKS(HW,p=0.25)
PKS(HW,p=0.618)
MIA(HW)

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(b) SNR=1

KSA(HW)
norm−KSA(HW)
PKS(HW,p=0.25)
PKS(HW,p=0.618)
MIA(HW)

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(c) SNR=8

KSA(HW)
norm−KSA(HW)
PKS(HW,p=0.25)
PKS(HW,p=0.618)
MIA(HW)

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(ci) SNR=Positive infinity

KSA(HW)
norm−KSA(HW)
PKS(HW,p=0.25)
PKS(HW,p=0.618)
MIA(HW)

Group B
500 1000 1500 2000 2500 3000 3500 4000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

S
uc

ce
ss

 r
at

e

(d) SNR=0.125

PKS(HW,p=0.618)
C−KSA(HW)

200 400 600 800 1000 1200 1400 1600 1800 2000
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

S
uc

ce
ss

 r
at

e

(e) SNR=1

PKS(HW,p=0.618)
C−KSA(HW)
MPC−KSA(HW)

100 200 300 400 500 600 700 800 900 1000

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(f) SNR=8

MIA(HW)
MP−KSA(HW)
C−KSA(HW)
MPC−KSA(HW)

Group C
500 1000 1500 2000 2500 3000 3500 4000

0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(g) SNR=0.125

PKS(HW,p=0.618)
MP−KSA(HW)
MPC−KSA(HW)
norm−C−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
C−PKS(HW)
norm−C−PKS(HW)
MPC−PKS(HW)

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(h) SNR=1

PKS(HW,p=0.618)
MP−KSA(HW)
norm−C−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
C−PKS(HW)
norm−C−PKS(HW)
MPC−PKS(HW)

100 200 300 400 500 600 700 800 900 1000

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(i) SNR=8

MIA(HW)
norm−C−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
C−PKS(HW)
norm−C−PKS(HW)
MPC−PKS(HW)

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(ii) SNR=Positive infinity

MP−KSA(HW)
C−KSA(HW)
norm−C−KSA(HW)
MPC−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
C−PKS(HW)
norm−C−PKS(HW)
MPC−PKS(HW)
MIA(HW)

Fig. 3. SRs of different distinguishers against the first AES S-box in UWSB leakage

Construction and Evaluation of KS Based Distinguishers 347

- An Adversary with a Generic Power Model. Due to the computation
cost, we select the SNRs of 16, 32, 64 and positive infinity in this scenario.
Figure 4 shows the SR of twelve KS test based distinguishers and MIA using an
ID model against UWSB leakage of the first AES S-box. In Group A, Figure 4
shows that, KSA(ID), norm-KSA(ID), MIA(ID) and PKS(ID) all fail to recover
the correct key with a relative small number of traces. Therefore, the benchmark
for Group B and Group C is whether or not a distinguisher can recovery the
correct key with a relative small number of traces. The distinguishers in Group B
can recover the correct key with a trace number of 4,000, while the distinguishers
in Group C fail to do that. For example, when the SNR is 16, C-KSA(ID), norm-
C-KSA(ID) and MPC-KSA(ID) in Group B can recovery the correct key (see
Figure 4(d)), while other new variants of KS test based distinguishers fail to do
that with 4,000 power traces (see Figure 4(g)). When the SNRs are 32, 64, and
positive infinity, they can be analyzed in a similar way as that of SNR of 16.

To sum up, C-KSA(ID), norm-C-KSA(ID) and MPC-KSA(ID) are more ef-
ficient than the benchmark, and C-KSA(ID) is the best choice when the SNRs
are 16, 32, 64 and positive infinity.

Highly Nonlinear Leakage Scenario. In this scenario, the leakage function
of cryptographic device is a highly nonlinear function. Without loss of generality,
S-box is used in this leakage scenario [14]. Our experimental results show that
twelve KS test based distinguishers and MIA all fail to recover the correct key
in this scenario.

Note: When SNR goes into positive infinity, the performance of PKS with a
fixed parameter may decrease with the increase of the trace number. This in-
dicates that the parameter in PKS is critical to the performance of PKS, as is
shown in [13].

4.2 Practical Experiments

In order to show how these twelve KS test based distinguishers behave in practi-
cal scenarios, we perform attacks against unprotected software AES implemen-
tation on 8-bit microcontroller (Case 1) and unprotected hardware AES imple-
mentation on Xilinx Vertex-5 FPGA (Case 2), respectively. These power traces
are from OpenSCA and from DPA Contest v2, respectively.

In the view of an adversary, we will choose the power model according to our
priori knowledge. Specifically, we will use HW model in Case 1, and Hamming
distance (HD) model in Case 2. We will choose SR to evaluate the efficiency,
by amounting key recovery attacks 300 times. In this part, the experiments are
also organized exactly in the same way as that in our simulated experiments,
except that we also perform CPA attacks. This means that we place CPA dis-
tinguisher in Group D. That is to say, in practical experiments, we will show
the performance of traditional CPA distinguisher, which is widely believed to be
well capable of characterizing linear leakages.

348 H. Zhao et al.

Group A

500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

Number of traces

S
uc

ce
ss

 r
at

e

(a) SNR=16

KSA(ID)
norm−KSA(ID)
PKS(ID,p=0.25)
PKS(ID,p=0.618)
MIA(ID)

500 1000 1500 2000 2500 3000 3500 4000
0

0.01

0.02

0.03

0.04

Number of traces

S
uc

ce
ss

 r
at

e

(b) SNR=32

KSA(ID)
norm−KSA(ID)
PKS(ID,p=0.25)
PKS(ID,p=0.618)
MIA(ID)

500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of traces

S
uc

ce
ss

 r
at

e

(c) SNR=64

KSA(ID)
norm−KSA(ID)
PKS(ID,p=0.25)
PKS(ID,p=0.618)
MIA(ID)

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of traces

S
uc

ce
ss

 r
at

e

(ci) SNR=Positive infinity

KSA(ID)
norm−KSA(ID)
PKS(ID,p=0.25)
PKS(ID,p=0.618)
MIA(ID)

Group B

500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(d) SNR=16

C−KSA(ID)
MPC−KSA(ID)
norm−C−KSA(ID)

500 1000 1500 2000 2500 3000 3500 4000

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

S
uc

ce
ss

 r
at

e

(e) SNR=32

C−KSA(ID)
MPC−KSA(ID)
norm−C−KSA(ID)

500 1000 1500 2000 2500 3000 3500 4000
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

S
uc

ce
ss

 r
at

e

(f) SNR=64

C−KSA(ID)
MPC−KSA(ID)
norm−C−KSA(ID)

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(fi) SNR=Positive infinity

C−KSA(ID)
norm−C−KSA(ID)
MPC−KSA(ID)

Group C

500 1000 1500 2000 2500 3000 3500 4000
0

0.01

0.02

0.03

0.04

0.05

Number of traces

S
uc

ce
ss

 r
at

e

(g) SNR=16

MP−KSA(ID)
D−PKS(ID,p=0.25)
norm−D−PKS(ID,p=0.25)
D−PKS(ID,p=0.618)
norm−D−PKS(ID,p=0.618)
C−PKS(ID)
norm−C−PKS(ID)
MPC−PKS(ID)

500 1000 1500 2000 2500 3000 3500 4000
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of traces

S
uc

ce
ss

 r
at

e

(h) SNR=32

MP−KSA(ID)
D−PKS(ID,p=0.25)
norm−D−PKS(ID,p=0.25)
D−PKS(ID,p=0.618)
norm−D−PKS(ID,p=0.618)
C−PKS(ID)
norm−C−PKS(ID)
MPC−PKS(ID)

500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04

0.06

0.08

Number of traces

S
uc

ce
ss

 r
at

e

(i) SNR=64

MP−KSA(ID)
D−PKS(ID,p=0.25)
norm−D−PKS(ID,p=0.25)
D−PKS(ID,p=0.618)
norm−D−PKS(ID,p=0.618)
C−PKS(ID)
norm−C−PKS(ID)
MPC−PKS(ID)

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of traces

S
uc

ce
ss

 r
at

e

(ii) SNR=Positive infinity

MP−KSA(ID)
D−PKS(ID,p=0.25)
norm−D−PKS(ID,p=0.25)
D−PKS(ID,p=0.618)
norm−D−PKS(ID,p=0.618)
C−PKS(ID)
norm−C−PKS(ID)
MPC−PKS(ID)

Fig. 4. SRs of different distinguishers against the first AES S-box in USWB leakage

Construction and Evaluation of KS Based Distinguishers 349

Case 1: Unprotected Software AES Implementation Provided by
OpenSCA
In this scenario, the output of the first S-box of the first round of AES opera-
tion is chosen as the target. In Group A, Figure 5 (a) shows that, KSA(HW)
exhibits the best performance among three existing KS test based distinguish-
ers, so KSA(HW) is used as the benchmark for Group B (see Figure 5(b)) and
Group C (see Figure 5(c)). In Group B, Figure 5(b) shows that, MP-KSA(HW)
is more efficient than the benchmark. In Group C, Figure 5(c) shows that, other
new variants of KS test based distinguishers are less efficient than the bench-
mark. In Group D, Figure 5(d) shows that, MP-KSA(HW) is less efficient than
CPA(HW). In summary, MP-KSA(HW) is the best choice in all these KS test

Group A Group B

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(a) Practical attacks on traces of OpenSCA

KSA(HW)
norm−KSA(HW)
PKS(HW,p=0.25)
PKS(HW,p=0.618)
MIA(HW)

20 40 60 80 100 120
0.94

0.95

0.96

0.97

0.98

0.99

1

Number of traces

S
uc

ce
ss

 r
at

e

(b) Practical attacks on traces of OpenSCA

KSA(HW)
MP−KSA(HW)

Group C Group D

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(c) Practical attacks on traces of OpenSCA

KSA(HW)
C−KSA(HW)
norm−C−KSA(HW)
MPC−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
C−PKS(HW)
norm−C−PKS(HW)
MPC−PKS(HW)

20 30 40 50 60 70 80 90 100
0.95

0.96

0.97

0.98

0.99

1

Number of traces

S
uc

ce
ss

 r
at

e

(d) Practical attacks on traces of OpenSCA

MP−KSA(HW)
CPA(HW)

Fig. 5. SRs for twelve KS test based distinguishers, MIA and CPA with HW model
in attacks against the first AES S-box

based distinguishers in this case. In the view of an adversary, CPA is an ideal
distinguisher. This indicates that, when the leakage of a cryptographic device
could be accurately characterized, CPA is the best choice compared with all KS
test based distinguishers.

Case 2: Unprotected Hardware AES Implementation Provided by
DPA Contest v2
In this scenario, the input of the first S-box of the last round of AES operation
is chosen as the target. In Group A, Figure 6(a) shows that, both PKS(HD)
and MIA(HD) (MIA(HD,bins=9)) can reveal the correct key, while KSA(HD)
and norm-KSA(HD) fail to do that. The empirical parameter in PKS(HD) can
largely improve the performance of PKS(HD). Therefore, PKS(HD,p=0.01) is

350 H. Zhao et al.

selected as the benchmark for finding the most promising variants in this case.
In Group B, Figure 6(b) shows that, MPC-KSA(HD) and MPC-PKS(HD) out-
perform PKS(HD,p=0.01) in terms of achieving a partial success rate of 80%.
In Group C, other KS test based distinguishers are less efficient than the bench-
mark, so we do not discuss them in more details. In Group D, Figure 6(d) shows
that, MPC-KSA(HD) is even better than CPA(HD).

Group A Group B

0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(a) Practical attacks on traces of DPA Contest v2

KSA(HD)

PKS(HD,p=0.25)

PKS(HD,p=0.01)

MIA(HD)

norm−KSA(HD)

0.5 1 1.5 2

x 10
4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of traces

S
uc

ce
ss

 r
at

e

(b) Practical attacks on traces of DPA Contest v2

MPC−KSA(HD)
PKS(HD,p=0.01)
MPC−PKS(HD)

Group C Group D

0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(c) Practical attacks on traces of DPA Contest v2

C−KSA(HD)
norm−C−KSA(HD)
D−PKS(HD,p=0.25)
norm−D−PKS(HD,p=0.25)
D−PKS(HD,p=0.01)
norm−D−PKS(HD,p=0.01)
PKS(HD,p=0.01)
C−PKS(HD)
norm−C−PKS(HD)
MP−KSA(HD)

0.5 1 1.5 2

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

S
uc

ce
ss

 r
at

e

(d) Practical attacks on traces of DPA Contest v2

MPC−KSA(HD)
CPA(HD)

Fig. 6. SRs for twelve KS test based distinguishers, MIA and CPA with HD model
in attacks against the first AES S-box of the last round

Table 3. Number of traces required to achieve partial SR of 80% on individual byte

byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

MPC-KSA 5,300 6,100 5,700 9,800 9,600 5,500 4,800 6,800

CPA 12,500 10,000 6,900 7,000 12,700 6,000 5,900 7,400

byte 9 byte 10 byte 11 byte 12 byte 13 byte 14 byte 15 byte 16

MPC-KSA 4,500 5,200 9,200 3,500 4,100 14,500 6,000 5,500

CPA 6,800 3,600 10,000 3,000 6,600 16,900 15,000 5,100

In order to enhance the understanding of whether or not MPC-KSA is a
reasonable alternative for CPA, we perform attacks on all sixteen bytes of AES
encryption. Table 3 shows the number of traces required to achieve partial SR of
80% of attacks on individual bytes. Although CPA is more efficient than MPC-
KSA on four bytes (byte 4, byte 10, byte 12, byte 16), it is less efficient on
other twelve bytes. For example, for byte 15, the number of required traces for
MPC-KSA to achieve partial SR of 80% is 6,000, while that of CPA is 15,000.
However, for byte 4, the number of required traces for MPC-KSA to achieve

Construction and Evaluation of KS Based Distinguishers 351

partial SR of 80% is 9,800, while that of CPA is 7,000. Although MPC-KSA
does not perform consistently better than CPA, it performs better than CPA on
75% of sixteen bytes. As a whole, MPC-KSA is more efficient than CPA in terms
of the required number of traces to achieve the global SR of 80%. In summary,
MPC-KSA is the best choice in this case. This experimental result indicates
that, when the leakages of a cryptographic device could not been accurately
characterized, MPC-KSA exhibits better performance than CPA in terms of SR,
as the former is capable of measuring the total dependency between hypothetical
power consumptions and physical leakages.

5 Conclusions

Distinguishers play an vital role in exploiting physical leakages in side-channel
attacks. Due to the capability of dealing with both linear and nonlinear de-
pendencies, generic side-channel distinguishers are being increasingly popular.
Among those are KS test based distinguishers, such as KSA and PKS. In this
paper, we constructed nine new variants of KS test based distinguishers via com-
bining different construction strategies of KSA and PKS, and then explored the
effectiveness and efficiency of twelve KS test based distinguishers and MIA in
typical simulated scenarios and practical scenarios.

In a whole, we experimentally investigated the performance of KS test based
distinguishers, and provided some helpful guides on how to choose a suitable
distinguisher. One of the most interesting observations is that MPC-KSA is
more efficient than CPA against unprotected hardware AES implementation on
Xilinx Vertex-5 FPGA in DPA Contest v2. However, we did not provide any
theoretical analysis yet about why this happens, which could be part of our
future work.

Acknowledgments. This work was supported in part by National Natural Sci-
ence Foundation of China (No. 61272478, 61073178, 60970135 and 61170282),
Beijing Natural Science Foundation (No. 4112064), Strategic Priority Research
Program of the Chinese Academy of Sciences (No.XDA06010701), and IIE Cryp-
tography Research Project (No. Y2Z0011102).

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining Smart-Card Security un-
der the Threat of Power Analysis Attacks. IEEE Trans. Comput. 51(5), 541–552
(2002)

3. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

352 H. Zhao et al.

4. Le, T.-H., Clédière, J., Canovas, C., Robisson, B., Servière, C., Lacoume, J.-L.: A
Proposition for Correlation Power Analysis Enhancement. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 174–186. Springer, Heidelberg (2006)

5. Mangard, S., Oswald, E., Standaert, F.-X.: All for one-one for all: Unifying uni-
variate DPA attacks. IET Information Security 5(2), 100–110 (2011)

6. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. Journal of Cryptographic Engineering 1(2), 123–144 (2011)

7. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis: A
Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

8. Moon, Y.-I., Rajagopalan, B., Lall, U.: Estimation of Mutual Information using
Kernal Density Estimators. Physical Review E 52, 2318–2321 (1995)

9. Walters-Williams, J., Li, Y.: Estimation of mutual information: A survey. In: Wen,
P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS,
vol. 5589, pp. 389–396. Springer, Heidelberg (2009)

10. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual Information Analysis: How, When
and Why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

11. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-
Charvillon, N.: Mutual Information Analysis: A Comprehensive Study. Journal
of Cryptology 24(2), 269–291 (2011)

12. Whitnall, C., Oswald, E., Mather, L.: An Exploration of the Kolmogorov-Smirnov
Test as Competitor to Mutual Information Analysis. In: Prouff, E. (ed.) CARDIS
2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011)

13. Liu, J.-Y., Zhou, Y.-B., Yang, S.-G., Feng, D.-G.: Generic Side-Channel Distin-
guisher Based on Kolmogorov-Smirnov Test: Explicit Contruction and Practical
Evaluation. Chinese Journal of Electronics 21(3), 547–553 (2012)

14. Whitnall, C., Oswald, E.: A Fair Evaluation Framework for Comparing Side-
Channel Distinguishers. Journal of Cryptographic Engineering 1(2), 145–160
(2011)

15. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

16. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-
Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univari-
ate Side-Channel Attacks against Two Unprotected CMOS Devices. In: Lee, P.J.,
Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg
(2009)

Cryptanalysis of the OKH Authenticated

Encryption Scheme

Peng Wang1, Wenling Wu2, and Liting Zhang2

1 State Key Laboratory of Information Security
Institute of Information Engineering, Chinese Academy of Sciences

2 Institution of Software, Chinese Academy of Sciences
wp@is.ac.cn,{wwl,zhangliting}@is.iscas.ac.cn

Abstract. Alomair proposed a new authenticated encryption scheme
OKH at ACNS 2012, and proved its security, i.e. authenticity and privacy.
Our research shows that it is not the case. We only need one query to
break the authenticity of OKH with success probability of 1, and two
queries to break the privacy of OKH with success probability of 1−1/2n,
where n is the block-length of underlying blockcipher.

Keywords: authenticated encryption, universal hash function family,
cryptanalysis.

1 Introduction

The basic requirement of authenticated encryption (AE) scheme is to achieve the
security function of message authentication code (MAC) and that of encryption
scheme at the same time, i.e. authenticity and privacy. Simply speaking, au-
thenticity guarantees that the ciphertext is really delivered from the sender and
not modified by the adversary during the transmission. Privacy guarantees that
the adversary can not gain any information (except the length) about plaintext
from the view of ciphertext. Due to its wide applications, during the past few
years, considerable effort has been made to construct AE schemes, e.g. IAPM [7],
OCB [11], CCM [12], EAX [2], CWC [8], GCM [9].

A straightforward method to construct AE schemes is by composing of an en-
cryption scheme and a message authentication code (MAC). Three generic com-
positions are involved: Encrypt-and-MAC (E&M), MAC-then-Encrypt (MtE),
and Encrypt-then-MAC (EtM). CCM [12], EAX [2], CWC [8] and GCM [9] can
be viewed as composed (two-pass) schemes with refinement of using only one
key. The other method is constructing integrated (one-pass) schemes, such as
IAPM [7] and OCB [11].

Recently, Alomair proposed a new composed AE scheme OKH [1]. In this
design, the author takes the E&M style because he observes that in both E&M
and EtM schemes, the security requirements of authenticity can be relaxed,
which can improve the efficiency of the overall construction.

Typical MACs are based on blockciphers, such as CBC-MAC [5], CMAC [10]
and PMAC [4], but more efficient MACs are based on universal hash function

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 353–360, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

354 P. Wang, W. Wu, and L. Zhang

families, in which the message is first compressed into a fixed-length string by a
universal hash function and then encrypted to be the tag, e.g. UMAC [3], and
MACs in CWC [8] and GCM [9]. The universal hash function family is a group
of hash functions without any cryptographic requirement, but satisfying some
combinatorial properties. The MAC in OKH is also based on a hash function
family called the Odd Key Hash Family, but as mentioned by the author [1] it
does not even satisfy the basic property of universal hash family, i.e. property
of being universal1.

Alomair proved the security of OKH by the reduction method with the as-
sumption that the underlying blockcipher is a pseudorandom permutation (PRP).
Unfortunately it is not true.

Our Contributions. In this paper we show that both authenticity and privacy
of OKH do not hold in the usual security models. As to authenticity, we only
need to query a special message to the encryption algorithm of OKH, and then
forgery a new ciphertext and its tag that can pass the decryption algorithm of
OKH successfully with probability of 1. As to authenticity, we only need to query
two special messages to distinguish the ciphertexts from the random strings with
probability of 1− 1/2n, where n is the block-length of underlying blockcipher.

2 Description of OKH

2.1 Notations

– For a binary string M , |M | denotes the length of M in bits.

– For a non-empty set S, we denote by s
$←− S the selection of a member of S

uniformly at random and assigning it to s.
– A blockcipher is a function E : {0, 1}kl × {0, 1}bl → {0, 1}bl, where bl and kl

are the block-length and key-length respectively, and EK(·) = E(K, ·) is a
permutation for all K ∈ {0, 1}kl.

– X ⊕ Y denotes the exclusive or (XOR) of two string X and Y . When the
lengths of X and Y are not equal, we pad some 0s after the short one to
make them equal and then do the usual XOR operation. E.g. 11 ⊕ 1001 =
1100⊕ 1001 = 0101.

– We denote by · the multiplication, 0n the n-bit string of all 0s, Z2n =
{0, 1, 2, · · · , 2n−1} the set of all none-negative integers less than 2n, and
Z∗
2n the set of all odd integers in Z2n . Without confusion, we often use a

string or a integer number interchangeably.

2.2 The Odd Key Hash Function Family

The Odd Key hash function family is a crucial component of OKH, which makes
use of basic modular arithmetic operations within Z2n . For an input message

1 A hash function family F = {fK |K ∈ K} is ε-almost-universal if #{K|fK(X) =
fK(Y)}/#K ≤ ε for any X �= Y .

Cryptanalysis of the OKH Authenticated Encryption Scheme 355

M with bit-length of multiples of n, partition it into a sequence of n-bit blocks,
M = M1M2 · · ·Ml, then the compressed image of M is given by

OK-HASHKh
(M) =

l∑
i=1

Ki ·Mi mod 2n,

where the key Kh = K1 · · ·Kl, Ki ∈ Z∗
2n , i = 1, · · · , l.

Remark 1. As mentioned in [1], OK-HASH is not an almost universal hash func-
tion family, because OK-HASHKh

(02n) = OK-HASHKh
(10n−110n−1) for any

Kh.

2.3 OKH Authenticated Encryption

OKH is a nonce-based authenticated encryption scheme, combining an encryp-
tion scheme SE = (E ,D) and a special message authentication code OK-MAC
based on the function family OK-HASH mentioned above. We can view OKH
as an E&M composition AE scheme, and divide it into three components: OKH
= (OKH.Key, OKH.Enc, OKH.Dec), where OKH.Key is a key generation al-
gorithm, OKH.Enc is an encryption algorithm and OKH.Dec is a decryption
algorithm.

Key Generation Algorithm. OKH has two keys, one for SE , one for OK-MAC,
denoted as Ke and Kh respectively, which are generated independently.

Encryption Algorithm. Both SE and OK-MAC only handle messages of full
blocks. In order to treat arbitrary length messages, OKH.Enc pads the bit 1
and minimal bits of 0, making the length of the messages be multiples of block-
length. We simply write the result of this procedure as M10∗. OKH uses E to
get the ciphertext and OK-MAC to get the authentication tag:

OKH.EncKe,Kh
(N,M) = (EKe(N,M),OK-MACKh,Ke(N,M)),

where E encrypts the message block by block using the underlying blockcipher
with different key Ke ⊕ (N ||i),

EKe(N,M) = EKe⊕(N ||1)(M1)||EKe⊕(N ||2)(M2)|| · · · ||EKe⊕(N ||l)(Ml10
∗),

and
OK-MACKh,Ke(N,M) = EKe(OK-HASHKh

(M10∗)⊕N),

when the length of input to the blockcipher EKe is less than one block, we pad
some zeros to fill it.

356 P. Wang, W. Wu, and L. Zhang

Decryption Algorithm. OKH.Dec recovers the plaintext, and uses OK-MAC
to regenerate the tag to decide whether to return the plaintext or not.

OKH.DecKe,Kh
(N,C, T) =

{
⊥ if OK-MACKh,Ke(N,M) �= T ,

M else, where M = DKe(N,C),

where D is the inverse of E ,

DKe(N,C) = DKe⊕(N ||1)(C1)||DKe⊕(N ||2)(C2)|| · · · ||DKe⊕(N ||l)(Cl).

As a summery, we conclude OKH in pseudocodes as in fig. 1, and illustrate it in
fig. 2.

Key Generation: OKH Encryption: OKH Decryption:

OKH.Key

Ke
$←− {0, 1}kl

Ki
$←− Z∗

2n , i = 1, · · · , l

OKH.EncKe,Kh(N,M)
C ← EKe(N,M)
T ←OK-MACKh,Ke(N,M)
return (C, T)

OKH.DecKe,Kh(N,C, T)
M ← DKe(N,C)
if T �=OK-MACKh,Ke(N,M)
then return ⊥

return M

Fig. 1. The pseudocodes of OKH Authenticated Encryption

E

1C

1M

(||1)eK N E

2C

2M

(|| 2)eK N E

lC

*10lM

(||)eK N l E

T

eK

N

+
2K lK1K

Fig. 2. The OKH Authenticated Encryption Scheme, when the block-length of the
underlying blockcipher and that in the OK-HASH are equal

Remark 2. In the original description of OKH [1], the block-length of the un-
derlying blockcipher and that in the OK-HASH may not be equal, the former is
no less than the later. In the following discussion, we only consider the situation
that the two lengths are equal (i.e. bl = n), just as illustrated in fig. 2.

Cryptanalysis of the OKH Authenticated Encryption Scheme 357

3 Security Models

We adopt the standard security models as those mentioned in [1].

Authenticity Model. The adversaryA is given oracle access to the encryption
algorithm OKH.Enc. A queries OKH.Enc with a pair of nonce and message
with restriction that he never repeats the nonce, or in other words he is nonce-
respecting, observing the output. After some queries (current query may depend
on past queries), he returns a triple of nonce, ciphertext and tag (N,C, T),
which does not appear before in the previous answers to the queries. If (N,C, T)
is valid, i.e. OKH.Dec(N,C, T) �=⊥, we say that A makes a successful forgery.
Formally, the advantage of A is defined by

Advauth
OKH(A) = Pr[AOKH.Enc(·,·) forges].

Privacy Model. The nonce-respecting adversary B is also given oracle access
to the encryption algorithm OKH.Enc. B queries OKH.Enc with pairs of nonce
and message, observing the outputs, trying to distinguish it from random bits.
Formally, the advantage of B is defined by

Advpriv
OKH(B) = |Pr[BOKH.Enc(·,·) ⇒ 1]− Pr[B$(·,·) ⇒ 1]|,

where $(N,M) returns a random string with the same length of OKH.Enc(N,M).

4 Cryptanalysis of OKH

4.1 Some Properties

We first notice some properties of a special binary integer number 10n−1 in Z2n .

Property 1. For any odd integers Ki and Kj,

10n−1 ·Ki ≡ 10n−1 mod 2n, (1)

10n−1 ·Ki + 10n−1 ·Kj ≡ 0n mod 2n. (2)

Using these properties, we construct two pairs of messages which have the same
authentication tag under OK-MAC with the same or different nonces.

Property 2. For arbitrary blocks Mi ∈ {0, 1}n (i = 1, · · · , l), we have

OK-MAC(N,M1 · · ·Ml10
n−110n−1) = OK-MAC(N,M1 · · ·Ml), (3)

OK-MAC(N,M1 · · ·Ml10
n−1) = OK-MAC(N ′,M1 · · ·Ml), (4)

where N ⊕N ′ = 10nl−1, nl is the length of the nonce.

358 P. Wang, W. Wu, and L. Zhang

Proof. It is easy to verify the following two equations about OK-HASH,

OK-HASH(M1 · · ·Ml10
n−110n−110n−1) = OK-HASH(M1 · · ·Ml10

n−1),

OK-HASH(M1 · · ·Ml10
n−110n−1) = OK-HASH(M1 · · ·Ml10

n−1)⊕ 10n−1.

By the definition of OK-MAC, the equations of (3) and (4) follow. �

So if we look at the authentication code in OKH solely, OK-MAC is not a secure
MAC, due to the fact that OK-HASH is not almost universal. We can query
the MAC using one message, and get the tag, then the other message and the
tag constitute a successful forgery immediately. But breaking authenticity of AE
scheme is slightly different, what the adversary tries to find is a valid triple of
nonce, ciphertext and tag which does not appear before. But we notice that in
equation (3) M1 · · ·Ml is the prefix of M1 · · ·Ml10

n−110n−1, which will help us
to break the authenticity of OKH.

4.2 Breaking Authenticity of OKH

We give the following authenticity attacking algorithm. This attack only makes
one special query to the encryption oracle OKH.EncKe,Kh

(·, ·), then returns a
valid triple of nonce, ciphertext and tag which does not appear before.

Authenticity Attacking Algorithm A:
1) Query (N,M1 · · ·Ml10

n−110n−1) to the encryption oracle, where Mi (i =
1, · · · , l) are arbitrary blocks, and get (C1C2 · · ·Cl+3, T), where Ci (i =
1, · · · , l + 3) are ciphertext blocks, T is the tag.

2) Return (N,C1C2 · · ·Cl+1, T).

Analysis of Algorithm A. The ciphertext blocks to the query are Ci =
EKe⊕(N ||i)(Mi), i = 1, · · · , l, Cl+1 = EKe⊕(N ||(l+1))(10

n−1), j = 1, 2, 3.
So the corresponding plaintext blocks of Ci (i = 1, · · · , l) and Cl+1 under
same nonce N are Mi (i = 1, · · · , l) and 10n−1. 10n−1 is interpreted as
the padding, therefore the final plaintext is M1 · · ·Ml. Equation (3) shows
that the tags of (N,M1 · · ·Ml10

n−110n−1) and (N,M1 · · ·Ml) are the same.
So (N,C1C2 · · ·Cl+1, T) is valid, which does not appear before. Therefore
Advauth

OKH(A) = 1.

Remark 3. In the proof of authenticity in [1], the author did not consider the
situation that one plaintext may be the prefix of the other. The security proof
lies on the fact that the corresponding plaintexts of two different ciphertext differ
in single block or several blocks. This is obvious not true.

4.3 Breaking Privacy of OKH

In equation (4), two messages have the same authentication tag under different
nonces. Therefore we can make two nonce-respecting queries, resulting in two
equal tags, which can be used to distinguish ciphertexts from random strings.

Cryptanalysis of the OKH Authenticated Encryption Scheme 359

Privacy attacking algorithm B:
1) Query (N,M1 · · ·Ml10

n−1), and get (C1C2 · · ·Cl+2, T).
2) Query (N ′,M1 · · ·Ml) where N ⊕N ′ = 10nl−1, and get (C′

1C
′
2 · · ·C′

l+1, T
′).

3) If T = T ′, then return 1, else return 0.

Analysis of algorithm B. If the oracle is OKH.Enc(·, ·). By equation (4), we know
that T = T ′ always holds. If the oracle is $(·, ·), T and T ′ are two random strings.
The probability of T = T ′ is 1/2n, therefore Advpriv

OKH(B) = 1− 1/2n.

Remark 4. In the current real-or-random privacy model, OKH is totally inse-
cure. We note that even in a more general left-or-right privacy model, OKH
is not secure. In this model, the adversary can query (N,M), (N,M ′) with re-
striction that |M | = |M ′|, the oracle only returns left or right ciphertext, and
after several queries the adversary must guess this one-bit information about
left-or-right. In this model, the adversary can attack as following: 1) Query
(N,M1 · · ·Ml10

n−1), (N,M1 · · ·Ml0
n); 2) Query (N ′,M1 · · ·Ml), (N

′,M1 · · ·Ml)
where N ⊕ N ′ = 10nl−1; 3) If the two returned tags are equal, the adversary
guesses it is left, else guesses right. It is easy to verify that the success probability
is 1.

Remark 5. The proof of privacy in [1], the security lies only on the pseudoran-
domness of the underlying blockcipher, which assumes that once the key of the
blockcipher is randomly selected, the blockcipher is indistinguishable from a uni-
formly random permutation, i.e. the blockcipher is a pseudorandom permutation
(PRP). The encryption component of OKH is similar to the ECB mode, with ex-
ception that the keys to the underlying blockcipher areKe⊕(N ||i) (i = 1, · · · , l),
which are all related by the keyKe. The only assumption of PRP can not guaran-
tee the independence among the blockcipher invocations. With the assumption of
PRP, it is easy to construct a new block cipher like [6], which is also a PRP, but
the same under two different related keys such as Ke ⊕ (N ||1) and Ke ⊕ (N ||2).
Then first two block encryptions of OKH are the same, which also can be used
to break the privacy of OKH. Algorithm B only makes use of the weakness of
OKH-MAC.

5 Conclusion

Although the security proofs were given in [1], the OKH authenticated encryp-
tion scheme is not secure at all. Both authenticity and privacy of OKH do not
hold in the common security models. We only need one or two queries to break
the security of OKH with success probability of 1 or almost 1.

Acknowledgement. This research is supported by the National Natural Sci-
ence Foundation Of China (No. 60903219, 61272477, 61272476, 61202422),
the National Grand Fundamental Research 973 Program of China (No.
2013CB338002), the Strategic Priority Research Program of Chinese Academy
of Sciences under Grant XDA06010702 and the IIE’s Research Project on Cryp-
tography.

360 P. Wang, W. Wu, and L. Zhang

References

1. Alomair, B.: Authenticated encryption: How reordering can impact performance.
In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 84–99.
Springer, Heidelberg (2012)

2. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)

3. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and se-
cure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 216–233. Springer, Heidelberg (1999)

4. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002)

5. FIPS-133: Federal information processing standards publication (FIPS 133). com-
puter data authentication (1985)

6. Iwata, T., Kurosawa, K.: On the correctness of security proofs for the 3GPP con-
fidentiality and integrity algorithms. In: Paterson, K.G. (ed.) Cryptography and
Coding 2003. LNCS, vol. 2898, pp. 306–318. Springer, Heidelberg (2003)

7. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 529. Springer, Heidelberg (2001)

8. Kohno, T., Viega, J., Whiting, D.: CWC: A high-performance conventional authen-
ticated encryption mode. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 408–426. Springer, Heidelberg (2004)

9. McGrew, D.A., Viega, J.: The galois/counter mode of operation (GCM) (2004),
http://csrc.nist.gov/groups/ST/toolkit/BCM/

10. NIST: Recommendation for block cipher modes of operation: The CMAC mode
for authentication. NIST Special Publication 800-38B (2005),
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

11. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM Conference on Computer and Communications Security, pp. 196–205.
ACM (2001)

12. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM) (2002),
http://csrc.nist.gov/groups/ST/toolkit/BCM/

http://csrc.nist.gov/groups/ST/toolkit/BCM/
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/

Security Evaluation of Rakaposhi Stream Cipher

Mohammad Ali Orumiehchiha1, Josef Pieprzyk1, Elham Shakour2,
and Ron Steinfeld3

1 Center for Advanced Computing, Algorithms and Cryptography,
Department of Computing, Faculty of Science, Macquarie University,

Sydney, NSW 2109, Australia
{mohammad.orumiehchiha,josef.pieprzyk}@mq.edu.au

2 Faculty of Mathematics, Amirkabir University,Tehran, Iran
elham.shakoor@gmail.com

3 Clayton School of Information Technology
Monash University, Clayton VIC 3800, Australia

ron.steinfeld@monash.edu

Abstract. Rakaposhi is a synchronous stream cipher, which uses three
main components: a non-linear feedback shift register (NLFSR), a dy-
namic linear feedback shift register (DLFSR) and a non-linear filtering
function (NLF). NLFSR consists of 128 bits and is initialised by the
secret key K. DLFSR holds 192 bits and is initialised by an initial vector
(IV). NLF takes 8-bit inputs and returns a single output bit. The work
identifies weaknesses and properties of the cipher. The main observation
is that the initialisation procedure has the so-called sliding property. The
property can be used to launch distinguishing and key recovery attacks.
The distinguisher needs four observations of the related (K, IV) pairs.
The key recovery algorithm allows to discover the secret key K after
observing 29 pairs of (K, IV). Based on the proposed related-key attack,
the number of related (K, IV) pairs is 2(128+192)/4 pairs.

Further the cipher is studied when the registers enter short cycles.
When NLFSR is set to all ones, then the cipher degenerates to a linear
feedback shift register with a non-linear filter. Consequently, the initial
state (and Secret Key and IV) can be recovered with complexity 263.87.

If DLFSR is set to all zeros, then NLF reduces to a low non-linearity
filter function. As the result, the cipher is insecure allowing the adversary
to distinguish it from a random cipher after 217 observations of keystream
bits. There is also the key recovery algorithm that allows to find the secret
key with complexity 254.

Keywords: Rakaposhi Stream Cipher, Related Key Attack, Weak State,
Cryptanalysis, Distinguishing Attack, Key Recovery Attack.

1 Introduction

Stream ciphers are symmetric cipher systems, which provide confidentiality in
many applications ranging from mobile phone communication to private virtual
networks. They may be implemented efficiently in software and hardware and

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 361–371, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

362 M.A. Orumiehchiha et al.

are a preferred choice when dealing with an environment that has restricted
computing resources (such as smart cards, RF tags). The inner work of stream
ciphers is controlled normally by two parameters: an initialisation vector (IV)
and a key (K). The initialisation vector is public and the key is secret.

There are many tools for analysis of stream ciphers. The most two prominent
are the linear and differential attacks. There are also many more “exotic” tools
for analysis. One such tool is the related key attack. This attack is especially
dangerous when an adversary has access to many pairs of (IV,K). This may
happen if the adversary is able to experiment with a stream cipher device that
has been left unattended (so-called midnight or lunchtime attacks). The adver-
sary may modify the unknown secret key by forcing changes on few key bits,
may try different IV s or may modify the clock procedure.

The Rakaposhi stream cipher was designed by Cid, Kiyomoto, and Kurihara
in 2009 (see [1]). The cipher is based on a non-linear feedback shift register
(NLFSR) and a dynamic linear shift register (DLFSR). The design was crafted
to be suitable for lightweight implementations, where computing, power and
time resources are in short supply. The cipher claims 128-bit security and has
been designed to complement the eStream portfolio for hardware-oriented stream
ciphers. The designers of the cipher claim that Rakaposhi is an efficient syn-
chronous stream cipher that resists all known attacks and they conjecture that
it is also secure against other yet unknown attacks.

This work analyses the Rakaposhi cipher and shows its weaknesses. In partic-
ular, we

– examine the resistance of the cipher against the related key attack, where
the adversary can access related pairs (IV,K),

– study the security implications when NLFSR enters a short cycle,
– investigate the security level when DLFSR enters a short cycle.

1.1 Related Works

The related key attack is studied in the context the Rakaposhi cipher and its
initialization procedure. Similar analysis can be found in [3,4,8] but in a different
context. The related key attack can be seen as a member of the differential
cryptanalysis toolbox. We use the slide attack published by Canniere et. al. in
[2] to launch the related key attack. The second part of our work is influenced
by the paper of Zhang and Wang [9], in which the authors study the security
of the Grain stream cipher [5,6]. While working on the paper, we have become
aware of a paper [7] that shows a similar analysis of the initialization procedure
of Rakaposhi but in our paper, we have improved dramatically the efficiency of
key recovery attack and we have also identified two classes of weak states.

The rest of the paper is structured as follows. Section 2 describes briefly the
Rakaposhi stream cipher. Section 3 presents the weaknesses of the cipher and
investigates the security of the initialisation procedure under the related key
attack. Section 4 discusses the security implications when one of the registers
(either NLFSR or DLFSR) enters a short cycle. Section 5 concludes the work.

Security Evaluation of Rakaposhi Stream Cipher 363

2 Description of Rakaposhi Stream Cipher

The Rakaposhi stream cipher consists of the following three building blocks (see
Figure 1) :

– a 128-bit NLFSR also called the register A,
– a 192-bit DLFSR also called the register B,
– a non-linear function NLF

Fig. 1. Rakaposhi Stream Cipher

The NLSFR register A is defined by its feedback function:

g(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x1x3x9 ⊕ x1x7x9 ⊕ x5x8 ⊕ x2x5 ⊕
x3x8 ⊕ x2x7 ⊕ x9 ⊕ x8 ⊕ x7 ⊕ x6 ⊕
x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0 ⊕ 1,

where at+128 = g(at, at+6, at+7, at+11, at+16, at+28, at+36, at+45, at+55, at+62) and
at+i is i

th bit of the register A at clock t.
The DLFSR register B is controlled by two bits (c0, c1) taken from the state

of NLFSR. The bits choose one of four possible characteristic polynomials of
DLFSR. The form of the polynomials is as follows:

f(x) = x192 ⊕ x176 ⊕ c0x158 ⊕ (1⊕ c0)x155 ⊕ c0c1x136 ⊕
c0(1⊕ c1)x134 ⊕ c1(1 ⊕ c0)x120 ⊕ (1 ⊕ c0)(1⊕ c1)x107 ⊕ (1)

x93 ⊕ x51 ⊕ x49 ⊕ x41 ⊕ x37 ⊕ x14 ⊕ 1,

364 M.A. Orumiehchiha et al.

where the bits (c0, c1) are the 42th and 90th bits of the register A at clock t,
respectively. The recursive relation for DLFSR is as follows:

bt+192 = bt ⊕ bt+14 ⊕ bt+37 ⊕ bt+41 ⊕ bt+49 ⊕ bt+51 ⊕ bt+93 ⊕
c0 · c1 · bt+107 ⊕ c0 · c1 · bt+120 ⊕ c0 · c1 · bt+134 ⊕ (2)

c0 · c1 · bt+136 ⊕ c0 · bt+155 ⊕ c0 · bt+158 ⊕ bt+176

where ci = 1⊕ ci denotes the negation of ci and bt+i is the ith bit of B at clock
t.

Rakaposhi uses a non-linear filtering functionNLF : GF (28)→ GF (2), which
is based on the AES S-Box. The NLF function is a balanced Boolean function
and its algebraic degree equals to 7. NLF takes 8-bit inputs (2 bits from A and
6 bits from B) and outputs

st = NLF (at+67, at+127, bt+23, bt+53, bt+77, bt+81, bt+103, bt+128),

where the two bits at+67, at+127 are taken from A and the other bits from B.
Finally, the keystream output is generated by linear combination of the outputs
of both registers A and B with the output of the NLF function. The reader
interested in more detail is referred to the original paper [1].

2.1 Initialisation Procedure

The goal of the initialisation procedure is to mix IV and the secret key K.
Assume that IV = [iv0, · · · , iv191] and K = [k0, · · · , k127]. K and IV are loaded
to NLFSR and DLFSR, respectively so

ai = ki for 0 ≤ i ≤ 127

bj = ivj for 0 ≤ j ≤ 191,

where the bits of registers A and B are ai and bj , respectively. The registers A
and B are then clocked 448 times without producing any output keystream bits.
This stage is divided into two phases:

Phase 1: the output of NLF is linearly combined with the feedback of the
register B for the first 320 clocks.

Phase 2: the output of NLF is linearly combined with the feedback of the
register A for the next 128 clocks.

After finishing Phase 2, the cipher starts producing keystream outputs.

3 Cryptanalysis of Rakaposhi Stream Cipher

Now, we show how we can launch the distinguishing and key recovery attacks
on the Rakaposhi cipher. The attacks use a sliding property of the cipher. An
interesting property of the proposed attacks is that their complexities are not
affected by the number of clocks, which the cipher performs during the initiali-
sation process. This means that the attacks works even if the number of clocks
is increased.

Security Evaluation of Rakaposhi Stream Cipher 365

3.1 Properties of Rakaposhi Cipher

We present some cryptographic properties of the Rakaposhi stream cipher that
corroborate the proposed attacks.

1. The secret key and IV are loaded in two registers A and B, respectively.
Consequently, at clock t = 0, A contains K and B contains IV .

2. The initialisation procedure applies the same primitives that are used during
the keystream generation stage. This implies that the initialisation for the
key and IV is similar to the initialisation for the key and IV when they
are shifted by one position. We refer to this characteristics as the sliding
property.

3. The register A (NLFSR) has a short cycle of the length 1. When the state
of A becomes all ones, then A stays in this state forever.

4. The register B (DLFSR) has a short cycle of the length 1. When the state
of B becomes all zeros, then B stays in this state forever.

The first two properties mean that the adversary may find related (K, IV) pairs,
which produce keystream outputs that are shifted. The third and fourth prop-
erties can be exploited by the adversary so they can distinguish the cipher from
a truly random binary source and recover internal state of the cipher and finally
corresponding secret key.

3.2 Related Key Attack on Rakaposhi

In our sliding attack we assume that we have two related pairs (K, iv) and

(K̂, îv). Consider the initialisation procedure for the two pairs. Let K =
(k0, · · · , k127) and iv = (iv0, ..., iv191) be loaded into the registers A and B,
respectively. Denote the states of the registers A and B at the clock t by At and
Bt, respectively. The evolution of states over time is described below.

A0 = [k0, · · · , k127] B0 = [iv0, · · · , iv191]
A1 = [k1, · · · , k127, a128] B1 = [iv1, · · · , iv191, b192]
...

...

Phase 2 of Initialization
=================⇒A320 = [a320, · · · , a448] B320 = [b320, · · · , b512]

...
...

Initialization finished
===============⇒ A448 = [a448, · · · , a576] B448 = [b448, · · · , b640]
Key Generation started
================⇒A449 = [a449, · · · , a577] B449 = [b449, · · · , b641]

A450 = [a450, · · · , a578] B450 = [b450, · · · , b642]

366 M.A. Orumiehchiha et al.

The keystream output bits zi; i ≥ 0, are computed as follows:

z0 = a449 ⊕ b449 ⊕NLF (a448+67, a448+127,

b448+23, b448+53, b448+77, b448+81, b448+103, b448+128)

z1 = a450 ⊕ b450 ⊕NLF (a449+67, a449+127,

b449+23, b449+53, b449+77, b449+81, b449+103, b449+128)

...

The relation between keystreams generated by the cipher when initialised by the
related pairs is described by the following theorem.

Theorem 1. Given two pairs (K, iv) and (K̂, îv), where K = (k0, · · · , k127)
and iv = (iv0, ..., iv191). If the pair (K̂, îv) satisfies the following equations{

k̂i = ki+1 0 ≤ i ≤ 126, k̂127 = a128

îvi = ivi+1 0 ≤ j ≤ 190, îv191 = b192
(3)

then the keystream output bits ẑi = zi+1 for i ≥ 0 with probability 2−2.

Proof. By satisfying Equation (3), the internal states of [A320, B320] are equal

to [Â319, B̂319]. But at the next clock, the states may not be identical because

the state [Â320, B̂320] is still at the first step while [A321, B321] is running at the

second step. If b̂512 = b511, which occurs with probability 1/2, then

[Â319, B̂319] = [A320, B320].

The same argument is valid for the states [A448, B448] and [Â447, B̂447]. The
states are identical, when â446 = b447, which also happens with probability 1/2.
Consequently, ẑi = zi+1 for i ≥ 0 with probability 1/4. �

Table 1 presents some (K, IV) pairs, which produce shifted identical key stream
outputs. According to Theorem 1, the adversary can use this weakness to gen-
erate the same but l−bit shifted keystream outputs by defining related (K, IV)
pairs with probability 2−2·l. The discovered weakness allows the adversary to
distinguish the cipher from a random bit generator. Assume that the adversary
can apply related (K, IV) pairs but he does not know the exact values of se-
cret key. Then, after applying m (m! 4) different (randomly generated) related
(K, IV) pairs, on the averagem/4 of generated key stream outputs have identical
sequences with just one bit shift.

3.3 Recovery of Secret Keys

Now, we propose a key recovery attack that exploits the sliding property of pairs
(K, IV). We show an algorithm that allows to recover the 128-bit key after about
29 initialisation operations with related (K,IV) pairs. The attack can find the
secret key with probability close to one.

Security Evaluation of Rakaposhi Stream Cipher 367

Assume that both (K, IV) and (K̂, ÎV) generate almost identical keystream
bits, where the second keystream is a shifted by one bit copy of the first keystream.
At clock t = 1, the first generated bit is b192, which is equal to:

b192 = b0 ⊕ b14 ⊕ b37 ⊕ b41 ⊕ b49 ⊕ b51 ⊕ b93 ⊕ (1 ⊕ c0)(1⊕ c1)b107

⊕ (1⊕ c0)c1b120 ⊕ c0(1⊕ c1)b134 ⊕ c0c1b136 ⊕ (1⊕ c0)b155 ⊕ c0b158 ⊕ b176

⊕NLF (a67, a127, b23, b53, b77, b81, b103, b128),

where c0 = a41 and c1 = a89. Since the contents of bi (0 ≤ i ≤ 191) are known
and can be chosen by the adversary, then Equation (4) is a non-linear relation
based on only 4 unknown variables a41, a89, a67, a127. We now take a closer look
at Equation (4):

b192 = b0 ⊕ b14 ⊕ b37 ⊕ b41 ⊕ b49 ⊕ b51 ⊕ b93 ⊕ (1⊕ a41)(1 ⊕ a89)b107

⊕ (1 ⊕ a41)a89b120 ⊕ a41(1⊕ a89)b134 ⊕ a41a89b136 ⊕ (1 ⊕ a41)b155

⊕ a41b158 ⊕ b176 ⊕ a67a127b23b53b77b81b103 ⊕ a67a127b23b53b77b81

⊕ a67a127b23b53b77b103 ⊕ a67a127b23b53b81b103b128

⊕ a67a127b23b53b81b103 ⊕ a67a127b23b53b81b128

⊕ a67a127b23b53b81 ⊕ a67a127b23b53b103b128 ⊕ a67a127b23b77b81b103

⊕ a67a127b23b77 ⊕ a67a127b23b81b103 ⊕ a67a127b23b81b128 ⊕ a67a127b23b128

⊕ a67a127b23 ⊕ a67a127b53b77b81b103b128 ⊕ a67a127b53b77b81b128

⊕ a67a127b53b77b81 ⊕ a67a127b53b77b128 ⊕ a67a127b53b77 ⊕ a67a127b53b103

⊕ a67a127b77b81b103b128 ⊕ a67a127b77b81b103 ⊕ a67a127b77b81b128

⊕ a67a127b77b103b128 ⊕ a67a127b77b128 ⊕ a67a127b81b103b128

⊕ a67a127b81b103 ⊕ a67a127b81 ⊕ a67a127b103 ⊕ a67a127 (4)

⊕ a67b23b53b77b81b103 ⊕ a67b23b53b77b81b128 ⊕ a67b23b53b77

⊕ a67b23b53b81b103b128 ⊕ a67b23b53b81b103 ⊕ a67b23b53b81b128

⊕ a67b23b53b103 ⊕ a67b23b77b81b103b128 ⊕ a67b23b81b103

⊕ a67b23b81 ⊕ a67b23b103b128 ⊕ a67b23b128 ⊕ a67b53b77b81b103b128

⊕ a67b53b77b81b103 ⊕ a67b53b77b81b128 ⊕ a67b53b77b81 ⊕ a67b53b77b128

⊕ a67b53b81b103b128 ⊕ a67b53b81 ⊕ a67b53b103 ⊕ a67b53 ⊕ a67b77b81b103

⊕ a67b77b103b128 ⊕ a67b81b103 ⊕ a67b103 ⊕ a67 ⊕ a127b23b53b77

⊕ a127b23b53b81b103 ⊕ a127b23b53b81b128 ⊕ a127b23b53b81

⊕ a127b23b53 ⊕ a127b23b77b81b103 ⊕ a127b23b77b103 ⊕ a127b23b77

⊕ a127b23b81 ⊕ a127b23 ⊕ a127b53b77b81b103b128 ⊕ a127b53b77b81b128

⊕ a127b53b77b103b128 ⊕ a127b53b77b103 ⊕ a127b53b77 ⊕ a127b53b81b103

⊕ a127b53b81 ⊕ a127b53b103 ⊕ a127b53b128 ⊕ a127b77b81b103b128

⊕ a127b77b81b128 ⊕ a127b81b103 ⊕ a127b81b128 ⊕ a127b81

⊕ a127b103b128 ⊕ a127b103 ⊕ a127 ⊕NLF ′(b23, b53, b77, b81, b103, b128)

368 M.A. Orumiehchiha et al.

Table 1. Shifted identical key stream outputs corresponding two related (K, IV) pairs

Key IV Output bits

1 1001101111001110101000
1000000011101001100000
0001100010110001001111
0111011101000001001001
0000000100110011001001
010011010111100111

010001111000000101000100011010110
000000000010000001101110000111110
011101010110000111110000110011001
110001011101101100000101001101100
010001110000000100100100101111001
101011010101100010110010101

0000011000010001110011
1100000101000101010010
1001010000110111100110
1010101011010000001101
1100111001000100011110
011110000011110101

——————————— ————————————————– ———————————
0011011110011101010001
0000000111010011000000
0011000101100010011110
1110111010000010010010
0000001001100110010010
100110101111001111

100011110000001010001000110101100
000000000100000011011100001111100
111010101100001111100001100110011
100010111011011000001010011011000
100011100000001001001001011110011
010110101011000101100101011

0000110000100011100111
1000001010001010100101
0010100001101111001101
0101010110100000011011
1001110010001000111100
111100000111101010

2 0000000001011111101100
1110110011100100010111
0111011011001111001010
1101110110000111001000
1101100000111001011010
100111100110110000

001110001011100011101110001011000
010001000111100001100101010010111
010110010001010000001101001100011
010010011011011100011100110101011
111110010100001100111001110111000
000001111001000110010110101

0111010010011000000111
0011001011000010111010
1111100110000111101110
1001111000010010011010
1110010000011100101000
100010110111101111

——————————— ————————————————– ———————————
0000000010111111011001
1101100111001000101110
1110110110011110010101
1011101100001110010001
1011000001110010110101
001111001101100001

011100010111000111011100010110000
100010001111000011001010100101110
101100100010100000011010011000110
100100110110111000111001101010111
111100101000011001110011101110000
000011110010001100101101011

1110100100110000001110
0110010110000101110101
1111001100001111011101
0011110000100100110101
1100100000111001010001
000101101111011111

where NLF ′ is a Boolean function including all monomials of NLF , in which
variables a67, a127 do not exist. Note that the adversary does not need to solve
the equation. Instead, the adversary can recover four bits of the secret key by
choosing appropriate bits for IV s. For example, if

{
bi = 0 i ∈ Φ

b158 = 1

where Φ = {0, 14, 37, 41, 49, 51, 93, 107, 120, 134, 136, 155, 176, 23, 53, 77, 81,
103, 128}, then b192 = a41. Consequently, îv191 = k41. In this way, the adversary
is able to retrieve the four secret key bits. The number of the required related
pairs (K, IV) is 4. On the average, to find the valid pairs, the adversary needs
16 pairs. In other words, to retrieve 4 secret key bits, the adversary should run
the initialisation algorithm 16 times for the related (K, IV) pairs. Now, the ad-
versary can keep going and continue the attack finding consecutive 4-bit parts of
the secret key. Finally, to determine the whole 128-bit secret key, the adversary
needs to apply 512 = 32× 16 related (K, IV) pairs on the average.

Security Evaluation of Rakaposhi Stream Cipher 369

4 Weak (K,IV) Pairs

In this section we study the security implications of short cycles of the two
registers A and B. Note that the initialisation procedure takes K and IV , loads
them to A and B, respectively and then the cipher is clocked 448 times. At the
end of the initialisation, the cipher can be set in the following weak states:

– the register A contains all ones and the state loops forever. To identify the
collection of pairs (K, IV) that leads to this state of A, it is enough to set
A = 1 and to set B to an arbitrary 192-bit vector and clock backwards. This
process will generate 2192 pairs (K, IV) that leads the initialisation to weak
states.

– the registerB contains all zeros and the state loops forever. Again, to identify
the collection of pairs (K, IV) that leads to this state of B, it is enough to
set B = 0 and to set A to an arbitrary 128-bit vector and clock backwards.
This process will generate 2128 pairs (K, IV) that leads the initialization to
weak states.

– both registers A = 1 and B = 0. There is a single pair of (K, IV) only. To
identify it, set registers appropriately and clock backwards. This case is not
very interesting as it can be easily identified.

4.1 Weak (K, IV) Pairs Leading to A = 1

It may happen that after the initialisation, the pair (K, IV) leads to A = 1.
An immediate consequence of this is that the register A contains all ones and
it stays in this state for all clocks. The adversary is able to identify this case
and they are also able to recover the weak pair (K, IV) that has led to A = 1.
Clearly, if the adversary knows IV , then the task of finding K is easier.

Note that the cipher with the register A in the state of all ones is equivalent
to a 192-bit LFSR whose outputs are filtered by a non-linear Boolean function h
with an 6-bit input. The function h is the non-linear function NLF with two bits
set to ones (those that are coming from A). The function is a balanced function
from h : GF (26)→ GF (2) of degree 5 and non-linearity 20 and it is given below.

h(x1, x2, x3, x4, x5, x6) = 1⊕ x1 ⊕ x1x2 ⊕ x3 ⊕ x1x3 ⊕ x1x4 ⊕ x3x4

⊕ x2x3x4 ⊕ x5 ⊕ x1x2x5 ⊕ x2x3x5 ⊕ x1x4x5

⊕ x3x4x5 ⊕ x1x3x4x5 ⊕ x2x3x4x5 ⊕ x1x6 ⊕ x2x6

⊕ x1x3x6 ⊕ x1x2x3x6 ⊕ x4x6 ⊕ x1x4x6 ⊕ x1x2x4x6

⊕ x3x4x6 ⊕ x1x3x4x6 ⊕ x2x3x4x6 ⊕ x1x2x3x4x6

⊕ x5x6 ⊕ x2x3x5x6 ⊕ x4x5x6 ⊕ x2x4x5x6

⊕ x1x2x4x5x6 ⊕ x2x3x4x5x6

The function can be approximated by a linear Boolean function 1⊕x1⊕x1⊕x6

with probability:

Pr(h = (1 + x1 + x2 + x6)) =
44

64
= 0.6875 = 0.5 + 2−2.415

370 M.A. Orumiehchiha et al.

The algebraic immunity of the function is 3 and the number of the annihilators
is 10. To recover the contents of the register B, we may apply a basic algebraic
attack that needs 222.75 observations of the keystream bits and whose complex-
ity is 263.87. Once the adversary knows the contents of B at the end of the
initialization, he can clock backwards to recover the weak pair (K, IV).

4.2 Weak (K, IV) Pairs Leading to B = 0

The second class of weak (K, IV) pairs leads to the state with B = 0. In this
case the register B stays in the zero state for all clocks. Consequently, all the
outputs of DLFSR are zeros, which is equivalent to removal of the register B
from the cipher. The goal of the adversary is to recover the pair (K, IV). Now
we show that the adversary is able to recover the initial state (and the secret
key by clocking NLFSR backwards) faster than in 254 steps.

Note that the NLF function is now used with its 6 bits coming from the
register B set to zero. Consequently, the keystream output function that is a
linear combination of the least significant bit of the register A with the output
of the NLF function. The keystream output function is denoted by � : {0, 1}3 →
{0, 1} and is of the following form:

l(x1, x2, x3) = x1 ⊕ x2 ⊕ x1x2 ⊕ x3.

The function � is a non-linear balanced Boolean function of degree 2. One of the
best approximations of � is the linear function x3. It is easy to check that

Pr(l = x3) =
6

8
= 0.75 = 0.5 + 2−2 (5)

Distinguishing Attack. If B = 0, then the adversary may distinguish the
generated keystream bits from a random bit generator. Consider the keystream
output bits at clocks t+ 0, t+ 6, t+ 7, t+ 11, t+ 16, t+ 28, t+ 36, t+ 45,
t+ 55, t+ 62. If we use the approximation (see Equation (5)) then we can write

Pr(zt+128 = g(zt+0, zt+6, zt+7, zt+11, zt+16, zt+28, zt+36, zt+45, zt+55, zt+62)) (6)

≈ 0.502

This means that the adversary requires around 217 observations of the keystream
output bits to tell apart the cipher from a random bit generator with negligible
error probability.

Recovery Attack. To recover the pair (K, IV), the adversary may use the
linear approximation of � and try to guess the contents of A. The probability of
the correct guess for the state is (0.75)128 = 2−53.12, which is much smaller than
the probability 2−128. In other words, the cipher has at most 54 bits of security.

Security Evaluation of Rakaposhi Stream Cipher 371

5 Conclusions

In this paper, we analysed the initialisation algorithm of the Rakaposhi stream
cipher. We started from observations about cryptographic weak points of the
cipher. We discovered the so-called sliding property of the pairs (K, IV). This
property can be exploited by launching distingushing and key recovery attacks.
We showed that there is a distinguishing attack that needs four related (K, IV)
pairs only. Our key recovery attack recovers all bits of the secret key K after
observing 29 related (K, IV) pairs.

In the second part of the work, we studied the security of Rakaposhi when
either the register A or B enters a short cycle at the end of the initialisation
procedure. When the register A loops in the all-ones state, then the adversary is
able to recover the pair (K, IV). Rakaposhi in this case degenerates to a LFSR
cipher with a non-linear filter function. It is shown that the initial state of the
register B can be discovered by an algorithm of time complexity 263.87.

If the register B enters the zero state at the end the initialisation proce-
dure, then we showed two efficient algorithms: one to distinguish Rakaposhi
from a random bit generator and the other to recover the pair (K, IV). The
distinguisher needs 217 keystream bit observations. The key recovery algorithm
requires around 254 operations. Note that this cryptographic weakness can be
explored by the adversary when they have access to the cipher device and are
allowed to play with the device by running it for different IV s.

References

1. Cid, C., Kiyomoto, S., Kurihara, J.: The rakaposhi stream cipher. In: Qing, S.,
Mitchell, C.J., Wang, G. (eds.) ICICS 2009. LNCS, vol. 5927, pp. 32–46. Springer,
Heidelberg (2009)

2. De Cannière, C., Küçük, Ö., Preneel, B.: Analysis of grain’s initialization algo-
rithm. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 276–289.
Springer, Heidelberg (2008)

3. Englund, H., Johansson, T., Sönmez Turan, M.: A framework for chosen IV statis-
tical analysis of stream ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007)

4. Filiol, É.: A new statistical testing for symmetric ciphers and hash functions. In:
Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp.
342–353. Springer, Heidelberg (2002)

5. Hell, M., Johansson, T., Meier, W.: Grain - a stream cipher for constrained envi-
ronments. ECRYPT Stream Cipher Project (2005)

6. Hell, M., Johansson, T., Meier, W.: Grain - a stream cipher for constrained envi-
ronments. Int. J. Wire. Mob. Comput. 2, 86–93 (2007)

7. Isobe, T., Ohigashi, T., Morii, M.: Slide cryptanalysis of lightweight stream ci-
pher RAKAPOSHI. In: Hanaoka, G., Yamauchi, T. (eds.) IWSEC 2012. LNCS,
vol. 7631, pp. 138–155. Springer, Heidelberg (2012)

8. Saarinen, M.-J.O.: Chosen-iv statistical attacks on estream stream ciphers. In:
eSTREAM, ECRYPT Stream Cipher Project, Report 2006/013, pp. 5–19 (2006)

9. Zhang, H., Wang, X.: Cryptanalysis of stream cipher grain family. In: Cryptology
ePrint Archive, Report 2009/109 (2009)

Improved Algebraic and Differential Fault

Attacks on the KATAN Block Cipher

Ling Song and Lei Hu

State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
{lsong,hu}@is.ac.cn

Abstract. Improved algebraic attack and differential fault attack on the
KATAN block cipher are presented. In the SAT-based algebraic analy-
sis, we improve the ANF-to-CNF conversion to make good use of short
equations in the algebraic representation of the cipher. An optimal num-
ber of plaintext/ciphertext pairs with a certain structure are used, and
84, 70, and 65 rounds of KATAN32, KATAN48, and KATAN64 are bro-
ken, respectively, which are 5 more rounds of the cipher than previous
works under the same attack scenario. In the differential fault attack,
a new method of recovering secret key bits from faulty and fault-free
ciphertexts is developed under one-bit and two-bit fault models, and
its iteration application can retrieve the whole 80-bit secret key of the
full-round KATAN32, KATAN48, and KATAN64 with 132, 44, and 52
fault injections under the one-bit fault model and with 140, 60, and 60
fault injections under the two-bit fault model, respectively. The time
complexity of the attack is negligible, which is a great improvement on
previous differential fault attacks on KATAN of time complexity 259, 255,
and 255 and with 115, 211, and 278 fault injections, respectively, under
the one-bit fault model.

Keywords: KATAN block cipher, algebraic attack, differential fault at-
tack, SAT solver.

1 Introduction

KATAN is a lightweight block cipher proposed in 2009 at the cryptographic
hardware and embedding system (CHES) conference [10]. It has 80-bit keys
and three choices of small block size as 32, 48, or 64 bits, and gets a highly
compact design structure by iterating simple nonlinear functions 254 rounds,
aiming to achieve an amazingly efficient hardware implementation and provide
cryptographic building blocks for constrained devices such as RFID tags.

Since the publication, several attacks on KATAN have been proposed in
the literature. The first cryptanalytic result is a SAT-based algebraic attack
on reduced-round KATAN [5], which exploits a special preprocessing procedure
and breaks 79-round KATAN32, 64-round KATAN48 and 60-round KATAN64
with SAT solvers in a complexity lower than brute force search. The second

R.H. Deng and T. Feng (Eds.): ISPEC 2013, LNCS 7863, pp. 372–386, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Improved Algebraic and Differential Fault Attacks 373

cryptanalytic result is a differential fault attack on KATAN [1], in which one-bit
fault model is considered and the cube technique [11] is used to determine fault
positions and extract low degree polynomial equations to retrieve secret key
bits. The attack achieves a complexity of 259, 255, 255 for KATAN32, KATAN48
and KATAN64, respectively. Also there are two differential attacks on KATAN
[14,2]. The former one breaks 78-, 70-, and 68-round KATAN32, KATAN48, and
KATAN64, respectively. The latter one uses a framework which unifies several
standard differential attacks. However, this framework requires the entire code-
book, which makes the framework less practical.

Algebraic cryptanalysis combined with SAT solving is a developing tool for
analyzing stream and block ciphers and even for evaluating hash functions [13]. In
this paper we present a better SAT-based algebraic attack on KATAN, in which
we improve the method of converting the algebraic expressions derived from the
cryptographic system into CNF clauses, enabling us to speed up the SAT solving.
Other strategies have been explored also, and we found that multiple pairs of
plaintexts/ciphertexts can benefit greatly the SAT solving and there exists an
optimal number for such pairs. As a consequence, our SAT-based algebraic attack
can break reduced-round KATAN with more rounds than [5]. A phenomena we
discovered in the experiments is that for the equation system derived from the
cipher, when the optimal number of plaintext/ciphertext pairs are used, the ratio
between the number of equations and the number of variables is always close to
a constant λ = 1.21.

Besides the SAT-based algebraic attack, we propose an improved differential
fault attack on KATAN. Differential fault analysis was developed by Biham
and Shamir [6] as a type of implementation-based attack. The model for fault
attack we used in this paper is the transient one-bit fault model as used in
[1], which assumes that the adversary can choose the target round and induce
one bit of fault into the internal state in the execution of a cipher but without
damaging the bit position permanently. Under the one-bit model, we fully take
advantage of additional equations derived from fault ciphertexts to retrieve secret
key bits with a procedure like what we use in the SAT-based algebraic attack. We
observed that if last continuous subkey bits are recovered, an iterative procedure
can be applied to decrypt back to find more subkey bits. Concretely, four times
of iterations and 132, 44, 52 faults are required to retrieve the secret key of full-
round KATAN32, KATAN48 and KATAN64 respectively. Furthermore, utilizing
ciphertext differentials in a slightly more complicated way, we develop a two-bit
fault model. Under this new model 140, 60, 60 faults are enough to get the secret
key for full-round KATAN32, KATAN48 and KATAN64 respectively. Both the
two fault attacks have a negligible time complexity, which is a great improvement
since the previous work [1] requires a time complexity more than 255.

This paper is organized as follows: Section 2 briefly describes the KATAN
block cipher; Section 3 presents our SAT-based algebraic attack on KATAN;
in Section 4 we elaborate on our new differential fault attack on KATAN; and
finally, the last section is the conclusion.

374 L. Song and L. Hu

2 Description of KATAN

KATAN is a lightweight, hardware-oriented block cipher, consisting of three
suggested versions, KATAN32, KATAN48, and KATAN64, where n = 32, 48, or
64 and indicates the block size of the cipher [10]. All these versions accept 80-bit
keys and iterate 254 rounds with the same nonlinear functions.

As an example KATAN32 is described, KATAN48 and KATAN64 will be then
explained by their differences with KATAN32.

KATAN32 receives a 32-bit plaintext and outputs a 32-bit ciphertext. Blocks
of bits are always numbered in right-to-left order starting from 0. A 32-bit plain-
text P = (p31 · · · p1p0) is loaded into two registers L1 and L2 of length |L1| = 13
and |L2| = 19, respectively, where the least significant bit p0 is loaded to the
least significant bit of L2, while the most significant bit P31 is loaded to the most
significant bit of L1, namely (p31 · · · p1p0) = (L1[12] · · ·L1[0]L2[18] · · ·L2[0]). At
each round, two nonlinear functions are evaluated as follows:

fa(L1) = L1[x1] + L1[x2] + (L1[x3] · L1[x4]) + (L1[x5] · IR) + ka,

fb(L2) = L2[y1] + L2[y2] + (L2[y3] · L2[y4]) + (L2[y5] · L2[y6]) + kb,

where IR is a round-dependent constant which makes use of L1[x5] whenever
IR = 1 (see [10] for its details); x1, · · · , x5 and y1, · · · , y6 are indices in the
intervals [0, 12] and [0, 18], respectively (see Table 1); ka and kb are two subkey
bits, ka = k2i and kb = k2i+1 for the i-th round. Then the two registers L1

and L2 are left shifted and fa(L1) and fb(L2) are loaded into L2[0] and L1[0],
respectively.

For KATAN48, at each round fa(L1) and fb(L2) are computed twice with the
same pair of subkey bits ka and kb and the registers L1 and L2 are shifted twice.
For KATAN64, fa(L1) and fb(L2) are applied three times per round, again with
the same subkey bits ka and kb, and the registers L1 and L2 are shifted three
times. The indices xi and yi are listed in Table 1.

Table 1. Parameters of KATAN

Cipher |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 17 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

The KATAN cipher uses the same key schedule. Let K = (k79 · · · k1k0) be the
secret key, the subkey bits are generated as follows:

ki =

{
ki, for 0 ≤ i ≤ 79,
ki−80 + ki−61 + ki−50 + ki−13, otherwise.

More details about the KATAN cipher can be found in [10].

Improved Algebraic and Differential Fault Attacks 375

3 Improved SAT-Based Algebraic Attack on KATAN

Algebraic cryptanalysis is a type of attack that depends on solving a system of
multivariate quadratic equations (by introducing additional variables and equa-
tions, any system of equations can be represented as a quadratic equation sys-
tem) derived from a given cipher. It is known that the problem of solving a
multivariate simultaneous system of quadratic equations (the MQ problem) is
NP-hard. The SAT problem, finding a satisfying assignment for a logical ex-
pression, is also NP-hard. In [4], Bard, Courtois and Jefferson studied methods
and techniques to solve the MQ problem derived from ciphers with SAT solvers.
Their idea is based on the fact that the MQ and SAT problems are polyno-
mially equivalent while the SAT problem is more well studied. Therefore they
introduced a method (called the BCJ method below) to convert an MQ problem
(over GF(2)) to a SAT problem. Later, this method was slightly extended in the
GoS (Grain of Salt) tool [17], and has been applied to cryptanalyze Keelog [8],
Bivium [15] and PRINT-48 [7], making SAT solvers enjoy a boom in the area of
cryptanalysis.

In [5], Bard et al analyzed KATAN with SAT solvers using BCJ conversion.
Before conversion, they simplified the algebraic equations with a preprocessing
procedure, which speeded up the SAT solving indirectly. They also found that if
the plaintexts have some special structures, the attack is much stronger. In this
section, we do some further research along this line. We improve the preprocess-
ing procedure and try a different conversion method. Experiments show a better
result than [5].

3.1 Preliminaries on SAT Solving

The BCJ Conversion Technique. A common input format of SAT solvers
is the Conjunctive Normal Form (CNF), and a common ANF-to-CNF transfor-
mation used in cryptanalysis is the BCJ conversion. From now on x̄ denotes the
complement of binary variable x. Given an algebraic equation representation of
a cryptosystem, the BCJ conversion proceeds in two major steps. First, substi-
tute every nonlinear terms in the algebraic equation with new variables to get
a linear system. Second, transform the linear system and nonlinear terms into
CNF clauses.

As an example, consider an equation

abc+ ce+ a+ d+ e = 0.

First, we introduce new variables x for abc and y for ce, we get

x+ y + a+ d+ e = 0,

abc = x,

ce = y.

Second, convert the above equations to logical formulas with the following two
techniques.

376 L. Song and L. Hu

Technique 1: abc = x is converted to

(a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x̄) ∧ (x ∨ ā ∨ b̄ ∨ c̄).

Therefore, each monomial of degree d > 1 requires d+ 1 clauses to describe.
Technique 2: x+ y + a+ d+ e = 0 is converted to

(x̄ ∨ y ∨ a ∨ d) ∧ (x ∨ ȳ ∨ a ∨ d) ∧ (x ∨ y ∨ ā ∨ d) ∧ (x ∨ y ∨ a ∨ d̄)

∧ (x̄ ∨ ȳ ∨ ā ∨ d) ∧ (x̄ ∨ ȳ ∨ a ∨ d̄) ∧ (x̄ ∨ y ∨ ā ∨ d̄) ∧ (x ∨ ȳ ∨ ā ∨ d̄).

If the equation is an XOR clause of l variables, the conversion requires(
l

1

)
+

(
l

3

)
+ · · ·+

(
l

2%l/2& − 1

)
= 2l−1

CNF clauses since all arrangements of l variables with odd number (less than l)
of complements are needed to consider.

Since the number of clauses for linear equations grows exponentially with the
length l, it is better to introduce more new variables and cut down the length.
Note that the longest length of equations permitted after cutting is called the
cutting number in [4], and we can also choose 3, 4, 5 or 6 as the cutting number.

Preprocessing Procedure. The time complexity of SAT solving closely re-
lates to the sparsity of the target system of algebraic equations, the numbers of
variables and clauses of the corresponding CNF problem. Therefore we hope to
derive a sparse algebraic equation system and transform it to a CNF problem
with as less variables and clauses as possible.

To this goal, Bard et al proposed a preprocessing procedure [5]. For a system
of polynomial equations over GF(2) and a threshold W , this procedure first
spots the shortest equation of length (the number of nonconstant terms in the
equation) ≤ W , then chooses a monomial from this equation and eliminates
it with this equation. This procedure iterates until no equation of length ≤
W can be found. Consequently, the substitution in the processing procedure
reduces the number of variables in the equation system. When W = 1, this
preprocessing procedure definitely benefits the conversion to get a small CNF
problem. However, when W is chosen as other values, we are not sure about the
size of the resulting CNF problem, but the experiments in [5] showed W = 2
turns out to be the best in a statistical sense.

We use pre(W) to denote this preprocessing procedure.

Fixing Variables. The guess-and-determine trick for SAT based algebraic at-
tack was initially proposed in [4]. It means that with f key bits fixed, a good
attack requires to recover the rest key bits faster than brute force search, i.e.,

tbrute force > tSAT · 2f .

During the experiments, f is set to be a value such that the time of SAT solving
is reasonable, for example in an hour. Our following experiments generally choose
f = 45 if no specific indication is stated.

Improved Algebraic and Differential Fault Attacks 377

SAT Solvers for Cryptanalysis. Two most commonly used SAT solvers in
cryptanalysis are MiniSat [12] and CryptoMiniSat [18]. Utilizing some ideas of
MiniSAT, CryptoMiniSat is recently developed and it adds a lot of new heuristics
to handle XOR clauses directly, i.e., we can feed XOR clauses into CryptoMiniSat
without any conversion. Thus we can develop another conversion which conforms
with BCJ except the XOR clause transformation part. This conversion is called
the XOR conversion below.

3.2 Attack Strategies

Algebraic Description of KATAN. We give an algebraic description of
KATAN that resembles the Floating Representation in [16]. Specifically, we in-
troduce intermediate variables for every subkey bit and state bit, and generate
equations in the way described in Algorithm 1, where we take KATAN32 as an
example.

Algorithm 1. GenerateEquations(n, p, c)

Input: round number n, plaintext p and the corresponding ciphertext c
Output: equations describing the cryptosystem

E ← ∅ ;
for i = 80 to n do

E ← E ∪ {ki + ki−80 + ki−61 + ki−50 + ki−13} ;
end
L1||L2 ← p ;
for i = 0 to n do

E ← E ∪ {s2i + fa(L1), s2i+1 + fb(L2)} ;
(L1[12], L1[11], · · · , L1[1], L1[0]) ← (L1[11], L1[10], · · · , L1[0], fb(L2)) ;

end
Substitute(E, L1||L2 : c) ;
return E ;

Following Algorithm 1, an instance of KATAN32 is represented by an algebraic
system with 936 equations and 984 variables. The size of this algebraic system
is smaller than the system derived in [5], which needs 8620 equations and 8668
variables.

MiniSat or CryptoMiniSat. We have conducted experiments to evaluate
which SAT solver outperforms the other for analyzing KATAN. Results show
that CryptoMiniSat is better when multiple plaintext/ciphertext pairs are used,
see Table 2. It can be concluded that CrytpoMiniSat makes good use of rela-
tionship inside the problem. However, this does not comply with the report of
[5] that MiniSat runs faster than CryptoMiniSat.

Cutting Number. The choice of cutting number influences the resulted CNF
problem. In the literature the number 6 is a common choice and it is also the
case in our experiments. See Table 3 for the comparison of SAT solving timing
for the cutting number 4, 5 and 6 (3 is too small).

378 L. Song and L. Hu

Table 2. MiniSat vs. CryptoMiniSat

#rounds #fixing bits #pairs MiniSat CryptoMiniSat

66 30 1 42.68 64.10
66 30 5 0.26 0.15
78 45 20 123.31 5.19

Note: Using the BCJ conversion, average CPU time (in seconds) on 50

instances

Table 3. Comparison for cutting numbers

conversion 4 5 6

BCJ 80.08 62.89 52.21
XOR 200.73 159.10 57.44

Note: For 70-round KATAN32, fixing 30 key bits, 10

P/C pair, average CPU time (in seconds) on 50 in-

stances.

Number of Plaintext/Ciphertext Pairs. The equation system of KATAN is
underdefined if only one plaintext/ciphertext pair is used because of the key size
larger than the block size. This problem can be remedied by the use of multiple
plaintext/ciphertext pairs. However, if too many plaintext/ciphertext pairs are
used, the size of the resulted CNF problem will grow large quickly, which makes
it difficult to solve by SAT solvers. Then it comes to a question that how many
pairs are optimally needed. Our experiments show that there exists an optimal
number for plaintext/ciphertext pairs, and this optimal number is increasing
with the number of rounds, as depicted in Figure 1 for KATAN32.

Fig. 1. Optimal number of plaintext/ciphertext pairs

Different Structures of Plaintexts. It is found that chosen-plaintext attack
is much stronger than known-plaintext attack in [5], where the chosen plaintexts
follow some specific structure. We explored several other plaintext structures.

Improved Algebraic and Differential Fault Attacks 379

The plaintext structures we have evaluated are: (a) random plaintexts; (b)
specific plaintext structure used in [5]; (c) plaintexts with one bit modular dif-
ference at the 19-th bit position; (d) conditional differential from [14]. Conversion
methods we considered are pre(W)+BCJ and pre(W)+XOR where W ≤ 4. The
results are illustrated in Table 4.

Table 4. Different structures of plaintexts

structure median mean best method

(c) 3.29 4.81 pre(1)+ XOR
(b) 3.85 35.91 pre(2)+ BCJ
(a) 4.01 45.23 pre(2)+ BCJ
(d) 5.37 23.69 pre(1)+ XOR

Note: For 78-round KATAN32, 20 P/C pairs, aver-

age CPU time (in seconds) on 50 instances.

Since the preprocessing procedure may speed up or slow down the SAT solv-
ing, we need to run the experiments many times and analyze the running time
statistically. Note that these combinations of preprocessing procedure and con-
version are evaluated first on the median of running time, then on the mean of
running time. As we can see from Table 4, structure (c) is overwhelmingly better
than random structure, and (d) is worse than random structure on a large part
of the instances since its median is larger than that of random structure. As a
result, it can be concluded that certain structure of plaintexts can speed up the
SAT solving, but the best structure is difficult to find.

Enhanced Conversions. Due to the use of fixing key bits and the use of
multiple plaintext/ciphertext pairs, many short equations, from which the Bard
et at’s preprocessing procedure benefits, appear in the algebraic description of
the cipher. However, when W ≥ 2, the resulted CNF problem does not always
have less clauses. We exemplify this as follow. Let x + y + 1 = 0 be a target
equation under processing. Set x = y+1 and substitute x wherever it appears in
the rest equations, say xz+w+y = 0 , then we get yz+w+y+z = 0 with length
4, which is greater than the length of the original equation. As a consequence,
the number of clauses is not always reduced with the preprocessing procedure.

We observe that y+1 = ȳ as long as the equations are over GF(2). Thus, during
the conversion the equation yz+w+ y+ z = 0 can be regarded as ȳz+w+ y = 0
or yz̄+w+ z = 0, whose length is only 3.With this in mind, we modified the basic
BCJ conversion to get an enhanced one named BCJ-E. The superiority of BCJ-E
over BCJ can be clearly demonstrated for W = 2, as in Table 5. For W > 2, both
BCJ and BCJ-E are much worse than the case when W ≤ 2.

Similarly, the XOR conversion can be improved to a new conversion named
XOR-E in the same way. For W ≤ 1, XOR-E and XOR are almost the same,
while for W ≥ 2, experiments showed that XOR-E outperforms XOR as can be
seen from Table 6. However, for both of XOR-E and XOR, they are less efficient
in the case of W > 1 than in the case of W ≤ 1.

380 L. Song and L. Hu

Table 5. BCJ Vs. BCJ-E

conversion # vars # clauses SAT solving time

BCJ 3146 41905 61.21
BCJ-E 3120 39764 5.87

Note: For W = 2, 78-round KATAN32, 20 P/C pairs with struc-

ture (c), average CPU time (in seconds) on 50 instances.

Table 6. XOR Vs. XOR-E

conversion # vars # clauses SAT solving time

XOR 3268 7500 97.80
XOR-E 3091 7392 29.11

Note: For 78-round KATAN32, 20 P/C pairs with structure (c),

average CPU time (in seconds) on 50 instances.

3.3 Attack Results

All experiments are carried out with Sage 4.8 on a Personal Computer with
Intel(R) Core(TM) Quad CPU (2.83GHz, 3.25GB RAM, Linux). The BCJ con-
version is adapted from the ANF-to-CNF converter of Martin Albrecht and Mate
Soos [3]. The two solvers we used are CryptoMiniSat 2.9.2 and MiniSat 2.2.0.

Our experiments showed that CryptoMiniSat is faster than MiniSat for ana-
lyzing KATAN. Thus, it can be concluded that CryptoMiniSat is more dedicated
for cryptography and has good performance in utilizing strong internal relation-
ship of a problem. Next, given certain rounds of the cipher, there exists an
optimal number of plaintext/ciphertext pairs which lead to SAT solving faster
than others. Also, an efficient structure of plaintext is found. The results showed
that the structure of plaintexts has a great influence on SAT solving, but it
is not clear yet how it influences. Finally, we improve the conversion method
so that it can speed up the SAT solving when used together with Bard et al’s
preprocessing procedure.

To make a clear comparison with exhaustive key search, we use the assumption
in [5] that each round of KATAN takes 3 CPU cycles. The results of our algebraic
attack with CryptoMiniSat are presented in Table 7 (only the results in this table
are computed with 4 threads, and all others with 1 thread). The comparison
between our results and the previous results in [5] is listed in Table 8, where 79
is the largest number of rounds the attack of [5] can do faster than brute force
search.

An Experimental Phenomena. At the end of this section, we present a phe-
nomena we have observed in our experiments. Letm and n denote the numbers of
equations and of variables in the equation system to be solved with a SAT solver,
respectively. We discovered that the ratio λ = m

n is almost a constant for dif-
ferent instances when the experimental optimal number of plaintext/ciphertext

Improved Algebraic and Differential Fault Attacks 381

Table 7. The results of attacking KATAN with CryptoMiniSat solver

version # rounds brute force mean median brute force/mean

KATAN32 84 764.90 289.92 268.83 2.64

KATAN48 70 1274.83 345.27 235.35 3.69

KATAN64 65 1775.66 282.23 193.43 6.29

Note: Average CPU time (in seconds) on 50 instances.

Table 8. The attack timing of 79-round KATAN32

source method structure brute force mean median brute force/mean

[5] pre(2)+BCJ (b) 2714.42 1146.77 873.24 2.37
this XOR (c) 2877.47 13.02 9.57 221.00

Note: For 20 P/C pairs, average CPU time (in seconds) on 50 instances. The last column

denotes the ratio of the mean timings to brute force with respect to the attack.

pairs are used. For three versions of KATAN, the three corresponding λ are
slightly different but all are very close to 1.21.

4 Differential Fault Attack on KATAN

A differential fault analysis (DFA) is a method to analyze a cipher by affecting
its implementation. The idea is to induce a physical corruption to the internal
state of the execution of the cipher, which leads to producing some information
about the internal data and helping to recover the secret key of the cipher. In
this section, we present differential fault attack on the KATAN block cipher with
improved methods developed from [1], [16].

4.1 Related Works

The first related work on KATAN is a differential fault attack under transient
one-bit fault model [1]. In this model, it is assumed that the adversary can in-
duce one bit error into the internal state of a cipher during its execution (e.g.,
using a laser beam) without damaging the bit position permanently, and that
the adversary can choose the target round in which faults should be induced.
Using this model, what the adversary should do first is to determine the position
of the faulty bit within the internal state. To find the exact position, they con-
struct a differential characteristic for each internal state bit with one-dimension
cubes (equivalent to a standard differential), which originates from [11]. Further,
they utilize the cube summation method again to extract low degree polynomial
equations, from which part of the key bits are retrieved.

Another related work is a differential fault attack on the stream cipher Trivium
[16], where the cipher is described with the Floating Representation. Besides the
equations derived from correct key streams, additional low degree polynomial

382 L. Song and L. Hu

equations from faulty key streams are generated in a way slightly different from
float representation. After algebraic equations are generated, a SAT solver is
used to recover internal state bits.

Based on the two works mentioned above, we propose a new differential fault
attack on full-round KATAN, which exploits a straightforward method to locate
fault positions, recovers the secret key in only a negligible time and requiers less
fault injections than the previous attack in [1].

4.2 Fault Position Determination

We still take KATAN32 as an example below. During the execution of the
cipher, the adversary injects a fault at the t-th round. We denote the state

bits at the t-th round by s(t) = (s
(t)
31 , · · · , s

(t)
0), and the subkey bits used

since round t by k(t) = (k2t, k2t+1, · · · , k506, k507). Then the 32-bit ciphertext
can be represented by s(t) and the subkey bits kt as c = (c31, · · · , c1, c0) =(
f31(s

(t), k(t)), · · · , f1(s
(t), k(t)), f0(s

(t), k(t))
)
. We define the differential of ci

and the differential characteristic respect to a certain fault position p at round
t in a way which is more straightforward than that used in [1].

Definition 1. Assume that a fault is induced at the p-th (0 ≤ p ≤ 31) bit of

the inner state at round t. The differential of ci is determined by fi(s
(t)
p , k(t)) +

fi(s
(t)
p +1, k(t)). If fi(s

(t)
p , k(t)) + fi(s

(t)
p +1, k(t)) = 0, Δci = 0; if fi(s

(t)
p , k(t)) +

fi(s
(t)
p + 1, k(t)) = 1, Δci = 1; otherwise, let Δci = 2.

Definition 2. Assume that a fault is induced at the p-th (0 ≤ p ≤ 31) bit
of the inner state at round t. The differential characteristic of position p at
round t is ΔCp = (Δc31, · · · , Δc0).

Naturally, we can determine the position p at round t only when the ΔCp are
different from each other. If the ΔCp are different, round t is called valid for
fault attack. For a valid round t we can build a lookup table, of which each
item consists of a differential characteristic and the corresponding fault position.
Given a ΔC, we can get the fault position p through this table. Note that we
hope a small valid t can be obtained, since for smaller t more subkey bits are
involved after fault injection. Furthermore, the attack is more practical if t can
be chosen in a less restricted way. According to our experiments, a valid value
for t is t ≥ 231 for KATAN32, 232 for KATAN48, and 234 for KATAN64.

In our model one faulty bit can be induced. We also extend the one bit fault
differential characteristic to two-bit fault differential characteristic based on the
result of fi(s

t
p, s

t
p+1, k) + fi(s

t
p + 1, stp+1 + 1, k).

Definition 3. Assume that a two-bit fault is induced at the p-th, (p + 1)-th
(0 ≤ p ≤ 30) bit of the inner state at round t. The differential characteristic of
position p, p+1 at round t, ΔCp,p+1, is defined as the sum of two integer vectors
ΔCp and ΔCp+1, which is a vector with entries being 0, 1, and 2, and the entries
are calculated according to the rule: 1 + 1 = 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, and
2 + a = 2 + a = 2 for any a = 0, 1, 2.

Improved Algebraic and Differential Fault Attacks 383

Under the two-bit fault model, we need to distinguish all the ΔCp and the
ΔCp,p+1 with respect to round t. In this case, the smallest valid value for t is
237 for KATAN32, 234 for KATAN48, and 237 for KATAN64.

The fault model can also be extended to multiple-bit fault models. However,
the smallest valid round is close to the last round, leading to a small number of
key bits involved and recovered.

4.3 Getting Differential Equations

Each fault injection leads to additional equations. As in [16] we use (ΔL1, ΔL2)
to generate differential polynomial equations. By using the fact that

Δ(x · y) = Δx · y + x ·Δy +Δx ·Δy,

we can construct the differentials of the functions fa and fb as follows:

Δfa(L1) =ΔL1[x1] +ΔL1[x2] +ΔL1[x3] · L1[x4] + L1[x3] ·ΔL1[x4]

+ΔL1[x3] ·ΔL1[x4] +ΔL1[x5] · IR,

Δfb(L2) =ΔL2[y1] +ΔL2[y2] +ΔL2[y3] · L2[y4] + L2[y3] ·ΔL2[y4]

+ΔL2[y3] ·ΔL2[y4] +ΔL2[y5] · L2[y6] + L2[y5] ·ΔL2[y6]

+ΔL2[y5] ·ΔL2[y6].

Assume we inject a one-bit fault. In this case the differential of the inner state
at round t,

(ΔL1[12], · · · , ΔL1[0], ΔL2[18], · · · , ΔL2[0])

are zeros everywhere except at the fault injection position. For example, suppose
that the injected bit is L2[5] then the differential vector will be

(0, · · · , 0, ΔL2[5] = 1, · · · , 0).

Below we explain how to use this model to generate the differential polynomial
equations.

As we can see from Algorithm 2, we do not introduce intermediate variables for
differential state bits. As a consequence, the 32 differential equations produced
by this procedure probably have a degree 7, 8 or larger. Instead of recovering
key bits with a SAT solver as in [16], we just pose the preprocessing procedure
on equations returned by Algorithm 1 and Algorithm 2 with W = 2. However,
this preprocessing procedure is slightly modified such that it can extract known
subkey bits during substitution.

4.4 Iterative Procedure for Retrieving the Secret Key

We induce faults at valid rounds and use the differential of the corresponding
faulty ciphertexts and fault-free ciphertexts to determine fault positions. Then
equations of fault-free ciphertexts and differential equations of faulty ciphertexts

384 L. Song and L. Hu

Algorithm 2. GenerateDifferentialEquations(n, t,m,Δc,p)

Input: the whole round number n, the fault round number t, m ciphertext
differential Δc = (Δc0,Δc1, · · · ,Δcm−1) and the corresponding fault
position p = (p0, p1, · · · , pm−1)

Output: differential equations of m fault ciphertexts

E ← ∅;
for i = 0 to m do

ΔL1 ← (0, 0, · · · , 0);
ΔL2 ← (0, 0, · · · , 0);
InjectFault(ΔL1,ΔL2, pi);
for j = t to n do

(ΔL1[12], ΔL1[11], · · · , ΔL1[1], ΔL1[0]) ←
(ΔL1[11], ΔL1[10], · · · , ΔL1[0], Δfb(L2));
(ΔL2[18], ΔL2[17], · · · , ΔL2[1], ΔL2[0]) ←
(ΔL2[17], ΔL2[16], · · · , ΔL2[0], Δfa(L1));

end
E ← E ∪ {L1[j] +Δcj+19}0≤j≤12 ∪ {L2[j] +Δcj}0≤j≤18;

end
return E;

can be produced by Algorithms 1 and 2. Applying the preprocessing procedure
in Subsection 3.1, part of the subkey bits subsequent to the fault round can be
recovered.

In our experiments, 35, 37, 36 subkey bits can be recovered under the one-bit
fault model if we induce 60, 23, 34 faults at the smallest valid round of KATAN32,
KATAN48, KATAN64, respectively. We observe that among the obtained subkey
bits, a great part of them are continuous, e.g., they are k507, k506, k505, · · · . If the
last 20 continuous subkey bits are known, we can decrypt 10 rounds back and
10 earlier rounds become valid, i.e., the smallest valid round number changes to
t− 10. Inducing faults at t− 10, t− 20, · · · , more subkey bits can be recovered. If
80 continuous subkey bits are obtained, the 80-bit secret key can also be recov-
ered by shifting the LFSR back according to the key schedule. For KATAN32,
inducing 33 faults at round 231 almost guarantee that the last continuous 20
subkey bits can be obtained, thus inducing 33 faults at round 231, 221, 211,
201 and iteratively running Algorithm 2 4 times, 80 continuous subkey bits can
be known with a probability near to 1. Analogously, similar results can be ob-
tained for KATAN48, KATAN64 under even two-bit fault model. The results
are described in the next subsection.

4.5 Attack Results

We analyzed the KATAN32, KATAN48 and KATAN64 with differential fault at-
tack under the one-bit and two-bit fault models respectively. Under both models,
we get better attack results than [1] which is the best side channel attack against
KATAN to this date. The reason is that the attack in [1] only utilized quadratic

Improved Algebraic and Differential Fault Attacks 385

and linear equations of the fault ciphertexts, while we made use of all differential
equations. The additional equations may have large degrees, but their degrees
may drop after substitution and become useful for us.

We introduce an iterative procedure aiming to retrieve the whole 80-bit secret
key. The main steps of this attack are generating equations and making substitu-
tion, which take less than one minute. The result of our differential fault attack
on KATAN is summarized in Table 9.

Table 9. Differential fault attack on KATAN

size
one-bit [1] one-bit two-bit

time/#injections fault rounds #injections fault rounds #injections

32 259/115 231,221,211,201 132 237,227,217,207,197 140

48 255/211 232,222,212,202 44 234,224,214,204 60

64 255/278 234,224,214,203 52 237,227,217,207 60

5 Conclusion

In this paper we have presented improved SAT-based algebraic attack and dif-
ferential fault attack on the KATAN block cipher. Both the two attacks are
currently best under same attack scenarios. In the SAT-based algebraic attack,
we explored extensive strategies to speed up SAT solving and for each version
of KATAN, 5 more rounds than previous results can be analyzed. Our results
also suggested that CryptoMiniSat deserves more attention in cryptanalysis.
For differential fault attack, our idea is to recover last continuous subkey bits.
As long as last continuous subkey bit are retrieved, an iterative procedure can
be constructed to get the whole secret key. This attack takes a negligible time
complexity.

Acknowledgement. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions. The work of this paper was sup-
ported by the National Key Basic Research Program of China (2013CB834203),
the National Natural Science Foundation of China (Grants 61070172 and
10990011), the Strategic Priority Research Program of Chinese Academy of Sci-
ences under Grant XDA06010702, and the State Key Laboratory of Information
Security, Chinese Academy of Sciences.

References

1. Abdul-Latip, S.F., Reyhanitabar, M.R., Susilo, W., Seberry, J.: Fault analysis of
the KATAN family of block ciphers. In: Ryan, M.D., Smyth, B., Wang, G. (eds.)
ISPEC 2012. LNCS, vol. 7232, pp. 319–336. Springer, Heidelberg (2012)

2. Albrecht, M., Leander, G.: An All-in-One Approach to Differential Cryptanalysis
for Small Block Ciphers. In: IACR Cryptology ePrint Archive, number 401 (2012)

386 L. Song and L. Hu

3. Albrecht, M., Soos, M.: ANF2CNF - Converting ANF to CNF for Algebraic Attack
Using SAT Solver (2010),
http://gforge.inria.fr/frs/?group_id=2330&release_id=5449

4. Bard, G., Courtois, N., Jefferson, C.: Efficient Methods for Conversion and Solution
of Sparse Systems of Low-Degree Multivariate Polynomial over GF(2) via SAT-
Solvers. In: IACR Cryptology ePrint Archive, number 024 (2007)

5. Bard, G.V., Courtois, N.T., Nakahara Jr, J., Sepehrdad, P., Zhang, B.: Algebraic,
AIDA/Cube and Side Channel Analysis of KATAN Family of Block Ciphers. In:
Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 176–196.
Springer, Heidelberg (2010)

6. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key cryptosystem. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

7. Bulygin, S., Buchmann, J.: Algebraic Cryptanalysis of the Round-Reduced and
Side Channel Analysis of the Full PRINTCipher-48. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 54–75. Springer, Heidelberg (2011)

8. Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and slide attacks on keeLoq.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg
(2008)

9. De Cannière, C.: Trivium: A Stream Cipher Construction Inspired by Block Cipher
Design Principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006)

10. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

11. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

12. Een, N., Sorensson, N.: MiniSat v1.13 - A SAT Solver with Conflict-Clause Mini-
mization (2005), http://www.minisatse.com/Papers.html

13. Homsirikamol, E., Morawiecki, P., Rogawski, M., Srebrny, M.: Security Margin
Evaluation of SHA-3 Contest Finalists through SAT-Based Attacks. In: IACR
Cryptology ePrint Archive, number 421 (2012)

14. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanaly-
sis of NLFSE-Based Cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 130–145. Springer, Heidelberg (2010)

15. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking bivium with Minisat. In: IACR
Cryptology ePrint Archive, number 040 (2007)

16. Mohamed, M.S.E., Bulygin, S., Buchmann, J.: Using SAT Solving to Improve Dif-
ferential Fault Analysis of Trivium. In: Kim, T.-h., Adeli, H., Robles, R.J., Bali-
tanas, M. (eds.) ISA 2011. CCIS, vol. 200, pp. 62–71. Springer, Heidelberg (2011)

17. Soos, M.: Grain of Salt - an automated way to test stream ciphers through SAT
solver, http://www.msoos.org/grain-of-salt

18. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT Solvers to Crytpographic
Problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257.
Springer, Heidelberg (2009)

http://gforge.inria.fr/frs/?group_id=2330&release_id=5449
http://www.minisatse.com/Papers.html
http://www.msoos.org/grain-of-salt

Author Index

Alechina, Natasha 233

Balachandran, Vivek 309

Cesar, Eduardo 278
Chen, Kai 44, 295
Chen, Tieming 248
Chen, Zhenhua 75

Deng, Robert H. 174
Ding, Xuhua 117

Emmanuel, Sabu 309

Feng, Dengguo 44
Feng, Tao 31
Fienberg, Stephen E. 174

Guijarro, Elisa Pintado 16

Hanzlik, Lucjan 218
He, Yi-Jun 60
Heymann, Elisa 278
Hu, Lei 372
Huang, Qiong 132
Hutchison, David 31

Jia, Dingding 105
Jin, Shichao 248

Kang, Jungin 263
Kim, Okhee 248
Konidala, Divyan Munirathnam 174
Kraxberger, Stefan 16
Krzywiecki, �Lukasz 218
Kuty�lowski, Miros�law 218
Kwok, Lam-For 1

Lai, Junzuo 117
Lau, Hoong Chuin 174
Lee, Heejo 263
Lee, Sangwook 263
Li, Bao 105, 147, 160
Li, Nan 189
Li, Yingjiu 174

Lian, Yifeng 44, 295
Liang, Kaitai 132
Liu, Mixia 31
Liu, Xiaofan 233
Liu, Yamin 105
Liu, Yuling 44
Logan, Brian 233

Mei, Qixiang 105
Meng, Yuxin 1
Millan, Guillermo Garcia 16
Miller, Barton 278
Mishra, Dheerendra 321
Mu, Yi 75, 91, 189, 204
Mukhopadhyay, Sourav 321

Orumiehchiha, Mohammad Ali 361

Pieprzyk, Josef 361
Pirker, Martin 16

Schlegel, Roman 132
Serrano, Jairo 278
Shakour, Elham 361
Shi, Wei 75
Smith, Paul 31
Song, Ling 372
Standaert, François-Xavier 336
Steinfeld, Ron 361
Susilo, Willy 91, 189, 204

Tang, Chunming 132
Tian, Song 147, 160
Toegl, Ronald 16

Varadharajan, Vijay 189

Wang, Chunzhi 75
Wang, Kefeng 91
Wang, Kunpeng 147, 160
Wang, Peng 353
Wong, Duncan S. 132, 204
Wu, Wenling 353
Wu, Yongdong 117

388 Author Index

Xiong, Hao 60

Yang, Guomin 204

Yiu, Siu Ming 60

Yu, Wei 147, 160

Yuen, Tsz Hon 60

Zhang, Cong 60
Zhang, Hailong 336
Zhang, Liting 353
Zhang, Mingwu 75
Zhang, Yingjun 44, 295
Zhao, Hui 336
Zhou, Yongbin 336

	Preface
	Table of Contents
	Network Security
	Enhancing False Alarm Reduction Using Pool-Based Active Learning in Network Intrusion Detection
	1 Introduction
	2 Background and RelatedWork
	2.1 Active Learning
	2.2 RelatedWork

	3 Our Proposed Method
	3.1 False Alarm Problem
	3.2 Pool-Based Active Learning Algorithm
	3.3 Active-Learning Based False Alarm Filter

	4 Evaluation
	4.1 Experimental Methodology
	4.2 Experiment1
	4.3 Experiment2

	5 Concluding Remarks
	References

	Trusted Identity Management for Overlay Networks
	1 Introduction
	2 Background and Related Work
	3 Trusted Computing Background
	4 Trusted Identity Management for Overlay Networks
	4.1 TPM Identity Mechanisms
	4.2 TAP1: EK-Based Authentication Protocol
	4.3 TAP2: PrivacyCA-Based Approach

	5 Protocol Specification and Implementation
	5.1 TAP1: Direct Trusted Authentication without PrivacyCA
	5.2 TAP2: Trusted Authentication with PrivacyCA

	6 Evaluation and Performance
	6.1 TAP1: Trusted EK Authentication without PrivacyCA
	6.2 TAP2: Trusted Authentication with PrivacyCA

	7 Security and Privacy Analysis
	8 Conclusion
	References

	Situational Awareness for Improving Network Resilience Management
	1 Introduction
	2 Related Work
	2.1 Network Resilience
	2.2 Resilience Evaluation

	3 Network Resilience Management Based on SA
	3.1 Model of Network Resilience Management
	3.2 Challenges Awareness of Resilience Issues
	3.3 Resilience Estimate and Analysis According to SA and Remediation
	3.4 Extended Generalized Stochastic Game Net for Resilience State Transition

	4 Case Study
	5 Conclusion and Future Work
	References

	Optimal Defense Strategies for DDoS Defender Using Bayesian Game Model
	1 Introduction
	2 Related Work
	3 Bayesian Game Model for DDoS Attack and Defense
	4 Utility Function
	4.1 Utility Function of the Attacker
	4.2 Utility Function of the Defender

	5 Two Problems
	6 Experiment and Results
	7 Conclusion and Future Work
	References

	Identity-Based Cryptography
	Attribute Specified Identity-Based Encryption
	1 Introduction
	2 Backgrounds
	2.1 Notation of Bilinear Groups
	2.2 Access Structure
	2.3 Linear Secret Sharing Schemes
	2.4 Access Trees

	3 Security Model
	3.1 Chosen Plaintext Security for AS-IBE
	3.2 Extension to Key Policy

	4 Our Ciphertext Policy AS-IBE Construction
	5 Our Key Policy AS-IBE Construction
	6 Conclusion
	References

	Leakage-Resilient Attribute-Based Encryption with Fast Decryption: Models, Analysis and Constructions
	1 Introduction
	2. Mathematical Backgrounds
	2.1 Monotone Access Structure and Minimal Set
	2.2 Random Subspaces for Leakage Resilience over Arbitrary Functions
	2.3 Hardness Assumptions

	3 Leakage-Resilient Attribute-Based Encryption
	3.1 Model of LR-CP-ABE
	3.2 Security Properties in the Presence of Leakage

	4 Construction of LR-CP-ABE
	5 Security
	6 Performance and Discussion
	6.1 Master Key Leakage Tolerance
	6.2 Leakage-Resilient Key-Policy ABE
	6.3 Performance

	7 Conclusions
	References

	Identity-Based Multisignature with Message Recovery
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Bilinear Pairing
	3.2 CDH Problem

	4 Identity-Based Multisignature with Message Recovery
	4.1 Definitions
	4.2 Security Model
	4.3 Proposed Scheme
	4.4 Security Analysis

	5 Conclusion
	References

	Improving the Message-Ciphertext Rate of Lewko’s Fully Secure IBE Scheme
	1 Introduction
	2 Definitions
	2.1 IBE
	2.2 Security Definition

	3 Complexity Assumptions
	3.1 Prime Order Symmetric Bilinear Maps
	3.2 Complexity Assumptions

	4 An IBE Scheme with Better Message-Ciphertext Rate
	4.1 Our Construction
	4.2 Security Proof
	4.3 Anonymity

	5 Conclusion
	References

	Cryptographic Primitives
	Accountable Trapdoor Sanitizable Signatures
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Bilinear Pairings
	2.2 Computational Diffie-Hellman (CDH) Assumption

	3 Accountable Trapdoor Sanitizable Signature and Its Security Requirements
	4 Accountable Chameleon Hash and Its Construction
	4.1 Accountable Chameleon Hash
	4.2 Construction

	5 Generic Construction of ATSS from ACH
	6 Conclusion and Future Work
	References

	A Conditional Proxy Broadcast Re-Encryption Scheme Supporting Timed-Release
	1 Introduction
	1.1 Our Contributions

	2 Definition and Security Models�
	2.1 Definition of TR-CPBRE
	2.2 Security Models

	3 Preliminaries
	4 A New TR-CPBRE Scheme
	5 Comparison
	6 Concluding Remarks
	References

	About Hash into Montgomery Form Elliptic Curves
	1 Introduction
	2 Montgomery Form
	3 Cube Root Method
	3.1 Properties of Cube Root Algorithm
	3.2 One-Way
	3.3 Collision-Resistant

	4 Legendre Method
	5 SWU and Brief SWU
	5.1 Equivalence with Weierstrass Form Elliptic Curves
	5.2 SWU Algorithm
	5.3 Brief SWU
	5.4 One-Way
	5.5 Collision-Resistant

	6 Indifferentiable from Random Oracle
	6.1 First Construction
	6.2 Second Construction

	7 Time Complexity
	7.1 Theoretical Analysis of Hash
	7.2 Theoretical Analysis of Random Oracle
	7.3 Practical Implementations

	8 Conclusion
	References

	Joint Triple-Base Number System for Multi-Scalar Multiplication
	1 Introduction
	2 Preliminary
	2.1 Triple-Base Chain
	2.2 Multi-Scalar Multiplication
	2.3 Joint Triple-Base Chain
	2.4 Cost of Elliptic Curve Point Operations

	3 Joint Triple Base Algorithm and Generalizations
	4 Analysis and Comparison
	4.1 Complexity Analysis
	4.2 Experimental Results

	5 Conclusion
	References

	Security Protocols
	Anonymous Authentication of Visitors for Mobile Crowd Sensing at Amusement Parks
	1 Introduction
	1.1 Current Situation
	1.2 Application Scenario

	2 Threats and Security Requirements
	2.1 Threats
	2.2 Security Requirements

	3 Proposed Anonymous Authentication of Visitors (AAV) Protocol
	3.1 Naive Approaches
	3.2 Background
	3.3 AAV Protocol Description
	3.4 Anonymous Authentication of a Group

	4 Security Analysis
	4.1 Use of Pseudonyms to Protect Visitors' Privacy
	4.2 Visitor Authentication to Deter False Data from Adversaries Outside the Park
	4.3 Data Auditing: Heuristics, Thresholds, and Revocation to Deter Greedy Visitors
	4.4 Secure Channel to Counter Man-in-the-middle Attacks

	5 Related Work
	6 App Server Performance Results
	7 Conclusion
	References

	Secure RFID Ownership Transfer Protocols
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions

	2 Related Work
	3 System Model
	3.1 Entities
	3.2 RFID Ownership Transfer Systems
	3.3 Ownership Transfer Protocols

	4 Proposed Protocol
	4.1 Preliminaries
	4.2 Construction

	5 Security Models of Ownership Transfer Protocols
	5.1 Adversaries and Oracles
	5.2 Security Models

	6 Security Analysis
	7 Conclusion
	References

	Leakage Resilient Authenticated Key Exchange Secure in the Auxiliary Input Model
	1 Introduction
	2 Preliminaries
	3 Security Model and Definition
	3.1 System Model
	3.2 Security Model

	4 SIG-DH vs PKE-DH
	5 A Leakage Resilient AKE Protocol Secure in the Auxiliary Input Model
	5.1 The aSIG-DH AKE Protocol

	6 Conclusion
	References

	Simplified PACE|AA Protocol
	1 Introduction
	1.1 Security Requirements
	1.2 RelatedWork and Paper Contribution

	2 Simplified PACE|AA Protocol
	3 Security
	3.1 Adversary Categories
	3.2 Privacy Games
	3.3 Faking Games
	3.4 Transmission Security
	3.5 Long Term Key Security on Ephemeral Data Leakage

	4 Security Proofs
	4.1 Simulatability
	4.2 Drafts of Security Proofs

	References

	System Security
	Expressing User Access Authorization Exceptions in Conventional Role-Based Access Control
	1 Introduction
	2 NISTRBAC
	3 Authorization Exceptions in Core RBAC
	3.1 NIST Core RBAC
	3.2 Authorization Exceptions in Core RBAC
	3.3 Expressing Core Exceptions in Core RBAC

	4 Authorization Exceptions in Hierarchical RBAC
	4.1 NIST Hierarchical RBAC
	4.2 Authorization Exceptions in Hierarchical RBAC
	4.3 Expressing Authorization Exceptions in Hierarchical RBAC

	5 Expressing HRBAC with Exceptions in DATALOG
	5.1 Backgroud
	5.2 Result

	6 Case Study
	7 Related Work
	8 Conclusion and Future Work
	References

	Efficient Attack Detection Based on a Compressed Model
	1 Introduction
	2 Related Work
	3 Compressed Model
	3.1 Data Normalization
	3.2 Horizontal Compression
	3.3 Vertical Compression
	3.4 Distance Matrix

	4 Experimental Evaluation
	4.1 Dataset Description
	4.2 Detection Approaches
	4.3 Parameters Settings
	4.4 Experimental Results

	5 Conclusion
	References

	A Digital Forensic Framework for Automated User Activity Reconstruction
	1 Introduction
	2 Background
	3 Related Work
	4 SigDiff: Signature-Based Digital Forensic Framework
	4.1 Activity Signature Generation
	4.2 Digital Artefact Collection Module
	4.3 Activity Reconstruction Module

	5 Implementation and Evaluation
	6 Conclusion and Future Research Directions
	References

	Increasing Automated Vulnerability Assessment Accuracy on Cloud and Grid Middleware
	1 Introduction
	2 The Attack Vector Analyzer
	2.1 Building the Knowledge Base
	2.2 Analyzing Attack Vectors

	3 Case Study
	3.1 FPVA Applied to CrossBroker
	3.2 AvA Applied to CrossBroker

	4 Related Work
	4.1 Microsoft Threat Modeling
	4.2 The Open Vulnerabilities and Assessment Language (OVAL)
	4.3 Vulnerability Cause Graphs

	5 Conclusions
	References

	Software Security DRM
	VulLocator: Automatically Locating Vulnerable Code in Binary Programs
	1 Introduction
	2 Relate Work
	3 Overview
	4 Attack Detection
	4.1 Execution Trace Recording
	4.2 Exploited Vulnerability Detection

	5 Vulnerable Code Location
	5.1 Vulnerability Dependence Tree Generation
	5.2 Vulnerable Code Location and Sample Patch Generation

	6 Evaluation
	6.1 Effectiveness and Performance
	6.2 Case Study
	6.3 Discussion

	7 Conclusion
	References

	Software Protection with Obfuscation and Encryption
	1 Introduction
	2 Proposed Method
	2.1 Obfuscation
	2.2 Encryption

	3 Experimental Evaluation
	3.1 Instruction Disassembly Error
	3.2 Control Flow Disassembly Errors
	3.3 Time Overhead
	3.4 Program Size Overhead
	3.5 Comparison with Other Algorithms

	4 Conclusion
	References

	Secure Content Delivery in DRM System with Consumer Privacy
	1 Introduction
	2 Preliminaries
	2.1 DRM Framework
	2.2 Background of Elliptic Curve Group koblitz,ellipt-book

	3 Protocol
	3.1 Overview of Multi-distributor DRM System
	3.2 Content Encryption
	3.3 Private Key Generation
	3.4 License Acquisition

	4 Privacy Rights Management
	4.1 Principles
	4.2 High Level Description

	5 Analysis
	5.1 Privacy Analysis
	5.2 Security Analysis

	6 Comparison
	7 Conclusion
	References

	Cryptanalysis and Side Channel Attacks
	Systematic Construction and Comprehensive Evaluation of Kolmogorov-Smirnov Test Based Side-Channel Distinguishers
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Kolmogorov-Smirnov Test
	2.2 KSA Distinguisher
	2.3 PKS Distinguisher

	3 Systematic Construction of KS Test Based Side-Channel Distinguishers
	3.1 Construction Strategies of KSA and PKS
	3.2 Nine New Variants of KS Test Based Distinguishers

	4 A Comprehensive Evaluation of All Twelve KS Test Based Side-Channel Distinguishers
	4.1 Simulated Experiments
	4.2 Practical Experiments

	5 Conclusions
	References

	Cryptanalysis of the OKH Authenticated Encryption Scheme
	1 Introduction
	2 Description of OKH
	2.1 Notations
	2.2 The Odd Key Hash Function Family
	2.3 OKH Authenticated Encryption

	3 Security Models
	4 Cryptanalysis of OKH
	4.1 Some Properties
	4.2 Breaking Authenticity of OKH
	4.3 Breaking Privacy of OKH

	5 Conclusion
	References

	Security Evaluation of Rakaposhi Stream Cipher
	1 Introduction
	1.1 Related Works

	2 Description of Rakaposhi Stream Cipher
	2.1 Initialisation Procedure

	3 Cryptanalysis of Rakaposhi Stream Cipher
	3.1 Properties of Rakaposhi Cipher
	3.2 Related Key Attack on Rakaposhi
	3.3 Recovery of Secret Keys

	4 Weak (K,IV) Pairs
	4.1 Weak (K,IV) Pairs Leading to A=1
	4.2 Weak (K,IV) Pairs Leading to B=0

	5 Conclusions
	References

	Improved Algebraic and Differential FaultAttacks on the KATAN Block Cipher
	1 Introduction
	2 Description of KATAN
	3 Improved SAT-Based Algebraic Attack on KATAN
	3.1 Preliminaries on SAT Solving
	3.2 Attack Strategies
	3.3 Attack Results

	4 Differential Fault Attack on KATAN
	4.1 Related Works
	4.2 Fault Position Determination
	4.3 Getting Differential Equations
	4.4 Iterative Procedure for Retrieving the Secret Key
	4.5 Attack Results

	5 Conclusion
	References

	Author Index

