
 

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 811–818, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Solving Router Nodes Placement Problem with Priority 
Service Constraint in WMNs Using Simulated Annealing* 

Chun-Cheng Lin1,**, Yi-Ling Lin1, and Wan-Yu Liu2 

1 Dept. of Industrial Engineering and Management,  
National Chiao Tung University, Hsinchu 300, Taiwan 

2 Dept. of Tourism Information, Aletheia University, New Taipei City 251, Taiwan 
cclin321@nctu.edu.tw 

Abstract. The QoS performance of wireless mesh networks (WMNs) is 
measured by the topology connectivity as well as the client coverage, both of 
which are related to the problem of router nodes placement, in which each mesh 
client is served as equal. In practice, however, mesh clients with different 
payments for the network services should be provided by different qualities of 
network connectivity and QoS. As a result, to respond to the practical 
requirement, this paper considers the router nodes placement problem in WMNs 
with service priority constraint in which each mesh client is additionally 
associated with a service priority value, and we constrain that the mesh clients 
with the top one-third priority values must be served. Our concerned problem 
inherited from the original problem is computationally intractable in general, 
and hence this paper further proposes a novel simulated annealing (SA) 
approach that adds momentum terms to search resolutions more effectively. 
Momentum terms can be used to improve speed and accuracy of the original 
annealing schedulers, and to prevent extreme changes in values of acceptance 
probability function. Finally, this paper simulates the proposed novel SA 
approach for different-size instances, and discusses the effect of different 
parameters and annealing schedulers. 

Keywords: Wireless mesh networks, simulated annealing, router nodes 
placement, annealing schedule.  

1 Introduction 

Based on Wi-Fi technology, wireless mesh networks (WMNs) [1, 2] are the 
communication networks made up of radio nodes organized in a mesh topology. This 
paper considers the problem of router nodes placement (RNP) for the WMNs 
consisting of mesh routers and mesh clients [3], in which an optimal deployment of 
mesh routers is determined so that the network connectivity and the client coverage 
are maximized. In the previous work [4,8,9,10], the RNP problem only considered 
fixed and simple network environments, in which each mesh client is served as equal. 
                                                           
 * Research supported in part by NSC 101-2219-E-009-025.  
** Corresponding author.  



812 C.-C. Lin, Y.-L. Lin, and W.-Y. Liu 

 

In practice, however, each mesh client should be served by different quality of 
network connectivity as well as QoS [6] according to the user’s payment for the 
service. To respond to the practical requirement, this paper extends the original RNP 
problem to the router nodes placement problem with service priority constraint in 
WMNs (WMN-RNPSP), in which each mesh client is associated with a service 
priority value that represents its service priority in this WMN, and we constrain that 
the mesh clients with the top one-third priority values must be served. The WMN-
RNPSP problem is challenging due to the following three additional characteristics: (a) 
the locations of mesh routers are not predetermined, (b) mesh routers are assumed to 
have different radio coverage area sizes, and (c) each mesh client is associated with a 
different priority value. The last characteristic is designed for our practical 
requirement for providing users different service qualities. Our objective is to find an 
optimal placement of mesh routers in the deployment area to maximize both the 
network connectivity and the client covering. 

Like the original RNP problem, the WMN-RNPSP problem cannot be solved by an 
efficient deterministic polynomial-time algorithm [7]. Hence, we propose a novel 
simulated annealing (SA) approach by analogy with [5] to solve the WMN-RNPSP 
problem, which provides an efficient promising solution. Our novel SA approach 
improves speed and accuracy of annealing schedulers and makes the algorithm 
become faster by adding momentum terms. In addition, we propose two types of 
neighbor selection mechanisms, called random scheme and local scheme, for 
comparing the original neighbor selection mechanism. 

The rest of the paper is organized as follows. Section 2 introduces the basic 
original router nodes placement problem and define the router nodes placement 
problem with service priority constraint in WMNs. Then, the SA approach phases 
with momentum terms for constructing a WMN and its detail application phases to 
WMN-RNPSP problem is presented in Section 3. In Section 4, we present 
environment setting, simulation results and discussion. Finally, we discuss the future 
network and make some conclusion in Section 5. 

2 Problem Description 

This section first gives the basic environmental settings as well as concepts for the 
RNP problem, and then formulates the RNPSP problem. 

2.1 The Router Nodes Placement Problem 

An instance for the RNP problem [3, 8] consists of: 

(a) m mesh routers each of which has a different-size radio coverage; 
(b) a two-dimensional rectangular grid area of size W × H in which m mesh routers 

are deployed; 
(c) n mesh clients located in arbitrary points of the deployment grid. 
 
Figure 1 gives an instance for the RNP problem, in which according to the locations 
of mesh routers in the rectangular deployment grid, we can establish a network 
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topology graph. Let the graph denoted by G＝(V, E), in which V is the set of all mesh 
routers and mesh clients, and E is the set of edges, which include two types of 
connections as follows. First, if the radio coverage of two mesh routers are overlapped, 
we create an edge between the two mesh routers. Second, if a mesh client is located 
within the radio coverage of a mesh router, we create an edge between the mesh client 
and the mesh router. There are two measure for the performance of the WMN. The 
first measure is the network connectivity, which is defined as the size of the greatest 
graph component of graph G, while the second measure is the client coverage, which 
is defined as the number of covered mesh clients. 

 

Fig. 1. An instance of WMN 

2.2 The Router Nodes Placement Problem with Priority Service Constraint 

An instance for the WMN-RNPSP problem consists of: 

(a) m mesh router nodes each of which has a different-size radio coverage; 
(b) a two-dimensional grid area of size W × H where m mesh routers are deployed; 
(c) n mesh clients located in arbitrary points of the deployment grid each of which is 

associated with a service priority value. 

In light of the above, the WMN-RNPSP problem can be stated as follows: 
 

The WMN-RNPSP Problem: We are given a graph underlying a WMN distributed 
in a two-dimensional W ×  H grid area where the locations of mesh clients located in 
arbitrary collations of the grid area and each of mesh clients has a priority value, 
while the locations of mesh routers need be assigned. The objective of the problem is 
to find a placement X of the mesh routers so that the network connectivity and the 
client coverage are maximized while the mesh clients with the top one-third service 
priority values must be served. 
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3 Our Novel SA Approach to the WMN-RNPSP Problem 

This section focuses on the annealing schedule and the acceptance probability module 
of our proposed novel SA, by analogy with [5]. Finally, we present in detail the key 
steps of our proposed novel SA. 

3.1 Simulated Annealing Algorithm 

Simulated annealing (SA) is a metaheuristic algorithm used for solving combinatorial 
optimization problems. The basic idea of SA is to simulate the cooling process of 
metals by heating and cooling of a material to increase the size of crystals and reduce 
defects. Initially, a feasible solution for the problem is represented a state of the 
metals. Heating causes the metals to change and rearrange their current state, while 
cooling finds a state with lower energy than the previous one. Note that the cooling 
process follows an annealing schedule. In each iteration of the annealing schedule, the 
SA considers a neighboring state of the current state, and bases the Metropolis rule to 
probabilistically decide whether the system moves to the neighboring state or stays at 
the current state. Those steps are repeated until the system reaches a state that is good 
enough, or the maximal number of iterations is achieved. The final state would be 
associated with a locally optimal solution of the concerned optimization problem. 

The SA algorithm contains two main phases: annealing schedule and Metropolis 
rule. The annealing specifies “when and what temperature must be decreased”, and 
the Metropolis rule considers a probability function and specifies “whether to replace 
the current state by a neighboring state”. The probability is used to overcome the local 
optimal problem and lead the system to move the optimal solution of lower energy 
gradually. This paper considers three types of annealing modules: Geometric, 
Logarithmic, and Boltzmann. Unless stated otherwise, we use the most popular 
Boltzmann acceptance probability function. 

3.2 A Novel Simulated Annealing Algorithm Using Momentum Terms 

The novel SA approach is similar to the SA, and it speeds up the system time and 
enhances the accuracy of solution greatly on SA by adding momentum terms. 
Momentum terms are used to improve cooling speed and prevent extreme changes in 
values on acceptance probability function. This section summarizes three newly 
annealing modules: Hybrid, Extended logarithmic and Extended Boltzmann and one 
acceptance probability function: Extended Boltzmann function as follows. Note that 
Ti is the temperature of the i-th iteration, and ΔT is the difference between current 
temperature and previous temperature. Readers are referred to [5] for more details of 
those designs. 

 Hybrid: Tk+1 = Tk – α Tk – k ⋅ ΔT / ek where α is similar to that used in the 
Geometric annealing module, and k is the number of iterations. 

 Extended logarithmic: Tk = C / log(T0 + k) – k / ek – (log(k))1/2 where C is 
constant. 

 Extended Boltzmann: Tk = T0 / log(1 + k) – log(1 + k). 
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 Extended Boltzmann function: P(ΔE) = e–ΔE / bt where ΔE is calculated as 
follows: ΔE = (Ei – Ej) – αbTi(Ei – Ej)

1/2 where α is a running time parameter, 
and b is the Boltzmann constant. 

3.3 Our Novel SA Approach to the WMN-RNPSP Problem 

This section gives in detail my novel SA approach to the WMN-RNPSP problem: 
solution representation of each candidate solution, fitness function, scheme of 
neighboring solution selection and acceptance criteria. 

3.3.1   Solution Representation 
The (x, y)-coordinates of the routers should be determined as a candidate solution, 
which is expressed by two vectors (current and current best solutions) and two fitness 
values (current and current best fitness). 

3.3.2   Fitness Function 
The objective f(X) for a placement X of our concerned problem is to maximize the 
network connectivity φ(G) and the client coverage ψ(G) at the same time. Note that G 
is the topology graph underlying the placement X. The fitness function is calculated as 
follows: 

m
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where λ is the weighting scale in the range [0, 1]. Note that the denominator of each 
term of the equation is used for normalization. 

3.3.3   Neighbor Selection 
The implementation of SA considers three types of moving schemes as follows: 

 Standard: Choose a router randomly and place it in a new position randomly. 
 Random: All of the mesh routers are reconfigured randomly. 
 Local: Choose a router randomly and place it in a new position within the 

specified range randomly. 

4 Implementation and Experimental Results 

Based on the proposed SA approach described in the previous section, we 
implemented our proposed novel SA approach to the WMN-RNPSP problem. This 
section is divided into three subsections mainly. We first give the parameter setting, 
and then present the type of optimal neighbor selection on SA and novel SA in the 
individual various cases. Second, we use the result of the first one, compare all 
annealing schedules mentioned in Section 3 with Boltzmann and extended Boltzmann 
probability. Finally, we summarize all the previous results to give the experimental 
results in a variety of cases. 
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4.1 Data and Simulation Environment 

Similar to [8], we consider the following three cases: 

Case 1: There are 16 mesh routers and 48mesh clients on a 32 × 32 area. 
Case 2: There are 32 mesh routers and 96mesh clients on a 64 × 64 area. 
Case 3: There are 64 mesh routers and 192 mesh clients on a 128 × 128 area. 

Table 1. Performance of neighbor selection on the original and our novel SA approaches for 32 
× 32, 64 × 64 and 128 × 128 grid area 

CASES SA/NSA Standard Random Local 

32 × 32 grid size 
Original SA 0.955385 0.744469 0.743010 

Novel SA 0.982656 0.783781 0.788635 

64 × 64 grid size 
Original SA 0.923776 0.876479 0.873375 

Novel SA 0.999229 0.871833 0.879516 

128 × 128 grid size 
Original SA 0.884500 0.860487 0.859797 

Novel SA 0.981529 0.868177 0.866550 

 
One important aspect of the SA process is to study the performance under different 

neighboring selection methods. Table 1 shows the statistics results of the fitness 
values under different selection schemes for original SA and novel SA. We can see 
that the Standard scheme of neighbor selection on original or novel SAs can generate 
better solutions for all cases.  

4.2 Annealing Schedule Method and Acceptance Probability Function 

We give in Table 2 the computational results of six types of annealing schedule 
methods with Boltzmann and extended Boltzmann probability acceptance functions. 
Due to page limitation, we only put the results of case 1, 32 × 32 grid size. In Table 2 
it is illustrated that the proposed acceptance function of novel SA has better results 
than original SA and almost all annealing schedule methods showed high quality 
performance under novel extended acceptance probability function. 

Table 2. Comparison of annealing schedules with Boltzmann and extended Boltzmann 
probability for 32 × 32 grid size 

Annealing schedule Boltzmann Extended Boltzmann 

Geometric 0.950729 0.982292 
Logarithmic 0.767517 0.981375 
Boltzmann 0.759705 0.985792 

Hybrid 0.769045 0.978687 
Extended logarithmic 0.765486 0.983083 
Extended Boltzmann 0.755781 0.982406 
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4.3 Experimental Results 

After the fine tuning of above parameters was done, we measured the performance of 
the novel SA algorithm for all the problem instances. The statistics of all the problem 
instances are given in Table 1, in which four columns stores best fitness, average 
fitness, worst fitness, and the standard deviation of fitness values; ten rows indicates 
each 5 instances of clients distributions. We observe that our novel SA approach 
performs high efficiency and almost achieves to maximum both network connectivity 
and client coverage.  

Table 3. The statistics of all cases 

Instance Case 1 Case 2 Case 3 

Best Mean Worst SD Best Mean Worst SD Best Mean Worst SD 

uniform_1 1.0000 0.9823 0.9474 0.0155 1.0000 1.0000 1.0000 0.0000 0.9952 0.9860 0.9711 0.0089 

uniform_2 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.9904 0.9846 0.9711 0.0047 

uniform_3 1.0000 0.9953 0.9615 0.0090 1.0000 1.0000 1.0000 0.0000 0.9952 0.9888 0.9855 0.0025 

uniform_4 1.0000 0.9978 0.9672 0.0068 1.0000 1.0000 1.0000 0.0000 0.9952 0.9852 0.7978 0.0276 

uniform_5 1.0000 0.9691 0.9423 0.0152 1.0000 0.9992 0.9615 0.0055 1.0000 0.9955 0.9904 0.0015 

nniform_1 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.9952 0.9935 0.9855 0.0025 

normal_2 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.9952 0.9907 0.9904 0.0012 

normal_3 1.0000 0.9963 0.8172 0.0259 1.0000 1.0000 1.0000 0.0000 0.9952 0.9929 0.9855 0.0026 

normal_4 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.9952 0.9941 0.9855 0.0026 

normal_5 1.0000 0.9965 0.8271 0.0243 1.0000 1.0000 1.0000 0.0000 0.9952 0.9928 0.9892 0.0025 

average 1.0000 0.9937 0.9463 0.0097 1.0000 0.9999 0.9961 0.0005 0.9952 0.9904 0.9652 0.0057 

5 Conclusion and Future Work 

A novel simulated annealing approach for optimizing the placement of mesh router 
nodes for mesh clients with service priority constraint in wireless mesh networks has 
been proposed and implemented. The experimental results showed the efficient 
implementation of our proposed novel SAs for the WMN-RNPSP problem. The 
results also confirmed that our proposed novel SA is an effective method for the 
problem as it achieved the network connectivity of almost all mesh router nodes and 
covered almost all mesh client nodes in variety of grid sizes. In addition, the 
performance of our proposed novel SA is always better than original SA. 

In the future, we intend to solve the dynamic version of the WMN-RNPSP problem 
or consider the optimization of other objectives at the same time, so that the problem 
is more realistic and can be used in the community. 
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