

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 124–133, 2013.
© Springer-Verlag Berlin Heidelberg 2013

RTRM: A Response Time-Based Replica Management
Strategy for Cloud Storage System

Xiaohu Bai, Hai Jin, Xiaofei Liao, Xuanhua Shi, and Zhiyuan Shao

Services Computing Technology and System Lab.
Cluster and Grid Computing Lab.

Huazhong University of Science and Technology, Wuhan, 430074, China
hjin@hust.edu.cn

Abstract. Replica management has become a hot research topic in storage sys-
tems. This paper presents a dynamic replica management strategy based on re-
sponse time, named RTRM. RTRM strategy consists of replica creation, replica
selection, and replica placement mechanisms. RTRM sets a threshold for re-
sponse time, if the response time is longer than the threshold, RTRM will in-
crease the number of replicas and create new replica. When a new request
comes, RTRM will predict the bandwidth among the replica servers, and make
the replica selection accordingly. The replica placement refers to search new
replica placement location, and it is a NP-hard problem. Based on graph theory,
this paper proposes a reduction algorithm to solve this problem. The simulation
results show that RTRM strategy performs better than the five built-in replica
management strategies in terms of network utilization and service response
time.

Keywords: Dynamic replica management, Response time, OptorSim, Load
balance.

1 Introduction

Since data replication has been widely used in storage systems [1-3], replica management
has been a hot research topic [4-9]. As the storage environment changes dynamically,
dynamic replica management gets more attention by researchers. Replica management
includes replica creation, selection, and placement.

Most existing dynamic replica management strategies create new replica of the
popular data based on the user access frequency, thus the replica creation always
happens at the end of each time interval. But according to temporal locality and spatial
locality, especially the pattern of user accesses, the distribution of the user accesses is
uneven during the time interval. A file may have many concurrent requests during the
time interval, and these concurrent requests will greatly increase the service response
time of each single request. Two issues should be addressed: (1) when is the best time
for replica creation of popular data to reduce the average service response time; (2)
how many replicas can satisfy the response time requirement of a single request.

 RTRM: A Response Time-Based Replica Management Strategy 125

In this paper, we focus on the response time of a single request, and propose a re-
sponse time-based replica management strategy, named RTRM, which includes three
algorithms: replica creation, replica selection, and replica placement. Replica creation
algorithm decides when and where to create replica based on the average response
time. Replica selection method selects the best replica node for users based on re-
sponse time prediction, while replica placement mechanism combines the number of
replicas and the network transfer time. To evaluate the performance of RTRM, we run
the strategies in OptorSim [10]. The evaluation results show that our replica manage-
ment strategy performs better than the five built-in replica management strategies in
OptorSim simulator in terms of service response time and network utilization.

The rest of this paper is organized as follows. Section 2 introduces the related
work. Section 3 presents dynamic replica management strategy. The analysis and
evaluation results are presented in section 4. In section 5, we give conclusions and
possible future work.

2 Related Works

Replica management has been widely studied. Sun et al. [4] proposed a replica strategy
based on the memory cache. Hou et al. [5] proposed a dynamic replica creation
mechanism DynRM, which decides to create replicas according to the file access
frequency. Chang et al. [6] set access-weights for each file, and choose hot file based
on the value of access-weights. These replica strategies do not take the response time
of a single request into consideration, while many requests have to be waiting for a
long time.

Rahman et al. [7] proposed a replica placement algorithm used the p-median model
to find the locations of p candidate nodes to place replicas, but the problem is how to
determine an appropriate value of p. A model-driven replica strategy is proposed in [8].
This strategy first calculates the requisite number of replicas and selects the best set of
nodes to host the replicas. However, as each node can only utilize partial information,
this strategy may create too many replicas and result in prohibitive overhead. Li et al
[9] proposed a DSRL replica location method in which each file has a home node to
maintain the index of all the replicas. With the dynamic changes in the network, DSRL
method would create too many replicas.

3 Design of RTRM

3.1 Replica Creation Method

In dynamic replica management strategy, replica creation decides which file is the
popular data and when is the right time to create new replica of the popular data.
Replica creation method first finds the best time to create new replica, an access
recorder is assigned to each data node, which is used to store the number of concurrent
user accesses to each file, including file name, number of concurrent access, file size,
and so on. The service response time of single access can be calculated by the number

126 X. Bai et al.

of concurrent user accesses. Once the average service response time of a file is higher
than a threshold, the file becomes popular data, and the creation of that file is started.

In our replica creation method, Tthreshold is set as the upper limit of the service
response time of a single request. The average service response time of a file must be
smaller than Tthreshold.

Assume that data block b has n replicas, and distributed in n nodes. Let these n
nodes be N1, N2, … Nn. To simplify the problem, for the user accesses of data block b,
we have the denotations as follows:

The size of data block b is denoted as Sb.
The network transmission capability of node Ni is denoted as NTCi.
The number of concurrent accesses of node Ni is denoted as Numi.
The maximum service response time of single request of node Si is denoted as

MSRTi. MSRTi can be computed by Equation (1).

)...,,2,1(niNum
NTC

s
MSRT i

i

b
i =×= (1)

We define MSRTMAX as the maximum value of all MSRTi, the average response time
of all MSRTi is denoted as MSRTaverage. Based on Equation (1), MSRTMAX and MSRTa-

verage can be computed by Equation (2).







=

=

 =

n

i iaverage

nMAX

MSRT
n

MSRT

MSRTMSRTMSRTMSRT

1

21

1

),...,,max(
 (2)

Each time when a user access comes, we get the value of MSRTMAX and MSRTaverage
through Equation (2). If the value of MSRTaverage is higher than Tthreshold, file f is
considered to be popular data, and new replica of file f will be created. If MSRTaverage is
smaller than Tthreshold, but MSRTMAX is higher than Tthreshold, then the system would
transfer some accesses from the relatively heavy load nodes to the relatively light load
nodes.

3.2 Replica Selection Method

The goal of replica selection method is to select the best replica node of a file. In rep-
lica selection method, LPC is defined to represent the load process capability of a
node. The metrics of LPC consists of three components: CPU process capability,
network transmission capability, and I/O capability of disks, denoted by wc, wn, wio,
respectively. Given these metrics, LPC can be computed by Equation (3).

LPC =α*wc+β*wn+γ*wio (3)

In Equation (3), α, β, γ are constants and can be determined according to service level.
Replica selection method chooses the node with highest LPC to response the user
request, the user then accesses the file from the node with highest LPC.

 RTRM: A Response Time-Based Replica Management Strategy 127

3.3 Replica Placement Mechanism

Replica placement has been proven to be NP-hard. We first give a model of replica
placement, and then we propose a reduction algorithm to solve this problem.

Assume that the system has n storage nodes, let them be n1, n2, …,nn. We want to
get the minimal replicas of file f, and place these replicas to satisfy the requirement of
a single request. To simplify the problem, the denotations are as follows:

(1) The replica number is denoted as replicaDegree, and the upper limit of the re-
sponse time of a single request is set as Tupper.

(2) The response time that node ni accesses file f is denoted as responseTimei, it is
the time that ni accesses file f from the nearest node. If ni contains file f or its replica,
responseTimei is set to be 0.

(3) The total response time of the system is denoted as TotalresponseTime, and To-
talresponseTime can be computed by Equation (4).

  =
= n

i imeresponseTinseTimeTotalrespo
1

 (4)

The goal of our design is to make sure that the response time of a single request must
be smaller than Tupper, and minimize the value of replicaDegree and the value of Tota-
lresponseTime. Therefore, in this paper, we want to find an optimal replica scheme
that can achieve the following goals:

(1) Minimize replicaDegree
(2) responseTimei <= Tupper
(3) Minimize TotalresponseTime.

For goals (1) and (2), they can be described as a Set Covering Problem (SCP), which
has been proven to be NP-hard. Based on greedy algorithm, by transforming the SCP
into an equivalent graph, we design a reduction algorithm to figure out this model.

Based on the network topology and the network transfer time, we construct a graph
G=(V, E), this graph can be described as:

V={n1, n2, …, nn}; E={(ni, nj) | responseTimeji<= Tupper}.
As an example, a network topology and the network transfer time is shown in

Fig.1, and the value of Tupper in this example is 10s.

10s

4s

10s

13s

7s

2s

7s

5s

n4

n9

n5

n7

n8

n1

n3

n2

n6

Fig. 1. Network topology and network transfer time

128 X. Bai et al.

From the graph, we can get the value of V and E.
V={n1, n2, n3, n4, n5, n6, n7, n8, n9}; E={(n1, n2), (n1, n3), (n1, n4), (n1, n6), (n2, n3),

(n2, n4), (n2, n6), (n5, n9), (n5, n8), (n6, n7)}.
The goal is to find a subset V*, which is a smallest subset of V, for each element v

from V, there must have at least one element v* from V*, and (v, v*) is an element in
E. It means that for each node v in V, there must be at least one node v* in V*, and v
can access file from v* within Tupper.

Algorithm 1 shows the process of the reduction algorithm. We can place the repli-
cas in the nodes from V* to make sure that all the nodes can access file f within Tupper.

4 Performance Evaluation

In this section, we first compare our replica placement mechanism with other four
replica placement strategies, then compare RTRM strategy with the five built-in repli-
ca strategies in OptorSim. From the experiment results, RTRM strategy performs
better in terms of network utilization, average response time, and total replica number.

4.1 Analysis of Replica Placement Mechanism

We will compare our replica placement mechanism with other four strategies: Best
Client, MinimizeExpectedUtil, MaximizeTimeDiffUtil, and MinimizeMaxRisk.

Algorithm 1. Reduction algorithm
INPUT: G = (V, E); OUTPUT: V*
// degree(v) gets the degree of v in G;
1. Begin
2. Initialize V* and v*: V* = Ø, degree(v*) = 0;
3. if (V == Ø) {go to 18;}
4. else {go to 5;}
5. for (each element v in V)
6. if(degree(v) > degree(v*)) { v* = v;}
7. push v* into V*;
8. delete all the edges incident to v* from V;
9. delete v* from V;
10. end for
11. if (V == Ø) {go to 18;}
12. else {go to 13;}
13. for (each element v in V)
14. if ((v*, v) ⊆E)
15. {if(degree(v) == 0) { delete v from V;}}
16. end for
17. go to 3.
18. return V*;
19. End

 RTRM: A Response Time-Based Replica Management Strategy 129

The example in Fig. 1 is used in the analysis. The upper limit of the response time
of a single request Tupper is set to 10s. We define replicaDegree to represent the num-
ber of replicas in the system, and use TotalresponseTime to represent the total re-
sponse time of all nodes in the system. We perform two analyses. In the first analysis,
we compare the value of TotalresponseTime of the five mechanisms with the same
replicaDegree. In second analysis, we compare the smallest replicaDegree of the five
mechanisms while making sure the response time of all requests is smaller than Tupper.

First Analysis
Because in general storage systems, the smallest replica degree is 3, we set the val-

ue of replicaDegree of all the five mechanisms 3, and access the file from each node,
then compare the TotalresponseTime of each mechanism. Result is in Table 1.

Table 1. Results of first analysis

Mechanism TotalresponseTime Nodes to host replica
RTRM 40 n2, n5, n6

Best Client 77 n2, n3, n4
MinimizeExpectedUtil 48 n1, n2, n5
MaximizeTimeDiffUtil 52 n1, n2, n9

MinimizeMaxRisk 69 n2, n3, n7

From the first analysis, we can observe that with the same replicas, our replica

placement mechanism performs best, and has the smallest TotalresponseTime.
Second Analysis
As smaller replica degree means less cost of management, we compare the smallest

replicaDegree of each mechanism to make sure that the response time of a single
request is smaller than Tupper. The result is shown in Table 2.

Table 2. Results of second analysis

Mechanism replicaDegree Nodes to host replica
RTRM 3 n2, n5, n6

Best Client 4 n2, n3, n4, n5
MinimizeExpectedUtil 3 n1, n2, n5
MaximizeTimeDiffUtil 4 n1, n2, n6, n9

MinimizeMaxRisk 4 n2, n3, n5, n7

From the second analysis, we can see that our replica placement mechanism has the
smallest replciaDgree. MinimizeExpectedUtil also has smallest replicaDegree, but its
TotalresponseTime is bigger.

4.2 Simulation of Dynamic Replica Management Strategy

OptorSim is a scalable, configurable and programmable simulation tool for grid. It
has five built-in replica management strategies. We compare our RTRM strategy with

130 X. Bai et al.

the five built-in replica strategies in OptorSim, and give the performance analysis.
The simulation grid topology is shown in Fig. 2.

Fig. 2. The grid topology of simulation experiment

The simulation experiments are performed on a server machine, and the hardware
and the software environment of the server machine is shown in Table 3.

Table 3. Environment of server machine

CPU Quad-Core Intel Xeon 1.6GHz processors
Memory 4GB DDRII RAM
Hard Disk 320GB SATA II hard drive 7200RPM (ST3500418AS)
OS 64-bit CentOS 5.6 with Linux 2.6.18.8 kernel
OptorSim OptorSim Release V 2.0.0

The simulation parameter configuration of the grid in our experiments is shown in

Table 4.

Table 4. The configuration of simulation parameters

Parameters value
Number of jobs 1000
Scheduler File access cost + job queue access cost
optimizer SimpleOptimiser

LruOptimiser
EcoModelOptimiserZipf
DynamicOptimiser

Job delay 40000
Init file distribution n1, n4, n7
Max queue size 200

Fig. 3 shows the average job time of the six replica management strategies under

three user access modes. In sequence mode, RTRM strategy is second best. In the
random mode, RTRM strategy performs not so well. While in the Zipf distribution
mode, our strategy performs best among all strategies.

 RTRM: A Response Time-Based Replica Management Strategy 131

Sequential Random RandomZipf
0

50

100

150

200

250

300

A
ve

ra
ge

 jo
b

tim
e

(m
s)

User access mode

 Simple LRU LFU Eco Eco_Zipf RTRM

Fig. 3. Average job time

Fig. 4 shows the network utilization of the six replica management strategies under
three user access modes. From the result, in any mode, RTRM strategy performs the
best among the six strategies. This is because RTRM strategy takes the response time
of a single request into consideration, making sure that the response time of any node
smaller than Tupper.

Sequential Random RandomZipf
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
et

w
or

k
ut

ili
za

tio
n

User access mode

 Simple LRU LFU Eco Eco_Zipf RTRM

Fig. 4. Network utilization

Table 5 shows the number of total replicas of the six replica management strategies
under three user access modes. Because the simple strategy has no replicas, the num-
ber of replicas of simple in Table 5 is always 0. From the table, we can see that the

132 X. Bai et al.

number of replica in RTRM strategy is far less than other five strategies in each
access model. This is because we apply the reduction algorithm in the replica place-
ment, and find the relatively better nodes to host the replicas for all the nodes in the
system. Make sure the average service time is smaller than the threshold.

Table 5. Number of total replicas

Sequential Random Random_Zipf
Simple 0 0 0
LRU 8851 6982 3583
LFU 6573 6751 3026
Eco 205 225 112

Eco_Zipf 425 512 374
RTRM 43 57 36

Through the analysis of simulation results, it can be deduced that RTRM strategy is

very suitable for user access mode which follows Zipf distribution. The Zipf distribu-
tion means that user’s access to file is coherent to time, which is very popular in the
file sharing application of distributed storage system.

5 Conclusion and Future Work

Taking the response time of single request into consideration, we propose a response
time-based replica management strategy referred to as RTRM, and it consists of replica
creation method that can automatically increase the number of replicas based on the
average response time. When a new request comes, RTRM will predict the bandwidth
among the replica servers, and make the replica selection accordingly, and replica
placement mechanism combing with the number of replicas and the network transfer
time. In addition, we implement our dynamic replica management strategy in
OptorSim. Through extensive simulations, we show that RTRM strategy behaves
much better than the five built-in replica management strategies in OptorSim in terms
of the network utilization and the service response time.

Finally, due to the limitation of OptorSim, the performance advantage of our replica
selection method does not fully revealed in the simulation, but we believe that our
replica selection method could achieve good performance and low response time, and
provide rapid data download. In the future, we plan to apply our response time-based
replica management strategy in HDFS [3], PVFS [11], pNFS [12], Gpfs [13], and
LusterFS [14].

Acknowledgments. This paper is supported by National 863 High Technology Re-
search and Development Program under grant No.2012AA010905 and Nation-
al Science & Technology Pillar Program under grant No.2012BAH14F02.

 RTRM: A Response Time-Based Replica Management Strategy 133

References

1. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google File System. In: Proceedings of 19th
ACM Symposium on Operating Systems Principles, pp. 29–43. ACM Press, New York
(2003)

2. Sage, A.W., Scott, A.B., Ethan, L.M., Darrell, D.E.L., Carlos, M.: Ceph: A Scalable, High-
Performance Distributed File System. In: Proceedings of 7th Conference on Operating
System Design and Implementation (OSDI 2006), pp. 307–320. USENIX Press, Seattle
(2006)

3. The Apache Software Foundation, Hadoop, http://hadoop.apache.org/
4. Sun, H., Wang, X., Zhou, B., Jia, Y., Wang, H., Zou, P.: The Storage Alliance Based

Double-Layer Dynamic Replica Creation Strategy-SADDRES. Chinese Journal of Elec-
tronics 33(7), 1222–1226 (2003)

5. Hou, M.S., Wang, X.B., Lu, X.L.: A Novel Dynamic Replication Management Mechan-
ism. Compute Science 33(9), 50–52 (2006)

6. Chang, R.S., Chang, H.P.: A Dynamic Data Replication Strategy Using Access-Weights in
Data Grids. Journal of Supercomputing 45, 277–295 (2008)

7. Rahman, R.M., Barker, K., Alhajj, R.: Replica Placement in Data Grid: Considering Utility
and Risk. In: Proceedings of the International Conference on Information Technology:
Coding and Computing (ITCC 2005), pp. 354–359. IEEE Press, Las Vegas (2005)

8. Ranganathan, K., Iamnitchi, A., Foster, I.: Improving Data Availability through Dynamic
Model-Driven Replication in Large Peer-to-Peer Communities. In: Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 376–381.
IEEE/ACM, Berlin, Germany (2002)

9. Li, D., Xiao, N., Lu, X., Wang, Y., Lu, K.: Dynamic self-adaptive replica location method
in data grids. Journal of Computer Research and Development 40(12), 1775–1780 (2003)

10. Bell, W.H., Cameron, D.G., Millar, A.P., Capozza, L., Stockinger, K., Zini, F.: OptorSim-
A Grid Simulator for Studying Dynamic Data Replication Strategies. International Journal
of High Performance Computing Applications 17(4), 403–416 (2003)

11. Ross, R.B., Rajeev, T.: Pvfs: A parallel file system for linux clusters. In: Proceedings of
the 4th Annual Linux Showcase and Conference, pp. 391–430. USENIX Press, Atlanta
(2000)

12. Hildebrand, D., Ward, L., Honeyman, P.: Large files, small writes, and pnfs. In: Proceed-
ings of the 20th ACM International Conference on Supercomputing, pp. 116–124. ACM
Press, New York (2006)

13. Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clusters. In:
Proceedings of the First USENIX Conference on File and Storage Technologies, pp. 231–
244. USENIX Press, Berkeley (2002)

14. Lustre: A scalable, High-performance File System, http://www.lustre.ort/
docs/lustre.pdf

	RTRM: A Response Time-Based Replica Management
Strategy for Cloud Storage System

	1 Introduction
	2 Related Works
	3 Design of RTRM
	3.1 Replica Creation Method
	3.2 Replica Selection Method
	3.3 Replica Placement Mechanism

	4 Performance Evaluation
	4.1 Analysis of Replica Placement Mechanism
	4.2 Simulation of Dynamic Replica Management Strategy

	5 Conclusion and Future Work
	References

