James J. (Jong Hyuk) Park
Hamid R. Arabnia
Cheonshik Kim

Weisong Shi

Joon-Min Gil (Eds.)

Grid and
Pervasive Computing

8th International Conference, GPC 2013
and Colocated Workshops
Seoul, Korea, May 2013, Proceedings

LNCS 7861

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7861

James J. (Jong Hyuk) Park
Hamid R. Arabnia Cheonshik Kim
Weisong Shi Joon-Min Gil (Eds.)

Grid and
Pervasive Computing

8th International Conference, GPC 2013
and Colocated Workshops

Seoul, Korea, May 9-11, 2013
Proceedings

@ Springer

Volume Editors

James J. (Jong Hyuk) Park
Seoul University of Science and Technology, Seoul, Korea
E-mail: parkjonghyuk1@hotmail.com

Hamid R. Arabnia
University of Georgia, Athens, USA
E-mail: hra@cs.uga.edu

Cheonshik Kim
Sejong University, Seoul, Korea
E-mail: mipsan@paran.com

Weisong Shi
Wayne State University, Detroit, MI, USA
E-mail: weisong@wayne.edu

Joon-Min Gil
Catholic University of Daegu, Gyeongsan-si, Gyeongbuk, Korea
E-mail: jmgil@cu.ac.kr

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-38026-6 e-ISBN 978-3-642-38027-3
DOI 10.1007/978-3-642-38027-3

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013936008

CR Subject Classification (1998): F.2, C.1, C.2, C.3, C.5,H.5,H.3,D 4,
K.6.5,K.4,B.2,B.8,C4

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the 8" International Conference on Grid and Pervasive Computing
(GPC 2013), held in Seoul, Korea, during May 9-11, 2013. GPC-13 was the most
comprehensive conference focused on the various aspects of grid and pervasive
computing. GPC 2006, GPC 2007, GPC 2008, GPC 2009, GPC 2010, and GPC
2011 took place in Taichung (Taiwan), Paris (France), Kunming (China), Geneva
(Switzerland), Hualien (Taiwan), and Oulu (Finland), respectively, and GPC
2012 in Hong Kong, China.

The papers included in the proceedings cover the following topics: cloud,
cluster and grid computing; grid and cloud computing economy and business
models; security and privacy in grid, pervasive and cloud computing; embed-
ded and pervasive computing; social network and services; machine to machine
communications; service-oriented computing, mobile, peer-to-peer and pervasive
computing. Accepted and presented papers highlight the new trends and chal-
lenges of grid and pervasive computing. The presenters showed how new research
could lead to novel and innovative applications. GPC 2013 provided an oppor-
tunity for academic and industry professionals to discuss the latest issues and
progress in the area of GPC. In addition, the conference published high-quality
papers that are closely related to the various theories and practical applications
in GPC. Furthermore, we expect that the conference and its publications will
be a trigger for further related research and technology improvements in this
important subject.

For GPC 2013, we received many papers submission from more than 12 coun-
tries. Out of these, after a rigorous peer-review process, we accepted 65 papers of
high quality for the GPC 2013 proceedings, published by Springer. All submitted
papers underwent blind reviews by at least two reviewers from the Technical Pro-
gram Committee, comprising leading researchers from around the globe. Without
their hard work, achieving such high-quality proceedings would not have been
possible. We take this opportunity to thank them for their great support and
cooperation. We thank the organizers of the International Workshop on Ubig-
uitous and Multimedia Application Systems (UMAS 2013), the International
Workshop DATICS-GPC 2013: Design, Analysis and Tools for Integrated Cir-
cuits and Systems, the International Workshop on Future Science Technologies
and Application (FSTA 2013), and the Workshop on Green and Human Infor-
mation Technology (GHIT 2013). The goal of the workshops was to provide
a forum for researchers to exchange and share new ideas, research results, and

VI Preface

ongoing work on advanced topics in grid and pervasive computing. Finally, we
would like to also thank all the authors, reviewers, and Organizing Committee
Members.

May 2013 James J. (Jong Hyuk) Park
Hong Shen

Hamid R. Arabnia

Cheonshik Kim

Weisong Shi

HeonChang Yu

General Chairs

James J. (Jong Hyuk) Park
Hong Shen
Hamid R. Arabnia

General Vice-chairs
Martin Sang-Soo Yeo
Young-Sik Jeong
Program Chairs

Cheonshik Kim
Weisong Shi

HeonChang Yu
George Roussos

Workshop Chairs
Joon-Min Gil

Zhiyong Xu
Mohamed Gaber

Publication Chair

Hwa Young Jeong

Steering Committee
Hai Jin

Nabil Abdennadher
Christophe Cerin
Sajal K. Das
Jean-Luc Gaudiot
Kuan-Ching Li
Cho-Li Wang
Chao-Tung Yang

Organization

SeoulTech, Korea
University of Adelaide, Australia
The University of Georgia, USA

Mokwon University, Korea
Wonkwang University, Korea

Sejong University, Korea (Leading Chair)
Wayne State University, USA

Korea University, Korea

University of London, UK

Catholic University of Daegu, Korea
(Leading Chair)

Suffolk University, USA

University of Portsmouth, UK

Kyung Hee University, Korea

Huazhong University of Science and
Technology, China (Chair)

University of Applied Sciences, Switzerland

University of Paris XIII, France

The University of Texas at Arlington, USA

University of California - Irvine, USA

Providence University, Taiwan

The University of Hong Kong, China

Tunghai University, Taiwan

VIII Organization

Publicity Co-chairs

Jaehwa Chung
Zili Shao
Chun-Cheng Lin
Julio Sahuquillo
Akihiro Fujiwara
Bong-Hwa Hong

Program Committee

Alfredo Navarra
Andrew L. Wendelborn
Beniamino Di Martino
Bin Guo

Chao-Tung Yang

Chen Liu

Chen Yu

Cheng-Chin Chiang
Chien-Min Wang
Chin-Feng Lai
Ching-Hsien (Robert) Hsu
Christophe Cerin
Daewon Lee

Damon Shing-Min Liu
Dan Grigoras

Dana Petcu

David De Roure

David H. C. Du

David Hung-Chang Du
David Laiymani
Der-Jiunn Deng

El-ghazali Talbi
Fahim Kawsar
Fevzi Belli

Francis C.M. Lau
Guoying Zhao

Hai Jiang

Hamid R. Arabnia
Hedda Schmidtke
Hong Tang
Hui-Huang Hsu
Hung-Chang Hsiao

Korea National Open University, Korea
Hong Kong Polytechnic University, China
National Chiao Tung University, Taiwan
Universidad Politecnica de Valencia, Spain
Kyushu Institute of Technology, Japan
Kyung Hee Cyber University, Korea

Universita degli Studi di Perugia, Italy

University of Adelaide, Australia

Second University of Naples, Italy

Institute TELECOM SudParis, France

Tunghai University, Taiwan

Clarkson University, USA

Huazhong University of Science and
Technology, China

National Dong Hwa University, Taiwan

Academia Sinica, Taiwan

National Ilan University, Taiwan

Chung Hua University, Taiwan

Université de Paris XIII, France

Seokyeong University, Korea

National Chung Cheng University, Taiwan

University College Cork, Ireland

Western University of Timisoara, Romania

University of Southampton, UK

University of Minnesota, USA

University of Minnesota, USA

1.U.T. de Belfort-Montbéliard, Franace

National Changhua University of Education,
Taiwan

INRIA Lille - Nord Europe, France

Bell labs, University of Lancaster, UK

Univ. Paderborn, Germany

The University of Hong Kong, China

University of Oulu, Finland

Arkansas State University, USA

University of Georgia, USA

Carnegie Mellon University in Rwanda

Aliyun Inc.

Tamkang University, Taiwan

National Cheng Kung University, Taiwan

Hung-Chang Hsiao
Hwamin Lee
Incheon Paik

Insik Shin

TIoan Marius Bilasco

Toana Banicescu
Ivan Stojmenovic
Jan-Jan Wu
Jemal Abawajy
Jenq Kuen Lee
Jerry Hsi-Ya Chang
Jie Tang

Jingling Xue
Jingyu Zhou
Jose Fortes
Junjie Peng
Kaori Fujinami

Kazunori Takashio
Kewei Sha
Kuo-Chan Huang
Luciana Arantes
Marcin Paprzycki
Martti Mantyla

Masayoshi Ohashi

Meng-Yen Hsieh
Michael Beigl
Michael Hobbs
Michel Koskas
Ming-Lu Li
Mitsuhisa Sato
Mohamed Jemni
Nabil Abdennadher
Niwat Thepvilojanapong
Noel Crespi

Nong Xiao

Osamu Tatebe
Pangfeng Liu

Pedro Medeiros
Pradip K. Srimani
Putchong Uthayopas
Raphael Couturier

Organization

National Cheng Kung University, Taiwan

Soonchunhyang University, Korea

University of Aizu, Japan

KAIST, Korea

University of Science and Technology of Lille,
France

Mississippi State University, USA

University of Ottawa, Canada

Academia Sinica, Taiwan

Deakin University, Australia

National Tsing Hua University, Taiwan

NCHC, Taiwan

Intel Research, Beijing, China

University of New South Wales, Australia

Shanghai Jiaotong University, China

University of Florida - Gainesville, USA

Shanghai University, China

Tokyo University of Agriculture and
Technology, Japan

Keio University, Japan

Oklahoma City University, USA

National Taichung University, Taiwan

LIP6, France

Computer Science Institute, Poland

Helsinki Institute for Information Technology
HIIT, Finland

ATR Media Information Science Laboratories,
Japan

Providence University, Taiwan

University of Braunschweig, Germany

Deakin University, Australia

Amiens, France

Shanghai Jiang Tong University, China

Tsukuba University, Japan

ESSTT, Tunisia

University of Applied Sciences, Switzerland

Mie University, Japan

Institut Telecom France, France

National University of Defense Technology,
China

Tsukuba University, Japan

National Taiwan University, Taiwan

New University of Lisbon, Portugal

Clemson University, USA

Kasetsart University, Thailand

LIFC, University of Franche Comte, France

IX

X Organization

Reen-Cheng Wang
Rodrigo Mello
Ronald H. Perrott
Rui Zhang

Ruppa K. Thulasiram
Sabah Mohammed
Sajid Hussain
Sasu Tarkoma
Satoshi Sekiguchi
Seungjong Park
Sherali Zeadally
Sun-Yuan Hsieh
Taegyu Lee

Taeweon Suh
Takuro Yonezawa
Tatsuo Nakajima
Ting-Wei Hou

Tomas Margalef Burrull

Tommi Mikkonen
Trung Q. Duong
Victor Malyshkin
Wang-Chien Lee
Wasim Raad

Weijun Xiao
Weili Han
Weng Fai Wong
Wenguang Chen
Won Woo Ro
Xiangjian He
Xiaowu Chen
Yanmin Zhu
Yeh-Ching Chung
Yong-Kee Jun
Yuanfang Chen
Yuezhi Zhou
Yuhong Yan
Yulei Wu
Zhifeng Yun
Zhiwen Yu

National Taitung University, Taiwan

University of Sao Paulo, Brazil

Queen’s University Belfast, UK

Palo Alto Research Center, USA

University of Manitoba, Canada

Lakehead University, Canada

Acadia University, Canada

University of Helsinki, Finland

AIST, Japan

Louisiana State University, USA

University of the District of Columbia, USA

National Cheng Kung University, Taiwan

Korea Institute of Industrial Technology
(KITECH), Korea

Korea University, Korea

Keio University, Japan

Waseda University, Japan

National Cheng Kung University, Taiwan

Universitat Autonoma de Barcelona, Spain

Tampere University of Technology, Finland

Blekinge Institute of Technology, Sweden

Russian Academy of Sciences, Russia

Penn State University, USA

King Fahd University of Petroleum and
Minerals, Saudi Arabia

Virginia Commonwealth University, USA

Fudan University, China

National University of Singapore, Singapore

Tsinghua University, China

Yonsei University, Korea

University of Technology Sydney, Australia

Beihang University, China

Imperial College London, UK

National Tsing Hua University, Taiwan

Gyeongsang National University, Korea

Dalian University of Technology, China

Tsinghua University, China

Concordia University, Canada

University of Bradford, UK

Louisiana State University, USA

Northwestern Polytechnical University, China

Message from the UMAS 2013 Chair

Welcome to the proceedings of the 2013 International Workshop on Ubiquitous
and Multimedia Application Systems (UMAS 2013), jointly held with GPC 2013
in Seoul, Korea, during May 9-11, 2013.

The fast developments in the electronics industry and the emerging conver-
gence of the triple (video, voice, and data) signal services have allowed media
communications and computing to increase ubiquitously. Meanwhile, the em-
bedded systems, i.e., computers inside products, have been widely adopted in
many domains including multimedia communications, traditional control sys-
tems, medical instruments, wired and wireless communication devices, aerospace
equipment, human—computer interfaces, and sensor networks. These services cre-
ate our consumer and brand environment and have been contributing extensively
and more closely to our life experience, especially the applications in mobile and
other embedded devices. With the increasing number of customers who would
like to own a ubiquitous multimedia service because of the convenience, the re-
quirements for this kind of service from customers are increasing, such as the
quality, speed, and electric consumption. Therefore, the UMAS technologies have
become state-of-the-art research topics and are expected to have an important
role in the future.

UMAS 2013 aimed to advance ubiquitous multimedia techniques and embed-
ded software and systems research, development, and design competence, and to
enhance international communication and collaboration. The workshop covers
traditional core areas of media and embedded systems in architecture, software,
hardware, real-time computing, and testing and verification, as well as new ar-
eas of special emphasis: pervasive/ubiquitous computing and sensor networks,
HW/SW co-, wireless communications, power-aware computing, security and
data protection, and multimedia.

UMAS 2013 was supported by many people and organizations. We would also
like to express our appreciation to the organizers of GPC 2013, especially James
J. Park, for their constant support and kind help in the related items of UMAS
2013. Thanks to all the Program Committee members for their valuable time
and effort in reviewing the papers. Without their help and advice, this program
would not have been successful.

Ching-Nung Yang

UMAS 2013 Organization

General Chair

Ching-Nung Yang

Program Chairs

Cheonshik Kim
FEun-Jun Yoon
Zhang Xinpeng

Session Chairs

You-Sik Hong
Jungyeon Shim
Woontack Woo

Minho Lee
Kyu-Dae Lee
Raylin Tso

Steering Committee

Injung Park
Yong-Soo Choi
Suk-Hwan Lee
Seongah Chin
Do Hyeun Kim

Publicity Chairs

Beongku An
Hyoung-Joong Kim
Kwang-Chun Ho
Seungcheon Kim
Hoojin Lee

Program Committee

Klaus Meifiner
Jinsuk Baek
Xiao Dong Wang

National Dong Hwa University, Taiwan

Sejong University, Korea
Kyungil University, Korea
Shanghai University, China

Sangji University, Korea
Kangnam University, Korea

Kwangju Institute of Science and Technology,

Korea
Kyungpook National University, Korea
Kongju National University, Korea
National Chengchi University, Taiwan

Dankuk University, Korea
Korea University, Korea
Tongmyung University, Korea
Sungkyul University, Korea
Jeju National University

Hongik University, Korea
Korea University, Korea
Hansung University, Korea
Hansung University, Korea
Hansung University, Korea

Technische Universitat Dresden, Germany
Winston Salem State University, USA
Science & Technology, UK

XIV UMAS 2013 Organization

Wei-Jen Wang
Da-Zhi Sun
Jun Jo

Wayne Pullan
Vallipuram

Muthukkumarasamy

Junhu Wang
Alan Liew

Bela Stantic
Anne Nguyen
Soo-Hyun Park
Moon-Wan Kim

Tzung-Shi Chen
Wei-Chen Cheng
Alex M.H. Kuo
Truong Hai Bang
Ronald L. Hartung
Gyei-Kark Park
HyungJun Kim
Jae Gi Son

Dongkyoo Shin
Dongil Shin
Moon-Goo Lee
Myoung Nam Kim
Young-Sun Im
Shi Xue Dou
Phan Trung Huy
Byung-Tae Chun
Kwang-Baek Kim
Jang-Geun Ki
Keehong Um
Wonil Kim
Joon-Shik Park

Masaaki Fujiyoshi
Hae-Kyung Seong
Young Huh

Young-Ho Park
Choonsuk Oh
Elena Tsomko
Sang-Woon Lee
In-Hwa Hong

National Central University, Taiwan
Tianjin University, China

Griffith University, Australia
Griffith University, Australia

Griffith University, Australia

Griffith University, Australia

Griffith University, Australia

Griffith University, Australia

Griffith University, Australia

Kookmin University, Korea

Tokyo University of Information Sciences,
Japan

National University of Tainan, Taiwan

Academia Sinica, Taiwan

University of Victoria, Canada

University of Information Technology, Vietnam

Franklin University, USA

National Maritime University, Korea

Hansei University, Korea

KETI (Korea Electronics Technology
Institute), Korea

Sejong University, Korea

Sejong University, Korea

Kimpo College, Korea

Kyungpook National University, Korea

Kookje College, Korea

Wollongong University, Australia

Hanoi University, Vietnam

Hankyong University, Korea

Silla University, Korea

Kongju National University, Korea

Hansei University, Korea

Sejong University, Korea

KETI (Korea Electronics Technology
Institute), Korea

Tokyo Metropolitan University, Japan

Hanyang Women’s College, Korea

KEIT(Korea Evaluation Institute of Industrial
Technology), Korea

Sejong Cyber University, Korea

Sun Moon University, Korea

Namseoul University, Korea

Nameseoul University, Korea

KETTI (Korea Electronics Technology
Institute), Korea

DATICS-GPC 2013: Design, Analysis and Tools
for Integrated Circuits and Systems

The International Workshop DATICS-GPC 2013: Design, Analysis and Tools
for Integrated Circuits and Systems at the 8*" International Conference on Grid
and Pervasive Computing took place in Seoul, South Korea, May 9-11, 2013.

The DATICS workshops were initially created by a network of researchers
and engineers both from academia and industry in the areas of design, analysis
and tools for integrated circuits and systems. Recently, DATICS has been ex-
tended to the fields of communication, computer science, software engineering
and information technology.

The main target of DATICS-GPC 2013 was to bring together software/
hardware engineering researchers, computer scientists, practitioners and people
from industry to exchange theories, ideas, techniques and experiences related to
all aspects of DATICS.

The International Program Committee (IPC) of DATICS-GPC 2013 con-
sisted of about 150 experts in the related fields both from academia and industry.
DATICS-GPC 2013 was partnered with CEOL: Centre for Efficiency-Oriented
Languages (Ireland), Minteos (Italy), KATRI (Japan and Hong Kong), Dis-
tributed Thought (UK), ASIC LAB - Myongji University (South Korea), Baltic
Institute of Advanced Technology - BPTI (Lithuania), Solari (Hong Kong), Tran-
scend Epoch (Hong Kong) and Xi’an Jiaotong-Liverpool University — XJTLU
(China — UK).

The DATICS-GPC 2013 technical program included seven papers that were
organized into lecture sessions. On behalf of the IPC, we would like to welcome
you to the proceedings of DATICS-GPC 2013.

Ka Lok Man
Nan Zhang

DATICS-GPC 2013 Organization

General Chairs

Ka Lok Man
Nan Zhang

Organizing Chairs

Michele Mercaldi
Chi Un Lei

Tomas Krilavicius

Program Committee

Vladimir Hahanov

Paolo Prinetto
Massimo Poncino
Alberto Macii
Joongho Choi
Wei Li

Michel Schellekens
Emanuel Popovici
Jong-Kug Seon

Umberto Rossi
Franco Fummi

Graziano Pravadelli
Yui Fai Lam

Jinfeng Huang

Monica Donno
Jun-Dong Cho
AHM Zahirul Alam

Gregory Provan
Miroslav N. Velev
M. Nasir Uddin
Dragan Bosnacki

Xi’an Jiaotong-Liverpool University, China
Xi’an Jiaotong-Liverpool University, China

EnvEve, Switzerland
University of Hong Kong

Baltic Institute of Advanced Technologies and

Vytautas Magnus University, Lithuania

Kharkov National University of Radio
Electronics, Ukraine

Politecnico di Torino, Italy

Politecnico di Torino, Italy

Politecnico di Torino, Italy

University of Seoul, South Korea

Fudan University, China

University College Cork, Ireland

University College Cork, Ireland

LS Industrial Systems R&D Center,
South Korea

STMicroelectronics, Italy

University of Verona, Italy

University of Verona, Italy

Hong Kong University of Science and
Technology, Hong Kong

Philips and LiteOn Digital Solutions
Netherlands, The Netherlands

Minteos, Italy

Sung Kyun Kwan University, South Korea

International Islamic University Malaysia,
Malaysia

University College Cork, Ireland

Aries Design Automation, USA

Lakehead University, Canada

Eindhoven University of Technology,
The Netherlands

XVIIT DATICS-GPC 2013 Organization

Milan Pastrnak
John Herbert
Zhe-Ming Lu
Jeng-Shyang Pan

Chin-Chen Chang
Mong-Fong Horng
Liang Chen

Chee-Peng Lim
Salah Merniz

Oscar Valero

Yang Yi

Franck Vedrine
Bruno Monsuez
Kang Yen

Takenobu Matsuura
R. Timothy Edwards
Olga Twveretina
Maria Helena Fino
Adrian Patrick O’Riordan
Grzegorz Labiak
Jian Chang
Yeh-Ching Chung
Anna Derezinska
Kyoung-Rok Cho
Yuanyuan Zeng
D.P. Vasudevan
Arkadiusz Bukowiec
Magziar Goudarzi
Jin Song Dong
Dhamin Al-Khalili
Zainalabedin Navabi
Lyudmila Zinchenko

Muhammad Almas Anjum

Deepak Laxmi Narasimha
Danny Hughes

Jun Wang

A.P. Sathish Kumar

N. Jaisankar

Atos IT Solutions and Services, Slovakia

University College Cork, Ireland

Sun Yat-Sen University, China

National Kaohsiung University of Applied
Sciences, Taiwan

Feng Chia University, Taiwan

Shu-Te University, Taiwan

University of Northern British Columbia,
Canada

University of Science Malaysia, Malaysia

Mentouri University, Constantine, Algeria

University of Balearic Islands, Spain

Sun Yat-Sen University, China

CEA LIST, France

ENSTA, France

Florida International University, USA

Tokai University, Japan

MultiGiG, Inc., USA

Karlsruhe University, Germany

Universidade Nova De Lisboa, Portugal

University College Cork, Ireland

University of Zielona Gora, Poland

Texas Instruments, Inc., USA

National Tsing-Hua University, Taiwan

Warsaw University of Technology, Poland

Chungbuk National University, South Korea

Wuhan University, China

University College Cork, Ireland

University of Zielona Gora, Poland

Sharif University of Technology, Iran

National University of Singapore, Singapore

Royal Military College of Canada, Canada

University of Tehran, Iran

Bauman Moscow State Technical University,
Russia

National University of Sciences and Technology

(NUST), Pakistan
University of Malaya, Malaysia
Katholieke Universiteit Leuven, Belgium
Fujitsu Laboratories of America, Inc., USA
PSG Institute of Advanced Studies, India
VIT University, India

Atif Mansoor

Steven Hollands
Siamak Mohammadi
Felipe Klein

Eng Gee Lim
Kevin Lee
Prabhat Mahanti

Kaiyu Wan
Tammam Tillo
Yanyan Wu

Wen Chang Huang
Masahiro Sasaki
Shishir K. Shandilya

J.P.M. Voeten

Wichian Sittiprapaporn

Aseem Gupta

Kevin Marquet
Matthieu Moy
Ramy Iskander

Suryaprasad Jayadevappa

Shanmugasundaram
Hariharan

Chung-Ho Chen
Kyung Ki Kim
Shiho Kim
Hi Seok Kim
Brian Logan
Asoke Nath
Tharwon
Arunuphaptrairong
Shin-Ya Takahasi
Cheng C. Liu
Farhan Siddiqui
Katsumi Wasaki
Pankaj Gupta
Taikyeong Jeong
Masoud Daneshtalab
Amit Chaudhry

Bharat Bhushan Agarwal

DATICS-GPC 2013 Organization XIX

National University of Sciences and Technology
(NUST), Pakistan

Synopsys, Ireland

University of Tehran, Iran

State University of Campinas (UNICAMP),
Brazil

Xi’an Jiaotong-Liverpool University, China

Murdoch University, Australia

University of New Brunswick, Saint John,
Canada

Xi’an Jiaotong-Liverpool University, China

Xi’an Jiaotong-Liverpool University, China

Xi’an Jiaotong-Liverpool University, China

Kun Shan University, Taiwan

The University of Tokyo, Japan

NRI Institute of Information Science and
Technology, India

Eindhoven University of Technology,
The Netherlands

Mahasarakham University, Thailand

Freescale Semiconductor Inc., Austin, USA

Verimag Laboratory, France

Verimag Laboratory, France

LIP6 Laboratory, France

PES School of Engineering, India

Pavendar Bharathidasan College of
Engineering and Technology, India

National Cheng-Kung University, Taiwan

Daegu University, South Korea

Chungbuk National University, Korea

Cheongju University, Korea

University of Nottingham, UK

St. Xavier’s College (Autonomous), India

Chulalongkorn University, Thailand
Fukuoka University, Japan

University of Wisconsin at Stout, USA
Walden University, Minneapolis, USA
Shinshu University, Japan

Microsoft Corporation, USA

Myongji University, South Korea
University of Turku, Finland
Technology Panjab University, India
I.F.T.M., University, India

XX DATICS-GPC 2013 Organization

Abhilash Goyal
Yue Yang
Boguslaw Cyganek

Yeo Kiat Seng
Youngmin Kim

Tom English

Nicolas Vallee

Mou Ling Dennis Wong
Rajeev Narayanan
Xuan Guan

Pradip Kumar Sadhu
Fei Qiao

Chao Lu

Ding-Yuan Cheng
Amir-Mohammad Rahmani
Shin-II Lim

Oracle (SunMicrosystems), USA

EJITEC, China

AGH University of Science and Technology,
Poland

Nanyang Technological University, Singapore

UNIST Academy-Industry Research
Corporation, South Korea

Xlinx, Ireland

RATP, France

Swinburne University of Technology, Malaysia

Cadence Design Systems, Austin, USA

Freescale Semiconductor, Austin, USA

Indian School of Mines, India

Tsinghua University, China

Purdue University, USA

National Chiao Tung University, Taiwan

University of Turku, Finland

Seokyeong University, Seoul Korea

Message from the FSTA 2013 Symposium Chair

Welcome to the proceedings of the 2013 International Workshop on Future Sci-
ence Technologies and Applications (FSTA 2013).

The Internet as well as cellular and wireless systems are now converging, thus
giving birth to the future Internet. The International Workshop on FSTA 2013
brought together scientists, engineers, computer users, and students to exchange
and share their experiences, new ideas, and research results on all aspects (theory,
applications and tools) of computer and information science, and to discuss the
practical challenges encountered and the solutions adopted. The Workshop on
Future Science Technologies and Applications aims to serve as an international
forum for researchers and practitioners willing to present their early research
results and share experiences in the field.

FSTA 2013 contained high-quality research papers submitted by researchers
from all over the world. Each submitted paper was peer-reviewed by reviewers
who are experts in the subject area of the paper. Based on the review results,
the Program Committee accepted 13 papers.

In organizing an international workshop, the support and help of many people
is needed. We would like to thank all authors for their work and presentation,
all members of the Program Committee and reviewers for their cooperation and
time spent in the reviewing process. Particularly, we thank the founding Steering
Chair of GPC 2013, James J. (Jong Hyuk) Park, Workshop Chair GPC 2013,
Joon-Min Gil, and the Program Chair of GPC 2013. Finally, special thanks are
extended to the staff of FSTA 2013, who contributed greatly to the success of
the conference.

Namje Park

FSTA 2013 Organization

Steering Chair

James J. Park

General Chairs

Stefanos Gritzalis
Young-Sik Jeong
Han-Chieh Chao

Program Chair

Namje Park

Publicity Chairs
Deqing Zou

Damien Sauveron
Neil Y. Yen

Program Committee

Qiang Zhu
Shao-Shin Hung
Tat-Chee Wan
Jun Xiao
Young soo Kim

Oliver Amft

Changjing Shang

Wangqging Tu

Kok-Seng Wong

Narayanan Kulathuramaiyer
Nik Bessis

Qinghe Du

Kyoil Cheong

SeoulTech, Korea

University of the Aegean, Greece
Wonkwang University, Korea
National Ilan University, Taiwan

Jeju National University, Korea

Huazhong University of Science and
Technology, China

University of Limoges, France

The University of Aizu, Japan

The University of Michigan, USA

WuFeng University, Taiwan

Universiti Sains Malaysia

East China Normal University, China

Electronics and Telecommunications Research
Institute, Korea

Eindhoven University of Technology,
The Netherlands

Aberystwyth University, UK

Glyndwr University, UK

Soongsil University, Korea

Universiti Malaysia Sarawak, Malaysia

University of Derby, UK

Xi’an Jiaotong University, China

Electronics and Telecommunications Research
Institute, Korea

XXIV FSTA 2013 Organization

Rachid Anane
Mehul Bhatt
Zhou Su
Chee-Peng LIM
Rami Yared

M. Elena Renda
Dooho Choi

Youngsook Lee
Soohyun Oh
Taesung Lee

Coventry University, UK

University of Bremen, Germany

Waseda Univ, Japan

Deakin University, Australia

Japan Advanced Institute of Science and
Technology, Japan

IIT-CNR, Italy

Electronics and Telecommunications Research
Institute, Korea

Howon University, Korea

Hoseo University, Korea

KISA, Korea

Table of Contents

Cloud, Cluster and Grid I

Transparency in Cloud Business: Cluster Analysis of Software
as a Service Characteristics. i i
Jonas Repschlaeger

Distributed Accounting in Scope of Privacy Preserving
Marcus Hilbrich and René Jdkel

Distributed Virtual Machine Monitor for Distributed Cloud Computing
Nodes Integration e e
Li Ruan, Jinbing Peng, Limin Xiao, and Mingfa Zhu

Differentiated Policy Based Job Scheduling with Queue Model and

Advanced Reservation Technique in a Private Cloud

Environment
Shyamala Loganathan and Saswati Mukherjee

Scaling Out Recommender System for Digital Libraries
with MapReduce. e
Lun-Chi Chen, Ping-Jen Kuo, I-En Liao, and Jyun-Yao Huang

Layering of the Provenance Data for Cloud Computing
Muhammad Imran and Helmut Hlavacs

JCL: An OpenCL Programming Toolkit for Heterogeneous
COmPUEING .« . oottt
Tyng-Yeu Liang and Yu-Jie Lin

Network-Aware Multiway Join for MapReduce.......................
Kenn Slagter, Ching-Hsien Hsu, Yeh-Ching Chung, and
Jong Hyuk Park

Automatic Resource Scaling for Web Applications in the Cloud
Ching-Chi Lin, Jan-Jan Wu, Pangfeng Liu, Jeng-An Lin, and
Li-Chung Song

Implementation of Cloud-RAID: A Secure and Reliable Storage
above the Clouds i
Maxim Schnjakin and Christoph Meinel

An Improved Min-Min Task Scheduling Algorithm in Grid
COmPUEING .« . ottt
Soheil Anousha and Mahmoud Ahmadi

XXVI Table of Contents

Cloud, Cluster and Grid II

Heterogeneous Diskless Remote Booting System on Cloud Operating
SYSEEINL . . et 114
Jin-Neng Wu, Yao-Hsing Ko, Kuo-Ming Huang, and Mu-Kai Huang

RTRM: A Response Time-Based Replica Management Strategy
for Cloud Storage Systemc. i 124
Xiaohu Bai, Hai Jin, Xiaofei Liao, Xuanhua Shi, and Zhiyuan Shao

Secure Hadoop with Encrypted HDFS 134
Seonyoung Park and Youngseok Lee

VM Migration for Fault Tolerance in Spot Instance Based Cloud
Computingot 142
Daeyong Jung, SungHo Chin, Kwang Sik Chung, and HeonChang Yu

A Cloud Based Natural Disaster Management System 152
Mansura Habiba and Shamim Akhter

A Hybrid Grid/Cloud Distributed Platform: A Case Study 162
Mohamed Ben Belgacem, Haithem Hafsi, and Nabil Abdennadher

Comparison of Two Yield Management Strategies for Cloud Service

Providers 170
Mohammad Mahdi Kashef, Azamat Uzbekov, Jérn Altmann, and
Matthias Hovestadt

Comparing Java Virtual Machines for Sensor Nodes — First Glance:
Takatuka and Darjeeling 181
Oliver Maye and Michael Maaser

Research on Opinion Formation of Microblog in the View of Multi-agent
Simulation 189
Jianyong Zhang, Qihui Mi, Longji Hu, and Yue Tang

Implementation of Cloud TaaS for Virtualization with Live Migration ... 199
Chao-Tung Yang, Kuan-Lung Huang, William Cheng-Chung Chu,
Fang-Yi Leu, and Shao-Feng Wang

Middleware, Resource Management

Security Considerations in Cloud Computing Virtualization
Environment 208

Sang-Soo Yeo and Jong Hyuk Park

Medicine Rating Prediction and Recommendation in Mobile Social
NetWOTKS oottt 216
Shuai Li, Fei Hao, Mei Li, and Hee-Cheol Kim

Table of Contents XXVII

Cloud Browser: Enhancing the Web Browser with Cloud
Sessions and Downloadable User Interface.............. 224
Antero Taivalsaari, Tommi Mikkonen, and Kari Systd

Visual Novels: An Methodology Guideline for Pervasive Educational
Games that Favors Discernment 234
Francisco Lepe Salazar, Tatsuo Nakajima, and Todorka Alexandrova

An Optimal Radio Access Network Selection Method for Heterogeneous
Wireless Networks e 244
Glaucio H.S. Carvalho, Isaac Woungang,
Md. Mizanur Rahman, and Alagan Anpalagan

Desktop Grid Computing at the Age of the Web 253
Leila Abidi, Christophe Cerin, and Mohamed Jemmni

A Novel Model for Greenhouse Control Architecture.................. 262
Miran Baek, Myeongbae Lee, Honggean Kim, Taehyung Kim,
Namjin Bae, Yongyun Cho, Jangwoo Park, and Changsun Shin

Mobile, Peer-to-Peer and Pervasive Computing

Enhanced Search in Unstructured Peer-to-Peer Overlay Networks 270
Chittaranjan Hota, Vikram Nunia, Mario Di Francesco,
Jukka K. Nurminen, and Antti Yid-Jadski

CE-SeMMS: Cost-Effective and Secure Mobility Management Scheme
Based on SIP in NEMO Environments.............. 280
Chulhee Cho, Jae Young Choi, Younghwa Cho, and Jong Pil Jeong

A System-Level Approach for Designing Context-Aware Distributed

Pervasive Applicationst 288
Kevin I-Kai Wang, HeeJong Park, Zoran Salcic, and
Panith Ratnayaka

Architecture of a Context Aware Framework for Automated Mobile

Device Configuration i 299
Md. Fazla Rabbi Opu, Emon Biswas, Mansura Habiba, and
Cheonshik Kim

AMM-PF: Additional Mobility Management Scheme Based on Pointer
Forwarding in PMIPv6 Networks 309
Seung Yoon Park, Jae Young Choi, and Jong Pil Jeong

Multi-core and High Performance Computing

The Evaluation and Optimization of 3-D Jacobi Iteration on a Stream
Processor ... 317
Ying Zhang, Gen Li, Yongjin Li, Caizia Sun, and Pingjing Lu

XXVIII Table of Contents

DDASTM: Ensuring Conflict Serializability Efficiently in Distributed
ST
Yu Zhang, Hai Jin, and Xiaofei Liao

Research on Log Pre-processing for Exascale System Using Sparse
Representation
Lei Zhu, Jianhua Gu, Tianhai Zhao, and Yunlan Wang

Other GPC Related Topics

Using Event-Based Style for Developing M2M Applications............
Truong-Giang Le, Olivier Hermant, Matthieu Manceny,
Renaud Pawlak, and Renaud Rioboo

Retracted: Scheduling Optimization of the RFID Tagged Explosive

Storage Based on Genetic Algorithm
Xiaoling Wu, Huawei Fu, Xiaomin He, Guangcong Liu, Jianjun Li,
Hainan Chen, Qiangiu Wang, and Qing He

Weighted Mining Association Rules Based Quantity Item with RFM
Score for Personalized u-Commerce Recommendation System
Young Sung Cho, Si Choon Noh, and Song Chul Moon

Priority-Based Live Migration of Virtual Machine
Bangjie Jiang, Junmin Wu, Xiaodong Zhu, and Die Hu

Improvement of the MCMA Blind Equalization Performance Using
the Coordinate Change Method in 16-APSK
Youngguk Kim and Heung-Gyoon Ryu

Postural Transition Detection Using a Wireless Sensor Activity
Monitoring System
Richelle LeMay, Sangil Choi, Jong-Hoon Youn, and Jay Newstorm

Parallel and Distributed Systems

A Dedicated Serialization Scheme in Homogeneous Cluster RPC
Communicationo .t e
Yong Wan, Dan Feng, Fang Wang, and Tingwei Zhu

Friends Based Keyword Search over Online Social Networks
Jinzhou Huang and Hai Jin

GPU Virtualization Support in Cloud System
Chih-Yuan Yeh, Chung-Yao Kao, Wei-Shu Hung, Ching-Chi Lin,
Pangfeng Liu, Jan-Jan Wu, and Kuang-Chih Liu

MGMR: Multi-GPU Based MapReduce
Yi Chen, Zhi Qiao, Hai Jiang, Kuan-Ching Li, and Won Woo Ro

Table of Contents XXIX

Security and Privacy

DDoS Analysis Using Correlation Coefficient Based on Kolmogorov
Complexity . ..o 443
Sung-ju Kim, Byung Chul Kim, and Jae Yong Lee

An Efficient Attribute-Based Encryption and Access Control Scheme
for Cloud Storage Environment 453
Jyun-Yao Huang, Chen-Kang Chiang, and I-En Liao

Active One-Time Password Mechanism for User Authentication........ 464
Chun-I Fan, Chien-Nan Wu, Chi-Yao Weng, and Chung-Yu Lin

Hardware Acceleration for Cryptography Algorithms by Hotspot
Detection 472
Jed Kao-Tung Chang, Chen Liu, and Jean-Luc Gaudiot

Chaotic Wireless Communication System Using Retrodirective Array
Antenna for Advanced High Security 482
Junyeong Bok and Heung-Gyoon Ryu

Policy-Based Customized Privacy Preserving Mechanism for SaaS
Applications. 491
Yuliang Shi, Zhen Jiang, and Kun Zhang

QoC-Aware Access Control Based on Fuzzy Inference for Pervasive

Computing Environments i 501
Yao Ma, Hongwei Lu, and Zaobin Gan

Per-File Secure Deletion Combining with Enhanced Reliability

fOr SO DS .t 509
Yi Qin, Dan Feng, Wei Tong, Jingning Liu, Yang Hu, and
Zhiming Zhu

An Energy-Aware Secured Routing Protocol for Mobile Ad Hoc
Networks Using Trust-Based Multipath 517
Isaac Woungang, Sanjay Kumar Dhurandher, and Michael Sahai

A Grid-Based Approximate K-NN Query Processing Algorithm
for Privacy Protection in Location-Based Services 526
Miyoung Jang and Jae-Woo Chang

Density-Based K-Anonymization Scheme for Preserving Users’ Privacy
in Location-Based Servicesoiiiiiiniii . 536
Hyunjo Lee and Jae-Woo Chang

XXX Table of Contents

Ubiquitous Communications, Sensor Networking,
and RFID

A Routing Mechanism Using Virtual Coordination Anchor Node Apply

to Wireless Sensor Networks.o 546
Chih-Hsiao Tsai, Kai-Ti Chang, Cheng-Han Tsai, and
Ying-Hong Wang

Effect of Genetic Parameters in Tour Scheduling and Recommender

Services for Electric Vehicles i 556
Junghoon Lee, Gyung-Leen Park, Hye-Jin Kim, Byung-Jun Lee,
Seulbi Lee, and Dae-Yong Im

Enabling Massive Machine-to-Machine Communications
in LTE-Advanced e 563
Kyungkoo Jun

Enhancements for Local Repair in AODV-Based Ad-Hoc Networks 570
Hyun-Ho Shin, Seungjin Lee, and Byung-Seo Kim

Smart Watch and Monitoring System for Dementia Patients........... 577
Dong-Min Shin, Dongll Shin, and Dongkyoo Shin

A Lesson from the Development of Surveillance and Reconnaissance
Sensor Networks Systems ... 585
Daesik Kim, Seongkee Lee, and Mirim Ahn

A Classifier Algorithm Exploiting User’s Environmental
Context and Bio-signal for U-Home Services......................... 594
HyunJu Lee, Dongll Shin, Dongkyoo Shin, and SooHan Kim

DNA-S: Dynamic Cellular Network Architecture for Smart
CommUuNICAtIONS v\ttt 602
Taegyu Lee and Gi-Soo Chung

Ubiquitous and Multimedia Application Systems

Predicting of Abnormal Behavior Using Hierarchical Markov Model
Based on User Profile in Ubiquitous Environment 612
Jaewan Shin, Dongkyoo Shin, and Dongll Shin

Advanced Facial Skin Rendering with Actual Fresnel Refractive Index
Reflecting Facial Tissue Features............ 623
Sunghee Lee and Seongah Chin

Emotion Recognition Technique Using Complex Biomedical Signal
Analysis 631
Guyoun Hwang, Heejun Cho, Dongkyoo Shin, and Dongll Shin

Table of Contents XXXI

RWA: Reduced Whole Ack Mechanism for Underwater Acoustic Sensor
Network ..o 641
Soo Young Shin and Soo Hyun Park

Data Hiding Based on Palette Images Using Weak Bases

of Zo-Modules e 649
Phan Trung Huy, Cheonshik Kim, Nguyen Tuan Anh,
Le Quang Hoa, and Ching-Nung Yang

Adaptive Smart Vehicle Middleware Platform for Aspect Oriented
Software Engineering 659
Jin-Hong Kim and Seung-Cheon Kim

Design, Analysis and Tools for Integrated Circuits
and Systems

Parallel Generation of Optimal Mortgage Refinancing Threshold

Nan Zhang, Dejun Xie, Eng Gee Lim, Kaiyu Wan, and Ka Lok Man

Pricing American Options on Dividend-Paying Stocks and Estimating
the Greek Letters Using Leisen-Reimer Binomial Trees................ 676
Nan Zhang, Kaiyuw Wan, Eng Gee Lim, and Ka Lok Man

A Resource-Centric Architecture for Service-Oriented Cyber Physical
SYSEEIN . .t 686
Kaiyu Wan and Vangalur Alagar

Implied Volatilities of S&P 100 Index with Applications to Financial
Market 694
Jin Zheng, Nan Zhang, and Dejun Xie

RF Characteristics of Wireless Capsule Endoscopy in Human Body 700
Meng Zhang, Eng Gee Lim, Zhao Wang, Tammam Tillo,
Ka Lok Man, and Jing Chen Wang

Building a Laboratory Surveillance System via a Wireless Sensor

Network . ..o 707
Chi-Un Lei, J.K. Seon, Zhun Shen, Ka Lok Man,
Danny Hughes, and Youngmin Kim

S-Theory: A Unified Theory of Multi-paradigm Software
Development e 715

Danny Hughes, Nelly Bencomo, Brice Morin, Christophe Huygens,
Zhun Shen, and Ka Lok Man

XXXII Table of Contents

Future Science Technologies and Applications

Design of J-VTS Middleware Based on IVEF Protocol 723
Taekyeong Kang and Namje Park

On the Use of a Hash Function in a 3-Party Password-Based
Authenticated Key Exchange Protocol 730
Youngsook Lee and Dongho Won

A Sequence Classification Model Based on Pattern Coverage Rate. 737
I-Hui Li, Jyun-Yao Huang, I-En Liao, and Jin-Han Lin

Development of STEAM Program and Teaching Method for Using
LEGO Line Tracer Robot in Elementary School...................... 746
Yeonghae Ko and Namje Park

Improved Authentication Scheme with Anonymity for Roaming Service
in Global Mobility Networks. i 752
Youngseok Chung, Youngsook Lee, and Dongho Won

Cryptanalysis of an Authenticated Group Key Transfer Protocol
Based on Secret Sharing i 761
Migin Kim, Namgje Park, and Dongho Won

Development of the STEAM-Based Media Education Materials
for Prevention of Media Dysfunction in Elementary School 767
Jaeho An and Namje Park

Access Control Technique of Illegal Harmful Contents for Elementary
Schoolchild Online Protection e
Namgje Park and Yeonghae Ko

The Concept of Delegation of Authorization and Its Expansion
for Multi Domain Smart Grid System 781
Mijin Kim and Namje Park

Security Requirement of End Point Security Software................. 788
Hyun-Jung Lee, Youngsook Lee, and Dongho Won

Collecting and Filtering Out Phishing Suspicious URLs Using
SpamTrap System 796
Inkyung Jeun, Youngsook Lee, and Dongho Won

Improvement of a Chaotic Map Based Key Agreement Protocol That
Preserves Anonymity 803
Hyunsik Yang, Jin Qiuyan, Hanwook Lee, Kwangwoo Lee, and
Dongho Won

Solving Router Nodes Placement Problem with Priority Service
Constraint in WMNs Using Simulated Annealing..................... 811
Chun-Cheng Lin, Yi-Ling Lin, and Wan-Yu Liu

Table of Contents XXXIII

Green and Human Information Technology

Topology Information Based Spare Capacity Provisioning in WDM
Networks 819
Hoyoung Hwang and Seung-Cheon Kim

A Contents Service Profit Model Based on the Quality of
Experience and User Group Characteristics 826
Goo Yeon Lee, Hwa Jong Kim, Choong Kyo Jeong, and Yong Lee

Toward Hybrid Model for Architecture-Oriented Semantic Schema
of Self-adaptive System i 832
Jin-Hong Kim and Seung-Cheon Kim

Optimal Channel Sensing in Cognitive Radio Network with Multiple
Secondary USErSttt e 838
Heejung Yu

H.264 Video Delivery over Wireless Mesh Networks Based on Joint
Adaptive Cross-Layer Mapping and MDCA MAC 846
Byung Joon Oh and Ki Young Lee

Automatic Tracking Angle of Arrival of Bandpass Sampling OFDM
Signal by MUSIC Algorithm 854
Xin Wang and Heung-Gyoon Ryu

A White-List Based Security Architecture (WLSA) for the Safe Mobile
Office in the BYOD Era i 860
Jaeho Lee, Yongjin Lee, and Seung-Cheon Kim

A Study of Vessel Deviation Prevention Scheme Using a Triangulation

IN A SEAWAY . . vttt 866
Shu Chen, Rashid Ahmad, Byung-Gil Lee, Byung-Doo Kim, and
Do-Hyeun Kim

Analysis of Energy Consumption in Edge Router with Sleep Mode

for Green OBS Networks. i i 873
Wonhyuk Yang, Mohamed A. Ahmed, Ki-Beom Lee, and
Young-Chon Kim

VLC Based Multi-hop Audio Data Transmission System 880
Le The Dung, Seungwan Jo, and Beongku An

A Practical Adaptive Scheme for Enhancing Network Stability in Mobile
Ad-Hoc Wireless Networks o 886
Le The Dung, Sue Hyung Ha, and Beongku An

A Geomulticast Routing Protocol Based on Route Stability in Mobile
Ad-Hoc Wireless Networkso 893
Sue Hyung Ha, Le The Dung, and Beongku An

XXXIV Table of Contents

RFID-Based Indoor Location Recognition System for Emergency

Rescue Evacuation Support

Dae-Man Do, Maeng-Hwan Hyun, and Young-Bok Choi

A Symmetric Hierarchical Clustering Related to the Sink Position and

Power Threshold for Sensor Networks.

Joongjin Kook

A Study of Fire Refuge Guide Simulator Based on Sensor Networks
Jun-Pill Boo, Sang-Chul Kim, Dong-Hwan Park,
Hyo-Chan Bang, and Do-Hyeun Kim

Design of Parallel Pipelined Algorithm for Field Arithmetic
Architecture Based on Cellular Array
Kee-Won Kim and Jun-Cheol Jeon

Follower Classification Through Social Network Analysis in Twitter
Jae-Wook Seol, Kwang-Yong Jeong, and Kyung-Soon Lee

An Initial Quantization Parameter Decision Method Based on Frame

Complexity with Multiple Objectives of GOP for Rate Control

of H.264 .« o
Yalin Wu and Sun-Woo Ko

The Development of Privacy Telephone Sets in Encryption System
against Eavesdropping
Seok-Pil Lee and Eui-seok Nahm

New ID-Based Proxy Signature Scheme with Message Recovery
Eun-Jun Yoon, YongSoo Choi, and Cheonshik Kim

Erratum

Scheduling Optimization of the RFID Tagged Explosive Storage

Based on Genetic Algorithm...... i
Xiaoling Wu, Huawei Fu, Xiaomin He, Guangcong Liu, Jianjun Li,
Hainan Chen, Qiangiu Wang, and Qing He

Author Index

Transparency in Cloud Business:
Cluster Analysis of Software as a Service Characteristics

Jonas Repschlaeger

Technical University of Berlin, Chair of Information and Communication Management,
Strafle des 17. Juni 135, 10623 Berlin, Germany
j.repschlaeger@tu-berlin.de
www.ikm. tu-berlin.de

Abstract. Cloud Computing shapes the IS Outsourcing landscape and enables
new flexible delivery models. It has become a fast growing and non-transparent
market with many providers, including heterogeneous service portfolios and
business models, especially for Software as a Service (SaaS). Many researchers
focus exclusively on the technical aspects of Cloud Computing and ignore the
business perspective. Unfortunately, the terms Cloud Computing and SaaS are
not defined clearly and face customers with several challenges related to the de-
cision-making process. This article explores the nature of SaaS from a business
point of view and examines 100 providers in order to gain new insights about
the transparency of their service offerings. A cluster analysis is conducted to
examine dependencies between different provider information. The results indi-
cate that only basic data like contact information, provider profile and service
functionality are provided by all vendors, whereas pricing, support and security
information are only covered by half of the providers.

Keywords: Cloud Computing, Vendor Evaluation, Software as a Service,
Service Transparency, Cluster Analysis.

1 Introduction

Cloud Computing has emerged as a new IT paradigm that promises elastic and flexi-
ble deliverance of IT resources provided by pooled resources through a network [1].
Foster et al. (2008) add that “[...] Cloud Computing is a specialized distributed com-
puting paradigm [...]” where the physical infrastructure is normally distributed over
virtual layers/multiple machines and/or data centers, and the customer does not know
the exact data location [2].For many, it has the potential to change the way organiza-
tions and individuals use IT resources [3]. Yet, uncertainty about benefits and risks
still prevent companies from making use of Cloud Computing [4]. Cloud Computing
enables a shift of the software market and related business models towards mass-
customized and on-demand services. Instead of purchasing licenses, the software is
provided as a service over the Internet, owned and managed remotely by the vendor
[5]. The Software as a Service (SaaS) model evolved from the application service
providing (ASP) with a revenue worldwide of $22.1 billion in 2012[6]. This

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 1-10] 2013.
© Springer-Verlag Berlin Heidelberg 2013

2 J. Repschlaeger

continuous growth within the enterprise application markets leads to an increased
amount of SaaS vendors. Currently, the market of SaaS contains over 650 different
small and large providers (see also market research in chapter 3). For future research,
especially methodologies for assessing Cloud services and comparing offerings from
different providers will become important [7].

This article examines the transparency of SaaS offerings and the access to relevant
information. Section 2 starts with a definition of Cloud Computing, presents the state
of art regarding Cloud provider evaluation and summarizes the SaaS evaluation di-
mensions used for this article. The next section describes the research approach used
to evaluate the SaaS vendors. The results are presented in section 4 and close up with
a discussion of implications in section 5.

2 Characteristics of Software as a Service

Despite being a relatively young paradigm, several definitions exist for Cloud Com-
puting so far, varying in scope and precision. However, recently the definition pro-
vided by the American National Institute of Standards and Technology (NIST) [8] is
accepted by many practitioners and researchers (e.g.[9]).

2.1 Characteristics of Cloud Computing

Cloud resources (e.g. networks, servers, storage, applications and services) are offered
in a scalable way via the Internet without the need for any long-term capital expendi-
tures and specific IT knowledge on the customer’s side. It is possible to obtain com-
plete software applications or the underlying IT infrastructure in the form of virtual
machine images. Basically, Cloud Computing consists of three levels: Software as a
Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS).The National Institute of Standards and Technology defines five essential cha-
racteristics of Cloud Computing, which are applicable to assess the Cloud capability
of SaaS [8]:

e On-Demand Self-Service (computing capabilities, such as server time and network
storage, can be booked automatically without requiring human interaction with the
service provider)

e Broad Network Access (capabilities are available over the network and accessed
through standard mechanisms)

e Resource Pooling (computing resources are pooled using a multi-tenant model with
different physical and virtual resources)

e Rapid Elasticity (ability to increase or decrease computing resources at an unli-
mited scale)

e Measured Service (to automatically control and optimize resource-use by leverag-
ing a metering capability)

Transparency in Cloud Business: Cluster Analysis of SaaS Characteristics 3

2.2 Evaluation of Cloud Providers

Cloud Computing has become a fast growing and non-transparent market with many
small and large providers, each of them having their specific service model. Unfortu-
nately, this makes it difficult to compare the providers with each other as well as their
service offerings. In the majority of cases the service portfolios are heterogeneous and
complex. In current literature there are attempts to classify the characteristics of
Cloud vendors and to evaluate them (e.g. [10], [11], [12], [13]).

Martens et al. (2011) define a maturity model for the quality assessment of Cloud
Computing services and describe the relationships between Cloud services, SLAs,
technical implementation and provider characteristics[13]. The evaluation criteria are
limited, focused on the maturity level of the provider and do not cover relevant cha-
racteristics like pricing or provider reputation.

Kaisler et al. (2012) study the service migration into the Cloud Computing envi-
ronment by examining security and integration issues associated with service imple-
mentation [12]. The presented framework addresses 15 decision categories divided
equally into three groups: application architecture, system architecture and service
architecture. Unfortunately, the decision categories are based on a literature review
and are not evaluated. Nevertheless, the presented framework covers most of the gen-
eral provider characteristics.

Hetzenecker et al. (2012) develop a model for assessing requirements of Cloud
providers based on literature analysis and expert interviews [11]. The model consists
of 41 requirements grouped by the categories information security, performance and
usability, costs, support and cooperation, as well as transparency and organization of
the provider. Most of the provider characteristics are covered but the model does not
show the relationship to the Cloud service models (SaaS, PaaS and IaaS) and their
relevance.

Mabhesh et al. (2011) provide a framework to evaluate Cloud Computing [14] and
to discuss cost savings, technology insurance and security risks. However, the article
focuses on the general make-or-buy decision and does not provide any criteria to eva-
luate a Cloud provider.

Aparicio et al. (2012) present a methodology to compare and choose cloud services
[15]. The provided categories describe the suitability, the economic value, the control
mechanisms, the usability, the reliability and the security of the service, including a
total of 29 criteria. The criteria cover the general provider characteristics but are not
evaluated regarding their completeness.

Repschlaeger et al. (2012) present a Cloud requirement framework which concen-
trates on relevant requirements for adopting Cloud services, targeting all three service
models (SaaS, PaaS, TaaS) [10]. The framework consists of six target dimensions
(costs, scope & performance, IT security & compliance, flexibility, reliability &
trustworthiness, Service & Cloud Management) to group and to structure provider
characteristics. Each target dimension represents a general objective from a custom-
er’s point of view. The provider characteristics are summarized by 21 abstract re-
quirements and 62 evaluation criteria which are assigned to the target dimensions.

4 J. Repschlaeger

2.3 Evaluation Criteria for SaaS

For this article the research framework by Repschlaeger et al. (2012) is used due to its
maturity and extent. This chapter provides an overview of the six main evaluation
categories. For further information see [10].

Evaluation Dimension: Flexibility

A common advantage of Cloud Computing, identified in science and industry, is the gain
in flexibility compared to traditional solutions. Flexibility describes the ability to respond
quickly to changing capacity requirements. Resources can be allocated and de-allocated
as required and the provisioning time is shorter compared to traditional outsourcing such
as ASP. Additionally, the contract duration with a Cloud vendor is shorter. This evalua-
tion dimension contains operationalized criteria important for the NIST criteria “On
Demand Self-Service”, “Broad Network Access” and ‘“Rapid Elasticity”.

Evaluation Dimension: Costs

The decision to choose Cloud Computing and a particular provider is often guided by
monetary considerations and linked with the slogan "pay-as-you-use". Customers who
decide to use Cloud services mostly benefit by small capital commitment, low acquisi-
tion costs for required servers, licenses or necessary hardware space and reduced com-
plexity of IT operations. However, the pricing and billing models often differentiate
between each provider, making it difficult for comparison. This evaluation dimension
contains operationalized criteria relevant for the NIST criterion “Measured Service”.

Evaluation Dimension: Scope and Performance

This target dimension describes the scope of services and the performance of a Cloud
provider. In order to select the appropriate provider which meets the requirements
best, knowledge about their service and performance is of crucial importance. The
manageability (usability) of services and the degree of customization (to which extent
the service can be adapted), especially in a distributed IT architecture, are essential
features. This evaluation dimension contains operationalized criteria important for the
NIST criterion “On Demand Self-Service”.

Evaluation Dimension: IT Security and Compliance.

The decision on selecting a provider in the Cloud is also influenced by company and
government requirements in the areas of security, compliance and privacy. Customers
must be assured that their data and applications, even operated in the Cloud, meet
both compliance guidelines required and are adequately protected against unautho-
rized access. This evaluation dimension contains operationalized criteria important for
the NIST criterion “Resource Pooling”.

Transparency in Cloud Business: Cluster Analysis of SaaS Characteristics 5

Evaluation Dimension: Reliability and Trustworthiness.

This target dimension summarizes criteria regarding the availability and conditions of
Cloud services, for instance, Service Level Agreements (SLAs). The liabilities given by
the provider and the reliability to keep these conditions are important. In contrast to the
commitment the trustworthiness describes the provider's infrastructural features, which
may be the evidence of a high reliability. These include disaster recovery, redundant
sites or certifications. This evaluation dimension contains operationalized criteria impor-
tant for the NIST criteria “Broad Network Access” and “Resource Pooling”.

Evaluation Dimension: Service and Cloud Management

The service & Cloud management includes features of the provider that are substan-
tial for appropriate Cloud service operations. These include the support offered by the
provider, e.g. consulting services during the implementation phase or support during
service operation. Additionally, the monitoring of Cloud services is covered by this
dimension. This evaluation dimension contains operationalized criteria important for
the NIST criteria “On Demand Self-Service” and “Measured Service”.

3 Research Approach

This article follows a behavioral research approach using a quantitative analysis. By
means of market studies, business publications of the Cloud market and an extensive
Internet search 651 providers for SaaS are detected. The providers are located mostly
in the U.S. (44%) followed by Germany (23%) and the UK (13%). Based on the crite-
ria from Repschlaeger et al. (2012) 100 providers are evaluated. Therefore, a gradual
approach is chosen. The evaluation process starts with an evaluation of the informa-
tion provided on the provider’s website. The websites are examined regarding the
availability of information of the Cloud vendor and its services. Secondly, Cloud
services from the providers are tested for several hours as long as there are free or
trial-accounts available to gather further information. Finally, missing information are
requested directly (via email) from the provider. All responses from the vendors are
collected and evaluated for a period of two weeks.

The SaaS market offers a wide range of services for several business needs. Most
popular SaaS types are for collaboration and personal productivity purposes (overlap-
ping market share 30%, e.g. ClickMeeting or Podio), customer relationship manage-
ment (23%, e.g. MaximizerCRM or SalesCloud), project management (20%, e.g.
ProWorkflow or InfoFlo) and content management (20%, e.g. Curata or Backbase).!
The detailed examination of 100 providers covers at least 10 of these SaaS types.

The data is analyzed using a clustering approach. A cluster analysis is a quantita-
tive method of classification in order to group objects based on the characteristics
they possess [16]. During the analysis of data sets, it is attempted to maximize the

Based on the conducted market analysis (n=651).

6 J. Repschlaeger

homogeneity of objects within the clusters while maximizing the heterogeneity be-
tween the clusters [16]. Several researchers propose to use a combination of hierar-
chical and non-hierarchical clustering techniques in a two-stage procedure where a
hierarchical algorithm is used to define the number of clusters and the results serve as
the starting point for a subsequent non-hierarchical clustering [16]. Therefore, a hie-
rarchical cluster analysis using the Ward’s algorithm followed by the non-hierarchical
clustering procedure of k-means is used.

The information transparency is described by three levels. The first level of informa-
tion represents unavailable data. The second level describes general but not detailed
data, for instance marketing statements or press releases. Third level information are
more detailed and provide the customer with sufficient data to evaluate one criterion,
e.g. most pricing information are of third level type. Since the cluster analysis requires
alpha-numeric values the information level is transformed into suitable values.

4 SaaS Business Transparency

4.1 First Evaluation Step: Information on Provider Website

In order to get information about a service, usually, the first step is to visit a provider’s
website. Depending on the complexity of the website, this process is more or less time
consuming, but a fast way to get relevant information. Unfortunately, the results of the
first evaluation step provide only information for 20% of the criteria, and 5% of this
information are only second level type. Despite a high standardization degree of SaaS
and the self-service principle the information on the website is scarce. The lack of cru-
cial information makes it difficult for a customer to compare and to evaluate services
and providers. Nevertheless, all providers contain data about their contact possibilities,
their general company profile and their service functionality. These basic data enable
customers to get in touch with the provider and get a first impression. Additionally, half

Table 1. Information provided by SaaS vendor’s website

Availability Provider information

100% contact, provider profile, functional coverage
50% data protection, price transparency, price granularity, time based costs, account based
costs, communication security, support
25% external integration degree, transparency & documentation, contract flexibility,
customizability
15% compatibility (browser), payment method, volume based costs, availability, liability, data
center redundancy
10% time of payment, internal integration degree, network redundancy, disaster recovery
management, reporting, internationality
5% portability of data, migration, scalability, add-on services, service management (monitoring
and operations)
<5% set-up time, renewal of contract, price resilience, auditing, consulting
0% set-up usage limits, automatic resource booking, usability, booking concept, service-

portability, service bundles, customer recommendations, service optimizing (user
recommendation, maintenance cycles)

Transparency in Cloud Business: Cluster Analysis of SaaS Characteristics 7

of the evaluated SaaS vendors provide information about their pricing, service billing
and support (see Table 1). Due to its relevance for the customer further information is
given about the data protection mechanisms and communication security.

A correlation analysis is conducted to reveal information dependencies between the
criteria. Correlations can be found between 18 criteria (see Table 2). Some correla-
tions are not surprising and can be explained due to the similarity of the criteria. For
instance, when a provider offers information about the contract flexibility, they also
provide information about the renewal conditions. The same applies for the price
transparency and the price granularity.

The costs for the usage of SaaS can be charged in different ways. The most popular
one is a usage independent charging based on accounts. Alternatively, the services
can be charged by the used volume or the time period. The correlation analysis shows
that providers which offer a time based charging also provide the user with detailed
pricing information. An account based model does not require very detailed pricing
information due to its simplicity of charging whereas volume based or time based
charging models are more complex and often not self-explanatory.

Table 2. Significant correlations between available information

Evaluation dimension Correlation type Service Criterion A Service Criterion B
Flexibility Positive, bilateral internal integration degree transparency & documentation
Flexibility Positive, bilateral contract flexibility renewal of contract
Costs Positive, bilateral price transparency price granularity
Costs Positive, bilateral time based costs price transparency
Costs Positive, bilateral time based costs price granularity
Scope & Performance Positive, bilateral customizability add-on services
T Sec_urlty & Positive, bilateral data protection communication security
Compliance
Reliability & Positive, bilateral network redundancy disaster recovery management
Trustworthiness
Service & Cloud - . service management .

Positive, bilateral h consulting
Management (operations)

4.2 Second Evaluation Step: Trial Account and Testing

The concept of SaaS is an easy to use and on-demand access to the service. There is
no need to download a client and only a browser with common plug-ins for java or
flash is required. The possibilities for a new customer are threefold and offer a service
completely for free (18%), for a free trial period (42%) or provide only a demonstra-
tion on the website (40%). The second evaluation step is more time consuming and
requires much more effort by the customer. However, this evaluation is necessary to
get information about several criteria the vendor cannot provide. This way, especially
information of the flexibility and scope&performance dimension is recorded. During
the test period, information for the following criteria could be found: usability, com-
patibility, documentation, interoperability (internal and external integration), set up
time, provisioning time, functionality, add-on services, and customizability.

8 J. Repschlaeger

4.3 Third Evaluation Step: Direct Contact Request

The last evaluation step involves a direct contact to the provider. Therefore, an email
is sent to the provider requesting further information about criteria, which were not
covered during previous evaluation steps.

Only answers within a two week period are considered. The willingness to respond
to the requests is low. Only 30% of the providers reply, and this without providing
any relevant information. This low response rate can be explained by the principle of
SaaS, which does not comprise a deep customer-provider relationship. This may be
one elementary difference to IS outsourcing. The priority of SaaS providers lies on
supporting their current customers and users instead of helping potential customers
within their decision-making process. The author assumes that the willingness to
communicate may be higher if the request comes from a large company.

4.4 Clustering of SaaS Providers

Based on the availability of information the providers are grouped by using a cluster-
ing procedure. The final cluster solution shows five clusters and their characteristic
information (see Table 3). Each cluster provides information regarding functionality,
provider profile and contact data. Cluster one, cluster two and cluster four provide the
customer with the most relevant information, but represent only 27% of SaaS provid-
ers. The largest groups are cluster three and cluster five. These clusters provide
information either related to the costs dimension or regarding the IT security and
compliance dimension.

Most of the information available is related to costs and security issues. As long as
a customer takes these two dimensions into account for his decision, the information
level is sufficient. However, for more specific information requests, for instance re-
lated to service interoperability, much more effort is required, because this informa-
tion is not available on the provider’s website.

Table 3. Providers grouped by information availability

Cluster Cluster Size Provider information available
#1 69% Time based costs, Account based costs, Time of payment, Compatibility, Data protection,
° Communication security
Network redundancy, Data center redundancy, Internal integration degree, Price
#2 8% transparency, Price granularity, Data protection, Communication security, Time based
costs, Account based costs, Volume based costs
#3 44% Data protection, Communication security
44 13% Internal integration degree, Price transparency, Price granularity, Account based costs,
° Time based costs, Customizability, Availability, Support
#5 29% Time based costs, Volume based costs, Price transparency, Price granularity

5 Conclusion

The objective of this article is to obtain new findings about the transparency level of
SaaS providers. Therefore, the information availability on the websites, via service
tests and provider requests is examined. Especially the possibility to get up-front

Transparency in Cloud Business: Cluster Analysis of SaaS Characteristics 9

information directly from the provider is low. Five groups of providers are derived
based on available information. The results show that basic data like contact informa-
tion, provider profile and service functionality are provided by all vendors. However,
much of the relevant information is not provided. For instance, information regarding
interoperability, set-up time or contract conditions is scarce. Pricing and security in-
formation is covered by only half of the providers. This lack of transparency makes it
challenging for customers to compare SaaS and to decide. An appropriate decision is
possible as long as only costs and security aspects are considered.

As with any research, this study does have some limitations. First, to specify the
level of detail for the information was challenging. To differentiate between helpful
information and general marketing news was sometimes difficult. Furthermore, the
response rate during the third evaluation was very low. The reason for that may be
due to the fact that the email sent requested too much information. Especially the
provider responses may be an interesting future research topic. In which way are res-
ponses from Cloud providers influenced?

SaaS has been one of the fastest growing markets and is characterized through
many providers with differences in quality and transparency. Due to the self-service
concept it will be important for providers to offer easy to use and transparent services
as well. The author expects that providers which remain non-transparent for the cus-
tomer will not succeed in this highly dynamic and customer-driven market. The trans-
parency is not the only success factor but it is important to inspire trust and win over
the customer to choose the service provided. Therefore, the author recommends fur-
ther research in the fields concerning the influencing factors of trust in Cloud Compu-
ting or the relevance of provider information and the impact on the customer decision.

References

1. Koehler, P., Anandasivam, A., Ma, D., Weinhardt, C.: Customer Heterogeneity and Tariff
Biases in Cloud Computing. In: International Conference on Information Systems (ICIS),
Saint Louis, USA (2010)

2. Foster, L., Zhao, Y., Raicu, L., Lu, S.: Cloud Computing and Grid Computing 360-Degree
Compared. In: Grid Computing Environments Workshop (GCE), pp. 1-10 (2008)

3. Leimeister, S., Riedl, C., Bchm, M., Krcmar, H.: The Business Perspective of Cloud Com-
puting: Actors, Roles and Value Networks. In: 18th European Conference on Information
Systems (ECIS), Pretoria, South Africa (2010)

4. Benlian, A.: A transaction cost theoretical analysis of software-as-a-service (SAAS)-based
sourcing in SMBs and enterprises. In: 17th European Conference on Information Systems,
pp- 25-36 (2009)

5. Xin, M., Levina, N.: Software-as-a Service Model: Elaborating Client-Side Adoption Fac-
tors. In: International Conference on Information Systems (ICIS), p. 86 (2008)

6. Pettey, C., van der Meulen, R.: Gartner Says Worldwide Software-as-a-Service Revenue to
Reach $14.5 Billion in 2012 (2012)

7. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing — The
business perspective. Decision Support Systems 51, 176-189 (2011)

8. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (2011)

10

10.

11.

12.

13.

14.

15.

16.

J. Repschlaeger

Martens, B., Walterbusch, M., Teuteberg, F.: Costing of Cloud Computing Services: A To-
tal Cost of Ownership Approach. In: 45th Hawaii International Conference on System
Science, pp. 1563-1572 (2012)

Repschliger, J., Zarnekow, R., Wind, S., Turowski, K.: Cloud Requirement Framework:
Requirements and Evalutation Criteria to Adopt Cloud Solutions. In: 20th European Con-
ference on Information Systems (2012)

Hetzenecker, J., Kammerer, S., Amberg, M., Zeiler, V.: Anforderungen Cloud Computing
Anbieter. In: Tagungsband der Multikonferenz Wirtschaftsinformatik (MKWI), Braun-
schweig, Germany (2012)

Kaisler, S., Money, W., Cohen, S.: A Decision Framework for Cloud Computing. In: 45th
Hawaii International Conference on System Science, pp. 1553-1562 (2012)

Martens, B., Teuteberg, F., Griuler, M.: Design and implementation of a community plat-
form for the evaluation and selection of cloud computing services: a market analysis. In:
19th European Conference on Information Systems (2011)

Mabhesh, S., Landry, B.J.L., Sridhar, T., Walsh, K.R.: A Decision Table for the Cloud
Computing Decision in Small Business. Information Resources Management Journal 24,
9-25 (2011)

Aparicio, M., Costa, C.J., Reixa, M., Costa, C.: Cloud services evaluation framework. In:
Proceedings of the Workshop on Open Source and Design of Communication, OSDOC
2012, pp. 61-69. ACM Press (2012)

Hair, J.F.: Multivariate data analysis. Pearson, Upper Saddle River (2010)

Distributed Accounting in Scope of Privacy Preserving

Marcus Hilbrich and René Jikel

Center for Information Services and High Performance Computing (ZIH),
Technische Universitit Dresden
marcus.hilbrich@tu-dresden.de

Abstract. Accounting is an essential part of distributed computing infrastruc-
tures, regardless whether these are more service-driven like Clouds or more
computing oriented like traditional Grid Computing environments. Those infra-
structures have evolved over more than the last decade and additional. beside
the further development towards service-oriented architectures, the business as-
pect of especially Cloud Computing solutions becomes more and more relevant.
In this paper we focus on user-centric aspects like privacy preserving methods
to hide the users behaviour and to collect only necessary information for billing,
under the assumption that an accounting system has to be integrated in the
computing infrastructure and that a central interface is still desirable for billing
and financial clearing.

1 Introduction

Nowadays, it is a quite common to pay just for metered services (pay-per-use) which
are consumed for a specific task but having potentially a large resource share on hand.
The payment is usually done by spending money, but could also realized by giving
services in return or the promise that the work is relevant for a scientific community
or a wider society. Meanwhile, different payment options in terms of pricing models
have been developed, from simple flat rates (pay once and take what you need) to pay
per request depending on the answer of the request and the number of requests.

As long as services of a single resource provider are used the payment has to be
done straightforward. The provider logs what users or customers are using and tells
them what they have to pay. If services have to be combined from different providers,
or even service brokers, the accounting and billing issues are getting more compli-
cated. It is obvious, that in such cases the billing of individual operators in a long
service chain is not very comfortable, since in the common case direct contract be-
tween resource operators and users is needed.

Usually in an accounting and billing service in a distributed environment such as
Grid, all accounting data are collected and transferred from all service providers to a
central place. Based on this data pile bills are written and statistic information are
created. The danger in this approach is that the operator of the accounting and billing
service has a lot of sensitive information by hand, and it has to be guaranteed
that privacy preserving issues for the users hold (usually done by contracts ore
agreements).

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 11-2] 2013.
© Springer-Verlag Berlin Heidelberg 2013

12 M. Hilbrich and R. Jikel

Our approach of an accounting concept is based on the prevention of such a central
component to store all accounting information in a centralised manner. The account-
ing data are kept in the domain of the service operators and accumulate only coarsely
granular data. In this way we realise billing and accounting without a need on trans-
parent users.

2 Related Architectures

Accounting and billing is already done by various systems. The field of research we
are working on are mainly covered by Grids and Clouds. Grid services are usually
offered to a Virtual Organisation (VO) which allows its users to access services in its
domain. Often the VO cares also of scheduling, billing and user support. The account-
ing systems tend to use centralised accounting databases, such as LUTS [1] or DGAS
[2]. Accounting data are read e.g. from the batch system and are transferred to a cen-
tral database. Afterwards the rights to access parts of the data are assigned to the users
of the accounting system. SGAS [3] stores accounting data on VO servers to improve
scalability. Common for all these systems is that accounting data are moved from the
resource provider, which are the creator of the data, to a central component.

A quite new and emerging field of interest are federated Clouds, for which more
advanced accounting concepts are needed in terms of privacy preserving. This kind of
cooperating Cloud is not yet a way of Cloud usage, beside direct services or infra-
structure utilization. In most cases, there are isolated Cloud provider [4], which can
led to the widely discussed vendor-lock problem [5]. The manifold drawbacks (e.g.
proprietary data formats which hinder exporting data and unexpected price changes or
closing down of essential services) are already known [6] and different concepts were
developed to overcome this limitations.

One initiative towards an Open Cloud is developed by the Open Cloud Manifesto”,
which is a loose group of companies and projects to communicate demands and solu-
tions for an Open Cloud.

In recent years more and more Open Source Cloud middlewares evolved, e.g
OpenNebula [7] or Eucalyptus [8], to name only some prominent projects. Those
enterprise solutions also support interfaces to established commercial cloud service
providers, such as the EC2 interface introduced by Amazon. On the other hand they
also follow the recent Open Cloud Computing Interface (OCCI)?, which represents a
RESTful protocol and development API. The development of this interface is driven
by community users and has some history in distributed computing and particular in
grid computing. By introducing a flexible interface the interoperability between dif-
ferent cloud providers can be increased. Therefore, the migration of applications or
services from one provider to a different one becomes relatively easy, which is a huge
step avoiding the vendor locked-in problem on the way towards a common Cloud
Computing standard.

' Details via the Open Cloud Manifesto: http: //www.opencloudmanifesto.org

Listed projects and details can be found on their website: http://occi-wg.org/

Distributed Accounting in Scope of Privacy Preserving 13

A Hybrid Cloud [9] combines different cloud resources (in most cases a local or
private Cloud and a public Cloud). This allows to schedule the users requests (e.g. to
run a job or to access a service) based on the job description and a set of rules (con-
straints where to run the job, available budget for external resources etc.) on one of
the Cloud resources. The decision which cloud is used can be delegated to a Cloud
broker [10]. In this case a user (e.g. a company or a scientific community) asks a so
called broker, which is the best Cloud provider to run a specific job at a given time.
Therefore, the broker gets the actual service description of different Cloud providers
and ranks them according to the needs of the users. The user has to sign at least two
contracts. The first with the broker and the second with the Cloud provider. If more
then one Cloud provider is needed to complete a task (e.g. one for storing data and
one for computing) additional contracts have to be closed. Additional conditions to
drive such an architecture is to use compatible APIs to access the different Cloud
providers and to offer similar services. This can be achieved by standardisation of
services and their description. A wildly accepted framework to compare services is
not yet established but there is already research (e.g. [11]) how service comparison
can be realised. Also a standardisation of describing Cloud services and their per-
formance has to be found and an automatic way of closing contracts has to be intro-
duced. The service description could be given by Service Level Agreements (SLAs)
which are automatically signed for using a service as described by [12].

A federated Cloud creates a market for resources and potentially deals accounting
and billing issues. This means every user and resource provider has a contract with
the federation instance for providing or utilising resources, but it is not necessarily
needed that the user has a contract with a resource provider. This allows supplier
which use services or resources of other providers to offer more complex products or
to provide services independent of resources and to select different resources for a
service depending on the kind of data (related to real persons, anonymized data or
data publicly available) to process [13]. In such a system the billing and financial
clearing has to be done by the federation and accounting data has to be recorded on
the resource provider. The general demands on such an accounting system are pre-
sented by [14] and [15] the specifics of federated Clouds are covered by [16].

The specific concept of federated Clouds with a widely accepted use case are so
called Government Clouds. A Government Cloud is a Cloud-based systems to handle
the computing and storage needs of administrative agencies. The resources could be
public Clouds, private Clouds driven by the government or a Cloud provider, or local
data centres of agencies, which form a federation to share there resources with other
agencies. The advantage of such a concept compared with the direct use off local
resources at each agency is that local peak demands can be resolved by using re-
sources of other agencies. This allows to reduce the overall amount of resources,
which are needed to process the given governmental tasks. One of the challenges for a
Government Cloud is to respect several juristic limitations. This limitations depend on
the data which has to be processed, and therefore the according service requests have
to be categorised, e.g. if specific data needed for a service execution are not allowed
to be transferred to a different site. Such restrictions can be constraints on the security
level, e.g. this is a common requirement of legislation in federal states like Germany

14 M. Hilbrich and R. Jikel

or the European Union. This shall ensure that data handling stays in the same juristic
domain and that the data douse not leave the domain of governmental controlling
authorities. For instance the Japan Kasumigaseki Cloud® has to deal with this juristic
limitation. Some data have to be processed at the district the agency is located. This
demands that a computing centre has to be located at each district. To realise a com-
pensation between the agencies an accounting system has to be established. The con-
cept of our accounting system could be deployed to such an infrastructure. Similar to
the Kasumigaseki Cloud a computing infrastructure could be deployed for India [17].
For both Clouds our accounting approach can be considered.

3 Data Minimisation and Privacy Preserving

Data minimisation and privacy preserving for users is not a major topic of common
accounting systems on a technical level. Data minimisation is a concept to protect
privacy of users by reducing data to a minimal level, which is essentially needed to
realise the accounting service. This can be realised by deleting data, which is not
longer needed or by storing data only in a non-personal way. This can be illustrate by
the following examples:

e Someone prefers to by products of a special brand from an online seller, which
could result in a handicap, if the particular person tries to apply for a job in a com-
pany of an competing brand.

e The information of that someone buy food that is considered unhealthy, or that this
person buys medicine, could be used by an insurance company to tend to increase
the insurance rate.

e To do overtime can be interpreted as health risk, or that persons are not very good
in their particular job.

e Buying products or searching for keywords which categorise someone in your
family as pregnant could influence the credit rating, or could turn into a handicap
to apply for certain jobs.

All those information could be extracted from your daily behaviour by operators of
third-party services. In most cases the information are not simply to spy users, since
there is usually a trustworthy relation between the users and the information holder.
But there are situations in which these collected information could eventually passed
to a different authority, even without the knowledge of the users, either by simply
selling them to other companies, or if a company is sold or goes out of business. In
the later cases the originally trustworthy relation has ended, but the sensitive user data
are still present.

The given example describes a complex problem with a few words. Users leave
digital footprints, which are individually not meaningful, but by combining all these

* More information on Kasumigaseki Cloud:

http://www.cloudbook.net/directories/gov-clouds/
gov-program.php?id=100016

Distributed Accounting in Scope of Privacy Preserving 15

single footprints valuable information might be eventually extracted with profiling
techniques at a later stage. Furthermore, this profiling can even led to the categorisa-
tion of users to groups with similar behaviour by so called group profiling [18].

The categorisation could be even more problematic than to extract single informa-
tion, because the ranking of individuals is therefore typically dependent on group
parameters. In other words, the individual might get disadvantaged by sharing this
group, whose parameters are based on specific algorithms but eventually effected by
statistical fluctuations. Additionally, this process is not transparent to users of the
system. In an extreme example, the credit-risk of a person for a contract could be
based on those group characteristics for which the person is member of, such as its
place of residence or age [19]. In a similar manner to the given example the account-
ing data of the daily work of users can be interpreted to get information about their
behaviour, including daily work habits, e.g. how the work proceed or simply that
overtime is needed each second weekend. If users are not informed about the profiling
they have no chance to check the results and have to live with the consequences.

More generally, there is a need to deal with the right to informational self-
determination in an appropriate manner. In short, informational self-determination is
the right of an individual to control which personal information are used under which
circumstances. This right was first formulated as a discrete right [20] by the German
Bundesverfassungsgericht [21]. Nowadays, similar rights are established e.g. for the
European Union and United States of America [22].

In case of scientific communities, there is no direct commercial interest of catego-
rising people. E.g. the D-Grid (the German Grid community) uses resources of data
centres of universities, which are in principal operated in the same way and therefore,
the universities as resource providers have to respect the right to informational self-
determination. This means there is the demand to avoid that detailed personal or pro-
ject related information can be extracted out of the users behaviour, in particular if an
external provider is used.

In the academic domain the user groups are rather manageable, limited in number
and not highly dynamic. But there is also the trend to combine computing infrastruc-
tures over institutional boundaries (e.g. in Grids) or incorporate other service providers.

In this context, accounting data are again sensitive information and could poten-
tially be used to analyse the users behaviour by third parties. To minimise the danger
that users are traced, the accounting information have to be reduced to a minimal
level, which is only needed to operate a billing service. This reduction mechanism is
what we call data minimisation. We will show that data minimisation can be easily
introduced for various systems (in the following we will show this for accounting
systems).

4 Accounting Using Data Minimisation and Anonymisation

In the following we consider an architecture which allows the federation of services
across different providers. By combining services from different providers it is possi-
ble to create work-flows or high level services. To ease this process it is handy to

16 M. Hilbrich and R. Jikel

introduce an abstraction high-level access layer, where all services are presented
within a global address space.

In such a service infrastructure we still expect that the basic services are operated
by distinct operators but have to be registered at a central point, usually available via
service repositories (e.g. [23,24,25]). The basic model assumption is schematically
visualised in fig. 1.

Global Access Layer to Services

o CCLLRTTITeT

Accounting User

Fig. 1. General architecture of an accounting system. The solid lines show the access to data
and services, while the dotted lines show the transfer of monitoring information.

In this paper we only consider accounting as a separate component which can be op-
erated independently from any generalised global access layer, in our abstract sce-
nario provided by the federation services. The global access layer (shown as separate
component in fig. 1) can include a global name-space, management of user accounts
and enabling Single Sign on (SSo) to all services.

Especially in federated systems, to bring together all relevant user data for neces-
sary financial clearing, a central management component to access accounting data is
demanded to realise an easy to use accounting and billing system. This component
does not directly access the providers data store, but only indirectly via so called
“views”. Properties of these views are explained more in detail in section 4.2.

4.1 Aspects of a General Accounting Architecture

The main components of our approach are connectors to the local storage systems, in
which the relevant accounting data are stored at each service provider. This way, the

Distributed Accounting in Scope of Privacy Preserving 17

storage systems from each provider remain clearly separated and from the central
management unit only the relevant aggregated information can be accessed. This
ensures that the users behaviour is potentially only still gettable by the local provid-
ers. It is therefore not directly possible to combine the knowledge of multiple provid-
ers by a central unit to rank or profile users. This minimal management unit provides
the central access point to regulate accounting and access reports for statistical analy-
sis, billing or financial clearing by using an aggregation service (view), which is un-
der control of the service providers. This architecture is shown in fig. 1.

The accounting management unit provides a user interface for easy configuration
and adaptation of price and billing models. It also provides a central interface to get
all data needed for billing and financial clearing based on the SLAs which signed by
the resource providers and users, which might belong to companies or organisations.

As can be seen in fig. 1, the accounting system is not integrated in the global ac-
cess layer. This means the transfer of the aggregated accounting data is triggered by
the management unit. Also, the addresses to the views (provided by the service pro-
viders) and the corresponding logins have to be registered at the management unit.

In comparison to the accounting concepts of the systems mentioned in section 2,
we introduce a concept of data minimisation. This is done by aggregation and ano-
nymisation of the accounting data. The complete accounting data are only accessible
for the local service provider. In a federated system it is of course not desired to make
them visible for providers of other services® within the same environment or even the
management unit. To restrict this direct access the management unit can not address
the providers sensible accounting data as a whole. In order to realise a billing service,
only the summed up information are transferred to the management unit, which are
provided by the views.

4.2 Views

To transfer only relevant billing data, our approach to realise a data minimalistic access
to this sensitive user data, is based on so called views. A view is a transformation of
the accounting data to a report. This transformation only considers the needed minimal
set of available user data to provide necessary information for the billing service.

The service provider is responsible for collecting the local accounting data. Ac-
counting data for other services are completely out of scope for this provider, even if
the operated service is part of a complex service orchestration. To be responsible for
local accounting means to define which events and parameters for each service re-
quest have to be recorded. Therefore, the concrete realisation strongly depends on the
provided service. E.g. a service for storing data probably needs to record the time
stamp, the local account name of the user, the file size and whether the file was writ-
ten or read, while a search service probably needs to record how much computing
power was used to perform the request or how many data sets are read to give an
result.

* Even if multiple service providers are needed to fulfill a single user request each provider

has only access to the accounting data of the work processed on his service.

18 M. Hilbrich and R. Jikel

In the responsibility of the service provider is the safety and security of the ac-
counting data, which are strongly related to individual persons. This also includes not
to give information about users to other parties, or only in an anonymous way if nec-
essary for billing purposes. A view can periodically be created (e.g. once a month)
and contains the information which resources are used and how much has to be paid
for this usage. The depth of detail which is required for such a report is low in most
cases. To illustrate this let us give some examples:

1. The utilisation of a service can be calculated by knowing the number of requests to
the service. It is not needed to know at which particular time or who triggered the
request.

2. To bill a user, only the aggregated price information over the billing period is
needed and not the individual services used.

3. A more detailed report is also possible (if demanded by the user). This could be the
number of uses and the price individually for each service and each time slice with
a special price. Such a report could contain the number of files stored during rush
our (period with high price), stored during normal working time and during periods
with low system utilisation (at night and weekend). The data are still aggregated
and it is not reported at which exact time a service was used by the user.

4. Often it is not needed to bill single users. If users are part of a company or an or-
ganisation the report dos not contain the users identity. The report can be structured
like in the examples above with the expect that only the summed up usage of all
user of a group are presented. This results in an anonymity of individual users
within the group.

These reports are based on SLAs between users, user groups or their representatives
(e.g. VOs) and resource providers and describe the information. As already mentioned
the accounting data are recorded by the resource providers and stored locally, e.g in a
database (shown in fig. 1). Accessible by the central management unit are only the
views. Technically a view provides a report which is an aggregation of accounting
data. Depending on the particular aggregation process it can also anonymise by sim-
ply hiding information with directly link to individual users, like exemplified given by
example 4. The view represents the instructions how the data are aggregated and how
the price is calculated on the basis of this informations.

In the example 1 from above, selected are all records of the accounting data (the
limitation to the reporting interval is automatically added by the system). Based on
this view a report is created which hides the records itself and just contains the over-
all usage for the billing period.

Lets consider example 3, where a view for each price category is needed. One spe-
cific view selects all accounting data of the user for which the rush hour price has to
be paid and calculates the price for a billing period (e.g. number of requests multi-
plied by the price per request). The views for the other pricing models are used in the
very same way. Taking that example 1 and example 3 rely on the same price model
like in example 1 only one view is sufficient for both cases. This way it is hidden

Distributed Accounting in Scope of Privacy Preserving 19

whether the user performed many requests in a time period, for which a low price is
active, or less during rush hour with a higher prize per service utilisation. In example
1 the view has to select all records of the user and the price calculation has to respect
the individual price model for each record type. Thus, the complexity of the price
calculation is slightly larger compared to example 3, but to the management compo-
nent only the result of this calculation is reported.

If many users are combined in one view (example 4) the selection has to opt out
the users e.g. by their account or group names. The price calculation is done similar to
example 1. In this way the view combines the records of many users which results in
anonymity within the group.

The views are created on the central management unit. The request for changing
views are automatically transferred to the resource providers which have to check and
implement the views. Once the view is active the central unit can get the reports. Al-
tering or deleting a view is the same procedure like creating a new one. In this case it
has to be ensured that deleted or overwritten views can still be checked by the re-
source providers. All requests from the central unit to alter a view are logged by the
resource provider.

5 Reference Implementation

The accounting concept presented in this paper was developed for the knowledge
infrastructure WisNetGridS, which offers a uniform access layer to data, information
and knowledge. The access layer can connect sources from different providers using
technically different storage and access systems and solutions for authentication and
authorisation. By combining different sources of data, information and knowledge it
is possible to use services for knowledge processing and knowledge generation.

The reference implementation of the presented accounting concept is part of a fed-
eration system and consists of components for user management, authentication and a
web portal, which allows the use of services, such as searching and browsing of data,
or tools for service management and workflow composition.

The accounting concept is implemented by following the concepts introduced in
section 4.2. The accounting data are recorded by the operators of the potentially dis-
tributed resources. Within WisNetGrid we have realized a specialized federation en-
tity to different types of data sources, such as databases, or Grid storage systems,
which are necessary to create the common access layer. Each operator of a connected
system stores the recorded accounting data in a separate accounting database. For this
we use a H2 database® because this allows to drive the database as part of the resource
federation entity, which is implemented using Java.

> The WisNetGrid Project is funded by the German Federal Ministry of Education and

Research (BMBF), more information at: http: //wisnetgrid.org/
For more information about H2, see: http://www.h2database.com

20 M. Hilbrich and R. Jikel

The interface for billing is a central component within the WisNetGrid architec-
ture. It offers different visualisation features to get an overview which price models
had been used and how much has to be charged. A comparison to actual price models
can also be made and visualised if desired. To use the results of this centralised ac-
counting component in other programs (e.g. for the process of financial clearing) the
data can be exported as CSV files. CSV is a common format and can be used by vari-
ous programs for further processing.

The accounting component offers a restricted database access, which is realised by
the views introduced in section 4.2. In this specific implementation the addresses and
logins to the views are part of the configuration of the resource federation. This in-
formation is automatically transferred to the accounting component by registering a
resource federation entity as part of the global access layer. If the resource provider
offers accounting, the aggregated accounting information are automatically integrated
to the central billing interface.

The management of the views is done in two steps. The accounting component of-
fers a graphical user interface which can be accessed via a browser (by users author-
ised as accounting users) to delete, create or alter views. For this the selection and
price calculation parts have to be specified. This is done by filling a form with SQL
syntax. After submitting the form the accounting component extracts the information
and stores them in a database at the resource federation instance. The second step is
done manually by the operator of the resource federation or automatically by imple-
menting a trigger on the database. Which mechanism is used depends on the configu-
ration of the resource federation entity. Based on the request a SQL statement is build
to create, alter or delete a database view. The “WHERE” clause is based on the selec-
tion part and the price column is based on the price field information from the filled
form of the first step. Additionally, a “GROUP BY” clause over the reporting interval
is added (e.g. “GROUP BY year, month” where year and month are fields of the ac-
counting data). Afterwards the new view can be used by the portal to visualize ac-
counting results according to the selected view.

6 Conclusion

We have presented a concept for accounting with privacy preserving for users, which
is taking also data minimisation and anonymization into account. This was presented
on a concrete implementation for the knowledge infrastructure WisNetGrid. This
accounting concept allows to perform billing and financial clearing in a similar way
compared to common centralized accounting systems, which are usually not designed
with a strong focus on privacy preserving. A valuable field of application outside of
the concrete implementation can be spotted for Grid and Cloud Computing, which
was shortly discussed throughout this paper. Furthermore, we hope to inspire readers
to further strengthen the user right of informational self-determination for all kinds of
projects, which combine services from different partners or providers, where user data
and behaviour are always sensitive information.

Distributed Accounting in Scope of Privacy Preserving 21

References

10.

11.

12.

13.

14.

15.

16.

. Sandholm, T.: Design Document: SweGrid Logging and Usage Tracking Service, LUTS

(2003)

Piro Rosario, M., Andrea, G., Giuseppe, P., Albert, W.: Using historical accounting infor-
mation to predict the resource usage of grid jobs. Future Generation Computer Sys-
tems 25(5), 499-510 (2009)

Elmroth, E., Gardfjill, P., Mulmo, O., Sandgren, A., Sandholm, T.: A Coordinated Ac-
counting Solution for SweGrid Version: Draft 0.1.3 (October 7, 2003)

Mihailescu, M., Teo, Y.M.: Dynamic Resource Pricing on Federated Clouds. In: 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid),
pp. 513-517 (May 2010)

Parameswaran, A.V., Chaddha, A.: Cloud Interoperability and Standardization. SETLabs
Briefings 7(7) (2009)

Lee, C.A.: A perspective on scientific cloud computing. In: Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, HPDC 2010, pp.
451-459. ACM, New York (2010),
http://doi.acm.org/10.1145/1851476.1851542

Sotomayor, B., Montero, R., Llorente, 1., Foster, I.: Virtual Infrastructure Management in
Private and Hybrid Clouds. IEEE Internet Computing 13(5), 14-22 (2009)

Nurmi, D., Wolski, R., Grzegorczyk, C., et al.: The Eucalyptus Open-Source Cloud-
Computing System. In: 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid, CCGRID 2009, pp. 124-131 (May 2009)

Rochwerger, B., Breitgand, D., Epstein, A., et al.: Reservoir - When One Cloud Is Not
Enough. Computer 44(3), 44-51 (2011)

Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: Utility-Oriented Federation of Cloud
Computing Environments for Scaling of Application Services. In: Hsu, C.-H., Yang, L.T.,
Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081, pp. 13-31. Springer,
Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-13119-6_2
Repschlaeger, J., Wind, S., Zarnekow, R., Turowski, K.: A Reference Guide to Cloud
Computing Dimensions: Infrastructure as a Service Classification Framework. In: Hawaii
International Conference on System Sciences, pp. 2178-2188 (2012)

Bernsmed, K., Jaatun, M., Meland, P., Undheim, A.: Security SLAs for Federated Cloud
Services. In: 2011 Sixth International Conference on Availability, Reliability and Security
(ARES), pp. 202-209 (August 2011)

Badger, L., Bohn, R., Chu, S., et al.: NIST Special Publication 500-293, US Government
Cloud Computing Technology Roadmap, Release 1.0 (Draft), Volume II Useful Informa-
tion for Cloud Adopters

Sekar, V., Maniatis, P.: Verifiable resource accounting for cloud computing services. In:
Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, CCSW
2011, pp. 21-26. ACM, New York (2011),
http://doi.acm.org/10.1145/2046660.2046666

Ruiz-Agundez, 1., Penya, Y.K., Bringas, P.G.: A Flexible Accounting Model for Cloud
Computing. In: Proceedings of the 2011 Annual SRII Global Conference, SRII 2011, pp.
277-284. IEEE Computer Society, Washington, DC (2011),
http://dx.doi.org/10.1109/SRIT.2011.38

Elmroth, E., Marquez, F., Henriksson, D., Ferrera, D.: Accounting and Billing for Feder-
ated Cloud Infrastructures. In: Eighth International Conference on Grid and Cooperative
Computing, GCC 2009, pp. 268-275 (August 2009)

22

17.

18.

19.

20.

21.

22.

23.

24.

25.

M. Hilbrich and R. Jikel

Chandra, D., Borah Malaya, D.: Problems & prospects of e-Governance in India. In: 2011
World Congress on Information and Communication Technologies (WICT), pp. 4247
(December 2011)

Hildebrandt, M.: Profiling: From data to knowledge. Datenschutz und Datensicherheit -
DuD 30, 548-552 (2006), http://dx.doi.org/10.1007/s11623-006-0140-
3, doi:10.1007/s11623-006-0140-3

Metz, R.: Scoring: New Legislation in Germany. Journal of Consumer Policy 35, 297-305
(2012), http://dx.doi.org/10.1007/s10603-012-9191-z, doi:10.1007/
s10603-012-9191-z

Hornung, G., Schnabel, C.: Data protection in Germany I: The population census decision
and the right to informational self-determination. Computer Law & Security Review 25(1),
84-88 (2009), http://www.sciencedirect.com/science/article/
pii/sS0267364908001660

Bundesverfassungsgericht: BVerfGE 65, 1 — Volkszéhlung. Urteil des Ersten Senats vom
15. Dezember 1983 auf die miindliche Verhandlung vom 18. und 19. Oktober 1983 — 1
BVR 209, 269, 362, 420, 440, 484/83 in den Verfahren uber die Verfassungsbeschwerden
(1983),
http://www.datenschutz-berlin.de/gesetze/sonstige/volksz.htm
(access November 21, 2006)

Rehm, G.M.: Just Judicial Activism? Privacy and Informational Self-Determination in
U.S. and German Constitutional Law (January 2000), available at SSRN
http://ssrn.com/abstract=216348 or
http://dx.doi.org/10.2139/ssrn.216348

Wu, Y., Yan, C., Ding, Z., et al.: A relational taxonomy of services for large scale service
repositories. In: 2012 IEEE 19th International Conference on Web Services (ICWS), pp.
644-645 (June 2012)

Weiping, L., Weijie, C., Li, L., Fuliang, G.: A semantically enhanced service repository
for service oriented application system development. In: World Conference on Services -
II, SERVICES-2 2009, pp. 41-48 (September 2009)

Agarwal, S., Junghans, M., Jékel, R.: Semantic modeling of services and workflows for
german grid projects. In: Grid Workflow Workshop 2011 (2011)

Distributed Virtual Machine Monitor
for Distributed Cloud Computing Nodes Integration

Li Ruan, Jinbing Peng, Limin Xiao, and Mingfa Zhu

State Key Laboratory of Software Development Environment, Beihang University,
Beijing 100191, China
ruanli@buaa.edu.cn

Abstract. Existing popular virtual machine monitors like Xen, VMware, etc.
are mostly for virtualization of one single physical node. There are few re-
searches on virtual machine monitor for distributed cross-node cloud computing
resources integration. This paper introduces a novel distributed virtual ma-
chine monitor (CloudDVMM). We present its theoretical model, architecture
and key technologies. Experiments and comparisons with existing researches
show that our CloudDVMM achieves merits in architecture, extensibility, etc.
and is promising for meeting the integration requirements of distributed virtual
computing and cloud computing environments.

Keywords: MIPS, cloud computing, sever virtualization, memory
virtualization.

1 Introduction

With the wide application of cloud computing, it becomes an urgent problem that how
to integrate the distributed cross-nodes resources to improve the distributed resources’
utility and reliability.

However, existing distributed nodes integration is traditionally based on non-
virtualization technologies. Moreover, existing popular virtual machine monitors
(VMM) like Xen, KVM, etc. focus more on single physical node virtualization. There
are only few virtual machine based researches which focus on distributed cross-node
resources integration for cloud computing, and practical VMMs are much fewer. This
paper introduces a novel distributed virtual machine monitor (CloudDVMM) for dis-
tributed cloud computing nodes integration.

2 System Architecture

The system has three layers (Fig. 1): hardware layer, CloudDVMM layer and OS layer.
CloudDVMM’s running process is that (1) we create CloudDVMM above the SMP
servers based on the hardware assisted virtualization support. CloudDVMM is consti-

tute of VMMs distributed on each node, and each VMM is totally symmetric; (2) we

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 23-B1] 2013.
© Springer-Verlag Berlin Heidelberg 2013

24 L. Ruan et al.

run OS, which supports cc-NUMA, above CloudDVMM;(3)CloudDVMM percepts
physical resources in distributed system, classifies, integrates, creates global physical
resources information , virtualizes global physical resources, creates global virtual re-
sources information and demonstrates it to OS; (4) OS creates, schedules and executes
the processes, manages, assigns resources based on the virtual resources set. All these
operations are transparent to CloudDVMM,; (5)CloudDVMM hi-jacks and acts as an
agent of OS to execute resources accessing operations, implement virtual resources to
physical resources’ mapping, operates physical resources and gains execution results,
feedback execution results to OS.

Cloud Computing Applications

Guest 0S

Virtual machine with characteristics of cc-NUMA architecture

Distributed Virtual
Machine Moni tor (DVMM)

Distributed Cloud
Computing Node

Distributed Cloud

Computing Node

Distribut

Computing Node

ed Cloud

Ethernet

SMP Cluster

Fig. 1. Distributed Cloud Computing Nodes Integration based on CloudDVMM

3 System Modules

CloudDVMM has three layers (Fig.2): (1) The infrastructure layer is responsible for
the provision of services to the above layers. It includes CloudDVMM startup mod-
ule, eBIOS module, CloudDVMM communication module etc. (2)The middle layer

‘ 0s

A
Instruetion | _ | ——
Set Virt,

lio Interupt

MMU Virt.

(ommunication

]

i

s vit. ™ vin,
‘ i

DSM

| Distributed Hapdrere Node | ‘

Distributed hardvare node ‘

y a Bthermet

]

Fig. 2. Hierarchy and Modules of CloudDVMM

Direct Access }— +

H

Commu;nimion

| Dishilauud Hardware

F,

N
|
|
|
|
|
|

Fig. 3. Interaction Among Modules and

System Running
CloudDVMM

Process

of

Distributed Virtual Machine Monitor for Distributed Cloud Computing Nodes Integration 25

will virtualize the resources, integrate and create global resources information based on
the information based on the eBIOS module, virtualized resources. It includes processor
virtualization module, storage virtualization module, software DSM module, interrupt
virtualization module and I/O virtualization module. (3) The OS interface layer is re-
sponsible for the demonstration global virtual resources information to OS and interac-
tion of CloudDVMM and OS. It includes vBIOS module and VMCS control module.

The interaction among modules and running process is shown in Fig. 3.The instruc-
tion set virtualization module is the entry point and the exit point of CloudDVMM.

4 Implementation and Experiments

4.1 System Implementation

CloudDVMM is implemented on Xen and includes four kernel modules of processors
virtualization, memory virtualization, devices virtualization and communication mod-
ules and the extended modules of eBIOS, Xend, Qemu-dm and scheduler, etc..

4.2 Function Test

Test environment is as shown in Fig. 4. The two server nodes are connected through
the high speed network. Each node’s configuration is (1) CPU: AMD Opte-
ron(tm)2350 Quad-Core Processor; (2) Memory: 4 X 1G DDR2 800;(3)Hard disk:
250G; (4) Network address configuration: 192.168.5.*. (5) CloudDVMM is installed
on each node.

As is shown in Fig. 5 , the client OS which boots processor 1/16 eip 2000 shows
that CloudDVMM is successfully started from node cpu. The information that a total
of 2 processors are activated proves that two cpus are started up successfully. The
processor information in / proc / cpuinfo after client OS started with processor: 0 and
processor: 1 proves that current client OS started two cpus. The information on the
customers OS shows that CloudDVMM successfully launched two perceived VCPUs.

As is shown in Fig. 5 , the client OS which boots processor 1/16 eip 2000 shows
that CloudDVMM is successfully started from node cpu. The information that a total
of 2 processors are activated proves that two cpus are started up successfully. The
processor information in / proc / cpuinfo after client OS started with processor: 0 and
processor: 1 proves that current client OS started two cpus. The information on the
customers OS shows that CloudDVMM successfully launched two perceived VCPUs.

)
w
o]
o

g
E

Il

= Ne twork:

7l
9
<
0

Fig. 4. Test environment

26 L. Ruan et al.

Fig. 5. customer OS multiprocessor starting Fig. 6. Processor information in / proc /
process cpuinfo after client OS start

4.3 Performance Test

4.3.1 The Unixbench Performance of CloudDVMM

Table 1 and Table 2 show the Unixbench-4.1.0’s average performance data.

Table 1. The performance data with single-node

TEST BASELINE RESULT INDEX
Dhrystone 2 using register variables 376783.7 18656301.6 495.1
Double-Precision Whetstone 83.1 1110.0 133.6
Execl Throughput 188.3 15697.9 833.7
File Copy 1024 bufsize 2000 maxblocks 2672.0 185840.0 695.5
File Copy 256 bufsize 500 maxblocks 1077.0 48055.0 446.2
File Read 4096 bufsize 8000 maxblocks 15382.0 2077483.0 1350.6
Pipe Throughput 111814.6 6234174.2 557.5
Pipe-based Context Switching 15448.6 341053.6 220.8
Process Creation 569.3 31673.6 556.4
Shell Scripts (8 concurrent) 44.8 2938.5 655.9
System Call Overhead 114433.5 11076033.0 967.9
FINAL SCORE 533.9

Table 2. The performance with dual-nodes

TEST BASELINE RESULT INDEX
Dhrystone 2 using register variables 116700.0 1087027.4 93.1
Execl Throughput 43.0 454.8 105.8
File Copy 1024 bufsize 2000 maxblocks 3960.0 188424.0 475.8
File Copy 256 bufsize 500 maxblocks 1655.0 187113.0 1130.6
File Read 4096 bufsize 8000 maxblocks 5800.0 43608.0 752
Pipe Throughput 12440.0 274099.1 220.3
Pipe-based Context Switching 4000.0 2960.2 74
Process Creation 126.0 1277.3 101.4
Shell Scripts (8 concurrent) 6.0 103.2 172.0
System Call Overhead 15000.0 307844.9 205.2

FINAL SCORE 137.0

Distributed Virtual Machine Monitor for Distributed Cloud Computing Nodes Integration ~ 27

The experimental results show: (1) Unixbench benchmark program can operate
normally on the prototype system; (2) in the same case containing two VCPU, the
prototype system Unixbench scores below the virtual machine on the stand-alone.

4.3.2 The Ubench Performance of CloudDVMM

Table 3 and Table 4shows the average Ubench performance data on both platforms.

Table 3. The performance under single-node

Ubench CPU 181914
Ubench MEM 209674
Ubench AVG 195794

Table 4. The performance under dual-node

Ubench CPU 136954
Ubench MEM 81021
Ubench AVG 108987

The experimental results show that the: (1) Ubench benchmark program can run
normally on CloudDVMM,; (2) The scores from Ubench program with two VCPS is
higher than that with only one VCPU virtual machine, which prove that the VCPU in
two servers can work properly.

4.3.3 SPLASH-2 Test Performance of CloudDVMM

SPLASH-2 is used for evaluating the performance of shared memory systems which
are mainly for the evaluation of the SMP, CC-NUMA, DSM shared storage architec-
ture performance of the computer system. Table 5 and Table 6 show the test perfor-
mance under a single node, Tables 7 and 8 show the performance under two-nodes.

The results show that: (1) Under the SPLASH-2, the test program can operate
normally on the prototype system; (2) The performance of CloudDVMM containing
two VCPUs is lower than that of the virtual machine on the stand-alone.

Table 5. The performance under single-node (sub-process statistics)

PROCESS STATISTICS
Proc Total Time Multigrid Time Multigrid Fraction
0 189448 71880 0.379

28 L. Ruan et al.

Table 6. The performance under single-node (phased Statistics)

Time
Start time 405812431
Initialization finish time 405966330
Overall finish time 406155781
Total time with Initialization 343350
Total time without initialization 189451

Table 7. The performance under dual-node (sub-process statistics)

PROCESS STATISTICS

Proc Total Time Multigrid Time Multigrid Fraction
0 150002 60000 0.400
Table 8. The performance under dual-node (phased Statistics)
TIMING INFORMATION

Start time 1379157799

Initialization finish time 1379387803

Overall finish time 1379537805

Total time with Initialization 380006

Total time without initialization 150002

4.3.5 The Linux Command Execution Performance

The average time performances of the linux commands like 1s, make, gcc commands
with 50 times each are as shown in Table 9 and Table 10.

Table 9. The command execution performance under single node and dual nodes

Execution time Execution time Execution time

Name Description (Physics)/s (single node (cross node overh'ead
HVM)/s HVM)/s ratio

Is Display 0.005 0.130 0.800 160
bonnic++-1.03¢
directory

make Compile 0.020 0.050 1.050 52.5

install bonnic++-1.03¢

gec zx.c Compile 0.065 0.090 0.280 43

zx.c file

Distributed Virtual Machine Monitor for Distributed Cloud Computing Nodes Integration 29

Table 10. The OS performance of Virtual Multiprocessor client

Name Descripton Execution time Execution time Overhead
(physical) (virtual) ratio
Is List information about 0.03 6.64 255

hundreds of files

gcc Compile a C program 0.14 0.98 6.81
80
60 OCross—nodes HVM
40
20 BVirtual
Multiprocessor Gos

1s gce

Fig. 7. The performance comparison between CloudDVMM and Virtual Multiprocessor

As can be seen from Fig.7, the CloudDVMM'’ls and gcc overhead is superior to
Virtual MultiProcessor.

4.4 Test Results Summary

From the test results, we have verified CloudDVMM ability to achieve a distributed
nodes’ SSI, the distributed resources integration, virtualization to a single resource space
form to the OS, and that OS can use perceived cluster resource like single resource.

5 Related Work

Existing distributed cloud computing nodes integration technologies are traditionally
based on non-virtualization technologies implemented on the hardware layer[1-3],
those on system software layer like MOSIX!4-7],Sun Solaris-MC[8], SCO UnixWare
NonStop Clusters[9], those on middleware lay like IVY[10], Mirage, etc. and those
on application layer. Existing popular virtual machine monitors like Xen, VMware
ESX Server, etc. are mostly for single physical node. There are only few researches
based on virtualization except Virtual Multiprocessor and vNUMA which focus on
distributed cross-node resources integration, and practical systems are much fewer
[11-13]. By comparison results from implementation hierarchy (Hier.), Technolo-
gy(Tech.) , Implememtation Difficulty(Diff.), Transparency(Transp.), Performance
(Perform.), SMP nodes Supports(SMP nodes Sup.) and Architecture Supports
(Arich.) in table 16, we can see that CloudDVMM is running above the hardware and
beneath the OS , has a hierarchy and modular architecture and can provides a single
system image for Cloud computing cluster. It also show that CloudDVMM achieve
merits in architecture, extensibility, etc. and is promising for meeting the require-
ments of distributed virtual computing and cloud computing environments.

30 L. Ruan et al.

Table 11. Comparisons with related work

Re- Hier. Tech. Diff. Transp. Perf.. SMP Arich.
searches Sup.
Multi- Application Para-virt. High Low Low N IA-32
processor Lay
vNUMA System Pre- moderate Good Mod- N IA64
Software virtual. erate
Layer
Cloud System Hardware Low Good high Y 1A-32
DVMM Software virt.
Layer

6 Conclusions

In this paper, a novel distributed virtual machine monitor was introduced for distri-
buted cross-node cloud computing resources integration. We are now trying to apply it
to practical industrial applications and improve CloudDVMM’s performance.

Acknowledgments. This work was supported by the Hi-tech Research and Develop-
ment Program of China (863 Program) under Grant No. 2011AA01A205, National
Natural Science Foundation of China under Grant No. 61003015, Beijing Natural
Science Foundation under Grant No. 4122042, the fund of the State Key Laboratory
of Software Development Environment under Grant No. SKLSDE-2012ZX-23.We
are grateful to those students and colleagues who participated in our Cloud Servers
project from Beihang University, Institute of Computing Technology (ICT), Chinese
Academy of Sciences and Lenovo Company.

References

[1] IBM Enterprise X-Architecture Technology (OL),
ftp://ftp.software.ibm.com/systems/support/system_ x_pdf/
exabroc.pdf

[2] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual. Vol. 1:Basic
Architecture (2007)

[3] Kaneda, K., Oyama, Y., Yonezawa, A.: A virtual machine monitor for providing a single
system image. In: Proceedings of the 17th IPSJ Computer System Symposium,
pp- 3-12 (2005)

[4] Barak, A., Laden, O., Yarom, Y.: The NOW MOSIX and its Preemptive Process Migra-
tion Scheme. Bulletin of the IEEE Technical Commitee on Operating Systems and Appli-
cation Environments 7(2), 5-11 (1995)

Distributed Virtual Machine Monitor for Distributed Cloud Computing Nodes Integration ~ 31

[5] Amar, L., Barak, A., Shiloh, A.: The MOSIX Direct File System Access Method for Sup-
porting Scalable Cluster File Systems. Cluster Computing 7(2), 141-150 (2004)

[6] Haddad I. F., Paquin E. MOSIX: A Cluster Load-Balancing Solution for Linux. Linux
Journal 2001(85es) (2001)

[7] Lottiaux, R., Gallard, P., Vallee, G., et al.: OpenMosix, OpenSSI and Kerrighed: a com-
parative study. In: Proceedings of the Fifth IEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2005), pp. 1016-1023. IEEE Computer Society,
Washington (2005)

[8] Bernabeu, J.M., Khalidi, Y.A., Matena, V., et al.: Solaris MC: A Multi-Computer OS.
Technical Report: TR-95-48. Sun Microsystems (1995)

[9] Walker, B., Steel, D.: Implementing a Full Single System Image UnixWare Cluster: Mid-
dleware vs Underware. In: International Conference on Parallel and Distributed
Processing Techniques and Applications, vol. 6, pp. 2767-2773. Computer Science
Research, Education, and Applications Press

[10] Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. ACM Transac-
tions on Computer Systems 7, 321-359 (1989)

[11] Kaneda, K., Oyama, Y., Yonezawa, A.: A Virtual Machine Monitor for Providing a Sin-
gle System Image. Transactions of Information Processing Society of Japan 47, 27-39
(2006)

[12] Kaneda, K., Oyama, Y., Yonezawa, A.: A virtual machine monitor for utilizing non-
dedicated clusters. In: Proceedings of the Twentieth ACM Symposium on Operating Sys-
tems Principles, pp. 1-11 (2005)

[13] Chapman, M., Heiser, G.: Implementing transparent shared memory on clusters using vir-
tual machines. In: USENIX Annual Technical Conference, pp. 383-386. USENIX Asso-
ciation, Anaheim (2005)

Differentiated Policy Based Job Scheduling
with Queue Model and Advanced Reservation
Technique in a Private Cloud Environment

Shyamala Loganathan and Saswati Mukherjee

Dept of Information Science and Technology, College of Engineering, Anna University,
Guindy, Chennai-25, India
{L.Shyamala, SaswatiMukherjee}lshyamlabi@gmail.com,
msaswati@yahoo.com

Abstract. Cloud Computing can be viewed as a computing model containing a
pool of resources and Internet based application services. Cloud makes on-
demand delivery of these computational resources (data, software and
infrastructure) among multiple services via a computer network. An
infrastructure-as-a-service cloud system provides computational capacities to
remote users. In present scenario, most of the Infrastructure as a Service (IaaS)
Clouds use simple resource allocation policies like immediate and best effort. In
private cloud, since the resources are limited, maximizing the utilization of
resources and giving the guaranteed service for the user are the ultimate goal.
Hence efficient scheduling is needed which is a major challenge in satisfying
the user’s requirement (QoS). In this paper, we propose an advanced reservation
technique with backfilling in scheduling policy that aims at serving the user
requests by satistying the required QoS, achieving the guaranteed service for
the request by making an efficient provisioning of cloud resources.

Keywords: Cloud computing, Job scheduling, Queue model, Reservation,
CloudSim.

1 Introduction

The increasing demand of computational resources has led to new types of cooperative
distributed systems, such as the grid [1] and cloud computing [2]. In IaaS cloud the
resources (compute capacity and storage) are provided in the form of virtual machines
to users. A scheduler can be used to decide when and where to place these virtual
machines on a pool of resources. Scheduling jobs in a cloud environment is a difficult
task because of its dynamic nature. Various researchers have dealt with the challenges
in scheduling in a Cloud [3][4][5]. Perhaps the primary challenge of scheduling is the
allocation of available resources efficiently. Therefore in cloud, job scheduling and
resource management are related to the efficiency of the whole cloud computing
facilities. Presently, most of the cloud providers rely on simple resource allocation
policies like immediate and best effort [3]. Though advanced reservation technique is
well studied in Grid environment and applied, due to the dynamic nature of incoming

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 32-B9] 2013.
© Springer-Verlag Berlin Heidelberg 2013

Differentiated Policy Based Job Scheduling with Queue Model 33

request in Cloud immediate and best effort provisioning is preferred so for in public
clouds [3]. In general, usage pattern of cloud requests are not predictable because of its
dynamic nature. Hence advanced reservation technique commonly used in grid is not
appropriate for public cloud. However, for organizational cloud (private cloud) the
usage pattern is predictable to an extent and can be defined in advance. Private Cloud
is one which is owned by the organization and thus, maintained by same. The
characteristics and scheduling challenges in a private cloud (Institutional Cloud) is
discussed in [6]. Scheduling in private cloud environment poses a unique situation
where job scheduling can benefit by taking advantage of policy based provisioning for
different set of job request with different queues will lead to maximize utilization of
resource and guarantees the service for a request. This technique avoids the
fragmentation of resources when simply advanced reservation is used. The fragmented
resources can be utilized by other policy of other queue of jobs. In this paper we
exploit this factor and propose a technique in private cloud scheduling.

In Section 2, related works in this area are discussed. Section 3 analyzes the
various system parameters used in the system model. Section 4 describes the proposed
cloud architecture and the scheduling policy. Simulation model and performance
evaluation in Section 5 brings forward the benefits of the research work. Finally, in
Section 6, we conclude our work and discuss possible future work.

2 Related Work

Ningning Gao [7] has given a reservation algorithm with Multi-Parameters called
MPRAR which consists of global queue to store reservation requests called FIFO and
another queue named Heap which arranged in the order of weight to determine whether
the reservation request would be accepted. But this suffers with fragmentation of
resources. Algorithms proposed in [8] [9] are to schedule advance reservation with
laxity considers non-preemptive tasks request in a grid environment. Preemption of job
is not considered in these works. Sabitha Rani B.S [10] proposed a relaxed resource
advance reservation policy (RARP) with trust factor to improve the utilization at both
low and high reservation. Cao [11] a backfilling based gang scheduling mechanism is
incorporated into the share based co-scheduling job (SCOJO) scheduler. The simulative
results show that it can mitigate the negative effects of advance reservation. Kaushik
[12] et al. proposes a flexible reservation window scheme. It concludes that when the
size of the reservation window is equal to the average waiting time in the on-demand
queue, the reservation rejection rate can be minimized close to zero but does not address
the issue of low resource utilization rate by advance reservation. All the above
mentioned works didn’t consider a differentiated policy for workload which will lead to
maximization of resource utilization.

3 Problem Formulation

The problem of job scheduling in a cloud environment essentially consists of a
dynamic set of j independent tasks to be scheduled on set of n computational nodes

34 S. Loganathan and S. Mukherjee

located in m datacentres (resources pool). In general the requests are handled by a
resource manager which takes the request and sends to the dispatcher. The dispatcher
dispatches the request in first come first serve mode for renting the capacities of a
resource. To get a guaranteed service in a private IaaS Cloud where the capacity is
limited we propose to include advanced reservation technique in this model. Here we
have considered three different modes of renting the computing capacities as follows:

[0 Advance Reservation (AR- mode): Resources are reserved in advance. They
must be made available at the specified time.

[J Immediate (I-mode): When a client submits a request, based on the resource
availability, either the required resources are provisioned immediately, or the
request is rejected.

[J Best effort (BE-mode): Jobs are kept in a queue and resources are provided
when available. It can be batch jobs also.

The best-effort jobs are preemptable and they do not have any time constraints.
Immediate and advance reservation jobs are non-preemptable and have time
constraints, such as start time and end time. It will preempt best-effort mode
whenever the resources are required for advance reservation or immediate mode.
There is no guarantee that a submitted best-effort mode will get resources for
completion within a certain time limit. We assumed that best-effort jobs are splittable,
all jobs are independent and the scheduling algorithm assumes that there is no
communication among jobs.

To identify the mode of the job, request is described as (JobID, UserID, N, M, D,
B, timestamp, ST, FT),where N is number of CPUs, M is memory in megabytes, D is
disk space in megabytes and B is the network bandwidth in megabytes per second,
timestamp contains date, month, year, time. ST is start time and FT is finish time. For
I-mode the request has information about current date, time, how long the execution
lasts, but not the start time of execution. For BE-mode the request has information
about how long the execution lasts, but not the start time of execution and date. For
AR mode the request includes date, start time, finish time. The proposed architecture
is shown in Fig. 1. Incoming jobs are placed in 3 different queues based on their
arrival pattern by the CMS (Cloud Management System) and sent to the different
datacentre. For an AR- mode the required capacity of the service request (say i mips)
is calculated aperiori from their request and datacentre for that is assigned by the
CMS Hence the immediate request is sent to the datacentre of ((m* pj) -i) mips by
the CMS where p; is the processing capacity of a datacentre. This assures the
guaranteed service for the AR- mode jobs.

CMS continuously monitors the capacity utilized by the datacentres and keep
checking for any rejection on the AR-mode. If any job is not taken at prescribed time
of AR- mode the capacity allotted for that is taken for the current I- mode jobs. Local
schedulers know the current status of VMs in their own datacentre. These schedulers
communicate with CMS and pass the message regarding the processing of jobs and
availed resources. CMS calculates the remaining capacity and based on this, further

Differentiated Policy Based Job Scheduling with Queue Model 35

Cloud
Request

Cloud Management < Job queue
System(CMS) !

Local [IELLT T:] IEL 1 IRPEEY

Scheduler
\l/ Backfills N
\l/ Datacentre C

Datacentre B

Datacentre A

Fig. 1. Overview of the Scheduling Process

admits or rejects incoming I-mode request. Jobs with BE-mode are kept in a separate
queue to process later or during the idle time of the resources.

4 System Model

We propose a queuing model namely ADQ model. In this model we considered
different queue groups of service-requests in the cloud computing environment as
M/G/S queue, and all the queues together make a queuing network, thus applying
multiple server queuing system [13] for this model. Each resource in a data centre is

Table 1. Parameters considered for the queuing system model

Model
Parameter Definition
Ci Capacity of datacentre (Data Centre)
Expressed as) P; of hosts in single datacentre.
Ts Service time taken by a single request.
TT, Total Service time taken by the request
A Mean arrival rate of the request.
Wi Total service time taken by the request in each queue+ waiting
time in the queue.

36 S. Loganathan and S. Mukherjee

characterized by processing capacity pj and processing availability aj. Both pj and aj
are related to the resource capacity as regards its current availability (i.e. service time,
waiting time) which are sufficient to process the job in each datacentre. Table I shows
the parameters used in this model. We define three queues as QAD- Queue with AR-
mode request, QIM- Queue with [-mode request, and QB- Queue with BE-mode Jobs
to keep job requests.

We define the ADQ model as follows:

a. Every user must submit a request to the cloud management system. Broker in
the cloud manager breaks the jobs into three queues based on the request
pattern.

b. Requests arrival pattern: The user‘s request arrivals occur randomly
according to a Poisson distribution with A arrivals per unit time.

c. Queue behavior: Request is selected from one of the three queues based on
the available capacity of each datacentre and total estimated time to process a
request.

Di= (DLi - CTi) (1)

Where DLi =Deadline given by ith request, CTi =Current time. Di=Delay threshold
for request.

Ci=X{ Xt Di 2

Where m is the no.of datacentre, n is the number of host in a single datacentre.

TTs= Y0, Ts 3)

Where TTs is total service time required by requests in each queue.

To allocate BE-mode and I-mode request CMS calculates the service time Ts
required completing the request and the availability of resources. For these job
requests, if delay threshold is tolerable then it is kept in the queue otherwise rejected
if the resources are not free. TTs are calculated to backfill the BE-mode jobs to
allocate resources during its idle time. Di is used to allocate the resource on reserved
datacentre for other mode request when it is not utilized by the advanced reservation
request. If Di greater other than of Immediate mode request‘s service time then that
IM request is allotted in reserved datacentre to execute before AD request.Otherwise
not allocated in reserved datacentre.

5 Simulation and Results

In our model, we used CloudSim [14] to simulate our proposed technique. Cloudsim
used to perform this as a single simulation where all jobs are submitted as cloudlets to
the broker. In general CloudSim toolkit supports First Come First Serve (FCFS) for
scheduling jobs with single queue. We used this as our baseline to compare our
proposed model. We extended the CloudSim to support our proposed model as having

Differentiated Policy Based Job Scheduling with Queue Model 37

a single cloud with group of 6 datacentres. We fixed the number of processors
elements to 2, the number of virtual machines with 2, the number of Cloudlet with 4
per user and we varied the number of the users from 5 to 15 per step of 5 of each
mode of job request. As CMS cannot have a control over the resources at a datacentre
and the full set of jobs submitted to the resources, we implemented a low-level local
scheduler to perform efficient job scheduling in cloud environment. In CloudSim,
Datacentre Broker component randomly selects the datacentre irrespective of their
heterogeneity in hardware; we have proposed a CMS that selects the datacentre, based
on user defined QoS specifications given as (JobID, UserID, N, M, D, B, timestamp,
ST, FT) and splits that job request as any one of the queue as QAD,QIM,QB. Broker
component is used to identify the request into three groups by the date timestamp
introduced in the request for advanced reservation. CIS (Cloud Information Service)
is used to get available resource information, resource utilization and used to make
the decision of request execution.

Fig. 2 shows that in the proposed algorithm, the reserved jobs have success rate
almost 99.9%, which shows the QoS of guaranteed service. Fig. 3 shows the
comparison of traditional algorithm FCFS and proposed algorithm. In FCFES success
rate decreases as number of jobs increases. This indicates no guaranteed service for
needy jobs and all requests are consider as same and put on a single queue and no
guarantee is assigned to any job.

If the system is flooded with lots of advance reservation and immediate jobs then
best effort jobs will not have enough resources to run on. In order to avoid this there
will be admission control through (UserID, JobID) is provided to CMS for the user.

100 100

95 80

70
90 50 Q—%
50

10AD

Successrate
Success rate

0 N ——FCFS
A J

L [ol]

M 30 =-ADQ
80 . 20

75 0
5 10 15 5 10 15 2 25 30 35 40 45

Number of jobs Number of Johs

Fig. 2. Success rate of ADQ algorithm Fig. 3. Success rate of ADQ algorithm and
FCFS

6 Conclusion and Future Work

The recent efforts to design and develop cloud technologies focuses on defining novel
methods, policies and mechanisms for efficiently managing cloud infrastructures.

38 S. Loganathan and S. Mukherjee

We have used advanced reservation technique by keeping different queues for jobs
arriving in a private cloud. We studied the performance of this proposed approach
from a point of view of enhancing the QoS by giving guaranteed service. This
approach with the proposed cloud architecture has achieved very high (99%) service
completion rate with guaranteed QoS for the reserved jobs over the traditional
scheduling policy which does not consider any priority [FCFS] for incoming jobs. An
algorithm can be developed to enhance the response time of best-effort jobs. The
backfilling algorithm proposed is not implemented and tested and it can be considered
as a part of future work. We are planning to extend this model where resources can be
hired from other clouds (public, private) when need arises (at the times of peak load).
This will help us to attain100% guaranteed service to all requests by employing multi
agent system to negotiate between the clouds.

Acknowledgment. This research is supported by Anna Centenary Research
Fellowship from Anna University, Chennai, India.

References

1. Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: Evaluation of Job-
Scheduling Strategies for Grid Computing. In: Buyya, R., Baker, M. (eds.) GRID 2000.
LNCS, vol. 1971, pp. 191-202. Springer, Heidelberg (2000)

2. Buyya, R., Yeo, C.S., Venugopal, S.: Market-Oriented Cloud Computing: Vision, Hype,
and Reality for Delivering, IT Services as Computing Utilities. In: The 10th IEEE
International Conference on High Performance Computing and Communications,
pp. 5-13. IEEE Computer Society (2008)

3. Sotomayor, B., Montro, R., Llorente, I., Foster, I.: An open Source Solution for Virtual
Infrastructure management in Private and Hybrid Clouds. IEEE Internet Computing, 5-8
(2009)

4. Sotiriadis, S., Bessis, N., Antonopoulos, N.: Towards inter-cloud schedulers: A survey of
meta-scheduling approaches. In: International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing, pp. 59-66 (2011)

5. Doelitzscher, F., Sulistio, A., Reich, C., Kuijs, H., Wolf, D.: Private Cloud for
Collaboration and e-Learning Services: from laaS to SaaS, vol. 91(1), pp. 1-20. Springer
(2011)

6. Shyamala, L., Mukherjee, S.: EduCloud: An institutional cloud with optimal scheduling
policies. In: Krishna, P.V., Babu, M.R., Ariwa, E. (eds.) ObCom 2011, Part 1. CCIS,
vol. 269, pp. 114-123. Springer, Heidelberg (2012)

7. Gao, N., Hong, J.: A Resource Reservation Algorithm with Muti-parameters. In:
CHINAGRID 2011, pp. 211-214. IEEE Computer Society, Washington (2011)

8. Farooq, U., Majumdar, S., Parsons, E.-W.: Efficiently Scheduling Advanced Reservations
in Grids. Techical report, SCE-0514, Dept. of Systems & Computer Engineering, Carleton
University, Ottawa, pp. 1-9 (2005)

9. Smith, W., Foster, 1., Taylor, V.: Schedulling with Advanced Reservations. In: [IEEE/ACM
Proceedings of CCGrid 2000 (2000)

10. Sabitha Rani, B.S., Venkatesan, R., Ramalakshmi, R.: Resource reservation in grid
computing environments: Design issues. In: ICECT 2011, pp. 66-70 (2011)

11.

12.

13.
14.

Differentiated Policy Based Job Scheduling with Queue Model 39

Cao, J., Zimmermann, F.: Queue scheduling and advance reservations with COSY. In:
Proceedings of the 18th International Parallel and Distributed Processing Symposium
(IPDPS 2004), p. 63a (2004)

Kaushik, N.R., Figueira, S.M., Chiappari, S.A.: Flexible time-windows for advance
reservation scheduling. In: Proceedings of International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS
2006), pp- 218-225. IEEE Computer Society (2006)

Lu, C.: Queue Theory, Beijing YouDian Publish House (2007)

Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and Simulation of Scalable Cloud
Computing Environments and the CloudSim Toolkit: Challenges and Opportunities.
Keynote, High Performance Computing and Simulation (HPCS 2009) Conference,
pp. 1-11 (2009)

Scaling Out Recommender System
for Digital Libraries with MapReduce

Lun-Chi Chen’, Ping-Jen Kuo, I-En Liao, and Jyun-Yao Huang

Department of Computer Science and Engineering
National Chung-Hsing University, Taichung, Taiwan
{lunchi0l124,allen50lpc}E@gmail.com,
{s99056001,ieliao}@nchu.edu. tw

Abstract. Recommender system can help users to effectively identify interested
items from a potentially overwhelming huge collection of items, and it has been
shown to be very useful in many e-commerce applications. Collaborative filtering
(CF), which assumes that similar users may have similar tastes, is one of the most
widely used Recommender system techniques. However, one of the major
weaknesses for the CF mechanism is the computational cost in computing
pairwise similarity of users. This paper attempts to tackle the computational
problem of all pairs similarity using the MapReduce technique in the Hadoop
framework. We give an overview of our development on using a parallel filtering
algorithm to improve the performance of a personal ontology based recommender
system for digital library. The experimental results show that the proposed
algorithm can indeed scale out the recommender systems for all pairs search.

1 Introduction

Libraries collect a large volume of media including books, films, newspapers, and so on.
Traditionally, libraries codify all their collections hierarchically, and try to help users
query and find the physical locations of books based on codifications. Users need to be
well-trained to submit correct keywords for cross-discipline or multi-dimensional surveys.

Recently, libraries have begun to provide recommender services to improve user
satisfaction. Most library recommender services use a collaborative filtering
technology to suggest books to users. It assumes that those who preferred something in
the past tend to prefer the same thing again in the future [1]. That is, when a user gives
feedback, the recommender service suggests items for the user that like-minded users
preferred in the past. Collaborative filtering requires explicit information to describe
user profiles. Like-minded users will have similar profiles, and their previous rating for
each book will be used to compute the rate of suggested items [2]. Unfortunately, it is
difficult to collect such explicit information for library systems. Users are usually not
interested in giving ratings when they loan books and are asked to rate books, so the
collaborative filtering recommender system is not easy to implement in digital
libraries.

* Corresponding author.

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 40-§7] 2013.
© Springer-Verlag Berlin Heidelberg 2013

Scaling Out Recommender System for Digital Libraries with MapReduce 41

During the last few years, a personal ontology-based recommender system has
been applied in many diverse application domains [3]. Liao et al. incorporate
collaborative filtering techniques with a personal ontology model for digital libraries
to recommend English sources and solve the problem of making effective
recommendations for users [4]. Also, they propose that implicit ratings can be
inferred from the loan records because keywords extracted from the user’s loan
records indicate the preferences of user. This methodology proposed by Liao et al. has
been implemented and this system called the personal ontology recommender (PORE)
system [5]. This kind of recommendation method is effective for extracting potential
preferences but it has a long runtime for each recommendation phase. To solve the
time-consumption problem of the digital library recommendation system, much
research adopts parallel computing such as MapReduce. MapReduce, designed in a
parallel computing model, has been proposed by Google to process massive amounts
of data. It has been proven that MapReduce is highly scalable, efficient, and reliable
in big data computing [6]. However, these studies only focus on how deal with
parallel programming; they don't integrate the characteristics of parallel computing
and the data of a personal ontology.

To improve performance in computing personal ontology similarity in a library
recommender system, we use a parallel filtering algorithm based on the characteristics
of parallel computing and a personal ontology. The workflow of a parallel filtering
algorithm is a two-phase MapReduce job to find no like-minded users and compute the
similarity between like-minded users. To demonstrate the feasibility of the proposed
method, we implement a library recommender system based on PORE. This research
provides an alternative solution to create a more efficient library recommender system.

In section 2, this paper will introduce a related recommender system and
MapReduce application. Section 3 describes our design concepts and the system.
Section 4 shows the results of the implementation of our methodology. Finally,
section 5 presents conclusions and future research directions.

2 Related Work

MapReduce is a programming model and an associated implement for processing and
generating large datasets. MapReduce provides an abstraction that involves the
programmer defining a mapper and a reducer function. A brute force approach is
usually used in large collections with MapReduce [7]. A MapReduce implementation
of the inverted index approach was presented by Elsayed et al. [8]. The proposed
algorithm consists of two consecutive MapReduce jobs. The first job is to group the
keywords as key, and a value consisting of the document ID and the term weight. The
second job is to pair documents on the basis of a keyword in the map function and
compute similarity in the reduce function , as follows:

Indexing. Given a document d;, for each term, the mapper emits the term as the key,
and a tuple consisting of the document ID and weight as the value. MapReduce
groups these tuples in the shuffle phase, and then passes these inverted index lists to
the reducers. The reducer accepts them and writes out to disk.

42 L.-C. Chen et al.

map : fodgd — e 40, de[eldd | dil2] = 1]

reduce : {t.- [{:adf[ﬂ}.’ Qad_i'[ﬂ}.' |||]} —_ [{t.- [{l’aﬂ{[ﬂ}.’ E:_,f.-'d-i'[ﬂ}.- |||]}j

Similarity. given the inverted list of term ¢, the mapper generates key tuples
corresponding to every pair of document IDs and produces the contribution
o = d;[t] - d;[t] as its value. For any document pair, the shuffle phase provides a
reducer with the contributions list W from the various terms, which only need to be
summed up.

{t-'[{:Jdi[ﬂ}fﬂjfdj[ﬂ}-'“l]} —_ [{{I’.-_i}.-w=ti1;[ﬂ'ﬁ_;[ﬂ} |:’=_ﬂ

map

reduce : {1, W =Lugmwyld — Mpholdud) =D wil

oA

3 Computing Personal Ontology Similarity Using a Parallel
Filtering Algorithm

In the following, we describe two approaches used to scale out the pairwise similarity
comparison for all users’ personal ontologies using the MapReduce technique in the
PORE. The first approach, called Brute Force, is an intuitive sense of how the
pairwise similarity comparison works in PORE. For brute force, we implement the
pairwise ontology similarity algorithm of PORE using MapReduce framework. The
second approach, called parallel filtering, is a parallel filtering algorithm that exploits
an inverted index.

3.1 Personal Ontology Recommender System

The PORE system uses reference ontology to build a personal ontology for each user
by mining the user’s loan records. Dewey Decimal Classification (DDC) is used as
the reference ontology to recommend English collections, and the Classification
Scheme for Chinese Libraries (CCL) is used to recommend Chinese collections.
Interested categories and keywords are two major impact factors as the personal
preferences, and are used to build the personal ontology.

Interested Categories. The PORE system identifies the favorite categories by
analyzing a user’s loan records and loan times. The favorite value of category i for a
user, denoted as Fi, is as follows:

m

1 ..
F = z(aij X (E)(}_l)) (D

j=1

Let a;; denote the frequency of loaned items in category i.

Scaling Out Recommender System for Digital Libraries with MapReduce 43

Interested Keywords. After building the personal ontology of a user, interested
keywords can be found in each favorite category. The interest level of keyword j in
the category i for a user can be estimated by Equation (2), where b;; denotes the
frequency of keyword j that appears in the category i of the loan records of a user.
The distinctness level of keyword j in this specific category, denoted as W;;, considers
that each keyword should be given different weights in different categories. Details of
the formula W;; are given in [5].

Iij = bl] X Wl] (2)

After building the personal ontology, the PORE system can compute the cosine-based
similarity between users and then select the most similar users as the like-minded
users. The similarity between user A and B, sim(A, B), is measured with Equation (3),
where ksim; and ssim; are the keyword similarity and structural similarity,
respectively, in the category i between them. Let Ojand Ogdenote the ontology of
user A and B, respectively. The union of the personal ontology for user A and B is
denoted as C.

sim(0,4, 0g) = Yicc((1 — a)ksim;(A, B) + a ssim;(4, B)) 3)

The keyword similarity and structural similarity between user A and B are measured
with Equation (4) and Equation (5), respectively, where K is the union of the
keywords in the category i between A and B, and N; is the union of the specific
category i and its sub categories.

ZjEK 1;;(A) X I;;(B)

\/Zjeklii(A)z X\/szKIij(B)Z

kSimi(A, B) = (4)

Zjezvi I;;(4) X I;;(B)
[T el @?x [2 0,107
For finding like-minded users, the pairwise similarity comparison for all users is a

large scale problem. This paper uses a parallel filtering algorithm based on the
characteristics of parallel computing and a personal ontology in the Hadoop.

SSimi(A, B) == (5)

3.2 MapReduce Brute Force

Measuring similarities between users’ personal ontologies is an all pairs problem. The
pair set is like a NxN symmetric matrix where N is the number of users. To improve the
large-scale computing problem of the brute force approach, we only compute the upper-
triangular part of the all-pairs matrix and write out both symmetric pairs. The map
function emits the personal ontology similarity of every pair. The reduce function sorts
the similarities to find out the top K of like-minded users for a particular user.

44 L.-C. Chen et al.

Each map function picks candidate pairs based on the upper-triangular part and
computes the similarity score of candidate pairs with a particular user. The map
function emits the symmetric user pairs after completing similarity computing. The
reduce function accepts all similarity scores associated with a particular user ID and
emits the top K results as the output by implementing a priority queue to sort
similarity scores. The function ComputeSimilarity of the map function consists of
keyword similarity and structural similarity.

To optimize the brute force approach we tune the number of users for one map
task. That is, every map task reads at least one user from the input data. We use this
method in our experiment.

3.3 MapReduce Parallel Filtering

For pairwise similarity computations of PORE on the personal ontologies, we propose
the parallel filtering algorithm for evaluating all pairs that have one more preference
in common with the inverted index.

The parallel filtering algorithm can be expressed as two modes: keyword similarity
and structural similarity. The process of keyword similarity is different from the
process of structural similarity because the hierarchical structure of the reference
ontology affects the computation in the structural similarity. In the following we
describe both modes in detail.

3.3.1 Keyword Similarity

The basic idea is to use an inverted index to filter the pairs without any interested
keyword in common. The pseudocode for building an inverted list using MapReduce
is shown in Fig. 1.

1 procedure Map (*,U,)

2 C e+ FetchCategorySet (U,)

3 for all £t € C do

4 K e« FetchKeywordSet(t,U,)

5 for all e € K do

6. s ¢ FetchKeywordLevel (e, U,)

7 ck o <t,e>

8 Emit (ck, <U,, s>)

1 procedure Reduce (ck, [<U,, s,>,<U,, s,>,..1)
2 Define ArraylList G

3 for all <U, s> £ [<U,,s,>,<U,, s,>,..] do

Fig. 1. Pseudocode of building an inverted list for the keyword similarity of the PORE using
MapReduce

In the process of keyword similarity this can be expressed as two separate
MapReduce jobs, the first to build an inverted index and the second to compute
similarities. For each interested keyword in the personal ontology, the mapper emits

Scaling Out Recommender System for Digital Libraries with MapReduce 45

the set of category and keyword as the key, and a tuple consisting of the user ID and
interested level of the keyword as the value. i.e. <U;, s>. These tuples are grouped by
the set in the shuffle phase. The reducer writes them to generate the inverted lists.

3.3.2 Structural Similarity

For the structural similarity of PORE, the relationship between a category and its sub-
categories is considered to be the level of structural similarity.

According to Equation 5, whether the category nodes of both personal ontologies
are the same affects their structural similarity, because PORE adopts cosine-based
similarity to compute structural similarity. Fig. 2 shows that we can first merge
ontologies of two users by matching the reference ontology and then computing its
similarity. For example, for category 312 of user A and category 312.6 of user B,
category 312 and category 312.6 are of the parent-child relationship, although their
IDs are different. Finally, the structural similarity between user A and user B is SS; +
SS, when ontologies are merged.

Therefore, we use a hybrid method to scale out the structural similarity of PORE.
The first step is to use an inverted index to filter out the pairs that are without any
interested categories in common as shown in Fig. 3.

4 8

L

Fig. 2. Computing structural similarity by merging the ontologies of both user A and B in
PORE

1 procedure Map (*,U,)

2 C e« FetchCategorySet (U,)
3 for all £t € C do

4. Emit(t,U,)

1. procedure Reduce(t, [U,,U,,..])
2 for all U, € [U,U,,..] do
3 Emit (t, U,)

Fig. 3. Pseudocode of the inverted index for the structural similarity of the PORE using
MapReduce

46 L.-C. Chen et al.

The second step is to apply the third user-defined MapReduce job to all the pairs
generated through parallel computing as shown in Fig. 4.

procedure Map (t, U;)
for all U; € [U;, Uz, ..] do
if U; !'= U; then
P <UilUj>
Emit (P, NULL)
procedure Reduce([P;, P,,..],NULL)
for all <U;,U;>» € P do
Emit (*,<U;, U;>)

WN P U WN R

Fig. 4. Pseudocode of pairwise users for the structural similarity of the PORE using
MapReduce

4 Experimental Results

Experiments were run on a cluster with 16 machines. Each machine had one quad-
core processor (2.4 GHz), 8GB memory, and two hard disks of 1.5TB as HDFS and
about 640GB as MapReduce temporary. We improve the existing PORE system for
pairwise personal ontology similarity. In June 2012 we collected 206,012 books with
approximately 1,357,000 keywords, 51,454 user accounts, and 663,619 loan records
from National Chung Hsing University (NCHU). We retrieved 10,000 user accounts
from the dataset as experimental data to implement the proposed algorithm, and
utilized the same dataset to compare against an equivalent run on a laptop with a dual-
core 2.4GB processor, 4GB memory, and a 500GB hard disk.

The computation time of the parallel filtering algorithm consists of keyword
similarity and structural similarity that can be run in parallel. Therefore, we chose the

—e—Standalone

| —=—Brute Force
Parallel Filtering #ksim
1 —=—Parallel Filtering #ssim

binary logarithm of running time{minutes)
5 - 1%}

00 2000 10000
number of personal ontologies

Fig. 5. Computation time of the algorithms for the PORE system

Scaling Out Recommender System for Digital Libraries with MapReduce 47

maximum computation time for these as the computation time of the parallel filtering
algorithm. Fig. 5 shows that the process with standalone for 2000 users is completed
in approximately 1260 minutes.

Computing similarity is very effective using MapReduce. This means that parallel
computing is effective for the all pairs problem. The algorithm, parallel filtering, is
more effective than the brute force approach when the number of users is 10,000. We
need one more day to estimate the recommended information in the original library
recommender system. However, the system can only take several hours for
recommendation using our proposed algorithm.

5 Conclusions and Future Work

Finding like-minded users in a digital library is an all pairs problem and is also
challenging for large collections of items. We investigate the problem of all pairs for
personal ontology and introduction two MapReduce algorithms: brute force and
parallel filtering. The parallel filtering algorithm, consisting of keyword similarity and
structural similarity, is based on the inverted index approach using MapReduce. Also,
we implement this algorithm in the PORE system.

Experimental results show that the parallel filtering algorithm is more effective,
and solves the problems of finding like-minded users and the personal ontology
comparison using MapReduce.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A
Survey of the State-of-the-Art and Possible Extensions. IEEE TKDE, 734-749 (2005)

2. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference on World
Wide Web, pp. 285-295 (2001)

3. Avancini, H., Candela, L., Straccia, U.: Recommenders in a personalized, collaborative
digital library environment. Journal of Intelligent Information Systems 28(3), 253-283(31)
(2007)

4. Liao, L.-E., Liao, S.-C., Kao, K.-F., Harn, I.-F.: A Personal Ontology Model for Library
Recommendation System. In: Sugimoto, S., Hunter, J., Rauber, A., Morishima, A. (eds.)
ICADL 2006. LNCS, vol. 4312, pp. 173-182. Springer, Heidelberg (2006)

5. Liao, L.-E., Hsu, W.-C., Cheng, M.-S., Chen, L.-P.: A library recommender system based on
a personal ontology model and collaborative filtering technique for English collections. The
Electronic Library 28(3), 386—400 (2010)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. ACM
Communication 51(1), 107-113 (2008)

7. Lin, J.J.: Brute force and indexed approaches to pairwise document similarity comparisons
with MapReduce. In: SIGIR 2009, pp. 155-162 (2009)

8. Elsayed, T., Lin, J., Oard, D.W.: Pairwise Document Similarity in Large Collections with
MapReduce. In: Proc. HLT, pp. 265-268 (2008)

Layering of the Provenance Data
for Cloud Computing

Muhammad Imran and Helmut Hlavacs

Research Group Entertainment Computing, University of Vienna, Wien, Austria
imran.mm7@gmail.com,
helmut.hlavacs@univie.ac.at

Abstract. With the recent advancements in distributed systems, Cloud
computing has emerged as a model for enabling convenient, on-demand
network access to a shared resource pool of configurable elements such
as (networks, servers, storage, applications, and services). Various appli-
cations are developed and deployed into the Cloud following the layered
architecture. The layered approach includes infrastructure, virtualiza-
tion, application, platform and client tiers. Provenance (the meta-data),
is the information that helps cloud providers and users to determine the
derivation history of a data product, starting from its origin. Each layer
in the Cloud has its own provenance data and generally, provenance data
for each layer address different audience. For example, Cloud providers
are interested in the infrastructure provenance data to verify the high
utilization of resources through audit trials. Cloud users on the other
hand are interested in the performance of the deployed application and
the verification of experiments. In this paper, we present various queries
regarding the provenance data for different layers of Cloud. Hereby, we
integrate the provenance data from individual layers and highlight the
importance of integrated provenance. We also outline the relationship
between various layers of the Cloud by using the integrated provenance.

1 Introduction

Cloud computing is generally defined by its distributed model of utility comput-
ing which offers virtualization of resources (storage, computation, networking)
and provisioned to users “on demand” and “pay as you go” basis. This new
paradigm attracted the research community and businesses to host and execute
their complex scientific applications [1, 12]. In this model, applications are de-
ployed and executed by using the type of service offered in the Cloud. These
services reside on various layers or tiers of the Cloud architecture. For instance,
Cloud providers are interested in the IaaS (Infrastructure as a Service) A 1ayer
of the Cloud, which supports virtualization of resources to enable computation,
storage and communication. These resources are utilized by Cloud applications
e.g., getting email [or for sharing documents, often termed as SaaS (Software
as a Service). To fill the gap between IaaS and SaaS, the PaaS (Platform as a

! lhttp://aws.amazon.com/swf/| 2 [www.eucalyptus.com ° [www.gmail.com

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 48-p8] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://aws.amazon.com/swf/
www.eucalyptus.com
www.gmail.com

Layering of the Provenance Data for Cloud Computing 49

Service) layer is used by developers to customize and easily develop, deploy and
manage Cloud-aware applications e.g. salseforce.com H, wso20 and/or provid-
ing Enterprise Service Bus (ESB) [as a service.

Provenance is the metadata which describes the derivation history of an ob-
ject. This data includes the source and intermediate datasets and processes in-
volved to create the object [3]. In computing science, provenance is an important
ingredient for the verification and reproduction |4, 5] of scientific experiments.
The architecture of Cloud computing is divided into various components and
these components are placed on top of each other |G]. IaaS, PaaS and SaaS are
the types or layers which are mostly used in the Cloud environment. The develop-
ment and execution of Cloud-aware applications follow this layered architecture
and each layer contributes specific metadata (provenance) for the overall applica-
tion. Subsequently each layer in the Cloud has its own provenance and specific
importance to that particular layer. For example, the provenance data at the
TaaS layer is important to the Cloud provider for resources utilization and fault
tracking |7]. Cloud users (research community) are more interested in the execu-
tion of their deployed applications; the datasets which are produced/consumed,
and the processes used for the production of the result.

Moreover, the provenance collection at individual layers e.g., for TaaS it can
ensures the appropriate allocation and usage of the resources. Similarly, in case of
faults and errors appropriate actions can be taken to resolve them accordingly by
using the provenance |§]. When provenance is integrated from individual layers,
it provides the in-depth details of the relationships which exist among various
layers of the Cloud while executing a particular application. The integrated
provenance data provides multiple views and enables Cloud providers to keep
track of their resource usage, application and service collaboration for users and
deployment/testing usage for developers.

For understanding the Cloud layered approach and the overall provenance
data at each layer, in this paper we have developed a Content Relationship
Management (CRM) application. With this particular CRM application, we dif-
ferentiate between various layers of Cloud and their corresponding provenance
data. We provide detail of the CRM application and its various parts from the
users perspective, the Cloud provider and application developer. Following are
the key contributions of this paper:

— to provide an overview of the Cloud layered technology and the presentation
of provenance data for each layer.

— to present various queries and their visualization for the individual layers of
the Cloud and for the collective provenance data.

— to highlight the importance of integrated provenance using an example.

— to evaluate the overhead for provenance collection at individual layers.

The rest of the paper is organized as follows. Section 2] provides the related work
of provenance in the field of e-Science. Section [3 discusses the requirements
for building a CRM application in the Cloud and its individual components.

4 www.salesforce.coml ° [www.wso2.com © http://www.mulesoft.org/

www.salesforce.com
www.wso2.com
http://www.mulesoft.org/

50 M. Imran and H. Hlavacs

Section @ provides a brief overview of layers in Cloud computing and Section
present the various quires for the provenance data on individual layers, their visu-
alization and discusses the importance of integrated provenance data. Section
evaluate the collection of provenance data from different layers and section [1]
concludes this paper.

2 Related Work

Application level provenance has been the major attraction in grid, distributed
and workflow computing [5]. The techniques used in these environments are
to capture provenance in Service Oriented Architecture(SOA) e.g., PASOA [9].
Recently, the research community focused on the usage of provenance for Cloud
computing while describing and addressing the various challenges offered by this
new paradigm [10, [11].

Previously |12], we proposed a framework which addresses the various chal-
lenges offered by Cloud technology and present the mechanism to incorporate
the collection and storage of provenance for the Cloud IaaS. On the development
layer of the Cloud, e.g., in mule ESB and WSO2 carbon platforms, various parts
of application are integrated together that communicate based on different pro-
tocols and languages. Integration of provenance into the development layer will
clearly identify the current status of any application, changes made by different
developers of a group or team and information about the old and current version
of the services and applications. There are other work which consider provenance
at the layers like a web browser [13] and virtual machine [14].

To establish the importance of integrating provenance data from different
layers, Muniswamy Reddy et. al. [15] discussed the layering of provenance data
for workflow execution. However their work focused on combining the provenance
data from a workflow engine, web browser and the python wrapper by extending
the Provenance Aware Storage System (PASS) |16]. For Cloud environment, a
short survey about various techniques from Grid and distributed computing are
discussed to track the data in Cloud by using a layered architecture [17]. In this
paper, we extend our provenance framework [18] for the platform and software
layers of the Cloud.

3 Scenario Description (Components of CRM
Application)

In this scenario the objective is to automate the installation of a sample CRM
application. The sample CRM application consists of three main components
which are: 1) the web server 2) the database server and 3) the client application.
Component 1 is the web server where we have two different web services. Web
service 1 takes the data from the user and submit or sync it to the database
server. This sync can be performed either for one particular item e.g., contacts
or for over all data e.g., contacts, appointments and tasks. Web service 2 takes

Layering of the Provenance Data for Cloud Computing 51

the data from the server and sync it to the client application. Again, the sync
process is for one particular item or overall data.

Component 2 is the database server. It is mySQL database with various ta-
bles containing the information about an organization or a group e.g., contacts,
appointments and tasks. The contacts table contains first name, last name, job
title, group name etc. Appointments table contains information like place, time,
appointment with, number of people attending, topic and location. Tasks table
contains information like sender, receiver, title, subject, description etc.
Component 3 is the client application for a user to to see the tasks assigned to
him/her and list the appointments. This also includes, who assigned the tasks,
meetings and appointments time, members involved and location.

Summary: To link all these resources with each other, a script is required which
deploys the application on Cloud and host the various components. Such a scrip
will be passed to Cloud controller via user data. The end result would be a de-
ployment of CRM system. Figure [I] presents the steps involved in deployment
of such an application to the Cloud. We consider three resources to host web
services, database server and client application. Each installed components re-
quires some prerequisite and those need to be installed and configured. While
deploying CRM, we observe and provide the details of the various components
of Cloud and related provenance data.

Install pre-

User R1 (instance type: huge) ,‘ requisite(JAVA JDK)

. . . Install pre-
R2 (instance type: medlum)%{ reqU|S|te(JAVA JRE) ‘
R3 Install pre-
[% requisite(JAVA JRE)

Instance type: small

Install web-
server(tomcat)
I

Install database server
(mySQL)
1

Install axis2
suppon tomcat)

Deploy CRM

Create database
(Organ|zat|on)

‘ Deploy client application

Request for
resources —
(R1,R2,R3)

Deploy web service
(sync from database)

Appomtments Tasks)

Start database server

Start web server

‘ Run resource R3 ‘

‘ Deploy web service
(sync to database)
‘ Create tables (Contacts, ‘ ‘

Run resource R2
Run resource R1

Fig. 1. Steps involved in deployment of CRM application to Cloud

4 Cloud Layered Architecture

The Cloud architecture is perceived differently by various research community
and businesses |19, 120]. Mainly we consider the following layers/components.

— Infrastructure layer: provides physical and virtual resources for storage, com-
munication and computation e.g., Eucalyptus.

— Platform layer: provides tools and libraries to ease the development cost and
effort for building Cloud aware application e.g., WSO2.

52 M. Imran and H. Hlavacs

— Software layer: The applications which are provided by various organizations
to vast number or users e.g. web application (gmail).

Figure 2 presents the main components in Cloud computing from the view point
of a user, developer and Cloud resources provider. To connect the layers, there is
always a middle-ware in between. We collect the provenance data on that mid-
dleware level. Previously we explained the mechanism to collect TaaS provenance
data in |12] by using the interceptor mechanism and why such data is impor-
tant. For this work, we extend the same mechanism, guideline and architecture
of provenance towards PaaS and SaaS layers of Cloud computing.

User

CRM

Web Service
Cloud Applications User

Developer SaaS Email service(gmail) /—F’W
i} Infrastructure layer

Apache
Software layer
. Weather I

Cloud Software Developement
PaaS Tomcat

Q

Py
)
o
<
Programming é' dataset . s
Cloud Software Infrastructure }‘ (JAVA,ASP,PHP) 3 Service (url1) Computation
laaS = ~
WSO2 stratos z Weather P i >
@ . dataset? e
3 9 Service (url2) =y
Provider Eucalyptus 3 Process/es
OpenNebula Weather e

Service (url3) dataset? SO

L

Client
Application

Comon Communication Nimbus \ Infrastructure/
Fig. 2. Layered architecture of Cloud Fig. 3. Weather request from Cloud

4.1 Query and Visualization

The presentation of the collected provenance data is very important for users,
administrators and application developers in Cloud and it depends on the sub-
mitted query. For a particular query, we may analyze the provenance data of one
particular layer or integrated provenance. For example, when an administrator
submit the following query:

Visualize the instance types from clusterl, requested by various users where the
number of request are more than 100

This query requires the analysis of the infrastructure provenance. This prove-
nance data is stored in a well defined xml file where the nodes represent the
individual objects and the edges represent the relationship which exists in the
provenance data. The numbers of relationship varies for the submitted query.
For this particular query, the following relationships can be defined: i) request
of instances types for clusterl ii) relation of instances to various users iii) and
relation of users to the cluster and instances. For analysis of this query and defin-
ing the relation, we apply pull based mechanism for the extraction of data from
provenance. After the analysis of the submitted query and defining the relation-
ships, we present the results in the graph form. These graph can be changed on
run time and the results can be visualized in line, bar and pie forms.

Layering of the Provenance Data for Cloud Computing 53

5 Provenance and Cloud Layers

Following the layered architecture of Cloud, provenance is also divided into dif-
ferent layers. Each layer presents a different application domain for the usage of
provenance data. The sections below investigate the provenance data and various
queries which require individual and/or the integrated provenance.

5.1 TaaS Provenance and Queries

The infrastructure layer provides computational, storage and communication
resources for the application deployment and services execution. Various param-
eters are considered when defining provenance data for IaaS Cloud e.g., 1) types
of resources 2) types of instance 3) information about users 4) time taken by
users for instances 5) data submitted by users before running a resource 6) infor-
mation about cloud, clusters and node services. In the CRM application, these
parameters maps to user (admin), resource types (R1, R2, R3), instance types
(small, medium and huge), data (java jdk, tomcat, axis2 and mySQL versions).

Many applications can be defined depending on the granularity of the prove-
nance data e.g., 1) to use the provenance data for auditing the usage of resources
in Cloud. Provenance data can clearly mark the usage of resources from vari-
ous clusters and nodes according to time, users, and resources types. 2) to find
the similar requests in Cloud which are based on the instance types and user
data. These similarities define patterns and are used for the efficient utilization
of Cloud resources. The efficient utilization is achieved by reusing the existing
running resources and predicting the upcoming requests. 3) the provenance data
of various images is used for tracking malicious images uploaded in public Cloud
and managing the access rights to various images [21]. Following are few example
queries which can be generated for the Cloud infrastructure:

(i) visualize the instance types from last 24 hours (ii) visualize the standard
instances from last 48 hours (iii) visualize the memory request from last week
(iv) visualize the request for resources from most used to least used (v) list the
prerequisite (user data) from R1 (vi) list the deployment time for resource R1,
R2 and R3 (vii) validate the setup of CRM application.

The combination of the infrastructure provenance data with physical machine
provenance e.g., memory, CPU utilization and the disk usage can further elab-
orate the provenance query:

— visualize the disk and memory usage for the most requested resources type.

These queries provides the administrator with an overview of the resources usage,
instance types and data requested by users. Left side of the figure @ present the
memory requests for a particular cluster grouped for various users and right side
of the figure @ present the memory requests from various users in time by using
the visualization module. Due to limited space, we will not present visualization
of the provenance data for other layers.

54 M. Imran and H. Hlavacs

2500

Cluster 1

2000 - =&-Imran

1500 - —E=Ali

Alex
1000 -
=== Jimi

D 4 === Admin

Imran Al Alex Jimi Admin Time

Fig. 4. Memory requests for a Cluster from various users

5.2 PaaS Provenance and Queries

Platform layer in Cloud provides the functionality for the development of new
applications. This layer enables and manges the delivery of services that uses
various communication protocol e.g. HTTP, XML and SOAP etc. The designer
of these applications is responsible for assets availability and the management
of application services pool. For example, Cloud is a favorable environment in
stress testing, where a lot of resources are required just for a particular period
of time. For this work, we consider WSO2 platform and it’s various components.

WSO2 Carbon is the award winning PaaS and it provides many features to
developers for building Cloud aware applications e.g., Enterprise Service Bus
(ESB), Business Process management (BPM) and more. While developing ap-
plications using WSO2, the complex application is divided into various parts.
Members of a team/s work on different components of a complex application.
In the CRM application various parameters which are considered for the prove-
nance data of platform layer are: 1) composition of the web services 2) the inter-
action mechanism between web services, database and web service engine, that
is utilized by various protocols of communication 3) the interaction mechanism
between web services and client application 4) composition of the database and
corresponding tables and their structure. When one developer makes a change
in a web service, other members will be able to find that particular change using
the provenance data. Any change on platform layer e.g., uploading a new version
of the web service will create a new node in the provenance data and hence the
status will be updated. Some important queries on platform layer are following;:

(i) visualize the components of the application where most bugs are found
(ii) the identity of a person who made a change in CRM and the time when
the change was made (iii) display the changes made to web services in last one
month (CRM)

Consider a situation where the infrastructure is changed e.g, mySQL server
is updated. The updated version does not support the existing communication
mechanism with the deployed web services. This requires a change in the web
services at the platform layer. This relation which exists between platform and
infrastructure layer is exposed by integrating the provenance data from individ-
ual layers. The integrated provenance data and the corresponding relation will
highlight the reason for any communication failure.

Layering of the Provenance Data for Cloud Computing 55

5.3 SaaS Provenance and Queries

SaaS is the application running on a Cloud platform. Various types of applica-
tions are deployed and executed on Cloud e.g., workflow, CRM and web appli-
cations. The provenance data of this layer depends on the type of application.
In general, applications are deployed by using Service Oriented Architecture
(SOA) in distributed computing. The important provenance parameters in SOA
architecture and related queries are following:

(i) time taken by a particular application to generate the result (ii) time
taken by individual services and components of the application (iii) tracking the
dataset which are consumed and produced during the process (iv) information
about the users who are invoking the services (v) the query about services or
components taking part while executing the application e.g., services involved
in executing a workflow (vi) input and output parameters passed to a particular
service and/or method.

In the CRM application, the analysis of various events is an important aspect
for organizations. The provenance data about users, time, and events is used for
analysis and to get important informations like; the locations of the event, total
time for the event, members who joined the event, the organizers of the event
etc. There are other aspects of the provenance data for software layer e.g., trust,
reliability and authenticity.

Considering a situation where changes are made to the web services on plat-
form layer. This will require appropriate changes to the client application. If the
client application is not updated, any sync process from database to the client
application will result in failure. The provenance data from the client application
will highlight the failure. User can use the provenance chart to find the failure,
but it’s reason is not clear until we layer the provenance data from platform to
the software layer. Layering the provenance data will further explain the reason
of failure and related data for changes made on platform layer.

5.4 Advantage of Integrated Provenance Data

In the above sections, we deployed the CRM application into the Cloud environ-
ment. We collected the provenance data on individual layers, provided various
parameters, queries and the relations which exists between layers. Considering
the fact that Clouds are abstract and the various layers are hidden from the
user, we present the example in figure Bl Users request for the current weather
information using a particular city and country. The client application randomly
chooses one of the weather web services which are provided by different orga-
nizations. The selected service returns the current weather information. Since,
these services use different datasets for the calculation of the weather, the result
is not always the same. In scientific environment, it is important to know why
the results differs from each other.

Without layering: Each layer of provenance gives valuable information. The
software layers provides the provenance data for the selected web service and
methods. The platform provenance provides the information regarding the

56 M. Imran and H. Hlavacs

datasets which are consumed and the algorithm which is used for the calcu-
lation. The infrastructure layer provenance data gives information regarding the
Cloud provider and the location of the computation, storage, and communication
devices.

With layering: The integrated provenance data from software, platform and
infrastructure layer identifies the datasets which are used, the web service which
is consumed and information about the Cloud provider. These information pro-
vides the relation between various layers and hence highlight the reason that
why different results are not always the same.

6 Overhead Evaluation

The integrated solution of provenance into Cloud infrastructures particularly
for e-Science applications causes extra overhead of calculation and storage. The
calculation overhead is the extra time needed for the collection, parsing and
storage of the provenance data. In our experiments, the overhead is calculated
for the individual layers of Cloud using the CRM application. The calculation is
performed for the various components of the CRM application which correspond
to Cloud layers. At the infrastructure layer, we tested the eucalyptus Cloud
with node controller and cluster controller services. Platform layer is tested
with WSO2 application service and enterprise service bus. The software layer is
evaluated for the web services snyntodatabase and syncfromdatabase in CRM.

Table [presents the performance overhead of provenance from various com-
ponents in Cloud and CRM application. The maximum times are the excep-
tional cases and therefore average time was calculated from multiple runs (50)
of components and layers. The average time presents the overhead for collection,
parsing and storing of the provenance. Formula [Tl is used to calculate the over-
all overhead by summation of individual overhead from software, platform and
infrastructure layer.

Depending on the granularity and storage mechanism, time required for prove-
nance may slightly vary. The very low overhead explains the utility of our
provenance collection technique which follows the interceptor based approach
for collection and link based approach to store the data [12]. Given the overall
advantages of provenance, this extra overhead is negligible.

Total Overhead = i(S)z + zn:(P)z + zn:(l)z (1)
i=0 i=0

=0

7 Conclusions

In this paper we emphasis on the provenance data at the various layers of Cloud
infrastructures for the applications deployed there in. To achieve this, first, we
identified individual layers in Cloud computing and presented the related prove-
nance data for each layer. Then various queries were explored that could be an-
swered using the hierarchical architecture of Cloud and deployed applications.

Layering of the Provenance Data for Cloud Computing 57

Table 1. Calculation time overhead for provenance in milliseconds

Cloud layers Max time(ms) Min time(ms) Avg time(ms)
Software (CRM application) 18 2 7
Platform (WSO2 AS) 22 1

Platform (WSO2 ESB) 12 1 2.5
Infrastructure (Eucalyptus NC) 15 2 4
Infrastructure (Eucalyptus CC) 20 7 12
Combined 26 ms

These queries utilized the provenance of individual layer or the integrated prove-
nance data. Further, the identification of relations is provided which exists for
one particular layer or in the integrated provenance data. By exploiting the
Cloud architecture, we divided the provenance into various layers and presented
the mechanism to query and visualize different requests from the perspectives of
various stakeholders including users, developers and Cloud providers themselves.

References

[1]

2]

3]
[4]
[5]
[6]

[7

Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing
science on the cloud: The montage example (2008)

Vockler, J.S., Juve, G., Deelman, E., Rynge, M., Berriman, B.: Experiences us-
ing cloud computing for a scientific workflow application, pp. 15-24. ACM, USA
(2011)

Barga, R.S., Simmhan, Y.L., Chinthaka, E., Sahoo, S.S.: Jackson: Provenance for
scientific workflows towards reproducible research. IEEE Data Eng. Bull. (2010)
Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey. ACM
Comput. Surv. 37(1), 1-28 (2005)

Simmhan, Y.L., Plale, B., Gannon, D.: A Survey of Data Provenance Techniques.
Technical report, Computer Science Department, Indiana University (2005)
Armbrust, M., Fox, A. Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee:
Above the Clouds: A Berkeley View of Cloud Computing (2009)

Imran, M., Hlavacs, H.: Applications of provenance data for cloud infrastructure.
In: Eighth International Conference on Semantics, Knowledge and Grids (SKG),
pp. 16-23 (2012)

Crawl, D., Altintas, I.: A provenance-based fault tolerance mechanism for scientific
workflows. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272,
pp. 152-159. Springer, Heidelberg (2008)

Miles, S., Groth, P., Branco, M., Moreau, L.: The requirements of recording and
using provenance in e-Science experiments. Technical report (2005)
Muniswamy-Reddy, K.K., Seltzer, M.I.: Provenance as first class cloud data. Op-
erating Systems Review 43(4), 11-16 (2009)

Muniswamy-Reddy, K.K., Macko, P., Seltzer, M.: Provenance for the cloud. In:
FAST 2010, pp. 197-210. USENIX Association (2010)

Imran, M., Hlavacs, H.: Provenance in the cloud: Why and how? In: The Third
International Conference on Cloud Computing, GRIDs, and Virtualization, pp.
106-112 (2012)

58

[13]
[14]
[15]
[16]
[17]

[18]

[19]
[20]

21]

M. Imran and H. Hlavacs

Margo, D.W., Seltzer, M.I.: The case for browser provenance. In: Workshop on
the Theory and Practice of Provenance (2009)

Macko, P., Chiarini, M., Seltzer, M.: Collecting provenance via the xen hypervisor.
In: Workshop on the Theory and Practice of Provenance (2011)
Muniswamy-Reddy, K.K., Braun, U., Holland, D.A., Macko, P.: Maclean: Layering
in provenance systems. In: USENIX, USA (2009)

Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-
aware storage systems. In: USENIX, pp. 43-56 (2006)

Zhang, 0.Q., Kirchberg, M., Ko, R.K.L., Lee, B.S.: How to track your data: The
case for cloud computing provenance. In: CloudCom 2011, pp. 446-453 (2011)
Imran, M., Hlavacs, H.: Provenance framework for the cloud environment (iaas).
In: The Third International Conference on Cloud Computing, GRIDs, and Virtu-
alization (2012)

Youseff, L., Butrico, M., Da Silva, D.: Toward a Unified Ontology of Cloud Com-
puting. In: Grid Computing Environments Workshop, GCE 2008, pp. 1-10 (2008)
Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K.: The reservoir model
and architecture for open federated cloud computing (2009)

Wei, J., Zhang, X., Ammons, G., Bala, V., Ning, P.: Managing security of virtual
machine images in a cloud environment. In: CCSW, pp. 91-96. ACM (2009)

JCL: An OpenCL Programming Toolkit
for Heterogeneous Computing

Tyng-Yeu Liang and Yu-Jie Lin

Department of Electrical Engineering
National Kaohsiung University of Applied Sciences
lty@mail.ee.kuas.edu. tw,
jaredlin@hpds.ee.kuas.edu.tw

Abstract. In this paper, we propose a new OpenCL toolkit called JCL for hete-
rogeneous clusters. Using this toolkit, users can make use of multiple remote
heterogeneous processors including CPUs and GPUs for the execution of their
OpenCL programs. Since load balance is an important issue for the perfor-
mance of the user programs executed by heterogeneous processors, the
proposed toolkit provides users with a set of load-balancing functions to auto-
matically adjust the amount of data assigned to each processor according to
processor’s computation power. We have evaluated the performance of the pro-
posed toolkit in this paper. Our experimental result shows that the proposed
toolkit really can enable the test programs to effectively exploit heterogeneous
processors for enhancing their execution performance.

Keywords: heterogeneous cluster computing, GPU, OpenCL, load balance.

1 Introduction

Recently, NVidia and AMD have proposed their own general-purpose graphic
processing unit (GPGPU, simply called GPU [1] later) for scientific computing. Since
GPU has a high density of computational cores and consumes less energy per instruc-
tion, it is more powerful for data computation and is more helpful for energy saving
and carbon reduction than CPU. Accordingly, more and more cloud-service providers
such as Amazon and Google start to provide not only CPU but also GPU resources for
users to resolve data-intensive or massive-computation problems.

However, the proposed GPU programming toolkits such as CUDA [2] and Brook
[3] are very different from OpenMP [4] or Pthread [5], which are popularly used for
multi-core CPUs. This problem is a big barrier for simultaneously exploiting CPU and
GPU to resolve the same problem since programmers have to learn different pro-
gramming interfaces, and use them in the same program. Fortunately, Khronos Group
has proposed a standard called OpenCL[6] for resolving this problem. The OpenCL
programs can be executed by different processor architectures including CPU, GPU,
CELL [7], and FPGA [8] etc. Consequently, OpenCL successfully reduces the pro-
gramming complexity of heterogeneous processors. However, most of the implemen-
tations of OpenCL do not support cluster computing. When users intend to make use

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 59-f72] 2013.
© Springer-Verlag Berlin Heidelberg 2013

60 T.-Y. Liang and Y.-J. Lin

of cluster resources, they still need to combine OpenCL with MPI [9] in their pro-
grams to distribute data over loosely-coupled resources for concurrent computation.
This is not convenient for users to exploit the resources of heterogeneous clusters.

To resolve this problem, we propose an OpenCL programming toolkit called JCL
for heterogeneous cluster computing in this paper. With the support of JCL, users can
transparently make use of CPUs and GPUs available in computer networks for paral-
lel computation while they don’t know the location of resources. From the viewpoint
of users, they feel that their programs are executed on a computer with many
OpenCL-compatible devices since they don’t have to use MPI for data distribution
any more. Consequently, the programming of heterogeneous clusters can be effective-
ly simplified. Moreover, JCL supports load balance. That is, user programs can auto-
matically self-adjust their data partition by calling the load balancing functions of JCL
to achieve load balance among heterogeneous processors, and thereby enhance their
execution performance.

The rest of this paper is organized as follows. Section 2 is background of OpenCL.
Section 3 and Section 4 briefly describe the framework and implementation of JCL,
respectively. Section 5 discusses the performance of JCL. Section 6 compares JCL
with related programming toolkits. Finally, section 7 gives a short conclusion for this
paper and our future work.

2 Background

OpenCL is a standard proposed by Khronos for programming on heterogeneous pro-
cessor architecture. The user applications developed by using OpenCL can be ex-
ecuted with CPU, GPU and processors of other types. As a consequence, users need
not learn a particular programming toolkit dedicated for each type of processors. The
interfaces of OpenCL basically can be classified into platform layer and runtime
layer. The functions of the platform layer are used for platform control while the func-
tions of the runtime layer are used for executing kernel functions on the target device.
User programs usually use the functions listed in Table 1.

Table 1. OpenCL APIs

Query Platform clGetPlatformIDs()
clGetPlatformInfo()

Query Devices clGetDevicelDs()
clGetDevicelnfo()

Contexts clCreateContext()

Cc d Queues clCreateCommandQueue()

Memory Objects clCreateBuffer()

clEnqueueReadBuffer()
clEnqueueWriteBuffer()

Program Objects clCreateProgramWithSource()

clBuildProgram()

JCL: An OpenCL Programming Toolkit for Heterogeneous Computing 61

Table 1. (Continued)

Kernel Objects clCreateKernel()
clSetKernelArg()

Executing Kernels clEnqueueNDRangeKernel()

Event Objects clCreateUserEvent()

clSetUserEventStatus()
clWaitForEvents()

Here we give an example program of vector addition to briefly introduce the
OpenCL functions as shown in Fig.1 and Fig.2. Basically, this program is partitioned
into two parts: host and device. The host program is responsible for device allocation,
creation and submission of kernel functions, and data communication between the
host and the device. The device program is a kernel function executed by the device
for processing problem data pending in the device memory.

int mainQ)
{
/* Variable Declaration */
/* Allocate memory buffer & Initialize the buffer */

//The following function is OpenCL call

ciErr = clGetPlatformIDs(...);

ciErr = clGetDevicelDs(...); .
cXGPUContext = clCreateContext(...); _keme' V°|d VECtOI‘Add
cqCommandQueue = clCreateCommandQueue(...);

cmDevSrcA = clCreateBuffer(...);

cmDevSrcB = cICreateBuffer(..; —global const float 2,
cmDevDst = clCreateBuffer(...); _g|oba| const f|°at* b‘
cSourceCL = oclLoadProgSource(...);
cpProgram = clCreateProgramWithSource(...); _9|0ba| float* <
ciErr = clBuildProgram(...); int iNumElements
ckKernel = clCreateKernel(...);
ciErr = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&cmDevSrcA);)
ciErr = clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&cmDevSrcB); |
ciErr = clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&cmDevDst); v .
CiErr = clSetKernelArg(ckKernel, 3, sizeof(cl_int), (void*)&iNumElements); intiGID = get_global_id(0);
ciErr = clEnqueueWriteBuffer(...); HIH _ .
ciErr = clEnqueueWriteBuffer(...); If(IGID >= !NumEIerr]ents) return;
ciErr = clEnqueueNDRangeKernel(...); C[IGID] = a[IGID] + b[IGID],
ciErr = clEnqueueReadBuffer(...); }
}
Fig. 1. Host Code of VectorAdd Fig. 2. Kernel Code of VectorAdd

The execution of this program is described as follows. First, the host program que-
ries the platform information by clGetPlatformIDs(), and then obtains a device from
the platform by clGetDevicelDs(). Second, it creates a program context for executing
a kernel function with the device, and builds a command queue for sending com-
mands to the device. Third, it calls clCreateBuffer() to allocate device memory for
data communication between the host and the device, and invokes clLoadProg-
Source(), clCreateProgramWithSource() and clBuildProgram() to create the kernel
function. Forth, it calls clSetKernelArg() for setting the arguments of the Kernel func-
tion, and then it copies data from the host memory to the allocated device memory by
clEnqueueWriteBuffer(), and launches the kernel function into the device for
processing the problem data by clEnqueueNDRangeKernel(). Finally, it copies the
execution result from the device memory to the host memory by clEnqueueReadBuf-
fer() after the execution of the kernel function is finished. When users intend to simul-
taneously exploit multiple OpenCL-compatible devices within a computer for data

62 T.-Y. Liang and Y.-J. Lin

computation, they have to distribute data over a group of threads and make threads
dispatch their assigned data and the same kernel function to different devices for con-
current computation.

3 JCL

JCL is compatible for the OpenCL standards 1.0. When users intend to execute their
OpenCL on a heterogeneous cluster, the only thing they have to do is to recompile
their programs and link with the JCL runtime library instead of the original OpenCL
one. When the threads of a user program execute, the JCL client will transparently
redirect the OpenCL functions invoked by the program threads to remote JCL servers
for concurrent execution. As a result, users feel their programs are executed on a
stand-alone machine with many devices. Moreover, JCL supports dynamic load bal-
ance for iteration applications. User programs can easily adjust the amount of data
assigned to processors to achieve load balance, and thereby increase their execution
performance.

The framework of JCL is based on a client-and-server model as shown in Fig. 3.
The JCL client is responsible to catch the OpenCL functions issued by program
threads, and then redirect the functions to remote JCL servers for execution via
TCP/P sockets [10]. In addition, it keeps track of track the execution time of each
thread, and calculating the amount of data assigned to the thread based on its compu-
tational power whenever the thread calls the load-balancing function of JCL. On the
other hand, the JCL server is responsible to manage OpenCL-compatible devices
within a computer, and execute the OpenCL function calls coming from the JCL
clients on the local devices. For transparent resource allocation, the JCL server gets
the handles of all the devices within the local host by calling the OpenCL functions of
getting device identifier, and registers its platform information and location to the
resource broker in a computer cluster before it starts to serve the JCL clients. In the
JCL framework, the client and the server can be executed on the same machine while
the mapping between clients and servers is one-to-many. In other words, one client
can be served by many servers while one server cannot serve multiple clients at the
same time.

Client

—‘ 4 2. Get IC
3. Reply Available
v

T by
o Nvidia OpenCL
|| Hetos Device AP

Load Balance:

Socket Client API

Host 08

JCL Server Program |

Sacket Server
APL

Host 08 |

ATI
Device AP

Fig. 3. Framework of JCL

JCL Computing Resoure

Fig. 4. Control flow of JCL

JCL: An OpenCL Programming Toolkit for Heterogeneous Computing 63

The scenario of program execution in the JCL framework is simply described as
follows. When a user program starts to execute, the JCL client will ask the resource
broker for allocating a group of free JCL servers according to user’s resource re-
quirement. After receiving the location and platform information of the servers allo-
cated by the resource broker, the JCL client will ask the allocated servers for getting
their device handles and will build a schedule table for mapping program threads to
devices. Currently, the way of thread-to-device mapping is round robin. After re-
source allocation, the user program can continue to create a number of working
threads according to the total device number, and evenly distributes data over the
working threads for concurrent computation. When the program threads invoke
OpenCL functions, the JCL client will look up the mapping table of threads to devic-
es, and then redirect the invoked functions with the device handles to the mapped JCL
servers for concurrent execution.

As previously described, JCL allows user programs to transparently exploit mul-
tiple heterogeneous resources including CPUs and GPUs at the same time. However,
load balance is a big problem for the execution performance of user programs since
the computational power of each processor is not identical, and the performance gap
between CPU and GPU is very big. For resolving this problem, user programs can
create more threads than devices, and then the JCL client dynamically allocate the
threads onto the devices when idle JCL servers ask for more threads. As a result, the
devices with higher computational power can get more threads than the others to
achieve load balance. However, this method induces a significant overhead to affect
the performance of high-speed GPUs since the JCL servers have to ask the JCL client
for more pending threads many times. Therefore, JCL adapts data repartition instead
of thread redistribution for load balance. To achieve this goal, JCL provides a set of
load-balancing functions for users to partition their problems according to the compu-
tational power of processors. When user programs call the load-balancing functions,
they can automatically adjust their data partition to achieve load balance among
processors.

#define NODE8 //The number of paralle| for(int k=0;k <ITERATION;k+ +){
#define NUM_BODY //The amount of computing data
void *calculateNewlnfo(void *sendInfo){ IbGetPartSizeOffset(&count,&start, N\UM_BODY,row);
/* Variable Declaration */ IbGetNDkernelCoreSize(&GlobalWorkSize,&LocalWorkSize)

* itiali #
/* Allocate memory buffer & Initialize the buffer */ IbProfileTimeStart(;

ciErrl = clSetKernelArg(..., (void*)&start);

/{The following function is OpenCL call ciErrl = clSetKernelArg(..., (void*)&count);
ciErrl = clEnqueueWriteBuffer(...);
Iblnitial(NODE); ciErrl = clEnqueueWriteBuffer(...);
ciErrl = clEnqueueWriteBuffer(...);
. ciErrl = clEnqueueWriteBuffer(...);
cikrr = clGetPlatformiDs(..); ciErrl = clEnqueueNDRangeKernel(.., &GlobalWorkSize,
ciErr = clGetDevicelDs(...); &LocalWorkSize, ...);
cxGPUContext = cICreateContext(.); ciErrl = clEnqueueReadBuffer(..., sizeof(float) * start,
cqCommandQueue = clCreateCommandQueue(..); i sizeof(float) * count,...); .
DevNewVX = clCreateBuffer(.); ciErrl = :IEnqueuleReadBuffer(m, sizeof(float) * start,
i J sizeof(float) * count,...);
cSourceCL = oclLoadProgSource(..; ciErrl = clEnqueueReadBuffer(..., sizeof(float) * start,
cpProgram = c|CreateProgramWithSource(..); sizeof(float) * count,...);
ciErr = clBuildProgram(.); ciErrl = clEnqueueReadBuffer(..., sizeof(float) * start,

sizeof(float) * count,...);
IbProfileTimeEnd();
}pthread_exit(0);

ckKernel = clCreateKernel(...;
ciErr = clSetKernelArg(..);
ciErr = clEnqueueWriteBuffer(..);)

Fig. 5. Nbody with using the load balancing functions of JCL

64 T.-Y. Liang and Y.-J. Lin

Here we give a working function of the threads in the N-body application to explain
how to use the load-balancing functions of JCL as shown in Fig. 5. Nbody is an iteration
application to simulate the motion of bodies under the effect of gravitation. At the begin-
ning of each iteration, each thread calls 1bGetPartSizeOffset() to obtain the amount of
assigned data, and the address offset of the first one of the assigned data within a memory
buffer. In addition, each thread calls IbProfileTimeStart() and IbProfileTimeEnd() to
record the execution time of the current iteration for next-iteration data partition. Since the
global working size must be dividable by the local working size based on the specification
of OpenCL, each thread performs IbGetNDKernelCoreSize() to obtain the best size of the
cores used to execute the kernel function for processing the assigned data.

4 Implementation

The implementation of JCL is based on Linux operation system and the TCP/IP pro-
tocol. We briefly describe how to implement the function redirection and load balance
of JCL in this paper.

4.1 Redirection of Function Calls

Because of the length limit of the paper, here we describe the implementation of only
three different OpenCL functions as follows.

cl_intclGetPlatformIDs(cl_uint num_entries,cl_platform_id *platforms, cl_uint*
num_platforms).

This function is used to get the platform information. The num_entries argument is
the number of platform. The platforms argument is the list of platform. The
num_platforms argument is the number of platforms returned. The process of this
function is shown in Fig. 6.

ICL client JCL server et 5
JCL client ICL server
ICL libeary JCL library

‘cl[}c\l’lalfwm[Ds[) ‘ ‘ Case cGetPlatfromIDs: ‘ User Application “ ‘ ‘ Case ¢Eng) it fer: ‘ ‘ Device ‘
T T '
! T :
| i % |
i | 5

‘ User Application
T

P ———

iCallelGetPlfomiDy

Send fune_path

flum_entries Call clGetPlatfromI Ds() 3
- |

7 dIGelPlatfomiDs()

T ellinguenoWrieBuflert)

7| *pliforms,
'] plaiforms | !
chesul_code

platforms,
num_platforms
clresult_code

Fig. 6. Process of clGetPlatformIDs Fig. 7. Process of clEnqueueWriteBuffer()

When a user program calls this function, the JCL client will redirect this function
to each of the JCL servers allocated to this program as shown in Fig.6. Each JCL
server will generate a array which can store N cl_platform_id values, and a cl_unit
variable called num_platform for calling clGetPlatformIDs(), and then return the

JCL: An OpenCL Programming Toolkit for Heterogeneous Computing 65

cl_platform_id values and the num_platform value obtained by calling clGetPlatfor-
mlIDs() to the JCL clinet. Finally, the JCL client will integrate all the cl_platform_id
values coming from the JCL servers.

clEnqueueWriteBuffer (cl_command_queue command_queue, cl_mem buffer,
cl_bool blocking_write, size_t offset,size_t

size,const void *ptr,cl_uint num_events_in_wait_list,

const cl_event *event_wait_list, cl_event *event).

This function is used for copying data from the host memory to the device memo-
ry. Buffer and ptr respectively denote the address of the host memory and the device
memory. Size is the length of data. Blocking_write is a flag to specify the operation is
blocking or non_blocking. The other augments are used to set waiting events. The
process of this function is shown in Fig.7. When a program thread calls this function,
the JCL client will send the values of command_queue, blocking_write, offset, size,
and number_events_in_wait_list to the JCL server. The JCL server will allocate a
buffer according to the value of size for receiving the data coming from the JCL client
later. After sending the data to the JCL server, the JCL client will send the value of
ptr to the JCL server. Next, the JCL server will copy the data from the buffer to the
device memory from the prt+offset address to the prt_offset+size-1 address, and will
return clresult_code to the JCL client. Finally, the JCL client will transfer the received
clresult_code to the calling thread.

cl_intclSetEventCallback (cl_event event, cl_int command_exec_callback_type,
void (CL_CALLBACK *pfn_event_notify(cl_event event, cl_int
event_command_exec_status, void * user_data), void *user_data).

This function is used for program threads to register a callback function for calling a
given OpenCL function. When the execution status of the called OpenCL function
matches the registered event, the registered callback function will be invoked to handle
the event. Accordingly, the event argument is used to specify the registered event.
Command_exec_callback_type is the condition of triggering the callback function.
Pfn_event_notify is a function pointer, which points to the callback function. User_data
is the argument of the callback function. The process of this function is shown in Fig. 8.

ICL client JCL server

clSetEventCallback() Callback tn

elselivemCallback() L

I
Path-eStoveniCallback - [7]

Send Userl

of | poumeer | i
Create thread il Wait for the. :
s i

Wit eultback func| | - Coresull_gode
Curesull_code

Curesult_code

Touch Event

Creple n new link

Return Originul parameter [l

Fig. 8. Process of clSetEventCallback()

66 T.-Y. Liang and Y.-J. Lin

The JCL client will allocate a communication port for the callback function, and
will create a thread to listen at the port in order for waiting a trigger signal from the
JCL server. Next, the JCL client will sent the argument values and the port number to
the JCL servers. The JCL server will create a dummy callback function for the speci-
fied event, and then will call clSetEventCallBack() with the received argument values,
and the dummy callback function. When the execution status of a called OpenCL
function matches the registered event, the dummy callback function will be invoked
to send a signal to the JCL client for handling the event. The thread listening to the
communication port created for the event will wake up to call the real callback func-
tion to handle the event.

4.2 Load Balancing Functions

void lbInitial(int thread_num).

This function is used for the initialization of dynamic load balance. The argument
of thread_num is the number of program threads. When this function is called, the
JCL client will allocate an time array, called ftime for storing the execution time of
threads in each iteration, and will create a barrier for thread synchronization in IbGet-
PartSizeOffset().

void IbProfileTimeStart().
When a thread calls this function, the JCL client will record the current time into
ttime[id] where id is the identifier of the thread.

voidlbProfiletimeEnd().

When a thread calls this function, the JCL client will record the current time and
store the time interval between the current time and ttime[id] into ttime[id] for later
use in IbGetPartSizeOffset().

void IbGetPartSizeOffset(size_t *getsize, size_t *get-offset, size_t problemsize,
size_t rowsize).

The arguments of getsize and getoffset are the memory addresses of the variables
used for storing the amount of data and the position offset of the first one of the data
assigned to the calling thread. The arguments of problemsize and rowsize are the total
amount of data pending for computation, and the number of data in a partition unit,
respectively. When a thread calls this function, the JCL client will process this func-
tion call as follows.

First, the JCL client calculates the power factor of the calling thread as follows.

datasize
power, =———— & — ey
executiont ime,

Assume the identifier of the calling thread is i. In the above equation, the parameters
of datasize, and executiontime; denote the amount of data computed by the calling

JCL: An OpenCL Programming Toolkit for Heterogeneous Computing 67

thread, and the execution time of the thread at the kth iteration. Second, the JCL client
calculates the average load factor of program threads, and then estimates the relative
power factor of the calling thread at the kth iteration as follows.

average_ power, = ZZI power, | N,N =thread NO.)

relative_ power, = power, | average_ power,. (3)

Finally, the JCL client calculates the amount of data assigned to the calling thread,
and the offset of the first assigned data as follows.

. roblemsiz e .
datasize, ., = PIOOIMSIZE + relative _ power, “)
N
i-1 .
offset 41, = zi:O datasize (5)

void IbGetNDkernelCoreSize(size_t*GlobalWorkSizesize_t *LocalWorkSize).

This function is used to get the maximal number of cores available in a working
group. The value of the GlobalWorkSize argument usually is equal to the amount of
data assigned to the calling thread. Since the global work size must be evenly divida-
ble by the local work size according to the specification of OpenCL, the JCL client
sets the LocalWorkSize as the maximal integer which is not bigger than
CL_DEVICE_MAX_WORK_GROUP_SIZE, and can evenly divide GlobalWork-
Size. The two arguments of GlobalWorkSize and LocalWorkSize are used for calling
EnqueueNDkernel() later.

5 Performance Evaluation

We have implemented two OpenCL applications including Nbody and Matrix Multip-
lication for evaluating the performance of JCL. We compiled the test programs with
linking the runtime library of JCL, and then executed them with a cluster of comput-
ers connected with 1Gbps Ethernet, as shown in Table 2. In this performance evalua-
tion, we did three experiments for evaluating the performance of JCL. The first is to
estimate the overhead of JCL. The second is to measure the speedup of JCL. The third
is to evaluate the effectiveness of load balancing of JCL.

Table 2. Experimental environment

Device type Device & Memory
CPU Intel Xeon 5500, 16GB RAM
JCL servers GPU NVidia GT9800, 1IGB VRAM
GPU NVidia 550Ti, 1IGB VRAM
GPU ATI HD5570, 1GB VRAM
JCL client CPU Intel Q6600, 2GB RAM

68 T.-Y. Liang and Y.-J. Lin

5.1 Overhead of JCL

This experiment is aimed at comparing the cost of JCL runtime time library with that
of the original OpenCL runtime library for several OpenCL functions, and estimating
the communication overhead of exploiting a remote JCL server. The test program
used in this experiment was the Nbody application or 100 iterations. The JCL server
was executed on the host with the Xeon 5500 processor. The experimental result is
shown in Fig. 9.

=3

(13

_ clEnqueueReadBuffer ¥ Kernel function
1~

E’ 4 B clEnqueueNriteBuffer clSetKernelArg

[l

E 3 m clCreateKernel m clBuildProgram
=t

w clCreateProgramWithSource ® clCreateBuffer

ra

m clCreateCommandQueus m clCreateContext

m clGetDeviczIDs m clGetPlatformlICs

-

0 4
OpenCL JCL OpenCL JCL Opentl JCL OpenCL JCL OpenCL JCL
0240 10240 20480 20480 30720 30720 40960 40960 51200 51200

JCL vs. OpenCL Problem size

Fig. 9. Breakdown of the execution time of Nbody

It can be found that the overhead of the JCL library is low compared to the origi-
nal OpenCL runtime library. The cost difference of the two libraries happens in the
functions of clEnqueueWriteBuffer() and clEnqueueReadBuffer(). The main reason
for this cost difference is that the JCL client exchange data with the JCL server
through network when it executes the two functions. Although this communication
cost increases as well as the amount of data, however it is necessary and unavoidable
while it is reducible by higher speed networks. Fortunately, most of execution time is
spent on the function of clEnqueueNDRangeKernel(), i.e., data computation. Conse-
quently, the total execution time of the test program has no obvious difference al-
though the program is linked with two different libraries.

5.2 Speedup

In this experiment, we intend to evaluate the effectiveness of JCL on the performance
of the test programs, which are executed by multiple GPUs in a cluster. In order to
control performance factors, we ran the test applications with using four NVidia
550Ti GPUs, and then estimated the speedup of the test programs by using the one-
node case to be baseline. The speedups of the two test programs are shown in Fig. 10
and Figure 11, respectively. The experimental result shows that the speedups of the
two test programs are effectively increased when the number of used GPUs increases
in most of cases. However, the network speed is much slower than the computation

JCL: An OpenCL Programming Toolkit for Heterogeneous Computing 69

speed of GPUs. Consequently, the speedup is not linearly increased with the number
of used GPUs especially when the problem size is small. That is why the MM appli-
cation with 1024x1024 float-point numbers cannot obtain a speedup because the
communication cost of distributing data over GPUs cannot be compensated by the
computation cost saved by parallel computation with the GPUs. Fortunately, higher
speed networks can improve this problem. This problem will disappear and the spee-
dup of the test programs will become more obvious when the problem size becomes
large enough as shown in the experimental result.

(MM N [Nbody

o : m1GPU

§ - H2GPUs

i

m4GPUs
_ Problem Size (N*N) J o Problem Size (N bodies) J
Fig. 10. Speedup of MM Fig. 11. Speedup of Nbody

5.3 The Effectiveness of Load Balance

In this experiment, we used four different-speed processors including Intel Xeon
5500, NVidia 9800, 550Ti and ATI 5570HD for executing the kernel functions of the
test programs. We ran the test applications respectively with and without the load
balancing functions of JCL, and evaluated the performance of the test applications in
the two different cases. The experimental results are depicted in Fig. 12 and Fig. 13. It

/ wihtout load halance / with load halance \ / without load balance/ with load balancz \
£TISST0
s p0) Wi T3S
10
1
180
- 00 300
160
_ 1w g=0 W ENidiasson
i g
& = m
E a0 mme £ DATIHDSET)
= T m
C c
: 3
3 Bemisnn jw Wit TIE0
i g
* o L -
msE0 [Nvidia 3600
| “
20
1 I m.,.‘..]l =E) L hida s5arl
o4 o
w24 08 072 0% 5120 Qe EE S W0 2KE MM S0 CATIHDST
L Problzmsze (NxN)) \ Problem size (N bodes))

Fig. 12. Performance of MM with and without

load balancing

Fig. 13 Performance of Nbody with and

without load balancing

70 T.-Y. Liang and Y.-J. Lin

can be found that when the test programs don’t use the load balancing functions of
JCL, the execution times of NVidia 550Ti and ATI 5570HD are much less those of
Intel 5550 and NVidia 9800 since the former two is more powerful in data computa-
tion than the latter two. By contrast, all the execution times of the four processors
become very average when the test programs use the load balancing functions of JCL.
Consequently, the performance of the test programs is successfully improved due to
load balance. As previously discussed, the load-balancing function of JCL is really
effective for increasing the performance of user programs.

6 Related Work

Some programming toolkits like JCL had been proposed in past studies. For example,
rCUDA [11] is aimed at resource sharing for minimizing the number of high-end
GPU-compatible devices in clouds because of considering resource utilization and
energy consumption. This toolkit is implemented also based on TCP/IP socket. With
the rCUDA client, the CUDA functions issued by user programs can be redirected to
remote CUDA-compatible GPU for execution. However, this toolkit supports only
NVidia GPU, and does not support parallel computing. vCUDA [12] is a toolkit dedi-
cated to enabling virtual machines to support user programs for accessing physical
CUDA-compatible devices through the software boundary. This toolkit is imple-
mented based on XML-RPC. As a result, the communication cost of vVCUDA is high-
er than that of rCUDA. Hybrid OpenCL [13] is aimed at providing an abstraction of
different implementations of OpenCL over network. With the support of this toolkit,
user programs can connect multiple runtime systems of OpenCL over network. The
goal of Hybrid OpenCL is as same as that of JCL while it does not support load bal-
ance and callback functions. Virtual OpenCL (VCL) [14] is a cluster platform, which
allows OpenCL programs to make use of multiple GPU in a cluster. The framework
and implementation of VCL is similar to JCL while it currently does not support load
balance and provides only GPUs but CPUs for data computation. Compared to rCU-
DA and vCUDA, JCL is focused on parallel computing but not resource sharing or
virtualization. Moreover, JCL supports not only NVidia GPU but also AMD GPU and
x86 CPUs proposed by any vendors. Different to Hybrid OpenCL and VCL, JCL
allows users to simultaneously exploit both of CPUs and GPUs in a cluster for resolv-
ing the same problem while they are not aware of resource location, and data commu-
nication between the local host and remote servers. In addition, JCL supports load
balance for enhancing the performance of user programs.

7 Conclusion and Future Work

We have successfully developed an OpenCL programming called JCL for heteroge-
neous cluster computing in this paper. With the support of JCL, users can write pro-
grams by means of the same programming interface, i.e., OpenCL, and make use of
multiple heterogeneous processors including GPUs and CPUs distributed in computer
networks for the execution of their OpenCL programs while they are not aware of

JCL: An OpenCL Programming Toolkit for Heterogeneous Computing 71

resource location, and data communication between the local host and the remote
servers. Consequently, JCL successfully reduces the programming complexity of
heterogeneous cluster computing. Our experimental result has shown that the over-
head of the proposed toolkit is negligible. User programs indeed effectively exploit
the computational power of processors with using the load balancing functions of
JCL, and thereby enhance their performance.

In addition to CPU and GPU, the processors of embedded systems such as ARM
and FPGA can support OpenCL. Therefore, we will extend the framework of JCL to
aggregate FPGAs and ARMs with CPUs and GPUs together for minimizing the time
of resolving data-intensive or massive-computation problems. In addition, we will
build a cloud program development environment based on JCL for users to make use
of heterogeneous resources in clouds for parallel computing [15].

Acknowledgement. We thank the grant support of National Science Council in Re-
public of China under the project numbered as NSC-101-2815-C-151-026-E.

References

1. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kriiger, J., Lefohn, A.E., Purcell,
T.J.: A Survey of General-Purpose Computation on Graphics Hardware. Computer Graph-
ics Forum, 80-113 (2007)

2. NVIDIA, NVIDIA CUDA Programming Guide (2011),
http://developer.download.nvidia.com/compute/DevZone/docs/
html/C/doc/CUDA_C_Programming_Guide.pdf

3. Buck, I, Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.:
Brook for GPUs: Stream Computing on Graphics Hardware. SIGGRAPH (2004)

4. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill (2004)

5. Buttlar, D., Farrell, J., Nichols, B.: PThreads Program Programing. O’Reilly Media (1996)

6. Khronos OpenCL Working Group, The OpenCL Specification (2011),
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf

7. Kurzak, J., Buttari, A.: Introduction to Programming High Performance Applications on
the CELL Broadband Engine. In: 15th IEEE Symposium on High-Performance Intercon-
nects, p. 11 (2007)

8. Altera Corporation, Implementing FPGA Design with the OpenCL Standard (2011),
http://www.altera.com/literature/wp/wp-01173-opencl.pdf

9. The MPI Forum, MPI: A Message Passing Interface. In: Proceedings of Super Computing,
pp. 878-883 (1993)

10. Xue, M., Zhu, C.: The Socket Programming and Software Design for Communication
Based on Client/Server. In: Proceedings of the 2009 Pacific-Asia Conference on Circuits,
Communications and Systems, pp. 775-777 (2009)

11. Duato, J., Pefia, A.J., Silla, F., Mayo, R., Quintana—Orf, E.S.: Modeling the CUDA remote
Virtualization Behaviors in High Performance Networks. In: First Workshop on Language,
Compiler, and Architecture Support for GPGPU (2010)

12. Shi, L., Chen, H., Sun, J.: vCUDA: GPU accelerated high performance computing in vir-
tual machines. In: International Parallel and Distributed Processing Symposium, pp. 1-11
(2009)

72

13.

14.

15.

T.-Y. Liang and Y.-J. Lin

Aoki, R., Oikawa, S., Tsuchiyama, R., Nakamura, T.: Hybrid OpenCL: Connecting Differ-
ent OpenCL Implementations over Network. In: 10th IEEE International Conference on
Computer and Information Technology, pp. 2729-2735 (2010)

Barak, A., Shiloh, A.: The Virtual OpenCL (VCL) Cluster Platform. In: Proc. Intel Euro-
pean Research & Innovation Conf., Leixlip, p. 196 (October 2011)

Vecchiola, C., Pandey, S., Buyya, R.: High-Performance Cloud Computing: A View of
Scientific Applications. In: 10th International Symposium on Pervasive Systems, Algo-
rithms, and Networks (ISPAN), pp. 4-16 (2009)

Network-Aware Multiway Join for MapReduce

Kenn Slagter', Ching-Hsien Hsu”", Yeh-Ching Chung', and Jong Hyuk Park’

! Department of Computer Science, National Tsing Hua University
Hsinchu, Taiwan, R.O.C.
kennslagter@sslab.cs.nthu.edu.tw, ychung@cs.nthu.edu.tw
? Department of Computer Science, Chung Hua University
Hsinchu, Taiwan, R.O.C.
chh@chu.edu. tw
3 Department of Computer Science and Engineering
Seoul National University of Science and Technology
Seoul, Korea
jhparkl@seoultech.ac.kr

Abstract. MapReduce is an effective tool for processing large amounts of data
in parallel using a cluster of processors or computers. One common data
processing task is the join operation, which combines two or more datasets
based on values common to each. In this paper, we present a network aware
multi-way join for MapReduce(NAMM) that improves performance by redi-
stributing the workload amongst reducers. NAMM achieves this by redistribut-
ing tuples directly between reducers with an intelligent network aware
algorithm. We show that our presented technique has significant potential to
minimize the time required to join multiple datasets.

Keywords: MapReduce, Hadoop, Multiway Join, Workload Redistribution.

1 Introduction

MapReduce [1] is a flexible programming model proposed by Google for processing
and creating data sets over a cluster of computers. The MapReduce model hides
extraneous details inherent in distributed programming such as parallelization, fault
tolerance, data distribution and load balancing within a library. This simplifies the
process of writing distributed programs, which is an advantage MapReduce has over
other distributed programming models such as MPI that requires the programmer to
explicitly handle the data flow [2].

Programmers who use the MapReduce library need to write two functions a map
function and a reduce function. The purpose of the map function is to take the input
key/value pairs from an input source, process it and then outputs a set of intermediate
key/value pairs. The intermediate key/value pairs it generates is then fed into a reduce
function which processes the key/value pairs and then generates as output its own set
of key/value pairs.

* Corresponding author.

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 73-B0] 2013.
© Springer-Verlag Berlin Heidelberg 2013

74 K. Slagter et al.

Parallelism is achieved by running multiple map and reduce functions on multiple
processors or machines. The intermediate key/value pairs produced by each of the
map functions are partitioned so that intermediate key/value pairs that share the same
key are all sent to the same reduce function to be processed.

Since its conception by Google the MapReduce model has inspired others to adopt its
paradigm. One of the most well known adopters was Yahoo, who developed an open
source implementation known as Hadoop [3] which operates under the Apache license.
Hadoop is a Java-based implementation and by default runs on its own distributed file
system (HDFS). Because Hadoop is open source, well documented and easy to use, the
tool has gained prominence in the distributed programming community. For this reason,
we use Hadoop as our reference platform for MapReduce in this paper.

The MapReduce model is effective at processing large amounts of data or datasets. A
dataset is essentially a set of tuples stored in a file. In this paper, we look at one of the
most common data processing operations called a join, which combines two or more
datasets together based on some common value. There are many possible ways to im-
plement a join. The efficiency of a join implementation depends on how many data sets
there are and how large the data sets are. A MapReduce join can be implemented as a
map-side join or a reduce-side join and multiple datasets may be handled either as suc-
cessive two-way joins known as a cascade of joins or with a multiway join [4].

Multiway joins have certain advantages and disadvantages over cascade joins.
First, it avoids considerable overhead since it does not to setup multiple jobs. Second,
it can save space on the network since it does not need to store intermediate results.
However, there are some drawbacks to multiway joins. When a multiway join is per-
formed it needs to buffer tuples. This can lead to memory problems, especially if the
data is skewed. Therefore, the number of datasets and size of datasets are limited by
the memory resources available.

The main idea of NAMM is to improve processing time of a multiway join by redi-
stributing the workload between reducers. The main contributions of our work are as
follows. First, we present a model to redistribute tuples amongst reducers on the Ma-
pReduce framework for a multiway join. Second, we show how the NAMM redistri-
bution algorithm can reduce job response times for a multiway join by considering
network distance and reducer workload. Third, we compare our method to an alterna-
tive method, which does not take into account these factors.

The rest of this paper is organized as follows. Section 2 explains our research mod-
el and presents the proposed techniques on multiway joins and tuple redistribution.
In Section 3, the simulation results and performance analysis are given to weigh the
pros and cons of the proposed method. In Section 4, we discuss related work. Finally,
the conclusion and future work are presented in Section 5.

2 Research Model

2.1 Network Model

The research model for this study is presented in Figure 1, which shows a network
environment consisting of switches, racks and nodes. The two-level tree topology

Network-Aware Multiway Join for MapReduce 75

shown in Fig 1(a) is a common network layout used by Hadoop. Each rack contains a
set of servers (nodes) all interlinked by a switch. The racks themselves then uplink to
a core switch or router. It is important to note that the total bandwidth between nodes
on the same rack is much greater than that between nodes on different racks. The
nodes are used to run map or reduce tasks as shown in Fig 1(b). In this paper, map
tasks and reduce tasks are also referred to as mappers and reducers respectively.

> B

Switch

(" Rack 1 N (" Rack 2 N Disks

Task Task Task

Reducer 1 Reducer 2 Reducer 3
(a) (b)

Fig. 1. Research model in this paper (a) a tree network consisting of racks and nodes (b) A node
running a set of reduce tasks

2.2 Join Algorithms

Join algorithms have been studied extensively over the years, with many different
variants existing for each type of algorithm. Many join algorithms in academia pre-
date the invention of MapReduce, due to their ubiquitous use throughout the database
community. The multiway join algorithm presented in this paper is a hybrid join
based on pre-existing MapReduce join model for reduce-side joins and a hash-join
which handles joins locally on the reducer.

2.2.1 Reduce-Side Join

Reduce-side joins are based on the MapReduce programming model which is com-
posed of a map phase and a reduce phase. In the map phase, the datasets are read by a
map function by each map task, one tuple at a time. The purpose of the map function
is only to pre-process the tuples and sort them by the join key. Before tuples are parti-
tioned based on their join key, they are tagged so that the reduce function can know
which table the tuple originated from. The tuples are then sent to their respective re-
ducer where they are to be joined. Each tuple is then joined by the reducer based on
which table they came from.

76 K. Slagter et al.

2.2.2 Hash Join

A hash join is a traditional algorithm used by databases for joining two datasets to-
gether. A hash join consists of two distinct phases a ‘build’ phase and a ‘probe’ phase.
In the build phase the smallest dataset is inserted into a in-memory hash table. In the

probe phase the largest dataset is scanned and joined with the appropriate tuple(s)
stored in the hash table.

2.2.3 NAMM Multiway Join

In this section we present our proposed multiway join. The purpose of a multiway join
is to join multiple datasets together. Our proposed join improves performance of the
multiway join by redistributing the workload amongst reducers. Unlike other schemes
that redistribute the workload using a distributed queue [5], our methodology redistri-
butes the workload directly between reducers with help of a mediator service, as
shown in fig 2.

(REDUCER

(sender)
PROCESS
Primary join

‘ REGISTER }1—7‘ REGISTRY ‘

(MEDIATOR (" REDUCER
_ SERVICE \ (receiver)

RECEIVE
polling

)

PROCESS

Hash Join

RECEIVE

\ﬂnload

‘ ‘ SEND |

No

v
PROCESS

Hash Join

REGISTRY

RECEIVE
Polling

Fig. 2. Multiway Join Tuple Redistribution with NAMM

The reduce-side join and the hash join algorithms are both examples of a two-way
join. Two-way joins are joins that involve only two tables. Multiway joins are joins
involving more than two tables. The multiway join presented in this paper uses a re-
duce-side join to join the two largest datasets and a hash join on the reducer side to
join that result with several smaller datasets. The two largest datasets are partitioned
and sent to the various reducers using the typical reduce-side join mechanism.

Unlike the typical multiway join mechanism [6], the smaller datasets are sent to all
the reducers. This can be done by duplicating tuples in the mapper phase so that a

Network-Aware Multiway Join for MapReduce 77

copy is sent to each reducer or in Hadoop by using its distributed cache mechanism.
Therefore, this method is appropriate in situations where the aggregate size of the
smaller datasets can fit in the memory of each node used to execute a reduce task.

Once the mappers have sent the reducers all the tuples, the reducers are able to
process the tuples. The two largest datasets are then joined with a traditional reduce-
side join. After completing the initial primary join, the reducer registers with the me-
diator. The mediator is provided details from the reducer about the number of tuples it
has, and details on which node it resides.

From the list of reducers already registered, the reducer will attempt to send a
batch of tuples to another reducer. For the sake of clarity in this paper, we define two
types of reducers, senders and receivers. Senders are those reducers that still have
tuples to join and receivers are idle reducers that already processed their workload.
The sender makes a request to the mediator to find a receiver on the network. It then
prepares a batch of tuples to send from the initial primary join. The size of the batch
depends on memory size of reducers and number of tuples being processed. The me-
diator then finds the reducer closest on the network in terms of network distance. If
the mediator is unable to find a suitable receiver, the sender hash joins the batch of
tuples it prepared instead. Network distance in this study is based on the same concept
used in Hadoop [3] and is calculated based on the number of switches that exist be-
tween two nodes. There are three different scenarios that may occur in a data center.
Given a node n/ on rack r/ in data center d/. This can be represented as /d1/rl/nl.
Using this notation, here are the distances for the three scenarios:

e distance(/d1/r1/nl, /d1/r1/n1) = O (processes on the same node)

e distance(/d1/r1/nl, /d1/r1/n2) = 2 (different nodes on the same rack)

e distance(/d1/r1/nl, /d1/r2/n3) = 4 (nodes on different racks in the same data
center)

Once a sender has sent all its tuples to a receiver it prepares another batch of tuples. If
the sender has less tuples to process than other senders, it processse these tuples itself.
Otherwise, the sender makes another redistribution request to the mediator.

3 Evaluation

3.1 Experiment Configuration

To evaluate the performance of the proposed technique, we implemented the NAMM
multiway join method and tested its performance on a simulated MapReduce envi-
ronment. We then evaluated its performance against a network unaware method.
Overall, the network unaware method is the same as the NAMM method but sends its
tuples to the first available receiver. We then tested both algorithms using various
workloads using 200, 600 and 1000 million tuples. These workloads represent low
loading (LL), medium loading (ML) and high loading (HL), respectively. For the sake
of clarity, the experimental parameters used in this study are presented in Table 1.

78 K. Slagter et al.

Table 1. Experimental Parameters

Parameter Definition Description
LL Low Loading 200M tuples
ML Medium Loading 600M tuples
HL High Loading 1000M tuples
n n Loading nM tuples

In order to test our proposed algorithm the MapReduce environment was setup to
emulate a small cluster of computers. The cluster for our test environment consisted
of two racks, with two nodes per rack and three reducers per node as shown in Fig 1.
In total, 18 cases were used to test the performance of NAMM. These test cases are
presented in Table 2.

Table 2. Test Cases

Rack Rack 1 Rack 2
Node Node 1 Node 2 Node 3 Node 4
Reducer 1 2 3 4 5 6 7 8 9 10 11 12

1 ML ML /ML ML ML ML ML ML ML | ML | ML ML

2 LL HL LL | LL | LL | LL LL LL | LL | LL LL LL
3 ML HL |ML /ML | ML ML ML | ML | ML | ML | ML ML
4 HL LL HL | LL | LL | LL LL LL | LL | LL LL LL
5 LL HL LL | LL | HL | LL LL LL | LL | LL LL LL
6 LL HL LL | LL | LL | LL LL LL | HL | LL LL LL
7 HL ML HL /ML | ML ML | ML | ML | ML | ML | ML ML
o 8 ML HL |ML ML | ML ML | ML ML | ML | ML | ML ML
S 19 ML HL | ML ML ML ML ML | ML | HL | ML | ML ML
Z 10 LL LL LL | HL | HL | HL | HL | HL | HL | HL HL HL
&= 11 LL LL LL | LL | LL | LL | HL | HL | HL | HL HL HL

12 LL LL LL | LL | LL | LL LL LL | LL | HL HL HL
13 ML ML | ML | HL | HL | HL | HL | HL | HL | HL HL HL
14 ML ML | ML | ML | ML | ML | HL | HL | HL | HL HL HL
15 ML ML | ML | ML | ML | ML | ML | ML | ML | HL HL HL
16 0 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100
17 | 1100 | 1000 | 900 | 800 | 700 | 600 | 500 | 400 | 300 | 200 100 0

18 LL HL LL | HL | LL | HL | LL | HL | LL | HL LL HL

3.2 Experiment Results

In this paper, we compare five different redistribution methods using the test cases
from Table 2. The redistribution methods considered in this study use a combination
of the redistribution features shown in Table 3.

Table 3. Redistribution Features

Undistributed no tuple redistribution

Network Unaware network distance between reducers not considered

Network Aware network distance between reducers considered

SingleSend reducers redistribute tuples to only one receiver each hash join

Multisend reducer with heaviest load attempts to redistribute tuples to mul-
tiple receivers before executing a hash join

Network-Aware Multiway Join for MapReduce 79

The workload of a reducer is the total number of reduce-side joins and hash joins
performed by that reducer. A MapReduce job does not complete until all mappers and
reducers have completed their tasks. Therefore, the redistribution method that has the
best performance is the redistribution method whose worst-case reducer has the least
number of joins. We consider the worst-case reducer to be whichever reducer per-
formed the most number of joins.

2500

2000

1500

1000

Work Load (million joins)

500

BUndistributed ~ MUnaware SingleSend =~ BUnaware Multisend B Aware SingleSend B Aware Multisend

Fig. 3. The results for workload distribution on the worst-case reducer

In Fig 3, we compare the performance of the worst-case reducer for each redistri-
bution method. In majority of test cases NAMM using network aware and multisend
methods is able to significantly reduce the workload on each reducer, compared to
other redistribution techniques covered in this study. The efficiency of NAMM is
more apparent in test cases when the workload among reducers is less evenly distri-
buted. In test case 1, all the reducers had exactly the same workload and consequently
no redistribution takes place. In test case 13, and test case 14 the workload was distri-
buted amongst reducer in such a fashion that there was no opportunity for multiple
batch sends to occur. Test case 18 shows that in some instances multiple tuple redi-
stributions from the same reducer can interfere with the overall time taken to com-
plete a job. Overall, NAMM technique was able to improve workload redistribution
by up to 12% when using the single send technique, and up to 21% improvement
when compared to other network unaware methods assessed in this study.

4 Related Work

Joins have been studied in detail by many sources. Investigations and descriptions of
the various joins have been collated by other works [6] [9]. One such work that dis-
cusses handling joins using a mediator over a network is presented by [7]. This sys-
tem employs a balanced network utilization metric to optimize the use of all network

80 K. Slagter et al.

paths in a global-scale database federation. It uses a metric that allows algorithms to
exploit excess capacity in the network, while avoiding narrow, long-haul paths. A
work similar to our paper is presented by [5] uses a distributed queue [8] rather than
using peerwise network connections to perform multiway joins and does not take into
account network distance when redistributing tuples.

5 Conclusion and Future Work

In this paper, a network aware multiway MapReduce join (NAMM) technique is pre-
sented for redistributing workload for MapReduce. The simulation results show that
NAMM can significantly improve tuple redistribution with Mutiway Joins for Ma-
pReduce applications. NAMM'’s has shown up to 21% improvement over other net-
work unaware methods.

NAMM is designed for users who intend to use to perform a multiway join be-
tween two large datasets and several smaller datasets with MapReduce. In future work
it would be desirable to explore how this system could be extended to handle more
than two large datasets and how to improve its performance on different network
topologies or hardware configurations. We leave these tasks for future work.

References

[1] Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Com-
mun. ACM 51, 107-113 (2008)

[2] Hoefler, T., Lumsdaine, A., Dongarra, J.: Towards Efficient MapReduce Using MPI. In:
Ropo, M., Westerholm, J., Dongarra, J. (eds.) PVM/MPI. LNCS, vol. 5759, pp. 240-249.
Springer, Heidelberg (2009)

[3] White, T.: Hadoop the definitive guide, 2nd edn. O’Reilly, Sebastopol (2010)

[4] Afrati, F.N., Ullman, J.D.: Optimizing Multiway Joins in a Map-Reduce Environment.
IEEE Transactions on Knowledge and Data Engineering 23, 1282-1298 (2011)

[5] Lynden, S., Tanimura, Y., Kojima, I., Matono, A.: Dynamic Data Redistribution for Ma-
pReduce Joins. In: 2011 IEEE Third International Conference on Cloud Computing Tech-
nology and Science (CloudCom), pp. 717-723 (2011)

[6] Chandar, J.: Join Algorithms using Map/Reduce, Master of Science, School of Informatics,
University of Edinburgh (2010)

[7]1 Wang, X., Burns, R., Terzis, A., Deshpande, A.: Network-aware join processing in global-
scale database federations. In: IEEE 24th International Conference on Data Engineering,
ICDE 2008, pp. 586-595 (2008)

[8] Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: ZooKeeper: Wait-free coordination for In-
ternet-scale systems. In: USENIX ATC (2010)

[9] Palla, K.: A Comparative Analysis of Join Algorithms Using the Hadoop Map/Reduce
Framework, Master of Science, School of Informatics, University of Edinburgh (2009)

Automatic Resource Scaling for Web Applications
in the Cloud

Ching-Chi Lin"?, Jan-Jan Wu', Pangfeng Liu®, Jeng-An Lin’, and Li-Chung Song®

! Institute of Information Science Research Center for Information Technology Innovation
Academia Sinica, Taipei, Taiwan
{deathsimon,wuj}@iis.sinica.edu.tw
? Department of Computer Science and Information Engineering Graduate
Institute of Networking and Multimedia National Taiwan University, Taipei, Taiwan
{pangfeng,r99944038,r00922089}@csie.ntu.edu. tw

Abstract. Web applications play a major role in various enterprise and cloud
services. With the popularity of social networks and with the speed at which in-
formation can be disseminate around the globe, online systems need to face ev-
er-growing, unpredictable peak load events.

Auto-scaling technique provides on-demand resources according to work-
load in cloud computing system. However, most of the existing solutions are
subject to some of the following constraints: (1) replying on user provided scal-
ing metrics and threshold values, (2) employing the simple Majority Vote scal-
ing algorithm, which is ineffective for scaling Web applications, and (3) lack of
capability for predicting workload changes. In this work, we propose an effec-
tive auto-scaling strategy, called Work-load Based scaling algorithm, for Web
applications. Our proposed scaling strategy is not subject to the aforementioned
constraints, and can respond to fluctuated workload and sudden workload
change in a short time without relying on over-provisioning of resources. We
also propose a new method for analyzing the trend of workload changes. This
trend analysis method provides useful information to the scaling algorithm to
avoid unnecessary scaling actions, which in turn shortens the response time of
requests. The experiment results show that the hybrid Workload Based and
trend analysis method keeps response time within 2 seconds even when facing
sudden workload change.

Keywords: Cloud Computing, Auto-Scaling, Web Applications, Resource
Provisioning, Trend Analysis.

1 Introduction

Web applications play a major role in various enterprise and cloud services. Many
Web applications, such as eBanking, eCommerce and online gaming, face fluctuating
loads. Some of the loads are predictable, such as the workload around a holiday for
eShopping services. However, with the popularity of social networks and with the
speed at which information can disseminate around the globe, online systems need to
face ever-growing, unpredictable peak load events.

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 81-50] 2013.
© Springer-Verlag Berlin Heidelberg 2013

82 C.-C. Lin et al.

Auto-scaling is a solution that not only maintains application service quality but al-
so reduces wasted resources while facing fluctuating loads. The basic idea of auto-
scaling is to estimate the load for short window of time, and then be able to up-scale
or down-scale the resources when there is a need for it. Many cloud services, such as
Amazon EC2 [1] and Google App Engine [2], have proposed auto-scaling service.
Other software such as Scalr [3] and RightScale [4] provide auto-scaling mechanism
that can apply to cloud environments. However, most of the existing solutions are
subject to some of the following constraints: (1) replying on user-provided scaling
metrics and threshold values, (2) employing the simple Majority Vote scaling algo-
rithm, which we will show in this paper to be ineffective for scaling Web applica-
tions, and (3) lack of capability for predicting workload change, and thus may result
in unnecessary scaling actions.

We develop an auto-scaling system, WebScale, which is not subject to the afore-
mentioned constraints. WebScale monitors the behavior of the applications and the
system, and based on the collected metrics, decides in real time whether the number
of VMs for an application needs to be increased or decreased. Because of page limit,
in this paper, we focus on the new algorithms we propose for scaling resources for
Web applications.

The main contributions of this work are as follows. (1) We show that the incoming
requests from the clients (instead of standard metrics) and the HTTP response time
can characterize the workload/performance behavior of Web applications more accu-
rately. Based on this observation, we devise an effective scaling algorithm called
Workload-Based algorithm for Web applications. (2) We propose an algorithm to
analyze the trend of workload change in a Web application. This trend analysis algo-
rithm can significantly reduce the number of peaks (longer than 2 seconds) in
response time caused by workload fluctuating. (3) Our experiment results with work-
load generated by httperf [5] demonstrate that our scaling strategy can keep the aver-
age response time of Web applications within 2 seconds even when facing sudden
load change.

The rest of the paper is organized as follows. Section 2 presents the Workload-
Based scaling algorithm and the Trend Analysis algorithm. Section 3 presents and
analyzes experiment results. Section 4 describes related work. Finally, Section 5 gives
some concluding remarks.

2 Scaling Algorithms

In this section, we first give a brief overview of the widely used scaling algorithm,
Majority Vote. We then present our Workload-Based scaling algorithm. Finally, we
present our Trend Analysis technique, which co-works with the scaling algorithm to
achieve better performance.

2.1 Overview of Majority Vote

Majority Vote selects the choice with the most properties among all choices. There are
three choices, scale in, scale out, and no scale, for a VM when making decision.

Automatic Resource Scaling for Web Applications in the Cloud 83

Each VM makes their choice according to their current loading, and a final scaling
decision will be made by majority vote.

Each VM makes its choice according to a chosen metric, such as CPU load or
memory usage. For each chosen metric, there are two thresholds, threshold H and
threshold_L, which represent the high threshold and low threshold respectively. If the
chosen metric of a VM is greater than threshold_H, the VM will choose scale out. On
the other hand, if the chosen metric is smaller than threshold_L, the VM will choose
scale in. Otherwise, the choice will be no scale.

2.2 Workload-Based Algorithm

The Workload-Based Algorithm determines the number of running VMs needed for
the business-logic tier and the number of database servers needed for the data-access
tier, based on the incoming workload. The latter is the number of requests per second
for the business-logic tier, and the number of SQL queries per second for the data-
access tier. In real world web applications, requests sent by clients will be received by
the front-end load balancer, and then distributed to the back-end VMs. Since each VM
has a capacity limitation, e.g. maximum number of requests per second a running VM
can handle simultaneously, we can calculate the number of VMs needed to process
the current workload, and make scaling decisions based on the number of current
running VMs. The same applies to the number of database servers.

14688

" CPU Load(%) =d— 160

Henory Usage{X} =—h—
LAVG response tine ==

1 98
12e68

1 &8

10088 1 70

seen 1 88

1 98
6e8e

Usage{X}

{ a8

4800 1 3@

Average Response Tine{ns)

1 28
20680
1 18

a
a9 18 1% 28 25 38 35 48 45 98

Request per Second

Fig. 1. Relationship between requests per second, average response time, CPU load, and
memory usage

The reason that we choose requests per second instead of standard metrics to cha-
racterize workload of Web applications is that standard metrics fail to indicate “how
busy” a VM is. Figure 1 shows the relationship between requests per second, two of
the standard metrics, and the average response time. The average response time dra-
matically increases if the workload is over 30 requests per second. However, the stan-
dard metrics, CPU load and memory usage, in this example, remains constant when
the number of requests per second is larger than 35. The standard metrics fail to

84 C.-C. Lin et al.

characterize the workload, thus cannot provide accurate information to decide the
number of VMs needed. On the other hand, using requests per second as the metric
can avoid this problem. With this metric, we can calculate the number of new running
VMs needed to make the average response time decrease to an acceptable range.

The assumption that a VM has a capacity limitation; that is, it can only process a
fixed number of requests per second simultaneously, is reasonable because of
the need to maintain QoS. It has been shown in many previous works [6, 7, 8] that the
types of requests to a Web application are bounded by a small constant, and that the
percentage of each kind of requests to a Web application can be estimated. With such
information, we can determine the capacity limitation of a VM.

We propose a variation of parameter selection scheme [9] to determine the capaci-
ty limitation of a VM. Our parameter selection scheme collects the system and per-
formance information of a VM under different workload. This information is stored in
a list, sorted by workload in ascending order. We can choose the maximum workload
value from the list such that the corresponding performance satisfies the QoS re-
quirement. This workload value is used as the capacity limitation of the VM. The
following is an example on how to decide the capacity limitation of a VM or database
server.

Table 1. Average response time(ms) under different workload combination

reg/s | 100% Q1 [75% Q1| 50%Ql | 100% Q2
+25% Q2 | +50% Q2

15 140.6 237.6 326.7 503.5

20 159.0 251.4 3672 | 18714.5

25 157.7 6964.0 | 140824 | 22805.6

30 82223 | 138602 17525.5| 22552.0

We use Table 1 to illustrate how we determine the capacity limitation of a VM us-
ing the parameter selection scheme. We use MediaWiki [10] as the web application.
We assume that there are two kinds of requests, Q1 and Q2. Q1 requests a static Wiki
page and Q2 requests a dynamic page which lists the links of top 100 articles in the
database, sorted in descending order. Q2 has longer processing time than Q1. This
table shows that the average response time dramatically increases if the request per
second grows beyond a certain value under different workload combinations. Fur-
thermore, the capacity limitation decreases when the percentage of more expensive
requests (i.e., Q2 in this example) increases.

w

S= i R (1)
Our Workload-Based algorithm works as follows. For every fixed time interval, or
“monitor interval”, our WebScale scaling system collects the current workload infor-
mation. By dividing the current workload W by the VM capacity C, we have the num-
ber of VMs needed. Then we subtract the current number of running VM R from this
number, and get S, the amount of VM to be scaled. If S is positive, the decision will
be scale out; on the other hand, if S is negative, the decision will be scale in. The
same strategy applies to the scaling of database servers.

Automatic Resource Scaling for Web Applications in the Cloud 85

Pattern 1

Pattern 2
Trend 1-1 Tremd 1-2 Trend 1-3 Tremd 2-1 Tremd 22 Trend 23
Moritor 1-1.1-4 Moritor 2-1.1~4
At A

Fig. 2. Relation between different intervals

2.3 Trend Analysis

Some workloads exhibit periodic behaviors, e.g. stock market, enterprise applications,
which we can take advantages while making scaling decisions. Periodic behavior
means that similar behavior of the workload shows up every fixed length of time, thus
we can predict the coming workload by historical data. Workload prediction has been
studied by some previous works [11, 12]. Several different strategies have been pro-
posed to predict application workload.

Instead of accurately predicting the workload value, for auto-scaling, it suffices to
only predict the trend of workload change. Trend is the direction of workload chang-
ing in a fixed size of time, or “trend interval”. There are three possibilities, up, down,
or constant. The workload frend of an application can be acquired from historical
workload data. For most web applications that exhibit periodic behaviors, the pattern
length is usually one day or one week. Given the pattern length, we can divide the
historical data into pieces, each with length equals to the pattern length, and determine
the trend of the pattern.

A pattern consists of several trend intervals, which can be further divided into
monitor intervals. Figure 2 shows the relationship between the pattern of workload,
trend interval, and monitor interval. Scaling decisions are made in every monitor in-
terval and compared with the trend of the trend interval from previous pattern. For
example, monitor interval 2-1.2 makes a decision “scale out”. This decision is then
compared with the trend of trend interval 1-2 for confliction. Trend 2-1 will be up-
dated after all the monitor intervals (2-1.174) make their decisions.

The trend analysis technique works as a helper to the scaling algorithms by provid-
ing workload trend information to the scaling algorithms to make more ‘“correct”
decision while handling workloads with periodic behaviors. If a scale in decision
“conflicts” with the trend, i.e., the decision is scale in while the trend is scale out,
then the decision will be canceled and no scale will be the new decision. The rationale
is to avoid removing VMs during workload increasing.

3 Experiment Results

3.1 Experiment Setting

Our experiment environment consists of 24 physical servers, each with the following
hardware specifications: quad-core X5460 CPU * 2 with hyper-threading, 16 GB
memory, and 250 GB disk. The hypervisor is Xen 4.1 and the OS of domain O is

86 C.-C. Lin et al.

Gentoo. There are three kinds of VMs: the auto-scaling master (which manages the
running VM cluster), the running VMs, and the data storages that runs MySQL serv-
ers. All the VMs use Gentoo OS. The configurations are as follow: Auto-scaling mas-
ter: 2 core, 2G memory, and 4G disk space; Running VM: 4 core, 4G memory, and
4G disk space; Data storage: 1 core, 4G memory, 100G disk space.

MediaWiki [10] is used as the application benchmark in our experiments. Media-
Wiki is an open source wiki package originally for use on Wikipedia. We set up Me-
diaWiki and create web pages to simulate a web application uploaded by a user. The
contents are the dumps from Wikipedia. The web pages are set to read-only mode.

We use httperf [5] as our performance measuring tool. Httperfis a robust and well-
known tool for measuring web server performance. It can generate various HTTP
workloads, and measure the performance such as average response time.

The workload we used in the experiment is PREDICTABLE. PREDICTABLE is
the workload from the log of Judgegirl, an online grading system for teaching pur-
pose in department of CSIE, NTU. In the record, each data point represents the load
in fifteen minutes. We shrink this length into thirty seconds and the result is shown in
Figure 3. There is a pattern that appears four times in Figure 3, each of which is simi-
lar but is slightly different from the others. Also there are some sudden workload
changes within a pattern.

Horkload

568

468

380 -

208 [

Request per Second

168

L:]
a 28 48 1] 686 168 128 148 166 1808 2860

Tine{nin,?}

Fig. 3. PREDICTABLE workload

3.2 Comparison of Scaling Algorithms

For some web applications, such as stock market or enterprise applications, there exist
periodic behaviors. In this experiment, we use PREDICTABLE workload, which has
repeated behavior patterns, to test our auto-scaling algorithm. Figure 3 shows the
workload. The load interval is two minutes. We compare three scaling strategies:
majority vote with scaling threshold (30, 70), workload-based, and workload-based
with trend analysis. The monitor intervals for all three algorithms are one minute. The
number of database servers is fixed to one in the experiment.

Automatic Resource Scaling for Web Applications in the Cloud 87

20 _— 20 —
Majority vote'— —_ Majority vote —
vl
TS
5 Ejs
—1. 'l_l.
2 2
£ S
210 210
-_— L
< ~
- v
5 gs
3]
-
<
9630 40 60 S0 100 120 140 160 180 200 0 50 100 150 200
Time(min.) Time(min.)
(a) Running VMs (b) Response time

Fig. 4. Majority vote under PREDICTABLE workload

Figure 4(a) and Figure 4(b) are the results of majority vote. Even though the num-
ber of running VMs changes with workload, the average response time suffers a lot.
The results show that majority vote is not an effective scaling algorithm for web ap-
plications with frequently changing workloads.

30 Without Trend Analysis o

" Without Trend Anélysis'—) i
With Trend Analysis

With Trend Analysis —

,_.
'S

s)

=)
‘J|

=

o

Yo
=]
—
IS

,_.
wn
2]

VM num ber
(=]

Average Response Time(
o

(SRS
L]
e
—
b
—
e ——

[=]

0 20 40 60 S 100 120 140 160 180 200 0o 50 100 150 200
Time(min.) Time(min.)
(a) Running VMs (b) Response time

Fig. 5. Workload-based under PREDICTABLE workload

Figure 5(a) and Figure 5(b) depict the number of running VMs and average re-
sponse time using workload-based as scaling algorithm. Workload-based outperforms
majority vote. Furthermore, workload-based with trend analysis has better perfor-
mance than without trend analysis. In Figure 5(b), there are five peaks (longer than 2
seconds) in the response time without trend analysis. These increasings are caused by
sudden large workload changes. For example, in time 108, the workload drops, and
the number of running VM decreases with it. However, in time 110, the load suddenly
increases. Even if workload-based can respond to sudden workload increase, it still
takes time to balance the load to these newly added VMs. Thus the average response
time increases for a short period of time until the load is balanced.

On the other hand, workload-based with trend analysis takes the historical trend in-
formation into consideration while making scaling decisions. When there is workload
fluctuating, it will not invoke scaling action. Therefore, it results in only two peaks in
the response time (at time 50 and 80).

88 C.-C. Lin et al.

In summary, for workloads with periodic behavior, using workload-based algo-
rithm with trend analysis performs the best among all three strategies. Slight sudden
workload change will not affect workload-based algorithm with trend analysis. How-
ever, the cost of wrong analysis may be high.

3.3 Scaling Data Access Tier

In this section, we study the effect of auto-scaling on the data access tier. We add a
backend VM with Round-Robin DNS. This VM also monitors the queries per second
to the database servers, and make database scaling decisions using workload-based
algorithm. The auto-scaling algorithm for running VMs is workload-based. Other
settings are the same as previous section.

10 — T —— 5 ,
. 1 Mysql Datibase — | ° : Autoscaling Databases
. 2 Mysql Database == 1 450
— Autoscaling Databases b=
28 Workload ==1 400 o 4r
= 30 2 @
86 30 5 83
g7 g 27
2 %0 o §
8 a4t 200 é Sar
5h s g2
= (a1
B2r 100 1
>
< 50

P e T VA CUUTUDRE U) I R S S R R S

0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 & 10 12 14 16 18 20 22
Time(min.) Time(min)
(a) Average response time (b) Number of DB server

Fig. 6. Database tier

Figure 6(a) shows the performance result. The purple line is the workload. The red
line shows the average response time of using only one database server. The response
time drastically increases while the workload increases. On the other hand, the aver-
age response times of using two database servers always remain short no matter how
workload changes.

As can be seen from Figure 6(a), auto-scaling with workload-based algorithm can
always maintain low average response time. When the response time increases to
almost 4 seconds at the fourth minute, the large amount of workloads trigger the auto-
scaling system and a new database server is added to share the workload. The average
response time decreases and remains short after then.

Figure 6(b) shows the number of database servers used. It is clear that the number of
database servers is dynamically adjusted according to the workload. The experiment
result shows that by applying auto-scaling to the data access tier, we can maintain low
average response time while using the right amount of active database servers. By keep-
ing fewer number of active database servers, energy consumption can be reduced.

4 Related Work

The auto-scaling feature has been provided in several cloud service providers and
cloud computing systems, such as Amazon EC2 [13] and Google App Engine [2].

Automatic Resource Scaling for Web Applications in the Cloud 89

Auto scaling in Amazon EC2 is enabled by Amazon CloudWatch, which monitors the
resource usage on user instances. Google App Engine [2] provides a very simple auto-
scaling strategy. If the volume of incoming requests exceeds the capacity of the in-
stances currently available, they will have to wait in the Pending Queue. When the
number of pending requests exceeds a threshold value, a new instance will be created
to share the workload.

Many softwares such as Scalr [3] and RightScale [4] provide auto-scaling mechan-
ism that can apply to cloud environments like Eucalyptus [14] or Amazon EC2. Both
Scalr [3] and RightScale [4] scales the number of VMs based on the workload on each
back-end server. The scaling algorithms are presumed to be majority vote. In this
paper, our empirical study has shown that majority vote is not effective for scaling
workloads with periodic behaviors.

All of the above existing solutions do not address the issue of workload trend pre-
diction. Most of them use majority vote to deal with workloads even if the workload
is predictable. In contrast, our auto scaling system provides trend analysis algorithm
and can scale out quickly.

The scaling decision algorithm plays a critical role in an auto scaling system. Chieu
et al. [15] proposed an architecture for scaling based on predefined thresholds for
Web applications. The algorithm scales out when all VM session numbers exceed the
threshold. This approach is simple but insensitive to workload change. Our algorithm
is more responsive to workload change since the decision is based on requests per
second and HTTP response time and thus can accurately characterize Web application
behavior. Mao et al. [16] presented a scaling approach to deal with batch jobs. Ac-
cording to the deadline of each job, it decides whether using current number of VMs
is sufficient to meet the deadline. Since Mao’s algorithm only considers batch jobs, it
is not applicable to Web applications.

Another way to make scaling decision is by workload prediction. Caron et al. [11]
used KMP algorithm to find patterns from history data based on N previous time in-
terval. Gmach et al. [12] used an ARMA scheme to find periodgram function. The
two prediction algorithms aim to predict the precise workload. However, their results
show that it is difficult to make accurate prediction of precise workload. In contrast,
our analysis algorithm only predicts the trend of workload change for two reasons.
First, predicting workload trend requires much less time complexity than predicting
precise workload. Second, our experiments demonstrate that workload-trend guided
scaling is very effective.

5 Conclusion

Auto-scaling technique provides on-demand resources according to workload in cloud
computing system. In this work, we propose an effective scaling algorithm, Workload
Based algorithm, for 3-tier web applications. We compare the effectiveness of two
scaling algorithms — majority vote and workload-based. Majority vote, a simple scal-
ing strategy used in most existing systems, makes scaling decisions according to the
load of each running VM, while workload-based uses the incoming workload, which
is requests per second in our work, as the criteria for making scaling decisions.

90 C.-C. Lin et al.

A helper algorithm, Trend prediction, is devised to deal with workloads that exhibit
periodical behaviors.

We conduct experiments to evaluate the performance of different scaling algo-
rithms. We compared the performance of these algorithms under actual workload with
periodical behavior. The results show that for workloads with periodical behavior,
using workload-based algorithm with trend analysis performs the best among all three
strategies. Slight sudden workload change will not affect workload-based algorithm
with trend analysis. We also show that applying auto-scaling to data access tier can
reduce the total database server used while maintaining the performance.

References

Amazon elastic compute cloud, http: //aws.amazon.com/ec2/

Google app engine, https://developers.google.com/appengine/

Scalr, http://www.scalr.net/

Rightscale, http: //www.rightscale.com/

Mosberger, D., Jin, T.: httperf - a tool for measuring web server performance.

SIGMETRICS Perform. Eval. Rev. 26(3), 31-37 (1998)

6. Urdaneta, G., Pierre, G., van Steen, M.: Wikipedia workload analysis for decentralized
hosting. Comput. Netw. 53(11), 1830-1845 (2009)

7. Arlitt, M., Krishnamurthy, D., Rolia, J.: Characterizing the scalability of a large web-based
shopping system. ACM Trans. Internet Technol. 1(1), 44-69 (2001)

8. Davison, B.D.: Learning web request patterns (2004)

9. Wang, H., Li, B.: Shrinking tuning parameter selection with a diverging number of para-
meters. Journal of the Royal Statistical Society 71(3), 671-683 (2009)

10. Mediawiki, http://www.mediawiki.org/

11. Caron, E., Desprez, F., Muresan, A.: Forecasting for grid and cloud computing on-demand
resources based on pattern matching. In: Proceedings of the 2010 IEEE Second Interna-
tional Conference on Cloud Computing Technology and Science (CLOUDCOM 2010),
pp. 456463 (2010)

12. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Workload analysis and demand predic-
tion of enterprise data center applications. In: Proceedings of the 2007 IEEE 10th Interna-
tional Symposium on Workload Characterization (IISWC 2007), pp. 171-180 (2007)

13. Amazon auto scaling, http://aws.amazon.com/autoscaling/

14. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorod-
nov, D.: The eucalyptus open-source cloud-computing system. In: Proceedings of the 2009
9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID
2009), pp. 124-131 (2009)

15. Chieu, T., Mohindra, A., Karve, A., Segal, A.: Dynamic scaling of web applications in a
virtualized cloud computing environment. In: Proceedings of the 2009 IEEE International
Conference on e-Business Engineering (ICEBE 2009), pp. 281-286 (2009)

16. Mao, M., Li, J., Humphrey, M.: Cloud auto-scaling with deadline and budget constraints.

In: Proceedings of the 11th IEEE/ACM International Conference on Grid Computing

(GRID 2010), pp. 41-48 (2010)

M

Implementation of Cloud-RAID:
A Secure and Reliable Storage above the Clouds

Maxim Schnjakin and Christoph Meinel

Hasso Plattner Institute, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
maxim.schnjakin, meinel@hpi.uni-potsdam.de

Abstract. Cloud Computing as a service-on-demand architecture has grown in
importance over the previous few years. One driver of its growth is the ever in-
creasing amount of data which is supposed to outpace the growth of storage ca-
pacity. In this way public cloud storage services enable organizations to manage
their data with low operational expenses. However, the benefits of cloud com-
puting come along with challenges and open issues such as security, reliability
and the risk to become dependent on a provider for its service. In general, a
switch of a storage provider is associated with high costs of adapting new APIs
and additional charges for inbound and outbound bandwidth and requests. In
this paper, we describe the design, architecture and implementation of Cloud-
RAID, a system that improves availability, confidentiality and integrity of data
stored in the cloud. To achieve this objective, we encrypt user’s data and make
use of the RAID-technology principle to manage data distribution across cloud
storage providers. The data distribution is based on users’ expectations regard-
ing providers geographic location, quality of service, providers reputation, and
budget preferences. We also discuss the security functionality and reveal our
observations on the utility and users benefits from using our system. Our ap-
proach allows users to avoid vendor lock-in, and reduce significantly the cost of
switching providers.

1 Introduction

Cloud Computing is a concept of utilizing computing as an on-demand service. It
fosters operating and economic efficiencies and promises to cause a significant
change in business. Using computing resources as pay-as-you-go model enables ser-
vice users to convert fixed IT cost into a variable cost based on actual consumption.
Therefore, numerous authors argue for the benefits of cloud computing focusing on
the economic value [11], [6].

Among available cloud offerings, storage services reveal an increasing level of
market competition. According to iSuppli [9] global cloud storage revenue is set to
rise to $5 billion in 2013, up from $1.6 billion in 2009. One reason is the ever increas-
ing amount of data which is supposed to outpace the growth of storage capacity. Cur-
rently, it is very difficult to estimate the actual future volume of data but there are
different estimates being published. According to IDC review [14], the amount of
digital information created and replicated is estimated to surpass 3 zettabytes by the

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 91-[102] 2013.
© Springer-Verlag Berlin Heidelberg 2013

92 M. Schnjakin and C. Meinel

end of 2012. This amount is supposed to more than double in the next two years. In
addition, the authors estimate that today there is 9 times more information available
than was available five years ago.

However, for a customer (service) to depend on solely one cloud storage provider
(in the following provider) has its limitations and risks. In general, vendors do not
provide far reaching security guarantees regarding the data retention. Users have to
rely on effectiveness and experience of vendors in dealing with security and intrusion
detection systems. For missing guarantees service users are merely advised to encrypt
sensitive content before storing it on the cloud. Placement of data in the cloud re-
moves many of direct physical controls that a data owner has over data. So there is a
risk that service provider might share corporate data with a marketing company or use
the data in a way the client never intended. Further, customers of a particular provider
might experience vendor lock-in. In the context of cloud computing, it is a risk for a
customer to become dependent on a provider for its services. Common pricing
schemes foresee charging for inbound and outbound transfer and requests in addition
to hosting the actual data. Changes in features or pricing scheme might motivate a
switch from one storage service to another. However, because of the data inertia,
customers may not be free to select the optimal vendor due to immense costs asso-
ciated with a switch of one provider to another. The obvious solution is to make the
switching and data placement decisions at a finer granularity then all-or-nothing. This
could be achieved by replicating corporate data to multiple storage providers. Such an
approach implies significant higher storage and bandwidth costs without taking into
account the security concerns regarding the retention of data.

A more economical approach which is presented in this paper is to separate data in-
to unrecognizable slices, which are distributed to providers - whereby only a subset of
the nodes needs to be available in order to reconstruct the original data. This is indeed
very similar to what has been done for years at the level of file systems and disks. In
our work we use RAID-like (Redundant Array of Independent Disks) techniques to
overcome the mentioned limitations of cloud storage in the following way:

1. Security. The provider might be trustworthy, but malicious insiders represent a
well known security problem. This is a serious threat for critical data such as medi-
cal records, as cloud provider staff has physical access to the hosted data. One so-
lution might be to encrypt data before the transmission to providers and to decrypt
data when receiving those. This requires users to handle the distribution of crypto-
graphic keys when the data needs to be accessed by different users. For each poten-
tial customer, it is both expensive and time consuming to handle these security and
usability concerns. We tackle the aforementioned problem by encrypting and en-
coding the original data and later by distributing the fragments transparently across
multiple providers. This way, none of the storage vendors is in an absolute posses-
sion of the client’s data. Moreover, the usage of enhanced erasure algorithms
enables us to improve the storage efficiency and thus also to reduce the total costs
of the solution.

2. Service Availability. Management of computing resources as a service by a single
company implies the risk of a single point of failure. This failure depends on many

Implementation of Cloud-RAID: A Secure and Reliable Storage above the Clouds 93

factors such as financial difficulties (bankruptcy), software or network failure, etc.
However, even if the vendor runs data centers in various geographic regions using
different network providers, it may have the same software infrastructure. There-
fore, a failure in the software in one center will affect all the other centers, hence
affecting the service availability. In July 2008, for instance, Amazon storage ser-
vice S3 was down for 8 hours because of a single bit error [25]. Our solution ad-
dresses this issue by storing the data on several clouds - whereby no single entire
copy of the data resides in one location, and only a subset of providers needs to be
available in order to reconstruct the data.

. Reliability. Any technology can fail. According to a study conducted by Kroll On-
track' 65 percent of businesses and other organizations have frequently lost data
from a virtual environment. A number that is up by 140 percent from just last year.
Admittedly, in the recent times, no spectacular outages were observed. Nevertheless
failures do occur. For example, in October 2009 a subsidiary of Microsoft, Danger
Inc., lost the contracts, notes, photos, etc. of a large number of users of the Sidekick
service [20]. Most of the data could be recovered within a few weeks, but the users
of Ma.gnolia® were not so lucky in February of the same year, when the company
lost half a terabyte of data [17]. We deal with the problem by using erasure algo-
rithms to separate data into packages, thus enabling the application to retrieve data
correctly even if some of the providers corrupt or lose the entrusted data.

. Data lock-in. By today there are no standards for APIs for data import and export
in cloud computing. This limits the portability of data and applications between
providers. For the customer this means that he cannot seamlessly move the service
to another provider if he becomes dissatisfied with the current provider. This could
be the case if a vendor increases the fees, goes out of business, or degrades the
quality of the provided services. As stated above, our solution does not depend on a
single service provider. The data is balanced among several providers taking into
account user expectations regarding the price and availability of the hosted content.
Moreover, with erasure codes we store only a fraction of the total amount of data
on each cloud provider. In this way, switching one provider for another costs mere-
ly a fraction of what it would be otherwise.

The main contribution of this paper is: we present a design of an application that can
be used to overcome the limitations of individual clouds by using encryption, erasure
codes and by integrating various cloud storage providers.

Architecture Overview

The ground of our approach is to find a balance between benefiting from the cloud’s
nature of pay-per-use and ensuring the security of the company’s data. The goal is
to achieve such a balance by distributing corporate data among multiple storage

http://www.krollontrack.com/resource-library/case-studies/
http://gnolia.com/

94 M. Schnjakin and C. Meinel

providers, automizing big part of the selection process of a cloud provider, and re-
moving the auditing and administrating responsibility from the customer’s side. As
mentioned above, the basic idea is not to depend on solely one storage provider but to
spread the data across multiple providers using redundancy to tolerate possible fail-
ures. The approach is similar to a service-oriented version of RAID. While RAID
manages sector redundancy dynamically across hard-drives, our approach manages
file distribution across cloud storage providers. RAID 5, for example, stripes data
across an array of disks and maintains parity data that can be used to restore the data
in the event of disk failure. We carry the principle of the RAID-technology to cloud
infrastructure. In order to achieve our goal we foster the usage of erasure coding tech-
nics (see 3.3). This enables us to tolerate the loss of one or more storage providers
without suffering any loss of content [26], [13]. Our architecture includes the follow-
ing main components:

— User Interface Module. The interface presents the user a cohesive view on the
data and available features. Here users can manage their data and specify re-
quirements regarding the data retention (quality of service parameters).

— Resource Management Module. This system component is responsible for an
intelligent deployment of data based on the user’s requirements.

— Data Management Module. This component handles data management on be-
half of the resource management module.

Interested readers will find more background information in our previous work
[24],[21]. The system has a number of core components that contain the logic and
management layers required to encapsulate the functionality of different storage pro-
viders. The next section gives an overview on the implementation of our system on a
more detailed level.

3 Design

Any application needs a model of storage, a model of computation and a model of
communication. In this section we describe how we achieve the goal of the consistent,
unified view on the data management system to the end-user. The web portal is de-
veloped using Grails, JNI and C technologies, with a MySQL back-end to store user
accounts, current deployments, meta data, and the capabilities and pricing of cloud
storage providers. Keeping the meta data locally ensures that no individual provider
will have access to stored data. In this way, only users that have authorization to
access the data will be granted access to the shares of (at least) k different clouds and
will be able to reconstruct the data. Further, our implementation makes use of AES
for symmetric encryption, SHA-1 and MDS5 for cryptographic hashes and an
improved version of Jerasure library [18] for using the Cauchy-Reed-Solomon and
Liberation erasure codes. Our system communicates with providers via ”storage con-
nectors”, which are discussed further in this section.

Implementation of Cloud-RAID: A Secure and Reliable Storage above the Clouds 95

3.1 Service Interface

The graphical user interface provides two major functionalities to an end-user: data
administration and specification of requirements regarding the data storage. Interested
readers are directed to our previous work [22] which gives a more detailed back-
ground on the identification of suitable cloud providers in our approach. In short, the
user interface enables users to specify their requirements (regarding the placement
and storage of user’s data) manually in form of options, for example:

— budget-oriented content deployment (based on the price model of available
providers)

— data placement based on quality of service parameters (for example
availability, throughput or average response time)

— storage of data based on geographical regions of the user’s choice. The restric-
tion of data storage to specific geographic areas can be reasonable in the case of
legal restrictions.

3.2 Storage Repositories

Cloud Storage Providers. Cloud storage providers are modeled as a storage entity
that supports six basic operations, shown in table 1. We need storage services to sup-
port not more than the aforementioned operations. Further, the individual providers
are not trusted. This means that the entrusted data can be corrupted, deleted or leaked
to unauthorized parties [16]. This fault model encompasses both malicious attacks on
a provider and arbitrary data corruption like the Sidekick case (section 1). The proto-
cols require n = k + m storage clouds, at most m of which can be faulty. Present-day,
our prototypical implementation supports the following storage repositories: Amazons
S3 (in all available regions: US west and east coast, Ireland, Singapore and Tokyo),
Box, Rackspace Cloud Files, Azure, Google Cloud Storage and Nirvanix SND. Fur-
ther providers can be easily added.

Service Repository. At the present time, the capabilities of storage providers are
created semi-automatically based on an analysis of corresponding SLAs which are
usually written in a plain natural language [5]. Until now the claims stated in SLAs
need to be translated into WSLA statements and updated manually (interested readers
will find more background information in our previous work [22]). Subsequently the
formalized information is imported into a database of the system component named
service repository. The database tracks logistical details regarding the capabilities of
storage services such as their actual pricing, SLA offered, and physical locations.
With this, the service repository represents a pool with available storage services.

Matching. The selection of storage services for the data distribution occurs based on
user preferences set in the user interface. After matching user requirements and pro-
vider capabilities, we use the reputation of the providers to produce the final list of
potential providers to host parts of the user’s data. A provider’s reputation holds the

96 M. Schnjakin and C. Meinel

Table 1. Storage connector functions

Function Description
create(ContainerName) creates a container for a new user
write(ContainerName, ObjectName) writes a data object to a user container
read(ContainerName, ObjectName) reads the specified data object
list(ContainerName) list all data objects of the container
delete(ContainerName, ObjectName) removes the data object from the container
getDigest(ContainerName, ObjectName) returns the hash value of the specified data
object

details of his historical performance plus his ratings in the service registries and is
saved in a Reputation Object (introduced in our previous work [3], [2], [4]). By read-
ing this object, we know a provider’s reputation concerning each performance para-
meter (e.g. has high response time, low price). With this information the system
creates a prioritized list of repositories for each user. In general, the number of storage
repositories needed to ensure data striping depends on a user’s cost expectations,
availability and performance requirements. The total number of repositories is limited
by the number of implemented storage connectors.

3.3 Data Management

Data Model. In compliance with [1] we mimic the data model of Amazon’s S3 by the
implementation of our encoding and distribution service. All data objects are stored in
containers. A container can contain further containers. Each container represents a flat
namespace containing keys associated with objects. An object can be of an arbitrary
size, up to 5 gigabytes (limited by the supported file size of cloud providers). Objects
must be uploaded entirely, as partial writes are not allowed as opposed to partial
reads. Our system establishes a set of n repositories for each data object of the user.
These represent different cloud storage repositories (see figure 1).

Encoding. Upon receiving a write request the system splits the incoming object into k
data fragments of an equal size - called chunks. These k data packages hold the origi-
nal data. In the next step the system adds m additional packages whose contents are
calculated from the k chunks, whereby k and m are variable parameters [18]. This
means, that the act of encoding takes the contents of k data packages and encodes
them on m coding packages. In turn, the act of decoding takes some subset of the
collection of n = k + m total packages and from them recalculates the original data.
Any subset of k chunks is sufficient to reconstruct the original object of size s [19].
The total size of all data packets (after encoding) can be expressed with the following

equation: (% * k) + (% * m) =s+ (% * m) =5x* (1 + %) With this, the usage of
erasure codes increases the total storage by a factor of m k . Summarized, the overall

overhead depends on the file size and the defined m and k parameters for the erasure
configuration. Figure 2 visualizes the performance of our application using different

Implementation of Cloud-RAID: A Secure and Reliable Storage above the Clouds 97

erasure configurations. Competitive storage providers claim to have SLAs ranging
from 99% to 100% uptime percentages for their services. Therefore choosing m =1 to
tolerate one provider outage or failure at time will be sufficient in the majority of
cases. Thus, it makes sense to increase k and spread the packages across more provid-
ers to lower the overhead costs.

Physical Data Unit Generic Database View Data Unit Implementation
Local Directory Working Directory FileObject Nirvanix Box
Original File Data Packages Criginal File Metadata Data Packages Folder user_x TreeNode user_x
name tile size Name | Hash valus i
|_hashvalue | coding method fle_k1 Xz FileObject FileObject
oo Gonfiguration . - Nama Name
Repository | fem] | file_kk ey Hash vaive Hash value
assignment bufer size X Data Data
block size flomi | zyx
[tte_k1 | provider X || .
| file_k2 | provider Y | file_mm 2y
[.. .|
Amazon Rackspace
Bucket user_x Container user_x
FileObject FileObject
Name Narme
Hash value Hash value
Data Data

Fig. 1. Data unit model at different abstraction levels. At a physical layer (local directory) each
data unit has a name (original file name) and the encoded k+m data packages. In the second
level, Cloud-RAID perceives data objects as generic data units in abstract clouds. Data objects
are represented as data units with the according meta information (original file name, crypto-
graphic hash value, size, used coding configuration parameters m and k, word size etc.). The
database table "Repository Assignment” holds the information about particular data packages
and their (physical) location in the cloud. In the third level, data objects are represented as
containers in the cloud. Cloud-RAID supports various cloud specific constructions (buckets,
treenodes, containers etc.).

In the next step, the distribution service makes sure that each encoded data package
is sent to a different storage repository. In general, our system follows a model of one
thread per provider per data package in such a way that the encryption, decryption,
and provider accesses can be executed in parallel.

Encoding time

1084

g

B 100kb

o
=
tS)

O 500kb
@ 1024kb

@
=]
[S]

Y
3
5]

W 10240kb

Time taken (milliseconds)

[102400kb

~
S
5]

Cloud-RAID [3:1] Cloud-RAID [4:3] Cloud-RAID [6:1]

Fig. 2. The average performance of the erasure algorithm with data objects of varying sizes
(100kB, 500kB, IMB, 10MB and 100MB)

98 M. Schnjakin and C. Meinel

However, most erasure codes have further parameters as for example w, which is
word size’. In addition, further parameters are required for reassembling the data
(original file size, hash value, coding parameters, and the erasure algorithm used).
This metadata is stored in a MySQL back-end database after performing a successful
write request.

Data Distribution. Each storage service is integrated by the system by means of a
storage-service-connector (in the following service-connector). These provide an
intermediate layer for the communication between the resource management service
(see section 3.4) and storage repositories hosted by storage vendors. This enables us
to hide the complexity in dealing with proprietary APIs of each service provider. The
basic connector functionality covers operations like creation, deletion or renaming of
files and folders that are usually supported by every storage provider. Such a service-
connector must be implemented for each storage service, as each provider offers a
unique interface to its repository. As discussed earlier in this chapter all accesses to
the cloud storage providers can be executed in parallel. Therefore, following the en-
coding, the system performs an initial encryption of the data packages based on one of
the predefined algorithms (this feature is optional).

Reassembling the Data. When the service receives a read request, the service com-
ponent fetches k from n data packages (according to the list with prioritized service
providers which can be different from the prioritized write-list, as providers differ in
upload and download throughput as well as in cost structure) and reassembles the
data. This is due to the fact, that in the pay-per-use cloud models it is not economical
to read all data packages from all clouds. Therefore, the service is supported by a load
balancer component, which is responsible for retrieving the data units from the most
appropriate repositories. Different policies for load balancing and data retrieving are
conceivable as parts of user’s data are distributed between multiple providers. A read
request can be directed to a random data share or the physically closest service (laten-
cy-optimal approach). Another possible approach is to fetch data from service provid-
ers that meet certain performance criteria (e.g response time or throughput). Finally,
there is a minimal-cost aware policy, which guides user requests to the cheapest
sources (cost optimal approach). The latter strategy is implemented as a default confi-
guration in our system. Other more sophisticated features as a mix of several complex
criteria (e.g. faults and overall performance history) are under development at present.
However, the read optimization has been implemented to save time and costs.

3.4 Resource Management Service

This component tracks each user’s actual deployment and is responsible for various
housekeeping tasks:

* The description of a code views each data package as having w bits worth of data.

Implementation of Cloud-RAID: A Secure and Reliable Storage above the Clouds 99

1. The service is equipped with a MySQL back-end database to store crucial informa-
tion needed for deploying and reassembling of users data.

5. Further, it audits and tracks the performance of the participated providers and en-
sures, that all current deployments meet the corresponding requirements specified
by the user.

6. The management component is also responsible for scheduling of not time-critical
tasks.

Further details can be found in our previous work [21].

4 Related Work

The main idea underlying our approach is to provide RAID technique at the cloud
storage level. In [8] the authors introduce the HAIL (High-Availability Integrity
Layer) system, which utilizes RAID-like methods to manage remote file integrity and
availability across a collection of servers or independent storage services. The system
makes use of challenge-responce protocols for retrievability (POR) [15] and proofs of
data possession (PDP) [15] and unifies these two approaches. In comparison to our
work, HAIL requires storage providers to run some code whereas our system deals
with cloud storage repositories as they are. Further, HAIL does not provide confiden-
tiality guarantees for stored data. In [12] Dabek et al. use RAID-like techniques to
ensure the availability and durability of data in distributed systems. In contrast to the
mentioned approaches our system focuses on the economic problems of cloud compu-
ting described in chapter 1.

Further, in [1] authors introduce RACS, a proxy that spreads the storage load over
several providers. This approach is similar to our work as it also employs erasure code
techniques to reduce overhead while still benefiting from higher availability and du-
rability of RAID-like systems. Our concept goes beyond a simple distribution of us-
ers’ content. RACS lacks the capabilities such as intelligent file placement based on
users’ requirements or automatic replication. In addition to it, the RACS system does
not try to solve security issues of cloud storage, but focuses more on vendor lock-in.
Therefore, the system is not able to detect any data corruption or confidentiality
violations.

The future of distributed computing has been a subject of interest for various
researchers in recent years. The authors in [10] propose an architecture for market-
oriented allocation of resources within clouds. They discuss some existing cloud plat-
forms from the market-oriented perspective and present a vision for creating a global
cloud exchange for trading services. Further, our service acts as an abstraction layer
between service vendors and service users automatising data placement processes. In
fact, our approach enables cloud storage users to place their data on the cloud based
on their security policies as well as quality of service expectations and budget prefe-
rences. Furthermore, the usage of erasure algorithms for data placement is more effi-
cient than a native replication (in terms of storage and costs).

100 M. Schnjakin and C. Meinel

5 Conclusion

In this paper we outlined some general problems of cloud computing such as security,
service availability and a general risk for a customer to become dependent on a ser-
vice provider. In the course of the paper we demonstrated how our system deals with
the mentioned concerns. In a nutshell, we stripe users’ data across multiple providers
while integrating with each storage provider via appropriate service-connectors.
These connectors provide an abstraction layer to hide the complexity and differences
in the usage of storage services.

We use erasure code techniques for striping data across multiple providers. The
first experiments proved, that given the speed of current disks and CPUs, the libraries
used are fast enough to provide good performance, reliable storage system. The aver-
age performance overhead caused by data encoding is less than 2% of the amount of
time for data transfer to a cloud provider [23]. With this, encoding is dominated by
the transmission times and can be neglected. Here, the storage overhead can be varied
to achieve higher availability values depending on user requirements. It is up to each
individual user to decide whether the additional cost caused by data encoding with
higher availability due to determination of higher m parameter are justified. By
spreading users data across multiple clouds our approach enables users to avoid the
risk of data lock-in and provide a low-level protection even without using security
functionality.

However, additional storage offerings are expected to become available in the next
few years. Due to the flexible and adaptable nature of our approach, we are able to
support any changes in existing storage services as well as incorporating support for
new providers as they appear.

6 Future Work

In the last month, we deployed your application using seven commercial cloud sto-
rage repositories in different countries in order to conduct a comprehensive test of our
system. This includes the predictability and sufficiency of response time and through-
put, the overall performance as well as the validation of file consistency.

The results of the experiment are being analysed currently an will be addressed in
our next publication. Whilst our system is still under development at present, we will
have to use the results of the conducted experiment to improve the overall perfor-
mance and reliability. This includes for instance the predictability and sufficiency of
response time and throughput as well as the validation of file consistency.

In the next step in the development of our registry service we will have to look at
ways in which we are able to verify that providers have retained data without retriev-
ing it from the storage repositories and without having to access the entire data. Read-
ing an entire archive, even periodically, is expensive in upload and download costs
and limits the scalability of networks. Existing approaches as PDP [7] require service
providers to run some code, which is not suitable with our solution.

Implementation of Cloud-RAID: A Secure and Reliable Storage above the Clouds 101

In addition, we are also planning to implement more service connectors and thus to

integrate additional storage services. Any extra storage resource improves the perfor-
mance and responsiveness of our system for end-users.

References

11.
12.

13.

14.

15.

16.

17.
18.

. Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: Racs: A case for cloud storage diver-

sity. In: SoCC 2010 (June 2010)

Alnemr, R., Bross, J., Meinel, C.: Constructing a context-aware service-oriented reputation
model using attention allocation points. In: Proceedings of the IEEE International Confe-
rence on Service Computing, SCC 2009 (2009)

Alnemr, R., Meinel, C.: Getting more from reputation systems: A context-aware reputation
framework based on trust centers and agent lists. In: International Multi-Conference on
Computing in the Global Information Technology (2008)

Alnemr, R., Schnjakin, M., Meinel, C.: Towards context-aware service-oriented semantic
reputation framework. In: International Joint Conference of IEEE TrustCom/IEEE
ICESS/FCST, pp. 362-372 (2011)

Amazon. Amazon ec2 service level agreement (2009) (online)

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, 1., Zaharia, M.: Above the clouds: A berkeley view of cloud
computing. Technical Report UCB/EECS-2009, EECS Department, University of Califor-
nia, Berkeley (2009)

Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.:
Provable data possession at untrusted stores. Cryptology ePrint Archive, Report 2007/202
(2007)

Bowers, K.D., Juels, A., Oprea, A.: Hail: A high-availability and integrity layer for cloud
storage. In: CCS 2009 (November 2009)

Burt, J.: Future for cloud computing looks good, report says (2009) (online)

. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: Vision, hype, and

reality for delivering it services as computing utilities. In: Proceedings of the 10th IEEE
International Conference on High Performance Computing and Communications (August
2008)

Carr, N.: The Big Switch. Norton (2008)

Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative sto-
rage with cfs. In: ACM SOSP (October 2001)

Dingledine, R., Freedman, M.J., Molnar, D.: The free haven project: Distributed anonym-
ous storage service. In: Federrath, H. (ed.) Anonymity 2000. LNCS, vol. 2009, pp. 67-95.
Springer, Heidelberg (2001)

Gantz, J., Reinsel, D.: Extracting value from chaos (2009) (online)

Krawczyk, H.: LESR-based hashing and authentication. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 129-139. Springer, Heidelberg (1994)

Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst. 4(3), 382-401 (1982)

Naone, E.: Are we safeguarding social data? (2009) (online)

Plank, J.S., Simmerman, S., Schuman, C.D.: Jerasure: A library in C/C++ facilitating era-
sure coding for storage applications - Version 1.2. Technical Report CS-08-627, Universi-
ty of Tennessee (August 2008)

102

19.

20.

21.

22.

23.

24.

25.
26.

M. Schnjakin and C. Meinel

Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weatherspoon, H., Kubiatowicz, J.:
Maintenance free global storage in oceanstore. IEEE Internet Computing (September
2001)

Sarno, D.: Microsoft says lost sidekick data will be restored to users. Los Angeles Times
(October 2009)

Schnjakin, M., Alnemr, R., Meinel, C.: A security and high-availability layer for cloud sto-
rage. In: Chiu, D.K.W., Bellatreche, L., Sasaki, H., Leung, H.-f., Cheung, S.-C., Hu,
H., Shao, J. (eds.) WISE Workshops 2010. LNCS, vol. 6724, pp. 449—462. Springer,
Heidelberg (2011)

Schnjakin, M., Alnemr, R., Meinel, C.: Contract-based cloud architecture. In: Proceedings
of the Second International Workshop on Cloud Data Management, CloudDB 2010,
pp. 33-40. ACM, New York (2010)

Schnjakin, M., Korsch, D., Schoenberg, M., Meinel, C.: Implementation of a secure and
reliable storage above the untrusted clouds. In: Proceedings of 8th International Confe-
rence on Computer Science and Education, ICCSE 2013 (to appear in April 2013)
Schnjakin, M., Meinel, C.: Platform for a secure storage-infrastructure in the cloud. In:
Proceedings of the 12th Deutscher IT-Sicherheitskongress, Sicherheit 2011 (2011)

The Amazon S3 Team. Amazon s3 availability event: July 20, 2008 (2008) (online)
Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. Replication: A quantitative com-
parison. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS,
vol. 2429, pp. 328-337. Springer, Heidelberg (2002)

An Improved Min-Min Task Scheduling Algorithm
in Grid Computing

Soheil Anousha’” and Mahmoud Ahmadi?

! Department of Computer Engineering, Arak Branch, Islamic Azad University, Arak, Iran
Soheil.anousha@gmail.com
? Department of Computer Engineering, University of Razi, Kermanshah, Iran
M.ahmadi@razi.ac.ir

Abstract. Supercomputer prices on one hand and the need for vast
computational resources on the other hand, led to the development of network
computing resources were under name Grid. For optimal use of the capabilities
of large distributed systems, the need for effective and efficient scheduling
algorithms 1is necessary. For reduction of total completion time and
improvement of load balancing, many algorithms have been implemented. In
this paper, we propose new scheduling algorithm based on well known task
scheduling algorithms, Min-Min. The proposed algorithm tries to use the
advantages of this basic algorithm and avoids its drawbacks. To achieve this,
the proposed algorithm firstly like Min-Min estimating of the completion time
of the tasks on each of resources and then selects the appropriate resource for
scheduling. The experimental results show that the proposed algorithm
improved total completion time of scheduling in compared to Min-Min
algorithm.

Keywords: Grid, resource, task scheduling algorithm, Min-Min, completion
time.

1 Introduction

Reduction of Makespan is a fundamental objective of optimizing task scheduling
algorithm in distributed systems. In this field, a lot of efforts have been made and
huge projects such as Globus [1] and Condor [2] for the development of
computational resources in computer networks is presented. The Grids use of
resources of connected- computers to the network and using the outcome of these
resources to easily do complex calculations. They do this with fragmenting of
resources and allocation of them to a computer in the network. Resource allocation is
done in two stages: Resource discovery and resource selection.

Stage 1 (Resource discovery): In this stage, List of all available resources is
prepared. Actually, resource discovery generates a list of potential resources.

* Corresponding author.

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 103-[13]2013.
© Springer-Verlag Berlin Heidelberg 2013

104 S. Anousha and M. Ahmadi

Stage 2 (Resource selection): this stage involves collecting information of
resources and selecting the best set to match the application requirements. After this,
the task is executed.

To make effective use of the huge capabilities of the computational grids, efficient
task scheduling algorithms are required [9]. Many Grid task scheduling algorithms
such as [9, 10] have some features in common, that are performed in multiple steps to
solve the problem of matching application needs with resource availability and
providing quality of service. Also we know that solving the matching problem to find
the choice of the best pairs of jobs and resources is NPcomplete problem [17]. The
well known example of algorithms is Min-min [17]. This algorithm estimate
completion times of each of the tasks on each of the grid resources. Estimating the
execution time of each task on different resources, the Min-min algorithm selects
the task with minimum completion time and assigns it to the resource on which the
minimum execution time is achieved. The algorithm applies a same procedure to the
remaining tasks [8]. The Min-Min algorithm seems to do worse operation, whenever
the number of small tasks is much more than the large ones. So, proposing a new
algorithm to resolve the above mentioned problem is required.

This paper offers a new task scheduling algorithm to resolve this problem with
applying the Min-Min or Max-Min algorithms to scheduling. To select the algorithm
for first scheduling, we propose new Makespan. The most important of factor that can
be improved by our algorithm is total completion time. The remainder of this paper is
organized as follows. Related works are presented in section 2. In section 3, existing
task scheduling algorithms is presented. In section 4, a new scheduling algorithm is
proposed and the proposed the algorithm is depicted through an illustrative example.
In section 5, the experimental results are presented and discussed. Finally, section 6
concludes the paper and presents future works.

2 Related Works

For optimal use of available resources in the network and getting the less execution
time, needs to provide a new scheduling algorithm is crucial. These algorithms assign
tasks to the resources and provide the best conditions of quality of services.

F. Dong et al. have proposed an algorithm called QoS priority grouping scheduling
[8]. This algorithm, considers deadline and acceptation rate of the tasks and the
makespan of the wholes system as important factors for task scheduling.

S. Parsa et al. also have proposed an algorithm called RASA [9]. RASA begins
with Min-Min algorithm if the number of available resources is odd and starts with
Max-Min algorithm if the number of available resources is even. The remaining tasks
are assigned to their appropriate resources by one of the two strategies, alternatively.

K. Etminani et al. have proposed a new algorithm which uses Max-min and Min-
min algorithms [10]. The algorithm determines to select one of these two algorithms,
dependent on the standard deviation of the expected completion times of the tasks on
each of the resources. These algorithms have some advantages and disadvantages.

An Improved Min-Min Task Scheduling Algorithm in Grid Computing 105

For example in RASA [9], if number of available resources be odd, the Min-Min
strategy is applied to assign the first task, otherwise the Max-Min strategy is applied.
The remaining tasks are assigned to their appropriate resources by one of the two
strategies, alternatively. Now, if we have odd resources and the Max-Min strategy
have better situation than Min-Min, we should select Min-Min instead of Max-Min.

3 Existing Task Scheduling Algorithms

Generally, the scheduling algorithms are divided into two basic categories:
immediate mode scheduling and batch mode scheduling. In Immediate mode task is
mapped onto a resource as soon as it arrives at the scheduler. For this mode we can
mentioned MET and MCT algorithms. The MET (minimum execution time) heuristic
assigns each task to the machine that performs that task’s computation in the least
amount of execution time [17]. MET deployed in SmartNet [6] and have O(R) time
complexity when we have R resources. The MCT (minimum completion time)
heuristic assigns each task to the machine so that the task will have the earliest
completion time [17]. Also MCT deployed in SmartNet [6] and like the MET have
O(R) time complexity when we have R resources. In the batch mode, tasks are not
mapped onto the resources as they arrive; instead they are collected into a set that is
examined for mapping at prescheduled times called mapping events. The independent
set of tasks which is considered for mapping at the mapping events is called a meta-
task [14]. Min-Min, Max-Min and Sufferage Algorithm are examples of this type.

3.1 Min-Min Algorithm

Min-Min algorithm starts with a set of all unmapped tasks. The machine that has the
minimum completion time for all jobs is selected. Then the job with the overall
minimum completion time is selected and mapped to that resource. The ready time of
the resource is updated. This process is repeated until all the unmapped tasks are
assigned. Compared to MCT this algorithm considers all jobs at a time. So it
produces a better makespan. Time complexity of Min-Min algorithm when we have R
resources and T tasks is O(T’R).

3.2 Max-Min Algorithm

Max-Min is very similar to Min-Min algorithm. Like the Min-Min, the machine that
has the minimum completion time for all jobs is selected. Then unlike the Min-Min,
the job with the overall maximum completion time is selected and mapped to that
resource. The ready time of the resource is updated. This process is repeated until all
the unmapped tasks are assigned. The idea of this algorithm is to reduce the wait time
of the large jobs. This algorithm takes O(T?R) time, when we have R resources and T
tasks. The pseudo code of Min-Min and Max-Min algorithm is depicted in Fig.1.

106 S. Anousha and M. Ahmadi

(1) for all tasks t; in MT

2) for all machines mj

(3) CTIJ = ETlJ + 7

@) do until all tasks in MT are mapped

5) for each task t; in MT

(6) Find minimum CT;}; and resource that obtains it.
7 Find the task # with the minimum CTj;

t)) Assign t, to resource m; that

9 Delete t, from MT

(10) Update
(11) Update CT};for all i
(12) Enddo

Fig. 1. The pesudo code of Min-Min (Max-Min) algorithm

Note: In Max-Min algorithm replace the underlined word in Fig.1 minimum with
maximum.

As shown in Fig.1, firstly it computes the amount of task completion time CT;; for
all tasks in MT on all resources from the following equation:

CT;jis completion time and ETj;is expected execution time of task ith on resource jth,
and r; is the ready time for resource jth (r; is the ready time or availability time of
resource j after completing previously assigned jobs). After that, the set of minimum
expected completion time for each task in MT is found (resource discovery), then the
task with the overall minimum expected completion time from MT is selected and
assigned to the corresponding resource (resource selection).

4 The Proposed Algorithm

The Min-Min algorithm seems worse in the cases when the number of short tasks is
much more than the long ones. For example, if there is only one long task, the Max-
Min algorithm executes many short tasks concurrently with the long task. In this case,
the makespan of the system is most likely determined by the execution time of the
long task. However, since the Min-Min algorithm attempts to assign the short tasks
before the long one, the makespan increases compared with the Max-Min. On the
other hand, mapping the longest task to the fastest resource provides a better
opportunity for concurrent execution of the small tasks on different resources. In this
certain situation, the Max-min provides a better mapping which supports load
balancing across the grid resources more than the Min-Min [7]. Our proposed
scheduling algorithm is presented in Fig.2. Firstly all the tasks should be sorted
ascending. It means tasks with minimum completion time are in the front of queue
and tasks with maximum completion time are in the rear of queue. Secondly this

An Improved Min-Min Task Scheduling Algorithm in Grid Computing 107

algorithm like the Min-Min algorithm, computes minimum completion time of all
tasks on available resources. After that, the resource according to the appropriate
condition should be chosen. For choosing a task for scheduling, firstly we computes
average of completion time and standard deviation of existing tasks. According to
[16] average of completion time (ACT) and standard deviation (SD) of tasks can be
calculated by using the following relations:

ACT = Z=1T4)
r

Y7_, (CTij+ACT)?
T

SD = 3)
(Where r denotes number of resources).

After, the proposed algorithm compares values of ACT and SD. By applying this
heuristic, two cases might happen:

1. If ACT is less than SD, it means the length of all tasks in MT is in a small
range, so we will select from front of queue to assign the next task (line 13).
2. Otherwise, we will select from rear of queue to assign the next task (line 15).

4.1 Time Complexity of Proposed Algorithm

The order of this algorithm is depending to two for loop that mentioned in line (3) and
(4) and also it's should be operable on all tasks (line (2)). In lines 3-5, two nested for
loops takes O(T.R) time: internal for loop runs R times (number of resources) and
external for loop runs T times (number of tasks). This process is done for all tasks in
MT and runs R times. Therefore, lines 2-17 take O(TZR) time. So, this algorithm,
likes the Min-Min and the Max-Min algorithm takes O(T°R) time, when we have R
resources and T tasks.

(1) Sort all tasks in MT ascending // MT=Meta-Task

(2) While there are tasks in MT

(3) for all tasks t; in MT

(4) for all machines m;

5 CTy=ETsr; I/ r; = Ready Time

6) for all tasks t; in MT

7 Find the minimum CTij and resource m;

8 if there is more than one resource that obtains it.

) Select resource with least usage so far // for load balancing

(10) Calculate average completion time & standard deviation of all tasks in MT.
(11) IfACT > SD then // ACT = average of Completion Time, SD = standard deviation
12) Assign t; to resource my that obtains CTx // ty = thom

(13) Else

14) Assign t, to resource my that obtains CT ., // t, = tyear

(15) Endif

(16) Delete assigned task from MT.

(17) End While

Fig. 2. The pesudo code of proposed algorithm

108 S. Anousha and M. Ahmadi

4.2 An Illustrative Example

As a simple example, assume there is a grid environment with two resources. The
completion time of the tasks are depicted in Table 1.

Table 1. Completion time of the tasks on the resources

Resources
Tas R] Rz
ks
T, 2 4
T, 6 10
T; 10 20
T, 45 90

Fig.3(a) includes one Gantt charts representing the results of applying Min-Min
algorithms according to the values of completion time that described in Table 1. Also
Fig.3(b) shows Gantt charts of our algorithm with the conditions of Table 1.
Comparing the two figures shows that the proposed algorithm could obtains a better
time unlike the Min-Min. Also the proposed algorithm uses Resource 2 and helps load
balancing. As you see in Fig.3(a), Min-Min gives a makespan of 63, but in Fig.3(b)
proposed algorithm gives a makespan of 45. Also, in proposed algorithm, two
resources had been working throughout this assignment, but in the Min-Min
algorithm, the resources R1 that obtains better completion time, is busy all the time
but R2 is free. So here, proposed algorithm has better makespan and load balancing
level than Min-Min algorithm.

70 70
60 - 60
§ 50 - § 50
S N
§ 20 - % 20 A
10 10
0 0 -
R/ rR2 R/ r2
(a) (b)

Fig. 3. Makespan of Min-Min algorithm and proposed algorithm

Also Fig.4 shows that how proposed algorithm selects tasks for scheduling,
according to the values of completion time that described in Table 1.

An Improved Min-Min Task Scheduling Algorithm in Grid Computing 109

Tasks T, T, Ts Ty Tasks T, 1, T
CT; 2 6 10 45 CT;, 2 6 10
* ®
ACT =15.75 , SD=17.12 ACT=6, SD=2.83
ACT <=SD ACT > SD
(Select task from rear of queue) (a) (Select task from front of queue) (b)
Tasks T, T; Tasks T3
CT; 2 10 CT, 10
ACT=8 , SD=2 *
ACT >SD (Select last task of queue)
(Select task from front of queue) (o) (d)

Fig. 4. Selection of tasks in proposed algorithm

In Fig.5.a, there exists one long task and three short tasks, the case where proposed
algorithm unlike the Min-Min algorithm (that select 7 for first step), select long task
for scheduling (7,). As it can be seen, the value of ACT is less than of SD, so we
should select task from the rear of queue.

5 Simulation and Experimental Results

To compare and evaluate the proposed algorithm with other algorithms such as Max-
Min and Min-Min, a simulation environment known as GridSim toolkit [13] has been
used. Our experimental testing performed in three assumptions:

1. Assumption I: A few short tasks along with many long tasks; i.e. the case where
Min-Min outperforms Max-Min.

2. Assumption II: A few long tasks along with many short tasks; i.e. the case
where Max-Min outperforms Min-Min.

3. Assumption III: With random tasks.

Number of resources is chosen to be 10. Three different numbers of tasks has been
chosen: 1000 for light load and finally 5000 for heavy load. Result of this simulation
as follows:

In Fig.5(a) and Fig.5(d), which Min-Min outperforms Max-Min, the proposed
algorithm acts like Min-Min, and also In Fig.5(b) and Fig.5(e), which Max-Min
outperforms Min-Min, the proposed algorithm acts like Max-Min. But in Fig.5(c) and
Fig.5(f), with random tasks, we see that the proposed algorithm outperforms both
Min-Min and Max-Min algorithm.

In Fig.6, which show the average resource utilization rate for 1000(Fig.6(a,b,c))
and 5000 (Fig.6(d,e,f)) tasks respectively, you can see that, again, the proposed
algorithm perform like the best algorithm in each assumption. Even, in the third

110 S. Anousha and M. Ahmadi
| & Min-Min B Proposed algorithm
2 24 100 102
215 99
” 23
E 98
S21
]
= 22 97
20.5
96
20 21
95
19.5
20 94
19 03
19
185 9
18 18 91
A ption I A ption IT A ption III A ption I A ption I A ption III
(a) (b) () (d) (e) ()

Fig. 5. Makespan for 1000 tasks (light load)

assumption, it acts better than both Min-Min and Max-Min algorithm. Average
resource utilization rate is one of the metrics that is used in [16] and the most efficient

is achieved if average resource utilization rate equals 1.

O Max-Min O Min-Min [l Proposed algorithm
0.338 035 0.289 0.34
0331 + 0.201 4 0338 4
] 0288 .
0.337 0.345 0336 |
0.199 0287 4 -
0.329 0336 ’ 0334
034 -
0.197 0.286 1 0332 4
0327 0335
0165 0.335 0.285 0.33
: 0.334
| 0328
0325 L 0.284
033
0.193 0333 0.326
0283
0324
0323 + N
0.191 0.332 0.325 H
0.282 032 1§
0.321 0.189 0331 032 0.281 0.32
A jon I A jon I1 A ption II1 A ption I A ption II A ption III
(a) (b) (c) (d) (e) ®

Fig. 6. Average resource utilization rate for 5000 tasks (heavy load)

For load balancing, in Fig.7, for 2000 tasks respectively, the proposed algorithm
acts like the best algorithm. The best and most efficient load balancing level is
achieved if load balancing equals 1. It is the other metric that is used in [16].

Here, in load balancing level metric, Max-Min has better load balancing level than
Min-Min because, Min-Min assigns the task with the earliest completion time in each
phase, results in some resources becoming busy all the time and others becoming free
most of the time. Therefore, it has less load balancing level than Max-Min where it
assigns the task with maximum completion time and lets other tasks executes along
on the other resources, therefore have better load balancing level [10].

An Improved Min-Min Task Scheduling Algorithm in Grid Computing

[OMax-Min COMin-Min .Proposed algorithm
0.825 0.5 0.835
0.82 4 045 A
04 0.83
0.815 A
0.35
0.81 4
03 0.825 +
0.805
025 A
0.8 1+
02 1 0.82 +
0.795 - 015
079 - 01 - 0815 -
Assumption I Assumption IT Assumption III
(@) (b) (©

Fig. 7. Load balancing for 2000 tasks and makespan

111

Finally, in Fig.8, we compared makespan of Min-Min, Max-Min and proposed
algorithm with 1000 tasks, when we have 2, 4, 6, 8 and 10 resources. As we see, the
proposed algorithm outperforms both Min-Min and Max-Min algorithm and have
minimum makespan.

21500

——&— Min-Min

Max-Min —#— Proposed algorithm

19500

17500 +

15500

13500

11500

9500

7500

5500
3500

1500

Fig. 8. Makespan of 1000 tasks for 2, 4, 6, 8 and 10 resources respectively

112

6

S. Anousha and M. Ahmadi

Conclusion and Future Works

To overcome the limitations of the Min-Min algorithm, in this paper an improved task
scheduling algorithm based on well-known task scheduling algorithm, Min-Min was
presented. This algorithm proposed new condition for selection of the task for
scheduling. The proposed Algorithm uses the advantages of Min-Min algorithm and
covers their disadvantages. The experimental results obtained by applying our
algorithm within the GridSim simulator, shows that the proposed algorithm is
outperforms better makespan than Min-Min and also helps load balancing . This study
concerned task execution time and load balancing. For future works, we can apply
other issues like deadlines on tasks and resources.

References

(1]

(2]

(3]
(4]

(5]

(6]

[7]

(8]

[9]

[10]

Foster, I.: Globus Toolkit Version 4: Software for service-oriented systems. In: Jin, H.,
Reed, D., Jiang, W. (eds.) NPC 2005. LNCS, vol. 3779, pp. 2-13. Springer, Heidelberg
(2005)

Litzkow, M., Livny, M., Mutka, M.: Condor - A Hunter of Idle Workstations, In:
Proceedings of the 8th International Conference of Distributed Computing Systems,
pp. 104-111 (June 1988)

Foster, 1., Kesselman, C.: The Grid: Blueprint for a future computing Infrastructure.
Morgan Kaufmann Publishers, USA (1999)

Yagoubi, B., Slimani, Y.: Task Load Balancing Strategy for Grid Computing. Journal of
Computer Science 3(3), 186-194 (2007)

Maheswaran, M., Ali, S., Jay Siegel, H., Hensgen, D., Freund, R.F.: Dynamic Mapping of
a Class of Independent Tasks onto Heterogeneous Computing Systems. Journal of Parallel
and Distributed Computing 59, 107-131 (1999)

Freund, R.F., Gherrity, M., Ambrosius, S., Campbell, M., Halderman, M., Hensgen, D.,
Keith, E., Kidd, T., Kussow, M., Lima, J.D., Mirabile, F., Moore, L., Rust, B., Siegel,
H.J.: Scheduling Resource in Multi-User, Heterogeneous, Computing Environment with
SmartNet. In: The Proceeding of the Seventh Heterogeneous Computing Workshop
(1998)

Braun, T.D., Jay Siegel, H., Beck, N., Boloni, L.L., Maheswaran, M., Reuther, A.IL,
Robertson, J.P., Theys, M.D., Yao, B.: A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing
Systems. Journal of Parallel and Distributed Computing 61, 810-837 (2001)

Dong, F., Luo, J., Gao, L., Ge, L.: A Grid Task Scheduling Algorithm Based on QoS
Priority Grouping. In: The Proceedings of the Fifth International Conference on Grid and
Cooperative Computing (GCC 2006). IEEE (2006)

Parsa, S., Entezari-Maleki, R.: RASA: A New Grid Task Scheduling Algorithm.
International Journal of Digital Content Technology and its Applications 3(4) (December
2009)

Etminani, K., Naghibzadeh, M.: A Min-min Max-min Selective Algorithm for Grid Task
Scheduling. In: The Third IEEE/IFIP International Conference on Internet, Uzbekistan
(2007)

(11]

[12]
[13]

[14]

[15]

[16]

[17]

An Improved Min-Min Task Scheduling Algorithm in Grid Computing 113

Afzal, A., Stephen McGough, A., Darlington, J.: Capacity planning and scheduling
in Grid computing environment. Journal of Future Generation Computer Systems 24,
404-414 (2008)

Brucker, P.: Scheduling Algorithms, 5th edn. Springer Press (2007)

Buyya, R., Murshed, M.: GridSim: A toolkit for the odeling and simulation of distributed
resource management and scheduling for grid computing. Journal of Concurrency and
Computation Practice and Experience, 1175-1220 (2002)

Benjamin Khoo, B.T., Veeravalli, B., Hung, T., Simon See, C.W.: A multi-dimensional
scheduling scheme in a Grid computing environment. Journal of Parallel and Distributed
Computing 67, 659-673 (2007)

Czajkowski, K., Foster, 1., Karonis, N., Kesselman, C., Martin, S., Smith, W., Tuecke, S.:
A resource management architecture for metacomputing systems. In: Feitelson, D.G.,
Rudolph, L. (eds.) JISSPP 1998. LNCS, vol. 1459, pp. 62-82. Springer, Heidelberg (1998)
Cao, J., Spooner, D.P., Jarvis, S.A., Nudd, G.R.: Grid Load Balancing Using Intelligent
Agents. Future Generation Computer Systems 21(1), 135-149 (2005)

He, X., Sun, X.-H., Laszewski, G.V.: QoS Guided Min-min Heuristic for Grid Task
Scheduling. Journal of Computer Science and Technology 18, 442-451 (2003)

Heterogeneous Diskless Remote Booting System
on Cloud Operating System

Jin-Neng Wu, Yao-Hsing Ko, Kuo-Ming Huang, and Mu-Kai Huang

Cloud Service Technology Center
Industrial Technology Research Institute, Tainan, Taiwan
{LeslieWu, sam_ko, huangkuoming, mkhuang}@itri.org.tw

Abstract. Nowadays, cloud computing has become one of the major issues on
the progress of computer science. Applying Diskless Remote Booting (DRB)
System to cloud computing has potential to reduce energy consumption and
enhance Maintainability. Previous research has introduced homogeneous DRB
system which consists of compute nodes with the same hardware and software
configuration. However, in the homogeneous DRB system, adding a new node
requires the same hardware and software configuration. In this paper, we
propose a heterogeneous DRB system that allows compute nodes to have
various hardware and software configurations. Moreover, the proposed scheme
is equipped with hypervisor to each compute node, so that every compute node
provides a virtual environment for its end-users. The experiment results show
our approach can run a number of compute nodes with various hardware and
software configurations concurrently. Furthermore, the proposed scheme has
outstanding benefits to energy saving with negligible performance loss.

1 Introduction

Diskless Remote Booting (DRB) system consists of a number of compute nodes with
no disks, and each node boots up its operating system by accessing local disks of
sever over network. With diskless technique, it has potential to be adopted in cloud
computing to meet the requirements of low maintenance cost and energy consump-
tion. In other words, the power consumption of local disks on a compute node is elim-
inated. On the other hands, storing all data in a server helps system administrator to
maintain system easily. Nowadays, DRB system has been used on real-world scena-
rios widespreadly, including distance education for off-campus students, system of
computer classroom and cybercafe.

Virtualization offers a compute node to run a number of different and concurrent
operating systems inside a diskless system. With multitudinous advantages, such as
high flexibility, isolation, resource utilizing rate, easy management, power saving,
etc., virtualization has become a well-known technique to offer various execution
environments from cloud computing vendor [2]. In virtualization system, resource
virtualization of hardware and concurrent execution virtual platform are operated by a
software called virtual machine monitor (VMM) or hypervisor [9]. Typically, VMMs

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 114-123] 2013.
© Springer-Verlag Berlin Heidelberg 2013

Heterogeneous Diskless Remote Booting System on Cloud Operating System 115

are categorized into four types: Operating system-level virtualization, Full-
virtualization, Para-virtualization and Hardware-assisted virtualization.

Early research puts effort on the methods of building dislkess High Performance
Computing (HPC) cluster and virtualization environment [6][11][12][14]. Much work
has reported the performance of different types of virtualization, including execution
time, kernel compiling time, memory bandwidth, I/O access, network traffic, context
switch overhead and throughput [2][3][4][5][8][13]. And few researchers deal with
applying diskless HPC cluster and virtualization in real-world scenarios, such as bio-
medical information and DNA issues, distance education environment and green
computing [1][7][10].

Although the DRB system has been widely used on the diskless HPC cluster, it has
much potential to be applied in cloud computing to improve energy efficiency and
maintainability. The objective of this paper is to apply the DRB system in green cloud
computing. By eliminating local disks from compute nodes, energy consumption can
be reduced with less performance degradation. Previous research concerns the Homo-
geneous DRB system, i.e., every compute node has the same processor architecture,
operating system and softwares [12]. However, it requires that a new added compute
node needs the same hardware and software configurations. In this paper, we propose
a heterogeneous DRB system, where compute nodes can use variety of different types
of hardware, software and operating system. Furthermore, the proposed system en-
compasses a VMM to provide end-users a number of different virtual machines as a
cloud computing platform.

The experiment results show that the proposed scheme runs compute nodes with
different hardware and software configuration concurrently. Compared with diskfull
system (system with local disks), the proposed scheme pays little performance loss for
booting up. Furthermore, it reduces 10-25% energy consumption with less perfor-
mance degradation.

The rest of the paper is organized as follows. Section 2 describes related work.
Section 3 presents our heterogeneous diskless system. Section 4 provides the detail of
implementation of our work. Section 5 shows our experiment results and Section 6
summarizes our conclusion.

2 Related Work

In recent years, studies have investigated methods to construct the DRB system which
consists of a number of compute nodes without local disks [6][11][12][14]. T. Victo-
ria and A. V. Nestor Waldyd [12] implemented a homogeneous diskless HPC cluster
using Linux as operative system. K. Salah et al. [11] implemented a large-scale Infi-
niband-based diskless cluster which consists of 126 compute nodes with RedHat En-
terprise Linux Server 5.3. C.-T. Yang and Y.-C. Chang [14] built an SMP-based PC
cluster with a number of diskless slave nodes on Linux environment. J. H. Laros III
and L. H. Ward [6] implemented a diskless cluster using the Network File System
(NFS) that scales to thousands of compute nodes.

116 J.-N. Wu et al.

Virtualization allows compute nodes to run a certain number of different and concur-
rent operating system instances inside a system. Much research has demonstrated perfor-
mance evaluation for various virtualization technologies, including operating system-level
virtualization, para-virtualization and full- virtualization [2][3][4][S][8][13]. J. Che et al.
[2] measured and analyzed the performance of operating system-level virtualization, para-
virtualization and full-virtualization, and presented several comparison results, such as
execution performance, kernel compiling time, memory bandwidth, I/O access, network
traffic and context switch overhead. A. Chierici and R. Veraldi [3] presented the perfor-
mance comparison of computing, network and I/O access between para-virtualization and
full-virtualization. J. S. White and A. W. Pilbeam [13] analyzed the throughput of full-
virtualization. M. Fenn et al. [5] showed the performance penalty of full-virtualization on
different operating systems. D. Petrovic and A. Schiper [8] investigated the fault-tolerance
issue on para-virtualization and full-virtualization. T. Deshane et al. [4] compare the per-
formance isolation and scalability between para-virtualization and full-virtualization.

Several researchers have applied the DRB system and virtualization on real-world
scenarios [1][7][10]. S. M. Sait et al. [10] focussed on biomedical information and
DNA issues, and evaluated the Basic Local Alignment Search (BLAST) algorithms
onto a large Infinibandbased diskless Cluster. L. Liu et al. [7] applied virtualization to
reduce data center power consumption. B. R. Anderson et al. created a virtualized lab
environment in distance education, and provided off-campus students to utilize the
same environment as on-campus students [1].

3 Proposed Scheme

Virtual Machine Monitor (VMM) provides a virtual environment that allows multiple
OS images to operate on a computer hardware concurrently. Applying the VMM to
the DRB system can run a number of different OS images of end-users on a compute
node to reduce the amount of hardware usage and energy consumption. Moreover, it
provides an energy efficiency machine with no local disks on a compute node to meet
the requirement of energy saving of green cloud computing.

Figure 1 illustrates the concept of the VM-based homogeneous DRB system in
cloud computing. In the DRB system configuration, the clone node is a typical server
with hardware and operating system, each compute node has the same hardware,
which is nearly the same as the hardware of the clone node except with no local disks,
and the server node is functioned as Dynamic Host Configuration Protocol (DHCP)
server, Trivial File Transfer Protocol (TFTP) server and Network File System (NFS)
server. The boot-up procedures are described as follows:

1. The server node acquires the booting configuration and the OS image from the
clone node.

2. The server node offers these files to compute nodes so that a compute node can
remotely boot up via network connection.

3. Each compute node maintains its own virtual machine structure and provides a
cloud computing environment to end-users.

Heterogeneous Diskless Remote Booting System on Cloud Operating System 117

VM Structure

————— p
= LVVIJ'VM ; ‘VMJ
- il _J‘ - .-
VM4 on Nods d Compute Node 1
G ~ s Hardware Server Node
VMZEnNoge2 1) eeseesseeessssmed {1. Sever Node acquires
e - i the OS image
g e Compute Node 2 &
VM 3 on Node 3

VM 4 on Node 1
Compute Node 3 Clone Node

Fig. 1. The illustration of a homogeneous diskless system using the Xen

Compute Node 1

Intel Core i7 3.7G
8G DDR3 MEM
Ubuntu

Compute Node 2

AMD FX 4.0G
16G DDR3 MEM
CentOS

Compute Node 3

Intel Xeon 2.8G
16G DDR3 MEM
RedHat

Clone Set

Fig. 2. The illustration of a heterogeneous diskless system

In homogeneous DRB system, each compute node retrieves the same configuration
and OS image from the server node, which means each compute node requires the
same hardware and software configurations (i.e., the configurations of clone node). It
could constrain the hardware expandability and become a problem to system vendor.
Hence, we introduce a heterogeneous DRB system that allows compute nodes to use
variety of different types of hardware and software configurations. The major change
of the heterogeneous technology is to use a set of clone nodes. It offers a number of
different OS images and hardware configurations as an image pool. In the other
words, compute nodes can retrieve various OS image and hardware configuration
from image pool. With the heterogeneous technology, vendor can easily add new
compute nodes without using the same configuration.

Figure 2 shows the illustration of the heterogeneous DRB system, where the clone
set is composed of three types of clone nodes. As shown in this figure, compute node
1 retrieves the OS image and hardware configuration from the type 1 in the clone set,
compute node 2 gets the files from the type 2 in the clone set, and so on. System ven-
dor can add new compute node with different hardware or change hardware device of
certain compute node flexibly. Moreover, system vendor can easily assign users into
different compute nodes based on its priority (i.e., Gold Member, Silver Member or
Free Member).

118 J.-N. Wu et al.

4 Implementation

To implement our approach, a PXE booting Environment (PXE) is required for com-
pute nodes. In addition, certain tools have to be installed in the server node, including
Dynamic Host Configuration Protocol (DHCP), Trivial File Transfer Protocol (TFTP)
and Network File System (NFS). To provide cloud computing environment for end-
users, Xen hypervisor is applied to each compute node as the VMM. Following de-
scribes the detail of implementation.

allow booting;

allow bootp;

subnet 192.168.2.0 netmask 255.255.255.0 {
range 192.168.2.xxx 192.168.2.xxXx;
option broadcast-address 192.168.2.255;
option routers 192.168.2.xxx;
option domain-name-servers 192.168.2.xxx;

filename "/pxelinux.0";

host pxe_client {
hardware ethernet XX:XX:XX:XX:XX:XX;
fixed-address 192.168.2.xxx;

Fig. 3. An example of DHCP configuration

PXE booting Environment (PXE) is a technology to boot up system from a net-
work interface, it has been applied to many system architectures, such as Intel IA-64
and DEC Alpha. In our work, each compute node requires a PXE network interface
controller to acquire the PXE configuration over network. In Linux system, the PXE
configuration is defined in pxelinux.0 file.

Dynamic Host Configuration Protocol (DHCP) configures devices on network
so that they can communicate with an IP. With the DHCP protocol, a device retrieves
network information, such as IP address, default route and DNS server addresses from
the DHCP server. In our work, the server node is configured as the DHCP server. And
the configurations, such as network address range, router address, DNS address, and
MAC address of compute nodes are defined in /etc/dhcp/dhcpd.conf file. As mention
before, our heterogeneous DRB system creates a set of clone nodes, which means,
the configuration of a compute node is from one of these clone nodes. Consequently,
the DHCP configuration defines fixed IP address to each compute node so that the
corresponding configuration and the OS image can be transferred to. Figure 3 gives
an example of the DHCP configuration. While a compute node boots up, it sends

Heterogeneous Diskless Remote Booting System on Cloud Operating System 119

a DHCP request to the DHCP server, and waits for DHCP response to get its IP
address.

Trivial File Transfer Protocol (TFTP) is a technology that transfers files be-
tween network devices. Generally, it is widely used for transferring little files, such as
configuration files or boot images. UNIX-like OS has initially installed typical ready-
to-use TFTP tools, for example, tftpd, tftp-hpa and tftp-server. Hence, the server node
can start up the TFTP service immediately with following command:

chkconfig --level 345 xinetd on --level 345 tftp on During booting process, the
compute node gets PXE configuration pxelinux.0, /pxelinux.cfg/default and OS image
/kernel/initrd by tftp.

Network File System (NFS) allows a compute node to access files over network
connection. After retrieving the PXE configuration and the OS image, the compute
node decompresses its OS image, and mounts the kernel on the NFS server. After-
ward, a compute node can operate as a diskless system. To support the NFS service
for compute nodes, the administrator needs to create NFS share directories in the
server node to share with. Then a compute node can access its files in the share direc-
tories as in a "virtual" disk. Figure 4 gives the procedures of diskless remote booting.

Xen hypervisor is a para-virtualization VMM that requires modification of virtual
operating system to access privileged system calls. Figure 2 shows the VM structure
of the Xen. The Xen runs the operating system of compute nodes in Domain 0 (DO0),
and maintains operating systems of different end-users in VM 1 to VM n. The Xen
takes a full control on hardware resource and forbids each VM to execute sensitive
privileged instructions. Instead, the Xen controls most device drivers in DO, and han-
dles system calls from other VMs, such as CPU execution, memory allocation and I/O
access. The Xen offers communication ways between the hypervisor and VMs, those
are synchronous call by using hypercall and asynchronous event by using virtual in-
terrupt [2]. In this work, the configurations of D0 are defined in /etc/xen/xend-
config.sxp, and the configurations of other VMs are defined in /etc/xen/, such as VM
kernel, virtual memory size, virtual CPU count, virtual network interface, etc. After
setting VMs for end-users, the VMs can be started up by following command:

xm create -c VM_NAME

5 Experiment Results

In this section, we first evaluate the performance of the proposed diskless RDB sys-
tem, such as file transfer speed and boot-up time. Then, we compare runtime and
energy consumption between the proposed DRB system and the system with local
disks (following refer as diskless system and diskfull system respectively). All the
experiments were executed on real cloud computing server with hardware configura-
tions as shown in Table 1.

Figure 5(a) shows the comparison of file transfer speed of the diskless system with
different compute node counts, where Type A, B and C are the hardware configura-
tions listed in Table 1, and the OS image used in this comparison is CentOS 5.5.

120 J.-N. Wu et al.

Server Node

Compute Node Clone Set DHCP Server TFTP Server NFS Server
== .| o ==
T [Aquire 0g images

T

Request Pxelinux.o

Download pxe\inux.o
|Downloac PP ——

Request / Xelinux.cfg/efa, It and /kerne initrg
% 7 Ui
fg itre

Download /pxelinux cfg/default and Jkernel/initrd

I—
—————owo | Mount NFs
—

I

Fig. 4. The procedures of diskless remote booting

Table 1. The Hardware Configurations

Server Intel Xeon E5620 2.4GHz 499G RAM

A. Intel Core 15 3.2GHz 12G RAM

Client B. Intel Core 2 Duo E6750 2.66GHz 4G RAM
C. Intel Xeon E5620 2.4GHz 499G RAM

The experiment transferred files from the NFS server to compute nodes. As shown in
Figure 5(a), with the increasing number of compute nodes, the transfer speed de-
grades progressively. The is due to the bandwidth contention of network, the more
compute nodes, the slower transfer speed.

Figure 6(b) presents the boot-up comparison between the diskfull system and the
diskless system. To enhance security, the proposed scheme is equipped with Security-
Enhanced Linux (SELinux). The result shows that the booting time of the diskless
system with SELinux is from 115s to 355s as compute nodes are increased from 1
node to 10 nodes. And the booting time of the diskless system without SELinux is
from 110s to 347s. Compared with the diskless system without SELinux, the diskless
system with SELinux enhances security with little overhead on booting time. The
result shows the booting time of the diskfull system from 1 node to 10 nodes are
about the same, this is due to each node loads the OS image from its local disks. Al-
though the diskfull system avoids contention of bandwidth, a large number of local
disks could cause considerable energy consumption.

Figure 6(a) presents the comparison of runtime between the diskfull system and
the diskless system with modern benchmarks, including the boot-up testing, the

Heterogeneous Diskless Remote Booting System on Cloud Operating System 121

Type A + Type C ss0d | T Diskless system without SELinux ‘

\ ; . e .
\ ® Diskless system with SELinux £
g4 : Type B +Type C +— Disgkfull system I
\)\ o—Type A 300 4 4
POENAN | ~~—TypeB /l/
E N L
2 51\ _ 20 pa
3 ’\ £ -
3 \ o o
& a '\\\ E 200 o
@ R N L o
™ -

& RN, v
= e N 150 - -~

2 e, -

T ® : Ny A a A s A !
v —— _\3 —ﬁ‘! 100
0 T T T T 1 T T T T J
2 4 8 8 10 2 4 [8 10
Compute node counts Compute Node Counts
(a) (b)

Fig. 5. The comparison of file transfer speed and boot-up

CPU-intensive testings (make and gcc) and I/O-intensive testing (dd). Also, we com-
pared the proposed schemes with Che's work [2] named Gen in Fig. 6. In this compar-
ison, the hardware configuration is type C. For the diskfull system, the OS image is
CentOS 5.5. For the diskless system, the OS images are CentOS 5.5, Ubuntu 6.2 and
Redhat 9. In the CPU-intensive testings, the runtime of the diskless system is less than
that of the diskfull system. However, in I/O-intensive testing, the runtime is dominat-
ed by data access of hard drive. For instance, benchmark dd creates a 1.5GB image in
hard drive, running it on the diskless system brings a longer runtime due to data is
accessed over network. On the other hands, the diskfull system executes the I/O-
intensive benchmark on its own local disk and eliminates the overhead of network
data transferring. For the boot-up testing, the diskfull system takes about 79 seconds
to boot up the system, the boot-up time of the diskless systems are 105 seconds for
CentOS, 102 seconds for Ubuntu and 110 seconds for RedHat. The results show that
diskless system takes less performance degradation in boot-up. Moreover, the results
also show that our schemes have better performance on runtime than that of Gen.

Figure 6(b) demonstrates the comparison of energy consumption between the dis-
kfull system and the diskless system. The results show that the diskless system per-
forms less energy consumption in the CPU-intensive testings and boot-up testing. For
I/O-intensive benchmark, the diskless systems have higher energy consumption. This
is due to diskless systems take a long time for execution. On the other hand, the pro-
posed schemes have less energy consumption than that of Gen.

In previous work [11], a compute node is equipped with two network interface
adapters to handle (1) the communication with NFS server and (2) the communication
with end-users. Using a network interface for the communication with the NFS server
can avoid compute node losing its file structure in the NFS server while the internet is
disconnected unexpectedly. However, it could cause the lack of IP address and in-
crease hardware cost. Our work merges file structure of compute node into the OS
image so that compute node stores its own file structure in RAM memory. In this
way, compute node can avoid losing file structure without using two network inter-
face adapters. Moreover, the usage of IP address and hardware cost can be reduced.

122

Runtime

6

J.-N. Wu et al.
T [diskless (CentOS) -] diskless (Ubuntu) [diskfull] diskless (CentOS) diskless (Ubuntu)
[diskless (Redhat)[__] Gi 255 diskless (Redhat)[| Gen
1.0 . 1.04 _ —
] []] A
A 7 A %
0.8+ 1 *')77 —

0.6+ A

o
>
1

0.4+

Energy Consumption
o
s
I

0.2+

0.0 . ; I 004 z ol

T T t T
make gce Boot-up dd make gee Boot-up dd

o
)
L

Benchmarks Benchmarks

(a) (b)

Fig. 6. The comparison of the diskfull system and the diskless systems

Conclusion

This work presents a heterogeneous Diskless Remote Booting (DRB) system which
allows a number of compute nodes with different hardware and software configura-
tions to run concurrently. With heterogeneous DRB system, a compute node with
different hardware and software configurations can be joint flexibly. Also, system
vender can add/update/remove devices inside a certain compute node without chang-

ing

other compute nodes. The experiment results show that the proposed scheme

reduces energy consumption and enhances system security with little performance
degradation, which meets the requirement of green cloud computing. Moreover, com-
paring with previous work, the hardware cost and the usage of IP address are reduced.

References

Anderson, B.R., Joines, A.K., Daniels, T.E.: Xen Worlds: Leveraging Virtualization in
Distance Education. In: Proceedings of the 14th Annual ACM SIGCSE Conference on In-
novation and Technology in Computer Science Education, pp. 293-297 (2009)

. Che, J., Yu, Y., Shi, C., Lin, W.: A Synthetical Performance Evaluation of OpenVZ, Xen

and KVM. In: Proceedings of the 2010 IEEE Asia-Pacific Services Computing Confe-
rence, pp. 587-594 (2010)

. Chierici, A., Veraldi, R.: A quantitative comparison between xen and kvm. In: The 17th

International Conference on Computing in High Energy and Nuclear Physics. Journal of
Physics: Conference Series, vol. 219(4) (2010)

Deshane, T., Shepherd, Z., Matthews, J.N., Ben-Yehuda, M., Shah, A., Rao, B.: Quantita-
tive Comparison of Xen and KVM. In: Proceedings of the Xen Summit (2008)

Fenn, M., Murphy, M.A., Martin, J., Goasguen, S.: An Evaluation of KVM for Use in
Cloud Computing. In: Proceedings of the 2nd International Conference on the Virtual
Computing Initiative (2008)

Laros III, J.H., Ward, L.H.: Implementing Scalable Disk-less Clusters using the Network
File System (NES). In: Proceedings of the 4th Symposium of the Los Alamos Computer
Science Institute, pp. 27-29 (2003)

10.

11.

12.

13.

14.

Heterogeneous Diskless Remote Booting System on Cloud Operating System 123

Liu, L., Wang, H., Liu, X, Jin, X., He, W., Wang, Q., Chen, Y.: GreenCloud: A New Ar-
chitecture for Green Data Center. In: Proceedings of the 6th International Conference
Industry Session on Autonomic Computing and Communications Industry Session,
pp- 29-38 (2009)

Petrovic, D., Schiper, A.: Implementing Virtual Machine Replication: A Case Study using
Xen and KVM. In: IEEE 26th International Conference on Advanced Information Net-
working and Applications, pp. 73-80 (2012)

Rosenblum, M., Garfinkel, T.: Virtual Machine Monitors: Current Technology and Future
Trends. Computer, 39-47 (2005)

Sait, S.M., Al-Mulhem, M., Al-Shaikh, R.: Evaluating BLAST Runtime Using NAS-Based
High Performance Clusters. In: The 3rd International Conference on Computational Intel-
ligence, Modelling & Simulation, pp. 51-56 (2011)

Salah, K., Al-Shaikh, R., Sindi, M.: Towards Green Computing using Diskless High Per-
formance Clusters. In: Proceedings of the 7th International Conference on Network and
Services Management, pp. 456-459 (2011)

Victoria, T., Nestor Waldyd, A.V.: Diskless HPC cluster for parallel & Grid computing on
fedora. In: IEEE Latin-American Conference on Communications, pp. 1-8 (2009)

White, J.S., Pilbeam, A.W.: A Survey of Virtualization Technologies With Performance
Testing, ArXiv e-prints (2010)

Yang, C.-T., Chang, Y.-C.: A Linux PC Cluster with Diskless Slave Nodes for Parallel
Computing. In: The 9th Workshop on Compiler Techniques for High-Performance Com-
puting, pp. 81-90 (2003)

RTRM: A Response Time-Based Replica Management
Strategy for Cloud Storage System

Xiaohu Bai, Hai Jin, Xiaofei Liao, Xuanhua Shi, and Zhiyuan Shao

Services Computing Technology and System Lab.
Cluster and Grid Computing Lab.
Huazhong University of Science and Technology, Wuhan, 430074, China
hjin@hust.edu.cn

Abstract. Replica management has become a hot research topic in storage sys-
tems. This paper presents a dynamic replica management strategy based on re-
sponse time, named RTRM. RTRM strategy consists of replica creation, replica
selection, and replica placement mechanisms. RTRM sets a threshold for re-
sponse time, if the response time is longer than the threshold, RTRM will in-
crease the number of replicas and create new replica. When a new request
comes, RTRM will predict the bandwidth among the replica servers, and make
the replica selection accordingly. The replica placement refers to search new
replica placement location, and it is a NP-hard problem. Based on graph theory,
this paper proposes a reduction algorithm to solve this problem. The simulation
results show that RTRM strategy performs better than the five built-in replica
management strategies in terms of network utilization and service response
time.

Keywords: Dynamic replica management, Response time, OptorSim, Load
balance.

1 Introduction

Since data replication has been widely used in storage systems [1-3], replica management
has been a hot research topic [4-9]. As the storage environment changes dynamically,
dynamic replica management gets more attention by researchers. Replica management
includes replica creation, selection, and placement.

Most existing dynamic replica management strategies create new replica of the
popular data based on the user access frequency, thus the replica creation always
happens at the end of each time interval. But according to temporal locality and spatial
locality, especially the pattern of user accesses, the distribution of the user accesses is
uneven during the time interval. A file may have many concurrent requests during the
time interval, and these concurrent requests will greatly increase the service response
time of each single request. Two issues should be addressed: (1) when is the best time
for replica creation of popular data to reduce the average service response time; (2)
how many replicas can satisfy the response time requirement of a single request.

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 124-133] 2013.
© Springer-Verlag Berlin Heidelberg 2013

RTRM: A Response Time-Based Replica Management Strategy 125

In this paper, we focus on the response time of a single request, and propose a re-
sponse time-based replica management strategy, named RTRM, which includes three
algorithms: replica creation, replica selection, and replica placement. Replica creation
algorithm decides when and where to create replica based on the average response
time. Replica selection method selects the best replica node for users based on re-
sponse time prediction, while replica placement mechanism combines the number of
replicas and the network transfer time. To evaluate the performance of RTRM, we run
the strategies in OptorSim [10]. The evaluation results show that our replica manage-
ment strategy performs better than the five built-in replica management strategies in
OptorSim simulator in terms of service response time and network utilization.

The rest of this paper is organized as follows. Section 2 introduces the related
work. Section 3 presents dynamic replica management strategy. The analysis and
evaluation results are presented in section 4. In section 5, we give conclusions and
possible future work.

2 Related Works

Replica management has been widely studied. Sun et al. [4] proposed a replica strategy
based on the memory cache. Hou et al. [5] proposed a dynamic replica creation
mechanism DynRM, which decides to create replicas according to the file access
frequency. Chang et al. [6] set access-weights for each file, and choose hot file based
on the value of access-weights. These replica strategies do not take the response time
of a single request into consideration, while many requests have to be waiting for a
long time.

Rahman et al. [7] proposed a replica placement algorithm used the p-median model
to find the locations of p candidate nodes to place replicas, but the problem is how to
determine an appropriate value of p. A model-driven replica strategy is proposed in [8].
This strategy first calculates the requisite number of replicas and selects the best set of
nodes to host the replicas. However, as each node can only utilize partial information,
this strategy may create too many replicas and result in prohibitive overhead. Li et al
[9] proposed a DSRL replica location method in which each file has a home node to
maintain the index of all the replicas. With the dynamic changes in the network, DSRL
method would create too many replicas.

3 Design of RTRM

3.1 Replica Creation Method

In dynamic replica management strategy, replica creation decides which file is the
popular data and when is the right time to create new replica of the popular data.
Replica creation method first finds the best time to create new replica, an access
recorder is assigned to each data node, which is used to store the number of concurrent
user accesses to each file, including file name, number of concurrent access, file size,
and so on. The service response time of single access can be calculated by the number

126 X. Bai et al.

of concurrent user accesses. Once the average service response time of a file is higher
than a threshold, the file becomes popular data, and the creation of that file is started.

In our replica creation method, Tiemo 1S set as the upper limit of the service
response time of a single request. The average service response time of a file must be
smaller than T,,.014-

Assume that data block b has n replicas, and distributed in n nodes. Let these n
nodes be N;, N, ... N,. To simplify the problem, for the user accesses of data block b,
we have the denotations as follows:

The size of data block b is denoted as S},

The network transmission capability of node N; is denoted as NTC;.

The number of concurrent accesses of node N; is denoted as Num;.

The maximum service response time of single request of node S; is denoted as
MSRT;. MSRT; can be computed by Equation (1).

Sp

MSRT, =
NTC

X Num, (i =1,2,...,n) (D

1

We define MSRT;.x as the maximum value of all MSRT;, the average response time
of all MSRT; is denoted as MSRT ,,,4e..- Based on Equation (1), MSRT,x and MSRT,.
verage €an be computed by Equation (2).

MSRT,,,, = max(MSRT,,MSRT,....,MSRT,)
(2)

MSRT, =15 MSrT,

average n l:l 1
Each time when a user access comes, we get the value of MSRT)ax and MSRT ,yerage
through Equation (2). If the value of MSRT, .4 is higher than Tieg0m, file f is
considered to be popular data, and new replica of file f will be created. If MSRT 0y 15
smaller than Ty esnor, DUt MSRTyax is higher than Tj,.g.04, then the system would
transfer some accesses from the relatively heavy load nodes to the relatively light load
nodes.

3.2 Replica Selection Method

The goal of replica selection method is to select the best replica node of a file. In rep-
lica selection method, LPC is defined to represent the load process capability of a
node. The metrics of LPC consists of three components: CPU process capability,
network transmission capability, and I/O capability of disks, denoted by w,, w,, wi,
respectively. Given these metrics, LPC can be computed by Equation (3).

LPC =a*w+L*w,+y*w,, 3)

In Equation (3), a, S, y are constants and can be determined according to service level.
Replica selection method chooses the node with highest LPC to response the user
request, the user then accesses the file from the node with highest LPC.

RTRM: A Response Time-Based Replica Management Strategy 127

3.3 Replica Placement Mechanism

Replica placement has been proven to be NP-hard. We first give a model of replica
placement, and then we propose a reduction algorithm to solve this problem.

Assume that the system has n storage nodes, let them be n;, n,, ...,n,. We want to
get the minimal replicas of file f, and place these replicas to satisfy the requirement of
a single request. To simplify the problem, the denotations are as follows:

(1) The replica number is denoted as replicaDegree, and the upper limit of the re-
sponse time of a single request is set as T ;-

(2) The response time that node n; accesses file f is denoted as responseTime;, it is
the time that n; accesses file f from the nearest node. If n; contains file f or its replica,
responseTime; is set to be 0.

(3) The total response time of the system is denoted as TotalresponseTime, and To-
talresponseTime can be computed by Equation (4).

TotalresponseTime = z; responseTime, 4)

The goal of our design is to make sure that the response time of a single request must
be smaller than T,,,,,, and minimize the value of replicaDegree and the value of Tota-
lresponseTime. Therefore, in this paper, we want to find an optimal replica scheme

that can achieve the following goals:

(1) Minimize replicaDegree
(2) responseTime; <= T per
(3) Minimize TotalresponseTime.

For goals (1) and (2), they can be described as a Set Covering Problem (SCP), which
has been proven to be NP-hard. Based on greedy algorithm, by transforming the SCP
into an equivalent graph, we design a reduction algorithm to figure out this model.

Based on the network topology and the network transfer time, we construct a graph
G=(V, E), this graph can be described as:

V={ny, ny, ..., n,}; E={(n;, ny) | responseTime;<= T ppe,}.

As an example, a network topology and the network transfer time is shown in
Fig.1, and the value of T, in this example is 10s.

Fig. 1. Network topology and network transfer time

128 X. Bai et al.

From the graph, we can get the value of V and E.

V={n,, ny, n3 ny ns, ns ny, ng, Nof; E={(ny, ny), (n;, n3), (n;, ny), (n, ne), (na, n3),
(n2, n4), (ny, ng), (ns, no), (ns, ng), (ng, nz)}.

The goal is to find a subset V*, which is a smallest subset of V, for each element v
from V, there must have at least one element v* from V*, and (v, v*) is an element in
E. It means that for each node v in V, there must be at least one node v* in V*, and v
can access file from v* within T,

Algorithm 1 shows the process of the reduction algorithm. We can place the repli-
cas in the nodes from V* to make sure that all the nodes can access file f within T,

Algorithm 1. Reduction algorithm
INPUT: G = (V, E); OUTPUT: V*
/I degree(v) gets the degree of v in G;

1. Begin

2. Initialize V* and v*: V* = @, degree(v*) = 0,
3. if(V==0) {goto 18;}

4. else {go to 5;}

5. for (each element vin'V)

6. if(degree(v) > degree(v*)) { v¥ = v;}
7. push v* into V*;

8. delete all the edges incident to v* from V;
9. delete v* from V;

10. end for

11. if(V==0){goto18;}

12. else {goto 13;}

13. for (‘each elementvinV)

14. if ((v¥ v)CE)

15. {ifldegree(v) == 0) { delete v from V;}}
16. end for

17. goto 3.

18. return V¥,

19. End

4 Performance Evaluation

In this section, we first compare our replica placement mechanism with other four
replica placement strategies, then compare RTRM strategy with the five built-in repli-
ca strategies in OptorSim. From the experiment results, RTRM strategy performs
better in terms of network utilization, average response time, and total replica number.

4.1 Analysis of Replica Placement Mechanism

We will compare our replica placement mechanism with other four strategies: Best
Client, MinimizeExpectedUtil, MaximizeTimeDiffUtil, and MinimizeMaxRisk.

RTRM: A Response Time-Based Replica Management Strategy 129

The example in Fig. 1 is used in the analysis. The upper limit of the response time
of a single request T, is set to 10s. We define replicaDegree to represent the num-
ber of replicas in the system, and use TotalresponseTime to represent the total re-
sponse time of all nodes in the system. We perform two analyses. In the first analysis,
we compare the value of TotalresponseTime of the five mechanisms with the same
replicaDegree. In second analysis, we compare the smallest replicaDegree of the five
mechanisms while making sure the response time of all requests is smaller than T,

First Analysis

Because in general storage systems, the smallest replica degree is 3, we set the val-
ue of replicaDegree of all the five mechanisms 3, and access the file from each node,
then compare the TotalresponseTime of each mechanism. Result is in Table 1.

Table 1. Results of first analysis

Mechanism TotalresponseTime | Nodes to host replica
RTRM 40 Ny, Ns, Ne
Best Client 77 Ny, N3, Ny
MinimizeExpectedUtil 48 ny, Ny, ns
MaximizeTimeDiffUtil 52 ny, Ny, Ny
MinimizeMaxRisk 69 Ny N3 Ny

From the first analysis, we can observe that with the same replicas, our replica
placement mechanism performs best, and has the smallest TotalresponseTime.

Second Analysis

As smaller replica degree means less cost of management, we compare the smallest
replicaDegree of each mechanism to make sure that the response time of a single
request is smaller than 7,,,.,. The result is shown in Table 2.

Table 2. Results of second analysis

Mechanism replicaDegree Nodes to host replica
RTRM 3 N Ns, Ne
Best Client 4 Ny, N3, Ny Ns
MinimizeExpectedUtil 3 ny, Ny, Ns
MaximizeTimeDiffUtil 4 ny, Ny, Ng, Ng
MinimizeMaxRisk 4 ny, N3 Ns, N7

From the second analysis, we can see that our replica placement mechanism has the
smallest replciaDgree. MinimizeExpectedUtil also has smallest replicaDegree, but its
TotalresponseTime is bigger.

4.2 Simulation of Dynamic Replica Management Strategy

OptorSim is a scalable, configurable and programmable simulation tool for grid. It
has five built-in replica management strategies. We compare our RTRM strategy with

130 X. Bai et al.

the five built-in replica strategies in OptorSim, and give the performance analysis.
The simulation grid topology is shown in Fig. 2.

0 @ @ O Router
- Router2 Q Data node

Routerl

Fig. 2. The grid topology of simulation experiment

The simulation experiments are performed on a server machine, and the hardware
and the software environment of the server machine is shown in Table 3.

Table 3. Environment of server machine

CPU Quad-Core Intel Xeon 1.6GHz processors

Memory 4GB DDRII RAM

Hard Disk 320GB SATA II hard drive 7200RPM (ST3500418AS)
(0N 64-bit CentOS 5.6 with Linux 2.6.18.8 kernel
OptorSim OptorSim Release V 2.0.0

The simulation parameter configuration of the grid in our experiments is shown in
Table 4.

Table 4. The configuration of simulation parameters

Parameters value
Number of jobs 1000
Scheduler File access cost + job queue access cost
optimizer SimpleOptimiser
LruOptimiser
EcoModelOptimiserZipf
DynamicOptimiser
Job delay 40000
Init file distribution ny, Ny, N7
Max queue size 200

Fig. 3 shows the average job time of the six replica management strategies under
three user access modes. In sequence mode, RTRM strategy is second best. In the
random mode, RTRM strategy performs not so well. While in the Zipf distribution
mode, our strategy performs best among all strategies.

RTRM: A Response Time-Based Replica Management Strategy 131

300 Simple ECE0 LRU =] LFU B Eco (I Eco_Zipf 5T RTRM
250 —
@
E
)
2 a0 N == N
a
k=X I
8, 150 4 HH HH
© I =
e H
< o
1004 |
50 A
0 Ll T T S88
Sequential Random RandomZipf
User access mode

Fig. 3. Average job time

Fig. 4 shows the network utilization of the six replica management strategies under
three user access modes. From the result, in any mode, RTRM strategy performs the
best among the six strategies. This is because RTRM strategy takes the response time
of a single request into consideration, making sure that the response time of any node

smaller than T,

1.2+| EZ4 Simple EEH LRU =5 LFU B Eco [Eco_Zipi I RTRM |

N

z 7

TTTT]
|
immmn|

0.8

TTTTTT
I
111

0.6

Network utilization

0.4

0.2

0.0 T T
Sequential Random RandomZipf
User access mode

Fig. 4. Network utilization

Table 5 shows the number of total replicas of the six replica management strategies
under three user access modes. Because the simple strategy has no replicas, the num-
ber of replicas of simple in Table 5 is always 0. From the table, we can see that the

132 X. Bai et al.

number of replica in RTRM strategy is far less than other five strategies in each
access model. This is because we apply the reduction algorithm in the replica place-
ment, and find the relatively better nodes to host the replicas for all the nodes in the
system. Make sure the average service time is smaller than the threshold.

Table 5. Number of total replicas

Sequential Random Random_Zipf
Simple 0 0 0
LRU 8851 6982 3583
LFU 6573 6751 3026
Eco 205 225 112
Eco_Zipf 425 512 374
RTRM 43 57 36

Through the analysis of simulation results, it can be deduced that RTRM strategy is
very suitable for user access mode which follows Zipf distribution. The Zipf distribu-
tion means that user’s access to file is coherent to time, which is very popular in the
file sharing application of distributed storage system.

5 Conclusion and Future Work

Taking the response time of single request into consideration, we propose a response
time-based replica management strategy referred to as RTRM, and it consists of replica
creation method that can automatically increase the number of replicas based on the
average response time. When a new request comes, RTRM will predict the bandwidth
among the replica servers, and make the replica selection accordingly, and replica
placement mechanism combing with the number of replicas and the network transfer
time. In addition, we implement our dynamic replica management strategy in
OptorSim. Through extensive simulations, we show that RTRM strategy behaves
much better than the five built-in replica management strategies in OptorSim in terms
of the network utilization and the service response time.

Finally, due to the limitation of OptorSim, the performance advantage of our replica
selection method does not fully revealed in the simulation, but we believe that our
replica selection method could achieve good performance and low response time, and
provide rapid data download. In the future, we plan to apply our response time-based
replica management strategy in HDFS [3], PVFS [11], pNFS [12], Gpfs [13], and
LusterFS [14].

Acknowledgments. This paper is supported by National 863 High Technology Re-
search and Development Program under grant No.2012AA010905 and Nation-
al Science & Technology Pillar Program under grant No.2012BAH14F02.

RTRM: A Response Time-Based Replica Management Strategy 133

References

10.

11.

12.

13.

14.

. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google File System. In: Proceedings of 19th

ACM Symposium on Operating Systems Principles, pp. 29-43. ACM Press, New York
(2003)

Sage, A.W., Scott, A.B., Ethan, L.M., Darrell, D.E.L., Carlos, M.: Ceph: A Scalable, High-
Performance Distributed File System. In: Proceedings of 7th Conference on Operating
System Design and Implementation (OSDI 2006), pp. 307-320. USENIX Press, Seattle
(2006)

The Apache Software Foundation, Hadoop, http: //hadoop.apache.org/

Sun, H., Wang, X., Zhou, B., Jia, Y., Wang, H., Zou, P.: The Storage Alliance Based
Double-Layer Dynamic Replica Creation Strategy-SADDRES. Chinese Journal of Elec-
tronics 33(7), 1222-1226 (2003)

Hou, M.S., Wang, X.B., Lu, X.L.: A Novel Dynamic Replication Management Mechan-
ism. Compute Science 33(9), 50-52 (2006)

Chang, R.S., Chang, H.P.: A Dynamic Data Replication Strategy Using Access-Weights in
Data Grids. Journal of Supercomputing 45, 277-295 (2008)

Rahman, R.M., Barker, K., Alhajj, R.: Replica Placement in Data Grid: Considering Utility
and Risk. In: Proceedings of the International Conference on Information Technology:
Coding and Computing (ITCC 2005), pp. 354-359. IEEE Press, Las Vegas (2005)
Ranganathan, K., lamnitchi, A., Foster, I.: Improving Data Availability through Dynamic
Model-Driven Replication in Large Peer-to-Peer Communities. In: Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 376-381.
IEEE/ACM, Berlin, Germany (2002)

Li, D., Xiao, N., Lu, X., Wang, Y., Lu, K.: Dynamic self-adaptive replica location method
in data grids. Journal of Computer Research and Development 40(12), 1775-1780 (2003)
Bell, W.H., Cameron, D.G., Millar, A.P., Capozza, L., Stockinger, K., Zini, F.: OptorSim-
A Grid Simulator for Studying Dynamic Data Replication Strategies. International Journal
of High Performance Computing Applications 17(4), 403-416 (2003)

Ross, R.B., Rajeev, T.: Pvfs: A parallel file system for linux clusters. In: Proceedings of
the 4th Annual Linux Showcase and Conference, pp. 391-430. USENIX Press, Atlanta
(2000)

Hildebrand, D., Ward, L., Honeyman, P.: Large files, small writes, and pnfs. In: Proceed-
ings of the 20th ACM International Conference on Supercomputing, pp. 116-124. ACM
Press, New York (2006)

Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clusters. In:
Proceedings of the First USENIX Conference on File and Storage Technologies, pp. 231-
244. USENIX Press, Berkeley (2002)

Lustre: A scalable, High-performance File System, http://www.lustre.ort/
docs/lustre.pdf

Secure Hadoop with Encrypted HDFS

Seonyoung Park and Youngseok Lee

Chungnam National University, Daejeon, Republic of Korea, 305-764
{siraman, lee}@cnu.ac.kr

Abstract. As Hadoop becomes a popular distributed programming framework
for processing large data on its distributed file system (HDFS), demands for se-
cure computing and file storage grow quickly. However, the current Hadoop
does not support encryption of storing HDFS blocks, which is a fundamental
solution for secure Hadoop. Therefore, we propose a secure Hadoop architec-
ture by adding encryption and decryption functions in HDFS. We have
implemented secure HDFS by adding the AES encrypt/decrypt class to Com—
pressionCodec in Hadoop. From experiments with a small Hadoop
testbed, we have shown that the representative MapReduce job on encrypted
HDFS generates affordable computation overhead less than 7%.

Keywords: Hadoop, HDFS, Security, Encryption, Decryption, Cryptography.

1 Introduction

Apache Hadoop [1], that originated from Google's MapReduce and GFS [2, 3], has
been recently popularized due to its scalable distributed computing framework and
file system, because it enables a big data processing platform for many data-intensive
applications and analytics. Hadoop is an open-source distributed computing frame-
work implemented in Java, and provides the MapReduce programming model and the
Hadoop Distributed File System (HDFS). MapReduce allows users to harness thou-
sands of commodity machines effectively in parallel for processing massive data in
the distributed system by simply defining map and reduce functions.

Since Hadoop is usually used in a large cluster or a public cloud service such as
Amazon Elastic MapReduce where multiple users run their jobs at the same time, it is
essential to provide the security of user data on HDFS. However, the security service
in the current Hadoop project is at the early design stage [4] that the simple file per-
mission and access control mechanisms are employed. Particularly, encryption is the
key means for the secure HDFS where many datanodes store files to HDFS and trans-
fer user files among datanodes while executing MapReduce jobs. It is reported that a
future Hadoop software release will include encryption [5]. For the secure HDFS, a
few studies assume that encryption is applied to HDFS [6-9]. However, the native
encryption modules for Hadoop have not been fully implemented and tested.

In general, encrypted file systems are widely deployed in various Operating Sys-
tems (OSes) such as MS Windows, Linux, MacOS and FreeBSD, and it is known that
encrypted file system does not perform well because of the high CPU utilization of

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 134-141] 2013.
© Springer-Verlag Berlin Heidelberg 2013

Secure Hadoop with Encrypted HDFS 135

encryption or decryption processes. However, recent CPU architectures equipped with
multi-cores and special encryption accelerators can perform better than expectation.
On the other hand, due to the development of CUDA [10] and OpenCL, GPUs can
run general-purpose programs by augmenting the computing power with many paral-
lel processing units. Recent studies [11-15] begin to take advantage of GPUs for de-
veloping network systems such as routers and distributed file system by utilizing high
degrees of parallelism of GPUs and saving CPU computing capacity. Yet, the current
data center generally does not deploy the CUDA-capable GPUs to the cluster, because
a cluster node is equipped with the popular hardware devices at the low cost. In addi-
tion, GPUs usually consume more energy than CPUs so that they cannot be adopted
by a large-scale data center where the most serious problem is the energy-efficient
computing infrastructure. This means that we cannot directly utilize the GPU capa-
bility for enhancing computing power in the commodity data center.

Therefore, in this paper, we propose a secure HDFS architecture that is compatible
with the current Hadoop applications and show its performance results on the Hadoop
cluster testbed. From the experiments with an AES encryption algorithm [16], we
present that the secure HDFS causes the computation overhead only less than 7% for
the representative MapReduce jobs.

The remainder of this paper is organized as follows. In Section 2, we describe the
related work. Our proposal for the secure HDFS is explained in Section 3, and
its experimental results are presented in Section 4. Finally Section 5 concludes this

paper.

2 Related Work

As Hadoop becomes the main framework for the cloud computing service, a few stu-
dies [4, 6-9] have presented secure HDFS methods. In [4], a secure HDFS architec-
ture has been proposed such that Kerberos over SSL is used for strong mutual authen-
tication and access control to enhance HDFS's security. Tahoe [6], a prototype of
using SSL and integrating an encrypted distributed file system with Hadoop, has been
presented, but its write speed is 10 times slower and its read speed is about the same
with the generic HDFS. In [7], an application-level encryption MapReduce, that as-
sumes the pre-uploaded plaintext to HDFS, was proposed to support the file system.
In [8], hybrid encryption of HDFS was proposed with HDFS-RSA and HDFS-Pairing.
However, both read and write performance of encrypted HDFS is lower than those of
the generic HDFS. In the write case, the encrypted HDFS is slower by 2 times. In
[9], Hybrid cloud, where sensitive data is stored at private storage cluster and the
remainder of data is transferred to public or partner storage cluster, was proposed. For
more security, sensitive data can be encrypted using trusted platform module (TPM).
GPUs have been also applied to distributed storage systems and Hadoop. In [11], a
GPU-based library that accelerates hashing-based primitives for distributed storage
system has been presented. In [14], a framework for integrating GPU computing into
storage systems has been proposed, and it has been prototyped in the Linux kernel.
The AES cipher powered by GPUs is reported to achieve 4 GBps, whereas the results

136 S. Park and Y. Lee

with CPUs are less than half of GPU's performance in [14]. Shredder [15] uses
GPUs for incremental storage and computation in Hadoop by mitigating the CPU
bottlenecks of content-based chunking. Generally, GPU-based approaches put empha-
sis on performance enhancement, but they do not reveal the energy efficiency and
consider form factors that are currently deployed by commodity servers in a data cen-
ter. Nowadays, dedicated encryption accelerators and CPUs with special encryption
features such as Intel AES New Instructions (NI) [17] have been developed.

3 Secure Hadoop

3.1 Overview

HDFS consists of a master (namenode) and multiple slaves (datanodes). In HDFS, a
file is chunked by a block with the fixed size (64 MB by default). The namenode
manages the file system metadata and controls access to files from clients by main-
taining the mapping between datanodes and blocks for a file. Each block belonging to
a file is replicated three by default in HDFS. Hadoop provides a MapReduce pro-
gramming framework that runs multiple tasks for a job. A MapReduce job divides its
job into multiple maps or reduce tasks to process many HDFS blocks in parallel.
HDES is well suited with a write-once-read-many access model.

We assume that every file is encrypted and decrypted before it is written and read
in the secure HDFS. In addition, we presume that each datanode is a commodity serv-
er that will encrypt and decrypt files with CPUs. Clients' requests to read or write a
file in HDFS will trigger decryption or encryption functions to HDFS blocks at each
datanode. We use 128-bit AES which is one of the most popular block cipher algo-
rithm and suitable for handling HDFS blocks. There are a few modes of operation for
AES: ECB, CBC, OFB, CFB, CTR and XTS [16]. We choose AES ECB, because its
computation can be concurrently performed in a distributed computing environment.
AES CBC is the most commonly used mode, but it is not suitable for HDFS cluster
consisting of many nodes because HDFS blocks must be processed sequentially on
one slave node.

3.2 Encrypting Files in HDFS

As shown in Fig. 1, following the same procedure of the file write operation in HDFS,
a HDFS client splits a file by a fixed size, encrypts every block and saves it to HDFS.
In HDFS, the encryption function itself can be easily implemented by writing an en-
cryption Java class in the same way that the CompressionCodec is used for com-
pressing and uncompressing files [5]. Based on CompressionCodec, we have
devised an AES encryption module (AESCodec) that executes the encryption algo-
rithm on the CPU. The HDFS client runs AESCodec class to perform encryption and
to pass the encrypted HDFS blocks to a datanode. Then, the first datanode, that rece-
ives the encrypted HDFS blocks from the client, will stream the encrypted blocks to
other datanodes for replication. In contrast to decryption, encryption of a file is

Secure Hadoop with Encrypted HDFS 137

performed at a HDFS client node, because the file write procedure in HDFS is se-
quentially carried out by a client. In this work, we have implemented only the AES
function as the encryption algorithm. However, other encryption algorithms such as
RSA or DES can be simply extended.

1. create 2. create
HDFS [~~=="====="7 Distributed | NS
client :::'i.chrypt FileSystem B comaiete Namenode

<

~~~~~
7.close <3 AES
Pe Encryption [\
7 namenode

1
7.close !

\
RS FSData )
B OutputStream
client JVM

client node

4 -
‘4. write

5. write packet 6. ack packet

5 5
Pipeline of DataNode DataNode DataNode
datanodes "6 | i

datanode datanode datanode

Fig. 1. Writing a file by adding an encryption step in HDFS

3.3 Decrypting Files in HDFS

With our own AESCodec, reading an encrypted file in HDFS is performed by mul-
tiple HDFS datanodes in parallel. That is, every block is processed by a map task at
the HDFS datanode. Thus, assuming the same file read operation in HDFS, as shown
in Fig. 2, we have added the decryption step with AESCodec when a task tracker
launches a map task that reads a block. In general, multiple map tasks are executed by
a Hadoop worker up to the number of available map task slots which is usually con-
strained by the number of CPU cores. Since HDFS assumes the write-once-read-many
model, our concurrent decryption per-HDFS block architecture fits well for various
MapReduce jobs.

4 Performance Evaluation

4.1 Experimental Environment

For the performance evaluation of encrypted HDFS, we have established a small
Hadoop testbed consisting of a master node and three worker nodes. Each node has
8- core 2.83 GHz CPU, 4 GB memory, and 2 TB hard disk. All Hadoop nodes are
connected withl Gigabit Ethernet cards.



138 S.Park and Y. Lee

2. get new job ID

1. create .. 5. Initialize
MapReduce | """ N, Job
progrem JobTracker W
4. submit job /

client JVM

-

1
i
client node ! 6. retrieve L i A
i input splits ’_./ jobtracker
i -~ node
3. copy job ! s .
oo ! :"f i 7. heartbeat
l g i (return task)

8. retrieve

Jo
resources  9-launch

Shared File System

(e.g., HDFS) child JvM
10. run i
|

AES
e Decryption
) s MapTask
11. Map inputs are decrypted
on each MapTasks or ReduceTask

tasktracker node

Fig. 2. A MapReduce job that read an encrypted file in HDFS

4.2  File Write: Generic HDFS vs. Encrypted HDFS

First, we have compared the file write time between generic HDFS and encrypted
HDEFS. As shown in Fig. 3, it took 430 minutes to write a 1 TB unencrypted file to
HDEFS, whereas 585 minutes to encrypt a file in HDFS, which is 36% performance
degradation. The throughput of writing files in HDFS is 41 MB/s for the generic
HDEFS, while 30 MB/s for the AES encrypted HDFS. In the encryption phase, the
HDES client is in charge of encrypting the whole files, which is a bottleneck of up-
loading files to HDFS.

4.3  File Read and Computation of MapReduce Jobs: Generic HDFS vs.
Encrypted HDFS

In order to evaluate the usefulness of encrypted HDFS, we have considered MapRe-
duce jobs on multiple HDFS datanodes that read and compute encrypted files in
HDEFS. Thus, we have run a representative WordCount MapReduce job on the testbed
that processes encrypted files on HDFS by decrypting files with AESCodec. Fig. 4
shows the performance of MapReduce jobs on unencrypted or encrypted HDFS. We
can observe that 604 minutes was taken for running a WordCount MapReduce job for
unencrypted HDES for 1 TB file tests, while 635 minutes for the encrypted HDFS. In
the read case, the overhead of decrypting files in HDFS is less than or equal to 5% for
almost all cases except 7% for 128 GB. In contrast to the write case, the decrypt/read
operation on encrypted files is executed in parallel, which mitigates the performance
degradation, and it fits well for the write-once-read-many model.



10
8
5
o
= .
- b
(]
E
E
c
S
4
E
[=]
&)
2
0

Fig. 3. File write
HDFS

Secure Hadoop with Encrypted HDFS

lqener\c HDFS —o—
AES-encrypted HOFS —a—
generic HOFS throughput —s—
AES-e ted HDFS throughput

BMB  128MB 1GB 32GB  128GB  256GE  512GB 1TB

File Size

performance under different file sizes: generic HDFS

Completion Time (hour)
(s3]

0

Qeneric HDFS —o—
AES-encrypted HDOFS —a—
generic HDFS throughput —e—
AES-encrypted HDFS thro

BME  128MB 1GB  32GB  128GB 256GEB 512GB  11B

File Size

75

a5

30

0

Throughput (MB/s)

139

vs. AES-encrypted

30

24

18

12

0

Throughput (ME/s)

Fig. 4. Performance of MapReduce jobs under different file sizes: generic HDFS vs.
AES-encrypted HDFS



140 S. Park and Y. Lee

5 Conclusion

Since generic Hadoop lacks in secure file management, it is necessary to be upgraded
with encryption in HDFS. Though encryption is the essential file protection method,
its real implementation has not been fully examined. In this paper, we presented a
secure HDFS by adding encryption and decryption function as a built-in encryp-
tion/decryption class in Hadoop. Based on CompressionCodec, we have imple-
mented AESCodec into Hadoop and shown that it is useful for securing MapReduce
job in HDFS with marginal performance degradation less than 7%.

Acknowledgment. This research was supported by the Basic Science Research Pro-
gram through the NRF, funded by the Ministry of Education, Science and Technology
(NRF 2010-0021087). The corresponding author of this paper is Youngseok Lee.

References

1. Hadoop, http://hadoop.apache.org/

2. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Cluster. In:
OSDI (2004)

3. Ghemawat, S., Gobioff, H., Leung, S.: The Google File System. In: ACM Symposium on
Operating Systems Principles (October 2003)

4. O’Malley, O., Zhang, K., Radia, S., Marti, R., Harrell, C.: Hadoop Security Design,
Technical Report (October 2009)

5. White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media (2009)

6. Cordova, A.: MapReduce over Tahoe. Hadoop World (2009)

7. Majors, J.H.: Secdoop: a confidentiality service on Hadoop clusters. Auburn University
Master Thesis (May 2011)

8. Lin, H., Seh, S., Tzeng, W., Lin, B.P.: Toward Data Confidentiality via Integrating Hybrid
Encryption Schemes and Hadoop Distributed FileSystem. In: IEEE AINA (2012)

9. Yang, Y., Wu, Z., Yang, X., Zhang, L., Yu, X., Lao, Z., Wang, D., Long, M.: SAPSC: Se-
curity Architecture of Private Storage Cloud Based on HDFS. In: Proceedings of 26th
IEEE Workshops of International Conference on Advanced Information Networking and
Applications (2012)

10. NVIDIA CUDA Programming Guide,
http://developer.download.nvidia.com/compute/DevZone/
docs/html/C/doc/CUDA_C_ProgrammingGuide.pdf

11. Al-Kiswany, S., Gharaibeh, A., Santos-Neto, E., Yuan, G., Ripeanu, M.: StoreGPU: ex-
ploiting graphics processing units to accelerate distributed storage systems. In: ACM
HPDC (2008)

12. Han, S., Jang, K., Park, K., Moon, S.: PacketShader: A GPU accelerated Software Router.
In: Proceedings of the ACM SIGCOMM (2010)

13. Jang, K., Han, S., Han, S., Moon, S., Park, K.: SSLShader: Cheap SSL Acceleration with
Commodity Processors. In: Proceedings of NSDI (2011)

14. Sun, W., Ricci, R., Curry, M.L.: GPUstore: Harnessing GPU Computing for Storage
Systems in the OS Kernel. In: ACM SYSTOR (June 2012)



15.

16.

17.

Secure Hadoop with Encrypted HDFS 141

Bhatotia, P., Rodrigues, R., Verma, A.: Shredder: GPU-Accelerated Incremental Storage
and Computation. In: USENIX FAST (February 2012)

Advanced Encryption Standard, http://en.wikipedia.org/wiki/Advanced_
Encryption_Standard

Intel, http://software.intel.com/en-us/articles/intel-advanced-
encryption-standard-instructions-aes-ni



VM Migration for Fault Tolerance
in Spot Instance Based Cloud Computing

Daeyong Jung', SungHo Chin’, Kwang Sik Chung’, and HeonChang Yu""

! Dept. of Computer Science Education, Korea University, Seoul, Korea
2 Software Platform Laboratory, CTO Division, LG Electronics, Seoul, Korea
? Dept. of Computer Science, Korea National Open University, Seoul, Korea
{karat,yuhc}@korea.ac.kr,
sunghochin@gmail.com, kchung0825@knou.ac.kr

Abstract. The cloud computing is a computing paradigm that users can rent
computing resources from service providers as much as they require. A spot in-
stance in cloud computing helps a user to utilize resources with less expensive
cost, even if it is unreliable. When a user performs tasks with unreliable spot in-
stances, failures inevitably lead to the delay of task completion time and cause a
seriously deterioration in the QoS of users. To solve the problem, we propose
the VM migration scheme to reduce the job waiting time. And in this scheme
we use our previously proposed checkpointing method. When a running in-
stance occurs the out-of-bid situation (failure), the VM on the failed instance is
to a new instance. Our proposed VM migration scheme reduces the rollback
time and the task waiting time when an instance occur the out-of-bid situation.
The simulation results show that our scheme achieves performance improve-
ments in the task execution time of 68.94%, 68.61%, and 46.35% compared
with the hour-boundary checkpointing scheme, the rising edge-driven check-
pointing scheme, and our previously proposed checkpointing scheme., respec-
tively Further, our scheme outperforms the existing schemes in terms of the
reduction the total costs per spot instances for a user’s bid.

Keywords: Cloud computing, Spot instances, VM migration, Price history,
Fault tolerance.

1 Introduction

Recently, due to increased interests for cloud computing many cloud projects and
commercial systems such as Amazon EC2 [1], GoGrid [2], FlexiScale [3], have been
implemented. Cloud computing is a computing paradigm that constitutes an advanced
computing environment that evolved from utility and grid computing. In addition,
cloud computing involves a type of parallel and distributed system consisting of a
collection of interconnected and virtualized computers that are dynamically provided
and presented as one or more unified computing resources based on service level

* Corresponding author.

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 142-151] 2013.
© Springer-Verlag Berlin Heidelberg 2013



VM Migration for Fault Tolerance in Spot Instance Based Cloud Computing 143

agreements established through negotiation between service providers and consumers
[4]. Typically, Cloud computing provides high utilization and high flexibility for
managing computing resources. And, cloud computing services provide a high level
of scalability of computing resources combined with Internet technology to multiple
customers [5]. In the most of these cloud services, the concept of an instance unit is
used to provide users with resources in cost-efficient way. Generally instances are
classified into two types: on-demand instances and spot instances. On-demand In-
stances allow the user to pay for computing capacity by the hour with no long-term
commitments. This frees users from the costs and complexities of planning, purchas-
ing, and maintaining hardware and transforms what are commonly large fixed costs
into much smaller variable costs [1]. On the other hand, spot instances allow custom-
ers to bid on unused Amazon EC2 capacity and run those instances for as long as their
bid exceeds the current spot price. The price for spot instance changes periodically
based on supply and demand, and customers whose bids meet or exceed it gain access
to the available spot instances. If you have time flexibility for executing applications,
spot instances can significantly decrease your Amazon EC2 costs [6]. For task com-
pletion, therefore, spot instances may incur lower cost than on-demand instances.

Spot market-based cloud environment configures the spot instance. This environ-
ment changes spot prices depending on the user’s supply and demand. The environ-
ment affects the successful completion or failure of tasks in accordance with the
changing of spot prices. Spot price has market structure, law of demand and supply.
Therefore, cloud service (Amazon EC2) can provide a spot instance when a user’s bid
is higher than current spot price. And, a running instance stops when a user’s bid be-
comes less than or equal to the current spot price. After a running instance stops, the
running instance restarts when a user’s bid is greater than the current spot price [7, 8].

Therefore, we solve the problem that the performed task is failed according to the
current spot price. In previous study, we propose VM migration scheme using check-
pointing [9]. Our proposed checkpointing scheme basically performs a checkpointing
operation based on two kinds of threshold: price and time. These two thresholds are
extracted from the price history of spot instances and are used to determine the
checkpointing time in the presence of failures of spot instances arising from price
fluctuation in a cost-efficient way. Using this checkpointing scheme, cloud system is
able to minimize loss of task and rollback time since rollback is shorter than that of
existing checkpointing schemes. However, if spot price is higher than user’s bid, an
instance is suspended with checkpointing. And, the instance makes a task waiting
time until a task restarts. As a consequence, in this paper, we propose the VM migra-
tion scheme using checkpointing to solve task waiting time problem. However, intui-
tively our scheme makes an additional VM migration time VM from current instance
to new instance and has to reduce total execution time than without VM migration.

Lastly, we carry out simulations to demonstrate effectiveness of our scheme. Simu-
lation results show that our scheme outperforms the existing schemes, such as
hour-boundary checkpointing, rising edge-driven checkpointing, and our previous
checkpointing, in terms of reduction of both total costs and total task execution time
per spot instance for a user’s bid.



144 D. Jung et al.

The rest of this paper is organized as follows: Section 2 briefly describes related
work on checkpoint and migration in cloud computing. Section 3 presents our system
architecture and its components. Section 4 presents our checkpoint and VM migration
algorithms based on the price history of spot instances. Section 5 presents perfor-
mance evaluations with simulations. Lastly, Section 6 concludes the paper.

2 Related Work

Many researchers and companies have recently studied two different types of envi-
ronment in cloud computing: reliable cloud computing environments, such as on-
demand instances [7], and unreliable cloud computing environments, such as spot
instances [8]. [7] has addressed acquiring on-demand or reserved instances. Focus of
our research is the unreliable cloud computing environment. The cost of unreliable
cloud computing environment (spot instances) is less than that in reliable cloud com-
puting environment (on-demand instances) for task completion. However, a spot
instance takes a longer task completion time than on-demand instance, because a run-
ning instance occurs out-of-bid situations (failure) when user’s bid exceeds the spot
price. Out-of-bid situations may make a task waiting time that is not task execution in
instance. To solve this problem, existing researches have focused on studies on the
resource allocation [10, 11] and fault tolerance [7, 8, 10].

Voorsluys et al. [10] proposed a resource allocation scheme and resource provi-
sioning policy. Zhang et al. [11] introduced the question of how best to match cus-
tomer demand in terms of both supply and price in order to maximize the provider’s
revenue and the customer’s satisfaction in terms of VM scheduling delay. [10] and
[11] focus on a resource allocation scheme to achieve higher revenues and a reduced
task waiting time. There are various fault tolerance methods. [7, 8] introduce a check-
point method to improve reliability of task. Based on the actual price history of EC2
spot instances, the authors compared several adaptive checkpointing schemes in terms
of monetary costs and the improvement in job completion time. Other studies com-
pared the performances of schemes based on fault tolerances in spot instances [8, 10].
Goiri et al. [7] evaluated three fault tolerances scheme, checkpointing, migration, and
job duplication, assuming that the communication cost is fixed. [10] analyzed various
types of schemes using spot instances. However, previous papers focus on reliability
and do not consider a total task execution time to perform the entire operation. Only,
papers focus on increment of reliability of task and reduction of total cost. Therefore,
our paper focuses on decrement of a total task execution time and proposes the VM
migration scheme using a checkpointing.

3 System Architecture

Fig. 1 shows the cloud computing environment assumed in this paper. Fig. 1(a) shows
the cloud computing structure. This cloud computing structure basically consists of
four entities: a cloud server, a storage server, cluster servers, and cloud users. The
cloud server is connected to cluster servers and storage servers. The cluster server



VM Migration for Fault Tolerance in Spot Instance Based Cloud Computing 145

consists of a lot of nodes. The cloud users can access the cloud server via the cloud
portal to utilize the nodes in the cluster servers as resources. Therefore, the cloud
server takes responsibility for finding virtual resources to satisfy the user's require-
ments, such as SLA and QoS. The coordinator in the cloud server manages tasks and
VM, and is responsible for the SLA management. Fig. 1(b) shows the management
operation flow. A cluster server consists of nodes of multiple instance types. To con-
figure a cluster server, each node creates VM depending on each instance type and
manages a creation of VM. A cloud user accesses a cloud portal to select the type of
spot instance of the cloud server. And they use a VM in a selected instance. In the
cloud server, a coordinator manages history of multiple spot instances to meet the
requirements of cloud users and monitors to migrate from a failed instance to a new
instance. In addition, each VM node takes a checkpointing and determines the VM
migration. We focus on the coordinator and the VM, which play an important role in
our checkpointing and VM migration scheme.

Cluster Server

Manage Instances 3

Cloud Server . - M - -
— e LR

Link -

(a) Cloud computing configuration (b) Management operation flow

Fig. 1. Cloud computing environment

3.1 VM Migration Scheme Using SLA-Based Checkpointing

In this section, we propose the VM migration scheme using SLA-Based checkpoint-
ing in the spot instances. We introduce our proposed scheme and then represent the
proposed processing and algorithm using VM migration scheme.

Spot instance environment assume that VM can be performs on the same instance
type until task completion. However, if the environment uses one instance type, a
running VM stops when spot price is higher than the user’s bid. To solve the problem,
we propose VM migration to continue job execution in spite of out-of-bid situations.
And a running VM migrates from current instance type to new instance type. We use
our previous proposed checkpointing scheme for VM migration scheme. Fig. 2 shows
our proposed VM migration scheme to add previous proposed checkpointing scheme.
Our VM migration scheme investigates an instance type to migrate the VM from cur-
rent instance type to other instance type when execution time on current spot price
meets time threshold. And, an available instance type selects to consider a user’s bid
and a remaining execution time. The data of selected instance type use kind of two.



146 D. Jung et al.

Frist, if spot price using an instance exceeds the user’s bid, VM migrates a selected
instance type. And the VM restarts from the last checkpoint. Second, if next spot price
of an instance is lower than the user’s bid, the coordinator deletes the stored informa-
tion of before selected instance and obtains new information to select new instance.

I : checkpoint (Price Th) I : checkpoint (TimeTh,;) 4 : rising edge over threshold

R _._.._J,;__.l.is_eri%b_d ........... }:F.__.._.._Th._._..
Fr S B

| Tens Tetint Available Diratic Failure Available Diration Time

Price for a spot instance

Migration Prediction

Migration Perform

Fig. 2. Our proposed VM migration scheme

We explain our previous proposed checkpointing scheme. This scheme basically
performs a checkpointing operation using two kinds of threshold, price and time,
based on the expected execution time according to the price history. Now, let ty,, and
tena denote, a start point and an end point, respectively, in the total of ETs. Based on
toae and te,g, We obtain price threshold ( PriceTh) and time threshold (TimeThp,_ ),

which are used as thresholds in our proposed checkpointing scheme.

The price threshold, PriceTh , can be calculated by eq. 1

PriceMin(t,,,,t,,)+User,
2

PriceTh = id (1)

where User,,, represents the bid suggested by a user and PriceMin(t,,,,t,,) represents an

start °

available minimum price in a period between ¢ and ¢, , .

start

The time threshold of price F;, TimeTh, , can be calculated by eq. 2
TimeTh, = AvgTime, (t,,,.1,,)X(1—F,) 2)

where F, is a failure probability of price F; and AvgTime, (t

start ® temi

) represents an

average execution time of P in a period between ¢, and ¢

start end *

Using these two thresholds, our proposed checkpointing scheme performs check-
point operations in two cases. The first case is that a checkpoint is taken when there is
a rising edge between users bid and the price threshold; and the second case is based
on the failure probability and average execution time of each price. A checkpoint is
taken when the time threshold exceeds execution time of current price. And a migra-
tion prediction module is performed with taking a checkpoint when time threshold is
calculated. The migration is performed when out-of-bid occurs in a running instance.



VM Migration for Fault Tolerance in Spot Instance Based Cloud Computing 147

3.2  Efficient Checkpoint and VM Migration Scheme Algorithm

In this section, we introduce a proposed efficient checkpoint and VM migration algo-
rithm. Fig. 3 and 4 show two kinds of checkpointing scheme and VM migration me-
thod. Two checkpointing points have price threshold and time threshold. Using these
two thresholds, our proposed checkpointing scheme takes checkpoint in the two cas-
es: first case is that a checkpoint is taken when there is a rising edge between a user’s
bid and price threshold. Second case is based on failure probability and an average
execution time of each price. A checkpoint is taken when time threshold exceeds the
execution time of current price. The migration method has a migration prediction, a
migration execution, and predicted information of migration.

1: Boolean F_flag = false /I a flag representing occurrence of a task failure
2: Boolean M_flag = false // a flag representing occurrence of the prediction
information of a VM Migration position

3:  while (!task execution finishes) do
4: if (spot prices < User's bid ) then
5: if (F_flag) then
6: VM Migration ( );
7: Recovery ();
8: flag = false;
9: end if
10: if (!F_flag) then
11: if (rising edge && Price Threshold < spot prices) then
12: Checkpoint ( );
13: end if
14: if (Time Threshold < execution time in current price) then
15: Checkpoint ( );
16: VM Migration Position Prediction ( );
17: end if
18: end if
19: end if
20: if (failure is occurred) then
21: F_flag = true;
22: end if

23:  end while

Fig. 3. Checkpointing with VM migration and recovery algorithms

Fig. 3 shows the checkpointing and recovery algorithms with VM migration used in
our proposed scheme. In these algorithms, the flag for representing an occurrence of a
task failure is initially set to false. The checkpointing process repeats until all tasks are
completed. Line 1 and line 2 show the flag information of task failure and prediction,
respectively. When task execution is normal (i.e., the flag is false), the scheduler per-
forms checkpoint process to provide against a job failure (lines 3-23). Recovery
process is performed when the flag is true (lines 5-9). Two cases to take checkpoints
are performed (lines 10-18). If a rising spot price is between user’s bid and price



148 D. Jung et al.

threshold, the scheduler performs checkpointing operation (lines 11-13). If execution
time is greater than time threshold, the scheduler also performs an operation of check-
pointing and VM migration position prediction (lines 14-17). When a task failure event
occurs, the flag is set to true to invoke the recovery function (lines 20-22).

1:  Function Checkpoint ()

2 take a checkpoint on the spot instance;

3 send the checkpoint to the storage;

4:  end Function

5:  Function Recovery ()

6: retrieve the checkpoint information from the storage;
7 restart the job execution;

8: end Function

9:  Function VM Migration Position Prediction ( );

10: if (M_flag) then

11: delete the before prediction information of a VM migration Position;
12: end if

13: M_flag = true;

14: calculate VM Position for the VM migration;

15:  end Function

16: Function VM Migration ( );

17: migrate the current VM position to the calculated VM position;
18: M_flag = false;

19:  end Function

Fig. 4. Algorithms for the operation of VM migration, checkpointing, and recovery

Fig. 4 shows the algorithms for the operation function of VM migration, checkpoint-
ing, and recovery. Lines 1-4 and 5-8 show detailed process of checkpointing and recov-
ery, respectively. Lines 9-19 show the migration process. Line 9-15 and 16-19 show
detailed process of VM migration position prediction and VM migration, respectively.

4 Performance Evaluation

In this section, we evaluate the performance of our checkpointing scheme with VM migra-
tion scheme using simulation and compare it with that of the other checkpointing schemes
using VM migration. Our simulation are conducted using the history data obtained from
the Amazon EC2’s spot instances [12], which is accumulated during a period from 9-27-
2010 to 10-4-2010. The history data before 10-01-2010 are used to extract expected
execution time and failure occurrence probability for our checkpointing scheme. The ap-
plicability of our checkpointing scheme is tested using the history data after 10-1-2010,
which are also used for hour-boundary checkpointing and rising edge-driven checkpoint-
ing schemes. In our simulations, one type of spot instances are applied to show an effect of
analyses on the performance of three checkpointing schemes that is a user’s bid.

Table 1 shows a various resource types used in amazon EC2. In this table,
resource types show a number of different instance types and pot price information



VM Migration for Fault Tolerance in Spot Instance Based Cloud Computing 149

(Max, Min, and Average) in each instance type. First, Standard Instances offer a basic
resource type. Second, High-CPU Instances offer more compute units than other re-
sources and can be used for compute-intensive applications. Finally, High-Memory
Instances offer more memory capacity than other resources and can be used for high-
throughput applications, including database and memory caching applications. Under
the simulation environments, we compare the performance of our checkpointing
scheme with that of two checkpointing schemes in terms of various analyses accord-
ing to the user’s bid. The information is measured during a period from 2009-11-30 to
2011-01-23. As the table result, if the user’s bid sets lower, the High-Memory in-
stance did not perform task. Our simulation set the user’s bid from $0.31 to $0.34.
This setting creates a test environment for migration. Table 2 shows the simulation
parameters and values used for the analysis of computing type instances.

Table 1. Spot price (Max, Min, and Avg) information in nstance tpye

No Instance type Compute Spot price  Spot price  Spot price
name unit Max Min Avg
1 m1.small (Standard Instances) 1 EC2 $0.053 $0.038 $0.04
2 ml.large (Standard Instances) 4 EC2 $0.168 $0.152 $0.16
3 ml.xlarge (Standard Instances) 8 EC2 $0.336 $0.304 $0.32
4 cl.medium (High-CPU Instance) 5 EC2 $0.084 $0.076 $0.08
5 cl.xlarge (High-CPU Instance) 20 EC2 $1.52 $0.304 $0.323
6 m2.xlarge (High-Memory Instance) 6.5 EC2 $0.588 $0.532 $0.561
7  m2.2xlarge (High-Memory Instance) 13 EC2 $0.588 $0.532 $0.561
8  m2.4xlarge (High-Memory Instance) 26 EC2 $1.176 $1.064 $1.122
Table 2. Simulation parameters and values for instances
Simulation Users bid Baseline Task time Migration  Checkpoint  Recovery
parameter interval time time time
Value $0.005 ml.xlarge 259200(s) 300(s) 300(s) 300(s)

Fig. 5 shows the simulation results about hour boundary checkpointing scheme
(HBCS). Same task time in our simulation means that we do not consider the perfor-
mance condition of each instance (Same) and different task time means that we consid-
er performance condition of each instance (Different). In fig. 6 the HBCS-Number is a
type number of instance. In the case of same task time, the result of experiment shows
that user’s bid determines total execution time and total costs. Therefore, Rising edge-
driven checkpointing scheme (RECS) and our previous checkpointing scheme (PCS)
simulate a different task time to reflect the performance of each instance.

Fig. 6 shows the performance comparison of proposed scheme (PCS+M: PCS with
VM migration scheme) with HBCS, RECS, and PCS. Various simulations set stan-
dard instances type (ml.xlarge) for performance comparison. However, P+M method
uses all instance types. In fig. 6(a), PCS+M achieves performance improvements in an
average task execution time of 69.94%, 69.61% and 46.35% over HBCS, RECS, and
PCS, respectively. In fig. 6(c), PCS+M achieves performance improvements in terms
of an average rollback time of 77.94% over HBCS and 74.76% over RECS and



150 D. Jung et al.

performance reduction in terms of the average rollback time of -7.93% over PCS.
And, PCS+M reduces the cost by an average of 36.91%, 36.86%, and 1.71% over

HBCS, RECS, and PCS, respectively.

—=— TotalTime(HBCS-1) - @+ TotalTime(HBCS-2) -4~ TotalTime(HBCS-3)

- ¥~ TotalTime(HBCS-4) -4~ TotalTime(HBCS-5)

[ TotalFailureTime(HBCS-3) £ZZ TotalFailure Time(HBCS-5) [ TotalFailureTime(HBCS-3) EZZ] TotalFailure Time(HBCS-5)
210" s 210" 24x10°
fyuid 2.0x10
° 23x\Dz 2 2.0x10° e

2310 s
€ 15x10° = £
£ 23x0° 5 1ex10° g
S 22010 E
2 2.2x10: s 8 P T
= 2240 1.0x10° £ 1.2x10° §
3 10010 = 3
8100 3 800’ B
2 60010 50010 F 54
= 4010 E 4.0x10° E

2.0x10 - z

00 00 L Lloo
0310 0315 0320 0325 0330 0335 0340 0310 0315 0320 0325 0330 0335 0340
User's Bid ($)

User's Bid (§)
(@) Total task executlion Lin ¢ and tolal failire L e @ ifferent)
77 TotalPrice(HBCS-1) E TotalPrice(HBCS-2) ] TotalPrice(HBCS-3)

D]]]] TotalPrice(HBCS-4) KXY TotalPrice(HBCS-5)
—=— RollbackTime(HBCS-3) -~ RollbackTime(HBCS-5)

200000

7]

150000

100000

Costs ($)

50000

Time(sec) : RollbackTime

AN RN
[OTOTII TR

0.310 0.315
User's bid ($)

) Tolalcosts and rlback tin e @ ilferent)

Time(sec) : RollbackTime

—a— TotalTime(HBCS-1)
- ¥-- TotalTime(HBCS-4) -4~ TotalTime(HBCS-5)

H) Tolaltask execution tim ¢ and tolal flaibre tin o Gal

- TotalTime(HBCS-2) -4+ TotalTime(HBCS-3)

m o)

77 TotalPrice(HBCS-1) E TotalPrice(HBCS-2) ] TotalPrice(HBCS-3)

D]]]] TotalPrice(HBCS-4) KX TotalPrice(HBCS-5)
—a— RollbackTime(HBCS-3) -+ RollbackTime(HBCS-5)
2.5x10°

2.0x10°

1.5x10°

1.0x10°

5.0x10°

(77777777 77777772
77777 77777L72)

RESSSSSS 7

0320 0825 030 0.340

User's bid ($)
@) Totalcosts and 1w lback tim ¢ Gam ¢)

Fig. 5. Simulation result about HBCS

- TotalTime(RECS-3)
-v- TotalTime(PCS+M-3)

=] TotalFailureTime(RECS-3)
[ TotalFailureTime(PCS+M-3)

—=— TotalTime(HBCS-3)
-4 TotalTime(PCS-3)
TotalFailureTime(HBCS-3)

N TotalFailureTime(PCS-3)

2axi0°

Time(sec) : FailureTime

0320 0325 0335 0.340

User's Bid ($)
(@) Total task executbn tim e and wtal failure th e
®- RollbackTime(RECS-3)
¥~ RollbackTime(PCS+M-3)

=] TotalPrice(RECS-3)
[ TotalPrice(PCS+M-3)

0330

—=— RollbackTime(HBCS-3)
4--RollbackTime(PCS-3)
TotalPrice(HBCS-3)

| TotalPrice(PCS3)

20010°
@
g
£ 15x10
]
8
H]
2 1ox10°
2 "
8 5.0x10
T ;i
£
S Z: 7=\
0310 0315 0320 0325 0330 0335 0340
Users bid ($)

(c) Total costs and rolback tin e

- CkpCount(RECS-3)
--¥- CkpCount(PCS+M-3)
=] FailureCount(RECS-3)
[ MigrationCount(PCS+M-3)

—a— CkpCount(HBCS-3)
-- &-- CkpCount(PCS-3)

] FailureCount(HBCS-3)
X FailureCount(PCS-3)

@ 3
g 3

125
100

Event Count Number: Ckp

a5
User's Bid ()
(b)Num ber of failures and checkpoits

0315 0320 0330 0335

0
0.340

Event Count Number: Failure& Migration

Fig. 6. Comparison of PCS+M and checkpointing schemes (HBCS, RECS, and PCS)

5 Conclusion

In this paper, we proposed VM migration scheme with our previous proposed check-
pointing scheme in order to reduce rollback time in unreliable cloud computing envi-
ronment. Our previous proposed checkpoint scheme takes a checkpointing based on



VM Migration for Fault Tolerance in Spot Instance Based Cloud Computing 151

two kinds of thresholds: price and time. When a execution time is higher than the time
threshold, VM migration predictor decides predicted migration time and checkpoint is
taken. The VM migration is performed when out-of-bid occurs in a running instance.
Our scheme removes a failure time and has additional migration time. The rollback
time of our scheme can be lesser than that of the existing checkpointing schemes
(HBCS, RECS, and PCS) because our scheme adaptively performs migration opera-
tion according to the time threshold of each spot price. The simulation results show
that our scheme achieves performance improvements in the task execution time of
68.94%, 68.61%, and 46.35% compared with HBCS, RECS, and PCS. Further, our
scheme reduces the cost by an average of 36.91%, 36.86%, and 1.71% over HBCS,
RECS, and PCS, respectively. In the future, we plan to expand our environment with
task scheduling and more efficient prediction method.

Acknowledgments. This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea goverment (MEST) (No. 2012046684).

References

Elastic Compute Cloud, EC2 (2012), http://aws.amazon.com/ec2

GoGrid (2012), http: //www.gogrid.com

FlexiScale (2012), http://www.flexiscale.com

Buyya, R., Chee Shin, Y., Venugopal, S.: Market-Oriented Cloud Computing: Vision,
Hype, and Reality for Delivering IT Services as Computing Ultilities. In: Proceeding of the
10th IEEE International Conference on HPCC, pp. 5-13 (2008)

5. Van, H.N., Tran, F.D., Menaud, J.-M.: SLA-Aware Virtual Resource Management for
Cloud Infrastructures. In: Proceedings of the 2009 Ninth IEEE International Conference on
Computer and Information Technology, vol. 2, pp. 357-362. IEEE Computer Society
(2009)

6. Amazon EC2 spot Instances (2012),
http://aws.amazon.com/ec2/spot-instances/

7. Singer, 1., Livenson, M., Dumas, S.N.: Srirama, and U. Norbisrath.: owards a model for
cloud computing cost estimation with reserved resources. In: CloudComp 2010, Barcelona,
Spain. Springer (October 2010)

8. Yi, S., Kondo, D., Andrzejak, A.: Reducing Costs of Spot Instances via Checkpointing in
the Amazon Elastic Compute Cloud. In: Proceedings of the 2010 IEEE 3rd International
Conference on Cloud Computing, pp. 236-243. IEEE Computer Society (2010)

9. Jung, D., Chin, S., Chung, K., Yu, H., Gil, J.: An Efficient Checkpointing Scheme Using
Price History of Spot Instances in Cloud Computing Environment. In: Altman, E., Shi, W.
(eds.) NPC 2011. LNCS, vol. 6985, pp. 185-200. Springer, Heidelberg (2011)

10. Voorsluys, W., Buyya, R.: Reliable Provisioning of Spot Instances for Compute-intensive
Applications. In: IEEE 26th International Conference on Advanced Information Network-
ing and Applications (2012)

11. Zhang, Q., Giirses, E., Boutaba, R., Xiao, J.: Dynamic resource allocation for spot markets
in clouds. In: Hot-ICE 2011, pp. 1-6 (2011)

12. Cloud exchange (2011), http://cloudexchange.org

bl NS



A Cloud Based Natural Disaster Management System

Mansura Habiba and Shamim Akhter

American International University, Bangladesh (AIUB)
Dhaka, Bangladesh
mansura.habiba@gmail.com, shamimakhter@aiub.edu

Abstract. Natural disaster management needs to deal with large amount of data
originated from various organizations and mass people. Therefore, a scalable
environment provided with flexible information access, easy communication
and real time collaboration from all types of computing devices, including mo-
bile handheld devices, such as smart phones, PDAs and iPads are essential. It is
mandatory that the system must be accessible, scalable, and transparent from
location, migration and resources. In this paper a framework has been proposed
in order to design a Cloud based workflow management system along with
scheduler for natural disaster management system, where in Cloud environ-
ment, web service and EC2 technologies have been leveraged in order to design
the Cloud based workflow model for disaster management system.

1 Introduction

The recent progress in virtualization technologies and the rapid growth of Cloud
computing services have opened a new opportunity for complex scientific workflow
such as Disaster Management System (DMS) [1, 3]. Cloud services such as Amazon
EC2, Google Cloud services etc. can provide reliability, scalability and interactive
platform to increase the performance [5].Therefore in this paper we have described a
Cloud based implementation of Disaster management system [2]. Cloud can provide a
large amount of computing power over short periods of time during a disaster - so
several government agencies as well as NGOs and other associations like Red Cross,
UNO etc. can respond more efficiently to anything in the world during disaster [4].
Moreover, in case of disaster people never knows when it might have a spike for a
need in compute power or disk storage. In such case, Cloud platform allows resources
to be used on an elastic basis. In addition, Cloud platform drives down costs by shar-
ing resources and being more communal, it allows quicker communicating response
to emergencies and disasters to be more agile. Furthermore, for massive information
sharing among government and other agencies in such situation, Cloud computing
environment can be the most helpful [3]. Finally, Cloud computing allows for rapid
scaling when needed, it allows for significant flexibility and reduces cost tremendous-
ly. Therefore, most experts agree that when it comes to information technology, and
especially a complex, uncertain and dynamic system likes disaster management,
Cloud computing is the best way to go. In this paper, the design of a complete Cloud
based DMS is described along with its different functionalities.

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 152-161] 2013.
© Springer-Verlag Berlin Heidelberg 2013



A Cloud Based Natural Disaster Management System 153

2 Related Work

Several ICT based DMS have been implemented already [1,10]. An ICT based DMS
should be well designed to deal with all four stages of the life cycle of DMS [2] such
as (1) planning, (2) emergency response, (3) recovery and (4) post-planning. Howev-
er, most of existing DMS model mainly deal with first two stages. For example,
Emergency response system [1] and warning system for mass people [10] are two
significant example of existing DMS model which mainly design a warning system
for people, vehicle and transport. On the contrary, the proposed system architecture of
a DMS in this paper deals with all four stages along with following contributions

1. Improve the intelligent system of traditional DMS and make easier the deci-
sion making process

2. Increases the efficiency of the system through task distribution among differ-
ent services

3. Simulate the performance and compare that with traditional system to evaluate
the efficiency

3 Proposed Disaster Management Workflow Management
System

In this paper, the implementation structure of a DMS has been proposed based on
Cloud environment for following reasons

1. Huge data can be computed easily and quickly.

During natural disaster ICT infrastructure also get damaged, such as some
servers of IEEE damages due to recent violent flood sandy [5]. However as the
data will be stored in Cloud, those will have replicated back up.

3. The computation and decision making process for DMS is too complex and
need apparently large amount of time. However, distributed environment in
Cloud has expedite decision making process.

4. For data storage, Cloud is superior in providing security, easier sharing and
migration, flexible access and rights management. if Cloud is used for imple-
menting DMS data storage and management can be taken care of by Amazon
S3 and Google BigTable [5].

5. Improve discovering different class and characterizes resources.

3.1 Components of Proposed Disaster Management System (DMS)

The proposed DMS consists of six major components such as (1) Web Portal, (2)
Role Manager, (3) Workflow Engine, (4) Workflow Scheduler, (5) Workflow Moni-
tor and (6) Notification depicted as in figure 1. Among these components, Workflow
Engine (WE) and Workflow Scheduler (WS) are the most important components.



154 M. Habiba and S. Akhter

Workflow web portal
‘ Agent Task I Resource I Audit Workflow
Role Manager
l Agent Role Manager l Job Distributor | Monitor

‘Workflow Engine

[ XML Parser for Task and Resource [ Data Movement | Recorder

Workflow Scheduler

l Resource Discovery l Task Manager | Task Dispatcher
Workflow Monitor
| Performance ‘ Security ‘ Cost ‘ Future Decision
Notification
| Notification Classification ‘ Future Measurement

Fig. 1. Components of Proposed DMS Workflow Management System

Web Portal

Web portal provides a Graphical User Interface (GUI) that helps users to edit
workflow. Mainly all kind of agent can access different pages of this web portal ac-
cording to their role. All task management and workflow management can be done
through this portal. Although tasks are prepared from collected data and assigned with
number of required resources as well as priority by WE. However the portal also sup-
ports manual task configuration for dynamic and uncertain problem domain.

Resource Task | Workflow Audit
H saanazs | [oarapsmens] [ wontor | [ scnosuter | [ oxoctor | H ~crente JH rertormance]
. Create/Sel Select for
reel{ “wonr | | oo JH s H e ]
.| Cost | priorty Pouse H Moritor H security |
. o= | =

Fig. 2. Web Portal Navigation Design

Workflow Edit

In this work, Workflow is organized as DAG [2, 6], which has been converted to xml
schema for implementation. Figure 3 represents the schema of a workflow in the pro-
posed DMS. Each workflow consists of a number of parameters such as Agent, Flow



A Cloud Based Natural Disaster Management System

155

connection, list of resources, environment parameters, performance, assigned resource
status, overall workflow status, task status and task. In figure 4, different parameters
of a workflow in this proposed DMS have been described.

[5] Schems « http./wiw.example.org/DMSSchema

(= Directives

(& Elements

B Types

[] workflow : FlowCennectionType

Agent
owConnectionType

arameterEnvType
erformanceType

esourceState

esourceType
Status
tatusType
TaskType

(@ Attributes

(& Groups

Fig. 3. Workflow XML Schema

&) FlowConnectionType
[€] workflow | — . |e| Pedformance PeformanceTyoe
€ Task TaskType
= €| Parametes env  ParamaterEnvType
[€] Preparation PrepantionType

& FerformanceType
[e] Qo§ flost
(el Cost flost
€] Deadiing dateTime
) Successrate float
(] eptimizationrate  flost ] & Status
(€] rescheduledrate  float e
e [€] READY_FOR_SUBMISSION baolesn
T //’ [8] SUBMITTED beolesn
p— rem / [€] NOT_ACTIVATED stiing
Elpriosty  Pricity” [€] ACTIVATED string
2] sirkas Stafn [E] ANALVSIS_INCOMPLETE baolean
(6] resourcelist  Resourge [€] ANALVSIS_COMPLETE beolean
[€] PREPARATION INCCMPLETE  string
[€] PREPARATION COMPLETE  string
\ - [E] WAITING beolesn
[8] RUNNING_INCOMPLETE stiing
& FreparaticnType [€] RUNNING_COMPLETE string
0 detaCollcionficer Aot €] SUSPENDEDINCOMPLETE  string
€] dataCollectionStatus svm\q‘yge _ - -
[£] SUSPENIDED_COMPLETE stiing
&) ResourceDiscoveryhcter  Agent :
& ResourcebicscovenyStatus  sting \ ] FALED baolesn
O Taddenthicationtctor  Agent \ [£] RESCHEDULED boolean
[€] taskidartificationStatus Agent [€] SKIPPED sting
\ [¢] DROPPED string
[#] Resource
[e] name  sting
== (8] type resourceType
[€] state  ResourceState

Fig. 4. Extended Schema for Workflow




156 M. Habiba and S. Akhter

Role Manager

This module is consists of an Agent Role Manager (ARM) which is in charge of de-
fining access permission for agents on different modules and section of DMS. ARM
also differentiates tasks among all agents. The next sub module is Task Distributor
which distributes the task to appropriate Agent as soon as a task is produced and de-
fined by the Workflow Engine. In order to monitor the activities of different agents
and prepare the Audit report, there is another sub module named Monitor.

Workflow Engine

This is the core component of this proposed DMS. Workflow Engine (WE) is consists
of five basic components for managing such as resource, task, agent, data and audit
activity as shown in Figure 5. Resource is the key element of this proposed system.
two different sub modules Cost Monitor and Performance Monitor continuously mon-
itor two most important attributes—cost and performance of the resources. Resource
Monitor will investigate the status such as idle, out of work, running. Another im-
portant component of WE is Task. Four different sub modules Task Manager, Task
Scheduler, Task Executor and Task Monitor are in charge of managing tasks. Besides
secured data management another major challenge of this proposed system is data has
to be shared beyond geographical boundary, among different countries, different
NGOs, different organizations and take necessary decisions for future. All sub mod-
ules in Data component of WE have been integrated to attain the ultimate goal.

Audit

WFMS Data Agent Task Resource
Resource
reromonc | e | {0 |k
& e (Add/Delete)
N N
Security
3 Agent Task Resource
Pr— Security Monitor Scheduler Moniitor
J L J L
Actions
=
Task Performance
Share Agent Access Executor Measure
Exceptions )
N N
Future Role ] )
Cost Dedision Management Task Monitor Cost Monitor
L J J L

Fig. 5. Components of Workflow Engine

In order to distribute the roles among agent this MAS based system, it has a Role
Manager. All activities of agents are monitored by Agent Monitor. The main functio-
nality of Agent Access is to keep trace of the permissions allowed for different agents.
Finally all internal communications among different agents as well as among different
modules are managed by Agent Manager. Finally, all activities and actions taken by
the proposed system are continuously audited by the Audit WfMS.



A Cloud Based Natural Disaster Management System 157

Workflow Scheduler
The MAS based workflow scheduling algorithm proposed by S. Akhter et al. [2] has
been deployed in the workflow scheduler of the proposed DMS.

Workflow Scheduler

F‘ Re-scheduler <::IJ

§> Failed
§> Main Scheduler Tesk

—
Successful Task

Fig. 6. Workflow Scheduler Structure

Ontime
Priority E>

Changer

anany Apeay

Figure 6 depicts that the workflow scheduler has six main components. At first all
tasks of current workflow prepared by WE are put in to Ready Queue. The priority of
tasks can be changed dynamically by On-time priority changer. After tasks are or-
dered according to their priority in Ready Queue, Scheduler runs the scheduling algo-
rithms [2]. All successful jobs are stored in Successful Task list along with their
report and failed tasks are stored in Failed Task. Failed task are rescheduled by Re-
Scheduler and sent back to Ready Queue.

Workflow Monitor

All performance and status of currently running as well as previous workflow are
generated by Workflow Monitor. Later all reports can be view from web portal based
on performance parameters described in table 1.

Table 1. Performance parameters for Workflow Monitor

Name Description
Number of Succeed Task per workflow | Defines the success rate
Number of failed task per workflow Defines the failure rate
Number of used resources Define the resource business
Number of total assigned resource Define the actual resource capacity
Resource Status Define the resource availability

Notification

This is an important component of the system. There are two different types of activi-
ties those have been performed by Notification. One is to implement Cloud to device
messaging (C2DM) in order to broadcast notification to mass people. Another is to
notify several components within the system.



158 M. Habiba and S. Akhter

3.2  Cloud Implementation

The most important contribution of this proposed DMS is cloud based implementa-
tion. Figure 7 describes the three layer of Cloud environment. PaaS is the preferred
model over fully outsourced data processing and handling [3], presumably gaining
support for having clear visibility, ownership and control over all the data. At the
same time, system can quickly obtain the benefits of a fully-maintained software solu-
tion on a subscription basis. With PaaS system can get full control over data encryp-
tion and security. Therefore in this proposed system on PaaS, data related to all
decisions taken for several past as well as current disasters for various locations for
different type of incidents and tasks are store. This historical data are used as Heuris-
tic data storage for further workflow scheduling. In addition in this layer, all record as
a result of continuous audit performed by different agents, success and fail report for
different workflow, status and performance evaluation of different resources, compar-
ative analysis for different type of tasks in different workflow for different regional
places are stored. The next layer (IaaS) is the most important layer. Amazon EC2 can
be a suitable candidate as [aaS. The main components of this proposed DMS such as
Workflow Engine (WE), Workflow Scheduler (WS), Monitor, Cloud web services as
well as temporary data storages are put in this layer. The proposed web portal is es-
tablished in SaaS layer.

Workflow Il
Web App
[ SaaS

Cloud Web m
Service
Monitor
I laa$

S— Heuristic
Decisions

Paa$

Fig. 7. Cloud Implementation for DMS

Cloud Service Implementation

GIS based emergency management system ArcGIS [9] is implemented in Cloud,
however it uses GIS only to keep trace of location. However DMS is a complex and
uncertain system. Therefore, along with location, it also has some other crucial and
effective parameters such as weather, resources and data. In this proposed Cloud
based system several RESTfull Cloud services as shown in figure 8have been de-
signed whch are web services connected to core service and Cloud data storages.
Firstly, user interacts with system through mobile devices, computers and web portal.
In Cloud there are seven different web services connected to Core Computation Ser-
vice (CCS) which is dependent on Cloud data storages for data. In this regard, GIS
Service is necessary for tracing location which is indirectly connected to Weather
Service to provide weather of particular location. Emergency Response Service is used



A Cloud Based Natural Disaster Management System 159

for sending emergency notification to mass people. Notification Service is used for
internal notification for the DMS. Resource Management Service as well as Resource
Discovery Service both services deal with resource management and help other ser-
vices for taking decision based on the availability of resources. Data Record Service
is used for recording data and monitoring overall performance.

Resource
Management
Service

Data Record
Service

Cloud data
Storage
Emergency

Response
Service

Cloud Computation
Service

Weather
Service
User Interfa(:bl:E

Fig. 8. Cloud Services for Proposed DMS

Résource
Discovery
Sgrvice

Proposed System Structure

In the proposed DMS, CCS performs the role to define workflow of DMS within WE
with the help of other services and data storages. CCS communicates with GIS ser-
vice in order to pull location based information. Similarly CCS gets weather related as
well as available resource related information from weather service and resource
management service. Finally CCS also gets data from storages and prepared the
workflow of tasks those are needed to be performed in four different stages of Disas-
ter Management lifecycle [2]. Once the workflow is prepared, WS schedules the
workflow with the help of resource discovery service and resource management ser-
vice. Therefore, all decision making tasks are performed in WE and workflow sche-
duling activities are performed in WS. Notification is responsible for messaging, alert,
notification within the System or to other external system. As during natural disaster
system internet connection or Wi-Fi connection could be damaged. In such situation
C2DM can be a suitable solution. Therefore in this proposed DMS, along with web
portal C2Dm based push notification service in mobile phone is implemented to send
alert, notification or general information.

4 Experimental Evaluation

For simulation icanCloud [4] has been used in this proposed DMS system. Different
types of damage for which we have collected data from two different data sources [7]
and [8] are listed in table 2. The same data were used in [2].



160 M. Habiba and S. Akhter

Table 2. Query criteria for Ten Cases used in Simulation

Data Source | Disaster Type Location Year
Case-1 DMSS Tsunami All Region 1974-1986
Case-2 DMSS Flood All Region 1990-2010
Case-3 DMSS Epidemic All Region 1990-2010
Case-4 DMSS Flood + Epidemic North and South coast 1990-2010
Case-5 DMSS Forest Fire North and South coast 1990-2010
Case-6 DMSS Tornado All Region 1990-2010
Case-7 DMSS Strom All Region 1990-2010
Case-8 NDDB Earthquake Asia Zone NA
Case-9 NDDB Cyclone + Flood Asia Zone NA
Case-10 | NDDB Tidal wave Asia Zone NA

4.1 Result and Observation

In this section we will describes the simulation result of the proposed DMS. Figure 9
describes that for this experiment with data from table [2], 71% of total tasks are suc-
cessful. The proposed DMS also provides higher rescheduling success rate (83.31%)
and comparatively lower dropout rate (9.66%). Moreover, the data migration time is
comparatively less than other WEMS [6]. This is the most significant contribution of
proposed DMS.

TET
H

Fig. 9. Final Result (Successful, Dropped, Rescheduled)

5 Conclusion and Future Discussion

In this paper the implementation of this MAS model for DMS in real time system
is described and designed. Moreover, the design and implementation plan of a web



A Cloud Based Natural Disaster Management System 161

portal based on proposed DMS is described. The system architecture and components
of the proposed DMS are also described in this paper. Following, but not limited to,
are some contribution of this proposed work:

1. Web Portal Implementation for Automated workflow model for DMS

2. Real time implementation of DMS on Cloud

3. Eliminate dynamic on time dependency rather than providing proactive de-
pendency calculation

4. In corporate more parameters to DMS such as time, cost, performance,
Quality of Service etc

5. Redistribution of task among agents during idle time

Future work will focus on further analysis and validation of different stages of disas-
ter management system life cycle, and on broadening the scope of this work to real-
time operational, decision making and strategic management of DMS. Moreover,
another suitable extensions of this proposed work can be implementation of Cloud
based augmented reality to detect damaged area and possible easier transport route
which can be a great contribution for recovery system in case of natural disaster.

References

10.

. Mendona, D., Wallace, W.A.: Studying organizationally-situated improvisation in re-

sponse to extreme events. International Journal of Mass Emergencies and Disasters 22(2)
(2004)

Habiba, M., Akhter, S.: MAS Workflow Model and Scheduling Algorithm for Disaster
Management System. In: Proceedings of the 1st International Conference on Cloud Com-
puting Technologies, Applications and Management, ICCCTAM 2012, Dubai, UAE
(December 2012)

Kazusa, S.: Director for Disaster Management, Cabinet office, Government of Japan.
Disaster Management of Japan (2011)

Nazrov, E.: Emergency Response management in Japan, Final Research report, ASIAN
Disaster Reduction Center, FY2011A Program (2011)

Pandey, S., Karunamoorthy, D., Buyya, R.: Workflow Engine for Clouds. In: Buyya, R.,
Broberg, J., Goscinski, A. (eds.) Cloud Computing: Principles and Paradigms. Wiley
Press, New York (2011) ISBN-13: 978-0470887998

Yoshizaki, M.: Disaster Management and Cloud Computing in Japan, Report from Minis-
try of International Affair and Communication (December 2011)

An Analytical Overview. Asian Disaster Reduction Center (March 2007)

Disaster Management System Srilanka, http: //www.desinventar. 1k/ (last visited
November 11, 2012)

ArcGIS as a System for Emergency/Disaster Management, http://www.esri.com/
industries/public-safety/emergency-disaster-management/
arcgis-system (last visited November 11, 2012)

Alazawi, Z., Altowaijri, S., Mehmood, R., Abdljabar, M.B.: Intelligent disaster manage-
ment system based on Cloud-enabled vehicular networks. In: Proceedings of International
Conference on ITS Telecommunications (ITST), August 23-25, pp. 361-368 (2011)



A Hybrid Grid/Cloud Distributed Platform:
A Case Study

Mohamed Ben Belgaceml, Haithem Hafsiz, and Nabil Abdennadher’

! University of Geneva
Mohamed .Benbelgacem@unige.ch
% National School of Computer Science (ENSI), Tunisia
Haithem.Hafsi@gmail.com
? University of Applied Sciences, Western Switzerland, hepia Geneva
Nabil.abdennadher@hesge.ch

Abstract. The scene of the computational sciences has considerably changed dur-
ing the last years. Today, new emerging Desktop grid and Cloud e-infrastructure
have a considerable potential to be adopted and used in large scale to exploit thou-
sands of CPUs power to run both scientific and commercial applications. This
paper targets scientists and programmers who need to accelerate their scientific re-
search by running their applications on distributed Grid/Cloud infrastructures. We
present a hybrid Grid/Cloud platform used to deploy a phylogeny application
called MetaPIGA. The aim is to combine the advantages of Grid and Cloud archi-
tectures in order to set up a robust, reliable and open platform. We propose two
scenarios.

Keywords: distributed computation, Grid and Cloud computing, MetaPIGA.

1 Introduction

The concept of grid Computing was born in the mid of 1990s as an answer to the in-
creased demand of high performance computing that required more computing power
than a single cluster could provide [1]. According to [2], Grid Computing has three
characteristics:

— decentralized resource control,

— non-guaranteed qualities of services : latency, throughput, and reliability,

— standardization: Grid middleware is based upon open and common protocols and
interfaces.

Simultaneously with Grid Computing, a second alternative emerged. It consists of
executing high performance applications on anonymous connected computers by
using their available resources. This concept is called Volunteer Computing (VC).
The most known systems are BOINC [3] and XtremWeb [4]. In the remainder of this
paper, Grid will also include volunteer computing.

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 162-169] 2013.
© Springer-Verlag Berlin Heidelberg 2013



A Hybrid Grid/Cloud Distributed Platform: A Case Study 163

Despite the number of research projects carried out in the domain of Grid, these
technologies were rarely commercialized. The development of Grid Computing and
its standards was mainly driven by scientific communities.

For Cloud Computing, there is no established definition yet. According to [5], "a
Cloud is a pool of virtualized computer resources". The same paper considers Clouds
to complement Grid environments by supporting resources management. Clouds al-
low the dynamic scale-in and scale-out of applications by the provisioning and de-
provisioning of resources. Many researchers and actors think that Cloud Computing is
not a new paradigm. It draws on existing technologies and approaches, such as Utility
Computing, Software-as-a-Service, distributed computing, and centralized data cen-
ters. What is new is that Cloud Computing combines and integrates these approaches,
in particular, Utility Computing, represented by business models, pricing and SLAs.

This paper proposes a "hybrid" platform composed of a volunteer computing infra-
structure, called XtremWeb-CH (XWCH: www.xtremwebch.net), and a Cloud infra-
structure, used as provisioning system. The platform is used to develop, deploy and
execute a high performance phylogenetic application called MetaPIGA [6]. As stated
by [7] and [5], Clouds are a "useful utility that you can plug into your Grid". Our
vision is to:

— combine the reliability of Cloud infrastructures and the "openness" of Grid
environments,

— allow users deploying their applications on a reliable platform composed of a hete-
rogeneous infrastructure: Grid, Cluster and Cloud.

This document is organized in 6 sections. After the introductory section 1, section 2
gives an overview of Grid vs. Cloud. Section 3 presents the Venus-C European project
that aims at implementing a development environment for e-sciences applications on
Cloud Infrastructure. The concepts proposed by Venus-C are used as guidelines in our
research. Section 4 presents the hybrid solution developed in the framework of our re-
search. Section 5 gives some experimental results carried out in order to evaluate the
proposed solution. Finally, section 6 gives some perspectives of this research.

2 Grid vs. Cloud

This section compares Grid and Cloud [8] within 7 criteria detailed below:

1. Resource localization: while Grid Computing is defined by its geographically dis-
persed and decentralized resources, Cloud Computing seems to be a step back to-
wards centralizing IT in data centers.

2. Virtualization: few research projects have integrated virtualization in grid projects.
In Cloud, virtualization is one of the cornerstones; it allows the dynamic scale-in
and scale-out of applications by the provisioning and de-provisioning of resources.

3. Type of applications: Contrarily to Grid, Clouds are not limited to e-sciences
"batch" applications, but also support "interactive applications" such as Web and
three-tier architectures.



164 M. Ben Belgacem, H. Hafsi, and N. Abdennadher

4. Development of applications: the approach of how to develop applications is very
different in Grids and Clouds. In Grids, the user typically needs to generate a bi-
nary for his application. This binary is then transferred to and executed on the re-
mote resources in the Grid. Clouds allow a fundamentally different approach to
software development. For instance, the Cloud provider offers "ready-to-use" com-
ponents, the user can then dynamically assemble these existing functionalities to
construct his Cloud-native application.

5. Access & ease of use: access to Grid resources is realized via a specific and often
complex middleware. In contrast, interaction with resources in the Cloud is estab-
lished via standard Web protocols, facilitating the access for the users. The
lightweight accessibility and ease of use is one key factor that helped Cloud ven-
dors succeed to convince non-academic customers to deploy their applications on
their Cloud in a relative short period of time.

6. Business model and SLAs: as stated previously, business model, pricing and SLAs
are one of the cornerstones of Cloud. These concepts are completely absent in Grid.

7. Switching cost: Through standardization, a Grid user can easily switch from the re-
sources of one Grid provider to another. Due to the lack of standards, this is not
possible in Cloud environment. Typically, Cloud providers have no interest in par-
ticipating and implementing standards enabling potential customers to switch easily.

3 The Venus-C European Project

3.1 Project Overview

Venus-C [9] is a European project funded with the purpose to provide a new friendly-
user Cloud solution for the scientific research domain in Europe. The target end-users
are mainly individuals and researchers group that never have had access to high per-
formance computing resources and are content with their desktop machines to run
their applications. The objective of Venus-C project is to make it possible for re-
searchers’ community to run easily their applications on a large Cloud computing
infrastructure in order to accelerate their scientific researches. Several scientific appli-
cations from several domains have been ported on the Venus-C platform.

Technically, the Venus-C is an interface between the Cloud providers and the end-
users. It aims to provide a Platform as a Service (PaaS) with a set of tools and APIs to
easily develop e-sciences applications and execute jobs that requires an execution
coordination and a platform elasticity features.

One of the potential Cloud resources providers of the Venus-C project is the Mi-
crosoft Windows Azure infrastructure, which is based on Windows operating system.
In what follows, we will interest on one of the programming model in Venus-C
project: the "Generic Worker".

3.2  Generic Worker Concept

The Venus-C project comes up with the Generic Worker (GW) concept, an intermediate
layer between the Azure platform and the end-users that shields them from technical



A Hybrid Grid/Cloud Distributed Platform: A Case Study 165

complexity of the steps to use cloud computing resources. The main role of the GW is
to facilitate the creation of the VM instances on the Cloud infrastructure and the applica-
tion execution. Figure 1 depicts the GW component and its features.

In its simple form, the GW is composed of a .Net based package and an API used
to start VM instances on the Azure platform. Several types of the VM are supported:
small, medium large and extra-large. The type of a VM is mainly determined by the
number of cpus and the memory size. To start VM instances through the Azure web
portal, the user should upload the GW package with his XML configuration that
mainly determines:

— the number of VM instances
— data access and certificate credentials.

Accounting
service ‘\G).r
Ne--mmmee
© i i
1
(= - o=
Interf 1
rerace ! GW instance @ 1 table

Client

program

-Net AP

Application ata
storage 1 Storage

University

Cloud

Fig. 1. Venus-C architecture overview

A Venus-C application can be composed of a workflow of jobs, where dependen-
cies are based on input files: a job cannot be started unless its input files exist in the
storage domain. Each running VM contains a GW instance that handles the execution
of a given job (1). All the submitted jobs are stored in an Azure database table, and,
then, scheduled by a service monitoring to the available GW instances. Periodically,
each GW instance reads the database and retrieves its scheduled job (2). To execute
the job, the GW instance should check the existence of its job's input file in the Cloud
storage domain, then, loads them with the binary and any necessary libraries files to
its local machine disc (3). Accordingly, the status of the job is tracked during its ex-
ecution in the database (4). When the execution ends, the GW instance stages out the
job result in the user storage domain (5). Besides, the GW provides a web service
interface that allows the user through its client program to perform the scaling, notifi-
cation and job management services. It worth noticing here that the number of the
GW instances can be efficiently scaled on demand through the client program.

4 Hybrid Solution

The main idea behind the hybrid solution is to combine the XtremWeb-CH volunteer
computing platform (XWCH: www.xtremwebch.net) with:



166 M. Ben Belgacem, H. Hafsi, and N. Abdennadher

— Cloud infrastructures such as Amazon Elastic Cloud Compute (EC2) [10] and
Azure,

— high performance oriented Cloud platforms such as Venus-C Generic Worker
(GW) package.

The goal is to create a scalable and reliable large scale distributed platform used to
deploy and execute the phylogenetic MetaPIGA application [6]. In what follows, we
present, first, a brief description of the XWCH platform. Then, we describe how the
hybrid solution is elaborated.

4.1 The XWCH Platform

The XWCH platform consists of three components: a coordinator, workers and ware-
houses. The coordinator schedules jobs and pre-assigns them to the workers. An
XWCH worker is a small Java daemon that runs on a user or institute machine. Pe-
riodically, a worker reports itself to the coordinator, asks for a job, retrieves job's
input files and stages out computation results in the warehouses. Since the workers
could be fire-walled and could not communicate with each other to retrieve files for
their jobs, the warehouses are used as file repositories to ensure file communication
between the jobs within the same workflow. If the coordinator does not receive signal
from a worker which is executing a job, it simply removes it from the workers list and
assign its job to another available worker. A flexible API allows users to submit and
monitor jobs according to their needs. Several applications have been ported on the
XWCH platform [11].

4.2  Hybrid Platform

The "global" challenge behind bridging XWCH and Cloud is to scale up the XWCH
infrastructure with Cloud resources. Let's remind here that XWCH workers are volun-
teer based, they belong to universities and/or individuals. Resources (CPU, number of
cores, memory, software tools) which are available on these volunteer workers are
similar to those available on "off-the-shelf" computers.

The main idea can be simply described as follow: when resources requested by the
MetaPIGA application are not available on the volunteer XWCH infrastructure, the
system creates its "private" resources on the Cloud according to the needs (processor
performance, main memory, etc.) of the application. These resources are created "on
the fly" on the Cloud, used by MetaPIGA jobs and released as soon as the execution
ends. In this paper, we consider two scenarios for resources scaling.

In the first scenario (figure 2), MetaPIGA jobs are submitted to the XWCH coordi-
nator (1). When the requested resources are not available on the Volunteer infrastruc-
ture, the XWCH-coordinator creates a "private” XWCH worker supporting these
resources (2). This private worker will then execute the job for which it was created.
In this scenario, Cloud resources are considered as part of the XWCH infrastructure.
The user uses only one developing environment: XWCH API. This scenario was
tested with two Cloud infrastructures: Amazon and Azure.



A Hybrid Grid/Cloud Distributed Platform: A Case Study 167

In the second scenario (figure 2), when XWCH infrastructure is unable to provide
the necessary resources, the MetaPIGA application creates itself the requested re-
sources (1) and submits directly its jobs to the Cloud (2). In this case, Cloud resources
are not considered as part of the XWCH platform. MetaPIGA jobs use the Cloud sto-
rage to retrieve their input files. After execution, the job's results are stored in the
Cloud storage in order to be retrieved by the metaPIGA application. The developer
uses two different APIs to submit his jobs: XWCH API and Cloud API. He also man-
ages data flow between jobs running on the Cloud and those running on XWCH plat-
form. This scenario was tested with Venus-C GW platform.

(Scenario 1) XWCH platform (Scenario 2) XWCH platform
[Ciobs 1] [ obs 1N
N @
o,b\a&gaa XWCH worker| XWCH worke}
9
Y
S \g\y
& O Pttt |

sqﬂ‘-‘“»q“s
@

Submit jobs

MetaPIGA @

application

MetaPIGA

infrastructure
infrastructure

application

——————— Scale up (4
resources

Fig. 2. Hybrid platform

5 Experiments

The two proposed scenarios are used to deploy and execute the MetaPIGA application,
developed at the University of Geneva, over large hybrid computing infrastructure.

5.1 MetaPIGA Application

The Java based MetaPIGA [6,12] application consists of a robust implementation of
several stochastic heuristics for large phylogeny inference (under maximum likelih-
ood), including a simulated annealing algorithm, a classical genetic algorithm, and the
metapopulation genetic algorithm (metaGA) together with complex substitution mod-
els, discrete Gamma rate heterogeneity, and the possibility to partition data. Heuristics
and substitution models are highly customizable through manual batch files and
command line processing.

MetaPIGA is a CPU time consuming application. For instance, one big dataset
needs in general 500 CPU hours. Assuming that 200 analyses are launched every
year, the total number of CPU hours needed per year is equal to 100'000.

MetaPIGA is well suited for parallelization since several populations can be run in
parallel and can therefore be sent to different machines.



168 M. Ben Belgacem, H. Hafsi, and N. Abdennadher

5.2 Measurements

Figure 3(a) compares the overhead generated by the two API: XWCH and Venus-C
GW. Since the native Venus-C GW API is only implemented on Azure, we use this
platform as a hardware infrastructure.

6000

4500= Ves GG -»- Azure resources P
_-— XWCH_ .- —=— Volunteer resources| K.
4000 ¥ 5000(-=- Amazon resources e
3500} =
8 2 4000+
1z ~
~ 3000
g £
g 2500 _§ 3000+
.‘g 2000 3
S 2 2000
& [in}
1500
1000~
1000F
. . . . 0 , , , ,
5DGO 20 40 60 80 100 0 20 40 60 80 100
number of jobs number of jobs
(a) on XWCH and Venus-C GW (b) on workers deployed on Azure, Amazon

and volunteer computer

Fig. 3. Time execution of MetaPIGA

The results show that the overhead generated by XWCH API is slightly inferior to
Venus-C GW API. In this figure, the number of available XWCH workers (resp. GW
instances) is equal to 20.

Figure 3(b) compares the performances of MetaPIGA when executed on an
XWCH platform using three "types" of workers:

— volunteer, non dedicated, workers,
— workers deployed on Azure,
— workers deployed on Amazon.

For both Amazon and Azure workers, we have used small VM instances. An Ama-
zon VM instance runs Ubuntu operating system and has a 1 ECU (EC2 Compute Unit
=~ 1.0-1.2 GHz) of CPU speed and 1.7 GB of memory}. An Azure VM instance runs
Windows operating system and has a 1.6 GHz of CPU speed and 1.75 GB of memory.
Regarding the XWCH workers (Linux and Windows), they are installed on
student machines having each an average CPU speed of 2.2 GHz and 3 GB of system
memory.

Results show that the execution time of the MetaPIGA application on Azure work-
ers is slightly higher comparing to the Amazon ones. Besides, the non-stairs shape
obtained in the XWCH curve can be explained by the volatility aspect of the XWCH
platform, i.e that the number of connected XWCH workers on the platform can vary
during execution.



A Hybrid Grid/Cloud Distributed Platform: A Case Study 169

6 Conclusion

This paper presents two scenarios to bridge the XWCH Grid platform with Cloud
infrastructure. Cloud is used as a provisioning system which allows users to "rent"
resources not supported by the Grid. Two scenarios were proposed: In the first case
Cloud resources are not seen by the user, they are managed by the Grid itself. Contra-
rily to this approach, the second scenario assumes that the user submits himself the
jobs to the Cloud.

It therefore obliges the developer to use two different developing environments.
The two scenarios have been tested in the case of MetaPIGA application with Ama-
zon, Azure and Venus-C Cloud platforms. The next step will be to generalize this
approach to other applications and develop a "generic" toolkit environment that sup-
ports other Cloud infrastructures.

References

1. Kesselman, C., Foster, I.: The Grid: Blueprint for a New Computing Infrastructure.

Morgan Kaufmann Publishers (November 1998)

Foster, I.: What is the Grid? - a three point checklist. GRIDtoday 1(6) (July 2002)

BOINC, http://boinc.berkeley.edu/

XtremWeb, http://www.xtremweb.net/

Boss, G., Malladi, P., Quan, S., Legregni, L., Hall, H.: IBM high performance on demand

solutions. Technical report, IBM developerWorks (2007)

MetaPIGA 2 - Large phylogeny estimation, http: //www.metapiga.org/

Gentzsch, W.: DEISA. Grids are Dead! Or are they? (2008),

http://www.hpcinthecloud.com/hpccloud/

2008-06-16/grids_are_dead_or_are_they.html
8. Weinhardt, C., Blau, B., Meinl, T., SoBter, J.: Cloud Computing - A Classification, Busi-
ness Models, and Research Directions. Business & Information Systems Engineering
Journal 1, 391-399 (2009)
9. VENUS-C European project, http: //www.venus-c.eu/

10. Amazon Elastic Cloud Compute, http://aws.amazon.com/ec2/

11. Abdennhader, N., Ben Belgacem, M., Couturier, R., Laiymani, D., Miquée, S., Niinimaki,
M., Sauget, M.: Gridification of a radiotherapy dose computation application with the
xtremWeb-CH environment. In: Riekki, J., Ylianttila, M., Guo, M. (eds.) GPC 2011.
LNCS, vol. 6646, pp. 188—197. Springer, Heidelberg (2011)

12. Belgacem, M.B., Abdennadher, N., Niinimaki, M.: The XtremWebCH Volunteer Compu-
ting Platform. In: Desktop Grid Computing, ch. 3, June 25. Numerical Analysis and Scien-
tific Computing Series. Chapman and Hall/CRC (2012)

Al

N o



Comparison of Two Yield Management Strategies
for Cloud Service Providers

Mohammad Mahdi Kashefl’*, Azamat Uzbekovl,
Jorn Altmannl, and Matthias Hovestadt’

! Technology Management, Economics, and Policy Program
Department of Industrial Engineering
College of Engineering

Seoul National University

Seoul, South Korea
{mmkashef,batukasss}@temep.snu.ac.kr, jorn.altmann@acm.org
% Hanover University of Applied Sciences

Dept. of Computer Science

Hanover, Germany
matthias.hovestadt@hs-hannover.de

Abstract. Several Cloud computing business models have been developed and
implemented, including dynamic pricing schemes. This paper extends the known
concepts of revenue management to the specific case of Cloud computing from
two perspectives. First, we propose system architecture for Cloud service
providers for combining demand-based pricing and scheduling. Second, a
comparison of two yield management methods for cloud computing has been
compared: Limited Discount Period Algorithm and VM Reservation Level
Algorithm. By taking advantage of demand estimation, the two algorithms find
the optimum number of VMs that are sold at full price and the optimum time
period before the allocation when the prices should change. Simulation results
show that both yield management methods outperform static pricing models and
the algorithms perform differently considering the deviation of demand.

Keywords: Cloud computing, revenue management, pricing strategy,
autonomic resource management.

1 Introduction

Cloud service providers (CSPs) face challenges regarding performance and pricing.
On the one hand, Cloud service consumers wish to minimize the execution time of
their submitted tasks without exceeding a given budget, while, on the other hand,
CSPs are keen on maximizing their revenue while keeping customers satisfaction [1].
A real-time view of the Cloud provider’s business with respect to revenue and costs
becomes essential. Such a system helps to respond in an economically efficient way.
Solutions to these issues are provided through business economics [2].

* Corresponding author.

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 170-[180] 2013.
© Springer-Verlag Berlin Heidelberg 2013



Comparison of Two Yield Management Strategies for Cloud Service Providers 171

The current problem that CSPs face is that they have to reserve resources (e.g. a
specific number of virtual machines) at a particular time upon a given user request.
This reservation of resources basically follows the traditional first-come-first-served
approach, so that late service requests have to be rejected if resources have already
been reserved for earlier service requests, even if these late service requests have a
higher value for the CSP. To address this problem, dynamic pricing methods have
been successfully applied in many cases [3]. The reservation price can depend on the
demand. For instance, an industry that has applied this pricing is the airline sector. Its
solutions are based on yield management [4], maximizing revenue.

In the scope of this paper we apply two orthogonal yield management practices for
maximizing the revenue. For both yield management practices, the full price and the
discount price for VMs will be set. In addition, for the first practice we set the time L,
which represents the time when price offerings switch from a discounted to a full
price. For the second practice, we set the number of VMs (i.e., the protection level
(PL) of VMs) that should be offered at full price. The research questions that will be
addressed are how such a dynamic pricing model can be integrated into a scheduling
architecture, and how those dynamic pricing models (if they perform differently) can
be combined in the architecture through a smart switch.

For answering these research questions, this paper is structured as following: in the
next section, an overview about related work is given. Chapter 3 introduces our
proposed architecture as well as suggested pricing algorithms. The effectiveness of
the work will be evaluated by simulation in Chapter 4 while Chapter 5 concludes the

paper.

2 State-of-the-Art

2.1 Cloud Computing

It has recently become very popular as a new paradigm to shift IT resources and
software from locally independent computers to a more collaborative level [4]. Cloud
computing refers to not only “the applications delivered as services over the Internet”
but also “the infrastructures and systems in the datacenters” [5]. In this work, we
follow the definition of Cloud computing of NIST (National Institute of Standards
and Technology) [6].

Though Cloud computing has a clear definition and features, there is no clear line
of separation with other forms of distributed computing systems like Grid computing.
It is no wonder because Cloud not only overlaps with Grid, it has indeed evolved out
of Grid and relies on Grid as its backbone and infrastructure support [7]. In this work,
the authors compare Cloud and Grids and despite the fact that they have similarity in
their vision, architecture and technology, they significantly differ in security,
programming model, level of abstraction, compute model, data model, applications,
and business model. In case of our work, we have focused on business model
differences between those systems. Han [8] believes that the Grid systems are
scientific orientated, and are mainly supported by research communities; and
compared to that, Cloud computing is profit-orientated and has a much broader user
base, including non-IT companies and individuals.



172 M.M. Kashef et al.

2.2  Revenue Management

The idea of revenue management (RM) or yield management is to give the seller the
right to set the optimum price. The techniques of RM have been firstly implemented
in airline industry, which benefited at $1.4 billion over three years [9]. Other
industries, such as hotels, restaurants, and car rental companies, also use RM as a tool
for resource allocation and revenue maximization, and this has been studied by a large
number of scientists. Following the definitions of yield management presented in [10,
11], the definition of RM that is most suitable for this paper is “a method that helps to
sell the VMs to the right consumer, at the most suitable moment, and at the optimum
price.”

Based on ‘“expected marginal seat revenue” (EMSR) technique developed by
Belobaba [12], airline companies make decisions about how many seats to sell for
each price class they have. The same algorithm has been implemented in the hotel
industry [13-15]. Hotels have different prices for the same quality of rooms. To
separate two guest segments, the hotel introduces a protection level (PL) that divides
the total capacity of rooms into two parts. The protected rooms will not be sold at a
discount price because of the possibility that some customers might buy the same
rooms at a full price later. Furthermore, the booking limit (BL) is the number of
rooms that may be sold at the discount price.

In [10, 16, 17], the possibility of using RM in telecommunication industry and
specifically in Grid was studied in detail. Arun Anandasivam et al. overviewed RM
how this concepts can be deployed to Grid. He compared the Grid computing domain
with other common areas for RM showing that even there are notable differences, RM
is applicable on Grid. Anthony Sulistio et al. went deeper and presented the model
using RM and simulation for two Virtual Organizations (VOs) with broker between
users and Grid to determine pricing of reservations. Both of these works outlined the
requirements for applying RM to the Grid and showed how the RM tools can be
effectively exercised. But their architecture does not give consumer any possibility to
use other allocation method that could be more applicable on consumer’s need.

2.3 Resource Management

Existing studies of the internet and media workloads indicate that client demands are
highly variable (“peak-to-mean” ratios may be an order of magnitude or more), and it
is not economical to overprovision the system using “peak” demands [18], [19].
Gmach has presented results that illustrate the peak-to-mean behavior for 139
enterprise application workloads. He has shown that an understanding of burstiness
for enterprise workloads can help in choosing the right tradeoff between the
application quality of service and the resource pool capacity requirements. The ability
to plan and operate at the most cost-effective capacity is a critical competitive
advantage [20].

Van et al. presented an autonomic resource management system, which has the
ability to automate the dynamic provisioning and placement of VMs. For this, they
have taken into account both the application-level service level agreements and



Comparison of Two Yield Management Strategies for Cloud Service Providers 173

resource exploitation costs with high-level handles for the administrator to specify
trade-offs between the two [21].

3 System Architecture and Algorithms

For the sake of maximizing the revenue of a CSP, we propose the system architecture
as shown in Fig. 1.

ﬂjob request
confirmation
user ID, job ID, time of job run Provider }-@7;’”09
(: N accept/rEJect
allocation order- T
job ID, non risk price, cost price per unit.
last allocation order-

Cost Module

%@

Estimation Module

Limited
Discount
Period

Pricing
Module

Pricing M
Reservation

Module Level

Data base

v

Fig. 1. Proposed architecture for pricing and resource allocation in a CSP

The proposed architecture for the CSP includes information about demand and the
system cost [see a) in Fig. 1], the business support framework (BSF) [see b) in Fig. 1],
the provider and the scheduler. The sequence is as explained here: In order to manage
the requests, user interacts (1) with a component, namely, the provider. The provider
manages requests based on First-Come-First-Served. It sends (2) job information to
the scheduler to check the technical feasibility of the job (e.g. are sufficient resources
of requested quality available). The scheduler will report (3) the feasibility to the
provider. In case of being feasible, an order from provider will be sent (4) to block ‘a’
of Fig. 1, which means start demand estimation and cost calculation. Hence, the cost
module and the estimation module request and get (5) needed data from data base to
calculate the estimated demand by which (6) total cost is computed. The results are
input (7) for BSF. The outcome of BSF processes will be sent (8) to provider. Based
on the proposed data, the provider is able to negotiate with the user to finalize the deal
(9, 10). Finally the provider orders (11) the scheduler to allocate proper VM on the
requested time to the job. The scheduler will assign the VM to the job as per order
(12), and send a confirmation notice back to the provider (13). Finally, the user will
be informed of the confirmed deal (14). Yet, all information regarding the jobs goes
to the database to keep the historical records. This data helps the CSP to set the prices
that reflect the risk of losing opportunity cost and to estimate the near future demand.



174 M.M. Kashef et al.

3.1 Demand Estimation Module

Forecasting is often considered the most critical part of revenue management. The
quality of decisions, such as pricing and capacity control, depends on an accurate
forecast [22]. The data used in a demand estimation module is based on the historical
data of requests and submitted jobs in the full price class. In designing the estimation
module, such inputs should be available due to our modeling. Required inputs include
historical data of demand (number of jobs requested at full price), application (VM)
category, type of VM, e.g., in the case of Amazon: EC2, S3, etc. The module
performs the analytical calculations and returns the estimated future trends, i.e., the
demand for the full price. The module takes advantage of a heuristic method to
estimate the demand of VM. More specifically, based on the past experience of the
Cloud vendor, particular application categories, such as web server, game server,
online-shopping server, e-learning server, etc., are required before going through the
details of trend estimation since the module categorizes data based on its application
category. This helps to obtain a better prediction for each category.

For simplicity, we assumed that the curves are of a monotonic function, modeling an
overall upward or downward change in demand. We further assumed that all demand
traces have a cyclic behavior. To perform the abovementioned prediction, four major
processes are considered: extracting patterns, calculation of the pattern, deviation
calculation and classification. Based on the estimation, two trends are generated, i.e., the
demand for the full and the discount price to be used by the pricing module.

3.2 Cost Module

For any kind of service pricing, one should be aware of total cost of the service; so
that price setting won’t make any loss for the service provider. Hence in the proposed
architecture all of the BSF processes are based on the calculated cost of the service.
To calculate the overall costs of a VM, a detailed cost model has been proposed in
[23] in which fixed and variable costs should be calculated. For fixed cost (FC) the
proposed formula accounts all of the initial costs: server purchase, network device
purchase, cost of software licenses, cost of facility space, the cost for cabling and
preparation of data center. Then all variable cost factors should be extracted
and calculated. Items as listed in [23] are cost of electricity, the cost for Internet usage
and the cost of maintaining labor. Finally total cost is gained based on total fixed
cost and total variable cost; which will be inputs for pricing module.

3.3  Business Support Framework

First step of is that the Smart Switch (SS) checks the demand situation and
recommends algorithms performing superior for the respective time span. Then the
selected algorithm(s) use provided information by step 7 for setting full and discount
prices. The BSF is able to run various economic-based algorithms. By now we have
proposed two algorithms namely, Limited Discount Period (L algorithm) and VM
protection Level (PL algorithm) as shown in b) of Fig. 1. Both of the algorithms need



Comparison of Two Yield Management Strategies for Cloud Service Providers 175

proposed prices, so the pricing module is embedded in them. This module, being
dependent on demand level, generates on-time prices for the allocation algorithms of
the BSF. In the L algorithm, the prices of VMs depend on how many days in advance
the request is made, while the PL algorithm sets prices according to the PL of
resources. Then Report Generator (RG) will merge the results of algorithm(s).

Pricing Module. Since the approach of this work is YM method, the prices for the
services of the CSP should be differentiated. The pricing module generates two
prices: the full price (A) and the discount price (B), which are directly linked to
demand. The key principle of the price strategy used by pricing module is that, if the
probability of selling the product is very high then there is no need to offer a low price
to sell it. Hence, the prices will be set using the full-cost method (or cost-plus)[24].
This method is very easy to explain, and the structure of the price is clear. The gross
profit margin (GPM) in this method is set manually. To minimize human intervention
in the price setting procedure in this work instead of the GPM other values that are
directly tied to demand has been used as explained in equations 1 and 2.

qmax TC
A=(1+ * 1)
< Cfull + qmax> Qavg (

qmin TC
B=|1+ — | * (2)
< Cfull + qmm> qavg

In the proposed formula, where TC is the total cost, Cs,;; means the total capacity of
the CSP. Therefore, the full price is set based on the highest demand point (¢"*), and
the lowest demand point (¢”") determines the discount price. An average demand
within the same accounting period is qg,4.

The Limited Discount Period algorithm (L algorithm). The objective of the first
algorithm is to define the time duration, L, before the “job-start-time” so that when it
occurs, the price changes from discount price to full price [25]. The idea of starting
from the discount price and then switching to the full price is selected for two reasons.
First, a low price attracts more customers, and it reduces the risk of not covering the
production cost. Second, the practice of buying services in advance contributes to
forecasting and resource allocation planning. In this case, the discount price is seen as
an incentive for customers.

Hence, we use a breakeven analysis as a simple and easily understandable method
of examining the relationship between the fixed cost, the variable cost, the volume,
and the price [26]. The breakeven sales quantity helps to assess the number of
products that must be sold to generate a contribution equal to the total cost.

BEQ 3)

:p—VC(q)

Where BEQ is the breakeven sales quantity, FC is the fixed cost, VC is the variable
cost per unit, and p is the price per unit.



176 M.M. Kashef et al.

The calculation of point L starts with the breakeven analysis. Equation (3) helps to
find the point where the sales revenue covers all the costs exactly, i.e., the profit is
zero. Only when the next unit is sold, the CSP realizes any profit. Therefore, the CSP
starts to receive requests taking into account the time of request, t,, and the job-start-
time, t;. Having ascertained the BEQ and the outcome of the estimation module, the
CSP can calculate how many days are needed, L, to cover the production cost.

Steps of the algorithm are: 1) First assess system’s parameters C; and p;; 2) After
receiving a request, set j = t; —t, and L =t where t + 1 until ), d, = BEQ; 3) If
j=L, and p; =B, let C; = C; + 1, otherwise, p; =4 and let C; = C;+1; 4)
Calculate the total capacity. If },C; = Cryy, go to the last step, otherwise start from
the beginning; 5) The calculation stops with summing the total revenue Y(p; * C;).

The VM reservation level algorithm (PL algorithm). Since the CSP must decide the
quantity of VMs to sell at the full price, the CSP must determine the protection level
(PL) that divides the CSP’s total capacity into two parts: the protected VMs and the
VMs at discount price[15].

To explain mathematically, we refer to the EMSR technique[12]. We define F;(d;)
to be the probability density function for the total number of reservations requests, d;,
for VMs in price class i. The number of VMs allocated to a particular price class, C;,
in case of rejection may not exceed the number of actual requests for that price class.

Ci
R = | R od, @
0

The optimal protection level, PL, for the business class is the value of C; that satisfies
the condition:

A*F(Cy) = B * F,(Cy) 5)

A

Fy(PLY) = — (6)
Steps of the protection level algorithm are as follows: 1) After assessing the system’s
parameters C; and p;, calculate Q" and find from the table of cumulative probability
the smallest cumulative value greater than or equal to PL*; 2) Calculate BL = Cgyp —
PL; 3) Receive a request and, if C; < BL, accept the order and let C; = C; + 1 and
pi = B; 4) Otherwise switch the price so that C; = C;+ 1 and p; = A; 5) Then
calculate the total capacity. If }'C; = Cg, go to last step, otherwise go to beginning;
6) Calculate the total revenue . (p; * C;), then stop.

4 Simulation Experiments

4.1 Simulation Scenario

In our scenario, a CSP wants to identify optimum prices of VMs in order to maximize
revenue. In presented simulations “the future time horizon of the simulation” is
considered to be 30 days (but one may set it to other values). For simplicity, group



Comparison of Two Yield Management Strategies for Cloud Service Providers 177

requests are not considered hence one job means one VM for one hour. The Cloud
vendor charges the customers two classes of prices: full price and discount price.
There are three price-impacting inputs associated with the CSP’s production cost: the
fixed cost, the variable cost, and the total capacity. The fixed cost and variable cost of
the Cloud provider are given as €20 and €1 accordingly. The total capacity of the

CSP is assumed to be 100.

Each job request has two timing parameters: the job request time and the job start
time. In this step of the work simulation is limited to solve the problem for a
particular “job-start-time” (JST), i.e. to find the optimum L and the PL for a particular
JST.

4.2 Data Generation

In this work, two types of simulations have been performed. First, demand was
generated between 1 and 100 based on uniform random distribution. Second, the
simulator generated demand based on normal random distributions, for which p was
set to be 25, 50 and 100, while ¢ was considered to be 1, 10, 20 and 30.

4.3  Simulation Results

Based on the generated random data in each simulation, full price and discount price
have been calculated using formula 1 and 2. Then, the total revenue of each
simulation is counted. Total revenue of both pricing strategies is shown in Fig. 2. The
diagram shows a comparison of four pricing methods: the L algorithm, the PL
algorithm, fixed high price (A) and fixed low price (B). It shows that the L algorithm
often generates more revenue than the PL algorithm. But in some other cases PL
algorithm is making more profit; and with this information one can’t imply when and
under which situation L or PL works better. So another round of simulation has been
performed to find out the situation of better revenue by each algorithm.

250
200
[
=1
c
o
2150
o
s
ISIOO
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Experiments
ecccee | ememem PL Low price == e High price

Fig. 2. Comparison of the results of the four pricing strategies in first round of simulation



178 M.M. Kashef et al.

Then a second round of simulation has been performed. The average results are
shown in Table 1 (from 50 simulation runs). Based on those values, the full price and
discount price are also calculated (Table 1).

Table 1. Average results for mean p = 25, 50, 100 and standard deviation o= 1, 10, 20, 30

St.Dev 1 10 20 30
Mean 25 | 50 | 100 | 25 | 50 | 100 | 25 | 50 [ 100 | 25 | 50 | 100
Maxdemand | 27 | 52 | 102 | 46 | 71 | 120 | 68 | 91 | 140 | 87 | 99 | 161

Min demand 23 | 48 | 98 5 30 | 80 1 8 57 1 2 39

Avg demand 25 | 50 | 100 | 25 | 50 | 100 | 35 | 49 | 99 | 44 | 51 | 100

Fullprice (A) | 23 | 2.1 | 24 | 26 | 24 | 26 | 27 |27 | 29 | 27 |28 | 3.1

DiscpriceB) | 22 | 21| 24 | 19 [ 18 | 22 | L.7 | 15| 19 1 14 | 1.7

The revenues of the L and the PL algorithms have been calculated according to the
3.2.3.2 and 3.2.3.3. The generated revenue ratio of L and PL algorithms is compared
in Fig. 3. Moreover, the average total revenue of 50 experiments is depicted in Fig. 4.

14 26
KE
K€
6
04 1 5 10 20 30 50 60 ©
L s 10 2 3° il | /50 e PL/50 = | /100
1=50 12100 135 = PL/100 ==p== /25 ==fZ==PL/25

Fig. 3. Comparison of the total revenue ratio of Fig. 4. Comparison of the total revenue in
L to PL in case of five o for three different u. seven cases of ¢ and three means (25, 50 and
100; unit: K€)

4.4  Analysis and Discussion

The results of the first simulation are not giving meaningful conclusion about which
algorithm (i.e., L or PL) is superior. To figure out the conditions, under which it is
better to run the L algorithm, some additional simulations have been done. As
diagram of Fig. 3 shows as the demand approaches the full capacity (here 100 VMs)
revenue ratio is increasing for PL algorithm. The statement is true vice versa, i.e. for
the p=100 the more variation of demand the more revenue of PL algorithm. It can
imply that if demand is very near to full capacity, the revenue is better when
considering the protected level of VMs than L days prior to the job-start-time. While
observing the cases in which the L algorithm made less revenue, it can be concluded
that, if demand is low, the L strategy is more applicable. Nevertheless, both of the
proposed pricing strategies are more effective than selling the VMs at any fixed price.



Comparison of Two Yield Management Strategies for Cloud Service Providers 179

The conclusion is supported by the Fig. 4 showing in case of PL algorithm as far
as getting farther from full capacity revenue decreases, but this is reverse for
L algorithm.

In the real world, CSPs may take advantage of the two proposed models to gain
greater revenue. A smart switch in BSF as drawn in Fig. 1, can select best method
according to demand situation.

5 Conclusion

Within this paper, we described how providers can be supported in price setting
decisions. We proposed a system architecture, which included a demand prediction
module, a cost module, a pricing module, and a business support framework. The
system modules are described in details. In particular, we introduced two different
pricing strategies, which follow the yield management method, for selling a Cloud
service.

Our simulation results show that the proposed architecture and algorithms can be
helpful to set an optimum price that generates maximum revenue. Our future work
aims at extending this research so that more complicated cases, which have greater
applicability in the real world, are assessed.

Acknowledgements. This work has been funded by the Korea Institute for
Advancement of Technology (KIAT) within the ITEA 2 Project 10014 EASI-
CLOUDS.

References

1. Tsakalozos, K., Kllapi, H., Sitaridi, E., Roussopoulos, M., Paparas, D., Delis, A.: Flexible
use of cloud resources through profit maximization and price discrimination. In:
Proceedings of the 2011 IEEE 27th International Conference on Data Engineering,
pp. 75-86. IEEE Computer Society (2011)

2. Altmann, J., Hovestadt, M., Kao, O.: Business support service platform for providers in
open cloud computing markets. In: 2011 The 7th International Conference on Networked
Computing (INC), pp. 149-154 (2011)

3. McGill, J.I., Van Ryzin, G.J.: Revenue Management: Research Overview and Prospects.
Transportation Science 33, 233-256 (1999)

4. Hayes, B.: Cloud computing. Commun. ACM 51, 9-11 (2008)

5. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, 1., Zaharia, M.: Above the Clouds: A Berkeley View of
Cloud Computing. University of California at Berkeley (2009)

6. Mell, P., Grance, T.: The NIST definition of cloud computing. National Institute of
Standards and Technology 53, 50 (2009)

7. Team, M.S.R.: Cloud Computing takes off. BLUE PAPER (2011)

8. Han, L.: Market Acceptance of Cloud Computing - An Analysis of Market Structure, Price
Models and Service Requirements. Information Systems Management 42 (2009)



180

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

M.M. Kashef et al.

Smith, B.C., Leimkuhler, J.F., Darrow, R.M.: Yield Management at American Airlines.
Interface 22, 8-31 (1992)

lallat, F., Ancarani, F.: Yield management, dynamic pricing and CRM in
telecommunication. Journal of Services Marketing (2008)

Kimes, S.E.: The basics of yield management. The Cornell H.R.A Quarterly (1989)
Belobaba, P.P.: Application of a probabilistic decision model to airlines eat inventory
control Operations Research 37,14 (1987)

Gayar, N.F.E., Saleh, M., Atiya, A., El-Shishiny, H., Zakhary, A.A.Y.F., Habib,
H.A.A.M.: An integrated framework for advanced hotel revenue management Hospitality
Management 23, 14 (2011)

Relihan, W.J.: The Yield-Management Approach to Hotel-Room Pricing

Netessine, S., Shumsky, R.: Yield Management (1999)

Sulistio, A., Kim, K.H., Buyya, R.: Using Revenue Management to Determine Pricing of
Reservations. In: IEEE International Conference on e-Science and Grid Computing,
Bangalore, pp. 396405 (2007)

Anandasivam, A., Neumann, D.: Managing Revenue in Grids. System Sciences. In: 42nd
Hawaii International Conference on HICSS 2009, Big Island, HI, pp. 1-10 (2009)

Arlitt, M.F., Williamson, C.L.: Web server workload characterization: The search for
invariants. Performance Evaluation Review 24, 126137 (1996)

Cherkasova, L., Gupta, M.: Analysis of enterprise media server workloads: Access
patterns, locality, content evolution, and rates of change. IEEE/ACM Transactions on
Networking 12, 781-794 (2004)

Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Workload analysis and demand
prediction of enterprise data center applications, pp. 171-180 (2007)

Van, H.N., Tran, F.D., Menaud, J.M.: SLA-aware virtual resource management for cloud
infrastructures, pp. 357-362 (2009)

Chiang, W.-C., Chen, J.C.H., Xu, X.: An overview of research on revenue management:
current issues and future research Int. J. Revenue Management 1 (2007)

Kashef, M.M., Altmann, J.: A cost model for hybrid clouds. In: Vanmechelen, K.,
Altmann, J., Rana, O.F. (eds.) GECON 2011. LNCS, vol. 7150, pp. 46-60. Springer,
Heidelberg (2012)

Paleologo, G.A.: Price-at-Risk: A methodology for pricing utility computing services.
Systems Journal 43 (2004)

Svrcek, T.: Modeling airline group passenger demand for revenue optimization.
Massachusetts Institute of Technology, Flight Transportation Laboratory, Cambridge,
Mass. (1991)

Monroe, K.B.: Pricing: Making profitable decisions, 2nd edn. McGraw-Hill Companies
(1990)



Comparing Java Virtual Machines for Sensor Nodes

First Glance: Takatuka and Darjeeling

Oliver Maye' and Michael Maaser”

'IHP, Frankfurt (Oder), Germany
maye@ihp-microelectronics.com
2 Anting/Shanghai, China
dr .michael .maaser@googlemail .com

Abstract. For comparing Java virtual machines targeting smart systems such as
wireless sensor nodes, a list of qualitative and quantitative criterions is pro-
posed. The open source JVMs Takatuka and Darjeeling are then compared by
architecture and features. The JVM runtime properties are benchmarked on an
MSP430-based test platform. Results show that Takatuka is the mature, feature-
rich, multi-purpose JVM near J2ME with a 50% advantage in Java byte code
size. Darjeeling fits well for tiny, focused applications and offers a runtime
performance bonus of up to a factor of six.

Keywords: Java, JVM, Benchmark, Performance, Takatuka, Darjeeling.

1 Introduction

For wireless sensor network (WSN) nodes, energy efficiency directly translates into
feature opulence, agility and computational power. Smart firmware development is
one of the most complex and hence, time-consuming tasks during WSN development.

In heterogeneous environments, Java plays best its “platform-independency” card.
So, specifically for WSNs, Java is an attractive alternative to well established pro-
gramming languages, such as C/C++.

We aim at answering the question: What are the similarities and differences of the
Java virtual machines available for WSN nodes? As the properties of a Java Virtual
Machine (JVM) strongly depend on the underlying hardware platform as well as on
the operating system (OS), we first narrow down the latter two.

To take advantage from synergies between related projects, the hardware platform
was chosen to be TI’s MSP430. For easily reproducing the results, the TI MSP430
experimenter board (MSP-EXP430F5438) defines the hardware test bed.

In order to produce the slimmest possible software stack, no operating system is
used. Instead, the JVMs run “natively” or “barely” on the hardware. A few hardware-
adapters to bridge the gap between JVM and hardware were added manually. This
collection of hardware-adapters was named ocapi and was published as open source.

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 181-188] 2013.
© Springer-Verlag Berlin Heidelberg 2013



182 O. Maye and M. Maaser

1.1  Comparison Parameters

The comparison parameters are features and attributes that characterize the JVM’s
behaviour during both, compile- or runtime. To relate results to earlier comparisons
by Brouwers [2009] and Aslam [2010] and motivated by general requirements in
software development, the following set is proposed.

e Standard Conformance (qualitative); Compatibility with the Java language specifi-
cation by Gosling et al. [2005] and conformance to a Java Core API (J2ME, J2SE).
Pointer Size (quantitative)

Threads (qualitative)

JNI Support (qualitative); How much of a Java native interface is supported.

Tool Chain (qualitative); Complexity, availability, openness of the tool chain.
Build Time (quantitative). Time necessary to build the JVM including the Java
application from a clean project.

Size in Memory (quantitative). Size of the final byte code and VM'’s native part.
Runtime Performance (quantitative). Accomplishment of several reference-tasks.
Power Consumption (quantitative). During runtime for a specific reference task.
Energy Efficiency (qualitative). Use of idle and sleep modes.

RAM Usage (quantitative). Peak requirement for volatile memory.

2 Field of Candidates

For the comparison, we seek suitable JVMs for the MSP430 microcontroller platform.
They should be general enough to run different types of applications. Furthermore,
they should be alive, i.e. actively supported and developed further. An extra bonus
will be rewarded to open source JVM due to public availability and transparency.
Anticipating the result of surveying the manifold of available JVMs, we select the
following two for an in-depth comparison.

Takatuka is a matured JVM for sensor nodes by a research group with Faisal As-
lam [2011]. The VM’s hardware abstraction layer supported Atmel’s AVR processors
right from the beginning, while a port to MSP430 was added as a result of this work.
Takatuka aims at providing J2ME CLDC. Depending on the application, it occupies
less than 40KB of flash and about 4KB of RAM. Takatuka is open source and still
developed further by an active community.

Darjeeling by Niels Brouwers [2009] and his team targets 16-bit microcontrollers
like Atmel’s ATmegal28. It was implemented on different OS platforms, TinyOS and
Contiki among them. The VM features a well-designed hardware abstraction allowing
also “native” deployment on a suitable set of drivers. Darjeeling supports on-the-fly
loading of Java modules. The memory requirements are very similar to those of Taka-
tuka. The VM is an open source project with a moderately active community.



Comparing Java Virtual Machines for Sensor Nodes 183

3 State of the Art — Earlier Comparisons

Darjeeling was examined by Brouwers [2009] on an ATmegal28 at 8 MHz. Perfor-
mance tests revealed an execution overhead of roughly two orders of magnitude when
compared to a native C implementation. Thanks to elimination of string literals, the
code size could be shrinked over jar files by a factor of two to six. A portability sec-
tion compares memory usage of that same VM on different hardware platforms, At-
megal28 and MSP430 among them.

Aslam [2010] et al. compared Takatuka, Sentilla and Darjeeling. Takatuka occu-
pies less RAM than Sentilla on the JCreate (MSP430), and less than Darjeeling on the
Mica2 (ATmegal28) platform. Further, the impact of different byte code compaction
algorithms on the runtime performance of Takatuka was analysed. Comparing the
three JVMs compacted class files size shows that Takatuka in generally produces the
smallest Java binary. Interestingly, the presented data suggest, that code produced for
the MSP430 platform tends to be smaller than for the ATmega platform.

Concluding, there is only little comparison between Darjeeling and Takatuka on
the same hardware. This is especially true for the MSP430 processor platform and
parameters like runtime performance or energy efficiency.

4 Qualitative Comparison

This section discusses the JVM candidates subject to their qualitative features.

4.1 Standard Conformance and Features

Darjeeling provides neither floating point nor 64bit data types, while Takatuka does.
Darjeeling can run multiple applications within separate infusions concurrently, but
the current implementation provides insufficient control of this feature.

Both candidates do not fully comply with the J2ME CLDC specification. They do
not support reflection mechanisms and lack a meaningful java.lang.Class implemen-
tation. However, Takatuka is a more complete subset of J2ME, than Darjeeling is.

4.2  Multi-threading

Both candidates support threading in which all threads share a single stack.

Unlike Takatuka, Darjeeling also supports multiple applications at a time. This is
accomplished by a concept of static class file libraries called infusions which can use
each other. Infusions render dead code removal as in Takatuka unfeasible (see
Subsection 4.6). As the GC does not completely handle indirect references to un-
loaded infusions, a dedicated VM exception leaves it up to the application to cope
with it.

Synchronization is supported by both JVMs. However, both appear to lack syn-
chronized method calls. Fortunately this does not reduce the flexibility as such
methods can easily be rewritten.



184 O. Maye and M. Maaser

4.3  JNI Support and Tool Chain

Both JVMs do not comply with the JNI specification but instead, provide a proprie-
tary interface for invoking native methods from Java. The native code is linked stati-
cally with the JVM binary.

Takatuka and Darjeeling both rely on Apache Ant as the build environment. They
support at least one commonly accessible tool chain for each target system. Extending
the Ant scripts to accommodate further compilers is a minor effort.

When targeting MSP430 hardware, Takatuka supports both, the TI tool chain as
well as GCC. It optionally allows transferring the binary onto the node, but we pre-
ferred using the debugging software NoICE for this purpose, instead.

Darjeeling relies solely on GCC when targeted to the MSP430 platform.

4.4  Energy Efficiency

The MSP430 has five operating modes (LPMO...LPM4) each of them at a different
power consumption level. Both JVMs do not take advantage of this technique, but
always run the processor in the full-functional mode at the cost of the highest-possible
power dissipation.

4.5  Garbage Collection and Memory Compaction

The Darjeeling approach is to minimize the GC and memory compaction effort with
the introduction of a double ended stack by Brouwers [2009]. So it stacks reference
types and non-reference types on either end of the stack. This renders runtime type
analysis unnecessary, reducing the GC effort to O(n) and eliminating false positives.
The costs are one byte for an additional stack pointer in each stack frame. It further
requires the introduction of customized instructions, such that pop has to split into
apop and ipop for references and non-reference types. Further the non-reference types
are packed, that is, byte and short occupy only one or two bytes on the stack. Respec-
tively, the getfield and setfield operations are replaced with typed versions for byte,
short, int and ref.

Takatuka approaches to minimize running the GC at all by the introduction of an
offline-GC. With a data flow analysis at compile time, Takatuka identifies objects that
might still be reachable but are guaranteed not to be used again, as reported by Aslam
[2011]. At those positions, customized instructions for explicit memory freeing are
inserted. This increases the free RAM at runtime up to 66%.

4.6 Code Compaction

In order to achieve smaller class files, most JVMs for embedded devices apply a split
VM architecture as originally introduced by Simon et al. [2006]. By transforming
dynamic linking information into static linking of classes, the code size can be signif-
icantly reduced at the cost of losing Java reflection capabilities and, thus, dynamicity.



Comparing Java Virtual Machines for Sensor Nodes 185

Darjeeling statically links classes within an infusion in a way that becomes merely
a set of up to 255 methods, which are mutually called. An infusion header file keeps
track of mapping of these methods to their names and classes at compile time. Using
the header files, other infusions can correctly lookup the methods in this infusion.

Similarly, Takatuka statically links classes and methods into a monolithic tukfile.
Besides stripping off class and method names from classes’ constant pools, Aslam
[2011] describes, how Takatuka globalizes the constant pools into a single one. By
that, duplicated constants from different classes can be removed, saving further space.

Takatuka’s dead-code removal mechanism eliminates all methods or classes that
are never used in the flow path. So, a programmer can take advantage of a broad class
and method library, e.g., almost complete J2ME CLDC and third party APIs.

As introduced by Aslam et al. [2010], Takatuka uses few of the 52 customizable
Java byte code instructions for single instruction compaction (SIC) and multiple in-
structions compaction (MIC). The sorted, globalized constant pool allows for a con-
stant pool access instruction with a single byte operand for the most frequently used
constants. This reduces the code size in lots of places. With MIC, recurring sequences
for instructions are combined into one instruction. The operands are just concatenated.

The Takatuka implementation uses a label-as-values approach, described by Ertl
[2001] and Aslam [2011], which is more efficient than using a switch statement.

5 Quantitative Comparison

For quantitative comparison, both candidate JVMs where compiled to run “natively”
on the MSP430 experimenter board. The CPU clock was configured at 16.7 MHz.

For the comparison to be most expressive, one application containing five charac-
teristic test cases was written. HelloWorld is a well-known minimalistic case just
printing the string “Hello World!” to the standard output. IterativeSort is to bubble-
sort a 253 elements array to ascending order. The array is deterministically initialized
with the values i'” mod 253 (i being the field index). MemoryGC tests the memory
allocation and garbage collection performance by allocating 50 byte arrays of size
100. In a second step, half of those are dropped and then newly allocated. Arithmetics
is iteratively calculating the result of 69!, which is a rather computationally extensive
task. Finally, HanoiTowers is a recursive implementation of the solution to the towers
of Hanoi problem with 10 discs.

Numerical results of comparing the pointer size, VM build time and size in memo-
ry are given in Table 1 while runtime performance, energy consumption and RAM
usage are summarized in Table 2 below.

Table 1. Pointer size, JVM build time and memory size for Takatuka and Darjeeling

Parameter Takatuka Darjeeling
Pointer size [bit] 8,16, 24, 32 16
33/8 17/16

Build time: VM alone / optimizer [s]

Size in memory: Java / Native [byte] 8435 / 46076 19626 / 42336




186 O. Maye and M. Maaser

Table 2. Runtime performance, energy consumption and dynamic memory consumption of
Takatuka (TT) and Darjeeling (DJ) for different test cases

Test Case Runtime [ms] Energy [n]J] RAM usage [byte]
TT DJ TT DJ TT DJ

HelloWorld 21 73 242 836 1413 6446

IterativeSort 67766 11753 779822 134553 1725 1422

MemoryGC 11112 11004 127872 125978 7417 7912

Arithmetics 33 5 380 57 1337 846

HanoiTowers 14172 2252 163085 25782 2013 1142

5.1 Pointer and Stack Slot Sizes

Darjeeling defines a fixed 16-bit slot size and introduces 16-bit pendants for each 32-
bit instruction. In an optimization step, this allows replacing low-range 32-bit instruc-
tions by corresponding 16-bit instructions reducing RAM usage and CPU cycles.

Takatuka introduced a variable slot size. At the programmers choice, it uses 32, 16
or even 8-bit slots, to waste as little RAM as possible. Obviously, there will be no
savings unless the Java data types are shorter than 32 bits. Since the operations remain
32-bit, a smaller slot size likely comes at the cost of CPU cycles.

Also, Takatuka allows an adjustable reference/pointer size. Darjeeling references
are always 16-bit. Table 1 gives a comprised view on the supported pointer sizes.

5.2  Build Time

Build time was measured automatically by the build environment. Each measurement
started from a clean project and extended to when the binary file was created. Instead
of detailing certain fragments, investigations were restricted to only the optimizer tool
and the total VM build time.

Averaged results over 10 runs for each JVM are given in Table 1.

The build time comparison is clearly advantageous for Darjeeling. For the VM
alone, the advantage is 17 s versus 33 s for Takatuka and thus, about 50%. For a full
build including the optimizer tool, Darjeeling needs 33 seconds, which is 8 seconds or
20% less time than Takatuka.

5.3  Size in Memory

Two characteristic measures comprise this attribute. The size of the VM’s native part
covers the lower-level part, including necessary hardware drivers. The byte code size
covers all Java code, which is the high-level VM code plus the application code.

These static sizes were determined by the object file inspection utilities size and
objdump. A comparison of results for both JVMs is given in Table 1.

It can be seen that Takatuka has a roughly 10% larger native part and produces
about 50% less byte code. Obviously, the larger native part must be paid for more
features and capabilities, but is more than compensated by the resulting byte code.



Comparing Java Virtual Machines for Sensor Nodes 187

54 Runtime Performance

The java.lang.System.currentTimeMillis() function was deployed to measure runtime
performance. Averaged results over four runs are given in Table 2.

For the one-liner HelloWorld, Takatuka is faster by roughly a factor of 4. With the
memory-intensive task MemoryGC, both JVMs perform nearly the same. With all
other tasks, Darjeeling is faster by a factor of about 6, demonstrating the pay-off of
the simpler, feature-constrained JVM over a standard-like, multi-purpose JVM.

5.5 Power Consumption

The power consumption was deduced arithmetically from the product of supply vol-
tage, the run of current drawn and the specific run time for each test case.
Supply voltage was measured independently of test cases using a digital multime-
ter. The average over 100 samples was 3.286 V with a standard deviation of 33 uV.
Current was measured and averaged over execution time using the same multime-
ter. For Takatuka, 5000 samples yield 3.502 mA with a standard deviation of 8.0 pA.
Darjeeling’s 2100 samples average to 3.484 mA with a standard deviation of 34.7 pA.
The resulting amount of energy, expressed in Micro Joule, is given in Table 2.
Except for the primitive HelloWorld, Takatuka consumes more energy than Dar-
jeeling, sometimes by just 1.5%, in other cases by roughly a factor of 6. The dominant
source for this effect is the advantageous runtime performance of Darjeeling.

5.6 RAM Usage

The peak RAM usage is an important indicator for dynamic memory requirements.
Measurements were made by using the function java.lang.Runtime.freeMemory(),
neglecting the distribution between VM and native, as well as for stack and heap.
Results are given in Table 2.

Obviously, RAM usage depends very much on the type of application. While
Takatuka is good at the extreme ends, i.e. one-liner and memory-intensive tasks,
Darjeeling copes well with medium-complicated applications stressing indexing or
looping.

6 Conclusion

Takatuka and Darjeeling were compared subject to qualitative and quantitative meas-
ures, relevant to WSN software development.

Takatuka makes points on the architectural side as it does not restrict the number of
classes or methods, deals with various pointer sizes, introduces variable stack slot
sizes and has a very efficient byte code compaction phase leading to a 50% reduction
when compared to Darjeeling. Moreover, it supports 32bit floating point and 64bit
integer data types and implements the J2ME CLDC specification more completely.
Despite this fact, the size of the JVM’s native part is still competitive.



188 O. Maye and M. Maaser

Darjeeling convinces on the performance side of the competition. It has a 20% ad-
vantage in build-time and uses less RAM in most of the test cases. Subject to runtime
performance and power consumption it displaces Takatuka by a factor of 6.

Both JVMs are well-suited for resource-constrained devices. They could signifi-
cantly decrease power consumption by deploying power-saving run modes provided
by the MSP430 hardware. We suggest tiny, performance critical applications to run
on Darjeeling, while more complex, feature rich applications should prefer Takatuka.

Future work should relate upcoming JVMs with the given results. To increase ex-
pressiveness, the test suite should converge to standardized benchmarks, such as Ack-
ermann, Dhrystone, Whetstone or Linpack. However, additional metrics will be
needed to fairly assess missing features like floating point arithmetic.

Acknowledgement. Many thanks to Luminous Fennell and Faisal Aslam (Takatuka)
as well as to Niels Brouwers (Darjeeling) for their cooperative support and on-going
development of their respective JVM. We wish to thank Peter A. Bigot and John
Hartman for responsively fixing the MSP430 GCC compiler and the NoICE debug-
ger, respectively.

References

1. Aslam, F., Fennell, L., Schindelhauer, C., Thiemann, P., Ernst, G., Haussmann, E.,
Riihrup, S., Uzmi, Z.A.: Optimized Java Binary and Virtual Machine for Tiny Motes. In:
Rajaraman, R., Moscibroda, T., Dunkels, A., Scaglione, A. (eds.) DCOSS 2010. LNCS,
vol. 6131, pp. 15-30. Springer, Heidelberg (2010)

2. Aslam, F.: Challenges and solutions in the design of a Java Virtual Machine for resource
constrained microcontrollers. Dissertation for doctorate degree, Technical Faculty of the
University of Freiburg, Germany (2011)

3. Brouwers, N.: A Java Compatible Virtual Machine for Wireless Sensor Networks. Master
thesis, Faculty of Electrical Engineering, Mathematics and Computer Science of the Delft
University of Technology, Netherlands (2009)

4. Ertl, M.A., Gregg, D.: The Behavior of Efficient Virtual Machine Interpreters on Modern
Architectures. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par
2001. LNCS, vol. 2150, pp. 403-413. Springer, Heidelberg (2001)

5. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java™ Language Specification, 3rd edn.
Addison-Wesley Professional (2005)

6. Simon, D., Cifuentes, C., Cleal, D., Daniels, J., White, D.: Java™ on the bare metal of
wireless sensor devices: The squawk Java virtual machine. In: 2nd International Conference
on Virtual Execution Environments, pp. 78-88. ACM, New York (2006)



Research on Opinion Formation of Microblog
in the View of Multi-agent Simulation

Jianyong Zhang!, Qihui Mi?, Longji Hu?, and Yue Tang?

! Beijing Institute of Technology, Beijing, CO 10081 China
zjy@baihc.com
2 Huazhong University of Science& Technology, Wuhan, CO 430074 China
miqihuib10@163. com

Abstract. In order to research the law of public opinion formation of
microblog from the perspective of complex systems, agent’s action rules
are put up. Opinion updated equation is amended in accordance with
affinity of participants of topics in microblog. Combined with the network
topology of micro-blogging topics participants, the process of opinion
formation is simulated. Disordered individual opinions emerged out of
the system of ordering turns out to be the result, which is, forming
public opinion. Examples are used to verify the validity of the model. It
will make exploratory groundwork for further media dissemination and
monitoring of public opinion online.

Keywords: Public Opinion of Micro-blogging, Multi-agent Simulation,
Small World.

1 Introduction

Ever since 2010, microblog has become the most powerful online public media
and the first choice for netizen to release information (Microblog Annual Report
of China, 2010). According to the report released by DCCI( Data Center of China
Internet), by the end of December 2012,the number of microblog users have
reached 327 million in China,and more than 70% users tweet everyday. It can
highlight the important position of microblog.The characteristics of microblog
netizen and information dissemination have attracted researchers in different
fields.

Microblog contains a great amount of information, and users are very com-
plicated. It is difficult to use linear or macroscopic quantity theory to explore
such a complex system. However, we can establish a simplified model based on
microblog network society by using multi-agent model method. And then the
emergence of macroscopic systems can be obtained through microscopic indi-
vidual interactions. Generally, it is difficult for multi-agent modeling method to
make accurate predictions of real system, but it can provide insight and under-
standing of the nature of system. From complex system perspective, this paper
take the opinions formation in a particular topic of microblog as our study ob-
ject with agent modeling method. We defines the interactive rules of individual’s

J.J. Park et al. (Eds.): GPC 2013, LNCS 7861, pp. 189-[[J8] 2013.
(© Springer-Verlag Berlin Heidelberg 2013


zjy@baihc.com
miqihui510@163.com

190 J. Zhang et al.

behavior combining with the topological structure of interpersonal network be-
tween participants of tweets. Thus we can derive the emergence of group opinion.
Through investigation, the validity of the simulated opinion formation model of
tweets discussed in microblog is verified. This study makes a foreshadowing for
further transmission of microblog opinion and public opinion monitoring.

2 A Multi-agent Model of Microblog Opinions

2.1 Elements of the Model

This study introduces a social network topology between the participants of
microblog tweets, combined with equation of opinion update and the affinity
[1-3]. The formation of microblog opinion is simulated with agent modeling
method. Before modeling, the elements related to the model and the relationship
between them should be explained.

Explanation of Concepts. One of the study object is the tweets in microblog.
The range of the microblog tweets is wide, containing topics which are discussed
by interest groups in the micro-groups, as well as topics which cause the public
discussion, such as “edible oil prices”, “ price war among e-commerce firms” and
so on. We try to understand the formation of public opinion more extensively
and directly by imitating it in these topics.

There is no authoritative and unified definition about microblog opinion.In
this paper microblog is defined as the synthesis of opinions which are expressed
by the majority participated in the microblog issues.

As to social network topology of microblog participants, the nature that net-
work does not depend on specific location of the nodes and specific form of the
edges is called topological properties of the network. The corresponding struc-
ture is called network topology [4]. The participants’ social network topology
refers to the specific real social relations among the members who participate
in a specific topic. It is manifested as the relationship of “unilateral fan” and
“bilateral fan” in microblog.

The relationship of “unilateral fan” which performs in topology structure
refers to the concept of “in-degree”. If individual A is an “unilateral fan” of in-
dividual B, meaning that A accept published tweets from B unilaterally, namely
information flows from B to A. “bilateral fan” represents the relationship be-
tween users is two-way, namely A is B’s fan and B is A’s fan,too.

The model of dynamic opinion is mainly divided into two categories: discrete
opinion and continuous opinion. These two models must meet following condi-
tions that the system of dynamic opinion is closed and the participants are fixed
during the evolution of opinion. Participants meet in some space. They exchange
views, and then they update viewpoints according to certain rules.

As most of microblog users always have their own circles, the affinities change
between different users. Based on the views of social impact model, this study
believes that users’ opinions are influenced by the affiliation between them, and
they will make decisions depending on the affinities.



Research on Opinion Formation of Microblog 191

Agent in Microblog. Maes defined agent as “computing system that trying
to achieve a set goal in complex dynamic environments” [5]. Generally speaking,
agent should have the following attributes: autonomy, reactivity, initiative, socia-
bility, evolutionary[6]. As opinions in microblog are complex, dynamic, relatively
closed etc. , for simplicity, this paper only focuses on a particular microblog topic;
ongoing interactions between the participants reflect the dynamic opinions on
the topic. In addition, a specific number of participants will join in interaction.
Agents have the attributes of autonomy, reactive, proactive and sociality.

In the model, evolution of public opinion is reflected by opinion updating equa-
tion which means that agents update their opinions based on the reinforcement
learning.

2.2 Modeling of Microblog Opinion

Assumptions of the Model. For simplicity, we assume that the number of
involved agents is a known constant. In the future, we will do further study
considering dynamic number of agents.

We assume that the agents’ social network is consistent with the small-world
network topology, which means the shortest path length between each node
is limited. But it is probably that two nodes are connected together through
their own adjacent nodes, interpreting as limited path length and high degree
of polymerization [4]. As a lot of researches have verified the characteristics of
small-world in the virtual space, this assumption has sufficient scientific basis.
Many of these researches are about the topological properties of social network
in microblog specifically. The results show that the network has a high degree of
polymerization and limited path length, in line with small-word properties and
power-law distribution.

Figure 1 is a directed small-world graph with 200 nodes generated by simu-
lation in Repast Simphony-2.0 where there are bidirectional connection nodes
representing the relation of “bilateral fan” and unidirectional connection nodes
representing the relation of “unilateral fan”.

Fig. 1. Small-world graph generated by simulation



192 J. Zhang et al.

Action Rules of Agents. The rules here are established according to the
opinion updating equation [7-9]. Considering that affinity changing between in-
dividuals in microblog topics need a long time, we assume that affinity does not
change and then adjust the existing models.

When agents participate in a topic, their attitudes are not entirely clear.
Therefore, we assume that the opinion of an individual on this topic is continu-
ous. O; represents agent i’s opinion about a specific question. When O; approx-
imates 1, it implies that the majority of participants have negative opinions to
this topic, otherwise, they hold a positive view. «;; € [0, 1] indicates the affinity
between agent i and j. The larger the a;; is, the closer the two agents are; In
general, opinion formation can be completed in a relatively short time, and the
affinity among agents is difficult to change within a short time. Thus, that oy;
is assumed as a constant.

At the beginning of the simulation, the number of agents in the system is k,
and they form a small-world network topology. There is a threshold .. If agent
A is agent B’s fan, the affinity will be any value between [0,l.]. If agent A and
B are not directly connected, the affinity will be any value between [0, l.].

s agents are selected randomly as the initial agents, and their opinions are
initialized randomly.

Every time step, a number of fans are selected from s agents’ fans randomly,
and their fans’ opinions about this issue are initialized. The affinity between “fan
agent” and “fancied agent” exist threshold f.. If the affinity between the two
agents exceeds the threshold f., “fan agent” will change its opinion based on the
average value of the coupling point of view, otherwise opinions stay the same.

The opinion updating equation is below:

tanh({(mn — @) + 1

Ot =05, +u 5

(O, = 0}) 1)
. is used to measure the affinity of opinions convergence, taking a constant value
of 0. 5. p is fixed to 0. 5, and its value does not affect the system’s dynamical
behavior, but affects the time to reach equilibrium. ¢ is set to 1000 for converting
the function tanh.

There is an additional case that agent m is a fan of two or more “fancied
agents”, and then agent m’s opinion is decided by “fancied agent” who has
minimum social distance. Select another agent n in all in-degree nodes of m;
the rule of selecting n is to minimize the social distance which is influenced by
opinion and affinity between n and m.

The equation of selecting n is below:

n = arg[min((1 — amj)\0§_1 — O+ N(0,0),YjEN:j#m (2)

N(0,0) is a random element of normal distribution, generally called social tem-
perature [10]. It is used to indicate the degree of randomness of the individual’s
behavior, also mean fluctuations of the group [11]. In addition, social tempera-
ture is also used to identify different social systems. For instance, people would
not accept different opinions in a relatively conservative social system. They



Research on Opinion Formation of Microblog 193

stick to their traditions and do not accept others’ opinions. But in active or free
social system, people are willing to accept different opinions, and they are more
likely to change their opinions when affected by the views of others [12].

3 Multi-agent Simulation of Microblog Opinion

Supposing that the small-world network consists of fifty nodes, the simulation
result is shown from Figure 2 to Figure 5.

Opinion
1

0.9 1

0.8

0. i

Fig. 2. The public opinion tends to be positive

Opinion

cocooooo o0
O = N W ks N 0O =

Fig. 3. The public opinion tends to be evenly distributed

At the beginning, we analyze the simulation results combined with the actual
situation of public opinion in microblog. The opinions are evenly distributed
at the start, then become steep and ultimately the polarization opinion arise.
Initially, opinions distribute from 0 to 1 randomly, and neither side has a distinct
advantage. As time goes by, the discussion in the group is deepening. Information
is excavated continuously and opinions are constantly fused, and then divided.
Both positive and negative opinions come into fierce conflict. In the competition,
if one side is persuaded by the other side or one side comes into silence, the other
side will hold the dominant position, emerging a consistent public opinion.



194 J. Zhang et al.

Opinion

1
0.9
0.8
0.7
0.6
0.5 fitt
0.4
0.3
0.2
0.1

AU LLALA AL UL UL LR AR AALLA L L

o O T O MO0 M0 M0 M 00 Mm%
—~ NN MM T T 6 O D~ - 0w o

Fig. 4. The public opinion tends to be neutral

Opinion

1
0.9
0.8 H
0.7 ”
0.6
0.5
0.4
0.3
0.2
0.1

Fig. 5. The public opinion tends to be negative

Figure 3 shows the public opinion towards the certain issues is not formed.
Generally speaking, the concentration goes toward intermediate point, but it
does not reach the final unification. We can see that opinions of individuals
are widely distributed. Figure 4 shows opinions are dispersed initially but ulti-
mately tend to neutrality. In fact, topics in microblog are quite different. There
are mainly three types of public opinion: message,concept and art [13]. As to
the characteristics of message, “Firstly, people pass the message to each other
in a short time. An opinion trend forms eventually because of people’s high in-
terest in spreading some message. Secondly, people may not even become aware
of the opinions tendency contained in the message. They merely want to tell
others the facts they know. ” The characteristics of concept are manifested as
“to varying degrees,the tendency of public opinion is directly expressed as agree-
ment (sympathy), opposition (abhorrence), or indifferent (neutrality). ” Artistic
forms are“ the tendency of public opinion is manifested through various genres
such as literature, music, dance, painting and other art information. ” Generally
speaking, most views of message are neutral. Views of concept are mixed, and
mostly in criticism. Views of art are uncertain. Figure 4 shows the characteristic
of message, while figure 2 and figure 5 show that of concept, and figure 3 shows
that of art.



Research on Opinion Formation of Microblog 195

From the perspective of complex system, the simulation results represent that
the system emerges orderly equilibrium from disordered initial state, showing
an spontaneous order. Figures 2 to 5 represent the four results emerged from
disordered initial state. The simulation result is neutral, neither good or bad. The
simulation results confirm the explanation of emergence [14]. From the points of
macro-level and the dynamic tendency, the trend of emergence is determined,
which is the inevitable result of any system on the evolution of path dependence.
And the specific pattern of emergence has nothing to do with the preset behavior.
With the increase of complexity, the system’s structure will not be identified
completely before the actual emergence is completed. In addition, the emergence
of system does not depend on initial state. When we regulate microblog rumor
or public opinion which is not conducive to the development of a healthy society,
the way to minimize the cost and maximum the utility is guide the public opinion
before it forms.

Opinion

== smaller affinity
bigger affinity

S gAML ADONRARNEARALEACARREAEAREDRORRREREARRRLRERRRARRD

Fig. 6. Affinity’s influence to public opinion dynamics

4 Empirical Analysis of the Multi-agent Model

We choose a sample from the list of hot topic of Sina Microblog. A topic can be
heatedly discussed if an increasing number of netizens are involved. And then
the topic becomes a hot one. We select a topic randomly in the hot topic list
of Sina Microblog which is about that college students use performance art to
protest unfairness in education which is caused by residency restrictions. The
topic triggers a big discussion on the issue that household registration would
lead to unfair education.

We sampled the opinions of participants randomly from 17:20 to 19:50 on Oc-
tober 8th, 2012 and gained 1065 samples in 150 minutes, including 880 effective
samples published by 203 participants. Removing the 24 invalid participants (the
content of discussion is not relevant to the topic, such as advertising, etc. ), the
effective number of participants is 179. The samples have the following features:



196 J. Zhang et al.

a). Groups update opinions continuously along with new participants joining
in. And many participants have fan-relationship.

b). Opinions are widely exchanged; microblog users are persuaded by others or
try to convince others. We use content analysis to encode 880 samples: 0. 1 means
extreme opposition; 0. 2 means extreme questioned; 0. 3 means opposition; 0. 4
means questioned; 0. 5 means indifferent; 0. 6 means worried; 0. 7 means favor;
0. 8 means anger; 0. 9 means extreme anger. Statistical results are illustrated as
follows.

Fig. 7. Public opinion dynamics of empirical topics in Sina microblog

It can be seen in figure 7 that public opinion is not formed eventually. There
are always different views.At the beginning of the discussion, more extreme opin-
ions appear and the positive group takes dominant position. Negative views grad-
ually gain the upper hand. They hold the view that the unfair education results
from unbalanced economic development and government’s imbalanced invest-
ment, not simply the household register system. However, with the involvement
of some opinion leaders, remarks eventually tend to rational. Discussants prefer
to think about deep-rooted reasons for education unfairness, such as unbalanced
economic development and government’s imbalanced investment, not simply the
household register system.

Based on the participants and evolutionary time, we get figure 8 of opinion
evolution.

Firstly, the model assumes that the initial state is random, so they distribute
evenly from 0 to 1. Empirical evidence shows that public opinion is indeed at
uncertain state in the beginning.

Secondly, the convergence rate of the model is faster than the empirical con-
vergence rate. Both positive and negative opinions always exist in the entire
simulation process, and they cannot come to an agreement in a short time,
which is consistent with the empirical trend.

Thirdly, from the perspective of opinion evolution, there is a small number of
extreme opinions in topics at the beginning. As individuals continue to interact,
opinions update constantly, and they become more calm and rational.



Research on Opinion Formation of Microblog 197

Opinion
1

© ©o ©o ©o oo o o o
PN WA o ® W

o~
tick

21
28
35
43
50
57
64
71
78
86
93
100
107
114
122
129
136
143
150

Fig. 8. Simulation of opinion dynamic in the topic of Sina microblog

Finally, public opinion converges toward middle ultimately. While there are
always different voices, public opinion tends to the middle point of view, such

7«

as ” “anxiety”, “approval”, etc.

5 Conclusions

We assume that social network in microblog topics has a small-world topology.
People select the other to retweet according to the affinity between them. We
set the opinion updating equation to update agents’ opinions on a specific topic.
Then, there is the emergence of public opinion formation. The examples show
that the study of public opinion formation mechanism in microblog space com-
bined with network topology is feasible at some extent. The simulation results
show that the microblog issue is prone to polarization in the formation of public
opinion. The main reason is the emotional or rational guides from opinion lead-
ers leading to the silence spiral. The empirical result indicates that there exists
the spiral of silence and it is consistent with the simulation results.

The intelligent agent simulation of microblog opinion combined with opinion
update equation is a new perspective to study the formation of online public
opinion. We can still get some realistic revelation from the simulation results
and conclusions above.

Because virtual space has some specific characteristics, such as hide and vir-
tuality, public opinion is easy to fall into chaos so that it goes out of control.
When some topic attracts public attention in the early stage, the opinions are
relatively dispersed. There are no opinion leaders and opinion tendency is not
formed. It is the best opportunity to guide the public opinion by grasping the
development direction at this moment and costs least. It is important to seize
the opportunity to attack illegal activities such as spreading of rumors and false
information, stirring of public scare.

In the first stage for hot topics, it is susceptible to incite the masses and make
the extreme opinions occupy the high ground of public opinion. It is important
to value the role of opinion leaders in microblog and with their help a rational
and healthy online environment can be more easily established.



198 J. Zhang et al.

The future study will set various of agents in the model who have different
natures and action rules. Besides, the opinion updating equation will be further
improved. A more scientific and effective model will be used to simulate the
formation and spread of public opinion in microblog.

Acknowledgement. Thanks to the support from the National Nature Science
Fund of China.

References

1. Bagnoli, F., Carletti, T., Fanelli, D., Alessio, G., Guazzini, A.: Dynamical Affinity
in Opinion Dynamics Modeling. Physics 2, 204 (2007)

2. Carletti, T., Fanelli, D., Guarino, A., Bagnoli, F., Guazzini, A.: Birth and Death
in a Continuous Opinion Dynamics Model: the Consensus Case. Physics 1, 4062
(2008)

3. Grabowski, A.: Opinion Formation in a Social Network: the Role of Human
Activity. Physica A 388, 961-966 (2009)

4. Huang, P., Zhang, Liu, X.J.G.: The Present Research Situation and Forecast of
the Small World Network. Journal of Information 4, 66-68 (2007)

5. Liu, J.M.: Autonomous Agents and Multi-agent Systems: Explorations in Learning,
Self-organization and Adaptive Computation, p. 8. World Scientific, Hong Kong
(2001)

6. Singh, M.P.: Multiagent Systems. LNCS, vol. 799. Springer, Heidelberg (1994)

7. Carletti, T.: On the Evolution of a Social Network. Physics 1, 0689 (2010)

8. Weisbuch, G., Deffuant, G., Amblard, F., Nadal, J.P.: Meet, Discuss and Segregate!
Complexity 7 (2002)

9. Righi, S., Carletti, T.: How Opinion Dynamics Shapes Social Networks Topology.
In: Proceedings of AI*TA Conference, Italian (2009)

10. Radosz, A., Ostasiewicz, K., Hetman, P., Magnuszewski, P., Tyc, M.H.: Social
Temperature Relation Between Binary Choice Model and Ising Model. In: An
International Conference. AIP Conf. Proc.: Complexity, Metastability, and Nonex-
tensivity, vol. 965, pp. 317-320 (2007)

11. Janusz, A.H., Kacperski, K., Schweitzer, F.: Phase Transitions in Soc