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Abstract. We are interested in online graph problems where the knowl-
edge of the underlying graph G (all arriving vertices are from G) has a
profound impact on the size of the advice needed to solve the problem
efficiently. On one hand, we show that, for sparse graphs, constant-
size advice is sufficient to solve the maximum independent set problem
with constant competitive ratio, even with no knowledge of the under-
lying graph. On the other hand, we show a lower bound of Ω(log(n/a)/
log log(n/a)) on the competitive ratio of finding a maximum indepen-
dent set in bipartite graphs if no knowledge of the underlying graph is
available and if the advice is of size a. We complement the lower bounds
by providing corresponding upper bounds.

1 Exposition and Motivation

Given a simple undirected graphG = (V,E), a subset I ⊆ V is called independent
if the subgraph induced by I does not contain any edges, i.e., ∀u, v ∈ I : {u, v} �∈
E. The problem of finding the independent set of maximum cardinality (MIS) is
one of the most studied computational problems on graphs with applications in
many areas ranging from computer vision, to coding theory, molecular biology,
scheduling, or wireless networking, to name just a few. However, this problem is,
in general, computationally hard: in [21] it is proven that, unless NP = ZPP ,
the problem1 cannot be approximated within a factor of n1−ε for any ε > 0 (i.e.,
there is no polynomial-time algorithm that would always find an independent
set of size at least opt/n1−ε).

We are interested in the online version of the problem. In online problems,
the input is not known to the algorithm at the beginning, instead, it arrives
piecewise. The algorithm must present a partial output to each chunk of the
input before reading next chunk, and cannot revise its decision afterwards. More
formally, the input x is a sequence of requests x = (x1, . . . , xn). The output y
is a sequence of answers y = (y1, . . . , yn) computed by the algorithm in such a

1 Actually, the paper proves inapproximability of Maximum-Clique problem, where
the aim is to find the subset of vertices with largest cardinality that form a clique.
However, the two problems are obviously equivalent w.r.t. approximation.
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way that each yi is a function of x1, . . . , xi (for randomized algorithms also a
function of the random bits used so far). The goal is to maximize or minimize
a cost function defined over the whole output y. A standard way of measuring
the quality of online algorithms is to compare the (worst case) performance of
the algorithm to the optimal solution of the instance (i.e., with known input).
For maximization problems, the definition of competitive ratio states that an
algorithm is c-competitive if for any input the cost of the output produced by
the algorithm is at least2 1/c·opt. Note that in online problems the main concern
is not the computational complexity, but the inherent loss of performance due
to the unknown future. Online computation has received considerable attention
over the past decades as a natural way of modeling real-time processing of data.
For example, in resource scheduling problems a server has to handle a stream
of requests (e.g., phone calls), each of them requiring certain subset of available
resources (e.g., lines). The goal of maximizing the throughput of the server leads
naturally to an online version of MIS (see e.g., [25] in the context of scheduling
intervals). For an exposition to online problems, we refer the reader to [5].

When dealing with the online graph problems (and in particular with the
online MIS), there are several ways how the input can be presented to the al-
gorithm. A natural way (which we shall refer to as unknown graph model) is to
present the graph vertex by vertex: Each time a new vertex vi arrives, the algo-
rithm learns the edges connecting vi to already presented vertices vi, . . . , vi−1.
Before the next vertex vi+1 is presented, the algorithm must decide whether the
vertex vi will be included in the resulting independent set or not. Obviously, no
deterministic algorithm can attain a good competitive ratio: consider an instance
where at the beginning, a isolated vertices are presented. If the algorithm does
not include any one of them to the independent set, no more vertices arrive.
On the other hand, if the algorithm includes some of them to the independent
set, b � a vertices arrive such that they form a complete bipartite graph with
the first a vertices. In [6] authors show that the competitive ratio of online MIS
on the class of σ-bounded disk graphs is Θ(min{n, σ2}) where the upper bound
is attained by a simple first fit algorithm, and the lower bound holds also for
randomized algorithms3.

The inherent difficulty of the unknown graph model led to the study of various
other models. In [2], authors use what we shall refer to as the known supergraph
model: the graph G presented to the algorithm is a subgraph of some larger
graph H that is known in advance to the online algorithm. Thus the situation
is as follows: first, the graph H = (V ′, E′) is presented to the algorithm with
V ′ = v1, . . . , vm. Each request xi ∈ {1, . . . ,m} represents a vertex, and the
algorithm must decide whether to include vertex vxi in the independent set
or not. The optimal solution is the largest independent set of the subgraph

2 Some works use a slightly relaxed definition by allowing an additive constant, i.e.,
the algorithm is c-competitive if there exists a constant α such that the cost of the
worst-case output (for randomized algorithms the worst-case expected output) is at
least 1/c · opt− α.

3 If the disk representation is given, the bound is Θ(min{n, log σ}).
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of H induced by the presented vertices. This model was motivated by routing
problems in networks, where the topology of the network is usually known to
the algorithms but the routing requests are not. It was proven in [2] that, even
if the algorithms can use randomization, the competitive ratio is Ω(nε) for some
constant ε. The conference version of the paper, [1], mentions a similar lower
bound even in the case when preemption is allowed (i.e., the algorithm may, at
a later stage, remove a vertex from the independent set in construction, but it
cannot be reinserted). In [7], an O(log n)-competitive algorithm for online MIS
in chordal graphs is presented using the known supergraph model.

A number of other modifications of the unknown graph model has been stud-
ied. In [20], a model is considered where the algorithm is allowed to maintain
multiple independent sets under construction, and each vertex can be assigned
to at most r(n) different sets. The largest set is chosen as the final output. The
competitive ratio in this model is shown to be Θ(n/ logn) when r(n) is polyno-
mial in n, and Θ(n) if r(n) is constant. In a more powerful inheritance variation,
a lower bound Ω(n/ log3 n) is proven for polynomial r(n). The graphs used as
lower bounds are split graphs (vertex set can be partitioned into an indepen-
dent set and a clique), and at the same time interval graphs (subclass of chordal
graphs). In yet another model from [13] the algorithm starts from a complete
graph on n vertices, and each request removes an edge; the algorithm is allowed
to add to the constructed independent set endpoint(s) of the removed edge.
Again, in this model, a competitive ratio is bounded from below by (n − 1)/2
and Δ where Δ is the maximum degree of the resulting graph. Still another
model, from [9], considers the requests containing not one vertex, but a subset
of vertices (together with all induced edges); the authors give an algorithm with
a competitive ratio O(n

√
t(n)/ logn), where t(n) is the number of requests, and

n is the number of vertices. In [19], a variation of the unknown graph model, in
which the algorithm is at the beginning presented with a graph isomorphic to
the presented graph G, is studied in the context of online coloring problems. The
author also addresses the independent set: the algorithm is required to produce
an online coloring of the input graph, and the largest color class is taken as the
solution. Even with this relaxation, the competitive ratio of deterministic algo-
rithms is proven to be Ω(n), and Θ(n/ logn) for randomized algorithms against
oblivious adversary.

Several modifications of the unknown graph model share the same high-level
idea: to enhance the online algorithm with some a-priori information about the
input, either in general by using restricted class of input graphs or per-instance
by providing a supergraph or an isomorphic graph. In the context of online and
distributed algorithms where a crucial role is played by some missing informa-
tion (about topology of the communication network or the future input), the
notion of advice has recently become popular as a general way to treat the ad-
ditional information. The idea of the approach is to augment the algorithm by
some information about the instance, and to study the relation of the amount
of the added information to the solution quality. There are no computational
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constraints on the added information, only that it is a function of the instance
and the algorithm at hand.

In the context of online algorithms, the original model from [11] has been
developed in two ways: the model from [12] considers that the algorithm receives,
with each request, a b-bit string of advice (a function of the whole input and
the algorithm). Hence, the case with b = 0 corresponds to the classical online
model, and the case with b = �log |A|�, where A is the action space of the
algorithm, always gives an optimal algorithm (since the particular answer may
be encoded in the advice of any request). In the model from [4] (see also [3, 22]),
the whole advice is given to the algorithm at the beginning in a form of a binary
string. A trivial upper bound, apart from specifying each action in n�log |A|�
bits, is to encode the whole input using the advice of size that corresponds to
the Kolmogorov complexity of the input instance. However, as it is shown in
[3, 4, 22], these trivial bounds can be in many cases substantially improved.

Our choice for the second model is mainly due to the fact that it makes it
possible to analyze sublinear advice. While for problems where there are at most
two possible actions for each request (as is the case of MIS; every vertex is either
included in the set or not), one bit of advice per request is already sufficient to
achieve optimum, it is interesting to know what can be done with smaller advice.
We show, e.g., that in the case of bipartite graphs, O(log logn) bits of advice
already bring the competitive ratio down from Ω(n) to O(log n).

In a related context of distributed algorithms, in [14, 16–18, 23] the advice
is a function that assigns a binary string to each node of a communication
network. The only information about the network known to each node is its
local information, and the advice string. The parameter under consideration
is either the sum or the maximum of the lengths of the strings in all nodes,
and the main question is how much advice is needed to (efficiently) perform
communication tasks such as broadcasting in (radio) networks, graph searching,
computing a proper vertex coloring of the network, or computing the spanning
tree of the network. In [10, 15], there is a mobile entity (agent) performing some
task in the network (e.g., exploration), and the advice is a binary string given
to the agent based on the topology.

Our Contribution. In this paper we focus on the online MIS in the unknown
graph and known supergraph models. While the first intuition is that the knowl-
edge of the supergraph may be significant additional information4 , it is easy
to see that it does not affect the worst-case performance of deterministic algo-
rithms, even restricted to a class of forests (which are planar and bipartite).
Indeed, let the underlying graph be a forest containing m stars with k leaves.
First, centers of the stars c1, c2, . . . are presented to the algorithm one by one
until it selects some ci for the first time. Then the leaves of the i-th star are
presented, and the input ends. Because the competitive ratio is parameterized
by the size of the presented graph G (and not in the size of the supergraph H),

4 Although without any restrictions on the structure or size of the supergraph, one can
always construct a “universal” supergraph that fools any deterministic algorithm;
with randomized algorithms, however, the situation is more subtle (see [2]).
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it can be easily verified that, even in the milder definition involving the additive
constant, the competitive ratio is Ω(n).

We are interested in the question to what extent the known supergraph helps
in reducing the amount of advice needed to obtain some given solution quality.
We use the model of advice from [3]: at the beginning, the algorithm can access
the result of any function of the actual input that returns a binary string of
length s(n). Based on this advice, the algorithm then proceeds as a standard
online algorithm. Note that this approach is similar to [19] and [20], however,
in our case there are 2s(n) partial solutions constructed, and the largest one is
chosen as output.

We show that in the class of sparse graphs, the knowledge of the super-
graph does not help substantially: even in the unknown graph model, advice
of constant size is sufficient to obtain constant competitive ratio on graphs with
O(n) edges. The situation is, however, different in the class of bipartite graphs.
With the known supergraph, a competitive ratio of 2 can be achieved with one
bit just by specifying the bipartition with the majority of presented vertices.
On the other hand, we show that in the unknown graph model the compet-
itive ratio of any deterministic algorithm with s(n) bits of advice is at least
Ω(log(n/s(n))/ log log(n/s(n))). The bounds are complemented with the corre-
sponding opposite bounds.

2 Sparse Graphs

First let us observe the simple fact that if there is a way to construct a proper
vertex coloring (i.e. a coloring of vertices where each edge has the endpoints
colored by different colors) in the respective online model, then the s(n) bits of
advice can specify the largest of the first 2s(n) color classes.

Theorem 1. Let G be a class of graphs such that each n-vertex graph G ∈ G
is online colorable (in the respective model) in such a way that the union of the
first k(n) color classes contains at least α(n) vertices. Then there is an online
MIS algorithm using �log k(n)� bits of advice with competitive ratio nk(n)/α(n).

In the known supergraph model the presented graph is a subgraph of a known
graph. Hence, if the supergraph is k-colorable, we immediately have results for
the advice complexity; e.g., 2 bits of advice are sufficient to reach competitive
ratio of 4 if the known supergraph is planar (since planar graphs are 4-colorable).
There are numerous results on (online) vertex coloring that translate to the
advice bounds in a similar way, see e.g., [8, 24, 26] and references therein.

Although sparse graphs (even trees) are not online colorable with constant
number of colors, the first fit (FF) algorithm where a new vertex is assigned
the smallest color different from the (assigned) colors of its neighbors, is good
enough to apply Theorem 1 on sparse graphs in the unknown graph model.

Lemma 2. Let G be a n-vertex graph with at most cn edges. The FF algorithm
produces in the unknown graph model a coloring of G such that the union of
color classes 1, 2, . . . , 2c contains at least n/2 vertices.
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Proof. Let us call an edge e a forcing edge if there is a vertex v such that

– when v arrives, it is assigned color larger than 2c, and
– e is an edge incident to v, leading to a vertex that has arrived before

Let S be the set of vertices given a color larger then 2c when FF is run on a
graph with at most cn edges. As the sets of forcing edges of different vertices
are disjoint and each vertex from S has at least 2c forcing edges, it must hold
2c|S| ≤ cn, hence |S| ≤ n/2. This means that the number of vertices of color at
most 2c is at least n/2. 
�
Corollary 3. Online MIS can be solved in the unknown graph model on graphs
with at most cn edges using advice of 1 + �log c� bits and achieving competitive
ratio 4c.

Hence, for c independent of n, with O(log c) bits of advice, it is possible to reach
a competitive ratio of O(c) on graphs with at most cn edges. However, improving
the ratio to o(c) requires Ω(n) bits:

Theorem 4. Let A be an algorithm solving online MIS in the unknown graph
model on graphs with at most cn edges, and with s(n) bits of advice. Then the
worst-case competitive ratio of A is at least c

2c s(n)
n + 2c

n (1+2 log c)+1
.

3 Lower Bound for Bipartite Graphs

Recall that in the known supergraph model, one bit of advice is sufficient to
achieve competitive ratio 2 on bipartite graphs. The main result of this section
is the following theorem:

Theorem 5. Consider any subadditive function s(n) < n, and any algorithm A

solving online MIS in the unknown graph model on bipartite graphs with advice
s(n). Then the worst-case competitive ratio of A over n-vertex bipartite graphs

is Ω
(

log(n/s(n))
log log(n/s(n))

)
.

Hence, not only it is not possible to achieve a constant competitive ratio using
constant advice, but Ω(n) bits of advice are needed to do so.

To prove the theorem we construct a class of bipartite graphs {Gk,a}, such that
the number of vertices of Gk,a is n = a(k + 1)2k+1, and the size of maximum
independent set of Gk,a is a(k + 1)2k. We consider a particular set of input
instances Ck,a based on a graph Gk,a that differ by the order in which the
vertices are presented to the algorithm.

Consider an arbitrary algorithm A with at most a bits of advice, and com-
petitive ratio r. Since the advice partitions the set of input instances into 2a

classes such that within each class the instances are processed deterministically,
it follows that there is a deterministic algorithm Adet, and a subset of C ⊆ Ck,a

of size |C| ≥ |Ck,a|/2a such that Adet achieves competitive ratio r over instances
from C. The main idea of the proof is to consider an arbitrary deterministic
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algorithm Adet, and any subset C of size at least |Ck,a|/2a, and to show that Adet
constructs an independent set on size O(a2k log k) on some instance from C.

The theorem the follows by chosing k to be the largest integer such that

φ(k) ≤
√

n
s(n)+1 , where φ(x) := (x+ 1)2x+1, and letting a =

⌈
n

φ(k)

⌉
. The graph

Gk,a then has aφ(k) ≥ n vertices, and the competitive ratio is Ω
(

log(φ(k))
log log(φ(k))

)
.

Due to space constraints, we omit the computations.

The lower bound graph Gk,a (we shall omit the superscripts from now on)
is a bipartite graph with partitions L and R, consisting of a copies of graph
Gε (ε denoting the empty string) Gε(1), Gε(2), . . .Gε(a). Each Gε is constructed
hierarchically from components Gα for α ∈ {0, 1}∗k as follows (see Fig. 1):

G000 G001 G010 G011 G100 G101 G110 G111

G00 G01

G0

G10 G11

G1

G

vertices of partition L vertices of partition R

Fig. 1. The basic element Gε of the lower bound graph. All edges are shown between
vertices of level 1 and 0. At higher levels only schematic connections to subtrees are
shown, the edges to all vertices of the opposite partition in the whole subtree are still
present. The left vertex/column arrives before the corresponding right vertex/column.

– Level 0: Gα where α ∈ {0, 1}k consists of a single edge
– Level i: Gα where α ∈ {0, 1}k−i is obtained by

• taking two level i− 1 graphs Gα0 and Gα1

• adding two sets of 2i vertices Lα = {lj}2ij=1 ⊂ L and Rα = {rj}2ij=1 ⊂ R
• connecting lj to all vertices from R in Gα0

⋃
Gα1

⋃
Rα

• connecting rj to all vertices from L in Gα0

⋃
Gα1

⋃
Lα
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The construction is repeated for k levels. Note that at each level exactly 2k+1

vertices are added, resulting in (k+1)2k+1 vertices in Gε and n = a(k+1)2k+1.
Each graphGε can be represented by a complete binary treeHε of depth k, where
the leaves correspond to Gα with |α| = k, and each internal vertex vα ∈ Hε

represents the union of Lα and Rα. To distinguish between the vertices of the
graph and vertices of the tree, we shall call the latter nodes. Hα will denote the
subtree rooted at vα. Let H =

⋃a
i=1 Hε(i). The weight w(v) of each node v ∈ H

is the size of the maximum independent set of the set of vertices associated
with v. Hence w(v) = 2i for nodes at level i. Clearly, w(v) is an upper bound
on how much the nodes of v can contribute to the independent set produced by
the algorithm.

The instances Ck,a are defined by the order in which the vertices are presented
to the algorithm. For each node v ∈ H , the associated vertices of G arrive as a
block, not interleaved with vertices associated with other nodes of H . For each
leaf v in H , there are two possible orders for the vertices associated with v to
arrive. We assign label l(v) ∈ {0, 1}, based on whether the first vertex of v to
arrive is from L or from R, respectively. Taken over all leaves, this represents

2a2
k

possible configurations. The label of an internal node vα ∈ H is equal to the
label of the leftmost leaf in Hα (i.e., the first vertex to arrive in Hα). The order of
arrival of the vertices associated with an internal node vα of H is fixed: First to
arrive are the vertices of the same partition as was the first to arrive in vα0. The
nodes also arrive in fixed order, with the vertices of Hε(i) arriving in postorder,
and before the vertices of Hε(i + 1). The set Ck,a is hence fully described by a
configuration of the leaf vertices. Since it is irrelevant which partition is L and

which is R and the graphs Gε(i) are disjoint, we have |Ck,a| = 2a(2
k−1).

Let us now consider an arbitrary deterministic algorithm Adet, and an ar-

bitrary subset C ⊆ Ck,a of of size |C| ≥ |Ck,a|/2a = 2a(2
k−2). We show that

within C there exists an instance on which Adet selects an independent set of
size O(a2k log(k)). We prove this by presenting Algorithm 1 constructing the
configuration for which we can prove the desired bound.

In order to proceed with the arguments, we need to introduce the following
notation:

– Node vα is dead at time t if the algorithm has already accepted vertices from
different partitions in Gα. A node which is not dead is alive.

– Node vα (or subtree Hα) is empty at time t if the algorithm has not selected
any vertex from Gα into the independent set. Otherwise vα (Hα) is full.

Suppose first that Adet selects exactly one vertex from each leaf node of H , and
C initially contains all instances Ck,a. Consider now a leaf node vα and its closest
ancestor vβ such that vα ∈ Hβ1. Since Adet selects a vertex from every leaf, vβ0 is
full and in half of the instances the vertices selected in vα and vβ0 are in different
partitions, making vβ and all its ancestors dead. Applying this argument over
all a(2k − 1) such leaf nodes (there are only a leafs which have no such vβ as
they are the leftmost ones in their respective Hε) yields a configuration in which
Adet has selected only a2k vertices.
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In general,the situation is complicated by the fact that Adet may decide, in
order to avoid killing a low-level node, not to select any vertex from a given
node. Moreover, since the initial C is an arbitrary subset of Ck,a, the fraction of
instances that kill the parent after selecting some vertex from a given node may
not be one half.

The finding of a bad instance can be viewed as a game between the algorithm
and an adversary that selects the orientation of each presented node5. On one
hand, the adversary tries to kill as many nodes as possible, as only alive nodes
contribute to the independent set, on the other hand it must keep the working
set of configurations sufficiently large. The adversary handles this by using a
threshold t, whose distance (measured on logarithmic scale) from 1/2 is directly
proportional to the size of the node that would be killed: If the fraction of
instances consistent with the orientation that kills the node is at least t, the
adversary sets that orientation. Otherwise, it lets the node survive in order
to retain enough instances in its working set. The analysis uses an accounting
scheme, where the algorithm starts with a credit a, and gets credit when a vertex
is killed, but must pay cost to ensure a vertex survives; at the end the account
must be non-negative and the weight of the alive nodes determines the size of
the independent set.

We shall now present the above ideas more formally. Let I denote the vertices
accepted by the algorithm into the independent set. The next lemma shows that
the algorithm cannot win too much by not selecting vertices from a presented
node. In fact, for the analysis it is sufficient to consider the “decision” nodes W ′

that are alive and have both children full.

Lemma 6. Let W denote the union of the sets of full alive nodes and full leaves
and let W ′ be those nodes from W whose both children are full. Let w(S) denote
the sum of weights of the nodes in S. Then it holds 3w(W ′)+2k+1 ≥ w(W ) ≥ |I|.
Proof. Consider a node v ∈ W \ W ′. We charge the weight of v to its closest
ancestor u ∈ W ′. The nodes v form two paths (one in each child subtree of v),
since branching at a node u′ would mean that u′ is a closer ancestor to v than
u. As the weights double in each layer, the weight of each of these paths sums
up to at most w(u). This way, each node of W ′ is charged at most three times
its weight.

Let W ′′ be the set of nodes from W \ W ′ which do not have an ancestor
in W ′. We have 3w(W ′) + w(W ′′) > w(W ). We show by induction on height
h that for each v ∈ W ′′ of level h, w(W ′′ ⋂Hv) ≤ 2h+1. In the base case
h = 0 we have a single leaf of weight 2, hence the statement trivially follows.
Consider now an internal node v at level h. There are two cases: either v is
alive or it is dead. In the case v is alive, from the fact that v /∈ W ′ it follows
that one of its children is empty. Hence w(W ′′ ⋂Hv) = w(v) + w(W ′′ ⋂Hv′),

5 For a leaf node, this means selecting the order in which the vertices arrive. For an
internal node, this means flipping the orientation of one child’s subtree. Note that
since the partitions L and R are symmetric, this can be done without affecting the
algorithm’s behavior.
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Algorithm 1. Finding the bad instance

1: Let C be the set of configurations for which a given deterministic algorithm applies.
2: for all nodes vα ∈ Hε(i) in the traversal order specified above do
3: if vα is not a leaf then
4: Let C0 and C1 be the partitioning of C into sets of configurations consistent

with
l(vα0) = l(vα1) and l(vα0) �= l(vα1), respectively.

5: if vα is dead, or (vα0 or vα1 is empty) then
6: Set C to be the larger of C0 and C1.
7: else � hence vα is alive and both of its children are full.
8: Let Cx be the configurations in which the algorithm has selected in Gα

vertices from both partitions.
9: Let j be the level of the highest-level live ancestor of vα.
10: Set t(j) satisfying log(tj) = −1− 1/2k−j .
11: if |Cx|/|C| > t(j) then � note that Cx might be empty
12: Set C ← Cx. � this kills vα and all its ancestors
13: else
14: Set C ← C1−x. � vα survives, but C has not decreased much
15: end if
16: end if
17: end if
18: Deliver the vertices of Gα(i) and observe algorithm’s action.
19: end for
20: Output the configuration consistent with what has happened so far.

where v′ is the full child of v′. By induction hypothesis w(W ′′ ⋂Hv′) ≤ 2h. As
w(v) = 2h, the induction step follows. In the case of v being dead, let v′ and v′′

be its two children. Applying the induction hypothesis yields w(W ′′ ⋂H(v)) =
w(W ′′ ⋂H(v′)) + w(W ′′ ⋂H(v′′)) ≤ 2h + 2h = 2h+1.

Finally, note that in a dead internal node, the algorithm cannot accept any
vertices into the independent set. An alive internal node v consists of two parti-
tions, each containing w(v) vertices, hence in v the algorithm can accept at most
w(v) vertices. Only in leaves can the algorithm accept vertices even if the node
becomes dead – but such leaves are included in W . This yields w(W ) ≥ |I|. 
�
Let p (pass), d (dead) and l (live) denote the number of times the lines 6, 12
and 14 have been executed, respectively. Let D = {v ∈ H : line 12 was applied
when processing v} and let L = {v ∈ H :line 14 was applied when processing
v}. Note that L is actually the set of decision nodes W ′ from Lemma 6, since
a node v which remained alive after processing will never be killed later. This
is because only v’s children can kill v, and those have been processed before
v. Let jv for v ∈ (D ∪ L) be the level j from line 9 when processing v. For
a node v ∈ L, let us define cost(v) = log(1 − t(jv)) + 1. Similarly, for a node
v ∈ D, define credit(v) = − log(t(jv)) − 1 = 2j−k. Analogously, for a set S,
define cost(S) =

∑
v∈S cost(v) and credit(S) =

∑
v∈S credit(v). The next lemma

bounds the overall cost that the algorithm may pay:
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Lemma 7. cost(L) < a(k + 1)

Let us now find an upper bound on the size of the independent set accepted
by Adet. From Lemma 6 we know that it is sufficient to bind w(L). Hence, the
problem now becomes ”Maximize w(L) while satisfying cost(L) < a(k + 1)”.

Note that if a node v ∈ L has an alive parent u which is not in L, the set
L′ = L ∪ {u} \ {v} has the same cost but higher weight. Hence, it is sufficient
to consider sets L in which ∀u, v such that u is an ancestor of v, the whole path
from v to u is in L. Therefore, L induces in H a set of r rooted trees {Ti}ri=1. Let
vi is the root of Ti. Then, for every node u ∈ Ti, the highest-level live ancestor of
u at the moment u is processed is either vi or its ancestor, hence j(u) ≥ level(vi)
and therefore cost(Ti) ≥ |Ti|cost(vi). As Ti is a subtree of a binary tree and the
weights of nodes halve as the levels decrease, we obtain w(Ti) ≤ log(|Ti|+1)w(vi)
Since cost(.) is a concave function, w(L) is maximized when r = a and all vi
are at the top level k, with |Ti| = (k + 1)/cost(vi) = (k + 1)/(log(3) − 1).

Using w(vi) = 2k gives w(L) ≤ a log
(

k+1
log(3)−1 − 1

)
2k ∈ O(a2k log(k).) Applying

Lemma 6 yields |I| ∈ O(a2k log(k)), and Theorem 5 follows.

4 Upper Bound for Bipartite Graphs

While Theorem 5 indicates that quite a lot of advice is needed to approach
a competitive ratio one, it seems rather weak when relatively little advice is
available. In this section we show that it is not weak at all, and very little advice
is sufficient to bring the competitive ratio to O(log n).

For a fixed input graph G with bipartitions L and R, and a fixed arrival order,
let us observe the connected components Ci formed by the vertices presented so
far. Each of them is a connected bipartite graph, and the algorithm knows its
bipartition. However, it does not know which partition of Ci corresponds to L.
Let each Ci have a distinguished partition PCi maintained by the algorithm. Let
us assign to each vertex v, and each respective component, a meta-level m(v)
using Algorithm 2.

Consider a component C of meta-level l and let v be the first vertex of meta-
level l in C, i.e., the vertex that formed C as a component of meta-level l on
line 10 of Algorithm 2. By construction the algorithm can, when creating a new
component C, always choose the PC in a consistent way. Let ms(i) denote the
minimal size of a component of meta-level i. By construction, we have recurrences
ms(1) = 1 and ms(i+1) ≥ 2ms(i)+1, yielding ms(i) ≥ 2i−1. This immediately
gives us:

Lemma 8. ∀v ∈ G : ms(v) ≤ log(n+ 1)

Let l be a fixed meta-level and let {C1, C2, . . . , Cr} be the set of connected
components of meta-level l. Let Vi be the set of vertices of meta-level l in Ci (note
that Vi might be disconnected) and let V (l) =

⋃r
i=1 Vi. Let I(l) =

⋃r
i=1 Vi

⋂
PCi

and Ī(l) =
⋃r

i=1 Vi

⋂
PCi , where P̄ denotes the opposite partition to P . Since

the components Ci are disjoint, both I(l) and Ī(l) are independent sets, even
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Algorithm 2. Algorithm Meta-levels

1: if a newly arriving vertex v is singleton then
2: Set m(v)← 1, and m({v})← 1
3: else if v is connected to a single connected component C then
4: Set m(v)← m(C), and m(C

⋃{v})← m(C)
5: else
6: Let v be connected to components C1, C2, . . . , Cs, ordered by meta-levels in

non-increasing order.
7: if m(C1) > m(C2) then
8: Set m(v)← m(C1) and m({v}⋃C1

⋃
C2

⋃
. . . Cs)← m(C1).

9: else � m(C1) = m(C2)
10: Set m(v)← m(C1) + 1 and m({v}⋃C1

⋃
C2

⋃
. . . Cs)← m(C1) + 1.

11: end if
12: end if

though PCi ’s might belong to different partitions of G. Knowing l, a single bit
of advice telling which of I(l) and Ī(l) is bigger is sufficient for the algorithm to
select an independent set of size V (l)/2.

Let m be the meta-level with the maximal number of vertices. From Lemma 8
we have V (l) ≥ n/ log(n + 1). Therefore, the algorithm that uses 1 + log logn
bits of advice to identify the meta-level m with the largest V (m), and the larger
of I(m) and Ī(m), selects an independent set of size O(n/ logn), yielding.

Theorem 9. O(log logn) bits of advice6 are sufficient to achieve competitive
ratio of O(log n) for the online independent set in bipartite graphs.

Consider now the case that a bits of advice are available, with a ≥ log logn. In
such case, the algorithm can use this advice to learn the orientation of meta-
components and improve the competitive ratio.

Theorem 10. There is an algorithm that using a ≥ log logn bits of advice
achieves competitive ratio O(log(n/a)) for the online independent set problem in
bipartite graphs.

5 Conclusion

We were interested in the relation of the competitiveness of online MIS in un-
known graph and known supergraph models in terms of advice complexity. With-
out any advice, the competitive ratio is Ω(n) in both models, even restricted to
sparse bipartite graphs. We showed that in sparse graphs, constant advice is
sufficient in both models to achieve a constant competitive ratio. In bipartite
graphs, however, the models differ significantly since 1 bit of advice is sufficient
to achieve competitive ratio 2 in known supergraph model, whereas Ω(n) bits
are needed to achieve a constant competitive ratio in the unknown graph model.

6 Since n is not known, a self-delimited encoding will be used, at a cost of small
constant factor increase in the number of bits used.
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The use of the advice as a general way to measure the relevant information
about unknown input is an attractive alternative to ad-hoc solutions. Although
not practical in its general form (e.g., no computability constraints), it may help
in characterizing the key structural properties that affect the performance of
online algorithms.
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advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge Univ. Press (1998)

6. Caragiannis, I., Fishkin, A.V., Kaklamanis, C., Papaioannou, E.: Randomized on-
line algorithms and lower bounds for computing large independent sets in disk
graphs. Discrete Applied Mathematics 155(2), 119–136 (2007)

7. Christodoulou, G., Zissimopoulos, V.: On-line maximum independent set in chordal
graphs. Journal of Foundations of Computing and Decision Sciences 30(4), 283–296
(2005)
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