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Abstract. We present a general technique, based on a primal-dual for-
mulation, for analyzing the quality of self-emerging solutions in weighted
congestion games. With respect to traditional combinatorial approaches,
the primal-dual schema has at least three advantages: first, it provides
an analytic tool which can always be used to prove tight upper bounds
for all the cases in which we are able to characterize exactly the poly-
hedron of the solutions under analysis; secondly, in each such a case the
complementary slackness conditions give us an hint on how to construct
matching lower bounding instances; thirdly, proofs become simpler and
easy to check. For the sake of exposition, we first apply our technique to
the problems of bounding the prices of anarchy and stability of exact and
approximate pure Nash equilibria, as well as the approximation ratio of
the solutions achieved after a one-round walk starting from the empty
strategy profile, in the case of affine latency functions and we show how
all the known upper bounds for these measures (and some of their gener-
alizations) can be easily reobtained under a unified approach. Then, we
use the technique to attack the more challenging setting of polynomial
latency functions. In particular, we obtain the first known upper bounds
on the price of stability of pure Nash equilibria and on the approximation
ratio of the solutions achieved after a one-round walk starting from the
empty strategy profile for unweighted players in the cases of quadratic
and cubic latency functions.

1 Introduction

Characterizing the quality of self-emerging solutions in non-cooperative systems
is one of the leading research direction in Algorithmic Game Theory. Given a
game G, a social function F measuring the quality of any solution which can
be realized in G, and the definition of a set E of certain self-emerging solutions,
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we are asked to bound the ratio Q(G, E ,F) := F(K)/F(O), where K is some
solution in E(G) (usually either the worst or the best one with respect to F) and
O is the solution optimizing F .

In the last ten years, there has been a flourishing of contribution in this topic
and, after a first flood of unrelated results, coming as a direct consequence of
the fresh intellectual excitement caused by the affirmation of this new research
direction, a novel approach, aimed at developing a more mature understanding
of which is the big picture standing behind these problems and their solutions,
is now arising.

In such a setting, Roughgarden [18] proposes the so-called “smoothness ar-
gument” as a unifying technique for proving tight upper bounds on Q(G, E ,F)
for several notions of self-emerging solutions E , when G satisfies some general
properties, K is the worst solution in E(G) and F is defined as the sum of the
players’ payoffs. He also gives a more refined interpretation of this argument and
stresses also its intrinsic limitations, in a subsequent work with Nadav [16], by
means of a primal-dual characterization which shares lot of similarities with the
primal-dual framework we provide in this paper. Anyway, there is a subtle, yet
substantial, difference between the two approaches and we believe that the one
we propose is more general and powerful. Both techniques formulate the prob-
lem of bounding Q(G, E ,F) via a (primal) linear program and, then, an upper
bound is achieved by providing a feasible solution for the related dual program.
But, while in [16] the variables defining the primal formulation are yielded by
the strategic choices of the players in both K and O (as one would expect), in
our technique the variables are the parameters defining the players’ payoffs in
G, while K and O play the role of fixed constants. As it will be clarified later,
such an approach, although preserving the same degree of generality, applies to
a broader class of games and allows for a simple analysis facilitating the proof
of tight results. In fact, as already pointed out in [16], the Strong Duality The-
orem assures that each primal-dual framework can always be used to derive the
exact value of Q(G, E ,F) provided that, for any solution S which can be realized
in G, F(S) can be expressed though linear programming and (i) the polyhe-
dron defining E(G) can be expressed though linear programming, when K is the
worst solution in E(G) with respect to F , (ii) the polyhedron defining K can
be expressed though linear programming, when K is the best solution in E(G)
with respect to F . Moreover, in all such cases, by applying the “complementary
slackness conditions”, we can figure out which pairs of solutions (K,O) yield
the exact value of Q(G, E ,F), thus being able to construct quite systematically
matching lower bounding instances.

We consider three sets of solutions E , namely, (i) ε-approximate pure Nash
equilibria (ε-PNE), that is, outcomes in which no player can improve her sit-
uation of more than an additive factor ε by unilaterally changing the adopted
strategy (in this case, Q(G, E ,F) is called the approximate price of anarchy of G
(ε-PoA(G)) when K is the worst solution in E(G), while it is called the approx-
imate price of stability of G (ε-PoS(G)) when K is the best solution in E(G));
(ii) pure Nash equilibria (PNE), that is, the set of outcomes in which no player
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can improve her situation by unilaterally changing the adopted strategy (by
definition, each 0-PNE is a PNE and the terms price of anarchy (PoA(G)) and
price of stability (PoS(G)) are used in this case); (iii) solutions achieved after a
one-round walk starting from the empty strategy profile [15], that is, the set of
outcomes which arise when, starting from an initial configuration in which no
player has done any strategic choice yet, each player is asked to select, sequen-
tially and according to a given ordering, her best possible current strategy (in
this case, K is always defined as the worst solution in E(G) and Q(G, E ,F) is
denoted by Apx1∅(G)).

Our Contribution. Our method reveals to be particularly powerful when ap-
plied to the class of weighted congestion games. In these games there are n players
competing for a set of resources. These games have a particular appeal since,
from one hand, they are general enough to model a variety of situations arising
in real life applications and, from the other one, they are structured enough to
allow a systematic theoretical study. For example, for the case in which all play-
ers have the same weight (unweighted players), Rosenthal [19] proved through
a potential function argument that PNE are always guaranteed to exist, while
general weighted congestion games are guaranteed to possess PNE if and only if
the latency functions are either affine or exponential [11–13, 17].

In order to illustrate the versatility and usefulness of our technique, we first
consider the well-known and studied case in which the latency functions asso-
ciated with the resources are affine and F is the sum of the players’ payoffs
and show how all the known results (as well as some of their generalizations)
can be easily reobtained under a unifying approach. For ε-PoA and ε-PoS in the
unweighted case and for Apx1∅, we reobtain known upper bounds with significa-
tively shorter and simpler proofs (where, by simple, we mean that only basic
notions of calculus are needed in the arguments), while for the generalizations
of the ε-PoA and the ε-PoS in the weighted case, we give the first upper bounds
known in the literature.

After having introduced the technique, we show how it can be used to attack
the more challenging case of polynomial latency functions. In such a case, the
PoA and ε-PoA was already studied and characterized in [1] and [9], respectively,
and both papers pose the achievement of upper bounds on the PoS and ε-PoS
as a major open problem in the area. For unweighted players, we show that
PoS ≤ 2.362 and Apx1∅ ≤ 37.5888 for quadratic latency functions and that
PoS ≤ 3.322 and Apx1∅ ≤ 527.323 for cubic latency functions. Extensions to
ε-PoS and weighted players are left to future work.

What we would like to stress here is that, more than the novelty of the results
achieved in this paper, what makes our method significative is its capability of
being easily adapted to a variety of particular situations and we are more than
sure of the fact that it will prove to be a powerful tool to be exploited in the
analysis of the efficiency achieved by different classes of self-emerging solutions
in other contexts as well. To this aim, in the full version of this paper, we show
how the method applies also to other social functions, such as the maximum of
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the players’ payoffs, and to other subclasses of congestion games such as resource
allocation games with fair cost sharing. Note that, in the latter case, as well as
in the case of polynomial latency functions, the primal-dual technique proposed
in [16] cannot be used, since the players’ costs are not linear in the variables of
the problem.

Related Works. The study of the quality of self-emerging solutions in non-
cooperative systems initiated with the seminal papers of Koutsoupias and Pa-
padimitriou [14] and Anshelevich et al. [2] which introduced, respectively, the
notions of price of anarchy and price of stability.

Lot of results have been achieved since then and we recall here only the
ones which are closely related to our scenario of application, that is, weighted
congestion games with polynomial latency functions.

For affine latency functions and F defined as the sum of the players’ payoffs,
Christodoulou and Koutsoupias [7] show that the PoA is exactly 5/2 for un-
weighted players, while Awerbuch et al. [3] show that it rises to exactly (3+

√
5)/2

in the weighted case. These bounds keep holding also when considering the price
of anarchy of generalizations of PNE such as mixed Nash equilibria and corre-
lated equilibria, as shown by Christodoulou and Koutsoupias in [8]. Similarly,
for polynomial latency functions with maximum degree equal to d, Aland et
al. [1] prove that the price of anarchy of all these equilibria is exactly Φd+1

d in

the weighted case and exactly (k+1)2d+1−kd+1(k+2)d

(k+1)d+1−(k+2)d+(k+1)d−kd+1 in the unweighted

case, where Φd is the unique non-negative real solution to (x + 1)d = xd+1 and
k = �Φd�. These interdependencies have been analyzed by Roughgarden [18] who
proves that unweighted congestion games with latency functions constrained in
a given set belong to the class of games for which a so-called “smoothness ar-
gument” applies and that such a smoothness argument directly implies the fact
that the prices of anarchy of PNE, mixed Nash equilibria, correlated equilibria
and coarse correlated equilibria are always the same when F is the sum of the
players’ payoffs. Such a result has been extended also to the weighted case by
Bhawalkar et al. in [4]. For the alternative model in which F is defined as the
maximum of the players’ payoffs, Christodoulou and Koutsoupias [7] show a PoA
of Θ(

√
n) in the case of affine latency functions.

For the PoS, only the case of unweighted players, affine latency functions and
F defined as the sum of the players’ payoffs, has been considered so far. The
upper and lower bounds achieved by Caragiannis et al. [6] and by Christodoulou
and Koutsoupias [8], respectively, set the PoS to exactly 1+1/

√
3. Clearly, being

the PoS a best-case measure and being the set of PNE properly contained in the
set of all the other equilibrium concepts, again we have a unique bound for PNE
and all of its generalizations.

As to ε-PNE, in the case of unweighted players, polynomial latency functions
and F defined as the sum of the players’ payoffs, Christodoulou et al. [9] show

that the ε-PoA is exactly (1+ε)((z+1)2d+1−zd+1(z+2)d)
(z+1)d+1−zd+1−(1+ε)((z+2)d−(z+1)d) , where z is the max-

imum integer satisfying zd+1

(z+1)d < 1+ ε, and that, for affine latency functions, the
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ε-PoS is at least 2(3+ε+θε2+3ε3+2ε4+θ+θε)
6+2ε+5θε+6ε3+4ε4−θε3+2θε2 , where θ =

√
3ε3 + 3 + ε+ 2ε4, and

at most (1 +
√
3)/(ε+

√
3).

Finally, for affine latency functions and F defined as the sum of the play-
ers’ payoffs, Apx1∅ has been shown to be exactly 2 +

√
5 in the unweighted

case as a consequence of the upper and lower bounds provided, respectively,
by Christodoulou et al. [10] and by Bilò et al. [5], while, for weighted players,
Caragiannis et al. [6] give a lower bound of 3 + 2

√
2 and Christodoulou et al.

[10] give an upper bound of 4 + 2
√
3. For F being the maximum of the players’

payoffs, Bilò et al. [5] show that Apx1∅ is Θ(
4
√
n3) in the unweighted case and

affine latency functions.

Paper Organization. In next section, we give all the necessary definitions and
notation, while in Section 3 we briefly outline the primal-dual method. Then, in
Section 4 we illustrate how it applies to affine latency functions and, finally, in
Section 5 we use it to address the case of quadratic and cubic latency functions.
Due to lack of space, some proofs are omitted and can be found in the full version
of the paper.

2 Definitions

For a given integer n > 0, we denote as [n] the set {1, . . . , n}.
A weighted congestion game G =

(
[n], E, (Σi)i∈[n], (�e)e∈E , (wi)i∈[n]

)
is a non-

cooperative strategic game in which there is a set E of m resources to be shared
among the players in [n]. Each player i has an associated weight wi ≥ 1 and
the special case in which wi = 1 for any i ∈ [n] is called the unweighted
case. The strategy set Σi, for any player i ∈ [n], is a non-empty subset of
resources, i.e., Σi ⊆ 2E \ {∅}. The set Σ = ×i∈[n]Σi is called the set of strat-
egy profiles (or solutions) which can be realized in G. Given a strategy profile
S = (s1, s2, . . . , sn) ∈ Σ and a resource e ∈ E, the sum of the weights of
all the players using e in S, called the congestion of e in S, is denoted by
Le(S) =

∑
i∈[n]:e∈si

wi. A latency function �e : R≥0 
→ R≥0 associates each re-
source e ∈ E with a latency depending on the congestion of e in S. The cost
of player i in the strategy profile S is given by ci(S) =

∑
e∈si

�e(Le(S)). This
work is concerned only with polynomial latency functions of maximum degree d,
i.e., the case in which �e(x) =

∑d
i=0 αe,ix

i with αe,i ∈ R≥0, for any e ∈ E and
0 ≤ i ≤ d.

Given a strategy profile S ∈ Σ and a strategy t ∈ Σi for player i, we denote
with (S−i � t) = (s1, . . . , si−1, t, si+1, . . . , sn) the strategy profile obtained from
S when player i changes unilaterally her strategy from si to t. We say that
S′ = (S−i � t) is an improving deviation for player i in S if ci(S

′) < ci(S). Given
an ε ≥ 0, a strategy profile S is an ε-approximate pure Nash equilibrium (ε-PNE)
if, for any i ∈ [n] and for any t ∈ Σi, it holds ci(S) ≤ (1 + ε)ci(S−i � t). For
ε = 0, the set of ε-approximate pure Nash equilibria collapses to that of pure
Nash equilibria (PNE), that is, the set of strategy profiles in which no player
possesses an improving deviation.
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Consider the social function Sum : Σ 
→ R≥0 defined as the sum of the
players’ costs, that is, Sum(S) =

∑
i∈[n] ci(S) and let S∗ be the strategy profile

minimizing it. Given an ε ≥ 0 and a weighted congestion game G, let E(G) be the
set of ε-approximate Nash equilibria of G. The ε-approximate price of anarchy of

G is defined as ε-PoA(G) = maxS∈E(G)
{

Sum(S)
Sum(S∗)

}
, while the ε-approximate price

of stability of G is defined as ε-PoS(G) = minS∈E(G)
{

Sum(S)
Sum(S∗)

}
.

Given a strategy profile S and a player i ∈ [n], a strategy profile t∗ ∈ Σi is a
best-response for player i in S if it holds ci(S−i � t∗) ≤ ci(S−i � t) for any t ∈ Σi.
Let S∅ be the empty strategy profile, i.e., the profile in which no player has
performed any strategic choice yet. A one-round walk starting from the empty
strategy profile is an (n + 1)-tuple of strategy profiles W = (SW

0 , SW
1 , . . . , SW

n )
such that SW

0 = S∅ and, for any i ∈ [n], SW
i = (SW

i−1 � t∗), where t∗ is a best-
response for player i in SW

i−1. The profile S
W
n is called the solution achieved after

the one-round walk W . Clearly, depending on how the players are ordered from
1 to n and on which best-response is selected at step i when more than one
best-response is available to player i in SW

i−1, different one-round walks can be
generated. Let W(G) denote the set of all possible one-round walks which can
be generated in game G. The approximation ratio of the solutions achieved after
a one-round walk starting from the empty strategy profile in G is defined as

Apx1∅(G) = maxW∈W(G)
{

Sum(SW
n )

Sum(S∗)

}
.

3 The Primal-Dual Technique

Fix a weighted congestion game G, a social function F and a class of self-emerging
solutions E . Let O = (sO1 , . . . , s

O
n ) be the strategy profile optimizing F and

K = (sK1 , . . . , s
K
n ) ∈ E(G) be the worst-case solution in E(G) with respect to F .

For any e ∈ E, we set, for the sake of brevity, Oe = Le(O) and Ke = Le(K).
Since O and K are fixed, we can maximize the inefficiency yielded by the

pair (K,O) by suitably choosing the coefficients αe,i, for each e ∈ E and 0 ≤
i ≤ d, so that F(K) is maximized, F(O) is normalized to one and K meets
all the constraints defining the set E(G). For the sets E and social functions F
considered in this paper, this task can be easily achieved by creating a suitable
linear program LP (K,O).

By providing a feasible solution for the dual program DLP (K,O), we can
obtain an upper bound on the optimal solution of LP (K,O). Our task is to
uncover, among all possibilities, the pair (K∗, O∗) yielding the highest possible
optimal solution for LP (K,O). To this aim, the study of the dual formulation
plays a crucial role: if we are able to detect the nature of the “worst-case” dual
constraints, then we can easily figure out the form of the pair (K∗, O∗) maxi-
mizing the inefficiency of the class of solutions E . Clearly, by the complementary
slackness conditions, if we find the optimal dual solution, then we can quite sys-
tematically construct the matching primal instance by choosing a suitable set
of players and resources so as to implement all the tight dual constraints. This
task is much more complicated to be achieved in the weighted case, because,
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once established the values of the congestions K∗
e and O∗

e for any e ∈ E, there
are still infinite many ways to split them among the players using resource e in
both K and O.

4 Application to Affine Latency Functions

In order to easily illustrate our primal-dual technique, in this section we consider
the well-known and studied case of affine latency functions and social function
Sum and show how the results for ε-PoA, ε-PoS and Apx1∅ already known in
the literature can be reobtained in a unified manner for both weighted and
unweighted players.

We say that the game G′ = ([n], E′, Σ′, �′, w) is equivalent to the game G =
([n], E,Σ, �, w) if there exists a one-to-one mapping ϕi : Σi 
→ Σ′

i for any i ∈
[n] such that for any strategy profile S = (s1, . . . , sn) ∈ Σ, it holds ci(S) =
ci(ϕ1(s1), . . . , ϕn(sn)) for any i ∈ [n].

Lemma 1. For each weighted congestion game with affine latency functions G =
([n], E,Σ, �, w) there always exists an equivalent weighted congestion game with
affine latency functions G′ = ([n], E′, Σ′, �′, w) such that �′e(x) = αe,1x := αex
for any e ∈ E′.

Proof. Consider the weighted congestion game G = ([n], E,Σ, �, w) with latency
functions �e(x) = αex + βe for any e ∈ E. For each ẽ ∈ E such that βẽ > 0,
let Nẽ be the set of players who can choose ẽ, that is, Nẽ = {i ∈ [n] : ∃s ∈
Σi : ẽ ∈ s}. The set of resources E′ is obtained by replicating all the resources
in E and adding a new resource eiẽ for any ẽ ∈ E and any i ∈ Nẽ, that is,
E′ = E ∪⋃ẽ∈E,i∈Nẽ

{eiẽ}. The latency functions are defined as �′e(x) = αex for

any e ∈ E′ ∩ E and �′
ei
ẽ

(x) = βẽ

wi
x for any ẽ ∈ E and any i ∈ Nẽ. Finally, for

any i ∈ [n], the mapping ϕi is defined as follows: ϕi(s) = s∪⋃ẽ∈s{eiẽ}. It is not
difficult to see that for any S = (s1, . . . , sn) ∈ Σ and for any i ∈ [n], it holds
ci(S) = ci(ϕ1(s1), . . . , ϕn(sn)). ��
As a consequence of Lemma 1, throughout this section, we restrict to latency
functions of the form �e(x) = αex, for any e ∈ E. In such a setting, we can
rewrite the social value of a strategy profile as Sum(S) =

∑
e∈E(αeLe(S)

2).

4.1 Bounding the Approximate Price of Anarchy

By definition, we have that if K is an ε-PNE then, for any i ∈ [n], it holds

ci(K) =
∑

e∈sKi

(αeKe) ≤ (1 + ε)ci(K−i � sOi ) ≤ (1 + ε)
∑

e∈sOi

(αe(Ke + wi)).
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Thus, the primal formulation LP (K,O) assumes the following form.

maximize
∑

e∈E

(
αeK

2
e

)

subject to∑

e∈sKi

(αeKe)− (1 + ε)
∑

e∈sOi

(αe(Ke + wi)) ≤ 0, ∀i ∈ [n]

∑

e∈E

(
αeO

2
e

)
= 1,

αe ≥ 0, ∀e ∈ E

The dual program DLP (K,O) is

minimize γ
subject to∑

i:e∈sKi

(yiKe)− (1 + ε)
∑

i:e∈sOi

(yi(Ke + wi)) + γO2
e ≥ K2

e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

Let ψ = 1+ε+
√
ε2+6ε+5
2 and z = �ψ�. For unweighted players we reobtain the

upper bound proved in [9] with a much simpler and shorter proof, while for the
weighted case we give the first known upper bound.

Theorem 1. For any ε ≥ 0, it holds ε-PoA(G) ≤ (1+ε)(z2+3z+1)
2z−ε when G has

unweighted players, while it holds ε-PoA(G) ≤ ψ2 when G has weighted players.

Proof. For the unweighted case, since wi = 1 for each i ∈ [n], by choosing

yi =
2z+1
2z−ε for any i ∈ [n] and γ = (1+ε)(z2+3z+1)

2z−ε , the dual inequalities become
of the form

2z + 1

2z − ε

(
K2

e − (1 + ε)(Ke + 1)Oe

)
+

(1 + ε)(z2 + 3z + 1)

2z − ε
O2

e ≥ K2
e

which is equivalent to

K2
e − (2z + 1)(KeOe +Oe) + (z2 + 3z + 1)O2

e ≥ 0.

Easy calculations (it suffices solving the inequality for Ke) show that this is
always verified for any pair of non-negative integers (Ke, Oe). Note that the
definition of z guarantees that 2z − ε ≥ 0, so that the proposed dual solution is
a feasible one.

For the weighted case, by choosing yi =
(
1 +

√
1+ε√
5+ε

)
wi for any i ∈ [n] and

γ = ψ2, each dual inequality is verified when it holds

(
1 +

√
1 + ε√
5 + ε

)
(
K2

e − (1 + ε)
(
KeOe +O2

e

))
+ ψ2O2

e ≥ K2
e
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which is equivalent to
√
1 + ε√
5 + ε

K2
e −

(
1 +

√
1 + ε√
5 + ε

)
(1 + ε)(KeOe +O2

e) + ψ2O2
e ≥ 0.

Easy calculations show that this is always verified for any pair of non-negative
reals (Ke, Oe) such that Ke, Oe ∈ {0} ∪ [1,∞) for any e ∈ E (it suffices solving
the inequality for Ke and noting that it has no solutions for Oe ∈ {0} ∪ [1,∞)
when ε ≥ 0). ��
When ε = 0, we reobtain the well-known prices of anarchy of 5/2 and (3+

√
5)/2

which hold for PNE in the unweighted and weighted case, respectively.

4.2 Bounding the Approximate Price of Stability

Recall that, since the ε-PoS is a best-case measure, the primal-dual approach
guarantees a tight analysis only if we are able to exactly characterize the poly-
hedron defining the set of the best ε-PNE. It is not known how to do this at
the moment, thus all the approaches used so far in the literature approximate
the best ε-PNE with an ε-PNE minimizing a certain potential function. In [9],
it is shown that, for unweighted players, any strategy profile S which is a local
minimum of the function

Φε(S) =
∑

e∈E

(
αe

(
Le(S)

2 +
1− ε

1 + ε
Le(S)

))
,

called ε-approximate potential, is an ε-PNE. Thus, it is possible to get an upper
bound on the ε-PoS by measuring the ε-PoA of the global minimum of Φε.

We now illustrate our approach which yields the same 1+
√
3

ε+
√
3
upper bound

achieved in [9]. Assume that K is the global minimum of Φε. We can use the
inequality Φε(K) ≤ Φε(O) which results in the constraint

∑

e∈E

(
αe

(
K2

e +
1− ε

1 + ε
Ke −O2

e −
1− ε

1 + ε
Oe

))
≤ 0.

Then, we also have
∑

i∈[n]

(
Φε(K)− Φε(K−i � sOi )

) ≤ 0 which results in the
constraint

∑

e∈E

(
αe

(
K2

e − ε

1 + ε
Ke −KeOe − 1

1 + ε
Oe

))
≤ 0.

Thanks to these two constraints, the dual formulation becomes the following
one.

minimize γ
subject to

K2
e (y + z) + Ke

1+ε (y(1− ε)− zε)

−
(
yO2

e + zKeOe +
Oe

1+ε (y(1− ε) + z)
)
+ γO2

e ≥ K2
e , ∀e ∈ E

y, z ≥ 0
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Thus, for unweighted players, we obtain the following result for any ε ∈ [0, 1)
(this is the only interesting case, since [9] shows that, for any ε ≥ 1, ε-PoS(G) = 1
for any G).
Theorem 2. For any ε ∈ [0, 1) and G with unweighted players, it holds ε-

PoS(G) ≤ 1+
√
3

ε+
√
3
.

Proof. By choosing y = 2ε+
√
3(1+ε)

2(ε+
√
3)

, z = 1−ε
ε+

√
3
and γ = 1+

√
3

ε+
√
3
, the dual inequali-

ties become

(ε− 1)((
√
3− 2)K2

e + (2Oe −
√
3)Ke + (2 +

√
3)(Oe −O2

e)) ≥ 0.

Easy calculations (it suffices solving the inequality for Ke) show that this is
always verified for any pair of non-negative integers (Ke, Oe). ��

4.3 Bounding the Approximation Ratio of One-Round Walks

For a one-round walk W , we set K = SW
n . Define Ke(i) as the sum of the

weights of the players using resource e in K before player i performs her choice.
LP (K,O) in this case has the following form, where the first constraint comes
from the fact that when player i enters the game and solution SK

i−1 is already
constructed, this player picks sKi instead of sOi .

maximize
∑

e∈E

(
αeK

2
e

)

subject to∑

e∈sKi

(αe(Ke(i) + wi)) −
∑

e∈sOi

(αe(Ke(i) + wi)) ≤ 0, ∀i ∈ [n]

∑

e∈E

(
αeO

2
e

)
= 1

αe ≥ 0, ∀e ∈ E

DLP (K,O) is as follows.

minimize γ
subject to∑

i:e∈sKi

(yi(Ke(i) + wi))−
∑

i:e∈sOi

(yi(Ke(i) + wi)) + γO2
e ≥ K2

e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

For both unweighted and weighted players we easily reobtain the upper bounds
on Apx1∅ given in [10].

Theorem 3. For any G with unweighted players, it holds Apx1∅(G) ≤ 2 +
√
5,

while for any G with weighted players, it holds Apx1∅(G) ≤ 4 + 2
√
3.
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Proof. In the unweighted case, by choosing yi = 1 +
√
5 for any i ∈ [n] and

γ = 2 +
√
5, since for any i such that e ∈ sOi it holds Ke(i) ≤ Ke, each dual

inequality is verified when it holds

(
1 +

√
5
)(Ke(Ke + 1)

2
− (Ke + 1)Oe

)
+
(
2 +

√
5
)
O2

e ≥ K2
e

which is equivalent to
(√

5− 1

2

)

K2
e +

(
1 +

√
5

2

)

Ke− (1+
√
5)KeOe− (1+

√
5)Oe+(2+

√
5)O2

e ≥ 0.

Easy calculations (it suffices solving the inequality for Ke) show that this is
always verified for any pair of non-negative integers (Ke, Oe).

In the weighted case, by choosing yi =
(
2 + 2√

3

)
wi for any i ∈ [n] and

γ = 4 + 2
√
3, since for any i such that e ∈ sOi it holds Ke(i) ≤ Ke, each dual

inequality is verified when it holds

(
2 +

2√
3

)
⎛

⎝
∑

i≤j:e∈sKi ∩sKj

(wiwj)−
∑

i:e∈sOi

(wi(Ke + wi))

⎞

⎠+
(
4 + 2

√
3
)
O2

e ≥ K2
e

which is true if it holds

1√
3
K2

e −
(
2 +

2√
3

)
KeOe +

(
2 +

4√
3

)
O2

e ≥ 0.

Easy calculations (it suffices solving the inequality for Ke) show that this is
always verified for any pair of non-negative reals (Ke, Oe). ��

5 Quadratic and Cubic Latency Functions

In this section, we show how to use the primal-dual method to bound PoS
and Apx1∅ in the case of polynomial latency functions of maximum degree d and
unweighted players. We only consider the case d ≤ 3, that is, quadratic and cubic
latency functions. It is not difficult to extend the approach to any particular value
of d, but it is quite hard to obtain a general result as a function of d because we
do not have simple closed formulas expressing some of the summations we need
in our analysis for any value of d. We also leave the extension to ε-PNE and
weighted players for future works. We restrict to the cases in which the latency
functions are of the form �e(x) = αex

d, since it is possible to show that this
can be supposed without loss of generality. In such a setting, [19] shows that,
for unweighted players, any strategy profile S which is a local minimum of the
potential function

Φ(S) =
∑

e∈E

Le(S)∑

i=1

(αex
d)

is a PNE.
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5.1 Bounding the Price of Stability

For the case d = 2, it holds

Φ(S) =
1

6

∑

e∈E

(αeLe(S)(Le(S) + 1)(2Le(S) + 1)) .

Thus, the constraint Φ(K) ≤ Φ(O) becomes
∑

e∈E

(αe (Ke(Ke + 1)(2Ke + 1)−Oe(Oe + 1)(2Oe + 1))) ≤ 0

and the constraint
∑

i∈[n]

(
Φ(K)− Φ(K−i � sOi )

) ≤ 0 becomes

∑

e∈E

(
αe

(
K3

e −Oe(Ke + 1)2
)) ≤ 0.

Hence, DLP (K,O) is the following.

minimize γ
subject to

(y(Ke(Ke + 1)(2Ke + 1)−Oe(Oe + 1)(2Oe + 1)))
+
(
z(K3

e −Oe(Ke + 1)2)
)
+ γO3

e ≥ K3
e , ∀e ∈ E

y, z ≥ 0

Theorem 4. For any G with quadratic latency functions and unweighted play-
ers, it holds PoS(G) ≤ 2.362.

Proof. The claim follows by setting y = 0.318, z = 0.453 and γ = 2.362. ��
For the case d = 3, it holds

Φ(S) =
1

4

∑

e∈E

(
αe (Le(S)(Le(S) + 1))

2
)
.

Thus, the constraint Φ(K) ≤ Φ(O) becomes

∑

e∈E

(
αe

(
(Ke(Ke + 1))

2 − (Oe(Oe + 1))
2
))

≤ 0

and the constraint
∑

i∈[n]

(
Φ(K)− Φ(K−i � sOi )

) ≤ 0 becomes

∑

e∈E

(
αe

(
K4

e −Oe(Ke + 1)3
)) ≤ 0.

Hence, DLP (K,O) is defined as follows.

minimize γ
subject to(

y(K2
e (Ke + 1)2 −O2

e(Oe + 1)2)
)

+
(
z(K4

e −Oe(Ke + 1)3)
)
+ γO4

e ≥ K4
e , ∀e ∈ E

y, z ≥ 0
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Theorem 5. For any G with cubic latency functions and unweighted players, it
holds PoS(G) ≤ 3.322.

Proof. The claim follows by setting y = 0.747, z = 0.331 and γ = 3.322. ��
By extending the instance given in [9] for lower bounding the PoS in the linear
case, the following lower bounds can be easily achieved.

Theorem 6. For any δ > 0, there exist an unweighted congestion game with
quadratic latency functions G1 and an unweighted congestion game with cubic
latency functions G2 such that PoS(G1) ≥ 2.1859− δ and PoS(G2) ≥ 2.7558− δ.

5.2 Bounding the Approximation Ratio of One-Round Walks

For the case d = 2, DLP (K,O) is defined as follows.

minimize γ
subject to∑

i:e∈sKi

(
yi(Ke(i) + 1)2

)−
∑

i:e∈sOi

(
yi(Ke(i) + 1)2

)
+ γO3

e ≥ K3
e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

Theorem 7. For any G with quadratic latency functions and unweighted play-
ers, it holds Apx1∅(G) ≤ 37.5888.

For the case d = 3, DLP (K,O) is defined as follows.

minimize γ
subject to∑

i:e∈sKi

(
yi(Ke(i) + 1)3

)−
∑

i:e∈sOi

(
yi(Ke(i) + 1)3

)
+ γO4

e ≥ K4
e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

Theorem 8. For any G with cubic latency functions and unweighted players, it
holds Apx1∅(G) ≤ 17929

34 ≈ 527.323.
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