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1 Introduction

In this paper, we generalize classical machine scheduling problems by introducing
a cost involved in processing jobs, which varies as a function of time. Before
defining the problems formally and discussing the technical novelty, we present
a few technological motivations for introducing this model.

Demand Response Models: Modern data centers are big consumers of elec-
tricity, and large providers see huge cost savings by even modest savings in
electricity consumption. The conventional approach taken by system designers
has been to build systems which are energy efficient, via technologies such as
speed scalable processors, dynamic power-down and power-up mechanisms, new
cooling technologies, and multi-core servers. These approaches have been inves-
tigated widely both in practice and theory; see [21,1,20] for more details.

Another relatively recent and less explored approach to reducing the energy
costs is to exploit the variable pricing of electricity. The electricity markets in
large parts of United States are moving towards variable pricing. As noted in [24],
in those parts of the U.S. with wholesale electricity markets, prices vary on an
hourly basis and are often not well correlated at different locations. Moreover,
these variations are substantial, as much as a factor of ten from one hour to
the next. Several suppliers offer “Time Of Use” plans [25], where they charge
higher price for peak hours and considerably lower price during non-peak hours.
Electricity markets are too complex to give a simple thumb rule on which this
variation in cost depends but loosely speaking, the price depends on the resource
used for generation: As the demand peaks, the cost goes up disproportionately
as the suppliers have to rely on expensive and nonrenewable resources like coal
to meet the demand [27]. In this sense, the cost of electricity is also an indicator
of how “green” its generation is and its impact on environment.

This variation in prices of electricity offers opportunities for large scale sys-
tem designers to cut down their electricity expenses by moving their workload
both in space and time. Note that in contrast to energy efficient computing, the
purpose of this line of work is not to reduce the amount of energy consumed
per unit of work, but to reduce the cost for doing the work. In [24] the authors
exploit the spatial nature of variation in electricity cost for scheduling, while
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in [10], the authors analyse a simple model to exploit the temporal nature of
variation in electricity prices. The latter work is particularly relevant to our pa-
per: They consider a system at a single location executing a workload that is
delay tolerant, such as processing batch jobs. They further consider a pricing
model where cost of electricity varies between two levels, a base price and a
peak price. They propose simple schemes to defer the workload to less expensive
base price periods, and show experimentally that it smoothly trades off costs
for delay. The generalized scheduling problem we introduce models the effect
temporal nature of variation in electricity prices on scheduling decisions. One of
the highlights of our work is to analyze the model considered by authors in [10]
from the theoretical perspective with worst case bounds (Section 2.2).

Spot Pricing in Data Centers: An entirely different technological motivation
for cost-aware scheduling comes from the Amazon EC2 cloud computing system,
which allows users to rent virtual machines on the cloud for computational needs.
Amazon offers various pricing schemes to rent machines, one of which is spot
pricing. Spot pricing enables the users to bid for unused capacity, and prices get
set based on supply and demand. Again, as in the previous example, the cost of
renting the machine on EC2 varies dynamically over time, offering opportunities
for optimizing the cost and QoS of batch jobs on such a system.

1.1 Our Model and the Two-Cost Problem

The optimization problems arising in above applications can be captured by
the following problem that we term Two-Cost, which generalizes the classical
single-machine preemptive scheduling framework. There is a set J of n jobs,
where each job Jj has processing time pj , release time rj , and weight wj . Density
of a job Jj is defined as ratio of

wj

pj
. For simplicity, we assume time is discrete,

and the processing times and release times of the jobs are integers. There is a
processing cost function e(t): If a job Jj is scheduled at time t, it incurs processing
cost e(t). We assume that e(t) is a piecewise constant function which takes
exactly two distinct values, high and low, corresponding to the base and peak
price of electricity markets. By scaling we assume that cost of processing at
high time instants is β and 1 in low time instants. Given any schedule, the
processing cost of Jj denoted by E(j) is given by

∫
t e(t)xj(t)dt, where xj(t)

indicates whether job Jj was scheduled at the instant t; since we assume time is
discrete, E(j) =

∑
t e(t)xj(t). The completion time of job Jj denoted by Cj is

the last time instant when this job is scheduled. The flow time of Jj is defined as
Fj = Cj − rj . Jobs arrive online and the cost function e(t) changes in an online
fashion as well. The objective is to minimize

∑
Jj∈J(wjFj +E(j)) – the sum of

weighted flow time and processing cost.

1.2 Our Results and Techniques

In this paper we initiate the study of online scheduling problems with the objec-
tive of minimizing the processing costs plus some well-known QoS guarantees.
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We show that these problems are significantly different from their counterparts
without processing costs, hence requiring new algorithmic techniques. We as-
sume the algorithm does not know the future job arrivals and the future cost
function e(t), and proceed via speed augmentation analysis, where we give the
algorithm extra processing speed compared to OPT for the purpose of analysis.
The holy grail of speed augmentation analysis is to design a so-called scalable
algorithm: For any ε > 0, the algorithm is (1+ε)-speed, O(poly(1ε ))-competitive.

In Section 2, we first show that no deterministic online algorithm for Two-
Cost can be constant competitive even for unit length, unit weight jobs, when
e(t) is known in advance. We then present our main result. We show a scalable
(1 + ε)-speed O( 1

ε3 )-competitive algorithm for Two-Cost.
Our algorithm for Two-Cost in Section 2 is the most natural one: Always

schedule at low cost time instants. For high cost time instants, if the total flow
time accumulated since the last scheduling decision is at least the cost of pro-
cessing, then schedule using the highest density first priority rule, else wait. We
outline the idea behind the analysis in Section 2.1. The analysis is complicated
by the non-uniform nature of the problem - the behavior of the algorithm is
different in the high and low cost instants, and these instants themselves arrive
in an online fashion. The key decision that the algorithm has to make is whether
to schedule a job at the current step in a high cost time instant, or wait for a
low cost time instant that may arrive soon in the future. However, waiting poses
a risk in that jobs could arrive in the future and create a huge backlog at the
low cost time instants. To partially mitigate the backlogging effect, we resort to
speed augmentation for the analysis, and show that this is necessary as well.

Technical Contributions. Speed augmentation and potential functions have
proven to be useful techniques in the analysis of online algorithms for weighted
flow time problems. See for example, scheduling policies on unrelated machines [9]
and speed scaling problems [5,4,13]. These potential functions follow a similar
template (the so-called standard potential function [15]), and are defined in terms
of the future online cost (or cost-to-go) of the algorithm assuming no more jobs
arrive in the system and how far the online algorithm is behind the optimal
schedule in work processed. Due to the online nature of the cost function e(t),
one of the chief technical difficulties we face while analyzing this problem is that
it is hard to give a closed form expression for the future cost of an online al-
gorithm. Hence, it is not clear how to define any sort of potential function for
our problem. We instead proceed via simplifying the input and certain revealing
structural properties of OPT. We then observe a simple yet powerful majoriza-
tion property (Theorem 4) of our schedule relative to the optimal schedule, as
consequence of the fact that our algorithm uses HDF ordering of jobs. We use
this characterization repeatedly in a non-trivial fashion to split the time hori-
zon into suitably defined phases. Within these phases, we use a fairly simple
charging argument to bound the cost of algorithm against the optimal. In effect
we show that an algorithm that cannot estimate cost-to-go for its scheduling
decision is competitive even if the costs in the future vary arbitrarily. We also
believe Theorem 4 can be of independent interest in other scheduling problems.
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1.3 Related Work and Comparision with Other Models

Use of speed augmentation in the analysis of online scheduling problems, particu-
larly involving flow time objectives was first considered in [18]. Since then, several
papers have used speed augmentation to show scalable algorithms for weighted
flow time on various machine environments [8,6,9,16]. The introduction of the
cost function e(t) drastically changes the nature of the problem compared to the
classical flow time problems. It is instructive to point out that our problem does
not admit a competitive algorithm even for unit weight and unit length jobs,
where as HDF is optimal for unit length jobs in this context for classical flow
time. The fundamental difference in the complexity of this problem was noted
earlier in the works on robust machine scheduling, which is a special case of our
model [26,11]. In the offline case, Epstein et al. study the problem of minimiz-
ing weighted completion on a single machine when the machine can encounter
unexpected failures [11] . They give a constant factor approximation algorithm
on a single machine when jobs have no release dates and show polylogarithmic
lowerbounds when jobs have release dates. Note that, in their problem only fail-
ure periods arrive online. These results sharply contrast with constant factor
approximation algorithms known for minimizing weighted completion time on
various machine environments. We outline the results we obtain for the offline
version of our problem in Section 3.

Dynamic speed scaling and its variants have been studied extensively for
power management. In this model pioneered by Yao et al. [28], the goal is to
dynamically scale the speed of a processor to optimize power consumed (which
is usually a convex function of speed) and some QoS metric like deadlines or flow
time. This model has a rich literature in online algorithms and potential function
design; see [5,4,23,7,2,3,21,12,22] for more details. Apart from the philosophical
difference that we are concerned with minimizing the cost of power rather than
efficient usage of it, we believe that our model is technically very different as
well. Electricity costs vary with time in a non-monotone and adversarial fashion,
whereas in speed scaling, the cost incurred by algorithms depends on the speed
and is not a function of time. Therefore, the decision in speed scaling is to set
the speed, while in our problem, the decision is about which time instants to
process the jobs in. It is also interesting to note the technical similarities in these
policies. In speed scaling algorithms, speed is set such that cost incurred on the
speed is equal to the flow time of jobs at any time instant. Our algorithm also
uses similar cost-balancing approach towards time slot selection policy. It would
be interesting to study the effect of combining speed scaling with our model.

Another line of research which has technical similarities with our problem
is power down mechanisms [17,19]. There are speed scalable processors, but
transitioning from speed zero (sleep state) to non-zero speed (active state) incurs
activation cost. These algorithms use algorithms for speed scaling as subroutine
when the processor is active, but they also need to decide when to transition into
and out of sleep states. These algorithms hence balance the cost of activation to
the total flow time of jobs present at that time. Our algorithm also uses a similar
cost balancing approach, but there are several subtle differences. For example,
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the algorithms in [17,19] transition to sleep state only when there are no jobs in
the system whereas our algorithm for Two-Cost may idle even when there are
jobs present simply because processing cost is high. Further, the speed-scaling
model is more sympathetic to lazy activation policies like ones used in [19] since
any accumulated jobs can be cleared by varying the speed. But accumulating
jobs in our problem poses a threat, since both jobs and high cost time instants
arrive online. We emphasize that, even for unit length and unit weight jobs we
cannot get a competitive algorithm where as almost all the problems considered
in speed-scaling or power-down mechanisms admit competitive algorithms. In
other words, the use of speed augmentation in speed scaling problems is for
converting the schedule for fractional objective to the integral objective, whereas
we need it even for a fractional schedule.

2 Online Algorithms for the Two-Cost Problem

In this section, we devise online algorithms for minimizing the sum of weighted
flow time and processing cost on a single machine (with preemption). Recall
that we denote the weights of the jobs by wi, and the processing times by pi.
We assume without loss of generality that e(t) takes either a value of 1 or β at
all the time instants.

Before we present the scalable algorithm forTwo-Cost, we first present lower
bounds on the achievable competitive ratio. In this section, we first show that no
online algorithm can have competitive ratio independent of the values taken by
cost function e(t), even when all jobs have the same weight and unit processing
length, and when the cost function e(t) is known in advance. We defer the proof
of this lower bound to Appendix A.

Theorem 1. No deterministic online algorithm for Two-Cost can have a com-
petitive ratio independent of the values taken by e(t), even when all jobs have
unit length and equal weight and e(t) is known in advance.

To get around this negative result, our algorithms will use speed augmentation to
be competitive - this means that to show a O(1)-competitive ratio, we pretend
the algorithm runs on a fastermachine than the optimal solution; the extra speed
trades off with the competitive ratio. Let OPT denote both the optimal offline
algorithm, as well as its value. Given any online algorithm and input sequence,
there are two decisions the algorithm has to make every step:

Time Slot Selection: This policy decides which time slots to schedule jobs -
we term these active time slots.

Job Selection Policy: Decides which job to schedule in each active time slot.

We briefly describe the analysis technique of speed augmentation, which is
implicit in previous work [9,5,4].

Definition 1. Given an algorithm A and speed s, we say that algorithm B is a
s-speed simulation of A if:
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– The active time slots of A and B are the same (or B simulates A).
– The job selection policy of B is same as A; however, B can process s units

of jobs in every active time slot.

Definition 2. An online algorithm A is said to be s-speed, c-competitive if there
is a s-speed simulation of A that is c competitive against OPT .

We make this fine distinction for the reason that, schedule produced by A when
run a machine with speed s can be completely different from schedule of B which
takes the schedule of A on unit speed processor, but schedules s units of jobs
whenever A processes 1 unit of job.We will show the following theorem in the
sequel.

Theorem 2. Two-Cost has a (1 + ε)-speed O( 1
ε3 )-competitive algorithm.

2.1 Proof Outline

We design our algorithm for the case when jobs have unit length with arbitrary
weights and at each time step a single job is released. We later show how to
convert this algorithm to handle jobs with arbitrary lengths using the ideas
which have become standard now. For unit length jobs, the job selection policy
of any algorithm is simple: Schedule that job Ji from the current queue with
highest density or weight. This is the well-known Highest Density First (HDF)
policy. Our overall online algorithm for unit length jobs is the most natural
one: Always schedule using HDF in low cost instants. For high cost instants, we
follow a ski-rental kind of policy. If the total flow time accumulated since the
last scheduling decision is at least β, then schedule using HDF, else wait. We
call this algorithm Balance. The hard part in defining a (standard) potential
function is the non-uniformity in the processing cost. Instead, we first transform
and simplify the input so that we only have to deal with unit length jobs, only
one of which arrives per step.

The crux of our analysis is a majorization property of the HDF schedule,
Theorem 4: If an online algorithm processing using HDF always lags another
algorithm in terms of number of units processed, but eventually catches up, then
if the initial weight of jobs in the queue of the first algorithm was smaller, the
final weight will be smaller as well. We show that Balance always lags OPT in
terms of number of jobs processed, hence the majorization result directly bounds
the processing cost paid by Balance (Lemma 6).

To bound the flow time, we perform a speed augmentation analysis. Again,
the analysis is complicated by the non-uniformity in processing costs between
low and high cost time instants. We instead divide time into phases where the
augmented Balance lags OPT . Using our majorization result, we show it is
sufficient to analyze each phase separately. We now construct a simple charging
scheme, and argue about the amortized cost, completing the proof (Lemma 7).

2.2 Simplifying the Input

By scaling the input, we can assume that e(t) takes values either 1 or β. We also
assume that processing times and release times of jobs take integer values. We
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assume jobs are released at the beginning of a time slot. Our scheduling policies
will be based on considering the weight of jobs in the queue during the time slot,
and the processing happens at the end of the time slot.

We call a time instant t as high cost time instant if e(t) = β in the interval
[t, t + 1). Other wise, we call it as low cost time instant. We assume without
loss of generality that e(t) changes only at integral values of t. Thus every time
instant is either a low cost time instant or a high cost time instant.

Step 1: Unit Length Jobs. The following lemma is an easy consequence of similar
results in [9,4,8]. The proof follows by replacing each job Ji with pi jobs of unit
length and weight wi/pi.

Lemma 3. If an online algorithm A is s-speed c-competitive for minimizing the
objective

∑
j wjFj for unit length jobs, then it is (1+ε)s-speed (1+ 1

ε )c-competitive
when jobs have arbitrary length.

The above lemma allows us to focus on unit length jobs in designing the on-
line algorithm. For unit length jobs, given the set of active slots, it is easy to
characterize the job selection policy: If a slot is active, the algorithm will sim-
ply schedule that job Ji from its queue with highest density or weight per unit
length, wi. This is the well-known Highest Density First (HDF) policy. Note
however that even for unit length jobs, Theorem 1 shows there is no 1-speed
algorithm with competitive ratio independent of β. We therefore need to use
a speed augmentation analysis even for this case. We redefine OPT to be the
optimal offline algorithm for this new problem instance (with unit length jobs).

Step 2: Modifying Release Dates. We assume that only one job is released at
each time step. This follows as consequence of Step 1 and we omit the details.

Step 3: Modifying the optimal schedule. Given any algorithm A, letWA(t) denote
the total weight of jobs in A’s queue during time t. The proof of the following
claim follows easily from the observation that making OPT process a job has
cost β, while the total weight of jobs in the queue contributes to the flow time.
As a consequence, if WOPT (t) ≥ β, we can assume OPT schedules at time t.

Claim. With O(1) loss in competitive ratio, we can assume that in any interval
I = [s, d] where OPT does not process jobs,

∑
t∈I W

OPT (t) < β.

2.3 Online Algorithm Balance

The online algorithm Balance is characterized by the following two rules. Here
WA(t) denotes the total weight of jobs in Balance’s queue during time t.

Time slot selection Policy: If e(t) = 1, then mark t as active. If e(t) = β then
let t′ be the last active time instant. Mark t as active if

∑
u∈(t′,t]W

A(u) ≥ β.

Job selection Policy (HDF): If t is active, then among the set of jobs avail-
able at the time t, schedule the one with highest weight.
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2.4 Analysis of Balance

We begin this section by showing some important structural properties of the
schedule produced by Balance, which we use subsequently in our analysis.

Majorization Property of HDF. Before we analyze Balance, we observe a
simple yet important property of scheduling jobs in HDF, which may be of inde-
pendent interest. Let A and B denote two scheduling algorithms which process
same number of unit length jobs in the interval [s, d]. Suppose A processes jobs
in HDF and always lags B, i.e., total number of jobs processed by A at any
time t ∈ [s, d] is always less than B. Then, majorization property says that if
A and B started off with equal weight at the beginning, and jobs arrive in the
interval [s, d], then the weight of jobs in A will have at most that in B in the
end of this interval. But more importantly, for every job Jj in A’s queue, total
weight of jobs in B’s queue with weight at least wj will be at most that of A’s.
We make the statement formal below.

For a scheduling algorithmA processing unit length jobs in the interval [t1, t2],
let QA(t) denote the set of jobs A has at the time t. Let QA

≥w(t) denote the subset

of those jobs with weight at least w. Let NA(t1, t2) denote the number of jobs A
has scheduled in the interval [t1, t2]. Then we have the following theorem about
scheduling jobs in HDF.

Theorem 4. (Proved in Appendix A) Let A be a scheduling algorithm which
processes unit length jobs using the HDF job selection policy, and B be any other
scheduling algorithm on the same input. Suppose ∀Ji ∈ QB(t1), |QA

≥wi
(t1)| ≤

|QB
≥wi

(t1)|. If NA(t1, t2) = NB(t1, t2) and ∀t ∈ [t1, t2], N
A(t1, t) ≤ NB(t1, t),

then ∀Ji ∈ QB(t2), |QA
≥wi

(t2)| ≤ |QB
≥wi

(t2)|. Further, WA(t2) ≤ WB(t2).

Bounding the Processing Cost. From this point on, we will use A to denote
the schedule produced Balance. The following lemma is the crucial property
of Balance: Compared to OPT , A always lags in total processing done.

Lemma 5. (Proved in Appendix A) In the schedule A produced by Balance,
∀t ∈ [0, t], NA(0, t) ≤ NOPT (0, t).

Let EA, EOPT denote the total processing cost of Balance and OPT respec-
tively. The processing cost EA can now be bounded using the above lemmas.

Lemma 6. (Proved in Appendix A) Total processing cost of A, EA ≤ EOPT .

Flow Time via Speed Augmentation. We now analyze the schedule pro-
duced by Balance using speed augmentation. In particular, we consider a class
of algorithms, Simulate-Balance(s) that uses the same active time-slots as
Balance (in that sense, it simulates Balance). However, on each active time
slot of Balance, the new algorithm schedules at most s units of jobs from its
own queue using the HDF policy.

It follows directly from Lemma 6 that the processing cost of Simulate-
Balance(s) is at most s · EOPT . In the sequel, we bound the flow time of
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Simulate-Balance(1 + ε) against the flow time of OPT , which we denote
FOPT . We will use Simulate-Balance to mean Simulate-Balance(1 + ε),
where the factor (1 + ε) will be implicit.

In order to bound the weighted flow time, we first split the contribution of
the weighted flow time to individual time steps (and hence time intervals). We
treat time as a discrete quantity here with each time instant t denoting the time
interval [t, t + 1). For an algorithm B, let FB denote the total weighted flow
time, and let WB(t) denote the weight of jobs in queue of B at time instant
t (this excludes the job getting processed at the time step t). Then, we have:
FB =

∑
t≥0 W

B(t) +
∑

j wj .

Let FA
ε denote the weighted flow time of Simulate-Balance. Let WA

ε (t)
denote the total weight of the jobs in the queue of Simulate-Balance at time
t. Recall that FOPT and EOPT are the weighted flow time and processing cost
of OPT , respectively. We will prove the following lemma in the sequel, which
will complete the proof of Theorem 2.

Lemma 7. FA
ε ≤ O

(
1
ε2

)
(FOPT + EOPT ).

Let WA
ε (t) denote the fractional weight of jobs in the queue of Simulate-

Balance; WA
ε (t) =

∑
Ji∈QA

ε
wixi(t), where xi(t) ∈ [0, 1] denotes the remain-

ing processing time of Ji at the time t. Then, weighted fractional flow time of
Simulate-Balance is defined as: fA

ε =
∑

Jj∈J
wj

2 +
∑

t≥0 WA
ε (t).

We start by bounding the weighted fractional flow time fA
ε of Simulate-

Balance. For an interval [t1, t2], let PA
ε (t1, t2), P

OPT (t1, t2) denote the total
units of processing done by Simulate-Balance and OPT in the interval [t1, t2].

Definition 3. – An interval [s, d) is a lag-interval if PA
ε (s, d) ≥ POPT (s, d),

but for all t ∈ [s, d), PA
ε (s, t) < POPT (s, t).

– An interval [s, d) is a lead-interval if for all t ∈ [s, d), Simulate-Balance
processes more units that time instant than OPT , but at time d, it processes
less units than OPT .

– The entire time horizon partitions into a sequence of alternating lag and lead
intervals of the form [0, d1), [d1, d2), . . ., where 0 < d1 < d2 · · ·. We call the
interval [di, di+1) as the ith phase.

The following lemma, proved in Appendix A follows by a repeated application
of Theorem 4.

Lemma 8. For any phase [di, di+1), WA
ε (di) ≤ WOPT (di). Furthermore, for

any t in a lead phase [di, di+1), we have WA
ε (t) ≤ WOPT (t).

Proof of Lemma 7: We will bound the fractional flow time of Simulate-
Balance against that of OPT within each phase. For a lead-phase, the bound
is simple since at every time instant t within the phase, we have WA

ε (t) ≤
WOPT (t). We therefore focus only on lag-phases. Since Simulate-Balance
always lags OPT in terms of number of units processed within a lag phase, we
have the following easy consequences for any time instant in a lag phase:
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– If Simulate-Balance processes, it processes at least ε more units of jobs
than OPT .

– If Simulate-Balance does not process, then it has to be a high cost instant.

We will now use a charging argument to show that the fractional flow time of
Simulate-Balance within the lag-phase is at most O(1/ε) times the total cost
spent by OPT within the phase. Fix a lag-phase i. We use POPT (t) and PA

ε (t) to
abbreviate POPT (di, t) and PA

ε (di, t) respectively. Instead of analysing elaborate
charging rules, for each time instant t ∈ [di, di+1) we define the following simple
potential function, which keeps track of how far Balance is behind compared
to OPT .

Φ(t) =
2β

ε

(
POPT (t)− PA

ε (t)
)

(1)

The amortized cost paid by Simulate-Balance is defined as :

θ(t) = WA
ε (t) + Φ(t)− Φ(t − 1) (2)

Define [t, t′) as an idle period if neither OPT nor Simulate-Balance schedule
jobs in that interval. The following lemma follows from an (almost) straight-
foward analysis of the potential function in Equation (1). Only corner cases are
the periods when the change in potential is zero (idle periods) and one has to
bound cost of algorithm during such periods. We push the details to Appendix A.

Lemma 9. For any lag-phase [di, di+1) and any idle period X = [t, t′) so that
t, t′ ∈ [di, di+1), we have:

∑

t∈X

θ(t) ≤ O(
1

ε
)

(
∑

t∈X

(
WOPT (t) + e(t) · IOPT (t)

)
)

(3)

where IOPT (t) is the indicator variable denoting whether OPT schedules at t.

Equation (3) is true for lead-phases directly from Lemma 8. Therefore, sum-
ming over all phases, we conclude that the weighted fractional flow time of
Simulate-Balance is at most O(1/ε) times the total cost of OPT . We then
convert the weighted fractional flow time into weighted flow time by augment-
ing Simulate-Balance with another (1 + ε)-speed using ideas similar to that
in Lemma 3. Therefore, we conclude that on a machine with (1 + ε)-speed,
FA
ε ≤ O( 1

ε2 )(F
OPT + EOPT ). This concludes the proof of Lemma 7.

Proof of Theorem 2: We first bound the competitive ratio of Simulate-
Balance for the objective minimizing

∑
j(wjFj + E(j)) when jobs are of unit

length. From Lemma 6, it follows that total processing cost of Simulate-
Balance is at most (1 + ε)EOPT . Lemma 7 shows that on a machine with
(1 + ε)-speed, FA

ε ≤ 1
ε2 (F

OPT + EOPT ). Putting all the pieces together, we
conclude that Balance is (1 + ε)-speed O

(
1
ε2

)
-competitive for unit length jobs

with arbitrary weights. Using Lemma 3 we finally conclude that Balance is
(1 + ε)-speed O

(
1
ε3

)
-competitive for arbitrary length jobs.
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3 Conclusion

In this paper, we presented a scalable online algorithm for the Two-Cost prob-
lem. In the full version of the paper, we show that with K > 2 levels of electricity
cost, we need a speed augmentation of at least K − 1 to achieve bounded com-
petitive ratio, even when electricity costs are known in advance. An interesting
question that we seek to explore is whether such lower bounds can be circum-
vented using the framework of speed scaling [5], where the processor can be made
to run faster by paying cost which is a convex function of the processing speed.

In the full version of the paper, we also study offline version of this problem
with completion time objective, since approximating flow-time even without the
cost function is one of the most important open problems in scheduling the-
ory. We show that for the offline setting the LP formulation of Hall et al. [14]
can be extended to yield a O(1ε ) approximation to 1|rj , pmtn|∑j(wjFj +E(j))
with (1 + ε)-speed augmentation,for arbitrary e(t). We also establish interesting
connections of this problem to universal scheduling and scheduling with limited
machine availability [11,26], which yield pseudo-polynomial time constant factor
approximation algorithms for 1|rj , pmtn|∑j(wjFj + E(j)). See Appendix B.
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A Missing Proofs

Proof of Theorem 1. Let e(t) = β in the interval [1, . . .
√
β] and e(t) = 1

elsewhere. The adversary releases a unit length, unit weight job at each time
instant t ∈ [1, . . .

√
β]. Let A be any online algorithm. Consider the number

of jobs in the queue of A at time t =
√
β. If A has more than β

1
4 jobs then

the adversary releases one job at each time instant t >
√
β. For this input, the

http://www.pge.com/tariffs/electric.shtml
http://www.eia.doe.gov
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optimal offline algorithm will process each job released in the interval [1, . . .
√
β]

by paying a processing cost of β, hence number of jobs it has at any time is
at most one. However, A accumulates β

1
4 jobs by the time t =

√
β which it

cannot clear subsequently. Hence there are at least β
1
4 jobs in its queue at every

time instant t >
√
β, incurring a cost of β

1
4 towards flowtime at each time step.

Therefore, the competitive ratio of A is at least β
1
4 . Next, consider the case when

A has less than β
1
4 jobs at time t =

√
β. In this case, the adversary will not release

any more jobs. For this instance, the optimal offline algorithm will not process
any jobs in the interval [1, . . .

√
β] and processes all jobs in the low cost time

instants following t >
√
β incurring a total cost of O(β). The competitive ratio

of A is at least β
1
4 , since the algorithm pays at least β

5
4 towards the processing

cost.

Proof of Theorem 4.We prove this by contradiction. Suppose at time t2, there
is a job Ji ∈ QB(t2) such that |QA

≥wi
(t2)| > |QB

≥wi
(t2)|. Consider the set of jobs

processed by A in the interval [t1, t2]. If the weight of all these jobs is at least
wi, then since both algorithms process equal number of jobs in [t1, t2] and B had
more jobs initially of weight at least wi, it must have more jobs with at least
weightwi at t2. This is an immediate contradiction. Next, consider the case where
A processes a job of weight less than wi in the interval [t1, t2]. Let t

′ ∈ [t1, t2] be
the last time instant when A scheduled a job with weight less than wi. Since A
schedules jobs using HDF, it must be the case that |QA

≥wi
(t′)| = 0. Now observe

that A processes at least as many jobs as B in the interval [t′, t2]. If J≥wi(t
′, t2)

denotes the set of jobs with weight greater than wi released in the interval [t′, t2]
then |QA

≥wi
(t2)| = |J≥wi(t

′, t2)| − NA(t′, t2). Since, NA(t′, t2) ≥ NB(t′, t2), we
have |QA

≥wi
(t2)| ≤ |QB

≥wi
(t2)|. Hence we get a contradiction.

Proof of Lemma 5. For the sake of contradiction, let t1 be the first time
instant when NA(0, t1) > NOPT (0, t1) and t2 < t1 be the last time instant when
A scheduled a job. By the definition of t1 and t2, we note that both OPT and
A do not process any jobs in the interval (t2, t1] and NA(0, t2) = NOPT (0, t2).
Moreover, in the interval [0, t2] A lags OPT ; that is, ∀t ∈ [0, t2], N

A(0, t) ≤
NOPT (0, t). Since Balance processes jobs in HDF, we apply Lemma 4 over
the interval [0, t2] to claim that WA(t2) ≤ WOPT (t2). If t1 is a low cost time
instant, we conclude that OPT will also process a job sinceWOPT (t1) > 0. Next,
consider the case when t1 is a high cost time instant. Since A is processing a job
at t1, from the description of Balance, we have

∑t1
t=t2+1 W

A(t) ≥ β. However,

WOPT (t2) ≥ WA(t2) and OPT does not process jobs in the interval (t2, t1],
then it must be the case that

∑t
t=t2+1 W

OPT (t) ≥ β. Therefore, by Claim 2.2
OPT also processes at t1. This completes the proof.

Proof of Lemma 6. Proof follows from Lemma 5. For the sake of contradiction,
let t be the first time instant when total processing cost of A is more than OPT .
We note that in the interval [0, t], when there are jobs to process, A has no idle
time slots during the low cost time instants. Therefore, A schedules at least as
many jobs as OPT in the low cost time instants of the interval [0, t]. Since the
total processing cost of A is more than OPT at time t, A must have scheduled
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more jobs in high cost time instants compared to OPT . This implies that total
number of jobs scheduled by Balance in the interval [0, t] is greater than that
of OPT , which contradicts Lemma 5.

Proof of Lemma 8.We prove this by induction on i. If the phase is a lead phase,
the induction is trivial since at each step, Simulate-Balance processes more
units than OPT, hence for any t ∈ [di, di+1), we have WA

ε (t) ≤ WOPT (t). For
a lag phase [di, di+1), Simulate-Balance processes jobs in HDF, always lags
OPT in terms of number of units processed within the phase, but catches up with
OPT at time di+1. We simply invoke the Theorem 4 on the jobs processed within
the phase to argue that ifWA

ε (di) ≤ WOPT (di), then WA
ε (di+1) ≤ WOPT (di+1).

The details are straightforward and omitted.

Proof of Lemma 9. By the description of Balance and since at most one job
arrives each time step, we have:

∑
t∈X WA

ε (t) ≤ 2β. At time t′, there are two
cases:

Simulate-Balance schedules: In this case, it schedule ε more units than
OPT , so the potential drops by at least 2β. The sum of flow time over
the idle period is at most 2β and hence, the amortized cost is at most 0.

Simulate-Balance does not schedule: In this case, this time instant is a
high cost time instant. OPT pays at least β in processing cost. The potential
increases by at most 2β

ε , while Simulate-Balance pays at most 2β in
flow time. Therefore, the amortized cost of Simulate-Balance is at most
O(β/ε).

In either case, the amortized cost paid by Simulate-Balance is at most O(1/ε)
times OPT ’s flow time plus processing cost. Next, note that Φ(di)−Φ(di+1 − 1)
is non-negative in the entire time interval [di, di+1) since Simulate-Balance
lags OPT . From Lemma 8 we know that WA

ε (di) ≤ WOPT (di). Hence we
conclude that over the interval [di, di+1), total weighted fractional flow time of
Simulate-Balance is upper bounded by:

di+1−1∑

t=di

WA
ε (t) ≤ O(

1

ε
)

di+1−1∑

t=di

(
WOPT (t) + e(t) · IOPT (t)

)

B Discussion on Offline Case

See the link http://www.cs.le.ac.uk/events/WAOA2012/AppendixKM.pdf
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