
Online Primal-Dual for Non-linear Optimization
with Applications to Speed Scaling

Anupam Gupta1,�, Ravishankar Krishnaswamy2, and Kirk Pruhs3,��

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213
2 Computer Science Department, Princeton University, Princeton, NJ 08542

3 Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260

Abstract. We give a principled method to design online algorithms (for poten-
tially non-linear problems) using a mathematical programming formulation of
the problem, and also to analyze the competitiveness of the resulting algorithm
using the dual program. This method can be viewed as an extension of the online
primal-dual method for linear programming problems, to nonlinear programs.
We show the application of this method to two online speed-scaling problems:
one involving scheduling jobs on a speed scalable processor so as to minimize
energy plus an arbitrary sum scheduling objective, and one involving routing vir-
tual circuit connection requests in a network of speed scalable routers so as to
minimize the aggregate power or energy used by the routers. This analysis shows
that competitive algorithms exist for problems that had resisted analysis using the
dominant potential function approach in the speed-scaling literature, and provides
alternate cleaner analysis for other known results. This gives us another tool in
the design and analysis of primal-dual algorithms for online problems.

1 Introduction

Speed scalable devices are now a ubiquitous energy management technology. Such de-
vices can be run in high speed and power modes that are energy inefficient, or in low
speed and power modes that are more energy efficient, where energy efficiency is the re-
sulting processing speed divided by power investment. The resulting optimization prob-
lems involve determining when this improvement in the quality of service provided by
running at high speed justifies the resulting inefficient use of significant energy. As the
relationship between speed and power in current (and any conceivable) technologies
is non-linear, so are the resulting optimization problems. This non-linearity explains
in part why we have generally not been able to show that online algorithms are com-
petitive in such settings by reasoning directly about optimal solutions. The dominant
algorithm analysis tool in speed-scaling settings has been potential functions. But one
has to often guess the “right” potential function; moreover, there are situations where
the use of potential functions is problematic, most notably when there does not seem to
be a simple algebraic expression for the “right” potential for an arbitrary configuration.

� Research partly supported by NSF awards CCF-0964474 and CCF-1016799.
�� Supported in part by NSF grants CCF-0830558, CCF-1115575, CNS-1253218 and an IBM

Faculty Award.

T. Erlebach and G. Persiano (Eds.): WAOA 2012, LNCS 7846, pp. 173–186, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



174 A. Gupta, R. Krishnaswamy, and K. Pruhs

One motivation of our research is to see if one can use duality to analyze online algo-
rithms for speed-scaling problems for which algorithm analysis using potential func-
tions seems problematic.

The first problem we consider involves scheduling jobs on a speed scalable proces-
sor online, with an objective of the form E + βS , where E is the energy used by the
processor, S is a scheduling objective that is the sum over jobs of a scheduling cost of
the individual jobs, and β expresses the relative value of saving energy versus decreas-
ing the scheduling objective. The input consists of a collection of jobs that arrive over
time. The jth job arrives at time rj , and has size/work pj . There is a convex function
P (s) = sα specifying the dynamic power used by the processor as a function of speed
s, which may be any nonnegative real number. The value of α is typically around 3

for CMOS based processors. A fractional sum scheduling objective S is of the form
∑
j

∑
t

yjt
pj
Cjt, where Cjt is the cost of completing a unit of work of job j at time t, and

yjt is the amount of work completed at time t (such that
∑
t yjt = pj). The correspond-

ing integer sum scheduling objective is of the form
∑
j

∑
t zjt Cjt, where zjt indicates if

job j was finished at the time instant t. For instance, a single job arrives at time rj with
Cjt = (t+ 1− rj), and is executed over times t ∈ {rj , rj + 1, rj + 2, · · · , rj + pj − 1} at
a uniform rate yjt = 1, the fractional sum objective is

∑rj+pj−1
t=rj

1
pj
(t− rj + 1) =

pj+1

2
,

whereas the integer sum objective is pj (since zj(rj+pj−1) = 1 and all other zjt = 0).
The energy cost E in both cases is the non-linear expression

∑
t(
∑
j yjt)

2.
For linear sum scheduling objectives (where the cost Cjt for finishing a job j at

time t is a increasing linear function of the flow time t − rj , such as the one above),
a potential function based on an algebraic expression for the future cost of the online
scheduling algorithm (starting from a particular configuration) has proved to be widely
applicable for analyzing natural speed-scaling scheduling algorithms [1]. However, the
seeming lack of simple algebraic expressions for future online costs of natural online
algorithms for nonlinear sum scheduling objectives (e.g., Cjt = (t − rj + 1)2, which
gives the sum of the squares of flow time) explains in part why, despite some effort,
we have not been able to analyze algorithms for such problems. It is easy to convert
a solution for the fractional scheduling objective to the integer objective while losing
at most max{(1 + ε)α, 1/ε} by speeding up each job by 1 + ε, so that the fractional
objective pays at least ε for each instant the sped-up job has not yet been completed,
whereas the power cost is increased only by (1 + ε)α[2,3], so we will focus on the
fractional scheduling objectives from now on.

The second problem that we consider involves online routing of virtual circuit con-
nection requests in a network of speed scalable routers with the objective of minimizing
the aggregate power used by the routers. The jth request consists of a source sj , a sink
tj , and a flow requirement fj . In the unsplittable flow version of the problem the online
algorithm must route fj units of flow along a single (sj , tj)-path. In the splittable flow
version of this problem, the online algorithm may partition the fj units of flow among
some collection of (sj , tj)-paths. In either case, we assume speed scalable network el-
ements (routers, or links, or both), where element e use powers �αe , where the load �e
is the sum of the flows through the element. The objective of total aggregate power is
then

∑
e �
α
e . This problem was introduced in [4], where a poly-log-approximate offline



Online Primal-Dual for Non-linear Optimization with Applications to Speed Scaling 175

polynomial-time algorithm is given for unsplittable routing; this algorithm classifies the
requests by geometrically increasing demands, and randomly rounds a convex program
for each demand class.

2 Our Contributions

Very much in the spirit of the online primal dual technique for linear programs [5], we
give a principled method both to design online algorithms (but for potentially nonlinear
problems) using a mathematical programming formulation of the problem, and also
to analyze the competitiveness of the resulting algorithm using the Lagrangian dual
program. We start by considering a mathematical program for the offline problem. We
then interpret the online algorithm as solving this mathematical program online, where
the constraints arrive one-by-one: in response to the arrival of a new constraint, the
online algorithm has to raise some of the primal variables so that the new constraint
will be satisfied. We consider the most natural online greedy algorithm: one that raises
the primal variables so that the increase in the primal objective is minimized.

For the analysis, we use weak duality: each feasible value of the dual is a lower
bound to the optimal primal solution [6]. How should we set the duals? We set the
Lagrangian dual variable corresponding to the new constraint to be proportional to the
rate of increase in the primal objective that the online algorithm incurred at the time
that the constraint was satisfied. If we could argue that the value of the dual increased
by at least a constant fraction of the increase to the primal, we would be done. But
what is the value of the resulting dual? Due to nonlinearity, analyzing the dual for a
nonlinear program is more complicated than for a linear program, since in the dual for
a nonlinear program, one can not disentangle the objective and the constraints (as one
can in the linear case); the dual itself contains a version of the primal objective, and
hence copies of the primal variables, within it. Consequently, the arguments for the
dual in the nonlinear case not only involve setting the Lagrangian dual variables, but
also relating the settings of the copies of the primal variables in the dual with the actual
primal variables in the primal. The solutions we find are fractional solutions to the
nonlinear program, so for the speed-scaling scheduling (with the fractional objective)
and splittable routing problems that we consider, this analysis allows us to conclude
that the natural online greedy algorithm is Oα(1)-competitive (the subscript means that
the constant hidden in the big-O depends on the constant α). As mentioned above, the
integer scheduling objective follows from the fractional one at a small loss [2,3]. For the
unsplittable routing problem, we can also show that the natural online greedy algorithm
is Oα(1)-competitive.

Before we give more details about the specific speed-scaling problems that we con-
sider, we would like to emphasize that once we formulate the primal non-linear program
in the obvious way, the design of the online algorithm and the variable settings for its
Lagrangian dual are naturally derived from this program. The problem-specific aspects
are confined to setting the dual variables—which in both our problems is some multi-
plier δ times the rate of primal change—and the analysis of the dual (which gives the



176 A. Gupta, R. Krishnaswamy, and K. Pruhs

“right” value of the multiplier δ we should set).1 Consequently, we feel that our work
represents another step towards a principled design and analysis of primal-dual algo-
rithms for online problems. We hope that this principled approach could be applied to
a wider class of nonlinear online problems.

2.1 Applications to Speed-Scaling Scheduling and Routing

Our first observation is that fractional speed-scaling scheduling problems with a general
sum scheduling objective can be cast more conveniently as the following Online Gener-
alized Assignment Problem (OnGAP). In OnGAP, jobs arrive online one-by-one, and
the algorithm must fractionally assign these jobs to one of m machines. When a job
j arrives, the online algorithm learns �je, the amount by which the load of machine e
would increase for each unit of work of job j that is assigned to machine e, and cje, the
assignment cost incurred for each unit of work of job j that is assigned to machine e. So
if xje is the fraction of job j assigned to machine e, then the assignment cost is cjexje,
and the load of the machine e increases by �jexje. The goal is to minimize the sum of
the αth powers of the machine loads, plus the total assignment cost. (See (4.1) for the
convex programming formulation.)

To cast a speed-scaling problem with a (fractional) sum scheduling objective as On-
GAP, think of each unit of time as being a separate machine. The assignment cost cje
then models the cost for scheduling a unit of job j at time e. Let us now illustrate this
model using some examples:
Speed-Scaling with Deadline Feasibility. In this problem, each job j has a size of �j
and a deadline of dj . The goal is to devise speed-scaling and scheduling policies so that
every job is scheduled within its deadline, and the total energy is minimized. Indeed,
we can view this as OnGAP where each time unit is a machine, �jt := �j for all times,
and cjt := 0 for t ∈ [rj , dj ] and is infinite otherwise. This problem has been widely
studied [7,8,9,10], and different algorithms are shown to be Oα(1)-competitive using
varied potential functions.
Total Flow plus Energy. Here, given a set of jobs and a speed-scalable processor, the
objective is to minimize the sum of (fractional) flowtimes plus energy of the schedule.
We can cast this as OnGAP by setting cjt to be (t−rj) for t ≥ rj and infinite otherwise.
This problem has been studied in [11,3,12,13,14,15,16], where different algorithms are
shown to be Oα(1)-competitive (and some, even O(1)-competitive for general power
functions) using potential functions.
Total Flow Squared plus Energy. For the objective of sum of fractional flow/response
times squared plus energy, we can set the assignment cost cje to be (e−rj)2 for all times
e ≥ rj , the release time of job j, and infinite otherwise.
More General Objectives. We can create much more exotic objectives: say, cje = (e −
rj)

2 for j ∈ [rj , dj ] and ∞ otherwise would give squared flow time with a hard deadline,
or we could create blackout dates by setting some cje’s to ∞. For many of these general
problems, we provide the first online algorithms with non-trivial competitive ratios.

1 In the sequel, whenever we use the word dual, we refer to the Lagrangian dual of the primal
convex program being considered.



Online Primal-Dual for Non-linear Optimization with Applications to Speed Scaling 177

In Section 4 we apply our primal-dual approach to solving OnGAP fractionally, and
show that a natural greedy algorithm is αα-competitive.2 This immediately gives us
solutions for speed scaling scheduling problems with fractional sum objectives. To an-
alyze our algorithm for OnGAP, we show a dual solution has a particularly nice form,
and for our setting of the dual variables, is within αα of the primal solution. As an im-
mediate consequence, the corresponding online greedy algorithm is αα-competitive for
speed-scaling scheduling problems with any fractional sum scheduling objective. Re-
call that previously, competitive analyses were known only for linear sum scheduling
objectives, so this is a substantial improvement. For some speed-scaling problems, our
duality analysis is cleaner than the existing potential function analyses; e.g., compare
the αα-competitive analysis of the greedy Optimal Available (OA) algorithm for energy
minimization with deadline feasibility constraints given in [8] to our αα-competitive
analysis of our greedy algorithm. Lower bounds in [17,18,8] imply that no determinis-
tic online algorithm can be better than αα-competitive for OnGAP, and no deterministic
online algorithm can be better than αα-competitive for speed scaling scheduling to min-
imize energy with feasibility constraints. In Section 5, we make some further comments
about the application of these results to speed-scaling problems.

Finally in Section 6, we apply our primal-dual approach to the splittable routing
problem in a network of speed scalable routers. In this case, the worst-case settings of
the copies of the primal variables in the dual are not easy to reason about. To facilitate
this reasoning, we relax the dual problem in a novel way, by allowing the copies of the
primal variables in the dual to take on different values for different edges. To overcome
relaxing the flow-constraints, we alter the relaxed objective function (based on the edge
loads of our online algorithm!) to ensure that we can still recover enough dual value.
This allows us to show the online greedy algorithm is αα-competitive with respect to
the relaxed dual with the specified settings of the dual variables, and hence with respect
to optimal. This extends to unsplittable routings as well.

3 Related Work

An extensive survey/tutorial on the online primal dual technique for linear problems can
be found in [5]. A survey of the algorithmic power management literature in general,
and the speed-scaling literature in particular, can be found in [19]. Casting the speed-
scaling scheduling problems as a load balancing problem is natural in hindsight, but to
the best of our knowledge this has not been observed before. This reduction allows the
application of techniques from the load balancing literature to speed-scaling problems.
The version of OnGAP without assignment costs was studied by [17,18], where the
online greedy algorithm is shown to be Oα(1)-competitive. In their analysis the online
cost is bounded by an algebraic expression involving the product of the online cost
and the optimal cost, which is disentangled by use of the Cauchy-Schwartz inequality.
While this analysis shares some commonalities with both potential function analysis

2 In the full version, we show a related greedy algorithm is O(α)α-competitive for OnGAP
integrally (where each job has to go to a single machine). This does not imply anything useful
for the speed-scaling scheduling problems. On the other hand, one can use the underlying ideas
to convert the splittable energy-aware routing algorithm of Section 6 to unsplittable routings.



178 A. Gupta, R. Krishnaswamy, and K. Pruhs

and duality analysis, it is probably best considered a distinct technique. Upon some
reflection, one can see that their potential function technique can be used to obtain
an alternate analysis that achieves the same bounds as we achieve in this paper by
duality. Caragiannis [20] gives some refinements to the analysis in [17,18] for OnGAP
without assignment costs. An offline O(1)-approximation (independent of α) was given
by [21,22], via solving the convex program and rounding the solution in a correlated
fashion: such an result independent of α is impossible in the online setting. Finally,
offline poly-log-approximation algorithms for the virtual circuit routing problem, when
routers have a static power component, can be found in [23,4].

Works [24,25] show that various online algorithms are competitive, using potential
function analysis, for various scheduling problems with fixed speed processors and for
the �k norms of flow objective. The potential functions used in these analyses were
motivated by the desire to have an algebraic expression for the future costs for the
online algorithm, but required some ad-hoc features in order for the algebra to work
out. Despite efforts by the authors of these papers, it is not clear how to extend these
potential functions to work in a speed-scaling setting.

Independently and concurrently with this work, Anand, Garg and Kumar [26] ob-
tained results in a similar vein to the results here. Mostly notably, they showed how to
use nonlinear-duality to analyze a greedy algorithm for a multiprocessor speed-scaling
problem involving minimizing flow plus energy on unrelated machines. Additionally,
[26] showed how duality based analyses could be given for several scheduling algo-
rithms that were analyzed in the literature using potential functions. However, our re-
sults are somewhat different in spirit, with our emphasis being more on a principled
methodology for algorithm design and setting of the dual variables. For instance the
algorithm for the speed-scaling problem in [26] is not derived from the mathematical
programming formulation, and the emphasis is more on obtaining a “dual-fitting” anal-
ysis for (in some sense) pre-existing algorithms.

4 The Online Generalized Assignment Problem

In this section we consider the problem of Online Generalized Assignment Problem
(OnGAP). If xje denotes the extent to which job j is assigned on machine e, then this
problem can be expressed by the following mathematical program:

min
∑

e

(∑

j

�jexje

)α
+

∑

e

∑

j

cjexje (4.1)

subject to
∑

e

xje ≥ 1 j = 1, . . . , n

The dual of the primal relaxation is then

g(λ) = min
x�0

(∑

j

λj +
∑

e

(∑

j

�jexje

)α
+

∑

j,e

cjexje −
∑

j,e

λj xje

)

(4.2)

One can think of the dual problem as having the same instance as the primal, but where
jobs are allowed to be assigned to extents less than unit. This is compensated for in the



Online Primal-Dual for Non-linear Optimization with Applications to Speed Scaling 179

objective function: in addition to the load cost
∑
e

(∑
j �jexje

)α as in the primal, a fixed
cost of λj is paid for each job j, and a payment (or negative cost) of λj − cje is obtained
for each unit of job j assigned. It is well known that each feasible value of the dual is a
lower bound to the optimal primal solution; this is weak duality [6].

Online Greedy Algorithm Description: Let δ be a constant that we will later set to
1

αα−1 . Now the algorithm works as follows when a new job j arrives: until a unit fraction
is scheduled, job j is scheduled on all machines for which the increase in the cost will
be the least, assuming that energy costs are discounted by a factor of δ. More formally,
the value of all the primal variables xje for all the machines e that minimize

δ · α · �je(
∑

i≤j
�iexie)

α−1 + cje (4.3)

are increased until all the work from job j is scheduled, i.e.,
∑
e xje = 1. Notice that

α · �je
(∑

i≤j �iexie
)α−1 is the rate at which the load cost is increasing for machine e,

and cje is the rate that assignment costs are increasing for machine e. In other words,
our algorithm fractionally assigns the job to the machines on which the overall objective
increases at the least rate. Furthermore, observe that if the algorithm begins assigning
the job to some machine e, it does not stop raising the primal variable xje until the job is
fully assigned3. By this monotonicity property, it is clear that all machines e for which
xje > 0 have the same value of the above derivative when j is fully assigned. Now, for
the purpose of analysis, we set the value λ̂j to be the rate of increase of the objective
value when we assigned the last infinitesimal portion of job j. More formally, if e is any
machine on which job j is run, i.e., if xje > 0, then

λ̂j := δ · α · �je
(∑

i≤j
�iexie

)α−1

+ cje (4.4)

Intuitively, λ̂j is a surrogate for the total increase in objective value due to our fractional
assignment of job j (we assign a total of 1 unit of job j, and λj is set to be the rate at
which objective value increases). Let x̃ denote the final value of the xje variables for
the online algorithm.

Algorithm Analysis. To establish the desired competitive ratio of O(αα), note that it is
sufficient (by weak duality) to show that g(λ̂) is at least 1

αα times the cost of the online
solution. To this end, let x̂ be the value of the minimizing x variables in g(λ̂), namely

x̂ = argmin
x�0

(∑

j

λ̂j +
∑

e

(∑

j

�jexje

)α
−

∑

j,e

(

λ̂j − cje

)

xje

)

Observe that the values x̂ could be very different from the values x̃, and indeed the next
few lemmas try to characterize these values. Lemma 1 notes that x̂ only has one job
ϕ(e) on each machine e, and Lemma 2 shows how to determine ϕ(e) and x̂ϕ(e)e. Then,
in Lemma 3, we show that a feasible choice for the job ϕ(e) is the latest arriving job
for which the online algorithm scheduled some bit of work on machine e; Let us denote
this latest job by ψ(e). Formally, ψ(e) = max{j s.t x̃je > 0}.

3 It may however increase xje and xje′ at different rates so as to balance the derivatives where
e and e′ are both machines which minimize equation 4.3



180 A. Gupta, R. Krishnaswamy, and K. Pruhs

Lemma 1. There is a minimizing solution x̂ such that if x̂je > 0, then x̂ie = 0 for i �= j.

Proof. Suppose for some machine e, there exist distinct jobs i and k such that x̂ie >
0 and x̂ke > 0. Then by the usual argument of either increasing or decreasing these
variables along the line that keeps their sum constant, we can keep the convex term
(
∑
j �jex̂je)

α term fixed and not increase the linear term
∑
j(λ̂j − cje) x̂je. This allows

us to either set x̂ie or x̂ke to zero without increasing the objective.

Lemma 2. Define ϕ(e) = argmaxj
(̂λj−cje)

�je
. Then x̂ϕ(e)e = 1

�ϕ(e)e

(
̂λϕ(e)−cϕ(e)e

α�ϕ(e)e

)1/(α−1)

and x̂je = 0 for j �= ϕ(e). Moreover, the contribution of machine e towards g(λ̂) is ex-

actly (1− α)

(
̂λϕ(e)−cϕ(e)e

α�ϕ(e)e

)α/(α−1)

.

Proof. By Lemma 1 we know that in x̂ there is at most one job (say j, if any) run on
machine e. Then the contribution of this machine to the value of g(λ̂) is

(�jex̂je)
α − (λ̂j − cje)x̂je (4.5)

Since x̂ is a minimizer for g(λ̂), we know that the partial derivative of the above term
evaluates to zero. This gives α�je · (�jex̂je)α−1 −

(
λ̂j − cje

)
= 0, or equivalently,

x̂je = 1
�je

(
̂λj−cje
α�je

)1/(α−1)

. Substituting into this value of x̂je into equation (4.5), the

contribution of machine e towards the dual g(λ̂) is
(
λ̂j − cje
α�je

)α/(α−1)

− (λ̂j − cje)

�je

(
λ̂j − cje
α�je

)1/(α−1)

= (1− α)

(
λ̂j − cje
α�je

)α/(α−1)

Hence, for each machine e, we want to choose that the job j that minimizes this expres-
sion, which is also the job j that maximizes the expression (λ̂j − cje)/�je since α > 1.
This is precisely the job ϕ(e) and the proof is hence complete.

Lemma 3. For all machines e, job ψ(e) is a feasible choice for ϕ(e).

Proof. The line of reasoning is the following:

ϕ(e) = argmax
j

(
λ̂j − cje

)

�je
= argmax

j

(

δ · α ·
(∑

i≤j
�jexie

)α−1)

= argmax
j

((∑

i≤j
�iexie

)α−1)

= ψ(e) .

The first equality is the definition of ϕ(e). For the second, observe that for any job k,

λ̂k ≤ δ · α · �ke(
∑

i≤k
�iexie)

α−1 + cke =⇒ λ̂k − cke
�ke

≤ δ α (
∑

i≤k
�iexie)

α−1 .

The above expression is monotone increasing in
∑
i≤k �iexie, the load due to jobs up to

and including k. Moreover, it is maximized by the last job assigned fractionally to e.
Since the last job is ψ(e), the last equality follows.



Online Primal-Dual for Non-linear Optimization with Applications to Speed Scaling 181

Theorem 1. The online greedy algorithm is αα-competitive.

Proof. By weak duality it is sufficient to show that g(λ̂) ≥ ON/αα. Applying Lemma 2
to the expression for g(λ̂) (equation (4.2)), and using Lemma 3 to replace ϕ(e) by ψ(e),
we get that

g(λ̂) =

(∑

j

λ̂j +
∑

e

(1− α)

(
λ̂ψ(e) − cψ(e)e

α�ψ(e)e

)α/(α−1))

(4.6)

Now we consider only the first term
∑
j λ̂j and evaluate it.

∑

j

λ̂j =
∑

j,e

λ̂j x̃je (4.7)

=
∑

e

∑

j

(

δ · α · �je
(∑

i≤j
�iex̃ie

)α−1

+ cje

)

x̃je (4.8)

= (δ · α)
∑

e

∑

j

�jex̃je

(∑

i≤j
�iex̃ie

)α−1

+
∑

j,e

x̃jecje (4.9)

≥ δ
∑

e

(∑

j

�jex̃je

)α
+

∑

j,e

x̃jecje (4.10)

If we consider the second term of (4.6), and plug in the value of λ̂ψ(e), it evaluates to
(1− α)δα/(α−1)

∑
e

(∑
j �jex̃je

)α. Putting the above two estimates together, we get

g(λ̂) ≥ δ
∑

e

(∑

j

�jex̃je

)α
+

∑

j,e

x̃jecje + (1− α)δα/(α−1)
∑

e

(∑

j

�jex̃je

)α
(4.11)

=

(

δ + (1− α)δα/(α−1)

)∑

e

(∑

j

x̃je�je

)α
+

∑

j,e

x̃jecje ≥ ON/αα (4.12)

The last step is by setting δ = 1/αα−1 which maximizes
(
δ + (1− α)δα/(α−1)

)
.

As observed, e.g., in [18], an O(α)α result is the best possible, even for the (fractional)
OnGAP problem without any assignment costs. In the full version, we show how to
obtain an O(α)α-competitive algorithm for integer solutions to OnGAP by a similar
greedy algorithm, and a similar but slightly more careful analysis.

5 Application to Speed Scaling

We now discuss the application of our results for OnGAP to some well-studied speed-
scaling problems. Normally one thinks of the online scheduling algorithm as having
two components: a job selection policy to determine the job to run, and a speed-scaling
policy to determine the processor speed. However, one gets a different view when
one thinks of the online scheduler as solving online the following mathematical pro-
gramming formulation of the problem (which is an instance of the fractional OnGAP
problem):

min
∑

t

(∑

j

pjxjt
)α

+
∑

j

∑

t

Cjt xjt



182 A. Gupta, R. Krishnaswamy, and K. Pruhs

subject to
∑

t

xjt ≥ 1 j = 1, . . . , n

Here the variables xjt specify how much work from job j is run at time t, and the
objective captures the fractional sum scheduling objective defined in the Introduction.
(Think of yjt := xjt · pj .) The arrival of a job j corresponds to the arrival of a con-
straint specifying that job j must be completed. Greedily raising the primal variables
corresponds to committing to complete the work of job j in the cheapest possible way,
given the previous commitments. This greedy algorithm has the advantage that, at the
release time of a job, it can commit to the client exactly the times that each portion of
the job will be run. One can certainly imagine situations when this information would
be useful to the client. The speed-scaling algorithms analyzed in the literature for to-
tal (possibly weighted) flow scheduling objectives, are some variation of the balancing
speed-scaling algorithm that sets the power equal to the (fractional) number/weight of
unfinished jobs; so for these prior algorithms, when a job is run generally depends on
jobs that arrive in the future.

As mentioned earlier, this algorithm for the fractional sum objective can be converted
to the integer scheduling objective by speeding up the processor by a (1 + ε) factor and
using known techniques [2,3]: the eventual competitive ratio is min(αα(1+ ε)α, 1

ε
). One

price we pay for the fact that we can handle any sum scheduling objective is that our
analysis is sub-optimal for specific problems, such as when the scheduling objective
is total flow plus energy. Notice that notion of integral solutions for OnGAP do not
apply for the integral versions of these energy minimization scheduling problems, since
the notions of integrality are different: integrality for OnGAP means each job must be
assigned to a single machine (i.e., a single time unit, when we cast OnGAP as an energy
minimization scheduling problem), which is different from the concept of integrality for
the scheduling objective.

6 Routing with Speed Scalable Routers

Our analysis will follow the same general approach as for OnGAP: we define dual
variables λ̂j for the demand pairs, but now the minimization problem (which is over
flow paths, and not just job assignments) is not so straight-forward: the different edges
on a path p might want to set f(p) to different values. So we do something seemingly
bad: we relax the dual to decouple the variables, and allow each (edge, path) pair to
choose its own “flow” value f(p, e). And which of these should we use as our surrogate
for f(p)? We use a convex combination

∑
e∈p he f(p, e)—where the multipliers h(e) are

chosen based on the primal loads(!), hence capturing the importance of edges.

6.1 The Algorithm and Analysis

We first consider the splittable flow version of the problem. Therefore, we can assume
without loss of generality that all flow requirements are unit, and all sources and sinks
are distinct (so we can associate a unique request j(p) with each path p). This will also



Online Primal-Dual for Non-linear Optimization with Applications to Speed Scaling 183

allow us to order paths according to in when flow was sent along the paths. We now
model the problem as follows:

min
∑

e

(∑

j

∑

p�e:p∈Pj

f(p)

)α

subject to
∑

p∈Pj

f(p) ≥ 1 j = 1, . . . , n

where Pj is the set of all (sj , tj) paths, and f(p) is a non-negative real variable denoting
the amount of flow routed on the path p. In this case, the dual function is:

g(λ) = min
f(p)

(∑

j

λj +
∑

e

(∑

j

∑

p�e:p∈Pj

f(p)

)α
−

∑

j,p∈Pj

λjf(p)

)

One can think of the dual as a routing problem with the same instance, but without the
constraints that at least a unit of flow must be routed for each request. In the objective,
in addition to energy costs, a fixed cost of λj is paid for each request j, and a payment
of λj is received for each unit of flow routed from sj to tj .

Description of the Online Greedy Algorithm: For request j, flow is continuously
routed along the paths that will increase costs the least until enough flow is routed
to satisfy the request. That is, flow is routed along all (sj , tj) paths p that minimize
∑
e∈p α ·

(∑
q≤p:q�e f(q)

)α−1

. For analysis purposes, after the flow for request j is

routed, we define (where δ is a constant later set to 1
αα−1 ):

λ̂j = αδ

(∑

e∈p

∑

q≤p:q�e
f(q)

)α−1

where p is any path along which flow for request j was routed.

The Analysis: Unfortunately, unlike the previous section for load balancing, it is not so
clear how to compute the dual g(λ̂) or its minimizer since the variables cannot be nicely
decoupled as we did there (per machine). In order to circumvent this difficulty, we con-
sider the following relaxed function ĝ(λ̂, h), which does not enforce the constraint that
flow must be routed along paths. This enables us to decouple variables and then argue
about the objective value. Indeed, let f̃(p) be the final flow on path p for the routing
produced by the online algorithm. Let h(e) = α

∑
p�e f̃(p)

α−1 be the incremental cost
of routing additional flow along edge e, and h(p) =

∑
e∈p h(e) be the incremental cost

of routing additional flow along path p. We then define:

ĝ(λ̂, h) = min
f(p,e)

(∑

j

λ̂j +
∑

e

(∑

j

∑

p�e:p∈Pj

f(p, e)

)α
−

∑

j

λ̂j
∑

P∈Pj

∑

e∈p

h(e)

h(p)
f(p, e)

)

Conceptually, f(p, e) can be viewed as the load placed on edge e by request j(p). In
ĝ(λ̂, h), the scheduler has the option of increasing the load on individual edges e ∈ p ∈
Pj , but the income from edge e will be a factor of h(e)

h(p)
less than the income achieved

in g(λ̂). In Lemma 4 we prove that ĝ(λ̂, h) is a lower bound for g(λ̂). Lemma 5 shows
how the minimizer and value of ĝ(λ̂, h) can be computed, and Lemma 6 shows how to
bound some of the dual variables in terms of the final online primal solution.



184 A. Gupta, R. Krishnaswamy, and K. Pruhs

Lemma 4. For the above setting of h(·), ĝ(λ̂, h) ≤ g(λ̂).

Proof. We show that there is a feasible value of ĝ(λ̂, h) that is less than g(λ̂). Let the
value of f(p, e) in ĝ(λ̂, h) be the same as the value of f(p) in g(λ̂). Plugging these values
for f(p, e) into the expression for ĝ(λ̂, h), and simplifying, we get:

ĝ(λ̂, h) ≤
∑

j

λ̂j +
∑

e

(∑

j

∑

p�e:p∈Pj

f(p)

)α
−

∑

j

λ̂j
∑

P∈Pj

f(p)
∑

e∈p

h(e)

h(p)

=
∑

j

λ̂j +
∑

e

(∑

j

∑

p�e:p∈Pj

f(p)

)α
−

∑

j

λ̂j
∑

P∈Pj

f(p) = g(λ̂)

The first equality holds by the definitions of h(e) and h(p), and the second equality
holds by the optimality of f(p).

Lemma 5. There is a minimizer f̂ of ĝ(λ̂, h) s.t for any edge e, there is a single path

p(e) such that f̂(p, e) is positive, and f̂(p(e), e) =
(

̂λj(p(e))h(e)

α·h(p(e))

)1/(α−1)

.

Lemma 6. λ̂j(p(e)) ≤ δ · h(p(e))

Proof. λ̂j(p(e)) is δ times the rate at which the energy cost was increasing for the online
algorithm when it routed the last bit of flow for request j(p(e)). h(p(e)) is the rate of
at which the energy cost would increase for the online algorithm if additional flow was
pushed along p(e) after the last request was satisfied. If p(e) was a path on which the
online algorithm routed flow, then the result follows from the fact the online algorithm
never decreases the flow on any edge. If p(e) was not a path on which the online algo-
rithm routed flow, then the lemma follows from the fact that, when the online algorithm
was routing flow for request j(p(e)), p(e) was more costly than the selected paths (and
this cost can’t decrease subsequently, by the monotonicity of the online algorithm).

Theorem 2. The online greedy algorithm is αα competitive.

Proof. We will show that ĝ(λ̂, h) is at least ON/αα, which is sufficient since ĝ(λ̂, h) is
a lower bound to g(λ̂) by Lemma 4, and since g(λ̂) is a lower bound to optimal.

ĝ(λ̂, h) = min
f(p,e)

(∑

j

λ̂j +
∑

e

(∑

j

∑

p�e:p∈Pj

f(p, e)

)α
−

∑

j

λ̂j
∑

P∈Pj

∑

e∈p

h(e)

h(p)
f(p, e)

)

(6.13)

=
∑

j

λ̂j − (α− 1)
∑

e

(
λ̂j(p(e))h(e)

α · h(p(e))
)α/(α−1)

(6.14)

≥
∑

j

λ̂j − (α− 1)
∑

e

(
δ · h(e)
α

)α/(α−1)

(6.15)

=
∑

j

λ̂j − (α− 1)δα/(α−1)
∑

e

(∑

p�e
f̃(p)

)α
(6.16)



Online Primal-Dual for Non-linear Optimization with Applications to Speed Scaling 185

=
∑

j

λ̂j
∑

p∈Pj

f̃(p)− (α− 1)δα/(α−1)
∑

e

(∑

p�e
f̃(p)

)α
(6.17)

= δα
∑

j

∑

p∈Pj

f̃(p)

(∑

e∈p

∑

q≤p:q�e
f̃(q)

)α−1

− (α− 1)δα/(α−1)
∑

e

(∑

p�e
f̃(p)

)α

(6.18)

≥ δ
∑

e

(∑

p�e
f̃(p)

)α
− (α− 1)δα/(α−1)

∑

e

(∑

p�e
f̃(p)

)α
(6.19)

=
1

αα

∑

e

(∑

p�e
f̃(p)

)α
≥ ON/αα (6.20)

The equality in line (6.13) is the definition of ĝ(λ̂, h). The equality in line (6.14) follows
from Lemma 5. The inequality in line (6.15) follows from Lemma 6. The equality in
line (6.16) follows from the definition of h(e). The equality in line (6.17) follows from
the feasibility of f̃ . The equality in line (6.18) follows from the definition of λ̂. The
equality in line (6.19) follows from the definition of δ.

7 Conclusion

The online primal-dual technique (surveyed in [5]) has proven to be a widely and sys-
tematically applicable method to analyze online algorithms for problems expressible
by linear programs. This paper develops an analogous technique to analyze online al-
gorithms for problems expressible by nonlinear programs. The main difference is that
in the nonlinear setting one can not disentangle the objective and the constraints in
the dual, and hence the arguments for the dual have a somewhat different feel to them
than in the linear setting. We apply this technique to several natural nonlinear cover-
ing problems, most notably obtaining competitive analysis for greedy algorithms for
uniprocessor speed-scaling problems with arbitrary sum scheduling objectives that re-
searchers were not previously able to analyze using the prevailing potential function
based analysis techniques.

References

1. Im, S., Moseley, B., Pruhs, K.: A tutorial on amortized local competitiveness in online
scheduling. SIGACT News 42(2), 83–97 (2011)

2. Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K.: Online weighted flow time
and deadline scheduling. Journal of Discrete Algorithms 4(3), 339–352 (2006)

3. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM J. Com-
put. 39(4), 1294–1308 (2009)

4. Andrews, M., Antonakopoulos, S., Zhang, L.: Energy-aware scheduling algorithms for net-
work stability. In: INFOCOM, pp. 1359–1367 (2011)

5. Buchbinder, N., Naor, J.S.: The design of competitive online algorithms via a primal-dual
approach. Foundations and Trends in Theoretical Computer Science 3(2-3), 93–263 (2009)

6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York
(2004)



186 A. Gupta, R. Krishnaswamy, and K. Pruhs

7. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc.
IEEE Symposium on Foundations of Computer Science, pp. 374–382 (1995)

8. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. Journal
of the ACM 54(1) (2007)

9. Bansal, N., Bunde, D.P., Chan, H.L., Pruhs, K.: Average rate speed scaling. Algorith-
mica 60(4), 877–889 (2011)

10. Bansal, N., Chan, H.-L., Pruhs, K., Katz, D.: Improved bounds for speed scaling in devices
obeying the cube-root rule. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikolet-
seas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 144–155. Springer,
Heidelberg (2009)

11. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM
Transactions on Algorithms 3(4), 49 (2007)

12. Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power function. In: ACM-
SIAM Symposium on Discrete Algorithms, pp. 693–701 (2009)

13. Lam, T., Lee, L., To, I., Wong, P.: Speed scaling functions based for flow time scheduling
based on active job count. In: European Symposium on Algorithms, pp. 647–659 (2008)

14. Andrew, L.L.H., Lin, M., Wierman, A.: Optimality, fairness, and robustness in speed scaling
designs. In: SIGMETRICS, pp. 37–48 (2010)

15. Chan, H.L., Edmonds, J., Lam, T.W., Lee, L.K., Marchetti-Spaccamela, A., Pruhs, K.: Non-
clairvoyant speed scaling for flow and energy. In: Symposium on Theoretical Aspects of
Computer Science, pp. 255–264 (2009)

16. Chan, S.H., Lam, T.W., Lee, L.K.: Non-clairvoyant speed scaling for weighted flow time. In:
European Symposium on Algorithms, pp. 23–35 (2010)

17. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual circuits with
applications to load balancing and machine scheduling. Journal of the ACM 44(3), 486–504
(1997)

18. Awerbuch, B., Azar, Y., Grove, E.F., Kao, M.Y., Krishnan, P., Vitter, J.S.: Load balancing
in the Lp norm. In: IEEE Symposium on Foundations of Computer Science, pp. 383–391
(1995)

19. Albers, S.: Energy-efficient algorithms. Communications of the ACM 53(5), 86–96 (2010)
20. Caragiannis, I.: Better bounds for online load balancing on unrelated machines. In: ACM-

SIAM Symposium on Discrete Algorithms, pp. 972–981. ACM, New York (2008)
21. Azar, Y., Epstein, A.: Convex programming for scheduling unrelated parallel machines. In:

ACM Symposium on Theory of Computing, pp. 331–337. ACM, New York (2005)
22. Anil Kumar, V.S., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: A unified approach to

scheduling on unrelated parallel machines. Journal of the ACM 56(5), Art. 28, 31 (2009)
23. Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-cost network design with

(dis)economies of scale. In: IEEE Symposium on Foundations of Computer Science,
pp. 585–592 (2010)

24. Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling jobs with varying
parallelizability to reduce variance. In: ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 11–20 (2010)

25. Im, S., Moseley, B.: Online scalable algorithm for minimizing lk-norms of weighted
flow time on unrelated machines. In: ACM-SIAM Symposium on Discrete Algorithms,
pp. 95–108 (2011)

26. Anand, S., Garg, N., Kumar, A.: Resource augmentation for weighted flow-time explained
by dual fitting. In: ACM-SIAM Symposium on Discrete Algorithms (2012)


	Online Primal-Dual for Non-linear Optimization
with Applications to Speed Scaling

	1 Introduction
	2 Our Contributions
	2.1 Applications to Speed-Scaling Scheduling and Routing

	3 Related Work
	4 The Online Generalized Assignment Problem
	5 Application to Speed Scaling
	6 Routing with Speed Scalable Routers
	6.1 The Algorithm and Analysis

	7 Conclusion
	References




