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Preface

The 10th Workshop on Approximation and Online Algorithms (WAOA 2012)
focused on the design and analysis of algorithms for online and computationally
hard problems. Both kinds of problems have a large number of applications
from a variety of fields. WAOA 2012 took place in Ljubljana, Slovenia, during
September 13–14, 2012. The workshop was part of the ALGO 2012 event that
also hosted ESA, WABI, ALGOSENSORS, IPEC, ATMOS, and MASSIVE.

Topics of interest for WAOA 2012 were: algorithmic game theory, algorithmic
trading, coloring and partitioning, competitive analysis, computational advertis-
ing, computational finance, cuts and connectivity, geometric problems, graph
algorithms, inapproximability results, mechanism design, natural algorithms,
network design, packing and covering, paradigms for the design and analysis
of approximation and online algorithms, parameterized complexity, real-world
applications, and scheduling problems. In response to the call for papers we
received 60 submissions, one of which was subsequently withdrawn. Each sub-
mission was reviewed by at least three referees. The submissions were mainly
judged on originality, technical quality, and relevance to the topics of the con-
ference. Based on the reviews, the Program Committee selected 22 papers. This
volume contains final revised versions of these papers as well as an abstract of
the invited talk.

We would like to thank all the authors who submitted papers to WAOA
2012, and our plenary invited speaker Nikhil Bansal for accepting our invitation.
Furthermore, we are grateful to the local organizers of ALGO 2012: Andrej
Brodnik (Co-chair), Uroš Čibej, Gašper Fele-Žorž, Matevž Jekovec, Jurij Mihelič,
Borut Robič (Co-chair), and Andrej Tolič.

March 2013 Thomas Erlebach
Giuseppe Persiano
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The Primal-Dual Approach

for Online Algorithms

Nikhil Bansal

Eindhoven University of Technology, Eindhoven, The Netherlands
n.bansal@tue.nl

Abstract. Online algorithms deal with settings where the input data
arrives over time and the current decision must be made by the algo-
rithm without the knowledge of future input. In the last few years, the
online primal-dual approach, pioneered by Buchbinder and Naor [4], has
emerged as a very powerful and general method to systematically design
and analyze online algorithms.

In this talk, I will give an overview of the method and show how
it unifies and simplifies various previous results. I will also describe the
recent successes of this approach in addressing some classic problems such
as weighted paging and the randomized k-server problem [2,1]. Finally,
we will also see some recent extensions of the method [3,6,5], beyond the
original framework of Buchbinder and Naor [4].

Based on joint works with Niv Buchbinder, Aleksander Madry and
Joseph (Seffi) Naor.

References

1. Bansal, N., Buchbinder, N., Madry, A., Naor, J.: A polylogarithmic-competitive
algorithm for the k-server problem. In: Foundations of Computer Science, FOCS
(2011)

2. Bansal, N., Buchbinder, N., Naor, J.: A primal-dual randomized algorithm for
weighted paging. In: Proceedings of the 48th Annual IEEE Symposium on Founda-
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3. Bansal, N., Buchbinder, N., Naor, J.: Towards the randomized k-server conjecture:
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4. Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing
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explained by dual fitting. In: SODA, pp. 1228–1241 (2012)
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Independent Set with Advice:

The Impact of Graph Knowledge

(Extended Abstract)

Stefan Dobrev1, Rastislav Královič2, and Richard Královič3,4

1 Institute of Mathematics, Slovak Academy of Sciences, Bratislava, Slovakia
2 Department of Computer Science, Comenius University, Bratislava, Slovakia

3 ETH Zurich, Switzerland
4 Google Zurich, Switzerland

Abstract. We are interested in online graph problems where the knowl-
edge of the underlying graph G (all arriving vertices are from G) has a
profound impact on the size of the advice needed to solve the problem
efficiently. On one hand, we show that, for sparse graphs, constant-
size advice is sufficient to solve the maximum independent set problem
with constant competitive ratio, even with no knowledge of the under-
lying graph. On the other hand, we show a lower bound of Ω(log(n/a)/
log log(n/a)) on the competitive ratio of finding a maximum indepen-
dent set in bipartite graphs if no knowledge of the underlying graph is
available and if the advice is of size a. We complement the lower bounds
by providing corresponding upper bounds.

1 Exposition and Motivation

Given a simple undirected graphG = (V,E), a subset I ⊆ V is called independent
if the subgraph induced by I does not contain any edges, i.e., ∀u, v ∈ I : {u, v} �∈
E. The problem of finding the independent set of maximum cardinality (MIS) is
one of the most studied computational problems on graphs with applications in
many areas ranging from computer vision, to coding theory, molecular biology,
scheduling, or wireless networking, to name just a few. However, this problem is,
in general, computationally hard: in [21] it is proven that, unless NP = ZPP ,
the problem1 cannot be approximated within a factor of n1−ε for any ε > 0 (i.e.,
there is no polynomial-time algorithm that would always find an independent
set of size at least opt/n1−ε).

We are interested in the online version of the problem. In online problems,
the input is not known to the algorithm at the beginning, instead, it arrives
piecewise. The algorithm must present a partial output to each chunk of the
input before reading next chunk, and cannot revise its decision afterwards. More
formally, the input x is a sequence of requests x = (x1, . . . , xn). The output y
is a sequence of answers y = (y1, . . . , yn) computed by the algorithm in such a

1 Actually, the paper proves inapproximability of Maximum-Clique problem, where
the aim is to find the subset of vertices with largest cardinality that form a clique.
However, the two problems are obviously equivalent w.r.t. approximation.

T. Erlebach and G. Persiano (Eds.): WAOA 2012, LNCS 7846, pp. 2–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Independent Set with Advice: The Impact of Graph Knowledge 3

way that each yi is a function of x1, . . . , xi (for randomized algorithms also a
function of the random bits used so far). The goal is to maximize or minimize
a cost function defined over the whole output y. A standard way of measuring
the quality of online algorithms is to compare the (worst case) performance of
the algorithm to the optimal solution of the instance (i.e., with known input).
For maximization problems, the definition of competitive ratio states that an
algorithm is c-competitive if for any input the cost of the output produced by
the algorithm is at least2 1/c·opt. Note that in online problems the main concern
is not the computational complexity, but the inherent loss of performance due
to the unknown future. Online computation has received considerable attention
over the past decades as a natural way of modeling real-time processing of data.
For example, in resource scheduling problems a server has to handle a stream
of requests (e.g., phone calls), each of them requiring certain subset of available
resources (e.g., lines). The goal of maximizing the throughput of the server leads
naturally to an online version of MIS (see e.g., [25] in the context of scheduling
intervals). For an exposition to online problems, we refer the reader to [5].

When dealing with the online graph problems (and in particular with the
online MIS), there are several ways how the input can be presented to the al-
gorithm. A natural way (which we shall refer to as unknown graph model) is to
present the graph vertex by vertex: Each time a new vertex vi arrives, the algo-
rithm learns the edges connecting vi to already presented vertices vi, . . . , vi−1.
Before the next vertex vi+1 is presented, the algorithm must decide whether the
vertex vi will be included in the resulting independent set or not. Obviously, no
deterministic algorithm can attain a good competitive ratio: consider an instance
where at the beginning, a isolated vertices are presented. If the algorithm does
not include any one of them to the independent set, no more vertices arrive.
On the other hand, if the algorithm includes some of them to the independent
set, b � a vertices arrive such that they form a complete bipartite graph with
the first a vertices. In [6] authors show that the competitive ratio of online MIS
on the class of σ-bounded disk graphs is Θ(min{n, σ2}) where the upper bound
is attained by a simple first fit algorithm, and the lower bound holds also for
randomized algorithms3.

The inherent difficulty of the unknown graph model led to the study of various
other models. In [2], authors use what we shall refer to as the known supergraph
model: the graph G presented to the algorithm is a subgraph of some larger
graph H that is known in advance to the online algorithm. Thus the situation
is as follows: first, the graph H = (V ′, E′) is presented to the algorithm with
V ′ = v1, . . . , vm. Each request xi ∈ {1, . . . ,m} represents a vertex, and the
algorithm must decide whether to include vertex vxi in the independent set
or not. The optimal solution is the largest independent set of the subgraph

2 Some works use a slightly relaxed definition by allowing an additive constant, i.e.,
the algorithm is c-competitive if there exists a constant α such that the cost of the
worst-case output (for randomized algorithms the worst-case expected output) is at
least 1/c · opt− α.

3 If the disk representation is given, the bound is Θ(min{n, log σ}).
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of H induced by the presented vertices. This model was motivated by routing
problems in networks, where the topology of the network is usually known to
the algorithms but the routing requests are not. It was proven in [2] that, even
if the algorithms can use randomization, the competitive ratio is Ω(nε) for some
constant ε. The conference version of the paper, [1], mentions a similar lower
bound even in the case when preemption is allowed (i.e., the algorithm may, at
a later stage, remove a vertex from the independent set in construction, but it
cannot be reinserted). In [7], an O(log n)-competitive algorithm for online MIS
in chordal graphs is presented using the known supergraph model.

A number of other modifications of the unknown graph model has been stud-
ied. In [20], a model is considered where the algorithm is allowed to maintain
multiple independent sets under construction, and each vertex can be assigned
to at most r(n) different sets. The largest set is chosen as the final output. The
competitive ratio in this model is shown to be Θ(n/ logn) when r(n) is polyno-
mial in n, and Θ(n) if r(n) is constant. In a more powerful inheritance variation,
a lower bound Ω(n/ log3 n) is proven for polynomial r(n). The graphs used as
lower bounds are split graphs (vertex set can be partitioned into an indepen-
dent set and a clique), and at the same time interval graphs (subclass of chordal
graphs). In yet another model from [13] the algorithm starts from a complete
graph on n vertices, and each request removes an edge; the algorithm is allowed
to add to the constructed independent set endpoint(s) of the removed edge.
Again, in this model, a competitive ratio is bounded from below by (n − 1)/2
and Δ where Δ is the maximum degree of the resulting graph. Still another
model, from [9], considers the requests containing not one vertex, but a subset
of vertices (together with all induced edges); the authors give an algorithm with
a competitive ratio O(n

√
t(n)/ logn), where t(n) is the number of requests, and

n is the number of vertices. In [19], a variation of the unknown graph model, in
which the algorithm is at the beginning presented with a graph isomorphic to
the presented graph G, is studied in the context of online coloring problems. The
author also addresses the independent set: the algorithm is required to produce
an online coloring of the input graph, and the largest color class is taken as the
solution. Even with this relaxation, the competitive ratio of deterministic algo-
rithms is proven to be Ω(n), and Θ(n/ logn) for randomized algorithms against
oblivious adversary.

Several modifications of the unknown graph model share the same high-level
idea: to enhance the online algorithm with some a-priori information about the
input, either in general by using restricted class of input graphs or per-instance
by providing a supergraph or an isomorphic graph. In the context of online and
distributed algorithms where a crucial role is played by some missing informa-
tion (about topology of the communication network or the future input), the
notion of advice has recently become popular as a general way to treat the ad-
ditional information. The idea of the approach is to augment the algorithm by
some information about the instance, and to study the relation of the amount
of the added information to the solution quality. There are no computational
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constraints on the added information, only that it is a function of the instance
and the algorithm at hand.

In the context of online algorithms, the original model from [11] has been
developed in two ways: the model from [12] considers that the algorithm receives,
with each request, a b-bit string of advice (a function of the whole input and
the algorithm). Hence, the case with b = 0 corresponds to the classical online
model, and the case with b = �log |A|�, where A is the action space of the
algorithm, always gives an optimal algorithm (since the particular answer may
be encoded in the advice of any request). In the model from [4] (see also [3, 22]),
the whole advice is given to the algorithm at the beginning in a form of a binary
string. A trivial upper bound, apart from specifying each action in n�log |A|�
bits, is to encode the whole input using the advice of size that corresponds to
the Kolmogorov complexity of the input instance. However, as it is shown in
[3, 4, 22], these trivial bounds can be in many cases substantially improved.

Our choice for the second model is mainly due to the fact that it makes it
possible to analyze sublinear advice. While for problems where there are at most
two possible actions for each request (as is the case of MIS; every vertex is either
included in the set or not), one bit of advice per request is already sufficient to
achieve optimum, it is interesting to know what can be done with smaller advice.
We show, e.g., that in the case of bipartite graphs, O(log logn) bits of advice
already bring the competitive ratio down from Ω(n) to O(log n).

In a related context of distributed algorithms, in [14, 16–18, 23] the advice
is a function that assigns a binary string to each node of a communication
network. The only information about the network known to each node is its
local information, and the advice string. The parameter under consideration
is either the sum or the maximum of the lengths of the strings in all nodes,
and the main question is how much advice is needed to (efficiently) perform
communication tasks such as broadcasting in (radio) networks, graph searching,
computing a proper vertex coloring of the network, or computing the spanning
tree of the network. In [10, 15], there is a mobile entity (agent) performing some
task in the network (e.g., exploration), and the advice is a binary string given
to the agent based on the topology.

Our Contribution. In this paper we focus on the online MIS in the unknown
graph and known supergraph models. While the first intuition is that the knowl-
edge of the supergraph may be significant additional information4 , it is easy
to see that it does not affect the worst-case performance of deterministic algo-
rithms, even restricted to a class of forests (which are planar and bipartite).
Indeed, let the underlying graph be a forest containing m stars with k leaves.
First, centers of the stars c1, c2, . . . are presented to the algorithm one by one
until it selects some ci for the first time. Then the leaves of the i-th star are
presented, and the input ends. Because the competitive ratio is parameterized
by the size of the presented graph G (and not in the size of the supergraph H),

4 Although without any restrictions on the structure or size of the supergraph, one can
always construct a “universal” supergraph that fools any deterministic algorithm;
with randomized algorithms, however, the situation is more subtle (see [2]).
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it can be easily verified that, even in the milder definition involving the additive
constant, the competitive ratio is Ω(n).

We are interested in the question to what extent the known supergraph helps
in reducing the amount of advice needed to obtain some given solution quality.
We use the model of advice from [3]: at the beginning, the algorithm can access
the result of any function of the actual input that returns a binary string of
length s(n). Based on this advice, the algorithm then proceeds as a standard
online algorithm. Note that this approach is similar to [19] and [20], however,
in our case there are 2s(n) partial solutions constructed, and the largest one is
chosen as output.

We show that in the class of sparse graphs, the knowledge of the super-
graph does not help substantially: even in the unknown graph model, advice
of constant size is sufficient to obtain constant competitive ratio on graphs with
O(n) edges. The situation is, however, different in the class of bipartite graphs.
With the known supergraph, a competitive ratio of 2 can be achieved with one
bit just by specifying the bipartition with the majority of presented vertices.
On the other hand, we show that in the unknown graph model the compet-
itive ratio of any deterministic algorithm with s(n) bits of advice is at least
Ω(log(n/s(n))/ log log(n/s(n))). The bounds are complemented with the corre-
sponding opposite bounds.

2 Sparse Graphs

First let us observe the simple fact that if there is a way to construct a proper
vertex coloring (i.e. a coloring of vertices where each edge has the endpoints
colored by different colors) in the respective online model, then the s(n) bits of
advice can specify the largest of the first 2s(n) color classes.

Theorem 1. Let G be a class of graphs such that each n-vertex graph G ∈ G
is online colorable (in the respective model) in such a way that the union of the
first k(n) color classes contains at least α(n) vertices. Then there is an online
MIS algorithm using �log k(n)� bits of advice with competitive ratio nk(n)/α(n).

In the known supergraph model the presented graph is a subgraph of a known
graph. Hence, if the supergraph is k-colorable, we immediately have results for
the advice complexity; e.g., 2 bits of advice are sufficient to reach competitive
ratio of 4 if the known supergraph is planar (since planar graphs are 4-colorable).
There are numerous results on (online) vertex coloring that translate to the
advice bounds in a similar way, see e.g., [8, 24, 26] and references therein.

Although sparse graphs (even trees) are not online colorable with constant
number of colors, the first fit (FF) algorithm where a new vertex is assigned
the smallest color different from the (assigned) colors of its neighbors, is good
enough to apply Theorem 1 on sparse graphs in the unknown graph model.

Lemma 2. Let G be a n-vertex graph with at most cn edges. The FF algorithm
produces in the unknown graph model a coloring of G such that the union of
color classes 1, 2, . . . , 2c contains at least n/2 vertices.
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Proof. Let us call an edge e a forcing edge if there is a vertex v such that

– when v arrives, it is assigned color larger than 2c, and
– e is an edge incident to v, leading to a vertex that has arrived before

Let S be the set of vertices given a color larger then 2c when FF is run on a
graph with at most cn edges. As the sets of forcing edges of different vertices
are disjoint and each vertex from S has at least 2c forcing edges, it must hold
2c|S| ≤ cn, hence |S| ≤ n/2. This means that the number of vertices of color at
most 2c is at least n/2. 
�

Corollary 3. Online MIS can be solved in the unknown graph model on graphs
with at most cn edges using advice of 1 + �log c� bits and achieving competitive
ratio 4c.

Hence, for c independent of n, with O(log c) bits of advice, it is possible to reach
a competitive ratio of O(c) on graphs with at most cn edges. However, improving
the ratio to o(c) requires Ω(n) bits:

Theorem 4. Let A be an algorithm solving online MIS in the unknown graph
model on graphs with at most cn edges, and with s(n) bits of advice. Then the
worst-case competitive ratio of A is at least c

2c s(n)
n + 2c

n (1+2 log c)+1
.

3 Lower Bound for Bipartite Graphs

Recall that in the known supergraph model, one bit of advice is sufficient to
achieve competitive ratio 2 on bipartite graphs. The main result of this section
is the following theorem:

Theorem 5. Consider any subadditive function s(n) < n, and any algorithm A

solving online MIS in the unknown graph model on bipartite graphs with advice
s(n). Then the worst-case competitive ratio of A over n-vertex bipartite graphs

is Ω
(

log(n/s(n))
log log(n/s(n))

)
.

Hence, not only it is not possible to achieve a constant competitive ratio using
constant advice, but Ω(n) bits of advice are needed to do so.

To prove the theorem we construct a class of bipartite graphs {Gk,a}, such that
the number of vertices of Gk,a is n = a(k + 1)2k+1, and the size of maximum
independent set of Gk,a is a(k + 1)2k. We consider a particular set of input
instances Ck,a based on a graph Gk,a that differ by the order in which the
vertices are presented to the algorithm.

Consider an arbitrary algorithm A with at most a bits of advice, and com-
petitive ratio r. Since the advice partitions the set of input instances into 2a

classes such that within each class the instances are processed deterministically,
it follows that there is a deterministic algorithm Adet, and a subset of C ⊆ Ck,a

of size |C| ≥ |Ck,a|/2a such that Adet achieves competitive ratio r over instances
from C. The main idea of the proof is to consider an arbitrary deterministic
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algorithm Adet, and any subset C of size at least |Ck,a|/2a, and to show that Adet
constructs an independent set on size O(a2k log k) on some instance from C.

The theorem the follows by chosing k to be the largest integer such that

φ(k) ≤
√

n
s(n)+1 , where φ(x) := (x+ 1)2x+1, and letting a =

⌈
n

φ(k)

⌉
. The graph

Gk,a then has aφ(k) ≥ n vertices, and the competitive ratio is Ω
(

log(φ(k))
log log(φ(k))

)
.

Due to space constraints, we omit the computations.

The lower bound graph Gk,a (we shall omit the superscripts from now on)
is a bipartite graph with partitions L and R, consisting of a copies of graph
Gε (ε denoting the empty string) Gε(1), Gε(2), . . .Gε(a). Each Gε is constructed
hierarchically from components Gα for α ∈ {0, 1}∗k as follows (see Fig. 1):

G000 G001 G010 G011 G100 G101 G110 G111

G00 G01

G0

G10 G11

G1

G

vertices of partition L vertices of partition R

Fig. 1. The basic element Gε of the lower bound graph. All edges are shown between
vertices of level 1 and 0. At higher levels only schematic connections to subtrees are
shown, the edges to all vertices of the opposite partition in the whole subtree are still
present. The left vertex/column arrives before the corresponding right vertex/column.

– Level 0: Gα where α ∈ {0, 1}k consists of a single edge
– Level i: Gα where α ∈ {0, 1}k−i is obtained by

• taking two level i− 1 graphs Gα0 and Gα1

• adding two sets of 2i vertices Lα = {lj}2
i

j=1 ⊂ L and Rα = {rj}2
i

j=1 ⊂ R
• connecting lj to all vertices from R in Gα0

⋃
Gα1

⋃
Rα

• connecting rj to all vertices from L in Gα0

⋃
Gα1

⋃
Lα
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The construction is repeated for k levels. Note that at each level exactly 2k+1

vertices are added, resulting in (k+1)2k+1 vertices in Gε and n = a(k+1)2k+1.
Each graphGε can be represented by a complete binary treeHε of depth k, where
the leaves correspond to Gα with |α| = k, and each internal vertex vα ∈ Hε

represents the union of Lα and Rα. To distinguish between the vertices of the
graph and vertices of the tree, we shall call the latter nodes. Hα will denote the
subtree rooted at vα. Let H =

⋃a
i=1Hε(i). The weight w(v) of each node v ∈ H

is the size of the maximum independent set of the set of vertices associated
with v. Hence w(v) = 2i for nodes at level i. Clearly, w(v) is an upper bound
on how much the nodes of v can contribute to the independent set produced by
the algorithm.

The instances Ck,a are defined by the order in which the vertices are presented
to the algorithm. For each node v ∈ H , the associated vertices of G arrive as a
block, not interleaved with vertices associated with other nodes of H . For each
leaf v in H , there are two possible orders for the vertices associated with v to
arrive. We assign label l(v) ∈ {0, 1}, based on whether the first vertex of v to
arrive is from L or from R, respectively. Taken over all leaves, this represents

2a2
k

possible configurations. The label of an internal node vα ∈ H is equal to the
label of the leftmost leaf in Hα (i.e., the first vertex to arrive in Hα). The order of
arrival of the vertices associated with an internal node vα of H is fixed: First to
arrive are the vertices of the same partition as was the first to arrive in vα0. The
nodes also arrive in fixed order, with the vertices of Hε(i) arriving in postorder,
and before the vertices of Hε(i + 1). The set Ck,a is hence fully described by a
configuration of the leaf vertices. Since it is irrelevant which partition is L and

which is R and the graphs Gε(i) are disjoint, we have |Ck,a| = 2a(2
k−1).

Let us now consider an arbitrary deterministic algorithm Adet, and an ar-

bitrary subset C ⊆ Ck,a of of size |C| ≥ |Ck,a|/2a = 2a(2
k−2). We show that

within C there exists an instance on which Adet selects an independent set of
size O(a2k log(k)). We prove this by presenting Algorithm 1 constructing the
configuration for which we can prove the desired bound.

In order to proceed with the arguments, we need to introduce the following
notation:

– Node vα is dead at time t if the algorithm has already accepted vertices from
different partitions in Gα. A node which is not dead is alive.

– Node vα (or subtree Hα) is empty at time t if the algorithm has not selected
any vertex from Gα into the independent set. Otherwise vα (Hα) is full.

Suppose first that Adet selects exactly one vertex from each leaf node of H , and
C initially contains all instances Ck,a. Consider now a leaf node vα and its closest
ancestor vβ such that vα ∈ Hβ1. Since Adet selects a vertex from every leaf, vβ0 is
full and in half of the instances the vertices selected in vα and vβ0 are in different
partitions, making vβ and all its ancestors dead. Applying this argument over
all a(2k − 1) such leaf nodes (there are only a leafs which have no such vβ as
they are the leftmost ones in their respective Hε) yields a configuration in which
Adet has selected only a2k vertices.
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In general,the situation is complicated by the fact that Adet may decide, in
order to avoid killing a low-level node, not to select any vertex from a given
node. Moreover, since the initial C is an arbitrary subset of Ck,a, the fraction of
instances that kill the parent after selecting some vertex from a given node may
not be one half.

The finding of a bad instance can be viewed as a game between the algorithm
and an adversary that selects the orientation of each presented node5. On one
hand, the adversary tries to kill as many nodes as possible, as only alive nodes
contribute to the independent set, on the other hand it must keep the working
set of configurations sufficiently large. The adversary handles this by using a
threshold t, whose distance (measured on logarithmic scale) from 1/2 is directly
proportional to the size of the node that would be killed: If the fraction of
instances consistent with the orientation that kills the node is at least t, the
adversary sets that orientation. Otherwise, it lets the node survive in order
to retain enough instances in its working set. The analysis uses an accounting
scheme, where the algorithm starts with a credit a, and gets credit when a vertex
is killed, but must pay cost to ensure a vertex survives; at the end the account
must be non-negative and the weight of the alive nodes determines the size of
the independent set.

We shall now present the above ideas more formally. Let I denote the vertices
accepted by the algorithm into the independent set. The next lemma shows that
the algorithm cannot win too much by not selecting vertices from a presented
node. In fact, for the analysis it is sufficient to consider the “decision” nodes W ′

that are alive and have both children full.

Lemma 6. Let W denote the union of the sets of full alive nodes and full leaves
and let W ′ be those nodes from W whose both children are full. Let w(S) denote
the sum of weights of the nodes in S. Then it holds 3w(W ′)+2k+1 ≥ w(W ) ≥ |I|.

Proof. Consider a node v ∈ W \W ′. We charge the weight of v to its closest
ancestor u ∈ W ′. The nodes v form two paths (one in each child subtree of v),
since branching at a node u′ would mean that u′ is a closer ancestor to v than
u. As the weights double in each layer, the weight of each of these paths sums
up to at most w(u). This way, each node of W ′ is charged at most three times
its weight.

Let W ′′ be the set of nodes from W \ W ′ which do not have an ancestor
in W ′. We have 3w(W ′) + w(W ′′) > w(W ). We show by induction on height
h that for each v ∈ W ′′ of level h, w(W ′′⋂Hv) ≤ 2h+1. In the base case
h = 0 we have a single leaf of weight 2, hence the statement trivially follows.
Consider now an internal node v at level h. There are two cases: either v is
alive or it is dead. In the case v is alive, from the fact that v /∈ W ′ it follows
that one of its children is empty. Hence w(W ′′⋂Hv) = w(v) + w(W ′′⋂Hv′),

5 For a leaf node, this means selecting the order in which the vertices arrive. For an
internal node, this means flipping the orientation of one child’s subtree. Note that
since the partitions L and R are symmetric, this can be done without affecting the
algorithm’s behavior.
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Algorithm 1. Finding the bad instance

1: Let C be the set of configurations for which a given deterministic algorithm applies.
2: for all nodes vα ∈ Hε(i) in the traversal order specified above do
3: if vα is not a leaf then
4: Let C0 and C1 be the partitioning of C into sets of configurations consistent

with
l(vα0) = l(vα1) and l(vα0) �= l(vα1), respectively.

5: if vα is dead, or (vα0 or vα1 is empty) then
6: Set C to be the larger of C0 and C1.
7: else � hence vα is alive and both of its children are full.
8: Let Cx be the configurations in which the algorithm has selected in Gα

vertices from both partitions.
9: Let j be the level of the highest-level live ancestor of vα.
10: Set t(j) satisfying log(tj) = −1− 1/2k−j .
11: if |Cx|/|C| > t(j) then � note that Cx might be empty
12: Set C ← Cx. � this kills vα and all its ancestors
13: else
14: Set C ← C1−x. � vα survives, but C has not decreased much
15: end if
16: end if
17: end if
18: Deliver the vertices of Gα(i) and observe algorithm’s action.
19: end for
20: Output the configuration consistent with what has happened so far.

where v′ is the full child of v′. By induction hypothesis w(W ′′⋂Hv′) ≤ 2h. As
w(v) = 2h, the induction step follows. In the case of v being dead, let v′ and v′′

be its two children. Applying the induction hypothesis yields w(W ′′⋂H(v)) =
w(W ′′⋂H(v′)) + w(W ′′⋂H(v′′)) ≤ 2h + 2h = 2h+1.

Finally, note that in a dead internal node, the algorithm cannot accept any
vertices into the independent set. An alive internal node v consists of two parti-
tions, each containing w(v) vertices, hence in v the algorithm can accept at most
w(v) vertices. Only in leaves can the algorithm accept vertices even if the node
becomes dead – but such leaves are included in W . This yields w(W ) ≥ |I|. 
�

Let p (pass), d (dead) and l (live) denote the number of times the lines 6, 12
and 14 have been executed, respectively. Let D = {v ∈ H : line 12 was applied
when processing v} and let L = {v ∈ H :line 14 was applied when processing
v}. Note that L is actually the set of decision nodes W ′ from Lemma 6, since
a node v which remained alive after processing will never be killed later. This
is because only v’s children can kill v, and those have been processed before
v. Let jv for v ∈ (D ∪ L) be the level j from line 9 when processing v. For
a node v ∈ L, let us define cost(v) = log(1 − t(jv)) + 1. Similarly, for a node
v ∈ D, define credit(v) = − log(t(jv)) − 1 = 2j−k. Analogously, for a set S,
define cost(S) =

∑
v∈S cost(v) and credit(S) =

∑
v∈S credit(v). The next lemma

bounds the overall cost that the algorithm may pay:
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Lemma 7. cost(L) < a(k + 1)

Let us now find an upper bound on the size of the independent set accepted
by Adet. From Lemma 6 we know that it is sufficient to bind w(L). Hence, the
problem now becomes ”Maximize w(L) while satisfying cost(L) < a(k + 1)”.

Note that if a node v ∈ L has an alive parent u which is not in L, the set
L′ = L ∪ {u} \ {v} has the same cost but higher weight. Hence, it is sufficient
to consider sets L in which ∀u, v such that u is an ancestor of v, the whole path
from v to u is in L. Therefore, L induces in H a set of r rooted trees {Ti}ri=1. Let
vi is the root of Ti. Then, for every node u ∈ Ti, the highest-level live ancestor of
u at the moment u is processed is either vi or its ancestor, hence j(u) ≥ level(vi)
and therefore cost(Ti) ≥ |Ti|cost(vi). As Ti is a subtree of a binary tree and the
weights of nodes halve as the levels decrease, we obtain w(Ti) ≤ log(|Ti|+1)w(vi)
Since cost(.) is a concave function, w(L) is maximized when r = a and all vi
are at the top level k, with |Ti| = (k + 1)/cost(vi) = (k + 1)/(log(3) − 1).

Using w(vi) = 2k gives w(L) ≤ a log
(

k+1
log(3)−1 − 1

)
2k ∈ O(a2k log(k).) Applying

Lemma 6 yields |I| ∈ O(a2k log(k)), and Theorem 5 follows.

4 Upper Bound for Bipartite Graphs

While Theorem 5 indicates that quite a lot of advice is needed to approach
a competitive ratio one, it seems rather weak when relatively little advice is
available. In this section we show that it is not weak at all, and very little advice
is sufficient to bring the competitive ratio to O(log n).

For a fixed input graph G with bipartitions L and R, and a fixed arrival order,
let us observe the connected components Ci formed by the vertices presented so
far. Each of them is a connected bipartite graph, and the algorithm knows its
bipartition. However, it does not know which partition of Ci corresponds to L.
Let each Ci have a distinguished partition PCi maintained by the algorithm. Let
us assign to each vertex v, and each respective component, a meta-level m(v)
using Algorithm 2.

Consider a component C of meta-level l and let v be the first vertex of meta-
level l in C, i.e., the vertex that formed C as a component of meta-level l on
line 10 of Algorithm 2. By construction the algorithm can, when creating a new
component C, always choose the PC in a consistent way. Let ms(i) denote the
minimal size of a component of meta-level i. By construction, we have recurrences
ms(1) = 1 and ms(i+1) ≥ 2ms(i)+1, yielding ms(i) ≥ 2i−1. This immediately
gives us:

Lemma 8. ∀v ∈ G : ms(v) ≤ log(n+ 1)

Let l be a fixed meta-level and let {C1, C2, . . . , Cr} be the set of connected
components of meta-level l. Let Vi be the set of vertices of meta-level l in Ci (note
that Vi might be disconnected) and let V (l) =

⋃r
i=1 Vi. Let I(l) =

⋃r
i=1 Vi

⋂
PCi

and Ī(l) =
⋃r

i=1 Vi
⋂
PCi , where P̄ denotes the opposite partition to P . Since

the components Ci are disjoint, both I(l) and Ī(l) are independent sets, even
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Algorithm 2. Algorithm Meta-levels

1: if a newly arriving vertex v is singleton then
2: Set m(v)← 1, and m({v})← 1
3: else if v is connected to a single connected component C then
4: Set m(v)← m(C), and m(C

⋃
{v})← m(C)

5: else
6: Let v be connected to components C1, C2, . . . , Cs, ordered by meta-levels in

non-increasing order.
7: if m(C1) > m(C2) then
8: Set m(v)← m(C1) and m({v}

⋃
C1

⋃
C2

⋃
. . . Cs)← m(C1).

9: else � m(C1) = m(C2)
10: Set m(v)← m(C1) + 1 and m({v}

⋃
C1

⋃
C2

⋃
. . . Cs)← m(C1) + 1.

11: end if
12: end if

though PCi ’s might belong to different partitions of G. Knowing l, a single bit
of advice telling which of I(l) and Ī(l) is bigger is sufficient for the algorithm to
select an independent set of size V (l)/2.

Let m be the meta-level with the maximal number of vertices. From Lemma 8
we have V (l) ≥ n/ log(n + 1). Therefore, the algorithm that uses 1 + log logn
bits of advice to identify the meta-level m with the largest V (m), and the larger
of I(m) and Ī(m), selects an independent set of size O(n/ logn), yielding.

Theorem 9. O(log logn) bits of advice6 are sufficient to achieve competitive
ratio of O(log n) for the online independent set in bipartite graphs.

Consider now the case that a bits of advice are available, with a ≥ log logn. In
such case, the algorithm can use this advice to learn the orientation of meta-
components and improve the competitive ratio.

Theorem 10. There is an algorithm that using a ≥ log logn bits of advice
achieves competitive ratio O(log(n/a)) for the online independent set problem in
bipartite graphs.

5 Conclusion

We were interested in the relation of the competitiveness of online MIS in un-
known graph and known supergraph models in terms of advice complexity. With-
out any advice, the competitive ratio is Ω(n) in both models, even restricted to
sparse bipartite graphs. We showed that in sparse graphs, constant advice is
sufficient in both models to achieve a constant competitive ratio. In bipartite
graphs, however, the models differ significantly since 1 bit of advice is sufficient
to achieve competitive ratio 2 in known supergraph model, whereas Ω(n) bits
are needed to achieve a constant competitive ratio in the unknown graph model.

6 Since n is not known, a self-delimited encoding will be used, at a cost of small
constant factor increase in the number of bits used.
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The use of the advice as a general way to measure the relevant information
about unknown input is an attractive alternative to ad-hoc solutions. Although
not practical in its general form (e.g., no computability constraints), it may help
in characterizing the key structural properties that affect the performance of
online algorithms.
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Abstract. This paper deals with the problem of computing, in an online
fashion, a maximum benefit multi-commodity flow (onmcf), where the
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We present an online, deterministic, centralized, all-or-nothing, bi-
criteria algorithm. The competitive ratio of the algorithm is constant,
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We study the problem of computing a multi-commodity flow in an online setting
(onmcf). The network is fixed and consists of n nodes and m directed edges
with capacities. The adversary introduces flow requests in an online fashion.

A flow request rj is specified by the source node sj , the target node tj , the
demand dj , i.e., the amount of flow that is required, and the benefit bj , i.e., the
credit that is given for a served request.
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request rj is fully served, otherwise, the credit is zero. Given a sequence of flow
requests, the goal is to compute a multi-commodity flow (mcf) that maximizes
the total benefit of fully served requests. Our algorithm can deal with high
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capacity.
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algorithm is O(1)-competitive. The algorithm violates edges capacities by an
O(log n) factor.

We show how to extend the algorithm so that it handles two types of flow
requests: (i) low demand requests that must be routed along a path, and (ii)
high demand requests that may be routed using a multi-path flow.

Finally, two extensions are discussed: requests with known durations and ma-
chine scheduling.

1.1 Previous Work

Online multi-commodity flow was mostly studied in the context of single path
routing. The load of an edge e in a network is the ratio between the flow that
traverses e and its capacity.

Online routing was studied in two settings: (1) throughput maximization, i.e.,
maximizing the total benefit gained by flow requests that are served [1–3], and
(2) load minimization, i.e., routing all requests while minimizing the maximum
load of the edges [4, 5, 2, 6].

In these two settings the following variants are considered: (1) permanent
routing [4, 2, 3], (2) unknown durations [5], and (3) known durations [1, 3, 6].

Load Minimization. In the case of permanent routing, Aspnes et. al [4] designed
an algorithm that augments the edge capacities by a factor of at most O(log n)
w.r.t. a feasible optimal routing. Buchbinder and Naor [2] obtained the same
result by applying a primal-dual scheme. This result can be extended to requests
with high demands. The extension is based on a min-cost flow oracle that replaces
the shortest path oracle.

Aspnes et. al [4] also showed how to use approximated oracles to allocate
Steiner trees in the context of multicast virtual circuit routing. They obtained
a competitive ratio of O(log n). Recently Bansal et.al [6] extended this result
to bi-criteria oracles and showed how to embed d-depth trees and cliques in
the context of resource allocation in cloud computing. In the case of cliques,
they required that the pairwise demands are uniform and smaller than the edge
capacities. For the case of clique embedding they obtained a competitive ratio of
O(log3 n·log(nT )) w.r.t. a feasible optimal solution, where T is the ratio between
the maximum duration to the minimum duration of a request.

Throughput Maximization. For the case of known durations, Awerbuch et. al [1]
designed an O(log(nT )) competitive algorithm, where T is the maximum request
duration. This algorithm requires that the demands are smaller than the edge
capacity by a logarithmic factor. Buchbinder and Naor [2, 7] introduced the
primal-dual scheme in the online setting and designed a bi-criteria algorithm
that is 1-competitive while augmenting edge capacities by a factor of O(log n)
for the case of unit demands and unit benefits.

Recently Even et. al [3] showed how to apply the primal-dual scheme to embed
a variety of traffic patterns in the context of Virtual Networks (VNETs). Their
goal is to maximize the profit of the served VNET requests. Some of the results
in [3] require solving the onmcf problem with high demands.
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1.2 Approaches for Online mcf with High Demands

We briefly discuss the weaknesses of approaches for solving the onmcf problem
that rely directly on previous algorithms.

The algorithms in [1, 2] route each request along a single path. They require
that the demand is smaller than the capacities. In order to apply these methods
one should augment the capacities in advance so that the requested demand is
bounded by the bottleneck along each path from the source to the destination.
This augmentation might be polynomial compared to the logarithmic augmen-
tation requirement by our algorithm.

Another option is to split the requests into subrequests of small demand so
that each subdemand is smaller than the minimum capacity. After that, a single-
path online routing algorithm [1, 2] can be used to route each of these subre-
quests. In this case, some of the subrequests might be rejected, hence violating
our all-or-nothing requirement.

We define the granularity of a flow as the smallest positive flow along an edge
in the network. Let ε denote the granularity of a flow. One can formulate the
multi-commodity problem as a packing linear problem and apply the methods
in [7, 8]. The edge capacity augmentation of these algorithms depends on the
log(1ε ), which might be unbounded. For example, consider the following network:
(1) The set of nodes is V = {u, v}, (2) there are two unit capacity parallel edges
(u, v). Consider a request with demand dj = 1 + ε, for ε < 1. If the flow oracle
computes an all-or-nothing flow that routes flow of size 1 on one edge and ε on
the other, then the granularity is ε.

In order to solve this granularity problem, one can apply [7, 8] and apply
randomized rounding to obtain an all-or-nothing solution with unit granularity.
Even in the unit-demand case, this technique increases the competitive ratio
from O(1) to O(log n) while the edge capacity augmentation is O(log n). Our
result shows that an O(1)-competitive ratio is achievable.

1.3 Techniques

Our algorithm is based on the online primal-dual scheme. The online primal-dual
scheme by Buchbinder and Naor [8, 7, 2] invokes an “min-weight” path oracle.
The oracles considered in [8, 7, 2] are either exact oracles or approximate oracles.
Bansal et al. [6] use bi-criteria oracles. Namely, the oracles they considered are
approximated and augment the edge capacities. We need tri-criteria oracles.

We extend the online primal-dual scheme so it supports tri-criteria oracles.
In the context of mcf, the oracles compute min-cost flow. The three criteria of
these oracles are: (1) the approximation ratio, (2) the capacity augmentation of
the edges, and (3) the granularity of the computed flow.

Multiple criteria oracles were studied by Kolliopoulos and Young [9]. They
presented bi-criteria approximation algorithms for covering and packing integer
programs. Their algorithm finds an approximate solution while violating the
packing constraints. The granularity property is used in [9] to mitigate this
violation.



Online Multi-Commodity Flow with High Demands 19

2 Problem Definition

Online multi-commodity flow (onmcf) is defined as follows.

The Network. Let G = (V,E) denote a directed graph, where V is the set of
nodes and E is the set of directed edges of the network. Let n � |V |, and
m � |E|. Each edge e ∈ E has a capacity ce ≥ 1.

The Input. The online input is a sequence of requests σ, i.e., σ = {rj}j∈N+ . Each
flow request is a 4-tuple rj = (sj , tj , dj , bj). Let sj , tj ∈ V denote, respectively,
the source node and the target node of the jth request. Let dj ≥ 1 denote
the flow demand for the jth request. Let bj ≥ 1 denote the benefit for the jth
request. We consider an online setting, namely, the requests arrive one-by-one,
and no information is known about a request rj before its arrival.

The Output. The output is a multi-commodity flow F = (f1, f2, . . .). For each
request rj , fj is a flow from sj to tj .

Terminology. Let |fj | denote the amount of flow of fj . Let fj(e) denote the

jth flow along the edge e ∈ E. Finally, for every e ∈ E, F (j)(e) �
∑j

k=1 fk(e),
that is, the accumulated flow along an edge e after request rj is processed. We
say that an mcf F = (f1, f2, . . .) fully serves a request rj if |fj | = dj . We say
that an mcf F rejects a request rj if |fj | = 0. We say that an mcf is all-or-
nothing if each request is either fully served or rejected. An all-or-nothing mcf is
credited bj for each fully served request rj . We say that an online mcf (onmcf)
algorithm is monotone if flow is never retracted. We say that an online mcf

(onmcf) algorithm is preemptive if the flow fj of a fully served request rj is
retracted entirely, i.e., |fj | = 0. A monotone onmcf algorithm is, in particular,
non-preemptive.

The Objective. The goal is to compute an all-or-nothing onmcf that maximizes
the total benefit of the served requests.

2.1 The Main Result

We present an online algorithm for the onmcf problem that satisfies the follow-
ing properties: (i) The algorithm is centralized and deterministic. (ii) There is
no limitation on demands. In particular, minj dj may exceed maxe ce. (iii) The
algorithm is all-or-nothing. (iv) The online algorithm alg competes with an all-
or-nothing offline optimal algorithm. (v) The algorithm is (1 + δ)-competitive,
for a constant δ ∈ (0, 1]. (vi) The algorithm violates the capacity constraints by
an O(log n) factor. (vii) The algorithm is non-preemptive and monotone.

For a vector x = (x1, . . . , xk), let xmin � mini xi. Similarly, xmax � maxi xi.
The main result is formalized in Theorem 1.
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Theorem 1 (Main Result). Let γ denote a constant. Assume that: (i) 1 ≤
bmin ≤ bmax ≤ O(nγ), (ii) 1 ≤ cmin ≤ cmax ≤ O(nγ), (iii) 1 ≤ dmin. Then, Algo-
rithm 1 is a non-preemptive, monotone, online algorithm for the onmcf problem
that computes an all-or-nothing multi-commodity flow that is (O(1), O(log n))-
competitive1, that is, the computed flow is O(1)-competitive and it violates the
capacity constraints by an O(log n) factor.

3 Online Packing and Covering Formulation

In this section we present a sequence of packing linear programs (LPs) that
correspond to the onmcf problem. We also present covering linear programs.
We refer to the covering programs as the primal LPs and to the packing programs
as the dual LPs.

3.1 Flow Polytopes

We define polytopes of flows that correspond to the requests {rj}j∈N+ as follows.

Definition 1. For every rk = (sk, tk, dk, bk), let Πk(μ) denote the polytope of
unit flows f (i.e., |f | = 1) from sk to tk in G that satisfy: ∀e ∈ E : f(e) ≤ μ · cedk

.

We refer to Πk(1) simply by Πk. Let V (Πk(μ)) denote the set of extreme points
of Πk(μ).

Definition 2. We say that request rk is μ-feasible if Πk(μ) �= ∅. We say that
request rk is feasible if Πk �= ∅.

Note that a request rj is μ-feasible if and only if the capacity of the minimum
cut that separates sk from tk is at least dk

μ . In particular, a request rj may be
feasible even if dj > maxe ce.

3.2 Packing and Covering Formulation

For every prefix of requests {rk}jk=1 we define a primal linear program p-lp(j)
and a dual linear program d-lp(j). The LP’s appear in Figure 1.

The packing program d-lp(j) has a variable yf for every flow f ∈
⋃

k V (Πk)
and two types of constraints: demand constraints and capacity constraints. The
capacity constraints require that the load on every edge e is at most ce. The
demand constraints require that the conical combination of unit flows in V (Πk)
is a flow of size at most dk.

The covering program p-lp(j) has a variable xe for every edge e ∈ E, and a
variable zk for every request rk, where k ≤ j. It is useful to view xe as the cost
of a unit flow along e.

1 Actually, we prove a competitive ratio of 3/2.
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p-lp(j) d-lp(j)

min

j∑
k=1

dk · zk +
∑
e∈E

ce · xe s.t.

∀k ∈ [1, j]∀f ∈ V (Πk) : zk +
∑
e∈E

xe · f(e) ≥
bk
dk

x, z ≥ 0

max

j∑
k=1

∑
f∈V (Πk)

bk
dk
· yf s.t.

∀e ∈ E :

j∑
k=1

∑
f∈V (Πk)

f(e) · yf ≤ ce

∀k ∈ [1, j] :
∑

f∈V (Πk)

yf ≤ dk

y ≥ 0

(I) (II)

Fig. 1. (I) The primal LP p-lp(j). (II) The dual LP d-lp(j): The first type of con-
straints are the capacity constraints. The second type of constraints are the demand
constraints.

4 The Online Algorithm ALG

In this section we present the online algorithm alg.

4.1 Preliminaries

The algorithm maintains the following variables: (1) For every edge e the primal
variable xe, (2) for every request rj the primal variable zj, and (3) the multi-
commodity flow F . The primal variables x, z are initialized to zero. The mcf F
is initialized to zero as well.

Notation. Let x
(j)
e denote the value of the primal variable xe after request rj is

processed by alg.
For every request rj , let costj(f) denote the x-cost of a flow f , formally:

costj(f) �
∑

e x
(j−1)
e · f(e) .

For every flow f , let w(f) denote the sum of the flows along the edges, formally:

w(f) �
∑

e f(e) .

Let F (k) denote the mcf F after request rk is processed. Let benefitj(F ) denote
the benefit of mcf F after request rj is processed, formally:

benefitj(F ) �
∑
{bi | i ≤ j, ri is fully served by F (j)} .

Let valuej(x, z) denote the objective function’s value of p-lp(j) for a given x
and z, formally:

valuej(x, z) �
∑j

k=1 dk · zk +
∑

e∈E ce · x
(j)
e .
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Let F ∗ denote an all-or-nothing offline optimal mcf w.r.t input sequence σ =
{rj}j.

Definition 3. An mcf F = (f1, f2, . . .) is (α, β)-competitive with respect to a
sequence {rj}j of requests if for every j: (i) F is α-competitive: benefitj(F ) ≥
1
α · benefitj(F ∗). (ii) F is β-feasible: for every e ∈ E, F (j)(e) ≤ β · ce.

Definition 4. An mcf F = (f1, f2, . . .) is all-or-nothing if each request rj is
either fully served by F or it is rejected by F (i.e., |fj | ∈ {0, dj}).

4.2 Description

Upon arrival of a request rj , if the request is not feasible, then the algorithm
rejects it upfront. Otherwise, if the request is feasible, then alg invokes a tri-
criteria oracle. The oracle returns a unit-flow fj for rj .

If the cost of the oracles’s flow is “small enough”, then the request is accepted
as follows: (1) the flow F is updated by adding the oracle’s unit-flow fj times
the required demand dj , (2) the primal variables xe, for every edge e that the
flow fj traverses, are updated.

If the flow is “too expensive”, then the request is rejected and no updates are
made to the primal variables and to the mcf F .

The listing of the online algorithm alg appears in Algorithm 1.

Algorithm 1 alg: Online multi-commodity flow algorithm. The algorithm re-
ceives a sequence of requests and outputs a multi-commodity flow F .

Initialize: z ← 0, x← 0, F ← 0.
Upon arrival of request rj = (sj , tj , dj , bj), for j ≥ 1:

1) If rj is not feasible (i.e., Πj = ∅), then reject rj and skip the remaining lines.
2) fj ← oracle(x, rj) {The oracle is a (λ, μ, ε)-criteria.}
3) If dj · costj(fj) < λ · bj ,

4) then accept rj
5) F ← F + dj · fj {Updating the multi-commodity flow.}
6) zj ← bj

dj
− costj(fj)

max{λ,μ}
7) ∀e : fj(e) > 0:

Lj(e) �
dj · fj(e)

max{λ, μ} · ce
, xe ← xe · 2Lj(e) +

1

dj · w(fj)
·
(
2Lj (e) − 1

)
8) Else reject rj

4.3 The Oracle

The oracle description is as follows:

(i) Input: Request rj , edge capacities ce
dj
, and edge costs x(j−1) : E → R≥0.

(ii) Output: A unit-flow f from sj to tj .
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Let min-costj denote the min-cost flow in Πj w.r.t. the costs xe, formally:

min-costj � argmin{costj(f) : f ∈ Πj} .

Note that: (1) min-costj is well defined because Πj �= ∅, and (2) the edge
capacities in Πj are ce

dj
.

The oracles in our context are tri-criteria, as formalized in the following defi-
nition.

Definition 5 (Oracle Criteria). We say that an oracle is (λ, μ, ε)-criteria,
if the oracle outputs a flow f that satisfies the following properties: (i) (λ-
Approximation.) costj(f) ≤ λ · costj(min-costj). (ii) (μ-Augmentation.)
f ∈ Πj(μ). (iii) (ε-Granular.) f(e) > 0 ⇒ f(e) ≥ ε.

A Tri-criteria Oracle for Minimum Cost Flow. The oracle’s listing is as
follows.

The Oracle Outline.

1. Let f ← min-costj .
2. Decompose f to at most m flow paths {f1, . . . , fm}.
3. Remove each flow path f	 such that |f	| < 1

2m2 .
4. Let g denote the removed flow from f .

5. Scale every remaining flow path f	 (i.e., |f	| ≥ 1
2m2 ): f	 ← f	 ·

(
1 + |g|

|f |−|g|

)
The proof of the following lemma appears in Appendix A.

Lemma 1. The oracle is (2, 2, 1
2m2 )-criteria algorithm.

Lemma 1 justifies using the following parameters: λ = μ = 2, and ε = 1
2m2 .

5 Analysis

The following observation is proved by the fact that 1
z · (2z − 1) is monotone

increasing for z > 0.

Observation 1. Let c ∈ R>0, then ∀x ∈ [0, c] : c · (2x/c − 1) ≤ x .

Observation 2. If Lj(e) ≤ 1, then
(
2Lj(e) − 1

)
· ce ≤ 1

max{λ,μ} · dj · fj(e).

Proof. By Observation 1 and since Lj(e) ≤ 1, it follows that
(
2Lj(e) − 1

)
·

max{λ, μ} · ce ≤ dj · fj(e), and the observation follows.
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Notation. Let

α � 1 +
1

max{λ, μ} ≤ 2, β � max{λ, μ} · log2
(
1 +m2 · 3 · λ · cmax · bmax

ε

)
.

In the following theorem we prove that alg is an all-or-nothing (α, β)-
competitive, non-preemptive and monotone online algorithm.

Theorem 2. Assume that: (i) bmin, cmin, dmin ≥ 1. (ii) The oracle is (λ, μ, ε)-
criteria. Then alg is non-preemptive, monotone, online algorithm for the on-

mcf problem that computes an all-or-nothing multi-commodity flow that is
(α, β)-competitive.

Proof. The algorithm alg rejects upfront requests that are not feasible. These
requests are also rejected by F ∗, hence it suffices to prove (α, β)-competitiveness
w.r.t fractional offline optimal algorithm over the feasible requests. We now prove
α-competitiveness and β-feasibility.

α-competitiveness. First, we prove α-competitiveness. Let ΔjP � valuej(x, z)−
valuej−1(x, z), and ΔjF � benefitj(F )−benefitj−1(F ). We begin by proving that
ΔjP ≤ α ·ΔjF for every request rj .

Recall that x
(j)
e denotes the value of the primal variable xe after rj is pro-

cessed. If rj is rejected then ΔjP = ΔjF = 0 and the claim holds. If rj is ac-

cepted, thenΔjF = bj andΔjP =
∑

e(x
(j)
e −x(j−1)

e )·ce+dj ·zj . Let fj denote the
output of the oracle when dealing with request rj , i.e., fj ← oracle(x(j−1), rj).
Indeed,

∑
e

(
x(j)
e − x(j−1)

e

)
· ce =

∑
e

[
x(j−1)
e ·

(
2Lj (e) − 1

)
+

1

dj · w(fj)
·
(
2Lj(e) − 1

)]
· ce

=
∑
e

(
x(j−1)
e +

1

dj · w(fj)

)
·
(
2Lj(e) − 1

)
· ce

≤
∑
e

(
x(j−1)
e +

1

dj · w(fj)

)
· dj · fj(e)
max{λ, μ}

=
dj · costj(fj)
max{λ, μ} +

1

max{λ, μ} , (1)

where the third inequality holds since the oracle is μ-augmented and by Obser-
vation 2. Hence, Equation 1 and Step 6 of alg imply that:

ΔjP ≤ dj · costj(fj)
max{λ, μ} +

1

max{λ, μ} + dj · zj

=
dj · costj(fj)
max{λ, μ} +

1

max{λ, μ} + dj ·
(
bj
dj

− costj(fj)

max{λ, μ}

)
=

1

max{λ, μ} + bj ≤ α · bj ,
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where the last inequality holds since bj ≥ 1.
Since ΔjF = bj it follows that

ΔjP ≤ α ·ΔjF , (2)

as required.
Initially, the primal variables and the flow F equal zero. Hence, Equation 2

implies that:

valuej(x, z) ≤ α · benefitj(F ) . (3)

We now prove that, the primal variables {x(j)e }e ∪ {zi}i≤j constitute a feasible
solution for p-lp(j):

1. If rj is rejected, then costj(fj) ≥ λ · bj
dj
. Since the oracle is λ-approximate

it follows that for every f ′ ∈ V (Πj): costj(f
′) ≥ costj(min-costj) ≥

costj(fj)/λ ≥ bj
dj
. It follows that the primal constraints are satisfied in

this case.
2. If rj is accepted, then costj(fj) < λ · bj

dj
. Since zj =

bj
dj

− costj(fj)
max{λ,μ} it follows

that for every f ′ ∈ V (Πj): zj + costj(f
′) ≥ bj

dj
− costj(fj)

max{λ,μ} +
costj(fj)

λ ≥ bj
dj
.

We conclude that the primal constraints are satisfied in this case as well.

The first j flows of the optimal offline multi-commodity flow F ∗ are clearly
a feasible solution to d-lp(j). The value of this solution equals benefitj(F

∗).
Since the primal variables constitute a feasible primal solution, weak duality
implies that: benefitj(F

∗) ≤ valuej(x, z). Hence, by Equation 3, it follows that:

benefitj(F ) ≥ 1
α · benefitj(F ∗), which proves that alg is α-competitive.

β-feasibility. We now prove β-feasibility, i.e., for every ri and for every e ∈ E,
F (i)(e) ≤ β · ce.

We prove a lower bound and an upper bound on xe in the next two lemmas.
The proofs of the next two lemmas appear in Appendices B, C. Let rj denote
the index of the last request. Let

W � max{dk · w(fk) : 0 ≤ k ≤ j}.

Lemma 2. For every edge e, xe ≥ 1
W ·

(
2F (e)/max{λ,μ}·ce − 1

)
.

Lemma 3. For every accepted request rk, if fk(e) > 0, then x
(k)
e ≤ 3·λ·bk

ε·dk
.

Lemma 2 and Lemma 3 imply that: 1
W ·

(
2F

(k)(e)/max{λ,μ}·ce − 1
)

≤
maxk≤j

3·λ·bk
ε·dk

.
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Hence,

F (k)(e) ≤ ce ·max{λ, μ} · log2
(
1 +W ·max

k

3 · λ · bk
ε · dk

)
. (4)

Since (i) W ≤ m · dmax, (ii) dmax ≤ m · cmax, and (iii) dmin ≥ 1, it follows that,
F (k)(e) ≤ β · ce, for every k, as required.

This concludes the proof of Theorem 2. Theorem 1 follows directly from Theo-
rem 2 and Lemma 1.

Remark 1. Let bpbk denote the benefit-per-bit of request rk, i.e., bpbk � bk
dk
.

Let bpbmax � maxk bpbk. Instead of β, the augmentation can be also bounded by:

max{λ, μ} · log2
(
1 +W · 3 · λ

ε
· bpbmax

)
.

6 Mixed Demands

One may consider a mixed case of low and high demands. A flow request with
high demand has to be split into multiple paths. Splitting a stream of packets
along multiple paths should be avoided, if possible, because it complicates imple-
mentation in nodes where flow is split, may cause packets to arrive out-of-order,
etc. Thus, one may require not to split requests with low demand. Formally, a
request has low demand if dj ≤ cmin; otherwise, it has a high demand.

An online algorithm for mixed demands can be obtained by employing two
oracles: (1) A tri-criteria oracle for the high demands. This oracle may serve
a flow request by multiple paths. (2) An exact (shortest path) oracle for low
demands. This oracle must serve a flow request by a single path.

Theorem 3. There exists a non-preemptive, monotone, online algorithm for the
onmcf problem with mixed demands that computes an all-or-nothing multicom-
modity flow that is (O(1), O(log n))-competitive.

Proof (Proof sketch). The proof is based on the feasibility of the primal LP and
on the bounded gap betweenΔjF andΔjP . These two invariants are maintained
regardless of the oracle that is invoked. The proof for the case of small demands
appears in [8]. The augmentation of the capacities are determined by the oracle
with the “worst” parameters. Because the exact oracle is (1, 1, 1)-criteria, it
is also (λ, μ, ε)-criteria. Thus, the augmentation factor β is determined by the
approximate oracle.

7 Further Extensions

Requests with known durations. The algorithm can be extended to deal with
flow requests with known durations. For the sake of simplicity, the flow requests
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in this paper are permanent, namely, after arrival, a request stays forever. Us-
ing previous techniques [1–3], our algorithm can be adapted to deal also with
the important variant of known durations. In this variant, each request, upon
arrival, also has an end-time. The competitive ratio for known durations when
the requests are a logarithmic fraction of the capacities is O(log(nT )), where T
denotes the longest duration [1]. In fact, the primal-dual method in [2] can be
extended to the case of routing requests with known durations (see [3]). Thus,
for known durations, if the demands are bounded by the minimum capacity,
then the primal-dual method yields an online algorithm, the competitive ratio
of which is (O(1), O(log(nT ))). One can apply a tri-criteria oracle with gran-
ularity O(n−2), to obtain an (O(1), O(log(nT )))-competitive ratio for known
durations even with high demands.

All-or-Nothing Machine Scheduling. A simple application of our algorithm is the
case of maximizing throughput in an online job all-or-nothing scheduling problem
on unrelated machines. The variant in which the objective is to minimize the load
was studied by Aspnes et al. [4]. We, on the other hand, focus on maximizing
the throughput.

Jobs arrive online, and may be assigned to multiple machines immediately
upon arrival. Moreover, a job may require specific subset of machines, i.e., re-
stricted assignment. The increase in the load of a machine when a job is assigned
to it is a function of the machine and the fraction of the job that is assigned to
it. Formally, Let τj(e) ∈ [0, 1] denote the “speed up” of machine e when pro-
cessing job j, that is, one unit of job e on machine j incurs an additional load
of τj(e) on machine e. The reduction is to network of m parallel edges, one edge
per machine. The capacity of each edge equals the capacity of the corresponding
machine.

Large jobs need to be assigned to multiple machines, while small jobs may
be assigned to a single machine (as in [4]). In this case our algorithm is
(O(1), O( logm

minj,e τj(e)
))-competitive, where m is the number of machines.
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A Proof of Lemma 1

In this section we prove the following lemma.

Lemma 1 The oracle is (2, 2, 1
2m2 )-criteria algorithm.

Proof. Throughout this proof we refer to flow path that are not removed, simply
by ‘flow paths’.

First, we prove that the oracle outputs a unit flow. For every flow path f	
such that |f	| ≥ 1

2m2 , let f
(s)
	 denote the scaled flow along it. The sum of the

flows, along the scaled flow paths equals:∑
	

f
(s)
	 =

∑
	

f	 ·
(
1 +

|g|
|f | − |g|

)
= |f | − |g|+ |g| = |f | .

Hence, the oracle outputs a unit flow as required.
The oracle is 1

2m2 -granular by construction.
We prove that the oracle is 2-augmented. Note that |g| ≤ m

2m2 = 1
2m . Hence,

|g|
|f | − |g| ≤

1
2m

1− 1
2m

=
1

2m− 1
.

It follows that the flow along every edge is augmented by at most(
1 +

|g|
|f | − |g|

)
≤
(
1 +

1

2m− 1

)
< 2 .

Hence, f ∈ Πj(2), as required.

Moreover, the flow along every scaled flow path f
(s)
	 satisfies for every e ∈ E:

f
(s)
	 (e) ≤ f	(e) ·

(
1 +

1

2m− 1

)
,

Hence,

costj(f
(s)
	 ) ≤ costj(f	) ·

(
1 +

1

2m− 1

)
,

which proves 2-approximation of the oracle.
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B Proof of Lemma 2

In this section we prove the following lemma.

Lemma 2 For every edge e,

xe ≥
1

W
·
(
2F (e)/max{λ,μ}·ce − 1

)
.

Proof. Recall that x(k) (resp. F (k)) denote the value of x (resp. F ) after request
rk is processed. We prove by induction on k ≤ j that

x(k)e ≥ 1

W
·
(
2F

(k)(e)/max{λ,μ}·ce − 1
)
. (5)

The induction basis, for k = 0, holds because both sides equal zero.

Induction step: Note that if rk is rejected, then both sides of Equation 5 remain
unchanged, and hence Equation 5 holds by the induction hypothesis. We now
consider the case that rk is accepted.

The update rule in Step 7 of alg implies that

x(k)e = x(k−1)
e · 2

dk·fk(e)

max{λ,μ}·ce +
1

dj · w(fk)
·
(
2

dk·fk(e)

max{λ,μ}·ce − 1

)
≥ 1

W
·
(
2

F (k−1)(e)
max{λ,μ}·ce − 1

)
· 2

dk·fk(e)

max{λ,μ}·ce +
1

dj · w(fk)
·
(
2

dk·fk(e)

max{λ,μ}·ce − 1

)
≥ 1

W
·
(
2

F (k)(e)
max{λ,μ}·ce − 1

)
.

The lemma follows.

C Proof of Lemma 3

In this section we prove the following lemma.

Lemma 3 For every accepted request rk, if fk(e) > 0, then x
(k)
e ≤ 3·λ·bk

ε·dk
.

Proof. Since rk is accepted, we have dk · costk(fk) < λ · bk. By ε-granularity of

the oracle, costk(fk) ≥ x
(k−1)
e · ε. It follows that x

(k−1)
e ≤ λ·bk

dk·ε . By the update
rule for xe, we have:

x(k)e ≤ λ · bk
dk · ε

· 2Lk(e) +
1

dk · w(fk)
·
(
2Lk(e) − 1

)
.

Since the oracle is μ-augmented, Lk(e) ≤ 1. In addition, since the oracle is
ε-granular, w(fj) ≥ ε it follows:

x(k)e ≤ λ · bk
dk · ε

· 2 + 1

dk · ε
· (2− 1) ≤ 3 · λ · bk

dk · ε
,

as required.
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Abstract. Given an undirected, connected graph, the aim of the mini-
mum branch-node spanning tree problem is to find a spanning tree with
the minimum number of nodes with degree larger than 2. The problem is
motivated by network design problems where junctions are significantly
more expensive than simple end- or through-nodes, and are thus to be
avoided. Unfortunately, it is NP-hard to recognize instances that admit
an objective value of zero, rendering the search for guaranteed approxi-
mation ratios futile.

We suggest to investigate a complementary formulation, called maxi-
mum path-node spanning tree, where the goal is to find a spanning tree
that maximizes the number of nodes with degree at most two. While the
optimal solutions (and the practical applications) of both formulations
coincide, our formulation proves more suitable for approximation. In fact,
it admits a trivial 1/2-approximation algorithm. Our main contribution
is a local search algorithm that guarantees a ratio of 6/11.

1 Introduction

Let G be an undirected, connected graph. Finding a spanning tree T of G with
the smallest number of branch nodes (nodes of degree at least 3) is known as
the minimum branch-node spanning tree problem (MBST). It was introduced
by Gargano et al. [6], where it is pointed out that MBST can also be seen
as a natural optimization version of the Hamiltonian path problem since any
spanning tree without branch nodes is a Hamiltonian path and vice versa.

Practical applications of MBST can be found in the design of optical networks.
Gargano et al. [6] consider light trees as a means to realize all-optical multicast
(sending information from one source to multiple sinks). Classical wavelength di-
vision multiplexing technology (WDM) supports only unicast connections (i.e.,
light paths). In a WDM network, multicast can therefore only be achieved by
establishing multiple unicast connections leading to a decreased performance.
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Light trees rely on a new technology—light-splitting switches—capable of repli-
cating light signals by splitting light. These sophisticated and thus expensive
switches have to be placed at exactly the branch nodes of the light tree, which
naturally leads to MBST.

Gargano et al. [6] give bounds on the minimum number of branch nodes de-
pending on other density conditions and on graph parameters such as connectiv-
ity, independence number, and the length of a longest paths. In later works [4,5],
sufficient density conditions for the existence of spanning spiders—spanning trees
with at most one branch node—are considered.

Salamon [14] gives a different practical motivation for MBST, which is also
based on optical networks. Moreover, he provides logarithmic upper bounds on
the required number of branch nodes depending on the total number of nodes
and the density of the input graph. Cerulli et al. [2] develop ILP formulations
for MBST which allows them to solve small instance to optimality. For larger in-
stances they propose three different heuristic approaches. Silva et al. [15] propose
heuristic algorithms for MBST based on an iterative refinement idea.

In this paper, we are interested in algorithms for MBST with provable qual-
ity guarantees. Unfortunately, the above problem formulation is not suitable for
analyzing approximation algorithms, due to its close relation to the NP-hard
Hamilton path problem. It is already NP-hard to decide whether a given in-
stance allows a “perfect” solution, i.e., a solution without any branch nodes.
The main problem arises from the observation that such a solution, a Hamil-
tonian path, corresponds to an objective value OPT = 0. These facts not only
show that approximating MBST within a bounded ratio is NP-hard [6], but
that if OPT = 0 then the ratio of every suboptimal solution to the optimum
one is unbounded and therefore equally bad. It would, however, be more reason-
able to assign spanning trees with fewer branch nodes a better approximative
performance than ones with more branch nodes.

We consider the complementary formulation of MBST whose objective func-
tion is the number of path nodes. Put formally, we aim at finding a spanning
tree of the input graph that maximizes the number of nodes with degree at
most 2. We denote such low-degree nodes as path nodes, as they are exactly the
nodes that arise in paths, and consequently call this reformulation maximum
path-node spanning tree (MPST). Although the original and our formulation of
the problem lead to the same optimum solutions (and have the same practical
applications), ours is more appropriate for analyzing approximation algorithms.
In fact, every spanning tree is a 1/2-approximation for MPST since at least half
the nodes have degree 1 or 2.

Notice that complementary problem formulations have also been successfully
considered in the context of similar optimization problems. For example, Lu an
Ravi [10] show that there is no constant-factor approximation algorithm for the
problem of finding a spanning tree with a minimum number of leaves. Later, the
complementary problem of maximizing the number of internal nodes has been
suggested in [11] and lead to a series of improved constant-factor approximation
algorithms [12,13,9] as well as a large body of literature on fixed-parameter
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algorithms. Two other examples of similar complementary problem pairs that
have received significant attention in the algorithmic literature are the maximum
leaf spanning tree [16] and minimum connected dominating set [7] problems, as
well as the full-degree spanning tree [1] and its complementary problem [8].

There are several local search approximation algorithms for spanning tree
problems known in the literature [8,10,9]. One of the most influential works in
this context is the additive 1-approximation of the maximum degree spanning
tree problem by Fürer and Raghavachari [3].

Our Contribution and Organization of the Paper. We propose an approximation
algorithm for the maximum path-node spanning tree problem. The algorithm is
based on local search and has a ratio of 6/11. This beats the (trivial) approxima-
tion factor of 1/2, which is often a critical bound for combinatorial optimization
problems (e. g., vertex cover, k-center, maximum leaf spanning tree, full-degree
spanning tree, etc.).

The paper is organized as follows. In Section 2 we describe our local search
approximation algorithm. The analysis of the performance guarantee of the al-
gorithm consitutes the main body of this work and is presented in Section 3.
Finally, we make some observations concerning the tightness of our analysis in
Section 4.

2 Algorithm

As pointed out above every spanning tree of the input graph is already a 1/2-
approximation since at least one half of the nodes in a tree have degree 1 or 2.
The worst case of ratio 1/2 occurs when the considered spanning tree consists
of only leaves and cubic nodes (nodes with degree 3) while the optimum is a
Hamiltonian path or a star with a single high-degree node. We will improve this
ratio following the idea that we can obtain a ratio better than 1/2 if we can
ensure that a certain fraction of the nodes that are non-cubic in the optimum
are also non-cubic in our solution.

A feasible k-flip replaces k edges of T with the same number of edges in
E(G) − E(T ) such that the resulting graph T ′ is a spanning tree of G. A k-flip
is improving if it either increases the number of path nodes (degree 1 or 2), or
if the number of path nodes remains constant while the number of cubic nodes
(degree 3) decreases. For simplicity, a k̄-flip denotes any �-flip with 1 ≤ � ≤ k.

Algorithm. Starting with an arbitrary spanning tree, perform improving 2̄-flips
as long as there exist any. �
The main part of this paper is devoted to show that this algorithms guarantees
a solution with at least 6/11 of the optimum solution’s path nodes. Before we
do so, we show:

Lemma 1. The above algorithm runs in polynomial time. In particular, it only
requires O(|V (G)|) flips.
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Proof. It is clear that checking for improving 2̄-flips can be done in polynomial
time (e.g., by evaluating all O(|E(G)|4) possible 2̄-flips). Furthermore, the defi-
nition of improving flips gives rise to a lexicographical objective function of two
parts: the most significant part is nP , the number of path nodes where more
is better; to compare solutions with equal nP , we consider the number of cubic
nodes nC where less is better. Any improving flip either increases nP (while pos-
sibly also increasing nC) or leaves nP unchanged and decreases nC . Since both
measures are non-negative and bounded by |V (G)| from above, a trivial upper
bound of O(|V (G)|2) iterations follows. We can improve on this by realizing that
a flip increasing nP cannot increase nC arbitrarily: Since any 2̄-flip touches at
most 8 = O(1) nodes, the sum of all increases of nC is bounded by O(|V (G)|),
and hence our algorithm performs at most O(|V (G)|) flips overall. 
�

3 Analysis of Approximation

In the following, T always denotes a locally optimal spanning tree for G obtained
by our algorithm and we partition the nodes into subsets based on their degree
in T : L denotes the set of leaves in T (T -leaves), F the set of degree-2-nodes
in T (forward nodes1), P := L ∪ F the set of path nodes, C the set of degree-3
(cubic) nodes, and H the set of nodes with degree ≥ 4 in T (high-degree nodes).
Generally, we may use graph theoretic terms with preceding graph specification
to specify whether we consider whole G or only T . E.g., we use the term T -
neighbors to denote neighbors of a node in T . Let T ∗ be a spanning tree in G
with a maximum number of path nodes, and C′ ⊆ C be the set of cubic nodes
in T that are not cubic in T ∗. We observe that the set C′ ∪H contains all nodes
(if any) that are path nodes in T ∗ but not in T .

3.1 Overview

The nodes C ∪ H are the branch nodes in T . Observe that |L| = 2 +∑
v∈C∪H(deg(v) − 2). To see this, perform a breadth-first search in T . Observe

that whenever a node v is expanded the number of leaves increases by deg(v)−2
if v is a branch node. If v is a path node the number of leaves does not change.
Hence we can think of each branch node v as contributing deg(v) − 2 leaves to
the tree. Rearranging the above equation yields

|L| = 2 + |C ∪H |+
∑
v∈H

(deg(v) − 3) ≥ |C′ ∪H |+
∑
v∈H

(deg(v)− 3) .

We interpret this inequality so that each branch node in C′∪H is guaranteed to
contribute one regular leaf to T and that each node in H contributes deg(v)− 3
supplementary leaves to T . For the proof, we neither require an explicit assign-
ment of leaves to nodes in C′ ∪ H , nor an explicit designation of the leaves as

1 The term forward node is motivated by the technical background of WDM net-
works, and, e.g., consistent with the definition of maximum forward-node spanning
trees [14].
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regular or supplementary. We will only argue over their respective number. Yet,
the reader may find it helpful to consider any arbitrary but fixed assignment and
designation. Assume we can show that T contains at least 1/5 · |C′ ∪H | supple-
mentary leaves or forward nodes. Together with the |C′ ∪H | regular leaves this
implies the existence of at least 6/5 · |C′ ∪H | path nodes in T . Since the nodes
in C \C′ are cubic in T ∗ by definition of C′ we have that OPT ≤ |P |+ |C′ ∪H |.
Hence the performance guarantee of our algorithm is bounded by

|P |
OPT

≥ |P |
|P |+ |C ′ ∪H | ≥

|P |
|P |+ 5/6|P | =

6

11
. (1)

It remains how to show the existence of at least 1/5 · |C′ ∪ H | supplementary
leaves or forward nodes in T . We consider the following coin transfer scheme:
Initially, each node in C′ ∪ H receives one coin. In three stages, described in
detail below, each node in C′ transfers its coin either to a forward node or to a
high-degree node in T . In doing so, we ensure that the following conditions hold
after the transfer scheme:

(P1) Only nodes in F ∪H hold coins,
(P2) each node in F holds at most five coins, and
(P3) each node v ∈ H holds at most deg(v) + 1 coins.

Property (P3) guarantees that v ∈ H holds at most (deg(v)+1)/(deg(v)−3) ≤ 5
coins for each of its deg(v) − 3 supplementary leaves. Clearly, if there exists a
transfer scheme with these properties, there must exist at least 1/5 · |C′ ∪ H |
supplementary leaves or forward nodes.

3.2 Transfer Scheme – Stage I

For each u ∈ C′ consider its T -neighbors. If any T -neighbor lies in F ∪H then u
transfers its coin to this neighbor (breaking ties arbitrarily). It is clear that any
node in v ∈ F ∪H receives at most deg(v) coins in Stage I.

3.3 Transfer Scheme – Stage II

Let u ∈ C′ be a node that still owns its coin after Stage I. This implies that all
T -neighbors of u are in L ∪ C. We can show the following.

Lemma 2. Assume u ∈ C′ has only T -neighbors in L ∪ C and there exists an
edge (u, v) ∈ E(G) \ E(T ). Then, v ∈ F .

Proof. Assume v �∈ F . Consider the 1-flip where we add (u, v) to T and remove
the unique other edge (u,w) incident to u in T that lies on the so-established
cycle. By this operation, deg(u) does not change, deg(v) is increased by one,
and deg(w) is decreased by one. Clearly, w was not in L before and hence was
a cubic node that becomes a forward node. Since v �∈ F , v does not become a
cubic node but is in P or H after the 1-flip. Overall, our flip would increase the
number of path nodes, which contradicts the local optimality of T . 
�
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In Stage II we process all nodes u that satisfy the condition of Lemma 2. For
each such node we transfer the coin of u to a node v ∈ F that is G-adjacent
to u. According to Lemma 2 such a node always exists.

Lemma 3. No two nodes that are processed in Stage II transfer their coins to
the same node.

Proof. Assume there are two distinct cubic nodes u1, u2 processed in stage B
which assign their coin to some node v ∈ F . Consider adding the two edges (u1, v)
and (u2, v) to T . The introduction of each of these edges (without introducing
the other one) establishes a cycle: let (u1, w1) and (u2, w2) the unique other
incident edges to u1 and u2, respectively, that lie on the respective cycle. Now,
consider the 2-flip removing (u1, w1) and (u2, w2) and instead inserting (u1, v)
and (u2, v). The remaining structure is clearly still a tree, and we can investigate
how the node degrees change. The nodes w1 and w2 are cubic nodes, as they
cannot be leaves while lying on a cycle, and their neighboring u1, u2 were not
able to transfer a coin to them in Stage I. Obviously, deg(v) is increased by 2
and becomes a degree-4 node. By case distinction we show that this 2-flip would
always either increase the number of path nodes, or—when this number does
not change—decrease the number of cubic nodes; both contradicts the local
optimality of T .

– w1 �= w2, w2 �= u1 and w1 �= u2: The nodes u1, u2 remain cubic, but the
cubic nodes w1 and w2 become path nodes.

– w1 = w2: The nodes u1, u2 remain cubic, but the cubic node w1 becomes a
leaf.

– w2 = u1 or w1 = u2: Assume, w.l.o.g. u1 = w2. Then, u2 remains cubic, but
the cubic nodes u1 and w1 become path nodes. 
�

Applying this lemma iteratively, we obtain:

Corollary 1. Any forward node gains at most one coin in Stage II.

3.4 Transfer Scheme – Stage III

A node u ∈ C′ is called unprocessed if it has not been processed in Stage I or II.
This implies that u is T -adjacent only to nodes in L∪C and moreover, there is
no edge e ∈ E(G) \E(T ) incident on u. Since u lies in C′ there must be an edge
e = (u, v) ∈ E(T ) \ E(T ∗), for, otherwise u would be cubic in T ∗, too. If there
are multiple (at most 2) such edges, we pick one of these as e arbitrarily. We
call edge e critical. Note that v itself may also be unprocessed, and e therefore
critical due to both.

Let Vu, Vv be the node sets of the two connected components obtained by
removing a critical edge (u, v) from T (let u ∈ Vu). Since T ∗ is connected there
must be an edge e∗ = (x, y) ∈ E(T ∗) with x ∈ Vu and y ∈ Vv. Of course x �= u
since u has not been processed in Stage II. Note that T + e∗ − e is a tree, i.e.,
the corresponding 1-flip is feasible.
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Lemma 4. At least one of the nodes x, y is a forward node in T .

Proof. Assume both x, y are not in F , and consider a 1-flip removing (u, v) and
inserting (x, y). If v = y, deg(v) does not change, the cubic node u becomes a
path node, and deg(x) increases by one. Since x �∈ F does not become cubic, the
flip would be improving.

If v �= y, then v cannot have been a T -leaf. Consequently, the cubic nodes
u and v become path nodes; the non-path-nodes x, y increase their degree by
one and cannot become cubic. Again, the flip would be improving, which is a
contradiction to T ’s local optimality. 
�

In Stage III we process all yet unprocessed nodes in C′. Let u be one of these
nodes. The idea is that there is at least one node y ∈ F associated with u
according to Lemma 4. We transfer the coin of u to this node. If this is done
in an arbitrary manner we cannot rule out that one forward node gains a large
number of coins in Stage III. In what follows we develop a refined transfer scheme
that ensures that each forward node in T gains at most two coins in Stage III.

First, we transfer all coins located at unprocessed nodes to their respective
critical edges. This gives at most two coins per critical edge. Then we identify
for each critical edge e a replacement edge r(e) ∈ E(T ∗) − E(T ) such that the
1-flip replacing e with r(e) leads to a tree. According to Lemma 4 one of the
endpoints of r(e) is a forward node in T . We will construct the mapping r(·)
so that the number of forward nodes incident on replacement edges is greater
than or equal to the number of critical edges. This allows us to transfer the coins
from the critical edges to forward nodes incident to their respective replacement
edges such that each forward node receives at most two coins.

It remains to show the existence of such a mapping r(·). We first show:

Lemma 5. There exists an injective mapping r(·) from critical edges to replace-
ment edges, i.e., r(e) �= r(e′) for distinct critical edges e, e′.

Proof. Let e = (u, v) be a critical edge and let Re be the set of edges in E(T ∗) \
E(T ) that cross the cut (Vu, Vv). The edges in Re are exactly the set of edges that
are candidates for r(e). Now consider an arbitrary subset E′ of critical edges and
let {V1, . . . , V|E′|+1} be the connected components of the forest T −E′. Since T ∗

is connected there are at least |E′| edges in T ∗ connecting distinct components
Vi �= Vj . Let E

′′ be the set of such edges. Note that each edge in E′′ lies in Re

for some e ∈ E′ since nodes in different components Vi �= Vj are separated in T
by some critical edge in E′. Hence |

⋃
e∈E′ Re| ≥ |E′′| ≥ |E′|. By Hall’s marriage

theorem there is an injective mapping r as required above. 
�

In what follows we show that the set of endpoints of replacement edges contains
at least as many forward nodes as there are critical edges, whenever we have
an injective mapping r(·). We know by Lemma 4 that each replacement edge
has a forward node in T as one of its endpoints. We face, however, the problem
that two replacement edges might be adjacent leading to multiple countings of
forward nodes.
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The following lemma shows that two replacement edges can only be adjacent
at a forward node if they do not allow a feasible 2-flip.

Lemma 6. Let e, e′ be distinct critical edges. Assume that the 2-flip replacing
e, e′ with r(e), r(e′) leads to a tree. Then r(e) and r(e′) are not incident on a
common forward node.

Proof. Let e = (u, v) and e′ = (u′, v′) be distinct critical edges with u �= u′ as
unprocessed nodes and let r(e) = (x, y) and r(e′) = (x′, y′) be their replacement
edges. By way of contradiction assume that both replacement edges are incident
on forward node x = x′.

Now consider the 2-flip replacing e, e′ with r(e), r(e′). Due to our assumption
this 2-flip leads to a tree T ′. We show below that this is an improving 2-flip,
contradicting the local optimality of T .

To this end let D = {u, u′, v, v′} be the set of nodes incident on the edges e, e′

and let I = {x, y, y′} be the set of nodes incident on the edge r(e), r(e′). Note
that x /∈ D since x is a forward node and D contains only leaves and cubic nodes.
Furthermore, the 2-flip changes the degree of x from 2 to 4. We distinguish two
cases and show that in both cases the flip would be improving.

– D contains at least three cubic nodes: The removal of e and e′ transforms
at least three cubic nodes in D into path nodes. By the addition of r(e) and
r(e′), at most three path nodes are destroyed; yet, at most two of these latter
nodes (namely y, y′) can become cubic.

– D contains less then three cubic nodes: Then u �= u′ are cubic and v, v′ are
distinct T -leaves. Hence y = v and y′ = v′ since otherwise one of these nodes
would be disconnected by the 2-flip. The removal of e, e′ creates two forward
nodes (namely u, u′). The addition of r(e), r(e′) destroys only x’s path node
property, as the nodes v, v′ remain leaves after the flip. 
�

The following two lemmas show that two critical edges can only share a common
forward node in T if all of their endpoints are forward nodes. In some sense this
compensates the negative effect of “multiple counting”.

Lemma 7. Let e be a critical edge and let e∗ be an edge in T ∗ that is not
adjacent to e. If the 1-flip replacing e with e∗ is feasible then both endpoints of
e∗ are forward nodes in T .

Proof. Let e = (u, v) and let e∗ = (x, y). Since e and e∗ are not adjacent and the
1-flip replacing e with e∗ is feasible the T -path connecting x and y contains u, v
as interior nodes. Hence u and v are not leaves in T . Assume w.l.o.g. that u is
unprocessed and hence cubic. Then v must also be cubic since u is only adjacent
to leaves or cubic nodes. Now, if one of the nodes x, y were not a forward node
then the above 1-flip would be improving contradicting the local optimality of T .


�

Lemma 8. Let e, e′ be distinct critical edges. Assume that r(e) and r(e′) are
incident on the same forward node. Then all three endpoints of r(e) and r(e′)
are forward nodes.
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Proof. According to Lemma 6 the 2-flip replacing e, e′ with r(e), r(e′) in T does
not lead to a tree.

If we delete e, e′ from T we obtain three connected components X,Y, Z.
W.l.o.g. assume that e connects X,Y and e′ connects Y, Z. Since the 1-flips
replacing e and e′ with r(e) and r(e′), respectively, are feasible but the above
2-flip is not feasible we conclude that both r(e) and r(e′) must connect X and Z.

Let x be the forward node shared by r(e) and r(e′). Assume w.l.o.g. that x
lies in X . Since x is a forward node it is not incident on the critical edge e. Since
the other endpoints of r(e) and r(e′) both lie in Z but e connects X,Y none of
the edges r(e) or r(e′) can be adjacent to e.

Now we observe that the 1-flip replacing e with r(e) and the 1-flip replacing
e (instead of e′) with r(e′) are both feasible and satisfy the requirements of
Lemma 7. Hence all three endpoints of r(e) and r(e′) are forward nodes. 
�

Now consider the forest F consisting of all replacement edges. We split F at all
nodes that are not forward nodes in T . As a result of this, F consists of isolated
edges and non-trivial components containing at least two edges. Two adjacent
edges can only share a node that is a forward node in T .

According to Lemma 8 non-trivial components consist exclusively of edges
both of whose endpoints are forward nodes. Hence non-trivial components con-
tain only nodes that are forward nodes in T . Lemma 4 shows that each isolated
edge contains at least one forward node of T . We conclude that there are at
least as many forward nodes in T as there are replacement edges, which, in turn,
equals the number of critical edges. As any critical edge is incident to at most
two unprocessed nodes, each unprocessed node can transfer its coin to a forward
node so that no forward node gains more than two coins in Stage III.

Corollary 2. No forward node in T gains more than two coins in Stage III. 
�

Observation 1. After Stage III, all coins from C′ are transferred to some nodes
of F ∪H.

3.5 Transfer Scheme – Result

We now consider the result of our three-stage transfer scheme and summarize
our findings. Observation 1 above established property (P1).

In Stage I we transferred some of the coins located at nodes in C′ to nodes in
F ∪H . Each node in F ∪H gains at most deg(v) additional coins in Stage I. In
particular, each node v in H owns at most deg(v)+1 coins after Stage I and will
not recieve further coins in the subsequent stages. This establishes property (P3).

In Stages II and III, coins are only transferred from nodes in C′ to nodes
in F . Since each forward node gains at most 2 coins in Stage I and, according
to Corollaries 1 and 2, gains at most three further coins in Stages II and III we
conclude that each forward node owns at most 5 coins after the execution of all
three stages. This establishes property (P2).

To summarize, properties (P1)–(P3) hold after the execution of our transfer
scheme. As described in Section 3.1, we can therefore distribute the |C′ ∪ H |
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(a) The optimal solution is a Hamilton path. In general, we consider this
graph to have k many vertical paths.

(b) The optimal solution has high-degree nodes. In general, we will repeat the
central pattern k times; the figure shows 3 repetitions.

Fig. 1. Bad cases. The solid black edges form a locally optimal solution found by the
algorithm, while the dashed red edges form the optimum solution. The graph itself
consists of exactly the union of these two edge sets (disregarding multiplicity of edges).

coins in C′ ∪ H among path nodes distinct from regular leaves such that each
of them receives at most 5 coins. Hence there must exist at least 1/5 · |C′ ∪H |
supplementary leaves or forward nodes. Together with the |C′∪H | regular leaves,
we thus have |P | ≥ 6/5 · |C′∪H | path nodes overall. By means of Inequality (1),
we can therefore derive our main result.

Theorem 1. Our algorithm approximates the problem of finding a spanning tree
with the largest possible number of non-branching nodes within a ratio of 6

11 . 
�

4 Tightness of Approximation

It remains an open problem, whether the ratio proved above is tight. The follow-
ing two examples show certain structural properties which may be interesting in
the future hunt for an answer to this question.

Figure 1(a) shows an instance where the optimal solution is |V (G)|, i.e., the
graph allows a Hamiltonian path (dashed red lines) and hence requires no branch
nodes at all. Yet, our algorithm may terminate with a tree (solid black lines)
containing multiple branch nodes. Observe the repetitive pattern (vertical struc-
tures) that may be repeated, say, k times. The depicted solution then has k
branch nodes (of degree 4, rather than the degree 3 nodes presumably required
for a tight example). Since the overall graph has 7k + 8 nodes, this example
would only suggest a ratio of (asymptotically) at least 6/7.
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Figure 1(b) shows an instance (in fact, a repetitive pattern) which requires
branch nodes. Each pattern has 12 nodes, the figure shows three repetitions. A
final instance would consist of k repetitions, with some constant size “caps” on
the left and right end of the graph structure. The optimum solution requires 2
branch nodes and hence allows 10 path nodes per pattern, whereas the algorithm
may terminate with only 7 path nodes (5 branch nodes) per pattern. Hence, this
example would result in a ratio of (asymptotically) 7/10.

5 Conclusions

We proposed the maximum path-node spanning tree problem as a complemen-
tary formulation to the established but approximation-wise impractical mini-
mum branch-node spanning tree. Both formulations have the very same practical
applications. We showed a conceptually and implementation-wise simple algo-
rithm to tackle this NP-hard problem. The paper’s core lies in the proof that this
algorithm in fact guarantees an approximation ratio of (at least) 6/11, beating
the critical barrier of ratio 1/2. It remains open whether this bound is tight or if
an even better ratio can be shown for this algorithm. It would also be interesting
to investigate whether we can do better with k-flips for a constant k > 2.
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3. Fürer, M., Raghavachari, B.: Approximating the minimum degree spanning tree to
within one from the optimal degree. In: Proc. of the Third Annual ACM/SIGACT-
SIAM Symposium on Discrete Algorithms (SODA 1992), pp. 317–324 (1992)

4. Gargano, L., Hammar, M.: There are spanning spiders in dense graphs (and we
know how to find them). In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger,
G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 802–816. Springer, Heidelberg (2003)

5. Gargano, L., Hammar, M., Hell, P., Stacho, L., Vaccaro, U.: Spanning spiders and
light-splitting switches. Discrete Mathematics 285(1-3), 83–95 (2004)

6. Gargano, L., Hell, P., Stacho, L., Vaccaro, U.: Spanning trees with bounded num-
ber of branch vertices. In: Widmayer, P., Triguero, F., Morales, R., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 355–365.
Springer, Heidelberg (2002)

7. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets.
Algorithmica 20(4), 374–387 (1998)

8. Khuller, S., Bhatia, R., Pless, R.: On local search and placement of meters in
networks. In: Proc. of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2000), pp. 319–328 (2000)

9. Knauer, M., Spoerhase, J.: Better approximation algorithms for the maximum
internal spanning tree problem. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth,
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Abstract. We deal with the Regenerator Location Problem in optical
networks. We are given a network G = (V,E), and a set Q of commu-
nication requests between pairs of terminals in V . We investigate two
variations: one in which we are given a routing P of the requests in Q,
and one in which we are required to find also the routing. In both cases,
each path in P must contain a regenerator after every d edges in order to
deal with loss of signal quality for some d > 0. The goal is to minimize
the number of vertices that contain regenerators used by the solution.
Both variations of the problem are NP-hard in the general case. In this
work we investigate the parameterized complexity of the problem. We
introduce several fixed parameter tractability results and polynomial al-
gorithms for fixed parameter values, as well as several NP-hardness

results. The parameters under consideration are the treewidth of the in-
put graph, the sizes d and |Q| and the vertex load, i.e. the maximum
number of paths passing through any vertex.

1 Introduction

1.1 Background

One of the main problems in optical network design is the deterioration in the
signal quality after it travels a given distance d. To overcome this problem,
regenerators are located at the vertices of the network. For two clients to be
able to communicate in the network, the regenerators must be placed such that
lightpaths can be formed between them such that there is at least one regenerator
in every d consecutive vertices of each path. A regenerator can serve only one
lightpath.

Regenerators are rather expensive equipment, and much research has been
conducted, concerning minimizing their usage while satisfying all or most of the
communication requirements posed by clients.

The cost of regenerators in a network is measured in two main ways:

– The number of regenerators placed in the network.
– The number of locations (that is, vertices) in which regenerators are placed.

T. Erlebach and G. Persiano (Eds.): WAOA 2012, LNCS 7846, pp. 42–55, 2013.
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In this article we deal with the second measure. The motivation behind the
number of locations measure, is that a considerable part of the required cost
of a regenerator is shared by other regenerators (e.g. by the use of common
equipment or manpower).

We deal with two types of connectivity requirements. In the first, we are
given paths between certain terminal vertices, and we need to find a placement
of regenerators such that the given paths are satisfied. In the second, we are only
given pairs of terminals, and we are required to find lightpaths which connect
the given terminal pairs, and a regenerator placement minimizing the number of
vertices hosting regenerators used by these lightpaths. We denote these problems
as RLPpath and RLPreq , respectively.

1.2 Related Work

Regenerator placement has been extensively studied from an engineering point
of view (see [2,3,13,15,16]). Such works usually offer mainly simulations and
heuristics.

[2] contained the first theoretical result concerning regenerator placement,
showing that the regenerator location problem with connection requests (i.e.
without a given routing) is NP-hard in the all to all case, i.e. when there is
a request between every two vertices in the network. [4] was the first paper
completely devoted to theoretical analysis of regenerator placement, offering
exact algorithms, NP-Hardness results, approximation algorithms and hardness
of approximation results for the regenerator location problem. [11] provides a
first theoretical analysis of the number of regenerators objective. The articles
[5,6,7] deal with minimizing the number of regenerators in optical networks with
traffic grooming, i.e. networks which allow sharing of regenerators by at most g
different paths with g being the grooming factor. Finally, [12] and [14] consider
regenerator placement in an online setting.

1.3 Our Contribution

Both problems under consideration were shown to be NP-hard in [4]. Our goal
is to better understand the parameters making these problems hard, and to
separate the polynomial cases, from the NP-hard cases depending on these
parameters, and to show fixed parameter tractability where possible.

We first show a result regarding ring networks. It was proven in [4] that
RLPpath is polynomial-time solvable in tree and ring networks. The prob-
lems RLPpath and RLPreq are identical in trees, and therefore RLPreq is also
polynomial-time solvable in this topology. We show that RLPreq is polynomial-
time solvable in ring networks.

We consider the treewidth of the network as one main parameter. The
treewidth tw(G) of a network G is a measure for its structure, resembling the
network’s level of similarity to a tree. We show that: (1) RLPreq is NP-hard for
any fixed value of d and for any fixed value of tw(G) at least 3, (2) RLPpath is
fixed parameter tractable for d = 2 with the treewidth tw(G) of the graph as



44 I. Hartstein, M. Shalom, and S. Zaks

the parameter, and (3) RLPpath is NP-hard for any fixed value d ≥ 5 and for
graphs of any fixed treewidth at least 2.

Next, we introduce the vertex load parameter for the problem RLPpath . The
vertex load of a path set P , Lv(P), is the maximum number of paths which
share the same common vertex. We show that RLPpath is polynomially solvable
if both the treewidth and the vertex load are fixed.

Finally, we consider the number of connections that need to be made. We
show that (1) RLPpath is APX-hard for every two fixed values |P| ≥ 2, d ≥ 2,
and (2) RLPreq is fixed parameter tractable for d = 1 and d = 2.1

The results are summarized in Table 1.

Table 1. Summary of results

RLPpath (G, d,P) RLPreq (G, d,Q)
NP-hard when tw(G) ≥ 2 and d ≥ 5 NP-hard when tw(G) ≤ 3 and d ≥ 1.
FPT in tw(G) when d = 2
Polynomial when tw(G) and Lv(P) are con-
stants for any d

APX-hard when |P| ≥ 2, d ≥ 2 FPT in |Q| for d = 1

The structure of the article is as follows. In Section 2 we give definitions of the
terms used in this paper. In Section 3 we discuss RLPreq on rings. In Section 4
we prove a hardness result concerning RLPreq for graphs of treewidth at most
3. In Section 5 we provide results concerning RLPpath on bounded treewidth
and bounded vertex load (see Table 1). In Section 6 we deal with instances of
RLPpath and RLPreq with limited number of paths and requests, respectively.
Finally, in Section 7 we conclude by presenting several open problems and pos-
sible extensions to this work.

Due to space limitations, some proofs and figures have been removed and can
be found in our full paper [10].

2 Preliminaries

Given an undirected underlying graph G = (V (G), E(G)) that corresponds to
the network topology, a lightpath is a simple path in G. P = {π1, π2, . . . , πn}
is a set of paths in G representing the lightpaths. Q = {q1, q2, . . . , qn} is a set
of communication requests between the vertices of G, i.e. qi = {si, ti} for some
si, ti ∈ V , for every 1 ≤ i ≤ n. Given a subset U ⊆ V (G), G[U ] denotes the

subgraph of G induced by U . For any subset Q ⊆ Q of requests, term(Q)
def
= ∪Q

denotes the set of terminals of Q. The length �(π) of a lightpath π is the number
of its edges. The internal vertices (resp. edges) of a path π are the vertices (resp.

1 All the hardness results presented in this work actually consider the minimum values
of the mentioned parameters, (i.e. d, tw(G)). However the generalization to higher
values is simple.
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edges) in π except the first and the last ones. Given a set P of paths, a vertex
v ∈ V and an edge e ∈ E, Pv denotes the set of paths of P traversing v (i.e.
having v as internal vertex), and Pe is the set of paths of P containing e. The

load induced by P on e and v are L(P , v) def
= |Pv| and L(P , e)

def
= |Pe|. Finally

Lv(P)
def
= max {L(P , v)|v ∈ V } and L(P)

def
= max {L(P , e)|e ∈ E}.

Given two vertices u, v ∈ V , we define dist(u, v) as the distance of a shortest
path between u and v in G. If u and v are vertices of a common path π ∈ P , we
define distπ(u, v) as the number of edges between u and v on π.

A routing of Q is a set of paths P such that for every request qi = {si, ti} ∈ Q,
there is a path πi ∈ P between si and ti. A regenerator location assignment is a
set R ⊆ V .

Given an integer d, a lightpath π is d-satisfied by a set of regenerator locations
R if for any d consecutive internal vertices v1, v2, · · · , vd of π, vi ∈ R for some
1 ≤ i ≤ d. When there is no ambiguity about the set of regenerator locations
under consideration we simply say that π is d-satisfied.

A set of lightpaths is d-satisfied if every lightpath in it is d-satisfied. Note that
a path with at most d edges is d-satisfied regardless of R, therefore we assume
without loss of generality that every path π ∈ P has at least d + 1 edges. We
assume, without loss of generality, that every edge of the graph is used by at
least one path π ∈ P .

We consider two variants of the Regenerator Location Problem: (a) given a
graph G = (V,E), a set P of paths in G, and a distance d ≥ 1, find a regenerator
location assignment R ⊆ V of minimum cardinality such that all the paths in
P are d-satisfied. (b) given a graph G = (V,E), a set Q of requests in G, and
a distance d ≥ 1 find a routing P of Q and a regenerator location assignment
R ⊆ V of minimum cardinality such that all the paths in P are d-satisfied.
Formally:

Regenerator Location Problem(RLPpath )

Input: An undirected graph G = (V,E), a set P of paths in G, d ≥ 1
Output: A regenerator location assignment R ⊆ V such that every path
P ∈ P is d-satisfied.
Objective: Minimize |R|.

Routing and Regenerator Location Problem(RLPreq )

Input: An undirected graph G = (V,E), a set Q of requests in G, d ≥ 1
Output: A routing P of Q, and a regenerator location assignment R ⊆ V
such that every path P ∈ P is d-satisfied.
Objective: Minimize |R|.

We assume the reader is familiar with the notions of treewidth, parameterized
complexity, fixed parameter tractability (FPT), polynomial-time approximation
scheme (PTAS), and APX-hard. Nevertheless, definitions of these terms can
be found in our full paper [10].
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Two Fundamental Problems. We mention here two fundamental problems
used in this work: the 3Sat problem and the Vertex Cover problem.

An instance (X,φ) of 3Sat (or any of its variants that we use in this work)
is a set φ = {φi| 1 ≤ i ≤ m} of clauses over a set of boolean variables X =
{xj | 1 ≤ j ≤ n}. X̄ = {x̄j | 1 ≤ j ≤ n} is the set of all negative literals over X .
Each clause φi = �i,1 ∨ �i,2 ∨ �i,3 is a conjunction of 3 literals from X ∪ X̄. The
output for such an instance is a satisfying assignment f : X �→ {0, 1} such that
all the clauses φi of φ are satisfied, i.e. at for least one literal �i,k(k ∈ {1, 2, 3})
either �i,k = xj ∧ f(xj) = 1 for some 1 ≤ j ≤ n or �i,k = x̄j ∧ f(xj) = 0 for some
1 ≤ j ≤ n.

Given an undirected graph G = (V,E), C ⊆ V is a vertex cover of G if for
every {u, v} ∈ E, either {u, v} ∩C �= ∅. The problem MinVertexCover is the
problem of finding a vertex cover of minimum cardinality.

3 RLPreq in Rings

It was proven in [4] that RLPpath is polynomially solvable on rings. Note, that
given a ring G = (V,E) and a request set Q, there are exactly two routings for
every q ∈ Q. Therefore, given a request set Q, by considering all the possible
routings of Q, and finding the optimal solution for RLPpath for each one of
them, we can optimally solve RLPreq (G, d,Q) for every given positive integer
d. Unfortunately, there are 2|Q| such possible routings. We show that it is actually
sufficient to consider only O(|V |3) routings in order to find an optimal solution.
Namely we prove:

Theorem 1. RLPreq (G, d,Q) can be solved in polynomial time.

We assume an arbitrary planar embedding of the graph G, such that for every
u, v ∈ V there is one clockwise path and one counterclockwise path which con-
nects u and v. We denote by ρ(u, v) the clockwise path from u to v, and by
�(ρ(u, v)) the length of ρ(u, v). For convenience, we will abuse notation and also
refer to ρ(u, v) as the set of its vertices. Finally, given a solution R, and two
regenerator locations r1, r2 ∈ R, we say that r1 and r2 are consecutive in R if
ρ(r1, r2) ∩R = {r1, r2}.

According to [4], the problem RLPpath is polynomially solvable on rings.
Let ALGRLPRTRINGS be an algorithm which accepts an instance (G, d,P)
of RLPpath , and obtains an optimal regenerator placement R d-satisfying P .

Denote the vertices of V as v0, v1, . . . , vn−1 such that v0, v1, . . . , vn−1 are con-
secutive vertices in clockwise direction. The algorithm below solves optimally
RLPreq (G, d,Q) when G is a ring. The correctness of the algorithm is implied
by the proof of Theorem 1 in [10].
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Algorithm 1. ALGRLPREQRINGS (G, d,Q)

1: RD ← {vi | 0 ≤ i ≤ n− 1 ∧ i ≡ 0 (mod d)} � {v0, vd, v2d, ...}
2: PD ← {ρ(vi, vj) | {vi, vj} ∈ Q ∧ i < j}
3: Sol ← {(PD, RD)}

4: for r1, r2 ∈ V s.t �(ρ(r1, r2)) > d do
5: Let Q′ = {{s1, t1} , {s2, t2} , ..., {sm, tm}} be the set of requests in Q such that:

– For every 1 ≤ i ≤ m: si ∈ ρ(r1, r2), ti ∈ ρ(r2, r1), �(ρ(r1, si)) ≤ d and
�(ρ(si, r2)) ≤ d

– �(ρ(r2, t1)) < �(ρ(r2, t2)) < ... < �(ρ(r2, tm)).
6: P̂ ← ∅
7: for {s, t} ∈ Q \ Q′ do
8: if ρ(s, t) ⊆ ρ(r1, r2)

2 or ρ(r1, r2) ⊆ ρ(s, t) or s ∈ ρ(r1, r2) ∧ t ∈ ρ(r2, r1) ∧
�(ρ(si, r2)) > d then

9: P̂ ← P̂ ∪ {ρ(t, s)}
10: else
11: P̂ ← P̂ ∪ {ρ(s, t)}
12: for 1 ≤ i ≤ m do
13: Pr1,r2,ti ← P̂ ∪ {ρ(sj , tj)|j ≤ i} ∪ {ρ(tj, sj)|j > i}
14: Rr1,r2,ti ← ALGRLPRTRINGS(G,d,Pr1,r2,ti)
15: Sol ← Sol ∪ {(Pr1,r2,ti , Rr1,r2,ti)}

16: return argmin
(P,R)∈Sol

|R|

4 Hardness of RLPreq in Bounded Treewidth Graphs

In this section we show that the problem RLPreq (G, d,Q) is hard even when
tw(G) = 3 and d = 1. The proof follows a technique used in [1] to show that the
Steiner Forest problem is hard even for graphs of treewidth 3.

First, we define the problem R-SAT. Given three boolean variables a1, a2, a3,
an R-clause R(a1, a2, a3) stands for (a1 = a3)∨(a2 = a3). Given a set of boolean
variables X = {x1, ..., xn}, we say that a formula φ is an R-formula over X if
R = R1∧R2∧...∧Rm where m is a non-negative integer and for every 1 ≤ i ≤ m,
Ri is an R-clause composed of literals over X ∪ {0, 1}. We assume that for
every 1 ≤ j ≤ n, xj appears in some clause of φ. For example, the R-formula
R(x, y, 1) ∧ R(x, 0, z) stands for ((x = 1) ∨ (y = 1)) ∧ ((x = z) ∨ (0 = z)). The
problem of deciding whether a given R-formula φ is satisfiable is called R-SAT
and is proven in [1] to be NP-complete.

A formula φ is non-trivial if it contains both constants 0 and 1. The prob-
lem Non-trivial R-SAT is the problem of deciding whether a non-trivial R-SAT
formula is satisfiable. It is easy to see that non-trivial R-SAT is also NP-hard

by reduction from regular R-SAT. Indeed, any R-SAT formula φ can be trans-
formed into an equivalent non-trivial R-formula φ′ = φ∧R(0, 1, x), where x ∈ X .

2 Recall that we assume every path contains at least d+ 1 edges!
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In [10] we prove the main result of this section by a reduction from the non-trivial
R-SAT problem.

Theorem 2. RLPreq (G, d,Q) is NP-hard even when tw(G) ≤ 3 and d = 1.

5 RLPpath with Treewidth and Vertex Load Parameters

We first show that the problem RLPpath is FPT for d = 2 when parameterized
by the treewidth of the input graph (note that RLPpath is trivial when d = 1
even for general graphs).

Theorem 3. RLPpath (G, 2,P) is FPT when parameterized by tw(G).

By the above theorem, RLPpath is polynomial time solvable for any fixed
treewidth when d = 2. We next show that this does not hold for every value
of d. Specifically, we show that:

Theorem 4. RLPpath (G, 5,P) is NP-hard, even when tw(G) = 2.

We have seen that when the treewidth of the input graph is fixed, the problem
RLPpath is NP-hard. By Corollary 61 the problem is also NP-hard when the
vertex load of the path set is fixed. We now show that the problem is solvable
in polynomial time when both the treewidth and the vertex load are fixed.

Theorem 5. An optimal solution for RLPpath (G, d,P) can be computed in
polynomial time, if both tw(G) and Lv(P) are fixed.

We start by introducing definitions used in the algorithmand its analysis, and then
present an optimal algorithm forRLPpath (G, d,P). In [10]we prove the correctness
of the algorithm, and show that it returns an optimal solution in polynomial time
when tw(G) ≤ w and Lv(P) ≤ � for every two constants ω and �.

Definitions and Basic Observations. In this section we assume that every
path π ∈ P is assigned an arbitrary and fixed direction, designating one endpoint
of π as its left endpoint, denoted as left(π), and the other as its right endpoint.
Given a path π, and two vertices u, v ∈ π, we say that u is on the left of v in π
if u is in the sub-path of π connecting left(π) and v, and denote this by u ≤π v.
If u ≤π v and u is adjacent to v in π, we say that u is the left neighbor of v in
π and denote u as leftπ(v).

Given a set R ⊆ V of regenerator locations, the function aR indicates for each
path and each internal node of it, the distance of the closest regenerator location
when moving towards the left of the path. Formally, for a set U ⊆ V we define

the set DU
def
=

⋃
u∈U ({u} × Pu), and aR : DV �→ N is an integer function over

DU , such that:

aR(v, π) =

⎧⎨⎩
0 if v ∈ R
1 if v /∈ R and leftπ(v) = left(π)
aR(leftπ(v), π) + 1 otherwise
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Clearly, if R d-satisfies P , then aR(v, π) ∈ Zd = {0, 1, . . . , d− 1}. We denote by

FU the set of all functions from DU into Zd, i.e. FU
def
= ZDU

d . Clearly, |DU | =∑
u∈U |Pu| ≤ � · |U |, thus |FU | ≤ d	·|U|.
A function f ∈ FV is a legal d-assignment if f = aR for some R ⊆ V d-

satisfying P . Define for every f ∈ FV : Rf
def
=
{
v ∈ V |

∑
π∈Pv

f(v, π) = 0
}
.

Claim. f ∈ FV is a legal d-assignment if and only if for every (v, π) ∈ DV

f(v, π) = 0 ⇒ ∀π′ ∈ Pv, f(v, π
′) = 0 (1)

leftπ(v) = left(π)⇒ f(v, π) ∈ {0, 1} (2)

leftπ(v) �= left(π)⇒ f(v, π) ∈ {0, f(leftπ(v), π) + 1} (3)

If f is a legal d-assignment such that f = aR, then clearly R = Rf .

Corollary 51. Given a function f ∈ FV

– It can be tested in polynomial time whether f is a legal d-assignment.
– Rf can be computed in polynomial time.

Given a f ∈ FV and U ⊆ V , the restriction f
∣∣
U
of f to U is the function f

∣∣
U
∈

FU where f
∣∣
U
(v, π) = f(v, π) for every (v, π) ∈ DU . We say that f, f ′ ∈ FV

agree on U ⊆ V (and denote by f ∼=U f ′) if f
∣∣
U

= f ′∣∣
U
. When f ∈ FU and

f ′ ∈ FU ′ agree on U ∩ U ′ we say simply that f and f ′ agree and denote this by
f ∼= f ′. When these conditions do not hold, we write f �U f ′ and f � f ′.
g ∈ FU is a partial legal d-assignment over U ⊂ V if g = f

∣∣
U

for some legal
d-assignment f ∈ FV . We denote by LU the set of all partial legal d-assignments
over U . An optimal partial legal d-assignment over U ⊆ V is a function f∗ ∈ LU

minimizing |Rf∗ |, i.e. |Rf∗ | = minf∈LU |Rf |.
Claim. Let U ⊆ V and f ∈ FU . f ∈ LU if and only if the following conditions
hold for every u, v ∈ U :

f(v, π) = 0 ⇒ ∀π′ ∈ Pv, f(v, π
′) = 0 (4)

f(v, π) ≤ distπ(left(π), v) (5)

u ≤π v ⇒ f(v, π) < distπ(u, v) ∨ f(v, π) = f(u, π) + distπ(u, v) (6)

Corollary 52. Given a function f ∈ FU

– it can be verified in polynomial time whether f ∈ LU ,
– Rf can be computed in polynomial time.

Claim. Let f ∈ FU and u ≤π v ≤π w. If both pairs u, v and v, w satisfy (6),
then the pair u,w satisfies (6) too.

Proof. If f(w, π) < distπ(v, w) then clearly f(w, π) < distπ(u,w) and the
condition holds for u,w. Otherwise f(w, π) = f(v, π) + distπ(v, w). If
f(v, π) < distπ(u, v) then f(w, π) = f(v, π) + distπ(v, w) < distπ(u, v) +
distπ(v, w) = distπ(u, v) and the condition holds for u, v, otherwise f(v, π) =
f(u, π) + distπ(u, v), therefore f(w, π) = f(u, π) + distπ(u, v) + distπ(v, w) =
f(u, π) + distπ(u,w) and the condition holds.
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Given U,U ′ ⊆ V , f ∈ LU , f
′ ∈ LU ′ , such that f ∼= f ′, recall that their union

f ∪ f ′ is a function g ∈ FU∪U ′ such that

g(v, π) =

{
f(v, π) if v ∈ U
f ′(v, π) otherwise.

Claim. If f ∈ LU and f ′ ∈ LU ′ , then g = f ∪ f ′ satisfies conditions (4) and (5).

Proof. In order to show that (4) is satisfied, let g(v, π) = 0 and assume by
contradiction that there is some π′ ∈ Pv such that g(v, π′) �= 0. Assume without
loss of generality that v ∈ U . Then f(v, π) = g(v, π) = 0 and f(v, π′) = g(v, π′) �=
0, contradicting the assumption that f ∈ LU , and, in particular, that it satisfies
(4). In order to show that (5) is satisfied, let (v, π) ∈ DU∪U ′ . If v ∈ U , then
g(v, π) = f(v, π) < distπ(left(π), v) since f satisfies (5). Otherwise, g(v, π) =
f ′(v, π) < distπ(left(π), v) since f

′ satisfies (5). Therefore (5) is also satisfied in
any case.

Note that f ∪ f ′ is not necessarily a partial legal d-assignment as it might not
satisfy (6).

Observation 51. Let U ⊆ V , and f, f ′ be partial legal d-assignments over two
sets that both include U , and f ∼= f ′. Then

Rf∪f ′ = Rf ∪Rf ′

R
f
∣∣∣
U

= Rf ∩ U.

We end up this section by stating a claim about tree decompositions.

Claim. Let Bi and Bk two adjacent bags in a tree decomposition T of a graph
G = (V,E), and let T1 and T2 be the subtrees obtained by the removal of the

edge {Bi, Bk} from T . Let Vi
def
= ∪Ti be the set of all nodes that reside in some

bag of Ti. Let v1 ∈ T1 \ T2 and v2 ∈ T2 \ T1 two non-adjacent nodes of G. Then
every path π connecting v1 and v2 contains at least one node w ∈ Bi ∩Bk.

A Dynamic Programming Algorithm for RLPpath . We now present a
polynomial time dynamic programming algorithm solving optimally
RLPpath (G, d,P).

The algorithm works in three phases. In the initialization phase, we compute
an optimal tree decomposition T = (B, F ) of G, and for every bag Bi ∈ B we
set Ai to be the set of all possible partial legal d-assignments over Bi. During
the dynamic programming phase, we update Ai such that eventually it contains
a set of legal d-assignments over Vi, where Vi is the set of vertices appearing in
some bag in the subtree of T rooted at Bi (when T , without loss of generality,
is assumed to be rooted at B1). One of these, as we will see, is a minimum-size
d-assignment over Vi. In the final phase, we obtain the minimum size assignment
in A1, fmin, and declare Rfmin as an optimal solution for RLPpath (G, d,P).

We prove in [10] three lemmata showing that the algorithm returns a feasible
solution, runs in polynomial time and is optimal, respectively.
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Algorithm 2. ALGRLP (G, d,P)

Phase 1: Initialization
1: Direct arbitrarily the paths in π.
2: Compute a tree decomposition of G of width tw(G), T = (B, F ), and direct T such

that B1 is its root.
3: Compute LBi for every Bi ∈ B.

Phase 2: Dynamic Programming
4: for every bag Bi, traversed in postorder fashion do
5: Ai ← ∅
6: for every f̂ ∈ LBi do
7: Denote Chi = {Bk1 , Bk2 , . . . , Bkt} as the set of children of Bi

8: for every 1 ≤ j ≤ t do

9: M ←
{
f ′ ∈ Akj | f ′ ∼= f̂

}
10: fkj ← argmin

f ′∈M

|Rf ′ |

11: αi(f̂)← f̂ ∪
⋃t

j=1 fkj

12: Ai ← Ai ∪
{
αi(f̂)

}
Phase 3: Obtain an Optimal Solution

13: fmin ← argmin
f ′∈A1

|Rf ′ |

14: return Rfmin

6 Fixed Number of Connections

In this section we consider another important parameter relevant for both prob-
lemsRLPpath and RLPreq , namely the number of connection requests. More pre-
cisely the parameter under consideration is the number |P| of paths for RLPpath ,
and the number |Q| of requests for RLPreq .

We first show that RLPpath is NP-hard even when d = |P| = 2. To see
that this result draws an exact hardness boundary, we note that when d = 1
or |P| = 1, RLPpath can be solved in linear time. Indeed when d = 1, every
internal vertex of a path in P must host a regenerator, and this constitutes a
feasible solution, therefore optimal. When |P| = 1, let P = {π}. Clearly any

solution contains at least � |π|d � locations, and such a solution can be easily found
by letting R be the vertices d, 2d, ... of π.

In fact, we prove a stronger result: we show that RLPpath does not admit a
polynomial-time approximation scheme unless P = NP .

Theorem 6. RLPpath (G, d,P) is APX-hard when |P| = 2 and d = 2.

We note that for every path set P , Lv(P) ≤ |P|. Therefore the following corollary
follows immediately.

Corollary 61. RLPpath (G, d,P) is APX-hard when Lv(P) ≤ 2 and d = 2.
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We next show that RLPreq is FPT in the number |Q| of connection requests,
when d = 1. We start by introducing two problems.

Minimum Directed Steiner Tree Problem(DST )

Input: An instance (G,w, S, r) where G = (V,A) is a digraph with a non-
negative weight function w : E �→ R+ on its arcs, S ⊆ V is a set of terminal
vertices, and r ∈ V is the root vertex.
Output: A subgraph T of G such that: (a) T is a directed tree rooted at r,
(b) S ⊆ V (T ).

Objective: Minimize w(T )
def
=
∑

e∈E(T ) w(e).

Given a graph G = (V,E) and a subset S ⊆ V of its vertices, a subset D ⊆ V
is said to dominate S in G if every vertex s of S is either in D or adjacent to a
vertex of D.

Minimum Steiner Connected Dominating Set Problem(SCDS)

Input: An instance (G,w, S) where G = (V,E) is a graph with a non-negative
weight function w : V �→ R+ on its vertices, and S ⊆ V is a subset of vertices
to be dominated.
Output: A set of vertices D ⊆ V such that: (a) G[D] is connected, (b) D
dominates S in G.

Objective: Minimize w(D)
def
=
∑

w∈D w(v).

The SCDS problem is a generalization of the well-known problem of finding
a minimum connected dominating set. It was first defined in [8] in the context
of approximation algorithms.

We denote by OPTDST (G,w, S, r) (resp. OPTSCDS(G,w, S),
OPTRLPreq (G, d,Q)) the optimum value of the instance (G,w, S, r) (resp.
(G,w, S), (G, d,Q)) of problem DST (resp. SCDS, RLPreq ).

In [9], it is noted that DST is FPT in the number of terminals. We will use
this result to show that (a) SCDS is FPT in the size of the dominated set, and
(b) RLPreq is FPT in the number |Q| of requests when d = 1.

Lemma 1. SCDS is FPT in the size of the dominated set.

Proof. By reduction to DST . Let (G,w, S) be an instance of SCDS. We build
a digraph G′ = (V ′, A′) where

V ′ = {v0, v1|v ∈ V }
A′ = {(v0, v1)|v ∈ V } ∪ {(u1, v0), (v1, u0)| {u, v} ∈ E} . (7)

The weight function w′ on the arcs of A′ is

w′(u0, u1) = w(u) ∀u ∈ V
w′(u1, v0) = w′(v1, u0) = 0 ∀ {u, v} ∈ E
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Let S0
def
= {v0|v ∈ S}. In [10] we prove the following claim implying an FPT

algorithm for DST :

Claim. OPTSCDS(G,w, S) = minr∈V OPTDST (G
′, w′, S0, r0). Moreover, given

a solution T of (G′, w′, S0, r0) a solution D of (G,w, S) with w(D) = w′(T ) can
be calculated in polynomial time.

The lemma concludes easily from the claim: Indeed, let ALGDST (G′, w′, S0, r0)
be an FPT algorithm calculating an optimal solution in time f(|S0|) · p(n).
Algorithm 3 calculates an optimal solution D∗ of (G,w, S) in time |V | · f(|S0|) ·
p(q2(n)) + q1(n) + q3(n) = |V | · f(|S|) · p(q2(n)) + q1(n) + q3(n) ≤ f(|S|) · (n ·
p(q2(n)) + q1(n) + q3(n)), therefore is an FPT algorithm for DST .

Algorithm 3. ALGSCDS (G,w, S)

1: Build G′, w′ and S0 from G,w, S. � running time q1(n)
2: r0 ← argmin

r0∈V
w(ALGDST (G′, w′, S0, r0)). � running time |V | · f(S0) · p(q2(n))

3: T ∗ ← ALGDST (G′, w′, S0, r0).
4: Calculate D∗ from T ∗. � running time q3(n)
5: return D∗.

Theorem 7. RLPreq is FPT in the number |Q| of the requests when d = 1.

Proof. Consider an instance (G, 1,Q) of RLPreq . Without loss of generality,
we assume that Q does not contain edges of G, i.e., for every {si, ti} ∈ Q,
{si, ti} /∈ E, because otherwise this request is d-satisfied in every solution routing
it through this edge. We denote by ΩQ the set of all partitions of the request set
Q.

In [10] we prove the following claim implying an FPT algorithm for RLPreq :

Claim. OPTRLPreq (G, 1,Q) = minΠ∈ΩQ
∑

Qi∈Π OPTSCDS(G,1, term(Qi)).
3

Moreover, given optimal solutions Di of instances (G,1, term(Qi)) for every
Qi ∈ Π , a solution P , R of (G, 1,Q) with |R| =

∑
w(Di) =

∑
|Di| can be

calculated in polynomial time.

The theorem concludes easily from the claim: Indeed, let
ALGSCDS(G,1, term(Qi)) be an FPT algorithm calculating an optimal
solution in time f(|term(Qi)|) · p(n). Algorithm 4 calculates an opti-
mal solution R∗ of (G, 1,Q). The dominant term of its running time is∑

Π∈ΩQ

∑
Qi∈Π(f(|term(Qi)|) · p(n)) ≤

∑
Π∈ΩQ

∑
Qi∈Π(f(2 |Q|) · p(n)) ≤

|ΩQ| · |Q| · f(2 |Q|) · p(n). As the first three factors depend solely on |Q|,
RLPreq is FPT in |Q| when d = 1.

7 Conclusion and Open Problems

We have considered the role of several parameters in the RLPpath and
RLPreq problems. For RLPpath we considered the treewidth, the vertex load,

3 1 denotes a constant weight function with value 1 on the vertices of V .
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Algorithm 4. ALGRLPREQ (G, 1,Q)

1: Π ← argmin
Π∈ΩQ

∑
Qi∈Π |ALGSCDS(G, 1, term(Qi))|. � running time∑

Π∈ΩQ
∑

Qi∈Π(f(|term(Qi)|) · p(n))
2: for Qi ∈ Π do
3: Ri ← ALGSCDS(G, 1, term(Qi))
4: for (s, t) ∈ Qi do
5: s′ ← an arbitrary neighbor of s in Ri

6: t′ ← an arbitrary neighbor of t in Ri

7: route (s, t) through:
8: - the edge {s, s′}
9: - a path from s′ to t′ in G[Ri]
10: - the edge {t′, t}
11: R∗ ← ∪Qi∈ΠRi.

and the number of paths as parameters. For RLPreq we considered the treewidth
and the number of requests as parameters. In each case, our goal was to deter-
mine whether: (1) the problem is fixed parameter tractable for that parameter,
(2) the problem is polynomial for all or some fixed values of that parameter
(but possibly not FPT in that parameter), or (3) the problem is hard for that
parameter.

We have several remaining open cases:

– RLPpath (G, d,P) parameterized by tw(G) when d = 3, 4.
– RLPreq (G, d,Q) parameterized by |Q| when d ≥ 2
– We have seen that RLPpath (G, d,P) is polynomially solvable when tw(G)

and Lv(P ) are fixed. Is RLPpath parameterized by tw(G) + Lv(P ) fixed
parameter tractable? (our algorithm does not guarantee this in case d is not
constant)

This work can be extended in many ways, including: (a) a complete analysis of
the above cases, (b) considering new parameters (e.g. cliquewidth, pathwidth, lo-
cal treewidth) and their combinations, (c) considering special families of graphs,
(d) providing approximation algorithms or proving approximation hardness for
the NP-hard cases.
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Abstract. We study online strategies for autonomous mobile robots
with vision to explore unknown polygons with at most h holes. Our main
contribution is an (h+c0)!–competitive strategy for such polygons under
the assumption that each hole is marked with a special color, where c0
is a universal constant. The strategy is based on a new hybrid approach.
Furthermore, we give new lower bounds for h = 1.

Keywords: Polygons with holes, online exploration, competitive anal-
ysis.

1 Introduction

A classical basic task [2,14] for an autonomous mobile robot is to explore an
unknown environment modeled by a polygon, possibly with polygonal holes. We
assume the robot to be modeled by a point and to start from a given point, s,
on the polygon’s outer boundary. It is equipped with an unlimited 360◦ vision
system that continuously provides the complete visibility polygon for its current
position. When the robot has observed every point of the polygon and, therefore,
knows the map of P , it returns to s.

Considering a known polygon, an optimal tour Topt through s can be com-
puted offline. The robot’s performance exploring the unknown polygon online
is evaluated through competitive analysis. Therefore we compare the length of
the tour generated by the robot with the length of Topt. If this ratio is bounded
from above by a constant C for any problem instance, we call the strategy C–
competitive.

Over the last two decades, the problem of designing competitive online ex-
ploration strategies for certain polygon classes has received a lot of attention.
A simple greedy strategy is almost optimal for simple orthogonal polygons as
shown in a seminal paper by Deng et al. [5], see also [11]. Later, Hoffmann et al.
[12] came up with a 26.5–competitive strategy for general simple polygons (in
the following called HIKK–strategy). On the other hand, there is a lower bound
for the competitive ratio of 1.28 in this case [10]. If one allows polygons with
h holes there is a lower bound of Ω(

√
h), even for orthogonal polygons [1], and

computing the optimal offline tour becomes NP–hard [6].
The only positive result in the presence of holes we are aware of is a O(h)–

competitive strategy for orthogonal polygons with h holes [5]. This result yields
a 14–competitive strategy (L1–metric) for the case of one hole [7].

T. Erlebach and G. Persiano (Eds.): WAOA 2012, LNCS 7846, pp. 56–69, 2013.
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Surprisingly, there are no competitive strategies known for general polygons
with at most h holes, even in the case h = 1. Such strategies were conjectured to
exist for each h in [4]. One of the main differences between exploring orthogonal
and general polygons is the following. An optimal tour that learns a single hole in
an orthogonal polygon (i.e., explores its boundary) can always afford to encircle
the hole. In contrast, in a general polygon the hole could have the shape of a thin
long triangle and the path length needed to learn it is not necessarily related to
its perimeter. Such a hole could be learned from a distance with minimal effort.

We make the following contributions to the problem of exploring polygons
with holes. In Section 2 we recall some basic definitions and give for h = 1 a
rather simple lower bound of 2 for the orthogonal case and a lower bound of 2.618
for the competitive ratio in the general case. This latter bound also holds for a
modified model, where the hole is specially colored and the robot can therefore
distinguish between outer boundary edges and edges of the hole. Undoubtedly,
this should be of great advantage for the robot to fulfill its task. Nevertheless,
it seems to be nontrivial to come up with a competitive strategy under this
assumption. Subsequently we describe our strategy h–CPEX, which stands for
Colored Polygon EXploration in presence of at most h holes. We prove it to have
a competitive factor that depends on h only.

We start with describing strategy 1–CPEX in Section 3. It proceeds in two
phases. In Phase 1 it follows the HIKK–strategy until the hole H is visible for
the first time. Then it learns, based on a doubling strategy, the shortest tour R
encircling H∪{s}. In Phase 2 a novel hybrid approach is implemented to explore
the remaining “caves” inside and outside of R. It is based on the knowledge of
the length |R|. As soon as our strategy knows that |R| is less than c · |Topt|,
for a suitable universal constant c, the hole is classified safe, meaning that the
strategy can encircle it without loosing competitiveness. To this end we connect
the hole with s by introducing a barrier (that becomes part of the boundary) and
invoking the HIKK–strategy (Lemma 1) for the modified polygon. Otherwise,
the hole H has the status of being currently critical. In this case, we subdivide
the polygon by building a fence line f that connects the farthest (w.r.t. s) point
of H with the outer boundary. We get two simple polygons, the front yard F
containing s and the backyard B. Again, the front yard is explored using HIKK
but as soon as its path exceeds a certain length bound, we interrupt since H
becomes safe and we proceed as before. Otherwise, we are left with the task of
exploring the backyard. This is done by doubling arguments.

In Section 4 we generalize these ideas in a straightforward way to an arbitrary
number h of colored holes. Again, h–CPEX first uses 0–CPEX until the first hole
is found and classifies discovered holes H to be safe or critical. As before, the
decisions are based on the knowledge of the length of the shortest tour encircling
H ∪ {s}. In the case of a safe hole we can invoke a recursive call of (h − 1)–
CPEX. Even the strategy for critical holes can be adopted. A main difference is
the necessity to use a generalized doubling strategy, which is known as m–star
search [13,14].
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We show that, due to its recursive structure, the competitive ratio Ch of h–
CPEX is bounded by (h+ c0)! for a universal constant c0. We have not tried to
optimize it, our main goal is to show that its bound depends only on h.

We assume that the reader is familiar with the HIKK-strategy [12]. It serves
as the base case 0–CPEX for the recursive part of the h–CPEX. Recall that its
competitive ratio is C0 = 26.5.

2 Preliminaries and Lower Bounds

2.1 Basic Notions

Let P be a polygon with h pairwise disjoint holes. Its boundary bd P consists
of the outer boundary and the boundaries of the holes. A point y ∈ P is visible
from x ∈ P , if the line segment xy lies completely in P (with bd P included).
Vis(x) = {y ∈ P | x sees y} is the visibility polygon of x ∈ P . Remark: To avoid
degenerate cases we assume general position for the vertices of P .

In our online scenario the task for the robot is to create a closed continuous
path T : [0, 1] → P , with T (0) = T (1) = s, s being the starting point on the
outer boundary. Such a T is a valid watchman tour if

⋃
0≤t≤1 Vis (T (t)) = P .

The model assumes that for computing T (t) the robot has full knowledge of⋃
t′<t Vis (T (t′)) (including distances). In particular, if this is only a partial

map of P , its boundary contains windows. These are edges that are not part of
bd P and hide regions not seen by the robot so far.

A polygon vertex is discovered if it has been seen by the robot. It is explored
(learned) if initial segments of both incident polygon edges have been seen as well.
If the internal angle of a vertex exceeds 180◦, it is called a reflex vertex. While
learning such a reflex vertex v, the robot is in the following generic situation:
It knows v and one incident edge. To learn the other edge e, it has to cross the
prolongation of e into the polygon’s interior. This is the so called cut of v.

2.2 Lower Bounds

Theorem 1. Any deterministic online strategy S1 that computes valid watch-
man routes in polygons with at most one hole has a competitive ratio ≥ 2 in the

orthogonal case and ≥ 3+
√
5

2 ≈ 2.618 in the general case.

Proof. The proof for the orthogonal polygon can be found in [8]. In the general
case we use a standard fooling trick [1] to construct the lower bound. An adver-
sary specifies the polygon completely only after observing the strategy’s initial
behavior.

Consider the polygon in Fig. 1(a) with a fixed but arbitrarily small constant ε.
After an initial phase (traveling ≥ 3ε), the strategy S1 knows all of the polygon
except the region behind reflex vertex l. Especially, it knows that the cut of l
can hit the hole on the left triangle side or pass by on the right beyond line L,
say at distance ≥ 1 from s. Now there are two possible ways to continue:
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Fig. 1. Lower bound example: Placing a reflex vertex behind a vision-blocking hole

Case 1: S1 travels distance 1 to line L first. Then it is not competitive at all if
the cut is very close to the triangle base on the left, Fig. 1(b).

Case 2: S1 looks for the cut on the left side first. If it moves to the top, it fails
to be competitive again (e.g. the cut could be identical to L).

That’s why S1 has to start with case 2 and, after traveling some distance α
unsuccessfully, to return to explore the cut from the right side. Because of the
malicious adversary, it will miss the cut by a very small distance (Fig. 1(c)).
Ignoring ε (it can be chosen arbitrarily small), the strategy travels at least a
total distance of 2α+2 to reach point s′ and return to s. Now either the polygon
can be explored completely or S1 could also learn the existence of another vertex
r, hidden behind l, see Fig. 1(d). (Hint: r is very close to l and can be explored
only from the left side in a competitive way.) Then S1 has to return once again
to reach s′′. This yields a total path length of 4α+ 2.

In both cases the quotient of the tour length generated by S1 over the optimal
tour length is a function in α. If the cut of l is learned in s′, the competitive
ratio is described by the monotonically increasing function g(α) = 2α+2

2 . If the
cut points to s′′ on the left side of the hole, we get the monotonically decreasing
function f(α) = 4α+2

2α . Comparing both functions to determine the optimal value

for α results in α = 1+
√
5

2 , the golden ratio. We obtain 3+
√
5

2 ≈ 2.618 as lower
bound for the competitive ratio. 
�

In this context a colored hole would make no difference. The lower bound of
Ω(

√
h) [1] for polygons with h holes holds for the colored case, too. The problem
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of learning a reflex vertex in the presence of vision-blocking holes turns out to be
a fundamental issue for any strategy that wants to explore arbitrary polygons.

Remarks:

1. The lower bound of 2 in the orthogonal case holds for uncolored holes only.
2. The construction in the general case given above can be extended to h > 1

holes, but does not lead to much better results, see [8].

3 1–CPEX: Polygons with One Colored Hole

As usual, we assume that the starting point s is on the outer boundary of P
and Topt denotes a shortest closed watchman tour. The design of our strategy
follows the basic principle that in each phase and subphase the generated path
should have a length that compares to |Topt| in a competitive way.

3.1 How to Explore a Bicolored Corridor

A basic task during the exploration is to learn the structure of the hole. Because
of the coloring, each edge of the polygon can easily be associated with the hole or
the outer boundary. This motivates the problem of exploring a bicolored corridor,
which can be seen as a natural extension of the Cow-Path problem, see [3,14].

The corridor may have several branchings. Assume the task is to find a target
t, that sees walls of both colors (Fig. 2(a)). This additional constraint guarantees
that t cannot be located in a unicolored region of the polygon. At any time, the
visibility polygon contains only two windows connecting two walls of different
colors. These two so-calledmain windows arise from two vision blocking vertices,
which can be explored on a semicircle, see [12]. The doubling paradigm [3,13] is
used to link both exploration directions.

s

a7

a6λ
R

λ

s

t

(a) (b)

main windows

Fig. 2. (a) The bicolored corridor problem, (b) Learning the shortest path R encircling
the hole
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3.2 Phase 1: Learning the Shortest Tour Encircling the Hole

If no point of the hole H is visible from s, we start the 26.5-competitive HIKK-
strategy (0–CPEX) until H becomes visible. The next goal is to look once around
the hole, more precisely to learn the shortest tour R around it. R equals the
boundary of the relative convex hull (RCH) of H ∪ {s}.1 Thus, one can imagine
R = ∂ (RCH (H ∪ {s})) as the shape of a rubber band spanned around H and
the starting point inside P , see Fig. 2(b).

Any strategy that tries to learn R circling H in a fixed orientation will fail
to be competitive. For example, consider the situation in Fig. 1(a). A strategy
that explores R in cw–orientation has to walk up to the top vertex of H on the
left side and down again on the right side of H . This can exceed c · |Topt| for any
constant c.

Thus, the situation resembles the bicolored corridor problem. We explore R
in rounds via doubling, approaching the vertices corresponding to the main win-
dows alternately on semicircles: In an odd/even round k we move in cw–/ccw–
orientation 2k−1 length units. In each round there is a last known segment of R
corresponding to a part of the bicolored corridor. It is ending at a reflex vertex
that is associated to the main window and hides the next segment.

Combining this with the factor 2 of the semicircle strategy [12] and the factor
9 of the doubling approach we can show that our strategy learns R with total
path length ≤ 36 |Topt|.

After having learned R the strategy can derive the following lower bound λ on
|Topt|.

Let a1, a2, . . . , an be the ccw-oriented chain of line segments defining R, start-
ing from s. Any strategy that learns R has to see each vertex pi ∈ R, incident
with ai and ai+1, both from the right half-plane of ai and from the right half-
plane of ai+1. The path length to fulfill this task for pi, maximized over all
vertices of R, defines a lower bound λ to learn R and therefore a lower bound
on |Topt| .2

In Fig. 2(b) the lower bound λ is realized by the effort to learn (a6, a7).

3.3 Phase 2: The Hybrid Approach

The hole H in P is called c–safe (for a fixed constant c) if |R| ≤ c |Topt| holds.
As long as the strategy does not know whether the hole is c–safe, the hole is
called c–critical. While learning more about P , the strategy can also learn more
about lower bounds on |Topt|. This way the status of a hole can change from
c–critical to c–safe.

Observation: If |R| ≤ cλ, then the hole is c–safe.

1 A set M is relatively convex in P if for each pair of points in M the geodesics
(shortest paths) connecting them are included in M .

2 This definition of λ is equivalent with that given in [9] for h = 1 and it easily
generalizes to the case h > 1.
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Lemma 1. Any polygon P with a c–safe hole H can be explored online with
total tour length ≤ (4c+ 2) · C0 · |Topt|.

Proof. Consider a shortest path b from s to H . If it contains reflex vertices of
P , we slightly shift b into the polygon’s interior. b is treated as an additional
boundary that transforms P into a simple polygon P ′ (Fig. 3(a)). We show that
0–CPEX (i.e., HIKK) applied to P ′ generates a tour that meets the claimed
bound. To this end it is sufficient to show that there is a closed watchman tour
Te in P ′ of length |Te| ≤ (4c+ 2) · |Topt|.

s
s b

R

Topt

pi0
α

F

H H

Bx

f
R

(a) (b)

p

ql

qr

B

A

Fig. 3. Exploring a polygon with (a) a c–safe and (b) a c–critical hole

Barrier b can cut the original Topt into several pieces. Moreover, it can reduce
the visibility from Topt. E.g., point p in Fig. 3(a) is not visible from the original
Topt after inserting b. We use R plus two copies of b (one on the left, the other one
on the right side of the barrier) to link together all pieces of Topt and to restore
full vision. E.g., point p is now visible from the right side copy of b. Doubling
this structure we get a Eulerian graph and a Eulerian tour Te. Finally:

|Te| = 2 (|R|+ 2|b|+ |Topt|) ≤ 4|R|+ 2 |Topt| ≤ (4c+ 2) |Topt| .


�

The hybrid approach consists in implementing the following rule: As soon as the
strategy learns that the hole is c–safe for a suitable chosen constant c, it switches
to the simple polygon mode using Lemma 1. The following lemmas expose some
important properties of a hole that appears to be c-critical after learning R,
because of |R| > cλ. Especially, it turns out that c = 6 is an appropriate choice
for the constant in the hybrid approach.

Lemma 2. Assume that H is a hole with |R| > 6λ. Let ai and ai+1 be the two
segments of R that define λ, pi their common apex and α the enclosed angle.
Then α < π

6 .

Proof. Let ql and qr be the two endpoints of the λ–path that see pi from the left
and right side (Fig. 3(b) . Denoting by A = |qlpi| and B = |qrpi| the distances
to the apex, we have A+B+λ ≥ |R| > 6λ. Consequently, A ≥ 2.5λ or B ≥ 2.5λ
and the claim follows from the sine rule in the triangle Δ(pi, ql, qr). 
�
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Using the notations of Lemma 2 we define a fence f , subdividing P into two
simple polygons F (the front yard), and B (the backyard), see Fig. 3(b). f is
chosen to be the line segment perpendicular to the angular bisector of α through
pi.

Lemma 3. Assume that H is a hole with |R| > 6λ and f the fence of H. Let
x denote twice the shortest path length from s to f . If |Topt| ≥ x, the hole H is
4–safe.

Proof. We use the notations from the proof of Lemma 2. It is sufficient to show
that x ≥ 0.25 |R|. Combining A+B + λ ≥ |R| > 6λ with the triangle inequality
A+ λ ≥ B we obtain 2A+ 2λ ≥ |R| and A ≥ (12 −

1
6 ) |R| =

1
3 |R|. From Lemma

2 we know that the shortest path length from ql to f has length ≥ A cos π
12 ≥

0.96A. Since the distance from s to ql in P is at most λ ≤ 1
6 |R| we end with

x

2
≥ 0.96A− λ ≥

(
0.96

3
− 1

6

)
|R| > 0.15 |R| .


�

Lemma 4. Let H be a hole with |R| > 6λ and x be twice the shortest path length
from s to fence f of H in P. Then the front yard F can be learned by 0–CPEX
with tour length ≤ C0 · x or it turns out that H is 4–safe.

Proof. 0–CPEX explores F from s and stops either if
(1) the exploration path length l reaches C0x with F being still unexplored or if
(2) F gets explored with tour length l ≤ C0x.

We will prove, that this procedure is C0–competitive in both cases, i.e. l ≤
C0 |Topt|, and that in case (1) the hole H becomes 4–safe. We remind that Topt is
the optimal exploration tour for the whole polygon P , whereas Topt(F) denotes
an optimal tour for the front yard. Now, we combine cases (1) and (2) with
another case distinction: (a) |Topt| ≤ x or (b) |Topt| > x. Remark that in case
(a) Topt does not leave F , and consequently |Topt(F)| ≤ |Topt|. In case (b) the
hole becomes 4-safe by Lemma 3.

Case (1): Since the exploration is not finished and 0–CPEX is C0–competitive,
in case (a) we have l = C0x < C0 |Topt(F)| ≤ C0 |Topt|, and therefore x < |Topt|,
a contradiction. Otherwise, (b) holds and thus l = C0x < C0 |Topt|. Here H is
4–safe by Lemma 3.

Case (2): If (a) holds then l ≤ C0 |Topt(F)| ≤ C0 |Topt|. Otherwise l ≤ C0x ≤
C0 |Topt|.


�

Now, we are ready to describe the behavior of 1-CPEX if H is a 6-critical hole:
It starts 0-CPEX in the front yard F with the restriction from Lemma 4. If
H becomes 4–safe, we proceed as described in Lemma 1. In the other case it
remains to explore the backyard B from s. Observe, we are now in a situation
similar to our lower bound construction. We know there are reflex vertices in B
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that hide polygon edges we have to learn. But it is not clear whether to approach
the corresponding cuts on the left or right side of the hole.

We describe how to learn a group of left reflex vertices, compare [12]. The
existence of these vertices has been “observed” along the way while learning R,
respectively F . But, of course, this has not influenced the tours generated in
these subroutines. Basically, cuts of such vertices can lie completely in B or they
can cross the fence line f . As soon as we know that there is a cut not crossing
f , H becomes 4–safe, since Topt intersects f (Lemma 3).

A target vertex l can be located in three different regions of B (Fig. 4). Cuts
of vertices in B3 crossing f on the left of pi0 have been explored along the way
(as soon as they have been discovered), otherwise they cannot be visible yet. All
other cuts of vertices in B1 and B2 crossing f on the left are also crossing R, for
the same reason. Therefore following the angle hull [12] of R on the left side is
a suitable way to explore these cuts. Due to space limitations we have to omit
further details. These can be found in [7,8].

B3
B2

B1

l1
l2

l4

l3

f

R

l∗
pi0

Fig. 4. Different types of left vertices in the backyard B

A similar result can be shown for cuts crossing f on the right part. If we are
sure that a vertex has to be explored from the right, we put it into a special list
V which is learned afterwards (only from the right side, without doubling).

Vertices in B1 are hidden behind the top vertex pi0 of H (e.g., l1 in Fig. 4),
otherwise they would have been already explored. Therefore, approaching pi0 on
a semicircle is competitive, wherever the target vertex is located. If it becomes
visible, it is explored or it can be added to V .

Vertices in B2 and B3 have either been seen from the right side and can also
be added to V (e.g., l4 in Fig. 4), or they have been discovered from the left and
are hidden behind a vertex l∗ from the right (e.g., l2 and l3 in Fig. 4). In the
second case they have to be approached on the angle hull again.

Notice, that the possible paths (angle hull and semicircle) do not depend on
special vertices. Therefore we can follow them via doubling until all left vertices
become explored or we reach the fence. In the second case at least one cut is not
crossing f and the hole is 4–safe. It can be shown that the length of the path
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traveled in F is bounded by a constant times the shortest path length from s to
f , see [7]. In summary, we get the following result.

Theorem 2. 1–CPEX is a O(1)–competitive strategy for exploring polygons
with at most one colored hole and given starting point on the outer boundary.

A closer look at this case yields a competitive factor of ≈ 610, see [7].

4 General Case: Constant Number of Colored Holes

We extend the strategy to deal with more than one, say at most h, pairwise
differently colored holes. The idea of c–safe holes can be adapted to reduce the
exploration problem to a polygon with (h− 1) differently colored holes.

All visible holes are organized in a list H. Each hole in H is marked with its
current state: discovered, critical, or safe.

4.1 Shortest Tours around Holes

For anyH ∈ Hwe denote byRH a shortest tour around the holeH that starts and
ends in s. If this tour is not unique, we choose the unique one encircling the largest
area (Fig. 5(a)).We remark thatRH can encircle other holes, too. It is also possible
that it does not touchH at all (Fig. 5(b)), and it can differ from the outer boundary
of RCH (H ∪ {s}) as well. In the situation thatRH encircles also another holeH ′,
the shortest path properties imply that either RH′ = RH or the region encircled
by RH′ is properly contained in the region encircled by RH .

H

R(H)

s

R(H)
(a) (c)

H

R(H)
s s

(b)

H

Fig. 5. (a) Three shortest paths encircling hole H , (b) RH does not touch H , (c) the
star search approach

Now, the exploration of RH is more difficult because we can’t predict whether
it runs always through bicolored corridors with the color of H on one side or if
it also uses corridors with two other colors. Again, we start the exploration of
RH cw. and ccw. around H , but whenever another hole H ′ occurs in the search
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range, we have to check both possibilities: RH could run cw. or ccw. around H ′

(Fig. 5(c)). Thus, we have to replace the doubling approach from 3.2 by a star
search strategy [14]. The bicolored corridors form the edge set E of a planar
graph with h faces and vertices of degree at least 3. From Euler’s formula we
can conclude |E| ≤ 3h/2. Since each corridor will be used at most twice (from
both sides) a 3h-star search will suffice, which increases the competitive ratio
for this phase by a factor of 2e · 3h+ 1, [14].

Once knowing RH , we derive the lower bound λH ≤ |Topt| in the same way as
in 3.2, Fig. 2(b). Moreover, we can use all the conclusions for safe holes drawn
in the 1–hole case. Lemma 1 for c–safe holes can be extended to h holes, too.

Lemma 5. If a c–safe hole is found, the polygon can be explored with (h− 1)–
CPEX, guaranteeing a total path length ≤ (4c+ 2)Ch−1 |Topt|.

Proof. The hole H has been discovered and categorized c–safe. Therefore, we
found a path b connecting it with the starting point, running completely in RH .
We have to ensure that

|b| ≤ 1

2
|RH | . (1)

As mentioned before, any obstacle interfering with RH and b has to be a c–safe
hole, too. That’s why a c–safe hole H with path b satisfying (1) can be found
and the construction of Lemma 1 can be used. 
�

Lemma 5 allows the recursive call of (h− 1)–CPEX if a c–safe hole is found. In
that case the status of all other holes in H is reset to discovered because in the
newly derived polygon the shortest tour encircling a hole can have changed.

4.2 The Algorithm: h–CPEX

For our algorithm we initialize H as an empty list and set λ = 0. There are two
basic rules h–CPEX will follow:

(R1) As soon as a hole is discovered, we will classify it. Only exception: We are
currently classifying another hole.

(R2) As soon as a hole gets classified as 6–safe, we recurse and invoke (h− 1)–
CPEX.

Overall, the CPEX exploration is divided into three major steps:

1. Classifying Holes
If no hole has been discovered yet, we apply HIKK for simple polygons until
the first hole becomes visible and add it to our list H marked as discovered.
Now, RH has to be learned for every discovered hole H with the help of the
star search algorithm, visiting all possible corridors, until a point p on RH

is visible from both sides of the hole. If such a point is found, the strategy
has to be applied another round: The shortest path could have been missed
because of the malicious adversary. Next, we compute the lower bound λH
and define λ = max (λ, λH). If new holes are found, they are added to H,
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too. If |RH | ≤ 6 ·λ, the hole is safe and we apply R2. Otherwise, we mark H
as 6–critical. If λ has changed, we have to check all holes previously marked
critical. They might be safe now and we can recurse as well.

2. Exploring Front Yards
At this stage, H only contains critical holes. For each group GR, formed by
holes that have the same shortest tour R surrounding them, we create FR

by inserting a fence fR and intersecting the polygon with the corresponding
half plane through the top of R (see strategy for one hole). Because the
fence connects at least one hole with the outer boundary, the number of
holes decreases and we have to update list H (Fig. 6(a) and (b)).

Now, (h−1)–CPEX for FR can be used. If its path length exceeds Ch−1 ·x,
all holes in GR become c–safe and we recurse. Otherwise, FR is explored
completely. If a new hole is discovered we add it to H and apply R1.
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Fig. 6. The fence, front yards and backyard in a polygon with several holes

3. Exploring the Backyard
Finally, we explore the backyard B = P \

⋃
R FR (Fig. 6(b)) as described

before in section 3.3. The doubling approach has to be replaced by star search
again. As in step 2, if a new hole is discovered, add it to H and apply R1.

4.3 The Competitive Factor

Theorem 3. The strategy h–CPEX is (h+ c0)!-competitive.

Proof. Recall that Ch denotes the competitive factor of h–CPEX. For 0–CPEX
we use the HIKK–factor C0 = 26.5. Analyzing the different stages of h–CPEX,
we obtain the following recursive estimation:

Ch ≤ c1h
2 + c2Ch−1 + hCh−1 + c3h .

The first term comes from the classification of the h holes, each using a 3h–
star search with a O(h) competitive factor. The second term comes into play
whenever we have a recursive call of (h− 1)–CPEX for a safe hole. The constant
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c2 = 26 stems from Lemma 5 dealing with 6-safe holes. In the case that all
holes are 6-critical, we have to explore at most h front yards, each implying a
recursive call of (h − 1)–CPEX and, finally, the exploration of the backyard.
The latter is basically an h–star search for groups of left and right vertices. This
estimation is obviously dominated by the second and the third term. We get
Ch ≤ c4 · (h+ c2)! · C0 ≤ (h+ c0)! for sufficiently large constants c4 and c0. 
�

5 Conclusion and Future Work

We have addressed the problem of online exploring polygonal scenes cluttered
with at most h polygonal obstacles (holes). In the standard model exploring the
scene includes the subtask of recognizing which boundary parts belong to holes
and which edges form the outer boundary. In this paper we proposed a modified
model making this subtask trivial by giving each hole a special color.

Under this assumption we described a competitive exploration strategy for
each h > 0. We consider this to be a major breakthrough towards settling the
general conjecture from [4] that such competitive strategies exist in the uncolored
case as well. The missing link could be a combination of star search with a HIKK–
like strategy to learn which holes exist in an uncolored scene. Moreover, we are
sure that the competitive factor can be considerably improved.

The main technical novelty of h–CPEX is the use of distance information
for making decisions. Recall that the HIKK–strategy [12] is mainly based on
topological information, like the order of vertices along the boundary.

Finally, we remark that for h ≥ 2 holes the task of exploring the polygon is no
longer equivalent to exploring all edges, compare Fig. 7. However, this problem
is not an issue for h–CPEX because of its recursive structure.

s

T

Fig. 7. Seeing all boundary edges does not guarantee full exploration
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Abstract. We define the notion of coresets for probabilistic clustering
problems and propose the first (k, ε)-coreset constructions for the proba-
bilistic k-median problem in the metric and Euclidean case. The coresets
are of size poly(ε−1, k, log(W/(wmin ·pmin · δ))), where W is the expected
total weight of the weighted probabilistic input points, wmin is the mini-
mum weight of a probabilistic input point, pmin is the minimum realiza-
tion probability, and δ is the error probability of the construction. We
show how to maintain our coreset for Euclidean spaces in data streams.

1 Introduction

Many real world datasets contain uncertain, imprecise or incomplete data. Typi-
cal examples are measurements of sensor networks or datasets arising from record
linkage across multiple data sources. Imagine, for example, that we maintain a
dataset representing our knowledge on a certain set of entities. Now, we want
to add information from an additional dataset containing data records of some,
but not all of our entities. The new dataset might also contain data records of
entities not present in our knowledge base. In our scenario, we might not be sure
whether two data records from the two sets belong to the same entity or not, but
we might have a good idea of how likely this is. In a Baysian way, this likeliness
can be modeled as a probability. Thus, if we view our knowledge base as a set
X of multi-dimensional points, each data record from our new set can be seen
as a discrete probability distribution over X with a total probability between 0
and 1. If we are now interested in analyzing our new data, we have to deal with
uncertainty, i. e., we must be able to cope with uncertain points.

One important tool for data analysis also needed in the case of uncertain data
is clustering, i. e., the problem to partition a given set of objects into subsets
called clusters such that objects in the same cluster are similar and objects in
different clusters are dissimilar. Clustering is a useful tool for data compression,
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object classification or pattern recognition. Cormode and McGregor [12] intro-
duced two variations of probabilistic clustering both assuming that the input is
a set of probabilistic points, each formalized as a probability distribution func-
tion which describes the possible locations of the points. In unassigned clustering,
each point is assigned to the closest cluster center. In the second variation, called
assigned clustering, each point is assigned to a fixed cluster center, no matter
where it is actually located. We focus on the assigned version of the probabilistic
k-median problem. The k-median objective is one of the most frequently used
clustering objectives. In our probabilistic version of the k-median problem, we
allow that the total realization probability of a point can be smaller than 1,
i. e., it is possible that a point is not realized at all. The goal is now to find k
cluster centers, which are deterministic points in the considered metric space,
and an assignment of the points to these cluster centers such that the sum of
the expected distances of the points to the cluster centers is minimized. Note
that we have to assign each point to a cluster center before we know where it is
eventually realized.

In addition to containing uncertain data, real world data sets are often large
and are given as a data stream or stored on hard disks. In these cases, random
access to the data is too time consuming or not even possible, which then calls for
the development of streaming algorithms. We study the development of stream-
ing algorithms based on coresets. Intuitively, a coreset is a small set of weighted
points that approximates the input points with respect to the studied clustering
problem. Instead of clustering the original dataset, a clustering algorithm can
then be run on the small coreset to obtain a (1 + ε)-approximation in shorter
running time. We develop two different coreset constructions, one for the metric
and one for the Euclidean uncertain k-median-clustering problem.

Related Work on Clustering Uncertain Data. In recent publications, some
traditional clustering heuristics have been extended so that they can handle
uncertain data. For instance, Chau et al. [10] and Ngai et al. [34] extended Lloyd’s
k-means algorithm [16,32], and Kriegel and Pfeifle [28,29] and Xu and Li [36]
extended the density-based clustering algorithm DBSCAN [14] for handling
uncertainty. Furthermore, Günnemann et al. [20] developed a subspace clustering
heuristic for uncertain data. A survey of uncertain data mining and management
applications can be found in [2].

Surprisingly, only a few theoretical results on clustering uncertain data have
been obtained so far [12,19]. Cormode and McGregor [12] achieve a O(1)-
approximation for the assigned metric k-median problem by first computing the
1-median of each probabilistic input point and then clustering the 1-medians.
They also consider other clustering problems. For the unassigned Euclidean k-
median problem and both the unassigned and assigned Euclidean k-means prob-
lem, they obtain a (1+ε)-approximation by using a simple reduction to weighted
deterministic clustering problems. For the unassigned metric k-center problem,
they propose a bicriteria approximation algorithm which results in a constant
factor approximation but uses 2k instead of k cluster centers. Guha and Muna-
gala [19] improve the last-mentioned result by using a reduction to a ‘truncated’



72 C. Lammersen, M. Schmidt, and C. Sohler

version of a deterministic metric k-median problem. They obtain a constant fac-
tor approximation for both the unassigned and assigned metric k-center problem
that preserves the number of allowed cluster centers k.

Related Work on Clustering Certain Data. The deterministic k-median
clustering problem is well-studied. We start with an overview for Euclidean k-
median. Arora et al. [4] develop the first (1+ε)-approximation algorithm for the
Euclidean k-median problem in the plane by extending the technique developed
by Arora [3] for the Euclidean TSP. Kolliopoulos and Rao [27] improve their
work by solving the d-dimensional case with d ≥ 2 and reducing the running
time to O(2Õ(1/ε)d−1

n logd+6 n), where n is the number of input points. Further
improvements were then based on coresets. Agarwal et al. [1] introduced the
concept of coresets for extent measures of points. The first coreset construction
for the clustering problems is due to Bădoiu et al. [6] leading to a (1 + ε)-
approximation with an expected running time of O(2poly(k,1/ε)dO(1)n logO(k) n)
for the k-median problem. Har-Peled and Mazumdar [22] introduce strong core-
sets for clustering problems. There are various coreset constructions and (1+ε)-
approximations [11,15,17,21,22,30]. Most relevant to our work is the construction
by Chen [11] which gives a coreset of size O(dk2ε−2 log(n) log(k/ε)) leading to
a (1 + ε)-approximation in time O(ndk + 2(k/ε)

O(1)d2 logk+2 n).
For general metric spaces, a (1 + ε)-approximation with running time poly-

nomial in k is not possible for ε < 0.73 unless NP ⊆ DTIME(nO(log logn)) [25].
Charikar et al. [9] give the first constant-factor approximation. Indyk [24] devel-
ops a randomized bicriteria approximation with constant approximation factor
and O(k) centers. Based on that, Guha et al. [18] give a constant-factor ap-
proximation with running time Õ(nk) and show how to maintain it in insertion-
only data streams. Mettu and Plaxton [33] prove an Ω(nk) lower bound for
any constant-factor approximation, even for randomized algorithms, and also
achieve a running time of Õ(nk). Chen [11] uses coresets to develop a (10 + ε)-
approximation algorithm with running time O(nk + k7ε−5 log5 n). The coreset
has size O(dk2ε−2 logn log(k/ε)). The approximation factor is improved to 6 by
Jain and Vazirani [26], to 4 by Charikar and Guha [8], and finally to 3 by Arya
et al. [5]. The latter algorithm uses local search and analyzes the locality gap.

To the best of our knowledge, there does not exist any coreset construction
for probabilistic clustering problems.

Our Contribution. The focus of our work is introducing and constructing
probabilistic coresets. What should such a coreset look like? It can certainly
contain probabilistic points. However, in addition to the number of such points,
the overall storage size is also influenced by the representation size of the prob-
ability distributions of the points. Thus, we define a coreset by restricting both
the number and the representation size of the probabilistic points.

Our first construction is a reduction to the deterministic k-median problem.
Note that the expected distances between points do not satisfy the properties of
a metric space because two copies of the same probabilistic point do not have
expected distance zero as it should be for identical elements of a metric space.



Probabilistic k-Median Clustering in Data Streams 73

Thus, the intuitive reduction does not work. However, the earth mover distance
can be used to define a metric space and hence makes the use of existing coreset
constructions for the deterministic metric k-median problem possible.

In the Euclidean case, one can also transform a problem instance into an
input for the deterministic metric k-median problem, because a Euclidean space
is also a metric space. However, the resulting instance is indeed metric but not
Euclidean anymore. Thus, a coreset construction based on the transformed input
can only use metric coreset constructions and not constructions specifically for
Euclidean inputs. Now, the problem is that while metric algorithms provide
a coreset which grants an approximation for all centers picked from a finite
subset of the metric space, coresets for the Euclidean clustering problem have to
approximate center sets from the infinite Euclidean space. Due to this fact, one
cannot use a metric coreset construction to compute a coreset for the Euclidean
k-median problem.

We develop a coreset construction for the probabilistic Euclidean k-median
problem by extending and further developing a technique of Chen [11] for the
deterministic k-median problem. The main idea of Chen’s construction is to use
a bicriteria approximation to partition the Euclidean space into (ring-shaped)
regions of points which are close to each other (in terms of their optimal clus-
tering cost) and then to sample representatives from each such subset. When we
want to apply Chen’s construction to probabilistic data, we are faced with the
problem that a probabilistic point can be realized in different regions. Further-
more, there exists no bi-criteria approximation. We overcome these difficulties
by first applying Chen’s construction to probabilistic points by using 1-medians
of a probabilistic points as their location. The probem is now to deal with dif-
ferent possible realizations of probabilistic points. In order to do so, we further
refine Chen’s partition and replace uniform sampling by a weighted sampling
procedure. In the analysis we show that after these modifications the resulting
point set is a probabilistic coreset with sufficiently high probability.

Both our coreset constructions also work for the weighted probabilistic k-
median problem. Furthermore, we show how to maintain the Euclidean coreset
in data streams.

2 Preliminaries

Let M = (X,D) be a metric space, where X is a set of points and D is a
distance function defined on X . For a finite subset Y ⊆ X and a point x ∈ X ,
let D(x, Y ) := miny∈Y {D(x, y)} denote the minimal distance between x and
points in Y . For finite subsets Y, Z ⊆ X , let D(Y, Z) := miny∈Y {D(y, Z)} denote
the minimal distance between points in Y and Z. For a finite set Y ⊆ X , let
diam(Y ) := maxy,z∈Y D(y, z) denote the diameter of Y . For a point x ∈ X and
a non-negative value R, define B(x,R) as the ball with center x and radius R.

Next, we define the probabilistic k-median-clustering problem.
Let X := {x1, . . . , xm} ⊆ X be a finite set of m points from the metric space
M , and let V := {v1, . . . , vn} be a set of n nodes, where each node vi follows an
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independent probability distribution Di over X . For any i ∈ [n] and any j ∈ [m],
we denote the probability that the node vi is realized at xj by pij . We denote the
total probability that vi is realized by pi :=

∑m
j=1 pij . We assume that pi ≤ 1,

i. e., with probability 1 − pi node vi is not realized. Let pmin be the smallest
realization probability, i. e., pmin = min

i∈[n],j∈[m]
{pij} ≤ pij for all i ∈ [n], j ∈ [m].

Definition 1 (Probabilistic k-Median Problem). Given k ∈ N, a finite
set of κ possible center locations C ⊆ X and a positive weight function w :
V → R≥0 on the set of nodes V , the weighted probabilistic metric k-median-
clustering problem for V is to find a set C := {c1, . . . , ck} ⊆ C of k cluster centers
and an assignment ρ : V → C minimizing the expected k-median-clustering
cost ED [costw(V,C, ρ)] :=

∑n
i=1 w(vi)

∑m
j=1 pij · D(xj , ρ(vi)). The unweighted

problem results from setting w(vi) = 1 for all vi. We denote the cost of an
optimal clustering by cost∗k(V ), the total weight by W :=

∑
vi∈V w(vi)pi and the

minimum weight by wmin := minvi∈V {w(vi)} (we assume that the problem is
scaled such that wmin ≥ 1). The definition is verbatim for the Euclidean case,
except that C = Rd is not finite.

The deterministic k-median clustering problem is a special case of the proba-
bilistic problem, where m = n and, for each node vi, we have pii = 1 and pij = 0
for all j �= i. Note that in the literature it is typically assumed that C = X , i. e.,
the set of possible center locations is equal to the set of clustered points. Thus,
our definition is a generalization of the typical definition. Additionally note that
if for each node vi we have one j ∈ [m] with pij = pi and hence pij′ = 0 for all
j′ �= j, then the probabilistic k-median clustering can be immediately reduced
to a weighted deterministic k-median clustering. Note that we use the notation
cost∗k in this case as well, then referring to the optimal weighted deterministic
k-median-clustering cost.

Finally, we introduce coresets for the probabilistic k-median-clustering prob-
lem. Intuitively, a coreset is a small representation of the input point set that has
similar clustering cost as the original points for any set of centers. It is similar to
the original input, but smaller and the points are weighted in compensation. As
the storage size of a probabilistic point set is influenced by the number of prob-
abilistic points and by the size of the individual probability distributions, we are
interested in coresets where both parameters are small. Note that the following
formal definition of coresets is relatively general and allows that C � X . In this
case, the following coreset is a weak coreset.

Definition 2 (Coreset for Probabilistic k-Median Problem, [12]). Given
a set of nodes V , let U := {u1, . . . , us} ⊆ V be a subset annotated with a positive
weight function w′ : U → R≥0 and probability distributions D′ := {D′

1, . . . ,D′
s}

over X for all nodes in U . Given k ∈ N, a finite set of κ possible center locations
C ⊆ X and a precision parameter ε, 0 < ε ≤ 1, the set U is called (k, ε)-coreset
of V for the probabilistic metric k-median-clustering problem if, for each C ⊆ C
of size |C| = k, we have∣∣∣∣ min
ρ:U→C

ED′ [costw′(U,C, ρ)]− min
ρ:V→C

ED [cost(V,C, ρ)]

∣∣∣∣ ≤ ε · min
ρ:V→C

ED [cost(V,C, ρ)] .
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The definition is verbatim for the Euclidean case, except that C = Rd. If the nodes
in V are weighted by a positive weight function w : V → R≥0, then cost(V,C, ρ)
is replaced by costw(V,C, ρ).

In the following, for all ui belonging to the coreset that we compute, we we
denote the probability that ui is realized at xj by p′ij for all j ∈ [m]. Further,
we denote the total probability that ui is realized by p′i :=

∑m
j=1 p

′
ij .

Omitted Proofs. Note that due to space limitations, some proofs in Section 3
and all proofs in Section 4 are omitted and can be found in a technical report
[31].

3 Coreset for Metric k-Median

Morphing Probability Distributions. We can compute a coreset for the
probabilistic metric k-median-clustering problem by reducing the problem to
the deterministic metric k-median-clustering problem. Imagine for the moment
that the total realization probabilities pi are uniform for all input nodes vi ∈ V ,
i. e., we have pi = p for all i ∈ [n] and some fixed probability p, 0 < p ≤ 1.
Then, two probability distributions can be ‘morphed’ into one another by using
the earth mover distance (EMD) as the cost needed to morph one probability
distribution into another. It is defined as follows:

Definition 3. Let vi′ and vi′′ be two nodes in V with pi′ = pi′′ . We say a
mapping � : X ×X → R≥0 morphs vi′ into vi′′ if it satisfies

∑
xj∈X �(xj′ , xj) =

pi′j′ and
∑

xj∈X �(xj , xj′′ ) = pi′′j′′ for all xj′ , xj′′ ∈ X . The cost of � is defined
as morph(vi′ , vi′′ , �) :=

∑
xj′∈X

∑
xj′′∈X �(xj′ , xj′′ ) · D(xj′ , xj′′ ). The expected

earth mover distance EMD(vi′ , vi′′ ) between vi′ and vi′′ is the minimum cost of
a mapping that morphs vi′ into vi′′ .

Theorem 1. Let M = (X,D), V , D1, . . . ,Dn, C with |C| = κ, k and w form
a weighted probabilistic metric k-median problem instance, let 0 < δ, ε < 1
be given. A (k, ε)-coreset given by U and D′

1, . . . ,D′
n can be computed in time

O(ε−10knm log7(κW/(wmin · pmin · εδ))) with error probability δ. The size of U
is O

(
ε−3k2 · log3 (κW/(wmin · pmin · εδ))

)
, and each probability distribution in

D′ assigns a positive probability to O(ε−3 log2(κW/(wmin · pmin · εδ))) points.
The coreset construction requires O

(
ε−6k2 · log6 (κW/(wmin · pmin · εδ)

)
bits of

space.

Proof. Note that the cost to assign a node to a center in a probabilistic k-median
clustering coincides with the EMD between the node and a node which has all its
realization probability concentrated in the center. Furthermore, the EMD defined
on a set of nodes with uniform total realization probabilities is a metric [35]. Let
us assume for the moment that the realization probability of each node is a fixed
value p and that the input is unweighted. Now, for each possible center location
x ∈ C, we consider an artificial node denoted by node(x) that is located at x
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and has total realization probability p. We define a new metric space that has
a point σ(vi) for each node vi ∈ V and a point σ(node(x)) for each artificial
node node(x). The distance between two points in the new metric space is given
by the EMD between the corresponding original nodes. Let σ(V ) be the points
resulting from the nodes in V , and let σ(node(C)) be the points resulting from
the artificial nodes. The computation of a (k, ε)-coreset of V for the probabilistic
metric k-median problem is equivalent to the computation of a (k, ε)-coreset of
σ(V ) for the deterministic metric k-median problem in which we use the new
metric defined above and in which the k centers are points from σ(node(C)).

Note that, although it is not explicitly mentioned in [11], the algorithm by
Chen works for our more general version of the deterministic metric k-median
clustering (where the set of clustered points and the set of possible center loca-
tions can be arbitrary finite subsets of points from the underlying metric space).
The number of possible center locations has only a logarithmic influence on the
coreset size. Thus, the computation of the (k, ε)-coreset can be done with the
algorithm by Chen.

For that, it is necessary to be able to compute the EMD. Using an algorithm
of Edmonds and Karp [13], the EMD between any two nodes vi′ and vi′′ with
pi′ = pi′′ can be computed in O(m3) time. In order to improve the running time
needed to compute the EMD between nodes and to have a small representation
of a coreset node, we approximate the probability distribution Di of each node
vi ∈ V by computing a (1, ε)-coreset of vi for the probabilistic 1-median problem.
This means, for any center c ∈ C, the expected cost to assign the node vi to the
center c is (1±ε)-approximated by the coreset. We can use these coreset instead of
the original nodes because they only induce a small error to the overall clustering
cost. The (1, ε)-coreset construction can directly be transferred from weighted
deterministic 1-median clustering.

Transfering the above to the weighted case is straightforward. This also solves
the problem of different realization probabilities, because every input can be
adjusted such that all pi are 1 by multiplying each pij with 1/pi and at the same
time, multiplying wi by pi. This does not change the objective function. 
�

4 Coreset for Euclidean k-Median

Coreset Construction. The algorithm by Chen [11] computes a coreset for
the deterministic problem in two steps: (i) partitioning the nodes into disjoint
subsets, (ii) drawing random sample nodes from each such subset. We add a
third step, (iii) approximating the probability distribution of each sample node.
In the following, we describe our realization of these steps by comparing them
with the steps in [11].

Step (i) partitions the nodes into groups that are similar in terms of their
locations and their contributions to the total clustering cost. Chen starts by
computing a bicriteria approximation for the deterministic input point set. In
the probabilistic case no such approximation is known and we give the first such
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approximation algorithm here. We start with computing point representatives
for each node.
– For every node vi ∈ V , compute a point yi that satisfies

∑m
j=1 pij ·D(xj , yi) ≤

2 ·minxj′∈X

∑m
j=1 pij ·D(xj , xj′ ), i. e., yi is a 2-approximation of the proba-

bilistic 1-median for vi. Let Y := {y1, y2, . . . , yn} be the weighted set of the
resulting n points where the weight of yi is set to w(yi) := w(vi).

Now, we compute a deterministic bicriteria approximation for the set of 1-
medians interpreted as a deterministic clustering problem.

– Compute a set A ⊆ Y which is a center set of an [α, β]-bicriteria approxi-
mation to cost∗k(Y ). That is, A := {a1, . . . , aτ} satisfies

min
ρ:Y →A

EDY [costw(Y,A, ρ)] ≤ α cost∗k(Y ) ,

where α ≥ 1 is some constant, τ ≤ βk, β = O(log(W/(wmin · pmin · ε))),
W :=

∑
vi∈V w(vi)pi is the expected total weight of the nodes, wmin :=

min{minvi∈V {w(vi)}, 1} is either the minimum weight of a node in V or
1, and pmin is the smallest realization probability, i. e., pmin ≤ pij for each
i ∈ [n] and each j ∈ [m]. Let σY : Y → A be an assignment satisfying
EDY [costw(Y,A, σY )] = minρ:Y →A EDY [costw(Y,A, ρ)]. Note that σY as-
signs each point in Y to the closest center in A. Let σV : V → A be the
corresponding assignment for V such that σV (vi) = σY (yi) for all i ∈ [n].

Next, we show that the computed set A is actually a [3α + 2, β]-bicriteria ap-
proximation to probabilistic optimum cost∗k(V ). This enables us to transfer the
partitioning step by Chen: We find a bound R on the average radius of the
optimal cost of a probabilistic k-median clustering for V and an upper bound
2νR on the distance between an arbitrary point in Y and its closest center in A.
The value of ν is �log((9α+6)W/(wmin ·pmin))�. This ensures that the following
Chen-like partitioning is indeed a partitioning into disjoint subsets:
– For all � ∈ [τ ], define Y	 ⊆ Y as the subset of points in Y that σY assigns to
a	, i. e., Y	 is the set of all points whose closest point in A is a	 (ties broken
arbitrarily). Set V	 := {vi|yi ∈ Y	}. Furthermore, for each � ∈ [τ ] and each
h ∈ {0, 1, . . . , ν}, let

Y	,h :=

{
Y	 ∩ B(a	, R) h = 0

Y	 ∩ [B(a	, 2hR)\B(a	, 2h−1R)] h ≥ 1

be the h-th ring set for the center a	 and the corresponding set Y	. Set
V	,h := {vi|yi ∈ Y	,h}.

This gives us subsets of nodes which have relatively close 1-medians. For our
purposes this partitioning is not sufficient, as the probability distributions of
the nodes can have different variances and may not behave similarly according
to the cost function. Thus, we further subdivide the ring sets according to the
width

∑
xj∈X (pij/pi)D(xj , yi) of the probability distribution of vi. Let 2μR be

an upper bound on the width of the probability distributions. The value for μ
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is �log((6α + 4)W/(wmin · pmin))�. For each � ∈ [τ ], each h ∈ {0, 1, . . . , ν}, and
each a ∈ {0, 1, . . . , μ}, let

Y	,h,a :=

{
{yi ∈ Y	,h |

∑
xj∈X (pij/pi) ·D(xj , yi) ≤ R} a = 0

{yi ∈ Y	,h | 2a−1R <
∑

xj∈X (pij/pi) ·D(xj , yi) ≤ 2aR} a ≥ 1
.

V	,h,a is the corresponding node set and the desired partitioning.

Step (ii) Chen samples uniformly from each of his ring sets. Due to the different
total realization probabilities of nodes, our sampling is weighted and results in
a coreset of individually weighted coreset points. In more detail: From each V	,h,a,
we sample a multiset U	,h,a with s′′′ :=

⌈
c · ε−2 · [log(1/δ) + k (log(k) + d log(1/ε)

+ log(log(W/(wmin · pmin · ε))))]� nodes, where c is a sufficiently large constant.
The nodes are sampled with replacement, and, in each sample step, a node
vi ∈ V	,h,a is picked with probability w(vi)pi/

∑
vi′∈V�,h,a

w(vi′ )pi′ . We set the
weight of the sample node vi to w′(vi) =

∑
vi′∈V�,h,a

w(vi′ )pi′/(pis
′′′).We store

all sampled nodes in the multiset U := {u1, . . . , us} :=
⋃τ

	=1

⋃ν
h=0

⋃μ
a=0 U	,h,a.

Step (iii) computes an approximated probability distribution Zi for each core-
set node vi that assigns a positive probability to at most O(ε−2γ2d log2(nmW ) ·
(d log(1/ε) + log(γ) log(nmW ) + log(n/δ))) points from X .

Correctness. Due to space limitations, we only give a very rough sketch of
the proof that our coreset construction is correct. The details can be found
the full version [31]. As a basic tool to bound the number of sample nodes
needed to reduce the error in the clustering cost below a certain threshold, we
use the following result due to Haussler [23] (also used by Chen). The first
problem that we have to overcome is that the input nodes are weighted due
to the probabilities and the weight function, but Haussler’s Lemma samples
uniformly at random. We solve this by defining an appropriate bipartite mapping
between the input nodes and a set of suitable chosen unweighted nodes. In order
to transfer the properties of the unweighted sampling to our weighted setting,
we need to weight all sample nodes individually (instead of giving all samples
from one V	,h,a the same weight correlating to the number of nodes in V	,h,a).
We show that when we sample sufficiently many nodes from each V	,a,h, the

total error induced is bounded by ξ
∑

all V�,a,h

∑
vi′∈V�,a,h

w(vi′ )pi′

(
D(Y (V	,a,h), C)+

diam(Y (V	,a,h)) +maxyi∈Y (V�,a,h)

∑
xj∈X

pij

pi
·D(xj , yi))

)
with high probability.

We show that the first of the three summands is bounded because we use 1-
medians to calculate A. Then, we prove that the second term is bounded because
we partitioned into groups of nodes with closely located approximated 1-medians.
The third term is bounded because the nodes also have probability distribution
of similar widths.

Similar to Chen, we discretize the input space by defining ‘huge balls’ restrict-
ing the position of possible centers and subdivide these by a suitable grid in order
to cope with the infinitely many possible centers from Rd. Finding suitable huge
balls turns out to be challenging, as the probability distributions can be quite
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wide spread. Finally, we use known results from [30,24,11] to construct Y , A and
Zi for i ∈ [n] efficiently and obtain the following theorem.

Theorem 2. Let M = (X,D) with D being the Euclidean distance function, V ,
D1, . . . ,Dn, C, k and w form a weighted probabilistic metric k-median problem
instance, let 0 < δ, ε < 1 be given. A (k, ε)-coreset given by U and D′

1, . . . ,D′
n can

be computed in time O (knm log (log (W/(wmin · pmin · ε))) · log (n/δ)) with error
probability δ. The size of U is O

(
ε−2k2d · log4 (W/(wmin · pmin · εδ))

)
, and each

probability distribution in D′ assigns O
(
ε−2d · log3 (W/(wmin · pmin · εδ))

)
points

from X a positive probability. The coreset construction has a space requirement
of O

(
ε−4k2d2 · log8 (W/(wmin · pmin · εδ))

)
.

5 Streaming Algorithm

Our coreset for the Euclidean k-median problem can be maintained in data
streams by using the merge-and-reduce technique [7,22]. We assume that the set
V is given as a stream of n weighted nodes in worst-case order. Each node vi
is given as a consecutive chunk that is a sequence of up to m point-probability
pairs in worst case order representing the probability distribution Di of the node
vi. Streaming algorithms are only allowed one sequential scan over the data and
can only use an update time and local memory that is polylogarithmic in the size
of the input stream. Our algorithm needs space that is polylogarithmic in n, m
and W/(wmin · pmin), and the update time per node is polylogarithmic in n and
W/(wmin · pmin), but it might be linear in m since the probability distribution
of a node can be represented by m point-probability pairs.

Theorem 3. Let k ∈ N, 0 < δ, ε ≤ 1, V , D = {D1, . . . ,Dn} over X with
|X | = m be given in form of a data stream. One can compute a weighted subset
U := {u1, . . . , us} ⊆ V and a set of probability distributions D′ := {D′

1, . . . ,D′
s}

such that the nodes in U together with the probability distributions D′ build a
(k, ε)-coreset of V for the probabilistic k-median-clustering problem with proba-
bility 1− δ. The size of U is O

(
ε−2k2d · log7 (W/(wmin · pmin · εδ))

)
, where each

probability distribution in D′ assigns O
(
ε−2d · log6 (W/(wmin · pmin · εδ))

)
points

from X a positive probability.
The streaming algorithm requires O

(
ε−4k2d2 · log14 (W/(wmin · pmin · εδ))

)
space

and has an update time per node of O
(
ε−4k3d2m · log14 (W/wmin · pmin · εδ))

)
.

6 Applications

Coresets can be used to speed up approximation algorithms by computing a
solution on the small coreset instead of the possibly huge original input set. For
an α-approximation algorithm, this leads to an α (1 + ε)-approximation. In the
metric case, the only approximation algorithm known so far is the reduction to
the deterministic k-median problem by Cormode and McGregor [19]. Using their
algorithm, we get a constant-factor approximation. However, the computation
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of our coreset has roughly the same running time as the algorithm in [19]. In
the Euclidean case, no approximation algorithm is known so far. By using our
coreset, we get a randomized (1 + ε)-approximation in time roughly (W/(wmin ·
pmin))

log5(W/(wmin·pmin)) for constant ε, k and d.
As soon as algorithms with better approximation guarantee (in the metric

case) or lesser dependence on ε, k or d (in the Euclidean case) are known, even
with running time exponential in the expected total weight W or in the term
W/(wminpmin), the speed-up directly leads to polynomial-time versions.

Finally, the coreset construction can be beneficial in itself as it enables queries
to the clustering cost in a setting where data comes in a stream and can only be
stored in sketches.

Acknowledgments. The authors thank the anonymous referees for their de-
tailed and useful comments, especially for suggesting to try to extend Theorem 1
to the non-uniform case and for pointing out that the proof can be shortened.
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Vińıcius G.P. de Sá3, and Raphael Machado4

1 Dept. de Informática Aplicada, UniRio, Brazil
2 PESC/COPPE, UFRJ, Brazil

3 Dept. de Ciência da Computação, UFRJ, Brazil
4 Instituto Nacional de Metrologia, Qualidade e Tecnologia, Brazil

Abstract. A unit disk graph is the intersection graph of n congruent
disks in the plane. Dominating sets in unit disk graphs are widely studied
due to their application in wireless ad-hoc networks. Since the minimum
dominating set problem for unit disk graphs is NP-hard, several ap-
proximation algorithms with different merits have been proposed in the
literature. On one extreme, there is a linear time 5-approximation algo-
rithm. On another extreme, there are two PTAS whose running times
are polynomials of very high degree. We introduce a linear time approx-
imation algorithm that takes the usual adjacency representation of the
graph as input and attains a 44/9 approximation factor. This approxi-
mation factor is also attained by a second algorithm we present, which
takes the geometric representation of the graph as input and runs in
O(n log n) time, regardless of the number of edges. The analysis of the
approximation factor of the algorithms, both of which are based on local
improvements, exploits an assortment of results from discrete geometry
to prove that certain graphs cannot be unit disk graphs. It is noteworthy
that the dominating sets obtained by our algorithms are also independent
sets.

1 Introduction

A unit disk graph G is a graph whose n vertices can be mapped to points in
the plane and whose m edges are defined by pairs of points within Euclidean
distance at most 1 from one another. Alternatively, one can regard the vertices
of G as mapped to coplanar disks of unit diameter, so that two vertices are
adjacent whenever the corresponding disks intersect.

A dominating set D is a subset of the vertices of a graph such that every
vertex not in D is adjacent to some vertex in D. An independent dominating set
is a dominating set which is also an independent set. Note that any maximal
independent set is an independent dominating set.

Dominating sets in unit disk graphs are widely studied due to their appli-
cation in wireless ad-hoc networks [12]. Since it is NP-hard to compute the
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minimum dominating set of a unit disk graph [2], a number of approximation
algorithms have been proposed [3,5,9,10,12,15,19]. Such algorithms are of two
main types. Graph-based algorithms receive as input the adjacency representa-
tion of the graph and assume no knowledge of the point coordinates, whereas
geometric algorithms work in the Real RAM model of computation and receive
solely the vertex coordinates as input1. Thus far these two types of algorithms
have been tackled separately in the literature for the dominating set problem in
unit disk graphs. In this paper, we introduce approximation algorithms of both
types, benefiting from the same approximation factor analysis.

Previous Algorithms. A graph-based 5-approximation algorithm that runs in
O(n+m) time was presented in [12]. The algorithm computes a maximal inde-
pendent set, which turns out to be a 5-approximation because unit disk graphs
contain no K1,6 as induced subgraphs.

Polynomial-time approximation schemes (PTAS) were first presented as geo-
metric algorithms [10] and later as graph-based algorithms [15]. Also, a graph-
based PTAS for the more general disk graphs is proposed in [9]. Unfortunately,
the complexities of the existing PTAS are high degree polynomials. For exam-
ple, the PTAS presented in [15] takes O(n225) time to obtain a 5-approximation
(using the analysis from [3]). Although its analysis is not tight, the running time
is too high even for moderately large graphs. The reason is that these PTAS
invoke a subroutine that verifies (by brute force) whether a graph admits a
dominating set with k vertices. Such subroutine is applied to several subgraphs,
and the value of k grows as the approximation error decreases. A similar strategy
is used to obtain a PTAS for the minimum independent dominating set [11].

The lack of fast algorithms with approximation factors less than 5 was noticed
in [3], where geometric algorithms with approximation factors of 3 and 4 and
running times respectively O(n18) and O(n9) were presented. While a signifi-
cant step towards approximating large instances, those algorithms require the
geometric representation of the graph, and the running times are polynomials of
rather high degrees. Linear and near-linear time approximation algorithms con-
stitute an active topic of research, even for problems that can be solved exactly
in polynomial time, such as maximum flow and maximum matching [1,18].

It is useful to contrast the minimum dominating set problem with the maxi-
mum independent set problem. While a maximal independent set is a 5-approxi-
mation to both problems, it is easy to obtain a geometric 3-approximation to the
maximum independent set problem in O(n log n) time [14]. In the graph-based
version, a related strategy takes roughly O(n5) time, though. No similar results
are known for the minimum dominating set problem.

Packing problems usually arise in situations where one wants to enclose non-
overlapping objects as densely as possible into recipients of given shape. Unit
disk graphs are subject to a number of packing constraints that limit the size of
independent sets (which correspond to disjoint disks) as a function of the distance

1 The Real RAM model is a technical necessity, otherwise storing the coordinates of
the vertices would require an exponential number of bits [13].
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between vertices. The existing PTAS for dominating sets in unit disk graphs are
based on some of these packing constraints, such as the bounded growth property:
the size of an independent set formed by vertices within distance r of a given
vertex is at most (1 + 2r)2. Note, however, that the bounded growth property
is not tight. For example, for r = 1, it gives an upper bound of 9 vertices where
the actual maximum size is 5. Since the bounded growth property is strongly
connected to the problem of packing circles in a circle [7], obtaining exact values
for all r seems unlikely.

Our Contribution. Our main result consists of two approximation algorithms: a
graph-based algorithm, which runs in linear O(n +m) time, and its geometric
counterpart, which runs in O(n log n) time in the Real RAM model, regardless
of the number of edges.

The approximation factor of our algorithms is 44/9. The strategy for both
algorithms is to construct a 5-approximate solution using the algorithm from [12]
and to perform subsequent local improvements to that initial dominating set.
Our main lemma (Lemma 7) uses forbidden subgraphs to show that a solution
that admits no local improvement is a 44/9-approximation. Since the dominating
sets produced by our algorithms are independent sets, the same approximation
factor holds for the independent dominating set problem.

Proving that a certain graph is not a unit disk graph (and is therefore a
forbidden induced subgraph) is no easy feat2. We make use of an assortment of
results from discrete geometry in order to prove properties of unit disk graphs
that are interesting per se. For example, we use universal covers and disk packings
to show that the neighborhood of a clique in a unit disk graph contains at most
12 independent vertices. These properties, along with a tighter version of the
bounded growth property, allow us to show that certain graphs are not unit
disk graphs. Consequently, our algorithms employ a broader set of forbidden
subgraphs, including, but not being limited to, the K1,6.

2 Forbidden Subgraphs

In this section, we introduce some lemmas about the structure of unit disk
graphs. These lemmas will be applied to prove our approximation factor in Sec-
tion 3. We start by stating three previous results from the area of discrete ge-
ometry. The first lemma comes from the study of universal covers (for a recent
survey see [8]).

Lemma 1 (Pál [16]). If a set of points P has diameter 1, then P can be
enclosed by a circle of radius 1/

√
3.

Packing congruent disks in a circle is a well studied problem. Exact bounds on
the radius of the smallest circle packing k congruent disks are known for some
small values of k, namely k ≤ 13 and k = 19 [7]. The bound for k = 13 will be
useful to us.
2 The fastest known algorithm to decide whether a given graph is a unit disk graph
is doubly exponential [17].
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Lemma 2 (Fodor [7]). The radius of the smallest circle enclosing 13 points
with mutual distances at least 1 is (1 +

√
5)/2.

The density of a packing is the ratio between the covered area and the total
area. The following upper bound is useful when no exact bound is known.

Lemma 3 (Fejes Tóth [6]). Every packing of two or more congruent disks in
a convex region has density at most π/

√
12.

Given a graph G = (V,E) and a vertex v ∈ V , let N(v) denote the open neigh-
borhood of v and let N [v] = N(v)∪{v} denote the closed neighborhood of v. More
generally, the open r-neighborhood of a vertex v is the set of vertices w such that
the distance between v and w in G is exactly r, while the closed r-neighborhood
of a vertex v is the set of vertices w such that the distance between v and w in
G is at most r. For a set S ⊆ V , we let NS(v) = N(v)∩S and NS [v] = N [v]∩S.
Finally, given a subgraph G′ of G, the closed neighborhood of G′ is the set of ver-
tices that belong to the closed neighborhood of some vertex of G′. The following
two lemmas concern neighborhoods in unit disk graphs.

Lemma 4. The closed neighborhood of a clique in a unit disk graph contains at
most 12 independent vertices.

Proof. By Lemma 1, the points which define a clique in a unit disk graph are
contained inside a circle of radius 1/

√
3. Therefore, the points corresponding to

the closed neighborhood of such clique are contained inside a circle of radius
1+ (1/

√
3). By Lemma 2, we have that a circle enclosing 13 points with mutual

distances at least 1 has radius at least (1+
√
5)/2. Since (1+

√
5)/2 > 1+(1/

√
3),

the lemma follows. 
�

Lemma 5. Given an integer r ≥ 1, the closed r-neighborhood of a vertex in a
unit disk graph contains at most �π(2r + 1)2/

√
12� independent vertices.

Proof. All n disks of diameter 1 corresponding to the closed r-neighborhood of a
vertex v must be enclosed by a circle W of radius (2r+1)/2 centered on v. Each
disk of diameter 1 has area π/4 and W has area (2r + 1)2π/4. Using Lemma 3,
we have (n π/4)/((2r + 1)2π/4) ≤ π/

√
12, and the lemma follows. 
�

We say that a graph G is (k, �)-pendant if there is a vertex v in G with k vertices
of degree 1 in the open neighborhood of v and � vertices of degree 1 in the open
2-neighborhood of v. We refer to v as a generator of the (k, �)-pendant graph.
The following lemma bounds the value of the parameter � for a (4, �)-pendant
unit disk graphs.

Lemma 6. If G is a (4, �)-pendant unit disk graph, then � ≤ 8.

Proof. Let v be a generator of G. SinceK1,6 is a forbidden induced subgraph [12]
and v has 4 neighbors of degree 1, we have that the remaining neighbors of v
together with v itself form a clique. By Lemma 4, we have that 4 + � ≤ 12. 
�
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3 Approximation Algorithms

In this section, we present our approximation algorithms. The key property to
analyze the approximation factor is presented in Lemma 7, while the running
time analyses are presented in Sections 3.1 and 3.2.

Hereafter, let G = (V,E) be a unit disk graph, and let D ⊆ V be an indepen-
dent dominating set of G. If v ∈ D and uv ∈ E, we say that v dominates u and,
conversely, that u is dominated by v.

As already mentioned, unit disk graphs are free of induced K1,6. Therefore,
at most 5 vertices of D may belong to the closed neighborhood of any given
vertex v ∈ V . A corona is a set C ⊆ D consisting of exactly 5 neighbors of some
vertex c ∈ V \ D. Such a vertex c is called a core of the corona C, and it is
not necessarily unique. Notice that the subgraph induced by a corona C and a
corresponding core c is a star, i.e. a graph formed by an independent set and a
universal vertex.

A corona C is said to be reducible if there is a core c of C such that D∪{c}\C
is a dominating set. If no such core exists, C is dubbed irreducible. Given a
reducible corona C and a corresponding core c, we refer to the operation that
converts D into the smaller dominating set D ∪ {c} \ C as a reduction.

Lemma 7. Let G = (V,E) be a unit disk graph, D an independent dominating
set in G, and D∗ a minimum dominating set of G. If D contains no reducible
coronas, then ρ = |D|/|D∗| ≤ 44/9.

Proof. We use a charging argument to bound the ratio between the cardinalities
of D and D∗. Consider that each vertex u ∈ D splits a unit charge evenly among
the vertices in the closed neighborhood ND∗ [u]. The function f : D∗ → (0, 5] be-
low corresponds to the total charges assigned to each vertex v∗ ∈ D∗, accumu-
lating the (fractional) charges that v∗ received from the vertices in ND[v∗]:

f(v∗) =
∑

u∈ND[v∗]

1

|ND∗ [u]| . (1)

Note that, since D and D∗ are dominating sets, neither ND∗ [u] nor ND[v∗]
are ever empty, and f(v∗) ≤ ND[v∗]. Such function f allows us to write the
cardinality of D as

|D| =
∑

v∗∈D∗
f(v∗).

Since

ρ =
|D|
|D∗| =

∑
v∗∈D∗ f(v∗)

|D∗|
is precisely the average value of f(·) over the elements of D∗, we obtain the
desired bound ρ ≤ 44/9 by showing that the existence of vertices c∗ in D∗ with
f(c∗) > 44/9 is counterbalanced by a sufficiently large number of vertices x∗ in
D∗ with f(x∗) ≤ 4.
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c∗ w x∗

C

Fig. 1. Figure for the proof of Lemma 7. A proper, induced subgraph, where squares
were used for a subset of D∗, solid circles for a subset of D (the corona C) and hollow
circles for vertices not in D∪D∗. Vertices w and x∗ are respectively witness and reliever
of core c∗.

Before we continue, we observe that f(c∗) > 44/9 means exactly f(c∗) = 5,
because the sum in (1) has at most 5 terms, all of which are of the form 1/i for
integer i ≥ 1.

Thus, let c∗ be a vertex in D∗ with f(c∗) = 5. Clearly, c∗ /∈ D, otherwise
f(c∗) ≤ |ND[c∗]| = 1, because D is an independent set. Moreover, c∗ must have
exactly 5 neighbors in D, since a greater number of neighbors in D would imply
the existence of an induced K1,6 in G, which is not possible, and a lesser number
would imply f(c∗) ≤ |ND[c∗]| ≤ 4, a contradiction. Vertex c∗ is therefore a core.

Now let C ⊂ D be the corona of which c∗ is a core. Since C is irreducible (by
the hypothesis of the lemma), there must be a vertex w ∈ V \ (C ∪ {c∗}), such
that:

(i) w is only dominated, in D, by vertices that belong to C; and
(ii) w is not adjacent to c∗.

We call w a witness of c∗ (meaning the corona having c∗ as a core fails to be
reducible due to w). Now, for all u ∈ C, it holds that the only vertex in ND∗ [u]
must be the very core c∗, otherwise the contribution of u in (1) would be at
most 1/2, and f(c∗) would be at most 9/2 < 5, a contradiction. In particular,
the witness w cannot belong to D∗. But D∗ is a dominating set, so there must
exist a vertex x∗ ∈ D∗ that is adjacent to w. We call x∗ a reliever of c∗. Figure 1
illustrates this situation.

We now show that |ND[x∗]| ≤ 4. For the sake of contradiction, assume
|ND[x∗]| > 4. Because G is free of induced K1,6, such number must be exactly 5,
so that x∗ is the core of a corona C′ ⊂ D. However, due to (i) above,NC′(w) = ∅,
hence C′∪{w} is an independent set ofG, constituting, along with the core x∗, an
induced K1,6 in G, a contradiction. Since f(x∗) ≤ |ND[x∗]|, we have f(x∗) ≤ 4.

We have just shown that the existence of a vertex c∗ in D∗ with f(c∗) = 5
implies the existence of a vertex x∗ ∈ D∗ such that f(x∗) ≤ 4. Were this cor-
respondence one-to-one, we would be able to state that the average of f(·) over
the elements of D∗ was no greater than 4.5. Unfortunately, this correspondence
is not necessarily one-to-one, as illustrated in Figure 2.

Still, the lemmas in Section 2 allow us to bound the ratio between the number
of vertices c∗ with f(c∗) = 5 and the number of vertices x∗ for which the values
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x∗

c∗1

c∗2 c∗3

c∗4

Fig. 2. A unit disk graph where 4 distinct cores c∗1, . . . , c
∗
4 share the same reliever x∗

of f are significantly lower. Let x∗ ∈ D∗ \D be a reliever. In order to obtain the
claimed bound, we consider two cases according to the size of ND[x

∗]:

(i) |ND[x∗]| ≤ 3. By Lemma 5, the closed 4-neighborhood of x∗ contains at
most 73 independent vertices. Since each corona contains 5 independent vertices
(only adjacent to their cores), at most �73/5� = 14 coronas may share a common
reliever3. Let c∗1, . . . , c

∗
14 denote the cores of such coronas. If |ND[x∗]| ≤ 3, then

the average value of f(·) among x∗, c∗1, . . . , c
∗
14 is at most

3 + 14 · 5
15

< 4.867.

(ii) |ND[x∗]| = 4. By Lemma 6, if |ND[x∗]| = 4, then at most 8 cores c∗1, . . . , c
∗
8

may have x∗ as their common reliever, for otherwise we obtain a (4, 9)-pendant
graph, which cannot be a unit disk graph, . Thus, the average value of f(·)
among x∗, c∗1, . . . , c

∗
8 is at most

4 + 8 · 5
9

= 44/9 = 4.888 . . . .

The worst case is therefore the one in which |ND[x∗]| = 4, for an average ρ =
44/9, and the lemma follows. 
�

3.1 Graph-Based Algorithm

By Lemma 7, an independent dominating set with no reducible coronas is a 44/9-
approximation to the minimum dominating set. In this section, we describe how
to obtain such set in linear time given the adjacency list representation of the
graph.

We can easily compute a maximal independent set D, which is a 5-approxi-
mation to the minimum dominating set [12], in O(n+m) time. An independent
dominating set with no reducible coronas can then be obtained by iteratively
performing reductions. However, naively performing such reductions leads to a

3 We would like to thank an anonymous referee for this simplified argument.
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running time of O(n2m), since (i) there are O(n) candidates to being the core
of a reducible corona, (ii) detecting whether a vertex v is in fact the core of a
reducible corona by inspecting the 3-neighborhood of v takes O(m) time, and
(iii) we may need to reduce a total of O(n) coronas. Fortunately, the following
algorithm modifies the set D and returns an independent dominating set with
no reducible coronas in O(n+m) time.

(1) For each vertex v ∈ V \D, compute ND(v).
(2) For each vertex v ∈ V \D, if |ND(v)| = 5, add ND(v) to the list of coronas

C (unless it is already there).
(3) Let B ← ∅. For each corona C ∈ C, if there is a vertex c such that D∪{c}\C

is a dominating set, then add c to the set B.
(4) Choose a maximal subset B′ of B such that the pairwise distance of the

vertices in B′ is at least 5.
(5) For each vertex c ∈ B′, perform a reduction D ← D ∪ {c} \ND(c).
(6) Repeat all the steps above until B′ = ∅.

The algorithm is correct since all changes made to D along its execution preserve
the property that D is an independent dominating set. Notice that, in step (4),
we only reduce coronas that are sufficiently far from each other, in order to
guarantee that we do not reduce a corona that may have ceased to be reducible
due to a previous reduction. Moreover, the algorithm always terminates because
the size of D decreases at every iteration, except for the last one. Next, we show
that the running time is O(n+m).

Step (1) can be easily implemented to run in O(n+m) time. To execute step
(2) in O(n + m) time, we must determine in constant time whether a corona
is already in the list C. This can be achieved by indexing each corona C by an
arbitrary vertex v ∈ C (say, the one with the lowest index), and by storing with
v a list of coronas that are in C and whose index is v. Note that, because of
the packing constraints inherent to unit disk graphs, the number of coronas that
contain a given vertex is O(1).

Step (3) can be implemented as follows (for each corona C ∈ C):

(3a) Let S1 be the union of the open neighborhoods of the 5 vertices in C.
(3b) Let S2 be the subset of S1 containing only the vertices v with ND(v) ⊆ C.
(3c) Let S3 be the intersection of the closed neighborhoodsN [v] of all v ∈ S2∪C.
(3d) If S3 �= ∅, then add an arbitrary vertex of S3 to the set B.

The steps above take O(n+m) total time when executed for all coronas C ∈ C,
because the number of coronas that contain or are adjacent to a given vertex is
also O(1) by packing constraints.

It is easy to perform steps (4) and (5) in linear time. It remains to show
that the whole process is only repeated for a constant number of iterations. Let
C1, . . . , Ck denote the set of reducible coronas at each iteration of the algorithm
with Ck = ∅. Note that the reductions performed in step (5) never create a new
reducible corona. Therefore C1 ⊃ · · · ⊃ Ck. Let C denote a corona that was
reduced in the last iteration k. If C was not reduced during a previous iteration
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i < k, then another corona within constant distance from C was reduced at that
very iteration i. Since, again by packing constraints, the maximum number of
coronas within constant distance from C is itself a constant, we have k = O(1).

The following theorem summarizes the result from this section.

Theorem 1. Given the adjacency list representation of a unit disk graph with
n vertices and m edges, we can find a 44/9-approximation to the minimum dom-
inating set in O(n +m) time.

3.2 Geometric Algorithm

In this section, we describe how to obtain an independent dominating set with
no reducible corona in O(n log n) time given the geometric representation of
the graph. The input for our algorithm is a set P of n points. Without loss
of generality, we assume that the corresponding unit disk graph is connected
(otherwise, we can compute the connected components in O(n logn) time using
a Delaunay triangulation [4]). We use terms related to vertices of the graph and
to the corresponding points interchangeably. For example, we say a set of points
is independent if all pairwise distances are greater than 1.

We want the points of P to be structured in suitable fashion. Thus, as a
preliminary step, we sort the points by x-coordinates and by y-coordinates sep-
arately (such orderings will also be useful later on), and we partition the points
of P according to an infinite grid with unitary square cells by performing two
sweeps on the sorted points. Without loss of generality, we assume that no point
lies on the boundary of a grid cell. Given p ∈ P , let σ(p) denote the grid cell that
contains p. We refer to the set of at most 8 non-empty grid cells surrounding a
cell Q as the open vicinity of Q, denoted N(Q), and to the union of Q and its
open vicinity as the closed vicinity of Q, denoted N [Q]. Note that a point p can
only be adjacent to points in the closed vicinity of σ(p), that is, N [p] ⊂ N [σ(p)].
Each point p ∈ P stores a pointer to its containing cell σ(p). Also, each cell
stores the list of points it contains and pointers to the cells in its open vicinity.
Since the diameter of the point set is at most n due to the graph connectivity,
this whole step can be done in O(n log n) time.

We are now able to show how to compute a maximal independent set D
efficiently. We begin by making a copy P ′ of P , and by letting D ← ∅. Then
we repeat the two following steps while set P ′ is non-empty. (i) Choose an
arbitrary point p ∈ P ′ and add it to set D. (ii) For each point p′ in the closed
vicinity of σ(p), remove p′ from P ′ if ‖pp′‖ ≤ 1. When P ′ becomes empty, D
is an independent dominating set. This process takes O(n) time due to the two
following facts. First, a cell belongs to the closed vicinity of a constant number of
cells. Second, the number of points inside a cell with pairwise distances greater
than 1 is at most a constant.

We now have that D is a maximal independent set, and therefore a 5-
approximation to the minimum dominating set. Next, we show how to modify
D in order to produce an independent dominating set with no reducible corona,
therefore a 44/9-approximation to the minimum dominating set. The algorithm
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follows a close parallel to the one in Section 3.1, but each step takes no more
than O(n logn) time using the geometric representation of the graph.

Since D is an independent set and a grid cell Q has side 1, a simple packing
argument shows that |D ∩Q| ≤ 4. We store the set D ∩Q in the corresponding
cell Q. In order to compute ND(p), it suffices to inspect at most the 36 points in
D ∩Q for Q ∈ N [σ(p)]. We can then build a list of coronas in O(n) time (steps
(1) and (2) of Section 3.1).

To perform step (3), we need to find out whether there is a vertex c such that
D ∪ {c} \ C is a dominating set, for each corona C = {p1, . . . , p5}. First, we
make S1 the union of ND(pi) for 1 ≤ i ≤ 5. Then, we make S2 the subset of S1

containing only the points p with ND(p) ⊆ C. These first two steps are similar
to steps (3a) and (3b) in Section 3.1. The remaining sub-steps of step (3) are
significantly different, though.

We proceed by making S3 = S2 ∪C. We need to determine whether there is a
point p ∈ S3 that is adjacent to all points in S3. For each p ∈ S3, let β(p) denote
the disk of radius 1 centered at p. Let R denote the convex region defined by
the intersection of β(p) for all p ∈ S3. A point p is adjacent to all points in S3

if and only if p ∈ R. We can compute the region R in O(|S3| log |S3|) time using
divide-and-conquer in a manner analogous to half-plane intersection [4]. We can
then test whether each point p ∈ S3 belongs to the region R in logarithmic time
using binary search (remember the points were previously sorted). If there is at
least one point p ∈ S3 ∩ R, then we add p to the set B. Therefore, the whole
step (3) takes O(n log n) time.

In step (4) of the geometric algorithm, we choose an alternative set B′ ⊂ B
which can be computed in O(n) time as follows. For each p ∈ B, we add p to
B′ and then remove from B all points that are contained in the cells within
Euclidean distance at most 4 of σ(p). Since by packing constraints there are
O(1) points in the intersection of D and the closed vicinity of a cell, we can
easily perform step (5) in O(n) time.

We summarize the result from this section in the following theorem.

Theorem 2. Given a set of n points representing a unit disk graph, we can find
a 44/9-approximation to the minimum dominating set in O(n log n) time in the
Real RAM model of computation.

4 Conclusion and Open Problems

We introduced novel linear and near-linear time algorithms for approximating
the minimum dominating set and minimum independent dominating set in a
unit disk graph, proving an upper bound of 44/9 to the approximation factor of
our algorithms. Nevertheless, the best lower bound we are aware of is 4.8, which
is attained by the unit disk graph in Figure 2. Closing this gap would likely
require the development of new tools to prove that certain graphs are not unit
disk graphs. Computer generated proofs may be useful towards this goal.
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Abstract. We study optimization problems for the Euclidean minimum
spanning tree (MST) on imprecise data. To model imprecision, we accept
a set of disjoint disks in the plane as input. From each member of the set,
one point must be selected, and the MST is computed over the set of se-
lected points. We consider both minimizing and maximizing the weight of
the MST over the input. The minimum weight version of the problem is
known as the minimum spanning tree with neighborhoods (MSTN) prob-
lem, and themaximumweight version (max-MSTN) has not been studied
previously to our knowledge. We provide deterministic and parameterized
approximation algorithms for themax-MSTN problem, and a parameter-
ized algorithm for the MSTN problem. Additionally, we present hardness
of approximation proofs for both settings.

1 Introduction

We consider geometric problems dealing with imprecise data. In this setting, each
point of the input is provided as a region of uncertainty, i.e., a geometric object
such as a line, disk, set of points, etc., and the exact position of the point may be
anywhere in the object. Each object is understood to represent the set of possible
positions for the corresponding point. In our work, we study the Euclidean mini-
mum spanning tree (MST) problem. Given a tree T , we define its weight w(T ) to
be the sum of the weights of the edges in T . For a set of fixed points P in Euclidean
space, the weight of an edge is the distance between the endpoints, and we write
mst(P ) for the weight of the MST on P . Thus, mst(P ) = minw(T ), where the
minimum is taken over all spanning trees T on P .

Given a set of disjoint disks as input, we wish to determine the minimum
and maximum weight MSTs possible when a point is fixed in each disk. The
minimum weight MST version of the problem has been studied previously, and
is known as the minimum spanning tree with neighborhoods problem (MSTN).
This paper introduces the maximum weight MST version of the problem, which
we call the max-MSTN problem. Assume we are given a set D = {D1, . . . , Dn}
of disjoint disks in the plane, i.e., Di ∩ Dj = ∅ if i �= j. The MSTN problem
on D asks for the selection of a point pi ∈ Di for each Di ∈ D such that the
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weight of the MST of the selected points is minimized. Similarly, max-MSTN

asks for a selection of pi such that the weight of the MST of the selected points
is maximized.

1.1 Related Work

The first known MST algorithm was published over 80 years ago [11], and a
number of successful variants have followed (see [8] for the history of the prob-
lem). A review of models of uncertainty and data imprecision for computational
geometry problems is provided in [10]. Here, we discuss a few results that are
directly related to the MST problem and our model of imprecision.

The MSTN problem on unit disks has been shown to admit a PTAS [13].
A hardness proof for a generalization of MSTN where the neighborhoods are
either disks or rectangles appeared in [13], but the proof was faulty. One of the
authors later conjectured that a reduction from planar 3-SAT might be used to
show the hardness of the MSTN problem [12, p.106]. In Section 3.2, we prove
this conjecture.

Löffler and van Kreveld [10] demonstrated that it is algebraically difficult to
compute the MST when the regions of uncertainty are continuous regions of the
plane, even for very simple inputs such as disks or squares, as the solution may
involve the roots of high degree polynomials. It is of independent interest to see if
the problem is combinatorially difficult. In the same paper, authors proved that
the MSTN problem is (combinatorially) NP-hard if the regions of uncertainty
are not pairwise disjoint, through a reduction from the minimum Steiner tree
problem. In this paper we prove the hardness of the special case in which the
regions are pairwise disjoint.

Erlebach et al. [6] used a model of uncertainty where information regarding
the weight of an edge between a pair of points or the position of a point may be
obtained by pinging the edge or vertex, and they sought to minimize the number
of pings required while obtaining the optimal solution. The distinction is that in
their work, they were interested in reducing the amount of communication that
is required to locate points within a region of uncertainty, while in our model,
the objective is to optimize the MST given regions of uncertainty.

Researchers have considered other related problems that deal with imprecise
data. The travelling salesman with neighborhoods (TSPN) problem has been
studied extensively. The problem was introduced by Arkin and Hassin [1], in
a paper that has been applied, improved, built-upon or otherwise referenced
over 150 times. There exists a PTAS for TSPN when the neighborhoods are
disjoint unit disks [5]. The most general version of the problem, where regions
may overlap and may have varying sizes, is known to be APX-hard [2]. The
problem of maximizing the smallest pairwise distance in a set of n points with
neighborhoods has also been studied and proved to be NP-hard [7].
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1.2 Our Results

We present a variety of results related to the MSTN and max-MSTN problems.
For both problems we assume the regions of uncertainty (disks) are disjoint.

– max-MSTN: deterministic 1/2-approximation;
– max-MSTN: parameterized 1− 2

k+4 -approximation (where k represents the
separability of the instance, which is to be defined later);

– max-MSTN: proof of hardness of approximation;
– MSTN: parameterized 1 + 2/k-approximation (k is the separability of the

instance);
– MSTN: proof of hardness of approximation.

The deterministic approximation algorithm for max-MSTN (Section 2.1) is
based on choosing the center points of the disks; the interesting aspect in this
section lies in the analysis. The parameterized algorithms (Sections 2.2 and 3.1)
for both settings were inspired by the observation that the approximation factor
improves rapidly as the distance between disks increases. To address this, we
introduce a measure of how much separation exists between the disks, which we
call separability, and we analyze the approximation factor of the MST on disk
centers with respect to separability.

For both hardness of approximation results, we establish that there is no FP-
TAS for the problems unless P=NP. Although the hardness proofs both consist
of reductions from planar 3-SAT, the gadgets used are quite distinct and either
reduction is interesting even given the existence of the other. In both cases, we
construct an instance of our problem from the planar 3-SAT instance, and show
that it is possible to compute the weight of the optimal solution to our problem
assuming that the 3-SAT instance is satisfiable. If the instance is not satisfiable,
we prove that the weight is changed by at least a constant amount (reduced
by at least 0.33 units for max-MSTN, and increased by at least 0.84 units for
MSTN).

2 MAX-MSTN

In this section we study a couple of approximation algorithms for the max-MSTN

problem, and then we present the proof of hardness of approximation. We begin
with a deterministic algorithm below, followed by a parameterized algorithm in
Section 2.2.

2.1 Deterministic 1/2-Approximation Algorithm

To approximate the solution to max-MSTN, we first consider the algorithm that
builds an MST on the centers of the disks. We show this algorithm approximates
the optimal solution within a factor of 1/2, i.e., the weight of the MST built on
the centers is not smaller than half of that of the optimal tree.
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(a) (b) (c)

Fig. 1. To compare w(Tc) with w(Topt), we use an intermediate tree T ′
c. (a) The

optimal result for max-MSTN (Topt). (b) The MST Tc on centers. (c) The spanning
tree T ′

c with the same topology as Tc, using the points of Topt.

Theorem 1. Consider the max-MSTN problem for a set D of disjoint disks.
Let Tc denote the MST on the centers of the disks, and let Topt be the maximum
MST (i.e., the optimal solution to the problem). Then w(Tc) ≥ 1/2 · w(Topt).

Proof. Let T ′
c be the spanning tree (not necessarily an MST) with the same

topology (i.e., combinatorial structure of the tree) as Tc but on the points of
Topt (see Figure 1). Since T ′

c and Topt span the same set of points, and Topt is
an MST, we have w(Topt) ≤ w(T ′

c). On the other hand, since T ′
c and Tc have

the same topology, we have w(T ′
c) ≤ 2w(Tc); this is because when we move the

points from the center to somewhere else in the disks, the weight of each edge
increases by at most the sum of the radii of the two involved disks and, since
the disks are disjoint, the increase is at most equal to the original weight. To
summarize, we have w(Topt) ≤ w(T ′

c) and w(T
′
c) ≤ 2w(Tc), which completes the

proof. 
�

2.2 Parameterized 1 − 2
k+4

-Approximation Algorithm

Observe that in order to get the approximation algorithm for max-MSTN in
Section 2.1, we require disks to be disjoint. Intuitively, if we know that disks are
further apart, we can get better approximation ratios. We formalize this intuition
by providing a parameterized analysis, i.e., we express the performance of the
algorithm in terms of a separability parameter1. Let rmax be the maximum radius
of our disks. We say that a given input for our problem satisfies k-separability if
the minimum distance between any two disks is at least k ·rmax. The separability
of an input instance I is defined as the maximum k such that I satisfies k-
separability. With this definition, we have the following result:

Theorem 2. For max-MSTN when the regions of uncertainty are disjoint disks
with separability parameter k > 0, the algorithm that builds an MST on the
centers of the disks achieves a constant approximation ratio of k+2

k+4 = 1− 2
k+4 .

1 Separability is similar in spirit to the notion of a well-separated pair; see [3].
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Proof. Let Tc be the MST on the centers of the disks. We can extend the analysis
in the proof of Theorem 1 to show that the approximation factor is k+2

k+4 = 1− 2
k+4

for any input that satisfies k-separability. Define Topt and T
′
c as before. Consider

an arbitrary edge e in T ′
c and let Di and Dj be the two disks connected by e.

Let ri and rj be the radii of Di and Dj, respectively, and let d be the distance
between Di and Dj . In Tc the disks Di and Dj are connected by an edge e′

whose weight is d+ ri + rj . The weight of e, on the other hand, can be at most
d + 2ri + 2rj . Therefore, the ratio between the weight of an edge in Tc and its
corresponding edge in T ′

c is at least

d+ ri + rj
d+ 2ri + 2rj

≥ krmax + ri + rj
krmax + 2ri + 2rj

≥ krmax + rmax + rmax

krmax + 2rmax + 2rmax
=
k + 2

k + 4
.

Since this holds for any edge of T ′
c, we get w(Tc) ≥ k+2

k+4w(T
′
c) ≥ k+2

k+4w(Topt),

and we get an approximation factor of k+2
k+4 . 
�

The approximation ratio gets arbitrarily close to 1 as k increases. This confirms
our intuition that if the disks are further apart (more separate), we get a better
approximation factor.

2.3 Hardness of Approximation

We present a hardness proof for the max-MSTN problem by a reduction from
the planar 3-SAT problem [9]. Planar 3-SAT is a variant of 3-SAT in which the
graph G = (V,E) associated with the formula is planar.

Theorem 3. max-MSTN does not admit an FPTAS unless P=NP.

We show a reduction from any instance of the planar 3-SAT problem to the
max-MSTN problem. In planar 3-SAT, we have a planar bipartite graph G =
(V,E), where V = Vv ∪ Vc, so that there is a vertex in Vv for each variable
and a vertex in Vc for each clause; there is an edge (vi, vj) in E between a
variable vertex vi ∈ Vv and a clause vertex vj ∈ Vc if and only if the clause
contains a literal of that variable in the 3-SAT instance. In [9] it was shown that
the planar 3-SAT problem is NP-hard via a reduction from the standard 3-SAT
problem. Further, it was observed that the resulting instance of planar 3-SAT
permits the construction of a path P = (Vv, EP ) using a set of edges EP such
that E ∩ EP = ∅, where P is connected and passes through all vertices in Vv
without crossing any edge in E. We call this path P the spinal path. We further
observe that additional edges can be added to P to get a spinal tree T which also
covers clause vertices Vc. In this sense T will be a tree that covers all vertices
without crossing an edge of G such that all vertices corresponding to clauses are
leaves. These observations are illustrated in Figure 2. To prove the hardness of
max-MSTN, we make use of the spinal tree. Due to lack of space, the complete
reduction is omitted from this presentation (the details may be found in the
complementary technical report [4]).
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(a) The reduction from 3-SAT to
planar 3-SAT.

(b) The planar gadget located in the
intersection points. Variable and clause
vertices are represented by large and
small circles, respectively.

Fig. 2. The reduction from 3-SAT to planar 3-SAT as presented in [9]. The variable
and clause vertices of 3-SAT are located respectively in x and y axis, and the edges are
drawn as orthogonal paths (a). A planar gadget is placed on each intersection point.
Each gadget includes some new variable and clause vertices (b). In [9], it is observed
that there is a path (we call it the spinal path) that covers all variable vertices of planar
instance without crossing any edge (solid lines). We observe that additional edges can
be added to the spinal path to obtain a tree (spinal tree) which spans clause variables
as leaves (dashed lines).

3 MSTN

In this section we present a parameterized algorithm for the MSTN problem,
followed by the proof of hardness of approximation.

3.1 Parameterized 1 + 2/k-Approximation Algorithm

Recall that to have k-separability means that the minimum distance between
any two disks is at least krmax, and the separability of an input instance I is
defined as the maximum k such that I satisfies k-separability.

Theorem 4. For MSTN when the regions of uncertainty are disjoint disks with
separability parameter k > 0, the algorithm that builds an MST on the centers
of the disks achieves a constant approximation ratio of k+2

k = 1 + 2/k.

Proof. Assume that we have a set D of n disks that satisfies k-separability. Let
Tc be the MST on the centers and Topt be an optimal MST, i.e., an MST that
contains one point from each disk and its weight is the minimum possible. Define
Temp as the spanning tree (not necessarily an MST) with the same topology as
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Topt but on the points of Tc, i.e., on the centers. Since Tc is an MST on centers,
we have w(Tc) ≤ w(Temp). Consider an arbitrary edge e in Temp and let Di

and Dj be the two disks that are connected by e. Let ri and rj be the radii of
Di and Dj , respectively, and let d be the distance between Di and Dj . In Topt
the disks Di and Dj are connected by an edge e′ whose weight is at least d. The
weight of e on the other hand is d + ri + rj . Therefore the ratio between the
weight of an edge in Topt and its corresponding edge in Temp is at least

d

d+ ri + rj
≥ krmax

krmax + ri + rj
≥ krmax

krmax + rmax + rmax
=

k

k + 2
.

Since this holds for any edge of Temp, we get w(Tc) ≤ w(Temp) ≤ k+2
k w(Topt).

Therefore we get an approximation factor of k+2
k = 1+2/k for the algorithm. 
�

As with the parameterized algorithm for max-MSTN, as the disks become fur-
ther apart (as k grows), the approximation factor approaches 1.

3.2 Hardness of Approximation

To prove the hardness of the MSTN problem, we present a reduction from the
planar 3-SAT problem. Recall that planar 3-SAT is a variant of 3-SAT in which
the graph G = (V,E) associated with the formula is planar.

Theorem 5. MSTN does not admit an FPTAS unless P=NP.

In the hardness proof of max-MSTN, we used a spinal tree in the reduction. In
this section, we use the spinal path as a path P = (Vv, EP ) with a set of edges
EP such that E ∩ EP = ∅, where P passes through all variable vertices in G
without crossing any edge in E. As mentioned earlier, the restricted version of
planar 3-SAT remains NP-hard [9]. To reduce planar 3-SAT to MSTN, we begin
by finding a planar embedding of the graph associated with the SAT formula.
We force the inclusion of the spinal path as a part of the MST using wires. We
define a wire as a set of disks of radius 0 placed in close succession, so that we
may interpret a wire as a fixed line in the MSTN solution. We replace each
variable vertex of V by a variable gadget in our construction. These gadgets are
composed of a set of disks and some wires, and are defined in such a way that
we may choose the points so that the size of the MST is equal to a certain value,
if and only if the SAT formula is satisfiable.

Variable Gadgets. A variable gadget is formed by a k-flower, where k = 4c+6
and c is the number of clauses in the planar 3-SAT instance that include the
variable (each clause requires 4 disks, and each of the edges of the spinal path
requires 3 disks). As illustrated in Figure 3, a k-flower is composed of k disks
of unit radius, centered on the vertices of a regular k-gon. Also, each disk is
tangent to its two neighboring disks, and each pair of consecutive disks Di, Di+1
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Fig. 3. A variable gadget with eighteen disks (containing an 18-flower and an 18-
star) for a variable x. Here B+ and C+ are the endpoints of the wires that connect to
clauses that include x in the positive form, while A− represents a clause that includes
x in negative form. The picture illustrates the case in which the algorithm takes the
positive choice for x, and clause B is satisfied with x. Clause C is satisfied via some
other variable, as is clause A, assuming that it is satisfied. Note that every other path
on the k-star connects to a pair of disks on the k-flower.

intersects at a single point qi,i+1 = Di ∩ Di+1, which we call a tangent point2.
Moreover, there is a k-star in the middle of the gadget composed of k fixed wires,
where the ith wire connects a point unit distance from the tangent point qi,i+1

to the center point of the k-star. The spinal path is placed so that it approaches
the variable gadget twice, and each of these approaches requires three disks.
We split the wires of the spinal path once near the variable gadget as shown in
Figure 3, and wires terminate at a distance ≈ 1.755 from the nearest tangent
point, for reasons discussed in the Clause Gadgets section.

Lemma 1. Suppose we are given two unit disks D1 and D2 that intersect exclu-
sively at a single point q = D1∩D2, and a line � such that q ∈ � and � is tangent
to both D1 and D2 (i.e., � is the perpendicular bisector of the center points of D1

2 Using this construction, pairs of disks of the k-flower trivially intersect at a single
point, which simplifies our analysis. To achieve strict disjointedness, the disks of the
k-flower may be contracted to have radius 1 − γ so that the tangent point is now
distance γ from the nearest point in the adjacent disks. Any path which uses the
tangent point in our analysis will have less than 2γ units of additional weight on
these shrunken disks, and there are fewer than n(4m+ 6) disks, where n and m are
the number of variables and clauses respectively. Choosing an appropriate value of
γ so that 2γn(4m + 6)� 0.845 achieves the same result as our simplified analysis.
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Fig. 4. The shortest possible path is shown from a point at the origin to some point
in each of two unit disks; one of the disks is centered at (1,1), the other is at (1,-1).

and D2). Now, given a point p ∈ � where p is unit distance from q, the shortest
path consisting of points p, q1 ∈ D1, and q2 ∈ D2 has weight d ≈ 0.755.

Proof. If q1 = q2 = q, then the path has unit length, so a path of length d is
shorter. A path with edges e1 = (q1, p) and e2 = (p, q2) has length at least 0.828,
since the nearest point on D1 or D2 to p is

√
2− 1 > 0.414 units distant.

Therefore, we may assume without loss of generality that the path consists of
the edges e1 = (p, q1) and e2 = (q1, q2) and the path has length d = w(e1)+w(e2),
where w(e) is the length of the edge e. Therefore, we must choose q1 and q2 so
that d is minimized. Note that candidate positions for each of q1 and q2 may be
restricted to the boundaries of their respective disks.

For the purposes of simplifying the proof, assume that p is at the origin of the
Cartesian plane, and D1 and D2 are centered at (1, 1) and (1,−1), respectively.
Then a point q1 on the boundary of D1 may be expressed as (sin(α)+1, cos(α)+
1), for some α ∈ [0 . . . 2π], and analogously q2 = (sin(β)+1, cos(β)−1), for some
β ∈ [0 . . . 2π]. Therefore, we simply have to find the minimum of the function

f(α, β) =
√
(sinα+ 1)2 + (cosα+ 1)2+

√
(sinβ − sinα)2 + (cosβ − cosα− 2)2,

over the variables α ∈ [0 . . . 2π], β ∈ [0 . . . 2π]. Using Maple, we see that this
minimum has value d ≈ 0.755, at α ≈ 3.62, β ≈ 5.89. The optimal path in this
setting is shown in Figure 4. Since this path is shorter than all other possible
path configurations, we conclude that this is the shortest possible path including
p and points q1 ∈ D1 and q2 ∈ D2. 
�

For the remainder of the discussion, we refer to the weight of this shortest path
as the constant d. Before going to the details of the reduction, we consider
optimal MSTN solutions when the problem instance is a variable gadget, as
described above (without the wires approaching from clauses). We claim that
such an instance has two possible MSTN solutions, and in each of these solutions
consecutive pairs of disks are connected to a single wire of the k-star with a
path of length d described in Lemma 1. We associate these two possible MSTN
solutions with the two assignments for the variable. To prove the claim, we show
that in an optimal MSTN solution for a k-star, there is no path containing points
from more than two disks.

Lemma 2. In an optimal MSTN solution for a k-star, a path containing a single
wire of the k-star includes at most two disks from the k-flower, when k ≥ 8.
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Proof. Recall that by Lemma 1, connecting a pair of disks to a k-wire may be
done with weight d, while a wire may be connected to a single disk with weight√
2−1. Therefore, three consecutive disks in a k-flower may be connected to two

wires of the k-star using edges with weight d+
√
2− 1 ≈ 1.169, while four such

disks may be connected with weight 2d ≈ 1.51.
Now consider three consecutive disks that we wish to connect to a single

wire of the k-star. Given that k ≥ 8, the minimum distance between the two

non-adjacent disks is dmin ≥ 2
√
2 +

√
2 − 2 ≈ 1.696. Therefore, a path simply

connecting three disks (and yet still disjoint from the k-star) has greater weight
than even the path joining four disks using two wires of the k-star, and thus an
optimal path containing one wire of a k-star in the MST contains points from
at most two disks of the k-flower. 
�

Corollary 1. In the optimal MSTN solution for a k-flower (when k is even),
each consecutive pair of disks is connected to a single wire of the k-star via a
path of length d.

This follows immediately from Lemmas 1 and 2. Hence, there are two possible
solutions for MSTN on a k-flower where k is an even number (this is the case
in our construction). We use this fact to assign a truth value for the variable
gadget: one configuration is arbitrarily considered to be true, the other false.
In Figure 3, we show an example where the true configuration is used, and every
other wire of the k-star has an edge to some point in the k-flower. The false

configuration would contain edges between the complementary set of wires of
the k-star and the disks of the k-flower.

Clause Gadgets. The clause gadgets are composed of three wires that meet at
a single point. Each wire of the clause gadget is placed so that it terminates at
a distance 1+ d from a tangent point, where the terminal point is collinear with
a line of the k-star on the relevant variable gadget. As a result, a line segment
of length 2 + d units can connect the clause gadget to the k-star of a variable
gadget, while also intersecting the shared point between two disks of the k-flower.
If the truth value of the k-flower gadget matches that of the clause, this means
that connecting the clause to the flower requires two units of extra weight, since
otherwise the two disks are connected to the k-star with d weight, as outlined in
Lemma 1. Therefore, given a clause gadget where at least one literal matches the
truth value of the corresponding variable gadget, the clause gadget is connected
to the MST with two units of additional weight.

The spinal path wires terminate in positions exactly analogous to those of the
clause gadgets so that the analysis is the same. This raises the possibility that
the wires of a clause gadget may be connected to two variable gadgets, leaving
a gap in the spinal path, but note that such a configuration does not affect the
weight of the optimal tree. The spinal path is necessary however, since some
variables may not be used by any clauses in an optimal solution.
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Lemma 3. Joining a clause wire to a k-flower that has a truth value differing
from that of the clause requires at least ≈ 0.845 units of additional edge weight
relative to a configuration with matching truth values.

Proof. In an optimal MSTN solution on a construction corresponding to a sat-
isfiable 3SAT instance, a pair of disks and a clause wire may be joined to the
k-star with weight 2 + d units, and an additional adjacent pair of disks may be
joined to the k-star with a path of weight d. Therefore, the total weight of the
edges incident upon points in four such disks is 2 + 2d.

Now consider a configuration where the truth value of the literal for each
variable in a clause does not match the truth value of the corresponding variable
gadgets. Connecting one of the clause gadget wires to the k-star requires an
additional weight of 2 + d, as discussed previously, which intersects points from
two disks; call them Di and Di+1. The neighboring two disks in the k-flower,
Di−1 and Di+2, are not attached to the k-star by paths like those found in
Lemma 1. Rather, each of these adjacent paths may be shortened to

√
2 to cover

the two singleton disks. Note that there may be a non-empty sequence of pairs of
disks connected as in Lemma 1 before the singleton is reached, creating a section
of the flower with an inverted truth value for the variable3. Therefore, the net
extra weight of such a transition is 2 + d+ 2

√
2− (2 + 2d) = 2

√
2− d ≈ 2.0735.

A configuration that may require less additional weight is to connect the clause
wire to the k-star using a path with points in disks Di−1 and Di (it is a slightly
modified configuration from that of Lemma 1). As k increases, the weight of such
a path decreases. To minimize the length of the path, suppose that the centers
of Di−1, Di and Di+1 are collinear (which occurs when k = ∞). Therefore, we
can place the center of Di−1 at (1, 1), the end of the k-star wire between Di−1

and Di at (0, 0), and the end of the clause wire at (2 + d,−2) (Figure 5). The
weight of the path from the k-star to Di−1 to the clause wire may be expressed
by the function

f(θ) =
√
(1 + sin θ)2 + (1 + cos θ)2 +

√
(1 + d− sin θ)2 + (−3− cos θ)2,

which has a minimum length slightly greater than 3.60 units at θ ≈ 3.49 radians.
Since this path intersects Di, it is also the shortest path that includes a point
pi ∈ Di. Therefore, w.l.o.g. a path connecting a clause wire to a wire in a variable
gadget with a mismatched truth value has weight greater than 3.6. Note that
such a path does not affect the truth value of the variable gadget, and so Di+1

and Di+2 may be joined to the k-star with a path of weight d. Therefore, the
extra weight incurred for such a configuration is > 3.6+d− (2d+2) ≈ 0.845. 
�

As described earlier, the terminal points of the clause wires (and the spinal path)
are collinear with wires of the k-star. Since we never place these terminal points

3 Di+2 may be more generally indexed as Di+2+4c, where there is a block of 4c disks
in the k-flower joined to the k-star in a truth configuration opposite of that of the
neighboring disks in the k-flower. This does not affect the analysis, it simply relocates
the singleton disk. Recall that by Lemma 2, such singletons would exist rather than
having three disks connected by a path to a single edge of the k-star.
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Fig. 5. The shortest possible path
is shown (the dashed line) from the
end of the clause wire to points in
Di and Di−1, and finally connect-
ing to the k-star wire for Di and
Di−1.

Di−1
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clause wire

(2 + d,−2)

on adjacent wires of the k-star, the wires need not lie within 4 units of one
another, and so there will not be edges directly between different clause wires
or between a clause wire and the spinal path.

Reduction. We would like to reduce a given instance of planar 3-SAT to the
MSTN problem. Note that the given 3-SAT instance is assumed to be embedded
on the plane, and there exists a spinal path P = (Vv, EP ) that passes all variable
vertices without crossing any edge of G, such that all variable vertices but 2
have degree 2 in P (as mentioned at the beginning of Section 3.2, this restricted
version is also NP-hard).

To create the instance of the MSTN problem, we fix the spinal path as a part
of the MST, using wires consisting of disks of radius 0. We replace each variable
node with a variable gadget as explained. Each clause gadget includes three
wires, which we place so that they approach the associated variable gadgets as
described.

The wires forming the spinal path, the m clause gadgets, and each of the
n k-stars have a fixed weight, call the total weight of all these wires wwires.
The remaining weight of the MST is that of connecting to a point from each
disk in the k-flowers, and that of connecting each clause gadget. Suppose there
exists a satisfying assignment for the 3-SAT instance. Each pair of disks in the
k-flowers can be connected with weight d; this will be the case for all but m
pairs. The remaining m pairs will be connected with edges that also join to
the clause gadgets in the manner described in Section 3.2 with weight 2 + d.
Therefore, assuming that there is a total of i pairs of disks in the k-flowers of
the construction, the remaining weight of the MST is wdisks = id + 2m. Thus,
if there exists a satisfying assignment to the 3-SAT instance, the total optimal
weight of the MST is wtot = wwires + wdisks.

If there is no satisfying assignment, at least one of the clause gadgets must
be connected to the MST in the manner described in Lemma 3, which requires
an additional weight of at least 0.845. Now suppose there exists an FPTAS for
MSTN. Given an instance of planar 3-SAT, we build the MSTN construction
and determine wtot. We choose a value of ε so that ε < 0.845/wtot, and so a
(1 + ε)-approximate solution to the MSTN problem may be used to determine
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whether there is a satisfying assignment for the planar 3-SAT instance. Since the
latter problem is NP-hard, we conclude that MSTN does not admit an FPTAS
unless P=NP.

4 Conclusions

We considered geometric MST with neighborhoods problems, and established
that computing the MST of minimum or maximum weight is hard to approxi-
mate in this setting by proving that there is no FPTAS for either problem, as-
suming P �= NP. We provided a parameterized algorithm for the MSTN problem
based upon how well separated the disks are from one another. For max-MSTN,
we showed that a deterministic algorithm that selects disk centers gives an ap-
proximation ratio of 1/2. Furthermore, we showed that when the instance of the
problem satisfies k-separability, the same approach achieves a constant approx-
imation ratio of 1− 2

k+4 .
For further research, it will be interesting to study this problem under different

models of imprecision. Depending on the application, the regions of uncertainty
may consist of other shapes, e.g., line segments, rectangles, etc., or they may be
composed of discrete sets of points.
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Abstract. This paper addresses the page migration problem: given on-
line requests from nodes on a network for accessing a page stored in a
node, to output online migrations of the page. Serving a request costs the
distance between the request and the page, and migrating the page costs
the migration distance multiplied by the page size D ≥ 1. The objective
is to minimize the total sum of service costs and migration costs. Black
and Sleator conjectured that there exists a 3-competitive deterministic
algorithm for every graph. Although the conjecture was disproved for
the case D = 1, whether or not an asymptotically (with respect to D)
3-competitive deterministic algorithm exists for every graph is still open.
In fact, we did not know if there exists a 3-competitive deterministic al-
gorithm for an extreme case of three nodes with D ≥ 2. As the first
step toward an asymptotic version of the Black and Sleator conjecture,
we present 3- and (3+1/D)-competitive algorithms on three nodes with
D = 2 and D ≥ 3, respectively, and a lower bound of 3 + Ω(1/D) that
is greater than 3 for every D ≥ 3. In addition to the results on three
nodes, we also derive ρ-competitiveness on complete graphs with edge-
weights between 1 and 2 − 2/ρ for any ρ ≥ 3, improving the previous
3-competitive algorithm on uniform networks.

1 Introduction

The problem of computing an efficient dynamic allocation of data objects stored
in nodes of a network commonly arises in network applications such as memory
management in a shared memory multiprocessor system and Peer-to-Peer appli-
cations on the Internet. In this paper, we study one of the classical varieties of
the problem, the page migration problem, in which a request issued on a node for
accessing a single data object (called a page in this problem) must be served us-
ing unicast communication. After serving each request, we are allowed to migrate
the page. Serving a request costs the distance of the communication, and migrat-
ing the page costs the migration distance multiplied by the page size D ≥ 1. The
objective is to minimize the total sum of the service and migration costs. The
page migration problem has been extensively studied (e.g., [2,3,8,10,4,13,15])
and generalized to several settings such as k-page migration [3], file allocation
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problem, e.g., [2,4,13], and data management on dynamic networks, e.g, [1,7].
See [6] for a recent survey.

1.1 Related Results

We focus on deterministic online page migration algorithms. Black and Sleator
[8] first studied competitive analysis of the page migration problem and pre-
sented 3-competitive deterministic algorithms on trees, uniform networks, and
Cartesian products of these networks, including grids and hypercubes. These
algorithms are optimal because the deterministic lower bound is 3 for every net-
work with at least two nodes [8,11]. Black and Sleator conjectured that there
exists a 3-competitive deterministic algorithm for every network. The first upper
bound of 7 for general networks was given by Awerbuch, Bartal, and Fiat [2]
and improved to 4.086 by Bartal, Charikar, and Indyk [3]. For a special case of
D = 1, a better bound of 2 +

√
2 is achievable [14]. For a yet restricted case, a

3-competitive deterministic algorithm on three nodes with D = 1 was presented
in [10]. Whether or not a 3-competitive deterministic algorithm exists on three
nodes for D ≥ 2 was left open. Concerning the lower bound, Black and Sleator’s
conjecture was disproved by Chrobak, Larmore, Reingold, and Westbrook [10],
who proved that no deterministic algorithm has the competitive ratio less than
85/27 ≈ 3.148 on special networks with D = 1. This bound was refined to
3.164 [14]. It is mentioned in [10] that the lower bound is larger than 3 even on
four nodes. An explicit lower bound of 3.121 on five nodes was proved in [14].

1.2 Contributions of This Paper

All the previous lower bounds larger than 3 were proved only for the case D =
1. Therefore, an asymptotic version of the Black and Sleator conjecture with
respect to D, i.e., whether or not an asymptotically 3-competitive deterministic
algorithm on every network exists is still open. As the first step toward an answer
for this conjecture, we present

– a (3 + 1/D)-competitive algorithm on three nodes with D ≥ 3,
– a 3-competitive algorithm on three nodes with D = 2, and
– a lower bound of 3 +Ω(1/D) that is greater than 3 for every D ≥ 3.

These results thoroughly answer the open question of the existence of a 3-
competitive algorithm on three nodes. In addition to the results on three nodes,
we also derive

– ρ-competitiveness on complete graphs (of arbitrary size) with edge-weights
between 1 and 2− 2/ρ for any ρ ≥ 3,

improving the previous 3-competitive algorithm on uniform networks [8].
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1.3 Overview of Technical Ideas

Our (3+1/D)-competitive algorithm is a typical work function algorithm similar
to algorithms for metrical task systems, e.g., [9], and k-server problems [5,12].
In general, an algorithm that makes online decisions using information on the
optimal offline cost for processing requests that have been issued so far and
ending at each configuration (page node in the page migration problem). Such a
cost function with respect to configurations is called a work function. To prove
a work function (i.e., optimal cost) increases enough, we introduce a probably
new technique of analytically dealing with the work function extended on a
continuous loop. This idea reveals a relation of increased amounts in the extended
work function and its derivative. The author believes that such analysis is the
technical contribution of this paper.

Since the competitive ratio on three nodes is not monotonic with respect
to D, it appears to be reasonable that we need different approaches between
D = 2 and D ≥ 3. Our 3-competitive algorithm for D = 2 is based on the
counter-based algorithm for uniform networks [8], which maintains a counter on
each node. The counters are updated every time a request arrives so that they
represent a tendency of migration. If a counter reaches a certain value, then the
algorithm moves the page to the node with this counter. One can observe that
the original algorithm is 3-competitive even on a complete graph with roughly
the same edge-weights, and that this can be generalized to any ρ ≥ 3. More
specifically, there is a “triangle” condition on edge-weights around the page such
that the original potential function used in [8] can amortize the service costs
and the next migration cost. If there are three nodes, then at least one “good”
node satisfies the condition. We design our algorithm by modifying the original
algorithm for the page at a “bad” node. Although the modification wastes the
“deposit” even worse when leaving the bad node, we can prove through careful
observations that much more deposit can be saved after the possible migration
to a good node or from services before the migration.

Our lower bound is based on a simple observation: If there are only two nodes,
then any 3-competitive algorithm must move after exactly 2D requests issued
by a cruel adversary, which always issues a request from the other node than
the online page. If the adversary carefully adds a new node close to the existent
request node and divides the 2D requests among these nodes, then no matter
when or where the algorithm moves, it is too “impatient” or “tardy” to achieve
the competitive ratio of 3.

Due to space constraints, proofs of lemmas are omitted and will be given in
a journal version.

2 Preliminaries

The page migration problem can be formulated as follows: given an undirected
graph G = (V,E) with edge weights, s0, r1, . . . , rk ∈ V , and a positive integer D,

to compute s1, . . . , sk ∈ V so that the cost function
∑k

i=1(dsi−1ri +Ddsi−1si) is



110 A. Matsubayashi

minimized, where duv is the distance between nodes u and v on G. The terms
dsi−1ri and Ddsi−1si represent the cost to serve the request from ri by the node
si−1 holding the page and the cost to migrate the page from si−1 to si, respec-
tively. We call si and ri a server and a client, respectively. An online page mi-
gration algorithm determines si without information of ri+1, . . . , rk. We denote
by A(σ) the cost of a page migration algorithm A for a sequence σ := r1 · · · rk. A
deterministic online page migration algorithm alg is ρ-competitive if there ex-
ists a constant value α such that alg(σ) ≤ ρ · opt(σ) + α for any σ, where
opt is an optimal offline algorithm. We denote by optu(σ), called a work
function, the minimum (offline) cost to process σ so that sk = u. Obviously,
opt(σ) = minu∈V {optu(σ)}. An online algorithm that determines the server
after processing σ using the information of optu(σ) for all possible nodes u
is called a work function algorithm. A work function algorithm is well-defined
because optu(σ) can be computed using dynamic programming, i.e., for a re-
quest issued from r after σ, optu(σr) = minv∈V {optv(σ) + drv + Dduv} and
optu(∅) = Dds0u [10], where ∅ denotes an empty sequence.

For a node u and k ≥ 1, we write a sequence consisting of k repetitions of u
as uk. Unless otherwise stated, we suppose that graphs considered here have a
node set V := {a, b, c} and edge weights x = dab, y = dac, and z = dbc for edges
(a, b), (a, c), and (b, c), respectively. We denote L := x+ y + z and assume that
max{x, y, z} < L/2.

3 (3 + 1/D)-Competitive Algorithm

We consider a typical work function algorithm denoted by wfa, which moves
the server s, located after processing a sequence σ of clients, to a nearest node
among nodes v minimizing optv(σ) + drv +Ddsv after servicing a new request
from r. By this definition, the destination ŝ of the migration satisfies opts(σr) =
optŝ(σ) + drŝ +Ddsŝ. Another way of understanding the algorithm is that wfa

moves the server s to ŝ when a decline of slope D from s to ŝ appears on the
work function, i.e., opts(σr) − optŝ(σr) = Ddsŝ, except when s is one of the
nodes v minimizing optv(σ) + drv + Ddsv. The purpose of considering such a
decline on the work function as a trigger of migration is to avoid requests from ŝ
that would increase online service cost at the server s but change neither opts

nor optŝ. A similar idea is used for other work function algorithms ([9,5,12]).
We prove the following theorem:

Theorem 1. wfa is (3 + 1/D)-competitive on three nodes.

We begin our proof by deriving a sufficient condition for Theorem 1. We suppose
that wfa locates the server on s after processing σ, and that a request is issued
from r ∈ V after σ. For a function f of σ, we use the notations f = f(σ) and
f ′ = f(σr) for simplicity. For u ∈ V , let û be a nearest node to u among nodes
v minimizing optv + drv +Dduv. Then,

opt
′
s = optŝ + drŝ +Ddsŝ ≥ opts + drŝ, and (1)

opt
′
s ≤ opt

′
ŝ +Ddsŝ. (2)
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These follow from |optu − optv| ≤ Dduv for any u, v ∈ V [10]. It follows from
(1) and (2) that drŝ ≤ opt

′
ŝ − opts +Ddsŝ. Therefore, we have

wfa
′−wfa = drs+Ddsŝ ≤ drŝ+(D+1)dsŝ ≤ opt

′
ŝ−opts+(2D+1)dsŝ. (3)

By summing (3) overall requests in σr, we obtain wfa
′ ≤ opt

′
ŝ + (2 + 1/D)M ′,

where M ′ = M(σr) is D times the total sum of migration distances of wfa in
processing σr. Hence, if

Ddŝu +M ′ ≤ opt
′
u for any u ∈ V , (4)

then by choosing u minimizing opt
′
u, we have wfa

′ ≤ opt
′
ŝ + (2 + 1/D)opt′ −

(2D + 1)dŝu ≤ (3 + 1/D)opt′ − (D + 1)dŝu, which completes the proof of The-
orem 1.

The crux of the proof is to show (4). To prove (4), we generalize the network
to a continuous ring1 R of length L containing a, b, and c with the preserved
distances. Specifically, we define R as an interval {p | 0 ≤ p < L} modulo L, i.e.,
any real number p is equivalent to p − �p/L� · L. We define an extended work
function at a point p ∈ R as

w′
p = min

q∈R
{wq + drq +Ddpq} and wp(∅) = Dds0p.

For a point p ∈ R, we define p̂ as a nearest point to p among points q ∈ R
minimizing wq+drq+Ddpq. Actually, p̂ ∈ V for any p ∈ R with p �= p̂, which will
be proved later in Lemma 5. This means that w′

p = minq∈V ∪{p}{wq+drq+Ddpq},
and hence, wu = optu for any u ∈ V . We denote the farthest point of p on R
by p̄. For p, q ∈ R, we define [p, q] as the closed interval of length dpq between p
and q on R if dpq < L/2, R otherwise. Notations (p, q], [p, q), and (p, q) are used
to denote the intervals obtained from [p, q] by excluding p, q, and both p and q,
respectively. Lemmas 1–4 below state basic properties of wp that will be used in
the subsequent lemmas.

Lemma 1. For any p, q ∈ R, it follows that wp − wq ≤ Ddpq.

Lemma 2. For any p ∈ R and q ∈ (p, p̂], it follows that q̂ = p̂.

Lemma 3. For any p ∈ R and q ∈ [p, p̂), it follows that wq −wp̂ > (D − 1)dp̂q.

Lemma 4. For any p ∈ R and q ∈ [r, p̂], it follows that wp̂ − wq ≤ (D − 1)dp̂q.

To prove (4), we utilize a relation between the increased amount of the work
function and its one-sided derivatives, which are defined as mp−0 := limq→p−0
wq−wp

dpq
and mp+0 := limq→p+0

wq−wp

dpq
for any p ∈ R. The following lemma guar-

antees that wu = optu for any u ∈ V , the derivatives exist and are integers, and
that wp is not convex for any interval not containing a node of V .

1 One might expect that a continuous tree instead of a continuous ring would be
preferable in terms of scalability of the network. However, this idea would fail because
such a tree has the center, i.e., a point near to three nodes, which makes a work
function extended on the continuous tree smaller than the original work function at
some nodes.
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Lemma 5. The following claims hold.

1. For any p ∈ R with p̂ �= p, it follows that p̂ ∈ V .
2. For any p ∈ R, mp−0 and mp+0 are integers with −D ≤ mp±0 ≤ D.
3. For any p ∈ R \ V , it follows that mp−0 +mp+0 ≤ 0, i.e., wp is convex only

in the region containing a node in V .

For u ∈ V \ {s}, let ms→u := limq→u, q∈[s,u)
wq−wu

duq
and ms := min{ms→u | u ∈

V \ {s}}. Now we state our main lemma, which claims (4) together with two
other claims.

Lemma 6. The following claims hold.

1. For {p, q} := V \ {s}, wp ≥ D(L − dsp) +M , or wq ≥ D(L − dsq) +M , or
wp + wq ≥ msdpq +DL+ 2M .

2. For any u ∈ V , wu + wū ≥ ws +
DL
2 +M .

3. For any u ∈ V , wu ≥ Ddsu +M .

Proof Sketch. We describe a proof sketch for this lemma. Through the extension
of networks and work functions to continuous ones, we can obtain a sufficient
condition for (4):

wu + wū ≥ ws +
DL
2 +M for any u ∈ V . (5)

Actually, if (5) holds, then it follows that wu ≥ ws −wū + DL
2 +M ≥ −Ddsū +

DL
2 + M = −D(L2 − dsu) +

DL
2 + M = Ddsu + M . Here, we have used the

fact ws − wū ≥ −Ddsū (Lemma 1). We will prove (5) by induction on events
of service and migration of wfa for requests. The inductive proof for a wfa’s
migration is easy because a wfa’s migration of distance d decreases ws by Dd,
increases M by Dd, and does not change the left hand side of (5). As for the
proof for a wfa’s service, (5) can inductively be proved for most cases using
basic properties of wu (Lemmas 1–5), some of which are properties of wu’s slope
defined using one-sided derivatives. However, there is one exceptional case for
which (5) cannot be proved inductively. For example, if û = u �= s and a decline
from ū to the request node r ∈ V \ {s, u} has slope D, then wu increases by dur ,
whereas wū does not increase. Therefore, if ŝ = s and dsr > dur, then it is the
case that the increased amount dur of wu+wū is less than the increased amount
dsr of ws.

To prove (5) even for such a case, we need yet another condition as follows:

For {p, q} := V \ {s}, wp ≥ D(L− dsp) +M , or wq ≥ D(L − dsq) +M , or

wp + wq ≥ msdpq +DL+ 2M. (6)

The first and second inequalities mean that wp or wq are already large enough,
and therefore, (5) is satisfied for p or q2, respectively. Actually, if the first in-
equality holds, then it follows that wp + wp̄ ≥ D(L − dsp) +M + ws −Ddsp̄ =

2 To be accurate, we should prove (5) for both p and q. Although we do not mention
the reason here, we note that one of the first and second inequalities of (6) suffices.
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ws +
DL
2 +M . Here, we have used the fact wp̄ − ws ≥ −Ddsp̄ (Lemma 1). The

parameter ms in the third inequality of (6) is the smaller slope at wp toward s
and at wq toward s. Roughly speaking, ms is increased by requests from p or
q and counts up to D how a possible situation for which (5) cannot be proved
inductively is approaching. However, the third inequality of (6) with ms = D
implies (5) because wp + wq ≥ Ddpq + DL + 2M = D(2L − dsp − dsq) + 2M ,
implying the first or second inequality of (6). Condition (6) is proved inductively,
together with induction hypothesis of (4), and hence that of (5). Thus, (4)–(6)
are proved simultaneously in the formal proof.

By Lemma 6, we have (4), and hence Theorem 1.

4 Counter-Based Algorithm

In this section we design a counter-based algorithm called cba and prove the
following theorems:

Theorem 2. cba is 3-competitive on three nodes if D ≤ 2.

Theorem 3. cba is ρ-competitive on complete graphs with edge-weights between
1 and 2− 2/ρ for any ρ ≥ 3.

4.1 Ideas and Definition of Algorithm

To describe ideas of our algorithm, we review the 3-competitive algorithm3 for
uniform networks presented in [8]. This algorithm, called count, maintains a
counter Cv ≥ 0 for each node v so that

∑
v∈V Cv = 2D, and that the server of

count always has a positive counter. Initially, the server has a counter of 2D,
and the other nodes have counters of 0. If a request is issued on a node other
than the server, then count decrements a positive counter of a node by 1 and
increments the counter of the request node by 1. If a counter becomes 2D, then
count moves the server to the node with this counter. The fact that count is
3-competitive is proved by verifying that for each event of count’s migration,
opt’s migration, and services of count and opt for a request,

f := Δcount+ΔΦ− ρΔopt ≤ 0 (7)

is satisfied for ρ = 3. Here, Φ is a potential function of counters and the servers
s and t of cba and opt, respectively, and defined as follows:

Φ := ρ
2

∑
v∈V

Cvdtv +
(
ρ
2 − 1

)∑
v∈V

Cvdsv.

Δcount, Δopt, ΔΦ are the amounts of change of count’s cost, opt’s cost,
and Φ in the event, respectively. Since Φ ≥ 0, by summing (7) overall events, we
can prove that count is ρ-competitive.

3 Although the algorithm described here is slightly modified, it is essentially same as
the original version.
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Our algorithm is based on the following observations. count is ρ-competitive
even if the network has edge-weights between 1 and 2− 2/ρ. This can be proved
by verifying that for the service event of count and opt for a request on r, if
count decrements the counter of a node u with dsr ≤ (1−2/ρ)dsu+dur, then (7)
is satisfied. As for the migration event of count or opt, (7) is satisfied regardless
of the structure of the network because count always moves the server from a
node of counter 0 to a node with counter 2D. Therefore, if the server is located
at a node s satisfying

dsv ≤ (1− 2
ρ )dsu + duv for any u, v ∈ V \ {s}, (8)

then (7) is satisfied for any event considered here.
If the server is located at a node s not satisfying (8), then it may be the case

that f > 0. We shall amortize the excessive debt. Let A be the set of nodes
satisfying (8) and B be the set of nodes not contained in A. If the network is
uniform, then all the nodes are contained in A. Now we recall the assumption
in Sect. 2 that the graph has a node set V = {a, b, c} and edge-weights x = dab,
y = dac, and z = dbc. In this section, moreover, we assume without loss of
generality that y ≥ max{x, z}. Then, it follows that b ∈ A, and hence,B ⊆ {a, c}.
This is because x − (L2 − z

ρ) = x − (L2 − L−x−y
ρ ) ≤ (1 − 2

ρ )(x −
L
2 ) ≤ 0, and

similarly, z − (L2 − x
ρ ) ≤ 0.

We design our algorithm cba by introducing the following policy to count.
If the server is in B, say a ∈ B, then cba always decrements a’s counter for
a request on b or c and increments the counter of the request node. With this
policy, (7) is satisfied for any service event. However, this policy may cause a
situation that the counters of both b and c are less than 2D when a’s counter
becomes 0. This situation forces cba to move the server to b or c, which may
cause f > 0. Precisely, f depends on the position of the server t of opt and
distribution of values of the counters. If the counter of c is sufficiently large,
then the excessive debt for the migration from a to c can entirely be amortized
by the sum of f associated with service events between the previous and current
migrations. Otherwise, although the excessive debt for the migration from a to b
may still remain through the previous service events, it can be amortized by the
sum of f associated with service events and a possible opt’s migration between
the current and next migrations of cba. cba determines the destination of the
migration by estimating the excessive debt for the migration and the amount
that can amortize the debt.

Now we formally define cba. We divide the input sequence of clients into
phases so that a migration of cba ends the current phase. When a new phase
begins, cba sets the counter of the previous server to 0. We define a function
Ψst ≤ 0 of counters of the the servers s and t of cba and opt, respectively, at
the end of a phase, i.e., just after the migration of cba to s. If B = ∅, then
Ψst := 0 for any s and t. Otherwise,
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Ψst := 0 if s ∈ {a, c},
Ψbv := max{Cv̄(−(ρ2 − 1)dbv̄ − ρ

2 (dvv̄ − dbv)),

Cb
ρ
2 (dbv̄ − dvb − dvv̄)− (ρ− 3)Ddbv̄)}, and

Ψbb := Ψbv̄ := max{Cv̄(−(ρ2 − 1)dbv̄ − ρ
2 (dvv̄ − dbv)),−(ρ− 3)Ddbv̄)},

where {v, v̄} = {a, c} with Cv = 0.
If a request is issued from a node r, then cba performs the following procedure

unless r = s.

1. If s ∈ A and there exists r̄ ∈ V \ {s, r} with Cr̄ ≥ 1, then Cr̄−− and Cr++.
Otherwise, Cs−− and Cr++.

2. If Cs = 0, then move the server as follows:
(a) If s ∈ A, then move the server to r. Step 1 implies Cr = 2D in this case.
(b) If s ∈ B and Fb ≤ Fs̄ (F is defined later), move the server to b, where

s̄ ∈ V \ {s, b}. It should be noted that {s, s̄} = {a, c}.
(c) If s ∈ B and Fb > Fs̄, then move the server to s̄, and set Cb := 0 and

Cs̄ := 2D.

Here, for p ∈ {b, s̄},

Fp := max
t,q∈V

{Mpq + Sq + Ψpq − Ψ ′
st},

Mbq := −(ρ− 3)Ddsb + (ρ− 2)Cs̄(
L
2 − dss̄) for q ∈ V ,

Ms̄q := −(ρ− 3)Ddss̄ + Cb((
ρ
2 − 1)(dss̄ − dsb) +

ρ
2 (ds̄q − dbq)) for q ∈ V ,

Ss := 0, and

Sq := max{−ρCs̄(
L
2 − dss̄),−ρCb(

L
2 − dsb),−ρCb(

L
2 − dbs̄)} for q ∈ {b, s̄}.

We have used Ψ ′ to denote Ψ associated with the previous phase and migration. If
the current phase is the first phase, then Ψ ′ is defined using the initial server and
counters. Moreover, Ψpq is associated with the current phase and migration. It
should be noted that Ψpq can be computed just before the migration of cba to p.
This is because cba changes no counters if p = b, and because Ψaq = Ψcq = 0.

The intuitions of Φ, Ψ ,M , and S are as follows: Φ is actually a refined version
of the potential function used in [8]. Ψ is the deposit saved in the next phase
that can be used to amortize the current phase.M and S are corrections of Φ in
a phase, i.e., upper bounds of increase of (cba’s cost) + Φ− ρ · (opt’s cost) for
services and migration of cba, respectively. We also note that if all the nodes
are contained in A, then cba can be viewed as a kind of count, and hence, it
works even on a network with more than three nodes.

4.2 Competitiveness

For any event e, let Δcba(e) and Δopt(e) be the costs of cba and opt for e,
respectively. Moreover, let ΔΦ(e) be the amount of change of Φ for e. Further-
more, let f(e) := Δcba(e)+ΔΦ(e)−ρΔopt(e). We will omit e in the notations
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if e is clear from the context. Lemmas 7–9 below prove f ≤ 0 with ρ = 3 for
most cases, except for the case that cba moves the server in Step 2b or 2c. These
lemmas also imply that we can save some deposit (as Ψ and S), and will be used
to prove that the deposit can entirely amortize the excessive dept (M) for the
migration in Step 2b or 2c.

Lemma 7. Suppose that cba and opt serve a request from r ∈ V with the
servers on s and t, respectively. If r = s, then f = −ρdrt ≤ 0. If r �= s, s ∈ A,
and Cr̄ ≥ 1, then f ≤ ρ

2 (drs − drr̄) − (ρ2 − 1)dsr̄ ≤ 0, where r̄ ∈ V \ {s, r}.
Otherwise, f = ρ

2 (drs − drt − dst) ≤ 0.

Lemma 8. If opt moves the server from t to q, then f = ρ
2

∑
v∈V Cv(dqv −

dtv − dtq) ≤ 0.

Lemma 9. Suppose that cba moves the server from s to p. If the server is
moved in Step 2a, then f = −(ρ − 3)Ddsp. If the server is moved in Step 2b
or 2c, then f = Mpq, where q is the server of opt at the migration of cba. In
particular, if Cp = 2D, then f = −(ρ− 3)Ddsp for any case.

Fix a phase, and let φ be the sequence of events in the phase consisting of
services of cba and opt for a request, migrations of opt, and a migration of
cba. Suppose that cba and opt locate the servers s and t, respectively, at the
beginning of the phase, and at p and q, respectively, at the end of the phase.
We will prove g :=

∑
e∈φ f(e) + Ψpq − Ψ ′

st ≤ 0. If this holds, then because both
Φ and Ψ can be bounded from below independently of the number of requests,
we can prove that cba is ρ-competitive by summing up the inequalities overall
phases. In what follows, Cv denotes the counter of v ∈ V just before cba moves
the server to p. This means that Cs = 0.

If B = ∅ or s ∈ {a, c} ∩ A, then Cp = 2D as mentioned in Step 2a of the
definition of cba, and Ψ ′

st = 0. Therefore, g ≤ 0 by Ψpq ≤ 0 and Lemmas 7–9.
These arguments imply the following lemma:

Lemma 10. cba is ρ-competitive on networks with three or more nodes all of
which are contained in A.

If a complete graph has edges of weights between 1 and 2 − 2/ρ, then all the
nodes are contained in A. Therefore, we have Theorem 3.

To prove Theorem 2, it remains to prove that g ≤ 0 for the case B �= ∅ and
s ∈ {b} ∪B. In what follows, we set ρ := 3 for simplicity.

Lemma 11. If s = b, then g ≤ 0.

We prove g ≤ 0 for the remaining case s ∈ {a, c} ∩B in the following.

Lemma 12. If s ∈ B, then
∑

e∈φ f(e) ≤Mpq + Sq.

Lemma 13. If D ≤ 2 and s ∈ {a, c} ∩B, then Fb ≤ 0 or Fs̄ ≤ 0.

By Lemmas 11–13, we have g ≤ 0 for every case. Therefore, the proof of Theo-
rem 2 is completed.
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5 Lower Bound

In this section we prove the following theorem:

Theorem 4. If a deterministic page migration algorithm is ρ-competitive on
three nodes, then ρ ≥ 3 +Ω(1/D). In particular, ρ > 3 for any D ≥ 3.

5.1 Adversary

To prove Theorem 4, we design a 3-node network and an adversary, i.e., a strat-
egy to generate an arbitrarily long sequence σ of clients against any deterministic
online page migration algorithm alg on the network so that alg(σ) > ρ ·opt(σ)
for some ρ = 3+Ω(1/D). By using such a strategy, we obtain a lower bound of
ρ, i.e., alg(σ) ≥ ρ · opt(σ) + α for any α independent of the number of clients
because σ can be arbitrarily long. Broadly, our strategy repeatedly generates a
sequence φ of clients so that alg returns the server to the initial position s0 after
processing each φ, and that alg(φ) > (3 + Ω(1/D))opts0(φ). The sequence φ
begins with a sequence τ such that alg(τ) > (3 +Ω(1/D))opt(τ), or that alg
moves the server too early to achieve a competitive ratio 3+o(1/D). Unless alg
locates the server at s0 after processing τ , a subsequent sequence τ ′ leads alg

to return the server to s0.
In this section we assume without loss of generality that y ≥ x ≥ z. We

denote a sequence χ of clients also by χv if alg leaves the server on a node v
after processing χ. The following Lemma 14 provides a sufficient condition for
alg to move the server too early to achieve a competitive ratio of ρ.

Lemma 14. Let P ⊆ V , Q := V \ P , and let p ∈ P and q ∈ Q be joined by
an edge with the minimum weight w overall edges joining P and Q. If there
exist ρ > 3 and a sequence χq of clients such that (ρ− 1)optp(χq)+optq(χq)−
alg(χq)+(ρ−5)Dw < 0, then there exists a sequence χ′ = χ′

p with alg(χqχ
′) >

ρ · optp(χqχ
′) or a sequence χ′′ = χ′′

q with alg(χqχ
′′) > ρ · optq(χqχ

′′).

Lemmas 15 and 16 below are tools to generate a sequence that leads alg to
return the server to the initial position.

Lemma 15. Let p := a and q := b, or p := b and q := c. Let w := dpq. If there
exist ρ > 3, β > 0, and a sequence χq of clients such that alg(χq) > ρ ·optq(χq)
and optq(χq) ≥ βDw, then there exists a sequence χ′ such that χ′ = χ′

p and
alg(χqχ

′) > ρ′ · optp(χqχ
′), or that χ′ is an arbitrarily long sequence with

alg(χqχ
′) > ρ′ · opt(χqχ

′), where ρ′ := β
β+4 (ρ− 3) + 3.

Lemma 16. Let {p, q} := {a, b} and w := dpq. If there exist ρ > 3, β > 0,
and a sequence χq of clients such that (ρ− 1)optp(χq) +optq(χq)−alg(χq) +
(ρ − 5)Dw < 0 and optq(χq) ≥ βDw, then there exists a sequence χ′ such
that χ′ = χ′

a and alg(χqχ
′) > ρ′ · opta(χqχ

′), or that χ′ is an arbitrarily long

sequence with alg(χqχ
′) > ρ′ · opt(χqχ

′), where ρ′ := β
β+4(ρ− 3) + 3.
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Fig. 1. Strategy to generate σ

We set the initial server s0 := a. Our strategy to generate σ is defined using a
state machine as shown in Fig. 1. In this state machine, a transition represents
a server selected by alg, together with optional conditions on the number of
requests generated in the source state. The parameter 1 ≤ λ < D will be defined
later. A state with the form of uk (i.e., bh, aj , and ci) represents a sequence of
requests from u until one of the outgoing arcs from the state meets the server of
alg and the conditions on the number k of the requests. A state with the form
of u+ (i.e., a+ and c+) represents a sequence of requests from u until alg locates
the server on u. The states Lm15b and Lm15a represent sequences of requests
obtained by applying Lemma 15 with p := b and q := c, and with p := a and
q := b, respectively. The state Lm16 represents a sequence of requests obtained
by applying Lemma 16 with p ∈ {a, b} \ {s} and q := s, where s ∈ {a, b} is the
server of alg at the beginning of the state.

5.2 Analysis

Now we prove Theorem 4. Suppose that y = x + δ and z = γδ with δ > 0
and 3 ≤ γ ≤ x/δ. We will choose γ and δ later. We divide σ into phases so
that entering the state bh begins a new phase. alg locates the server on a at the
beginning of each phase. Therefore, Theorem 4 is proved if for each phase φ = φa,
alg(φ) > ρ ·opta(φ) with the initial server on a, and if for a phase φ �= φa (i.e.,
an arbitrarily long sequence), alg(φ) > ρ · opt(φ) with the initial server on
a. This can be done for ρ = 3 + Ω(1/D) by carefully choosing δ = O(x/D),
γ = O(1), and λ = Θ(D). The detailed analysis is omitted here and will be given
in a journal version.

6 Future Work

It would be interesting to answer whether or not there exists an asymptotically
3-competitive deterministic algorithm on a broader class of networks. Unfor-
tunately, even 4-node ring networks do not allow wfa as it is to have such a
competitive ratio. In fact, our proof of Theorem 1 depends on the fact that an
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extended work function is not convex on the interval between two nodes other
than the server on a continuous ring with three nodes (Claim 3 of Lemma 5).
However, this fact does not follow for four nodes. On the other hand, there might
exist a lower bound of 3 + Θ(1) on general networks. For such a lower bound,
however, we would need at least four nodes and have to overcome the difficulty
of designing and analyzing a much more complicated adversary mainly due to
increase of nodes. In any case, improving the currently best upper bound of 4.086
on general networks is still an important open problem.
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Abstract. A randomized on-line algorithm is given for the 2-server
problem on the line, with competitiveness less than 1.901 against the
oblivious adversary. This improves the previously best known competi-
tiveness of 155

78
≈ 1.987 for the problem.

1 Introduction

In the k-server problem, there are k identical mobile servers in a metric space
M . At any time, a point r ∈ M can be “requested,” and must be “served” by
moving one of the k servers to the point r. The cost of that service is defined
to be the distance the server is moved; for a sequence of requests the goal is
to serve the requests at small cost. An online algorithm for the server problem
decides, at each request, which server to move, but does not know the sequence
of future requests. We analyze an online algorithm for the server problem in
terms of its competitive ratio, which essentially gives the ratio of its cost over
the cost of an optimal (offline) algorithm which has knowledge of the entire
request sequence before making any decisions. More precisely, we say that an
online algorithm A for the server problem is C-competitive, if there is a constant
K, such that, given any request sequence σ, costA(σ) ≤ C · costOPT (σ) + K,
where costOPT (σ) is the minimum possible cost of any service of σ. If A is a
randomized online algorithm, we express the inequality in terms of expected cost,
i.e., E(costA(σ)) ≤ C · costOPT (σ) +K. In the analysis of an online algorithms
it is customary to think of the optimal service as performed by an oblivious
adversary. The optimal cost is then also referred to as the “cost of the adversary,”
and the movement of the servers in the optimal algorithm as “adversary moves.”

The server problem was first proposed by Manasse, McGeoch and Sleator [13]
and the problem has been widely studied since then. They also introduced the
now well-known k-server conjecture, which states that, for each k, there exists
an online algorithm for k servers which is k-competitive for any metric space.
The conjecture was immediately proved true by the same researchers for k = 2,
but for larger k, the conjecture remains open, although it has been proved for
a number of special classes of metric spaces, such as trees [10], spaces with at
most k + 2 points [12], and the Manhattan plane for k = 3 [6].

T. Erlebach and G. Persiano (Eds.): WAOA 2012, LNCS 7846, pp. 120–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In the randomized case, little is known. Bartal et al. [4] have an asymptotic
lower bound, namely that the competitiveness of any randomized online algo-
rithm for an arbitrary metric space is Ω(log k/ log2 log k). It is conjectured that
there is an O(log k) competitive algorithm for general metric spaces. A recent
breakthrough is the algorithm by Bartal et al. [2], which gives a poly-logarithmic
competitive algorithm for finite metric spaces.

Surprisingly, no randomized competitive algorithm for the 2-server problem
for general spaces is known to have competitiveness less than 2, although that
barrier has been broken for a number of classes of spaces. The competitiveness
is known to be 3

2 for uniform spaces, and Bein et al. [7] have shown that there
is a randomized algorithm with competitive ratio of at most 1.5897 for all 3-
point spaces. Bein et al. [8] have recently given a “better than 2” competitive
algorithm for crosspolytope spaces using knowledge states [9]. A lower bound of
1 + e−1/2 ≈ 1.606 has been shown [11].

We define the (m,n)-server problem, for m > n, to be the variation where
there are m mobile servers in the metric space, and each request must be served
by at least n of them. For the 2-server problem on the line, Bartal et al. give
a barely random online algorithm for the 2-server problem on the line, with
competitive ratio 155

78 ≈ 1.987 [5]; their method is to define a deterministic online
algorithm for the (6, 3)-server problem with that competitiveness, from which
three deterministic online algorithms are defined. The randomized algorithm is
simply to pick one of those three at random, each with probability 1

3 , and then
use the chosen algorithm for the entire request sequence.

Our contribution. In this paper, we give a randomized online algorithm for
the (2n, n)-server problem on the line, for every n ≥ 3. By Theorem 1 below,
we obtain a randomized algorithm for the 2-server problem on the line. As n
increases, the competitiveness of our algorithm decreases, and the limiting value
is less than 1.901.

2 The Algorithm R–LINE

Our algorithm, R–LINE, is defined to be a randomized algorithm for the (2n, n)-
server problem, for n ≥ 3. We make use of the following two theorems from [5]:

Theorem 1. Given any C-competitive online algorithm for the (2n, n)-server
problem, we can derive a randomized online algorithm for the 2-server problem
that is C-competitive.

Theorem 2. Any optimal offline strategy for the (2n, n) server problem keeps
the servers in two blocks of n each, assuming that the servers are together in two
blocks in the initial configuration.

By Theorem 2, without loss of generality we can assume that the adversary is
using an optimal 2-server algorithm, but serves with cost equal to n times the
distance moved. We will use the notation si both to refer to the ith server and its
location, when no confusion arises. We assume that s1 ≤ s2 ≤ ... ≤ s2n−1 ≤ s2n.
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We also refer to the adversary’s servers as a1 and a2, and assume that a1 ≤ a2.
The algorithm thus knows the location of one of the adversary’s servers, which
we call the visible server, and which, by a slight abuse of notation, we also call r.
We denote the adversary’s other server by a, and refer to it as the hidden server,
since the algorithm does not know where it is.

We define a configuration of servers (R–LINE’s as well as the adversary’s) to
be satisfying if at least n of R–LINE’s servers are at r. We refer to a satisfying
configuration as an S-configuration, and we assume that the initial configuration
is an S-configuration.

Every round begins by the adversary choosing a new request point r and
moving one of its two servers to r. R–LINE then moves as many of its servers as
necessary to r, and the resulting configuration is once again an S-configuration.
No R–LINE server will pass another R–LINE server that does not serve. In
general, R–LINE deterministically moves zero or more servers to r, and then
uses randomization to decide which additional servers to move. R–LINE is lazy,
meaning that it never moves any server that does not serve the request.

2.1 The Potential

The algorithm R–LINE is given based on a suitable potential, which is used in
Section 3 to prove competitiveness. For each fixed n ≥ 3, we define a competi-
tiveness C for R–LINE as well as a potential φ on configurations. This potential
will satisfy the following property:

Property 1. If φ is the potential at the configuration before a round and φ′ the
potential after the round, and if costR–LINE and costAdv are the costs incurred
by R–LINE and the adversary, respectively, then

E(costR–LINE + φ′ − φ) ≤ C · costAdv

where E denotes expected value.

Isolation Indices and Coefficients. For 0 ≤ i ≤ 2n and 0 ≤ j ≤ 2, if
1 ≤ i+ j ≤ 2n+ 1, we define αi,j , the (i, j)th isolation index of a configuration,
to be the length of the longest interval that has exactly i algorithm servers to
the left and exactly j adversary servers to the left. More formally,

αi,j = max

{
min {si+1, aj+1} −max {si, aj}
0

where we let s0 = a0 = −∞ and s2n+1 = a3 = ∞ by default. Isolation indices
are part of T-theory and a more general definition of isolation indices is given
in [1].

For each 0 ≤ i ≤ 2n and 0 ≤ j ≤ 2, we define a constant ηi,j , the (i, j)th

isolation index coefficient. The isolation index coefficients satisfy a symmetry
property, namely ηi,j = η2n−i,2−j ; furthermore, η0,0 = η2n,n = 0. We formally
define the potential of a configuration to be

φ =
∑

{ηi,j · αi,j : (0 ≤ i ≤ 2n) ∧ (0 ≤ j ≤ 2) ∧ (1 ≤ i+ j ≤ 2n+ 1)}
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Intuitively, ηi,j is a weight on the isolation index αi,j for any configuration. For
each given n, the competitiveness C and the isolation index coefficients {αi,j}
must satisfy a system of inequalities given in Section 3.

We will first define R–LINE in terms of those constants, and then show that
R–LINE is C-competitive if the system of inequalities is satisfied. In Section 4
we outline how to find a solution to these inequalities, and give the values of the
constants for n = 3.

2.2 Algorithm Description

We now define R–LINE. Between rounds, the configuration of servers is always
an S-configuration. When the adversary makes a request at a point r, R–LINE
responds by making a sequence of moves, each consisting of the movement of one
or more servers to r. Thus, during a round, R–LINE makes at most n moves. Not
all configurations can arise during execution of R–LINE; in fact, we define two
classes of configurations, D-configurations and R-configurations, such that every
intermediate configuration of R–LINE belongs to one of those two classes. If the
current configuration is a D-configuration, then R–LINE’s next move is to move
one or more servers deterministically to r, while if the current configuration is an
R-configuration, then R–LINE’s next move is to choose, using randomization,
a set of servers to move to r. In this case there are always two choices – to
move one or more servers from the previous request point to r, completing the
round, or to move just one server from the other side, possibly not completing
the round.

We now define the classes of configurations. Note that, before the current
round began, there must have been n algorithm servers at the previous request
point, which we call r′. Without loss of generality, r′ �= r.

1. S-Configuration: there are n algorithm servers at r.
2. D-Configuration: the following two conditions hold.

(a) There are more than n algorithm servers either strictly to the left or
strictly to the right of r; that is, r > sn+1 or r < sn.

(b) If there are fewer than n algorithm servers at r′, then there is no al-
gorithm server strictly between r′ and r, and furthermore, there are at
least n algorithm servers at the points r′ and r combined.

3. R-Configuration:
(a) There are exactly n algorithm servers on the same side of r as r′, that

is, either r′ = sn < r or r < r′ = sn+1.
(b) There is no algorithm server strictly between r′ and r, and furthermore,

there are at least n algorithm servers at the points r′ and r combined.

We now give an explicit definition of R–LINE. By symmetry, we can assume,
without loss of generality, that r′ < r. The reader might also consult Figure 1
where we illustrate R–LINE through a single round, in a case where n = 3.
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Fig. 1. (a) A D-configuration, where n = 3. The request is r, there are three servers
located at r′ < r. The next move is deterministic. (b) An R-configuration. One server
has moved to r from the left. The next move is randomized; either move two servers from
the left or one from the right. (c) An S-configuration, after two servers moved from the
left. The round is over. (d) An R-configuration, after one server moved from the right.
The next move is randomized; either move one server from the left or one from the right.
(e) An S-configuration, after one server moved from the right. The round is over. (f) An
S-configuration, after one server moved from the left. The round is over.

1. If the current configuration is a D-configuration, then there are m algorithm
servers to the left of r for some m > n. Move the servers sn+1, . . . sm to
r. If the resulting configuration is an S-configuration, the round is over.
Otherwise, the resulting configuration is an R-configuration, and proceed to
the next step.

2. If the current configuration is an R-configuration, then r′ = sn < r ≤ sn+1 <
s2n. Let p be the number of algorithm servers at r. Then sn+p+1 > r. R–
LINE executes one of two moves; each move is executed with a probability
that is determined by solving a 2-person zero-sum game. We compute those
probabilities below. The two choices of move are:

(a) Move sn+p+1 to r.
(b) Move the servers sp+1 . . . sn to r.

If the resulting configuration is an S-configuration, the round is over. Other-
wise, the resulting configuration is an R-configuration, and repeat this step.
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For the randomized step, one of the two choices is selected by using the optimum
strategy for a 2-person zero sum game, where R–LINE is the column player, and
Adv is the row player; the choice of the row player is where to place the hidden
server. As we show later, we can assume, without loss of generality, that the
hidden server is located at either sn or sn+p+1. Thus, each player has exactly two
strategies. Each entry of the payoff matrix is equal to Δφ+ cost = φ′−φ+ cost ,
where φ and φ′ are the potentials before and after the move; and cost is the
cost of the move, which is equal to the number of servers moved times distance
moved, either (sn+p+1 − r) or (n− p)(r − sn).

The payoff matrix is as follows:

G =

Move sn+p+1 Move sp+1 . . . sn

a = sn (ηn+p+1,2 − ηn+p,2 + 1)(sn+p+1 − r) (ηp,1 − ηn,1 + n− p)(r − sn)

a = sn+p+1 (ηn+p+1,1 − ηn+p,1 + 1)(sn+p+1 − r) (ηp,0 − ηn,0 + n− p)(r − sn)

3 Proof of Competitiveness

We now present a system of inequalities, which we denote S, which suffice for
R–LINE to be C-competitive. We will prove, in Theorem 3, that S implies C-
competitiveness of R–LINE.

∀ 0 ≤ i ≤ 2n : |ηi,1 − ηi,0| ≤ n · C (1)

∀ 1 ≤ i ≤ n and ∀ 1 ≤ j ≤ 2 : ηi,j + 1 ≤ ηi−1,j (2)

∀ 1 ≤ i ≤ n and ∀ 1 ≤ j ≤ 2 : ηi−1,j−1 ≤ ηi,j−1 + 1 (3)

∀ 1 ≤ i ≤ n : (ηi−1,1 − ηi,1 + 1)(ηn−i,1 − ηn,1 + i) ≤ (ηi−1,0 − ηi,0 + 1)(ηn−i,0 − ηn,0 + i) (4)

Theorem 3. For any assignment of values to C and ηi,j for 0 ≤ i ≤ 2n and
0 ≤ j ≤ 2 that satisfies the system S, R–LINE is C-competitive.

We prove Theorem 3 with a sequence of lemmas. We will prove that if the
system of inequalities S is satisfied, then the following properties hold. We write
Δφ = φ′ − φ, where φ is the potential before the move and φ′ is the potential
after the move.

1. For any move by the adversary,Δφ ≤ C ·costAdv. (Recall that the adversary
pays n times the distance moved.)

2. For any deterministic move by R–LINE, Δφ + cost ≤ 0.
3. We may assume the adversary’s hidden server is at one of at most two

possible locations during a given round, namely at the closest algorithm
server to either the left or the right of r.

4. For any randomized move by R–LINE, E(Δφ+ cost) ≤ 0.

We say that a move is simple if the move consists of moving a single server (either
an algorithm or an adversary server) across an interval, and there is no other
server (of either type) located strictly between the end points of that interval.
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We also refer to a simple move as a step; in general, every movement of servers
is a concatenation of steps.

Lemma 1. If S holds, then Property 1 holds.

Proof. By the symmetry of the ηi,j , inequality (1) implies that |ηi,j − ηi,j−1| ≤
n ·C for j = 1, 2. Without loss of generality the move is simple, since every move
which is not simple is the concatenation of steps. Without loss of generality, the
adversary server aj moves to the right, from x to y, where x < y. Since the move
is simple, si ≤ x and y ≤ si+1 for some 0 ≤ i ≤ 2n,. (Recall the default values
s0 = −∞ and s2n+1 = ∞.) Thus, αi,j decreases by y − x and αi,j−1 increases
by y−x. The cost to the adversary of this move is n(y−x). By definition of the
potential, Δφ = (ηi,j − ηi,j−1)(y − x) ≤ n · C · (y − x) ≤ C · costAdv.

Lemma 2. If S holds, then Property 2 holds.

Proof. For convenience, we assume that r < r′ = sn+1. There are exactly m
algorithm servers to the right of r, for some m > n. Servers s2n−m+1 . . . sn
move to r. The move is the concatenation of steps, and it suffices to show that
Δφ ≥ costR–LINE for each of those steps.

Fix one step. During the step, si moves from x to y, where y < x, for some
2n−m+1 ≤ i ≤ n. The algorithm cost of the step is x−y. Pick the maximum j
such that aj ≤ y. Since r ≤ y, j is either 1 or 2. The move causes αi,j to decrease
by x− y and αi−1,j to increase by the same amount. By inequality (1), and the
definition of the potential: Δφ+ costR–LINE = (x− y)(ηi,j − ηi−1,j + 1) ≤ 0.

Lemma 3. If 1 ≤ i ≤ 2n and j = 1, 2, then ηi,j + ηi−1,j−1 ≤ ηi,j−1 + ηi−1,j

Proof. Suppose i ≤ n. Then 1+ηi,j ≤ ηi−1,j by (2), while −1+ηi−1,j−1 ≤ ηi,j−1

by (3). Adding the two inequalities, we obtain the result.
If i > n, then η2n−i+1,3−j+η2n−i,2−j ≤ η2n−i+1,2−j+η2n−i,3−j by the previous

case. By symmetry, we are done.

Lemma 4. If S holds, then Property 3 holds.

Proof. Since a could be any point on the line, the payoff matrix of the game
has infinitely many rows. We need to prove that just two of those rows, namely
a = sn and a = sn+p+1, dominate the others.

By batching the row strategies, we illustrate the ∞× 2 payoff matrix below.

Move sn+p+1 Move sp+1 . . . sn

I a ≤ sn (ηn+p+1,2 − ηn+p,2 + 1)(sn+p+1 − r) (ηp,1 − ηn,1 + n− p)(r − sn)

(ηp,1 − ηn,1 + n− p)(r − a)

II sn ≤ a ≤ r (ηn+p+1,2 − ηn+p,2 + 1)(sn+p+1 − r) +

(ηp,0 − ηn,0 + n− p)(a− sn)

(ηn+p+1,2 − ηn+p,2 + 1)(sn+p+1 − a)

III r ≤ a ≤ sn+p+1 + (ηp,0 − ηn,0 + n− p)(r − sn)

(ηn+p+1,1 − ηn+p,1 + 1)(a− r)

IV a ≥ sn+p+1 (ηn+p+1,1 − ηn+p,1 + 1)(sn+p+1 − r) (ηp,0 − ηn,0 + n− p)(r − sn)
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The row strategy a = sn trivially dominates all row strategies in Batch I. It
also dominates all row strategies in Batch II, because

ηp,1 − ηn,1 =
n∑

i=p+1

(ηi−1,1 − ηi,1)

≥
n∑

i=p+1

(ηi−1,0 − ηi,0) by Lemma 3

= ηp,0 − ηn,0

The row strategy a = sn+p+1 trivially dominates all row stages in Batch IV.
It also dominates all row strategies in Batch III, because ηn+p+1,1 − ηn+p,1 ≥
ηn+p+1,2 − ηn+p,2, which we can similarly prove using Lemma 3.

We make use of a standard game theory lemma taken from [3]. To this end
we remind the reader that a saddle point of a zero-sum game is defined to be an
entry ai,j of the payoff matrix that is both a maximum of its row and a minimum
of its column. If a game has a saddle point, then the value the game is the value
of the saddle point, and it is optimum for the row player to always play the ith

row, and for the column player to always play the jth column.

Lemma 5. Suppose If A =

[
a11 a12
a21 a22

]
is the payoff matrix for a 2-person zero

sum game G, and there is no saddle point. Then

v(G) =
detA

a11 − a12 − a21 + a22
Furthermore, the optimum strategy for the row player is:

Play row 1 with probability a22−a21

a11−a12−a21+a22

Play row 2 with probability a11−a12

a11−a12−a21+a22

While the optimum strategy for the column player is:

Play column 1 with probability a22−a12

a11−a12−a21+a22

Play column 2 with probability a11−a21

a11−a12−a21+a22

Lemma 6. If S holds, then Property 4 holds.

Proof. Consider the 2 × 2 payoff matrix G of Section 2.2. By S, the upper left
and lower right entries of G are negative, while the upper right and lower left
entries are positive. By Theorem 5, the value of our game is

det(G)

(ηn+p+1,2 + ηn+p+1 − ηn+p,2 − ηn+p+1,1) · (sn+p+1 − r) + (ηp,0 + ηn,1 − ηn,0 − ηp,1) · (r − sn)

The numerator is non-negative by inequality 4. The denominator is negative,
which we can prove by combining inequalities of S labeled (2) and (3). Thus,
E(Δφ+ costR–LINE) = v(G) ≤ 0 as claimed.

Theorem 3 follows immediately from Lemmas 1, 2, 4, and 6.
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4 Finding a Solution to the Inequalities

We need to find a solution to the system S for which C is smaller than 2,
preferably as small as possible. We first reduce S to a system, which we call S′,
that is easier to work with.

Let n ≥ 3 be fixed. We introduce variables εi and δi for all 0 ≤ i < n. Our
system S′ consists of the following constraints.

(2i+ εn−i)(2− εi + εi−1) = 4i ∀ 0 < i < n
(2n+ ε0)(2 + εn−1) ≥ 4n

δ = −ε0/2
C = (2n− δ)/n
δi = εi + 2δ ∀ 0 ≤ i < n

αi,0 = 3i− δi ∀ 0 ≤ i < n
αi,0 = 2n+ i− 2δ ∀ n ≤ i ≤ 2n
αi,1 = 2n− i− δ ∀ 0 ≤ i < n
αi,1 = i− δ ∀ n ≤ i ≤ 2n
αi,2 = α2n−i,0 ∀ 0 ≤ i ≤ 2n

A solution to the system S′. also provides a solution to S.

4.1 The Case n = 3

For n = 3 the competitiveness of R–LINE can be calculated in closed form. The
solution to S′ for which C is minimum can be obtained by 4th degree polynomial.

For n = 3, R–LINE has competitiveness 1 +

√
71+17

√
17

12 ≈ 1.98985407. We also
provide the values of the isolation index coefficients. The values of the constants
δ, δ1, δ2, and the ηi,j are shown in the following tables.

Constants

δ = 3−
√

71+17
√
17

4 ≈ 0.030437789

δ1 = 2−
√

7+
√
17

2 ≈ 0.332433987

δ2 = 4−
√

79−7
√
17

2 ≈ 0.459581218

ηi,j =

0 1 2

0 0 6− δ 12− 2δ
1 3− δ1 5− δ 11− 2δ
2 6− δ2 4− δ 10− 2δ
3 9− 2δ 3− δ 9− 2δ
4 10− 2δ 4− δ 6− δ2
5 11− 2δ 5− δ 3− δ1
6 12− 2δ 6− δ 0

The analytic methods used to find the above constants do not easily generalize
and so we utilize approximation methods to determine the values of the constants
for larger values of n. It is worth noting that Bartal et. al. provided an algorithm
for the (6, 3)-server problem in [5] with competitiveness 155

78 ≈ 1.9871795 which
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is better than the result shown here. However, by using larger values of n we
achieve a better upper bound on the competitiveness of the 2-server problem.

4.2 The Program

For n > 3, we approximate the value of C numerically, using a program to find
a solution to S′. Our program computes a function f , where δ = f(ε
n/2�). To
find the maximum value of δ, we assumed that f is bimodal,1 that is, there is
some x∗ > 0 for which f(x) is maximum, and that f(x) is monotone increasing
for 0 < x < x∗ and monotone decreasing for x > x∗. We then use a divide and
conquer algorithm similar to binary search to find f(x∗).

1. Guess ε
n/2�, using our search algorithm.
2. If n is odd, then solve the following equation for ε(n+1)/2:

(n+ 1 + ε(n−1)/2)(2 − ε(n+1)/2 + ε(n−1)/2)

3. For all 0 < i < �n2 � in decreasing order:
(a) Solve the following equation for εi:

(2(i + 1) + εn−i−1)(2 − εi+1 + εi) = 4(i+ 1)

(b) Solve the following equation for εn−i:

2(n− i) + εi2− εn−i + εn−i−1 = 4(n− i)

4. Solve the following equation for δ:

(2 + εn−1)(2− ε1 − 2δ) = 4

5. Verify the following inequality:

(2n− 2δ)(2 + εn−1) ≥ 4n

6. If our search interval is small enough, proceed to the last step. Otherwise,
return to step 1.

7. C ← 2n−δ
n .

Our calculations show that C ≈ 1.90098671 for n = 2000. Running the program
for larger n leads us to believe that

lim
n→∞

C ≈ 1.9007617

1 However, the validity of the program does not depend on the bimodality of f .
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5 Future Work

There are two possible directions in which to improve the results in this paper.
We conjecture that the set of possible distributions can be expanded in order
to obtain an even lower competitiveness. But the real gist of our work is to get
a “better than 2” result for general spaces. Since our R–LINE is based on a
potential defined in terms of isolation indices it is natural that a generalization
to arbitrary metric spaces could make use of T-theory, where a more complex
potential will be utilized.

Though not claimed in this paper, our preliminary investigation indicates that
R–LINE – unlike the Bartal et al. algorithm – generalizes to trees.

Furthermore, it is known that Theorem 1 does not extend to k ≥ 3 for all
metric spaces. However, it does extend to k ≥ 3 for the line, and should extend
easily to the circle.
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Abstract. We introduce the following version of bin packing. The items
are of two types (black and white), and in each bin the item types must
alternate. We mostly investigate the online scenario. We study the com-
petitiveness of some classical algorithms (First/Best/Worst/Next Fit,
Harmonic) — they do not perform very well — and for all online algo-
rithms we also prove the universal lower bound 1+ 1

2 ln 2
≈ 1.7213 which

significantly exceeds the known upper bound 1.58889 on classical online
bin packing. We also design an online algorithm which is 3-competitive
in the absolute sense. A 2.5-approximation algorithm and an APTAS is
also given for the offline version.

1 Introduction

We deal with a new problem, that we call Black and White Bin Packing, abbrevi-
ated as B&W-BP. In the usual sense of bin packing there are items characterized
by their sizes p1, p2, . . . , pn, and the goal is to pack them into the minimum num-
ber of unit capacity bins. This well-known problem is NP-hard (see [12]), and
there are lots of results in this field, we will list some classical ones of them later.

In our problem the items are divided into two classes, they are either black or
white. Beside the capacity constraint, we require that no two items of the same
color can be packed into a bin right after each other.
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There are three possible ways (at least) to look at the problem, that can
clearly be distinguished from each other, as follows:

1. Offline: In this setting the entire set of items is known from the very begin-
ning, and “black and white bin packing” is equivalent to the assumption that
the numbers of the black and white items being packed into the same bin can
differ from each other by at most one.

2. Online: The items arrive one by one according to a list L, and no information
is given in advance; the next item can be packed only into a bin where it fits
and the last item already packed into that bin has the opposite color. If there is
no such bin, the new item must be packed into a new bin.

3. Restricted Offline: We also deal with a third model, which we call “re-
stricted offline” (terminology taken from [2]). In this case the items still are
given in a list L, and they have to be packed sequentially according to this list,
but the order of items and also their sizes are known in advance.

Some Motivation. An application of black and white bin packing can be the
optimized distribution of TV or radio programs and their commercial breaks, or
music and other kind of program contents on a radio channel, mainly at online
radios. The bins correspond to the blocks of the program (at many stations they
are one-hour intervals) and the black and white items represent the two kinds of
contents, item sizes meaning program duration. The model also makes it possible
to optimize similar online contents (as an example, information and advertise-
ment alternately, like on many video-content sharing portals, e.g. Youtube) onto
today’s mobile phone devices (for example onto “smartphones”). On mobile
phones the contents often are observed in a band-like arrangement because on
the tiny display they fit under each other only. Here bin size means the maximum
amount of information fitting on one screen.

The problem seems to be interesting also in the sense that deleting some
items from the sequence, the value of the optimum can increase (in case of all
the three subproblems). This cannot happen in the pure bin packing problems.
To illustrate the difference, let us consider a long sequence where very small
black and white items alternate. These items can be packed into one bin, but
deleting the white items, a feasible packing needs many bins.

Let the value of the optimal solution in the offline or restricted offline case be
denoted simply as OPT . For any set S of items let P (S) denote the total size of
items in the set S.

Lower Bound LB0. It is obvious that the total size of the items is a lower bound
for any of the three (offline, restricted offline, online) versions of the problem.
Let this lower bound be denoted as LB0. Thus, for any input L, the value
LB0(L) = P (L) is a valid lower bound. In each of the three models, LB0 is just
a sum; the assumption that L is an ordered list has its relevance only concerning
the way of packing the items under the online and restricted offline scenarios.

At any moment of the packing procedure, we call a bin with black item on
the top as black bin, and analogously white bin if the item on the top is white.
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As usual, the level of a bin means the sum of the sizes of items already packed
into the bin.

To evaluate the efficiency of an online algorithm, competitive ratio is one of
the standard measures. If an online algorithm always achieves a solution within a
factor ρ of the offline optimum, we say that the online algorithm is ρ-competitive.
More explicitly, for any input list L and an online algorithm A, let OPT (L)
and A(L) denote, respectively, the number of bins used by an optimal offline
algorithm and the number of bins used by algorithm A to pack the list L. Then
the absolute competitive ratio of A is defined as

RA,abs = sup
L

{A(L)/OPT (L)} ,

while

RA,as = lim
n→∞

sup
L

{A(L)/OPT (L) | OPT (L) ≥ n} ,

is called the asymptotic competitive ratio of A. In the offline setting the anal-
ogous measures are called approximation ratio. For both settings together we
simply use the term performance ratio.

It is worth noting here that in case of the restricted offline or online model, the
efficiency of any algorithm should be compared to the restricted offline optimum.
Otherwise no algorithm can be constant-competitive, since keeping the order of
the items through the packing is a very strong condition. (If n small white items
come first and then n small black items follow them, this list needs n bins in
the restricted offline or online model, while all items may fit into one bin in the
offline case.)

Some Classical Algorithms and Results for the Bin Packing Problem

In his seminal PhD work [14], David Johnson defined several classical (online)
algorithms, as follows. The Next Fit algorithm keeps only one open bin at any
time. If the next item cannot be packed into the open bin, the bin gets closed and
the actual item is packed into a newly opened bin. With a somewhat different
approach where opened bins do not get closed, in case of the First Fit, Best
Fit, or Worst Fit algorithms, the next item is always packed into the first bin
where it fits, into a bin with highest level where it fits, or into a bin with lowest
level where it fits, respectively; and if there is no such bin, the item is packed
into a new bin. The generalization of the latter three “Fit” algorithms is called
Any Fit; this algorithm is allowed to pack the new item into any open bin
where it fits, and if there is no such bin, the item is packed into a new bin. The
algorithms are abbreviated as NF, FF, BF, WF, and AF, respectively. Then
FF, BF and WF are restricted versions of AF. Moreover, FFD (abbreviation for
First-Fit Decreasing) is the ordered version of FF where first the items are put
into nonincreasing order and then FF is applied for the ordered list.

A totally different packing idea is used by algorithm Harmonic(K) [19]. The
items here are classified according to their sizes, items from interval ( 1

i+1 ,
1
i ]

belong to Class i for 1 ≤ i ≤ K − 1, where K ≥ 2 is a fixed integer. The smaller



134 J. Balogh et al.

items, i.e. items with sizes at most 1
K belong to Class K. Then through the

packing process in any specific bin only items from the same class are packed. If
an incoming item fits into a bin of the class of the item then the item is packed
there, otherwise a new bin is opened for this class of items.

The asymptotic performance ratio of Harmonic(K) is approximately 1.69103
if K is chosen sufficiently big, and the performance ratio improves by increasing
K.

Regarding the “Fit” algorithms, FF has asymptotic performance ratio 1.7,
and parametric performance ratio 1 + 1/d for any parameter value of d ≥ 2, see
[17]. Recently two papers [26,4] proved independently that for any instance L,
FF (L)/OPT (L) ≤ 12/7 ≈ 1.7143 holds. Thus the asymptotic ratio 1.7 is tight
for algorithm FF, but regarding the absolute performance bound the question is
still open (the lower bound is 1.7, the best upper bound is 12/7). For the ordered
version of FF called FFD, where first the items are put into a nonincreasing list,
the tight asymptotic ratio is 11/9 (see [5]), and the tight value of the additive
constant is found by Dosa in [6] as FFD(L) ≤ 11

9 OPT (L) + 6/9.
For off-line algorithms, Fernandez de la Vega and Lueker [20] provided

an APTAS (Asymptotic Polynomial-Time Approximation Scheme), while
Karmarkar and Karp [18] developed the first AFPTAS (Asymptotic Fully
Polynomial-Time Approximation Scheme). In [20] for any ε > 0 an algorithm Aε

is given such that each Aε runs in polynomial time in the length of the input list
L (although exponential in 1/ε) and has Aε(L) ≤ (1 + ε)OPT (L) + 1. In [18], a
more complex algorithm is given. The running time of this algorithm A depends
on n and 1/ε polynomially and A(L) ≤ OPT (L) + O(log2OPT (L)) holds for
this algorithm.

Regarding classical online bin packing, the current champion algorithm is Har-
monic++ by Seiden [24], which has an asymptotic competitive ratio of 1.58889.
The best lower bound was 1.5401 [25] for a long time, while recently Balogh et
al. improved it to 248

161 ≈ 1.5403 [1].

Special Models Related to B&W-BP : LIB Constraint, Bin Packing
with Conflicts, Graph-Bin Packing

There are many special versions of bin packing from the early seventies, for
details see for example [5]. We review here only three special problems. The bin
packing problem with LIB constraint (Largest Item in Bottom) was introduced
by Manyem [21,22]. In this model the items still arrive according to a list, but an
item with bigger size is not allowed to be packed into a bin that already contains
an item with smaller size. In the cited papers it is shown that NF is not constant
competitive, but the competitive ratio of First Fit (FF) is at most 3. Note that,
when we deal with this LIB constraint, the solution of the online algorithm is
always compared to a restricted kind of offline optimum, namely where the offline
algorithm must pack the items in the order of their given list, otherwise in case
of the offline solution the LIB constraint could be totally neglected.

Epstein [9] gave an improved analysis of FF for the problem so that its com-
petitive ratio is at most 2.5, and proved that the parametric competitive ratio
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(where the size of each item is at most 1/d) is at most 2 + 1/d, for any integer
d ≥ 2. In the same paper, it was shown further that the competitive ratio of any
online algorithm for bin packing with LIB constraints is at least 2, for any value
of the parameter d.

Later, Dosa et al. [7] proved that the (absolute) competitive ratio of algorithm
FF is not worse than 2+1/6 for the problem; moreover, the (absolute) parametric
competitive ratio of FF is at most 2 + 1/d(d+ 2). In the same paper a problem
with the generalized LIB constraint is also defined and analysed.

Another version of the classical bin packing problem, called bin packing with
conflicts, is where items are regarded as nodes of a graph, and there is an edge
between two nodes if the corresponding two items cannot be packed together into
the same bin. For general graphs the optimum is hard to approximate, due to the
fact that the chromatic number of a graph cannot be approximated within n1−ε

for any ε > 0, where n is the number of nodes (or items) [13,27]. Many papers
investigate this problem on some special conflict graphs. For perfect graphs,
Jansen and Öhring [16] proved that First Fit has competitive ratio at most 2.7;
more recently Epstein and Levin [10] improved the upper bound to 2.5. For other
classes of graphs, we refer to the following papers for details: clique graphs [23],
bipartite graphs [10,16], interval graphs [10], cographs and partial K-trees [16],
d-inductive graphs [15]; multi-dimensional bin packing with conflicts [11].

In [3] a very general problem, named graph-bin packing is introduced, which
is a common generalization of many fundamental problems studied to a great
extent separately in thousands of papers in the literature of combinatorial op-
timization, graph theory, and operations research. The paper [3] treats many
subproblems, and proposes efficient approximation and online algorithms.

2 Results on Black and White Bin Packing

We study the problem from various aspects. Our main goal is to prove lower and
upper bounds on the performance ratio of algorithms. Below we list the results in
a structured way; due to space limitations, most of the proofs had to be omitted,
they will appear elsewhere. Although we include some proofs in later sections,
we mostly try to give a general picture about the status of the problem.

2.1 Offline Approximation Algorithms

We currently do not know how efficiently the problem can be approximated.
Nevertheless, the following upper bound can be proved.

Theorem 1. There is a 2.5-approximation algorithm for offline Black and White
Bin Packing, which runs in O(n log n) time.

The main issue here is the explicit bound on running time; actually, our algorithm
is almost linear, in the sense that the ‘logn’ factor occurs just because a sorting
subroutine has to be applied at some points. Moreover, we expect that 2.5 can
be improved to 2 as a valid upper bound on competitiveness.

In the asymptotic sense, a much stronger approach can be carried out:
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Theorem 2. There exists an asymptotic polynomial time approximation scheme
for offline Black and White Bin Packing.

2.2 Lower Bounds for Online and Restricted Offline Algorithms

There is a natural way to define the appropriate versions of NF, FF, BF, and
WF algorithms for Black and White Bin Packing, too. They work in the same
way as in the pure online case, the next item must be packed into a new bin
if it is not allowed to be packed into any open bin by the packing rule of the
algorithm. The only difference is that now an item is allowed to be packed into
some bin only if it fits and also its color is not the same as that of the top item
in the bin.

On the negative side, we observe that neither of the algorithms mentioned
above can work well. The situation is worst in case of Next Fit:

Proposition 1. NF is not constant-competitive, neither in the online, nor in
the restricted offline case.

Concerning the other ‘Fit’ algorithms, lists forcing competitive ratio at least 2 are
not hard to design, but this bound is not tight. After a sequence of unpublished
improvements, Leah Epstein [8] constructed problem instances which push the
lower bound up to 3. We include this result by her kind permission.

Theorem 3. The asymptotic competitive ratios of algorithms FF, BF, and WF
are at least 3. Moreover, in the parametric case, if all items are at most 1/d, the
parametric asymptotic competitive ratio of algorithm WF is at least 1 + d

d−1 .

Regarding the Harmonic(K) algorithm, we can see very easily that it works
even more poorly. Let K ≥ 2 be fixed, then there are at least two classes. In the
wrong list, let white and black items arrive alternatingly, from the two smallest
classes. More exactly, for i = 1, . . . , (K − 1)n let

– Ai =
1

K−1 − ε, a white item, and
– Bi = ε, a black item,

where n is a big integer, and 1
K−1 − ε > 1

K . Then obviously in the optimum
packing the items can be packed into n bins, while Harmonic(K) packs each
item into dedicated bins, thus Harmonic(K) = (K − 1)n. It follows that the
asymptotic performance ratio of Harmonic(K) is at leastK−1, thus it becomes
weaker and weaker as K grows.

We conjecture that the parametric competitive ratio of the algorithms FF,
BF, and WF is really 3, 3, and 1 + d

d−1 , respectively, but the analysis seems to
be hard.

Concerning lower bounds, the most general result of our paper is:

Theorem 4. There is no online algorithm for Black and White Bin Packing
with asymptotic competitive ratio smaller than 1 + 1

2 ln 2 ≈ 1.7213.
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For the construction we use a special list of very small items and some other
lists concatenated with it. Formally the lists look like this. Let a = 1

k , where k

is fixed, (big) number, which is dividable by 4, and let yi = i
k for 0 < i ≤ k.

Now let n be a positive integer. Define the first list, L0 as a list of kn items of
size a = 1

k . Thus L0 contains very small elements with equal, suitably chosen
size. The cumulative size of the small items is n. The colors of the items are
alternating, i.e. the the items with odd indexes are white, while the items with
even indexes are black. Thus the first small item is white.

It is easy to see that OPT (L0) = n. It is also easy to see that n can be defined
so that n

yi
is integer for any i. Thus let n be such (sufficiently big) integer number.

Define Liw as a list of ni =
n
yi

white items of size 0 < 1−yi ≤ 1/2. We choose
i here to satisfy that i is even. The sizes of the elements are equal in list Liw.
Similarly define Lib as a list of ni =

n
yi

black items of size 1 − yi. The proof of
the lower bound is based on the analysis of the behavior of an arbitrary online
algorithm for the next lists:

– L0,
– L0Liw,
– L0Lib

An important aspect of this lower bound occurs in comparison to the known
1.58889-competitive algorithm (that we mentioned earlier) on classical online
bin packing. It follows that B&W-BP is conceptually harder.

2.3 Lower Bounds for Optima of Restricted Online Instances

The lower bound LB0 is computed from item sizes only. Here we present two
further bounds, one of them determined by the color pattern of list L, while the
other one takes both the color patterns and the item sizes into account.

Lower bound LB1. Suppose that L = p1, p2, . . . , pn is the list of the items (which
is not known in advance in the online case). Let si = 1 if the ith item is black
and let si = −1 in the opposite case, if the ith item is white. We define

LB1 := max
1≤i<j≤n

∣∣∣∣∣
j∑

k=i

sk

∣∣∣∣∣
The following assertion can be proved.

Proposition 2. For any problem instance, LB1 is a lower bound on the opti-
mum, both in the online and restricted offline cases. Moreover, if all items have
zero sizes (or the bins have infinite capacity), then LB1 is equal to the restricted
offline optimum, and also to the online optimum. In these cases AF = LB1

holds, i.e. algorithm Any Fit attains an optimal solution.
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For any list L = {p1, . . . , pn} of items, an instance of the problem, we denote by
L = LB ∪ LW the partition into the sets of black and white items.

Definition 1. The conflict graph of black items in an instance of the online or
restricted offline problem is an undirected graph, denoted by GB . It has vertex
set LB. Two items pi, pj ∈ LB with 1 ≤ i < j ≤ n are joined by an edge if and
only if, for every white item pk in the range i < k < j we have pi + pj + pk > 1.
The conflict graph of white items, denoted by GW , is defined analogously on the
vertex set LW .

For any graph G, we use the standard notation ω(G) for the clique number
(largest number of mutually adjacent vertices) and χ(G) for the chromatic num-
ber (smallest number of independent sets into which the vertex set can be parti-
tioned). Since no two vertices adjacent by an edge of GB or GW can be packed
into the same bin, it is immediate by definition that

opt(L) ≥ max{χ(GB), χ(GW )} ≥ max{ω(GB), ω(GW )} =: LB2 (1)

holds for all instances L = LB ∪ LW .

Theorem 5. For any instance of Black and White Bin Packing, we have
χ(GB) = ω(GB) and χ(GW ) = ω(GW ). Moreover, the lower bound given in
(1) is computable in O(n2) time, where n denotes the number of items.

An interesting aspect of the time bound O(n2) is that already checking the
adjacency of a single vertex pair in the conflict graph GB or GW may take Ω(n)
time.

The following problem may be of interest on its own right.

Problem 1. Characterize the structure of graphs that can occur as conflict graphs
of black (or white) items.

2.4 An Efficient Online Algorithm

Our main positive result for the online problem is the following one.

Theorem 6. There exists an online algorithm which is 3-competitive in the ab-
solute sense, and also (1 + d

d−1 )-competitive in the parametric version where all
items have sizes at most 1/d.

We describe the 3-competitive algorithm in the next section. It should be noted
that the parametric upper bound (1+ d

d−1 ) approaches 2 from above as d→∞,
while we have seen that FF can never be better than 3-competitive, no matter
that the items are small or big.

Remark 1. Taking into account the online algorithm guaranteed by Theorem 6
and the general lower bound of Theorem 4, we see that the tight absolute com-
petitive ratio for Black and White Bin Packing is between 1.7213 and 3.
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3 Some Proofs and Constructions for B&W-BP

Space limitation does not allow us to present too much of the proofs. We have
selected a relatively short argument verifying one online lower bound and the
construction of the APTAS without proof of the theorem.

3.1 A 3-Competitive Online Algorithm

Here we describe an online algorithm, which actually satisfies all requirements
of Theorem 6. Due to space limitation, however, we only prove now that the
algorithm has competitive ratio at most 3, and omit the analysis for parametric
absolute competitiveness.

Algorithm Pseudo

1. First we substitute each item in the sequence with a “pseudo” item, with
the same color but with size zero. It does not matter that we do not know
the items in advance, this substitution can be done at the moments when
the items are revealed. Then, as the items come, by using algorithm AF we
pack the pseudo items optimally, as claimed in a part of Proposition 2.

2. When the sequence stops, we divide the content of each overloaded bin (i.e.
bin with level more than one) into subsequent bins as follows. We keep the
order of the subsequent items. As soon as the level of a bin would exceed 1,
we start to pack a new bin.

We prove that the competitive ratio of the algorithm is 3. Let LB′ be the
strongest lower bound obtained from LB1. The first part of the algorithm finds
a packing into LB′ bins, as guaranteed in the corresponding part of Proposi-
tion 2. Instead of shrinking the items to size zero, we may equivalently view this
step so as to increase bin capacities to infinite. Then each bin in the sequence
of incoming items is split into bins packed up to at most 1; in fact this splitting
can be done online.

Suppose that bin i is split into exactly mi small bins. Then we have a packing

of value
∑LB′

i=1 mi. On the other hand, in each infinite bin, any two consecutive
small bins have total load more than 1. Hence, bin i contains items of total
size more than �mi/2�. Note that �mi/2� = mi/2 if mi = 2 and �mi/2� ≥
mi/2 − 1/2 if mi ≥ 3. Let S1, S2 and S3 be the sets of bins for which mi = 1,
mi = 2 or mi ≥ 3, respectively. Let us denote Lk = |Sk|, for k = 1, 2, 3. Then

L1 + L2 + L3 = LB′. Also, let M =
∑LB′

i=1,i∈S3
mi. Then M ≥ 3L3. We write

M = 3L3 + 2x, where x ≥ 0.
Then OPT ≥ LB′ holds, and further

OPT ≥
LB′∑
i=1

�mi/2� ≥
LB′∑

i=1,i∈S2

mi/2 +

LB′∑
i=1,i∈S3

mi/2− L3/2 = L2 +M/2− L3/2.
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Thus, the competitiveness of the solution is better than∑LB′

i=1 mi

max(LB′, L2 +M/2− L3/2)
=

L1 + 2L2 +M

max(L1 + L2 + L3, L2 +M/2− L3/2)

=
L1 + 2L2 + 3L3 + 2x

max(L1 + L2 + L3, L2 + L3 + x)

≤ L1 + 2x+ 3(L2 + L3)

max(L1, x) + L2 + L3
≤ 3

Consequently, the competitive ratio of the algorithm is not worse than 3 (in the
absolute sense).

In fact, it can be shown [8] that the analysis of the algorithm is tight, i.e. the
absolute, and even the asymptotic competitive ratio of the algorithm is equal
to 3. The sequence verifying this claim consists of 3N items for a large integer
N . For i = 1, . . . , N , item 3i − 2 is white and items 3i − 1 and 3i are black (as
W,B,B,W,B,B,. . . ). Thus Pseudo creates one bin with items 1, 2, 4, 5, 7, 8, . . .
(items 3i− 2 and 3i− 1 for all i are in this bin), and N bins with items 3, 6, . . .
(items 3i are in dedicated bins). Now the sizes of items 3i− 2 and 3i are 1/(2N)
and the size of item 3i − 1 is 1 − 1/(2N) + 1/N2 (i.e. the middle item in any
triplet is big and the two other items are small). As a result, when the first bin
of Pseudo is split into valid bins, the algorithm packs every item in a separate
bin. So Pseudo = 3N . An optimal offline solution, however, packs all items
of size 1/(2N) into one bin, and every larger item into a separate bin. Thus
OPT = N + 1. �

3.2 An Asymptotic PTAS for Offline Black and White Packing

In this section we will present an APTAS for offline B&W Packing. In fact for
a given accuracy ε, we will find a solution which uses at most (1 + ε)OPT + 1
bins with running time polynomial in n. Set δ := ε/6. The items with size less
than or equal to δ are called small , the items greater than δ are the large items.
The large black items are denoted by BL and the small black items by BS ,
respectively. For the large and small white items we use WL and WS . Hence, we
get B = BL ∪ BS and W = WL ∪WS . Assume that both B and W are sorted
in decreasing order.

Let m be the number of bins used by algorithm Master, which is an offline
algorithm with a 2.5 approximation ratio. By Theorem 1 we have

m

2.5
≤ OPT ≤ m. (2)

Hence, we may assume w.l.o.g. that ε < 1.5. Set

αB := min {|WL|+m, |BS |} . (3)

We will form the sets Bλ, 0 ≤ λ ≤ αB, from B in the following way.



Black and White Bin Packing 141

Bλ consists of the λ smallest items from BS and all items from BL. From
Bλ a new instance B

(1)
λ , with only a constant number of different sizes, is in-

troduced. The basic idea for this is the shifting technique, an idea that is used
in approximation algorithms for classical bin packing [20]. Note that using the
shifting technique for classical bin packing only the “large” items are split into
a finite number of classes. This is not possible for B&W packing which makes
the algorithm and its analysis much more complicated.

Set

k :=

⌈
39

ε2

⌉
and

hBλ :=

⌊
|Bλ|
k

⌋
. (4)

If hBλ = 0, simply set B
(1)
λ = Bλ and Bλ contains only a constant number of items

which can be packed optimally in polynomial time by complete enumeration.
Thus, assume in the following that hBλ > 0.

Denote by q1, . . . , qr the items in Bλ and assume that they are sorted in
decreasing order of sizes, i.e. q1 ≥ q2 ≥ . . . ≥ qr. Partition Bλ into the k + 1
groups

Gj := {qjhB
λ +1, . . . , q(j+1)hB

λ
}, j = 0, . . . , k − 1,

containing hBλ items each and Gk := {qkhB
λ +1, . . . , qr} containing h̃Bλ ≤ hBλ items.

Define the set B
(1)
λ by discarding the first group G0 and replacing it by hBλ

dummy items of size zero, and for each other group form a new group by rounding

the size of its items up to the size of its largest item. Formally, B
(1)
λ is a list

consisting of hBλ items of size qjhB
λ
+1, j = 1, . . . , k − 1, h̃Bλ items of size qkhB

λ
+1

and hBλ items of size zero. Denote by s1, . . . , sr the items in B
(1)
λ and assume

that they are sorted in decreasing order of sizes, i.e. s1 ≥ s2 ≥ . . . ≥ sr. From

the construction of B
(1)
λ follows that

sj ≤ qj , j = 1, . . . , r. (5)

An analogous construction (with corresponding notations) is done for the white

items to obtain instances Wμ, W
(1)
μ , 0 ≤ μ ≤ αW , with αW = min{|BL| +

m, |WS |}. Thus, we get instances Iλ,μ, I
(1)
λ,μ with

Iλ,μ = Bλ ∪Wμ,

and

I
(1)
λ,μ = B

(1)
λ ∪W (1)

μ .

Note that Iλ,μ ⊆ Iλ′,μ′ and I
(1)
λ,μ ⊆ I

(1)
λ′,μ′ for λ ≤ λ′, μ ⊆ μ′. Moreover, define

I(1) := I
(1)
αB ,αW as the maximal set among the sets I

(1)
λ,μ.
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The set of black and white dummy items in a set I
(1)
λ,μ shall be denoted by

Dλ,μ. Note that
|Dλ,μ| = hBλ + hWμ ≤ hBαB

+ hBαW
,

and we abbreviate the maximum set DαB ,αW by D. In the following, we will
distinguish between large, small and dummy items.

We say that a set of items L dominates a set of items L′ if there is a bijective
mapping φ from L to L′ such x ≥ φ(x) and x and f(x) have the same color for all
x ∈ L. Obviously, for any feasible packing A of L there is a corresponding feasible
packing φ(A) of L′ by replacing every item x by φ(x). Especially, OPT (L′) ≤
OPT (L) holds. We conclude from (5) that Iλ,μ dominates I

(1)
λ,μ for arbitrary

values of λ and μ. Note that in contrast to classical bin packing OPT (L′) ≤
OPT (L) does not hold in B&W Packing for L′ ⊂ L.

The color sum C(L) of a set L of items is the number of black items in L
minus the number of white items. The color sum of a set of bins corresponds to
the color sum of the items packed in the bins. Hence, a set of items L with total
size not greater than 1 can be packed in a bin if and only if C(L) ∈ {−1, 0, 1}.
We say that two items have the same item type or call them identical if they
have the same size and the same color. The number of different item types in

I(1), and thus all sets I
(1)
λ,μ, is bounded by 2(k + 1) and thus a constant.

A set of items of L ⊆ I(1) forms a feasible packing configuration if the following
conditions hold

(i) L contains at most �1/δ � small or dummy items.
(ii) P (L) ≤ 1, i.e., the items in L fit in a bin.
(iii) C(L) ∈ {−1, 0, 1}.
By definition every feasible packing configuration can be packed in a bin. More-
over, there is a one-to-one correspondence between feasible packing configura-
tions and feasible packings of items of I(1) in a bin.

Let f denote the number of different feasible packing configurations. By a
rough estimate f can be bounded by

f ≤
⌈
1

δ

⌉2(k+1)

,

and hence by a constant. This holds due to property (i) and since at most
�1/δ� − 1 large items can be packed in a bin.

Formally, our asymptotic polynomial time approximation scheme reads as
follows:

Algorithm Aε

1. For a given instance I of items and a given accuracy ε calculate the sets BL,
WL, BS , WS .

2. Construct all possible sets I
(1)
λ,μ, 0 ≤ λ ≤ αB, 0 ≤ μ ≤ αW .

3. For every set I
(1)
λ,μ find all possible feasible packings in at most m bins.

4. Every packing is converted into a solution for the original instance I in the
following way.
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4.1 For each group of B
(1)
λ and W

(1)
μ replace the ν items of the same type

by the ν largest items of the corresponding group in Bλ and Wμ, respec-
tively.

4.2 Assign the hBλ largest items of BL and the hWμ largest items of WL to
separate bins, pairing black and white items if possible.

4.3 If the color sum of the remaining unpacked small items from I is not
equal to zero, STOP. Otherwise, these items are grouped arbitrarily into
pairs of black and white items. Pack these pairs in the bins using First
Fit.

4.4 Remove the dummy items and make the obtained solution feasible by
removing a minimum number of items of each bin and packing them
separately.

5. Output the solution which uses the smallest number of bins.

4 Conclusion

We have introduced and studied a variant of the bin packing problem, in which
the items are of two types and any two items of the same type packed into
the same bin have to be separated by one item of the other type. We have
investigated the possible effectiveness of algorithms in both the offline and online
settings, moreover we have considered a “restricted offline” scenario, too, where
the entire problem instance is known in advance but the items are given in a fixed
order. Lower bounds have been proved and algorithms have been designed with
guaranteed approximation or competitive ratio. It remains for future research to
determine the best possible ratio achievable.
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KONV-2012-0072.J. Balogh and J. Békésiwere supported by the EuropeanUnion
and the European Social Fund through project ” Supercomputer, the national vir-
tual lab” grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0010.

References
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Abstract. Traditional paging models seek algorithms that maximize
their performance while using the maximum amount of cache resources
available. However, in many applications this resource is shared or its
usage involves a cost. In this work we introduce the Minimum Cache
Usage problem, which is an extension to the classic paging problem that
accounts for the efficient use of cache resources by paging algorithms. In
this problem, the cost of a paging algorithm is a combination of both
its number of faults and the amount of cache it uses, where the relative
cost of faults and cache usage can vary with the application. We present
a simple family of online paging algorithms that adapt to the ratio α
between cache and fault costs, achieving competitive ratios that vary
with α, and that are between 2 and the cache size k. Furthermore, for
sequences with high locality of reference, we show that the competitive
ratio is at most 2, and provide evidence of the competitiveness of our
algorithms on real world traces. Finally, we show that the offline problem
admits a polynomial time algorithm. In doing so, we define a reduction
of paging with cache usage to weighted interval scheduling on identical
machines.

1 Introduction

The efficient management of a computer memory hierarchy is a fundamental
problem in both computer architecture and software design. A program’s data
and instructions reside in various levels of the hierarchy, in which memories at
higher levels have higher capacities, but slower access times. Simplified to a two-
level memory system, the paging problem models a slow memory of infinite size
and a fast memory of limited size, usually known as the cache. The input consists
of a sequence of page requests. If the page of a request is in the cache then the
request is a hit ; otherwise it is a miss or fault and the requested page must be
brought from slow memory to cache, possibly requiring the eviction of one or
more pages currently residing in cache. A paging algorithm must decide which
pages to maintain in the cache at each time in order to minimize a defined cost
measure. In the classic page fault model the cost of an algorithm is measured in
terms of its number of faults and hits have no cost, reflecting the fact that an
access to slow memory is orders of magnitude slower than an access to cache.

As computer architectures and applications evolve, other cost models have
arisen to reflect, for example, varying fetching costs and sizes in web-caches
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[11,18,29], or multi-threaded applications sharing a cache [4,9,16,17,21]. In this
paper we consider a generalization of the classic page fault model whose per-
formance objective function is a combination of both the number of faults and
the amount of cache used by an algorithm. Thus in addition to the fault cost,
at each step we charge a cost proportional to the number of pages in cache. In
general, the model seeks algorithms with good performance in terms of number
of faults while at the same time using available resources efficiently. Naturally,
minimizing the number of faults and the cache usage of a paging algorithm are
conflicting goals.

Paging strategies that minimize cache usage are relevant in multi-core archi-
tectures where multiple cores share some level of cache. In this context, multiple
request sequences compete for the use of this shared resource. While traditional
models of paging encourage algorithms to use the entire cache so as to minimize
the faults incurred, a model that charges for cache usage can make a paging
algorithm in a shared cache scenario be “context aware”. Varying the parame-
ters of the model for each sequence can be used to achieve a cooperative global
strategy with better overall performance.

The cache minimizing model can also be used as an energy efficient paging
model. Several applications use caches implemented with Content-Addressable
Memories (CAMs), most notably networking routers and switches, and Transla-
tion Lookaside Buffers (TLBs). CAMs provide a single clock cycle throughput,
making them faster than other hardware alternatives [24]. However, speed comes
at a cost of increased power consumption, mainly due to the comparison circuitry.
Reducing this power without sacrificing capacity or speed is an important goal
of research in circuit design [24]. Power consumption could be reduced if inactive
cache lines are turned off, thus our model can provide a framework for paging
strategies that achieve good performance in terms of faults while contributing
to energy savings.

1.1 Paging and Cost Models

The paging problem has been extensively studied; some well-known page re-
placement policies are Least-Recently-Used (LRU), which evicts the page in the
cache whose last access time is furthest in the past; First-In-First-Out (FIFO),
which evicts the page that has been longest in the cache; and Flush-When-Full
(FWF), which when required to evict a page evicts all pages from the cache.

The performance of paging algorithms has been traditionally measured using
competitive analysis [26]. A paging algorithm A has competitive ratio r or is r-
competitive if its cost A(R) over any sequenceR satisfiesA(R) ≤ r·OPT (R)+β,
where OPT (R) is the optimal cost of serving R offline, and β is a constant.
In the page fault model, where a fault has cost 1 and hits have no cost, the
algorithms above are k-competitive, where k is the size of the cache, which is
optimal for deterministic algorithms [6]. A competitive ratio of k is achieved
by all marking and conservative algorithms. An algorithm is conservative if it
incurs at most k faults on any consecutive subsequence of requests that contains
at most k distinct pages [6]. A marking algorithm associates a mark with each
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page in its cache (either explicitly or implicitly) and marks a page when it is
brought to cache or if it is unmarked and requested. Upon a fault with a full
cache, it only evicts unmarked pages if there are any, and unmarks all pages in
cache otherwise. The latter event marks the start of a phase, which defines a
k-phase partition of a request sequence. LRU and FWF are marking algorithms,
while LRU and FIFO are conservative algorithms [6]. Randomized algorithms
with optimal competitive ratio Θ(log k) exist for this problem [6]. The offline
problem can be solved optimally by Belady’s algorithm [5]: evict the page in
cache that is going to be requested furthest in the future (FITF).

Other cost models for paging differ in the assumptions of applications with
respect to the cost of bringing a page into the cache, and the size of pages
[18,11,10,29]. Unlike these models, which consider only the cost of faults, the full
access cost model [27] charges a cost of 1 for a hit, and a cost of s ≥ 1 for a

fault. In this model, marking algorithms achieve a competitive ratio of 1+ (k−1)s
L+s ,

where L is the average phase length in the k-phase partition of a sequence. In the
worst case, L = k and the ratio is k(s+1)/(k+ s), which is optimal. The model
coincides with the classic model when s → ∞, but can yield competitive ratios
that are significantly smaller if s is small or if a sequence has high locality [6],
properties that, as we shall see, are also shared by our model.

A related paging model that also includes the amount of cache used in the
cost of algorithms is described in [14]. In this model an algorithm can purchase
cache slots, and the overall cost of the algorithm is the number of faults plus
the cost of purchased cache. As cache may only be bought, the cache size can
only increase (with no bound on the maximum size). In our model, however, an
algorithm is charged for the number of pages it has in the cache at every step,
which can both increase or decrease. In this sense our model charges algorithms
for renting cache, while keeping the upper bound k on the maximum cache
available. Finally, we note that the idea of memory renting for reducing RAM
power consumption was previously mentioned in [12].

1.2 Our Contributions

This work introduces a generic model of efficient cache usage in paging that can
be applied to any scenario in which it is desirable for a paging algorithm to
minimize the amount of cache it uses.

We define a family of online algorithms that combine the eviction policies
of traditional marking or conservative algorithms with cache saving policies.
The performance of the algorithms adapts to the relative cost of faults and
cache. More precisely, they achieve a competitive ratio of 2 if α < k, where

α = f/c is the ratio between fault and cache cost, and min
{
k, α(k+1)

α+k−1

}
if α ≥ k,

thus matching the performance of classical algorithms when f � c. We further
parametrize the analysis by considering the locality of reference of the sequence,
and show that for sequences with high locality of reference the competitive ra-
tio of our algorithms is at most 2. Simulations on real-world inputs show that our
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algorithms are close to optimal in terms of the total cost, and both its cache
usage and number of faults are close to those of the optimal offline.

Lastly, we show that the offline problem admits a polynomial time algorithm
via a reduction to interval weighted interval scheduling on identical machines.

The rest of this paper is organized as follows. Section 2 introduces the Mini-
mum Cache Usage model and problem. We present an optimal offline algorithm
in Sect. 3, and present our results related to online algorithms and simulations in
Sect. 4. Due to space constraints, we include only some of the proofs and charts,
while the rest appear in the full version [20].

2 Paging with Cache Usage

The paging model we consider in this paper extends classic paging to a model
in which the cost of a paging algorithm on a request sequence is a weighted
function of the number of faults and the total amount of cache used by the
algorithm. An instance of paging with minimum cache consists of a sequence
R = {r1, r2, . . . , rn} of page requests and a maximum cache size k. Each request
ri is associated with a page σj , for 1 ≤ j ≤ N , where N is the size of the universe
of pages that can be requested. We denote by page(ri) the page associated with
request ri. A paging algorithm can hold at most k pages in its cache, but can
also choose to hold fewer pages, in order to reduce its cache usage.

Definition 1 (Total cache usage). Let A be a paging algorithm and R a re-
quest sequence. Let k(i) ≤ k denote the number of pages in A’s cache immediately
before request ri, where k is the maximum cache size. The total cache usage of
A when serving R is defined as CA(R) =

∑
i k(i).

Given a request sequence R and maximum cache size k, the cost of an algorithm
A on R is defined as A(R) = fFA(R) + cCA(R), where FA(R) and CA(R) are
the number of faults and total cache usage of A when serving R, respectively,
and f ≥ 0 and c ≥ 0 are parameters. The Minimum Cache Usage problem is
then the problem of serving a request sequence with minimum cost.

In reality a request sequence is revealed in an online fashion, thus our focus is
on the performance of online algorithms in terms of their competitive ratio. An
online algorithm has competitive ratio r if, given a maximum cache size k, and
parameters f and c, for all request sequences A(R) ≤ r · OPT (R) + β, where
OPT is the optimal offline, r is a function of k, f and c, and β is a constant
that does not depend on R. As in classic paging, the steps involved in serving
a request ri are as follows: the page associated with the request is revealed to
the algorithm, after which the algorithm acts by possibly evicting one or more
pages, and finally the request is served. Thus, all pages evicted in cache in step
i were held in cache up to time i − 1. A paging algorithm is said to be lazy
or demand paging if it only evicts a page when a page fault occurs. Observe
that unlike classic paging, in which any algorithm can be made demand paging
without sacrificing performance [6], in our model algorithms can benefit from
evicting pages even when there is no page fault.
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The relation between the parameters f and c can vary according to the ap-
plication to emphasize the importance of minimizing faults or using the cache
efficiently, or a combination of both. Naturally, an instance with c = 0 and f > 0
is an instance of the classical model, in which the cost of an algorithm is its num-
ber of faults. On the other hand, if f < c then the problem is trivial: an optimal
algorithm always evicts the page of each request immediately after serving it.
We assume in general that f ≥ c > 0.

2.1 Applications

The cost model described above provides incentives for an eviction policy to be
efficient not only in terms of its faults but also with respect to the use of the
resources that are available to it. Thus, the model can be used in any environment
where the latter has significance. We mention the following applications.

Shared Cache Multiprocessors. Multi-core processors are equipped with both
private and shared caches, with threads running in each core usually competing
for the latter type. While there are schedulers that seek to achieve cooperative
use of a shared cache, in general paging strategies for individual threads do not
act cooperatively but use as much of the available cache as possible. The cost
model we propose provides incentives for paging algorithms to balance their own
benefits—a fast execution due to a small number of faults—and the benefits they
can provide to concurrently running threads. Depending on the values of f and
c, an algorithm will favour one or the other.

Energy Efficient Caching. Content Addressable Memories (CAMs) are used in
many applications that require high speed searches, and whose primary applica-
tions are in network routers [24]. CAMs are indexed by stored data words instead
of memory addresses, as in regular caches. Each cell has a matchline that indi-
cates if the stored word in the cell and the searched word match. A search for an
input data word first precharges all matchlines, then each cell compares its bits
against the searched bits, and matchlines corresponding to non-matching entries
are discharged. The overall missing matchline dynamic power consumption for
a system with w matchlines can be modeled as P = wCV 2f , where C is the
matchline capaticance, V is the supply of a matchline and f is the frequency of
misses (the power associated with a matchline in a match is small and can be
neglected) [24]. The power involved in this operation can be therefore reduced
if matchline precharging is controlled based on the valid bit status of each en-
try [22]: on a search, only valid entries require the precharging of matchlines,
thus the power cost of a search can be proportional to the number of valid entries
in the cache. In this scenario, a paging algorithm that uses its cache efficiently
will contribute to power savings.

3 Offline Optimum

In the next section we describe a simple family of online algorithms for the cache
usage problem and analyze their competitiveness. In order to provide a better
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intuition for that analysis we first describe a solution to the offline problem.
We recast the paging instance as an instance of weighted interval scheduling on
identical machines, and use an algorithm for this problem to obtain an optimal
polynomial time paging algorithm.

An instance of Weighted Interval Scheduling on Identical Machines consists
of a set J of jobs and a number m of available identical machines. Each job
has a starting time, a duration, and a weight. In order to be processed, a job
must be assigned to a machine immediately after its start time and cannot be
interrupted. A machine can process only one job at a time. The goal is to process
a subset J ′ ⊆ J of jobs such that the total weight of jobs in J ′ is maximized.
Equivalently, each job corresponds to an interval in the real line, and we seek to
schedule the maximum weight subset of intervals such that at most m intervals
overlap at any time. This problem can be solved in polynomial time by reduction
to minimum cost flow [3,7].

It will be useful to see a paging problem instance as an instance of interval
scheduling on identical machines: each pair of consecutive requests to the same
page defines an interval whose start and end times are the times of the requests.
In each pair of requests, the second request results in a hit if and only if the cor-
responding page is kept in the cache since the previous request, or equivalently,
if the interval is scheduled.

The connection between interval scheduling and paging has been noted before
in [28,8] where it is used to study cache policies in non-standard caches. It is as-
sumed, however, that the reduction applies only when bypassing is allowed. More
recently, [13] used this connection to show that offline paging in the fault and
bit models is NP-hard by reducing interval packing problems to paging. Unlike
our model, these models consider pages (and hence intervals) of different sizes.
The reduction we introduce in this paper is from paging to interval scheduling,
and it is defined as follows.

Definition 2 (Interval representation of a sequence). An interval repre-
sentation of a request R of length n is a set of intervals I(R) = {I1, I2, . . . , In}
where each interval Ii corresponds to request ri in R. The starting time of each
interval Ii is s(Ii) = i + 1 and the end time is e(Ii) = j − 1, where j > i is the
smallest index such that page(rj) = page(ri), or e(Ii) = n if no such j exists.
We say that an interval Ii is feasible if e(Ii) < n and unfinished otherwise. Thus
the length of interval Ii is |Ii| = e(Ii)− s(Ii) + 1.

An example of a sequence and its interval representation is shown in Fig.1.
Intuitively, an interval corresponding to request rj represents the time interval
in which page(rj) must reside in the cache in order for the next request to this
page to result in a hit. Note that each first request to a page has no preceding
interval thus cannot be a hit. Similarly, a page that is requested for the last time
in a sequence can be held in cache, but as the interval does not finish in the
corresponding page, it cannot result in a hit. Note that intervals do not overlap
with the times in which their corresponding pages are requested, thus using this
reduction theres is no need to assume that bypassing is allowed. All requests are
served, but only the ones whose interval was scheduled will result in hits. Note as
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Fig. 1. A request sequence and its interval representation. The length of each inter-
val is shown below the interval (I5 of length 0 is not shown). Feasible intervals are
{I1, I2, I3, I4, I5, I6, I7, I8, I9} while {I10, I11, I12, I13} are unfinished. The request can
be served with a cache of size 3 with 8 faults and a cache usage of 29 by scheduling
intervals {I1, I3, I5, I7, I8, I9} on 2 machines (thus requests 5,6,7,10,12,14 are hits and
the rest are faults), which is the optimal cache cost for the minimum number of faults.

well that two consecutive requests to the same page define an interval of length
0 that does not overlap any other interval, and thus it is always scheduled. The
following lemma formalizes the reduction1.

Lemma 1. Let R be a request sequence. Let I ′ = I(R) \ {Ii : Ii is unfinished}.
Let S ⊂ I ′ be a feasible schedule of I ′ on k− 1 machines. Then R can be served
with a cache of size k such that all requests rj with Ii ∈ S and j = i + |Ii| + 1
are hits, with a total cache usage of |R|+

∑
Ii∈S |Ii|.

In light of Lemma 1, when describing the actions of an algorithm while serving a
requestR, we sometimes use the terminology related to interval scheduling. Thus
we say that an algorithm schedules an interval Ii to mean that it keeps a page
page(ri) in cache until request rj with j = i+ |Ii|+1 (and page(rj) = page(ri)).
We define the cache cost of a request rj as the number of requests that page(rj)
was kept in cache for after ri, which equals |Ii| if rj is a hit, and is smaller
otherwise.

If we are only interested in minimizing faults then the problem corresponds to
Maximal Interval Scheduling. This problem can be solved by sorting intervals in
increasing order of end time, and then greedily scheduling intervals while there are
available machines. Minimizing the number of faults while at the same time using
the least possible cache can be solved instead by computing the maximum weight
schedule in the corresponding interval representation. Weighted interval schedul-
ing on identical machines can in turn be solved by formulating the problem as a
minimum cost flow problem [3,7]. Since we are interested in minimizing cache us-
age (equivalently, minimizing processing time in the interval schedule), for a given
instanceR we assign weights to intervals using the following corollary from [7]:

Corollary 1. [7, Cor. 2] For each interval Ij ∈ I(R) with processing time |Ij |,
define a weight wj =M −|Ij |+1 2, where M is a positive real number such that

1 See full version [20] for full proofs.
2 We add 1 to the weight of each interval so that intervals have non-zero weight if all
intervals have length 0.
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Algorithm 1. Minimum Cache Usage Cost(R, k, f, c)
1: {Compute interval representation of R without unfinished intervals}
2: I = ∅ ; M ← 0
3: for j = 1 to |R| do
4: lastRequest[page(rj)] = −1
5: for j = 1 to |R| do
6: i←lastRequest[page(rj)]
7: if i �= −1 then
8: s(Ii)← i+ 1 ; e(Ii)← j − 1
9: if c · |Ii| ≤ f then
10: add Ii to I; M ←M + |Ii|
11: lastRequest[page(rj)] = j
12: for i = 1 to |I| do
13: w(Ii) = M − |Ii|+ 1
14: S ←MaxWeightSchedule(I, k − 1)
15: return f(|R| − |S|) + c(

∑
Ii∈S |Ii|+ |R|)

M ≥
∑

|Ij |. Then a solution to maximum weight interval scheduling gives an
optimal solution to maximal interval scheduling with minimum total processing
time.

Using the above weight assignment and a maximum weight scheduling algorithm
we obtain a way of serving request R with the minimum number of faults, and
with minimum cache usage. Recall that in general we seek to minimize the total
cost of serving a sequence R, defined as fF (R) + cC(R), which does not nec-
essarily imply minimizing the number of faults F . However, we can still use the
same reduction to interval scheduling and subsequently to minimum cost flow
by first eliminating from I(R) all intervals whose cache cost is higher than the
fault cost. It is easy to see that any solution that includes an interval Ii such
that c|Ii| > f could be modified to obtain a smaller cost by not scheduling that
interval and paying for the fault instead. Hence, an optimal algorithm does not
schedule any interval whose cost is higher than that of the fault cost. The result-
ing optimal offline algorithm is shown in Algorithm 1, where MaxWeightSchedule
is an algorithm for maximum weight interval scheduling. Clearly, computing the
interval representation of a request R of n pages (lines 2-13) takes O(n) time,
while MaxWeightSchedule takes time O(m2 logm) [3], where m is the number
of intervals of the weighted interval scheduling problem. Naturally, m = O(n),
which yields an O(n2 log n) total running time. However, in general m might be
much smaller than n, depending on the number of different pages in R and the
number of intervals whose length is greater than f/c.

Theorem 1. Given a request sequence R of length n and a cache size k, and
constants f ≥ 0, and c ≥ 0, an optimal way of serving R that minimizes fF (R)+
cC(R), where F (R) and C(R) are the number of faults and cache usage when
serving R, can be computed in O(n2 logn) time.
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4 Online Algorithms

In this section we present a family of online algorithms that adapt to the relative
cost of a fault versus the cache cost. These algorithms are k-competitive in the
worst case (when f � c), but can achieve significant cache savings and smaller
cost when the cache cost is closer to the fault cost. As a warm-up, we show that
while classical optimal paging algorithms are also k-competitive, this ratio does
not improve when the cache cost is high relative to the fault cost.

Lemma 2. Let A be any marking or conservative paging algorithm. The com-
petitive ratio of A is at most k.

Proof. Let R be any sequence and consider its k-phase partition. Since A is
marking or conservative, it faults at most k times per phase. In addition, in a
phase ofm requests any algorithm has a cache cost of at most cmk. On the other
hand, any algorithm must fault at least once per phase, and must pay at least
cm for a phase of m requests. Thus A(R)/OPT (R) ≤ (fk+cmk)/(f +cm) = k.

Lemma 3. Let A be any lazy paging algorithm. Then the competitive ratio of A
is at least k.

Proof. Let α = f/c and c �= 0. Suppose that α is finite. Let R = {σ1, σ2, . . . ,
σk−1, (σk)

x}, with σi �= σj for all i �= j, and (σ)x denotes a sequence of x
consecutive requests to σ. Since A is a lazy algorithm, it will not evict any
page from the cache, thus only faulting in the first k requests but using the
entire cache until the end of the sequence. Hence, A(R) ≥ fk+xkc. An optimal
algorithm can use only one cell of cache for a cost of OPT (R) = fk+ xc. Since
x can be made arbitrarily large and f/c is bounded, the result follows. In the
case of an unbounded α, the same sequence used in the classic lower bound of
k applies: request the page in {σ1, . . . , σk+1} not currently in the cache. Thus,
A(R) ≥ n(f + c) and OPT (R) ≤ (n/k)f + nkc and the ratio approaches k as
α→∞.

4.1 A Family of Cost-Sensitive Online Algorithms

Definition 3. For any online paging algorithm A, we define Ad as the algorithm
that acts like A, except that for each ri, it evicts page(ri) at time i + d if this
page has not been requested by that time and is still in the cache. In this case,
we say that page(ri) expires at time i + d. We say that a page suffers an early
eviction if it is evicted as a result of a capacity miss, according to A’s eviction
policy. Thus, if page(ri) is not requested or evicted early within [i, i+ d], it will
reside in cache for d+ 1 requests.

We restrict our choice of online algorithms in the definition above to marking
and conservative algorithms and set d = �α� = �f/c�. Consider A=LRU. For
some instances LRU could have a better cost than LRUα

3. We now show, how-
ever, that the cost of LRUα is always at most twice the cost of LRU, while

3 To keep notation simple, we refer to A�α� as Aα.
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there exists a sequence for which the cost of LRU is k times worse than the
cost of LRUα, which is the worst possible ratio for a marking algorithm. This
direct comparison of two algorithms can be seen as a variation of relative in-
terval analysis [15] that uses the cost ratio instead of the cost difference: for
algorithms A and B let Min(A,B) = lim infn→∞(min|R|=n{A(R)/B(R)}) and
Max(A,B) = lim supn→∞(max|R|=n{A(R)/B(R)}). Then the relative inter-
val of A and B is I(A,B) = [Min(A,B),Max(A,B)], and I(A,B) ⊆ [γ, δ] if
γ ≤ Min(A,B) and Max(A,B) ≤ δ. Thus, if I(A,B) ⊆ [γ ≥ 1, δ > 1] we say
that B dominates A, since on any sequence B is no worse than A and there is at
least one sequence for which B is better than A. Lemma 51 and Theorem 2 show
that I(LRU,LRUα) ⊆ [1/2, k]. Thus, although LRU does not properly dominate
LRUα, the latter is generally preferable to the former. Throughout the proofs in
this section we use the following lemma:

Lemma 4. [25, Cor. 11] Let two vectors x = (x1, . . . , xn) ≥ 0 and y =
(y1, . . . , yn) > 0 be given. Let π denote a permutation of (1, . . . , n). Then∑n

i=1 xi∑n
i=1 yi

≤ min
π

max

{
xi
yπ(i)

: 1 ≤ i ≤ n

}
≤ max

{
xi
yπ(i)

: 1 ≤ i ≤ n, and fixed π

}

Lemma 5. Let α = f/c be finite. Then Max(LRU,LRUα) = k.

Theorem 2. Assume k ≥ 2. Then, for all R, LRUα(R) ≤ 2 LRU(R), and thus
Min(LRU,LRUα) ≥ 1/2.

Proof. Let R be any sequence. Let F and C denote the faults and cache cost
of LRU on R and let Fα and Cα denote the corresponding costs for LRUα. Let
Cα = Cfh + Chh + Cff + Chf + γ, where Cfh is the cache cost of requests
that are faults for LRUα and hits for LRU, and Cff , Chh, and Chf are defined
analogously. γ is the cost of keeping unfinished intervals. We will use the following
properties: (1) every page of a request sequence is kept in LRU’s cache for at
least as long as in LRUα’s cache; and (2) any request that is a fault for LRUα

and is a hit for LRU corresponds to a page that expired in LRUα’s cache.
To see that Property (1) holds, note that if LRU evicts a page σ upon request

ri, then either σ has also expired in LRUα’s cache, or it is evicted at this point on
request ri as well. The latter holds because if σ was evicted from LRU’s cache,
then there are k distinct requests since the last request to σ, and since σ has
not expired in LRUα’s cache, there are k − 1 pages in LRUα’s cache that have
not expired either and are younger than σ. Hence upon request ri, LRUα evicts
σ as well. Property (1) implies that every request that is a hit for LRUα is a hit
for LRU, and thus Chf = 0. Property (2) follows from the fact if LRUα evicts a
page σ due a capacity miss, then its cache is full and since all pages stay longer
in LRU’s cache, then LRU’s cache holds the same pages and evicts σ as well,
hence the next request to σ is also a fault for LRU.

Property (1) implies as well that LRU’s cache cost is C ≥ Cfh + Fα − F +
Cff +Chh+γ. Moreover, both properties imply that Cfh = �α�(Fα−F ). Hence,
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LRUα(R)

LRU(R)
≤ fFα + c(�α�(Fα − F ) + Chh + Cff + γ)

fF + c(�α�(Fα − F ) + Fα − F + Cff + Chh + γ)

≤ fFα + c�α�(Fα − F )

fF + c(�α�(Fα − F ) + Fα − F )
(by Lemma 4)

=
αFα + �α�(Fα − F )

αF + �α�(Fα − F ) + Fα − F

The above expression is bounded above by 2 if α ≥ 2. The case α < 2 is covered
by the upper bound on the competitive ratio of Aα in Theorem 3. 
�

4.2 Upper Bound on the Competitive Ratio of Aα

We now show that for any marking or conservative algorithm A, the competitive
ratio of Aα adapts to the relative costs of faults and hits, being at most 2
when the cost of faults is relatively small, and matching the competitiveness of
traditional paging algorithms when the cache cost is negligible.1

Theorem 3. Let A be any marking or conservative algorithm and let α = f/c.

Assume k ≥ 2. The competitive ratio of Aα is at most 2− 1+α−
α�
α+1 if α < k and

min
{
k, α(k+1)

k+α−1

}
if α ≥ k.

Lemma 6 gives a lower bound on the competitive ratio for Aα, which matches
the upper bound for α < k−1. For larger values of α the gap between upper and
lower bounds is reduced as α grows. Lemma 7 gives a straightforward smaller
lower bound for any online algorithm.1

Lemma 6. For A marking or conservative, the competitive ratio of Aα is at

least 2− 1+α−
α�
α+1 if α < k − 1 and αk+k2/2

α+k2 otherwise.

Lemma 7. The competitive ratio of any online deterministic algorithm is at

least k(α+1)
α+k2 .

The classic paging cost model has been criticized for not being able to cap-
ture the benefit of online algorithms on sequences with high locality of refer-
ence [6]. Various studies have analyzed the competitiveness of paging algorithms
in a parameterized manner, attempting to capture relevant characteristics of
sequences such as, for example, locality and typical memory accesses [25], and
attack rate [23]. We now give a parameterized competitive ratio for Aα that
varies with the locality of reference of the input sequence, for which we use the
definition in terms of the average phase length in its k-phase partition.1

Theorem 4. Let A be any marking or conservative algorithm, let α = f/c, and
let k ≥ 2. Let R be any request sequence and let φ be the number of phases
in R’s k-phase partition. Let L(R) = |R|/φ. Then Aα(R)/OPT (R) ≤ 2 if

L(R) > kα(α− 2), and Aα(R)
OPT (R) ≤ 1 + αk+1−α

α+k−1+L(R) otherwise.
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Fig. 2. Cost ratio, fault rate, and average cache used by LRU, LRUd, FWF, FWFd,
FIFO, FIFOd, and OPT (with d = α) on sequence “espresso” of length 3 × 106 with
cache sizes k = 5 (average phase length 196) and k = 7 (average phase length 1502).

4.3 Real World Sequences

We measured the performance of various algorithms on real world cache traces
collected from 4 applications using VMTrace (for Linux) and the Etch tool (on
Windows NT)[19]. We obtained the traces from [2] and truncated them to 3×106

entries. We simulated LRU, LRUα, FWF, FWFα, FIFO, FIFOα, and OPT on
these sequences. For each sequence, we used the size of cache that would yield
a fault rate of 1% and 0.1% for LRU. Figure 2 shows the cost ratio compared
to OPT, fault rate, and average cache usage for the espresso sequence (a circuit
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simulator) for two cache sizes. Results for other sequences are shown in the full
version [20]. For the total cost we set c = 1 and f = α. We implemented the
optimal offline (Algorithm 1) using the reduction to minimum cost flow in [7],
and solved the minimum cost flow instances using the implementation of the cost
scaling algorithm from the LEMON C++ library [1]. Results in these practical
instances show that the cost of Aα algorithms adapt nicely to the value of α,
and that their fault rate and cache usage approaches those ones of the optimal
offline. In fact, the ratio Aα/OPT is never more than 2 and in most cases is
close to 1. As suggested by Theorem 4, the cost ratio of Aα algorithms improves
for sequences with higher locality. Note as well that as α grows, the performance
of the traditional marking algorithms gets closer to that of its cost-sensitive
counterpart, which is more noticeable for instances with smaller caches.

5 Conclusions

We introduced a model for paging with minimum cache usage and presented a
cost-sensitive family of online algorithms whose performance adapts to the rela-
tive costs of cache and faults. The cost model that we propose is able to capture
locality of reference, yielding a competitive ratio of at most 2 for inputs with
high locality. Experiments on request sequences collected from actual programs
agree with the theoretical results.

It would be interesting to show a better lower bound for online algorithms,
and to propose and analyze other online algorithms, including randomized ones.
A natural direction of research would be to evaluate the model in an application,
either in theory or in practice. For example, it would be interesting to study and
design a global shared caching strategy that varies the relative cache and fault
cost for various threads so that the cooperative execution leads to an advantage
in overall performance.
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Abstract. The concept of competitive-ratio approximation scheme was
recently proposed in [7]. Such a scheme algorithmically constructs an on-
line algorithm with a competitive ratio arbitrarily close to the best possi-
ble competitive ratio for a given online problem. In this paper we continue
this line of research by addressing several makespan scheduling problems
and introducing new ideas: we combine the classical technique of structur-
ing and simplifying the input instance for approximation schemes, with
the new technique of guessing the end of the schedule (time after which
no job is processed and released), which allows us to reduce the infinite-
size set of on-line algorithms to a relevant set of finite size. This is the key
idea for eventually allowing an enumeration scheme that finds a near opti-
mal on-line algorithm.We demonstrate how this technique can be success-
fully applied to three basicmakespan online over time schedulingproblems:
scheduling on unrelated parallel machines, job shop scheduling and single
machine scheduling with delivery times.

1 Introduction

Scheduling problems form an important class of well studied problems in combi-
natorial optimization. On-line scheduling can be seen as scheduling with incom-
plete information. At certain points, decisions have to be made without knowing
the complete instance. Depending on the way that new information becomes
known, different on-line paradigms are possible. In this paper we consider the
case where jobs arrive over time and their data become known at their arrival
(release time); the scheduling decision for a job may be delayed. At any time, all
the currently available jobs (the ones not scheduled so far) are at the disposal
of the decision maker. Decisions made in the past are irreversible. When we
are dealing with such on-line problems, we need to define a measurement that
distinguish “good” algorithms from “bad” ones. The most popular method in
comparing the performance of such on-line algorithms is the competitive ratio:
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Definition 1 ([12], [19]). Let Π be an on-line problem. Assume that Π is a
minimization problem. An algorithm A for Π is said to be ρ-competitive if for
every feasible instance I for Π it produces a solution of value valA(I) ≤ ρ ·opt(I)
where opt(I) is the optimal solution on the offline instance I (i.e. when we treat
I as a full information instance).

The competitive ratio of an algorithm A (for a minimization problem Π) is the
infimum over ρ such that A is ρ-competitive. The optimal competitive ratio for
a problem Π is defined to be the minimum ρ achievable for Π by any algorithm
A, and we denote it by ρ∗.

Observe that we do not constraint A to be an efficient (i.e polynomial time)
algorithm. In particular, we do not impose any time or space (or any other
measure) constraint on the efficiency of A. For a comprehensive account of the
theory of competitive analysis and a thorough treatment of on-line algorithms
see [2].

Problems Definition and Related Work: In all the considered problems we
assume that each machine can process at most one operation at a time, and
each job can be processed by at most one machine at any time. We consider the
following on-line scheduling problems in which jobs arrive over time and their
properties become known at their release dates, denoted by rj for each job j;
each job j can start being processed after its release date rj .

1. Unrelated Parallel Machines (Rm|rj |Cmax): Each job j has a processing time
of pij ∈ Q≥0 on machine i, ∀i ∈ [m]. For each job, we need to decide on which
machine and when it starts processing without preemption. We consider the
problem of minimizing the maximum job completion time among all jobs (i.e.
makespan, denoted as Cmax). We assume that the number m of machines is
fixed (i.e not part of the input).

2. Makespan Minimization in Job Shops: In Job Shops problem, each job Jj
consists of a sequence of μ operations O1j , O2j , . . . , Oμj that need to be pro-
cessed in this order. Operation Oij must be processed without interruption
on machine mij ∈M , during pij ∈ Q≥0 time units. We also assume that the
number m of machines and the number μ of operations per job are fixed.
This is the on-line analogue of Jm|rj , op ≤ μ|Cmax.

3. Scheduling in Single Machine with Delivery Times: Each job has processing
time pj ∈ Q≥0 and delivery time qj ∈ Q≥0. If sj(≥ rj) is the time that
job j starts processing, it will be delivered at time Lj = sj + pj + qj . The
objective is to minimize the maximum delivery time Lmax = maxj Lj. We
assume that the delivery process is a non-bottleneck activity (different jobs
can be delivered at the same time). This is the on-line analogue of 1|rj |Lmax.

The off-line counterparts of these problems have produced several approxima-
tion algorithms over the years (since their decision versions are strongly NP-
complete). For example in [13] a 2 approximation was given for R||Cmax and
was shown that no better than 3

2 -approximation exists. When the number of
machines is fixed, several FPTASes are known for Rm||Cmax, we refer to [4]
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for the relevant literature and because we will use the techniques in [4] in the
current paper. For Job Shop, in [20] it was proven that there does not exist
a better than 5

4 approximation algorithm (mod NP �= P) which was further

improved in [15] to Ω((log lb)1−ε) (mod NP � ZTIME(2lognO(1/ε)

)) where lb
is a lower bound on the optimal objective function value. For such a case, an
O((log(mμ) log(min(mμ, pmax)) / log log(mμ))

2) approximation algorithm exists
[5], where pmax is the largest processing time among all operations. For fixedm,μ
Shmoys et al. [17] gave a (2+ε) approximation algorithm which has been further
improved by Jansen et al. [11] who have designed a (1 + ε) approximation algo-
rithm. This has been further simplified and improved (w.r.t the running time)
in [4]. For 1|rj |Lmax many PTASes are known: in [8], [9] two PTASs of running
time O((nε )

O(1/ε)) and O(n log n+n(1/ε)O(1/ε2)) were given, which were further

improved to a PTAS with running time O(n+(1+ε)O(1/ε)) in [14]. In this paper
we will heavily use the results in [4,14].

Online makespan minimization problems have already been considered under
two main online models. The first one, when jobs arrive one by one, has been
extensively studied through the last 50 years. In 1966 Graham [6] showed that
for m identical parallel machines scheduling, the List algorithm which always
puts the next job on the least loaded machine is exactly (2− 1

m)-competitive. For
more results see e.g. [10], [16] and the references therein. The latter model, much
less studied, consider jobs arriving online over time. For the Pm||Cmax problem
Chen and Vestjens [3] gave nearly tight bounds on the optimal competitive ratio
(1.347 ≤ ρ∗ ≤ 3/2).

Moreover, in [18] the authors describe a general technique to convert a non-
clairvoyant scheduling algorithm for a problem with all jobs released at the same
time to a non-clairvoyant on-line algorithm that can handle unknown release
dates. They show that the quality of the schedule thus constructed is within a
factor of 2 of the quality of schedules constructed by the on-line algorithm in
the simpler environment. This technique does not only apply to parallel machine
scheduling, but also to the entire class of shop scheduling problems. On the other
hand, for the sum of weighted completion time objective function, this online
model was intensively studied recently in [7] where, to the best of our knowledge,
the concept of competitive-ratio approximation scheme has been proposed for the
first time:

Definition 2 (Competitive-Ratio Approximation Scheme [7]). An com-
petitive - ratio approximation scheme (CRAS) computes for a given ε > 0 an
online algorithm A with a competitive ratio ρA ≤ (1 + ε)ρ∗. Moreover, it deter-
mines a value ρ′ such that ρ′ ≤ ρ∗ ≤ (1 + ε)ρ′.

In [7] the authors study the problem of scheduling jobs online to minimize the
weighted sum of completion times on parallel, related, and unrelated machines,
and derive both deterministic and randomized algorithms which are almost best
possible among all online algorithms of the respective settings. They also gener-
alize their techniques to arbitrary monomial cost functions and apply them to
some makespan scheduling problems with fixed number of machines, namely, for
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the preemptive and non preemptive related parallel machines problem, denoted
as Qm|rj , (pmtn)|Cmax, and for the unrelated parallel machines problem when
preemption is allowed, denoted as Rm|rj , pmtn|Cmax. The novel technique pre-
sented there works as follows: First the input is structured and simplified. After
that, a proof is given that there are constant number of “situations” that an
on-line algorithm can encounter at any decision step. Then, it is shown that
once a situation had been encountered, this situation (or another equivalent to
this) will appear after constant number of steps i.e. specific configurations cy-
cle. This helps focus attention on a very limited number of configurations: any
instance is either captured or being equivalent with such a configuration, and so
an complete enumeration can be done.

Our Results: Our contribution is online approximation schemes for the three
non-preemptive makespan scheduling problems described before.

We combine the classical technique of structuring and simplifying the input
instance for approximation schemes, with the new technique of guessing the end
of the schedule (time after which no job is processed and released), which allows
us to reduce the infinite-size set of on-line algorithms to a relevant set of finite
size. This is the key idea for eventually allowing an enumeration scheme that
finds a near optimal on-line algorithm.

The enumeration technique from [7] was the inspiration for our work, although
the details differ to tackle with the addressed basic makespan scheduling prob-
lems. In particular, we use a different approach in order to successfully enumerate
all possible scenarios for the problems under consideration (for example the ap-
proach presented in [7] do not seem to generalize in a straightforward way to the
case ofRm|rj |Cmax when preemption is not allowed). In order to (approximately)
compute the best possible competitive ratio, we transform every input instance
to an equivalent one with certain nice properties with only small loss. We in fact
prove that we can actually restrict our attention to scenarios of “small” size and
enumerate all possible situations and all possible schedules (algorithms) for these
situations, efficiently. The output will be an on-line approximation scheme for
Rm|rj |Cmax, Jm|rj |Cmax and 1|rj |Lmax. Since the unbounded computational
power is given, the approximation scheme provide an algorithm for any given
number of machines m, even when the number of machines is part of the input.
However, we note that computing the near optimal value of competitive ratio
can be done only in the case when m is fixed.

2 General Framework

In this section we will describe the general idea we use to obtain online approx-
imation schemes for the addressed problems. Our approach uses several classic
transformations (e.g. [1]) of the input instance which may potentially increase
the objective function value by a factor of at most 1 + O(ε). Throughout this
paper, when we describe this type of transformation, we shall say it produces
1 +O(ε) loss.
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Algorithm 1. Enumeration Scheme

Input: A set of jobs Jx currently available for processing at the beginning of the
interval Ix.
Output: Algorithm A with nearly optimal competitive ratio among all possible sched-
ules (algorithms) for Jx.

1. Set the LBx, UBx = EOSx accordingly (see the next section, EOSx refers to the
currently guessed end of schedule).

2. Partition the time horizon ([LBx, EOSx]) into bounded number of subintervals
(again, see Section 3). This can be done since EOSx

LBx
<∞.

3. Let the current released instance composes of jobs Jx.
4. Define the set I′x of all possible instances for the rest of the intervals that respects

EOSx (as described in Section 3).
5. For every schedule (algorithm) f for Jx together with instances from I′x that re-

spects the EOSx DO:
(a) For every possible possible reduced instance I ′ ∈ I′x DO:

i. Schedule Jx ∪ I ′ according to f .
ii. Let Dmax(Jx, I

′) be the completion time of this instance (under f).
iii. Define the offline instance composed by Jx, I

′ and solve it optimally to
obtain Dopt

max(Jx, I
′).

(b) Define ρJx
f = maxI′

Dmax(Jx,I′)
D

opt
max(Jx,I′)

6. Output A such that A = argminf ρJx
f .

First, using a result from [1], we prove that the release dates and processing
times can be structured to take only specific values (see Lemma 1). In particular,
all the release dates of the jobs, rj , can be structured to be integer powers of
(1 + ε). This assumption can be done with (1 + ε) loss in the objective function
value. This allows us to partition the time horizon into intervals Ix = [Rx, Rx+1)
with Rx = (1 + ε)x such that “interesting things” (release of jobs) happen only
at the beginning of the intervals, i.e. at time Rx.

Assume that we are at a particular time step Rx, for some integer x. Some
jobs arrive (being released) at this step, plus we are possibly left with some
unprocessed jobs released in previous intervals. Now we want to compute a
nearly optimal schedule for those jobs available for processing at Rx, let’s call
them Jx. In order to do this, we introduce the technique of “guessing the end of
schedule” for the current set of jobs Jx. Intuitively, we set a lower bound LBx

as a minimum amount of time needed to process all jobs available for processing
at time Rx and also an upper bound for the completion time of whole schedule
(EOSx). In other words, EOSx is a time after which no job is being processed.
We prove that if our guess of EOSx was indeed correct, then the scheduling
of the jobs Jx can be done in nearly optimal way. Otherwise (by appropriately
setting of EOSx) we prove that if our guess was wrong, then the jobs Jx become
insignificant (with respect to their contribution to the objective function value).
So, even the worst possible schedule for those jobs cannot affect more than a
factor (1 +O(ε)) the objective function value.
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We denote the infinite set of instances that may appear in the future with
respect to EOSx as Ix. In order to prove that, under the assumption EOSx is
correct, the jobs Jx are scheduled nearly optimally, we use a series of transfor-
mations and simplifications of instances from [4], that help us focus attention on
instances with specific structure.

More precisely, in order to schedule nearly optimally the jobs Jx, we show
that any instance composed of jobs that may appear in the future and respect
the previously described EOSx, can be mapped to another instance I ′ such
that in I ′ we have only “few” jobs for processing (basically by merging jobs
together) and the data for each job (e.g. its processing time) can take only few
(bounded) different values. More importantly, this transformation can be done
with (1 + O(ε)) loss. So in fact, instead of considering the entire infinite set
of instance Ix, we can focus on the finite set of reduced instances I′x that may
appear in the future with respect to the current EOSx, without affecting much
the objective function value. The fact that EOSx

LBx
< ∞ helps us enumerate all

of them, because only a bounded number of such reduced instances can exist.
For each such instance I ′ we enumerate all possible schedules for Jx and we
output the one with the “best behavior”. The final schedule for jobs in Jx is
the schedule that has the best worst case performance among all schedules and
among all instances I ′ (Algorithm 1).

3 Structuring and Transforming the Instance

In this section we will show how simple transformations (some of which are
on the spirit of the [1]) allow us to focus attention on instances with certain
“nice” properties. In particular, we will prove all the assumptions and claims of
the previous section. For concreteness we will show how everything applies to
on-line Rm|rj |Cmax. The properties that we assume are the following:

1. With 1 + ε loss all the release dates rj and processing times pij of jobs are
integer powers of (1 + ε).

2. Any instance I ′ ∈ I′x needs bounded information in order to be fully de-
scribed.

3. For fixed x, there is a bounded number of instances I′x that approximates
the entire set of instances Ix that respects the currently guessed EOSx.

4. For a currently guessed EOSx at some point x, if the guess is not correct
then the set of jobs Jx becomes irrelevant.

Property 1 structures the release dates thus let us focus only on the beginning of
intervals Ix = [Rx, Rx+1) where Rx = (1+ ε)x. In order to guarantee these prop-
erties, we also need to show that we need bounded data in order to fully describe
any instance I ′. This is exactly the second requirement. The third property says
that, when we fix LBx and EOSx, for any x, then there is only a bounded num-
ber of scenarios that can arrive in the future (where the future is bounded by
EOSx). In fact, there might be an unbounded number of situations that can
appear within these two bounds, but we prove that with at most (1 + O(ε))
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loss, ∀I ∈ Ix, ∃I ′ ∈ I′x that approximates I. The latter means that the objective
function values of I and I ′ after applying an optimal (on-line) algorithm will not
differ by more than a 1 + O(ε) factor. In other words, the bounded size set I′x
approximates the infinite size set Ix with arbitrary precision.

Finally, we need the property that if our current guess of the end of schedule
EOSx is not correct, then even the worst possible decision regarding the schedul-
ing of jobs Jx cannot affect much (more than (1 + O(ε)) factor) the objective
function value.

In fact, for any problem that the previous properties are true and can be done
in finite time, the Algorithm A of the previous section can be applied to produce
a near optimal on-line algorithm. In the next subsections we demonstrate how
these properties are true for Rm|rj |Cmax, and in the appendix for the rest of the
problems mentioned in the introduction. When we want to say that a quantity
(e.g. ξ) take a finite (bounded) value, we will simply write ξ-finite.

3.1 Guaranteeing Property 1

Let ε ∈ Q(0,1] and let us denote OPT the value of the optimal off-line schedule.
Let us define dj := mini=1,..,m (pij) as a scale factor of a job Jj . W.l.o.g we
assume dj > 0 for any job (otherwise it is always optimal to schedule job j on
the machine i with pij = 0). We bound several relevant parameters by constants.
If not stated differently, any mentioned constant depends only on ε. When we
say that some parameter is finite it means that it is bounded by some function
depending on input parameters i.e for Rm|rj |Cmax: ε and m. To fulfill Property
1 we prove the following Lemma.

Lemma 1. With 1 +O(ε) loss, we can restrict to instances where for each job
Jj the processing time on machine Mi (pij) and release date (rj) are powers of
1 + ε and rj ≥ εdj for every job j, thus rj > 0.

Proof. Assume that we have an optimal schedule. Let L̃B be the minimum
amount of time that is needed to process all already released jobs. For all these

jobs job Jj , L̃B ≥ dj and L̃B ≥
∑

dj

m .

First of all, we move all jobs to the right by the value εL̃B. Obviously the
schedule is still feasible. In the new schedule every job j finishes at time Cj+εL̃B.

Job j does not start before Cj + εL̃B − pij ≥ εL̃B. This implies that we can

increase release dates to enforce rj ≥ εL̃B ≥ εdj . Now we can multiply every
release date and processing time by 1 + ε; this increases the objective function
at most by a factor 1 + ε. Then we decrease each release date and processing
time to the nearest power of 1 + ε (which is at least the original value). The
latter can only improve things. 
�

3.2 Guaranteeing Property 2

First we will show how we can map an arbitrary instance I to another I ′ such
that I ′ has finite number of different jobs that seek processing.
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We take the decision only at the beginning of each interval Ix = [Rx, Rx+1),
where Rx = (1 + ε)x, x ∈ Z. There are two disjoint situations that an on-
line algorithm can encounter regarding the sum

∑
j∈Jx

dj together with the
remainder of the processing time of the “crossing” jobs (jobs that started their
processing in previous intervals but have not yet finished in Rx):

1. either it is smaller or equal than |Ix| or,
2. it is greater than |Ix|.

For the first case we can just apply the PTAS in [4] to schedule jobs in this

interval. Otherwise let LBx = |Ix|
m = ε(1+ε)x

m (minimum amount of time needed
to process jobs available for processing in interval Ix together with the remainder
of the crossing jobs) and an “end of schedule”, EOSx = ξLBx, where ξ =
m
ε

(
1 + m

ε3

)2
< ∞ (see Lemma 12). The EOSx can be identified as an upper

bound for amount of the time required to process all jobs of a whole on-line
instance of scheduling problem.

At the beginning of each interval Ix, we reduce number of jobs released at
time Rx to some finite number using the lemma below.

Lemma 2 ([4]). Assuming that EOSx

LBx
= ξ, ξ-finite, then with (1 + O(ε))LBx

loss we can reduce in linear time the number of jobs that are available for pro-
cessing at time Rx to be at most Δ = (log m

ε )
O(ξ)-finite.

To fulfill the technicalities we prove the following Lemma:

Lemma 3. The transformations of Lemma 1 and Lemma 2 cannot affect the
optimal competitive ratio more than a (1 +O(ε)) factor.

Proof. Let us fix some instance. Let A denotes the value of objective function of
optimal on-line schedule for this fixed instance. Let AR, OPTR, ρR be equivalent
to A, OPT , ρ for the reduced instance. From Lemma 2 we get AR ≤ A(1 + ε),
thus:

ρR =
AR

OPTR
≤ A(1 + ε)

OPT
= ρ


�

Now for each job Jj , we define the following sets of machines: Fj = {i : pij ≤
ε
mdj} are the “fast” machines for Jj and Sj = {i : pij ≥ m

ε dj} are the “slow”
machines for Jj .

We structure the input data of any job Jj (j = 1, . . . , n) as follows

1. For any “fast” machine i ∈ Fj for job Jj , set the corresponding processing
time to zero, pij := 0.

2. For any “slow” machine i ∈ Sj for job Jj , set the corresponding processing
time pij := +∞.

3. For any other machine i ∈ [m] \ {Fj ∪ Sj}, round pij down to the nearest

lower value of ε
mdj (1 + ε)

h
, for some h ∈ N.
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Lemma 4 ([4]). With 1 + O(ε) loss we can assume that any instance can be
structured with the above three conditions.

Consider the input instance after the structuring step. We define the job profile
of a job Jj to be a (m)-tuple < Π1,j , . . . , Πm,j >, such that Πij = −∞ if i ∈ Fj ,

Πij = +∞ if i ∈ Si and Πij is such that pij =
ε
mdj (1 + ε)

Πij otherwise. Observe
that any job Jj is completely defined by its job profile, scale factor dj and release
date rj .

Lemma 5 ([4]). The number of distinct job profiles as defined above is at most
l :=

(
3 + 2 log1+ε

m
ε

)m
.

Now, we define big and small jobs for interval Ix: Lx := {j ∈ J : rj = Rx, dj >
ε2

mΔRx}, Sx := {j ∈ J : rj = Rx, dj ≤ ε2

mΔRx}.
Now in each interval Ix we partition Lx into sets of relevant jobs and irrelevant

jobs. Intuitively a job is supposed to be irrelevant, if any decision concerned with
this job cannot much affect the result. In other words with 1+O(ε) loss irrelevant
jobs can be scheduled arbitrarily.

Lemma 6. With (1 +O(ε)) loss all small jobs are irrelevant.

Proof. We schedule any small job Jj on the machine with smallest processing
time, dj . From Lemma 2 and the definition of small jobs, the total processing

time of small jobs in interval Ix is bounded by Δ ε2

mΔ (1+ ε)x = ε |Ix|m = εLBx. 
�

Lemma 7. The number of distinct scale factors of jobs in each set Lx is bounded
by log1+ε

Δξ
ε2 .

Proof. Take a large job Jj ∈ Lx with scale factor dj = (1 + ε)y. Before reducing
the number of jobs (Lemma 2), from Lemma 1 we have that for Jj , dj ≤ rx

ε =
(1+ε)x

ε and also dj >
ε2

mΔrx (Jj ∈ Lx and so rj = Rx). Thus

ε2

mΔ
(1 + ε)x < (1 + ε)y ≤ (1 + ε)x

ε

The number of distinct integers y which satisfy the above inequalities is bounded
by log1+ε

mΔ
ε3 . After reducing the number of jobs we can no longer ensure that for

every job Jj , dj ≤ rj
ε (we do not interfere inside the “reducing number of jobs”

procedure, i.e. some gluing technique may increase the jobs processing time).

We know that for every interval Ix, EOSx = ξ ε(1+ε)x

m , and that for every job Jj ,
dj ≤ EOSx. For these jobs the following inequalities hold

(1 + ε)x

ε
< (1 + ε)y ≤ ξ

ε(1 + ε)x

m
.

The number of distinct integers y which satisfy above inequalities is bounded by

log1+ε
ε2ξ
m . The total number of distinct scale factors of large jobs is bounded by

log1+ε
Δξ
ε . 
�

From Lemmas 2, 3, 4, 5, 6 and 7, Property 2 for online Rm|rj |Cmax holds.
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3.3 Guaranteeing Properties 3 and 4

We partition the time line into periods Qγ
y := [

∑y
i=−∞(1+ γ

ε )
i,
∑y+1

i=−∞(1+ γ
ε )

i),
γ ≥ 1 is a parameter, defined later. |Qγ

y | is the length of period y, |Qγ
y | =

(1 + γ
ε )

y+1.

Lemma 8. For any finite γ ≥ 1 each period Qγ
y intersects with finitely many

intervals. The number of intersected intervals is at most log1+ε(1 +
γ
ε ) + 2.

Proof. First assume that there exist intervals Ix, Ix+k such that their starting
times are equal to

∑y
i=−∞(1 + γ

ε )
i,
∑y+1

i=−∞(1 + γ
ε )

i respectively.

. . . . . . . . . �� �︸ ︷︷ ︸
Ix

� � �︸ ︷︷ ︸
Ix+k

�

︸ ︷︷ ︸
Qγ

y

� starting, ending points of periods,
� starting, ending points of intervals.

Let A := 1 + γ
ε . We have that

(1 + ε)x =

y∑
i=−∞

Ai =
Ay+1

A− 1
⇒ x = log1+ε

Ay+1

A− 1

and in similar way we can get

x+ k = log1+ε

Ay+2

A− 1
⇒ k = log1+ε

Ay+2

Ay+1
= log1+εA

Since, at the beginning of this proof, we made an assumption on starting times
of intervals Ix, Ix+k, we have that the exact number of intervals that intersect
any period is bounded by log1+ε(1 + γ

ε ) + 2 (the assumption can increase the
number of intervals intersecting with the period by at most 2). 
�

Lemma 9. Qγ
y has the property that

∑y−1
i=−∞ γ|Qγ

i | = ε|Qγ
y |, for all y ∈ Z,

γ-finite.

Proof. The following inequalities hold

y−1∑
i=−∞

γ|Qγ
i | − ε|Qγ

y | = γ

(
1 + γ

ε

)y+1(
1 + γ

ε

)
− 1

− ε
(
1 +

γ

ε

)y+1

=

(
1 + γ

ε

)y+1

1
ε

− ε
(
1 +

γ

ε

)y+1

= 0


�
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Lemma 10. In each interval Ix, with 1 + O(ε) loss, we can assume that the
total sum of dj of jobs released in this interval is bounded by α|Ix|, for α = m

ε2 .

Proof. From Lemma 1 and from definition of L̃B for any interval Ix we get:

Rx ≥ εL̃B ≥ ε

∑
j∈J:rj≤Rx

dj

m
,

thus ∑
j∈J:rj=Rx

dj ≤
∑

j:rj≤Rx

dj ≤ m
Rx

ε
= m

|Ix|
ε2

and the claim follows. 
�

Lemma 11. In each interval starting in period Qα
y , with 1 +O(ε) loss, all jobs

released in intervals that ends within any period {Qα
−∞, . . . , Q

α
y−2} are irrelevant.

In each interval there is a finite number of relevant jobs, either released in this
interval or postponed from previous intervals.

Proof. The total sum of dj of jobs released in all intervals that ends within any

period between {Qα
−∞, . . . , Q

α
y−2} is bounded by

∑y−2
i=−∞ α|Qα

i | ≤ ε|Qα
y−1| by

Lemma 10 and Lemma 9. Thus only intervals which intersect the current and
the previous period can have relevant jobs. From Lemma 2 and Lemma 8 we get
that in each interval there is a finite number of relevant jobs, either released in
this interval or postponed from previous intervals. 
�

Next lemma ensures that if the EOSx is not correct it does not matter what de-
cision will be made at this time, incorrect EOSx cannot much affect the optimal
solution.

Lemma 12. With 1 +O(ε) loss, in each interval Ix while taking decisions, we

can assume that there exists a lower bound (LBx = ε(1+ε)x

m ) for jobs released
in interval Ix and an “end of schedule” (EOSx), such that EOSx = ξLBx,

ξ = m
ε

(
1 + m

ε3

)2
-finite, unless all jobs released in this and previous intervals are

irrelevant.

Proof. Suppose that interval Ix starts in period Qα
y . The lower bound LBx for

jobs released in interval Ix can be set as |Ix|
m (we have already assumed that the

total sum of dj of jobs available for processing in interval Ix is equal at least

|Ix|). Since Rx ≥
∑y−1

j=−∞ |Qα
j | = Ay+1

A−1 and analogously LBx ≥ ε
m

Ay+1

A−1 . We

set as “end of schedule” EOSx as
(∑y+1

j=−∞ |Qα
j | −

∑y−1
j=−∞ |Qα

j |
)
= Ay+3−Ay+1

A−1 .

Thus we get

EOSx

LBx
≤ m

ε

Ay+3 −Ay+1

Ay+1
≤ m

ε

Ay+3

Ay+1
=
m

ε
A2 =

m

ε

(
1 +

m

ε3

)2
= ξ

(remember that A = (1 + α
ε ) ≥ 2 and α = m

ε2 ).
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If the“end of schedule” (EOSx) that we guess was not correct, due to Lemma
11 all jobs released in interval Ix and all previous intervals would have been
irrelevant. 
�

From the proof of above Lemma 12 the Property 4 holds.
Now, let us suppose that in some interval Ix the total processing time of

jobs available for processing (already released and not processed yet) respect

the lower bound, LBx = |Ix|
m . In the next Lemma we prove that with (1+O(ε))

loss and with respect to EOSx the number of distinct instances of jobs released
in the future is finite. Thus we fulfill Property 3.

Lemma 13. At the beginning of any interval Ix, when we take a scheduling
decision, with (1 +O(ε)) loss we can assume that there is only finite number of
distinct instances of relevant jobs that might be released in the future, unless any
decision in interval Ix cannot much affect the optimal solution.

Proof. Let us assume that jobs released in interval Ix are relevant. From Lemma
12 there exist LBx and EOSx, such that EOSx = ξLBx. From Lemma 8 we
get that any instance of jobs released in the future can be partitioned into finite
number of subsets of jobs, such that each subset contains jobs released at the
same time. To follow the claim it is enough to show that number of distinct
jobs in each subset is finite. Now, using Lemma 2 with (1 + O(ε)) loss we can
reduce any subset of jobs released at some time to some finite number Δ. From
Lemma 7 we know that every job’s scale factor can take only finite number
of distinct values, combining with Lemma 5 every job can take at most finite
number of distinct processing times. Finally from Property 3 for fixed processing
time and fixed release date there is a finite number of distinct jobs. Since every
component is finite, we can produce at most finite number of distinct instances
of jobs released in the future such that they respect the EOSx. 
�

4 Job Shop and Single Machine Scheduling with Delivery
Times

In this section we show that two other scheduling problems described in this
paper (Job Shop, Single Machine with delivery times) fulfill Property 1,
Property 2, Property 3.

4.1 Online Job Shop Scheduling Problem

In this section we use the results in [4]. We show how easy it is to apply above
framework using result for offline scheduling problem. Based on this paper [4]
we can rewrite that any job can be fully described using job profile, scale factor
and release date. Since the objective function is the same as for the previous
problem, Cmax, nearly all presented lemmas fit the on-line Job Shop scheduling
problem. The Properties 1, 3 and 4 are fully satisfied for any online scheduling
problem with maximum completion time objective function. To fulfill Property 2



Competitive-Ratio Approximation Schemes 171

we need to reprove only Lemma 2 and 5. We replace Lemma 2 with the following
result.

Lemma 14 ([4]). Assuming that EOSx

LBx
= ξ, ξ = 1

ε

(
1 + 1

ε3

)2
-finite, then with

(1 + O(ε))LB loss we can reduce in linear time the number of jobs that are
available for processing at time Rx to be at most

Δ =

(
6μ4mξ

ε

)m/ε

+mμ
(
2 + log1+ε

μm

ε

)μ
The Lemma 5 can be replaced with the following cited result.

Lemma 15 ([4]). The number of distinct job profiles is bounded from above by
most l := mμ

(
2 + log1+ε

μm
ε

)μ
.

4.2 Online Single Scheduling Problem with Delivery Times

We refer to article [14]. Again any job can be fully described using job profile,
scale factor and release date. In this problem the case is to minimize the maxi-
mum delivery time, Lmax. Since this objective function in the structure is very
similar to maximum completion time, Cmax the Property 1, 3 and 4 are satis-
fied for any problem with Lmax. Similar to the previous subsection we cite the
following lemmas to fulfill Property 2.

Lemma 16 ([14]). Assuming that EOSx

LBx
= ξ, ξ = 1

ε

(
1 + 1

ε3

)2
-const, then with

(1 + O(ε))LB loss we can reduce in linear time the number of jobs that are
available for processing at time Rx to be at most Δ = O(ξ/ε3) -const.

Lemma 17 ([14]). The number of distinct profiles is at most

l := �12ε−2 log1+ε 2/ε�.

4.3 Constant Number of Machines

Since through all the paper we use the assumption that an on-line algorithm has
unbounded computational power we only care about finite values, i.e. instance
size and so on. If the number of machines in the input problem is constant then
any finite number in the paper becomes constant number. Thus for considered
problems with constant number of machines and operations (for Job Shop),
Rm|rj |Cmax, Jm|rj |Cmax, 1|rj |Lmax the algorithm A presented in the Section
2 has constant running time.
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Abstract. We give a principled method to design online algorithms (for poten-
tially non-linear problems) using a mathematical programming formulation of
the problem, and also to analyze the competitiveness of the resulting algorithm
using the dual program. This method can be viewed as an extension of the online
primal-dual method for linear programming problems, to nonlinear programs.
We show the application of this method to two online speed-scaling problems:
one involving scheduling jobs on a speed scalable processor so as to minimize
energy plus an arbitrary sum scheduling objective, and one involving routing vir-
tual circuit connection requests in a network of speed scalable routers so as to
minimize the aggregate power or energy used by the routers. This analysis shows
that competitive algorithms exist for problems that had resisted analysis using the
dominant potential function approach in the speed-scaling literature, and provides
alternate cleaner analysis for other known results. This gives us another tool in
the design and analysis of primal-dual algorithms for online problems.

1 Introduction

Speed scalable devices are now a ubiquitous energy management technology. Such de-
vices can be run in high speed and power modes that are energy inefficient, or in low
speed and power modes that are more energy efficient, where energy efficiency is the re-
sulting processing speed divided by power investment. The resulting optimization prob-
lems involve determining when this improvement in the quality of service provided by
running at high speed justifies the resulting inefficient use of significant energy. As the
relationship between speed and power in current (and any conceivable) technologies
is non-linear, so are the resulting optimization problems. This non-linearity explains
in part why we have generally not been able to show that online algorithms are com-
petitive in such settings by reasoning directly about optimal solutions. The dominant
algorithm analysis tool in speed-scaling settings has been potential functions. But one
has to often guess the “right” potential function; moreover, there are situations where
the use of potential functions is problematic, most notably when there does not seem to
be a simple algebraic expression for the “right” potential for an arbitrary configuration.
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One motivation of our research is to see if one can use duality to analyze online algo-
rithms for speed-scaling problems for which algorithm analysis using potential func-
tions seems problematic.

The first problem we consider involves scheduling jobs on a speed scalable proces-
sor online, with an objective of the form E + βS , where E is the energy used by the
processor, S is a scheduling objective that is the sum over jobs of a scheduling cost of
the individual jobs, and β expresses the relative value of saving energy versus decreas-
ing the scheduling objective. The input consists of a collection of jobs that arrive over
time. The jth job arrives at time rj , and has size/work pj . There is a convex function
P (s) = sα specifying the dynamic power used by the processor as a function of speed
s, which may be any nonnegative real number. The value of α is typically around 3

for CMOS based processors. A fractional sum scheduling objective S is of the form∑
j

∑
t

yjt
pj

Cjt, where Cjt is the cost of completing a unit of work of job j at time t, and
yjt is the amount of work completed at time t (such that

∑
t yjt = pj). The correspond-

ing integer sum scheduling objective is of the form
∑

j

∑
t zjt Cjt, where zjt indicates if

job j was finished at the time instant t. For instance, a single job arrives at time rj with
Cjt = (t+ 1− rj), and is executed over times t ∈ {rj , rj + 1, rj + 2, · · · , rj + pj − 1} at
a uniform rate yjt = 1, the fractional sum objective is

∑rj+pj−1
t=rj

1
pj
(t− rj + 1) =

pj+1

2
,

whereas the integer sum objective is pj (since zj(rj+pj−1) = 1 and all other zjt = 0).
The energy cost E in both cases is the non-linear expression

∑
t(
∑

j yjt)
2.

For linear sum scheduling objectives (where the cost Cjt for finishing a job j at
time t is a increasing linear function of the flow time t − rj , such as the one above),
a potential function based on an algebraic expression for the future cost of the online
scheduling algorithm (starting from a particular configuration) has proved to be widely
applicable for analyzing natural speed-scaling scheduling algorithms [1]. However, the
seeming lack of simple algebraic expressions for future online costs of natural online
algorithms for nonlinear sum scheduling objectives (e.g., Cjt = (t − rj + 1)2, which
gives the sum of the squares of flow time) explains in part why, despite some effort,
we have not been able to analyze algorithms for such problems. It is easy to convert
a solution for the fractional scheduling objective to the integer objective while losing
at most max{(1 + ε)α, 1/ε} by speeding up each job by 1 + ε, so that the fractional
objective pays at least ε for each instant the sped-up job has not yet been completed,
whereas the power cost is increased only by (1 + ε)α[2,3], so we will focus on the
fractional scheduling objectives from now on.

The second problem that we consider involves online routing of virtual circuit con-
nection requests in a network of speed scalable routers with the objective of minimizing
the aggregate power used by the routers. The jth request consists of a source sj , a sink
tj , and a flow requirement fj . In the unsplittable flow version of the problem the online
algorithm must route fj units of flow along a single (sj , tj)-path. In the splittable flow
version of this problem, the online algorithm may partition the fj units of flow among
some collection of (sj , tj)-paths. In either case, we assume speed scalable network el-
ements (routers, or links, or both), where element e use powers �αe , where the load �e
is the sum of the flows through the element. The objective of total aggregate power is
then

∑
e �

α
e . This problem was introduced in [4], where a poly-log-approximate offline
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polynomial-time algorithm is given for unsplittable routing; this algorithm classifies the
requests by geometrically increasing demands, and randomly rounds a convex program
for each demand class.

2 Our Contributions

Very much in the spirit of the online primal dual technique for linear programs [5], we
give a principled method both to design online algorithms (but for potentially nonlinear
problems) using a mathematical programming formulation of the problem, and also
to analyze the competitiveness of the resulting algorithm using the Lagrangian dual
program. We start by considering a mathematical program for the offline problem. We
then interpret the online algorithm as solving this mathematical program online, where
the constraints arrive one-by-one: in response to the arrival of a new constraint, the
online algorithm has to raise some of the primal variables so that the new constraint
will be satisfied. We consider the most natural online greedy algorithm: one that raises
the primal variables so that the increase in the primal objective is minimized.

For the analysis, we use weak duality: each feasible value of the dual is a lower
bound to the optimal primal solution [6]. How should we set the duals? We set the
Lagrangian dual variable corresponding to the new constraint to be proportional to the
rate of increase in the primal objective that the online algorithm incurred at the time
that the constraint was satisfied. If we could argue that the value of the dual increased
by at least a constant fraction of the increase to the primal, we would be done. But
what is the value of the resulting dual? Due to nonlinearity, analyzing the dual for a
nonlinear program is more complicated than for a linear program, since in the dual for
a nonlinear program, one can not disentangle the objective and the constraints (as one
can in the linear case); the dual itself contains a version of the primal objective, and
hence copies of the primal variables, within it. Consequently, the arguments for the
dual in the nonlinear case not only involve setting the Lagrangian dual variables, but
also relating the settings of the copies of the primal variables in the dual with the actual
primal variables in the primal. The solutions we find are fractional solutions to the
nonlinear program, so for the speed-scaling scheduling (with the fractional objective)
and splittable routing problems that we consider, this analysis allows us to conclude
that the natural online greedy algorithm is Oα(1)-competitive (the subscript means that
the constant hidden in the big-O depends on the constant α). As mentioned above, the
integer scheduling objective follows from the fractional one at a small loss [2,3]. For the
unsplittable routing problem, we can also show that the natural online greedy algorithm
is Oα(1)-competitive.

Before we give more details about the specific speed-scaling problems that we con-
sider, we would like to emphasize that once we formulate the primal non-linear program
in the obvious way, the design of the online algorithm and the variable settings for its
Lagrangian dual are naturally derived from this program. The problem-specific aspects
are confined to setting the dual variables—which in both our problems is some multi-
plier δ times the rate of primal change—and the analysis of the dual (which gives the
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“right” value of the multiplier δ we should set).1 Consequently, we feel that our work
represents another step towards a principled design and analysis of primal-dual algo-
rithms for online problems. We hope that this principled approach could be applied to
a wider class of nonlinear online problems.

2.1 Applications to Speed-Scaling Scheduling and Routing

Our first observation is that fractional speed-scaling scheduling problems with a general
sum scheduling objective can be cast more conveniently as the following Online Gener-
alized Assignment Problem (OnGAP). In OnGAP, jobs arrive online one-by-one, and
the algorithm must fractionally assign these jobs to one of m machines. When a job
j arrives, the online algorithm learns �je, the amount by which the load of machine e

would increase for each unit of work of job j that is assigned to machine e, and cje, the
assignment cost incurred for each unit of work of job j that is assigned to machine e. So
if xje is the fraction of job j assigned to machine e, then the assignment cost is cjexje,
and the load of the machine e increases by �jexje. The goal is to minimize the sum of
the αth powers of the machine loads, plus the total assignment cost. (See (4.1) for the
convex programming formulation.)

To cast a speed-scaling problem with a (fractional) sum scheduling objective as On-
GAP, think of each unit of time as being a separate machine. The assignment cost cje
then models the cost for scheduling a unit of job j at time e. Let us now illustrate this
model using some examples:
Speed-Scaling with Deadline Feasibility. In this problem, each job j has a size of �j
and a deadline of dj . The goal is to devise speed-scaling and scheduling policies so that
every job is scheduled within its deadline, and the total energy is minimized. Indeed,
we can view this as OnGAP where each time unit is a machine, �jt := �j for all times,
and cjt := 0 for t ∈ [rj , dj ] and is infinite otherwise. This problem has been widely
studied [7,8,9,10], and different algorithms are shown to be Oα(1)-competitive using
varied potential functions.
Total Flow plus Energy. Here, given a set of jobs and a speed-scalable processor, the
objective is to minimize the sum of (fractional) flowtimes plus energy of the schedule.
We can cast this as OnGAP by setting cjt to be (t−rj) for t ≥ rj and infinite otherwise.
This problem has been studied in [11,3,12,13,14,15,16], where different algorithms are
shown to be Oα(1)-competitive (and some, even O(1)-competitive for general power
functions) using potential functions.
Total Flow Squared plus Energy. For the objective of sum of fractional flow/response
times squared plus energy, we can set the assignment cost cje to be (e−rj)

2 for all times
e ≥ rj , the release time of job j, and infinite otherwise.
More General Objectives. We can create much more exotic objectives: say, cje = (e −
rj)

2 for j ∈ [rj , dj ] and∞ otherwise would give squared flow time with a hard deadline,
or we could create blackout dates by setting some cje’s to∞. For many of these general
problems, we provide the first online algorithms with non-trivial competitive ratios.

1 In the sequel, whenever we use the word dual, we refer to the Lagrangian dual of the primal
convex program being considered.
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In Section 4 we apply our primal-dual approach to solving OnGAP fractionally, and
show that a natural greedy algorithm is αα-competitive.2 This immediately gives us
solutions for speed scaling scheduling problems with fractional sum objectives. To an-
alyze our algorithm for OnGAP, we show a dual solution has a particularly nice form,
and for our setting of the dual variables, is within αα of the primal solution. As an im-
mediate consequence, the corresponding online greedy algorithm is αα-competitive for
speed-scaling scheduling problems with any fractional sum scheduling objective. Re-
call that previously, competitive analyses were known only for linear sum scheduling
objectives, so this is a substantial improvement. For some speed-scaling problems, our
duality analysis is cleaner than the existing potential function analyses; e.g., compare
the αα-competitive analysis of the greedy Optimal Available (OA) algorithm for energy
minimization with deadline feasibility constraints given in [8] to our αα-competitive
analysis of our greedy algorithm. Lower bounds in [17,18,8] imply that no determinis-
tic online algorithm can be better than αα-competitive for OnGAP, and no deterministic
online algorithm can be better than αα-competitive for speed scaling scheduling to min-
imize energy with feasibility constraints. In Section 5, we make some further comments
about the application of these results to speed-scaling problems.

Finally in Section 6, we apply our primal-dual approach to the splittable routing
problem in a network of speed scalable routers. In this case, the worst-case settings of
the copies of the primal variables in the dual are not easy to reason about. To facilitate
this reasoning, we relax the dual problem in a novel way, by allowing the copies of the
primal variables in the dual to take on different values for different edges. To overcome
relaxing the flow-constraints, we alter the relaxed objective function (based on the edge
loads of our online algorithm!) to ensure that we can still recover enough dual value.
This allows us to show the online greedy algorithm is αα-competitive with respect to
the relaxed dual with the specified settings of the dual variables, and hence with respect
to optimal. This extends to unsplittable routings as well.

3 Related Work

An extensive survey/tutorial on the online primal dual technique for linear problems can
be found in [5]. A survey of the algorithmic power management literature in general,
and the speed-scaling literature in particular, can be found in [19]. Casting the speed-
scaling scheduling problems as a load balancing problem is natural in hindsight, but to
the best of our knowledge this has not been observed before. This reduction allows the
application of techniques from the load balancing literature to speed-scaling problems.
The version of OnGAP without assignment costs was studied by [17,18], where the
online greedy algorithm is shown to be Oα(1)-competitive. In their analysis the online
cost is bounded by an algebraic expression involving the product of the online cost
and the optimal cost, which is disentangled by use of the Cauchy-Schwartz inequality.
While this analysis shares some commonalities with both potential function analysis

2 In the full version, we show a related greedy algorithm is O(α)α-competitive for OnGAP
integrally (where each job has to go to a single machine). This does not imply anything useful
for the speed-scaling scheduling problems. On the other hand, one can use the underlying ideas
to convert the splittable energy-aware routing algorithm of Section 6 to unsplittable routings.
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and duality analysis, it is probably best considered a distinct technique. Upon some
reflection, one can see that their potential function technique can be used to obtain
an alternate analysis that achieves the same bounds as we achieve in this paper by
duality. Caragiannis [20] gives some refinements to the analysis in [17,18] for OnGAP
without assignment costs. An offline O(1)-approximation (independent of α) was given
by [21,22], via solving the convex program and rounding the solution in a correlated
fashion: such an result independent of α is impossible in the online setting. Finally,
offline poly-log-approximation algorithms for the virtual circuit routing problem, when
routers have a static power component, can be found in [23,4].

Works [24,25] show that various online algorithms are competitive, using potential
function analysis, for various scheduling problems with fixed speed processors and for
the �k norms of flow objective. The potential functions used in these analyses were
motivated by the desire to have an algebraic expression for the future costs for the
online algorithm, but required some ad-hoc features in order for the algebra to work
out. Despite efforts by the authors of these papers, it is not clear how to extend these
potential functions to work in a speed-scaling setting.

Independently and concurrently with this work, Anand, Garg and Kumar [26] ob-
tained results in a similar vein to the results here. Mostly notably, they showed how to
use nonlinear-duality to analyze a greedy algorithm for a multiprocessor speed-scaling
problem involving minimizing flow plus energy on unrelated machines. Additionally,
[26] showed how duality based analyses could be given for several scheduling algo-
rithms that were analyzed in the literature using potential functions. However, our re-
sults are somewhat different in spirit, with our emphasis being more on a principled
methodology for algorithm design and setting of the dual variables. For instance the
algorithm for the speed-scaling problem in [26] is not derived from the mathematical
programming formulation, and the emphasis is more on obtaining a “dual-fitting” anal-
ysis for (in some sense) pre-existing algorithms.

4 The Online Generalized Assignment Problem

In this section we consider the problem of Online Generalized Assignment Problem
(OnGAP). If xje denotes the extent to which job j is assigned on machine e, then this
problem can be expressed by the following mathematical program:

min
∑
e

(∑
j

�jexje

)α

+
∑
e

∑
j

cjexje (4.1)

subject to
∑
e

xje ≥ 1 j = 1, . . . , n

The dual of the primal relaxation is then

g(λ) = min
x�0

(∑
j

λj +
∑
e

(∑
j

�jexje

)α

+
∑
j,e

cjexje −
∑
j,e

λj xje

)
(4.2)

One can think of the dual problem as having the same instance as the primal, but where
jobs are allowed to be assigned to extents less than unit. This is compensated for in the
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objective function: in addition to the load cost
∑

e

(∑
j �jexje

)α as in the primal, a fixed
cost of λj is paid for each job j, and a payment (or negative cost) of λj − cje is obtained
for each unit of job j assigned. It is well known that each feasible value of the dual is a
lower bound to the optimal primal solution; this is weak duality [6].

Online Greedy Algorithm Description: Let δ be a constant that we will later set to
1

αα−1 . Now the algorithm works as follows when a new job j arrives: until a unit fraction
is scheduled, job j is scheduled on all machines for which the increase in the cost will
be the least, assuming that energy costs are discounted by a factor of δ. More formally,
the value of all the primal variables xje for all the machines e that minimize

δ · α · �je(
∑
i≤j

�iexie)
α−1 + cje (4.3)

are increased until all the work from job j is scheduled, i.e.,
∑

e xje = 1. Notice that
α · �je

(∑
i≤j �iexie

)α−1 is the rate at which the load cost is increasing for machine e,
and cje is the rate that assignment costs are increasing for machine e. In other words,
our algorithm fractionally assigns the job to the machines on which the overall objective
increases at the least rate. Furthermore, observe that if the algorithm begins assigning
the job to some machine e, it does not stop raising the primal variable xje until the job is
fully assigned3. By this monotonicity property, it is clear that all machines e for which
xje > 0 have the same value of the above derivative when j is fully assigned. Now, for
the purpose of analysis, we set the value λ̂j to be the rate of increase of the objective
value when we assigned the last infinitesimal portion of job j. More formally, if e is any
machine on which job j is run, i.e., if xje > 0, then

λ̂j := δ · α · �je
(∑

i≤j

�iexie

)α−1

+ cje (4.4)

Intuitively, λ̂j is a surrogate for the total increase in objective value due to our fractional
assignment of job j (we assign a total of 1 unit of job j, and λj is set to be the rate at
which objective value increases). Let x̃ denote the final value of the xje variables for
the online algorithm.

Algorithm Analysis. To establish the desired competitive ratio of O(αα), note that it is
sufficient (by weak duality) to show that g(λ̂) is at least 1

αα times the cost of the online
solution. To this end, let x̂ be the value of the minimizing x variables in g(λ̂), namely

x̂ = argmin
x�0

(∑
j

λ̂j +
∑
e

(∑
j

�jexje

)α

−
∑
j,e

(
λ̂j − cje

)
xje

)
Observe that the values x̂ could be very different from the values x̃, and indeed the next
few lemmas try to characterize these values. Lemma 1 notes that x̂ only has one job
ϕ(e) on each machine e, and Lemma 2 shows how to determine ϕ(e) and x̂ϕ(e)e. Then,
in Lemma 3, we show that a feasible choice for the job ϕ(e) is the latest arriving job
for which the online algorithm scheduled some bit of work on machine e; Let us denote
this latest job by ψ(e). Formally, ψ(e) = max{j s.t x̃je > 0}.

3 It may however increase xje and xje′ at different rates so as to balance the derivatives where
e and e′ are both machines which minimize equation 4.3
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Lemma 1. There is a minimizing solution x̂ such that if x̂je > 0, then x̂ie = 0 for i �= j.

Proof. Suppose for some machine e, there exist distinct jobs i and k such that x̂ie >

0 and x̂ke > 0. Then by the usual argument of either increasing or decreasing these
variables along the line that keeps their sum constant, we can keep the convex term
(
∑

j �jex̂je)
α term fixed and not increase the linear term

∑
j(λ̂j − cje) x̂je. This allows

us to either set x̂ie or x̂ke to zero without increasing the objective.

Lemma 2. Define ϕ(e) = argmaxj
(λ̂j−cje)

�je
. Then x̂ϕ(e)e = 1

�ϕ(e)e

(
λ̂ϕ(e)−cϕ(e)e

α�ϕ(e)e

)1/(α−1)

and x̂je = 0 for j �= ϕ(e). Moreover, the contribution of machine e towards g(λ̂) is ex-

actly (1− α)

(
λ̂ϕ(e)−cϕ(e)e

α�ϕ(e)e

)α/(α−1)

.

Proof. By Lemma 1 we know that in x̂ there is at most one job (say j, if any) run on
machine e. Then the contribution of this machine to the value of g(λ̂) is

(�jex̂je)
α − (λ̂j − cje)x̂je (4.5)

Since x̂ is a minimizer for g(λ̂), we know that the partial derivative of the above term
evaluates to zero. This gives α�je · (�jex̂je)

α−1 −
(
λ̂j − cje

)
= 0, or equivalently,

x̂je = 1
�je

(
λ̂j−cje
α�je

)1/(α−1)

. Substituting into this value of x̂je into equation (4.5), the

contribution of machine e towards the dual g(λ̂) is(
λ̂j − cje
α�je

)α/(α−1)

− (λ̂j − cje)

�je

(
λ̂j − cje
α�je

)1/(α−1)

= (1− α)

(
λ̂j − cje
α�je

)α/(α−1)

Hence, for each machine e, we want to choose that the job j that minimizes this expres-
sion, which is also the job j that maximizes the expression (λ̂j − cje)/�je since α > 1.
This is precisely the job ϕ(e) and the proof is hence complete.

Lemma 3. For all machines e, job ψ(e) is a feasible choice for ϕ(e).

Proof. The line of reasoning is the following:

ϕ(e) = argmax
j

(
λ̂j − cje

)
�je

= argmax
j

(
δ · α ·

(∑
i≤j

�jexie

)α−1)

= argmax
j

((∑
i≤j

�iexie

)α−1)
= ψ(e) .

The first equality is the definition of ϕ(e). For the second, observe that for any job k,

λ̂k ≤ δ · α · �ke(
∑
i≤k

�iexie)
α−1 + cke =⇒ λ̂k − cke

�ke
≤ δ α (

∑
i≤k

�iexie)
α−1 .

The above expression is monotone increasing in
∑

i≤k �iexie, the load due to jobs up to
and including k. Moreover, it is maximized by the last job assigned fractionally to e.
Since the last job is ψ(e), the last equality follows.
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Theorem 1. The online greedy algorithm is αα-competitive.

Proof. By weak duality it is sufficient to show that g(λ̂) ≥ ON/αα. Applying Lemma 2
to the expression for g(λ̂) (equation (4.2)), and using Lemma 3 to replace ϕ(e) by ψ(e),
we get that

g(λ̂) =

(∑
j

λ̂j +
∑
e

(1− α)

(
λ̂ψ(e) − cψ(e)e

α�ψ(e)e

)α/(α−1))
(4.6)

Now we consider only the first term
∑

j λ̂j and evaluate it.∑
j

λ̂j =
∑
j,e

λ̂j x̃je (4.7)

=
∑
e

∑
j

(
δ · α · �je

(∑
i≤j

�iex̃ie

)α−1

+ cje

)
x̃je (4.8)

= (δ · α)
∑
e

∑
j

�jex̃je

(∑
i≤j

�iex̃ie

)α−1

+
∑
j,e

x̃jecje (4.9)

≥ δ
∑
e

(∑
j

�jex̃je

)α

+
∑
j,e

x̃jecje (4.10)

If we consider the second term of (4.6), and plug in the value of λ̂ψ(e), it evaluates to
(1− α)δα/(α−1)

∑
e

(∑
j �jex̃je

)α. Putting the above two estimates together, we get

g(λ̂) ≥ δ
∑
e

(∑
j

�jex̃je

)α

+
∑
j,e

x̃jecje + (1− α)δα/(α−1)
∑
e

(∑
j

�jex̃je

)α

(4.11)

=

(
δ + (1− α)δα/(α−1)

)∑
e

(∑
j

x̃je�je

)α

+
∑
j,e

x̃jecje ≥ ON/αα (4.12)

The last step is by setting δ = 1/αα−1 which maximizes
(
δ + (1− α)δα/(α−1)

)
.

As observed, e.g., in [18], an O(α)α result is the best possible, even for the (fractional)
OnGAP problem without any assignment costs. In the full version, we show how to
obtain an O(α)α-competitive algorithm for integer solutions to OnGAP by a similar
greedy algorithm, and a similar but slightly more careful analysis.

5 Application to Speed Scaling

We now discuss the application of our results for OnGAP to some well-studied speed-
scaling problems. Normally one thinks of the online scheduling algorithm as having
two components: a job selection policy to determine the job to run, and a speed-scaling
policy to determine the processor speed. However, one gets a different view when
one thinks of the online scheduler as solving online the following mathematical pro-
gramming formulation of the problem (which is an instance of the fractional OnGAP
problem):

min
∑
t

(∑
j

pjxjt

)α
+

∑
j

∑
t

Cjt xjt
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subject to
∑
t

xjt ≥ 1 j = 1, . . . , n

Here the variables xjt specify how much work from job j is run at time t, and the
objective captures the fractional sum scheduling objective defined in the Introduction.
(Think of yjt := xjt · pj .) The arrival of a job j corresponds to the arrival of a con-
straint specifying that job j must be completed. Greedily raising the primal variables
corresponds to committing to complete the work of job j in the cheapest possible way,
given the previous commitments. This greedy algorithm has the advantage that, at the
release time of a job, it can commit to the client exactly the times that each portion of
the job will be run. One can certainly imagine situations when this information would
be useful to the client. The speed-scaling algorithms analyzed in the literature for to-
tal (possibly weighted) flow scheduling objectives, are some variation of the balancing
speed-scaling algorithm that sets the power equal to the (fractional) number/weight of
unfinished jobs; so for these prior algorithms, when a job is run generally depends on
jobs that arrive in the future.

As mentioned earlier, this algorithm for the fractional sum objective can be converted
to the integer scheduling objective by speeding up the processor by a (1 + ε) factor and
using known techniques [2,3]: the eventual competitive ratio is min(αα(1+ ε)α, 1

ε
). One

price we pay for the fact that we can handle any sum scheduling objective is that our
analysis is sub-optimal for specific problems, such as when the scheduling objective
is total flow plus energy. Notice that notion of integral solutions for OnGAP do not
apply for the integral versions of these energy minimization scheduling problems, since
the notions of integrality are different: integrality for OnGAP means each job must be
assigned to a single machine (i.e., a single time unit, when we cast OnGAP as an energy
minimization scheduling problem), which is different from the concept of integrality for
the scheduling objective.

6 Routing with Speed Scalable Routers

Our analysis will follow the same general approach as for OnGAP: we define dual
variables λ̂j for the demand pairs, but now the minimization problem (which is over
flow paths, and not just job assignments) is not so straight-forward: the different edges
on a path p might want to set f(p) to different values. So we do something seemingly
bad: we relax the dual to decouple the variables, and allow each (edge, path) pair to
choose its own “flow” value f(p, e). And which of these should we use as our surrogate
for f(p)? We use a convex combination

∑
e∈p he f(p, e)—where the multipliers h(e) are

chosen based on the primal loads(!), hence capturing the importance of edges.

6.1 The Algorithm and Analysis

We first consider the splittable flow version of the problem. Therefore, we can assume
without loss of generality that all flow requirements are unit, and all sources and sinks
are distinct (so we can associate a unique request j(p) with each path p). This will also
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allow us to order paths according to in when flow was sent along the paths. We now
model the problem as follows:

min
∑
e

(∑
j

∑
p
e:p∈Pj

f(p)

)α

subject to
∑
p∈Pj

f(p) ≥ 1 j = 1, . . . , n

where Pj is the set of all (sj , tj) paths, and f(p) is a non-negative real variable denoting
the amount of flow routed on the path p. In this case, the dual function is:

g(λ) = min
f(p)

(∑
j

λj +
∑
e

(∑
j

∑
p
e:p∈Pj

f(p)

)α

−
∑

j,p∈Pj

λjf(p)

)
One can think of the dual as a routing problem with the same instance, but without the
constraints that at least a unit of flow must be routed for each request. In the objective,
in addition to energy costs, a fixed cost of λj is paid for each request j, and a payment
of λj is received for each unit of flow routed from sj to tj .

Description of the Online Greedy Algorithm: For request j, flow is continuously
routed along the paths that will increase costs the least until enough flow is routed
to satisfy the request. That is, flow is routed along all (sj , tj) paths p that minimize∑

e∈p α ·
(∑

q≤p:q
e f(q)
)α−1

. For analysis purposes, after the flow for request j is

routed, we define (where δ is a constant later set to 1
αα−1 ):

λ̂j = αδ

(∑
e∈p

∑
q≤p:q
e

f(q)

)α−1

where p is any path along which flow for request j was routed.

The Analysis: Unfortunately, unlike the previous section for load balancing, it is not so
clear how to compute the dual g(λ̂) or its minimizer since the variables cannot be nicely
decoupled as we did there (per machine). In order to circumvent this difficulty, we con-
sider the following relaxed function ĝ(λ̂, h), which does not enforce the constraint that
flow must be routed along paths. This enables us to decouple variables and then argue
about the objective value. Indeed, let f̃(p) be the final flow on path p for the routing
produced by the online algorithm. Let h(e) = α

∑
p
e f̃(p)

α−1 be the incremental cost
of routing additional flow along edge e, and h(p) =

∑
e∈p h(e) be the incremental cost

of routing additional flow along path p. We then define:

ĝ(λ̂, h) = min
f(p,e)

(∑
j

λ̂j +
∑
e

(∑
j

∑
p
e:p∈Pj

f(p, e)

)α

−
∑
j

λ̂j

∑
P∈Pj

∑
e∈p

h(e)

h(p)
f(p, e)

)
Conceptually, f(p, e) can be viewed as the load placed on edge e by request j(p). In
ĝ(λ̂, h), the scheduler has the option of increasing the load on individual edges e ∈ p ∈
Pj , but the income from edge e will be a factor of h(e)

h(p)
less than the income achieved

in g(λ̂). In Lemma 4 we prove that ĝ(λ̂, h) is a lower bound for g(λ̂). Lemma 5 shows
how the minimizer and value of ĝ(λ̂, h) can be computed, and Lemma 6 shows how to
bound some of the dual variables in terms of the final online primal solution.
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Lemma 4. For the above setting of h(·), ĝ(λ̂, h) ≤ g(λ̂).

Proof. We show that there is a feasible value of ĝ(λ̂, h) that is less than g(λ̂). Let the
value of f(p, e) in ĝ(λ̂, h) be the same as the value of f(p) in g(λ̂). Plugging these values
for f(p, e) into the expression for ĝ(λ̂, h), and simplifying, we get:

ĝ(λ̂, h) ≤
∑
j

λ̂j +
∑
e

(∑
j

∑
p
e:p∈Pj

f(p)

)α

−
∑
j

λ̂j

∑
P∈Pj

f(p)
∑
e∈p

h(e)

h(p)

=
∑
j

λ̂j +
∑
e

(∑
j

∑
p
e:p∈Pj

f(p)

)α

−
∑
j

λ̂j

∑
P∈Pj

f(p) = g(λ̂)

The first equality holds by the definitions of h(e) and h(p), and the second equality
holds by the optimality of f(p).

Lemma 5. There is a minimizer f̂ of ĝ(λ̂, h) s.t for any edge e, there is a single path

p(e) such that f̂(p, e) is positive, and f̂(p(e), e) =

(
λ̂j(p(e))h(e)

α·h(p(e))

)1/(α−1)

.

Lemma 6. λ̂j(p(e)) ≤ δ · h(p(e))

Proof. λ̂j(p(e)) is δ times the rate at which the energy cost was increasing for the online
algorithm when it routed the last bit of flow for request j(p(e)). h(p(e)) is the rate of
at which the energy cost would increase for the online algorithm if additional flow was
pushed along p(e) after the last request was satisfied. If p(e) was a path on which the
online algorithm routed flow, then the result follows from the fact the online algorithm
never decreases the flow on any edge. If p(e) was not a path on which the online algo-
rithm routed flow, then the lemma follows from the fact that, when the online algorithm
was routing flow for request j(p(e)), p(e) was more costly than the selected paths (and
this cost can’t decrease subsequently, by the monotonicity of the online algorithm).

Theorem 2. The online greedy algorithm is αα competitive.

Proof. We will show that ĝ(λ̂, h) is at least ON/αα, which is sufficient since ĝ(λ̂, h) is
a lower bound to g(λ̂) by Lemma 4, and since g(λ̂) is a lower bound to optimal.

ĝ(λ̂, h) = min
f(p,e)

(∑
j

λ̂j +
∑
e

(∑
j

∑
p
e:p∈Pj

f(p, e)

)α

−
∑
j

λ̂j

∑
P∈Pj

∑
e∈p

h(e)

h(p)
f(p, e)

)
(6.13)

=
∑
j

λ̂j − (α− 1)
∑
e

(
λ̂j(p(e))h(e)

α · h(p(e))

)α/(α−1)

(6.14)

≥
∑
j

λ̂j − (α− 1)
∑
e

(
δ · h(e)

α

)α/(α−1)

(6.15)

=
∑
j

λ̂j − (α− 1)δα/(α−1)
∑
e

(∑
p
e

f̃(p)

)α

(6.16)
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=
∑
j

λ̂j

∑
p∈Pj

f̃(p)− (α− 1)δα/(α−1)
∑
e

(∑
p
e

f̃(p)

)α

(6.17)

= δα
∑
j

∑
p∈Pj

f̃(p)

(∑
e∈p

∑
q≤p:q
e

f̃(q)

)α−1

− (α− 1)δα/(α−1)
∑
e

(∑
p
e

f̃(p)

)α

(6.18)

≥ δ
∑
e

(∑
p
e

f̃(p)

)α

− (α− 1)δα/(α−1)
∑
e

(∑
p
e

f̃(p)

)α

(6.19)

=
1

αα

∑
e

(∑
p
e

f̃(p)

)α

≥ ON/αα (6.20)

The equality in line (6.13) is the definition of ĝ(λ̂, h). The equality in line (6.14) follows
from Lemma 5. The inequality in line (6.15) follows from Lemma 6. The equality in
line (6.16) follows from the definition of h(e). The equality in line (6.17) follows from
the feasibility of f̃ . The equality in line (6.18) follows from the definition of λ̂. The
equality in line (6.19) follows from the definition of δ.

7 Conclusion

The online primal-dual technique (surveyed in [5]) has proven to be a widely and sys-
tematically applicable method to analyze online algorithms for problems expressible
by linear programs. This paper develops an analogous technique to analyze online al-
gorithms for problems expressible by nonlinear programs. The main difference is that
in the nonlinear setting one can not disentangle the objective and the constraints in
the dual, and hence the arguments for the dual have a somewhat different feel to them
than in the linear setting. We apply this technique to several natural nonlinear cover-
ing problems, most notably obtaining competitive analysis for greedy algorithms for
uniprocessor speed-scaling problems with arbitrary sum scheduling objectives that re-
searchers were not previously able to analyze using the prevailing potential function
based analysis techniques.
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Abstract. We study a temperature-aware scheduling problem aiming in
maximizing the throughput of a set of unit-length jobs, each one having
its own heat contribution, on a single processor operating under a strict
temperature threshold. Following a simplified model for the processor’s
thermal behavior, proposed by Chrobak et al. [9], we analyze the ap-
proximation factor of the natural CoolestFirst scheduling algorithm
for jobs with common release dates and deadlines. We first prove a k

k+1

factor, where k depends on a partition of the jobs according to their heat
contributions. Next, we refine our partition and provide a linear program
that shows a lower bound of 0.72 on the approximation factor.

1 Introduction

Motivated by technical, financial and ecological incentives the issue of power and
thermal management in computing systems are nowadays a critical research topic
not only in the hardware and systems design, but also in the operating systems
and applications levels. Focusing on the operating systems level, these issues are
addressed as new challenging scheduling problems where the goal is to optimize
the energy consumption or/and the processors temperature simultaneously with
some other QoS measure (e.g., makespan, throughput, response time). A large
body of work on these dual objective scheduling problems is based on the speed
scaling technology, incorporated in today processors, combined with power down
strategies. The reader is referred to [1,2,10] for excellent reviews of this work.

In this paper we focus on temperature-aware scheduling problems that aim to
model the thermal and cooling behavior of processors. The temperature related
objective of these problems is to keep the processors’ temperature low by either
minimizing its maximum or by avoiding to exceed a given threshold; the violation
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of such a threshold reduces the lifetime or even damages the processors. An
approach to this direction is based on the Newton’s law of cooling and uses speed
scaling to decrease the processors temperature [5,3]. In another approach [11]
the behavior of a processor is modeled as a thermal RC circuit. Here we study
the simplified model proposed by Chrobak et al. in [9].

In fact, we consider a set of unit-length jobs, each one having its own heat
contribution, to be scheduled on a single processor operating under a strict tem-
perature threshold. Following [9] the temperature of a processor after executing
a job becomes equal to the average of its temperature T , when started executing
the current job, and the heat contribution h of this job, that is T+h

2 , where 2 is
the processor’s cooling factor.

More general models have been studied by Birks et al., with different cool-
ing factors and different processing times or objectives [6,8,7]. Recently, Bampis
et al. [4] proposed approximation results for the multi-processor makespan min-
imization problem, under the same model, as well as for the problem of mini-
mizing the maximum temperature when the threshold constraint is removed.

Since the application we have in mind is the job scheduler at the operating
system level, it seems important to keep the computational overhead for the
scheduler low, since it could deteriorate the performance and generate additional
heating. Therefore we are particular interested in simple algorithms, which at
every time slot, schedule the job with highest priority among the jobs available
for execution. The priority could depend on the heat contribution of the job, as
well as on its deadline.

In [9] the authors study the problem of maximizing the throughput, that is
the number of jobs finishing their execution before their deadlines. They prove
that it is strongly NP-hard, even for jobs with common release dates and dead-
lines. Moreover, for the online case with arbitrary release dates and deadlines,
they prove that a large class of algorithms are 1/2-competitive and that no de-
terministic online algorithm achieves a better factor. This class consists of all
algorithms that would never schedule a job j, when another job is available
which has smaller deadline or heat contribution than j. This class includes for
example the CoolestFirst and EarliestDeadlineFirst algorithms.

This paper concerns the maximization of the throughput in the offline setting.
For this purpose we consider a simple model, where all jobs are available at time
zero and have a common deadline. For this setting the above mentioned class of
algorithms reduces to the unique CoolestFirst algorithm. Its behavior is quite
simple: at any time slot, if the current temperature is cool enough to allow a job
to be scheduled, then it schedules the one with the smallest heat contribution
— the coolest job — otherwise the processor remains idle in that slot. As the
goal is to maximize the number of jobs before the common deadline, it seems a
fairly reasonable strategy to focus on the coolest jobs. However, the algorithm
schedules these jobs in order of increasing heat contribution, while an optimal
schedule might follow a different order, allowing a bigger number of jobs to be
executed.
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We analyze the approximation factor of CoolestFirst using a rounding
scheme. The heat contribution scale is divided into classes and the heat con-
tribution of each is rounded according to these classes, to make it harder for
the algorithm and more easy for the optimum schedule. The main advantage of
this technique is that the rounded instances contain now only a finite number
of different jobs, and permits to describe the optimum schedule. The main con-
tribution of this paper is not this rounding procedure, which is rather standard,
but the technical lemmas behind it.

On a rounded instance the schedule produced by CoolestFirst will be par-
titioned according to the heat contributions of the jobs. Now, in these time
intervals the schedule consists only of jobs of some heat contribution — say h
— and some idle slots. Clearly, for the analysis we are interested in the propor-
tion ρ of non-idle slots among the time interval and its relation to h. Our main
contribution is a theorem stating roughly that for every proportion ρ, there is a
heat contribution hρ such that CoolestFirst produces a schedule with density
ρ when the instance consists only of jobs with heat contribution hρ. In addition,
we show that the values hρ are increasing with ρ, as one would expect.

The paper is organized as follows. After a formal introduction of the notations
used in the paper we propose, in Section 3, a first analysis of the CoolestFirst

algorithm using a rough rounding scheme, just to explain the general technique.
Then, in Section 4, we refine the analysis using a linear programming approach,
and finally, in Section 5, we show our key lemma relating densities to heat
contributions.

2 Notation and Preliminaries

We consider a set J = {1, 2, . . . , n} of n unit-length jobs to be scheduled in
a single processor, each one having a heat contribution hj ∈ Q+. All jobs are
considered to be released at time 0 and have a common deadline D. Jobs are
executed in some time interval of the form [t− 1, t), which we call the time slot
t, for some positive integer t.

The processor’s thermal behavior obeys the following rule: At time 0 its tem-
perature is T0; when a job j is executed in time slot t, the processor’s temperature
at time t is equal to Tt =

Tt−1+hj

2 , where 2 is the processor’s cooling factor and
Tt−1 its temperature at time t− 1. The processor’s temperature is not allowed
to exceed a given thermal threshold, which we assume to be 1 by normalization.
Therefore, w.l.o.g. we assume that the heat contribution of each job belongs to
the interval [0, 2]. This means that at some time slot t, we can schedule only jobs
of heat contribution h such that (Tt−1 + h)/2 ≤ 1. Idle slots can be treated as
executing jobs of heat contribution 0, that is, after an idle slot the temperature
is divided by 2. For the sake of simplicity, we refer to a job of heat contribution
0 ≤ h ≤ 2 as an h-job. Moreover we say that this job is hot if h > 1 and cool if
h ≤ 1.

Our goal is maximize the throughput, which is the number of jobs that com-
plete their execution before their common deadline D and, in fact, we analyze
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the approximation factor of the natural CoolestFirst greedy algorithm: at
any time schedule the job with the smallest heat contribution, if the current
temperature permits it, otherwise remain idle in that time slot.

As already mentioned, in our analysis we will partition the schedule produced
by CoolestFirst into time intervals containing only jobs of identical heat
contributions, scheduled as soon as it is admissible. Therefore, it is useful to
define the infinite schedule G(h, T ) to be the schedule of jobs of heat contribution
h with initial temperature T0 = T . For notational convenience we describe the
schedule G(h, T ) as a binary sequence ω = (w0, w1, . . . , wt) ∈ {0, 1}�, t ∈ N,
where wt = 0 if time slot t is idle and wt = 1 otherwise (see Figure 1 for an
example). The critical part of our analysis is based on the concept of density of a
schedule G(h, T ), which is the proportion of 1’s in the infinite sequence G(h, T ).

.846.. .423.. .808..1 1

hidle

.5

h hidle idle hh idleh etc.

Fig. 1. Example: a prefix of the infinite schedule generated by h = 31/26-jobs, obtain-
ing G(h) = (01011)∗ for a density of 3/5

The following proposition analyses the sensibility of the optimal schedule to
the initial temperature. According to it we can assume w.l.o.g. that T0 = 1 and
we write G(h) as a shortcut for G(h, 1).

Proposition 1. For the optimum throughput OPTT when the initial tempera-
ture is T , 0 ≤ T < 1, it holds that OPT1 ≤ OPTT ≤ OPT1 + 1.

Proof. First observe that any schedule which is feasible with some initial tem-
perature is also feasible for any cooler initial temperature. This implies the first
inequality.

For the second inequality, let S be a schedule with throughput OPTT . If
S is also feasible when the initial temperature is 1, then we have OPTT =
OPT1. Otherwise there is a time t, where S schedules an h-job, which cannot
be scheduled with initial temperature 1. Therefore h > 1. Let t be minimal and
let S′ be a schedule that is identical at all time points with S, except that it is
idle at t. We claim that S′ is feasible when the initial temperature is 1, which
implies OPTT ≤ OPT1 + 1.

By choice of t, S′ is feasible up to time t. Now by h > 1, S has a temperature
greater than 0.5 at t + 1. Since S′ is idle at time t, it has a temperature not
more than 0.5 at t+ 1. The first observation from this proof applies again, and
implies that S′ is feasible from time t+ 1 on as well. 
�
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3 A First Analysis

In this section we propose a rough lower bound on the approximation factor of
the AlgorithmCoolestFirst. This is done by performing a rounding procedure,
based on a partition of all possible jobs’ heat contribution values into intervals
that are geometrically decreasing as the heat contribution approaches the hottest
job of the instance.

For every i ∈ N we define the number hi := 2−21−i and let H := {hi : i ∈ N}.
Then, the hot jobs can be divided into classes, where the i-th job class, i ≥ 1
consists of the interval (hi, hi+1] (see Figure 2). Extending our definition, we call
the [0, 1] interval as the 0-th class, consisting of all cool jobs.

0 1 1.5 1.75 1.825

0-th 1-st 2-nd 3-rd · · ·Class

Heat Contribition 2

Fig. 2. A partition of scheduled jobs into classes

The next lemma describes an optimal schedule for instances with heat con-
tributions from H.

Lemma 1. Let I be a set of jobs of heat contributions from H. Then, the fol-
lowing steps produce an optimal schedule.

1. Run CoolestFirst on all jobs from H\{h0}.
2. Schedule greedily the 0-jobs in the idle time slots left by the previous step.

Proof. We prove this by an exchange argument. Fix some optimal schedule. Let
t, t+1 be two time slots such that the schedule is either idle or executes a 0-job at
t and executes an h-job, with h > 0, at time t+1. Suppose that the temperature
at time slot t is cool enough to execute h and then exchange the two time slots.
This can lower the temperature at t + 1 by h/4 and will preserve feasibility of
the schedule. In such a schedule all h-jobs, having h > 0, are scheduled earliest
possible, and in an arbitrary order. In particular any hi-job, for i ≥ 1, is preceded
by exactly i−1 time slots, being idle or scheduling a 0-job, and the temperature
right after their execution is exactly 1.

Therefore, every scheduled hi-jobs form a block of i consecutive time slots, and
these blocks can be reordered freely, while preserving feasibility of the schedule.
This completes the proof. 
�

The previous lemma permits an output sensitive analysis of the approximation
factor of CoolestFirst.

Theorem 1. Let k be the largest integer such that CoolestFirst schedules
some hot job from the k-th class on some instance. Then, the approximation
factor of CoolestFirst on this instance is at least k/(k + 1).
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Proof. Let S be the schedule produced by CoolestFirst on the instance. Let
ni be the number of jobs in S from the i-th class with 0 ≤ i ≤ k. By this
notation the throughput obtained by the algorithm is at most

∑k
i=0 ni. Note

that by definition of the algorithm all jobs not scheduled by CoolestFirst

have heat contribution more than hk.
In order to provide an upper bound for the optimal schedule, we round the

jobs down: For i = 0, . . . , k every job from the i-th class is rounded down to hi

and all remaining jobs are rounded down to hk. Since by replacing jobs by cooler
jobs in a schedule, it preserves its feasibility, this does not decrease the optimal
throughput.

What is the optimal throughput of the rounded instance? Since all jobs now
belong to H, we can apply Lemma 1. Therefore, the optimal schedule can be
produced by first applying CoolestFirst on all hot jobs, resulting in a schedule
S′ in which later the n0 0-jobs are filled. Then S′ consists of two parts. The first
part contains all the jobs scheduled by S and ranges over some interval [0, v],
while the second part consists of hk-jobs, scheduled in the remaining interval
[v + 1, D]. In order to upper bound the jobs of the second part, we need to
bound D − v.

The schedule S is partitioned into intervals of the form [ti, ui] for every i: it
is defined as the interval with minimal ti and minimal ui such that it contains
exactly all the i-th class jobs scheduled in S and no other job. The last interval
of this form might not end at time D, but then it is followed only by idle time
slots.

Clearly, ui − ti ≤ ni(i+ 1). The rounded version of these ni jobs use at least
nii time slots in S′ including the leading idle time slots. From this we deduce
that

D − v ≤ n0 +

k−1∑
i=1

[ni(i + 1)− nii] + nk(k + 1)

Therefore, D− v ≤
∑k

i=0 ni + knk. In the interval [v + 1, D] at most (D − v)/k
hk-jobs are scheduled in S′. Hence, the total number of jobs scheduled in S′ is
at most

k∑
i=0

ni +
1

k

k∑
i=0

ni =
k + 1

k

k∑
i=0

ni.

This concludes the k
k+1 -approximation factor of CoolestFirst. 
�

The above analysis is not tight. Consider the instance consisting of two 0-jobs
and two 1.5-jobs with common deadline 4. The optimal schedule contains all four
jobs alternating between their heat contributions, while CoolestFirst ends
with an idle slot, and therefore has factor 3/4. Theorem 1 gives approximation
factor 1/2, creating the need for a refined analysis.

4 A Finer Analysis

To refine the analysis of the previous section, we want to partition the heat
contribution scale at heat contributions that are not necessarily from H.
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First, note that the output of CoolestFirst for a rounded instance (as the
one in Theorem 1) results in a schedule that can be expressed as the concate-
nation of prefixes of schedules G(h), one for each different h value. In fact, it
consists of blocks of jobs with the same heat contribution where every block has
some density ρh. Recall that a schedule G(h) is formulated as a binary sequence
(w0, w1, . . . , wt−1), wt ∈ {0, 1}�, where a job is executed at time t− 1 if wt = 1,
otherwise t is an idle time slot.

As mentioned in the introduction, an important measure of a schedule G(h)
is its density, representing the proportion of 1’s in the infinite word G(h). The
following theorem provides a relation between the density of G(h) and the heat
contribution h.

Theorem 2. For every ρ ∈ Q ∩ [0, 1] there is a heat contribution hρ ∈ [0, 2]
such that the following property holds: For every integer �, the �-length prefix
{w0, w1, . . . , w	} of G(hρ) satisfies

�� · ρ� ≤
	∑

t=1

wt ≤ �� · ρ�.

Moreover for ρ < ρ′ we have hρ > hρ′ .

Before actually proving this theorem, which is done in Section 5, let’s see how
it can help to improve the analysis of the previous section.

Let R = {ρ0, ρ1, . . . , ρl}, where ρi ∈ Q ∩ [0, 1], i = 0, 1, . . . l, be a set of a
constant number of densities with 1 = ρ0 > ρ1 . . . > ρl > 0. These densities
partition the interval [0, 1]. By Theorem 2 the set R defines a sequence of heat
contributions 1 = hρ0 < . . . < hρl

. They partition the hot jobs further into
the intervals (hρ0 , hρ1 ], . . . , (hρl−1

, hρl
], (hρl

, 2]. Again we want to analyze the
approximation factor of CoolestFirst in the case that the algorithm schedules
at least some job of heat contribution at least hρl−1

. For an arbitrary instance,
let xi, 0 ≤ i ≤ l, be the number of jobs with heat contribution from the interval
(hρi−1 , hρi ].

We proceed in a similar manner as in the previous section, but we cannot
simply round for every interval its jobs to its lower bound, because we don’t
know any good upper bound on the number of jobs in the optimal schedule.
Instead for every ρj , j = 1, 2, . . . , l there is a rough upper bound, based in the
following rounding. Every cool job is rounded to a 0-job, every hot job of heat
contribution less or equal than hρj−1 is rounded to a 1-job, and all the remaining
jobs are rounded to hρj−1 -jobs. This permits us to apply the following lemma.

Lemma 2. Consider an instance where all jobs have a heat contribution 0, 1
or h and can all be completed before the deadline D. Then, there is an optimal
schedule that is produced by the following steps.

1. Run CoolestFirst on the 1- and h-jobs.
2. Schedule greedily the 0-jobs in the time slots left idle by the previous step.
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The proof uses the same exchange argument used to show Lemma 1 and is
omitted.

Now, by using Lemma 2 for the rounded instance, we have the inequality

∀j = 1, 2, . . . , l − 1, l :

j−1∑
i=1

xi +

l∑
i=j

xi
ρj−1

� D. (1)

With the previous statements in mind we can analyse the performance of
CoolestFirst based on a rounding scheme using densities rather than heat
contributions.

Theorem 3. Fix an arbitrary positive integer constant l. Suppose that on some
instance, the last job executed by CoolestFirst has heat contribution at least
hρ, for some density ρ ≥ (

√
l − 1)/(l − 1). Then, the approximation factor of

CoolestFirst is at least

l − 1

l
− l− 2

l
ρ+

l − 1

l
ρ2

up to an additive term of 2lρ.

Proof. Let I be an arbitrary instance. In order to lower bound the approximation
factor of CoolestFirst we round the jobs to lower density jobs for the algo-
rithm and to higher densitity jobs for the optimal schedule as described before.
For this purpose we define the set of densities R = {ρ0, ρ1, . . . , ρl} with

ρi := 1− 1− ρ

l
i,

for i = 0, . . . , l. We consider the following linear program.

minimize

l−1∑
i=0

xi + (D − v) ρ

subject to

l−1∑
i=0

xi/ρi − v = 0 (a)

D − v � 0 (b)

D −
l∑

i=0

xi � 0 (c)

D −
j−1∑
i=1

xi −
l∑

i=j

xi
ρj−1

� 0 ∀j = 1, 2 . . . , l (yj)

l∑
i=0

xi = 1 (e)

x0, . . . , xl, v,D ≥ 0
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The first part of the proof consists in showing that the optimum value of this
linear program lower bounds the asymptotic approximation of CoolestFirst.

First we can assume w.l.o.g. that the optimal schedule contains all jobs and
only jobs not hotter than hρ, and in addition has makespan exactly the deadline.

Let D̄ be the deadline of instance I and x̄0, x̄1, . . . , x̄l ∈ N be the number of
jobs in I belonging to each of the jobs’ intervals defined by R. Namely, x̄0 is the
number of cool jobs, while x̄i is the number of jobs belonging to (hρi−1 , hρi ] for
i = 1, . . . , l. Now for the CoolestFirst we round the heat contribution of each
job to the higher value of the interval it belongs to. We call v̄ the last time the
algorithm schedules some job from [0, hρl−1

] in this rounded instance. Then, by
Theorem 2 we have the equality

v̄ = x̄0 +

⌈
l−1∑
i=1

x̄i
ρi

⌉
.

and the number of jobs schedule by CoolestFirst are

l−1∑
i=0

x̄i +
⌊
(D̄ − v̄)ρ

⌋
. (2)

Clearly v̄ ≤ D̄. Also since we assumed that the optimum schedule contains all
jobs we have

l∑
i=0

x̄i ≤ D̄.

The next step in our proof is to round the jobs for the optimum schedule. For
every j = 1, . . . , l we use the rounding mentioned earlier. So by Lemma 2 we
have

j−1∑
i=1

x̄i +

⎡⎢⎢⎢
l∑

i=j

x̄i
ρj−1

⎤⎥⎥⎥ � D̄.

Now the approximation factor of CoolestFirst is upper bounded by the fac-
tor between (2) and the sum

∑
x̄i. Removing the integer roundings in the

(in)equalities above could result in a decrease of at most 2l of the difference
D − v. This means that the expression (2) would be decreased by at most 2lρ.

The last step in our proof consists in relaxing the integrality constraint of
x̄0, . . . , x̄l, v̄, D̄, and normalizing the sum

∑l
i=0 xi to 1. So let x0, . . . , xl, v,D be

the result of dividing the above numbers respectively by
∑l

i=0 x̄i. Clearly, all the
inequalities on the linear program are satisfied by these values, and the objective
value lower bounds the approximation factor of CoolestFirst. This concludes
the first part of our proof.

It remains to lower bound the objective value of this linear program. This will
be done by providing a specific solution to the dual linear program. The dual of
the previous linear program is



196 C. Dürr et al.

maximize e

subject to e− c+ a ≤ 1 (x0)

e− c+ a/ρi −
i∑

j=1

yj/ρj−1 −
l∑

j=i+1

yj ≤ 1 ∀i = 1, . . . , l − 1 (xi)

e− c−
l∑

j=1

yj/ρl−1 ≤ 0 (xl)

b+ c+

l∑
j=1

yj ≤ ρ (D)

b+ a ≥ ρ (v)

y0, . . . , yl, b, c ≥ 0, e, a ∈ R

It is easy to verify that the following values provide a solution to the dual linear
program, in particular the lower bound on ρ of the statement ensure that c ≥ 0.

a = ρ

b = 0

c = e+ ρ− 1

yj = 0 ∀j = 1, . . . , l− 1

yl = 1− e

e =
l − 1

l
− l − 2

l
ρ+

l − 1

l
ρ2.

This completes the proof of the theorem. 
�

By using the first derivative of e in ρ, we can show that minimum is obtained at

ρ =
l − 2

2l − 2

and has value

emin =
3l− 4

4l− 4
.

For example, for l = 10 this would show a lower bound on asymptotic approxi-
mation factor of CoolestFirst of 0.722 . . .. Note that we cannot use the limit
of emin for l to be +∞, in order to provide a bound on the asymptotic approxi-
mation factor, because the additive constant is increasing with l.

5 Discrete Lines

In this section we investigate the relation between the density and the heat
contribution of a set of h-jobs, aiming to provide a detailed proof of Theorem 2.
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The first of the following two procedures, called CoolestFirst(h) for the
sake of uniformity, produces a binary sequence for a given value of h. In fact it
produces only the part of the sequence that spans between two consecutive tem-
peratures equal to one. For notational convenience, we force CoolestFirst(h)
to return the digits of ω in reverse order i.e., (wt−1, wt−2, . . . , w0). However, a
sequence ω produced by the CoolestFirst(h), seems to be very similar with a
sequence that corresponds to the discretization of a line with rational slope and
zero offset (see Figure 3).

0 0
1 0

1

0 0
1 0

1

Fig. 3. A discrete line with (slope, offset)= ( 2
3
, 0)

The procedure Staircase(p, q), shown below, produces the reverse of such
a sequence for a slope equal to p

q−p , where p, q are considered to be co-prime
integers.

Algorithm. Two procedures that produce a binary sequence

1: CoolestFirst(h)
2: T = 1;
3: t = 0;
4: repeat
5: if (T + h)/2 > 1 then
6: wt = 0;
7: T = T/2
8: else
9: wt = 1;
10: T = (T + h)/2

11: t = t+ 1
12: until T = 1
13: return ω = (wt−1, wt−2, . . . , w0)

1: Staircase(p, q)
2: y = 0;
3: t = 0;
4: repeat
5: if y < p/(q − p) then
6: at = 1;
7: y = y + 1
8: else
9: at = 0;
10: y = y − p/(q − p)

11: t = t+ 1
12: until y = 0
13: return α = (a0, a1, . . . , at−1)

Suppose now that q equals the length of ω, i.e., Tq·k = 1, k ∈ N. Then,
the density of the schedule produced will be equal to ρh =

∑
t wt/q. Let also

int(ω) =
∑q−1

t=0 wt2
t be the decimal expansion of ω.
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The following proposition establishes a very interesting (monotone) relation
between the heat contribution h, the sequence ω and the density ρh of a schedule.

Proposition 2. For a heat contribution h it holds that h = 2q−1
int(ω) .

Proof. During the execution of CoolestFirst(h), the digits of the sequence
ω are produced in the order w0, w1, . . . , wq−1 and span between temperatures

T0 = 1 and Tq = 1. It holds that Tq =
T0+h

∑q−1
t=0 wt2

t

2q and hence, h = 2q−1
int(ω) . 
�

We shall prove that for a given density p
q the procedureCollestFirst(h), for

a heat contribution h = 2q−1
int(α) , produces the same sequence with Staircase(p, q),

i.e., ω = α. The following proposition summarizes the properties of the sequence
α.

Proposition 3. The sequence α produced by Staircase(p, q) starts with a0 =
1, contains exactly p ones, has length equal to q, i.e., α = (a0, a1, . . . , aq−1),
finishes with aq−1 = 0 and it is non-periodic.

Proof. Algorithm Staircase(p, q) starts with y = 0 and, hence, a0 = 1. During
its execution the value of the variable y is bounded by 0 ≤ y < 1 + p

q−p , that

is 0 ≤ y·(q−p)
q < 1. Moreover, each step t = 0, 1, 2, ... of the procedure starts

with y = � − (t−	)·p
q−p = 	·q−t·p

q−p , where � is the number of ones produced so far.

Hence, when the t starts we have � = p·t
q + y·(q−p)

q and since � is an integer and

y·(q−p)
q < 1, it holds that � =

⌈
p·t
q

⌉
+
⌊
y·(q−p)

q

⌋
=
⌈
p·t
q

⌉
.

When step (q − 1) starts we have � =
⌈
p·(q−1)

q

⌉
= p. Hence, this step starts

with y = p·q−(q−1)·p
q−p = p

q−p and the procedure sets aq−1 = 0, reduces y to 0 and
stops after having executed q steps. Therefore, α contains exactly p ones, has
length equal to q, i.e., α = (a0, a1, . . . , aq−1), and finishes with aq−1 = 0.

As p, q are co-primes, there is no integer k > 1 such that q can be divided
to k groups (periods), each one having p

k ones and q−p
k zeros. Therefore, α is

non-periodic. 
�

We fix now αk = (ak0 , a
k
1 . . . , a

k
q−1), 0 ≤ k ≤ q − 1, to be the k-th left circular

shift of α, with α0 = α. The next proposition follows directly by the definition
of the circular shifts and the non-periodicity of α.

Proposition 4. For two circular shifts, αk, αk′
, k �= k′ mod q of α, it holds that

(i) akt = ak
′

(t+k−k′) mod q, t = 0, 1, . . . , q − 1.

(ii) αk �= αk′
.

Let us denote the lexicographic relation between two binary sequences by !. Let
also 1αk = (1, ak0 , a

k
1 . . . , a

k
q−1) and α1 = (a0, a1, . . . , aq−1, 1).

The following proposition gives two useful relations between the output α of
the Algorithm Staircase(p, q) and its circular shifts.



Approximating the Throughput by Coolest First Scheduling 199

Proposition 5. For each k, 1 ≤ k ≤ q − 1, it holds that
(i) α ! αk.
(ii) If ak0 = 0, then 1αk ! α1.

Proof. Let yk, 0 < k ≤ q − 1, be the intermediate values of y at the beginning
of the step k of Algorithm Staircase(p, q). First, we consider the procedure
Staircase(p, q) initiated not by y = 0, but by one of those intermediate values,
say y = yk. Then, if the procedure is allowed to iterate until y becomes again
yk, it will produce again a sequence of length q. In fact, this sequence will be the
k-th circular shift of α, as the procedure in the first k steps, will produce the
last q − k − 1 digits of α and in the next k + 1 steps the first k + 1 digits of α.
Next, we claim that if yk < yk′ , k �= k′, then αk ! αk′

. To see this assume, by
contradiction, that yk < yk′ and αk " αk′

and let u be the minimum index, such
that aku �= ak

′
u and ak

′
u = 1. As aki = ak

′
i , 0 ≤ i ≤ u−1 it follows that the difference

of the y values, after those first u − 1 steps, of the two runs of the procedure
initiated with yk and yk′ , is equal to yk− yk′ . At step u, the procedure produces
a aku = 0 (for yk) and a

k′
u = 1 (for yk′ ). Hence, this step starts with y ≥ p

q−p and

y′ < p
q−p , respectively. However, y − y′ = yk − yk′ < 0, a contradiction.

For the point (i) of the proposition just observe that α and αk are produced
by two runs of the procedure initiated by y0 = 0 and yk > 0, respectively.

For the point (ii), observe first that a0 = 1 (by Proposition 3) and a1q−1 = 1 (by

Proposition 4). Therefore, 1α1 = α1. Thus, it suffices to prove that if akq−1 = 0,

then αk ! α1 for each k, 2 ≤ k ≤ q − 1. To produce α1 and αk the procedure
starts with y1 and yk respectively. As y0 = 0, we have that y1 = y0 + 1 = 1. As
akq−1 = 0, it follows that yk = yk−1 − p

q−p and since yk−1 < 1 + p
q−p (recall that

this inequality holds for all values of yk) we get yk < 1. Therefore, by the claim
above the relation in point (ii) holds. 
�

The following lemma together with Proposition 3 provides a proof for Theorem 2.

Lemma 3. For a given density p
q the binary sequences, α produced by Stair-

case (p, q) and ω produced by CoolestFirst(h), with h = 2q−1
int(α) , are equal.

Proof. Let Tt, 0 ≤ t ≤ q − 1, be the temperature in the beginning of each
execution step of CoolestFirst(h). Recall that T0 = 1 and by CoolestFirst

it follows that Tt ∈ [1− h
2 , 1].

In order to produce a digit wt, the procedure examines whether Tt + h > 2.
By setting h = 2q−1

int(α) , the latter inequality can be written as

Tt · int(α) + 2q > 2int(α) + 1. (3)

As each Tt is calculated by a division by 2, the quantity Tt · int(α) corresponds
to the decimal expansion of the left circular shift α(q−t) mod q, t = 0, . . . , q − 1.
Let k = (q − t) mod q. By converting (3) to its binary equivalent, we yield that

1αk ! α1. (4)
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and by Lemma 5, if akq−1 = 0 then CoolestFirst(h) produces wt = 0, other-

wise it produces 1. Hence, at each step of the procedure we have that wt = akq−1.

By applying Proposition 4, we yield that akq−1 = a(q−1+q−t) mod q = aq−t−1. 
�

6 Comments

We showed that the approximation factor of CoolestFirst is between 0.72
and 0.75. However, it seems to be a waste to start scheduling all cool jobs, since
they could be used to fill idle times between hot jobs. This suggests an improved
algorithm that gives higher priority to hot jobs over cool jobs. However we don’t
have the tools right now to analyze this new algorithm. Moreover, it remains an
open question whether the throughput maximization problem accepts a PTAS
or not.
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1 Introduction

In this paper, we generalize classical machine scheduling problems by introducing
a cost involved in processing jobs, which varies as a function of time. Before
defining the problems formally and discussing the technical novelty, we present
a few technological motivations for introducing this model.

Demand Response Models: Modern data centers are big consumers of elec-
tricity, and large providers see huge cost savings by even modest savings in
electricity consumption. The conventional approach taken by system designers
has been to build systems which are energy efficient, via technologies such as
speed scalable processors, dynamic power-down and power-up mechanisms, new
cooling technologies, and multi-core servers. These approaches have been inves-
tigated widely both in practice and theory; see [21,1,20] for more details.

Another relatively recent and less explored approach to reducing the energy
costs is to exploit the variable pricing of electricity. The electricity markets in
large parts of United States are moving towards variable pricing. As noted in [24],
in those parts of the U.S. with wholesale electricity markets, prices vary on an
hourly basis and are often not well correlated at different locations. Moreover,
these variations are substantial, as much as a factor of ten from one hour to
the next. Several suppliers offer “Time Of Use” plans [25], where they charge
higher price for peak hours and considerably lower price during non-peak hours.
Electricity markets are too complex to give a simple thumb rule on which this
variation in cost depends but loosely speaking, the price depends on the resource
used for generation: As the demand peaks, the cost goes up disproportionately
as the suppliers have to rely on expensive and nonrenewable resources like coal
to meet the demand [27]. In this sense, the cost of electricity is also an indicator
of how “green” its generation is and its impact on environment.

This variation in prices of electricity offers opportunities for large scale sys-
tem designers to cut down their electricity expenses by moving their workload
both in space and time. Note that in contrast to energy efficient computing, the
purpose of this line of work is not to reduce the amount of energy consumed
per unit of work, but to reduce the cost for doing the work. In [24] the authors
exploit the spatial nature of variation in electricity cost for scheduling, while
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in [10], the authors analyse a simple model to exploit the temporal nature of
variation in electricity prices. The latter work is particularly relevant to our pa-
per: They consider a system at a single location executing a workload that is
delay tolerant, such as processing batch jobs. They further consider a pricing
model where cost of electricity varies between two levels, a base price and a
peak price. They propose simple schemes to defer the workload to less expensive
base price periods, and show experimentally that it smoothly trades off costs
for delay. The generalized scheduling problem we introduce models the effect
temporal nature of variation in electricity prices on scheduling decisions. One of
the highlights of our work is to analyze the model considered by authors in [10]
from the theoretical perspective with worst case bounds (Section 2.2).

Spot Pricing in Data Centers: An entirely different technological motivation
for cost-aware scheduling comes from the Amazon EC2 cloud computing system,
which allows users to rent virtual machines on the cloud for computational needs.
Amazon offers various pricing schemes to rent machines, one of which is spot
pricing. Spot pricing enables the users to bid for unused capacity, and prices get
set based on supply and demand. Again, as in the previous example, the cost of
renting the machine on EC2 varies dynamically over time, offering opportunities
for optimizing the cost and QoS of batch jobs on such a system.

1.1 Our Model and the Two-Cost Problem

The optimization problems arising in above applications can be captured by
the following problem that we term Two-Cost, which generalizes the classical
single-machine preemptive scheduling framework. There is a set J of n jobs,
where each job Jj has processing time pj , release time rj , and weight wj . Density
of a job Jj is defined as ratio of

wj

pj
. For simplicity, we assume time is discrete,

and the processing times and release times of the jobs are integers. There is a
processing cost function e(t): If a job Jj is scheduled at time t, it incurs processing
cost e(t). We assume that e(t) is a piecewise constant function which takes
exactly two distinct values, high and low, corresponding to the base and peak
price of electricity markets. By scaling we assume that cost of processing at
high time instants is β and 1 in low time instants. Given any schedule, the
processing cost of Jj denoted by E(j) is given by

∫
t e(t)xj(t)dt, where xj(t)

indicates whether job Jj was scheduled at the instant t; since we assume time is
discrete, E(j) =

∑
t e(t)xj(t). The completion time of job Jj denoted by Cj is

the last time instant when this job is scheduled. The flow time of Jj is defined as
Fj = Cj − rj . Jobs arrive online and the cost function e(t) changes in an online
fashion as well. The objective is to minimize

∑
Jj∈J(wjFj +E(j)) – the sum of

weighted flow time and processing cost.

1.2 Our Results and Techniques

In this paper we initiate the study of online scheduling problems with the objec-
tive of minimizing the processing costs plus some well-known QoS guarantees.
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We show that these problems are significantly different from their counterparts
without processing costs, hence requiring new algorithmic techniques. We as-
sume the algorithm does not know the future job arrivals and the future cost
function e(t), and proceed via speed augmentation analysis, where we give the
algorithm extra processing speed compared to OPT for the purpose of analysis.
The holy grail of speed augmentation analysis is to design a so-called scalable
algorithm: For any ε > 0, the algorithm is (1+ε)-speed, O(poly(1ε ))-competitive.

In Section 2, we first show that no deterministic online algorithm for Two-

Cost can be constant competitive even for unit length, unit weight jobs, when
e(t) is known in advance. We then present our main result. We show a scalable
(1 + ε)-speed O( 1

ε3 )-competitive algorithm for Two-Cost.
Our algorithm for Two-Cost in Section 2 is the most natural one: Always

schedule at low cost time instants. For high cost time instants, if the total flow
time accumulated since the last scheduling decision is at least the cost of pro-
cessing, then schedule using the highest density first priority rule, else wait. We
outline the idea behind the analysis in Section 2.1. The analysis is complicated
by the non-uniform nature of the problem - the behavior of the algorithm is
different in the high and low cost instants, and these instants themselves arrive
in an online fashion. The key decision that the algorithm has to make is whether
to schedule a job at the current step in a high cost time instant, or wait for a
low cost time instant that may arrive soon in the future. However, waiting poses
a risk in that jobs could arrive in the future and create a huge backlog at the
low cost time instants. To partially mitigate the backlogging effect, we resort to
speed augmentation for the analysis, and show that this is necessary as well.

Technical Contributions. Speed augmentation and potential functions have
proven to be useful techniques in the analysis of online algorithms for weighted
flow time problems. See for example, scheduling policies on unrelated machines [9]
and speed scaling problems [5,4,13]. These potential functions follow a similar
template (the so-called standard potential function [15]), and are defined in terms
of the future online cost (or cost-to-go) of the algorithm assuming no more jobs
arrive in the system and how far the online algorithm is behind the optimal
schedule in work processed. Due to the online nature of the cost function e(t),
one of the chief technical difficulties we face while analyzing this problem is that
it is hard to give a closed form expression for the future cost of an online al-
gorithm. Hence, it is not clear how to define any sort of potential function for
our problem. We instead proceed via simplifying the input and certain revealing
structural properties of OPT. We then observe a simple yet powerful majoriza-
tion property (Theorem 4) of our schedule relative to the optimal schedule, as
consequence of the fact that our algorithm uses HDF ordering of jobs. We use
this characterization repeatedly in a non-trivial fashion to split the time hori-
zon into suitably defined phases. Within these phases, we use a fairly simple
charging argument to bound the cost of algorithm against the optimal. In effect
we show that an algorithm that cannot estimate cost-to-go for its scheduling
decision is competitive even if the costs in the future vary arbitrarily. We also
believe Theorem 4 can be of independent interest in other scheduling problems.
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1.3 Related Work and Comparision with Other Models

Use of speed augmentation in the analysis of online scheduling problems, particu-
larly involving flow time objectives was first considered in [18]. Since then, several
papers have used speed augmentation to show scalable algorithms for weighted
flow time on various machine environments [8,6,9,16]. The introduction of the
cost function e(t) drastically changes the nature of the problem compared to the
classical flow time problems. It is instructive to point out that our problem does
not admit a competitive algorithm even for unit weight and unit length jobs,
where as HDF is optimal for unit length jobs in this context for classical flow
time. The fundamental difference in the complexity of this problem was noted
earlier in the works on robust machine scheduling, which is a special case of our
model [26,11]. In the offline case, Epstein et al. study the problem of minimiz-
ing weighted completion on a single machine when the machine can encounter
unexpected failures [11] . They give a constant factor approximation algorithm
on a single machine when jobs have no release dates and show polylogarithmic
lowerbounds when jobs have release dates. Note that, in their problem only fail-
ure periods arrive online. These results sharply contrast with constant factor
approximation algorithms known for minimizing weighted completion time on
various machine environments. We outline the results we obtain for the offline
version of our problem in Section 3.

Dynamic speed scaling and its variants have been studied extensively for
power management. In this model pioneered by Yao et al. [28], the goal is to
dynamically scale the speed of a processor to optimize power consumed (which
is usually a convex function of speed) and some QoS metric like deadlines or flow
time. This model has a rich literature in online algorithms and potential function
design; see [5,4,23,7,2,3,21,12,22] for more details. Apart from the philosophical
difference that we are concerned with minimizing the cost of power rather than
efficient usage of it, we believe that our model is technically very different as
well. Electricity costs vary with time in a non-monotone and adversarial fashion,
whereas in speed scaling, the cost incurred by algorithms depends on the speed
and is not a function of time. Therefore, the decision in speed scaling is to set
the speed, while in our problem, the decision is about which time instants to
process the jobs in. It is also interesting to note the technical similarities in these
policies. In speed scaling algorithms, speed is set such that cost incurred on the
speed is equal to the flow time of jobs at any time instant. Our algorithm also
uses similar cost-balancing approach towards time slot selection policy. It would
be interesting to study the effect of combining speed scaling with our model.

Another line of research which has technical similarities with our problem
is power down mechanisms [17,19]. There are speed scalable processors, but
transitioning from speed zero (sleep state) to non-zero speed (active state) incurs
activation cost. These algorithms use algorithms for speed scaling as subroutine
when the processor is active, but they also need to decide when to transition into
and out of sleep states. These algorithms hence balance the cost of activation to
the total flow time of jobs present at that time. Our algorithm also uses a similar
cost balancing approach, but there are several subtle differences. For example,
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the algorithms in [17,19] transition to sleep state only when there are no jobs in
the system whereas our algorithm for Two-Cost may idle even when there are
jobs present simply because processing cost is high. Further, the speed-scaling
model is more sympathetic to lazy activation policies like ones used in [19] since
any accumulated jobs can be cleared by varying the speed. But accumulating
jobs in our problem poses a threat, since both jobs and high cost time instants
arrive online. We emphasize that, even for unit length and unit weight jobs we
cannot get a competitive algorithm where as almost all the problems considered
in speed-scaling or power-down mechanisms admit competitive algorithms. In
other words, the use of speed augmentation in speed scaling problems is for
converting the schedule for fractional objective to the integral objective, whereas
we need it even for a fractional schedule.

2 Online Algorithms for the Two-Cost Problem

In this section, we devise online algorithms for minimizing the sum of weighted
flow time and processing cost on a single machine (with preemption). Recall
that we denote the weights of the jobs by wi, and the processing times by pi.
We assume without loss of generality that e(t) takes either a value of 1 or β at
all the time instants.

Before we present the scalable algorithm forTwo-Cost, we first present lower
bounds on the achievable competitive ratio. In this section, we first show that no
online algorithm can have competitive ratio independent of the values taken by
cost function e(t), even when all jobs have the same weight and unit processing
length, and when the cost function e(t) is known in advance. We defer the proof
of this lower bound to Appendix A.

Theorem 1. No deterministic online algorithm for Two-Cost can have a com-
petitive ratio independent of the values taken by e(t), even when all jobs have
unit length and equal weight and e(t) is known in advance.

To get around this negative result, our algorithms will use speed augmentation to
be competitive - this means that to show a O(1)-competitive ratio, we pretend
the algorithm runs on a fastermachine than the optimal solution; the extra speed
trades off with the competitive ratio. Let OPT denote both the optimal offline
algorithm, as well as its value. Given any online algorithm and input sequence,
there are two decisions the algorithm has to make every step:

Time Slot Selection: This policy decides which time slots to schedule jobs -
we term these active time slots.

Job Selection Policy: Decides which job to schedule in each active time slot.

We briefly describe the analysis technique of speed augmentation, which is
implicit in previous work [9,5,4].

Definition 1. Given an algorithm A and speed s, we say that algorithm B is a
s-speed simulation of A if:
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– The active time slots of A and B are the same (or B simulates A).
– The job selection policy of B is same as A; however, B can process s units

of jobs in every active time slot.

Definition 2. An online algorithm A is said to be s-speed, c-competitive if there
is a s-speed simulation of A that is c competitive against OPT .

We make this fine distinction for the reason that, schedule produced by A when
run a machine with speed s can be completely different from schedule of B which
takes the schedule of A on unit speed processor, but schedules s units of jobs
whenever A processes 1 unit of job.We will show the following theorem in the
sequel.

Theorem 2. Two-Cost has a (1 + ε)-speed O( 1
ε3 )-competitive algorithm.

2.1 Proof Outline

We design our algorithm for the case when jobs have unit length with arbitrary
weights and at each time step a single job is released. We later show how to
convert this algorithm to handle jobs with arbitrary lengths using the ideas
which have become standard now. For unit length jobs, the job selection policy
of any algorithm is simple: Schedule that job Ji from the current queue with
highest density or weight. This is the well-known Highest Density First (HDF)
policy. Our overall online algorithm for unit length jobs is the most natural
one: Always schedule using HDF in low cost instants. For high cost instants, we
follow a ski-rental kind of policy. If the total flow time accumulated since the
last scheduling decision is at least β, then schedule using HDF, else wait. We
call this algorithm Balance. The hard part in defining a (standard) potential
function is the non-uniformity in the processing cost. Instead, we first transform
and simplify the input so that we only have to deal with unit length jobs, only
one of which arrives per step.

The crux of our analysis is a majorization property of the HDF schedule,
Theorem 4: If an online algorithm processing using HDF always lags another
algorithm in terms of number of units processed, but eventually catches up, then
if the initial weight of jobs in the queue of the first algorithm was smaller, the
final weight will be smaller as well. We show that Balance always lags OPT in
terms of number of jobs processed, hence the majorization result directly bounds
the processing cost paid by Balance (Lemma 6).

To bound the flow time, we perform a speed augmentation analysis. Again,
the analysis is complicated by the non-uniformity in processing costs between
low and high cost time instants. We instead divide time into phases where the
augmented Balance lags OPT . Using our majorization result, we show it is
sufficient to analyze each phase separately. We now construct a simple charging
scheme, and argue about the amortized cost, completing the proof (Lemma 7).

2.2 Simplifying the Input

By scaling the input, we can assume that e(t) takes values either 1 or β. We also
assume that processing times and release times of jobs take integer values. We
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assume jobs are released at the beginning of a time slot. Our scheduling policies
will be based on considering the weight of jobs in the queue during the time slot,
and the processing happens at the end of the time slot.

We call a time instant t as high cost time instant if e(t) = β in the interval
[t, t + 1). Other wise, we call it as low cost time instant. We assume without
loss of generality that e(t) changes only at integral values of t. Thus every time
instant is either a low cost time instant or a high cost time instant.

Step 1: Unit Length Jobs. The following lemma is an easy consequence of similar
results in [9,4,8]. The proof follows by replacing each job Ji with pi jobs of unit
length and weight wi/pi.

Lemma 3. If an online algorithm A is s-speed c-competitive for minimizing the
objective

∑
j wjFj for unit length jobs, then it is (1+ε)s-speed (1+ 1

ε )c-competitive
when jobs have arbitrary length.

The above lemma allows us to focus on unit length jobs in designing the on-
line algorithm. For unit length jobs, given the set of active slots, it is easy to
characterize the job selection policy: If a slot is active, the algorithm will sim-
ply schedule that job Ji from its queue with highest density or weight per unit
length, wi. This is the well-known Highest Density First (HDF) policy. Note
however that even for unit length jobs, Theorem 1 shows there is no 1-speed
algorithm with competitive ratio independent of β. We therefore need to use
a speed augmentation analysis even for this case. We redefine OPT to be the
optimal offline algorithm for this new problem instance (with unit length jobs).

Step 2: Modifying Release Dates. We assume that only one job is released at
each time step. This follows as consequence of Step 1 and we omit the details.

Step 3: Modifying the optimal schedule. Given any algorithm A, letWA(t) denote
the total weight of jobs in A’s queue during time t. The proof of the following
claim follows easily from the observation that making OPT process a job has
cost β, while the total weight of jobs in the queue contributes to the flow time.
As a consequence, if WOPT (t) ≥ β, we can assume OPT schedules at time t.

Claim. With O(1) loss in competitive ratio, we can assume that in any interval
I = [s, d] where OPT does not process jobs,

∑
t∈I W

OPT (t) < β.

2.3 Online Algorithm Balance

The online algorithm Balance is characterized by the following two rules. Here
WA(t) denotes the total weight of jobs in Balance’s queue during time t.

Time slot selection Policy: If e(t) = 1, then mark t as active. If e(t) = β then
let t′ be the last active time instant. Mark t as active if

∑
u∈(t′,t]W

A(u) ≥ β.

Job selection Policy (HDF): If t is active, then among the set of jobs avail-
able at the time t, schedule the one with highest weight.
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2.4 Analysis of Balance

We begin this section by showing some important structural properties of the
schedule produced by Balance, which we use subsequently in our analysis.

Majorization Property of HDF. Before we analyze Balance, we observe a
simple yet important property of scheduling jobs in HDF, which may be of inde-
pendent interest. Let A and B denote two scheduling algorithms which process
same number of unit length jobs in the interval [s, d]. Suppose A processes jobs
in HDF and always lags B, i.e., total number of jobs processed by A at any
time t ∈ [s, d] is always less than B. Then, majorization property says that if
A and B started off with equal weight at the beginning, and jobs arrive in the
interval [s, d], then the weight of jobs in A will have at most that in B in the
end of this interval. But more importantly, for every job Jj in A’s queue, total
weight of jobs in B’s queue with weight at least wj will be at most that of A’s.
We make the statement formal below.

For a scheduling algorithmA processing unit length jobs in the interval [t1, t2],
let QA(t) denote the set of jobs A has at the time t. Let QA

≥w(t) denote the subset

of those jobs with weight at least w. Let NA(t1, t2) denote the number of jobs A
has scheduled in the interval [t1, t2]. Then we have the following theorem about
scheduling jobs in HDF.

Theorem 4. (Proved in Appendix A) Let A be a scheduling algorithm which
processes unit length jobs using the HDF job selection policy, and B be any other
scheduling algorithm on the same input. Suppose ∀Ji ∈ QB(t1), |QA

≥wi
(t1)| ≤

|QB
≥wi

(t1)|. If NA(t1, t2) = NB(t1, t2) and ∀t ∈ [t1, t2], N
A(t1, t) ≤ NB(t1, t),

then ∀Ji ∈ QB(t2), |QA
≥wi

(t2)| ≤ |QB
≥wi

(t2)|. Further, WA(t2) ≤WB(t2).

Bounding the Processing Cost. From this point on, we will use A to denote
the schedule produced Balance. The following lemma is the crucial property
of Balance: Compared to OPT , A always lags in total processing done.

Lemma 5. (Proved in Appendix A) In the schedule A produced by Balance,
∀t ∈ [0, t], NA(0, t) ≤ NOPT (0, t).

Let EA, EOPT denote the total processing cost of Balance and OPT respec-
tively. The processing cost EA can now be bounded using the above lemmas.

Lemma 6. (Proved in Appendix A) Total processing cost of A, EA ≤ EOPT .

Flow Time via Speed Augmentation. We now analyze the schedule pro-
duced by Balance using speed augmentation. In particular, we consider a class
of algorithms, Simulate-Balance(s) that uses the same active time-slots as
Balance (in that sense, it simulates Balance). However, on each active time
slot of Balance, the new algorithm schedules at most s units of jobs from its
own queue using the HDF policy.

It follows directly from Lemma 6 that the processing cost of Simulate-

Balance(s) is at most s · EOPT . In the sequel, we bound the flow time of
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Simulate-Balance(1 + ε) against the flow time of OPT , which we denote
FOPT . We will use Simulate-Balance to mean Simulate-Balance(1 + ε),
where the factor (1 + ε) will be implicit.

In order to bound the weighted flow time, we first split the contribution of
the weighted flow time to individual time steps (and hence time intervals). We
treat time as a discrete quantity here with each time instant t denoting the time
interval [t, t + 1). For an algorithm B, let FB denote the total weighted flow
time, and let WB(t) denote the weight of jobs in queue of B at time instant
t (this excludes the job getting processed at the time step t). Then, we have:
FB =

∑
t≥0W

B(t) +
∑

j wj .

Let FA
ε denote the weighted flow time of Simulate-Balance. Let WA

ε (t)
denote the total weight of the jobs in the queue of Simulate-Balance at time
t. Recall that FOPT and EOPT are the weighted flow time and processing cost
of OPT , respectively. We will prove the following lemma in the sequel, which
will complete the proof of Theorem 2.

Lemma 7. FA
ε ≤ O

(
1
ε2

)
(FOPT + EOPT ).

Let WA
ε (t) denote the fractional weight of jobs in the queue of Simulate-

Balance; WA
ε (t) =

∑
Ji∈QA

ε
wixi(t), where xi(t) ∈ [0, 1] denotes the remain-

ing processing time of Ji at the time t. Then, weighted fractional flow time of
Simulate-Balance is defined as: fA

ε =
∑

Jj∈J
wj

2 +
∑

t≥0WA
ε (t).

We start by bounding the weighted fractional flow time fA
ε of Simulate-

Balance. For an interval [t1, t2], let P
A
ε (t1, t2), P

OPT (t1, t2) denote the total
units of processing done by Simulate-Balance and OPT in the interval [t1, t2].

Definition 3. – An interval [s, d) is a lag-interval if PA
ε (s, d) ≥ POPT (s, d),

but for all t ∈ [s, d), PA
ε (s, t) < POPT (s, t).

– An interval [s, d) is a lead-interval if for all t ∈ [s, d), Simulate-Balance

processes more units that time instant than OPT , but at time d, it processes
less units than OPT .

– The entire time horizon partitions into a sequence of alternating lag and lead
intervals of the form [0, d1), [d1, d2), . . ., where 0 < d1 < d2 · · ·. We call the
interval [di, di+1) as the ith phase.

The following lemma, proved in Appendix A follows by a repeated application
of Theorem 4.

Lemma 8. For any phase [di, di+1), WA
ε (di) ≤ WOPT (di). Furthermore, for

any t in a lead phase [di, di+1), we have WA
ε (t) ≤WOPT (t).

Proof of Lemma 7: We will bound the fractional flow time of Simulate-
Balance against that of OPT within each phase. For a lead-phase, the bound
is simple since at every time instant t within the phase, we have WA

ε (t) ≤
WOPT (t). We therefore focus only on lag-phases. Since Simulate-Balance

always lags OPT in terms of number of units processed within a lag phase, we
have the following easy consequences for any time instant in a lag phase:
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– If Simulate-Balance processes, it processes at least ε more units of jobs
than OPT .

– If Simulate-Balance does not process, then it has to be a high cost instant.

We will now use a charging argument to show that the fractional flow time of
Simulate-Balance within the lag-phase is at most O(1/ε) times the total cost
spent by OPT within the phase. Fix a lag-phase i. We use POPT (t) and PA

ε (t) to
abbreviate POPT (di, t) and P

A
ε (di, t) respectively. Instead of analysing elaborate

charging rules, for each time instant t ∈ [di, di+1) we define the following simple
potential function, which keeps track of how far Balance is behind compared
to OPT .

Φ(t) =
2β

ε

(
POPT (t)− PA

ε (t)
)

(1)

The amortized cost paid by Simulate-Balance is defined as :

θ(t) = WA
ε (t) + Φ(t)− Φ(t − 1) (2)

Define [t, t′) as an idle period if neither OPT nor Simulate-Balance schedule
jobs in that interval. The following lemma follows from an (almost) straight-
foward analysis of the potential function in Equation (1). Only corner cases are
the periods when the change in potential is zero (idle periods) and one has to
bound cost of algorithm during such periods. We push the details to Appendix A.

Lemma 9. For any lag-phase [di, di+1) and any idle period X = [t, t′) so that
t, t′ ∈ [di, di+1), we have:

∑
t∈X

θ(t) ≤ O(
1

ε
)

(∑
t∈X

(
WOPT (t) + e(t) · IOPT (t)

))
(3)

where IOPT (t) is the indicator variable denoting whether OPT schedules at t.

Equation (3) is true for lead-phases directly from Lemma 8. Therefore, sum-
ming over all phases, we conclude that the weighted fractional flow time of
Simulate-Balance is at most O(1/ε) times the total cost of OPT . We then
convert the weighted fractional flow time into weighted flow time by augment-
ing Simulate-Balance with another (1 + ε)-speed using ideas similar to that
in Lemma 3. Therefore, we conclude that on a machine with (1 + ε)-speed,
FA
ε ≤ O( 1

ε2 )(F
OPT + EOPT ). This concludes the proof of Lemma 7.

Proof of Theorem 2: We first bound the competitive ratio of Simulate-

Balance for the objective minimizing
∑

j(wjFj + E(j)) when jobs are of unit
length. From Lemma 6, it follows that total processing cost of Simulate-

Balance is at most (1 + ε)EOPT . Lemma 7 shows that on a machine with
(1 + ε)-speed, FA

ε ≤ 1
ε2 (F

OPT + EOPT ). Putting all the pieces together, we
conclude that Balance is (1 + ε)-speed O

(
1
ε2

)
-competitive for unit length jobs

with arbitrary weights. Using Lemma 3 we finally conclude that Balance is
(1 + ε)-speed O

(
1
ε3

)
-competitive for arbitrary length jobs.
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3 Conclusion

In this paper, we presented a scalable online algorithm for the Two-Cost prob-
lem. In the full version of the paper, we show that with K > 2 levels of electricity
cost, we need a speed augmentation of at least K − 1 to achieve bounded com-
petitive ratio, even when electricity costs are known in advance. An interesting
question that we seek to explore is whether such lower bounds can be circum-
vented using the framework of speed scaling [5], where the processor can be made
to run faster by paying cost which is a convex function of the processing speed.

In the full version of the paper, we also study offline version of this problem
with completion time objective, since approximating flow-time even without the
cost function is one of the most important open problems in scheduling the-
ory. We show that for the offline setting the LP formulation of Hall et al. [14]
can be extended to yield a O(1ε ) approximation to 1|rj , pmtn|

∑
j(wjFj +E(j))

with (1 + ε)-speed augmentation,for arbitrary e(t). We also establish interesting
connections of this problem to universal scheduling and scheduling with limited
machine availability [11,26], which yield pseudo-polynomial time constant factor
approximation algorithms for 1|rj , pmtn|

∑
j(wjFj + E(j)). See Appendix B.
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A Missing Proofs

Proof of Theorem 1. Let e(t) = β in the interval [1, . . .
√
β] and e(t) = 1

elsewhere. The adversary releases a unit length, unit weight job at each time
instant t ∈ [1, . . .

√
β]. Let A be any online algorithm. Consider the number

of jobs in the queue of A at time t =
√
β. If A has more than β

1
4 jobs then

the adversary releases one job at each time instant t >
√
β. For this input, the

http://www.pge.com/tariffs/electric.shtml
http://www.eia.doe.gov
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optimal offline algorithm will process each job released in the interval [1, . . .
√
β]

by paying a processing cost of β, hence number of jobs it has at any time is
at most one. However, A accumulates β

1
4 jobs by the time t =

√
β which it

cannot clear subsequently. Hence there are at least β
1
4 jobs in its queue at every

time instant t >
√
β, incurring a cost of β

1
4 towards flowtime at each time step.

Therefore, the competitive ratio of A is at least β
1
4 . Next, consider the case when

A has less than β
1
4 jobs at time t =

√
β. In this case, the adversary will not release

any more jobs. For this instance, the optimal offline algorithm will not process
any jobs in the interval [1, . . .

√
β] and processes all jobs in the low cost time

instants following t >
√
β incurring a total cost of O(β). The competitive ratio

of A is at least β
1
4 , since the algorithm pays at least β

5
4 towards the processing

cost.

Proof of Theorem 4.We prove this by contradiction. Suppose at time t2, there
is a job Ji ∈ QB(t2) such that |QA

≥wi
(t2)| > |QB

≥wi
(t2)|. Consider the set of jobs

processed by A in the interval [t1, t2]. If the weight of all these jobs is at least
wi, then since both algorithms process equal number of jobs in [t1, t2] and B had
more jobs initially of weight at least wi, it must have more jobs with at least
weightwi at t2. This is an immediate contradiction. Next, consider the case where
A processes a job of weight less than wi in the interval [t1, t2]. Let t

′ ∈ [t1, t2] be
the last time instant when A scheduled a job with weight less than wi. Since A
schedules jobs using HDF, it must be the case that |QA

≥wi
(t′)| = 0. Now observe

that A processes at least as many jobs as B in the interval [t′, t2]. If J≥wi(t
′, t2)

denotes the set of jobs with weight greater than wi released in the interval [t′, t2]
then |QA

≥wi
(t2)| = |J≥wi(t

′, t2)| − NA(t′, t2). Since, N
A(t′, t2) ≥ NB(t′, t2), we

have |QA
≥wi

(t2)| ≤ |QB
≥wi

(t2)|. Hence we get a contradiction.

Proof of Lemma 5. For the sake of contradiction, let t1 be the first time
instant when NA(0, t1) > NOPT (0, t1) and t2 < t1 be the last time instant when
A scheduled a job. By the definition of t1 and t2, we note that both OPT and
A do not process any jobs in the interval (t2, t1] and N

A(0, t2) = NOPT (0, t2).
Moreover, in the interval [0, t2] A lags OPT ; that is, ∀t ∈ [0, t2], N

A(0, t) ≤
NOPT (0, t). Since Balance processes jobs in HDF, we apply Lemma 4 over
the interval [0, t2] to claim that WA(t2) ≤ WOPT (t2). If t1 is a low cost time
instant, we conclude that OPT will also process a job sinceWOPT (t1) > 0. Next,
consider the case when t1 is a high cost time instant. Since A is processing a job
at t1, from the description of Balance, we have

∑t1
t=t2+1W

A(t) ≥ β. However,

WOPT (t2) ≥ WA(t2) and OPT does not process jobs in the interval (t2, t1],
then it must be the case that

∑t
t=t2+1W

OPT (t) ≥ β. Therefore, by Claim 2.2
OPT also processes at t1. This completes the proof.

Proof of Lemma 6. Proof follows from Lemma 5. For the sake of contradiction,
let t be the first time instant when total processing cost of A is more than OPT .
We note that in the interval [0, t], when there are jobs to process, A has no idle
time slots during the low cost time instants. Therefore, A schedules at least as
many jobs as OPT in the low cost time instants of the interval [0, t]. Since the
total processing cost of A is more than OPT at time t, A must have scheduled
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more jobs in high cost time instants compared to OPT . This implies that total
number of jobs scheduled by Balance in the interval [0, t] is greater than that
of OPT , which contradicts Lemma 5.

Proof of Lemma 8.We prove this by induction on i. If the phase is a lead phase,
the induction is trivial since at each step, Simulate-Balance processes more
units than OPT, hence for any t ∈ [di, di+1), we have WA

ε (t) ≤ WOPT (t). For
a lag phase [di, di+1), Simulate-Balance processes jobs in HDF, always lags
OPT in terms of number of units processed within the phase, but catches up with
OPT at time di+1. We simply invoke the Theorem 4 on the jobs processed within
the phase to argue that ifWA

ε (di) ≤WOPT (di), thenWA
ε (di+1) ≤WOPT (di+1).

The details are straightforward and omitted.

Proof of Lemma 9. By the description of Balance and since at most one job
arrives each time step, we have:

∑
t∈X WA

ε (t) ≤ 2β. At time t′, there are two
cases:

Simulate-Balance schedules: In this case, it schedule ε more units than
OPT , so the potential drops by at least 2β. The sum of flow time over
the idle period is at most 2β and hence, the amortized cost is at most 0.

Simulate-Balance does not schedule: In this case, this time instant is a
high cost time instant. OPT pays at least β in processing cost. The potential
increases by at most 2β

ε , while Simulate-Balance pays at most 2β in
flow time. Therefore, the amortized cost of Simulate-Balance is at most
O(β/ε).

In either case, the amortized cost paid by Simulate-Balance is at most O(1/ε)
times OPT ’s flow time plus processing cost. Next, note that Φ(di)−Φ(di+1 − 1)
is non-negative in the entire time interval [di, di+1) since Simulate-Balance

lags OPT . From Lemma 8 we know that WA
ε (di) ≤ WOPT (di). Hence we

conclude that over the interval [di, di+1), total weighted fractional flow time of
Simulate-Balance is upper bounded by:

di+1−1∑
t=di

WA
ε (t) ≤ O(

1

ε
)

di+1−1∑
t=di

(
WOPT (t) + e(t) · IOPT (t)

)

B Discussion on Offline Case

See the link http://www.cs.le.ac.uk/events/WAOA2012/AppendixKM.pdf



A Unifying Tool for Bounding the Quality

of Non-cooperative Solutions
in Weighted Congestion Games�

Vittorio Bilò
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Abstract. We present a general technique, based on a primal-dual for-
mulation, for analyzing the quality of self-emerging solutions in weighted
congestion games. With respect to traditional combinatorial approaches,
the primal-dual schema has at least three advantages: first, it provides
an analytic tool which can always be used to prove tight upper bounds
for all the cases in which we are able to characterize exactly the poly-
hedron of the solutions under analysis; secondly, in each such a case the
complementary slackness conditions give us an hint on how to construct
matching lower bounding instances; thirdly, proofs become simpler and
easy to check. For the sake of exposition, we first apply our technique to
the problems of bounding the prices of anarchy and stability of exact and
approximate pure Nash equilibria, as well as the approximation ratio of
the solutions achieved after a one-round walk starting from the empty
strategy profile, in the case of affine latency functions and we show how
all the known upper bounds for these measures (and some of their gener-
alizations) can be easily reobtained under a unified approach. Then, we
use the technique to attack the more challenging setting of polynomial
latency functions. In particular, we obtain the first known upper bounds
on the price of stability of pure Nash equilibria and on the approximation
ratio of the solutions achieved after a one-round walk starting from the
empty strategy profile for unweighted players in the cases of quadratic
and cubic latency functions.

1 Introduction

Characterizing the quality of self-emerging solutions in non-cooperative systems
is one of the leading research direction in Algorithmic Game Theory. Given a
game G, a social function F measuring the quality of any solution which can
be realized in G, and the definition of a set E of certain self-emerging solutions,

� This work was partially supported by the PRIN 2008 research project COGENT
“Computational and game-theoretic aspects of uncoordinated networks” funded by
the Italian Ministry of University and Research and by the “Progetto 5 per mille per
la ricerca”: “Collisioni fra vortici puntiformi e fra filamenti di vorticità: singolarità,
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we are asked to bound the ratio Q(G, E ,F) := F(K)/F(O), where K is some
solution in E(G) (usually either the worst or the best one with respect to F) and
O is the solution optimizing F .

In the last ten years, there has been a flourishing of contribution in this topic
and, after a first flood of unrelated results, coming as a direct consequence of
the fresh intellectual excitement caused by the affirmation of this new research
direction, a novel approach, aimed at developing a more mature understanding
of which is the big picture standing behind these problems and their solutions,
is now arising.

In such a setting, Roughgarden [18] proposes the so-called “smoothness ar-
gument” as a unifying technique for proving tight upper bounds on Q(G, E ,F)
for several notions of self-emerging solutions E , when G satisfies some general
properties, K is the worst solution in E(G) and F is defined as the sum of the
players’ payoffs. He also gives a more refined interpretation of this argument and
stresses also its intrinsic limitations, in a subsequent work with Nadav [16], by
means of a primal-dual characterization which shares lot of similarities with the
primal-dual framework we provide in this paper. Anyway, there is a subtle, yet
substantial, difference between the two approaches and we believe that the one
we propose is more general and powerful. Both techniques formulate the prob-
lem of bounding Q(G, E ,F) via a (primal) linear program and, then, an upper
bound is achieved by providing a feasible solution for the related dual program.
But, while in [16] the variables defining the primal formulation are yielded by
the strategic choices of the players in both K and O (as one would expect), in
our technique the variables are the parameters defining the players’ payoffs in
G, while K and O play the role of fixed constants. As it will be clarified later,
such an approach, although preserving the same degree of generality, applies to
a broader class of games and allows for a simple analysis facilitating the proof
of tight results. In fact, as already pointed out in [16], the Strong Duality The-
orem assures that each primal-dual framework can always be used to derive the
exact value of Q(G, E ,F) provided that, for any solution S which can be realized
in G, F(S) can be expressed though linear programming and (i) the polyhe-
dron defining E(G) can be expressed though linear programming, when K is the
worst solution in E(G) with respect to F , (ii) the polyhedron defining K can
be expressed though linear programming, when K is the best solution in E(G)
with respect to F . Moreover, in all such cases, by applying the “complementary
slackness conditions”, we can figure out which pairs of solutions (K,O) yield
the exact value of Q(G, E ,F), thus being able to construct quite systematically
matching lower bounding instances.

We consider three sets of solutions E , namely, (i) ε-approximate pure Nash
equilibria (ε-PNE), that is, outcomes in which no player can improve her sit-
uation of more than an additive factor ε by unilaterally changing the adopted
strategy (in this case, Q(G, E ,F) is called the approximate price of anarchy of G
(ε-PoA(G)) when K is the worst solution in E(G), while it is called the approx-
imate price of stability of G (ε-PoS(G)) when K is the best solution in E(G));
(ii) pure Nash equilibria (PNE), that is, the set of outcomes in which no player
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can improve her situation by unilaterally changing the adopted strategy (by
definition, each 0-PNE is a PNE and the terms price of anarchy (PoA(G)) and
price of stability (PoS(G)) are used in this case); (iii) solutions achieved after a
one-round walk starting from the empty strategy profile [15], that is, the set of
outcomes which arise when, starting from an initial configuration in which no
player has done any strategic choice yet, each player is asked to select, sequen-
tially and according to a given ordering, her best possible current strategy (in
this case, K is always defined as the worst solution in E(G) and Q(G, E ,F) is
denoted by Apx1∅(G)).

Our Contribution. Our method reveals to be particularly powerful when ap-
plied to the class of weighted congestion games. In these games there are n players
competing for a set of resources. These games have a particular appeal since,
from one hand, they are general enough to model a variety of situations arising
in real life applications and, from the other one, they are structured enough to
allow a systematic theoretical study. For example, for the case in which all play-
ers have the same weight (unweighted players), Rosenthal [19] proved through
a potential function argument that PNE are always guaranteed to exist, while
general weighted congestion games are guaranteed to possess PNE if and only if
the latency functions are either affine or exponential [11–13, 17].

In order to illustrate the versatility and usefulness of our technique, we first
consider the well-known and studied case in which the latency functions asso-
ciated with the resources are affine and F is the sum of the players’ payoffs
and show how all the known results (as well as some of their generalizations)
can be easily reobtained under a unifying approach. For ε-PoA and ε-PoS in the
unweighted case and for Apx1∅, we reobtain known upper bounds with significa-
tively shorter and simpler proofs (where, by simple, we mean that only basic
notions of calculus are needed in the arguments), while for the generalizations
of the ε-PoA and the ε-PoS in the weighted case, we give the first upper bounds
known in the literature.

After having introduced the technique, we show how it can be used to attack
the more challenging case of polynomial latency functions. In such a case, the
PoA and ε-PoA was already studied and characterized in [1] and [9], respectively,
and both papers pose the achievement of upper bounds on the PoS and ε-PoS
as a major open problem in the area. For unweighted players, we show that
PoS ≤ 2.362 and Apx1∅ ≤ 37.5888 for quadratic latency functions and that
PoS ≤ 3.322 and Apx1∅ ≤ 527.323 for cubic latency functions. Extensions to
ε-PoS and weighted players are left to future work.

What we would like to stress here is that, more than the novelty of the results
achieved in this paper, what makes our method significative is its capability of
being easily adapted to a variety of particular situations and we are more than
sure of the fact that it will prove to be a powerful tool to be exploited in the
analysis of the efficiency achieved by different classes of self-emerging solutions
in other contexts as well. To this aim, in the full version of this paper, we show
how the method applies also to other social functions, such as the maximum of
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the players’ payoffs, and to other subclasses of congestion games such as resource
allocation games with fair cost sharing. Note that, in the latter case, as well as
in the case of polynomial latency functions, the primal-dual technique proposed
in [16] cannot be used, since the players’ costs are not linear in the variables of
the problem.

Related Works. The study of the quality of self-emerging solutions in non-
cooperative systems initiated with the seminal papers of Koutsoupias and Pa-
padimitriou [14] and Anshelevich et al. [2] which introduced, respectively, the
notions of price of anarchy and price of stability.

Lot of results have been achieved since then and we recall here only the
ones which are closely related to our scenario of application, that is, weighted
congestion games with polynomial latency functions.

For affine latency functions and F defined as the sum of the players’ payoffs,
Christodoulou and Koutsoupias [7] show that the PoA is exactly 5/2 for un-
weighted players, while Awerbuch et al. [3] show that it rises to exactly (3+

√
5)/2

in the weighted case. These bounds keep holding also when considering the price
of anarchy of generalizations of PNE such as mixed Nash equilibria and corre-
lated equilibria, as shown by Christodoulou and Koutsoupias in [8]. Similarly,
for polynomial latency functions with maximum degree equal to d, Aland et
al. [1] prove that the price of anarchy of all these equilibria is exactly Φd+1

d in

the weighted case and exactly (k+1)2d+1−kd+1(k+2)d

(k+1)d+1−(k+2)d+(k+1)d−kd+1 in the unweighted

case, where Φd is the unique non-negative real solution to (x + 1)d = xd+1 and
k = �Φd�. These interdependencies have been analyzed by Roughgarden [18] who
proves that unweighted congestion games with latency functions constrained in
a given set belong to the class of games for which a so-called “smoothness ar-
gument” applies and that such a smoothness argument directly implies the fact
that the prices of anarchy of PNE, mixed Nash equilibria, correlated equilibria
and coarse correlated equilibria are always the same when F is the sum of the
players’ payoffs. Such a result has been extended also to the weighted case by
Bhawalkar et al. in [4]. For the alternative model in which F is defined as the
maximum of the players’ payoffs, Christodoulou and Koutsoupias [7] show a PoA
of Θ(

√
n) in the case of affine latency functions.

For the PoS, only the case of unweighted players, affine latency functions and
F defined as the sum of the players’ payoffs, has been considered so far. The
upper and lower bounds achieved by Caragiannis et al. [6] and by Christodoulou
and Koutsoupias [8], respectively, set the PoS to exactly 1+1/

√
3. Clearly, being

the PoS a best-case measure and being the set of PNE properly contained in the
set of all the other equilibrium concepts, again we have a unique bound for PNE
and all of its generalizations.

As to ε-PNE, in the case of unweighted players, polynomial latency functions
and F defined as the sum of the players’ payoffs, Christodoulou et al. [9] show

that the ε-PoA is exactly (1+ε)((z+1)2d+1−zd+1(z+2)d)
(z+1)d+1−zd+1−(1+ε)((z+2)d−(z+1)d) , where z is the max-

imum integer satisfying zd+1

(z+1)d < 1+ ε, and that, for affine latency functions, the



A Unifying Tool for Bounding the Quality 219

ε-PoS is at least 2(3+ε+θε2+3ε3+2ε4+θ+θε)
6+2ε+5θε+6ε3+4ε4−θε3+2θε2 , where θ =

√
3ε3 + 3 + ε+ 2ε4, and

at most (1 +
√
3)/(ε+

√
3).

Finally, for affine latency functions and F defined as the sum of the play-
ers’ payoffs, Apx1∅ has been shown to be exactly 2 +

√
5 in the unweighted

case as a consequence of the upper and lower bounds provided, respectively,
by Christodoulou et al. [10] and by Bilò et al. [5], while, for weighted players,
Caragiannis et al. [6] give a lower bound of 3 + 2

√
2 and Christodoulou et al.

[10] give an upper bound of 4 + 2
√
3. For F being the maximum of the players’

payoffs, Bilò et al. [5] show that Apx1∅ is Θ(
4
√
n3) in the unweighted case and

affine latency functions.

Paper Organization. In next section, we give all the necessary definitions and
notation, while in Section 3 we briefly outline the primal-dual method. Then, in
Section 4 we illustrate how it applies to affine latency functions and, finally, in
Section 5 we use it to address the case of quadratic and cubic latency functions.
Due to lack of space, some proofs are omitted and can be found in the full version
of the paper.

2 Definitions

For a given integer n > 0, we denote as [n] the set {1, . . . , n}.
A weighted congestion game G =

(
[n], E, (Σi)i∈[n], (�e)e∈E , (wi)i∈[n]

)
is a non-

cooperative strategic game in which there is a set E of m resources to be shared
among the players in [n]. Each player i has an associated weight wi ≥ 1 and
the special case in which wi = 1 for any i ∈ [n] is called the unweighted
case. The strategy set Σi, for any player i ∈ [n], is a non-empty subset of
resources, i.e., Σi ⊆ 2E \ {∅}. The set Σ = ×i∈[n]Σi is called the set of strat-
egy profiles (or solutions) which can be realized in G. Given a strategy profile
S = (s1, s2, . . . , sn) ∈ Σ and a resource e ∈ E, the sum of the weights of
all the players using e in S, called the congestion of e in S, is denoted by
Le(S) =

∑
i∈[n]:e∈si

wi. A latency function �e : R≥0 �→ R≥0 associates each re-
source e ∈ E with a latency depending on the congestion of e in S. The cost
of player i in the strategy profile S is given by ci(S) =

∑
e∈si

�e(Le(S)). This
work is concerned only with polynomial latency functions of maximum degree d,
i.e., the case in which �e(x) =

∑d
i=0 αe,ix

i with αe,i ∈ R≥0, for any e ∈ E and
0 ≤ i ≤ d.

Given a strategy profile S ∈ Σ and a strategy t ∈ Σi for player i, we denote
with (S−i � t) = (s1, . . . , si−1, t, si+1, . . . , sn) the strategy profile obtained from
S when player i changes unilaterally her strategy from si to t. We say that
S′ = (S−i � t) is an improving deviation for player i in S if ci(S

′) < ci(S). Given
an ε ≥ 0, a strategy profile S is an ε-approximate pure Nash equilibrium (ε-PNE)
if, for any i ∈ [n] and for any t ∈ Σi, it holds ci(S) ≤ (1 + ε)ci(S−i � t). For
ε = 0, the set of ε-approximate pure Nash equilibria collapses to that of pure
Nash equilibria (PNE), that is, the set of strategy profiles in which no player
possesses an improving deviation.
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Consider the social function Sum : Σ �→ R≥0 defined as the sum of the
players’ costs, that is, Sum(S) =

∑
i∈[n] ci(S) and let S∗ be the strategy profile

minimizing it. Given an ε ≥ 0 and a weighted congestion game G, let E(G) be the
set of ε-approximate Nash equilibria of G. The ε-approximate price of anarchy of

G is defined as ε-PoA(G) = maxS∈E(G)

{
Sum(S)
Sum(S∗)

}
, while the ε-approximate price

of stability of G is defined as ε-PoS(G) = minS∈E(G)

{
Sum(S)
Sum(S∗)

}
.

Given a strategy profile S and a player i ∈ [n], a strategy profile t∗ ∈ Σi is a
best-response for player i in S if it holds ci(S−i � t∗) ≤ ci(S−i � t) for any t ∈ Σi.
Let S∅ be the empty strategy profile, i.e., the profile in which no player has
performed any strategic choice yet. A one-round walk starting from the empty
strategy profile is an (n + 1)-tuple of strategy profiles W = (SW

0 , SW
1 , . . . , SW

n )
such that SW

0 = S∅ and, for any i ∈ [n], SW
i = (SW

i−1 � t∗), where t∗ is a best-
response for player i in SW

i−1. The profile S
W
n is called the solution achieved after

the one-round walk W . Clearly, depending on how the players are ordered from
1 to n and on which best-response is selected at step i when more than one
best-response is available to player i in SW

i−1, different one-round walks can be
generated. Let W(G) denote the set of all possible one-round walks which can
be generated in game G. The approximation ratio of the solutions achieved after
a one-round walk starting from the empty strategy profile in G is defined as

Apx1∅(G) = maxW∈W(G)

{
Sum(SW

n )
Sum(S∗)

}
.

3 The Primal-Dual Technique

Fix a weighted congestion game G, a social function F and a class of self-emerging
solutions E . Let O = (sO1 , . . . , s

O
n ) be the strategy profile optimizing F and

K = (sK1 , . . . , s
K
n ) ∈ E(G) be the worst-case solution in E(G) with respect to F .

For any e ∈ E, we set, for the sake of brevity, Oe = Le(O) and Ke = Le(K).
Since O and K are fixed, we can maximize the inefficiency yielded by the

pair (K,O) by suitably choosing the coefficients αe,i, for each e ∈ E and 0 ≤
i ≤ d, so that F(K) is maximized, F(O) is normalized to one and K meets
all the constraints defining the set E(G). For the sets E and social functions F
considered in this paper, this task can be easily achieved by creating a suitable
linear program LP (K,O).

By providing a feasible solution for the dual program DLP (K,O), we can
obtain an upper bound on the optimal solution of LP (K,O). Our task is to
uncover, among all possibilities, the pair (K∗, O∗) yielding the highest possible
optimal solution for LP (K,O). To this aim, the study of the dual formulation
plays a crucial role: if we are able to detect the nature of the “worst-case” dual
constraints, then we can easily figure out the form of the pair (K∗, O∗) maxi-
mizing the inefficiency of the class of solutions E . Clearly, by the complementary
slackness conditions, if we find the optimal dual solution, then we can quite sys-
tematically construct the matching primal instance by choosing a suitable set
of players and resources so as to implement all the tight dual constraints. This
task is much more complicated to be achieved in the weighted case, because,
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once established the values of the congestions K∗
e and O∗

e for any e ∈ E, there
are still infinite many ways to split them among the players using resource e in
both K and O.

4 Application to Affine Latency Functions

In order to easily illustrate our primal-dual technique, in this section we consider
the well-known and studied case of affine latency functions and social function
Sum and show how the results for ε-PoA, ε-PoS and Apx1∅ already known in
the literature can be reobtained in a unified manner for both weighted and
unweighted players.

We say that the game G′ = ([n], E′, Σ′, �′, w) is equivalent to the game G =
([n], E,Σ, �, w) if there exists a one-to-one mapping ϕi : Σi �→ Σ′

i for any i ∈
[n] such that for any strategy profile S = (s1, . . . , sn) ∈ Σ, it holds ci(S) =
ci(ϕ1(s1), . . . , ϕn(sn)) for any i ∈ [n].

Lemma 1. For each weighted congestion game with affine latency functions G =
([n], E,Σ, �, w) there always exists an equivalent weighted congestion game with
affine latency functions G′ = ([n], E′, Σ′, �′, w) such that �′e(x) = αe,1x := αex
for any e ∈ E′.

Proof. Consider the weighted congestion game G = ([n], E,Σ, �, w) with latency
functions �e(x) = αex + βe for any e ∈ E. For each ẽ ∈ E such that βẽ > 0,
let Nẽ be the set of players who can choose ẽ, that is, Nẽ = {i ∈ [n] : ∃s ∈
Σi : ẽ ∈ s}. The set of resources E′ is obtained by replicating all the resources
in E and adding a new resource eiẽ for any ẽ ∈ E and any i ∈ Nẽ, that is,
E′ = E ∪

⋃
ẽ∈E,i∈Nẽ

{eiẽ}. The latency functions are defined as �′e(x) = αex for

any e ∈ E′ ∩ E and �′
ei
ẽ

(x) = βẽ

wi
x for any ẽ ∈ E and any i ∈ Nẽ. Finally, for

any i ∈ [n], the mapping ϕi is defined as follows: ϕi(s) = s∪
⋃

ẽ∈s{eiẽ}. It is not
difficult to see that for any S = (s1, . . . , sn) ∈ Σ and for any i ∈ [n], it holds
ci(S) = ci(ϕ1(s1), . . . , ϕn(sn)). 
�

As a consequence of Lemma 1, throughout this section, we restrict to latency
functions of the form �e(x) = αex, for any e ∈ E. In such a setting, we can
rewrite the social value of a strategy profile as Sum(S) =

∑
e∈E(αeLe(S)

2).

4.1 Bounding the Approximate Price of Anarchy

By definition, we have that if K is an ε-PNE then, for any i ∈ [n], it holds

ci(K) =
∑
e∈sKi

(αeKe) ≤ (1 + ε)ci(K−i � sOi ) ≤ (1 + ε)
∑
e∈sOi

(αe(Ke + wi)).
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Thus, the primal formulation LP (K,O) assumes the following form.

maximize
∑
e∈E

(
αeK

2
e

)
subject to∑

e∈sKi

(αeKe)− (1 + ε)
∑
e∈sOi

(αe(Ke + wi)) ≤ 0, ∀i ∈ [n]∑
e∈E

(
αeO

2
e

)
= 1,

αe ≥ 0, ∀e ∈ E

The dual program DLP (K,O) is

minimize γ
subject to∑

i:e∈sKi

(yiKe)− (1 + ε)
∑

i:e∈sOi

(yi(Ke + wi)) + γO2
e ≥ K2

e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

Let ψ = 1+ε+
√
ε2+6ε+5
2 and z = �ψ�. For unweighted players we reobtain the

upper bound proved in [9] with a much simpler and shorter proof, while for the
weighted case we give the first known upper bound.

Theorem 1. For any ε ≥ 0, it holds ε-PoA(G) ≤ (1+ε)(z2+3z+1)
2z−ε when G has

unweighted players, while it holds ε-PoA(G) ≤ ψ2 when G has weighted players.

Proof. For the unweighted case, since wi = 1 for each i ∈ [n], by choosing

yi =
2z+1
2z−ε for any i ∈ [n] and γ = (1+ε)(z2+3z+1)

2z−ε , the dual inequalities become
of the form

2z + 1

2z − ε

(
K2

e − (1 + ε)(Ke + 1)Oe

)
+

(1 + ε)(z2 + 3z + 1)

2z − ε
O2

e ≥ K2
e

which is equivalent to

K2
e − (2z + 1)(KeOe +Oe) + (z2 + 3z + 1)O2

e ≥ 0.

Easy calculations (it suffices solving the inequality for Ke) show that this is
always verified for any pair of non-negative integers (Ke, Oe). Note that the
definition of z guarantees that 2z − ε ≥ 0, so that the proposed dual solution is
a feasible one.

For the weighted case, by choosing yi =
(
1 +

√
1+ε√
5+ε

)
wi for any i ∈ [n] and

γ = ψ2, each dual inequality is verified when it holds(
1 +

√
1 + ε√
5 + ε

)(
K2

e − (1 + ε)
(
KeOe +O2

e

))
+ ψ2O2

e ≥ K2
e
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which is equivalent to
√
1 + ε√
5 + ε

K2
e −

(
1 +

√
1 + ε√
5 + ε

)
(1 + ε)(KeOe +O2

e) + ψ2O2
e ≥ 0.

Easy calculations show that this is always verified for any pair of non-negative
reals (Ke, Oe) such that Ke, Oe ∈ {0} ∪ [1,∞) for any e ∈ E (it suffices solving
the inequality for Ke and noting that it has no solutions for Oe ∈ {0} ∪ [1,∞)
when ε ≥ 0). 
�

When ε = 0, we reobtain the well-known prices of anarchy of 5/2 and (3+
√
5)/2

which hold for PNE in the unweighted and weighted case, respectively.

4.2 Bounding the Approximate Price of Stability

Recall that, since the ε-PoS is a best-case measure, the primal-dual approach
guarantees a tight analysis only if we are able to exactly characterize the poly-
hedron defining the set of the best ε-PNE. It is not known how to do this at
the moment, thus all the approaches used so far in the literature approximate
the best ε-PNE with an ε-PNE minimizing a certain potential function. In [9],
it is shown that, for unweighted players, any strategy profile S which is a local
minimum of the function

Φε(S) =
∑
e∈E

(
αe

(
Le(S)

2 +
1− ε

1 + ε
Le(S)

))
,

called ε-approximate potential, is an ε-PNE. Thus, it is possible to get an upper
bound on the ε-PoS by measuring the ε-PoA of the global minimum of Φε.

We now illustrate our approach which yields the same 1+
√
3

ε+
√
3
upper bound

achieved in [9]. Assume that K is the global minimum of Φε. We can use the
inequality Φε(K) ≤ Φε(O) which results in the constraint∑

e∈E

(
αe

(
K2

e +
1− ε

1 + ε
Ke −O2

e −
1− ε

1 + ε
Oe

))
≤ 0.

Then, we also have
∑

i∈[n]

(
Φε(K)− Φε(K−i � sOi )

)
≤ 0 which results in the

constraint ∑
e∈E

(
αe

(
K2

e −
ε

1 + ε
Ke −KeOe −

1

1 + ε
Oe

))
≤ 0.

Thanks to these two constraints, the dual formulation becomes the following
one.

minimize γ
subject to

K2
e (y + z) + Ke

1+ε (y(1− ε)− zε)

−
(
yO2

e + zKeOe +
Oe

1+ε (y(1− ε) + z)
)
+ γO2

e ≥ K2
e , ∀e ∈ E

y, z ≥ 0
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Thus, for unweighted players, we obtain the following result for any ε ∈ [0, 1)
(this is the only interesting case, since [9] shows that, for any ε ≥ 1, ε-PoS(G) = 1
for any G).

Theorem 2. For any ε ∈ [0, 1) and G with unweighted players, it holds ε-

PoS(G) ≤ 1+
√
3

ε+
√
3
.

Proof. By choosing y = 2ε+
√
3(1+ε)

2(ε+
√
3)

, z = 1−ε
ε+

√
3
and γ = 1+

√
3

ε+
√
3
, the dual inequali-

ties become

(ε− 1)((
√
3− 2)K2

e + (2Oe −
√
3)Ke + (2 +

√
3)(Oe −O2

e)) ≥ 0.

Easy calculations (it suffices solving the inequality for Ke) show that this is
always verified for any pair of non-negative integers (Ke, Oe). 
�

4.3 Bounding the Approximation Ratio of One-Round Walks

For a one-round walk W , we set K = SW
n . Define Ke(i) as the sum of the

weights of the players using resource e in K before player i performs her choice.
LP (K,O) in this case has the following form, where the first constraint comes
from the fact that when player i enters the game and solution SK

i−1 is already
constructed, this player picks sKi instead of sOi .

maximize
∑
e∈E

(
αeK

2
e

)
subject to∑

e∈sKi

(αe(Ke(i) + wi)) −
∑
e∈sOi

(αe(Ke(i) + wi)) ≤ 0, ∀i ∈ [n]∑
e∈E

(
αeO

2
e

)
= 1

αe ≥ 0, ∀e ∈ E

DLP (K,O) is as follows.

minimize γ
subject to∑

i:e∈sKi

(yi(Ke(i) + wi))−
∑

i:e∈sOi

(yi(Ke(i) + wi)) + γO2
e ≥ K2

e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

For both unweighted and weighted players we easily reobtain the upper bounds
on Apx1∅ given in [10].

Theorem 3. For any G with unweighted players, it holds Apx1∅(G) ≤ 2 +
√
5,

while for any G with weighted players, it holds Apx1∅(G) ≤ 4 + 2
√
3.
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Proof. In the unweighted case, by choosing yi = 1 +
√
5 for any i ∈ [n] and

γ = 2 +
√
5, since for any i such that e ∈ sOi it holds Ke(i) ≤ Ke, each dual

inequality is verified when it holds(
1 +

√
5
)(Ke(Ke + 1)

2
− (Ke + 1)Oe

)
+
(
2 +

√
5
)
O2

e ≥ K2
e

which is equivalent to(√
5− 1

2

)
K2

e +

(
1 +

√
5

2

)
Ke− (1+

√
5)KeOe− (1+

√
5)Oe+(2+

√
5)O2

e ≥ 0.

Easy calculations (it suffices solving the inequality for Ke) show that this is
always verified for any pair of non-negative integers (Ke, Oe).

In the weighted case, by choosing yi =
(
2 + 2√

3

)
wi for any i ∈ [n] and

γ = 4 + 2
√
3, since for any i such that e ∈ sOi it holds Ke(i) ≤ Ke, each dual

inequality is verified when it holds(
2 +

2√
3

)⎛⎝ ∑
i≤j:e∈sKi ∩sKj

(wiwj)−
∑

i:e∈sOi

(wi(Ke + wi))

⎞⎠+
(
4 + 2

√
3
)
O2

e ≥ K2
e

which is true if it holds

1√
3
K2

e −
(
2 +

2√
3

)
KeOe +

(
2 +

4√
3

)
O2

e ≥ 0.

Easy calculations (it suffices solving the inequality for Ke) show that this is
always verified for any pair of non-negative reals (Ke, Oe). 
�

5 Quadratic and Cubic Latency Functions

In this section, we show how to use the primal-dual method to bound PoS
and Apx1∅ in the case of polynomial latency functions of maximum degree d and
unweighted players. We only consider the case d ≤ 3, that is, quadratic and cubic
latency functions. It is not difficult to extend the approach to any particular value
of d, but it is quite hard to obtain a general result as a function of d because we
do not have simple closed formulas expressing some of the summations we need
in our analysis for any value of d. We also leave the extension to ε-PNE and
weighted players for future works. We restrict to the cases in which the latency
functions are of the form �e(x) = αex

d, since it is possible to show that this
can be supposed without loss of generality. In such a setting, [19] shows that,
for unweighted players, any strategy profile S which is a local minimum of the
potential function

Φ(S) =
∑
e∈E

Le(S)∑
i=1

(αex
d)

is a PNE.
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5.1 Bounding the Price of Stability

For the case d = 2, it holds

Φ(S) =
1

6

∑
e∈E

(αeLe(S)(Le(S) + 1)(2Le(S) + 1)) .

Thus, the constraint Φ(K) ≤ Φ(O) becomes∑
e∈E

(αe (Ke(Ke + 1)(2Ke + 1)−Oe(Oe + 1)(2Oe + 1))) ≤ 0

and the constraint
∑

i∈[n]

(
Φ(K)− Φ(K−i � sOi )

)
≤ 0 becomes∑

e∈E

(
αe

(
K3

e −Oe(Ke + 1)2
))

≤ 0.

Hence, DLP (K,O) is the following.

minimize γ
subject to

(y(Ke(Ke + 1)(2Ke + 1)−Oe(Oe + 1)(2Oe + 1)))
+
(
z(K3

e −Oe(Ke + 1)2)
)
+ γO3

e ≥ K3
e , ∀e ∈ E

y, z ≥ 0

Theorem 4. For any G with quadratic latency functions and unweighted play-
ers, it holds PoS(G) ≤ 2.362.

Proof. The claim follows by setting y = 0.318, z = 0.453 and γ = 2.362. 
�

For the case d = 3, it holds

Φ(S) =
1

4

∑
e∈E

(
αe (Le(S)(Le(S) + 1))

2
)
.

Thus, the constraint Φ(K) ≤ Φ(O) becomes∑
e∈E

(
αe

(
(Ke(Ke + 1))

2 − (Oe(Oe + 1))
2
))

≤ 0

and the constraint
∑

i∈[n]

(
Φ(K)− Φ(K−i � sOi )

)
≤ 0 becomes∑

e∈E

(
αe

(
K4

e −Oe(Ke + 1)3
))

≤ 0.

Hence, DLP (K,O) is defined as follows.

minimize γ
subject to(

y(K2
e (Ke + 1)2 −O2

e(Oe + 1)2)
)

+
(
z(K4

e −Oe(Ke + 1)3)
)
+ γO4

e ≥ K4
e , ∀e ∈ E

y, z ≥ 0
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Theorem 5. For any G with cubic latency functions and unweighted players, it
holds PoS(G) ≤ 3.322.

Proof. The claim follows by setting y = 0.747, z = 0.331 and γ = 3.322. 
�

By extending the instance given in [9] for lower bounding the PoS in the linear
case, the following lower bounds can be easily achieved.

Theorem 6. For any δ > 0, there exist an unweighted congestion game with
quadratic latency functions G1 and an unweighted congestion game with cubic
latency functions G2 such that PoS(G1) ≥ 2.1859− δ and PoS(G2) ≥ 2.7558− δ.

5.2 Bounding the Approximation Ratio of One-Round Walks

For the case d = 2, DLP (K,O) is defined as follows.

minimize γ
subject to∑

i:e∈sKi

(
yi(Ke(i) + 1)2

)
−

∑
i:e∈sOi

(
yi(Ke(i) + 1)2

)
+ γO3

e ≥ K3
e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

Theorem 7. For any G with quadratic latency functions and unweighted play-
ers, it holds Apx1∅(G) ≤ 37.5888.

For the case d = 3, DLP (K,O) is defined as follows.

minimize γ
subject to∑

i:e∈sKi

(
yi(Ke(i) + 1)3

)
−

∑
i:e∈sOi

(
yi(Ke(i) + 1)3

)
+ γO4

e ≥ K4
e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

Theorem 8. For any G with cubic latency functions and unweighted players, it
holds Apx1∅(G) ≤ 17929

34 ≈ 527.323.
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Abstract. We investigate Subgame Perfect Equilibria, that better cap-
ture the rationality of the players in sequential games with respect to
other more myopic dynamics like the classical Nash one. We prove that
the sequential price of anarchy, that is the worst case ratio between the
social performance at a Subgame Perfect Equilibrium and the best pos-
sible one, is exactly 3 in cut and consensus games. Moreover, we improve
the known Ω(n) lower bound for unrelated scheduling to 2Ω(

√
n) and

refine the corresponding upper bound to 2n, where n is the number of
players. Finally, we determine essentially tight bounds for fair cost shar-
ing games by proving that the sequential price of anarchy is between
n + 1 −Hn and n. A surprising lower bound of (n + 1)/2 is also deter-
mined for the singleton case.

Our results are quite interesting and counterintuitive, as they show
that a farsighted behavior generally may lead to a worse performance
with respect to myopic one; in fact, Nash equilibria and simple Nash
rounds, consisting of a single (myopic) move per player starting from
the empty state achieve a price of anarchy which result to be lower or
equivalent to the sequential price of anarchy in almost all the considered
cases.

1 Introduction

Modern global communication and service infrastructures (e.g., Internet, P2P,
wireless ad-hoc, social networks, etc.) are increasingly introducing decentral-
ization, autonomy, and general lack of coordination among the heterogeneous
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network entities. The arising general mismatch between the system optimiza-
tion goals and the competing users’ private interests must be necessarily faced
in emerging services and applications, and calls for a pressing solution of the re-
sulting scientific and technological challenges. On this respect, useful tools and
insights for modeling and analyzing the consequences of the autonomous users
behavior on the system efficiency come from the integration of algorithmic ideas
with techniques borrowed from Mathematical Economics and Game Theory. The
fundamental approach adopted in the literature has been that of resorting on
different concepts of equilibrium to characterize stable solutions consistent with
the presence of rational and selfish users that have limited or no capabilities of
cooperating, Nash equilibrium being among the most investigated one [26,27].

The central idea of quantifying the loss of efficiency deriving from non cooper-
ation is that of bounding the ratio between the worst possible Nash equilibrium
and the social optimal outcome. It was introduced by Koutsoupias and Papadim-
itriou [22], and it is commonly referred to as the Price of Anarchy (PoA) in the
Computer Science literature [28]. Considerable research effort has been then
devoted to bound the PoA in several non-cooperative games, including selfish
routing [30], load balancing [22,17,11], linear congestion [15], fair cost sharing
[4] and consensus games [6].

Often Nash equilibria may not exist or it may be hard to compute them
or the time for convergence to Nash equilibria may be extremely long, even if
the players always choose a best response move, i.e. a move providing them the
smallest possible cost given the moves of the other players. Thus, recent research
effort [13,19,20,25] focused on the evaluation of the performance after a limited
number of selfish moves or a bounded number of rounds, with a round consisting
of a sequence of best response moves, with each user moving exactly once.

As far as the specific games considered in this paper are concerned, in cut
games Nash equilibria correspond to local optima of the classical local search
algorithm. Moreover, a single round starting from the empty state in which every
player has not selected any strategy coincides with a possible execution of the
basic greedy algorithm. As a consequence, in both cases the price of anarchy
is upper bounded by 2 and simple counterexamples show that this result is
strict. Finally, the PoA after a single round from a generic state is Ω(n) [16].
In unrelated scheduling, it is known that the PoA of Nash (and thus of single
rounds from a generic state) is unbounded, while it can be trivially verified that
single rounds from the empty state have a PoA equal to the number of players
n. Finally, the PoA of Nash equilibria in fair allocation games, that is using
the basic Shapley cost sharing method [31] in which the cost of each resource
is equally split among the allocated players, again is exactly n, while in case of
single rounds it is O(log2 n) from the empty state [12] and n(n + 1)/2 from a
generic state [8].

One drawback of Nash equilibria and of the corresponding dynamics is that
they often have disappointing performances: this has stimulated considerable
research attempts in studying other reasonable solution concepts, like approx-
imate [14] and strong Nash equilibria [1], able to achieve better performances.
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Examples about strong equilibria (approximate equilibria, respectively) can be
found in [21] ([7], respectively) for cut games, in [5] for unrelated machine
scheduling games and in [2,18] ([3], respectively) for cost sharing games.

Equilibrium solutions alternative to Nash can be defined according to suitable
extensions of the agents rationality. In particular, considerable research effort fo-
cused on sequential games, modeling the strategic behavior of agents who antic-
ipate future strategic opportunities. More precisely, in the majority of equilibria
notions it is assumed that players simultaneously select their strategic choices.
Even when speaking about speed of convergence and best response moves, the
corresponding dynamics is actually the result of a myopic interaction among the
players, in which each player merely selects the strategy being at the moment
a good choice, without caring about the future of the game. In other words,
the dynamics is not governed by farsighted strategic choices of the players. As a
consequence, in the sequential setting the Subgame Perfect Equilibrium (SPE)
[29], better capturing the sequential rationality of the players, is the basic used
equilibrium notion. Very recently, such equilibria have been investigated in the
context of auctions [24], cut, consensus, unrelated scheduling and fair cost shar-
ing allocation games [23]. A desired and expected effect of SPEs remarked in [23]
is that the corresponding farsighted choices may reduce the induced price of an-
archy. Other non myopic extensions induced by more farsighted agents that take
into account the long term effects of their adopted strategies were considered in
[10].

In [23] the authors considered sequential games and measure their Sequential
Price of Anarchy (SPoA), that is, the price of anarchy of the corresponding Sub-
game Perfect Equilibria. In particular, they proved that the SPoA in cut games
is between 2 and 4, while in unrelated machine scheduling it is at least Ω(n) and
at most m ·2n, where n is the number of players and m the number of machines.
Finally, for fair cost sharing allocation games the authors just considered the
singleton case in which each player can select a single resource and proved that
under some restricted assumption the SPoA is exactly Hn = O(log n).

Motivated by the above reasons, and by following the way marked out in [23],
we consider some fundamental games in algorithmic game theory. More precisely,
we prove that the sequential price of anarchy is exactly 3 in cut and consensus
games. Moreover, we improve the previously known lower bound for unrelated
scheduling to 2Ω(

√
n) and refine the corresponding upper bound to 2n. Finally,

we determine essentially tight bounds for fair cost sharing games by proving that
the price of anarchy is between n+ 1−Hn and n. A surprising lower bound of
(n+ 1)/2 is also determined for the singleton case.

Our results are quite interesting, counterintuitive and in some sense disap-
pointing, as they put the expected performances of SPEs back in their right
perspective. In fact, they show that farsighted choices may lead to a worse per-
formance with respect to those yielded by a myopic behavior, as the price of an-
archy of Nash equilibria and simple Nash rounds from the empty state happens
to be lower than the sequential price of anarchy in almost all of the considered
games.



232 V. Bilò et al.

The paper is organized as follows. In the next section we give the basic def-
initions and notation. In Sections 3, 4, 5 we show our results concerning SPE
for cut and consensus games, unrelated machine scheduling and fair cost sharing
games, respectively. Finally in Section 6 we give some conclusive remarks and
discuss some interesting open questions.

2 Definitions and Notation

For an integer n > 0, denote as [n] the set {1, 2, . . . , n}.
A sequential game is a triple G = (N,Ai∈N , Ui∈N ), where N = {1, . . . , n}

is a set of n players and, for any i ∈ N , Ai is the set of actions for player i and
Ui : ×j∈NAj �→ R≥0 is her utility function. The game is played in n steps. At the
ith step, player i observes the actions chosen by the first i−1 players and decides
which action to adopt. The function si : ×1≤j<iAj �→ Ai is the strategy of player
i. A strategy profile s = (s1, . . . , sn) is an n-tuple of strategies, one for each player.
Each strategy profile s induces a unique outcome a(s) = (a1(s), . . . , an(s)),
defined as a1(s) = s1(∅) and ai(s) = si(a1(s), . . . , ai−1(s)) for any 2 ≤ i ≤ n.

For a strategy profile s and i ∈ [n−1], let s>i be the restriction of s to the play-
ers i+1, . . . , n and, for any i ≤ j ≤ n, let s<j

≥i be the restriction of s to the players

i, . . . , j − 1, with s<j
≥i = ∅ for i = j. Denote by Hi(G) = ×1≤j<iAj and H(G) =⋃n

i=1Hi the sets of histories of G up to player i−1 and the set of all histories of G,
respectively. Any history h ∈ H(G) naturally induces a subgame Gi(h) in which
players i, . . . , n have to sequentially move, where i is such that h ∈ Hi(G). The
outcome a(s>i) = (ai(s>i), . . . , an(s>i)) induced by s>i in Gi(h) is then defined
as ai(s>i) = si(h) and aj(s>i) = sj(ai(s>i), . . . , aj−1(s>i)) for any i < j ≤ n,

while the outcome a(s<j
≥i ) = (ai(s

≤j
≥i ), . . . , aj−1(s

<j
≥i )) induced by s<j

≥i in Gi(h)

is then defined as ai(s
<j
≥i ) = si(h) and ak(s

<j
≥i ) = sk(ai(s

<j
≥i ), . . . , ak−1(s

<j
≥i )) for

any i < k < j − 1.
Given any history h ∈ H(G) such that it also holds that h ∈ Hi(G), a strategy

profile s is a Nash equilibrium (NE) for the subgame Gi(h) if, for any i ≤
j ≤ n, it holds Uj(h,a(s

<j
≥i ), sj(h,a(s

<j
≥i )),a(s>j)) ≥ Uj(h,a(s

<j
≥i ), t,a(s>j))

for any t ∈ Aj . A strategy profile s is a subgame perfect equilibrium (SPE)
for G if it is a Nash equilibrium for any h ∈ H(G).

These definitions are intended for utility games, that is, games in which players
want to maximize their utility. Definitions for cost games can be obtained by
reversing the inequality relationships.

Sequential games are special cases of Extensive Form games and can be graph-
ically represented as a decision tree in which each level i models the ith step of
the game. Leaves correspond to action profiles, while each node u at level i cor-
responds to the subgame Gi(hu), where hu ∈ Hi is the (i − 1)-tuple of actions
defined by the path from the root to node u. Hence, a strategy profile s is a
SPE if it is a NE for all the subgames induced by all the nodes in the tree. Each
sequential game G admits at least one subgame perfect equilibrium and its set of
subgame perfect equilibria SPE(G) can be easily found by backward induction
(see Chapter 6 of [29] for further details).
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Given a social function SF : ×i∈NAi �→ R>0, let a
∗ = (a∗1, . . . , a

∗
n) ∈ ×i∈NAi

be the outcome optimizing SF. The sequential price of anarchy (SPoA) of

G is defined as SPoA(G) = maxs∈SPE(G)
SF(a∗)
SF(a(s)) when SF has to be maximized

and SPoA(G) = maxs∈SPE(G)
SF(a(s))
SF(a∗) when SF has to be minimized. Thus, the

sequential price of anarchy always falls in the interval [1;∞).
Given an action profile a = (a1, . . . , an), define a<i = (a1, . . . , ai−1), with

a<i = ∅. In the proofs of our lower bounds for the sequential price of anarchy,
we will make extensive use of the following characterization. An action profile a is
an outcome of some SPE s if, for any i ∈ [n−1] and for any t ∈ Ai, there exists a
SPE s(a<i, t) for the subgame Gi(a<i, t) such that Ui(a) ≥ Ui(a<i, t,a(a<i, t)).

3 Cut and Consensus Games

In cut and consensus games there are n players corresponding to the vertices of
an edge weighted graph G = (V,E,w) with w : E �→ R>0. Players can choose
between two sides: left and right. In cut games, each player i gets a utility equal
to the sum of the weights of all edges incident to i and to some other player
belonging to the opposite side. We represent an history up to player i, for any
i ∈ [n], as a pair (Li, Ri), where Li ⊆ {1, . . . , i} is the subset of the first i players
choosing the left side and Ri ≡ {1, . . . , i} \ Li is the subset of the first i players
choosing the right side. Thus, a pair (Ln, Rn) denotes an action profile. For an
action profile (Ln, Rn), the social function is defined as the sum of the players’
utilities that corresponds to twice the sum of the weights of the edges in the cut
defined by (Ln, Rn).

It has been shown in [23] that the sequential price of anarchy of cut games is a
value between 2 and 4 and it is also conjectured that it is exactly 2, i.e., the given
lower bound is tight. We improve both upper and lower bounds, thus disproving
this conjecture, by showing that the sequential price of anarchy of cut games is
3. This result holds for games played on both weighted and unweighted graphs
and is achieved by proving an upper bound of 3 for games played on weighted
graphs and a lower bound which tends to 3 when the number of players goes to
infinity for games played on unweighted graphs.

Theorem 1. For any cut game CG, it holds SPoA(CG) ≤ 3.

Proof. Fix a cut game CG played on and a weighted graph G = (V,E,w)
and an outcome C = (L := Ln, R := Rn) such that C = a(s) for some SPE
s of CG. Let OPT(CG) be the social optimum for CG and denote as EL =
{{i, j} ∈ E : i, j ∈ L} and ER = {{i, j} ∈ E : i, j ∈ R} the set of all edges con-
necting pairs of nodes belonging to L and R, respectively. For the sake of simplic-
ity in the notation, in the sequel of this proof we set wij = 0 for any {i, j} /∈ E,
so that we can assume that G is complete. It is easy to see that this assumption
does not affect the analysis of the sequential price of anarchy. At any possible
step i ∈ [n], if a player i ∈ L deviates to the right side, since all players j < i
have already moved and cannot change their strategy, she is guaranteed to get a
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utility of at least
∑

j∈L:j<i wij in any possible outcome generated by this choice.
Thus, since s is a SPE, for any player i ∈ L, it holds∑

j∈R

wij ≥
∑

j∈L:j<i

wij . (1)

Similarly, for any player i ∈ R, it holds∑
j∈L

wij ≥
∑

j∈R:j<i

wij . (2)

By summing up (1) for any i ∈ L and (2) for any i ∈ R, we get∑
{i,j}∈C

wij ≥
∑

{i,j}∈EL

wij (3)

and ∑
{i,j}∈C

wij ≥
∑

{i,j}∈ER

wij . (4)

By summing (3) and (4), we get

2
∑

{i,j}∈C
wij ≥

∑
{i,j}∈EL

wij +
∑

{i,j}∈ER

wij =
∑

{i,j}∈E

wij −
∑

{i,j}∈C
wij

which yields

3
∑

{i,j}∈C
wij ≥

∑
{i,j}∈E

wij ≥ OPT(CG).


�

Theorem 2. For any ε > 0, there exists a cut game CG played on an unweighted
graph such that SPoA(CG) ≥ 3− ε.

Proof. Consider the cut game CGk played on the unweighted graph Gk = (V,E)
depicted in Figure 1 where players move according to the lexicographic order of
their labels, that is, the order a, b1, . . . , bk, c1, . . . , ck, d, e1, e2. Since Gk is bipar-
tite, there exists an action profile, namely ({a, d}, {b1, . . . , bk, c1, . . . , ck, e1, e2}),
of social value |E| = 3k + 4. We now show that there exists a SPE s for CGk

such that a(s) = C, where C = ({a, b1, . . . , bk, e1, e2}, {c1, . . . , ck, d}) for a social
value of k + 2.

Consider the subgame yielded by the history ({a, (bi)i∈[k]}, {(ci)i∈[k], d}). If
player ei, with i ∈ [2], chooses the right side, she gets utility 1, thus, since it
holds Uei(C) = 1 for any i ∈ [2], none of them has an incentive to deviate from
the left side.

Consider the subgame yielded by the history ({a, (bi)i∈[k]}, {(ci)i∈[k]}). If
player d chooses the left side, she gets utility of at most k + 2, thus, since it
holds Ud(C) = k + 2, d has no incentive to deviate from the right side.
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For any index j ∈ [k], consider the subgame CG′
k yielded by the history

({a, (bi)i∈[k], cj}, {(ci)i∈[k]\{j}}). We claim that there exists a SPE s′ for CG′
k

such that a(s′) = Cj, where Cj = ({a, (bi)i∈[k], cj , d}, {(ci)i∈[k]\{j}, e1, e2}). For
each i ∈ [k] \ {j}, it holds Uci(Cj) = 1 which is the maximum utility that any
player ci, with i ∈ [k] \ {j}, can achieve in any possible action profile, thus none
of them has an incentive to deviate to the left side. If player d chooses the right
side, she gets utility of at most k + 1, thus, since it holds Ud(Cj) = k + 1, d has
no incentive to deviate from the left side. Finally, both players e1 and e2 prefers
to be on the right side when both a and d are on the left one, and this shows
that s′ is a SPE for CG′

k. Now, since it holds Ucj(Cj) = 0 = Ucj(C), it follows
that no player cj , with j ∈ [k], has an incentive to deviate from the right side.

For any set of indexes J ⊆ [k], consider the subgame CG′
k yielded by the

history ({a, (bi)i/∈J}, {(bi)i∈J}). We claim that there exists a SPE s′ for CG′
k

such that a(s′) = CJ , where CJ = ({a, (bi)i/∈J , (ci)i∈[k], e1, e2}, {(bi)i∈J , d}). For
each i ∈ [k], it holds Uci(CJ) = 1 which is the maximum utility that any player
ci can achieve in any possible action profile, thus none of them has an incentive
to deviate to the right side. If player d chooses the left side, she gets utility
of at most k + 2, thus, since it holds Ud(CJ) = k + 2, d has no incentive to
deviate from the right side. Finally, both sides are equivalent for players e1 and
e2, thus showing that s′ is a SPE for CG′

k. Now, since for any i ∈ J it holds
Ubi(CJ ) = 1 = Ubi(C), by the arbitrariness of J , it follows that no player bi, with
i ∈ [k], has an incentive to deviate from the left side.

Finally, consider the subgame CG′
k yielded by the history (∅, {a}). By a simple

symmetric argument, it follows that there exists a SPE s′ for CG′
k such that

a(s′) = C′ where C′ = ({(ci)i∈[k], d}, {a, (bi)i∈[k], e1, e2}). Since Ua(C′) = Ua(C),
it follows that s is a SPE for CGk.

The claim then follows by taking the limit for k going to infinity of the ratio
3k+4
k+2 . 
�

Consensus games were defined in [23] as cost games in which the cost of a player
i is defined as the sum of the weights of all edges incident to i and to some other
player belonging to the opposite side. The authors of [23] show that, when all
the edges have non-zero weights and G is a complete graph, there is a unique
SPE whose outcome coincides with the optimal solution in which all the players
choose the same side. In the general case, however, things are quite different
as witnessed by the simple consensus game played on the unweighted graph
G = (V = {1, 2, 3}, E = {{1, 3}, {2, 3}}). Any strategy profile in which player
2 always chooses the opposite side of player 1 and player 3 always chooses the
same side of player 2 is a SPE yielding a non-optimal outcome. Thus, in order
to study the sequential price of anarchy of consensus games played on general
graphs and circumvent the problem created by the existence of a social optimum
of zero cost, we redefine consensus games as utility games in which the utility of
a player i is defined as the sum of the weights of all edges incident to i and to
some other player belonging to the same side.

It is not difficult to mimic the proof of Theorem 1 to show that, for any
consensus game CG, it holds SPoA(CG) ≤ 3. Similarly, the instance graph CGk
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e2

b1 b2 bk

a

d

c1

c2

ck

e1

Fig. 1. The unweighted graph Gk yielding a sequential price of anarchy for cut games
approaching 3 as k goes to infinity

depicted on Figure 1 can be used to prove that, for any ε > 0, there exists a
consensus game CG played on an unweighted graph such that SPoA(CG) ≥ 3−ε.
In particular, such a last result can be achieved by showing that there exists a
SPE s for CGk such that a(s) = ({a, (ci)i∈[k]}, {(b)i∈[k], (d)i∈[k], e1, e2}).

4 Unrelated Machine Scheduling

In this section we address the problem (also considered in [23]) of scheduling
n jobs on m unrelated machines belonging to set M . Each job is owned by
a selfish player, and tx,y is the processing time of job x on machine y. A job
assignment is a function φ : N →M such that φ(x) = y when job x is assigned
to machine y. Given a machine y and a job assignment φ, the completion time
of y is given by

∑
x:φ(x)=y tx,y. Each player aims at minimizing the completion

time of her selected machine, and the social function to be minimized is defined
as the makespan of a job assignment, that is the maximum completion time over
all machines (maxy∈M

∑
x:φ(x)=y tx,y).

In [23], the authors proved that the sequential price of anarchy of such a
game is m · 2n, and also exhibited a family of unrelated machine scheduling
games having sequential price of anarchy Ω(n). On the one hand, we would like
to notice that by refining their proof it is possible to show that a slightly better
upper bound of 2n holds. On the other hand, we significantly improve the lower
bound to 2Ω(

√
n).

Theorem 3. For any unrelated machine scheduling game UMSG, it holds
SPoA(UMSG) ≤ 2n.

Proof. The proof is a refinement of the one in [23] (proof of Theorem 4). Let
−→
L0 ∈ RM

+ be a vector representing an initial load on each of the machines,
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Spe(
−→
L0, k) be the makespan of the subgame perfect equilibrium arising when

players k, k+1, . . . , n play starting from load
−→
L0. Moreover, let t∗x = miny∈M tx,y.

We now prove by induction on k that

∀−→L0 ∈ RM
+ ,Spe(

−→
L0, k) ≤ ‖−→L0‖∞ +

n∑
j=k

2j−kt∗j .

In fact, by taking
−→
L0 =

−→
0 and k = 1, since the optimal makespan

is at least maxi∈{1,...,n} t
∗
i , we obtain Spe(

−→
0 , 1) ≤

∑n
j=1 2

j−kt∗j ≤∑n
j=1 2

j−k maxi∈{1,...,n} t
∗
i = (maxi∈{1,...,n} t

∗
i )
∑n

j=1 2
j−k ≤ Opt ·2n. It remains

to show the induction. The basis of the induction for k = n is clearly verified. For
any k = n−1, . . . , 1, suppose that the induction hypothesis holds for k+1. Player

k has the option of playing the machine in which he has load t∗k. Let
−→
L1

∗ be the

load on the machines after such a move. It holds that ‖−→L1
∗‖∞ ≤ t∗k + ‖−→L0‖∞.

Moreover, by the induction hypothesis, the makespan (and therefore also player

k’s cost) in the end of the game is at most ‖−→L1
∗‖∞+

∑n
j=k+1 2

j−k−1 · t∗j . Let y be
the machine chosen by k at equilibrium (given the actions of players 1, . . . , k−1),
and L1 the load vector after k chooses machine y. It holds that

‖−→L1‖∞ ≤ max

⎧⎨⎩‖−→L0‖∞, ‖
−→
L1

∗‖∞ +

n∑
j=k+1

2j−k−1 · t∗j

⎫⎬⎭
≤ max

⎧⎨⎩‖−→L0‖∞, t∗k + ‖−→L0‖∞ +

n∑
j=k+1

2j−k−1 · t∗j

⎫⎬⎭
≤ t∗k + ‖−→L0‖∞ +

n∑
j=k+1

2j−k−1 · t∗j .

By again applying the induction hypothesis, we finally obtain

Spe(
−→
L0, k) = Spe(

−→
L1, k + 1)

≤ ‖−→L1‖∞ +
n∑

j=k+1

2j−k−1 · t∗j

≤ t∗k + ‖−→L0‖∞ + 2

n∑
j=k+1

2j−k−1 · t∗j

= ‖−→L0‖∞ +

n∑
j=k

2j−k · t∗j .


�

Theorem 4. For any n ≥ 2, there exists an unrelated machine scheduling game
UMSGn with n players such that SPoA(UMSGn) = 2Ω(

√
n).
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5 Fair Cost Sharing Games

In this section we consider fair cost sharing games in which we are given a set
N of n players and a ground set R of resources. Each resource r ∈ R has a cost
c(r). For each player i ∈ N , the set of actions Ai can be any family of subsets
of resources. We will refer to singleton fair cost sharing games when any action
for each player is a single resource. For an action profile a = (a1, . . . , an), let
nr = |{j ∈ N : r ∈ aj}| be the number of players choosing a resource r ∈ R in

a. The cost of a player i ∈ N in a is then Ui(a) =
∑

r∈ai

c(r)
nr

.

This class of game was introduced by Anshelevich et al. [4] who studied simul-
taneous move game and showed that the price of anarchy is n under the social
cost function SF(a) =

∑
i∈N Ui(a).

It is useful at this point to note that for any fair cost sharing game CSGn

with n players, it also holds that SPoA(CSGn) ≤ n. In fact, for any i ∈ N
and for any t ∈ Ai, let ct =

∑
r∈t c(r) and c∗i = mint∈Ai{ct}. Denote c∗max =

maxi∈N{c∗i }. Clearly, for any SPE s, it holds Ui(a(s)) ≤ c∗i for any i ∈ N , which
yields

∑
i∈N Ui(a(s)) ≤ n · c∗max, while the optimal outcome a∗ is such that∑

i∈N Ui(a
∗) ≥ c∗max.

In the next theorem, we give an almost matching lower bound.

Theorem 5. For any n ≥ 2, there exists a fair cost sharing game CSGn with n
players such that SPoA(CSGn) ≥ n+ 1−Hn.

Recently it has been shown in [23] that, when considering the singleton version of
the game, the sequential price of anarchy is bounded byHn = O(log n) under the
generic cost assumption, where resources have generic costs if c(r)/k �= c(r′)/k′

for any pair of resources r, r′ ∈ R and any 1 ≤ k, k′ ≤ n. Authors also claimed
that when costs are not generic this bound still holds. We prove here that this
claim is not correct and that the generic cost assumption is a necessary condition
in order to get the Hn upper bound, by showing that the sequential price of
anarchy of singleton fair cost sharing games is at least n+1

2 .

Theorem 6. For each n ≥ 2, there exists a singleton fair cost sharing game
CSGn such that SPoA(CSGn) =

n+1
2 .

Proof. For a fixed n ≥ 2, we define CSGn as follows (see Figure 2). There are n
players and a set R = {X1, . . . , Xn, Y1, . . . , Yn} of 2n resources, where, for each
i ∈ [n], it holds c(Xi) = c(Yi) = n − i + 1. For each player i ∈ [n], the set of
actions is Ai = {Yi, {Xj}j∈[i]}. Note that, for any i ∈ [n], resource Xi can be
shared by at most n− i + 1 players. It follows that, in any possible outcome of
the game, none of the players can ever pay a cost smaller than 1. Hence, we can
correctly assume that in any strategy profile s such that Ui(a(s)) = 1, player i
has no incentive in migrating to a different strategy.

We now show that the strategy profile s such that a(s) =
⋃n

i=1{Yi} of total

cost
∑n

i=1(n − i + 1) = n(n+1)
2 is a SPE for CSGn. Since the outcome in which

all players choose X1 has total cost n, it will follow that SPoA(CSGn) ≥ n+1
2 .
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n n

n−i+1 n−i+1

1 1

n−1 n−1

1

2

i

n

Fig. 2. The singleton fair cost sharing game CSGn yielding a sequential price of anarchy
n+1
2

The proof is by induction on i. For the base case of i = 1, we have that player
1 has two choices, namely, X1 and Y1. If she chooses X1, consider the action
profile in which all the other n − 1 players choose X2. Since c(X2) = n − 1, it
follows that all these players get a final cost of 1. Hence, when player 1 chooses
X1, she ends up paying n which is the same that she pays by choosing Y1 and
this completes the proof of the base case.

Now for a player i > 1 assume, for the sake of induction, that all the previous
players j ∈ [i − 1] have chosen resource Yj . When i = n, player n can choose
between Xn and Yn. Since, both choices give her the same cost of 1, the claim
follows. When i < n, player i can choose any resource in the set {X1, . . . , Xi}.
Independently of her choice, consider the action profile in which all the other
n− i players choose Xi+1. Since c(Xi+1) = n− i, it follows that all these players
get a final cost of 1. Hence, when player i chooses Xj , with j ∈ [i], she ends up
paying at least n− i+1 which is the same that she pays by choosing Yi and this
completes the induction. 
�

6 Conclusions

We have investigated Subgame Perfect Equilibria (SPE), that better capture
the rationality of the players in sequential games, and proven optimal bounds on
the sequential price of anarchy for cut and consensus games and asymptotically
optimal bounds for fair cost sharing games. Moreover, we have improved the
known bounds for unrelated machine scheduling.

Our results are quite surprising and put the expected performances of SPE
back in their right perspective, as they show that a myopic behavior can lead to
a better performance. This suggests the adoption and investigation of reasonable
variants of SPE exhibiting better performances and removing some excessively
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strong assumptions that to our opinion can limit their applicability, like the
fact that every player has full information of the actions selected by every other
players in each possible state of the game.

As another open question, it would be nice to reduce the gaps on the sequential
price of anarchy for some of the considered games, like 2Ω(

√
n)÷ 2n in unrelated

scheduling and the n/2 ÷ n in singleton fair allocation. Moreover, it would be
worth to consider other classical games so far investigated only in more myopic
settings. Furthermore, it would be interesting to consider the effect of a limited
farsighted behavior, Nash equilibria and SPE being the two opposite extremes.

Finally, considering SPE in the framework of [9], in which graphical games
(i.e., games in which each player is only aware of the existence of the players she
is connected to in a given social knowledge graph) are analysed, constitutes an
interesting research direction.
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Abstract. We address a scheduling problem that arises in highly paral-
lelized environments like modern multi-core CPU/GPU computer archi-
tectures. Here simultaneously active jobs share a common limited resource,
e.g., memory cache. The scheduler must ensure that the demand for the
common resource never exceeds the available capacity. This introduces an
orthogonal constraint to the classical minimummakespan scheduling prob-
lem. Such a constraint also arises in many other contexts where a common
resource is shared across the machines.

We study the non-preemptive case of this problem and give a (2+ ε)-
approximation algorithm which relies on the interplay of several classical
and modern techniques in scheduling like grouping, job-classification, and
the use of configuration-LPs. This improves upon previous bound of 3
that can be obtained by list scheduling approaches, and gets close to
the (3/2− ε) inapproximability bound. If the number of machines or the
number of different resource requirements are bounded by a constant we
have a polynomial time approximation scheme.

1 Introduction

Highly parallelized processing in modern multi-core CPU/GPU computer ar-
chitectures poses the following scheduling challenge: Simultaneously active jobs
need to share a common limited resource, e.g. a memory cache. The sched-
uler must ensure that the demand for the common resource never exceeds the
available capacities. This introduces an additional “orthogonal” constraint to
scheduling problems.

In this paper we address the imposition of such an orthogonal constraint to the
classical and well studied minimum makespan problem. We are given a set of jobs
where each job j has a processing time p(j) and resource requirement r(j). The
goal is to schedule the jobs tom identical machines minimizing the makespan, i.e.
the largest finishing time of a job. The scheduler must ensure that the resource
constraint is not violated: At no time t, the total resource consumption (i.e. the
sum of resource requirements of jobs active at time t) exceeds 1. (Note that
fixing the resource capacity to 1 is without loss of generality.) This problem is
called the resource constrained scheduling problem (see e.g. [15]). Note that this
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model also captures many other settings where the jobs on the machines share
a common resource like power supply, workers, etc.

This problem can be seen as a hybrid of two classical problems from two
different domains. On the one hand, one obtains minimum makespan scheduling
on identical machines if all resource requirements are zero. On the other hand, the
well-known Bin-Packing problem is a special case of the resource constrained
scheduling problem: Given a Bin-Packing instance, create a job of processing
time 1 for each item and set its resource requirement to the item size. The hybrid
nature of the problem is also reflected in our algorithms. To tackle it, we combine
ideas and techniques from both domains.

1.1 Related Work

Without the resource constraint, one obtains the classic and well studied problem
of scheduling on identical machines. Here Graham shows that a natural greedy
list scheduling algorithm, where jobs are scheduled in the order of non-increasing
processing times, yields an approximation ratio of 4

3 − 3
m [9,10]. After a series

of improvements [4,6,18,20] Hochbaum and Shmoys present a a polynomial time
approximation scheme (PTAS) [14].

The problem with orthogonal resource constraints, i.e. the resource constrained
scheduling problem, was first studied by Garey and Graham [7]. They con-
sider s independent orthogonal resources and show that every list scheduler is
a (s+ 2− 2s+1

m )-approximation algorithm. In the setting of unrelated machines
and one resource a 3.75-approximation algorithm follows from a more general
result for scheduling with resource dependent processing times [11]. For the lat-
ter problem on identical machines also a (3.5 + ε)-approximation algorithm is
known [16]. If preemption is allowed then there is a PTAS if the number of re-
source requirements is bounded by a constant [15]. If additionally the number of
machines is constant, the problem can be solved in polynomial time [2]. There is
extensive work in classifying further variants of the problem into polynomial time
solvable and NP-hard problems. We refer to [8] and [2] for good overviews. Also,
the problem can be seen as a special case of the resource-constrained project
scheduling problem (RCPSP), see [1,12] for overviews on this problem.

As already mentioned above, the problem of scheduling jobs to minimize the
makespan is closely related to the intensively studied Bin-Packing problem,
see [13] for a good survey. For this problem, an asymptotic PTAS is known [5]
while it is NP -hard to approximate with a better ratio than 3/2 [13].

Several related, yet clearly different problems are studied in the literature,
including multi-dimensional packing problems [3] and geometrical packing prob-
lems like strip-packing [17]. For a survey on results for two-dimensional packing
problems see [19].

1.2 Our Contribution

We study the problem to minimize the makespan for non-preemptive scheduling
with an orthogonal resource constraint. Our main result is a (2+ε)-approximation
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algorithm which requires a novel and complex combination of modern and clas-
sical techniques from scheduling and Bin-Packing, including

– Configuration-LPs and geometric properties of extreme point solutions
– Enumeration by exploiting structure and search-space reduction
– Linear grouping techniques in the spirit of de la Vega and Lueker [5]
– Classification of jobs (large, small, fat, thin jobs).

In particular, our techniques for constructing the schedule go far beyond the list
scheduling type methods used in previous work on the problem and its gener-
alizations [7,11,16]. If either the number of machines or the number of different
resource requirements is bounded by a constant, these techniques allow us even
to obtain a PTAS.

As mentioned above, a simple list scheduler as in [7] achieves an approxima-
tion guarantee of 3. In contrast, our (2 + ε)-approximation algorithm is rather
complex, but gets close to the (32 − ε)-inapproximability bound of the problem.
The extra effort to achieve an improvement of 1− ε in the approximation ratio
might not appear to be justified for practical purposes. However, considering
that the (2 + ε)-guarantee is close to the inapproximability bound, we believe
that our contribution to the theoretical understanding of the problem is well
worth it.

1.3 Formal Definition and Notation

We define the resource constrained scheduling problem formally. An instance
consists of an integer m and a set of jobs J where each job j ∈ J is characterized
by its processing time p(j) and its resource requirement r(j). For notational
convenience, we usually denote an instance just by the job set J , implicitly
assuming that m, p and r are given as well. For a natural number � ∈ N, we
write [�] := {0, . . . , �−1}. A slot is a time-interval [t1, t2) with t2 ≥ t1. A machine
slot (k, t1, t2) ∈ [m]×Q≥0×Q≥0 is a slot assigned to a machine k. Let M denote
the set of all machine slots. For notational convenience we often identify machine
slots s with the interval they represent: We write |s| instead of |[t1, t2)|, and t ∈ s
instead of t ∈ [t1, t2). The same applies for unions and intersections of machine
slots. A schedule is a map ϕ : J → M that assigns a machine slot to each
job j ∈ J . We call a schedule feasible, if the length of the assigned machine
slot to each job is sufficient, assigned machine slots on the same machine are
pairwise non-intersecting, and the resource constraint is satisfied. Formally, a
schedule is feasible if |ϕ(j)| ≥ p(j) for all j ∈ J , we have that ϕ(j) ∩ ϕ(j′) = ∅
for all j, j′ ∈ J assigned to the same machine, and

∑
j∈J : t∈ϕ(j) r(j) ≤ 1 for all

t ∈ Q≥0. If not noted otherwise, when talking about schedules we always mean
feasible schedules. The makespan T (ϕ) of a schedule ϕ is the largest endpoint of
an assigned machine slot, i.e. T (ϕ) := sup

⋃
j∈J ϕ(j). With OPT (J ) we denote

the optimal makespan of an instance J . We write c = O(1) to denote that c is
some constant. If the constant depends on the parameter ε, we write c = Oε(1)
instead.
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2 A List Scheduler

Before we describe the main result, we discuss the following simple list scheduling
algorithm introduced by Garey and Graham [7]: On input J , we iteratively
compute a schedule by adding the jobs one by one as follows. While there are
unassigned jobs, determine the smallest time t a not yet assigned job could be
placed into the schedule without making it infeasible. Assign it by allocating a
suitable machine slot (k, t, t + p(j)). If there are several candidates, choose an
arbitrary one. Garey and Graham proved an approximation guarantee of 3− 3

m ,
and give examples that show that the analysis is tight. Hence this list scheduler
is insufficient for our purposes as we are aiming for a (2 + ε)-approximation
algorithm. Nevertheless, it will prove useful as a subroutine of our main algorithm
later, however in a slight variation. Instead of starting with an empty schedule,
we start with a partial schedule ϕ′ that schedules a subset of jobs J ′ ⊆ J . The
list scheduler is then used to complete the schedule by adding the remaining jobs
J \J ′ one by one as described above. We will now derive a simple upper bound
on the makespan of schedules generated by this algorithm. It depends on three
parameters that we define now. Given an instance J , we set

P̄ (J ) :=
∑
j∈J

p(j)/m and R̄(J ) :=
∑
j∈J

p(j)r(j).

Both values are lower bounds on the optimal makespan (which was also observed
by Garey and Graham), a fact that will come in handy later.

Lemma 1. OPT (J ) ≥ max{P̄ (J ), R̄(J )}.

Proof (sketch). The first bound follows from the fact that no schedule can do
better than keeping all machines busy at all times. The second bound follows
from the resource constraint limiting the total resource consumption to 1. 
�

While the parameters P̄ (J ) and R̄(J ) only depend on the instance, the third
parameter depends on the given partial schedule ϕ′. An activation point of ϕ′

is a time-index t where some machine becomes busy that was idle before, or
the resource consumption increases. Let A(ϕ′) denote the number of activation
points of a schedule ϕ′. We now derive the following bound on the makespan
of the schedule computed by our list scheduler when used to complete a partial
schedule ϕ′.

Lemma 2. Let J ′ ⊆ J and let ϕ′ be a schedule for J ′. Let p and r be such that
p(j) ≤ p and r(j) ≤ r for all j ∈ J \ J ′. In polynomial time we can compute a
schedule ϕ for J with T (ϕ) ≤ max{T (ϕ′), P̄ (J ) + 1

1−r R̄(J ) + (A(ϕ′) + 1) · p}.

Proof. If the makespan of ϕ is T (ϕ′), we are done. Hence assume that the
makespan increased when adding the jobs of J \ J ′. Let j∗ ∈ J \ J ′ be a
job that finishes last, i.e. it determines the makespan.

Let t ≤ T (ϕ) be a time index. Observe that we are always in (at least) one
of the following three cases: (a) All machines are busy at time t, (b) Job j∗ is
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active, (c) A machine is idle and job j∗ is not active. Clearly the total time case
(a) can apply is bounded by P̄ (J ). Trivially, the total time spent in case (b) is
at most p(j∗) ≤ p. Now assume that we are in case (c),and there is no activation
point in the interval [t, t + p). Then the resource consumption at time t is at
least 1 − r as otherwise the algorithm could and would have scheduled job j∗

or some other job at time t on the idle machine. It follows that the total time
spent in case (c) with no upcoming activation point in the interval [t, t + p) is
at most 1

1−r R̄(J ). The remaining time spent in case (c) not yet accounted for
is then A(ϕ′) · p. Summing up the individual bounds for all cases, we get the
desired running time bound. 
�

Observe that if both r and p are “very small” and A(ϕ′) is “not too large”,
the second term of the statement from the lemma gets arbitrarily close to 2 ·
OPT (J ). This is why the algorithm will be useful as a subprocedure of our
(2 + ε)-approximation algorithm. We will use the algorithm also to schedule
some very small sub-instances separately. To do so, we will rely on the following
bound.

Corollary 1. Given an instance J , and let p := max{p(j) : j ∈ J }. In polyno-
mial time we can compute a schedule ϕ for J with T (ϕ) ≤ P̄ (J ) + 2R̄(J ) + 2p.

Proof. Let J ′ := {j ∈ J : r(j) > 1
2}. Let ϕ′ be a schedule for J ′ that

schedules all jobs of that instance sequentially on the first machine, sorted non-
increasingly by resource requirement. Observe that the schedule has makespan
at most 2R̄(J ) as the resource usage is at least 1

2 at all times. Moreover, the
schedule has only one activation point. Hence applying Lemma 2 to this schedule
proves the claim. 
�

3 The (2 + ε)-Approximation Algorithm

Fix a constant ε > 0. We present a polynomial time algorithm with the following
property. For any instance J with OPT (J ) ≤ 1, it computes a feasible schedule
of makespan at most 2+O(1) · ε. Such an algorithm can easily be turned into a
(2 + ε)-approximation algorithm using a binary search framework. We simplify
the problem even further by considering only instances that are (γ,M)-restricted.

Definition 1. Let 1 ≥ γ > 0, M > 1. An instance J is (γ,M)-restricted if for
each job j it holds that either p(j) ≥ γ or p(j) < γ/M .

In (γ,M)-restricted instances, we classify jobs j with p(j) ≥ γ as large and jobs j
with p(j) < γ/M as small. Every large job is at least M times as long as any
small job. This fact will become handy later. For a (γ,M)-restricted instance J ,
let Jlarge be the set of large and Jsmall be the set of small jobs respectively. The
following lemma justifies that we can restrict ourselves to restricted instances.

Lemma 3. For any constants ε > 0, M > 1, there is a constant γ∗ε,M such that
for any instance J , in polynomial time we can find a value γ ≥ γ∗ε,M and a
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partition of the instance J = J1∪̇J2 so that J1 is (γ,M)-restricted and for J2
the list scheduler computes a schedule of makespan at most O(1) · ε ·OPT (J ).

Proof (sketch). Choose Oε(1) many disjoint sub-intervals from (0, Oε(1)] so that
each right endpoint is M times larger than its left endpoint. By the pigeonhole-
principle, the jobs of one of the intervals have negligible P̄ and R̄ values. Call
them J2. Using the greedy list scheduler from Section 2, by Lemma 1 and Corol-
lary 1 the list scheduler computes a schedule of makespan at most O(1) · ε ·
OPT (J ) for J2. 
�

We set M := ε−3. For the remainder of this section, let J be a (γ,M)-restricted
instance with OPT (J ) ≤ 1. The algorithm to schedule restricted instances is in
itself composed of several steps. The rough outline is as follows. We first consider
only the large jobs. We compute a schedule of makespan 1 + ε for all except a
constant number of jobs. Next we compute a set of candidate schedules for the
remaining jobs. Each of them has makespan 1+ ε as well. We can guarantee that
for at least one of the schedules, all small jobs can be added without increasing
the makespan (we do not know which one though, so we try them all). As
the problem of adding the small jobs is NP -hard on its own, we again rely
on approximations by allowing the makespan to increase “a bit”. Adding small
jobs takes place in two steps. First, for each candidate schedule we add the
fat jobs, i.e. small jobs of “large” resource requirement. This is successful at
least for one candidate. We then concatenate the successful schedule with the
separate schedule for only large jobs that we computed in the first step. Finally
we complete the schedule by adding the so far not yet scheduled thin jobs, i.e.,
small jobs with “small” resource requirement, using a list scheduler. In total this
will result in a schedule of makespan 2 + O(1) · ε. In summary, we have the
following steps.

Step 1a: Compute schedule ϕ1 for “almost” all large jobs.
Step 1b: Compute set of candidate schedules for remaining large jobs.
Step 2a: For each candidate, try to add small fat jobs.

Concatenate ϕ1 with successful schedule from step 2a.
Step 2b: Add small thin jobs to concatenated schedule using the list scheduler.

Step 1a: Scheduling “almost” All Large Jobs. We discretize the scheduling
decisions for large jobs by setting δ := ε ·γ/2 and requiring the assigned machine
slots to start and end at integer multiples of δ. I.e., for each j ∈ Jlarge, its
machine slot should be of the form (k, �1 · δ, �2 · δ) with �1, �2 ∈ N0. We call
schedules whose large jobs have this property δ-atomic. The following lemma
asserts that it is sufficient to consider only δ-atomic schedules.

Lemma 4. There exists a δ-atomic schedule for J whose makespan is at most
(1 + ε) ·OPT (J ) ≤ 1 + ε.

Proof. Take an optimal schedule ϕ. Define another schedule ϕ′ by setting ϕ′(j) :=
(k, (1 + ε) · a, (1 + ε) · b) for each ϕ(j) = (k, a, b). Observe that ϕ′ is feasible and
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has a makespan of at most (1 + ε)T (ϕ) = (1 + ε)OPT (J ). For every large job
j ∈ Jlarge, its machine slot ϕ′(j) has length |ϕ′(j)| = (1 + ε)|ϕ(j)| ≥ p(j) + 2δ.
The last inequality is by the fact that j is large and hence ε · p(j) ≥ εγ = 2δ.
Hence, we can round the starting times of large machine slots up and their end-
ing times down to multiples of δ without decreasing their length below p(j). This
way we obtain a feasible δ-atomic schedule. 
�

We call a set of |Jlarge| many machine slots (without job assignment) a template.
It is called feasible if it corresponds to a feasible schedule (i.e. there is a feasible
schedule that uses the slots from the template). To compute a schedule for the
large jobs, we will first find a feasible template, and later assign jobs to its slots.
More precisely, we want to find the template corresponding to the schedule of
makespan 1 + ε due to Lemma 4. To do so, we partition the timeline [0, 1 + ε)
into frames F	 := [δ · (�− 1), δ · �) for � ∈ N and set F :=

{
F	 : 1 ≤ � ≤

⌈
1+ε
δ

⌉}
.

Observe that all large machine slots in our δ-atomic schedule are unions of
frames from F . Note that since γ ≥ γ∗ε,M (and γ∗ε,M is a constant), we have
that |F| =

⌈
1+ε
δ

⌉
= Oε(1) is constant. This allows us to find a feasible template

by enumeration:

Lemma 5. In polynomial time we can compute a polynomial number of candi-
date templates. At least one of them is feasible.

Proof. In a feasible δ-atomic schedule there are at most |F| many large jobs on
a single machine. For each job, start and end times are chosen from |F|+1 many

possibilities. Hence, there are at most Q :=
(|F|+1

2

)|F|
feasible combinations of

machine slots for one machine. Up to permutation of machines, we can describe
every template by specifying how many machines use each of the Q possibilities.
This results in at most mQ = mOε(1) many candidate templates. 
�

To compute the schedule, we repeat the following procedure for each of the
candidate templates. It will be successful for any feasible template. Let T be a
template. We use a linear program to compute an assignment of large jobs to
machine slots from T . Let I denote the set of all slots from T (i.e. the time
intervals without the machine assignment). For each slot s ∈ I, let μI denote
the number of machines slots from the template T that use it. We model the
problem of assigning jobs to intervals with the following linear program.∑

I∈I, |I|≥p(j)

xj,I = 1 ∀j ∈ Jlarge (1)

∑
j∈Jlarge

xj,I ≤ μI ∀I ∈ I

∑
I∈I,F⊆I

∑
j∈Jlarge

r(j)xj,I ≤ 1 ∀F ∈ F

xj,I ≥ 0 ∀j ∈ Jlarge ∀I ∈ I

The variables xj,I model the assignment of jobs to intervals, where xj,I = 1
means that job i is assigned a machine slot with time interval I.
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Lemma 6. Given a feasible template, in polynomial time we can compute a δ-
atomic schedule of makespan (1 + ε) that schedules all except for |I|+ |F| many
large jobs. The schedule has at most O(1) 1

εγ activation points.

Proof. An extreme point solution of the above linear program has at most
|Jlarge|+ |I|+ |F| many non-zero entries. Hence, due to Constraints (1) at most
|I|+ |F| jobs are fractionally assigned. We output the schedule obtained for the
integrally assigned jobs. Since it is δ-atomic, there are at most |F| activation
points. 
�

Note that |I| = Oε(1) just like |F|. Hence all except for a constant number of
jobs are scheduled.

Step 1b: Scheduling the Remaining Large Jobs. If there are only con-
stantly many large jobs to schedule, we can enumerate all possible δ-atomic
schedules in polynomial time. Importantly, one of these schedules is extendable.

Definition 2. Let J be a set of jobs and let ϕ be a schedule for a subset J ′ ⊆ J .
The schedule ϕ is extendable for J if the jobs J \J ′ can be added to ϕ without
increasing the makespan.

Lemma 7. Let J ′
large ⊆ J be a set of large jobs with |J ′

large| = Oε(1). In poly-
nomial time we can compute a set of δ-atomic schedules of makespan 1+ε. Each
of them is feasible for the sub-instance J ′

large. At least one of them is extendable
for J . The number of activation points of each schedule is at most O(1) · 1

εγ .

Proof (sketch). We can restrict to only using the first |J ′
large| = Oε(1) machines.

Hence there are only constantly many machine slots to consider. 
�

Step 2a: Adding Small Fat Jobs. We now describe how to add small jobs to
a δ-atomic schedule for large jobs. As mentioned previously, there are two kinds
of small jobs that need to be treated differently. Define β := ε. We say that a
small job is fat if r(j) ≥ β. Otherwise it is thin.

We are now in the following situation: We consider a sub-instance J ′ ⊆ J con-
sisting of some large jobs J ′

large and all tiny fat jobs J ′
small. Note that J ′

small does
not contain the small thin jobs. We have a schedule ϕ2 for J ′

large of makespan
1 + ε, and we want to add the small fat jobs J ′

small. For simplicity we assume
that ϕ2 is extendable and show that in this case, the algorithm is successful.
The roadmap is as follows: We first round the resource requirements so that
only a constant number of different values remain. We then compute an “optimal
invalid” schedule for a transformed instance. It is invalid because it allows pre-
emption, migration and parallelization. However, in the end this invalid schedule
allows us to compute a “good” feasible schedule for our instance.

The resource rounding is done with a linear grouping technique similar in
spirit as the technique employed in [5] for Bin-Packing. We first sort the jobs
from J ′

small non-decreasingly by resource requirement. Let J ′
small = {j1, . . . , jn}

be in this order. For K :=
⌈
1/ε2

⌉
, we divide the jobs into K groups as follows:
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Figuratively, we take a schedule where the jobs from J ′
small are scheduled se-

quentially in the order from above, slice it into K intervals of equal length and
define that Ji is the group of jobs that are completely contained in interval i.
Group J0 is the set of jobs that are cut when defining the intervals. Formally,
define Ji := {jk : (i− 1) · p(J ′

small)/K ≤
∑k−1

	=1 p(j	) ≤ i · p(J ′
small)/K − p(jk)}

for i = 1, . . . ,K, and J0 := J ′
small \

⋃K
i=1 Ji. By construction, we obtain the

following properties of the set system.

Lemma 8. We have |J0| ≤ K, p(Ji) ≤ p(J ′
small)/K for all i = 1, . . . ,K, and

for any two jobs j ∈ Ji and j′ ∈ Ji′ with 1 ≤ i < i′ it holds that r(j) ≤ r(j′).

Based on this grouping, we define a set of jobs J̃ ′
small := {g1, ..., gK−1} by setting

p(gi) := p(J ′
small)/K and r(gi) := max {r(j) | j ∈ Ji} for each i ∈ {1, ...,K}.

For the resulting instance J̃ ′ := J ′
large ∪ J̃ ′

small, we later compute an “invalid”
schedule. The jobs gi are going to act as placeholders to fill in the jobs from Ji

in the final solution later. The groups J0 and JK are treated differently. They
can be scheduled separately:

Lemma 9. The jobs in J0 ∪ JK can be scheduled with makespan O(1) · ε.

Proof. Because the jobs in J0 are small we have p(J0) ≤ K · γ
M ≤ O(1) · ε.

For JK , recall the lower bound R̄ from Section 2. We get

1 ≥ OPT (J ′) ≥ R̄(J ′) ≥ R̄(J ′
small) ≥ β · p(J ′

small) ≥ β ·K · p(JK) ≥ p(JK)/ε.

We conclude that if we schedule the jobs J0 ∪ JK sequentially on one machine,
the makespan is O(1) · ε. 
�

We now discuss how to compute the “invalid” helper schedule. We call it a relaxed
schedule. In relaxed schedules, we allow jobs to be preempted, migrated, and
executed in parallel. However the same rules for feasibility apply as for “real”
schedules. For simplicity of presentation, we refrain from a formal definition of
relaxed schedules. We first prove the existence of a relaxed schedule for J̃ ′.

Lemma 10. If ϕ2 is extendable for J ′, then it is extendable (as a relaxed sched-
ule) for J̃ ′.

Proof (sketch). Let ϕ̄2 be an extension of ϕ2 for J ′. Recall the illustration of
slicing a sequential schedule for J ′

small intoK equally sized intervals. To construct
a relaxed schedule for J̃ ′, for each i we use the jobs from interval i + 1 as a
template to fill in the job gi. Note that this might include some fractions of jobs
from that interval which are not included in Ji but in J0. 
�

We now show how to compute such a relaxed schedule for J̃ ′. We again resort to
linear programming. Note that in order to extend ϕ2 we can use only resources
“left over” by the large jobs J ′

large. Based on ϕ2, for each frame F ∈ F let
r(F ) denote the amount of resources available for non-large jobs, and let m(F )
denote the number of machines available. Note that these quantities are the same
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throughout a frame as the schedule ϕ2 is δ-atomic. We will use these remaining
resources to schedule small jobs of the instance.

Every possibility of small jobs being simultaneously active during frame F ∈ F
can be described by a characteristic vector χ ∈ [m]K−1 such that

∑K−1
i=1 χir(gi) ≤

r(F ) and
∑

i χi ≤ m(F ). Let C(F ) be the set of all such vectors. For each job gi,
the entry χi specifies the number of machines used for executing job gi in paral-
lel. We call a vector χ ∈ C(F ) a job configuration. This allows us to formulate a
“configuration-LP” that packs job configurations to frames and ensures that all
small jobs are covered. Denote by CONF-LP the following linear program.∑

F∈F
∑

χ∈C(F ) χixFχ ≥ p(gi) ∀i = 1, . . . ,K − 1 (2)∑
χ∈C(F ) xFχ ≤ δ ∀F ∈ F (3)

xFχ ≥ 0 ∀F ∈ F ∀χ ∈ C(F )

The variable xFχ models for how much time configuration χ should be used
within frame F . Due to Lemma 10 we know that CONF-LP has a solution and
an extreme point solution fulfills the properties of the following lemma.

Lemma 11. There is a polynomial time algorithm which computes a relaxed
schedule for J̃ ′ which extends ϕ2. In particular, in polynomial time we can com-
pute a solution to CONF-LP with at most K + |F| non-zero variables.

Based on the solution to CONF-LP we construct a non-relaxed schedule ϕ′
2

for J ′. We partition each frame F ∈ F into subframes, each subframe corre-
sponds to a positive variable xFχ and has length xFχ. The packing constraints (3)
ensure that we can do that. Now for each subframe and each i ∈ [K], create χi

many machine slots (assign them to free machines greedily) and reserve them for
jobs of group Ji. The machine slots created in this way act as placeholders and,
to avoid confusion, we will refer to them as placeholder slots. Our construction
ensures that if we pack jobs of group Ji arbitrarily to its reserved placeholder
slots, we will not violate the resource requirement (as by Lemma 8, the resource
requirement of all jobs from Ji is at most r(gi)). As the covering constraints (2)
are satisfied, the total amount of execution time reserved for each group Ji is at
least p(gi) which by definition and Lemma 8 is at least

∑
j∈Ji

p(j).
Now for each group Ji, i = 1 . . .K−1 and each job j ∈ Ji, select an arbitrary

placeholder slot reserved for group Ji which has a positive amount of space left
and assign j to it. By the observations from above, it is clear that this algorithm
manages to assign all jobs. However, it might produce an infeasible solution as
some placeholder slots might be over-packed. We can repair this as follows: For
each subframe (i.e. for each positive variable in the LP-solution), and for each
placeholder slot belonging to this subframe, pick the job added last and remove
it. Now the placeholder slots are not over-packed anymore, i.e. the resulting
schedule is feasible. For the removed jobs, observe that those that are taken
from the same subframe can be scheduled in parallel. Hence, because they are
small, we can schedule them separately in a time-frame of γ/M timeunits. As
there are at most |F|+K many nonzeros the LP solution due to Lemma 11, we
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conclude that the increase of the makespan is at most γ/M · (|F|+K) = O(1) ·ε.
Hence, in summary we get the following result:

Lemma 12. Given ϕ2, in polynomial time we can compute a schedule ϕ′
2 for

J ′ with T (ϕ′
2) ≤ 1 +O(1) · ε. Moreover we have A(ϕ′

2) ≤ O(1) · 1
ε2γ .

Proof. The makespan increase due to the above procedure, as well as the length
of the schedules for J0 and JK , is bounded by O(1) · ε. To see the bound on the
activation points, observe that new activation points can only be introduced for
each subframe from the construction above. 
�

Step 2b: Adding Small Thin Jobs. Let ϕ1 and ϕ′
2 be the schedules obtained

due to Lemma 6 and Lemma 12, respectively. Observe that if we concatenate
ϕ1 and ϕ′

2, we obtain a schedule of makespan 2+O(1) · ε that schedules all jobs
from J except for the small thin ones. The number of activation points of this
schedule is O(1) · 1/(ε2γ).

We use the list scheduler from Section 2 to complete the schedule. Applying
Lemma 2 in this situation, we can set p := γ/M and r := β. Hence we obtain a
full schedule of makespan

max

{
2 +O(1) · ε, P̄ (J ) +

1

1− β
R̄(J ) +O(1) · 1

ε2γ
γ/M

}
= 2 +O(1) · ε.

With the discussion from the beginning of this section we conclude:

Theorem 1. There is a (2 + ε)-approximation algorithm for the resource con-
straint scheduling problem.

4 Polynomial Time Approximation Schemes for Special
Cases

In this section we will explain the ideas on how to turn the 2+ ε approximation
algorithm for non-preemptive resource constrained scheduling into a PTAS for
two special cases: The number of machines is upper bounded by a constant C,
or the number of different resource requirements is bounded by C.

Essentially there are two steps of the algorithm that need to be improved. The
first one is the way we deal with large jobs: Instead of creating two schedules of
makespan 1 + ε and concatenating them, we need to treat all large jobs at the
same time. The second issue is the use of the greedy list scheduler to schedule
the thin/small jobs: No matter how we tweak the parameters, this algorithms
performance guarantee will not get better than 2+ε. Both issues will be addressed
for both special cases, but in different ways.

As before, we assume the instances J we consider have OPT (J ) ≤ 1.

4.1 Constant Number of Machines

We now assume that all instances for the resource constrained scheduling prob-
lem have the property that there is a universal constant C > 0 so that the
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number of machines m is upper bounded by C. We also assume that 1
ε ≥ C.

Adapting the way on how we treat the large jobs is very easy using the following
insight. If there is a schedule of makespan at most 1, how many large jobs can
it have? As every large job has processing time at least γ, an optimal schedule
can process at most 1/γ many jobs per machine. As there are at most C ma-
chines, there are at most C/γ, i.e. constantly many, large jobs. Hence to treat
the large jobs, we simply skip Step 1a. Lemma 7 guarantees that in polynomial
time we can compute a candidate set of feasible δ-atomic schedules for all large
jobs Jlarge of the instance, where at least one of them is extendable to a full
schedule for J .

To deal with the small jobs, we need to recall why the distinguishment of fat
and thin jobs was made in the first place. The only place in the proof where we
needed that the jobs in step 2a are fat was the following. Recall that in the process
of dealing with fat jobs, we removed two subsets of jobs and scheduled them
separately (namely the sets J0 and JK). We argued that they can be scheduled
separately using only a negligible, i.e. O(1) · ε amount of time. Particularly, the
argument for JK was that as the jobs are fat, only 1/β, i.e. constantly many, of
them can run in parallel. Now, only constantly many of them can run in parallel
anyway because we have only at most C many machines. Hence we do not need
to distinguish between fat and thin jobs anymore and treat all small jobs as
described in Step 2a. We need however a new proof for Lemma 9.

Lemma 13. Consider the linear grouping process as described in Section 3,
where the linear grouping is done with all small jobs. The jobs in J0 ∪ JK can
be scheduled with makespan O(1) · ε.

Proof. The proof for the jobs from J0 is as in Lemma 9: There are at most K
many jobs, so their total processing time is a most p(J0) ≤ K · γ

M ≤ O(1) · ε.
For JK , recall the load bound P̄ from Section 2. Using that at most C jobs run
in parallel, we get that

1 ≥ OPT (J ) ≥ P̄ (J ) ≥ P̄ (Jsmall) ≥ p(Jsmall)/C ≥ K/C · p(JK) ≥ p(JK)/ε.

We conclude that if we schedule the jobs J0 ∪ JK sequentially on one machine,
the makespan is O(1) · ε. 
�

We conclude that for the special case of constant number of machines, we have
a PTAS, simply by using only a subset of components from the main algorithm.

Theorem 2. For any constant C and ε > 0, there is a (1 + ε)-approximation
algorithm for all instances J with m ≤ C.

Proof. We follow the steps of the (2 + ε)-approximation algorithm presented in
Section 3. In particular, using the same constants as before, we again restrict to
the case of (γ, M)-restricted instances with OPT (J ) ≤ 1. As observed above,
the total number of large jobs in J is constant. Hence with Lemma 7 we can
compute a candidate set of feasible schedules for Jlarge. One of them is extendable
to a full schedule for J of makespan 1 + ε.
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We then apply the algorithm from Step 2a for all small jobs. Lemma 13 and
Lemma 12 guarantee that we will find a schedule for J of makespan 1+O(1) · ε.


�

4.2 Constant Number of Different Resource Requirements

We now assume that there is a universal constant C > 0 so that for each instance
J , there are at most C different resource requirements: For each instance J
there are numbers R1, . . . , RC so that r(j) = R	 for some � = 1, . . . , C. To deal
with large jobs, we proceed as follows. Recall the templates from Step 1a. We
noted that given a feasible template, it is NP-hard to assign the jobs to the
machine slots in the template so that we get a feasible schedule. In this special
case we can circumvent this as follows. We define a colorful machine slot as a
pair (s, �) ∈ M× [C]. I.e. a colorful machine slot is a “regular” machine slot s
that is reserved for a job with resource requirement R	. Analogous, a colorful
template is a set of |J | colorful machine slots without a job assignment. It is
feasible if there is a feasible schedule that uses the colorful machine slots from
the templates for jobs of corresponding resource requirement. Unlike the regular
templates, it is now easy to determine whether a template is feasible and to
compute a feasible schedule from a feasible template: If a template is feasible,
the following greedy algorithm successfully computes a feasible schedule: While
there is an unassigned job, choose the one of largest processing time and assign
it to any machine slot of its resource requirement whose length is sufficient. We
skip the straightforward proof.

Using the fact that there are only a constant number of “colors”, essentially
by the lines of the proof of Lemma 5 one can prove the following statement.

Lemma 14. In polynomial time, we can compute a set of colorful templates. At
least one of them is feasible and extendable.

This shows that in polynomial time, we can compute a schedule ϕ1 of makespan
1+ε for all large jobs Jlarge. Moreover, ϕ1 is extendable, i.e. we can add all small
jobs without increasing the makespan. It remains to deal with the small jobs.
As in the case of constant number of machines, we will not distinguish between
thin and fat jobs. Instead we will modify the grouping procedure. Recall that in
Step 2a, we grouped the small fat jobs into K+1 groups J0, . . . ,JK and rounded
the resource requirement. Now we instead define C many groups J1, . . . ,JC by
resource requirement, i.e.

J	 := {j ∈ Jsmall : r(j) = R	}.

Analogous to Step 2a, we now construct a helper instance J̃small := {g1, . . . , gC}.
We set p(g	) := p(J	) and r(g	) := RC . We observe that as ϕ1 is extendable,
ϕ1 is also extendable as a relaxed schedule for J̃ := Jlarge ∪ J̃small. The proof
is a simplified version of the proof for Lemma 10 and we omit the details. Now
we can argue by the lines of the description of Step 2a that CONF-LP finds a
good extremal point solution which we can turn into a full schedule for J of
makespan 1 +O(1) · ε. We conclude:
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Theorem 3. For any constant C and ε > 0, there is a (1 + ε)-approximation
algorithm for all instances J where the number of different resource requirements
is bounded by C.
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Abstract. We consider the lower-bounded facility location (LBFL) prob-
lem, which is a generalization of uncapacitated facility location (UFL),
where each open facility is required to serve a certain minimum amount
of demand. The current best approximation ratio for LBFL is 448 [17].
We substantially advance the state-of-the-art for LBFL by improving its
approximation ratio from 448 [17] to 82.6.

Our improvement comes from a variety of ideas in algorithm design
and analysis, which also yield new insights into LBFL. Our chief algo-
rithmic novelty is to present an improved method for solving a more-
structured LBFL instance obtained from I via a bicriteria approxima-
tion algorithm for LBFL, wherein all clients are aggregated at a subset
F ′ of facilities, each having at least αM co-located clients (for some
α ∈ [0, 1]). The algorithm in [17] proceeds by reducing I2(α) to CFL. One
of our key insights is that one can reduce the resulting LBFL instance, de-
noted I2(α), to a problem we introduce, called capacity-discounted UFL
(CDUFL), which is a structured special case of capacitated facility loca-
tion (CFL). We give a simple local-search algorithm for CDUFL based on
add, delete, and swap moves that achieves a significantly-better approxi-
mation ratio than the current-best approximation ratio for CFL, which is
one of the reasons behind our algorithm’s improved approximation ratio.

1 Introduction

Facility location problems have been widely studied in the Operations Research
community (see, e.g., [13]). In its simplest version, uncapacitated facility location
(UFL), we are given a set of facilities with opening costs, and a set of clients,
and we want to open some facilities and assign each client to an open facility
so as to minimize the sum of the facility-opening and client-assignment costs.
This problem has a wide range of applications. For example, a company might
want to open its warehouses at some locations so that its total cost of opening
warehouses and servicing customers is minimized.

We consider the lower-bounded facility location (LBFL) problem, which is a
generalization of UFL where each open facility is required to serve a certain
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minimum amount of demand. More formally, an LBFL instance I is specified
by a set F of facilities, a set D of clients, and an integer M . Opening facility
i incurs a facility-opening cost fi, and assigning a client j to a facility i incurs
a connection cost cij . A feasible solution specifies a subset F ⊆ F of facilities,
and assigns each client j to an open facility i(j) ∈ F so that each open facility
serves at least M clients. The cost of such a solution is the sum of the facility-
opening and connection costs, that is,

∑
i∈F fi +

∑
j ci(j)j , and the goal is to

find a feasible solution of minimum cost. As is standard in the study of facility
location problems, we assume throughout that cijs form a metric. We use the
terms connection cost and assignment cost interchangeably in the sequel.

LBFL can be motivated from various perspectives. This problem was intro-
duced independently by Karger and Minkoff [8], and Guha et al. [5] (who called
the problem load-balanced facility location, both of whom arrived at LBFL as
a means of solving their respective buy-at-bulk style network design problems.
LBFL arises as a natural subroutine in solving buy-at-bulk problems because
obtaining a near-optimal solution often entails aggregating a certain minimum
demand at certain hub locations, and then connecting the hubs via links of lower
per-unit-demand cost (and higher fixed cost). LBFL also finds direct applications
in supply-chain logistics problems, where the lower-bound constraint can be
used to model the fact that it is not profitable or feasible to use services unless
they satisfy a certain minimum demand. For example (as noted in [17]), Lim et
al. [11], use LBFL to abstract a transportation problem faced by a company that
has to determine the allocation of cargo from customers to carriers, who then
ship their cargo overseas. Here the lower bound arises because each carrier, if
used, is required (by regulation) to deliver a minimum amount of cargo.

Clearly, LBFL with M = 1 is simply UFL, and hence, is NP-hard; conse-
quently, we are interested in designing approximation algorithms for LBFL. The
first constant-factor approximation algorithm for LBFL was devised by Svitk-
ina [17], whose approximation ratio is 448. Prior to this, the only known approx-
imation guarantees were bicriteria guarantees. [8] and [5] independently devised
(ρ, α)-approximation algorithms via a reduction to UFL: these algorithms return
a solution of cost at most ρ times the optimum where each open facility serves
at least αM clients (α < 1, ρ is a function of α).

Our Results and Techniques. We devise an approximation algorithm for LBFL

that achieves a substantially-improved approximation guarantee of 82.6 (Theo-
rem 1), thus significantly advancing the state-of-the-art for LBFL. Our improve-
ment comes from a combination of ideas in algorithm design and analysis, and
yields new insights about the approximability of LBFL. In order to describe the
ideas underlying our improvement, we first briefly sketch Svitkina’s algorithm.

Svitkina’s algorithm begins by using the reduction in [8,5] to obtain a bicriteria
solution for I, which is then used to convert I into an LBFL instance I2 with
facility-set F ′ ⊆ F having the following structure: (i) all clients are aggregated at
F ′ with each facility i ∈ F ′ having ni ≥ αM co-located clients; (ii) all facilities
in F ′ have zero opening costs; and (iii) near-optimal solutions to I2 translate
to near-optimal solutions to I (and vice versa). The goal now is to identify a
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subset of F ′ to close, such that transferring the clients aggregated at these closed
facilities to the remaining (open) facilities in F ′ ensures that each remaining
facility serves at least M demand (and the cost incurred is “small”). [17] shows
that one can achieve this by solving a suitable CFL instance. Essentially the idea
is that a facility i that remains open corresponds to a demand point in the CFL

instance that requires M − ni units of demand, and a facility i that is closed
maps to a supply point in the CFL instance having ni units that can be supplied
to demand points (i.e., open facilities). Of course, one does not know beforehand
which facilities will be closed and which will remain open; so to encode this
correspondence in the CFL instance, we create at every location i ∈ F ′, a supply
point with (suitable opening cost and) capacity M , and a demand point with
demandM−ni if ni ≤M (so the supply point at i has ni residual capacity after
satisfying this demand). (Assume ni ≤ M for simplicity; facilities with ni > M
are treated differently.) [17] argues that a CFL-solution can be mapped to an
I2-solution without increasing the cost incurred by much; since CFL admits an
O(1)-approximation algorithm, one obtains an O(1)-approximate solution to I2,
and hence to the original LBFL instance I.

Our algorithm also proceeds by (a) obtaining an LBFL instance I2 satisfying
properties (i)–(iii) mentioned above, (b) solving I2, and (c) mapping the I2-
solution to a solution to I, but our implementation of steps (a) and (b) differs
from that in Svitkina’s algorithm. These modified implementations, which are
independent of each other and yield significant improvements in the overall ap-
proximation ratio even when considered in isolation, result in our much-improved
approximation ratio. We detail how we perform step (a) later, and focus first on
describing how we solve I2, which is our chief algorithmic contribution.

Our key insight is that one can solve the LBFL instance I2 by reducing it to a
new problem we introduce that we call capacity-discounted UFL (CDUFL), which
closely resembles UFL and admits an algorithm (that we devise) with a much bet-
ter approximation ratio than CFL. A CDUFL-instance has the property that every
facility is either uncapacitated (i.e., has infinite capacity), or has finite capacity
and zero facility cost. The CDUFL instance we construct consists of the same sup-
ply and demand points as in the reduction of I2 to CFL in [17], except that all
supply points with non-zero opening cost are now uncapacitated. (Interestingly,
if all facilities in I2 have ni ≤M , the CDUFL instance is in fact a UFL-instance!)

We prove two crucial algorithmic results. The “standard” integrality-gap ex-
ample for the natural LP-relaxation of CFL can be cast as a CDUFL instance,
thus showing that the natural LP-relaxation for CDUFL has a large integrality
gap, and we are not aware of any LP-relaxation with constant integrality gap.
Circumventing this difficulty, we devise a local-search algorithm for CDUFL based
on add, swap, and delete moves that achieves the same performance guarantees
as the corresponding local-search algorithm for UFL [2] (Section 4.2). The local-
search algorithm yields significant dividends in the overall approximation ratio
because not only is its approximation ratio for CDUFL better than the state-of-
the-art for CFL, but also because it yields separate (asymmetric) guarantees on
the facility-opening and assignment costs, which allows one to perform a tighter
analysis. Second, we show that any near-optimal CDUFL-solution can be mapped
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to a near-optimal solution to I2 (Section 4.1). As in [17], in the CDUFL-solution,
an open supply point i (which corresponds to closing facility i) may send less
than ni supply to other demand points, so that closing down i entails transfer-
ring its residual clients to open facilities. But since some supply points are now
uncapacitated, it could also be that i sends more than ni supply to other demand
points. We argue that this artifact can also be handled without increasing the
solution cost by much, by opening the facilities in a carefully-chosen subset of
{i} ∪ {demand points satisfied by i} and closing down the remaining facilities.
For every α (recall that the LBFL instance I2 is specified in terms of a parameter
α), the resulting approximation factor for I2 (Theorem 5) is better than the
guarantee obtained for I2 in Svitkina’s algorithm; this in turn translates (by
choosing α suitably) to an improved solution to the original instance.

We now discuss how we implement step (a), that is, how we obtain instance
I2. As in [17], we arrive at I2 by computing a bicriteria solution to LBFL, but
we obtain this bicriteria solution in a different fashion (see Section 3). The re-
duction from LBFL to UFL in [8,5] proceeds by setting the opening cost of facility
i to fi +

2α
1−α ·

∑
j∈D(i) cij , where D(i) is the set of M clients closest to i, solv-

ing the resulting UFL instance, and postprocessing using (single-facility) delete
moves if such a move improves the solution cost. We modify this reduction sub-
tly by creating a UFL instance, where facility i’s opening cost is instead set to
fi+2αMRi(α), where Ri(α) is the distance between i and the αM -closest client
to it. As in the case of the earlier reduction, we argue that each open facility i
in the resulting solution (obtained by solving UFL and postprocessing) serves at
least αM clients. The overall bound we obtain on the total cost now includes var-
ious Ri(α) terms. Instead of plugging in the (weak) boundMRi(α) ≤

∑
j∈D(i) cij

1−α
(which would yield the same guarantee as that obtained via the earlier reduc-
tion), we are able to perform a tighter analysis by choosing α from a suitable

distribution and leveraging the fact thatM
∫ 1

0
Ri(α)dα =

∑
j∈D(i) cij . (This can

easily be derandomized, since there are only M combinatorially distinct choices
for α.) These simple modifications yield a surprising amount of improvement in
the approximation factor, which is reminiscent of the mileage provided by (ran-
dom) α-points for various scheduling problems and UFL [15,16]. Also, we observe
that one can obtain further improvements by using the local-search algorithm
of [3,2] to solve the above UFL instance: this is because the resulting solution is
then already postprocessed, which allows us to exploit the asymmetric bounds on
the facility-opening and assignment costs provided by the local-search algorithm
via scaling, and improve the approximation ratio.

Finally, we remark that the study of CDUFL may provide useful and interest-
ing insights about CFL. CDUFL is a special case of CFL that despite its special
structure inherits the intractability of CFL with respect to LP-based approxi-
mation guarantees. If one seeks to develop LP-based techniques and algorithms
for CFL (which has been a long-standing and intriguing open question), then
one needs to understand how one can leverage LP-based techniques for CDUFL,
and it is plausible that LP-based insights developed for CDUFL may yield similar
insights for CFL (and potentially LP-based approximation guarantees for CFL).
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Related Work. LBFL was independently introduced by [8] and [5], who used it as
a subroutine to solve the maybecast and access network design problems respec-
tively. Their ideas lead to bicriteria guarantees for LBFL and play a preprocessing
role both in Svitkina’s algorithm [17] and (slightly indirectly) in our algorithm.

There is a large body of literature that deals with approximation algorithms
for (metric) UFL, CFL and its variants; see [14] for a survey on UFL. The first con-
stant approximation guarantee for UFL was obtained by Shmoys et al. [15] via an
LP-rounding algorithm, and the current state-of-the-art is a 1.488-approximation
algorithm due to Li [10]. Local-search techniques have also been utilized to ob-
tain O(1)-approximation guarantees for UFL [9,3,2]. We apply some of the ideas
of [3,2] in our algorithm. Starting with the work of Korupolu et al. [9], various
local-search algorithms with constant approximation ratios have been devised
for CFL, with the current-best approximation ratio being 5.83 + ε [18]. Local-
search approaches are however not known to work for LBFL; in the full ver-
sion [1], we show that local search based on add, delete, and swap moves yields
poor approximation guarantees. A related problem is universal facility location
(UniFL), a generalization of UFL where the facility cost depends on the number
of clients served by the facility. UniFL with non-decreasing functions was intro-
duced by [6,12], and [12] obtained a constant approximation algorithm. We are
not aware of any work on UniFL with arbitrary non-increasing functions (which
generalizes LBFL). [4] give a constant approximation for the case where the cost-
functions do not decrease too steeply (the constant depends on the steepness);
notice that LBFL does not fall into this class so their results do not apply here.

2 Problem Definition and Notation

Recall that an LBFL instance I consists of a set F of facilities with facility-
opening costs {fi}, a set D of clients, metric connection (or assignment) costs
{cij} specifying the cost of assigning client j to facility i, and a (integer) param-
eter M . Our objective is to open a subset F of facilities and assign each client j
to an open facility i(j) ∈ F , so that at leastM clients are assigned to each open
facility, and the total cost incurred,

∑
i∈F fi +

∑
j ci(j)j , is minimized.

Let F ∗ and C∗ denote respectively the facility-opening and assignment cost
of an optimal solution to I; we will often refer to this solution as “the opti-
mal solution” in the sequel. We sometimes abuse notation and also use F ∗ to
denote the set of open facilities in this optimal solution. Let OPT = F ∗ + C∗

denote the total optimal cost. For a facility i ∈ F , let D(i) be the set of M
clients closest to i, and Ri(α) denote the distance between i and the �αM�-
closest client to i; that is, if D(i) = {j1, . . . , jM}, where cij1 ≤ . . . ≤ cijM ,
then Ri(α) = cij�αM� (for 0 < α ≤ 1). Let R∗(α) =

∑
i∈F∗ Ri(α). Observe

that each Ri(α) is an increasing function of α, M
∫ 1

0
Ri(α)dα =

∑
j∈D(i) cij ,

and Ri(α) ≤
(∑

j∈D(i) cij)/(M − �αM� + 1) ≤
∑

j∈D(i) cij

M(1−α) . Hence, R∗(α) is an

increasing function of α, M
∫ 1

0 R
∗(α)dα ≤ C∗, and R∗(α) ≤ C∗

M(1−α) .
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3 Our Algorithm and the Main Theorem

We now give a high-level description of our algorithm using certain building
blocks that are supplied in the subsequent sections.

(1) Obtaining a Bicriteria Solution. Construct a UFL instance with the
same set of facilities and clients, and the same assignment costs as I, where
the opening cost of facility i is set to fi + 2αMRi(α). Use the local-search
algorithm for UFL in [3] or [2] with scaling parameter γ > 0 to solve the
resulting UFL instance. (We set α, γ suitably to get the desired approxima-
tion; see Theorem 1.) Let F ′ ⊆ F be the set of facilities opened in the
UFL-solution. Claim 2 and Lemma 3 show that each i ∈ F ′ serves at least
αM clients.

(2) Transforming to a Structured LBFL Instance. We use the bicriteria
solution obtained above to transform I into another structured LBFL instance
I2 as in [17]. In the instance I2, we set the opening cost of each i ∈ F ′ to
zero, and we “move” to i all the ni ≥ αM clients assigned to it, that is, all
these clients are now co-located at i. So I2 consists of only the points in F ′

(which forms both the facility-set and client-set). We sometimes denote this
instance by I2(α) to indicate explicitly that its specification depends on α.

(3) Solve I2 using the method described in Section 4. Obtain a solution to I
by opening the same facilities and making the same client assignments as in
the solution to I2.

Analysis. Our main theorem is as follows.

Theorem 1. For any α ∈ (0.5, 1] and γ > 0, the above algorithm returns a
solution to I of cost at most

F ∗(1 + γh(α)
)
+ C∗

(
2h(α)− 1 + 2

γ

)
+ 2γαMR∗(α)h(α) + 2αMR∗(α)

where h(α) = 1 + 4
α + 4α

2α−1 + 4
√

6
2α−1 . Thus, we can compute efficiently a

solution to I of cost at most: (i) 92.84 · OPT, by setting α = 0.75, γ = 3/h(α);
(ii) 82.6 ·OPT, by letting γ be a suitable function of α, and choosing α randomly
from the interval [0.67, 1] according to the density function p(x) = 1

ln(1/0.67)x .

The roadmap for proving Theorem 1 is as follows. We first bound the cost of the
bicriteria solution obtained in step (1) in terms of OPT (Lemma 3). This will
allow us to bound the cost of an optimal solution to I2, and argue that mapping
an I2-solution to a solution to I does not increase the cost by much (Lemma 4).
The only missing ingredient is a guarantee on the cost of the solution to I2 found
in step (3), which we supply in Theorem 5, whose proof appears in Section 4.

The following claim follows from essentially the same arguments as in [8,5].

Claim 2. Let S′ be a delete-optimal solution to the above UFL instance; that is,
the total UFL-cost does not decrease by deleting any open facility of S′. Then,
each facility of S′ serves at least αM clients.
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The local-search algorithms for UFL in [3,2] have the same performance guar-
antees and both include a delete-move as a local-search operation, so upon ter-
mination, we obtain a delete-optimal solution.1 Opening the same facilities and
making the same client assignments as in the optimal solution to I yields a solu-
tion S to the UFL instance constructed in step (1) of the algorithm with facility
cost FS ≤ F ∗ + 2αMR∗(α) and assignment cost CS ≤ C∗. Combined with the
analysis in [3,2], this yields the following. (For simplicity, we assume that local
search terminates with a local optimum; standard arguments show that dropping
this assumption increases the approximation by at most a (1 + ε) factor.)

Lemma 3. For a given parameter γ > 0, executing the local-search algorithm
in [3,2] on the above UFL instance returns a solution with facility cost Fb and
assignment cost Cb satisfying Fb ≤ F ∗ + 2αMR∗(α) + 2C∗/γ, Cb ≤ γ

(
F ∗ +

2αMR∗(α)
)
+ C∗, where each open facility serves at least αM clients.

Lemma 4 ([17]). (i) The cost C∗
I2

of an optimal solution to I2 is at most
2(Cb + C∗). (ii) Any solution to I2 of cost C yields a solution to I of cost at
most Fb + Cb + C.

Theorem 5. For any α > 0.5, there is a g(α)-approximation algorithm for

I2(α), where g(α) = 2
α + 2α

2α−1 + 2
√

2
α2 + 4

2α−1 .

Remark 6. Our g(α)-approximation ratio for I2(α) improves upon the approxi-
mation obtained in [17] by a factor of roughly 2 for all α. Thus, plugging in our
algorithm for solving I2 in the LBFL-algorithm in [17] (and choosing a suitable
α), already yields an improved approximation factor of 218 for LBFL.

Proof of Theorem 1. Recall that h(α) = 1 + 4
α + 4α

2α−1 + 4
√

6
2α−1 . Note that

2g(α) + 1 ≤ h(α) for all α ∈ [0, 1]; we use this upper bound throughout below.
Combining Theorem 5 and the bounds in Lemmas 3 and 4, we obtain a solution
to I of cost at most Fb+

(
2g(α)+1

)
Cb+2g(α)C∗ ≤ Fb+h(α)Cb+

(
h(α)−1

)
C∗

≤ F ∗(1 + γh(α)
)
+ C∗

(
2h(α)− 1 + 2

γ

)
+ 2γαMR∗(α)h(α) + 2αMR∗(α).

Part (i) follows by plugging in the values of α and γ, and using the bound
R∗(α) ≤ C∗

M(1−α) . Let β = 0.67. For part (ii), we set γ = K√
h(α)

, where K =(
ln2(1/β) · Eα [h(α)] /

(∫ 1
β
h(x)dx

1−β

)) 1
4

. Hence, the cost incurred is at most

F ∗(1+K√h(α))+C∗
(
2h(α)−1+ 2

K

√
h(α)

)
+2KαMR∗(α)

√
h(α)+2αMR∗(α).

1 A subtle point is that typically local-search algorithms terminate only with an “ap-
proximate” local optimum. However, one can then execute all delete moves that
improve the solution cost, and thereby obtain a delete-optimal solution.
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We now bound the expected cost incurred when one chooses α randomly accord-
ing to the stated density function. This will also yield an explicit expression for
K (as a function of β), thus showing that K (and hence, γ) can be computed

efficiently. We note that E
[√

X
]
≤
√
E [X ] and utilize Chebyshev’s Integral

inequality (see [7]): if f and g are non-increasing and non-decreasing functions

respectively from [a, b] to R+, then
∫ b

a f(x)g(x)dx ≤ (
∫

b
a
f(x)dx)(

∫
b
a
g(x)dx)

b−a . Ob-
serve that h(α) decreases with α. Recall that β = 0.67. We have the following.

Eα [h(α)] = c2(β) :=
4

β ln(1/β)
− 4

ln(1/β)
+

8
√

6(π/4−tan−1(
√

2β−1))
ln(1/β)

+ 2 ln(1/(2β−1))
ln(1/β)

+ 1

Eα [αMR∗(α)] = M
(∫ 1

β

R∗(x)dx
)
/ ln(1/β) ≤ C∗/ ln(1/β).

Eα

[
αMR∗(α)

√
h(α)

]
≤

[
M

(∫ 1

β
R∗(x)dx

) ∫ 1
β dx

√
h(x)

1−β

]
/ ln(1/β) ≤ C∗√c3(β)

ln(1/β)
, where

c3(β) :=

∫ 1
β h(x)dx

1− β
=

[
4 ln

( 1

β

)
+ 4

√
6
(
1−

√
2β − 1

)
+ 3(1 − β) + ln

( 1

2β − 1

)]
/(1 − β).

The second inequality follows since
(∫ 1

β
dx
√
h(x)

)
/(1 − β) =

Eα∼uniform in [β, 1]

[√
h(α)

]
. These bounds yield K =

(
ln2(1/β)c2(β)/c3(β)

)0.25
,

and the total cost is at most

F ∗
(
1+

( ln2(1/β)(c2(β))3

c3(β)

) 1
4

)
+C∗

(
2c2(β)−1+4

( c2(β)c3(β)
ln2(1/β)

) 1
4 + 2

ln(1/β)

)
< 82.59(F ∗+C∗). ��

4 Solving Instance I2(α)

We now describe our algorithm for solving instance I2(α) and analyze its per-
formance guarantee, thereby proving Theorem 5. As mentioned earlier, one of
the key differences between our algorithm and the one in [17] is that instead of
reducing I2 to capacitated facility location (CFL), we solve I2 by reducing it to
a new problem that we call capacity-discounted UFL (CDUFL). CDUFL is a special
case of CFL where all facilities with non-zero opening cost are uncapacitated
(i.e., have infinite capacity). Perhaps surprisingly, despite this special structure,
CDUFL inherits the intractability of CFL with respect to LP-based approxima-
tion guarantees: the natural LP-relaxation for CDUFL has bad integrality gap,
and there is no known LP-relaxation with constant integrality gap. However,
we show in Section 4.2 that a simple local-search algorithm for CDUFL yields a
better approximation ratio than the current-best approximation for CFL.

Recall that I2 has only the points in F ′ ⊆ F , and there are ni ≥ αM co-
located clients at each i ∈ F ′. Let l(i) = mini′∈F ′,i′ �=i cii′ . To avoid confusion,
we refer to the facilities and clients in the CDUFL instance as supply points and
demand points respectively. The CDUFL instance created to solve I2 resembles
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the CFL instance created in [17]; the difference is that supply points with non-zero
opening costs are now uncapacitated. At each i ∈ F ′, we create an uncapacitated
supply point with opening cost δmin{ni,M}l(i), where δ will be fixed later. If
ni > M we create a second supply point at i with capacity ni −M and zero
opening cost. If ni < M , we create a demand point at i with demand M − ni.
Let I ′ denote this CDUFL instance (see Fig. 1). Let Fu, Fc denote respectively
the set of uncapacitated and capacitated supply points of I ′. Roughly speaking,
satisfying a demand point i by non-co-located supply points translates to leaving
facility i open in the I2 solution; hence, its demand is set to M − ni, which is
the number of additional clients it needs. Conversely, opening the uncapacitated
supply point at i and supplying demand points from i translates to closing i in
the I2 solution and transferring its co-located clients to other open facilities.

3

5

2

13

3
6

3

2

3

35

5

56

75

i′

i

M = 811

(a) I2 (b) I′, and a solution S for I′

i1

i3

i2

Fig. 1. (a) An I2 instance. Each box denotes a facility and the number inside it is the
number of co-located clients; i ��� i′ indicates that i′ is the closest facility to i.
(b) The corresponding I′ instance. The boxes and circles represent supply points and
demand points respectively, and points inside a dotted oval are co-located. A solid box
denotes an uncapacitated supply point, and a dashed box denotes a capacitated facility
whose capacity is shown inside the box. The number inside a circle is the demand of
that demand point. The arrows indicate a solution S to I′, where i and i′ are the two
open uncapacitated supply points.

Lemma 7 ([17]). There exists a solution to I ′ with facility cost F ≤ δC∗
I2

and
assignment cost C ≤ C∗

I2
.

Theorem 8. (i) Given any CDUFL instance, one can efficiently compute a so-

lution with facility-opening cost F̂ ≤ F sol + 2Csol and assignment cost Ĉ ≤
F sol + Csol, where F sol and Csol are the facility and assignment costs of an
arbitrary solution to the CDUFL instance.
(ii) Thus, Lemma 7 implies that one can compute a solution to I ′ with facility
cost FI′ and assignment cost CI′ satisfying FI′ ≤ (2+ δ)C∗

I2
, CI′ ≤ (1+ δ)C∗

I2
.
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4.1 Mapping an I′-solution to an I2-solution

An I ′-solution need not directly translate to an I2 solution because an open
supply point i may not supply (and hence, transfer) exactly ni units of demand
(e.g., i and i′ in Fig. 1(b)). Since we have uncapacitated supply points, we have
to consider both the cases where i supplies more than ni demand (which is not
encountered in [17]), and less than ni demand. Suppose that we are given a
solution S to I ′ with facility cost FS and assignment cost CS (see Fig. 1(b)).
Again, we abuse notation and use FS to also denote the set of supply points
that are opened in S. Let Ni initialized to ni keep track of the number of clients
at location i ∈ F ′. Our goal is to reassign clients (using S as a template) so that
at the end we have Ni = 0 or Ni ≥M for each i ∈ F ′. We may assume that: (i)
Fc ⊆ FS ; (ii) if S opens an uncapacitated supply point located at some i ∈ F ′

with ni > M , then the demand assigned to the capacitated supply point at i
equals its capacity ni−M ; (iii) for each i ∈ F ′ with ni ≤M , if the supply point
at i is open then it serves the entire demand of the co-located demand point; and
(iv) at most one uncapacitated supply point serves, maybe partially, the demand
of any demand point; we say that this uncapacitated supply point satisfies the
demand point. We reassign clients in three phases.

A1. Removing Capacitated Supply Points. Consider any i ∈ F ′ with
ni > M . Let i1 and i2 denote respectively the capacitated and uncapacitated
supply points located at i. If i1 supplies x units to the demand point at
location i′, we transfer x clients from location i to i′. Now if i1 has y > 0
leftover units of capacity in S, then we “move” y clients to i2 (which is not
open in S). We update the Nis accordingly. This reassignment effectively
gets rid of all capacitated supply points. Thus, there is now exactly one
uncapacitated supply point and at most one demand point at each location
i ∈ F ′; we refer to these simply as supply point i and demand point i below.

Let Xi be the total demand from other locations assigned to supply point
i. Let FG = {i ∈ F ′ : Ni < Xi}, FR = {i ∈ F ′ : Ni ≥ Xi > 0}, and
FB = {i ∈ F ′ : Xi = 0} (FB is the set of supply points not opened in S).
Note that Ni ≥ min{ni,M} ≥ αM for all i ∈ F ′, and Ni = min{ni,M} for
all i ∈ FR ∪ FG.

A2. Taking Care of FR and Demand Points Satisfied by FR. For each
i ∈ FR, if i supplies x units to demand point i′, we move x clients from i to
i′, and update Ni, Ni′ . We now have Ni = min{ni,M} −Xi residual clients
at each i ∈ FR, which we must reduce to 0, or increase to at least M .

We follow the same procedure as in [17]. For each i ∈ FR, we include an
edge (i, i′) where i′ ∈ F ′ is the facility nearest to i (recall that cii′ = l(i)). We
use an arbitrary but fixed tie-breaking rule here, so each component of the
resulting digraph is a directed tree rooted at either (i) a node r ∈ F ′ \FR, or
(ii) a 2-cycle (r, r′), (r′, r), where r, r′ ∈ FR. We break up each component
Γ into a collection of smaller components. Essentially, we move the residual
clients of supply points in Γ bottom-up from the leaves up to the root, cut
off Γ at the first node u that accumulates at least M clients, and recurse on
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the portion of Γ not containing u. More precisely, let Γu denote the subtree
of Γ rooted at node u ∈ Γ (if u belongs to a 2-cycle then we do not include
the other node of this 2-cycle in Γu). If

∑
i∈Γ Ni < M , or if Γ is of type (i)

and all children u of the root satisfy
∑

i∈Γu
Ni < M , we leave Γ unchanged.

Otherwise, let u be a deepest (i.e., furthest from root) node in Γ such that∑
i∈Γu

Ni ≥M . We delete the arc leaving u. If this disconnects u from Γ \Γu,
then we recurse on Γ \ Γu. Otherwise u must belong to the root 2-cycle of
Γ . Let r′ be the other node of this 2-cycle. If

∑
i∈Γr′

Ni ≥M , we delete r′’s

outgoing arc (thus splitting Γ into Γu and Γr′).

After applying the above procedure (to all components), if we are left
with a component of type (ii) with

∑
i∈ componentNi ≥ M , we convert it

to type (i) by arbitrarily deleting one of the arcs of the 2-cycle. Let T be
a component at the end of this process. If T rooted at a node r, we move
the Ni residual clients of each non-root node i ∈ T to r. Otherwise, T is of
type (ii) with root {r, r′}, and we have

∑
i∈T Ni < M . Let i′ ∈ FB be the

location nearest to {r, r′}; we move the Ni residual clients of each i ∈ T to
i′. Update the Nis to reflect the above reassignment. Observe that we now
have Ni = 0 or Ni ≥ M for each i ∈ FR, and each i ∈ FB has ni ≥ M , or
is a demand point satisfied by a supply point in FG.

For example, executing step (A1 and) A2 on the solution shown in Fig. 1(b)
results in i′ ∈ FR having one client left after moving its co-located clients
to the bottom two facilities; this residual client is then transferred to i3.

A3. Taking Care of FG and Demand Points Satisfied by FG. For i ∈ FG,
let D(i) be the set of demand points j ∈ F ′, j �= i satisfied by i, and let
D′(i) = {j ∈ D(i) : Nj < M}. Note that D(i) ⊆ FB. Phase A2 may only
increase Nj for all j in FB∪FG, so Nj ≥ αM for all j ∈ FG∪

(⋃
i∈FG D(i)

)
.

Fix i ∈ FG. We reassign clients so that Nj = 0 or Nj ≥ M for all j ∈
{i} ∪ D′(i), without decreasing Nj for j ∈ D(i) \ D′(i). Doing this for all
supply points in FG will complete our task. Define Yj = M − Nj for j ∈
D′(i). (1) If

∑
j∈D′(i) Yj ≤ Ni, for each j ∈ D′(i), if i supplies x units

to j, we transfer x clients from i to j. If i is now left with less than M
residual clients, we move these residual clients to the location in D(i) nearest
to i. (2) If

∑
j∈D′(i) Yj > Ni, set i0 = i, and D′(i) = {i1, . . . , it}, where

ci1i ≤ . . . ≤ citi. Let � = t −
⌊∑t

r=0 Nir

M

⌋
=
⌈∑t

r=1 Yir−Ni0

M

⌉
(so 1 ≤ � < t

since Ni0 + Ni1 ≥ M), which is the unique index such that
∑t

r=	+1 Yir ≤∑	
r=0Nir <

∑t
r=	+1 Yir +M . This enables us to transfer Yiq clients to each

iq, q = �+1, . . . , t from the locations i	, . . . , i0—we do this by transferring all
clients of ir (where 1 ≤ r ≤ �) before considering ir−1—and be left with at
most M residual clients in {i0, . . . , i	}. We argue that these residual clients
are all concentrated at i0 and i1, with i1 having at most (1 − α)M residual
clients. We transfer these residual clients to i	+1.

In the solution shown in Fig. 1(b), we have Yi1 = 3 = Yi2 , Yi1 = 1, Ni = 5,
so case 2 applies; we transfer 1 client to i3 and 9 clients to i2 from {i, i1}.
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Theorem 9. The above algorithm returns an I2-solution of cost at most FS

δα +
CS

(
1
α + 2α

2α−1

)
. Thus, taking S to be the solution mentioned in part (ii) of The-

orem 8, and δ =
√

2/α
1/α+(2α)/(2α−1) , we obtain a solution to I2(α) satisfying the

approximation bound stated in Theorem 5.

Proof. Let S2 denote the solution computed for I2. For a supply point i opened
in S, let CS

i denote the cost incurred in supplying demand from i to the demand
points satisfied by i. At various steps, we transfer clients between locations ac-
cording to the assignment in the CDUFL solution S, and the cost incurred in
doing so can be charged to the CS

i s of the appropriate supply points. So the cost
of phase A1 is

∑
i∈Fc CS

i , and the cost of the first step of phase A2 is
∑

i∈FR CS
i .

As in [17], we can bound the remaining cost of phase A2, incurred in transferring
clients according to the tree edges, by FS/δα+

(∑
i∈FR CS

i

)
/(2α− 1).

Finally, consider phase A3 and some i ∈ FG. If
∑

j∈D′(i) Yj ≤ Ni, then the

cost incurred is at most CS
i +M · CS

i

Xi
≤ CS

i

(
1 + 1

α

)
(as Xi > Ni ≥ αM). Now

consider the case
∑

j∈D′(i) Yj > Ni. For any iq ∈ {i	+1, . . . , it} and any ir ∈
{i0, . . . , i	}, we have ciriq ≤ 2ciiq , so the cost of transferring Yiq ≤M−niq clients

to each iq, q = �+1, . . . , t is at most 2CS
i . Observe that (t−�+1)M >

∑t
r=0Nir ,

i.e., M +
∑t

q=	+1 Yir >
∑	

r=0Nir , so after this reassignment, there are less than
M residual clients in i0, . . . , i	. By our order of transferring clients, all these
residual clients are at i0, i1 (otherwise we would have at least Ni0 + Ni1 ≥ M
residual clients) with at most M −Ni0 ≤ (1 − α)M of them located at i1. The
cost of reassigning these residual clients is at most (1 − α)Mcii1 +Mcii�+1

≤
(1 − α)M · CS

i∑t
r=1 Yir

+M · CS
i∑t

r=�+1 Yir
, since CS

i is the total cost of supplying

at least Yir demand to each ir, r = 1, . . . , t. The latter expression is at most

CS
i

(
1−α
α + 1

2α−1

)
, since

∑t
r=1 Yir > Ni0 ≥ αM ,

∑t
r=	+1 Yir >

∑	
r=0Nir −M ≥

(2α− 1)M .) Thus, the cost of S2 is at most FS

δα +
∑

i∈Fc CS
i +

∑
i∈FR CS

i ·
(
1+

1
2α−1

)
+
∑

i∈FG CS
i ·max

{
1 + 1

α , 2 +
1−α
α + 1

2α−1

}
≤ FS

δα + CS
(
1
α + 2α

2α−1

)
. So

if S is the solution given by part (ii) of Theorem 8, the cost of S2 is at most(
2
δα + 1

α + (1 + δ)( 1
α + 2α

2α−1 )
)
C∗

I2
, and plugging in the value of δ yields the

g(α) = 2
α + 2α

2α−1 + 2
√

2
α2 + 4

2α−1 approximation stated in Theorem 5. 
�

4.2 A Local-Search Based Approximation Algorithm for CDUFL

We now describe our local-search algorithm for CDUFL, which leads to the proof
of Theorem 8. Let F̂ = F̂u ∪F̂c be the facility-set of the CDUFL instance, where
F̂u ∩ F̂c = ∅. Here, F̂u are the uncapacitated facilities with opening costs {f̂i},
and facilities in F̂c have (finite) capacities {ui} and zero opening costs. Let D̂ be
the set of clients and ĉij be the cost of assigning client j to facility i. The goal is
to open facilities and assign clients to open facilities (respecting the capacities)
so as to minimize the sum of the facility-opening and client-assignment costs.
We can find the best assignment of clients to open facilities by solving a network
flow problem, so we focus on determining the set of facilities to open.
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The local-search algorithm consists of add(i′), delete(i), swap(i, i′) moves,
which respectively, add a facility i′ not currently open, delete a facility i that is
currently open, and swap facility i that is open with facility i′ that is not open.
We note that all previous (local-search) algorithms for CFL with non-uniform
capacities use moves that are more complicated than the moves above. The al-
gorithm repeatedly executes the best cost-improving move until no such move ex-
ists. We may assume without loss of generality that each client has unit demand.

Analysis. Let Ŝ denote a local-optimum returned by the algorithm, with facility-
opening cost F̂ and assignment cost Ĉ. Let sol be an arbitrary CDUFL solution,
with facility-cost F sol and assignment cost Csol. We also use F̂ and F sol to
denote the set of open facilities in Ŝ and sol respectively. We may assume that
F̂c ⊆ F̂ ∩ F sol. For a facility i, we use D̂Ŝ(i) and D̂sol(i) to denote respectively

the (possibly empty) set of clients served by i in Ŝ and sol. For a client j, let Ĉj

and Csol
j be the assignment cost of j in Ŝ and sol respectively.

We borrow ideas from the analysis of the corresponding local-search algorithm
for UFL in [2], but to handle capacities we need to reassign clients more carefully
to analyze the change in assignment cost due to a local-search move. In particu-
lar, unlike the analysis in [2], where upon deletion of a facility s ∈ F̂ we reassign
only the clients currently assigned to s, in our case (as in the analysis of local-
search algorithms for CFL), we need to perform a more “global” reassignment
(i.e., even clients not assigned to s may get reassigned) along certain paths in a
suitable graph. This also means that we need to construct a suitable mapping
between paths instead of the client-mapping considered in [2].

Consider a directed graph G with node-set D̂ ∪ F̂ , and arcs from i to all
clients in D̂Ŝ(i) and arcs from all clients in D̂sol(i) to i, for every facility i. Via
standard flow-decomposition, we can decompose G into a collection of (simple)
paths P , and cycles R, so that (i) each facility i appears as the starting point

of max{0, |D̂Ŝ(i)| − |D̂sol(i)|} paths, and the ending point of max{0, |D̂sol(i)| −
|D̂Ŝ(i)|} paths, and (ii) each client j appears on a unique path Pj or on a cycle.
Let P st(s) ⊆ P and Pend(o) ⊆ P denote respectively the collection of paths
starting at s and ending at o, and P(s, o) = P st(s) ∩ Pend(o). For a path P =

{i0, j0, i1, j1, . . . , ik, jk, ik+1 := o} ∈ P , define D̂(P ) = {j0, . . . , jk}, head(P ) =
j0, and tail (P ) = jk. A shift along P means that we reassign client jr to ir+1

for each r = 0, . . . , k (opening o if necessary). Note that this is feasible, since

if o ∈ F̂c, we know that |D̂Ŝ(o)| ≤ |D̂sol(o)| − 1 ≤ uo − 1. Let shift(P ) :=∑
j∈D̂(P )

(
Csol

j − Ĉj

)
be the increase in assignment cost due to this reassignment,

which is an upper bound on the actual increase in assignment cost if o is added
to F̂ . Let cost(P ) :=

∑
j∈D̂(P )

(
Csol

j + Ĉj

)
. We define a shift along a cycle R ∈

R similarly, letting shift(R) :=
∑

j∈D̂∩R

(
Csol

j − Ĉj

)
. By considering a shift

operation for every path and cycle in P ∪ R (i.e., suitable add moves) and
adding the resulting inequalities, we get the following result.

Lemma 10. Ĉ ≤ F sol + Csol.
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To bound F̂ , we only need paths starting at facilities in F̂ \ F sol. Note that

facilities in (F̂ \F sol)∪ (F sol \ F̂ ) are uncapacitated. To avoid excessive notation,

for a facility o ∈ F sol \ F̂ , we now use Pend(o) to refer to the collection of paths

ending in o that start in F̂ \ F sol. (As before, P(s, o) is the set of paths that

start at s and end at o.) Let capts ⊆ F sol \ F̂ be the facilities captured by s.

For any o ∈ F sol \ F̂ , we can obtain a 1-1 mapping π : Pend(o) �→ Pend(o) such
that if P ∈ P(s, o), π(P ) = P ′ ∈ P(s′, o) then (i) if o /∈ capts, we have s �= s′;

(ii) if s = s′, then P = P ′; and (iii) π(P ′) = P . Say that o ∈ F sol \ F̂ is captured

by s if |P(s, o)| > |Pend(o)|
2 . Call a facility in F̂ \ F sol good if capts = ∅, and bad

otherwise. For a bad facility s, let os ∈ capts be the facility nearest to s.

Lemma 11. Let s be a facility in F̂ \ F sol.

If s is good, f̂s ≤
∑

P∈Pst(s)

shift(P ) +
∑

o/∈F̂ ,P∈P(s,o)

cost
(
π(P )

)
. (1)

If s is bad, f̂s ≤
∑

o∈capts

f̂o +
∑

P∈Pst(s)

shift(P ) +
∑

o/∈F̂ ,P∈P(s,o):
π(P ) �=P

cost
(
π(P )

)
+

∑
o∈capts\{os}

P∈P(s,o):π(P )=P

cost(P ).

(2)

Proof Sketch of Theorem 8. We focus on part (i); part (ii) follows directly from

part (i) and Lemma 7. Lemma 10 bounds Ĉ. Consider adding (1) for all good

facilities and (2) for all bad facilities, and the vacuous equality f̂i = f̂i for all i ∈
F̂ ∩F sol. The LHS of the resulting inequality is precisely F̂ . The f̂is on the RHS
add up to give at most F sol. One can argue that each path P ∈

⋃
s∈F̂\F sol P st(s)

contributes at most shift(P ) + cost(P ) = 2
∑

j∈D̂(P ) C
sol
j to the RHS. Thus the

RHS is at most F sol + 2Csol, and we obtain that F̂ ≤ F sol + 2Csol. 
�
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A 4-Approximation for the Height of Drawing

2-Connected Outer-Planar Graphs�

Therese Biedl

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

biedl@uwaterloo.ca

Abstract. A graph drawing algorithm aims to create a picture of the
graph, usually with vertices drawn at grid points while keeping the grid-
size small. Many algorithms are known that create planar drawings of
planar graphs, but most of them bound the height of the drawing in
terms of the number of vertices. In this paper, we give an algorithm
that draws 2-connected outer-planar graphs such that the height is a
4-approximation of the optimal height.

1 Introduction

Graph drawing is the art of creating a pretty picture of a graph. Since “pretty”
is hard to define, common measures used are to minimize the number of edge-
crossings and to keep the area small (presuming all coordinates are integers.)

It has been known for many years that any planar graph has a straight-line
drawing without crossing in an O(n) × O(n)-grid [13,20]. It is also known that
an Ω(n)×Ω(n)-grid is required for some planar graphs [12]. Many other papers
have tried to decrease the constants for the width and height, sometimes by
trading off a smaller width for a larger height. See e.g. [5,4].

For some subclasses of planar graphs, drawings with o(n2) area are possible.
In an earlier paper, it was shown that any outer-planar graph has a so-called visi-
bility representation in an O(log n)×O(n)-grid [1]. Many other papers have since
dealt with drawing subclasses of planar graphs in o(n2) area, such as straight-line
drawings of outer-planar graphs [6,10,14], and drawings of series-parallel graphs
[2,11,22].

For most of these results, the output of the algorithm is a drawing that is
guaranteed to have area O(f(n)), where f(n) is some function in the number
of vertices n. To show that such an algorithm is good, the usual approach has
been to give an example of a graph that is required to have area Ω(g(n)) in
any drawing, for some function g(n) that is close to f(n). Thus, the usual ap-
proach has been to give bounds that are optimal in the worst-case. They are also
approximation-algorithms for some classes of graphs (such as Ω(n)-outer-planar
graphs), but for many graphs the given bounds may be significantly too large.

� Research partially supported by NSERC and by the Ross and Muriel Cheriton Fel-
lowship.

T. Erlebach and G. Persiano (Eds.): WAOA 2012, LNCS 7846, pp. 272–285, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Relatively few papers exist that draw all graphs with optimal area or height
(or at least provably approximate it.) Specifically, a drawing of a graph is called a
drawing of height h if all y-coordinates are in {1, . . . , h}. (Here we always assume
that the drawing has been rotated so that the height is no larger than the width.)
For some applications of graph drawing minimizing the height is more important
than minimizing the area. For example, for metro maps that are hung in the head
space of metro cars, there is only very limited height available, while the width
can be quite large. For this reason some papers have focused on making the
smaller dimension as small as possible (e.g. [5]).

We are not aware of any proof that minimizing the height is NP-hard, though
minimizing the area is NP-hard, both for orthogonal drawings if crossings are al-
lowed [9] and for straight-line drawings [16]. One of the few papers that optimize
the height/area for all graphs in a subclass is by Mondal et al. [18] and works
for planar graphs of treewidth 3 that are triangulated. Very recently, Mondal et
al. showed how to compute drawings of minimum height for trees [17].

Quite closely related to drawings of height h are h-level drawings, which are
drawings of height h where edges must connect different levels (and for proper
drawings, edges must connect adjacent levels.) Testing whether a graph has a
proper level drawing is NP-hard [15], but given an h, testing whether a graph
has drawing on h levels is fixed-parameter tractable in h [7].

The latter paper was among the first to prove the strong connection between
the height of drawings and the so-called pathwidth pw(G) of a graph G. In
particular, any planar graph that has a drawing of height h has pathwidth at
most h [8]. However, the pathwidth is not always proportional to the minimum
height: There exists a planar graph of pathwidth 3 that requires Ω(n) width
and height in any planar drawing [2]. But for trees, Suderman showed that the
pathwidth approximates the optimum height: Any tree T has a planar drawing
of height at most 3

2pw(T )− 1 [21].
This paper proves a similar result as Suderman, but for a 2-connected outer-

planar graph G (detailed definitions are given below.) Specifically, G has a flat
visibility representation of height 4pw(G)− 3. The algorithm therefore produces
a height that is within a factor of 4 of the optimum. (The algorithm works for
any outer-planar graph, but the proof of the 4-approximation bound required 2-
connectivity.) Furthermore, the flat visibility representation can be transformed
into straight-line drawings of the same height.

2 Definitions

The reader is assumed to be familiar with basic graph-theoretic terms. In the
following, let G = (V,E) be a simple graph with n vertices V and m edges E.
Throughout the paper, G is always planar, i.e., it can be drawn without crossing.
Indeed, G is always outer-planar, i.e., it has a drawing without crossings such
that all vertices are on the outer-face (the infinite connected region outside the
drawing.) Any finite region defined by such a drawing is called an interior face,
and a face is often identified with the set of vertices and edges that are adjacent
to it.
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A graph is called maximal outer-planar if one cannot add any edges to it and
retain an outer-planar simple graph. In a maximal outer-planar graph, the outer-
face consists of a simple cycle of length n, and every interior face is a triangle.
The dual tree of a maximal outer-planar graph consists of placing a vertex for
every interior face and connecting two vertices if and only if the corresponding
faces share an edge. It is easy to see that the result is indeed a tree and has
maximum degree 3.

A graph is said to have pathwidth k if there exists an order of the vertices
v1, . . . , vn such that for any j ≥ k, there are at most k vertices among {v1, . . . , vj}
that have a neighbour in {vj+1, . . . , vn}. For trees, the pathwidth can be de-
scribed using the notation of a main path introduced by Suderman [21].

Definition 1. Let T be a tree of pathwidth p > 0. A main path of T is a path
P such that every component of T − P has pathwidth at most p− 1.

Every tree of pathwidth p > 0 has a main path [21], but it is not unique. One
may assume that a main path ends at leaves of the dual tree, for if it doesn’t,
then it can simply be extended into a leaf and remains a main path. Fig. 1
illustrates a maximal outer-planar graph and a main path in its dual tree.

*
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*

*

*
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b
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d
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g

h

i
j
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* v

*

*
*

*

*

Fig. 1. A maximal outer-planar graph, its dual tree (dashed), and a main path (thick
dashed.)

A drawing of a graph consists of assigning a point or an axis-aligned box
to every vertex, and a curve between the points/boxes of u and v to every
edge (u, v). The drawing is called planar if no two elements of the drawing
intersect unless the corresponding elements of the graph do. Thus in a planar
drawing no vertex points/boxes coincide, no edge curve self-intersects, no edge
curves intersect each other (except at common endpoints), and no edge curve
intersects a vertex point/box other than its endpoints. In this paper all drawings
are required to be planar.

The most commonly considered type of drawing is a straight-line drawing,
where vertices are represented by points and edges are drawn as straight-line
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segments. This paper also uses visibility representations, where vertices are rep-
resented by axis-aligned boxes and edges are drawn as horizontal or vertical
straight-line segments. A visibility representation is called a flat visibility repre-
sentation if every vertex-box is degenerated into a horizontal segment. See also
Fig. 2. (In our drawings, we thicken boxes slightly, so that horizontal segments
appear as boxes of small height.)

Fig. 2. The same graph in a straight-line drawing, a visibility representation, and a
flat visibility representation

In all drawings, the defining elements (i.e., points of vertices, corners of boxes
of vertices, and attachment points of edges to vertex-boxes) must be placed at
points with integer coordinates. A drawing is said to have width w and height h
if (possibly after translation) all such points are placed on the [1, w]× [1, h]-grid.
The height is thus measured by the number of rows, i.e., horizontal lines with
integer y-coordinates that are occupied by the drawing.

3 Visibility Representations

The algorithm to create a flat visibility representation of an outer-planar graph
G first converts G into a maximal outer-planar graph H by adding edges. Then
it computes the dual tree T of H , which has maximum degree 3. Then it draws
H recursively as follows:

– If T is a path, then directly create a drawing of height 2.
– If pw(T ) ≥ 1, then draw the graph of a main path P of T with height 2,

and merge the subgraphs defined by the components of T −P after drawing
them recursively.

To allow the last merging step to be done with adding too much height, there will
be restrictions on an edge (u, v) on the outer-face (with u before v in clockwise
order) as follows: {u, v} is said to span the top row if the box of u occupies the
top left corner and the box of v occupies the top right corner. For example, in
the rightmost picture of Fig. 2, the two vertices in the top span the top row. We
also say that (u, v) is adjacent to a main path if there exists a main path of T
that contains the interior face that is adjacent to u.
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The following main lemma implies a recursive drawing algorithm.

Lemma 1. Let H be a maximal outer-planar graph with edge (u, v) on the outer-
face, with u before v in clockwise order. Let T be the dual tree of H.

1. H has a flat visibility representation with {u, v} spanning the top row that
has height max{2, 4pw(T )}.

2. If (u, v) is adjacent to a main path of T , then H has a flat visibility repre-
sentation with {u, v} in the top row that has height max{3, 4pw(T )− 3}.

3. If (u, v) is adjacent to a main path of T , then H has a flat visibility represen-
tation with {u, v} spanning the top row that has height max{4, 4pw(T )− 2}.

Proof. As a first ingredient, let us draw a graph GP whose dual tree T is a path
P = f1, f2, . . . , fk. Here each fi is a vertex of T and hence a face of GP ; the
name fi is used for both vertex and face since the meaning should be clear from
the context.

Create a flat visibility representation of GP with height 2 in the obvious way:
Draw the faces f1, . . . , fk as squares from left to right, and place each vertex
of GP so that it reaches the squares of all faces it belongs to. This uniquely
determines the placement of all vertices except at f1 and fk (where the vertex
of degree 2 could go on either row). We want u and v to be in the same row,
which happens automatically unless u or v is the degree-2 vertex at f1 or fk. In
the latter case, choose the row for the degree-2 vertex so that u and v are in the
same row; otherwise place the degree-2 vertex arbitrarily. See also Fig. 3. After
possible rotation, we may assume that u and v are now both in the top row.

vu

*** ** *

vu

*

Fig. 3. How to draw a graph GP whose dual tree is a path P . (Left) The graph whose
dual tree is the main path of Fig. 1. (Right) A 1-vertex path P .

The proof of the lemma is now by induction on the pathwidth of T . In the base
case pw(T ) = 0. This means that tree T is a singleton vertex, and the drawing
of Fig. 3 has height 2 and {u, v} spans the top row; this proves all claims. For
the inductive step, we first show (2), then (3), and then (1) since each uses the
other.

Claim (2): Let f1, . . . , fk be a main path P to which (u, v) is adjacent, where
f1 and fk are leaves of T . For each face fi, i = 1, . . . , k, let Ti be the subtree
of T − P whose root is adjacent to fi. See also Fig. 4. Faces f1 and fk have no
such subtree since they are leaves of T . Any fi, 1 < i < k has at most one such
subtree since it has two neighbours on P and deg(fi) ≤ 3. By definition of a
main path, Ti has treewidth at most pw(T )− 1.
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Draw the graph GP formed by the faces f1, . . . , fk as explained above; this
places {u, v} in the top row. Let Gi be the subgraph of H for which Ti is the
dual tree. Thus, Gi is a maximal outer-planar subgraph whose dual tree has
pathwidth at most pw(T )− 1. Let (ui, ui) be the edge that Gi shares with face
fi, with ui clockwise before vi onGi. By induction, Gi has a drawing with {ui, vi}
spanning the top row with height hi ≤ max{2, 4pw(Ti)} ≤ max{2, 4pw(T )− 4}.
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*

*

*
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Fig. 4. Definition of Gi, and how to insert its drawing into the drawing of GP

Now take the drawing of GP and expand it vertically by adding maxi{hi}− 1
rows. For each i = 2, . . . , k, if the drawing of Gi has Wi columns, then add Wi

columns between the drawings of ui and vi in GP . (Note that ui and vi are
horizontally adjacent in GP , since they are not incident to f1 or fk.)

Recall that Gi was drawn, using induction, with {ui, vi} spanning the top row.
Specifically, ui is on the top left corner, since ui comes before vi in clockwise
order around the outer-face of Gi. If {ui, vi} are in the bottom row of GP , then
we flip the drawing of Gi vertically and insert it in the space that we made
between ui and vi in GP . If {ui, vi} are in the top row of GP , then to make ui
and vi match up we first rotate the drawing of Gi by 180◦, then flip it vertically,
and then insert it into its space in GP . See Fig. 4.

The drawing of Gi has height at most max{2, 4pw(T )− 4}. Inserting Gi into
GP re-uses the row that contains ui and vi, so at most max{1, 4pw(T ) − 5}
rows are added to the two rows of the drawing of GP . The final height hence is
max{3, 4pw(T )− 3} which completes the proof of (2).

Claim (3): By (2), graph H can be drawn with u and v in the top row, with
height max{3, 4pw(T )− 3}. Now release u and v by adding a row and relocating
them into it, so that {u, v} spans the new top row. (This is quite similar in spirit
to the modifications introduced in our earlier paper [1].)

More precisely, add a new row above the existing drawing. Move u and v
into this new row, with u occupying everything from the top left corner to its
rightmost column, and v occupying everything else in the top row. If x was a
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neighbour of u, then it either was connected to u by a vertical line (which can
simply be extended to continue to the new position of u), or it was the unique
vertex to the left of u in the top row. (Here having flat visibility representation
is crucial, so that any such neighbour is in the top row.) In the latter case, x can
now add a vertical line towards the new position of u, since u spans the whole
range above x. Similarly connect any neighbour of v to the new position of v.

Thus, releasing u and v adds one unit of height and achieves that {u, v} spans
the top row. The result then holds by (2).

x

u v

x u v

Fig. 5. Releasing u and v

Claim (1): Let P ′ = f ′
1, . . . , f

′
k′ be a main path of T . Let f be the interior face

that is adjacent to (u, v). In tree T , there is a unique path that connects f to a
vertex f ′

j′ that belongs to the main path. Note that 1 �= j′ �= k′, otherwise one
could simply extend the main path to f and be in case (2). See also Fig. 6.

Let P be the path that consists of part of the main path f ′
j, f

′
j′+1, f

′
j′+2, . . . , f

′
k′ ,

the path from f ′
j′ to f , and then continues from f until it reaches a leaf of T .

Enumerate P as f1, . . . , fk with fj = f ′
j′ and fk = f ′

k′ . The drawing now pro-
ceeds exactly as in case (2), i.e., define the subtree Ti of T −P that is attached to
fi, and draw its corresponding graph Gi recursively. Draw the graph GP induced
by the faces f1, . . . , fk in two rows, and insert the drawings of G2, . . . , Gk−1 after
adding sufficiently many rows and columns.

f ′
j′ = fj

f ′
1

f ′
k′

f

Gj
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b

c

f

g

h

i
j

k
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e = v
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*
*

*

*

*
*

*

*

*

*

Gj

ac n

me = vd = u

Fig. 6. The example from Fig. 1, but using (d, e) as edge (u, v). The path P used is
marked dotted.
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It remains to analyze the height. Recall that any subtree of T − P ′ has path-
width at most pw(T )− 1 since P ′ was a main path. For any i �= j, subtree Ti is
a subtree of T − P ′ and hence has pathwidth at most pw(T ) − 1. So for j �= i,
graph Gi is drawn with height at most max{2, 4pw(Ti)} ≤ max{2, 4pw(T )− 4}.

A special case is Tj , which contains the rest of the main path, f ′
1, . . . , f

′
j′−1 and

hence may well have pathwidth pw(T ). If pw(Tj) < pw(T ), then we deal with Tj
as with the other subtrees and draw it with height at most max{2, 4pw(T )− 4}.
So presume pw(Tj) = pw(T ). Then f ′

1, . . . , f
′
j−1 is a main path of Tj , since all its

subtrees have (by definition of main path of T ) pathwidth at most pw(T )− 1 =
pw(Tj)− 1. Observe that the edge (uj, vj) (i.e., the edge shared by Gj and GP )
is incident to f ′

j′−1, and hence adjacent to this main path of Tj. Therefore Tj
can be drawn using case (3) with height max{4, 4pw(T )− 2}.

So all drawings of all subgraphs have height at most max{4, 4pw(T )−2}. Since
merging these drawings into the 2-row drawing of GP reuses one row, the height
of the drawing with u and v in the top row is at most max{5, 4pw(T )− 1}. Now
release u and v as in case (3) and obtained a drawing with height max{6, 4pw(T )}
where {u, v} spans the top row. This proves (3) unless pw(T ) = 1.

If pw(T ) = 1, then T is a cater-pillar, i.e., it consists of a path with leaves
attached. It is easy to draw H using three rows such that one of {u, v} (say u) is
in the top row and v (which has degree 2 since (u, v) is not adjacent to a main
path) is in the middle row. Now relocate both u and v to a newly added row on
the top and re-connect to their neighbours as illustrated in Fig. 7; this gives a
drawing of height 4 as desired. 
�

vu

x

xu

v

Fig. 7. Drawing of a graph where the dual tree is a caterpillar, and how to transform
it into one where {u, v} spans the top, even if v was not in the top row

The width of the drawings created with this algorithm are not especially small,
but for completeness’ sake we analyze it as well. For technical reasons, it will
be helpful to re-define the term “leaf”. If T is a tree with at least two vertices,
then a leaf of T is a vertex of degree 1 in T . We use �(T ) to denote the number
of leaves in T . If T is a tree with only one vertex, then we define �(T ) := 2.

Lemma 2. The flat visibility representation created with Lemma 1 has width at
most |T |+ �(T )− 1.

Proof. If T is a singleton vertex, then its drawing has width 2 and �(T ) = 2,
which proves the claim.
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Now assume that pw(T ) ≥ 1. Let P = f1, . . . , fk be the path of T for which
we drew the corresponding graph GP first. (P is a main path in case (2) and
the combination of part of a main path, the path to f , and a path from f to a
leaf in case (3)). Let Ti be the subtree of T − P that is adjacent to fi; we drew
the subgraph Gi whose dual is Ti recursively and merged it into the drawing of
GP . Let I ⊆ {2, . . . , k − 1} be all those indices i for which Ti is non-empty.

For any i ∈ I, by induction graph Gi is drawn with width at most |Ti| +
�(Ti)− 1. The drawing of GP is drawn with width |P |+ �(P )− 1. Therefore the
width of the combined drawing is at most

|P |+ �(P )− 1 +
∑
i∈I

(|Ti|+ �(Ti))− 1) = |T |+ �(P )− 1 +
∑
i∈I

(�(Ti)− 1).

It remains to count �(T ), which equals the number of degree-1 vertices in T since
pw(T ) ≥ 1 and so T is not a singleton vertex. Any leaf in P is also a leaf in T
since the path begins and ends at leaves of T . But not every leaf in Ti is a leaf
in T : if f ′

i is the face of Ti that shares an edge with fi, then f
′
i may be a leaf in

Ti but not in T .
If f ′

i had degree 1 in Ti, then f
′
i added one �(Ti), but adds nothing to �(T ).

If f ′
i had degree 0 in Ti, then fi added two to �(Ti), but in T it is a vertex of

degree 1 and hence adds only one to �(T ). Hence, for each subtree Ti, there is
one vertex that may have added one more unit to �(Ti) than it adds to �(T ).
Therefore

�(P ) +
∑
i∈I

�(Ti) ≤ �(T ) + |I|.

The result now follows after combining the two equations. 
�

Theorem 1. Any 2-connected outer-planar graph G has a flat visibility repre-
sentation of height 4pw(G) − 3 and width � 32 (n − 2)�. Moreover, such a repre-
sentation can be found in linear time.

Proof. Since G is a 2-connected outer-planar graph, one can add edges to it until
it is a maximal outer-planar graphH such that the dual graphsG∗ andH∗ satisfy
pw(H∗) ≤ pw(G∗) + 1 [3, Lemma 5]. Also, pw(G∗) ≤ pw(G) [3, Lemma 4]. If
T is the dual tree of H , then pw(T ) = pw(H∗)− 1 [3, Lemma 3]. Putting it all
together, one can add edges to G to obtain a maximal outer-planar graphH such
that the dual tree T ofH satisfies pw(T ) = pw(H∗)−1 ≤ pw(G∗)+1−1 ≤ pw(G).

Find a main path of T and let (u, v) be an edge on the outer-face of H
adjacent to the main path. Then draw H with height max{3, 4pw(T )− 3} using
Lemma 1(2). Observe that max{3, 4pw(T ) − 3} ≤ 4pw(G) − 3 since pw(T ) ≤
pw(G) and pw(G) ≥ 2 since G is 2-connected. This proves the height-bound. The
width is at most |T |+ �(T )− 1 by Lemma 2. Since for a maximal outer-planar
graph the dual tree T has maximum degree 3, it has at most �|T |/2+ 1� leaves.
So the width is at most 3

2 |T | =
3
2 (n− 2) since H has n− 2 interior faces.

Finding the completion to a maximal outer-planar graph can be done in linear
time [3]. Given this, we can compute T in linear time. The pathwidth of T can
be computed in linear time [19]. But we also need to find main paths, both of T
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and of all the subtree of T encountered by our algorithm. Suderman [21] showed
in detail how to do this for the subtrees needed for his drawing algorithm; our
subtrees are defined similarly and the same techniques can be applied.

As for the actual drawing algorithm, this can easily be implemented in linear
time if we store rows and columns as abstract objects in a sorted list. Then
merging the drawing of a subgraph takes constant time by inserting its list of
rows/columns into the overall lists. Once all recursions are finished, compute the
final coordinates of graph G by traversing these lists and assigning integers in
order, and hence obtain the drawing in linear time. 
�

Since the pathwidth is a lower bound on the height [8], this gives:

Corollary 1. There exists a linear-time 4-approximation for the height of visi-
bility representations of 2-connected outer-planar graphs.

A few comments on this result:

– The drawings do not preserve the planar embedding, because the drawing of
the subgraph Gi is flipped vertically. Similarly as in [1], one can modify the
algorithm to create orthogonal box-drawings that do preserve the embedding
and have height O(pw(T )), by routing edge (ui, vi) “around” the drawing of
Gi.

– The algorithm works for any outer-planar graph, and 2-connectivity is used
only when adding edges to obtain a maximal outer-planar graph H of path-
width ≈ pw(G). If such a result were known for all outer-planar graphs, the
4-approximation would hold for all outer-planar graphs. But this remains an
open problem.

– Any tree has pathwidth at most log3(2n+ 1) [19], thus the height-bound is
O(log n). So in the worst-case the construction here has asymptotically the
same height as the one in [1], but it is better for graphs with small pathwidth.

Our algorithm created flat visibility representations. The main motivation for
using this drawing model was that it made the algorithm simpler: One can easily
insert extra space for subgraphs, and since boxes have height 1, we can apply
the operation to release vertices.

A more common graph drawing style represents vertices as points, and edges
as straight lines, or (in poly-line drawings) as contiguous sequences of straight
lines. As shown in [1], the visibility representation can be converted to a poly-line
drawing of asymptotically the same width and height, which implies:

Corollary 2. Any 2-connected outer-planar graph G has a poly-line drawing of
height O(pw(G)) and width O(n).

4 Straight-Line Drawings

We now show that the drawings can also be easily transformed into straight-line
drawings of the same height, if we allow increasing the width.
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Theorem 2. Let Γ be a flat visibility representation of a graph G that has height
h. Then there exists a straight-line drawing Γ ′ of G of height h.

Proof. For any vertex v, use xl(v), xr(v) and y(v) to denote leftmost and right-
most x-coordinate and (unique) y-coordinate of the box that represents v in Γ .
Use X(v) and Y (v) to denote the (initially unknown) coordinates of v in Γ ′. For
any vertex set Y (v) = y(v); this proves the height-bound.

Let v1, . . . , vn be the vertices sorted by xl(.), breaking ties arbitrarily. The
algorithm determines X(.) for each vertex by processing vertices in this order
and expanding the drawing Γ ′

i−1 created for v1, . . . , vi−1 into a drawing Γ ′
i of

v1, . . . , vi. Throughout, it will hold that Y (v) = y(v) for all vertices, and for any
row, the left-to-right order of vertices will be the same in Γ ′ (as far as it has
been built yet) as it was in Γ .

Suppose X(vg) has been computed for all g < i already. To find X(vi), de-
termine lower bounds for it by considering all predecessors of vi and taking
the maximum over all of them. (For each vertex vi, the predecessors of vi are
the neighbours of vi that come earlier in the order v1, . . . , vn.) A first (trivial)
lower bound for X(vi) is that it needs to be to the right of anything in row
y(vi). Thus, if Γ

′
i−1 contains a vertex or part of an edge at point (X, y(vi)), then

X(vi) ≥ �X�+ 1 is required.
Next consider any predecessor vg of vi with y(vg) �= y(vi). Since vg and vi are

not in the same row, they must see each other vertically in Γ , which means that
xr(vg) ≥ xl(vi). See also Fig. 8. So if vg has a neighbour vk to its right in Γ , then
x	(vk) > xr(vg) ≥ x	(vi), which implies that k > i, so vk has not been added
to Γ ′

i−1. Since the order of the vertices in each row is unchanged, therefore vg is
the rightmost vertex in its row in Γ ′

i−1 and can see towards infinity on the right.
But then vg can also see the point (+∞, y(vi)), or in other words, there exists
some Xg such that vg can see all points (X, y(vi)) for X ≥ Xg. Impose the lower
bound X(vi) ≥ �Xg�+ 1 on the x-coordinate of vi.

�

vi

vi

vg

vg

Xg

other parts
of Γ

other parts
of Γ ′

i−1

unobstructed

Fig. 8. Transforming a flat visibility drawing into a straight-line drawing with
unchanged y-coordinates
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Now letX(vi) be the smallest value that satisfies the above lower bounds (from
the row y(vi) and from all predecessors of vi in different rows.) Set X(vi) =
0 if there were no such lower bounds. Directly by construction, placing vi at
(X(vi), y(vi)) allows it to be connected with straight-line segments to all its
predecessors. This includes the predecessor (if any) that is in the row y(vi), since
it can be horizontally connected to vi. (Here having a flat visibility representation
is crucial, because there is only one such predecessor and it is placed in the same
row.) This gives a drawing Γ ′

i of v1, . . . , vi as desired, and the result follows by
induction. 
�
Corollary 3. Any outer-planar graph has a straight-line drawing of height
O(log n), and any 2-connected outer-planar graph G has a straight-line draw-
ing of height O(pw(G)).

Unfortunately, while our transformation keeps the height intact, the width can
increase dramatically. It is not hard to construct a flat visibility representations
of height h and width O(n) for which the resulting straight-line drawing has
width Ω((h−2)(n−3)); see Fig. 9. But this is (asymptotically) the worst that can
happen. With some calculations (left to the reader), one can show the following
bound by induction on i:

1

3

2

4

1 + (h − 2) + (h − 2)2

5

4

3 5 7

6

1 + (h − 2)

2

1

Fig. 9. A flat visibility representation for which the corresponding straight-line drawing
has exponential width. Vertices are numbered in the order in which they are processed.
Vertex i is placed with x-coordinate 1 + (h− 2) + . . .+ (h− 2)i−3 for i ≥ 3, and leaves
an edge with slope ±1/(1 + (h− 2) + . . .+ (h− 2)i−3).

Lemma 3. For h ≥ 3, all x-coordinates are in O((h − 2)n). More precisely, if
vertex vi is not on the first or last row, then X(vi) ≤ 1 + (h − 2) + (h − 2)2 +
. . .+ (h− 2)i−2.
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It remains open whether some other construction could create straight-line draw-
ings with smaller width, perhaps by rearranging which vertex is in which row,
or at the expense of some height.

5 Conclusion and Open Problems

This paper presented an algorithm to draw 2-connected outer-planar graphs,
with the objective of keeping the height as small as possible. While the pathwidth
pw(G) of such a graph G is an easy lower bound, the algorithm created drawings
of height 4pw(G)− 3 and hence is a 4-approximation algorithm for the height.

The paper leaves many open problems:

– Is our algorithm also an O(1)-approximation for outer-planar graphs that
are not 2-connected? In particular, can we add edges to any outer-planar
graph G such that the resulting graph H is 2-connected and outer-planar
and has pathwidth O(pw(G))? To our surprise, no such result appears to be
known.

– The bound for the width of the visibility representations was O(n). Can this
be reduced, at least if the maximum degree is small? Can we create drawings
where the width is also within a constant factor of the optimum?

– Is it possible to find drawings of optimal height for outer-planar graphs in
polynomial time? Perhaps even of optimal area? (The NP-hardness reduction
for the area [16] uses 2-outer-planar graphs.)

– Are there straight-line drawings of outer-planar graphs that have height
O(pw(G)) and polynomially bounded width?

– Is there an O(1)-approximation algorithm for the height of series-parallel
graphs, or other generalizations of outer-planar graphs?

– What are other approximation algorithms in graph drawing? Is is possible
to find drawings for which the area is an O(1)-approximation?
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Abstract. Motivated by the yield optimization problem in semi-
conductor manufacturing, we model the wafer to wafer integration prob-
lem as a special multi-dimensional assignment problem (called WWI-m),
and study it from an approximation point of view. We give approxima-
tion algorithms achieving an approximation factor of 3

2
and 4

3
for WWI-3,

and we show that extensions of these algorithms to the case of arbitrary
m do not give constant factor approximations. We argue that a special
case of the yield optimization problem can be solved in polynomial time.

Keywords: wafer-to-wafer integration, approximation, computational
complexity, efficient algorithm.

1 Introduction

Consider the following problem. Given are m sets Vi, i = 1, ...,m. Each set
contains n p-dimensional vectors; each entry of each vector is a nonnegative
integer. We define the cost of vector u = (u1, u2, . . . , up) as follows: c(u) =∑p

i=1 ui. Given a pair of vectors u, v, we can construct the vector u ∨ v by
defining the operation ∨ as follows:

u ∨ v = (max(u1, v1),max(u2, v2), . . . ,max(up, vp)).

Notice that (u ∨ v) ∨ w = u ∨ (v ∨ w).
Consider now an m-tuple, ie, a set of m vectors u1, u2, . . . , um ∈ V1 × V2 ×

. . .×Vm. The cost of an m-tuple equals c(u1 ∨u2 ∨ . . .∨um). Our problem, that
we denote by WWI (see Section 1.1), is to find n disjoint m-tuples such that
each vector is used exactly once, while total cost is minimum. In the figure below
an instance with m = 3, n = p = 2 is depicted; notice that this instance has the
property that each vector is a 0-1 vector; the value of an optimal solution to this
instance equals 2 (this is achieved by joining the first vector of V1, the second
vector of V2, and the first vector of V3 into (1, 0); the remaining three vectors
form (0, 1)).

We were motivated to look at this optimization problem by an application in
the semi-conductor industry, that we now proceed to describe.
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Fig. 1. WWI instance; m = 3, n = p = 2

1.1 The Application

Our understanding of the semi-conductor industry, and in particular the wafer-
to-wafer production process is primarily based upon Reda et al. [6], Verbree
et al. [9], Taouil and Hamdioui [8]. In the semi-conductor industry, Through
Silicon Vias (TSV) based three-Dimensional Stacked Integrated Circuits (3D-
SIC) is an emerging technology that provides large benefits: a smaller footprint,
a higher interconnect density between stacked dies, higher performance, and
lower power consumption due to shorter wires when compared to planar IC’s.
One of the key steps in the production of 3D-SIC’s is stacking. There are three
different ways of stacking: (1) wafer to wafer (2) die to wafer (3) die to die
(see [6]). Of these three approaches, wafer to wafer stacking offers the highest
manufacturing throughput coupled with other advantages. However, wafer to
wafer stacking approach suffers from a drawback that it may have a low yield.
The main motivation of this paper is to study this yield optimization problem
in the wafer to wafer integration process.

The yield optimization problem in the semi-conductor industry can be infor-
mally described as follows: there are m lots of wafers called wafer lots, with each
wafer lot consisting of n wafers. A wafer consists of a string of bad dies and
good dies; in our context this translates to a ’0’ in case of a good die, and a ’1’
in case of a bad die (such a string corresponds to a vector in the description of
WWI). The objective is to form n stacks (a stack corresponds to an m-tuple) by
integrating one wafer from each lot (a set Vi) while optimizing the yield i.e., min-
imizing the total number of bad dies in the resulting stacks (which is equivalent
to maximizing the total number of good dies in the resulting stacks). Integrating
two wafers can be seen as superimposing the two corresponding strings; in this
operation the position in the merged string is only ’good’ when the two corre-
sponding entries are good, otherwise it is ’bad’. Due to this reason we call the
above problem the wafer to wafer integration (WWI) problem. We refer to it as
WWI-m, where m is the number of wafer-lots.

Notice that the yield optimization problem described here is a special case of
WWI, since instances of the yield optimization problem have 0-1 vectors (instead
of vectors with arbitrary integral entries).
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Dimensions of typical instances occurring in the semi-conductor industry have
values of m,n, and p ranging as follows: 3 ≤ m ≤ 10, 25 ≤ n ≤ 75, 500 ≤ p ≤
1000 (see [6][9]).

1.2 Goal and Related Work

Our main intention in this paper is to formulate the WWI-m as a combinatorial
optimization problem and study it from an approximation point of view. Usu-
ally, the yield optimization problem is formulated as a maximization problem,
however, we feel that studying the minimization problem is especially relevant
from approximation point of view. Indeed, owing to the fact that in the yield
optimization instances, the number of bad dies in each wafer is typically much
less than the number of good dies, it make sense to be able to approximate the
(smaller) minimization optimum instead of the (larger) maximization optimum.

There is increasing attention for the yield optimization in the literature. One
example is the contribution [6]. In [6] the problem is formulated as an multi-index
assignment problem; further, computational performance with straightforward
heuristics is reported. Some recent work on this problem is also reported in [8] [9].
As we will show, WWI can be seen as a multi-index assignment problem where
the costs have a certain structure. Three dimensional assignment problems with
so-called decomposable costs have been studied in Crama and Spieksma [4] and
Burkard et al. [3]. Multi-dimensional assignment extensions of this cost structure
appear in Bandelt et al. [1]. An survey on multi-dimensional assignment problems
can be found in [7] and chapter 10 of [2].

1.3 Our Results

Our results can be summarized as follows:

– We present an IP-formulation that is an alternative to the traditional for-
mulation given in [6]. This alternative formulation contains fewer variables,
and may be more suited from a computational perspective (see Section 2).

– We prove that the yield optimization problem is NP-hard (see Section 3).
– We give two simple approximation algorithms for WWI-3, one with a 3

2
performance guarantee, and one with a 4

3 performance guarantee (see Sec-
tion 4.1). We also show that natural extensions of these algorithms to the case
of arbitrary m fail to provide a constant-factor guarantee (see Section 4.2).

– We show that, in case of a fixed m and a fixed p, the yield optimization
problem is solvable in polynomial time (see Section 5).

2 Problem Formulation

In subsection 2.1 we give a straightforward formulation of the yield optimization
problem in wafer to wafer integration as a m-dimensional axial assignment prob-
lem, see also [6]. Section 2.2 presents an alternative IP-formulation that may be
more suited from a computational perspective.
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2.1 IP Formulation

We setK = V1×V2× . . .×Vm, ie,K corresponds to the set ofm-tuples. Next, for
each a ∈ K, there is a binary variable xa indicating whetherm-tuple a is selected
(xa = 1) or not (xa = 0). The formulation is now as follows (see also [6])

min
∑

a∈K c(a) · xa (1)∑
a: u∈a xa = 1 for each u ∈ ∪m

i=1Vi, (2)

xa ∈ {0, 1} for each a ∈ K. (3)

Observe that constraints (2) ensure that each vector u is in an m-tuple.

2.2 Alternative IP Formulation

In this section we give an IP formulation that is different from the classical
formulation and contains fewer variables.

In this formulation, we model the problem by treating V1 as the hub. Each
vector in ∪m

i=2Vi is assigned to a vector in V1; this decision is modelled by a
binary variable as follows. There is a variable zu,v, where u ∈ V1 and v ∈ ∪m

i=2Vi,
such that:

zu,v = 1 if vectors u and v are contained in the same m-tuple,

= 0 otherwise.

In addition, we introduce variables yu,	 as follows.

yu,	 = the value in the �-th position of the m-tuple containing vector u ∈ V1.

min
∑
u∈V1

p∑
	=1

yu,	 (4)

∑
u∈V1

zu,v = 1 for each v ∈ ∪m
i=2Vi, (5)

∑
v∈Vi

zu,v = 1 for each u ∈ V1, for each i = 2, . . . ,m, (6)

yu,	 ≥ max(u	, v	) · zu,v for eachu ∈ V1, for eachv ∈ ∪m
i=2Vi, 1 ≤ � ≤ p, (7)

zu,v ∈ {0, 1} for eachu ∈ V1, for eachv ∈ ∪m
i=2Vi. (8)

Here, u	(v	) denotes the �
th entry in the vector u(v). Observe that this alternative

formulation has very few variables (O(mn2+np)) when compared to the number
of variables in classical assignment formulation (O(nm)). Even for reasonably
small instances it will be difficult to solve the resulting problem with IP solvers
using the classical formulation, whereas we might be able to solve them using
(4)-(8).
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3 The Complexity of WWI

In this section we describe a reduction from MAX-3DM to WWI. Recall that for
a given pairwise disjoint sets X,Y,Z, and a set of ordered triples T ⊆ X×Y ×Z, a
matching in T is a subset ofM ⊆ T in which no two ordered triples in M agree
in any coordinate. The goal of the MAXIMUM 3-DMENSIONAL MATCHING
problem (shortly, MAX-3DM) is to find a matching in T of maximum cardinality.

Kann [5] showed that 3-bounded MAX-3DM is APX-complete.

Reduction. Consider an arbitrary instance I of MAX-3DM with three sets X =
{x1, ..., xq}, Y = {y1, ..., yq}, and Z = {z1, ..., zq}, and a subset T ⊆ X × Y ×Z.
Let the number of triples be denoted by |T |.

Starting from the instance I of MAX-3DM, we now build a corresponding
instance I ′ of WWI-3 by specifying Vi (i = 1, 2, 3), as follows:

– for each element in xi ∈ X there is a vector v1i ∈ V1
– for each element in yj ∈ Y there is a vector v2j ∈ V2
– for each element in zk ∈ Z there is a vector v3k ∈ V3
– each vector has length |T | i.e., p = |T |; in fact, for each triple e = (xi, yj , zk) ∈
T , there is a position in each vector corresponding to that triple. The three
vectors v1i, v2j , and v3k corresponding to triple (xi, yj, zk), have a ’0’ in that
position, all other vectors have a ‘1’ in that position.

This completes the description of WWI-3 instance.
It is easy to see that a solution to an instance of MAX-3DM with value k

corresponds to a solution to the corresponding instance of WWI-3 with cost
pq − k. Thus we can state the following theorem:

Theorem 1. WWI-3 is NP-hard, even for the special case of 0−1 vectors (i.e.,
yield optimization).

Notice that, when the yield optimization problem would have been formulated
as a maximization problem, straightforward reductions from MAX-kDM imply
that a constant factor approximation for the maximization version of WWI-m
would imply P=NP.

4 Approximation Algorithms for WWI-m

In this section we first prove that a straightforward algorithm (called heuristicH)
for WWI-3 is a 3

2 approximation algorithm. We show how a simple modification
of this heuristic allows us to improve the worst-case ratio to 4

3 . Finally, we show
that a natural extension of heuristic H to WWI-m can perform arbitrarily bad.



Approximation Algorithms for the Wafer to Wafer Integration Problem 291

4.1 The Case m = 3

Algorithm 1. Heuristic H

1. Solve an assignment problem between V1 and V2, based on costs c(u ∨ v), u ∈
V1,v ∈ V2. Call the resulting matching M .
2. Solve an assignment problem between M and V3 based on costs c((u ∨ v) ∨ w),
u ∨ v ∈M , w ∈ V3.

Theorem 2. Heuristic H is a 3
2 -approximation algorithm for WWI-3. This

bound is tight.

Proof. We first introduce some notation. Let OPT denote the value of an optimal
solution, and let cost(H) refer to the value of the solution found by H . Let c(Vi)
equal total cost of the vectors in Vi, ie, c(Vi) =

∑
u∈Vi

c(u), for i = 1, 2, 3. Let

cOPT
12 denote the value of a partial optimal solution restricted to V1 × V2, ie,
when we remove from the optimal solution the vectors from V3; the total weight
that remains equals cOPT

12 . Recall that M refers to matching found by H in the
first step, and let cH12 be the value of the partial solution obtained after Step 1
of the heuristic H.

Let us call x (y) the amount with which the value of a partial optimal (heuris-
tic) solution increases when vectors from V3 are matched optimally to the optimal
(heuristic) pairs from V1 × V2. Thus, by definition:

x = OPT − cOPT
12 (9)

Clearly, the following inequality is valid:

c(V3) ≤ OPT (10)

(9) and (10) imply
c(V3)− x ≤ cOPT

12 . (11)

Consider a set U consisting of n p-dimensional vectors with total cost c(U) =∑
u∈U c(u). In addition, consider a set V , also consisting of n p-dimensional

vectors. Let us now assign the vectors from V to the vectors of U using as a cost
c(u∨v) for each (u, v) ∈ U×V . Let the value of the resulting optimal solution be
denoted by c(U ×V ). We say that an amount equal to c(V )− (c(U ×V )− c(U))
from V is covered by U (or equivalently, we say that U is able to cover an amount
of c(V ) + c(U)− c(U × V ) from V ).

Consider now the partial heuristic solution found after Step 1, ie, considerM .

Lemma 1. There exists a feasible assignment of the vectors in V3 to the pairs
from M such that at least the amount 1

2 (c(V3)− x) from V3 is covered by M .

Argument: To argue that the lemma is true, consider the partial optimal solution
restricted to V1 × V2. Apparently, these n vectors are able to cover an amount
of c(V3) − x from V3 when assigning the strings from V3 to these vectors (since
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OPT = cOPT
12 + x). However, each vector in V1 × V2 consists of p numbers, each

one arising from either V1 or V2. Thus, we can partition the amount covered
c(V3)−x into two disjoint parts: one part covered by numbers from vectors in V1,
one part covered by numbers from vectors in V2. It follows that if one considers
the following two assignments: one where the vectors from V3 are assigned to
the vectors from V1 as in the optimal solution, and one where the vectors from
V3 are assigned to the vectors from V2 as in the optimal solution, that at least
one of these solutions will cover 1

2 (c(V3)− x). This proves the lemma.
We can now derive

cost(H) = cH12 + y

≤ cH12 + c(V3)− (
1

2
c(V3)−

1

2
x)

= cH12 +
1

2
c(V3) +

1

2
x

≤ cOPT
12 +

1

2
c(V3) +

1

2
x

≤ cOPT
12 +

1

2
[cOPT

12 + x] +
1

2
x

≤ 3

2
cOPT
12 +

3

2
x =

3

2
OPT.

The first inequality follows from Lemma 1, the second inequality follows from
the fact that the heuristic, in Step 1, computes an optimum assignment between
sets V1 and V2 whose costs cannot exceed cOPT

12 , the third inequality follows from
(11) and the final inequality follows from the definition of x. Tightness follows
from the instance depicted in Figure 1: observe that, for this instance, OPT =
2, whereas heuristic H might find a solution with value 3. 
�

A minor modification of heuristic H (denoted by Hheavy) allows us to improve
the worst-case ratio without actually increasing the computational effort. Indeed,
let us slightly modify H by ensuring that in Step 1 the heaviest set Vi is present,
ie, we ensure that the set Vi for which c(Vi) is maximal, is assigned to some
Vj , j �= i in the first step.

Theorem 3. Heuristic Hheavy is a 4
3 -approximation algorithm for WWI-3. This

bound is tight.

Algorithm 2. Heuristic Hheavy

0. Let j = arg maxi=1,2,3c(Vi).
1. Solve an assignment problem between Vj and some Vi, i �= j, based on costs
c(u ∨ v), u ∈ Vj ,v ∈ Vi. Call the resulting matching M .
2. Solve an assignment problem between M and the remaining set Vk, k �= j, k �= i
based on costs c((u ∨ v) ∨ w), u ∨ v ∈M , w ∈ Vk.
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Proof. Let us assume, without loss of generality, that set V1 is the heaviest set.
Thus, we have c(V1) ≥ c(V2) as well as c(V1) ≥ c(V3). Even more, let us assume
(again wlog) that in Step 1 of Hheavy sets V1 and V2 are assigned to each other.
We distinguish three cases.

Case 1: 0 ≤ c(V1) ≤ 1
3OPT.

This case is trivial since any feasible solution is in fact optimal:
cost(Hheavy) ≤ c(V1) + c(V2) + c(V3) ≤ 3 · 1

3OPT = OPT.

Case 2: 1
3OPT < c(V1) ≤ 2

3OPT.
This case is similar to the analysis in Theorem 2. We derive:

cost(Hheavy) = c
Hheavy

12 + y

≤ cOPT
12 + c(V3)− (

1

2
c(V3) +

1

2
x)

= cOPT
12 +

1

2
c(V3) +

1

2
x

≤ OPT+
1

2
c(V3) ≤

4

3
OPT.

The last inequality follows from the assumption in this particular case,
and the fact that c(V3) ≤ c(V1).

Case 2: 2
3OPT < c(V1) ≤ OPT.
We denote by Q the weight from V3 that is covered by V1 when we solve
an assignment problem between V1 and V3. The following is true:

c(V1) + c(V3)−Q ≤ OPT. (12)

We now derive:

cost(Hheavy) = c
Hheavy

12 + y ≤ c
Hheavy

12 + c(V3)−Q

≤ cOPT
12 + c(V3)−Q

≤ cOPT
12 +OPT− c(V1)

≤ OPT+
1

3
OPT =

4

3
OPT.

The first inequality follows from Step 2 of Hheavy (the weight added to

c
Hheavy

12 will not exceed the ’uncovered’ weight from V3 when we assign
the vectors from V3 to V1), the second from Step 1 of Hheavy , the third
inequality follows from (12), and the last inequality follows from the
assumption in this particular case.

Tightness follows from the instance depicted in Figure 2: observe that, for
this instance, OPT = 6, whereas heuristic Hheavy might find a solution with
value 8. 
�
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Fig. 2. Hheavy: an instance where OPT = 6 and cost(Hheavy) = 8

An obvious improvement to heuristic H and Hheavy would consist of a heuris-
tic that runs H for all possible pairs in the first step, add the remaining set in
the last step, and then choosing the best of the three feasible solutions found.
Interestingly, this heuristic (which involves solving 6 assignment problems) does
not have a lower worst case ratio than Hheavy (which only solves two assignment
problems). This also follows from the example depicted in Figure 2.

Notice that heuristic H , in contrast to Hheavy can be seen as an online algo-
rithm for a natural, online variant of WWI-3. Indeed, consider the setting where
the sets V1, V2, and V3 arrive sequentially over time, and that, before the arrival
of a next set, the just arrived set Vi must be assigned to the partial tuples.
Results given above imply directly:

Corollary 1. Heuristic H is a 3
2 competitive algorithm.

Clearly, in this framework, Hheavy is not an online algorithm.

4.2 The Case of Arbitrary m

A natural extension of heuristic H to the case of arbitrary m is as follows. We
iteratively assign set Vi to the existing partial tuples from V1×V2×. . .×Vi−1. Let
us call the resulting heuristic Hseq . The performance of Hseq can be arbitrarily
bad as can be seen from the description of the following instances. To understand
these instances, it can be helpful to see each vector as a circle with p positions; in
such a circle, the 1s, as well as the 0s, will appear consecutively. Let vi,j denote
the j-th vector from Vi. Formally, the instances are described as follows:

Choose m such that there exists a value of p with m = p(p− 1) + 1 (thus, in
these instances, the length of a vector increases with m), and set n = p.
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– for each k ∈ {1, . . . , p− 1}, there are 1s in position i − (k − 1)p to position
i− (k− 1)p+ k− 1 (modulo p) in vector vi,1, for each i ∈ {(k− 1)p+1, kp}.

– There is a 1 in each position of the vector v(p(p−1)+1,1.
– Each other vector is an all-zero vector.

Notice that the cost of an optimal solution equals p, whereas Hseq may find a
solution with cost m = p(p− 1) + 1.

Corollary 2. The worst case ratio of Hseq is at least O(
√
m).

An instance with p = 3 is depicted in Figure 3.
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Fig. 3. Hseq : an instance where OPT = 3 and cost(Hseq) = 7

Another natural heuristic to consider is the so-called Multiple Hub-Heuristic
(see [1]), which can be informally described as in Algorithm (3):

The performance of the multiple hub heuristic MH can be arbitrarily bad.
Indeed, consider the following instance. The length of each vector equals 2, ie,
p = 2, and consider some even value for the number of sets m. let n = m

2 + 1.
The first vector of each of the sets Vi, i = 1, 2, . . . , m2 is specified as follows: For
i = 1, 2, . . . , n, put vi,1 = (1 0); for i = m

2 + 1, . . . ,m put vi1 = (0 1). All other
vectors in the instance are equal to (0 0). It can be seen that OPT = 2 whereas
cost(MH) = m

2 + 1.

Corollary 3. The worst case ratio of MH is O(m).

Notice that this performance is in contrast with the performance of the multiple
hub-heuristic for other variants of decomposable minimum cost m-dimensional
assignment problems, see [1].

Algorithm 3. Multiple-Hub-Heuristic MH

for h = 1 to m do
for i = 1 to m do

1. Solve an assignment problem between Vh and Vi, i �= h, based on costs
c(u ∨ v), u ∈ Vh,v ∈ Vi. Call the resulting matching Mhi.

end for
Combine all Mhi, to construct Mh.

end for
Output the min-cost solution of all Mh.
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5 Fixed p

In this section we consider the yield optimization problem, i.e., we consider
instances that feature 0-1 vectors only. We will argue that instances of the yield
optimization problem with a fixed p can be solved in polynomial time (for each
fixed m).

Consider a solution of the yield optimization problem. It consists of n 0-1
vectors. Thus, we can classify these n 0-1 vectors as belonging to at most 2p

different types (each type corresponding to a distinct 0-1 vector of length p). We
use the symbol t to index these types.

We say that a vector from type t is compatible with a vector from type s if
the vector of type t has a ’1’ in each of the positions where the vector of type
s has a ’1’. We write type t is compatible with a vector from type s as t ! s.
Further, given an instance of the yield optimization problem, we let kis denote
the number of 0-1 vectors of type s in set Vi, s = 1, . . . , 2p, i = 1, . . . ,m.

We construct the following formulation that features variables xt:

xt = number of 0-1 vectors of type t in the final solution, t = 1, . . . , 2p.

We also need “transportation” type variables; for each i = 1, . . . ,m, s, t =
1, . . . , 2p:

zis,t = number of 0-1 vectors of type s from set Vi assigned to class t.

The formulation (with parameter ct referring to the number of ’1’s in a vector
from type t):

min

2p∑
t=1

ctxt (13)∑
s: t�s

zis,t = xt for each t = 1, . . . , 2p, i = 1, . . . ,m, (14)∑
t: t�s

zis,t = kis for each s = 1, . . . , 2p, i = 1, . . . ,m, (15)

xt integer for each t = 1, . . . , 2p, (16)

The objective function (13) minimizes the total cost. Constraints (14)-(15) are
the familiar transportation constraints. Notice further that integrality of xt im-
plies integrality of zis,t.

Observe that this formulation involves O(2p) binary variables, O(m22p) con-
tinuous variables, and O(m2p) constraints.

Lemma 2. Formulation (13)-(16) is correct.

Proof. See Appendix.

When we fix p and m the above formulation has a fixed number of variables and
constraints. Thus we can use Lenstra’s algorithm to solve this IP in polynomial
time. This implies:
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Corollary 4. For each fixed p, and for each fixed m, the yield maximization
problem can be solved in polynomial time.

It is true, however, that for the values of p encountered in practice, the above
sketched approach is not practical.
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Appendix

Proof of Lemma 2

Proof. Consider a feasible solution to the yield optimization problem. This solu-
tion prescribes for each type of vector in each set Vi how many of these vectors
are assigned to a vector of type t. This determines the zis,t values; clearly, these
values will satisfy constraints (14)-(16), since our solution is valid. Vice versa,
consider zis,t values that satisfy (14)-(16). One can construct a feasible solution
to WWI-m as follows: (1) Create a set X of n vectors with xt vectors of type
t. (2) Solve an assignment problem between X and Vi, for each i = 1, . . . ,m,
based upon a bipartite graph G = (L ∪ R,E) involving a node in L for each
vector in X a node in R for each vector in Vi, and two nodes are connected if the
vector in X is compatible with the vector in Vi. This assignment problem will
have a feasible solution since zis,t, xt satisfy (14)-(16). (3) Construct m-tuples
of vectors by matching m vectors one from each Vi together in an m-tuple if
they all are matched to same vector in X in (2). This corresponds directly to a
feasible solution. 
�
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