
Basic Algebraic 
Geometry 2

Igor R. Shafarevich

Schemes and Complex Manifolds

Third Edition



Basic Algebraic Geometry 2



Igor R. Shafarevich

Basic Algebraic
Geometry 2

Schemes and Complex Manifolds

Third Edition



Igor R. Shafarevich
Algebra Section
Steklov Mathematical Institute

of the Russian Academy of Sciences
Moscow, Russia

Translator
Miles Reid
Mathematics Institute
University of Warwick
Coventry, UK

ISBN 978-3-642-38009-9 ISBN 978-3-642-38010-5 (eBook)
DOI 10.1007/978-3-642-38010-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013945857

Mathematics Subject Classification (2010): 14-01

Translation of the 3rd Russian edition entitled “Osnovy algebraicheskoj geometrii”. MCCME,
Moscow 2007, originally published in Russian in one volume

© Springer-Verlag Berlin Heidelberg 1977, 1994, 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy


Preface to Books 2–3

Books 2–3 correspond to Chapters V–IX of the first edition. They study schemes and
complex manifolds, two notions that generalise in different directions the varieties
in projective space studied in Book 1. Introducing them leads also to new results
in the theory of projective varieties. For example, it is within the framework of the
theory of schemes and abstract varieties that we find the natural proof of the adjunc-
tion formula for the genus of a curve, which we have already stated and applied in
Section 2.3, Chapter 4. The theory of complex analytic manifolds leads to the study
of the topology of projective varieties over the field of complex numbers. For some
questions it is only here that the natural and historical logic of the subject can be re-
asserted; for example, differential forms were constructed in order to be integrated,
a process which only makes sense for varieties over the (real or) complex fields.

Changes from the First Edition

As in the Book 1, there are a number of additions to the text, of which the following
two are the most important. The first of these is a discussion of the notion of the
algebraic variety classifying algebraic or geometric objects of some type. As an
example we work out the theory of the Hilbert polynomial and the Hilbert scheme.
I am very grateful to V.I. Danilov for a series of recommendations on this subject.
In particular the proof of Theorem 6.7 is due to him. The second addition is the
definition and basic properties of a Kähler metric, and a description (without proof)
of Hodge’s theorem.

Prerequisites

Varieties in projective space will provide us with the main supply of examples, and
the theoretical apparatus of Book 1 will be used, but by no means all of it. Differ-
ent sections use different parts, and there is no point in giving exact indications.
References to the Appendix are to the Algebraic Appendix at the end of Book 1.
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VI Preface to Books 2–3

Prerequisites for the reader of Books 2–3 are as follows: for Book 2, the same as
for Book 1; for Book 3, the definition of differentiable manifold, the basic theory of
analytic functions of a complex variable, and a knowledge of homology, cohomol-
ogy and differential forms (knowledge of the proofs is not essential); for Chapter 9,
familiarity with the notion of fundamental group and the universal cover. References
for these topics are given in the text.

Recommendations for Further Reading

For the reader wishing to go further in the study of algebraic geometry, we can
recommend the following references.

For the cohomology of algebraic coherent sheaves and their applications: see
Hartshorne [37].

An elementary proof of the Riemann–Roch theorem for curves is given in W. Ful-
ton, Algebraic curves. An introduction to algebraic geometry, W.A. Benjamin, Inc.,
New York–Amsterdam, 1969. This book is available as a free download from
http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf.

For the general case of Riemann–Roch, see A. Borel and J.-P. Serre, Le théorème
de Riemann–Roch, Bull. Soc. Math. France 86 (1958) 97–136,

Yu.I. Manin, Lectures on the K-functor in algebraic geometry, Uspehi Mat. Nauk
24:5 (149) (1969) 3–86, English translation: Russian Math. Surveys 24:5 (1969)
1–89,

W. Fulton and S. Lang, Riemann–Roch algebra, Grundlehren der mathematis-
chen Wissenschaften 277, Springer-Verlag, New York, 1985.

I.R. ShafarevichMoscow, Russia

http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf
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Chapter 5
Schemes

In this chapter, we return to the starting point of all our study—the notion of alge-
braic variety—and attempt to look at it from a more general and invariant point of
view. On the one hand, this leads to new ideas and methods that turn out to be ex-
ceptionally fertile even for the study of the quasiprojective varieties we have worked
with up to now. On the other, we arrive in this way at a generalisation of this notion
that vastly extends the range of application of algebraic geometry.

What prompts the desire to reconsider the definition of algebraic variety from
scratch? Recalling how affine, projective and quasiprojective varieties were defined,
we see that in the final analysis, they are all defined by systems of equations. One
and the same variety can of course be given by different equations, and it is pre-
cisely the wish to get away from the fortuitous choice of the defining equations
and the embedding into an ambient space that leads to the notion of isomorphism
of varieties. Put like this, the framework of basic notions of algebraic geometry is
reminiscent of the theory of finite field extensions at the time when everything was
stated in terms of polynomials: the basic object was an equation and the idea of
independence of the fortuitous choice of the equation was discussed in terms of the
“Tschirnhaus transformation”. In field theory, the invariant treatment of the basic
notion considers a finite field extension k ⊂ K , which, although it can be repre-
sented in the form K = k(θ) with f (θ) = 0 (for a separable extension), reflects
properties of the equation f = 0 invariant under the Tschirnhaus transformation.
As another parallel, one can point to the notion of manifold in topology, which was
still defined right up to the work of Poincaré as a subset of Euclidean space, be-
fore its invariant definition as a particular case of the general notion of topological
space.

The nub of this chapter and the next will be the formulation and study of the
“abstract” notion of algebraic variety, independent of a concrete realisation. This
idea thus plays the role in algebraic geometry of finite extensions in field theory or
of the notion of topological space in topology.

The route by which we arrive at such a definition is based on two observations
concerning the definition of quasiprojective varieties. In the first place, the basic
notions (for example, regular map) are defined for quasiprojective varieties starting
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from their covers by affine open sets. Secondly, all the properties of an affine variety
X are reflected in the ring k[X], which is associated with it in an invariant way.
These arguments suggest that the general notion of algebraic variety should in some
sense reduce to that of affine variety; and that in defining affine varieties, one should
start from rings of some special type, and define the variety as a geometric object
associated with the ring.

It is not hard to carry out this program: in Chapter 1 we studied in detail how
properties of an affine variety X are reflected in its coordinate ring k[X], and this
allows us to construct a definition of the variety X starting from some ring, which
turns out after the event to be k[X]. However, proceeding in this way, we can get
much more than the invariant definition of an affine algebraic variety. The point is
that the coordinate ring of an affine variety is a very special ring: it is an algebra
over a field, is finitely generated over it, and has no nilpotent elements. However,
as soon as we have worked out a definition of affine variety based on some ring
A satisfying these three conditions, the idea arises of replacing A in this defini-
tion by a completely arbitrary commutative ring. We thus arrive at a far-reaching
generalisation of affine varieties. Since the general definition of algebraic vari-
ety reduces to that of an affine variety, it also is the subject of the same degree
of generalisation. The general notion which we arrive at in this way is called a
scheme.

The notion of scheme embraces a circle of objects incomparably wider than just
algebraic varieties. One can point to two reasons why this generalisation has turned
out to be exceptionally useful both for “classical” algebraic geometry and for other
domains. First of all, the rings appearing in the definition of affine scheme are not
now restricted to algebras over a field. For example, this ring may be a ring such
as the ring of integers Z, the ring of integers in an algebraic number field, or the
polynomial ring Z[T ]. Introducing these objects allows us to apply the theory of
schemes to number theory, and provides the best currently known paths for using
geometric intuition in questions of number theory. Secondly, the rings appearing in
the definition of affine scheme may now contain nilpotent elements. Using these
schemes allows us, for example, to apply in algebraic geometry the notions of dif-
ferential geometry related with infinitesimal movements of points or subvarieties
Y ⊂X, even when X and Y are quasiprojective varieties. And we should not forget
that, as a particular case of schemes, we get the invariant definition of algebraic va-
rieties which, as we will see, is much more convenient in applications, even when it
does not lead to any more general notion.

Since we expect that the reader already has sufficient mastery of the technical
material, we drop the usual “from the particular to the general” style of our book.
Chapter 5 introduces the general notion of scheme and proves its simplest prop-
erties. In Chapter 6 we define “abstract algebraic varieties”, which we simply call
varieties. After this, we give a number of examples to show how the notions and
ideas introduced in this chapter allow us to solve a number of concrete questions
that have already occurred repeatedly in the theory of quasiprojective varieties.
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1 The Spec of a Ring

1.1 Definition of SpecA

We start out on the program sketched in the introduction. We consider a ring A,
always assumed to be commutative with 1, but otherwise arbitrary. We attempt to
associate with A a geometric object, which, in the case that A is the coordinate ring
of an affine variety X, should take us back to X. This object will at first only be
defined as a set, but we will subsequently give it a number of other structures, for
example a topology, which should justify its claim to be geometric.

The very first definition requires some preliminary explanations. Consider va-
rieties defined over an algebraically closed field. If we want to recover an affine
variety X starting from its coordinate ring k[X], it would be most natural to use
the relation between subvarieties Y ⊂ X and their ideals aY ⊂ k[X]. In particu-
lar a point x ∈ X corresponds to a maximal ideal mx , and it is easy to check that
x �→mx ⊂ k[X] establishes a one-to-one correspondence between points x ∈X and
the maximal ideals of k[X]. Hence it would seem natural that the geometric object
associated with any ring A should be its set of maximal ideals. This set is called
the maximal spectrum of A and denoted by m-SpecA. However, in the degree of
generality in which we are now considering the problem, the map A �→ m-SpecA
has certain disadvantages, one of which we now discuss.

It is obviously natural to expect that the map sending A to its geometric set
should have the main properties that relate the coordinate ring of an affine alge-
braic variety with the variety itself. Of these properties, the most important is that
homomorphisms of rings correspond to regular maps of varieties. Is there a natu-
ral way of associating with a ring homomorphism f : A→ B a map of m-SpecB
to m-SpecA? How in general does one send an ideal b ⊂ B to some ideal b ⊂ A?
There is obviously only one reasonable answer, to take the inverse image f−1(b).
But the trouble is that the inverse image of a maximal ideal is not always maximal.
For example, if A is a ring with no zerodivisors that is not a field, and f : A ↪→K

an inclusion of A into a field, then the zero ideal (0) in K is the maximal ideal of
K , but its inverse image is the zero ideal (0) in A, which is not maximal.

This trouble does not occur if instead of maximal ideals we consider prime ideals:
it is elementary to check that the inverse image of a prime ideal under any ring
homomorphism is again prime. In the case that A= k[X] is the coordinate ring of
an affine variety X, the set of prime ideals of A has a clear geometric meaning: it is
the set of irreducible closed subvarieties of X (points, irreducible curves, irreducible
surfaces, and so on). Finally, for a very large class of rings the set of prime ideals is
determined by the set of maximal ideals (see Exercise 8). All of this motivates the
following definition.

Definition The set of prime ideals of A is called its prime spectrum or simply spec-
trum , and denoted by SpecA. Prime ideals are called points of SpecA.
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Figure 22 aϕ : Spec(Z[i])→ SpecZ

Since we only consider rings with a 1, the ring itself is not counted as a prime
ideal. This is in order that the quotient ring A/P by a prime ideal should always
be an integral domain, that is, a subring of a field (with 0 �= 1). Every nonzero
ring A has at least one maximal ideal. This follows from Zorn’s lemma (see for
example Atiyah and Macdonald [8, Theorem 1.3]); thus SpecA is always nonempty
for A �= 0.

We have already discussed the geometric meaning of SpecA when A= k[X] is
the coordinate ring of an affine variety. We consider some other examples.

Example 5.1 SpecZ consists of the prime ideals (2), (3), (5), (7), (11), . . . , and the
zero ideal (0).

Example 5.2 Let Ox be the local ring of a point x of an irreducible algebraic curve.
Then SpecOx consists of two points, the maximal ideal and the zero ideal.

Consider a ring homomorphism ϕ : A→ B . In what follows we always consider
only homomorphisms that take 1 ∈A into 1 ∈ B . As we remarked above, the inverse
image of any prime ideal of B is a prime ideal of A. Sending a prime ideal of B into
its inverse image thus defines a map

aϕ : SpecB→ SpecA,

called the associated map of ϕ.
As a useful exercise, the reader might like to think through the map Spec(C[T ])→

Spec(R[T ]) associated with the inclusion R[T ] ↪→C[T ].
Example 5.3 We consider the ring Z[i] with i2 =−1, and try to imagine its prime
spectrum Spec(Z[i]), using the inclusion map ϕ : Z→ Z[i]. This defines a map

aϕ : Spec
(
Z[i])→ SpecZ.

We write ω = (0) ∈ SpecZ and ω′ = (0) ∈ Spec(Z[i]) for the points of SpecZ
and Spec(Z[i]) corresponding to the zero ideals. Obviously aϕ(ω′) = ω and
(aϕ)−1({ω})= {ω′}.

The other points of SpecZ correspond to the prime numbers. By definition,
(aϕ)−1({(p)}) is the set of prime ideals of Z[i] that divide p. As is well known,
all such ideals are principal, and there are two of them if p ≡ 1 mod 4, and only one
if p = 2 or p ≡ 3 mod 4. All of this can be pictured as in Figure 22.
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We recommend the reader to work out the more complicated example of
Spec(Z[T ]), using the inclusion Z ↪→ Z[T ].

Example 5.4 Recall that a subset S ⊂A is a multiplicative set if it contains 1 and is
closed under multiplication. For every multiplicative set, we can construct a ring of
fractions AS consisting of pairs (a, s) with a ∈A and s ∈ S, identified according to
the rule

(a, s)= (
a′, s′

) ⇐⇒ ∃ s′′ ∈ S such that s′′
(
as′ − a′s

)= 0.

Algebraic operations are defined by the rules

(a, s)+ (
a′, s′

) = (
as′ + a′s, ss′

)
,

(a, s)
(
a′, s′

) = (
aa′, ss′

)
.

The reader will find a more detailed description of this construction in Atiyah and
Macdonald [8, Chapter 3]. From now on we write a/s for the pair (a, s). In partic-
ular, if S is the set A \ p, where p is a prime ideal of A then AS coincides with the
local ring Ap of A at a prime ideal (compare Section 1.1, Chapter 2).

There is a map ϕ : A→AS defined by a �→ (a,1), and hence a map

aϕ : Spec(AS)→ SpecA.

The reader can easily check that aϕ is an inclusion, and that its image
aϕ(Spec(AS)) = US is the set of prime ideals of A disjoint from S. The inverse
map ψ : US→ Spec(AS) is of the form

ψ(p)= pAS = {x/s | x ∈ p and s ∈ S}.
In particular, if f ∈A and S = {f n | n= 0,1, . . . } then AS is denoted by Af .

1.2 Properties of Points of SpecA

We can associate with each point x ∈ SpecA the field of fractions of the quotient
ring by the corresponding prime ideal. This field is called the residue field at x and
denoted by k(x). Thus we have a homomorphism

A→ k(x),

whose kernel is the prime ideal we are denoting by x. We write f (x) for the image
of f ∈A under this homomorphism. If A= k[X] is the coordinate ring of an affine
variety X defined over an algebraically closed field k then k(x)= k, and for f ∈A
the element f (x) ∈ k(x) defined above is the value of f at x. In the general case
each element f ∈A also defines a “function”

x �→ f (x) ∈ k(x)
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on SpecA, but with the peculiarity that at different points x, it takes values in differ-
ent sets. For example, when A= Z, we can view any integer as a “function”, whose
value at (p) is an element of the field Fp = Z/(p), and at (0) is an element of the
rational number field Q.

We now come up against one of the most serious points at which the “classical”
geometric intuition turns out to be inapplicable in our more general situation. The
point is that an element f ∈A is not always uniquely determined by the correspond-
ing function on SpecA. For example, an element corresponds to the zero function if
and only if it is contained in all prime ideals of A. These elements are very simple
to characterise.

Proposition An element f ∈A is contained in every prime ideal of A if and only if
it is nilpotent (that is, f n = 0 for some n).

Proof See Proposition A.10 of Section 6, Appendix,1 or Atiyah and Macdonald [8,
Proposition 1.8]. �

Thus the inapplicability of the “functional” point of view in the general case is
related to the presence of nilpotents in the ring. The set of all nilpotent elements of
a ring A is an ideal, the nilradical of A.

For each point x ∈ SpecA there is a local ring Ox , the local ring of A at the
prime ideal x. For example, if A= Z and x = (p) with p a prime number, then Ox

is the ring of rational numbers a/b with denominator b coprime to p; if x = (0)
then Ox =Q.

This invariant of a point of SpecA allows us to extend to our general case a whole
series of new geometric notions. For example, the definition of nonsingular points of
a variety was related to purely algebraic properties of their local rings (Section 1.3,
Chapter 2). This prompts the following definition.

Definition A point x ∈ SpecA is regular (or simple) if the local ring Ox is Noethe-
rian and is a regular local ring (see Section 2.1, Chapter 2 or Atiyah and Macdonald
[8, Theorem 11.22]).

Recall that in general SpecA �= m-SpecA. Suppose that A = k[X] and a point
of SpecA corresponds to a prime ideal that is not maximal, that is, to an irreducible
subvariety Y ⊂ X of positive dimension. What is the geometric meaning of reg-
ularity of such a point? As the reader can easily check (using Theorem 2.13 of
Section 3.2, Chapter 2), in this case, regularity means that Y is not contained in the
subvariety of singular points of X.

Let mx be the maximal ideal of the local ring Ox of a point x ∈ SpecA. Then
obviously

Ox/mx = k(x),

1Appendix refers to the Algebraic Appendix at the end of Book 1.
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and the group mx/m
2
x is a vector space over k(x). If Ox is Noetherian (for example,

if A is Noetherian), then this space is finite dimensional. The dual vector space

Θx =Homk(x)

(
mx/m

2
x, k(x)

)

is called the tangent space to SpecA at x.

Example 5.5 If A is the ring of integers of an algebraic number field K , for example,
A= Z, K =Q, then SpecA consists of maximal ideals together with (0). For x =
(0), we have Ox =K and hence x is regular, with 0-dimensional tangent space. If
x = p �= (0) then it is known that Ox is a principal ideal domain. Hence these points
are also regular, with 1-dimensional tangent spaces.

Example 5.6 To find points that are not regular, consider the ring A = Z[mi] =
Z[y]/(y2 +m2)= Z+Zmi, where m> 1 is an integer and i2 =−1. The inclusion
ϕ : A ↪→A′ = Z[i] defines a map

aϕ : Spec
(
A′

)→ SpecA. (5.1)

If we restrict to prime ideals coprime to m then this is a one-to-one correspondence,
and it is easy to check that the local rings of corresponding prime ideals are equal.
Hence a point x ∈ SpecA′ is not regular only if the prime ideal divides m. Prime
ideals of A′ dividing m are in one-to-one correspondence with prime factors p of m,
and are given by p= (p,mi). In this case, k(x)= Fp is the field of p elements, and
mx/m

2
x = p/p2 is a 2-dimensional Fp-vector space, since p2 ⊂ (p). Hence mx is not

principal, and the local ring Ox is not regular. Thus all the prime ideals p= (p,mi)

with p | m are singular points of SpecA. The map (5.1) is a resolution of these
singularities.

Now that we have defined tangent spaces, it would be natural to proceed to differ-
ential forms. The algebraic description of differential forms treated in Section 5.2,
Chapter 3, allows us to carry it over to more general rings. In what follows we do
not require these constructions, and we will not study them in more detail.

1.3 The Zariski Topology of SpecA

The topological notions that we used in connection with algebraic varieties suggest
how to put a topology on the set SpecA. For this, we associate with any set E ⊂A

the subset V (E) ⊂ SpecA consisting of prime ideals p such that E ⊂ p. We have
the obvious relations

V

(⋃

α

Eα

)
=

⋂

α

V (Eα),
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and

V (I)= V
(
E′

)∪ V
(
E′′

)
, where I = (

E′
)∩ (

E′′
);

(that is, I is the intersection of the ideals of A generated by E′ and E′′). They show
that the sets V (E) corresponding to different subsets E ⊂ A satisfy the axioms for
the system of closed sets of a topological space.

Definition The topology on SpecA in which the V (E) are the closed sets is called
the Zariski topology or spectral topology.

In what follows, whenever we refer to SpecA as a topological space, the Zariski
topology is always intended. For a homomorphism ϕ : A→ B and any set E ⊂ A

we have
(
aϕ

)−1(
V (E)

)= V
(
ϕ(E)

)
,

from which it follows that the inverse image of a closed set under aϕ is closed. This
shows that aϕ is a continuous map.

As an example, consider the natural homomorphism ϕ : A→ A/a, where a is
an ideal of A. Obviously aϕ is a homeomorphism of Spec(A/a) to the closed set
V (a). Any closed subset of SpecA is of the form V (E)= V (a), where a= (E) is
the ideal generated by E. Hence every closed subset of SpecA is homeomorphic to
Spec of a ring.

We consider another example. For S ⊂A a multiplicative set, we let

ϕ : A→AS, US = aϕ
(
Spec(AS)

)
and ψ : US→ Spec(AS)

be the sets and maps introduced in Example 5.4. We give US ⊂ SpecA the subspace
topology, that is, its closed subsets are of the form V (E)∩US . A simple verification
shows that not only aϕ, but also ψ is continuous, so that, in other words, Spec(AS)

is homeomorphic to the subspace US ⊂ SpecA.
Especially important is the special case when S = {f n | n= 0,1, . . . }, with f ∈

A an element that is not nilpotent. Here US is the open set US = SpecA \ V (f ),
where V (f ) = V (E) with E = {f }. The open sets of the form SpecA \ V (f ) are
called principal open sets. They are denoted by D(f ). It is easy to check that they
form a basis for the open sets of the Zariski topology (because every closed set is of
the form V (E)=⋂

f∈E V (f )). As in the case of affine varieties, the significance of
the principal open sets is that D(f ) is homeomorphic to SpecAf . Using these open
sets, one can prove the following important property of SpecA.

Proposition SpecA is compact.

Proof We have to prove that given any cover of SpecA by open sets, we can choose
a finite subcover. Since principal open sets D(f ) form a basis for the open sets of the
topology, it is enough to prove this for a cover SpecA=⋃

α D(fα). This condition
means that

⋂
α V (fα) = V (a) = ∅, where a is the ideal of A generated by all the
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elements fα . In other words, there does not exist any prime ideal containing a; this
means that a=A. But then there exist fα1 , . . . , fαr and g1, . . . , gr ∈A such that

fα1g1 + · · · + fαr gr = 1.

From this it follows in turn that (fα1, . . . , fαr )=A, that is, SpecA=D(fα1)∪· · ·∪
D(fαr ). The proposition is proved. �

The Zariski topology is a very “nonclassical” topology; more precisely, it is non-
Hausdorff. We have already met this kind of property of affine varieties, for example
in Chapter 1: on an irreducible variety, any two nonempty open sets intersect. This
property means that the Hausdorff separability axiom is not satisfied: there exist two
distinct points, all neighbourhoods of which intersect. But it is “even less Hausdorff”
due to the fact that SpecA includes not just maximal ideals, but all prime ideals:
because of this, it contains nonclosed points.

Let us determine what the closure of a point of SpecA looks like. If our point is
the prime ideal p ⊂ A then its closure is

⋂
{E⊃p} V (E) = V (p), that is, it consists

of all prime ideals p′ with p⊂ p′, and is homeomorphic to SpecA/p. In particular,
a prime ideal p⊂ A is a closed point of SpecA if and only if p is a maximal ideal.
If A does not have zerodivisors then (0) is prime, and is contained in every prime
ideal. Thus its closure is the whole space; (0) is an everywhere dense point.

If a topological space has nonclosed points then there is a certain hierarchy
among its points, that we formulate in the following definition: x is a specialisa-
tion of y if x is contained in the closure of y. An everywhere dense point is called a
generic point of a space.

When does SpecA have an everywhere dense point? As we saw in the preceding
section, the intersection of all prime ideals p ⊂ A consists of all the nilpotent ele-
ments of A, that is, it is the nilradical. If this is a prime ideal then it defines a point
of SpecA; but any prime ideal must contain all nilpotent elements, that is, must
contain the nilradical. Hence SpecA has a generic point if and only if its nilradical
is prime. The generic point is unique, and is the point defined by the nilradical.

Example Let Ox be the local ring of a nonsingular point of an algebraic curve (Ex-
ample 5.2). Then the ideal (0) is the generic point of SpecOx , and is open; and the
maximal ideal mx a closed point. A picture:

SpecOx = ◦ → •
(0) mx

1.4 Irreducibility, Dimension

The existence of a generic point relates to an important geometric property of X.
Namely, a topological space certainly does not have a generic point if it can be
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written in the form X =X1∪X2, where X1,X2 �X are closed sets. A space of this
form is reducible.

For SpecA, irreducibility is not only a necessary, but also sufficient condition
for the existence of a generic point. Indeed, it is enough to prove that if SpecA is
irreducible then the nilradical of A is prime; for, as we said above, it already follows
from this that a generic point exists. Suppose that the nilradical N is not prime, and
that fg ∈N , with f,g /∈N . Then

SpecA= V (f )∪ V (g) with V (f ),V (g) �= SpecA,

that is, SpecA is reducible.
Since every closed set of SpecA is also homeomorphic to Spec of a ring, the

same result carries over to any closed subset. Thus there exists a one-to-one cor-
respondence between points and irreducible closed subsets of SpecA, which sends
each point to its closure.

The notion of a reducible space leads us at once to decomposition into irreducible
components. If A is a Noetherian ring, then there exists a decomposition

SpecA=X1 ∪ · · · ∪Xr,

where Xi are irreducible closed subsets and Xi �⊂Xj for i �= j , and this decompo-
sition is unique. The proof of this fact repeats word-for-word the proof of the cor-
responding assertions for affine varieties (Theorem 1.4 of Section 3.1, Chapter 1),
which depended only on k[X] being Noetherian.

Example 5.7 The simplest example of a decomposition of SpecA into irreducible
components is the case of a ring A that is a direct sum of a number of rings having
no zerodivisors:

A=A1 ⊕ · · · ⊕Ar.

In this case, one checks easily that SpecA is a disjoint union of irreducible compo-
nents Spec(Ai).

Example 5.8 To consider a slightly less trivial example, take the group ring Z[σ ] of
the cyclic group of order 2:

A= Z[σ ] = Z+Zσ, with σ 2 = 1.

The nilradical of A equals (0), but this is not a prime ideal, since A has zerodivisors:
(1+ σ)(1− σ)= 0. Hence

SpecA=X1 ∪X2, where X1 = V (1+ σ) and X2 = V (1− σ). (5.2)

The homomorphisms ϕ1, ϕ2 : A→ Z with kernels (1+σ) and (1−σ) define home-
omorphisms

aϕ1 : SpecZ→ V (1+ σ),

aϕ2 : SpecZ→ V (1− σ),
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Figure 23 aϕ : Spec(Z[σ ]/(σ 2 − 1))→ SpecZ

which show that X1 and X2 are irreducible, so that (5.2) is a decomposition of
SpecA into irreducible components.

Let us find the intersection X1 ∩X2. Obviously

X1 ∩X2 = V (1+ σ,1− σ)= V (a),

where a is the ideal a= (1+σ,1−σ)= (2,1−σ). Since A/a∼= Z/2, we see that a
is a maximal ideal and hence X1 and X2 intersect at a unique point x0 =X1 ∩X2. It
is easy to check that if x �= x0, for example x ∈ X1, x /∈ X2 then ϕ1 establishes
an isomorphism of the local rings at the points x and ϕ1(x). Hence all points
x �= x0 are regular. x0 is singular, with dimΘx0 = 2, and if y1, y2 are the points
y1 = (aϕ−1

1 (x0)) and y2 = (aϕ−1
2 (x0)) then we get that dy1Θy1 and dy2Θy2 are two

distinct lines in Θx0
∼= F

2
2, so that x0 is a “double point with distinct tangents” of

SpecA.
It is convenient to picture SpecA using the map aϕ : SpecA→ SpecZ where

Z ↪→ A is the natural inclusion (in the same way that we considered SpecZ[i] in
Example 5.3). We get the picture of Figure 23.

Among the purely topological properties of an affine variety X, that is, the prop-
erties that are completely determined by the Zariski topology of Spec(k[X]), we can
include the dimension of X. Of course, the definition given in Chapter 1 in terms of
the transcendence degree of k(X) uses very specific properties of the ring k[X]: it
is a k-algebra, it can be embedded in a field, and this field has finite transcendence
degree over k. However, Theorem 1.22 and Corollary 1.5 of Section 6.2, Chapter 1
put the definition into a form that can be applied to any topological space.

Definition The dimension of a topological space X is the number n such that X has
a chain of irreducible closed sets

∅ �=X0 �X1 � · · ·�Xn,

and no such chain with more than n terms.

Of course, not every topological space has finite dimension. This is false in gen-
eral for SpecA, even if A is Noetherian. Nevertheless there is a series of important
types of rings for which the dimension of SpecA is finite. In this case it is called
the dimension of A. We run through three of the basic results without proof; for the
proofs, see, for example, Atiyah and Macdonald, [8, Chapter 11].
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Proposition A If A is a Noetherian local ring, then the dimension of SpecA is
finite, and equal to the dimension of A as defined in Section 2.1, Chapter 2.

Proposition B A ring that is finitely generated over a ring having finite dimension
is again finite dimensional.

Proposition C If A is Noetherian then

dimA[T1, . . . , Tn] = dimA+ n.

Example 5.9 Z has dimension 1. More generally, the ring of integers of an algebraic
number field has dimension 1, so that in it, any prime ideal other than (0) is maximal.

Example 5.10 To give an example of a ring of bigger dimension, consider the case
A= Z[T ]. Since we expect that the reader has already worked out the structure of
SpecZ[T ] as an exercise in Section 1.1, we assume it known. It is very simple: a
maximal ideal is of the form (p,f (T )) where p is a prime and f ∈ Z[T ] a poly-
nomial whose reduction modulo p is irreducible; nonzero prime ideals that are not
maximal are principal, and of the form (p) or (f (T )), where f is an irreducible
polynomial. It follows that the chains of prime ideals of maximal length are as fol-
lows:

(
p,f (T )

) ⊃ (
g(t)

) ⊃ (0) or
(
p,f (T )

) ⊃ (p) ⊃ (0).

Thus dimZ[T ] = 2, in agreement with Proposition C.

1.5 Exercises to Section 1

1 Let N be the nilradical of a ring A and ϕ : A→ A/N the quotient map. Prove
that the associated map aϕ : Spec(A/N)→ SpecA is a homeomorphism.

2 Prove that a nonzero element f ∈ A is a zerodivisor if and only if there exists
a decomposition SpecA = X ∪ X′ where X ⊂ SpecA and X′ � SpecA such that
f (x) = 0 for all x ∈ X. (If f is nilpotent then X = SpecA; if f is not nilpotent,
then X,X′ � SpecA.)

3 Suppose that ϕ : A ↪→ B is an inclusion of rings and B is integral over A. Prove
that aϕ is surjective.

4 Let ϕ : A→ B be a ring homomorphism. Does aϕ always take closed points to
closed points? Does this hold under the assumption of Exercise 3?

5 Prove that aϕ(V (E))= V (ϕ−1(E)) where denotes closure.
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6 Suppose that X1 and X2 are closed subsets of SpecA and u1, u2 ∈ A satisfy
u1 + u2 = 1, u1u2 = 0, and that ui(x) = 0 for all x ∈ Xi , for i = 1,2. Prove that
then A=A1 ⊕A2, and that Xi = aϕi(Spec(Ai)), where ϕi : A→Ai is the natural
homomorphism.

7 Suppose that SpecA=X1∪X2 is a decomposition into disjoint closed sets. Prove
that then A= A1 ⊕A2 with Xi = aϕi(Spec(Ai)). [Hint: Represent Xi in the form
V (Ei), find elements v1, v2 such that v1 + v2 = 1, v1v2 = 0 and vi(x) = 0 for all
x ∈ Xi , for i = 1,2. Using Proposition of Section 1.2, construct functions u1, u2
satisfying the conditions of Exercise 6.]

8 Prove that if A is a finitely generated ring over an algebraically closed field then
Proposition of Section 1.2 continues to hold if we replace prime ideals by maximal
ideals. [Hint: Use the Nullstellensatz.] Deduce that closed points are everywhere
dense in any closed subset of SpecA.

9 Let A = Z[T ]/(F (T )), where F(T ) ∈ Z[T ], and let p be a prime number such
that F(0)≡ 0 modp; suppose that p ∈ A is the maximal ideal of A generated by p

and the image of T . Prove that the point x ∈ SpecA corresponding to p is singular if
and only if F(0) ≡ 0 modp2 and F ′(0) ≡ 0 modp. [Hint: Consider the homomor-
phism M/M2→ p/p2 where M = (p,F ) ∈ Z[T ].]

10 Prove that a closed subset of Spec(Z[T1, . . . , Tn]), each component of which has
dimension n= dim Spec(Z[T1, . . . , Tn])− 1 (that is, codimension 1), is of the form
V (F), where F ∈ Z[T1, . . . , Tn].

11 Prove the following universal property of the ring of fractions AS with respect
to a multiplicative system S ⊂ A (Example 5.4): if f : A→ B is a homomorphism
such that f (s) is invertible in B for all s ∈ S, then there exists a homomorphism
g : AS→ B for which f = gh, where h : A→AS is the natural homomorphism.

2 Sheaves

2.1 Presheaves

The topological space SpecA is just one of the two building blocks of the definition
of scheme. The second is the notion of sheaf. In the preceding section, we used the
fact that an affine variety X is determined by its ring of regular functions k[X], and
then, starting from an arbitrary ring A, we arrived at the corresponding geometric
notion, its prime spectrum SpecA. For the definition of the general notion of scheme
we also take regular functions on varieties as the starting point. But there may turn
out to be too few of these, if we consider functions regular on the whole variety.
Therefore it is natural to consider, for any open set U ⊂ X, the ring of regular
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functions on U . In this way we get, not one ring, but a system of rings, with various
connections between them, as we will see. An analogous system is the basis of the
definition of scheme. First, however, we need to sort out some definitions and very
simple facts relating to this type of object.

Definition Let X be a given topological space. Suppose that with every open set
U ⊂X we have associated a set F(U) and with any open sets U ⊂ V a map

ρV
U : F(V )→F(U).

This system of sets and maps is a presheaf if the following conditions hold:

(1) if U is empty, the set F(U) consists of 1 element;
(2) ρU

U is the identity map for any open set U ;
(3) for any open sets U ⊂ V ⊂W , we have

ρW
U = ρV

U ◦ ρW
V .

A presheaf is sometimes denoted by the single symbol F . If we need to empha-
sise that the maps ρV

U refer to F , we denote them by ρV
U,F . If all the sets F(U) are

groups, modules over a ring A, or rings, and the maps ρV
U are homomorphisms of

these structures, then F is a presheaf of groups, or A-modules, or rings respectively.
A presheaf F obviously doesn’t depend on the choice of the element F(∅); more

precisely, for different choices we get isomorphic presheaves, under a definition of
isomorphism that the reader will easily recover. Hence to determine a presheaf, we
only need give the sets F(U) for nonempty sets U . If F is a presheaf of groups then
F(∅) is the group consisting of one element.

If F is a presheaf on X and U ⊂ X an open set, then sending V to F(V ) for
open subsets V ⊂ U obviously defines a presheaf on U . It is called the restriction
of the presheaf F , and denoted by F|U .

Example 5.11 For a set M , let F(U) consist of all functions on U with values in
M ; and for U ⊂ V , let ρV

U : F(V )→ F(U) be the restriction of functions from V

to U . Then properties (1)–(3) are obvious. F is called the presheaf of all functions
on X (with values in M).

In order to carry over the intuition of this example to any presheaf, we call the
maps ρV

U restriction maps. There are a number of variations on Example 5.11.

Example 5.12 Let M be a topological space, and let F(U) consist of all continuous
functions on U with values in M , and ρV

U the same as in Example 5.11. F is called
the presheaf of continuous functions on X.

Example 5.13 Let X be a differentiable manifold, and F(U) the set of differentiable
functions U→R; once again, ρV

U is as in Example 5.11.
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Example 5.14 Let X be an irreducible quasiprojective variety, with the topology
defined by taking algebraic subvarieties as the closed sets (so that the topological
terminology used in Chapter 1 turns into the usual topological notions). For an open
set U ⊂X, F(U) is the set of rational functions on X that are regular at all points of
U ; again ρV

U is as in Example 5.11. F is a presheaf of rings. It is called the presheaf
of regular functions.

2.2 The Structure Presheaf

We proceed to construct the presheaf that will play the principal role in what follows.
It is defined on the topological space X = SpecA. The presheaf we define will be
called the structure presheaf on SpecA, and denoted by O. To clarify the logic of
the definition, we go through it first in a more special case.

Suppose first that A has no zerodivisors, and write K for its field of fractions.
In this case A is a subfield of K . Now we can copy Example 5.4 exactly. For an
open set U ⊂ SpecA we denote by O(U) the set of elements u ∈ K such that for
any point x ∈U we have an expression u= a/b with a, b ∈A and b(x) �= 0, that is,
b is not an element of the prime ideal x. Now O(U) is obviously a ring. Since all
the rings O(U) are contained in K , we can compare them as subsets of one set. If
U ⊂ V then clearly O(V )⊂O(U). We write ρV

U for the inclusion O(V ) ↪→O(U).
A trivial verification shows that we get a presheaf of rings.

Before finishing our consideration of this case, we compute O(SpecA). Our ar-
guments repeat the proof of Theorem 1.7 of Section 3.2, Chapter 1. The condition
u ∈O(SpecA) means that for any point x ∈ SpecA there exist ax, bx ∈A such that

u= ax/bx with bx(x) �= 0. (5.3)

Consider the ideal a generated by the elements bx for all x ∈ SpecA. By condition
(5.3), a is not contained in any prime ideal of A, and hence a=A. Thus there exist
points x1, . . . , xr ∈ SpecA and elements c1, . . . , cr ∈A such that

c1bx1 + · · · + crbxr = 1.

Taking x = xi in (5.3), multiplying through by cibxi and adding, we get that

u=
∑

axi ci ∈A.

Thus O(SpecA)=A.
We now proceed to the case of an arbitrary ring A. The final argument suggests

that it is natural to set O(SpecA)=A. But there are some other open sets, for which
there are natural candidates for the ring O(U), namely the principal open sets D(f )

for f ∈ A. Indeed, we saw in Section 1.3 that D(f ) is homeomorphic to SpecAf ,
and hence it is also natural to set

O
(
D(f )

)=Af .
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Thus so far we have defined the presheaf O(U) on the principal open sets U =
D(f ). Before defining it on all open sets, we introduce the homomorphisms ρV

U , of
course only for principal open sets U and V .

We first determine when D(f )⊂D(g). Taking complements, this is equivalent
to V (f ) ⊃ V (g), that is, any prime ideal containing g also contains f . In other
words, the image f of f in the quotient ring A/(g) is contained in any prime ideal
of this ring. In Proposition of Section 1.2 we saw that this is equivalent to f nilpotent
in A/(g), that is, f n ∈ (g) for some n > 0. Thus D(f )⊂D(g) if and only if

f n = gu for some n > 0 and some u ∈A. (5.4)

In this case, we can construct the homomorphism

ρ
D(g)

D(f ) : Ag→Af by ρ
D(g)

D(f )

(
a/gk

)= auk/f nk.

An obvious verification shows that this map does not depend on the expres-
sion of an element t ∈ Ag in the form t = a/gk , and is a homomorphism. The
map can be described in a more intrinsic way using the universal property of the
ring of fractions AS , see Exercise 11. In our case, g and its powers are invert-
ible in Af by (5.4), and the existence of the homomorphism ρ

D(g)

D(f ) follows from
this.

Before formulating the definition in its final form, return briefly to the case al-
ready considered when A has no zerodivisors. Here we can indicate a method of
calculating O(U) for any open set U in terms of O(V ) where V are various princi-
pal open sets. Namely if {D(f )} is the set of all principal open sets contained in U

then, as one checks easily,

O(U)=
⋂

{U⊃D(f )}
O

(
D(f )

)
.

In the general case one would like to take this equality as the definition of O(U),
but this is not possible, since the O(D(f )) are not all contained in a common set.
However, they are related to one another by the homomorphisms ρ

D(f )

D(g) defined
whenever D(g) ⊂ D(f ). In this case, the natural generalisation of intersection is
the projective limit of sets. We recall the definition.

Let I be a partially ordered set, {Eα | α ∈ I } a system of sets indexed by I , and
for any α,β ∈ I with α ≤ β , let f β

α : Eβ → Eα be maps satisfying the conditions

(1) f α
α is the identity map of Eα , and (2) for α ≤ β ≤ γ we have f

γ
α = f

β
α ◦ f γ

β .
Consider the subset of the product

∏
α∈I Eα of the sets Eα consisting of elements

x = {xα | xα ∈ Eα} such that xα = f
β
α (xβ) for all α,β ∈ I with α ≤ β . This subset

is called the projective limit of the system of sets Eα with respect to the maps f
β
α ,

and is denote by lim←−Eα . The maps lim←−Eα→Eα defined by x �→ xα for x ∈ lim←−Eα

are called the natural maps of the projective limit.
If the Eα are rings, modules or groups, and f

β
α homomorphisms of these struc-

tures, then lim←−Eα is a structure of the same type. The reader can find a more detailed
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description of this construction in Atiyah and Macdonald [8, Chapter 10]. Here we
should bear in mind that the condition that the partial ordered set I is directed is not
essential for the definition of projective limit.

Now we are ready for the final definition:

O(U)= lim←−O
(
D(f )

)
,

where the projective limit is taken over all D(f ) ⊂ U relative to the system of
homomorphisms ρD(f )

D(g) for D(g)⊂D(f ) constructed above.

By definition, O(U) consists of families {uα} with uα ∈ Afα , where fα are all
the elements such that D(fα)⊂U , and the uα are related by

uα = ρ
D(fβ)

D(fα)
(uβ) if D(fβ)⊃D(fα). (5.5)

For U ⊂ V each family {vα} ∈ O(V ) consisting of vα ∈ Afα with D(fα) ⊂ V

defines a subfamily {vβ} consisting of the vβ for those indexes β with D(fβ)⊂ U .
Obviously {vβ} ∈O(U). We set

ρV
U

({vα}
)= {vβ}.

A trivial verification shows that O(U) and ρV
U define a presheaf of rings on SpecA.

This presheaf O is called the structure presheaf of SpecA.
If U = SpecA then D(1)=U , so that 1 is one of the fα , say f0. The map

{uα} �→ u0

defines an isomorphism O(SpecA)
∼→A, as one check easily.

In particular, if u = {uα | D(fα) ⊂ U} ∈ O(U) then by definition ρU
D(f )(u) ={uβ |D(fβ)⊂D(f )}. By what we have said above, the map sending {uβ |D(fβ)⊂

D(f )} to uα , where f = fα , defines an isomorphism O(D(fα))
∼→ Afα , under

which

uα = ρU
D(fα)

(u). (5.6)

This formula allows us to recover all the uα from the element u ∈O(U).

2.3 Sheaves

Suppose that a topological space X is a union of open sets Uα . Every function f

on X is uniquely determined by its restrictions to the sets Uα ; moreover, if on each
Uα a function fα is given such that the restrictions of fα and of fβ to Uα ∩Uβ are
equal, then there exists a function f on X such that each fα is the restriction of f to
Uα . The same property holds for continuous functions, differentiable functions on a
differentiable manifold, and regular functions on a quasiprojective algebraic variety.
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This property expresses the local nature of the notion of continuous, differentiable
and regular function; it can be formulated for any presheaf, and distinguishes an
exceptionally important class of presheaves.

Definition A presheaf F on a topological space X is a sheaf if for any open set
U ⊂X and any open cover U =⋃

Uα of U the following two conditions hold:

(1) if s1, s2 ∈F(U) and ρU
Uα

(s1)= ρU
Uα

(s2) for all Uα then s1 = s2.

(2) if sα ∈ F(Uα) are such that ρUα

Uα∩Uβ
(sα)= ρ

Uβ

Uα∩Uβ
(sβ) for all Uα and Uβ , then

there exists s ∈F(U) such that sα = ρU
Uα

(s) for each Uα .

We have already given a series of examples of sheaves before defining the notion.
We give the simplest example of a presheaf that is not a sheaf. For X a topological
space and M a set, let F(U) be the set of constant maps U →M and ρV

U the re-
striction maps. In other words, F(U)=M for all nonempty open sets U ⊂X, with
ρV
U the identity maps, and F(∅) consists of a single element. Then F is obviously

a presheaf. Suppose that X contains a disconnected open set U represented as a
disjoint union of open sets U = U1 ∪ U2 with U1 ∩ U2 = ∅. Let m1,m2 ∈M be
two distinct elements and s1 =m1 ∈F(U1)=M , s2 =m2 ∈F(U2)=M . The con-
dition ρ

U1
U1∩U2

(s1) = ρ
U2
U1∩U2

(s2) holds automatically since U1 ∩ U2 = ∅, whereas,

because m1 �=m2, there does not exist an s ∈F(U)=M such that ρU
U1
(s)= s1 and

ρU
U2
(s)= s2.

Theorem 5.1 The structure presheaf O on SpecA is a sheaf; it is denoted by
OSpecA or OA, or OX , where X = SpecA.

Proof We first check the conditions (1) and (2) in the definition of a sheaf in the case
that U and the Uα are principal open sets. First of all, we note that for either of the
conditions, it is enough to check it in the case U = SpecA. Indeed, if U =D(f ) and
Uα =D(fα) then, as the reader can check easily, conditions (1) and (2) are satisfied
for U and Uα if they are satisfied for Spec(Af ) and the sets Uα =D(f α), where
f α is the image of fα under the natural homomorphism A→ Af . We proceed to
check conditions (1) and (2), assuming that Uα =D(fα) and SpecA=⋃

Uα . �

Proof of (1) Since O is a presheaf of groups, it is sufficient to prove that if u ∈
O(SpecA)= A and ρ

SpecA
Uα

(u)= 0 for all Uα =D(Fα) then u= 0. The condition

ρ
SpecA
Uα

(u)= 0 means that

f nα
α u= 0 for all α and some nα ≥ 0. (5.7)

Since D(fα) =D(f
nα
α ), we have

⋃
D(f

nα
α ) = SpecA. We have already seen that

this implies an identity

f n1
α1
g1 + · · · + f nr

αr
gr = 1 for some g1, . . . , gr ∈A.
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Multiplying (5.7) for α = α1, . . . , αr by g1, . . . , gr and adding, we get that u= 0. �

Proof of (2) Since SpecA is compact, we can restrict to the case of a finite cover.
Indeed, the reader can easily check that if the assertion holds for a subcover then it
also holds for the whole cover.

Suppose that SpecA=D(f1) ∪ · · · ∪D(fr) and ui ∈ Afi with ui = vi/f
n
i ; we

can take all the n the same in view of the finiteness of the cover. Note first that
D(f )∩D(g)=D(fg), by an obvious verification. By definition,

ρ
D(fi)

D(fifj )
(ui)=

vif
n
j

(fifj )n
,

and by assumption

(fifj )
m
(
vif

n
j − vjf

n
i

)= 0.

Setting vjf
m
j =wj and m+ n= l, we get that

ui = wi

f l
i

and wif
l
j =wjf

l
i . (5.8)

As in the proof of (1), we see that

∑
f l
i gi = 1.

We set u=∑
wjgj . By the assumptions,

f l
i u=

∑

j

wjgjf
l
i =

∑

j

wigjf
l
j =wi.

Hence ρ
SpecA
D(fi)

= wi/f
l
i = ui , as required. This proves (1) and (2) for basic open

sets.
Verifying (1) and (2) for any open sets is now a formal consequence of what

we have already proved. In terms of general nonsense, our situation is described as
follows: on a topological space X we are given some basis V = {Vα} for the open
sets of the topology that is closed under intersections. Suppose that a presheaf of
groups F on X satisfies the following two conditions:

(a) for all open sets U ⊂X we have

F(U)= lim←−F(Vα),

where the limit is taken over all Vα ∈ V such that Vα ⊂U , under the homomor-
phisms ρVα

Vβ
; and

(b) the ρU
Vα

coincide with the natural homomorphisms of the projective limit.
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It follows from these conditions and the definition of lim←− that the patching con-
ditions (1) and (2) in the definition of sheaf hold for U and Vα ∈ V . The structure
presheaf O satisfies both of these properties: the first by definition, and the second
by the equality (5.6). We prove that if in addition conditions (1) and (2) are satisfied
for open sets Vα ∈ V , then F is a sheaf. �

Proof of (1) Suppose that U =⋃
ξ Uξ and Uξ =⋃

λ Vξ,λ with Vξ,λ ∈ V . If ρU
Uξ
(u)=

0 for all Uξ then ρU
Vξ,λ

(u)= 0. Introducing new indexes (ξ, λ)= γ we get U =⋃
Vγ

and ρU
Vγ
(u) = 0 for all γ . To prove that u = 0 it is enough by (b) to check that

ρU
Vα
(u)= 0 for all Vα ⊂U . This follows at once by considering the restriction maps

corresponding to the open sets in the following diagram:

Vα ∩ Vγ ⊂ Vγ⋂ ⋂

Vα ⊂ U.

Indeed,

(
ρ
Vα

Vα∩Vγ
◦ ρU

Vα

)
(u)= ρU

Vα∩Vγ
(u)= (

ρ
Vγ

Vα∩Vγ
◦ ρU

Vγ

)
(u)= 0

for all Vγ , and hence ρU
Vα
(u)= 0, since Vα =⋃

(Vα ∩ Vγ ), and condition (1) holds
for the sets Vα by assumption. �

Proof of (2) Let uξ ∈F(Uξ ) be given, satisfying

ρ
Uξ1
Uξ1∩Uξ2

(uξ1)= ρ
Uξ2
Uξ1∩Uξ2

(uξ2) for all ξ1, ξ2,

where U = ⋃
Uξ . Suppose that Uξ = ⋃

λ Vξ,λ with Vξ,λ ∈ V . Setting vξ,λ =
ρ
Uξ

Vξ,λ
(uξ ) and choosing new indexes γ = (ξ, λ), we verify that

ρ
Vγ1
Vγ1∩Vγ2

(vγ1)= ρ
Vγ2
Vγ1∩Vγ2

(vγ2). (5.9)

This follows at once by considering the restriction maps ρ corresponding to the
open sets in the following diagram:

Uξ1 ⊃ Uξ1 ∩Uξ2 ⊂ Uξ2⋃ ⋃ ⋃

Vγ1 ⊃ Vγ1 ∩ Vγ2 ⊂ Vγ2

where γ1 = (ξ1, λ1) and γ2 = (ξ2, λ2); indeed, the left-hand side of (5.9) is equal to

ρ
Uξ1
Vγ1∩Vγ2

(uξ1)=
(
ρ
Uξ1∩Uξ2
Vγ1∩Vγ2

◦ ρUξ1
Uξ1∩Uξ2

)
(uξ1),

and the right-hand side is obviously equal to the same thing.
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By (5.9), for any Vα ∈ V with Vα ⊂U the elements ρ
Vγ

Vα∩Vγ
(vγ ) satisfy the anal-

ogous relation, and hence, by assumption there exists an element vα ∈ F(Vα) such

that ρVα

Vα∩Vγ
(vα) = ρ

Vγ

Vα∩Vγ
(vγ ). An obvious verification shows that these elements

determine an element u ∈ lim←−F(Vα) = F(U). This satisfies ρU
Vα
(u) = vα . Hence

the elements u′ξ = ρU
Uξ
(u) satisfy ρ

Uξ

Vτ
(u′ξ )= ρ

Uξ

Vτ
(uξ ) for all Vτ ⊂ Uξ with Vτ ∈ V ,

and hence u′ξ = uξ . The theorem is proved. �

2.4 Stalks of a Sheaf

We return to the analysis of the general notion of sheaf and presheaf. Consider first
a subsheaf F for which all the sets F(U) are subsets of a common set, and the
restriction maps are inclusions ρU

V : F(V )⊂F(U). This holds, for example, for the
sheaf O on SpecA, where A is an integral domain, since then all the O(U) ⊂ K

are subrings of the field of fractions K of A. Then we can consider the union Fx =⋃
F(U) of the sets F(U) taken over all the open sets U containing a given point x.

For the sheaf of regular functions on a quasiprojective variety, Fx is the local ring
Ox of x (see Exercise 1 of Section 1.6, Chapter 2).

In the general case, the sets F(U) are not all subsets of some ambient set, but are
related by homomorphisms ρV

U ; this allows us to replace the union
⋃

F(U) by the
inductive limit lim−→F(U). This definition is analogous to that of projective limit, and
can be found in Atiyah and Macdonald [8, Ex. 14–19, Chapter 2]. If F is the sheaf
of continuous functions, the stalk Fx consists of the germs of functions continuous
in some neighbourhood of x, that is, the result of identifying functions that are equal
in some neighbourhood of x.

Definition The stalk Fx of a presheaf at a point x ∈X is the inductive limit of the
sets F(U) taken over all open sets U � x with respect to the system of maps ρV

U for
U ⊂ V .

By definition, an element of Fx is an element of F(U) for U some neighbour-
hood U of x, with elements u ∈ F(U) and v ∈ F(V ) identified if there exists a
neighbourhood x ∈W ⊂U ∩ V such that ρU

W(u)= ρV
W (v).

Example Applying this definition to the case of the structure sheaf O on SpecA for
a ring A, we see that the stalk Ox at a point x ∈ SpecA corresponding to a prime
ideal p is just the local ring Ap of A at p. Indeed, the principal open sets D(f ) with
f /∈ p provide arbitrarily small neighbourhoods of x, and O(D(f ))=Af ; therefore
Ox = lim−→Af , where the limit is taken over the multiplicative system f ∈A \ p, and
it is easy to see that this is equal to Ap.

In the general case, for any open set U � x, there is a natural homomorphism

ρU
x : F(U)→Fx.
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If F is a sheaf and ρU
x (u1)= ρU

x (u2) for all points x ∈ U then u1 = u2. Indeed, by
definition, this means that any point x ∈ U has a neighbourhood x ∈W ⊂ U such
that ρU

W(u1)= ρU
W(u2). From the definition of sheaf it follows that u1 = u2.

Thus for a sheaf F , the elements of F(U) can be specified as families of germs
{ux ∈ Fx}x∈U . Of course, we do not get all families of germs in this way. The
following is an obvious necessary condition:

for all x ∈U, there exists a neighbourhood x ∈W ⊂U and
an element w ∈F(W) such that uy = ρW

y (w) for all y ∈W.

The reader can easily check that conversely, any family satisfying this condition
corresponds to some element u ∈F(U).

This holds, of course, only if F is a sheaf. But if F is an arbitrary presheaf, then
we can still consider the set F ′(U) of all families of germs {ux ∈Fx}x∈U satisfying
the above condition. For U ⊂ V the map

ρV
U : {vx ∈Fx}x∈V →{vy ∈Fy}y∈U

makes F ′(U) into a presheaf. It is easy to check that in this way we get a sheaf. F ′
is called the sheafication or associated sheaf of F . It is the sheaf F ′ “closest” to
F . For example, if F is the presheaf of constant M-valued functions on X, that is,
F(U) =M for all U , then F ′ is the sheaf of locally constant M-valued functions
on X, that is, F ′(U) is the set of functions on U that are constant on each connected
component of U .

2.5 Exercises to Section 2

1 Let X be a discrete topological space and F(U) the set of all maps f : U →M

such that f (U) is finite; for U ⊂ V , ρV
U is restriction. Is F a presheaf? A sheaf?

2 Let X be a nonsingular quasiprojective variety with the Zariski topology (intro-
duced in Example 5.14). For an open set U ⊂X we set F(U)=Ωr [U ] (Section 5.1,
Chapter 3) and for U ⊂ V , ρV

U is restriction of differential r-forms. Is F a presheaf?
A sheaf?

3 Let A be a ring and a ⊂ A an ideal. For any element f ∈ A, not a nilpotent,
write af for the ideal of Af generated by the images of elements of a under the
homomorphism A→ Af . Construct, by analogy with Section 2.2, a presheaf F
such that F(D(f ))= af , and prove that F is a sheaf. Start with the simpler version
when A is an integral domain.

4 Let X be a topological space, M an Abelian group, and F(U) the quotient group
of all locally constant functions on U with values in M by the constant functions;
for U ⊂ V , ρV

U is restriction. Prove that F is a presheaf and determine its sheafica-
tion F ′.
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5 Prove that the structure sheaf O on SpecA can be defined as follows: for O(U)

we take families of elements {ux ∈Ox}x∈U , where Ox =Ax is the local ring of A at
the prime ideal x ∈ SpecA, satisfying the following condition: for every y ∈U there
exists a principal open set y ∈D(f ) ⊂ U and an element u ∈ Af such that all the
ux for x ∈D(f ) are images of u under the natural homomorphisms Af →Ox . If
U ⊂ V are open sets, the restriction ρV

U (v) is obtained by choosing from the family
v = {vx ∈Ox}x∈V the elements vx with x ∈U .

6 Let A be a 1-dimensional local ring, ξ ∈ SpecA a generic point. Prove that ξ is
an open point and find O(ξ).

7 Let A be the local ring of the origin in A
2. Find O(U) where U = (SpecA) \ x,

and x is the closed point.

3 Schemes

3.1 Definition of a Scheme

Definition 5.1 A ringed space is a pair X,O consisting of a topological space X

and a sheaf of rings O. The sheaf O is sometimes denoted by OX , and is called the
structure sheaf of X.

A word of caution on the definition of maps of ringed spaces is in order. The
point is that, as discussed in Section 2.3, Chapter 1, any map ϕ : X→ Y of sets
induces a map of functions (with values in a third set K): a function f : Y → K

pulls back to the function ϕ∗(f ) : X→K given by

ϕ∗(f )(x)= f
(
ϕ(x)

)
for x ∈X. (5.10)

But in connection with Spec of a ring, we meet ringed spaces for which, although
the elements of O(U) can be interpreted as “functions” (see Section 1.2), these
functions are in the first place not determined by their values, and secondly, the
values on the left- and right-hand sides of (5.10) are elements of different sets. In
other words, in this case, the set-theoretic map will not determine the pullback of
functions. Thus in the definition of the analogue of map for ringed spaces, we also
demand that the “pullback of functions” is specified, requiring only a certain natural
compatibility. In view of this, we introduce a new term for the analogue of map of
ringed spaces, a morphism.

Definition 5.2 A morphism of ringed spaces ϕ : (X,OX)→ (Y,OY ) is a con-
tinuous map ϕ : X → Y and a collection of homomorphisms ψU : OY (U) →
OX(ϕ

−1(U)) for any open sets U ⊂ Y . We require that the diagram
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OX(ϕ
−1(V ))

ρ
ϕ−1V
ϕ−1U−−→ OX(ϕ

−1(U))

ψV

⏐⏐�
⏐⏐�ψU

OY (V ) −−→
ρVU

OY (U)

is commutative for any open sets U ⊂ V of Y .

Example 5.15 Any topological space X is a ringed space if we take OX to be the
sheaf of continuous functions. Any continuous map ϕ : X→ Y defines a morphism
if we set ψU(f )= ϕ∗(f ) for f ∈OY (U).

Example 5.16 Any differentiable manifold is a ringed space if we take OX to be the
sheaf of differentiable functions. Any differentiable map defines a morphism in the
same way as in Example 5.15.

Example 5.17 Any ring A defines a ringed space SpecA,OA where OA is the
structure sheaf constructed in Section 2.2. From now on, we denote this ringed
space by SpecA. We show that a homomorphism λ : A→ B defines a morphism
ϕ : SpecB → SpecA. We first set ϕ = aλ. For U = D(f ) ⊂ SpecA we have
ϕ−1(U) = D(λ(f )). Sending a/f n �→ λ(a)/λ(f )n defines a homomorphism ψU

of the ring Af =OA(U) to Bλ(f ) =OB(ϕ
−1(U)). The reader can easily verify that

these homomorphisms extend to homomorphisms ψ : OA(U)→OB(ϕ
−1(U)) for

every open set U ⊂ SpecA, and define a morphism ϕ of ringed spaces.

It is not true, of course, that any morphism ϕ : SpecA→ SpecB of ringed spaces
is of the form aλ (as incorrectly stated in the first edition of this book!). The point
is that some relic of the relation (5.10) remains in our general situation: although
the left- and right-hand sides of (5.10) take values in different sets, so that equality
between them does not make sense, we can nevertheless ask whether they are both
zero. For U ⊂ SpecA, let ψU : OA(U)→ OB(ϕ

−1(U)) be the homomorphism in
the definition of morphism of ringed space. Let x ∈ ϕ−1(U) and a ∈ OA(U). We
can now compare the two properties

a
(
ϕ(x)

)= 0 and
(
ψU(a)

)
(x)= 0.

(Recall that the left-hand side is an element of k(ϕ(x)), and the right-hand side of
k(x), see the discussion at the start of Section 1.2.) The second of these implies
the first. Indeed, if a(ϕ(x)) �= 0 then there exists an open set ϕ(x) ∈ V ⊂ U in
which a is invertible, that is, aa1 = 1 for some a1 ∈ O(V ). Hence (ψV (a))(x) �=
0, which, together with the commutative diagram in the definition of morphism,
contradicts (ψU(a))(x) = 0. But for an arbitrary map of ringed spaces SpecB→
SpecA, the first equality does not imply the second (see Exercise 11), while this is
true tautologically for morphisms of the form aλ, as we have just seen.
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Definition 5.3 A morphism of ringed spaces ϕ : SpecB→ SpecA is local if for
any U ⊂ SpecA, any x ∈ SpecB with ϕ(x) ∈U , and any a ∈OA(U), we have

a
(
ϕ(x)

)= 0 =⇒ (
ψU(a)

)
(x)= 0.

It follows from what we said above that, for a local morphism of ringed spaces,
the two conditions a(ϕ(x))= 0 and (ψU(a))(x)= 0 are equivalent. The same con-
dition can be expressed as follows. At the level of affines, if U = SpecB , then
ψU : OY (U)= A→OX(ϕ

−1(U))= B maps the prime ideal px ∈ SpecA into the
prime ideal pϕ(x) ∈ SpecB . At the level of stalks of the structure sheaf, ψ induces
maps OY,ϕ(x) = Bpϕ(x) →OX,x = Apx , which must take the maximal ideals to one
another, that is, ψ(mϕ(x))⊂mx . The latter is called a local homomorphism of local
rings.

Theorem 5.2 Every local morphism ϕ : SpecB → SpecA can be expressed
uniquely in the form ϕ = aλ, where λ : A→ B is a homomorphism.

Proof There is, of course, only one candidate for λ, namely ψU , where U = SpecA.
We must prove that ϕ = aλ. First we need to check this equality on the set
SpecB . This follows at once from the fact that ϕ is local. Indeed, the equalities
a(ϕ(x)) = 0 and (ψU(a))(x) = 0 are equivalent for x ∈ SpecB and U = SpecA;
that is, ϕ(x)=ψ−1

U (x)= aλ(x). The equality of the two homomorphisms ψU for ϕ
and for aλ holds for U = SpecA by definition, and it then follows for any U from
the commutativity of the diagram in the definition of morphism of ringed space. The
theorem is proved. �

From now on, we often denote a ringed space X,OX by the single letter X, and
a morphism X→ Y , which is defined by a map ϕ and homomorphisms ψU , by the
single letter ϕ.

A simple verification shows that composing morphisms ϕ : X→ Y and ϕ′ : Y →
Z of ringed spaces (that is, composing both the ϕ and the ψU ) gives a morphism
ϕ′ ◦ ϕ : X→ Z. A morphism that has an inverse is called an isomorphism of ringed
spaces. If X,OX is a ringed space and U ⊂ X an open subset, then restricting the
sheaf OX to U defines a ringed space U,OX |U . In this sense we will in what follows
often consider an open subset U ⊂X as a ringed space. We make two comments on
Examples 5.15–5.17 above.

Remark 5.1 Whereas in Examples 5.15–5.16 a morphism was uniquely determined
by the map ϕ : X→ Y on sets, because the corresponding homomorphisms ψU

where given by pullback of functions, this is not the case in Example 5.17. For ex-
ample, if A has a nonzero nilradical N , B =A/N and λ : A→ B is the natural quo-
tient map, then as sets, SpecA= SpecB , and ϕ = aλ is the identity map, whereas
even on U = SpecB the map ψU = λ is not an isomorphism. Thus a morphism of
ringed spaces cannot be reduced to the map of the corresponding topological spaces.
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Remark 5.2 The notion of ringed space provides a convenient principle for the
classification of geometric objects. Consider, for example, differentiable manifolds.
They can be defined as ringed spaces, namely, as those for which every point has a
neighbourhood U such that the ringed space U,O|U is isomorphic to U,O, where
U is a domain in n-dimensional Euclidean space, and O is the sheaf of differen-
tiable functions on it. This is precisely the definition used in de Rham [25], except
that he does not use the terminology of sheaves.

The general idea of this method for defining geometric objects is as follows:
we impose a restriction on the local structure of a ringed space, that is, we fix in
advance a class of ringed spaces, and require that every point has a neighbourhood
isomorphic as a ringed space to one of these.

The last remark leads us to the basic definition.

Definition 5.4 A scheme is a ringed space X, OX for which every point has a neigh-
bourhood U such that the ringed space U,OX |U is isomorphic to SpecA, where A

is some ring.

A neighbourhood U of x for which U , OX |U is isomorphic to SpecA is called
an affine neighbourhood of x. The residue field k(x) and the tangent space Θx

(compare Section 1.2) are independent of the choice of affine neighbourhood. In
exactly the same way, the stalk Ox of the structure sheaf O does not depend on
whether we consider x as a point of X or of its neighbourhood U . Hence Ox is a
local ring and if mx is its maximal ideal then Ox/mx

∼= k(x).
A morphism of schemes f : X→ Y is defined as a local morphism of the corre-

sponding ringed spaces; that is, f : X→ Y is a morphism of ringed spaces such that
for every point x ∈X, every affine neighbourhood U ⊂X of x, and every affine set
V ⊂ Y with f (U)⊂ V , the morphism of affine schemes f : U→ V is local.

For a morphism of schemes f : X→ Y and any point x ∈ X there exist affine
neighbourhoods U ⊂ X of x and V ⊂ Y of f (x) such that f (U) ⊂ V . Since the
morphism f is local, f : U → V is of the form f = aλ, with λ : A→ B a ho-
momorphism, where U = SpecB , V = SpecA. Hence it defines an inclusion of
fields ψx : k(f (x))→ k(x). For a ∈OY (V )=A, we then have a relation analogous
to (5.10)

ψx

(
a
(
f (x)

))= λ(a)(x).

If X is a scheme and A a ring then a morphism X→ SpecA defines a homomor-
phism A→ OX(U) for any open set U ⊂ X, that is, it makes OX into a sheaf of
A-algebras. It is not hard to prove that, conversely, if OX is a sheaf of A-algebras,
then this determines a canonical morphism X→ SpecA. A scheme X having a
morphism X→ SpecA is called a scheme over A or an A-scheme. A morphism of
A-schemes is defined by requiring that the diagram
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Y
ϕ−→ X

↘ ↙
SpecA

is commutative; this is equivalent to saying that all the ψU are A-algebra homomor-
phisms. The case that appears most frequently is when A = k, that is, the case of
schemes over a field k or k-schemes.

Since any ring is an algebra over the ring of integers Z, every scheme is a scheme
over Z. In this sense, schemes over A are a generalisation of schemes.

Here are the two simplest examples of schemes.

Example 5.18 Example 5.17 of a ringed space shows that SpecA is a scheme for
any ring A. Schemes of this type are called affine schemes. Ring homomorphisms
λ : A→ B and morphisms of schemes SpecB→ SpecA are in one-to-one corre-
spondence; the correspondence is given by ϕ = aλ.

Example 5.19 We explain how the notion of quasiprojective variety fits into the
framework of schemes. We start from the case of an affine variety X over an al-
gebraically closed field k. The scheme Spec(k[X]) defined in Example 5.18 is not
equal to X even as a set: the points of Spec(k[X]) are all the prime ideals of k[X],
which correspond in turn to all the irreducible subvarieties of X, not just its points.
Notwithstanding this, the variety X and the scheme Spec(k[X]) are related to one
another in a very natural way: the set of points of X is contained in Spec(k[X]) as
a topological space, and the regular maps X→ Y of affine varieties and the mor-
phisms of schemes Spec(k[X])→ Spec(k[Y ]) are the same thing: both correspond
to algebra homomorphisms k[Y ] → k[X]. Thus we have here an isomorphism of
categories.

We now consider an arbitrary quasiprojective variety X over k, and associate
with X in a similar way a k-scheme X̃. As the set X̃ we take the set of irreducible
subvarieties of X. Let U ⊂X be an open subset and Ũ the set of irreducible subvari-
eties of U . Sending an irreducible subvariety Z ⊂U to its closure Z ⊂X defines an
embedding Ũ ↪→ X̃. The subsets Ũ ⊂ X̃ define a topology on X̃. Finally, we define
a sheaf OX̃ by the condition OX̃(Ũ )= k[U ], with the natural restriction maps. We
leave to the reader the task of checking that in this way we make X̃ into a k-scheme.

A regular map f : X→ Y defines a map of sets f̃ : X̃→ Ỹ in which an irre-
ducible variety Z ⊂X corresponds to f̃ (Z), the closure of f (Z) in Y . Finally, for
U ⊂ Y we define ψ̃U : OỸ (Ũ )→ OX̃(f̃

−1(Ũ )) to be the pullback f ∗ : k[U ] →
k[f−1(U)]. The reader will easily verify that f̃ : X̃→ Ỹ is a morphism of schemes,
and that f �→ f̃ defines a one-to-one correspondence between regular maps X→ Y

and morphisms X̃→ Ỹ . We again have an isomorphism of categories.
In what follows we will often no longer distinguish between a quasiprojective

variety and the corresponding scheme.

Example 5.20 We are now in a position to clear up the question of describing the
set of algebras or of multiplication laws by the equations that express associativity
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((1.28) of Section 4.1, Chapter 1). Multiplication laws correspond to the points of
an affine subscheme of An3

, whose ideal is generated by the left-hand side of the
associativity relations. Example 2.5 of Volume 1 shows that the tangent space to a
closed point of this scheme coincides with the space of cocycles.

In conclusion we make some obvious remarks concerning the definition of
scheme. The structure sheaf O of a scheme X has an important property: its stalk
Ox at any point x ∈ X is a local ring. Indeed, the stalk Fx of any sheaf F on a
space X is not changed if we pass from X to an open subset U containing x. For
the structure sheaf on an affine scheme SpecA we have already seen that Ox is the
local ring of A at the prime ideal x ∈ SpecA. Because of this, local properties of
affine schemes, such as regularity of a point, tangent space, and so on, carry over
automatically to arbitrary schemes.

The properties of irreducibility and dimension, formulated in Section 1.4 in terms
of the topology of a scheme apply also to arbitrary schemes.

Finally, certain notions introduced earlier for quasiprojective varieties carry over
at once to schemes. A rational map of a scheme X to a scheme Y is an equivalence
class of morphisms ϕ : U → Y where U is an open dense subset of X, and two
morphisms ϕ : U→ Y and ψ : V → Y are equal if they coincide on U∩V . Schemes
X and Y are birational or birationally equivalent if they have isomorphic dense open
subsets (compare Proposition of Section 4.3, Chapter 1).

3.2 Glueing Schemes

By definition any scheme is covered by open sets isomorphic to affine schemes,
which we call simply affine open sets. Can we recover X from such a cover
X =⋃

Xα? We consider this question in somewhat greater generality, without pre-
supposing the open sets Uα to be affine.

We note first that any open set U ⊂ X is a scheme. This follows from that fact
that each point has an affine neighbourhood V , and the open sets D(f ) ⊂ V form
a basis for the open sets. If X =⋃

Uα is an open cover then the schemes Uα are
not independent: Uα and Uβ have an isomorphic open set Uα ∩Uβ . Hence we start
from the following data: a system of schemes Uα with α ∈ I , in each Uα a system of
open subsets Uαβ ⊂Uα for α,β ∈ I , with Uαα =Uα , and a system of isomorphisms
of schemes ϕαβ : Uαβ→Uβα . We determine under what conditions it is possible to
construct a scheme X, an open cover X =⋃

Vα and a system of isomorphisms

ψα : Uα→ Vα such that ψα restricted to Uαβ defines an isomorphism Uαβ
∼→ Vα ∩

Vβ , and ψβ ◦ ϕαβ ◦ψ−1
α is the identity map of Vα ∩Vβ . If X exists, we say that it is

obtained by glueing the Uα .
It is easy to check that, in order for glueing to be possible, the following condi-

tions must hold:

ϕαα = id for α ∈ I and ϕαβ ◦ ϕβα = id for α,β ∈ I. (5.11)
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Figure 24 The glueing conditions

The restriction ϕ′αβ of ϕαβ to Uαβ ∩ Uαγ is an isomorphism of Uαβ ∩ Uαγ with
Uβα ∩Uβγ , and these isomorphisms are related by

ϕ′αγ = ϕ′βγ ◦ ϕ′αβ for α,β, γ ∈ I. (5.12)

The morphisms and schemes appearing in conditions (5.11) and (5.12) are illus-
trated in Figure 24.

Let us prove that if (5.11) and (5.12) hold then glueing is possible. First we deter-
mine X as a set. For this we set T to be the disjoint union of all the Uα , and introduce
the equivalence relation x ∼ y if x ∈ Uαβ , y ∈ Uβα and y = ϕαβ(x). Conditions
(5.11) and (5.12) guarantee that ∼ is an equivalence relation. We write X = T/ ∼
for the quotient set and p : T →X for the quotient map.

Introduce the quotient topology on X, setting U ⊂X to be open if p−1(U)⊂ T

is open (the topology of T is defined by the open sets
⋃

Wα with Wα ⊂ Uα open
sets). It is easy to see that p establishes a homeomorphism ψα of the sets Uα with
open subsets Vα ⊂X, and that X =⋃

Vα .
Finally, we define a sheaf OX on X as follows. For W contained in some Vα ,

we make some choice of Vα ⊃W , and set OX(W)=OVα (ψ
−1
α (W)). The choice of

a different Vβ ⊃W replaces OX(W) by an isomorphic ring. The restriction homo-
morphisms ρW

W ′ for W ′ ⊂W ⊂ Vα are defined in the obvious way. Thus the presheaf
OX is not defined on all open subsets of X, but the W on which it is defined form
a basis for the open sets of the topology. The situation is as for the definition of the
structure sheaf of SpecA. In the same way as there, we can extend the definition of
OX(U) to all open sets U ⊂X as the projective limit lim←−OX(W), taken over open
sets W ⊂ U where OX(W) is already defined. There remains the standard verifica-
tion of a large number of properties (that OX is a sheaf, that X is a scheme, and so
on), that we omit.

Example We define a scheme P
N
A , called projective N -space over A. For this,

consider the polynomial ring A[T0, . . . , TN ] in N + 1 independent variables
T0, . . . , TN . In the ring of fractions A[T0, . . . , TN ](T0···TN ), consider the sub-
rings Ai = A[T0/Ti, . . . , TN/Ti]. We set Ui = SpecAi and Uij = D(Tj/Ti) ⊂
Ui . By definition Uij = SpecAij , where Aij = (Ai)(Tj /Ti ) consists of elements
F(T0, . . . , TN)/(T

p
i T

q
j ) where F is a form of degree p + q . It follows from this
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that Aij and Aji are equal as subrings of A[T0, . . . , TN ](T0···TN ), and thus we have

a natural isomorphism ϕij : Uij
∼→ Uji . Conditions (5.11) and (5.12) are easy to

check. As a result of glueing we get PN
A .

It is easy to see that the projections Ui → SpecA of the open sets Ui are com-
patible on the intersections Ui ∩ Uj and define a global projection P

N
A → SpecA,

so that PN
A is a scheme over A.

3.3 Closed Subschemes

If λ : A→ B is a surjective ring homomorphism then the associated map aλ : SpecB→
SpecA defines a homeomorphism of SpecB and a closed subset V (a) ⊂ SpecA,
where a= kerλ. In this case, we say that SpecB is a closed subscheme of SpecA,
and aλ a closed embedding or closed immersion. We now generalise these notions
to arbitrary schemes.

Definition 5.5 A morphism of schemes ϕ : Y →X is a closed embedding if every
point x ∈ X has an affine neighbourhood U such that ϕ−1(U) ⊂ Y is an affine
subscheme and the homomorphism ψU : OX(U)→ OY (ϕ

−1(U)) is surjective. In
this case we say that Y is a closed subscheme of X.

Since closed is a local property, in this case ϕ(Y ) is a closed subspace of X. To
show that the example we started from is covered by this definition, we prove the
following assertion.

Proposition If X = SpecA is an affine scheme and ϕ : Y →X a closed embedding
then Y is also affine, Y = SpecB , and ϕ = aλ, where λ : A→ B is a surjective ring
homomorphism.

Proof By definition of a closed embedding, we can find a cover X =⋃
Ui , where

Ui =D(fi) are principal open sets with fi ∈ A such that ϕ−1(Ui)= Spec(Ai) and
the ψi : Afi → Ai are surjective. Set ai = kerψi ⊂ Afi , so that ρX

Ui
= aλi , and

finally set a=⋂
λ−1
i (ai ). The morphism ϕ makes Y into a scheme over A, that is,

the sheaf OY has an A-module structure. But since a ⊂ λ−1
i (ai ), under the action

of A on OY (ϕ
−1(Ui)), the ideal a acts trivially. In other words, Y is a scheme over

A/a. This means that there is a commutative diagram

Y
ϕ−→ X

u↘ ↗v

Spec(A/a)

with v a closed embedding.
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The proposition will be proved if we check that u is an isomorphism. Locally, u
is given (in open sets ϕ−1(Ui) and v−1(Ui)) by

ui : (A/a)fi →Afi /ai ,

where fi is the image of fi in A/a. It is enough to prove that all the ui are isomor-
phisms.

The surjectivity of the ui follows at once from the fact that a ⊂ λ−1
i (ai ). The

proof that they are injective uses the following remark. The ring OY (ϕ
−1(Ui ∩Uj ))

can be described in two ways:

OY

(
ϕ−1(Ui ∩Uj )

)= (Ai)ψi(λifj ) = (Aj )ψj (λj fi ). (5.13)

Consider the localisation λij : Afi → (Afi )λi (fj ) = A(fifj ). It follows at once
from (5.13) that

λij (ai )= λ
j
i (aj ), (5.14)

where λij (ai ), say, is the ideal of A(fifj ) generated by elements λij (α) with α ∈ ai .
Suppose that a ∈ A defines an element of the kernel of ui . Then λi(a) ∈ ai . By

(5.14) it follows that

λij
(
λi(a)

) ∈ λji (aj ).
The left-hand side is the image of a under the localisation A→ A(fifj ) and is

hence equal to λ
j
i (λj (a)), and elements of the right-hand side are of the form

λ
j
i (aj )/λj (fi)

k . Thus

λ
j
i

(
λj (fi)

kλj (a)− aj
)= 0.

Hence

λj (fi)
k+lλj (a)= λj (fi)

laj ∈ aj
for some l. We see that

λj
(
f k+l
i a

) ∈ aj , (5.15)

and moreover, k and l can be chosen the same for all j . The relation (5.15), which
is now proved for all j , shows that f k+l

i a ∈ a, that is, (fi)k+la = 0, where a is the
image of a in A/a. But this means that a defines the zero element of (A/a)fi = 0.
The proposition is proved. �

Definition 5.6 A scheme isomorphic to a closed subscheme of PN
A (see Example of

Section 3.2) is a projective scheme over SpecA (or over A).

By definition, a closed subscheme X ⊂ P
N
A can be obtained by glueing N + 1

affine schemes Vi =Ui ∩X for i = 0, . . . ,N , where Vi =X∩AN
i , and the structure

sheaf of Vi is the restriction OX |Vi
. Then Vi = SpecCi , where Ci = Ai/ai with



34 5 Schemes

Ai = A[T0/Ti, . . . , TN/Ti] and ai an ideal of Ai . But, as in the case of projective
varieties (see Section 4.1, Chapter 1), projective schemes can also be defined by
homogeneous ideals. For this, we set Γ = A[T0, . . . , TN ]. If Γ (r) is the submodule
of forms of degree r in Γ then Γ =⊕

Γ (r). We write a(r) for the module of forms
F ∈ Γ (r) such that F/T r

i ∈ ai for i = 0, . . . ,N , and set aX =⊕
a(r). Obviously aX

is a homogeneous ideal of Γ , called the ideal of the projective scheme X ⊂ P
n
A. It

follows from the definition that for F ∈ Γ ,

TiF ∈ aX for i = 0, . . . ,N =⇒ F ∈ aX. (5.16)

Conversely, any homogeneous ideal a � Γ satisfying (5.16) defines a closed sub-
scheme X ⊂ P

N
A for which aX = a. We need only take ai to be the ideal ai ⊂ Ai

consisting of elements of the form F/T r
i with F ∈ a(r). It is not hard to check that

the closed affine subschemes Vi ⊂ Ui defined by ai for i = 0, . . . ,N glue together
into a global closed subscheme X ⊂ P

N
A with the required properties. We omit the

elementary but boring verification of these assertions.
All the arguments in the proof of Theorem 1.11 of Section 5.2, Chapter 1 go

through on replacing k by an arbitrary ring A.
Already the familiar quasiprojective varieties contain many more closed sub-

schemes than closed subvarieties. For example, a closed subscheme of the affine
line X = Speck[T ] is of the form Speck[T ]/(F ), where F(T ) is an arbitrary poly-
nomial, whereas closed subvarieties correspond only to the set of roots of these
polynomials, taking no account of their multiplicities.

If ϕ : X→ Y is a morphism of schemes and Y ′ ⊂ Y a closed subscheme of Y then
we can define its pullback or scheme-theoretic inverse image ϕ−1(Y ′), which will be
a closed subscheme of X. We restrict ourselves for the time being to the case that X
and Y are affine schemes, with X = SpecA, Y = SpecB and ϕ = aλ for λ : B→A

a homomorphism; the general case will be treated in Section 4.1 below. Then the
closed embedding Y ′ ↪→ Y is defined by a quotient homomorphism B→ B/b. If
λ(b)A = A then the set-theoretic inverse image ϕ−1(Y ′) is empty. Otherwise, the
scheme X′ = Spec(A/(λ(b)A)) is obviously a closed subscheme of X. It is called
the scheme-theoretic inverse image of Y ′ ⊂ Y . Its topological space is indeed the
inverse image of Y ′ ⊂ Y .

For example, if X and Y are both isomorphic to the affine line A
1
k over an

algebraically closed field k of characteristic �= 2, and ϕ is the map given by
ϕ(x) = x2, then ϕ−1(y) for y �= 0 consists of two connected components isomor-
phic to Speck (that is, two “ordinary” points), but for y = 0 it is the subscheme
ϕ−1(y) = Spec(k[T ]/(T 2)). This example show that schemes for which the rings
O(U) have nilpotent elements can arise in classical situations. We have already seen
that it is natural to define the inverse image of a codimension 1 subvariety as a di-
visor, that is, as a sum of codimension 1 subvarieties with multiplicities. In simple
cases, these multiplicities turn out to be sufficient to specify the scheme-theoretic
structure sheaf on these subvarieties. In the general case, this is a palliative: it is
clear that the inverse image under a morphism between two objects should be an
object of the same type, in the present case a scheme. But then we very quickly
arrive at schemes with nilpotents.
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An even more extreme case is the example where X = Y = A
1 is the affine line

over an algebraically closed field k of characteristic p and ϕ(x) = xp . This map
is a one-to-one correspondence, but is not an isomorphism. Applying our notion
of scheme-theoretic inverse image, we get that ϕ−1(y)∼= Speck[T ]/(T p) for every
closed point y ∈ Y , that is, the inverse image of every point contains nilpotent ele-
ments in its structure sheaf. It is interesting that in this case X and Y are algebraic
groups with respect to addition, and ϕ is a homomorphism of algebraic groups. Thus
it is natural to expect that ϕ−1(0) will again be a “group” of some new type. We will
see in the next section that this is indeed the case.

3.4 Reduced Schemes and Nilpotents

We say that a scheme X is reduced if the rings OX(U) have no nilpotent elements.
We can associate with every scheme X a closed reduced subscheme X′ ⊂X which
coincides with X as a topological space: for an open set U ⊂X the ring OX′(U) is
defined as the quotient of OX(U) by its nilradical (that is, by the ideal formed by all
nilpotent elements). This scheme is denoted by Xred.

Example 5.21 Let X be a scheme over an algebraically closed field k. Any mor-
phism of k-schemes ϕ : Speck→ X takes the closed point o ∈ Speck to a closed
point x = ϕ(o) ∈X, with k(x)= k. Conversely, any point x ∈X with these proper-
ties obviously defines a morphism Speck→X: it is enough to specify the morphism
Speck→U , where U is an affine neighbourhood of x; now if U = SpecA, and mx

is the maximal ideal of x then the homomorphism A→ k with kernel mx deter-
mines ϕ. If X is of finite type over k (see Section 3.5) then the condition k(x)= k

is automatic for all closed points; this is a consequence of the Nullstellensatz. Then
the one-to-one correspondence

{morphisms Speck→X} ∼→Xmax,

where Xmax is the set of closed points of a scheme X of finite type over k, obviously
commutes with morphisms X→X′, that it, is a functor.

Example 5.22 After Speck, the next simplest scheme is SpecD, where D =
k[ε]/ε2 = k + kε is the so-called algebra of dual numbers. We describe the mor-
phisms of SpecD to a scheme X of finite type over k. Since D has a unique maximal
ideal (ε), SpecD has a unique closed point, which we denote by o. The homomor-
phism D→ k with kernel (ε) defines a canonical embedding i : Speck ↪→ SpecD
with o= i(o). Any morphism ϕ : SpecD→X determines the composite morphism
ϕ ◦ i : Speck→X, which, as we have seen, determines a closed point x ∈X. Ob-
viously x = ϕ(o). Let U be some affine neighbourhood of x and U = SpecA. If
we write Mx(SpecD,X) for the set of morphisms of schemes SpecD→ X such
that ϕ(o) = x, then Mx(SpecD,X) =Mx(SpecD,U). The latter equals the set
of homomorphisms f : A→ D such that f (mx) ⊂ (ε). Since, as a vector space,
A= k +mx , such a homomorphism is determined by its effect on mx , where it de-
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fines a linear form mx→ (ε)∼= k. Since ε2 = 0, we must have f (m2
x)= 0, that is, f

is a linear function on mx/m
2
x . Conversely, any such function f , extended to be 0 on

m2
x , determines a homomorphism A→D taking mx into (ε), that is, an element of

Mx(SpecD,X). A linear function on the space mx/m
2
x is an element of the tangent

space at x to X. Thus we have verified the following result.

Proposition If X is a k-scheme and x ∈X, the set Mx(SpecD,X) is in one-to-one
correspondence with the tangent space ΘX,x to X at x. It is easy to check that the

correspondence Mx(SpecD,X)
∼→ ΘX,x commutes with morphisms f : X→ X′

and their differentials dx : ΘX,x→ΘX′,f (x).

The one-to-one correspondence between Mx(SpecD,X) and Θx allows us to
give a new description of Θx not just as a set, but as a vector space. For this, for any
element λ ∈ k, consider the homomorphism of the algebra D given by μλ : ε �→ ελ.
It defines a morphism aμλ : SpecD→ SpecD, and for ϕ ∈Mx(SpecD,X), tak-
ing the composite ϕ �→ ϕ ◦ aμλ defines an operation of scalar product of elements
of Mx(SpecD,X) by λ, which is compatible with multiplication in Θx , as one
sees easily. To describe the addition of vectors, we need to consider the alge-
bra D′ = k[ε1, ε2]/(ε1, ε2)

2. This is obviously a local ring with m = (ε1, ε2) and
m/m2 = kε1 + kε2. There are inclusions i1, i2 : D→ D′ given by i1(ε) = ε1 and
i2(ε) = ε2, and a projection π : D′ → D given by π(ε1) = π(ε2) = ε. Two mor-
phisms ϕ1, ϕ2 : SpecD→ X define homomorphisms f1, f2 : A→ D. From them
we get a homomorphism (i1f1, i2f2) : A→D′ and π(i1f1, i2f2) : A→D that de-
fines the sum of ϕ1 and ϕ2.

The proposition can be given the following geometric interpretation. Consider an
affine neighbourhood U of x and the closed subscheme Tx = Speck[U ]/m2

x ⊂ U ,
where mx is the maximal ideal of x in k[U ]. The homomorphism k[U ]→ k[U ]/m2

x

defines the closed embedding Tx → U . It is easy to see that Tx is also a closed
subscheme of X, and does not depend on the choice of the neighbourhood U .
The arguments given above prove that any morphism ϕ : SpecD→ X is of the
form ϕ = j ◦ψ , where ψ is a morphism SpecD→ Tx and j : Tx ↪→X the closed
embedding. Thus morphisms SpecD→ X that take Speck to x are in one-to-one
correspondence with morphisms SpecD→ Tx . The subscheme Tx is quite big: it
has the same tangent space at x as X itself. But it is also sufficiently small that a
morphism ϕ : SpecD→ Tx is uniquely determined by its differential doϕ, where
o ∈ Speck ⊂ SpecD. This is the geometric interpretation of our computations. They
justify the term first order infinitesimal neighbourhood of x in X for the subscheme
Tx . We can define in a similar way the nth order infinitesimal neighbourhood of x
in X.

3.5 Finiteness Conditions

We now treat two properties of schemes having the nature of “finite dimensionality”
conditions.
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Definition A scheme X is Noetherian if it has a finite cover by affine sets

X =
⋃

Ui with Ui = SpecAi, (5.17)

such that the Ai are Noetherian rings.
A scheme X over a ring B (see Section 3.1) is of finite type over B if X has a

finite covering (5.17) such that the Ai are algebras of finite type over B .

A scheme of finite type over a Noetherian ring is obviously Noetherian. For each
of the notions just introduced, we now prove an assertion having the same format in
each case.

Proposition 5.1 If the affine scheme SpecA is Noetherian then A is a Noetherian
ring.

Proof By assumption there exists a cover (5.17) such that the Ai are Noetherian
rings. Let a1 ⊂ a2 ⊂ · · · be a chain of ideals of A. As we showed in Section 2.2, A=
O(X), where O is the structure sheaf of X. Consider the ideals a(i)n = ρX

Ui
(an)Ai ⊂

Ai . Since the Ai are finitely many Noetherian rings, there exists N such that

a
(i)
n+1 = a

(i)
n for all i and all n≥N. (5.18)

We prove that then an+1 = an for n≥N . Indeed, since the Ui form a finite cover of
X, it follows from (5.18) that

ρX
x (an+1)Ox = ρX

x (an)Ox for all x ∈X and all n≥N.

It remains to repeat the argument of Section 2.2. If u ∈ an+1 then

u= ax/bx with ax ∈ an and bx ∈A with bx(x) �= 0.

There exist points x1, . . . , xr and elements c1, . . . , cr ∈ A such that c1bx1 + · · · +
crbxr = 1. Then

u=
∑

axi ci ∈ an,
that is, an = an+1. The proposition is proved. �

Proposition 5.2 If an affine scheme SpecA is of finite type over a ring B then A is
an algebra of finite type over B .

Proof By assumption there exist a cover (5.17) such that the algebras Ai are of
finite type over B . Since each SpecAi is compact, it has a finite cover by principal
open sets D(f ) with f ∈ A. The corresponding algebras (Ai)f = Af are of finite
type over A. Thus we can assume from the start that Ui =D(fi) in (5.17). Suppose
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that the generators of Ai over B are of the form xij /f
nij
j . On the other hand, since⋃

D(fi)= SpecA, there exist elements gi ∈A such that
∑

figi = 1. (5.19)

Let us write A′ ⊂ A for the algebra generated over B by all the xij , fi and gi , and
prove that A′ =A.

Let x ∈ A. By assumption x ∈ Afi for all fi . This means that there exists an
integer n such that f n

i x belongs to the subalgebra of A generated by the elements
xij and fi (we can assume that n does not depend on i by choosing it sufficiently
large). Then in particular,

f n
i x ∈A′ for all fi. (5.20)

Raising (5.19) to a sufficiently high power, we get a relation
∑

f n
i g

(n)
i = 1, where

the g
(n)
i belong to the subalgebra of A generated over B by the fj and gj . In par-

ticular, g(n)i ∈A′. Multiplying relations (5.20) by g
(n)
i and adding gives x ∈A′. The

proposition is proved. �

3.6 Exercises to Section 3

1 Let X,OX be a ringed space and G a group of automorphisms of X,OX . Define
the set Y =X/G to be the quotient set of X by G, and let p : X→ Y be the quotient
map. Give Y the quotient topology, in which a set U ⊂ Y is open if and only if
p−1(U)⊂X is open. Finally, define OY by the condition OY (U)=OX(p

−1(U))G.
Here AG denotes the set of G-invariant elements of a ring A—you have to check
that G is in a natural way a group of automorphisms of the ring OX(p

−1(U)).
Prove that Y,OY is a ringed space. It is called the quotient ringed space of X

by G, and denoted by X/G.

2 Let k be an infinite field, A2 the affine plane over k, X =A
2 \ (0,0), and suppose

that G consists of the automorphisms (x, y) �→ (αx,αy) for all α ∈ k and α �= 0. In
the notation of Exercise 1, prove that the ringed space Y equals the projective line
P

1 over k.

3 Let X be as in Exercise 2, but G consists of automorphisms (x, y) �→ (αx,α−1y)

with α ∈ k and α �= 0. Prove that Y is a scheme. Prove that if X = A
2 and G is as

above, then Y is not a scheme.

4 Study the scheme-theoretic inverse image of a point x ∈ SpecZ under the mor-
phism aϕ of Example 5.3.

5 Study the scheme-theoretic inverse images of points under the morphism
f : X→ Y projecting the circle x2 + y2 = 1 onto the x-axis, f (x, y) = x, where
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all varieties are defined over R. In other words X = SpecR[T1, T2]/(T 2
1 + T 2

2 − 1)
and Y = SpecR[T1].

6 In Example 5.19, prove that the points of the variety X are just the closed points
of the scheme X̃.

7 Let Γ be a graded ring: Γ =⊕
n≥0 Γn with Γn · Γm ⊂ Γn+m. An ideal a⊂ Γ is

graded or homogeneous if a =⊕
n≥0(a ∩ Γn). Write ProjΓ for the homogeneous

prime spectrum of Γ , that is, the set of homogeneous prime ideals p⊂ Γ not con-
taining the ideal

⊕
n>0 Γn, and introduce in this set the topology induced by the

inclusion ProjΓ ⊂ SpecΓ . For a homogeneous element f ∈ Γm with m > 0, we
write Γ(f ) for the subring of the ring of fractions Γf consisting of ratios g/f k with
g ∈ Γmk for k ≥ 0. Set D+(f )=D(f )∩ProjΓ , which we call a principal open set.
Let ψf be the composite map D+(f )→D(f )→ Spec(Γf )→ Spec(Γ(f )). Prove
that the structure sheaves on the affine schemes Spec(Γ(f )), for homogeneous f ,
carry over under ψf to ProjΓ to define a global sheaf O, and that the ringed space
ProjΓ,O is a scheme. This scheme is also denoted by ProjΓ .

8 In the notation of Exercise 7, prove that if Γ is a graded algebra over a ring A,
that is, A · Γn ⊂ Γn, then ProjΓ has a natural structure of scheme over A.

9 In the notation of Exercise 7, suppose that Γ = A[T0, . . . , Tn] with the usual
grading by the degree. Prove that the scheme ProjΓ is isomorphic to P

n
A (Example

of Section 3.2).

10 Let Y be an affine n-dimensional variety over a field k, y ∈ Y a nonsingular point
and my ⊂ k[Y ] the corresponding maximal ideal. In the notation of Exercise 7, set
Γ =⊕

n≥0 m
n
y , (with m0

y = k[Y ]). Prove that ProjΓ = X̃, where X is the variety
obtained by blowing up Y with centre y (Sections 4.1–4.3, Chapter 2), and that the
morphism σ̃ : ProjΓ → Spec(k[Y ]) given by the natural k[Y ]-algebra structure on
Γ (see Exercise 8) corresponds to the blowup up σ : X→ Y .

11 Let O be the local ring of a nonsingular point of an algebraic curve, η the generic
and ζ the closed points of SpecO. Write K for the field of fractions of O and ξ

for the point of SpecK . Define a morphism of ringed spaces SpecK → SpecO
by setting ϕ(ξ) = ζ and ψU : O ↪→ K the natural inclusion for U = SpecO, and
ψU = 0 if U = {η}. Prove that ϕ is a morphism of ringed spaces, but is not of the
form aλ for any ring homomorphism λ : O→K .

12 Let X = SpecB and Y = SpecA, and suppose that ϕ : X→ Y is a morphism
of ringed spaces; for x ∈X, write y = ϕ(x). By considering all possible neighbour-
hoods U of y, prove that the homomorphisms ψU : OY (U)→OX(ϕ

−1(U)) define
a homomorphism ψx : OY,y→OX,x . Prove that ϕ satisfies the condition for a local
morphism of ringed space at x (see Definition 5.3) if and only if ψx(mY,y)⊂mX,x ,
where mX,x ⊂OX,x and mY,y ⊂OY,y are the maximal ideals.
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4 Products of Schemes

4.1 Definition of Product

It is quite hopeless to try to define the product of schemes X and Y in terms of the
set of pairs (x, y) with x ∈X and y ∈ Y . Indeed, for X = Y =A

1, we have X×Y =
A

2. The points of the scheme X × Y thus correspond to irreducible subvarieties of
the plane A

2. Therefore these include all irreducible plane curves, which, however,
cannot be expressed in the form of pairs (x, y). Because of this, we start by trying
to establish the properties that we want products of scheme to satisfy, postponing
the question of the existence of a scheme with these properties until later. We used
a similar process in Section 5.1, Chapter 1 to arrive at the definition of products of
quasiprojective varieties.

We consider schemes over an arbitrary ring A. By definition (see Section 3.1),
this means a scheme X together with a morphism X→ SpecA. We consider a still
more general situation, a morphism of two arbitrary schemes X→ S. Such an object
is called a scheme over S or an S-scheme. It is obvious how to define a morphism
between two S-schemes ϕ : X→ S and ψ : Y → S: this is a morphism f : X→ Y

for which ϕ =ψ ◦ f .
If ϕ : X→ S and ψ : Y → S are two schemes over S, then their product over S

(which we denote by X×S Y ) should obviously have projections to the factors, that
is, two morphisms of S-schemes pX : X ×S Y → X and pY : X ×S Y → Y fitting
in a commutative diagram

X×S Y
pX ↙ ↘pY

Y X

ϕ↘ ↙ψ

S

Moreover, it is natural to require that the product is universal. This means that for
any scheme Z, and morphisms u : Z→X and v : Z→ Y for which the diagram

Z

↙ ↘
Y X

ϕ ↘ ↙ψ

S

is commutative, there should exist a morphism h : Z→X×S Y such that pX ◦ h=
u, pY ◦ h= v, and the morphism h with these properties should be unique; it is be
denoted by (u, v).

If a scheme X×S Y satisfying these properties exists, then it is obviously unique
up to isomorphism. It is called the product of X and Y over S. Sometimes, instead
of schemes over S, we speak simply of morphisms ϕ : X→ S, and then X×S Y is
called the fibre product of ϕ and ψ .
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The definition we have just given is that of product of two objects in a category.
In the present case, we consider the category of schemes over S. In the category of
sets the fibre product of two maps ϕ : X→ S and ψ : Y → S exists and is equal
to the subset Z ⊂X × Y consisting of pairs (x, y) with x ∈X and y ∈ Y such that
ϕ(x) = ψ(y). The same holds in the category of quasiprojective varieties over an
algebraically closed field k. We have already seen the definition of fibre product in
this case in Theorem 4.13 of Section 4.3, Chapter 4.

The product of two schemes over a scheme S exists. The proof of this assertion
is essentially elementary, but rather lengthy. It can be found in Hartshorne [37, The-
orem 3.3, Chapter II]. We confine ourselves to a few remarks that will allow the
reader to recover the proof for him or herself.

If X, Y and S are affine schemes with X = SpecA, Y = SpecB and S = SpecC
then the S-scheme structures of X and Y define C-algebra structures on A and B .
In this case, the scheme Z = Spec(A⊗C B) is the product of X and Y over S, if we
give it the projections pX = af : Z→ X and pY = ag : Z→ Y corresponding to
the homomorphisms f : A→A⊗C B given by f (a)= a⊗ 1 and g : B→A⊗C B

given by g(b)= 1⊗b. This assertion is a simple corollary of the definition of tensor
product (see Atiyah and Macdonald [8, Proposition 2.12]).

In the general case, we must consider affine covers S =⋃
Wα , X =⋃

Uαβ and
Y =⋃

Vαγ by affine open sets such that ϕ(Uαβ),ψ(Vαγ ) ⊂Wα . Then ϕ : Uαβ →
Wα and ψ : Vαγ → Wα are affine schemes over Wα and by what we have seen,
the products Uαβ ×Wα Vαγ exist. It is not hard to check that these schemes satisfy
conditions (5.11) and (5.12) (for suitable choices of open subsets and isomorphisms
that one can easily specify), so that they glue together into a global scheme. After
this one has to define the projections of this scheme to X and Y and to verify the
universality condition.

It follows easily from the definition of product that it is associative, that is, (X×S

Y )×S Z =X ×S (Y ×S Z). If S = SpecA is an affine scheme then X ×SpecA Y is
denoted by X ×A Y , and if Y = SpecB then by X⊗A B . An arbitrary scheme can
be viewed as a scheme over Z. Hence for any two schemes X and Y their product
X×ZY is defined. It is called simply the product of X and Y , and denoted by X×Y .

As a first application of the notion of product we treat the definition of scheme-
theoretic inverse image of a closed subscheme; in Section 3.3, this definition was
given only for affine schemes. If Y is a closed subscheme of X with j : Y ↪→X the
closed embedding, and ϕ : X′ → Y any morphism, then by definition the scheme
Y ′ = Y ×X X′ has a morphism j ′ : Y ×X X′ →X′. It is not hard to see that j ′ is a
closed embedding, so that Y ′ is a closed subscheme of X′. It is called the scheme-
theoretic inverse image of Y under ϕ. It is easy to check that for affine schemes this
definition coincides with that given earlier.

The advantage of the new definition is that it is also applicable in some other
situations. Suppose for example that x is a point of a scheme X, not necessarily
closed. Set T = Speck(x) and define a morphism T →X by setting ϕ(T )= x and
ψU(O(U)) = 0 if the open set U does not contain x. If x ∈ U = SpecA then x is
a prime ideal of A and we define ψU as the natural homomorphism A→ k(x) into
the field of fractions of A/x. The homomorphisms ψU extends automatically to all
open sets U ⊂X, defining a morphism ϕ : T →X.
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If ϕ : X′ → X is another morphism then the scheme X′ ×X T is called the
scheme-theoretic inverse image of x, or the fibre of ϕ over x. It has a morphism
X′ ×X T → T , that is, it is a scheme over k(x), and is denoted by ϕ−1(x). In
connection with this terminology, any morphism of schemes ϕ : X′ → X is some-
times viewed as a family of schemes ϕ−1(x) parametrised by X. Thus families of
schemes and morphisms of schemes are synonyms. These definitions are analogous
to the definition of the fibre of a regular map and algebraic family of varieties, but
are more precise, since fibres may turn out to be nonreduced schemes, as we have
already seen at the end of Section 3.3 in the case of morphisms of affine schemes.

4.2 Group Schemes

The notion of direct product allows us to carry over to schemes the definition of
algebraic groups. For this we need only reformulate the definition of algebraic group
given in Section 4.1, Chapter 3 in such a way that it only involves morphisms, and
not points.

Let ϕ : X→ S be a scheme over S. A group law is defined by a morphism

μ : X×S X→X.

The operation of taking the inverse of an element is replaced by a morphism

i : X→X.

The role of the identity element is played by a morphism

ε : S→X

such that ϕ ◦ε = idS , where idS denote the identity morphism of S. We have already
seen repeatedly that for a scheme X over a field k, say, a morphism Speck→ X

defines a point of X. The neutral property of the identity element is expressed by

μ ◦ (ε ◦ ϕ, idX)= μ ◦ (idX, ε ◦ ϕ)= idX, (5.21)

where idX is the identity map of X. The property of the inverse is expressed by

μ ◦ (i, idX)= μ ◦ (idX, i)= ε ◦ ϕ. (5.22)

It remains to write out the associativity condition. For this note that, by associativity
of the product of schemes, we have two morphisms (μ, idX) and (idX,μ) : X ×S

X×S X→X×S X. Our associativity requirement is then

μ ◦ (μ, idX)= μ ◦ (idX,μ). (5.23)

If conditions (5.21)–(5.23) are satisfied, the scheme X over S with the morphisms
μ, i and ε is called a group scheme over S. We leave the reader to formulate the
definitions of homomorphism and isomorphism of group schemes.
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Here is a typical example illustrating that it is reasonable to extend the notion
of algebraic group to that of group scheme. Let X = Ga be the scheme A

1 over
an algebraically closed field k of characteristic p, with the group law defined by
μ(x, y) = x + y. This is an algebraic group, and has already appeared in Exam-
ple 3.10 of Section 4.1, Chapter 3. Consider the morphism f : X→ X given by
f (x)= xp , which is a homomorphism of algebraic groups because char k = p. As
a map of point sets, f is a one-to-one correspondence, and as a map of groups an
isomorphism, but as a regular map of algebraic varieties it is not an isomorphism.
This is a serious departure from the familiar situation of group theory.

At the end of Section 3.3 we saw that as a morphism of schemes, the scheme-
theoretic inverse image f−1(x) of any point x ∈X is a nontrivial scheme, that is, is
not Speck. It is natural to try to make f−1(0) into a group scheme. For this, write
Z = f−1(0), and j : Z ↪→X for the closed embedding. Consider the morphism

μ ◦ (j, j) : Z×k Z→X.

As an exercise we propose that the reader proves that there exists a unique morphism

μ′ : Z×k Z→ Z

such that μ ◦ (j, j)= j ◦μ′, and that μ′ makes Z into a group scheme.
One can show that Z is the kernel of the homomorphism f in the sense of

category theory. The category of commutative algebraic groups over a field k of
characteristic p is not an Abelian category, whereas extending it to the category of
commutative group schemes over k makes it into an Abelian category.

4.3 Separatedness

Finally, we treat what is arguably the most important application of the notion of
products, the question of separatedness of schemes.

The image Δ(X) of the morphism Δ = (id, id) : X→ (X ×S X) is called the
diagonal. A scheme X over S is separated if its diagonal is closed. A scheme X is
separated if it is separated over SpecZ.

The same condition characterises Hausdorff spaces among topological spaces
(see any book on point set topology, for example, Bourbaki [16, I.8.1]). In the case
of schemes, the meaning of the requirement is somewhat different. In any case, the
topological space associated with a scheme is almost never Hausdorff. To get the
feel for the meaning of the separated condition, we give an example of a nonsepa-
rated scheme.

Let U1,U2 ∼=A
1
k be two copies of the affine line over k and U12 ⊂U1, U21 ⊂U2

the open sets obtained in some fixed choice of coordinate T1 on U1 and T2 on U2 by
deleting the origin 0. The map ϕ that sends a point u ∈ U12 into the point u′ ∈ U21

with the same coordinate is obviously an isomorphism U12
∼→ U21. The conditions

(5.11) and (5.12) that are required in order to be able to glue U1 and U2 along U12



44 5 Schemes

and U21 are obviously satisfied. As a result of this glueing, we get a scheme X over
k called the affine line with doubled-up origin or the bug-eyed affine line. In fact X
contains 2 points 01 and 02 obtained from the origin 0 in U1 and U2. We prove that
this scheme is not separated over k.

The closed points of X×k X are of the form (x1, x2) where x1, x2 are points of X
(see Exercise 1), and the diagonal map Δ is given by Δ(x)= (x, x). Since X is by
construction covered by two affine open sets V1 and V2 isomorphic to U1 and U2,
the product X ×X is covered by four affine open sets V1 × V1, V1 × V2, V2 × V1,
and V2 × V2.

Consider for example the set V1 × V2. It is isomorphic to A
1 ×A

1, and its inter-
section with Δ(X) consists of points (x, x) with x ∈ V1 ∩ V2 = U12. Already from
this one sees that Δ(X) is not closed, since already its intersection with V1 × V2
is not closed. To complete the picture, we can compute the closure of Δ(X). The
closure of Δ(X) ∩ (V1 × V2) in V1 × V2 is obviously obtained by adding the point
(01,02). Considering all four open sets Vi × Vj (for 1≤ i, j ≤ 2) in the same way,
we discover that the closure of Δ(X) is obtained by adding the two points (01,02)

and (02,01). It follows that the closure of Δ(X) is isomorphic to the line A
1 in

which the points o has split into four points, (01,01), (02,02), (01,02) and (02,01),
of which the first two are in Δ(X), and the last two not.

To grasp more clearly the way in which the nonseparated nature of a scheme
affects its properties, we work out the example X just constructed in a little more
detail. The fields k(V1) and k(V2) are isomorphic and define a field, naturally called
the function field of X. The local ring Ox of a point x ∈ X is a subring of k(X).
What are O01 and O02 ?

Obviously O01 is equal to the local ring of the point 01 ∈ V1. Since the isomor-
phism between U12 and U21 extends to the identity isomorphism between U1 and
U2, functions in O01 correspond under this to functions of O02 , which means simply
that O01 =O02 . Thus two distinct points have one and the same local ring. More-
over, any function in this local ring takes the same values at 01 and 02; in other
words, the two points cannot be distinguished by means of rational functions. It
can be shown that nonseparatedness is quite generally associated with this type of
phenomenon.

We now proceed to a general analysis of the notion of separatedness.

Proposition 5.3 An affine scheme X over a ring B is separated, and Δ : X→X×B

X is a closed embedding.

Proof Let X = SpecA, where A is a B-algebra. Since by definition X ×B X =
Spec(A⊗B A), the morphism Δ : X→ X ×B X is associated with the homomor-
phism λ : A⊗B A→A. By definition, λ is determined by

λ ◦ u= id, λ ◦ v = id, (5.24)

where u,v : A→A⊗B A are the homomorphisms given by

u(a)= a⊗ 1, v(a)= 1⊗ a.
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It follows at once from this that λ(a ⊗ b)= ab. From this, or in fact already from
(5.24), it follows that λ is surjective, and this means that Δ is a closed embedding.
The proposition is proved. �

Since every scheme is covered by affine sets, which are separated, non separated
should be related to some properties of the glueing of affine schemes. This is con-
firmed by the following result, in which we only consider the case when X is an
S-scheme over an affine scheme S = SpecB .

Proposition 5.4 Let X = ⋃
Uα be an affine cover that satisfies the conditions:

(1) all the sets Uα ∩ Uβ are affine, and (2) the ring OX(Uα ∩ Uβ) is generated

by its subrings ρ
Uα

Uα∩Uβ
(OX(Uα)) and ρ

Uβ

Uα∩Uβ
(OX(Uβ)) for each α, β . Then X is

separated over B .

Proof Let u,v : X×B X→X be the standard maps of the product. Then

Δ−1(u−1(Uα)∩v−1(Uβ)
)=Δ−1(u−1(Uα)

)∩Δ−1(v−1(Uβ)
)=Uα∩Uβ. (5.25)

On the other hand, it follows easily from the definition of the product that for any
open sets U,V ⊂ X the open set u−1(U) ∩ v−1(V )⊂ X ×X is isomorphic to the
product U × V . Together with (5.25), this shows that to prove that X is separated,
it is enough that the restriction of Δ

Δαβ =Δ|Uα∩Uβ : Uα ∩Uβ→Uα ×B Uβ

has closed image. But Uα ∩ Uβ is affine by assumption (5.24), say Uα ∩ Uβ =
SpecCαβ , and by condition (5.25), the corresponding ring homomorphism Aα ⊗B

Aβ → Cαβ is surjective, where Uα = SpecAα . This means that Δαβ is a closed
embedding. The proposition is proved. �

It is not hard to prove that the converse also holds. We verify one implication
here, which is useful, although completely obvious.

Proposition 5.5 In a separated scheme, the intersection of two affine open sets is
affine.

Proof Indeed,

U ∩ V =Δ−1(U × V ).

If U and V are affine then so is U × V , and if X is separated then Δ is a closed
embedding, and hence U ∩ V is a closed subscheme of an affine scheme. This is
affine by Proposition of Section 3.3. �

We draw attention to one interesting feature of the criterion stated in Proposi-
tion 5.4: it is independent of the morphism X→ S. Thus the property that a scheme
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X over an affine scheme S is separated over S does not depend on the choice of S or
of the morphism X→ S (note here that the base S is affine, hence itself separated).
It could be stated, for example, in terms of X over Z.

An important application of Proposition 5.4 is verifying that projective space P
n
A

is separated over any ring A. In this case Pn
A=

⋃n
i=0 Ui , with Ui=SpecA[T0/Ti, . . . ,

Tn/Ti]. Since Ui ∩ Uj = (SpecA[T0/Ti, . . . , Tn/Ti])(Tj /Ti ), it is obviously an
affine set. OP

n
A
(Ui ∩Uj ) consists of rational functions F(T0, . . . , Tn)/T

p
i T

q
j , where

F ∈ A[T0, . . . , Tn] is a form of degree p + q . Its subrings ρ
Ui

Ui∩Uj
(OP

n
A
(Ui)) and

ρ
Uj

Ui∩Uj
(OP

n
A
(Uj )) consist of elements F/T

p
i and G/T

q
j where F and G are forms

of degree p and q . They obviously generate OP
n
A
(Ui ∩Uj ).

It is easy to check that an open subset or closed subscheme of a separated scheme
is again separated. It follows from this that projective and quasiprojective schemes
are separated.

We draw attention to some properties of quasiprojective varieties related to sep-
aratedness. We have made use especially often of the fact that regular maps are
uniquely determined by their restriction to any dense open subset. The analogous
property of schemes is closely related to the separated property. Namely, if X is
separated, then for any scheme Y and morphisms f,g : Y → X, the set Z ⊂ Y

consisting of y ∈ Y with f (y) = g(y) is closed. Indeed, we have a morphism
(f, g) : Y → X × X, and Z is the inverse image of the diagonal under this mor-
phism.

This shows that rational maps are only a natural generalisation of morphisms for
separated schemes. If X is not separated then two different morphisms Y →X may
define the same rational map.

Another property that appears frequently is the closed graph of a regular map. If
f : Y → X is a morphism of schemes then its graph is the image of the morphism
(id, f ) : Y → Y ×X. It is the inverse image of the diagonal of X×X under the map
f × id : Y ×X→X×X defined by f × id= (f ◦pY ,pX) where pY : Y ×X→ Y

and pX : Y ×X→X are the natural projections. Thus the graph is closed provided
that X is separated.

4.4 Exercises to Section 4

1 Let X and Y be schemes over an algebraically closed field k. Prove that the corre-
spondence u �→ (pX(u),pY (u)) establishes a one-to-one correspondence between
closed points of X×k Y and pairs (x, y), where x ∈X and y ∈ Y are closed points.

2 Find all points of the scheme SpecC×R SpecC, where R and C are the real and
complex number fields.

3 Let X be an affine group scheme over an affine scheme S = SpecB with X =
SpecA, where A is a B-algebra. Prove that the group law defines a homomorphism
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μ : A→ A⊗B A, the identity morphism a homomorphism ε : A→ B , and the in-
verse an automorphism i : A→ A. State conditions (5.21)–(5.23) in terms of these
homomorphisms.

4 Write Ga =A
1
k for the additive group discussed in Section 4.2, where chak = p.

Prove that the kernel Z of the homomorphism Ga → Ga given by x �→ xp con-
structed in Section 4.2 is an affine group scheme, with Z = SpecA, where A =
k[T ]/(T p). Compute in this case all the homomorphisms introduced in Exercise 3.

5 As in Exercise 4, write Gm for the multiplicative group A
1 \0 (with the group law

(a, b) �→ ab), and consider the analogous homomorphism f : Gm→Gm given by
x �→ xp; compute its kernel Z′, the scheme theoretic inverse image f−1(1). Prove
that Z (in Exercise 4) and Z′ are not isomorphic as group schemes.

6 Let k be a field of characteristic 2. Prove that up to isomorphism the scheme X =
Speck[T ]/T 2 has only two structures of group scheme, namely the group schemes
Z and Z′ of Exercises 4–5.

7 Prove that the nonseparated scheme of Section 4.3 is isomorphic to that of Exer-
cise 3 of Section 3.6.

8 Prove that a scheme of the form ProjΓ as in Exercise 8 of Section 3.6 is always
separated.



Chapter 6
Varieties

1 Definitions and Examples

1.1 Definitions

In this chapter we consider the schemes most closely related to projective varieties;
they will be called algebraic varieties. This is exactly what we arrive at on attempting
to give an intrinsic definition of algebraic variety.

Definition A variety over an algebraically closed field k is a reduced separated
scheme of finite type over k. A morphism of varieties is a morphism of schemes
over k. A variety X that is an affine scheme is called an affine variety.

We saw in Example 5.19 that every quasiprojective variety defines a scheme.
This scheme is a variety, that we will also call quasiprojective.

By definition, any variety X has a finite cover X =⋃
Ui , where the Ui are affine

varieties. It follows from this that X is finite dimensional. If X is irreducible then all
the Ui are dense in X and dimX = dimUi . Moreover, they are all birational, since
Ui ∩ Uj is open and dense in both Ui and Uj . Hence the function fields k(Ui) are
isomorphic; these fields can be identified. The resulting field is called the function
field of X and denoted k(X). The dimension of X equals the transcendence degree
of k(X).

A closed point of a variety X that is contained in an affine open set U is also a
closed point of U , and is a point of the corresponding affine variety with coordinates
in k. There are sufficiently many such points on X.

Proposition Closed points are dense in every closed subset of X.

Proof We note first that in an affine variety (and even in an affine scheme), every
nonempty closed subset contains a closed point. Indeed, a nonempty closed subset
Z of SpecA is of the form SpecB , where B is a quotient ring of A. Since every ring
has a maximal ideal, Z has a closed point.

I.R. Shafarevich, Basic Algebraic Geometry 2, DOI 10.1007/978-3-642-38010-5_2,
© Springer-Verlag Berlin Heidelberg 2013
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If X is an arbitrary variety, Z ⊂ X a closed subset and z ∈ Z, then it is enough
to prove that Z ∩U contains a closed point for any neighbourhood U of z. We can
restrict to affine neighbourhoods U , since these form a basis of all open sets. For
affine U , by what we have just said, Z ∩U has a closed point.

But there is a trap here for the unwary—a point may be closed in U , but not in X.
This actually happens, for example, in the case of the subset U = SpecO\{x}where
O is a local ring of a closed point x of a curve. Fortunately, everything turns out to
be all right in the case of a variety: if z ∈X is a closed point of some neighbourhood
U of z then it is also closed in X. This follows from the fact that the closed points
x of a variety are characterised by k(x)= k. Indeed, a point x is closed in X if and
only if it is closed in all affine open sets containing it, and for affine varieties the
condition k(x) = k obviously characterises closed points. The field k(x) depends
only on the local ring of x, and hence does not change on passing from X to an
open subset U � x. The proposition is proved. �

Since a variety is a reduced scheme, an element f ∈ OX(U) is uniquely deter-
mined by its values f (x) ∈ k(x) at all x ∈ U . By the proposition, it is determined
by its values at closed points. Moreover k = k(x), so that an element f ∈ OX(U)

can be interpreted as a k-valued function on the set of closed points of U .
If ϕ : X→ Y is a morphism of varieties, x ∈ X and y = ϕ(x), then the ho-

momorphism of local rings ϕ∗ : Oy → Ox induces an inclusion of residue fields
k(y) ↪→ k(x). If x is a closed point then k(x) = k, and hence also k(y) = k, that
is, y is also closed. Therefore the image of a closed point is again closed. Thus
interpreting elements f ∈ OY (U) as functions on closed points, the homomor-
phism ψU : OY (U)→ OX(ϕ

−1(U)) is determined by ψU(f )(x) = f (ϕ(x)). In
other words, by specifying the map ϕ : X→ Y , or even its restriction to the set
of closed points, we determine the morphism itself.

A variety X has of course any number of nonreduced closed subschemes. But any
closed subset Z ⊂ X can be made into a reduced scheme, or as we will say from
now on, into a closed subvariety. If X is an affine variety, X = SpecA and Z = V (a)

then we set Z = SpecA/a′ where a′ is the radical of a, the ideal of elements a ∈A
such that ar ∈ a for some r . The general case is obtained by glueing.

All this shows how close varieties are to quasiprojective varieties. Indeed, all
the local notions and properties treated in Chapter 2 carry over word-for-word for
algebraic varieties: nonsingular points, the theorem that the set of singular points is
closed, properties of normal varieties. The same is true for properties of divisors and
differential forms.

The only properties not carrying over in an obvious way to algebraic varieties
are those related to the property of being projective. We now explain what condi-
tion replaces projective for the case of arbitrary varieties. Projectivity is of course
very far from being an “abstract” property. But we have at our disposal one asser-
tion, Theorem 1.11 of Section 5.2, Chapter 1, which is an intrinsic property that is
characteristic of projective varieties. We take this as a definition.

Definition A variety X is complete if for any variety Y , the projection morphism
p : X× Y → Y takes closed sets to closed sets.
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The main properties of projective varieties, for example, the fact that the image
of a morphism is closed, and the fact that there are no everywhere regular functions
except the constants (that is, OX(X)= k), were deduced in Section 5.2, Chapter 1
from Theorem 1.11, and therefore hold for complete varieties. Note that the proof
that the image of a morphism is closed used the fact that a morphism has a closed
graph. As we saw in Section 4.3, Chapter 5, this follows from the separated assump-
tion on a variety.

Of all the properties of projective varieties proved in Chapters 1–4, there is only
one that used projectivity directly, rather than via an appeal to Theorem 1.11 of
Section 5.2, Chapter 1. This is the extremely important result Theorem 2.10 of Sec-
tion 3.1, Chapter 2. Here we prove a generalisation of it to arbitrary complete vari-
eties.

Theorem 6.1 If X is a nonsingular irreducible variety and ϕ : X→ Y a rational
map to a complete variety Y , the locus of indeterminacy of ϕ has codimension ≥2.

Proof Let V ⊂X be the set of points at which ϕ is defined, Γϕ ⊂ V × Y the graph
of the morphism ϕ : V → Y and Z its closure in X× Y . The image of Z under the
projection p : X×Y →X is closed, since Y is complete. Since p(Z)⊃ V , it follows
that p(Z) = X. The restriction p : Z→ p(Z) is a birational morphism, since it is
an isomorphism of Γϕ and V . The theorem thus follows from the next result. �

Lemma If p : Z→ X is a surjective birational morphism with X a nonsingular
variety then the set of points of indeterminacy of the inverse rational map p−1 has
codimension ≥2.

Indeed, ϕ = q ◦p−1, where q is the restriction to Z of the projection p : X×Y →
X. Therefore ϕ is defined wherever p−1 is. This proves Theorem 6.1.

Proof of the Lemma Suppose that there exists a codimension 1 subvariety T ⊂ X

such that p−1 is not defined at any point of T . Replacing Z, X and T by affine open
subsets, we can assume that they are affine and T ⊂ p(Z) ⊂ X. Let Z ⊂ A

m, and
write u1, . . . , um for the coordinates of Am as elements of OZ(Z). Consider a point
t ∈ T and represent the rational functions (p−1)∗(ui) in the form

(
p−1)∗(ui)= gi/h,

where g1, . . . , gm, h ∈Ot and have no common factor. Then

h
(
p−1)∗(ui)= gi, so that p∗(h)ui = p∗(gi).

Hence gi(τ )= 0 for every point τ ∈ T at which h(τ)= 0, and this contradicts the
assumption that g1, . . . , gm, h ∈Ot have no common factor. The lemma is proved. �

The complete varieties just introduced turn out to have properties so close to
those of quasiprojective varieties that the question arises as to whether the two no-
tions might not coincide. We will see a little later in Section 2.3 that this is not the
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case; there exist varieties that cannot be embedded in any projective space. How-
ever, what is much more important is that the intrinsic, invariant nature of the notion
of variety makes it into a much more flexible tool. Many constructions can be per-
formed very simply and naturally within the framework of this notion. It may some-
times turn out a posteori that we have not actually left the framework of projective
or quasiprojective varieties, but this is often already of secondary importance. In
Sections 1.2–1.4 we give some important examples of this kind of constructions.

A very simple example is provided by the definition of the product of varieties.
The definition in the framework of varieties is extremely simple: the arguments of
Section 4.1, Chapter 5 simplify substantially if we use the fact that the set of closed
points of the variety X × Y is the set of pairs of the form (x, y), where x ∈ X and
y ∈ Y are closed points (see Exercises 1 and 2). But we spent quite a lot of effort
on this definition in Section 5, Chapter 1, since there we needed to be sure that the
product of quasiprojective varieties was again a quasiprojective variety.

Another example that we now consider is the notion of normalisation of a va-
riety. Let X be an irreducible variety, K a finite field extension of the function
field k(X). We show that there exist a normal irreducible variety Xν

K and a mor-
phism νK : Xν

K → X with the properties that k(Xν
K) = K and the induced map

ν∗K : k(X)→ k(Xν
K)=K is the given field extension. Such a variety is unique: for

any two normalisations Xν
K and X̃ν

K there exists an isomorphism f : Xν
K → X̃ν

K

such that the diagram

Xν
K

f−→ X̃ν
K

νK↘ ↙ν̃K

X

is commutative. Xν
K is called the normalisation of X in K . The uniqueness of the

normalisation Xν
K is proved exactly as in Section 5.2, Chapter 2, where we consid-

ered the case K = k(X). To prove the existence, consider an affine cover X =⋃
Ui .

The integral closure Aν
i of k[Ui] in K is a finitely generated algebra over k, as we

saw in Sect 5.2, Chapter 2. Hence the normalisation Uν
i,K → Ui in K of the affine

variety Ui exists and is affine. From the uniqueness of normalisation it follows that
ν−1
i,K(Ui ∩ Uj ) and ν−1

j,K(Uj ∩ Ui) are isomorphic. This allows us to glue the Uν
i,K

together into a single scheme Xν
K , which is obviously a reduced irreducible scheme

of finite type over k.
We prove that Xν

K is separated (Section 4.3, Chapter 5). It is enough to prove
that the diagonal in Xν

K × Xν
K is closed, and for this it is enough to show that

it is closed in the neighbourhood of any point ξ ∈ Xν
K × Xν

K . Suppose that the
morphism ν × ν : Xν

K × Xν
K → X × X takes ξ into η ∈ X × X, and let U ′ be

an affine neighbourhood of η such that (ν × ν)−1(U ′) = V ′ is affine. The exis-
tence of U ′ follows from the existence of the normalisation in the affine case.
Since X is a separated scheme, if we write Δ ⊂ X × X for the diagonal then the
scheme U =Δ ∩U ′ is closed in U ′, and hence is affine. It follows that the scheme
(ν × ν)−1(U) is affine, and hence also its irreducible component V containing ξ .
Write δν : Xν

K → Xν
K ×Xν

K and δ : X→ X ×X for the diagonal morphisms, and
set W = (δν)−1(V )= ν−1(U). We obtain the commutative diagram
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W
δν−→ V

δ◦ν↘ ↙ν×ν
U

in which δν corresponds to a finite regular map of affine varieties. This holds a
fortiori for the morphism δ ◦ ν (because a finite module over a ring is a fortiori finite
over a bigger ring). Applying Theorem 1.13 of Section 5.3, Chapter 1, we get that
δν(W)= V , which means that the diagonal is closed in the neighbourhood V ′ of ξ .

Thus the scheme Xν
K is an irreducible variety, and a trivial verification shows that

it is the required normalisation.
We see that in the framework of arbitrary varieties, the construction of the nor-

malisation is quite trivial. It remains to consider the question of whether the nor-
malisation of a quasiprojective variety is again quasiprojective. This is true, but we
do not give the proof, which is based, naturally enough, on purely projective con-
siderations; it can be found, for example, in Lang [55, Proposition 4 of Section 4,
Chapter V] or Hartshorne [37, Ex. 5.7 of Chapter III]. In the case of curves, we can
repeat the proofs of Theorems 2.22–2.23 of Section 5.3, Chapter 2. These results
imply that the normalisation of any curve is quasiprojective (in the case K = k(X)),
and that of a complete curve is projective. In particular, it follows from this that a
nonsingular curve is quasiprojective. In fact this is true for any curve, but the proof
is more complicated, and we omit it here.

1.2 Vector Bundles

The idea of a vector bundle is one of the most important constructions of algebraic
varieties, and is typically “abstract” or “nonprojective” in nature. We recall that the
general notion of fibration is nothing other than a morphism of varieties p : X→
S, that is, a variety over S. We are interested in fibrations whose fibres are vector
spaces. In formulating this notion we must bear in mind that an n-dimensional vector
space over a field k has a natural structure of algebraic variety isomorphic to A

n.

Definition A family of vector spaces over X is a fibration p : E→ X such that
each fibre Ex = p−1(x) for x ∈ X is a vector space over k(x), and the structure
of algebraic variety of Ex as a vector space coincides with that of Ex ⊂ E as the
inverse image of x under p.

A morphism of a family of vector space p : E→X into another family q : F →
X is a morphism f : E→ F for which the diagram

E
f−→ F

p↘ ↙q

X

commutes (so that in particular f maps Ex to Fx for all x ∈ X), and the map
fx : Ex → Fx is linear over k(x). It’s obvious how to define an isomorphism of
families.
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The simplest example of a family is the direct product E =X×V , where V is a
vector space over k, and p the first projection of X×V →X. A family of this type,
or isomorphic to it, is said to be trivial.

Example 6.1 Let V and W be two vector spaces of dimension m and n. We de-
termine the general form of a morphism f : X × V → X × W between two
trivial families. We let e1, . . . , em and u1, . . . , un be bases of V and W , and
write ξ1, . . . , ξm and η1, . . . , ηn for the corresponding coordinates. The projections
p : X×V → V and q : X×W →W define elements xi = p∗(ξi) ∈OX×V (X×V )

and yj = q∗(ηi) ∈ OX×W(X × W). Obviously, closed points α ∈ X × V and
β ∈ X ×W are uniquely determined by the values of xi(α) and yj (β) ∈ k. There-
fore the morphism f is uniquely determined by specifying the elements f ∗(yj ) ∈
OX×V (X× V ).

The composite of the isomorphism X→ X × ei and the embedding X × ei →
X × V defines a morphism ϕi : X → X × V . Set aij = ϕ∗i (f ∗(yj )) ∈ OX(X).
Then

f ∗(yj )=
∑

aij xi . (6.1)

Indeed, it is enough to check this equality at all closed points α ∈X×V , and there it
follows at once from the definition of morphism of family of vector spaces (because
fx : Ex→ Fx is linear).

Conversely, any matrix (aij ) with aij ∈ OX(X) defines a morphism f : X ×
V → X × W by means of formula (6.1). Obviously we get an isomorphism
if and only if m = n and the determinant det |aij | is an invertible element of
OX(X).

If p : E→X is a family of vector spaces and U ⊂X any open set, the fibration
p−1(U)→U is a family of vector spaces over U . It is called the restriction of E to
U and denoted E|U .

Definition A family of vector spaces p : E→ X is a vector bundle if every point
x ∈X has a neighbourhood U such that the restriction E|U is trivial.

The dimension of the fibre Ex of a vector bundle is obviously a locally constant
function on X, and, in particular, is constant if X is connected. In this case the
number dimEx is called the rank of E, and denoted by rankE.

Example 6.2 Let V be an (n+1)-dimensional vector space and P
n the vector space

of lines l ⊂ V through 0. Write lx for the line corresponding to a point x ∈ P
n.

Consider the subset E ⊂ P
n × V of pairs (x, v) such that x ∈ P

n and v ∈ V are
closed points, with v ∈ lx . Obviously E is the set of closed points of some quasipro-
jective subvariety of Pn × V , which we continue to denote by E. The projection
P
n × V → P

n defines a morphism p : E→ P
n. We prove that p : E→ P

n is a vec-
tor bundle. In V , we introduce a coordinate system (x0, . . . , xn). The restriction of
E to the open set Uα given by xα �= 0 consists of points
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ξ = (t1, . . . , tn;y0, . . . , yn) such that yi = tiyα,

where ti = xi/xα , and the map ξ �→ ((t1, . . . , tn), yα) defines an isomorphism of
E|Uα with Uα × k.

Therefore E is a vector bundle of rank 1. The projection P
n × V → V defines a

morphism q : E→ V . The reader can easily check that q coincides with the blowup
of the origin 0= (0, . . . ,0) ∈ V , and q−1(0)= P

n × 0.

Consider a vector bundle p : E→ X and a morphism f : X′ → X. The fibre
product E′ =E×XX′ over X has a morphism p′ : E′ →X′. This morphism defines
a vector bundle. Indeed, if E|U ∼= U × V with U ⊂ X then writing U ′ = f−1(U),
we get E′|U ′ = E ×U U ′ ∼= U ′ × V . This vector bundle is called the pullback of E,
and denoted by f ∗(E). Obviously rankf ∗(E)= rankE.

Example 6.3 Let X be a projective variety and f : X ↪→ P
1 a closed embedding to

projective space. Let p : E→ P
n be the vector bundle of Example 6.2. Then f ∗(E)

is a vector bundle over X of rank 1. It depends in general on the embedding f , and
is a very important invariant of f .

Example 6.4 Let X = Grass(r, n) be the Grassmannian of r-dimensional vector
subspaces of an n-dimensional vector space with basis e1, . . . , en (Example 1.24
of Section 4.1, Chapter 1). Consider in X×V the subvariety E consisting of points
(x, v) such that v ∈ Lx , where we write Lx for the r-dimensional vector subspace
corresponding to x ∈ Grass(r, n). Obviously the projection p : X × V → X gives
E the structure of a family of vector spaces. Let us prove that it is locally triv-
ial. Consider the open subset Uk1...kr ⊂ Grass(r, n) defined by pk1...kr �= 0; then for
x ∈Uk1...kr , the vector subspace Lx = p−1(x) has a basis

{
ei −

∑

j �=k1...kr

aij ej

}
where aij =

pk1...k̂i j ...kr

pk1...kr

.

This determines an isomorphism p−1(Uk1...kr )→Uk1...kr ×L, where L= kr .

Since a vector bundle is locally trivial, it can be obtained by glueing together
trivial bundles over a number of open sets. This leads to an effective method of
constructing vector bundles.

Let X =⋃
Uα be a cover such that the bundle p : E→X is trivial on each Uα .

For each Uα , we fix an isomorphism

ϕα : p−1(Uα)
∼→Uα × V.

Over the intersection Uα ∩ Uβ we have two isomorphisms of p−1(Uα ∩ Uβ) with
(Uα ∩Uβ)× V , namely ϕα |p−1(Uα∩Uβ)

and ϕβ |p−1(Uα∩Uβ)
. Hence ϕβ ◦ ϕ−1

α defines
an automorphism of the trivial vector bundle (Uα ∩Uβ)× V over Uα ∩Uβ .
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We now use the result of Example 6.1. We choose a basis of V , and write the
automorphism ϕβ ◦ ϕ−1

α as an n× n matrix Cαβ = (aij )αβ with entries in the ring
OX(Uα ∩Uβ). These matrixes obviously satisfy the glueing conditions

Cαα = id, and

Cαγ = CαβCβγ on Uα ∩Uβ ∩Uγ .
(6.2)

Conversely, specifying matrixes Cαβ with entries in OX(Uα ∩Uβ) defines a vector
bundle, provided the Cαβ satisfy (6.2).

The matrixes Cαβ are called transition matrixes of the vector bundle. For exam-
ple, if L is the rank 1 vector bundle over Pn introduced in Example 6.2, the maps
ϕα are of the form ϕα(x, y)= (x, yα), so that the transition matrix Cαβ is the 1× 1
matrix xβx

−1
α .

It is easy to determine how the matrixes Cαβ depend on the choice of the iso-
morphisms ϕα . Any other isomorphism ϕ′α is of the form ϕ′α = fαϕα where fα is
an automorphism of the trivial bundle Uα × V . By Example 6.1 again, fα can be
expressed as a matrix Bα with entries in OX(Uα) having an inverse matrix of the
same form. We thus arrive at new matrixes

C′αβ = BβCαβB
−1
α .

Conversely making any such change of the matrixes Cαβ leads to an isomorphic
vector bundle.

1.3 Vector Bundles and Sheaves

A vector bundle is a generalisation of a vector space. We now introduce the analogue
of a point of a vector space.

Definition A section of a vector bundle p : E→X is a morphism s : X→E such
that p ◦ s = 1 on X.

In particular s(x)= 0x (the zero vector in Ex ) is a section, called the zero section
of E. The set of sections of a vector bundle E is written L(E).

Example 6.5 A section f of the trivial rank 1 bundle X × k is simply a morphism
of X to A

1, that is, an element f ∈OX(X). Thus L(X× k)=OX(X). In particular
L(Pn × k)= k; similarly, L(Pn × V )= V .

Consider the vector bundle E of Example 6.2. Every section s : Pn → E de-
termines, in particular, a section s : Pn→ P

n × V , and hence by Corollary 1.2 of
Section 5.2, Chapter 1 is of the form s(x)= (x, v) for some fixed v ∈ V . But since
s(x) ∈ E, it follows that v ∈ lx for every x ∈ Pn, and hence v = 0. Thus L(E)= 0.
This proves in particular that E is not a trivial bundle.
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In terms of transition functions, a section s is given by sending each set Uα

to a vector sα = (fα,1, . . . , fα,n) with fα,i ∈ OX(Uα), such that sβ = Cαβsα over
Uα ∩Uβ .

It is easy to check from the definition of vector bundle that if s1 and s2 are sections
of E then there exists a section s1 + s2 such that

(s1 + s2)(x)= s1(x)+ s2(x)

for any point x ∈X. The sum on the right-hand side is meaningful, since s1(x) and
s2(x) ∈Ex , and Ex is a vector space. In a similar way the equality

(f s)(x)= f (x)s(x)

determines a multiplication of a section s by an element f ∈OX(X).
Thus the set L(E) is a module over the ring OX(X). We associate with any open

set U ⊂X the set L(E,U) of sections of the bundle E restricted to U . An obvious
check shows that we obtain a sheaf. We denote it by LE ; it is a sheaf of Abelian
groups, but has an extra structure, which we now define in a general form.

Definition Let X be a topological space, and suppose given on X a sheaf of rings G,
a sheaf of Abelian groups F , and in addition, for each U ⊂X, a G(U)-module struc-
ture on F(U). In this situation we say that F is sheaf of G-modules if the multiplica-
tion map F(U)⊗G(U)→F(U) is compatible with the restriction homomorphisms
ρV
U ; that is, the diagram

F(V )⊗ G(V ) −−→ F(V )

ρV
U,F⊗ρVU,G

⏐
⏐�

⏐
⏐�ρV

U,F

F(U)⊗ G(U) −−→ sF (U)

is commutative for each U ⊂ V . Under these circumstances, each stalk Fx of F is
a module over the stalk Gx of G.

A homomorphism F → F ′ of sheaves of G-modules is a system of homomor-
phisms ϕU : F(U)→F ′(U) of G(U)-modules such that the diagram

F(V )
ϕV−−→ F ′(V )

ρV
U,F

⏐⏐�
⏐⏐�
ρV
U,F ′

F(U) −−→
ϕU

F ′(U)

is commutative for all U ⊂ V .

Obviously the sheaf LE corresponding to a vector bundle is a sheaf of modules
over the structure sheaf OX .

Every operation on modules that can be defined intrinsically can be carried over
to sheaves of modules. In particular, for any modules over a ring A, the operations
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M ⊕M ′, M ⊗A M ′, M∗ =Hom(M,A),
∧p

A
M

are defined. Applying these to the modules F(U) and F ′(U) over the ring G(U),
we arrive at sheaves F ⊕F ′, F ⊗G F ′, F∗ and

∧p

G F , that we call the direct sum,
tensor product, dual sheaf and exterior power.

The sheaf of a trivial bundle of rank n is determined by LE(U)=OX(U)n; that
is, LE is the direct sum of n copies of OX . This sheaf is called the free sheaf of rank
n. Let F be a sheaf of OX-modules. If every point has a neighbourhood U such that
F|U is free and of finite rank then we say that F is a locally free sheaf of finite rank.
If F is a locally free sheaf then obviously every stalk Fx is a free Ox -module. The
sheaf LE corresponding to any vector bundle E is locally free of finite rank, since
E is locally isomorphic to a trivial bundle.

Theorem 6.2 The correspondence E �→ LE establishes a one-to-one correspon-
dence between vector bundles and locally free sheaves of finite rank (here objects of
either type are considered up to isomorphism).

Proof We show how to recover a vector bundle from a locally free sheaf F . We can
obviously assume that X is connected. Suppose that X =⋃

Uα is a cover such that

F|Uα is a free sheaf, and let ϕα : F|Uα

∼→Onα
Uα

be the corresponding isomorphism.
Then

ϕβ ◦ ϕ−1
α : Onα

Uα∩Uβ
→Onβ

Uα∩Uβ
(6.3)

is an isomorphism of sheaves of modules. Since X is connected, it follows that all
the numbers nα are equal; set nα = n. Any endomorphism of the sheaf of modules
On

U is given by a matrix C = (cij ) with cij ∈OX(U). Thus the isomorphism (6.3)
defines a matrix Cαβ and obviously these matrixes satisfy the relations (6.2). Hence
they define some vector bundle E. A trivial verification, which we omit, shows that
LE =F . The theorem is proved. �

One checks easily that the correspondence E �→ LE between vector bundles and
locally free sheaves allows us to associate a homomorphism of sheaves of OX-
modules to any homomorphism of bundles. In other words, the correspondence is
an equivalence of the two categories.

We should point out that the fibre of a vector bundle and the stalk of the cor-
responding sheaf are entirely different objects. For example, if E = X × k then
LE = OX , so that Ex = k, whereas (LE)x = Ox . In the general case the fibre Ex

can be recovered from the stalk (LE)x using the relation

Ex = (LE)x/mx(LE)x, (6.4)

where mx is the maximal ideal of Ox . It is enough to verify this locally; then we can
write E =U × kn and LE =On

U , and (6.4) is obvious.
Whereas the notion of vector bundle was introduced here in a set-theoretic way,

that of a locally free sheaf is adapted for the more general situation, and is mean-
ingful for arbitrary schemes. It gives a natural analogue of the language of vector
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bundles. Moreover, the description in terms of transition matrixes also carries over:
the matrixes Cαβ must have entries belonging to the ring OX(Uα ∩ Uβ), and their
determinants must be invertible elements of this ring.

We can also define a vector bundle over an arbitrary scheme X as a scheme lo-
cally isomorphic to U×A

n, with Uα×A
n and Uβ×A

n glued together by transition
matrixes Cαβ . Then the operations that determine the vector space structure in the
fibres are defined invariantly (because the matrixes Cαβ define linear maps). The
sheaf of sections LE of a vector bundle E is defined just as before, and the corre-
spondence E �→ LE is described by Theorem 6.2.

But even for varieties, Theorem 6.2 is convenient because it gives a method of
constructing new vector bundles.

Example 6.6 Let E and F be vector bundles, and LE , LF the corresponding locally
free sheaves. It is obvious that the sheaves LE ⊕LF , LE ⊗LF , L∗E ,

∧p

O LE are all
locally free. The corresponding vector bundles are denoted by E ⊕ F , E ⊗ F , E∗,∧p

E. In case p = rankE we write
∧p

E = detE; this is a rank 1 vector bundle,
called the determinant line bundle of E.

If X =⋃
Uα is a cover in which E and F are defined by transition matrixes

Cαβ and Dαβ then in the same cover, E ⊕ F , E ⊗ F , E∗,
∧p

E are defined by the
transition matrixes

(
Cαβ 0

0 Dαβ

)
, Cαβ ⊗Dαβ,

(t
Cαβ

)−1
,

∧p
Cαβ (6.5)

where tC denotes the transpose matrix. Setting p = rankE, we see that the bundle
detE is defined by the 1× 1 matrixes detCαβ .

Corollary For any bundle E, the dual bundle E∗ has detE∗ = (detE)−1.

It follows from (6.4) that where these operations are performed on vector bun-
dles, the corresponding operations on vector spaces are performed on each fibre.

Example 6.7 Let X be a nonsingular variety. Taking an open set U to the group
Ωp[U ] of differential p-forms regular on U defines in an obvious way a sheaf of
OX-modules. It is called the sheaf of differential p-forms.

Theorem 3.18 of Section 5.3, Chapter 3 asserts that this sheaf is locally free.
Hence by Theorem 6.2 it defines a vector bundle, denoted by Ωp . In particular, Ω1

is called the cotangent bundle.
The stalk of the sheaf F at a point x ∈ X is of the form Fx = Oxdt1 + · · · +

Oxdtn, where t1, . . . , tn are local parameters at x, and the sum is a direct sum. The
homomorphism Fx→Fx/mxFx can be written in the form

u1dt1 + · · · + undtn �→ u1(x)dt1 + · · · + un(x)dtn,

and hence by (6.4) it follows that

Ω1
x
∼=Fx/mxFx

∼=mx/m
2
x. (6.6)

Obviously
∧p

Ω1 =Ωp and detΩ1 =Ωn, where n= dimX.
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Example 6.8 The vector bundle dual to the cotangent bundle is called the tangent
bundle, and is denoted by Θ . By (6.6), for any point x ∈X we have

Θx =
(
mx/m

2
x

)∗
,

that is, it is the tangent space at x. By Remark of Section 5.2, Chapter 3 it follows
that for an affine subset U ⊂X with U = SpecA we have OX(U)=Derk(A,A).

The final general question we want to discuss in connection with vector bundles
is the notion of subbundle and quotient bundle.

Definition A morphism of vector bundles ϕ : F →E which is a closed embedding
of varieties is an embedding of vector bundles. In this case the image ϕ(F ) is called
a subbundle of E.

Proposition A subbundle F ⊂E of a vector bundle is locally a direct summand.

Proof The assertion means that for any point x ∈X there exists a neighbourhood U

of x and a subbundle G of the restriction E|U such that

E|U = F|U ⊕G. (6.7)

By Theorem 6.2, this equality is equivalent to the same equality for sheaves of
modules, or simply for modules over OX(U). As always, the local assertion can
be reformulated in terms of local rings, but for this we must first translate the
assumption that ϕ : F → E is a closed embedding in terms of the sheaves LE

and LF . Obviously, in this case, for any closed point x ∈ X the homomorphism
ϕx : Fx → Ex is an embedding. This means that if LF |U = Or and LE |U = On,
and ϕ : Or→On is the sheaf homomorphism corresponding to the homomorphism
of vector bundles, then a free basis e1, . . . , er of Or goes into a system of ele-
ments ϕ(e1), . . . , ϕ(er ) ∈ On that are linearly independent at each point. Thus we
must show that if O is a local ring with maximal ideal m, and ϕ : Or →On a ho-
momorphism, and e1, . . . , er a free basis of Or such that ϕ(e1), . . . , ϕ(er ) ∈ On

are linearly independent modulo mOn then ϕ is an embedding and On is a di-
rect sum of ϕ(Or ) and a submodule isomorphic to On−r . Indeed, set ei = ϕ(ei).
Since dim(On/mOn) = n, the images of the elements ei can be lifted to a basis
of On/mOn. Then by Nakayama’s lemma (Proposition A.11 of Appendix to Vol-
ume 1) the elements e1, . . . , er can be extended to a system of generators e1, . . . , en
of On.

It is easy to see that this system is a free basis of On: this does not even depend
on O being a local ring. Indeed, if f1, . . . , fn is some free basis of On then ei =∑

aijfj and fi =∑
bij ej with aij and bij ∈O. From the fact that f1, . . . , fn is a

free basis, it follows that the matrixes A= (aij ) and B = (bij ) satisfy BA= 1. But
then also AB = 1, which means that e1, . . . , en is a free basis of On. From the fact
that e1, . . . , er are linearly independent over O if follows that On = ϕ(Or ) ⊕ N ,
where N is the module generated by er+1, . . . , en. The proposition is proved. �
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Now we can define the quotient bundle E/F of a vector bundle E by a subbundle
F ⊂E. As a set, of course,

E/F =
⋃

x∈X
Ex/Fx.

To give it a structure of variety, consider an open set U for which (6.7) holds, and
identify

⋃
x∈X Ex/Fx with the algebraic variety G. It is easy to see that these struc-

tures are compatible on different open sets U and determine E/F as a vector bundle.
The proof of the proposition obviously remains valid for vector bundles over an

arbitrary scheme X and leads to the definition of quotient bundle in this case.
The translation into the language of transition matrixes is obvious. If we choose

a cover X =⋃
Uα such that (6.7) holds for all Uα , the matrixes Cαβ defining E can

be expressed in the form

Cαβ =
(
Dαβ 0
∗ D′αβ

)
,

where Dαβ defines the vector bundle F and D′αβ the vector bundle E/F . It follows
at once from this that

detE = detF ⊗ detE/F. (6.8)

Example 6.9 (The normal bundle NX/Y ) Let X be a nonsingular variety and Y ⊂X

a nonsingular closed subvariety. We define the normal bundle NX/Y to Y in X. The
definition used in differential geometry is not applicable in the algebraic situation,
since it is based on the notion of the orthogonal complement W⊥ of a vector sub-
space W ⊂ V . However, as a vector space, W⊥ is determined by the fact that it is
isomorphic to V/W . This is what we exploit.

Write Θ ′X for the restriction to Y of the tangent bundle ΘX . It is defined as the
pullback j∗ΘX , where j : Y ↪→X is the closed embedding. The vector bundle ΘY

is a subbundle of Θ ′X . Indeed, by definition Θ ′X = j∗ΘX = j∗((Ω1
X)
∗)= (j∗Ω1

X)
∗.

The restriction of differential forms from X to Y defines a surjective homomorphism
ϕ : j∗Ω1

X→Ω1
Y and its dual ϕ∗ : ΘY = (Ω1

Y )
∗ → (j∗Ω1

X)
∗ =Θ ′X . By definition

NX/Y =Θ ′X/ΘY .

We compute the transition matrix of the normal bundle. The homomorphism
Θ ′X→NX/Y defines a dual homomorphism

ψ : N∗X/Y → j∗Ω1
X

of the dual vector bundles. It is easy to see that ψ defines a closed embedding, so
that we can view N∗X/Y as a subbundle of j∗Ω1

X and Ω1
Y as the quotient bundle

(j∗Ω1
X)/N

∗
X/Y . It is enough to check these assertions on open sets on which our

vector bundles are trivial, where they are obvious.
As we saw in Theorem 3.17, Corollary of Section 5.1, Chapter 3, forms

du1, . . . ,dun are a basis of the OX(U)-module Ω1
X[U ] provided that the functions
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u1, . . . , un define local parameters at each point x ∈ U . This basis defines a basis
η1, . . . , ηn of the OY (U ∩Y)-module of sections over U ∩Y of the sheaf correspond-
ing to the vector bundle j∗Ω1

X . Here ϕ(ηi) is the restriction to Y of the form dui .
Suppose that n = dimX and m = codim(Y ⊂ X). By Theorem 2.14 of Sec-

tion 3.2, Chapter 2 we can choose the functions u1, . . . , un such that u1 = · · · =
um = 0 are the local equations of Y in U . By the same theorem, together with
Theorem 3.17, Corollary of Section 5.1, Chapter 3, the restrictions of the forms
dum+1, . . . ,dun define a basis of Ω1

Y [U ∩ Y ], and hence η1, . . . , ηm is a basis of the
OY (U ∩ Y)-module N∗X/Y (U ∩ Y).

Suppose that Uα and Uβ are two open sets in which uα,1, . . . , uα,n and
uβ,1, . . . , uβ,n are systems of local parameters chosen as described. The transition
matrix for the vector bundle Ω1

X is determined by the expression

duα,i =
n∑

j=1

hijduβ,j for i = 1, . . . , n, (6.9)

where hij ∈OX(U) are the entries of the Jacobian matrix, that is, hij = ∂uα,i/∂uβ,j ,
and the transition matrix of j∗Ω1

X in the basis η1, . . . , ηn is obtained by restricting
the entries of this matrix to U ∩ Y .

Since uα,i ∈ (uβ,1, . . . , uβ,m) on Uα ∩Uβ for i = 1, . . . ,m= codimY , we have

uα,i =
m∑

j=1

fijuβ,j for i = 1, . . . ,m,

with fij ∈OX(Uα ∩Uβ). Hence for i = 1, . . . ,m we have

duα,i =
m∑

j=1

fijduβ,j +
m∑

j=1

uβ,jdfij . (6.10)

To reconcile this formula with (6.9) we would have to express the dfij in terms
of du1, . . . ,dun. But we are only interested in formulas for the ηi , which are ob-
tained by restricting to Y all the functions occurring in it. Since uβ,j = 0 on Y for
j = 1, . . . ,m, the second group of terms in (6.10) vanishes. Thus

ηα,i =
m∑

j=1

f ij ηβ,j for i = 1, . . . ,m,

where f ij is the restriction of fij to Uα ∩ Uβ ∩ Y . As we have seen, these are the
transition matrixes of the vector bundle N∗X/Y . Those for NX/Y are obtained on
transposing and taking the inverse; taking the inverse is equivalent to interchanging
α and β . We finally arrive at the simple formulas

Cαβ = (hij |Y ), for i, j = 1, . . . ,m (6.11)

where uβ,j =∑
hijuα,i in Uα ∩Uβ .
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An important factor in practically all the constructions of this section is the pos-
sibility of specifying a vector bundle in an abstract way, without reference to an
embedding into projective space. It can however be proved that a vector bundle over
a quasiprojective variety is itself quasiprojective; we omit the proof.

1.4 Divisors and Line Bundles

In what follows, we do not assume that X is nonsingular, and consider locally prin-
cipal divisors D (Section 1.2, Chapter 3). Corresponding to each divisor D on an
irreducible variety X we have a vector space L(D) (Section 1.2, Chapter 3). This
correspondence gives rise to a sheaf on X. To see this, note that the divisor D on
X also defines a divisor on any open subset U ⊂ X, by restricting to U the local
equations of D. We write DU for the divisor thus obtained and set

LD(U)= L(U,DU),

where L(U,DU) is the vector space corresponding to the divisor DU on U . Obvi-
ously LD(U)⊂ k(X), and LD(V )⊂ LD(U) whenever U ⊂ V ; write ρV

U : LD(V )↪→
LD(U) for the inclusion map. The system {LD(U),ρV

U } is a presheaf, and it is easy
to see that it is a sheaf. We denote it by LD .

Multiplying elements f ∈ LD(U) by h ∈OX(U) makes LD into a sheaf of OX-
modules. This sheaf is locally free. Indeed, if D is defined in an open set Uα by a
local equation fα then the elements g ∈ LD(Uα) are characterised by the condition
gfα ∈OX(Uα). This shows that the map g �→ gfα defines an isomorphism

ϕα : LD |Uα

∼→OX |Uα . (6.12)

We saw in Section 1.3 that such a sheaf determines a vector bundle ED ; it follows
from (6.12) that rankED = 1. Vector bundles of rank 1 are called line bundles since
their fibres are lines. We write out the transition functions for ED . Since the isomor-
phism over Uα in (6.12) is given by multiplication by fα , the automorphism ϕβ ◦ϕ−1

α

over Uα ∩Uβ is given by multiplication by fβ/fα . Note that fβ/fα ∈OX(Uα ∩Uβ)

by the compatibility of the fα . Similarly (fβ/fα)
−1 = fα/fβ ∈OX(Uα ∩Uβ). Thus

in this case the transition matrix is the 1× 1 matrix ϕαβ given by

ϕαβ = fβ/fα. (6.13)

If we replace the divisor D by a linearly equivalent divisor D′ = D + divf
with f ∈ k(X) then multiplication by f defines an isomorphism of modules
L(U,DU)→ L(U,D′U). We verified this in Theorem 3.3 of Section 1.5, Chap-

ter 3. In this way we obviously get an isomorphism of sheaves LD
∼→ LD′ . The two

line bundles ED and ED′ actually have identical transition functions. Thus the sheaf
LD and the line bundle ED both correspond to a whole divisor class.
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Theorem 6.3 The map D �→ LD→ ED defines a one-to-one correspondence be-
tween (1) linear equivalence classes of divisors, (2) isomorphism classes of sheaves
of OX-modules locally isomorphic to OX , and (3) isomorphism classes of rank 1
vector bundles.

Proof The correspondence between the sets (2) and (3) was established in Theo-
rem 6.2. Thus we need only prove that D �→ ED defines a one-to-one correspon-
dence between the sets (1) and (3). To do this we construct the inverse map.

Suppose that E is a line bundle defined in a cover X =⋃
Uα by 1 × 1 transi-

tion matrixes ϕαβ , with ϕαβ and ϕ−1
αβ ∈OX(Uα ∩ Uβ). It follows from the glueing

conditions (6.2) that ϕβα = ϕ−1
αβ and

ϕαβ = ϕ−1
γαϕγβ over Uα ∩Uβ ∩Uγ . (6.14)

The inclusion OX(Uα ∩Uβ) ↪→ k(X) allows us to consider the ϕαβ as elements of
k(X), and (6.14) holds for these in the same way. Fix some subscript γ , say γ = 0.
We substitute γ = 0 in (6.14) and set fα = ϕ0α . Then the system of elements fα on
Uα is compatible, since

fβ/fα = ϕαβ; (6.15)

hence they define a certain divisor D. Comparing (6.13) and (6.15) shows that E =
ED .

Let us prove that the linear equivalence class of the divisor D depends only on
the line bundle E and not on the choice of the cover or the transition matrixes. Two
systems {Uα,ϕαβ} and {U ′λ,ϕ′λμ} can be compared on the cover {Uα∩U ′λ} by setting

ϕ̃αβλμ = ϕαβ and ϕ̃′αβλμ = ϕ′λμ on Uα ∩Uβ ∩U ′λ ∩U ′μ.

Therefore we can assume from the start that the two covers are the same, X =⋃
Uα .

Then as shown in Section 1.2,

ϕ′αβ =ψ−1
α ϕαβψβ with ψα and ψ−1

α ∈OX(Uα). (6.16)

By definition of fα and f ′α

f ′α =ψ−1
0 ϕ0αψα =ψ−1

0 fαψα,

so that (6.16) gives D′ =D − div(ψ0).
Thus we have constructed a well-defined map from the set (3) to the set (1). An

obvious check shows that it is the inverse of D �→ED . The theorem is proved. �

For any morphism f : X→ Y we have the relation

f ∗(ED)=Ef ∗(D); (6.17)

we leave the obvious verification to the reader.
The divisor class corresponding to a line bundle E under Theorem 6.3 is called

the characteristic class of E and denoted by c(E).
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Example 6.10 If dimX = n and Ωn is the line bundle introduced in Section 1.2
then c(Ωn)=K is the canonical class of X.

Example 6.11 Let X = P
n and let D be a hyperplane of Pn. The line bundle ED

corresponding to D under Theorem 6.3 is denoted by O(1). If D is given by x0 = 0
then in the open set Uα where xα �= 0 it has the local equation x0/xα . Hence the
transition matrix for ED is of the form cαβ = xα/xβ . It follows that O(1) is the line
bundle dual to the line bundle L of Example 6.2.

Let us find the sections of O(1). In Uα these are of the form sα = Pα/x
k
α , where

Pα is a form of degree k; and they are related by sβ = cαβsα . It follows that k = 1
and that Pα = Pβ is a form of degree 1 on P

n. Similarly, the divisor mD corresponds
to the line bundle denoted by O(m) with the transition matrix cαβ = (xα/xβ)

m. The
sections of O(m) are homogeneous polynomials of degree m. It is easy to see that
O(m) = O(1)⊗m is the mth tensor power of O(1). For a subvariety X ⊂ P

n we
write OX(m) for the restriction to X of the line bundle (or sheaf) O(m) on P

n.

Example 6.12 Let X be a nonsingular variety and Y ⊂ X a nonsingular hypersur-
face. In this case the normal bundle NX/Y is a line bundle. We compute its charac-
teristic class.

Suppose that Y is given in an affine cover X =⋃
Uα by local equations fα .

Then fβ/fα = fαβ , where fαβ and f−1
αβ ∈OX(Uα ∩Oβ). By (6.11), the transition

matrixes of NX/Y are of the form fαβ |Y = (fβ/fα)|Y . But we have just seen that
fβ/fα are the transition matrixes for the line bundle EY . Thus we have proved the
formula

NX/Y =EY |Y .

By (6.17) it follows from this that

c(NX/Y )= ρY (CY ),

where CY is the divisor class on X containing Y and ρY : ClX→ ClY the ho-
momorphism of restriction to Y . Recall from Section 1.2, Chapter 3 the explicit
description of ρY : we must replace Y by a linearly equivalent divisor Y ′ not con-
taining Y as a component, then restrict Y ′ to Y .

Since divisor classes form a group, the correspondence established in Theo-
rem 6.3 defines a group law on the set of line bundles or sheaves locally isomorphic
to O. From (6.13) we see that addition of divisors corresponds to multiplication of
the 1×1 transition matrixes. This operation is given more intrinsically by the tensor
product of line bundles or sheaves (see Theorem 6.2). Here the sheaf O plays the
role of the multiplicative identity, and the inverse of LD is L−D . Because of this,
locally free sheaves of O-modules of rank 1 are also called invertible sheaves.

Although invertible sheaves and divisor classes are in one-to-one correspon-
dence, it is often technically more convenient to use invertible sheaves. For example,
the inverse image f ∗(F) can be defined in a natural way for any morphism f and
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any sheaf F (see for example Hartshorne [37, Section 5, Chapter II]). It is easy
to check that if F is invertible then so is f ∗(F). The corresponding operation for
divisor classes requires arguments concerned with moving the support of a divisor.

These technical advantages of invertible sheaves are related to matters of princi-
ple. In a closely related situation, in the theory of complex manifolds, the notions
of invertible sheaf and divisor class are no longer equivalent, and there, invertible
sheaves provide more information and lead to a more natural statement of the prob-
lems. For this, compare Exercises 6–8 of Section 2, Chapter 8.

For an arbitrary scheme X, a sheaf locally isomorphic to OX is a natural analogue
of a divisor class. Such sheaves form a group: multiplication is defined as tensor
product, and the inverse of a sheaf F is its dual Hom(F ,OX). This group is again
denoted by PicX. In our case, the transition matrixes are invertible elements of the
ring OX(Uα ∩ Uβ), the multiplication and inverse operations reduce to the same
operations on transition matrixes (in our case, transition functions).

As an application of the ideas treated here we deduce the genus formula stated
and used repeatedly in Section 2.3, Chapter 4.

Theorem 6.4 (Adjunction formula) The genus gY of a nonsingular curve Y on a
complete nonsingular surface X is given by the formula

gY = 1

2
Y(Y +K)+ 1; (6.18)

where K is the canonical class of X.

Proof Let X be a nonsingular variety and Y ⊂ X an arbitrary nonsingular closed
subvariety. By the definition of the normal bundle NX/Y and (6.8), we obtain

ρY (detΘX)= detΘ ′X = detΘY ⊗ detNX/Y .

Since ΘX is the dual of Ω1
X and ΘY that of Ω1

Y , we can apply the Corollary of
Example 6.6, formula (6.5) to obtain

ρY
(
c
(
Ωn

X

))= c
(
Ωm

Y

) · c(detNX/Y )
−1.

It follows from (6.6) that det(E∗) = (detE)−1 for any vector bundle. Since
detΩ1

X =
∧n

Ω1
X =Ωn

X , we get

ρY
(
c
(
Ωn

X

))= c
(
Ωm

Y

) · c(detNX/Y )
−1, (6.19)

with dimX = n and dimY = m. This formula holds for a nonsingular subvariety
Y ⊂X of any dimension, and is usually called the adjunction formula.

Now suppose that m= n−1. We apply the results obtained in Examples 6.5–6.7.
We arrive at the relation

ρY (KX)=KY − ρY (CY ). (6.20)



1 Definitions and Examples 67

Finally if n= 2 and m= 1, we deduce that the divisors on either side of (6.20) have
equal degrees.

Note that in our case, the restriction of any divisor D on X is a divisor ρY (D)

on Y , and it has a well-defined degree, equal to degρY (D) = YD. Now by Corol-
lary 3.1, of Section 7, Chapter 3 we have degKY = 2gY − 2 and so

YKX = 2gY − 2− Y 2,

and the theorem follows from this based on simple properties of intersection num-
bers. �

1.5 Exercises to Section 1

1 Let k be an algebraically closed field. Define a pseudovariety over k to be a ringed
space such that every point has a neighbourhood isomorphic to m-SpecA, where
A is a finitely generated k-algebra with no nilpotents; the topology and structure
sheaf on m-SpecA are defined exactly as in Chapter 5. Prove that taking a variety
to its set of closed points defines an isomorphism of the category of varieties and
pseudovarieties.

2 Define the product of pseudovarieties X and Y . Start by setting X × Y to be the
set of pairs (x, y) with x ∈ X and y ∈ Y , then construct an affine cover of this set
based on affine covers of X and Y , using the definition of products of affine varieties
given in Example 1.5 of Section 2.1, Chapter 1.

3 Prove that a variety is complete if and only if its irreducible components are
complete.

4 We say that a fibration X→ S is locally trivial, or is a fibre bundle with fibre F

if every point s ∈ S has a neighbourhood U such that the restriction of X over U is
isomorphic to F × U as a scheme over U . Prove that if X→ S is a locally trivial
fibration with the base S and the fibre F both complete then X is also complete.

5 Determine the transition matrixes of the line bundle of Example 6.2, which cor-
responds to the cover of Pn by the sets An

i given by xi �= 0. Find the characteristic
class of this line bundle.

6 Let D be an effective divisor on a variety X for which the vector space L(D) is
finite dimensional, and F =FD the corresponding invertible sheaf. Let f : X→ P

n

with n = l(D) − 1 be the rational map associated with L(D) as in Section 1.5,
Chapter 3. Assume that the divisors divf of functions f ∈ L(D) have no common
components. Prove that f is regular at a point x ∈ X if and only if the stalk Fx of
F is generated as an Ox -module by the space ρxL(D).
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7 Suppose that X = SpecA is a nonsingular affine variety. Prove that the A-module
ΘX(X) is isomorphic to the module of derivations of A (that is, k-linear maps
d : A→A such that d(xy)= d(x)y + xd(y) for x, y ∈A).

8 Prove that the normal bundle to a line C in P
n is a direct sum of n− 1 isomorphic

line bundles E. Find c(E).

9 Suppose that n − 1 hypersurfaces C1, . . . ,Cn−1 in P
n of degrees k1, . . . , kn−1

intersect transversally in an irreducible curve X. Find the genus of X.

10 Let f : E→X be a vector bundle and X =⋃
Uα a cover such that E is trivial

over each Uα , that is, E|Uα
∼= Uα × kn. Embed kn in P

n as the set of points with
x0 �= 0, and glue the varieties Uα×P

n by means of the transition matrixes of E, now
considered as matrixes of projective transformations of Pn. Prove that in this way
we obtain a variety E containing E as an open set, and E is nonsingular; moreover,
f : E→X is a regular map and its fibres are isomorphic to P

n.

11 In the notation of Exercise 10, suppose that X = P
1, and for n ≥ 0 let En be

the vector bundle of rank 1 corresponding to the divisor nx∞ on P
1. Prove that

En \ En = C∞ is a curve mapped isomorphically to P
1 by f . Let C0 be the zero

section of En, which is obviously also contained in En, and write F for the fibre of
En→ P

1. Prove that C0−C∞ ∼ nF on the surface En, and determine C2
0 and C2∞.

12 In the notation of Exercise 11, prove that the restriction of divisors D ∈ DivEn

to a general fibre defines a homomorphism ClEn→ Z whose kernel is Z ·F . Prove
that ClEn is a free Abelian group with the two generators C0 and F .

13 In the notation of Exercises 11–12, find the canonical class of the surface En.

14 Prove that the surfaces En corresponding to distinct n ≥ 0 are not isomorphic.
[Hint: Prove that En contains a unique irreducible curve with negative selfintersec-
tion, and this selfintersection is −n.]

15 Let X be a nonsingular affine variety and A = k[X] its affine coordinate ring.
Prove that the module Θ(X) is isomorphic to Derk(A,A) (often written simply as
Derk(A). For the definition of Derk(A,A), see Exercise 24, Section 1.6, Chapter 2;
compare Exercise 12, Section 5.5, Chapter 3.

2 Abstract and Quasiprojective Varieties

2.1 Chow’s Lemma

We prove a result that sheds some light on the relation between complete and pro-
jective varieties. Of course, every irreducible variety is birational to a projective
variety, for example, the projective closure of any affine open subset. However, one
can prove considerably more in this direction.
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Theorem (Chow’s lemma) For any complete irreducible variety X, there exists a
projective variety X and a surjective birational morphism f : X→X.

Proof The idea of the proof is the same as that used to construct the projective
embedding of the normalisation of a curve (Theorem 2.23 of Section 5.3, Chapter 2).

Let X =⋃
Ui be a finite affine cover. For each affine variety Ui ⊂ A

ni , write
Yi for the closure of Ui in the projective space P

ni ⊃ A
ni . The variety Y =∏

Yi is
obviously projective.

Set U = ⋂
Ui . The inclusions ψ : U ↪→ X and ψi : U ↪→ Ui ↪→ Yi define a

morphism

ϕ : U→X× Y, with ϕ =ψ ×
∏

ψi.

Write X for the closure of ϕ(U) in X × Y . The first projection pX : X × Y → X

defines a morphism f : X→X. We prove that it is birational. For this it is enough
to check that

f−1(U)= ϕ(U). (6.21)

Indeed, pX ◦ ϕ = 1 on U , and in view of (6.21), f coincides on f−1(U) with the
isomorphism ϕ−1. Now (6.21) is equivalent to

(U × Y)∩X = ϕ(U), (6.22)

that is, to ϕ(U) closed in U × Y . But this is obvious, since ϕ(U) in U × Y is just
the graph of the morphism

∏
ψi . The morphism f is surjective, since f (X)⊃ U ,

and U is dense in X.
It remains to prove that X is projective. For this, we use the second projection

g : X × Y → Y , and prove that its restriction g : X→ Y is a closed embedding.
Since to be a closed embedding is a local property, it is enough to find open sets
Vi ⊂ Y such that

⋃
g−1(Vi)⊃X and g : X∩ g−1(Vi)→ Vi is a closed embedding.

We set

Vi = p−1
i (Ui),

where pi : Y → Yi is the projection. First of all, the g−1(Vi) cover X. For this it is
enough to prove that

g−1(Vi)= f−1(Ui), (6.23)

since
⋃

Ui =X and
⋃

f−1(Ui)=X. In turn, (6.23) will follow from

f = pi ◦ g on f−1(U). (6.24)

But it is enough to prove (6.24) on some open subset W ⊂ f−1(Ui). We can
in particular take W = f−1(U) = ϕ(U) (according to (6.21)), and then (6.24) is
obvious.

Thus it remains to prove that

g : X ∩ g−1(Vi)→ Vi
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defines a closed embedding. Now recall that

Vi = p−1
i (Ui)=Ui × Ŷi , where Ŷi =

∏

j �=i
Yj ;

we get that

g−1(Vi)=X×Ui × Ŷi .

Write Zi for the graph of the morphism Ui × Ŷi → X, which is the composite of
the projection to Ui and the embedding Ui ↪→X. The set Zi is closed in X×Ui ×
Ŷi = g−1(Vi), and its projection to Ui × Ŷi = Vi is an isomorphism. On the other
hand, ϕ(U) ⊂ Zi , and since Zi is closed, X ∩ g−1(Vi) is closed in Zi . Hence the
restriction of the projection to this set is a closed embedding. Chow’s lemma is
proved. �

Similar arguments prove the analogous statement for an arbitrary variety, when
X is quasiprojective (see Exercise 7).

2.2 Blowup Along a Subvariety

Chow’s lemma shows that arbitrary varieties are rather close to projective vari-
eties. Nevertheless, the two notions do not always coincide. We construct simple
examples of non-quasiprojective varieties in the following section. The construc-
tion uses a generalisation of the notion of blowup defined in Section 4.2, Chapter 2.
The difference is that here we construct a morphism σ : X′ → X such that the ra-
tional map σ−1 blows up a whole nonsingular subvariety Y ⊂ X rather than just
one point x0 ∈X. The construction follows closely that of Sections 4.1–4.3, Chap-
ter 2.

(a) The Local Construction According to Theorem 2.14 of Volume 1, for any
closed point of a nonsingular subvariety Y ⊂X of a nonsingular variety X, there ex-
ists a neighbourhood U and functions u1, . . . , um ∈OX(U), where m= codimX Y ,
such that the ideal aY ⊂ OX(U) is given by aY = (u1, . . . , um), and such that
dxu1, . . . ,dxum are linearly independent at every closed point x ∈U . The final con-
dition means that u1, . . . , um can be included in a system of local parameters at
x ∈U . If these conditions are satisfied, we say that u1, . . . , um are local parameters
for Y in U .

Suppose that X is affine and u1, . . . , um are local parameters for Y everywhere
in X. Consider the product X × P

m−1 and the closed subvariety X′ ⊂ X × P
m−1

defined by the equations

tiuj (x)= tj ui(x) for i, j = 1, . . . ,m,
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where t1, . . . , tm are the homogeneous coordinates in P
m−1. The projection X ×

P
m−1 → X defines a morphism σ : X′ → X. Clearly, now σ−1(Y ) = Y × P

m−1,
and σ defines an isomorphism

X′ \ (
Y × P

m−1) ∼→X \ Y.
Let x′ = (y, t) be a closed point of X′, with y ∈X and t ∈ Pm−1; suppose that t =
(t1 : · · · : tm) with ti �= 0. Then in a neighbourhood of x′, we have uj = uisj , where
sj = tj /ti . Let v1, . . . , vn−m,u1, . . . , um be a local parameter system at y ∈X. Then
the maximal ideal of x′ ∈X′ is of the form

mx′ =
(
v1, . . . , vn−m,u1, . . . , um, s1 − s1

(
x′

)
, . . . , sm − sm

(
x′

))

= (
v1, . . . , vn−m, s1 − s1

(
x′

)
, . . . , ̂si − si

(
x′

)
, ui, . . . , sm − sm

(
x′

))
.

It follows from this, as in Section 4.2, Chapter 2, that X′ is nonsingular, n-
dimensional and irreducible. As there, the following result holds.

Lemma If τ : X→ X is a blowup of the same subvariety Y ⊂ X defined by a dif-
ferent local system of parameters v1, . . . , vm of Y then there is an isomorphism
ϕ : X′ →X for which the diagram

X′ ϕ−→ X

σ↘ ↙τ

X

commutes. The isomorphism ϕ is unique.

We have ϕ = τ−1 ◦ σ on the open sets X′ \ σ−1(Y ) and X \ τ−1(Y ), and the
uniqueness of ϕ follows from this. By definition, in these sets

ϕ(x; t1 : · · · : tm)=
(
x;v1(x) : · · · : vm(x)

)
,

ψ
(
x; t ′1 : · · · : t ′m

)= (
x;u1(x) : · · · : um(x)

)
,

where ψ = ϕ−1.
By assumption,

vk =
∑

j

hkjuj with hkj ∈ k[X]. (6.25)

In the open set given by ti �= 0, we set sj = tj /ti and rewrite (6.25) in the form

vk = uigk with gk =
∑

j

σ ∗(hkj )sj . (6.26)

Then define

ϕ(x; t1 : · · · : tm)= (x;g1 : · · · : gm). (6.27)
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The same simple verification as in the proof of the analogous lemma in Section 4.2,
Chapter 2 shows that ϕ is a morphism, which is equal to that already constructed on
X′ \ σ−1(Y ). The construction of ψ is similar.

(b) The Global Construction Let X =⋃
Uα be an affine cover such that Y is de-

fined in Uα by local parameters uα,1, . . . , uα,m. Over Uα we apply the construction
of (a) to Y ∩ Uα ; we get a system of varieties X′α and morphisms σα : X′α→ Uα .
Consider the subset σ−1

α (Uα ∩Uβ)⊂X′α for all α and β; then by the lemma, there
exist uniquely determined isomorphisms

ϕαβ : σ−1
α (Uα ∩Uβ)→ σ−1

β (Uα ∩Uβ).

It is easy to check that these satisfy the glueing conditions and define a variety X′
and a morphism σ : X′ → X. The morphism σ we have constructed is called the
blowup of Y , or the blowup of X with centre in Y . It follows in an obvious way
from the lemma that X′ and σ are both independent of the cover X =⋃

Uα and of
the system of parameters uα,i .

(c) The Exceptional Locus The subvariety σ−1(Y ) is known locally:

σ−1(Y ∩Uα)= (Y ∩Uα)× P
m−1. (6.28)

Globally, we are dealing with a fibre bundle of a new type: the fibre σ−1(y) over
each y ∈ Y is a projective space P

m−1. Equation (6.28) shows the sense in which
our fibre bundle is locally trivial.

With every vector bundle p : E→X we can associate a fibre bundle ϕ : P(E)→
X of this type. For this, we define P(E) as the set

P(E)=
⋃

x∈X
P(Ex),

where P(Ex) is the projective space of lines through 0 in the vector space Ex . To
give P(E) the structure of an algebraic variety, consider a cover X =⋃

Uα in which
E is given by transition matrixes Cαβ . By fixing an isomorphism p−1(Uα)∼=Uα ×
V , where V is a vector space, we thus get a map

⋃

x∈Uα

P(Ex)→Uα × P(V ),

which allows us to give this set the structure of an algebraic variety. All the structures
of this type are obviously compatible, and define a structure of algebraic variety on
the whole of P(E). This variety is called the projectivisation of E.

More concretely, P(E) is obtained by glueing together open subsets

ϕ−1(Uα)∼=Uα × P(V )
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by means of the glueing law defined by automorphisms of (Uα ∩Uβ)× P(V ):

ϕαβ(u, ξ)=
(
u,P(Cαβ)ξ

)
, (6.29)

where u ∈ Uα ∩ Uβ , ξ ∈ P(V ) and P(Cαβ) is the projective transformation with
matrix Cαβ .

We return to the variety σ−1(Y ) arising as the exceptional locus of a blowup
σ : X′ →X. It is obtained by glueing together the open sets (Y ∩Uα)×P

m−1, with
the glueing law given by (6.25). This law is precisely of the type (6.29) if we take
Cαβ to be the matrix

Cαβ =
(
(hij )|Y

)
.

Here the functions hij are determined from (6.25), and a glance at the transition
matrix of the normal bundle in (6.11) shows that Cαβ corresponds to the vector
bundles NX/Y . Thus the result of our argument can be expressed by the simple
formula

σ−1(Y )∼= P(NX/Y ).

(d) The Behaviour of Subvarieties Under a Blowup

Proposition Let Z ⊂X be a closed irreducible nonsingular subvariety of X that is
transversal to Y at every point of Y ∩ Z, and let σ : X′ → X be the blowup of Y .
Then the subvariety σ−1(Z) consists of two irreducible components,

σ−1(Z)= σ−1(Y ∩Z)∪Z′,

and σ : Z′ → Z defines the blowup of Z with centre in Y ∩Z.

The subvariety Z′ ⊂ X′ is called the birational transform of Z ⊂ X under the
blowup.

Proof The proof follows closely the arguments of Section 4.3, Chapter 2. The ques-
tion is local, so that we can assume that Y ⊂ X is defined by the local equa-
tions u1 = · · · = ua = ua+1 = · · · = ub = 0, and Z ⊂ X by the local equations
ua+1 = · · · = ub = ub+1 · · · = uc = 0, so that the intersection Y ∩ Z is defined by
u1 = · · · = ua = · · · = ub = · · · = uc = 0; here 0 ≤ a < b < c ≤ d = dimX, and
u1, . . . , ud is a system of local parameters on X. Then X′ is defined in X×P

b−1 by
the equations

tiuj = tj ui for i, j = 1, . . . , b. (6.30)

Write Z for the closure of σ−1(Z \ (Y ∩Z)). Then obviously, σ−1(Z)= σ−1(Y ∩
Z)∪Z. Every point of σ−1(Z \ (Y ∩Z)) has ua+1 = · · · = uc = 0 and at least one
of u1, . . . , ua �= 0; therefore

ta+1 = · · · = tc = 0 on Z.
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Hence

Z ⊂ Z× P
a−1,

where t1, . . . , ta are homogeneous coordinates of Pa−1, and the relations

tiuj = tj ui for i, j = 1, . . . , a.

hold on Z. But these are just the equations defining the blowup σ : Z′ → Z of Z
with centre in Y ∩Z. We see that Z ⊂ Z′, and therefore Z = Z′, since both varieties
have the same dimension and Z′ is irreducible. The proposition is proved. �

We conclude this section with some remarks on the notion of blowup.

Remark 6.1 It can be shown that blowing up a quasiprojective variety does not take
us outside the class of quasiprojective varieties; the proof is omitted.

Remark 6.2 The existence of blowups whose centres are not points creates a whole
series of new difficulties in the theory of birational maps of varieties of dimension
≥3. In this connection, is not understood to what extent the results we obtained for
birational maps of surfaces in Section 3.4, Chapter 4 can be carried over to higher
dimensions. It is known that not every birational morphism X→ Y can be expressed
as a composite of blowups; the counterexample is due to Hironaka. It remains an
open question whether every birational map is a composite of blowups and their
inverses. On the other hand, the theorem on resolving the locus of indeterminacy
of a rational map by blowups holds in any dimension, if the ground field k has
characteristic 0; this is also a theorem of Hironaka.

2.3 Example of Non-quasiprojective Variety

The variety that we now construct to give an example of a non-quasiprojective vari-
ety will be complete. If a complete variety is isomorphic to a quasiprojective variety,
then by the theorem on the closure of the image, it would be projective. Thus it is
enough to construct an example of a complete nonprojective variety.

The proof of nonprojectivity will be based on the fact that intersection numbers
on a projective variety has a specific property. We therefore start with some general
remarks on intersection numbers.

We use notions which are a very special case of the cycle class ring mentioned
in Section 6.2, Chapter 4. In our particular case, we can easily give the definitions
from first principles. Let X be a complete nonsingular 3-fold, C ⊂X an irreducible
curve and D a divisor on X. Suppose that C �⊂ SuppD. Then the restriction ρC(D)

defines a locally principal divisor on C (we do not assume that C is nonsingular),
for which the intersection number is defined (see the remark in connection with
the definition of intersection number in Section 1.1, Chapter 4). In this case the
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intersection number is denoted by degρC(D) and is also called the intersection
number of the curve C and the divisor D:

CD = degρC(D).

The arguments of Sections 1.2–1.3, Chapter 4 show that this intersection number is
additive as a function of D and invariant under linear equivalence. In particular, the
intersection number CΔ is defined, where Δ is the divisor class containing D. In
any case, we only require this for the case C a nonsingular curve, when both these
properties are obvious.

Consider the free Abelian group A1 generated by all curves C ⊂ X. The inter-
section number aΔ is defined for a ∈A1 and Δ ∈ ClX by additivity. We introduce
on A1 the equivalence relation

a ≡ b ⇐⇒ aΔ= bΔ for all Δ ∈ ClX.

If this holds we say that a and b are numerically equivalent.
We consider an example which is basic for what follows. Suppose that a =∑
niCi and a′ =∑

n′jC′j , where all the curves Ci and C′j lie on a nonsingular
surface Y ⊂ X, and a ∼ b are linearly equivalent as divisors on Y ; then a ≈ b. In-
deed, for any divisor D on X the operation ρX

Ci
(D) of restriction to Ci can be carried

out in two steps:

ρX
Ci
= ρY

Ci
◦ ρX

Y ,

and hence for a ∈DivY

(aD)X =
(
aρX

Y (D)
)
Y
.

Therefore our assertion follows from the fact that intersection numbers of divisors
on Y are invariant under linear equivalence of divisors.

The preceding considerations apply to any complete variety X. The assumption
that X is projective has an important consequence for X: if a =∑

niCi with ni > 0
then a �≈ 0. Indeed, when we intersect an irreducible curve C with a hyperplane
section H of X we obviously have the equality

CH = degC,

and in particular CH > 0. Hence also aH =∑
niCiH > 0.

Before we start on the construction of the example, we consider an auxiliary
construction. Suppose C1 and C2 are two nonsingular curves in a nonsingular 3-fold
V intersecting transversally at a point x0. We assume that C1 and C2 are rational;
our results hold independently of this assumption, but it somewhat simplifies the
deduction. Let σ : W → V be the blowup of C1 and S1 = σ−1(C1) the exceptional
surface. The restriction

σ|S1 : S1→ C1,
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Figure 25 The first blowup

is a P
1-bundle by Section 2.2, (c), and we write lx for the fibre over x ∈ C1. By

Proposition 6.2, σ−1(C2) consists of two components:

σ−1(C2)= lx0 ∪C′2;
here σ : C′2→ C2 is the blowup of C2 with centre in x0, and in our case is therefore
an isomorphism. As a very simple exercise in the formulas defining a blowup, we
leave the reader to check that S1 and C′2 intersect in a single point x′0 with σ(x′0)=
x0, and are transversal there. We arrive at the situation of Figure 25.

Since we have assumed that the curve C1 is rational, all its points are linearly
equivalent x1 ∼ x2, and hence

lx1 ∼ lx2 on S1 for all x1, x2 ∈ C1.

Now consider a second blowup, the blowup τ : X→W of W with centre in C′2.
The inverse image τ−1(S1) of S1 is irreducible: by Section 2.2, (d), Proposition,
τ−1(S1) = τ−1(x′0) ∪ S′1, where τ : S′1 → S1 is the blowup of S1 centred in x′0. It
follows that τ−1(x′0)⊂ S′1. On S′1 we have τ−1(lx0)= L+ L′, where L= τ−1(x′0)
and τ : L′ → lx0 is an isomorphism. For x �= x0, the fibre τ−1(lx) is irreducible; we
denote it by Lx . By what we have said, we have

Lx ∼ L+L′ as divisors on S′1. (6.31)

Now write S2 for the surface τ−1(C′2). In this same way as S1, it is a P
1-bundle

S2→ C′2 with fibre Ly over y ∈ C′2, and on S2

Ly1 ∼ Ly2 for all y1, y2 ∈ C2, and Lx′0 = L. (6.32)
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Figure 26 The second
blowup

The two surfaces S′1 and S2 intersect along the line L as shown in Figure 26.
We go over to numerical equivalence on X. Substituting (6.31) in (6.32) we get

that

Lx ≈ L+L′ ≈ Ly +L′. (6.33)

The basic feature of this relation is its lack of symmetry with respect to the fibres
Lx and Ly of the two ruled surfaces S′1 and S2, arising from the order in which the
blowups were performed. This is what we exploit in the example, the construction
of which we now embark on.

Consider a nonsingular 3-fold V and two nonsingular rational curves C1,C2 ⊂ V

that intersect transversally in two points x0 and x1 (for example, V could contain a
copy of P2, with C1 a line and C2 a conic). In the 3-fold V0 = V \ x1 we blow up as
above first C1 \ x1, then the birational transform of C2 \ x1; we get a morphism

σ0 : X0→ V \ x1.

In V1 = V \ x0 we blow up the two curves in the opposite order, first C2 \ x0 then
the birational transform of C1 \ x0; we get a morphism

σ1 : X1→ V \ x0.
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Now the two varieties σ−1
0 (V \ {x0, x1}) and σ−1

1 (V \ {x0, x1}) are obviously iso-
morphic, and the morphisms σ0 and σ1 coincide on them. Indeed, the curve C1 ∪
C2 \ {x0, x1} is disconnected, and thus both σ−1

0 (V \ {x0, x1}) and σ−1
1 (V \ {x0, x1})

can be obtained by carrying out the blowup of V \ {x0, x1} with centre C1 \ {x0, x1}
on the open set V \ C2 and with centre C2 \ {x0, x1} on the open set V \ C1, then
glueing the resulting varieties along the open set V \ {C1 ∪ C2}, over which both
blowups are isomorphisms.

Thus we can glue X0 and X1 along their open subsets σ−1
0 (V \ {x0, x1}) and

σ−1
1 (V \ {x0, x1}), obtaining a 3-fold X and a morphism

σ : X→ V.

In X we have the relation (6.33), which we deduced using the existence of the point
of intersection x0 of C1 and C2. In the same way the point x1 leads to the relation

Ly ≈ L1 +L′1 ≈ Lx +L′1 (6.34)

where L1 is the irreducible curve of intersection of S1 and S′2 over x1 and L′1 the
other component of σ−1(x1). Adding (6.33) and (6.34) gives

Lx +Ly ≈ L′ +L′1 +Lx +Ly,

whence

L′ +L′1 ≈ 0. (6.35)

To get a contradiction to X projective, it remains to prove that it is complete. For
an arbitrary variety Z the projection X×Z→ Z factors as a composite of the map
σ × 1 : X×Z→ V ×Z and the projection V ×Z→ Z. Since V is projective, the
image of a closed set under the second projection is closed, and we need only prove
that the same holds for σ × 1. We know that V is a union of two open sets V \ x0
and V \ x1, and since closed is a local property, it is enough to check that both the
restrictions

σ × 1 : (σ × 1)−1((V \ xi)×Z
)→ (V \ xi)×Z for i = 0,1

take closed sets to closed sets. Now σ over V \ xi is just a composite of blowups,
and it remains to prove that for any blowup σ : U ′ →U and any Z the morphism

σ × 1 : U ′ ×Z→U ×Z

takes closed sets to closed sets. Once more since the question is local, we can assume
that σ is given by the local construction Section 2.2, (a), that is, U ′ ⊂U ×P

m−1 and
σ is induced by the projection U ×P

m−1→U . But then our assertion follows from
the fact that projective space is complete, Theorem 1.11 of Section 5.2, Chapter 1.

Thus if X were quasiprojective it would be projective, and this is a contradiction,
since (6.35) is impossible in a projective variety.
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Figure 27 Hironaka’s
counterexample

The basic idea on which the example is built is of course the relations (6.33) and
(6.34): they lead to (6.35), which cannot hold on a projective variety. These relations
are perhaps clearer if we express them in a very primitive picture (Figure 27): the
fibre Lx0 of the ruled surface S′1 is shown breaking up into two lines drawn as
intervals L and L′.

Remark 6.3 It is no accident that this example has dimension 3. It can be proved that
a 2-dimensional nonsingular complete variety is projective. On the other hand, there
exist examples of complete nonprojective 2-dimensional varieties with singularities.

Remark 6.4 In the example we have constructed, consider an affine open set U ⊂X.
If both curves L′ and L′1 in (6.35) had nonempty intersection with U , we would be
able to find a divisor D such that L′D > 0, L′1D > 0, contradicting (6.35); indeed,
we could just take D to be the closure of a hyperplane section of the affine space
containing U . Thus L′ and L′1 are “very far apart” in X: if an affine open subset
contains a point of L′ then it must be disjoint from L′1.

2.4 Criterions for Projectivity

To conclude this section, we discuss a number of criterions that characterise pro-
jective varieties among arbitrary complete varieties. We do not state them in the
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greatest possible generality. In particular, in the first two we assume that the vari-
eties are nonsingular. We could avoid this assumption, but this would require some
extra explanations.

1. Chevalley–Kleiman Criterion A complete nonsingular variety X is projective
if and only if every finite set of points of X is contained in an affine open subset.

If X is a projective variety then there obviously exists a hyperplane section H not
meeting any finite subset S ⊂X, so that S ⊂X \H , and X \H is affine. Hence one
half of the criterion is obvious. In the example of a nonprojective variety constructed
at the end of Section 2.3, this criterion obviously fails (see Remark 6.4).

2. Nakai–Moishezon Criterion A complete nonsingular variety X is projective if
and only if there exists a divisor H on X such that for every irreducible subvariety
Y ⊂X,

(
ρY (H)m

)
Y
=HmY > 0, where m= dimY ;

here ρY (H) is the restriction to Y of H and (ρY (H)m)Y its m-fold selfintersection
number on Y .

If X is a projective variety then we can take H to be a hyperplane section. In this
case

HmY = degY.

Thus again the criterion obviously holds for projective varieties.
To state the final criterion, recall that projective space P

n has a line bundle E ⊂
P
n×V , where V is the vector space whose lines are represented by points of Pn (see

Examples 6.10–6.11). Moreover, the projection P
n × V → V defines a morphism

E → V that is the blowup of V centred in the origin. For this map, the unique
exceptional subvariety is the zero section of E. Let X ⊂ P

n be a closed subvariety.
The line bundle E′ = ρX(E), the restriction to X of E, is a closed subvariety of E,
and the blowup σ : E→ V defines a morphism σ ′ : E′ → V . The completeness of
P
n implies that σ takes closed sets to closed sets. Hence W = σ ′(E′) is an affine

variety. In fact it is easy to see that W is the affine cone over X ⊂ P
n as in the

proof of Theorem 6.7 (compare Exercise 8 of Section 4.5). Obviously the unique
exceptional subvariety of σ ′ is the zero section of E′.

These arguments prove the “only if” part of the following criterion.

Grauert Criterion A complete variety X is projective if and only if there exists a
line bundle E over X, and a morphism f : E→ V to an affine variety V such that
f is birational, and the unique exceptional subvariety of f is the zero section of E.
A shorter way of stating the condition is that the zero section of the line bundle E

can be contracted to a point.
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2.5 Exercises to Section 2

1 Give an alternative proof of Theorem 6.1 using Chow’s lemma and a reduction to
Theorem 2.12 of Section 3.1, Chapter 2.

2 If X is a complete variety and σ : X′ →X a blowup, prove that X′ is also com-
plete.

3 If E and E′ are vector bundles such that E′ = E ⊗ L for L a line bundle, and
P(E), P(E′) are as in Exercise 10 of Section 1.5, prove that P(E)∼= P(E′).

4 Suppose that X is a nonsingular complete variety with dimX = 3, and Y ⊂ X

a nonsingular curve; let σ : X′ → X be the blowup of X with centre Y , and l =
σ−1(y0) with y0 ∈ Y . Prove that σ ∗(D)l = 0, where D is any divisor on X and
σ ∗(D) its pullback to X′.

5 Under the conditions of Exercise 4, set S = σ−1(Y ). Prove that Sl =−1. [Hint:
Consider a surface D on X containing Y and nonsingular at y0, and apply the result
of Exercise 4 to D. Compare the calculations of Section 3.2, Chapter 4.]

6 Prove that for any nonsingular projective 3-fold X there exists a complete non-
projective variety birational to X.

7 Prove that for any irreducible variety X there exists a quasiprojective variety X

and a surjective birational morphism f : X→X. There exists an embedding X ↪→
P
n ×X such that f is the restriction to X of the projection P

n ×X→X.

3 Coherent Sheaves

3.1 Sheaves of OX-Modules

Sheaves of modules over the sheaf of rings OX have already appeared in Section 1.3
in connection with vector bundles. Sheaves of this type are an extraordinarily con-
venient tool in the study of algebraic varieties; we discuss one example of this in
this section. But first we start with certain general properties of these sheaves.

Consider the most general situation: a ringed space, that is, a topological space
X with a given sheaf of rings O. In what follows we consider sheaves on X that
are sheaves of modules over O; we usually omit mention of this, speaking simply
of sheaves of modules. Any sheaf of Abelian groups on a topological space X can
obviously be viewed as a sheaf of modules over a sheaf of rings O by taking O to
be the sheaf of locally constant Z-valued functions.

The definition of a homomorphism f : F → G of sheaves of modules was
given in Section 1.3. Recall that it is a system of O(U)-module homomorphisms
fU : F(U)→ G(U) satisfying certain compatibility requirements.
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Example 6.13 Let X be a nonsingular algebraic variety over k, OX the sheaf of
regular functions, and Ω1 the sheaf of regular differential 1-forms. Sending f ∈
OX(U) to the differential df ∈Ω1(U) defines a homomorphism of sheaves

d : OX→Ω1.

This is a homomorphism of sheaves of modules over the sheaf of locally constant
k-valued functions, but not over OX (because, by Leibnitz’ rule, d is not OX-linear).

Our immediate objective is to define the kernel and image of a homomorphism
of sheaves of modules. The first definition is completely obvious. Let f : F → G
be a homomorphism of sheaves of modules. Set K(U) = kerfU . By definition of
a homomorphism it follows that for U ⊂ V we have ρV

U (K(V )) ⊂ K(U). Hence
the system {K(U),ρV

U } is a presheaf; an easy verification shows that it is a sheaf of
modules. By definition this is the kernel of f .

The kernel of a homomorphism is an example of a subsheaf of a sheaf F . This
is a sheaf of modules F ′ such that F ′(U)⊂ F(U) for every open set U ⊂ X, and
such that ρV

U,F ′ is the restriction of ρV
U,F to the submodule F ′(V ).

The image of a homomorphism f : F → G is a somewhat more complicated
notion. The point is that the O(U)-modules I(U) = imfU , together with the ho-
momorphisms ρV

U,G , define a presheaf that is in general not a sheaf.

Example 6.14 Let X be a nonsingular irreducible curve, and K∗ the constant sheaf
with K∗(U)= k(X)∗ the group of nonzero elements of k(X) under multiplication;
let D be the sheaf of local divisors, defined by D(U) = DivU , with the obvi-
ous restriction homomorphisms. The homomorphism f : K∗ →D takes a function
u ∈ K∗(U) into its divisor divu on U . Since every divisor is locally principal, for
every D ∈DivU and every point x ∈U there exists a neighbourhood Vx of x and a
function u ∈ K∗(Vx) such that fVx (u) =D; in other words, (imf )(Vx) � ρU

Vx
(D).

However, it is not always the case that D ∈ (imf )(U). For example, if X is projec-
tive then not every divisor is principal. Thus imf does not satisfy condition (2) in
the definition of a sheaf in Section 2.3, Chapter 5.

Thus it seems natural to define the image of a homomorphism f : F → G of
sheaves of modules as follows. First define the presheaf I ′ by setting

I ′(U)= fU
(
F(U)

)
for U ⊂X;

then take the sheafication I of the presheaf I ′ as in Section 2.4, Chapter 5; it is
called the image of f and is denoted by imf .

Recalling the definition of the sheafication of a presheaf, we see that imf is a
subsheaf of G, and (imf )(U) consists of elements a ∈ G(U) such that every point
x ∈U has a neighbourhood Ux for which

ρU
Ux
(a) ∈ fUx

(
F(Ux)

)
.
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Obviously, f defines a homomorphism

F→ imf.

It follows at once from the definition that a homomorphism f : F → G for which
kerF = 0 and imf = G is an isomorphism.

A sequence F1
f1→F2 → ·· · fn→Fn+1 of homomorphisms is called an exact se-

quence if imfi = kerfi+1 for i = 1, . . . , n. If 0→ F f→G g→H→ 0 is an exact
sequence then F can be viewed as a subsheaf of G. Because of this,

(imf )(U)= f
(
F(U)

);
that is, in constructing the image sheaf of an injective homomorphism f , passing to
the sheafication is unnecessary. Hence the sequence

0→F(U)
fU−→G(U)

gU−→H(U) (6.36)

is exact for any open set U .
Example 6.14 shows that the sequence

0→F(U)
fU−→G(U)

gU−→H(U)→ 0

is in general not exact (for example, for U =X). This phenomenon is the reason for
the existence of a nontrivial theory of sheaf cohomology.

For any subsheaf F of a sheaf G one can construct a homomorphism f : G→H
such that kerf =F and imf =H. To obtain this, set

H′(U)= G(U)/F(U)

and define homomorphisms ρV
U,H′ as the maps induced on these quotient groups by

the homomorphisms ρV
U,G . We define H to be the sheafication of H′.

It is easy to check that the stalks of this sheaf satisfy

Hx = Gx/Fx.

Hence an element a ∈ G(U) defines elements ax ∈ Hx for all points x ∈ U . An
obvious verification shows that the set of all the {ax} specify an element a′ ∈H(U),
and f : a �→ a′ defines a homomorphism with the required properties. The sheaf H
is the quotient sheaf of G by F . Obviously the sequence 0→F→ G→H→ 0 is
exact.

Example 6.15 Let X be an irreducible algebraic variety over a field k and K∗ the
sheaf of locally constant functions with values in the multiplicative group of k(X).
The sheaf O∗ is defined by setting O∗(U) to be the set of invertible elements of
O(U); here K∗ and O∗ are viewed as sheaves of Abelian groups. It is each to check
that the quotient sheaf D = K∗/O∗ has D(U) isomorphic to the group of locally
principal divisors of U .
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Definition The support of a sheaf F is the set X \W , where W is the union of all
open sets V ⊂X with F(U)= 0 for all nonempty open set U ⊂ V . This is a closed
set, and is denoted by SuppF .

Proposition If S is the support of a sheaf F and U ⊂ V are two open sets such that
U ∩ S = V ∩ S then the restriction ρV

U : F(V )→F(U) is an isomorphism.

Proof Let a ∈ F(V ) be such that ρV
U (a)= 0. By definition of S every point x ∈ V

with x /∈ S has a neighbourhood Vx , which we can assume to be contained in V , for
which

ρV
Vx
(a)= 0.

By the assumption, U is a neighbourhood with this property for points x ∈ S. It
follows from the definition of a sheaf that a = 0, and thus ρV

U is injective.
Let a ∈ F(U). Consider a cover V =⋃

Uα with U0 = U and Uα ∩ S = ∅ for
α �= 0 (for example, this holds if Uα for α �= 0 are sufficiently small neighbourhoods
of points x ∈ V with x /∈ S). Set a0 = a and aα = 0 for α �= 0. From the assumption
of the proposition it follows that

ρ
Uα

Uα∩Uβ
(aα)= ρ

Uβ

Uα∩Uβ
(aβ).

Hence by the definition of a sheaf there exists an element a′ ∈F(V ) such that

ρV
Uα

(
a′

)= aα,

and in particular, when α = 0, we have ρV
U (a′)= a. Thus ρV

U is surjective, and the
proposition is proved. �

It follows from the proposition that if S is the support of a sheaf F then the
modules F(U) are canonically isomorphic for all open sets U whose intersection
with S is a given subset. Therefore we can define a sheaf F on S by setting

F(U)=F(U), where U ∩ S =U

for open sets U ⊂ S.

Example 6.16 Let X be a scheme and Y ⊂X a closed subscheme. Define a subsheaf
JY of the structure sheaf OX by the condition JY (U)= aY if U is an affine open
set with U = SpecA and aY ⊂A is the ideal of the subscheme Y ∩U . Obviously if
U is disjoint from Y then JY |U =OX |U . Hence the sheaf F =OX/JY is equal to 0
on such open sets, that is, its support is contained in Y . The corresponding sheaf F
on Y coincides with the structure sheaf OY on the subscheme Y .

Remark The definition of support just given is not the usually accepted one, but it
is slightly more convenient for our purposes. In any case, in what follows, the two
definitions coincide in the cases where they are applied.
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3.2 Coherent Sheaves

Locally free sheaves have already appeared in Section 1.3 in connection with vector
bundles. We now consider a class of sheaves that are to arbitrary finite modules as
locally free sheaves are to finite free modules.

We now apply the notions introduced in Section 3.1 to the case that X, OX is an
arbitrary scheme. We start with local considerations, and suppose that X = SpecA,
where A is an arbitrary ring.

For any module M over a ring A and any multiplicative system S of elements of
A we define the localisation of M with respect to S, setting

MS =M ⊗A AS.

MS can be described in the same way as the localisation AS in Section 1.1, Chap-
ter 5. It consists of pairs (m, s) with m ∈M and s ∈ S with the same rules of iden-
tification, addition and multiplication by elements of AS as in the case of rings; we
write m/s for the pair (m, s). In particular, taking S to be the system of powers of
an element f ∈A gives the module Mf over Af .

The homomorphisms AS → AS′ defined for S ⊂ S′ generate homomorphisms
MS→MS′ . This allows us to associate with an A-module M a sheaf M̃ on SpecA.
The definition mirrors exactly that of the sheaf O, to which it reduces in the case
M =A. In view of this, we omit some of the verifications, when these do not differ
in the general case from those carried out in Section 2.2, Chapter 5.

For an open set of the form U =D(f ) with f ∈A we set

M̃(U)=Mf .

For an arbitrary open set U we consider all f ∈A for which D(f )⊂U . Whenever
D(g)⊃D(f ), we have homomorphisms

Mg→Mf .

Using these, we can define the projective limit of the groups Mf . Set

M̃(U)= lim←−Mf

where the limit runs over f ∈A such that D(f )⊂U . Then M̃(U) is a module over
the ring O(U)= lim←−Af ; this is a general property of projective limits. An inclusion

U ⊂ V defines a homomorphism ρV
U : M̃(V )→ M̃(U) as in the case M = A. The

system {M̃(U),ρV
U } defines a sheaf M̃ of modules over the sheaf of rings OX .

A homomorphism of A-modules ϕ : M→N defines homomorphisms ϕf : Mf→
Nf for all f ∈ A, and on passing to the limit, a homomorphism of sheaves
ϕ̃ : M̃→ Ñ . If ϕ : M→N and ψ : N→ L are two such homomorphisms then

ϕ̃ ◦ψ = ϕ̃ ◦ ψ̃.
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M can be recovered from M̃ . Namely, we have a generalisation of the relation
proved in Section 2.2, Chapter 5:

M̃(SpecA)=M;
the proof is word-for-word the same. It follows that M �→ M̃ is a one-to-one cor-
respondence between modules M and sheaves of the form M̃ . Moreover, a simple
check allows us to deduce that ϕ �→ ϕ̃ is an isomorphism of groups

HomA(M,N)∼=HomO(M̃, Ñ),

from the group of A-module homomorphisms to the group of homomorphisms of
sheaves of OSpecA-modules.

We can now proceed to globalise these notions. Let X be a Noetherian scheme.

Definition A sheaf F on X is coherent if every point x ∈ X has an affine neigh-
bourhood U of the form U = SpecA with A a Noetherian ring, such that F|U is
isomorphic to a sheaf of the form M̃ for some finite A-module M .

Proposition If X = SpecA is an affine and Noetherian scheme, then any coherent
sheaf F on X is of the form M̃ , where M is a finite A-module.

Proof We set F(X)=M and prove that F = M̃ .
Since open sets of the form D(f ) are a basis of the Zariski topology, there exist

elements fi ∈A such that
⋃

D(fi)=X and F is isomorphic over D(fi) to a sheaf
M̃i , where Mi is a finite Afi -module. Since SpecA is compact we can assume that
the fi are finite in number.

For any g ∈ A, since F(D(g)) is an Ag-module, the restriction homomorphism
ρX
D(g) : M = F(X)→ F(D(g)) extends in a unique way to a homomorphism of

Ag-modules.

ϕg : M̃
(
D(g)

)→F
(
D(g)

)
.

One checks easily that this system of homomorphisms defines a homomorphism
M̃→F of sheaves of modules.

Everything thus reduces to proving that the homomorphism ϕg is an isomor-
phism. For this, consider the sequence of homomorphisms

0→M
λ→

⊕

i

Mi
μ→

⊕

i,j

Mij , (6.37)

where

Mij = (Mi)fj = (Mj )fi =F
(
D(fifj )

)
, λ(m)= (

. . . , ρX
D(fi)

(m), . . .
)
,

and μ(. . . ,mi, . . . ,mj , . . . )=
(
. . . ,

(
ρ
D(fi)

D(fifj )
(mi)− ρ

D(fj )

D(fifj )
(mj )

)
, . . .

)
.
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We view Mi and Mj as A-modules in (6.37). It follows from the definition of sheaf
that (6.37) is exact. We now use a property of the functor M �→Mg which is im-
portant, although trivial to verify: it takes exact sequences into exact sequences. In
particular,

0→Mg
λ−→
g

⊕
(Mi)g

μ−→
g

⊕
(Mij )g

is exact. On the other hand, consider the sheaf F|D(g). For it we have a similar exact
sequence

0→F
(
D(g)

) λ′g→
⊕

i

F
(
D(gfi)

) μ′g→
⊕

ij

F
(
D(gfifj )

)
.

But F(D(gfi))= (Mi)g and F(D(gfifj )) = (Mij )g . These isomorphisms induce
an isomorphism ϕ′g : Mg→ F(D(g)). It is easy to check that ϕ′g = ϕg on the im-
ages of elements of M , and therefore on the whole of Mg . This proves that ϕ is an
isomorphism and F = M̃ .

It remains to prove that M is Noetherian; we know that the modules Mi =Mfi

are Noetherian. Let Mn be an ascending chain of submodules of M . Then (Mn)fi =
(Mn+1)fi for all fi and for n sufficiently large. It follows from this that Mn =Mn+1.
The proposition is proved. �

Example 6.17 The simplest example of a coherent sheaf is the structure sheaf OX .
In the case X = SpecA, this is the ring A viewed as a module over itself. A more
general example is the sheaf LE corresponding to a vector bundle over a scheme X

as in Theorem 6.2.

Example 6.18 For any sheaf F on a scheme X, the dual sheaf G =Hom(F ,OX)

is the sheafication of the presheaf G(U)=Hom(F(U),OX(U)). If X = SpecA and
F = M̃ then Hom(F ,OX)= Ñ , where N =HomA(M,A). If A is Noetherian and
M = Am1 + · · · + Amr is finite then a homomorphism M→ A is determined by
its values on the generators mi , so that HomA(M,A) ⊂ Ar , and is therefore again
finite. It follows from this that if X is a Noetherian scheme and F is coherent then
Hom(F ,OX) is again coherent.

Example 6.19 Let X be a scheme of finite type over k. We define for X the ana-
logue of the cotangent sheaf Ω1

X (Example 6.7). If X = SpecA then we constructed
in Section 5.2, Chapter 3 an A-module ΩA that coincides with Ω1

X[X] for a non-
singular variety X. By construction, ΩA is a finite A-module. For any scheme X of
finite type over k and any affine open U = SpecA we set Ω(U)=ΩA. The sheafi-
cation Ω of this subsheaf is coherent and is called the cotangent sheaf . The sheaf
Θ =Hom(Ω,OX) is also coherent and is called the tangent sheaf. If X = SpecA
then Θ(X) = Derk(A,A) is the module of derivations of A (compare Exercise 10
of Section 5.5, Chapter 3). If X is nonsingular then, as we know, both sheaves Ω

and Θ are locally free, and correspond to the cotangent and tangent bundles.
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Example 6.20 Let X be a Noetherian scheme, Y a closed subscheme and IY the
sheaf of ideals corresponding to Y (Example 6.16). Since OX(U) is Noetherian by
assumption, IY is a coherent sheaf.

Example 6.21 Under the assumptions of Example 6.20, the sheaf of modules IY /I2
Y

is coherent. We prove that if X and Y are nonsingular then it is locally free. This is a
local assertion, and it is enough to check it in the case X = SpecA, Y = SpecB
and B = A/I , and we can even assume that A is the local ring of a point x ∈
X. Since X and Y are nonsingular we can assume that I = (u1, . . . , um), where
u1, . . . , un (with n >m) is a system of local parameters of the maximal ideal of the
ring A. Obviously I/I 2 is generated as B-module by u1, . . . , um, and we need only
check that they are free. This means that if

∑
uiai ∈ I 2 then ai ∈ I . Suppose that∑

uiai =∑
uivi with vi ∈ I . Then

∑
uia
′
i = 0 where a′i = ai − vi . Hence uia

′
i ∈

(u1, . . . , ûi , . . . , um), and since u1, . . . , un is a regular sequence (see Section 1.2,
Chapter 4), it follows that a′i ∈ (u1, . . . , ûi , . . . , um)⊂ I , and hence ai ∈ I .

Thus in this case, the sheaf IY /I2
Y corresponds to some vector bundle on Y . The

transition matrixes Cαβ of this vector bundle are of the form Cαβ = (hij ), where
the hij are given as follows: if uα,1, . . . , uα,m are local equations of Y in Uα and
uβ,1, . . . , uβ,m local equations of Y in Uβ and uα,i =∑

fijuβ,j then hij is the
restriction to Y of fij . As we saw in Section 1.3, this is the transition matrix of
the vector bundle N∗X/Y , which is in this case the vector bundle corresponding to the

sheaf IY /I2
Y . In the general case (when X and Y are not assumed to be nonsingular),

IY /I2
Y is the conormal sheaf to Y in X. If X and Y are nonsingular then the vector

bundle NX/Y corresponds to the sheaf Hom(IY /I2
Y ,OY ). This sheaf is called the

normal sheaf of the subscheme Y ⊂X and denoted by NX/Y .
We give an interpretation in these terms of the sequence

0→ΘY → j∗ΘX→NX/Y → 0, (6.38)

where j∗ is the restriction to Y . For the corresponding sheaves and affine varieties
it gives

0→Derk(B,B)→Derk(A,B)→Derk(I,B)→ 0, (6.39)

where B =A/I , and Derk(P,Q) is the module of derivations D : P →Q. It is easy
to see that D(I 2) = 0 for D ∈ Derk(I,B), so that Derk(I,B) = HomB(I/I

2,B).
Hence the sequences (6.38) and (6.39) coincide.

3.3 Dévissage of Coherent Sheaves

We now discuss a method that allows us to reduce arbitrary coherent sheaves to free
sheaves (admittedly, only in some very coarse respects).

Proposition 6.1 For any coherent sheaf F over a Noetherian reduced irreducible
scheme X, there exists a dense open set W such that F|W is free.
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Proof The assertion is local in nature, so that we can restrict to the case X = SpecA,
where A is a Noetherian ring without nilpotents and F = M̃ for a finite A-module
M . In addition, we can obviously assume that X is irreducible. Then X reduced and
irreducible implies that A has no zerodivisors.

Recall that the rank of an A-module is the maximal number of linearly indepen-
dent elements of M over A. By assumption, M has finite rank. Write r for the rank,
and let x1, . . . , xr ∈M be linearly independent over A; by definition, they generate
a free submodule M ′ ⊂M . Let y1, . . . , ym be a system of generators of M . Then for
each i there exist elements di ∈A with di �= 0 such that

diyi ∈M ′. (6.40)

Consider the open set W =D(d), where d = d1 · · ·dm. The sheaf F|W is isomorphic
to M̃d . But Md =M ′d by (6.40), and hence

F|W ∼= M̃ ′d .

Now M ′d is a free module over the ring Ad , since M ′ is free. The proposition is
proved. �

Proposition 6.2 For any coherent sheaf F over a Noetherian reduced irreducible
scheme X, there exists a coherent sheaf G containing a free subsheaf Or , and a
homomorphism ϕ : F → G such that the two sheaves kerϕ and G/Or both have
support distinct from X.

As we will see, in the proof we construct a homomorphism ϕ : F→ G such that
both kerϕ and G/ imϕ have support distinct from the whole of X. Since G/Or also
has support distinct from the whole of X, Proposition 6.2 shows that any coherent
sheaf is “free modulo sheaves with support distinct from the whole of X”.

Proof Let W be the open set and f : F|W ∼→ Or |W the isomorphism whose exis-
tence was established in Proposition 6.1. We can assume that W is a principal open
set, and will do so in what follows. Define the sheaf G by the condition

G(U)= fU∩W
(
ρU
U∩WF(U)

)+ ρU
U∩W

(
Or (U)

)
. (6.41)

Since ρU
U∩W(Or (U)) ⊂Or (U ∩W) and fU∩W(ρU

U∩WF(U))⊂Or (U ∩W), both
terms of the right-hand side of (6.41) are contained in the same group. We con-
sider the sum of these subgroups, which obviously becomes an O(U)-submodule of
Or (U ∩W) when we set

ax = ρU
U∩W(a)x for a ∈O(U) and x ∈Or (U ∩W).

Since F(U) and Or (U) are finite O(U)-modules, the same holds for G(U).
The definition of the homomorphisms ρU

V,G is self-explanatory. It follows at once
from what we said above that the sheaf G we have constructed is coherent.



90 6 Varieties

For the sheaf Or , the restriction ρU
U∩W is an inclusion. It is enough to verify this

for an affine open set U = SpecA. Consider a principal open set D(f ) ⊂ U ∩W .
The kernel of ρU

D(f ) consists of elements x ∈A such that f nx = 0 for some n≥ 0;
since X is irreducible, the ring A has no zerodivisors, and hence x = 0. A fortiori,
kerρU

U∩W = 0. Thus ρU
U∩W allows us to identify the sheaf Or with a subsheaf of G.

We define the homomorphism ϕ : F→ G by the condition

ϕU = fU∩W ◦ ρU
U∩W .

If U ⊂W then

G(U)= fU
(
ρU
U∩W

(
F(U)

))= fU
(
F(U)

)=Or (U)= ρU
U∩W

(
Or (U)

)
,

and fU is an isomorphism. Hence ϕU is an isomorphism, and G(U)=Or (U). This
proves that the sheaves kerϕ and G/Or are both 0 on W , and hence they have
supports contained in X \W . The proposition is proved. �

Proposition 6.2 leads us to the question of the structure of coherent sheaves
whose support is distinct from the whole scheme. If the support of F is a closed
set Y ⊂X then by the discussion at the end of Section 3.1, there is a sheaf F on Y

defined by the condition

F(U)=F(U), where U ∩ Y =U

for open sets U ⊂ Y .
We consider Y as a reduced closed subscheme of X. Is F a coherent sheaf on Y ,

or even a sheaf of O-modules? This is false in general, as shown by the following
example. Suppose that X = SpecZ, and let F be the coherent sheaf corresponding
to the module Z/p2

Z, where p is a prime. The support of F is the prime ideal (p),
and the corresponding reduced subscheme is Spec(Z/pZ). It is obviously impossi-
ble to put a (Z/p)-module structure on Z/p2

Z.
Nevertheless, we prove that there is a weaker sense in which the sheaf F can be

reduced to coherent sheaves on Y .

Proposition 6.3 A coherent sheaf F on a Noetherian scheme X with support Y �=X

has a chain of subsheaves

F =F0 ⊃F1 ⊃ · · · ⊃Fm = 0

such that each quotient sheaf F i/F i+1 is a coherent sheaf of OY -modules.

Proof In Example 6.16, we gave the example of the sheaf IY of ideals of the reduced
subscheme Y . Obviously F is a coherent sheaf of OY -modules if

IY ·F = 0. (6.42)

Indeed, under this assumption, all the OX(U)-modules F(U) are modules over
OX(U)/IY (U) = OY (U). Thus if F is of the form M̃ on an affine open set
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U = SpecA then aY ·M = 0, and M is therefore an (A/aY )-module. Moreover,
if we now view M as an (A/aY )-module then F = M̃ .

We show that a slightly weaker statement always holds: there exists an integer
k > 0 such that

Ik
Y ·F = 0. (6.43)

Consider an affine open set U = SpecA such that F|U is of the form M̃ with
M a finite A-module. Let aY be the ideal of the subset Y ∩ U . If f ∈ aY then
D(f )⊂U \ (U ∩ Y), and by assumption the restriction of F to D(f ) is zero. This
means that Mf = 0, and hence for every m ∈M there exists k(m) > 0 such that
f k(m)m= 0. Since M is a finite A-module, it follows that f kM = 0 for some k > 0.
Since this relation holds for any f ∈ aY and aY has a finite basis, it follows that

a
l
Y ·M = 0 (6.44)

for some l > 0. In other words, (6.43) holds on the open set U . Choosing a finite
cover of X by open sets U as above, and taking k to be the maximum of the l for
which (6.44) holds on each of the U , we get (6.43) on the whole of X.

Set Fi = I i
Y ·F for i = 0, . . . , k and F = F0. Obviously the support of each of

the Fi is contained in Y . Write F i for the sheaf on Y determined by Fi on X. Since

IY · (Fi/Fi+1)= 0,

the sheaf F i/F i+1 satisfies (6.42), and so is a coherent sheaf of OY -modules. This
proves Proposition 6.3. �

To conclude, we show how the methods used throughout this section allow us to
reduce the study of sheaves to the case of irreducible schemes.

Proposition 6.4 Let X be a Noetherian reduced scheme with X = ⋃
Xi its de-

composition as a union of irreducible components, and suppose that F is a co-
herent sheaf on X. There exist coherent sheaves Fi on X and a homomorphism
ϕ : F→⊕

Fi such that the support of Fi is contained in Xi , the sheaf F i defined
on Xi by F is coherent, and the kernel of ϕ has support contained in

⋃
i �=j Xi ∩Xj .

Proof Set Fi = F/(IXi
· F), and let ϕi : F → Fi be the natural projection and

ϕ =⊕
ϕi . We saw in Section 3.2 that the support of Fi is contained in Xi , and F i

is a coherent sheaf of OXi
-modules since IXi

·Fi = 0.
Consider the open set

Ui =Xi \
⋃

i �=j
Xi ∩Xj .

On Ui we have IXj
= OX for j �= i and IXi

= 0, so that Fj |Ui
= 0 for j �= i

and Fi |Ui
= F|Ui

. Therefore on Ui we have ϕj = 0 for j �= i, and ϕ = ϕi is an
isomorphism. Hence the kernel of ϕ equals 0 on

⋃
Ui , as required to prove. �
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3.4 The Finiteness Theorem

Theorem If X is a complete variety over a field k and F a coherent sheaf on X,
the vector space F(X) is finite dimensional over k.

Proof The essence of the proof is the following remark. Given a homomorphism
ϕ : F→ G of sheaves over X, set H= kerϕ; then

H(X) and G(X) finite dimensional =⇒ F(X) is finite dimensional. (6.45)

This follows since H(X) = ker{ϕX : F(X)→ G(X)}, by definition of the kernel.
From this, we deduce by induction that F(X) is finite dimensional if there exist
subsheaves

F =F0 ⊃F1 ⊃ · · · ⊃Fm = 0 (6.46)

such that each vector space Fi/Fi+1(X) is finite dimensional.
We prove the theorem by induction on the dimension of X. If dimX = 0 then X

consists of a finite number of points, and a coherent sheaf F on X is by definition a
finite dimensional vector space over k, so that the theorem is obvious.

Suppose that the theorem holds for complete varieties of dimension less than
dimX. Let us prove that this implies the theorem for all sheaves F on X having
support contained in a closed subvariety Y ⊂X with dimY < dimX.

Indeed, by definition, the sheaf F on Y has F(X)=F(Y ), and we can apply the
assertion of the theorem to coherent sheaves on Y . Here we run into the difficult that
F is not in general coherent on Y , but Proposition 6.3 saves the day. It provides a
sequence

F =F0 ⊃F1 ⊃ · · · ⊃Fm = 0

such that the quotient sheaves F i/F i+1 are coherent on Y and hence we can apply
the inductive assumption to them. We get the existence of a sequence of sheaves
(6.46), from which the finite dimensionality of F(Y ) follows, and hence also that of
F(X).

The next step of the proof consists of reducing the assertion to the case of an irre-
ducible variety. Suppose that X =⋃

Xi is a decomposition into irreducible compo-
nents. Now we can apply Proposition 6.4. The homomorphism ϕ constructed there
has kernel supported in the subvariety

⋃
i �=j Xi ∩Xj , which has dimension less than

dimX. Hence it is enough to prove that (
⊕

Fi )(X) is finite dimensional. But

(⊕
Fi

)
(X)=

⊕
F i (Xi),

and since F i is a coherent sheaf on Xi , this reduces the assertion to the case of the
irreducible varieties Xi .

Finally we can proceed with the central step of the proof, assuming that X is ir-
reducible. Here we build on the foundation of Proposition 6.2. Since X is complete,
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O(X)= k by the discussion in Section 1.1, so that dimOr (X)= r . Since the sup-
port of G/Or is distinct from X, the theorem holds for G/Or , and hence for G we
have a homomorphism ψ : G→ G/Or satisfying conditions (6.45). Hence G(X) is
finite dimensional. On the other hand, the homomorphism ϕ : F → G constructed
in Proposition 6.2 again satisfies (6.45), so that F(X) is finite dimensional, which
is what the theorem asserts. The theorem is proved. �

The theorem we have proved has many important applications. Some of these
have been mentioned earlier. First of all, in Section 1.4 we associated with each
divisor D on a variety X a sheaf LD such that LD(X) is isomorphic to the space
L(D) introduced in Section 1.5, Chapter 3. We saw in Section 3.4 that LD is locally
free of rank 1, and therefore coherent. Thus our theorem is applicable to it, and we
obtain the result that we have already used many times:

Corollary 6.1 The dimension l(D) of a locally principal divisor D on a complete
variety is finite.

Applying the theorem to the sheaf corresponding to the cotangent sheaf Ω1 and
its exterior powers Ωp we get the following result.

Corollary 6.2 On a complete nonsingular variety X, the dimension hp of the space
Ωp[X] of regular differential p-forms is finite.

This result was also stated in Section 6.1, Chapter 3, where we saw that it pro-
vides a series of birational invariants of varieties.

As a further example, consider the sheaf T corresponding to the tangent bundle.
An element of T (X) is called a regular vector field on X. It can be viewed as a
function taking each point x ∈ X to a tangent vector tx ∈Θx at x. In this case our
theorem gives the next result.

Corollary 6.3 The space of regular vector fields on a complete nonsingular variety
is finite dimensional.

3.5 Exercises to Section 3

1 In this question, X is assumed to be irreducible. A coherent sheaf F is a torsion
sheaf if F(U) is a torsion module over OX(U) for any open set U . Prove that F is
a torsion sheaf if and only if its support is distinct from X.

2 Find the general form of torsion sheaves on a nonsingular curve.

3 Let E→X be a vector bundle over an affine variety X = SpecA. Prove that the
set ME of sections of E is a finite A-module.
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4 Prove that the module ME introduced in Exercise 3 is a projective A-module. (For
the definition of a projective module, see for example Bourbaki [18, Section 3.2.2,
Chapter II] or Matsumura [57, Appendix B].)

5 Under the assumptions of Exercise 3, prove that the modules ME and ME′ are
isomorphic if and only if E and E′ are isomorphic vector bundles.

6 Prove that every vector bundle over the affine line A
1 is trivial.

7 Let E→ X be a vector bundle over a complete variety X. Prove that the set of
sections of E is a finite dimensional vector space.

8 Prove that the set of morphisms f : E1 → E2 between vector bundles Ei → X

(for i = 1,2) over a complete variety X is a finite dimensional vector space.

9 Suppose that A is a 1-dimensional regular local ring with field of fractions K ,
and X = SpecA; let x ∈ X be the generic point and U = {x}. A sheaf F of O-
modules on X is given by an A-module M , a K-vector space L and a restriction
map ϕ : M → L which is an A-module homomorphism. Express in terms of M ,
L and ϕ what it means for F to be a coherent sheaf. Construct an example of a
subsheaf of a coherent sheaf which is not coherent.

10 Let X be an irreducible variety and x0 ∈X a closed point. Define a sheaf F on
X by setting F(U) =O(U) if U �� x0 and F(U) = 0 if U � x0. Prove that F is a
sheaf, that it is a subsheaf of O, and that it is not coherent.

4 Classification of Geometric Objects and Universal Schemes

4.1 Schemes and Functors

A phenomenon that has already occurred several times is that a set of certain geo-
metric objects depends on parameters, and more precisely, is parametrised by the
points of some algebraic variety. For example, lines in the projective space P

3 are
parametrised by points of the 4-dimensional Plücker quadric (Section 4.1, Chap-
ter 1). What is the precise meaning of this assertion? What meaning at all? We
indicated the construction of the Plücker coordinates of a line, and showed that it
defines a one-to-one correspondence between lines of P3 and points of the Plücker
quadric. But there is no guarantee that this construction is unique; that is, that we
might not be able to establish some other equally natural one-to-one correspondence
between lines of P3 and points of some other variety, perhaps even of a different di-
mension. After all, as far as set theory goes, the set of lines has only one invariant,
its cardinality. At the same time, it is obviously very important to be able to define
some natural variety (or a more general notion) classifying geometric objects of a
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given type: its properties, such as dimension, rationality or unirationality and so on,
give important characteristics of the whole set of these objects. We describe one ap-
proach that in many cases allows us to determine what precisely it means to say that
a given set of objects is parametrised by the points of a given variety or scheme.

Since we are talking about geometric objects, the notion of an algebraic family of
objects is usually well defined. For example, if we are talking about r-dimensional
linear subspaces of a given vector space V , an algebraic family of these with base S

is a vector bundle E→ S of rank r which is a vector subbundle of the direct prod-
uct S × V . In exactly the same way, since we study objects modulo a well-defined
equivalence relation, this equivalence relation carries over also to families over any
base. For example, in studying the subspaces of a given space V , we naturally con-
sider two vector subbundles E→ S and E′ → S in S × V as the same if they are
equal as subschemes of S × V . Or if we are interested, say, in the classification of
nonsingular complete curves of genus g, then by a family of these curves we mean
a scheme C → S all of whose (scheme-theoretic) fibres over closed points of S

are nonsingular complete curves of genus g. An isomorphism between two families
C→ S and C′ → S is an isomorphism of schemes f : C→ C′ commuting with the
projection to S, that is, such that the diagram

C
f−→ C′

↘ ↙
S

is commutative.
Suppose that for some type of geometric objects we have found a “natural” va-

riety (or scheme) X classifying them. Let’s try to clarify this idea of “naturality”.
Obviously, to each object there should correspond a definite closed point of X. Let
ϕ : Y → S be an algebraic family of our objects over a base which is a variety. Then
to each fibre ϕ−1(s) for s ∈ S there corresponds some point of X, and this defines
a map f : S→ X. In the notion of “naturality” it is first of all reasonable to in-
clude the requirement that this map of points be a morphism, and even to require
that the same type of morphism exists for families whose base is a scheme (with
certain conditions: over a field k, of finite type, and so on). Moreover, it is reason-
able to suppose that two families Y → S and Y ′ → S determine the same morphism
f : S→X if and only if they are equivalent in the sense of the equivalence defined
for our objects. Finally, the “naturality” of X should include the requirement that
every point of X corresponds to some object of our type. Then any map f : S→X

of a variety S to X will determine over each point s ∈ S the object which the point
f (s) ∈ X parametrises; in other words, set-theoretically, it will determine a “fam-
ily” of objects parametrised by points s ∈ S. It is also reasonable to include in the
notion of “naturality” the requirement that if f is a morphism then we obtain in this
way an algebraic family of objects.

All of these conditions are summed up very simply in the single statement that
there should exist a one-to-one correspondence between algebraic families Y → S
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of our objects (the base S may satisfy some restrictions such as being a Noetherian
scheme), considered up to equivalence, and all morphisms S→X.

We now formulate the definition we have arrived at. A scheme X is universal
for some type of objects if for any scheme S (possibly with certain restrictions)
there exists a one-to-one correspondence fS between the set Φ(S) of all algebraic
families Y → S of objects of the given type, considered up to equivalence, and the
set M(S,X) of morphisms S→ X. The correspondence fS : Φ(S)→M(S,X)

should satisfy the following condition: for any morphism ϕ : S→ S′, the diagram

Φ(S′)
fS′−→ M(S′,X)

g
⏐⏐�

⏐⏐�h

Φ(S) −→
fS

M(S,X)

(6.47)

is commutative, where g is defined by taking the inverse image of families under
ϕ (that is, their fibre product or pullback by ϕ), and h by composing a morphism
S′ →X with the morphism ϕ : S→ S′.

In the language of categories, an operation that sends a scheme S to a set Φ(S)

and a morphism ϕ : S → S′ to a map Φ(ϕ) : Φ(S′)→ Φ(S) is called a functor
if for two morphisms ϕ : S→ S′ and ψ : S′ → S′′ we have Φ(ψ ◦ ϕ) = Φ(ϕ) ◦
Φ(ψ). In particular, if Φ(S) is the set of all algebraic families of objects of our
type, and for a morphism ϕ : S → S′ the map Φ(ϕ) : Φ(S′)→ Φ(S) is defined
by taking inverse image of families, then Φ is a functor. A trivial example of a
functor ΨX(S) is determined by an arbitrary scheme X: here ΨX(S)=M(S,X) is
the set of all morphisms S→ X to X and, if ϕ : S→ S′ is a morphism, the map
ΨX(ϕ) : ΨX(S

′)→ ΨX(S) sends f : S′ → X into the composite f ◦ ϕ : S → X.
Diagram (6.47) in the definition of universal scheme means that the functor Φ is
isomorphic to the functor ΨX for some scheme X; in the theory of categories, Φ is
then called a representable functor. Thus the question of the existence of a universal
scheme is the question of the representability of the functor Φ of families of objects
of the given type.

Note that our definition does not in any way guarantees the existence of a uni-
versal scheme: we will soon see that it does not always exist. For the moment, we
assume that a universal scheme exists for objects of some type, and note some prop-
erties that support the naturality of the definition.

First of all, a universal scheme X is unique if it exists. Indeed, if Y is a second
such scheme then by definition, we have isomorphisms u : M(X,X) ∼= Φ(X) ∼=
M(X,Y ) and v :M(Y,Y )∼=Φ(Y)∼=M(Y,X); and a morphism ϕ : X→ Y gives
rise to a commutative diagram

Φ(X)∼=M(X,X)
u→ M(X,Y )

g
�
⏐⏐

�
⏐⏐h

Φ(Y )∼=M(Y,X) →
v

M(Y,Y )

(6.48)
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where g(ξ) = ξ ◦ ϕ and h(η) = η ◦ ϕ. Let 1X : X→ X and 1Y : Y → Y be the
identity morphisms, and set u(1X) = α and v−1(1Y ) = β . Consider the diagram
(6.48) for ϕ = α, and apply it to β ∈M(Y,X); then u(β ◦ α) = α = u(1Y ), and
since u is a bijection, β ◦ α = 1Y . Similarly one proves that α ◦ β = 1X . Therefore
α is an isomorphism.

But we can get even more. In view of the one-to-one correspondence Φ(X) ∼=
M(X,X), the identity morphism 1X ∈M(X,X) determines an element εX ∈Φ(X)

called the universal family over X. It follows from the definition that any family
ξ ∈ Φ(S) not only determines a morphism f : S→ X, but is determined by it, as
the inverse image of the universal family εX under f , that is, as the fibre product
εX ×X S.

Finally, suppose that all the objects and schemes are defined over an algebraically
closed field k. Consider some individual object ξ , that is, a family ξ → Speck.
Then ξ is an element of the set Φ(Speck), which by definition is in one-to-one
correspondence with the set M(Speck,X), that is, with the closed points of X.
Therefore our object ξ determines a closed point of the scheme X, and all objects,
up to equivalence, are in one-to-one correspondence with these points. Thus in this
sense the objects under consideration are parametrised by points of X.

Example 6.22 Let us see that the Grassmannian Grass(r,V ) really is a universal
scheme for r-dimensional subspaces of a vector space V . We consider schemes
over an algebraically closed field k. For a k-scheme S, we define Φ(S) as the
set of vector bundles E → S that are vector subbundles of the direct product
S ×k V . For a morphism ϕ : S′ → S, we define Φ(ϕ) : Φ(S)→ Φ(S′) as the in-
verse image map E �→ E ×S S′. We need to determine a one-to-one correspon-
dence fS : Φ(S)→M(S,Grass(r,V )) which is functorial (that is, gives commuta-
tive diagrams (6.47)). These maps fS are an exact analogue of writing down the
Plücker coordinates (see Example 1.24 of Section 4.1, Chapter 1). Let E → S

be a vector bundle of rank r , and S =⋃
Uα a cover such that E|Uα

∼= Uα × A
r .

We choose a basis f1, . . . , fr in A
r and a basis e1, . . . , en in V . The embedding

E ↪→ S ×k V allows us to express the fi as fi =∑
aij ej with aij ∈ O(Uα), and

f1 ∧ · · · ∧ fr as
∑

pj1...jr ej1 ∧ · · · ∧ ejr with pj1...jr ∈O(Uα). This gives the mor-
phism Uα→∧r

V determined by the functions pj1...jr . From it we get a morphism
Uα→ P(

∧r
V ), which does not depend on the choice of the basis f1, . . . , fr . Ob-

viously pj1...jr satisfy the Plücker equations of the Grassmannian, so that we have
a morphism Uα→ Grass(r,V ). Since these morphisms for different α are defined
invariantly, they glue together to give a global morphism S→ Grass(r,V ) that we
take for fS(E). The inverse map M(S,Grass(r,V ))→Φ(S) is obtained by taking
the inverse image under any map ϕ : S→ Grass(r,V ) of the universal bundle over
Grass(r,V ) (see Example 6.4). It is trivial to check that these two maps are inverse
to one another.

Example 6.23 We now give an example of a situation where the universal scheme
does not exist. This is an extremely important case, nonsingular curves of given
genus g. The reason for nonexistence is already present most vividly in the most
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trivial case, curves of genus 0. We know that all such curves are isomorphic to P
1.

Therefore, if the universal scheme X exists, it must have a single closed point; that
is, it would be an affine scheme SpecA, where A is a local ring. Now consider a
concrete family of curves of genus 0. For this, consider the plane P

2 with coordi-
nates (x0 : x1 : x2) and the rational map P

2→ P
1 given by (x0 : x1 : x2) �→ (x1 : x2).

This has a single point of indeterminacy (1 : 0 : 0). Blowing up this point we get a
surface V and a morphism ϕ : V → P

1 (see the example at the end of Section 3.3
of Chapter 4). The fibres of ϕ are all isomorphic to the projective line, so ϕ is pre-
cisely a family of curves of genus 0 over P1, that is, an element of the set Φ(P1).
If a universal scheme X existed then our family would be the inverse image of the
universal family over X = SpecA under some morphism f : P1→X, and f must
map P

1 to the single closed point of X. However, f then corresponds to another
element of Φ(P1), the direct product P1 × P

1. To nail down the contradiction, it
remains to see that the family V → P

1 is not isomorphic to P
1 × P

1. This follows
for example from the fact that the selfintersection of any divisor on P

1×P
1 is even:

if C1 = P
1 × x and C2 = y × P

1 then any divisor D on P
1 × P

1 is linearly equiva-
lent to n1C1 + n2C2, so that D2 = 2n1n2. On the other hand, V contains the curve
L obtained by blowing up (1 : 0 : 0) ∈ P

2, and L2 = −1 (compare Exercise 14 of
Section 1.5).

The family constructed above is locally trivial: it is easy to see that if U1 = P
1\∞

and U2 = P
1 \ 0 then ϕ−1(U1)∼= U1 × P

1 and ϕ−1(U2)∼= U2 × P
1. But this is not

necessarily the case: the family in P
2 × A

2 given by ξ2
0 = uξ2

1 + vξ2
2 , where A

2

has coordinates u,v and P
2 has coordinates (ξ0 : ξ1 : ξ2) is not isomorphic to a

trivial family over any open subset U ⊂A
2. This follows from the fact that it has no

rational section: there do not exist polynomials p0,p1,p2 ∈ k[u,v] such that p2
0 =

up2
1+vp2

2. Indeed, we can suppose that p0,p1,p2 do not have any common factors.
Setting u = 0 we get p0(0, v)2 = vp2(0, v)2, which is only possible if p0(0, v) =
p2(0, v) = 0, that is, both p0 and p2 are divisible by u. Then p1 would also be
divisible by u.

Of course, similar examples can be constructed for curves of genus g > 0. Nev-
ertheless, the notion of universal scheme can be modified in such a way that it does
exist for curves of any genus. This can be done in two different ways. One can either
drop the requirement in the definition of universal scheme X that the correspondence
between families over S and morphisms S→X be one-to-one, and require only that
every family defines a morphism: then the universal object will exist as a variety. Or
one can insist on having a one-to-one correspondence, but allow the universal ob-
ject to be something more general than a scheme, a so-called topology or algebraic
stack. See Mumford and Fogarty [64] and Mumford [63].

The interpretation of a scheme as a functor has already appeared in a slightly dif-
ferent context. In Section 3.4, Chapter 5 we showed that if x ∈X is any closed point
of a scheme X over a field k, we can describe the tangent space OX,x as the set of
morphisms Mx(SpecD,X), where D = k[ε]/(ε2), and we allow in Mx only the
morphisms that map the closed point of SpecD to the point x ∈X. This interpreta-
tion of the tangent space gives a convenient method of describing it if the scheme
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X itself is a universal scheme for some type of objects. Putting together Proposi-
tion of Section 3.4, Chapter 5 with the definition of a universal scheme shows that
in this case ΘX,x coincides with the set Mx(SpecD,X) ∼= Φx(SpecD) of fami-
lies over SpecD with given fibre over the point 0. This provides grounds for the
intuition that the tangent vector to a universal scheme is a first order infinitesimal
deformation of a given object.

Example 6.24 (The tangent space to the Grassmannian Grass(r,V )) Suppose that a
point x ∈Grass(r,V ) corresponds to a vector subspace E with basis e1, . . . , er . By
what we said above, Θx is isomorphic to the set of vector bundles over SpecD that
are vector subbundles of SpecD × V with fibre over 0 equal to E. Passing to the
corresponding sheaves, we see that a vector bundle over SpecD is a module over
D that is locally free, hence free. Hence the vector bundle is trivial and has basis
e1+ εu1, . . . , er + εur . It remains to determine when two bases of this form give the
same vector subbundle of SpecD×V . If the second basis is e1+ εv1, . . . , er + εvr
then this will happen if and only if

ei + εvi =
∑

j

(cij + εdij )(ej + εuj )

for i = 1, . . . , r . This implies ei =∑
cij ej , so that (cij ) is the identity matrix. Next,

vi =∑
cij uj +∑

dij ej = ui +wi , where wi =∑
dij ej is an arbitrary vector in E.

Thus the vector subbundle of SpecD × V is uniquely determined by the vectors ui
in V/E. Setting ϕ(ei) = ui modE, we see that the required vector subbundles are
uniquely specified by homomorphisms ϕ : E→ V/E, so that Θx

∼=Hom(E,V/E).

Example 6.25 (The scheme of associative algebras) (See Example 2.5 of Sec-
tion 4.1, Chapter 1 and Example 5.20.) A closed point of this scheme is a mul-
tiplication E × E→ E; if E has basis e1, . . . , en, the multiplication is given by
eiej =∑

cmij em. Tautologically, the scheme is universal for multiplication laws in
S ×k E, where now S is an arbitrary scheme and cmij ∈ O(S). Hence if x is the
closed point of this scheme corresponding to the structure constants {cmij }, the tan-
gent space Θx is isomorphic to the set of multiplication laws on D × E of the
form eiej =∑

(cmij + εdmij )em where dmij ∈ k are any elements for which this mul-
tiplication is associative. The associativity condition can be written out at once by
comparing the coefficient of ε in (eiej )ek and ei(ej ek):

∑

m

cmij d
l
mk +

∑

m

dmij c
l
mk =

∑

m

cmjkd
l
im +

∑

m

cmjkd
l
im

for all i, j, k, l. These are the same equations as we obtained in Example 2.5 of
Section 1.3, Chapter 2 by differentiating the associativity relation; but now they
have acquired a transparent meaning, as the first order infinitesimal deformations of
the structure constants.
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4.2 The Hilbert Polynomial

The remainder of this section will be taken up with the description of the universal
scheme for an extremely important type of object: closed subvarieties, and even
subschemes of projective space P

N . For the case of linear subspaces we already
know the universal scheme, the Grassmannian.

Already in the example of linear subspaces we see that, rather than consider-
ing all subvarieties at the same time, we get the natural answer by breaking up the
subvarieties into classes, and then considering these separately. In the case of the
Grassmannian, we fixed the dimension r of the subspace and its degree 1. We now
describe similar discrete invariants of projective schemes that one has to fix in order
to arrive at the natural universal schemes; these are the so-called Hilbert polynomi-
als.

With each projective subscheme X ⊂ P
N we associate an infinite sequence ar(X)

of integers: ar(X) is the number of forms of degree r in the homogeneous coordi-
nates of PN that are linearly independent on X. To give a more formal definition,
consider the homogeneous ideal aX of a projective scheme X ⊂ P

N (Section 3.3,
Chapter 5, and compare Section 4.1, Chapter 1), and write a

(r)
X for its homoge-

neous piece of degree r , that is, the space of forms of degree r in aX . Write S(r)

for the space of forms of degree r in the homogeneous coordinates of P
N . Now

set ar(X) = dimk S
(r)/a

(r)
X . These numbers depend, of course, on the embedding

X ↪→ P
N , and in this respect they are analogous to the degree.

The infinite sequence of numbers just constructed can be described in finite
terms.

Theorem 6.5 There exists a polynomial PX(T ) ∈ Q[T ] such that ar(X) = PX(r)

for all sufficiently large integers r .

The polynomial PX(T ) whose existence is established in the theorem is obvi-
ously uniquely determined. It is called the Hilbert polynomial of X.

Proof The theorem is proved by induction on the dimension N , and, as often hap-
pens, it is convenient to prove a more general assertion. Consider a finite graded
module M over the polynomial ring S = k[ξ0, . . . , ξN ]. This means that M is a
module over S, with a fixed decomposition M =⊕

M(r) as a direct sum of k-vector
subspaces such that

x ∈M(r) and f ∈ S(l) =⇒ f x ∈M(r+l).

The subspaces M(r) are called the homogeneous pieces of M of degree r . Each sub-
space M(r) is finite dimensional over k: indeed, as a k-vector space, M(r) ∼=M ′r =
(
⊕

i≥r M(i))/(
⊕

i>r M
(i)), where ξiM

′
r = 0 for each i, so that M ′r is a finite mod-

ule over k. We set ar(M)= dimk M
(r) and prove that the statement of the theorem

holds for ar(M). The theorem itself is obtained by setting M = S/aX .
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We can set S = k for N = −1 and assume that in this case a graded module
over S is of the form M =M0, with M0 a finite dimensional graded k-vector space.
From this point on, the theorem is proved by induction on N . Consider the ho-
momorphism ξN : M →M consisting of multiplication by the variable ξN . Then
ξNM

(r) ⊂M(r+1), which implies that the kernel K and cokernel C =M/ξNM are
both graded modules: K =⊕

K(r) and C =⊕
C(r), where K(r) =M(r) ∩K and

C(r) =M(r)/ξNM
(r−1). We have an exact sequence

0→K(r)→M(r) ξN−→M(r+1)→ C(r+1)→ 0. (6.49)

Now by construction K and C are graded S-modules on which ξN acts by 0, so that
we can view them as modules over k[ξ0, . . . , ξN−1] and assume by induction that
the assertion holds for them. Write PK and PC for the polynomials corresponding
to them. Then the exact sequence (6.49) implies that

ar+1(M)− ar(M)= PC(r + 1)− PK(r).

for all sufficiently large r . Now it follows from very simple properties of polynomi-
als (see Section 2, Appendix) that a sequence of integers satisfying this condition is
given for all sufficiently large r as the values of some polynomial PM(T ) ∈Q[T ],
that is, ar(M)= PM(T ), as asserted. �

Example 6.26 Let X ⊂ P
N be a 0-dimensional subscheme. Suppose that the un-

derlying set Xred does not intersect the hyperplane ξ0 = 0. Taking a homogeneous
polynomial F ∈ S(r) to the polynomial f = F/ξr0 ∈ k[x1, . . . , xN ] = k[AN ] where
xi = ξi/ξ0, we see that S(r)/a(r) ∼= V (r)/(V (r) ∩ I ), where V (r) ⊂ k[x1, . . . , xN ]
is the space of polynomials of degree ≤ r and I the ideal defining the subscheme
X ⊂ A

N . Since dimV (r)/(V (r) ∩ I ) ≤ dimV (r+1)/(V (r+1) ∩ I ), the sequence of
numbers ar(X) stabilises from some r onwards. It follows that PX(T ) = const. =
dimk[AN ]/I . In other words,

X = SpecA, A= k
[
A
N

]
/I and PX(T )= const.= dimk A.

Since S(r) �= a
(r)
X for any r (assuming X nonempty), the Hilbert polynomial can-

not be identically zero. We now determine how it reflects two of the simplest in-
variants of a scheme X, the dimension and the degree. We only carry through the
proof in the case that X is a nonsingular variety (possibly irreducible). The same
result holds for arbitrary closed subschemes X ⊂ P

N , but to prove it requires a little
more commutative algebra (see Hartshorne [37, Section 7, Chapter I] or Fulton [29,
Example 2.5.2]).

Theorem 6.6 The Hilbert polynomial PX of a nonsingular variety X has degree
equal to the dimension of X. If X has dimension n and degree d then the leading
term of PX is (d/n!)T n.
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Proof The proof is based on the same arguments as that of Theorem 6.5. We use
induction on n= dimX. If n= 0, the result follows from Example 6.26: X consists
of d distinct points, and A= k[AN ]/I is a direct sum of d copies of k, and obviously
ar(X)= d for r 0. This proves the theorem in this case.

In the general case, choose a coordinate system such that the hyperplane ξN = 0
is transversal to X at all points of intersection. The fact that this is possible follows
easily from the usual dimension count that we have used many times. Write P

∗
for the projective space of hyperplanes of PN . In X × P

∗ we need to consider the
subvariety Z = {(x,λ) | x ∈ X,λ ∈ P

∗ and λ ⊃ ΘX,x}. Considering the projection
Z→ X shows that dimZ ≤ N − 1, and hence the image of the projection of Z to
P
∗ is not the whole of P∗. Hence there exists a hyperplane transversal to X at every

point of intersection, and we can take this to be ξN = 0.
We now apply the argument from the proof of Theorem 6.5 to the module M =

S/aX and determine K and C in this case. We prove that K = 0. Suppose that F ∈
K(r), that is, ξNF = 0 on X. Then for any i < N the function f = F/ξri satisfies
(ξN/ξi)f = 0 on X. But uN = ξN/ξi is part of a local parameter system at every
point of XN at which uN = 0, and we saw in Section 1.2, Chapter 4 that none of
the local parameters can be a zerodivisor. A fortiori uN is not a zerodivisor in a
neighbourhood of points where uN �= 0. Therefore f = 0 on every component of
X, that is, F ∈ aX .

Let us determine the module C. In what follows we use the notation introduced
after the definition of projective scheme in Section 3.3, Chapter 5. By definition
C = S/(ξN ,aX). The ideal (ξN ,aX) consists of forms that vanish on X′, the section
of X with the hyperplane ξN = 0. We prove that (ξN ,aX)= aX′ . For this it is enough
to check on each affine open set Ui given by ξi �= 0 that (xN,ai )= a′i , where xN =
ξN/ξi and a′i is the ideal of functions that vanish on the intersection of X ∩ Ui

with xN = 0. It is enough to prove that (xN,ai )/ai = a′i/ai in k[X ∩ Ui]. For this
it is enough to prove that if ϕ ∈ k[X ∩ Ui] and ϕρ ∈ (xN) then ϕ ∈ (xN). This
property holds locally in the neighbourhood of any point α ∈ X ∩ Ui . Indeed, as
usual, it is enough to check this in the local ring Oα of a point α. We need to
prove that if ϕρ ∈ (xN) then ϕ ∈ (xN) for ϕ ∈Oα . But this follows at once because
Oα is a UFD (Theorem 2.10 of Section 3.1, Chapter 2), together with the fact that
xN is prime, as an element of a local system of parameters. Passing to the global
situation, we can cover X ∩ Ui by open sets of the form D(fλ) and assume that
ϕ ∈ (xN,a′i )k[D(fλ)] for every λ. Now it is enough to find for any arbitrarily large
m functions gλ ∈ k[X ∩ Ui] such that

∑
f m
λ gλ = 1. Then ϕ = ϕ

∑
f m
λ gλ and we

can assume that ϕfm
λ ∈ (xN ,a′i ) by the choice of m.

Thus in the sequence (6.49) we now have K = 0 and C = S′/aX′ where S′ =
k[ξ0, . . . , ξN−1] and X′ is nonsingular, (n− 1)-dimensional and of degree d . Using
induction we can assume that the theorem holds for X′. We have an exact sequence

0→ S(r)/a
(r)
X

ξN−→S(r+1)/a
(r+1)
X → S′(r+1)/a

(r+1)
X′ → 0,

and hence for sufficiently large r we have

PX(r + 1)− PX(r)= PX′(r + 1),
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that is,

PX(T + 1)− PX(T )= PX′(T + 1). (6.50)

By induction, we can assume that PX′(T ) has leading term (d/(n−1)!)T n−1. Writ-
ing the leading term of PX(T ) as aT m we see from (6.50) that m= n and a = d/n!,
as asserted in the theorem. �

The Hilbert polynomial provides the most natural answer to the question dis-
cussed at the beginning of this section of dividing up all projective subschemes
X ⊂ P

N into natural classes, the classes of X with given Hilbert polynomial.

4.3 Flat Families

We proceed to consider families of closed subschemes X ⊂ P
N with a given Hilbert

polynomial. First of all, we have to determine when all the schemes of a family
with irreducible base have the same Hilbert polynomial. The fact that this does not
always happen is shown by the following examples.

Example 6.27 Let σ : X→ Y be a blowup of a point y0 ∈ Y with dimX = dimY >

1, and let Z = σ−1(y0). Then for y ∈ Y , we have dimσ−1(y) = 0 if y �= y0 and
dimσ−1(y0) > 0. By Theorem 6.6, even the degree of the Hilbert polynomial
changes.

Example 6.28 Let X be a curve with an ordinary double point x0 and let Xν be
the normalisation of X. We consider the family ν : Xν → X as a family of 0-
dimensional schemes over the base X. Then for x �= x0 the fibre ν−1(x) is a
single point, and ν−1(x0) is two points, that is, ν−1(x) ∼= Speck and ν−1(x0) ∼=
Spec(k ⊕ k). By Example 6.26, we have Pν−1(x)(r) = const. = 1 for x �= x0 but
Pν−1(x0)

(r)= const.= 2.

Example 6.29 Suppose that chark �= 2; let g be the automorphism of X = A
2 of

order 2 given by g(x, y)= (−x,−y) and S =X/G the quotient of X by the group
G= {1, g} (see Example 1.21 of Section 2.3, Chapter 1 and Section 2.1, Chapter 2).

Then S ⊂A
3 is given by uv =w2, and the morphism X→ S by u= x2, v = y2

and w = xy. We view X→ S as a family of 0-dimensional subschemes of A2 with
base S. For s = (a, b, c) ∈ S, the fibre f−1(s)= Speck[x, y]/I where I is the ideal
I = (x2 − a, y2 − b, xy − c). Multiplying xy − c by x and by y, we see that I �
ay − cx and bx − cy. Thus if, say, a �= 0, we have I = (x2 − a, y − (c/a)x), and
k[x, y]/I ∼= k[x]/(x2− a), so that dimk[x, y]/I = 2. By Example 6.27, this means
that Pf−1(s)(r)= const.= 2. The same holds if b �= 0. However, if s = (0,0,0) then
I = (x2, xy, y2) and dimk[x, y]/I = 3, that is, Pf−1(s)(r)= const.= 3.
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Thus we can only expect the Hilbert polynomial of fibres to remain constant
in a family under some condition of “continuity” or “fluidity” of the fibres of the
family. There does indeed exist such a condition, reflecting perfectly the idea of “no
jumping” of the fibres; it is the condition that the family is flat. The definition of flat
may seem somewhat strange at first sight, since it is purely algebraic in nature. It is
hard to lead the reader to this notion by pure logic; it is easier to define it first, then
to show just how useful it is.

Definition A module M over a ring A is flat if for any ideal, a⊂ A the surjective
map a⊗M→ aM defined by α⊗m �→ αm is an isomorphism. A family f : X→
S, where X and S are schemes, is flat if Ox is flat as a module over Of (x) for every
x ∈X. We then also say that f is a flat morphism, or that X is flat over S.

To check that M is a flat A-module, it is enough to check that the homomorphism
a⊗M→M defined by α ⊗m �→ αm has no kernel. In particular, if a = (a) is a
principal ideal and a is a non-zerodivisor, the condition reduces to saying that the
only element of M killed by a is 0. Thus a flat module over an integral principal
ideal domain is just a torsion-free module.

We note that an individual scheme over a field k (that is, S = Speck) is automat-
ically flat; thus flatness is a dynamic property, reflecting the change of the schemes
in a family over a base S.

We now enumerate a number of properties of flat morphisms that we neither
prove nor make use of, and which characterise flat families as “families with no
jumping”. They are all geometric restatements of the corresponding properties of
rings, and are proved in this form in Bourbaki [17].2

Proposition A If X and S are irreducible schemes of finite type over a field k and
f : X→ S is a flat morphism, then all the fibres of f have the same dimension.
(Compare Example 6.27.)

Proposition B A finite morphism f : X→ S of Noetherian schemes is flat if and
only if �k(s)(f−1(s)) is a locally constant function of s ∈ S. Here �k(s)(f

−1(s)) =
dimAs , where the fibre is f−1(s)= Spec(As). (Compare Examples 6.28–6.29.)

Proposition C If X and S are nonsingular varieties and f : X→ S a morphism
such that df : ΘX,x→ΘS,f (x) is surjective for every x ∈X then f is flat.

Proposition D If f : X→ S is a flat morphism and S′ → S an arbitrary morphism
then f ′ : X×S S

′ → S′ is again flat.

Proposition E For rings A and B and a homomorphism f : A→ B , the morphism
ϕ : SpecB→ SpecA is flat if and only if the ring B is flat over A.

2Compare also Hartshorne [37, especially A: Proposition 9.5, B: Theorem 9.9, C: Proposition 10.4,
D–E: Proposition 9.2, Chapter III].
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In what follows, we need one very particular case of this final property.

Lemma Let A be a principal ideal domain, and B an A-algebra; if SpecB is flat
over SpecA then B is a flat A-algebra.

Proof We need to show that a nonzero element a ∈ A is a non-zerodivisor in B .
The given information is that the localisation BP of B at any prime ideal P ⊂ B is
flat over Ap, where p = P ∩ A. Hence if ab = 0 for some b ∈ B then ϕP (b) = 0,
where ϕP : B→ BP is the localisation map (Section 1.1, Chapter 2). We prove that
this implies b = 0; moreover, the conditions ϕm(b)= 0 for all maximal ideal of B
is already sufficient. Indeed, it follows from this that for any maximal ideal m there
exists an element cm ∈ B such that cm /∈m and bcm = 0. Then bI = 0, where I is
the ideal generated by all the cm. But I is not contained in any maximal ideal m,
since it contains cm /∈m. Hence I = B and b= 0. The lemma is proved. �

For the questions we are interested in, the flat condition on a family is also re-
lated to “uniformity”: the Hilbert polynomial is constant in a flat family of closed
subschemes of Pn with a connected base S. Straightforward arguments reduce this
assertion to the case that S is Spec of a 1-dimensional regular local ring. Namely,
it is enough to prove the theorem for a 1-dimensional base S, since in the gen-
eral case we need only join any two points of S by a chain of curves. Moreover,
we can assume that S is irreducible and normal, since otherwise we need to pass
to the normalisation Sν and pullback our family to Sν , that is, replace X→ S by
X ×S Sν → Sν . Finally, to prove that the Hilbert polynomial of the fibres over all
points s ∈ S coincide, it is enough to prove this for any closed point s ∈ S and the
generic point η ∈ S. We set A=Os and pass to the family X×S SpecA, thus reduc-
ing the assertion to the following: to prove that the Hilbert polynomial of the fibres
over the closed and generic points of SpecA are equal. We now consider this case.

We will understand a family of closed subschemes of P
N over the base S =

SpecA to mean a closed subscheme of PN
A . Since there is a canonical morphism

P
N
A → SpecA, a morphism X→ SpecA is defined for any closed subscheme X ⊂

P
N
A , which allows us to view X as a family over the base SpecA.

Theorem 6.7 Let A be the local ring of a nonsingular point of a curve over an
algebraically closed field, and X ⊂ P

N
A a closed subscheme such that the morphism

X→ SpecA is flat. Then the fibres of X over the closed and generic points of SpecA
have the same Hilbert polynomial.

Proof Let

aX =
⊕

r≥0

a
(r)
X ⊂ Γ =A[T0, . . . , TN ]

be the homogeneous ideal corresponding to the closed subscheme X. Set B =
Γ/aX =⊕

r≥0 B
(r). Then each B(r) is a finite A-module. Let K be the field of

fractions of A and (τ ) ⊂ A the maximal ideal. The fibre X ⊗A K of X over the
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generic point of SpecA is defined by the ideal aX ⊗K ⊂ K[T0, . . . , TN ]; and the
fibre X⊗A k over the closed point is defined by the ideal aX/τaX ⊂ k[T0, . . . , TN ].
Hence the Hilbert polynomial of the fibre over the generic point is defined by the
dimensions of the K-vector spaces B(r) ⊗A K and that of the fibre over the closed
point by the dimensions of the k-vector spaces B(r)/τB(r). Since B(r) is a finite
A-module, the equality

dimK

(
B(r) ⊗A K

)= dimk

(
B(r)/τB(r)

)

just means that B(r) is torsion-free for all sufficiently large r , and, for this, it is
enough to check that τb= 0 with b ∈ B(r) is only possible for b= 0.

The ring B defines an affine scheme Z = SpecB . This is called the affine cone
over X, and X is the base of the cone Z; compare Exercise 8 of Section 4.5. The
intersection aX ∩ A is an ideal of A. If this ideal were nonzero it would be of the
form (τ k) for some k ≥ 0, and thus τ kB = 0; one sees easily that this would imply
τ kOX = 0, so that OX would not be flat over A. Hence aX∩A= 0, that is, B(0) =A.

Write ηi for the images of the Ti in B , and I for the ideal (η0, . . . , ηN). By
what we just said B/I ∼= A, so that I is a prime ideal. Write ζ for the point of Z
corresponding to this prime ideal. We call it the vertex of Z. Obviously the sub-
scheme defined by η0, . . . , ηN is the closure of ζ , that is,

⋂N
0 V (ηi)= ζ , and hence

Z \ ζ =⋃N
0 D(ηi).

Consider a set D(ηi). By definition D(ηi) = Spec(Bηi ), where Bηi is the ring
of fractions u/ηνi with u ∈ B and ν ≥ 0. If u =∑

u(r) then u/ηνi can be written
uniquely in the form

∑
η
νr
i (u(r)/ηri ). Here νr = r − ν is an integer, possibly neg-

ative, so that u/ηνi can be written as a polynomial in ηi and η−1
i with coefficients

of the form u(r)/ηri . We have seen (Section 3.3, Chapter 5) that elements u(r)/ηri
form a ring Ci = Ai/ai with SpecCi = Vi ⊂ X. Hence Bηi = Ci[ηi, η−1

i ]. Since
Spec(Z[T ,T −1]) ∼= A

1 \ 0, D(ηi) ∼= Vi × (A1 \ 0). It is easy to see (we do not
require this) that the projections D(ηi)→ Vi glue together to a global morphism
Z \ ζ →X. That is, removing the origin, the cone has a projection to its base with
fibre A

1 \ 0 (because we removed the origin). Note that we have proved more: this
is a locally trivial fibration—over each Vi it turns into a direct product. (See Fig-
ure 28.)

Thus Z \ ζ is covered by N + 1 open sets each of which is isomorphic to Vi ×
(A1 \0) where Vi ⊂X are open sets. Since X is flat over A so are the schemes Vi . It
follows that the Vi × (A1 \ 0) are also flat over A; since in our case flat is equivalent
to torsion-free, this follows from the fact that Vi = SpecCi and Vi × (A1 \ 0) =
SpecCi[T ,T −1]. Finally, since flat is a local condition, we conclude that Z \ ζ is
flat over A.

What does this mean from the point of view of B? If we recall the definition of
the ring O(U) for an open set U ⊂ SpecB (Section 2.2, Chapter 5), the answer is as
follows: suppose that b ∈ B and τb= 0; then for any f ∈ (η0, . . . , ηN) the element b
is zero on the open set D(f ), that is, f sb= 0 for some s > 0. In particular ηsii b= 0
for some si , and hence I tb= 0 for t ≥ s0 + · · · + sN .
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Figure 28 The affine cone

All elements b ∈ B with τb = 0 form an ideal J , which, since B is Noetherian,
has a finite basis, say, J = a1B + · · · + amB . From the fact that I ti ai = 0 for some
ti > 0, it follows that all components of aiB of sufficiently high degree are zero,
and therefore the same holds for J . This means that J ∩B(r) = 0 for all sufficiently
large r ; that is, B(r) is a torsion-free module, and this is what we had to prove. �

4.4 The Hilbert Scheme

We can now state the fundamental existence theorem. Let S be a scheme over a
field k. A family of closed subschemes of PN with base S is a closed subscheme
X ⊂ P

N ×k S with the natural projection morphism X→ S. Let P ∈ Q[T ] be a
polynomial. Consider the functor ΨP that sends a scheme S to the set ΨP (S) of all
flat families of closed subschemes of PN with base S and Hilbert polynomial P . For
a morphism f : S′ → S, we define ΨP (f ) to be the map ΨP (S)→ ΨP (S′) which
sends a family X→ S into the pullback family X′ =X×S S

′ → S′.

Theorem F There exists a universal scheme HilbP
PN for the functor ΨP ; it is a

projective scheme over k, called the Hilbert scheme of PN .

The proof of this theorem is not difficult, but we cannot give it here because
it uses cohomological methods. Roughly speaking, one proves that for sufficiently
large r , the homogeneous ideal aX of any flat family X→ S with Hilbert poly-
nomial P has every homogeneous component a(t)X with t ≥ r generated by forms

of degree r , that is, a
(t)
X = Γ (t−r) · a(r)X . For r sufficiently large, the codimen-

sion of a
(r)
X ⊂ Γ (r) equals P(r), and it determines a point of the Grassmannian

Grass(
(
N+r
r

)
,P (r)). Conversely, this point determines a

(r)
X . One checks further-

more that, for sufficiently large r , the points of Grass(
(
N+r
r

)
,P (r)) for which

the corresponding space of forms a(r) generates a homogeneous ideal a defining
a closed subscheme with Hilbert polynomial P is itself a closed subscheme of
Grass(

(
N+r
r

)
,P (r)). This is the universal scheme HilbP

PN .
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It follows easily from Theorem F (or it can be proved directly in the same way as
Theorem F) that if Y ⊂ P

N is a closed subscheme then closed subschemes of Y with
given Hilbert polynomial P also have a universal family HilbPY . The proof of these
theorems are given in condensed form in Grothendieck’s Bourbaki seminars [35].
For the case of 1-dimensional subschemes of a surface Y it is given in Mumford
[62]. The general case is worked out in Altman and Kleiman [5, 6].

It is also proved that for a given polynomial P(T ) the Hilbert scheme HilbP
PN is

connected; for a simple proof of this theorem of Hartshorne, see Cartier’s Bourbaki
seminar [21]. Thus the Hilbert polynomial is a complete set of discrete invariants of
projective schemes.

Applying Theorem F, we now show how one can find the tangent space to a point
of HilbP

PN .

Theorem 6.8 Let X ⊂ P
N be a closed subscheme. The tangent space to the

Hilbert scheme HilbPX

PN at the point corresponding to X is isomorphic to the space
NPN/X(X) of sections of the normal sheaf NPN/X (Example 6.21).

Proof Write x ∈ HilbPX

PN for the point corresponding under the universal property
of the Hilbert scheme Hilb to the scheme X. The tangent space to Hilb, as for
any scheme, equals Mx(SpecD,HilbPX

PN ), where D = k[ε]/(ε2) (by Proposition of
Section 3.4, Chapter 5). If we now use the universal property of the Hilbert scheme,
this set can be given another interpretation: it equals the set of flat families of closed
subschemes X̃ ⊂ P

N
D with base SpecD whose fibre over the closed point of SpecD

coincides with X. We now describe this set.
We start with the analogous problem for affine schemes. Let A and B be algebras

over k with B = A/I , so that SpecB ⊂ SpecA is a closed subscheme. Write Ã =
A ⊗k D = A ⊕ εA. A closed subscheme of Spec Ã is of the form Spec B̃ , where
B̃ = Ã/Ĩ , and Ĩ ⊂ Ã is an ideal such that (Ĩ + εA)/εA= I . Since D has a unique
nonzero ideal (ε), flatness over D means the isomorphism ε ⊗ B̃ ∼= εB̃ . In other
words, this means that for b̃ ∈ B̃ , we have εb̃ = 0 ⇐⇒ b̃ = εc̃. Or in terms of the
ideal Ĩ , if εã ∈ Ĩ for ã ∈ Ã then ã ≡ εx̃ mod I ; then ã = εx̃ + i for some i ∈ I and
εã = εi. That is, B̃ flat over D is the condition that

εA∩ Ĩ = εI. (6.51)

By assumption, (Ĩ+εA)/εA= I , that is, any element j ∈ Ĩ is of the form j = i+εa

with a ∈ A, and conversely, for any i ∈ I one can find a ∈ A such that i + εa ∈ Ĩ .
By (6.51), εI ⊂ Ĩ , and hence a is only defined modulo I . But for given i ∈ I , it
follows from (6.51) that the residue class modulo I consisting of elements a such
that i + εa ∈ Ĩ is uniquely determined. Thus by condition (6.51), that is, by the
flatness of B̃ over D, the ideal Ĩ is determined by a homomorphism ϕ : I→A/I =
B , and consists of elements i + εa such that a ∈ ϕ(i). We see that the set of closed
subschemes of Spec Ã flat over SpecD which intersect the closed fibre in the given
scheme SpecB is the set HomA(I,B). Since IB = 0, any ϕ ∈ HomA(I,B) has
ϕ(I 2)= 0, so that HomA(I,B)=HomA(I/I

2,B).
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In the case of any scheme P (for example PN ), closed subschemes of P×SpecD
that are flat over D are described in an entirely analogous way. We have to cover
P by affine pieces Uα = SpecAα . The closed subscheme X ⊂ P defines in Uα a
subscheme Uα ∩X = Uα ×P X = Spec(Aα/Iα). A family X̃ ⊂ P × SpecD with
closed fibre equal to X determines by what we said above homomorphisms ϕα ∈
HomAα (Iα/I

2
α ,Aα/Iα). These homomorphisms must be compatible on Uα ∩ Uβ ,

and hence they define a global homomorphism ϕ : IX/I2
X → OX of coherent

sheaves on X, where IX is the sheaf of ideals defining the subscheme X ⊂ P .
Conversely, any homomorphism of coherent sheaves ϕ : IX/I2

X → OX defines
flat subschemes X̃α ⊂ Uα × SpecD that are compatible, that is, a subscheme
X̃ ⊂P × SpecD.

We see that all families of the type we are interested in are described by homo-
morphisms ϕ : IX/I2

X→OX of sheaves of OX-modules. The homomorphism ϕ is
a section over X of the sheaf Hom(IX/I2

X,OX). Since Hom(IX/I2
X,OX)=NP/X

(see Example 6.21), the families under consideration are in one-to-one correspon-
dence with elements of the set NP/X(X). By what we said at the start of the proof
we thus establish a one-to-one correspondence between the set NP/X(X) and the

tangent space to the Hilbert scheme HilbPX

PN . A routine verification shows that this
correspondence is an isomorphism of vector spaces; we need to use the interpreta-
tion of the algebraic operations in the tangent space indicated after Proposition of
Section 3.4, Chapter 5. The theorem is proved. �

Mumford [62, Lecture 22] gives an example (already known in different ter-
minology to the ancient Italian geometers) of a nonsingular projective surface Y

containing a curve C which does not move on Y , but for which the tangent space
to the scheme HilbPC

Y at the point ξ corresponding to C is 1-dimensional. That is,

the reduced subscheme of HilbPC

Y in a neighbourhood of ξ consists of the single

point ξ , but the local ring of this point on HilbPC

Y has nonzero nilpotent elements;

in other words, this component of HilbPC

Y is of the form SpecA where A is a fi-
nite dimensional k-algebra with radical m and A/m= k. This result shows that the
curve C on Y can be moved infinitesimally to first order, but not moved globally. It
again demonstrates vividly that schemes with nilpotent elements appear naturally in
entirely classical questions of algebraic geometry.

The Hilbert scheme plays a basic role not only in studying subschemes of PN ,
but also in the study of algebraic varieties in the “abstract” setting, that is, up to iso-
morphism. The reason, of course, is that one problem can be reduced to the other.
Thus we saw in Section 7.1, Chapter 3 that for a nonsingular projective curve X

of genus g > 1 the map ϕ3K corresponding to the divisor class 3K is an isomor-
phic embedding X ↪→ P

5g−6. The images of curves of genus g under this em-
bedding are curves of degree 6g − 6, and their Hilbert polynomial is easily seen
to be P(T ) = (6g − 6)T − g + 1. They are thus parametrised by points of the
scheme HilbP

P5g−6 : more precisely, by points of the locally closed subset Hg corre-
sponding to nonsingular curves for which the hyperplane section is in the class 3K .
Points x, y ∈Hg correspond to isomorphic curves if and only if the curves in P

5g−6
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parametrised by x and y are taken into one another by a projective transformation.
Thus Hg has an action of the group G of projective transformations of P5g−6, and
all nonsingular projective curves of genus g (up to isomorphism) are parametrised
by the points of the quotient space Hg/G. A treatment of this theory is contained in
Mumford and Fogarty [64].

4.5 Exercises to Section 4

1 Prove that for a closed subscheme X ⊂ P
N
k the power series

∑
r≥0 ar(X)T r rep-

resents a rational function.

2 Find the numbers ar(X) and the Hilbert polynomial PX(T ) for a projective curve
X ⊂ P

2 of degree d . From what value of r is it true that ar(X)= PX(r)?

3 Find the Hilbert polynomial of a hypersurface of degree d in P
N .

4 Find and prove a relation analogous to (6.50) in the case that X′ is the intersection
of X with a hypersurface of degree d transversal to X.

5 Find the Hilbert polynomial for the variety that is the intersection of two nonsin-
gular transversal hypersurfaces of degree d1 and d2 in P

N .

6 Is the ring B = k[T ] flat over its subring consisting of polynomials F(T ) such
that F ′(T )= 0?

7 Prove that a localisation AS of any ring A is flat over A.

8 Prove that if X ⊂ P
N is a closed variety then the cone Z over it (introduced in

proof of Theorem 6.7) is contained in A
N+1.

9 Prove that if a, b ∈ k with 4a3 + 27b2 �= 0 and c(t) ∈ k[t] then the family of
elliptic curves y2 = x3 + ac(t)2x + bc(t)3 has all the fibres over t with c(t) �= 0
isomorphic. Prove that if c(t) is not a perfect square in k[t] then the family is not
isomorphic to a direct product over any open set U ⊂A

1. Deduce from this that for
elliptic curves there does not exist a universal family.

10 Find the Hilbert polynomial for the two curves of degree 2 in P
3: a plane irre-

ducible conic and a pair of skew lines.

11 Let ϕ : X→ A
1 = Speck[t] be a family of curves of degree 2 in P

3 whose
fibres over t �= 0 are pairs of skew lines, and over t = 0 a pair of intersecting lines.
Describe the scheme ϕ−1(0).
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12 Prove the converse of Theorem 6.8: if X→ SpecA is a projective scheme over
a 1-dimensional regular local ring A, and the fibres of X over the closed and generic
points of SpecA have the same Hilbert polynomial, then X is flat over SpecA.



Book 3: Complex Algebraic Varieties
and Complex Manifolds



Chapter 7
The Topology of Algebraic Varieties

1 The Complex Topology

1.1 Definitions

We saw in Section 2.3, Chapter 2, that the set of complex points of an algebraic
variety X defined over the field C of complex numbers is a topological space. In
Section 2.3, Chapter 2, this was proved for quasiprojective varieties, at the time
the only varieties known to us. But the same arguments are valid also for arbitrary
varieties. We give here a general definition; the topology of X that comes from its
structure of a scheme is called its Zariski topology.

We first introduce some notation. For a variety X defined over C we write X(C)

for its set of closed points. Consider an open set U ⊂ X in the Zariski topology,
a finite number of regular functions f1, . . . , fm on U and a number ε > 0. Write
V (U ;f1, . . . , fm; ε) for the set of points

V (U ;f1, . . . , fm; ε)=
{
x ∈U(C)

∣∣ ∣∣fi(x)
∣∣ < ε for i = 1, . . . ,m

}
.

We make X(C) into a topological space by taking the V (U ;f1, . . . , fm; ε) as
a basis for the open sets. The topology defined in this way is called the complex
topology. We compare it with the Zariski topology considered earlier. If Y ⊂ X is
closed in the Zariski topology then Y(C)⊂X(C). It follows from the definition that
Y(C) is also closed in the complex topology, and that the complex topology of Y(C)
is the same as its topology as a subset of X(C). However, not every closed set in
the complex topology of X(C) is of the form Y(C). An example is the set of points
x ∈ A1(C) with |t (x)| ≤ 1, where t is a coordinate on A

1. A morphism f : X→ Y

obviously defines a continuous map f : X(C)→ Y(C).
In certain respects the complex topology is simpler than the Zariski topology. As

a very simple example, we show that (X1 ×X2)(C) in its complex topology is the
product of X1(C) and X2(C). Indeed, it is clear that

V (U1;f1, . . . , fm; ε)× V (U2;g1, . . . , gm; ε)= V
(
U1 ×U2;p∗1(fi),p∗2(gi); ε

)
,
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where U1 ⊂ X1 and U2 ⊂ X2 are Zariski open sets and p1,p2 the projections of
X1 × X2 to X1 and X2. Therefore a product of open sets of X1(C) and X2(C) is
open in (X1×X2)(C). To prove that they form a basis for the open sets, it is enough
to do this for affine open sets of X1 and X2. Embedding these in affine spaces, we
reduce the verification to X1 =A

n1
C

and X2 =A
n2
C

, where it is obvious.
The space X(C) in the complex topology is Hausdorff. Indeed, by definition of

a variety, the diagonal Δ is closed in X × X in the Zariski topology, and hence
Δ(C) is closed in X(C) × X(C) in the complex topology. As we have just seen,
(X × X)(C) = X(C) × X(C), and Δ(C) is the diagonal of this space, the set of
points of the form (x, x) with x ∈ X(C). Now a topological space is Hausdorff if
and only if its diagonal is closed (see any book on point set topology, for example,
Bourbaki [16, I.8.1]).

The topological space P
n(C) is compact, and hence so are all its closed sub-

spaces. This applies in particular to the space X(C) where X is a projective variety.
If X is a complete variety then using Chow’s lemma from Section 2.1, Chapter 6, we
construct a morphism f : X′ →X, where X′ is a projective variety. This morphism
is birational so that f (X′) is dense in X, and since X′ is projective, f (X′)=X. In
particular f (X′(C)) = X(C). Since f is a continuous map and X′(C) is compact,
it follows that X(C) is compact. It can be shown that this property characterises
complete varieties over C. That is, if X(C) is compact then X is complete (see Ex-
ercises 1–2 of Section 2.6). Obviously, for an arbitrary variety X, the space X(C) is
locally compact.

The arguments of Section 2.3, Chapter 2, can now be applied to study the com-
plex topology of any nonsingular variety (not necessarily quasiprojective) defined
over the complex field. They show that in this case X(C) in its complex topology is
a topological manifold of dimension 2 dimX.

The above definitions can be generalised as follows. Consider an arbitrary field k

and write k for its algebraic closure. Let X be a scheme over k such that X×k Speck
is an algebraic variety over k. A scheme of this type is called an algebraic variety
defined over k. An example is an affine or projective variety over k whose ideal has
a basis consisting of polynomials with coefficients in k. If X is an algebraic variety
over k then X(k) denotes the set of closed points x ∈X such that k(x)= k.

If k is the real number field R, or the p-adic number field Qp , then X(k) can
be given a topology in exactly the same way as for k = C. If k = R and X is a
nonsingular variety then X(R) is a topological manifold of dimension dimX. In the
rest of the book, we consider only the topological space X(C), except for Section 4
in which we study the space X(R) in the case when X is a curve.

We always consider the space X(C) with its complex topology. In the remain-
der of this section we consider X(C) when X is nonsingular. We use a little more
topological apparatus here than elsewhere in the book: we assume known the basic
theory of homology and cohomology, Poincaré duality for manifolds, the theory of
differential forms and their relation with cohomology (the Stokes–Poincaré theorem
and de Rham’s theorem). The reader can find a concise summary of the results we
need in Mumford [60, Section 5C], and a more detailed exposition in de Rham [25].
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1.2 Algebraic Varieties as Differentiable Manifolds; Orientation

Let X be a nonsingular n-dimensional variety over the field of complex numbers C
and x ∈X a point (we consider only closed points from now on), and let t1, . . . , tn
be a system of local parameters at x. As we proved in Section 2.3, Chapter 2,
there exists a neighbourhood U of x in X(C) that is mapped homeomorphically
to a domain of C

n by t1, . . . , tn. Because of this, any function on U can be con-
sidered as a function of the complex variables t1, . . . , tn or of the real variables
u1, . . . , un, v1, . . . , vn, where tj = uj + ivj .

Definition A real valued function on U is smooth or of class C∞ if it is differen-
tiable infinitely often as a function of u1, . . . , un, v1, . . . , vn.

As we proved in Section 2.3, Chapter 2, if t ′1, . . . , t ′n is another system of local
parameters then t ′1, . . . , t ′n are analytic functions of t1, . . . , tn. Hence the notion of
smooth function is well defined, that is, does not depend on the choice of the local
parameters. It is easy to check that our definition gives X(C) the structure of a
differentiable manifold (see de Rham [25, Chapter I]).

There is a natural relation between the properties of X as an algebraic variety and
those of X(C) as a differentiable manifold. Regular differential forms ω ∈Ωp[X]
are complex valued differential forms on X(C). If E→ X is a vector bundle then
E(C)→ X(C) is a topological vector bundle. For this, we should forget that the
fibres Ex are complex vector spaces and view them as real vector spaces of twice
the dimension. Under this correspondence the tangent bundle Θ→X corresponds
to the tangent bundle of the differentiable manifold X(C).

We now consider the question of the orientability of X(C). We first recall the
definitions. An orientation of a 1-dimensional vector space R is a choice of one of
the two connected components of R \ 0; an orientation of an n-dimensional vector
space F is an orientation of the 1-dimensional space

∧n
F . An orientation of a

(locally trivial) vector bundle f : E→X is a collection of orientations of the fibres
Ex such that each point has a neighbourhood U and an isomorphism f−1(U)

∼→
U ×F taking the orientations ωx of all the fibres Ex into the same orientation of F .
An orientation of a differentiable manifold is an orientation of its tangent bundle.

Proposition If X is a nonsingular variety over C then the differentiable manifold
X(C) has a canonical orientation.

Proof The reason is very simple. It comes from the fact that if we consider an n-
dimensional vector space F over C as a 2n-dimensional vector space over R then
it has a certain canonical orientation. To define it, choose a basis e1, . . . , en of F

over C. Then the vectors {u1, . . . , u2n} = {e1, ie1, . . . , en, ien} form a basis of F

over R and determine an orientation u1 ∧ · · · ∧ u2n of this space. We check that
this orientation is independent of the choice of the basis e1, . . . , en. Let f1, . . . , fn
be another basis of F over C. Write ϕ for the C-linear map taking e1, . . . , en into
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f1, . . . , fn, and ϕ̃ for the same map viewed as an R-linear map F → F . We need to
prove that det ϕ̃ > 0; this will follow from the identity

det ϕ̃ = |detϕ|2. (7.1)

For the proof, consider the space F̃ = F ⊗RC and the transformation I of F̃ defined
by

I (f ⊗ α)= if ⊗ α for f ∈ F and α ∈C. (7.2)

Then F̃ = F1 ⊕ F2, where F1 and F2 are the eigenspaces of I corresponding to the
eigenvalues i and −i. By analogy with (7.2), we extend ϕ̃ to F̃ . Then of course the
determinant does not change. It is easy to see that F1 and F2 are invariant under ϕ̃,
and that the transformation ϕ̃ on F1 has the same matrix as that of ϕ on F , and F2
its complex conjugate. Equation (7.1) follows from this.

Now suppose that f : Θ → X(C) is the tangent bundle and ωx the canonical
orientation on Θx for x ∈ X. We prove that this defines an orientation on X. If
U ⊂X is such that

ψ : f−1(U)∼=U × F (7.3)

is an isomorphism of algebraic vector bundles, then it is true a fortiori for the corre-
sponding differentiable manifolds. But in (7.3)

ψx : Θx→ F

is an isomorphism of complex vector spaces. Hence it takes the canonical orientation
ωx on Θ into the canonical orientation ω of F . The proposition is proved. �

The orientation just constructed is called the canonical orientation of X(C).
We thus obtain a first restriction, showing that not every even dimensional man-

ifold can be of the form X(C) for X a nonsingular algebraic variety. For example,
the real projective plane can not be represented in this way.

1.3 Homology of Nonsingular Projective Varieties

The orientability of a differentiable manifold can be expressed in terms of its ho-
mology. We recall this relation (see for example Husemoller [41, Section 4, Chap-
ter 17]). An orientation ω of an n-dimensional vector space E over R determines
an element of the relative homology group ω ∈ Hn(E,E \ 0,Z). If U is a coordi-
nate chart around a point x of M and ϕ : U → E a diffeomorphism of U with a
neighbourhood of 0 in E, then we have excision isomorphisms

Hn(U,U \ x,Z)→Hn(M,M \ x,Z),
Hn

(
ϕ(U),ϕ(U) \ 0,Z

)→Hn(E,E \ 0,Z),
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and an isomorphism

ϕ∗ : Hn(U,U \ x,Z)→Hn

(
ϕ(U),ϕ(U) \ 0,Z

)
.

Finally, dxϕ is an isomorphism of the tangent spaces

dxϕ : Θx
∼→E.

Using this system of isomorphisms we can associate with the orientation ωx of the
tangent space Θx a homology class, for which we preserve the same notation

ωx ∈Hn(M,M \ x,Z).
The orientation of the compact manifold M then defines a class ωM ∈ Hn(M,Z),
which is uniquely characterised by the fact that it maps to the class ωx under the
homomorphism

Hn(M,Z)→Hn(M,M \ x,Z)
corresponding to any point x ∈M . This class is a generator of Hn(M,Z). We call
ωM the orientation class of M . In what follows, ωM is denoted by [M]; we some-
times speak of the manifold M itself as an n-dimensional homology class, and then
the class [M] = ωM is intended.

Proposition of Section 1.2 shows that if X is a nonsingular complete alge-
braic variety then X(C) has a canonically defined orientation class [X] = ωX(C) ∈
H2n(X(C),Z), where n= dimX. In what follows, we sometimes speak of the man-
ifold X itself as a 2n-dimensional homology class, and then the class [X] = ωX(C)

is intended.
The preceding arguments construct a class ωX(C) ∈ H2n(X(C),Z), which is

obviously nonzero, because for any point x ∈ X, it defines a nonzero class in
H2n(X(C),X(C) \ x,Z). For the same reason this class is of infinite order. Thus
for a nonsingular complete variety X,

H2n
(
X(C),C

) �= 0.

This is a particular case of the following more general result.

Proposition For an n-dimensional nonsingular projective variety X, we have

H2k
(
X(C),C

) �= 0 for k ≤ n.

Proof We exhibit a 2k-dimensional cycle on X(C) not homologous to 0. For this,
consider a nonsingular k-dimensional subvariety Y ⊂X, for example, the intersec-
tion of X ⊂ P

N with a linear subspace of PN . Write j for the inclusion map Y ↪→X,
and also for the inclusion Y(C) ↪→X(C). The homology class we consider is j∗ωY .
When there is no fear of confusion, we write simply [Y ] for this. We prove that it is
not homologous to 0. More intuitively, if somewhat less precisely, we can express
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this by saying that nonsingular subvarieties are not homologous to 0 in their ambient
space.

Recall that if M is a compact n-dimensional oriented manifold then the mul-
tiplication Hp(M,C) ⊗ Hn−p(M,C) → Hn(M,C) defines a duality between
Hp(M,C) and Hn−p(M,C). Since Hp(M,C) is dual to Hp(M,C), the spaces
Hp(M,C) and Hn−p(M,C) are also dual to one another. The corresponding scalar
product Hp(M,C)⊗Hn−p(M,C)→ C is called the intersection number or Kro-
necker pairing of two cycles. Suppose that V and W are two nonsingular oriented
submanifolds of dimension p and n−p in M intersecting transversally. This means
that their intersection consists of a finite number of points, and that at each point
x ∈ V ∩W we have ΘM,x =ΘV,x ⊕ΘW,x . In this case we can consider the embed-
dings jV : V →M and jW : W →M and give the simple formula

[V ] · [W ] = jV ∗(ωV ) · jW ∗(ωW )=
∑

x∈V∩W
c(V,W,x), (7.4)

for the intersection number jV ∗(ωV ) · jW ∗(ωW ), where the c(V,W,x) are equal to
+1 or −1 according as to whether the natural orientation of ΘV,x ⊕ΘW,x is equal
or opposite to that of ΘM,x . (For these results, see Pham [65, II.7].)

Now let M =X(C), V = Y(C) and W = Z(C), where X is a nonsingular com-
plete algebraic variety and Y,Z ⊂X are nonsingular complete subvarieties that in-
tersect transversally. Then all the summands c in (7.4) are +1. Indeed, in this case
ΘX,x , ΘY,x and ΘZ,x are complex vector spaces. Passing from a complex basis of
ΘY,x ⊕ΘZ,x to a complex basis of ΘX,x is realised by a complex linear transforma-
tion. The corresponding real transformation taking a real basis of ΘY,x ⊕ΘZ,x to a
real basis of ΘX,x has positive determinant, as we saw in Section 1.2. Hence

c
(
Y(C),Z(C), x

)=+1.

If X is a nonsingular projective variety, Y ⊂X and Y is nonsingular then there exists
a nonsingular variety Z of complementary dimension that intersects it transversally
in a nonempty set of points. We can take Z to be the intersection of X with a suitable
linear subspace. In this case (7.4) shows that

[Y ] · [Z] = degY, (7.5)

where degY is the degree of Y in the ambient projective space (Example 4.6 of
Section 1.4, Chapter 4). It follows of course from this that [Y ] �= 0. The proposition
is proved. �

We will give a generalisation of this result in Proposition of Section 4.4, Chap-
ter 8. The proof there is based on somewhat different principles, and even for the
case of projective varieties gives another proof of the proposition, not using proper-
ties of intersection numbers.
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1.4 Exercises to Section 1

1 Prove that (7.5) remains valid in the case that Y is a curve, but possibly singular.
[Hint: Consider the normalisation morphism.]

2 Prove that if X is a nonsingular projective curve, ω ∈Ω1[X] and
∫
σ
ω= 0 for all

σ ∈ H1(X,Z) then ω = 0. [Hint: Consider the function ϕ(x) = ∫ x

x0
ω, where x0 is

a fixed point and x any point of X, and prove that the integral does not depend on
the path of integration, that ϕ is continuous on X and is analytic as a function of
a local parameter at x. Prove that the existence of a maximum of |ϕ(x)| leads to a
contradiction to the maximum modulus principle for an analytic function.]

3 Prove that the assertion of Exercise 2 holds for a nonsingular projective variety
of any dimension.

4 Prove that if G is an algebraic group acting on a nonsingular projective variety
X and the space G(C) is connected then g∗(ω)= ω for any g ∈G and ω ∈Ω1[X].
[Hint: Prove that the cycles σ and g∗σ are homologous.]

2 Connectedness

The purpose of this section is to prove that X(C) is connected for an irreducible
algebraic variety X over the field of complex numbers C. Connectedness of X(C)

is a basic topological question, and we will see that it behaves simply under the
coarse algebraic geometric operations such as passing to a Zariski open set, passing
to a generically finite cover, treating X as a fibred variety, and so on.

We give two alternative proofs of the main theorem. The first is by induction on
dimension, and is ultimately based on the Riemann–Roch inequality for curves. The
other starts by reducing the statement to the case of X affine, and from then on is
based on Noether normalisation: by Theorem 1.18 of Section 5.4, Chapter 1, there
exists a finite map f : X→A

n to affine space. Using the terminology of Chapter 5,
we speak of finite morphisms from now on.

Section 2.1 deduces some simple topological properties of algebraic varieties,
and Sections 2.2 and 2.3 give the two proofs of the main theorem on the connected-
ness of X(C). The second proof uses some simple properties of analytic functions
of several complex variables, which are proved in Section 2.4.

2.1 Preliminary Lemmas

Lemma 7.1 If X is an irreducible algebraic variety and Y �X a proper subvariety
then the set X(C) \ Y(C) is everywhere dense in X(C).

Proof Consider first the case that X is an algebraic curve. Then Y consists of a
finite set of closed points. Let ν : Xν → X be the normalisation morphism, and
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Y ′ = ν−1(Y ). Since Xν is nonsingular, every point y′ ∈ Y ′ has a neighbourhood
U in Xν homeomorphic to the disc |z|< 1 in the plane of one complex variable z.
Obviously U \y′ is everywhere dense in U , and hence also Xν(C)\Y ′ is everywhere
dense in Xν(C). Since ν is surjective, it follows that X(C) \ Y is everywhere dense
in X(C).

The general case reduces to the 1-dimensional case just considered by a simple
induction on n= dimX. Suppose that n > 1. For any point y ∈ Y(C), there exists an
irreducible codimension 1 subvariety X′ ⊂ X containing y and not containing any
irreducible component of Y passing through y. Indeed, in an affine neighbourhood
U of y, we choose one point yi �= y on each irreducible component of Y passing
through y, and consider a section of U by a hyperplane L of the ambient affine
space such that y ∈ L but yi /∈ L for all of the chosen points yi . We can take X′ to
be the closure in X of any irreducible component of the intersection L∩X passing
through y. Set Y ′ = X′ ∩ Y . By induction, X′(C) \ Y ′(C) is everywhere dense in
X′(C). In particular, y is in the closure of X′(C) \Y ′(C). Hence it is a fortiori in the
closure of X(C) \ Y(C). Since we can take y to be any point of Y(C), this proves
the lemma. �

Corollary If X is an irreducible algebraic variety and Y �X an algebraic subva-
riety, and the open subset X(C) \ Y(C) of X(C) is connected then so is X(C).

Proof Indeed, if X(C) =M1 "M2 is a decomposition of X(C) as a union of two
disjoint closed sets, then X(C) \ Y(C) breaks up into its intersection with M1 and
with M2. Since X(C) \Y(C) is connected, it must be equal to one of these intersec-
tions, and hence is contained in M1 or M2. But then also its closure is contained in
M1 or M2. By Lemma 7.1 this closure is the whole of X(C), which means that one
of M1 or M2 is the empty set. �

Lemma 7.2 If V ⊂A
n is an open subset in the Zariski topology then V (C) is con-

nected.

Proof Write A
n \ V = Y , and let x1, x2 ∈ V (C). Pass a line L through x1 and x2.

Then L is not contained in any irreducible component of Y , so that L ∩ Y is a
finite set {y1, . . . , ym}. Then L(C) is homeomorphic to C and L(C) ∩ V (C) to C \
{y1, . . . , ym}. It follows that L(C) ∩ V (C) is connected, and hence x1 and x2 are
contained in the same connected component of V (C). Since x1 and x2 were arbitrary
points, V (C) is connected. �

2.2 The First Proof of the Main Theorem

The first proof that X(C) is connected is by induction on dimX.

Lemma 7.3 X(C) is connected if X is an irreducible curve.
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Proof Because the connectedness of X(C) is not affected by adding or deleting a
finite number of points, we can restrict ourselves at once to the case that X is a
nonsingular projective curve.

Suppose that X(C) =M1 "M2 is a decomposition of X(C) as a union of two
disjoint closed sets. Let x0 ∈X(C) be any point, with x0 ∈M1, say. By the Riemann
inequality proved as Corollary of Section 7.2, Chapter 3, �(rx0) > 1 for some large
enough r ; in other words, there exists a nonconstant function f ∈ L(rx0). Then
since f has x0 ∈ X as its only pole, it restricts to a continuous function M2→ C;
now M2 is a compact set, so that the absolute value |f | achieves a maximum at
some point m ∈M2. Let U be a neighbourhood of m ∈X with local parameter t , so
that f is an analytic function of t . By the maximum modulus principle, the modulus
of a nonconstant analytic function does not have a maximum at an interior point of
its domain, and hence f (t) is constant on U , say f (U) = α. Then f − α ∈ k(X)

has infinitely many zeros in X, which is a contradiction. The lemma is proved. �

Lemma 7.4 For an irreducible nonsingular n-dimensional variety X, there exists
an open set U , an irreducible (n− 1)-dimensional variety V , and a surjective mor-
phism f : U→ V with the following properties:

(1) Every fibre of f is 1-dimensional.
(2) Every fibre of f is irreducible.
(3) For every point x ∈U , the differential dxf : ΘU,x→ΘV,f (x) is surjective.

Proof We will choose V as a model of a subfield K ⊂ C(X) of transcendence de-
gree n−1 to which we can apply the Bertini theorems, Theorem 2.26 of Section 6.1,
Chapter 2 and Theorem 2.27 of Section 6.2, Chapter 2. The only difficulty arises in
connection with the first of these: to apply it, we need to know that K is algebraically
closed in C(X).

To achieve this, we choose a transcendence basis t1, . . . , tn of C(X) and take K

to be the algebraic closure of C(t1, . . . , tn−1) in K , that is, the subfield of elements
of C(X) algebraic over C(t1, . . . , tn−1). Then C(t1, . . . , tn−1)⊂K is a finite exten-
sion. This follows from the fact that any element ξ ∈ K has bounded degree over
C(t1, . . . , tn−1); indeed, its degree over C(t1, . . . , tn−1) is at most its degree over
C(t1, . . . , tn), which is bounded by [K :C(t1, . . . , tn)].

Now choose a variety V such that K =C(V ). The inclusion C(V )=K ⊂C(X)

defines a rational map f : X→ V with dense image in V . It remains only to choose
the open set U ⊂X such that f is a morphism, and then shrink it down to satisfy the
conclusions (1)–(3) of the lemma. This is possible by the theorem on the dimension
of fibres, Theorem 1.25 of Section 6.3, Chapter 1, and the Bertini theorems already
referred to. The lemma is proved. �

Theorem 7.1 If X is an irreducible algebraic variety over C, then X(C) is con-
nected.

Proof By induction on n= dimX. Consider the map f : U → V whose existence
was proved in Lemma 7.4. Suppose that X(C)=M1 "M2 is a decomposition into
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disjoint closed sets. Because f has connected fibres, every fibre is contained en-
tirely in M1 or M2. Therefore f (M1) and f (M2) are disjoint. Since f is onto,
it follows that V (C) = f (M1) " f (M2). Now the surjectivity of the differential
dxf : ΘU,x → ΘV,f (x) together with the implicit function theorem implies that
f (M1) and f (M2) are both open, hence both closed. By induction we can assume
that V (C) is connected. It follows from this that either M1 or M2 is empty. Thus
U(C) is connected, so that X(C) is also by Lemma 7.1 and Corollary of Section 2.1.
The theorem is proved. �

2.3 The Second Proof

The second proof of Theorem 7.1 is based on the following result, which reduces
the problem to a simpler case.

Lemma For any irreducible variety X, there exists a Zariski open set U ⊂X and a
finite morphism f : U→ V onto a Zariski open subset of affine space V ⊂A

n such
that the following conditions hold:

(1) U is isomorphic to a hypersurface V (F) ⊂ V × A
1, defined by F = 0, where

F(T ) ∈ k[An][T ] ⊂ k[V × A
1] is a polynomial that is irreducible over k[An]

and has leading coefficient 1, and f : U→ V is induced by the projection V ×
A

1→ V .
(2) The continuous map f : U(C)→ V (C) is an unramified cover.

Proof Both assertions follow at once from Theorem 2.30 of Section 6.3, Chap-
ter 2. �

Second Proof of Theorem 7.1 Let U be the set whose existence is guaranteed by
the lemma. By Lemma 7.1 and Corollary of Section 2.1, it is enough to prove that
U(C) is connected. Suppose that U(C)=M1 "M2 is a decomposition of U(C) as a
union of two disjoint closed subsets. The map f : U(C)→ V (C) constructed in the
lemma takes open sets to open sets and closed sets to closed sets. Since M1 and M2
are open and closed in U(C), their images f (M1) and f (M2) are open and closed
in V (C). By Lemma 7.2, V (C) is connected, so that f (M1)= f (M2)= V (C).

Obviously the restriction of f to M1 defines an unramified cover f1 : M1 →
V (C). It follows easily from the connectedness of V (C) that the number of inverse
images in M1 of points v ∈ V (C) is constant for all points v. We write r for this
number, and call it the topological degree of the cover f1 : M1→ V (C). Since also
f (M2)= V (C), we have r < m, where m= degf .

For a point v ∈ V (C), we choose a neighbourhood Vv of v for which f−1(Vv)=
U1 ∪ · · · ∪Ur with Ui ∩Uj = ∅ for i �= j , and such that the restriction of f to Ui is
a homeomorphism fi : Ui→ Vv for i = 1, . . . , r .

Now let θ ∈ C[U ] be a function θ ∈ C[U ] that is integral over C[An], and is
a primitive element of the field extension C(V ) ⊂ C(U). Consider the restrictions
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θ1, . . . , θr of θ to the sets U1, . . . ,Ur , and write g1, . . . , gr for the elementary sym-
metric functions in θ1, . . . , θr . The idea of the following argument is to prove that
there exist polynomials p1, . . . , pr ∈ C[An] whose restrictions to Vv at any point
v ∈ f (M1) equal g1, . . . , gr . It will follow from this that θ satisfies the relation

θr − f ∗(p1)θ
r−1 + · · · + (−1)rf ∗(pr)= 0 (7.6)

at all points x ∈M1.
Then since a similar relation (with another value r ′ < m) holds at points x ∈

M2, there exist polynomials P1,P2 ∈C[An][T ] of degrees <m such that Pi(θ)= 0
on Mi for i = 1,2. Therefore P1(θ)P2(θ) = 0 in C[U ], and since C[U ] has no
zerodivisors, we get that θ ∈ C[U ] satisfies an equation over C[An] of degree <m.
This contradicts the fact that by definition m= [C(U) :C(An)].

We proceed to carry out this plan, leaving two technical lemmas on analytic
functions to Section 2.4. Note first that the functions (f−1

i )∗(θ) are analytic func-
tions on Vv in the coordinates z1, . . . , zn of An(C). Indeed, according to the preced-
ing lemma, together with the implicit function theorem, local parameters at a point
ui = f−1(v) can be expressed as analytic functions in f ∗(z1), . . . , f

∗(zn), and in a
sufficiently small neighbourhood, θ is an analytic function of the local parameters at
v. Thus g1, . . . , gr are also analytic functions of z1, . . . , zn in a neighbourhood Vv .
Therefore each of the functions gi is an analytic function on the whole set V (C).
Recall that V (C) is obtained from the whole of An(C) by deleting the points of an
algebraic variety S �=A

n. Consider the behaviour of the gi in a neighbourhood of a
point s ∈ S(C). By the choice of θ , it satisfies an equation

θm + f ∗(a1)θ
m−1 + · · · + f ∗(am)= 0, with ai ∈C

[
A
n
]
. (7.7)

The values of (f−1
i )∗(θ) are roots of this equation. Hence the gi are bounded in

any compact neighbourhood of s. It follows from this, using Lemma 7.5, that they
extend to analytic functions on the whole of An(C).

Let us prove that the analytic functions gi on A
n(C) we have constructed are

polynomials in the coordinates z1, . . . , zn. For this, we bound their order of growth
as a function of the growth of max |zi |. For a point z= (z1, . . . , zn) ∈An(C) we set
|z| =max |zi |. Applying to (7.7) the well-known bound for the modulus of a root of
an algebraic equation f in terms of its coefficients ai , we get that

∣∣θ(x)
∣∣≤ 1+max

i

∣∣ai
(
f (x)

)∣∣ for all x ∈M1.

The ai are polynomials in z1, . . . , zn by assumption. If the maximum of their degrees
is k then for any ε > 0 there exists a constant C such that

∣∣θ(x)
∣∣ <C|z|k for |z|> ε.

It follows that (f−1
i )∗(θ) satisfies the same inequality for any i = 1, . . . , r , and

hence
∣∣gi(z)

∣∣≤ C|z|ik for i = 1, . . . , r.
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We see that gi(z) are analytic functions on the whole of An(C)= C
n having poly-

nomial growth. By Lemma 7.6, it follows that they are polynomials in z1, . . . , zn.
This proves (7.6), and thus completes the proof of the theorem. �

2.4 Analytic Lemmas

We prove here the two lemmas used in Section 2.3 on analytic functions of complex
variables.

Lemma 7.5 Let S � A
n be an algebraic subvariety and g an analytic function on

the complement An(C) \ S(C), which is bounded in a neighbourhood of any point
s ∈ S(C). Then g can be extended to a analytic function on the whole of An(C)=
C
n, and the extension is unique.

Proof The uniqueness of the extension follows at once from the uniqueness of ana-
lytic continuation. It is obviously enough to find a neighbourhood U of any s ∈ S(C)
such that g extends as an analytic function from U \ (U ∩ S(C)) to U . Then by
uniqueness of the extension we get a global extension.

To prove that the extension exists, note that we can replace S by a bigger al-
gebraic subvariety, and can therefore assume that S is defined by one equation
f (z1, . . . , zn) = 0. Making a linear coordinate change z̃n = zn and z̃i = zi + cizn
for i = 1, . . . , n− 1 for suitable choice of c1, . . . , cn−1, we can arrange that f has
leading coefficient 1 as a polynomial in zn, that is,

f (z1, . . . , zn)= zkn + h1
(
z′

)
zk−1
n + · · · + hk

(
z′

)
,

where z′ = (z1, . . . , zn−1). Set |z′| =maxn−1
i=1 |zi |.

Suppose that s is the origin. Then the restriction of f to the zn-axis z′ = 0 fac-
torises as

f (0, . . . ,0, zn)= zmn (zn − λ1) · · · (zn − λk−m).

By the theorem on the continuity of the roots of an algebraic equation, the roots of
f (z′; zn)= 0 tend either to 0 or to λ1, . . . , λk−m as z′ → 0. Hence there exists some
real number r > 0 and ε > 0 such that for |z′|< ε the equation f (z′; zn)= 0 does
not have any roots with |zn| = r .

We now set

G(z1, . . . , zn)= 1

2πi

∮

|w|=r
g(z′;w)

w− zn
dw,

and prove that G is an analytic function for |z′|< ε, |zn|< r , and is a continuation
of g to this domain.

That G is analytic is verified by a direct integration. By assumption g is analytic
at any point (α1, . . . , αn−1,w) with |αi | < ε and |w| = r . Therefore for any w on
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the contour |w| = r , the function g(z1, . . . , zn−1;w)/(w−zn) is analytic in a neigh-
bourhood of the point z1 = α1,. . . , zn−1 = αn−1, zn = β with |β| < r . Writing out
its Taylor series expansion

g(z′;w)

w− zn
=

∑
ck1...kn(w)(z1 − α1)

k1 · · · (zn−1 − αn−1)
kn−1(zn − β)kn (7.8)

about this point and integrating around the contour |w| = r gives the Taylor series
expansion for G.

We now prove that G = g wherever g is defined. For this, we set zi = αi with
|αi | < ε for i = 1, . . . , n − 1, and consider the functions of one complex variable
g(α; zn) and G(α; zn). The preceding argument shows that G(α; zn) is analytic for
|zn| ≤ r ′ < r , and by assumption g(α; zn) is analytic at all points zn with |zn| ≤ r ′
except possibly for the finitely many roots of f (α; zn)= 0; but at these points it is
bounded. Hence g(α; zn) has no poles for |zn| ≤ r ′, and (7.8) shows that g(α; zn)=
G(α; zn) by the Cauchy integral formula. The lemma is proved. �

Lemma 7.6 Suppose that f (z1, . . . , zn) is an analytic function on the whole of Cn,
and that there exists a constant C such that

∣∣f (z)
∣∣ <C|z|k for z= (z1, . . . , zn), where |z| =max |zi |. (7.9)

Then f is a polynomial of degree ≤k.

Proof Suppose that the homogeneous component Fl of the Taylor series expansion

f = F0 + F1 + · · ·
of f about 0 is not identically 0 for some l > k. There exist α1, . . . , αn with
Fl(α1, . . . , αn) �= 0. Then g(w) = f (α1w, . . . , αnw) is a function of one variable
for which a bound of type (7.9) holds and the coefficient al of wl in the Taylor
series is nonzero. Subtracting the first k terms of the Taylor series we get a new
function g1 with Taylor series

g1(w)= akw
k + · · · ,

for which a bound of type (7.9) holds and al �= 0. Now by assumption g1/w
k is

bounded on the whole plane, and is hence constant. This contradicts al �= 0. The
lemma is proved. �

2.5 Connectedness of Fibres

Theorem 7.2 Let X and Y be nonsingular irreducible varieties and f : X→ Y a
proper morphism such that f (X) ⊂ Y is dense and X remains irreducible in the
algebraic closure of C(Y ) (compare Section 6.1, Chapter 2). Then every fibre of f
is connected in the complex topology.
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Proof By the Bertini theorems, Theorem 2.26 of Section 6.1, Chapter 2 and The-
orem 2.27 of Section 6.2, Chapter 2, there exists a subvariety S � Y such that for
every point y /∈ S the fibre f−1(y) is nonsingular and irreducible. We need to con-
sider the fibres f−1(y0) for y0 ∈ S. We can find a nonsingular curve C passing
through y0 but not contained in S, and thus reduce to the case that Y = C is a
curve. Suppose that f−1(y0) decomposes into two disjoint closed components Z1
and Z2. Consider disjoint neighbourhoods U1 and U2 of these. Since f is proper
the set f (X \ (U1 ∪ U2)) is closed. It does not contain y0, hence does not inter-
sect some neighbourhood of y0 in C, which we can take to be a disc V . In V ,
the sets f (U1) and f (U2) can only intersect at y0. For if y �= y0 is a point with
y ∈ f (U1)∩f (U2)∩V then the fibre f−1(y) is contained in U1∪U2 and intersects
both U1 and U2. This means that it is not connected, which contradicts Theorem 7.1
and the fact that the fibre f−1(y) is irreducible for all y ∈ V with y �= y0. Therefore
V \ y0 breaks up as the union of the two disjoint open sets (V \ y0) ∩ f (U1) and
(V \ y0) ∩ f (U2), and so is not connected. But V \ y0 is just a punctured disc, and
this contradiction proves the theorem. �

Analysing the proof just given, we see easily that we have used the nonsingularity
of Y only in a very weak form, namely in the statement that V \y0 is connected. The
proof goes through if we impose the following rather weak condition on the singu-
larities of Y : every singular point y0 ∈ Y has an arbitrarily small neighbourhood U

in the complex topology such that the set of nonsingular points of U is connected.
It is a hard theorem of Zariski that a normal singular point has this property (see
Mumford’s [61, Section 9, Chapter III]). Thus the theorem also holds for a normal
variety Y .

2.6 Exercises to Section 2

1 Prove that for a quasiprojective variety X, if X(C) is compact then X is projec-
tive.

2 Prove that for a variety X, if X(C) is compact then X is complete. [Hint: Use
Exercise 7 of Section 2.5, Chapter 6.]

3 Let X be a reduced irreducible scheme of finite type over C and X(C) its set
of closed points with the topology defined in Section 1.1. Prove that if X(C) is
Hausdorff then X is separated.

4 Prove that the group of automorphisms of a nonhyperelliptic nonsingular projec-
tive curve of genus >1 is finite. [Hint: Prove that if ϕ : X→ P

g−1 is the embedding
corresponding to the canonical class (compare Section 7.1 of Chapter 3), then auto-
morphisms of ϕ(X) are induced by projective transformations of Pg−1, and hence
form an algebraic group G, which has only finitely many connected components.
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Now apply Exercise 4 of Section 1.4 to deduce that the identity component of G
acts trivially on differentials.]

5 Extend the result of Exercise 4 to hyperelliptic curves.

6 Let X and Y be topological spaces and f : X→ Y a surjective continuous map.
Prove that if Y and every fibre f−1(y) are connected (for y ∈ Y ), then so is X.

3 The Topology of Algebraic Curves

Constructing the associated topological space X(C) of an algebraic variety X leads
to two types of questions. First of all, it would be interesting to determine what
topological spaces arise in this way, and, if possible, to achieve a topological clas-
sification of these. Secondly, which of the invariants of the topological space X(C)

have an algebraic meaning? In other words, the question is to construct invariants of
an algebraic variety X, defined over an arbitrary field k which, when k =C, become
the given topological invariants of X(C).

In this section we discuss the answers to both types of questions in the simplest
case, when X is a nonsingular projective curve. At the same time, this is practically
the only case in which the topological classification of the spaces X(C) is com-
pletely known and the algebraic meaning of the topological invariants understood.

3.1 Local Structure of Morphisms

Let X be a nonsingular algebraic curve. Any point x ∈X(C) has a (complex) neigh-
bourhood U homeomorphic to a neighbourhood of the origin in the complex plane
C. This homeomorphism is defined by any local parameter t at x,

t : U ∼→ t (U)⊂C. (7.10)

We will assume from now on that U is chosen so that t (U) is the domain |z|< ε in
C. The map (7.10) allows us to take t as a coordinate in U , so that x ∈U is uniquely
determined by the number t (x).

Let f : X→ Y be a morphism of nonsingular curves with f (X)⊂ Y dense, and
for x ∈ X set y = f (x) ∈ Y . We now show that x and y have neighbourhoods U

and V with coordinates u and v in terms of which the map f has a very simple
description.

We choose local parameters t at x and v at y = f (x) and neighbourhoods U � x
and V � y so that t and v define open embeddings (7.10)

t : U→C and v : V →C,

and such that f (U)⊂ V . Considering t as a coordinate on U , and v as a coordinate
on V , we can say that f is determined in the neighbourhood U by giving v(f (x′))
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as a function of t (x′) for x′ ∈ U . In other words, f is determined by giving f ∗(v)
as a function of t .

Since f (X) ⊂ Y is dense, f ∗(v) is a function on X that is not identically 0, is
regular at x and has v(x)= 0. We set

f ∗(v)= tkϕ with ϕ ∈Ox and ϕ(x) �= 0. (7.11)

Now ϕ corresponds to a formal power series Φ(T ) with a positive radius of conver-
gence and Φ(0) �= 0. Thus, passing to a smaller neighbourhood U of x if necessary,
we can assume that

ϕ
(
x′

)=Φ
(
t
(
x′

))
for x′ ∈U .

Since Φ(0) �= 0, there exists a power series Ψ (T )=Φ(T )1/k also having a positive
radius of convergence. Hence u(x′)= Ψ (t (x′))t (x′) defines a function for points x′
of some sufficiently small neighbourhood of x. We again denote this neighbourhood
by U . We have thus constructed a map

u : U→C, for which tkϕ = uk in U .

The analytic function u= tΨ (t) is no longer a rational function on X, and is only
defined in a sufficiently small complex neighbourhood U of x. However, in this
neighbourhood it is obviously continuous. Just as t , it defines a homeomorphism
of some neighbourhood of x to an open set in C. Indeed, by the implicit function
theorem, the analytic function zΨ (z) has an inverse in some neighbourhood of 0
and defines a homeomorphism onto some neighbourhood of 0 in C.

By construction f ∗(v)= uk in the open set U . Thus we conclude our analysis,
obtaining the following simple local description of f .

Theorem 7.3 For every morphism f : X→ Y of nonsingular curves with f (X)

dense in Y , and every x ∈X, there exist neighbourhoods U � x and V � f (x), and
homeomorphisms u : U → C and v : V → C onto neighbourhoods of 0 in C such
that the diagram

U
u−−→ C

f
⏐⏐�

⏐⏐�ρk

V −−→
v

v

is commutative. Here ρk(z) = zk , where k is defined as the order of zero of the
function f ∗(t) at x for t a local parameter at y.

If we interpret u and v as coordinates in open sets U and V , then Theorem 1
asserts that f , restricted to these neighbourhoods and expressed in terms of these
coordinates has the very simple form

v = uk (7.12)

(see Figure 29). The open sets U and V can obviously be chosen in such a way that
u(U) and v(V ) are both equal to the interior of the disc |z|< 1.
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Figure 29 The branch point
z �→ zk

Definition Neighbourhoods of this form will be called normal. The number k in
the representations (7.11) and (7.12) is called the ramification degree of f at x ∈X.
If for any point x ∈ f−1(y) the ramification degree of f at x is >1 then y is called
a branch point or ramification point of f .

Obviously, the ramification degree of f at x ∈X equals the multiplicity of x in
the divisor f ∗(y). If X and Y are projective in addition to nonsingular then The-
orem 3.5 of Section 2.1, Chapter 3 shows that y is not a branch point if and only
if the number of inverse images f−1(y) equals the degree degf of f . In other
words, the above definition agrees with the definition of branch point given in Sec-
tion 6.3, Chapter 2. It follows from Theorem 2.29 of Section 6.3, Chapter 2 that a
morphism of nonsingular projective curves over C has only finitely many branch
points. (Compare also Exercises 2–4 of Section 8.1, Chapter 3; note that the “ram-
ification multiplicity” ex defined there is one less than the ramification degree, that
is, ex = k− 1.)

3.2 Triangulation of Curves

In this section, we prove that if X is a nonsingular projective algebraic curve,
then the topological space X(C) can be triangulated. For the convenience of the
reader, we treat the definition and basic facts on the classification of triangulated
2-manifolds in Section 3.4.

The triangulation of X(C) is obtained as a corollary of a more general fact. To
state it, we introduce the following definition. If X and Y are topological spaces
and f : X→ Y a continuous map, we say that a triangulation Φ of X is compatible
with a triangulation Ψ of Y with respect to f if for every simplex E ∈ Ψ we have
f−1(E)=⋃

Ei for Ei ∈Φ , and the map f : Ei→E is a homeomorphism.
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Theorem 7.4 If f : X→ Y is a morphism of nonsingular projective curves, and
Y(C) has a given triangulation Ψ0, then X(C) and Y(C) have compatible triangu-
lations Φ and Ψ with respect to f , with Ψ a subdivision of Ψ0 on Y(C). If Y(C) is
a combinatorial surface (see Section 3.4) then so is X(C).

Proof Consider an arbitrary point y ∈ Y(C) and set f−1(y)= {x1, . . . , xk}. By The-
orem 1, we can choose a neighbourhood Vy of y and disjoint normal neighbour-
hoods Ui of xi .

Choose a finite subcover of the cover {Vy | y ∈ Y } of Y(C). We get a finite set
{yα} of points of Y(C), for each point yα a neighbourhood Vα , and disjoint normal
neighbourhood Uα,i of all xα,i ∈ f−1(yα). Obviously if y ∈ Vα and y �= yα then y

is not a branch point.
By assumption, Y(C) has a given triangulation Ψ0. By Proposition of Section 3.4,

there exists a finer triangulation Ψ having all the branch points of f among its
vertexes, and such that each simplex is contained in a neighbourhood Vα .

Let E be an arbitrary simplex of the triangulation Ψ . It is contained in some
open chart Vα by construction. If yα is not a branch point then fi : Uα,i→ Vα is a
homeomorphism for any xi ∈ f−1(yα). Write Ei = f−1(E)⊂ Uα,i for the inverse
image. If t : E → σ is the map in the definition of triangulation Ψ , set ti = t ◦
fi : Ei→ σ . We put the set of all Ei and homeomorphisms ti into the triangulation
Φ .

Now suppose that E ⊂ Vα and yα is a branch point. We consider two cases.

Case yα /∈ E In suitable coordinates, the map fi : Ui,α→ Vα is of the form v =
f ∗(u) = uk . Because yα /∈ E and E is simply connected, v is nowhere zero on
E and any branch of k

√
v defines a single valued function there. It follows from

this that f−1
i (E) breaks up into k connected components E1, . . . ,Ek such that the

map fi : Ei → E is a homeomorphism. In this case we add the set of all Ei and
homeomorphisms ti = t ◦ fi : Ei→ σ to the triangulation Φ .

Case yα ∈ E In this case, we can apply the same arguments to the set E \ yα . We
get that f−1(E \ yα) breaks up into k connected components Ẽ1, . . . , Ẽk . We set

Ej = Ẽj ∪ xi where xi ∈ f−1(yα)∩Ui,α ;

then fj : Ej →E is a homeomorphism. We again add the set of all Ej and homeo-
morphisms tj = t ◦ fj : Ej → σ to the triangulation Φ .

A simple verification, which we leave to the reader, shows that the sets and maps
we have constructed determine a triangulation Φ of X(C), and that Φ is compatible
with Ψ with respect to f and satisfies the conditions in the definition of combinato-
rial surface. The theorem is proved. �

Theorem 7.5 If X is a nonsingular projective curve then the space X(C) can be
triangulated, and is a combinatorial surface.
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Figure 30 A triangulation of
P

1(C)

Proof We prove first that P1
C

has a triangulation. We indicate a triangulation which,
although not the most economic, is useful for subsequent applications.

The decomposition of the surface of an octahedron into its faces, edges and ver-
texes gives a triangulation. Suppose that the octahedron is inscribed in the 2-sphere
S2 ⊂ R

3. Projecting this triangulation outwards from an interior point of the octa-
hedron provides a triangulation of S2. Since P

1(C) is homeomorphic to S2, we get
a triangulation of P1(C).

We identify P
1(C) with the plane of one complex variable together with a point

at infinity. The triangulation constructed in terms of the octahedron is the decompo-
sition realised by the real and imaginary axes and the circle |z| = 1 (see Figure 30).
It has

⎧
⎪⎨

⎪⎩

8 faces Ei , with d(Ei)= 2 for i = 1, . . . ,8,

12 edges Fi , with d(Fi)= 1 for i = 1, . . . ,12,

6 vertexes Gi , with d(Gi)= 0 for i = 1, . . . ,6.
(7.13)

Now consider a nonconstant rational function f on X. It defines a morphism
f : X→ P

1, and it remains only to apply Theorem 2. The theorem is proved. �

3.3 Topological Classification of Curves

We apply the topological classification of surfaces, recalled in Section 3.4, to the
surface X(C), where X is a nonsingular projective curve. For this, by Theorem A,
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we need to determine whether X(C) is orientable, and compute its Euler3 charac-
teristic e(X(C)).

Theorem 7.6 If X is a nonsingular projective curve then X(C) is an orientable
surface.

Proof This is of course a particular case of Proposition of Section 1.2, but we give
another, much more elementary, proof. We use an arbitrary morphism f : X→ P

1,
and consider compatible triangulations Φ and Ψ of X(C) and P

1
C

with respect to f .
These exist by Theorem 2. Since the 2-sphere S2 is orientable, the same holds for
the triangulation Ψ .

From the compatibility of the triangulations Φ and Ψ it follows that the sim-
plexes of Φ are exhausted by the components of the inverse images of simplexes of
Ψ , as described in the proof of Theorem 2. Hence any simplex E ∈ Φ is mapped
homeomorphically by f onto a simplex f (E) ∈ Ψ .

We fix an orientation of the triangulation Ψ (see Section 3.4). For a triangle
E ∈ Φ we consider the orientation on it obtained from that of f (E) ∈ Ψ under
the homeomorphism f : E→ f (E). It remains to check that in this way we get a
orientation of the whole of Φ . This is very easy. Suppose that two triangles E′,E′′ ∈
Φ have a common side E with vertexes b, c. Write a, b, c for the vertexes of E′
and b, c, d for those of E′′, and set f (a) = a′, f (b) = b′, f (c) = c′, f (d) = d ′.
Then a′, b′, c′ and b′, c′, d ′ are the vertexes of f (E′), f (E′′) ∈ Ψ . Suppose that the
chosen orientation of Ψ is given in f (E′) by ordering its vertexes (a′, b′, c′). Then
by the definition of orientation, the vertexes of f (E′′) are ordered by (c′, b′, d ′). By
assumption, the order of the vertexes of E′ and E′′ is the (a, b, c) and (c, b, d), from
which one sees that they define opposite orientations on the side E. The theorem is
proved. �

We pass to the second question, the determination of the Euler characteristic of
X(C) for an irreducible nonsingular projective curve X.

Theorem 7.7 The Euler characteristic of X(C) is 2 − 2g, where g is the genus
of X.

Proof We again use a regular map f : X→ P
1 and compatible triangulations Φ

and Ψ of X(C) and P
1(C). We write c0, c1, c2 for the numbers appearing in the

definition of the Euler characteristic (7.19) of Φ , and c′0, c′1, c′2 for the same numbers
for Ψ . Then

e
(
P

1(C)
)= c′0 − c′1 + c′2 and e

(
X(C)

)= c0 − c1 + c2.

3The Euler characteristic is also traditionally denoted by χ(X), but Hirzebruch’s notation e(X)

neatly avoids ambiguity with χ(OX) in sheaf cohomology.
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Let us see how these numbers are related. By definition of compatible triangulations,
for every simplex E ∈ Ψ we have

f−1(E)=
⋃

Ei, (7.14)

where f : Ei→ E is a homeomorphism. In the proof of Theorem 7.6, we saw that
running through all the simplexes E ∈ Ψ , we get in this way among the Ei all the
simplexes of Φ .

How many simplexes Ei are there in (7.14)? If degf = n and d(E) > 0 then
there are n. Indeed, there cannot be more than n of them, since every point y ∈ P1

has≤n inverse images. But it also cannot be less than n, since only the finitely many
branch points have <n inverse images. Let d(E)= 0, so that E is a point y ∈ P1(C).
We write y for the divisor consisting of one point y with multiplicity 1. We set

f ∗(y)=
r∑

i=1

kixi . (7.15)

The number of inverse images of points y equals r , but since
∑r

i=1 ki = n, we have
r = n−∑

(ki − 1). Hence we get

⎧
⎪⎨

⎪⎩

c2 = nc′2,
c1 = nc′1,
c0 = nc′0 −

∑
(ki − 1),

where the final sum contains the ramification degree of f at all points x ∈ X. In
conclusion, we get that

e
(
X(C)

)= e
(
P

1(C)
)
n−

∑
(ki − 1).

On the other hand, for example from the triangulation of Figure 30 and (7.13) we
see that e(P1(C))= 8− 12+ 6= 2. Hence, finally,

e
(
X(C)

)= 2n−
∑

(ki − 1). (7.16)

We now consider an arbitrary rational differential form ω �= 0 on P
1 and compute

the divisor div(f ∗(ω)) of the pullback of ω on X. Suppose that vy(ω)=m at a point
y ∈ P1; that is,

ω= tmgdt,

where t is a local parameter at y and g ∈Oy with g(y) �= 0. If the numbers ki are
the same as in (7.16), we get vxi (f

∗(t)) = ki , that is, f ∗(t) = τ ki hi , where τ is a
local parameter at xi and hi ∈Oxi with hi(xi) �= 0. It follows from this that

vxi
(
f ∗(ω)

)=mki + ki − 1.
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In other words,

div
(
f ∗(ω)

)= f ∗(divω)+
∑

(ki − 1)xi, (7.17)

where, as in (7.16), the final sum is taken over all points xi ∈X at which the ramifi-
cation degree of f is >1.

Since f ∗(ω) is a differential form on X, we have deg(div(f ∗(ω)))= 2g − 2. In
exactly the same way, deg(div(ω))=−2. Finally, for every divisor D on P

1 we have
the equality deg(f ∗(D)) = ndegD, so that this holds for the divisor consisting of
just one point by Theorem 3.5 of Section 2.1, Chapter 3. Considering the degrees of
the divisors on either side of (7.17) we thus get

2g− 2=−2n+
∑

(ki − 1).

(See also Exercise 4 of Section 8.1, Chapter 3.)
Comparing this formula with (7.16), we get Theorem 7.7. �

Theorems 7.6 and 7.7, in combination with the topological result Theorem A
give us a complete topological classification of nonsingular projective curves. They
show that for two such curves the spaces X(C) are homeomorphic if and only if the
curves have the same genus.

There is no analogous result known for varieties of dimension >1. We discuss
one of the simplest results on the relation between the topological and algebraic
properties of complete nonsingular varieties that generalises Theorem 5. Because

e
(
X(C)

)= b0 − b1 + b2

(in the notation of Theorem 5), where b1 is the first Betti number of X(C) and
b0 = b2 = 1, Theorem 5 can be expressed as the equality

b1 = 2g.

If X is an arbitrary nonsingular projective variety then a similar result holds:

b1 = 2h1,

where b1 is the first Betti number of X(C) and h1 = dimCΩ1[X] (compare Sec-
tion 4.5, Chapter 8). Using more delicate constructions, we can also express the
other Betti numbers of X(C) in terms of algebraic invariants of X.

In conclusion, we note that the topological classification of nonsingular projec-
tive curves can be obtained by other methods, in the framework of the theory of
differentiable manifolds. For this one has to use somewhat less elementary topolog-
ical apparatus, but the treatment is more intrinsic. We note only the general direction
of this treatment, omitting all details.

In Section 1.2 we saw how to prove the orientability of X(C) for any nonsingular
variety X using notions of the theory of differentiable manifolds. The combinatorial
classification of surfaces (Theorem A) must be replaced by its smooth analogue, the
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theorem that any connected compact oriented surface can be obtained by glueing
a finite number of handles onto a sphere. The proof of this theorem follows easily
from Morse theory (see for example Wallace [78]). It remains to prove Theorem 7.7.
For this we have to consider the tangent bundle Θ of the 2-dimensional manifold
X(C). Its first Chern class c1(Θ) is an element of H 2(X(C),Z). This group has
a canonical generator, the cohomology class ϕ for which ϕ(ωX) = 1, where ωX

is the orientation class of X. Hence c1(Θ) = νϕ for some ν ∈ Z, and thus deter-
mines an integer ν. In our case c1 is the Euler class, and hence ν = e(X(C)); that is
c1(Θ)= e(X(C))ϕ, where e(X(C)) is the Euler characteristic of the surface X(C)

(see Husemoller [41], Theorem 7.2).
On the other hand, Θ has rank 1 as an algebraic vector bundle over X, and

corresponds to the divisor class −K , where K is the canonical class of the curve X.
Since deg(−K)= 2− 2g, the relation

e
(
X(C)

)= 2− 2g

is a consequence of the following general result.

Proposition If E is a rank 1 vector bundle on a nonsingular projective curve X and
D its characteristic class, and c1(E) the Chern class of the corresponding vector
bundle on X(C), then

c1(E)= (degD)ϕ.

The proof for the case of a divisor D on a variety X of any dimension is given in
Chern [22] (Russian translator’s footnote No. 39), or Springer [74, 5–9].

3.4 Combinatorial Classification of Surfaces

We recall here for the reader’s convenience a number of elementary topological
notions and results.

Let V be an n-dimensional affine space over the real number field R. Then any
two points P,Q ∈ V define a vector

−→
PQ belonging to the n-dimensional vector

space R
n. And any vector x ∈ Rn together with a point P ∈ V define a point Q ∈

V such that
−→
PQ = x; this can also be expressed as P + x = Q. For any points

P1, . . . ,Pm ∈ V and any set of numbers λ1, . . . , λm ∈ R such that
∑

λi = 1, the

point Q+∑
λi
−→
QP i is independent of the choice of the auxiliary point Q, and can

be written in the form
∑

λiPi .
If P0, . . . ,Pr ∈ V are not contained in any affine space of dimension less than r

then the representation of a point R in the form R =∑r
i=0 λiPi with

∑
λi = 1 is

unique. We say that P0, . . . ,Pr are independent points. In this case, the set of points



138 7 The Topology of Algebraic Varieties

R ∈ V that can be represented in the form

R =
r∑

i=0

λiPi with
∑

λi = 1 and λi ≥ 0 (7.18)

is called an r-simplex or r-dimensional simplex. The points Pi are called its ver-
texes.

If Pi1, . . . ,Pir−s are r − s of the vertexes of a simplex σ then the points R ∈
σ which have λi1 = · · · = λir−s = 0 in (7.18) themselves form an s-dimensional
simplex with vertexes Pj for j �= i1, . . . , ir−s . A simplex of this form is called a
face of σ .

Let X be a Hausdorff topological space. We give here a definition of triangula-
tion of X (more precisely, finite triangulation). By this, we mean the following data:
(a) a finite family Φ of closed subsets Ei of X; (b) a map sending each Ei ∈Φ to
an integer d(Ei)≥ 0; and (c) for each i, a homeomorphism ti : Ei→ σi where σi is
a simplex of dimension d(Ei). Here the following conditions should hold:

(1) X =⋃
Ei ;

(2) if Ei,Ej ∈Φ then either Ei ∩Ej ∈Φ or Ei ∩Ej = ∅;
(3) if Ek ⊂ Ei then ti (Ek) is a face of σi , and all the faces of the simplex arise in

this way.

It follows from the definition that if d(Ei)= 0 then Ei is a point x ∈X. All such
points are called the vertexes of the triangulation. The subsets Ei ⊂ X are called
the simplexes of the triangulation, and the vertexes of the triangulation contained
in a given simplex Fi are called the vertexes of this simplex. It is easy to show
that if we know the set K = {x1, . . . , xN } of vertexes of a triangulation, and which
subsets S ⊂ K are the sets of vertexes of a simplex of the triangulation, then we
can recover the topological space X from this information. Thus a triangulation of
a space allows us to specify it as a purely combinatorial construction. A topological
space that admits at least one triangulation is said to be triangulable.

In connection with triangulations of X(C), where X is a nonsingular projective
curve, we need triangulations with the following properties:

(a) all the simplexes of Φ have dimension ≤2;
(b) every simplex of dimension <2 is the face of some 2-simplex;
(c) every 1-simplex is the face of exactly two 2-simplexes.

A topological space having a triangulation with these properties is a combinato-
rial surface.

In what follows, we use the operation of refining or subdividing a given trian-
gulation. We give a simplified description of the operation of subdivision which is
valid for triangulations with d(Ei)≤ 2 for all Ei ∈Φ .

Suppose that X is a topological space and Φ a triangulation such that d(Ei)≤ 2
for all Ei ∈ Φ , and let Er ∈ Φ be a 1-simplex. Choose any interior point ξ of the
interval tr (Er) and denote the two intervals into which ξ divides tr (Er) by Γ ′ and
Γ ′′. Set x = t−1

r (ξ). Let Ei for i ∈ I be the simplexes of the triangulation Φ with



3 The Topology of Algebraic Curves 139

Figure 31 Subdivision of a
triangulation

d(Ei) = 2 and Ei ⊃ Er . For each i ∈ I , we subdivide the triangle ti (Ei) into two
triangles T ′i and T ′′i by drawing an interval Γ joining the point ti (x) to the vertex
opposite the side ti (Er). (See Figure 31.)

Consider the family Φ ′ consisting of the following closed subsets of X:

d = 0: take Ej ∈Φ with d(Ej )= 0, together with the new point x;
d = 1: take Ej ∈ Φ with d(Ej ) = 1 and j �= r , together with four new intervals

t−1
r (Γ ′), t−1

r (Γ ′′) and t−1
i (Γ ) for each i ∈ I ;

d = 2: take Ej ∈ Φ with d(Ej ) = 2 and j /∈ I , together with four new triangles
t−1
i (T ′i ) and t−1

i (T ′′i ) for each i ∈ I .

Thus each simplex of the set Φ ′ is either a simplex of Φ , or part of one. We define
t ′ as the corresponding maps in the triangulation Φ or their restrictions. It is easy to
check that conditions (1), (2) and (3) hold, so that Φ ′ is again a triangulation. It is
called a subdivision of Φ . The following result follows at once from the definition
of subdivision.

Proposition Let S ⊂ X be a finite set, X =⋃
Ui a finite open cover and Φ a tri-

angulation of a space X. Then there exists another triangulation obtained by suc-
cessive subdivisions of Φ such that the points of S are vertexes and every simplex is
contained in one of the Ui .

Such a triangulation is said to be subordinate to the cover X =⋃
Ui .

Proof If a point s ∈ S is contained in a simplex Ei with d(Ei) = 1 then a single
subdivision makes it into a vertex of the triangulation. If s ∈Ei with d(Ei)= 2 then
we first choose an edge Ej ⊂ Ei with d(Ej ) = 1 and the vertex P of the triangle
ti (Ei) opposite the side ti (Ej ). Take ξ to be the point of intersection of the side
ti (Ej ) and the line Γ joining ti (s) and P . Carrying out the subdivision in this point,
we come to the case already considered.

To make the triangulation subordinate to an open cover, it is enough to do this for
each triangle. The argument here is very simple and we leave it to the reader. The
proposition is proved. �

We recall the notion of orientation of a triangulation of a surface. An orientation
of an interval is an ordering of its endpoints; an orientation of a triangle is a choice
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of one of the two possible cyclic orders of its three vertexes. Thus each triangle and
edge has two different orientations, which we call opposite. Each orientation of a
triangle determines an orientation of its sides.

Let X be a combinatorial surface and Φ the corresponding triangulation. By an
orientation of Φ we mean a choice of orientations of each triangle such that for
each edge E ∈Φ with d(E)= 1, the two triangles meeting along E define opposite
orientations. A triangulation that admits an orientation is said to be orientable. If
X is connected then a triangulation ϕ admits either no orientation, or exactly 2. It
is easy to check that the triangulation of S2 or P1(C) constructed in Section 3.3 is
orientable.

The property that a surface is orientable is independent of its triangulation. In
other words, if Φ and Ψ are two different triangulations of the same surface then
they are either both orientable, or both nonorientable. The condition for a surface to
be orientable can be written in intrinsic terms as H2(X,Z) �= 0.

The final topological notion that we require is that of Euler characteristic of a
surface. If a triangulation Φ has c0 vertexes, c1 edges and c2 triangles, then the
Euler characteristic is defined as

eΦ(X)= c0 − c1 + c2. (7.19)

As with orientability, the Euler characteristic of a surface is independent of the tri-
angulation, and so is denoted by e(X). Its invariant definition is

e(X)= dimK H0(X,K)− dimK H1(X,K)+ dimK H2(X,K),

where K is any field of characteristic 0. It is easy to check that the Euler character-
istic of S2 or P1(C) is 2.

The main result of the topology of surfaces is that the topological invariants we
have introduced, that is, orientability and the Euler characteristic, form a complete
system of topological invariants of connected triangulable surfaces.

Theorem A Two connected triangulable surfaces are homeomorphic if and only if
they are orientable or nonorientable together and have equal Euler characteristic.

For the proof, see Aleksandrov [4, III.7.2], Seifert and Threlfall [68, Chapter 6,
Section 39], Hauptsatz or Springer [74, 5–5 and 5–9]. The assumption of triangula-
bility is redundant here; it can be shown that any surface is triangulable (compare
Theorem 7.5), although we do not need this.

3.5 The Topology of Singularities of Plane Curves

Let X be a algebraic plane curve and O ∈ X a singular point. In this case, already
arbitrarily small neighbourhoods (or punctured neighbourhoods) of O ∈ X ⊂ C

2

have nontrivial topological invariants, and the question that arises is to describe
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Figure 32 A torus knot

these. For this, suppose that O = (0,0) is the origin of the plane C2, and surround it
by a sufficiently small 3-sphere Sε with equation |z1|2+|z2|2 = ε2. It can be proved
that, for ε sufficiently small, the intersection X(C) ∩ Sε is a smooth 1-dimensional
manifold, that is, a union of a finite number of smooth curves homeomorphic to the
circle S1. Such a system of curves in S3 is called a link, and if it is a connected
curve, a knot. The topology of the singular point O ∈X ⊂ C

2 is determined by the
link we have constructed, since a sufficiently small neighbourhood of O is the cone
over this link.

If X has r branches at O then the corresponding link breaks up as a union of
r knots (see Section 5.3, Chapter 2 for a discussion of branches; in what follows,
we are mainly concerned with the unibranch case r = 1). Each knot is uniquely
determined by the characteristic pairs of the corresponding branch; it is a so-called
iterated torus knot. To describe this, we first describe a torus knot, that can be drawn
on the surface of a torus. If we view the torus as the quotient R2/Z2, where Z2 ⊂R

2

is the lattice of points with integer coordinates, then a torus knot of type (p, q),
where p and q are coprime natural numbers, is the image of the line y = (p/q)x in
R

2. The corresponding curve goes p times round the torus in the direct of one basic
cycle, and q times round it in the other.

Suppose that (a1, b1),. . . , (am, bm) are the characteristic pairs of our branch (see
(2.39) of Section 5.3, Chapter 2). Consider an unknotted circle l0 in our sphere, and
the boundary of a tubular neighbourhood of l0, that is, the torus described by a small
circle with centre a point of l0 contained in a normal plane to l0 as the centre moves
around l0. On this torus we construct a torus knot l1 of type (a1, b1) (see Figure 32).
Then consider the boundary of a tubular neighbourhood of l1 and consider a torus
knot of type (a2, b2) on it, and so on. Repeating this process m times using the spec-
ified sequence of characteristic pairs, we get the knot of the corresponding branch.
It can be proved that the set of characteristic pairs is a topological invariant of the
iterated torus knot.

We do not give proofs of these assertions, although they are quite elementary;
see for example Kähler [44] or Milnor [59].

The picture that emerges is reminiscent of the theory of nonsingular curves.
There we had one integer invariant, the genus, that uniquely determines the topol-
ogy of the curve X(C). For singularities, the analogous role is played by the set of
characteristic pairs, that uniquely determines the knot. The set of all curves of genus
g up to isomorphism depends on a finite number of parameters (3g − 3 if g > 1).
In the same way, the set of singularities with a given set of characteristic pairs (up
to formal or local analytic isomorphism) depends on a finite number of parameters:
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roughly speaking, the coefficients of the Puiseux expansion of (2.39) of Section 5.3,
Chapter 2. However, the situation in the case of singularities seems to be much less
well studied than that of curves; for example, it is not known how many connected
components the set of singularities with given topology (that is, link) has, what the
dimension of these families is, and so on.

3.6 Exercises to Section 3

1 Let k be an algebraically closed field of characteristic 0 and k((t)) the field of
fractions of the ring of formal power series in one variable. Prove that this field
has a unique extension of given degree n, obtained by adjoining n

√
t . [Hint: Use the

arguments of the proof of Theorem 7.3.]

2 Let X and Y be nonsingular projective curves and f : X→ Y a morphism with
f (X)= Y . Deduce a formula expressing the genus of X in terms of that of Y and the
ramification degrees of f at points of X. [Hint: Consider compatible triangulations
of X and Y with respect to f . See also Exercise 2–4 of Section 8.1, Chapter 3.]

3 Let X be a projective nonsingular model of the curve with equation

y2 = (x − a)(x − b)(x − c)(x − d),

and f : X(C)→ P
1(C) the continuous map defined by the function x. Let α and

β denote disjoint intervals in the sphere P
1(C) joining ab and cd . Prove that

f−1(P1(C) \ (α ∪ β)) breaks up into two connected components Xi , each of which
maps homeomorphically to P

1(C) \ (α ∪ β) under f , where P
1(C) \ (α ∪ β) is

homeomorphic to a sphere with two discs deleted.

4 In the notation of Exercise 3, prove that for i = 1,2 the boundary of the closure
Xi is homeomorphic to α ∪β , and that X is obtained by identifying these boundary
components, and is thus homeomorphic to the torus, in agreement with Theorem 7.7.

5 Prove that the knot corresponding to the singular point (0,0) of the curve yp =
xq , where p and q are coprime integers, is the torus knot of type (p, q). [Hint: The
case (p, q)= (2,3) is treated in Mumford [60, Section 1B].]

4 Real Algebraic Curves

By a real algebraic curve, we mean a scheme X defined over R such that X⊗R C

is an algebraic curve. We assume from now on that X ⊗R C is a nonsingular ir-
reducible projective curve. As before, we write X(R) for the set of closed points
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x ∈ X for which k(x)= R. In more simple-minded terms, X is a nonsingular irre-
ducible projective curve defined by equations with real coefficients, and X(R) is the
set of points of X with real coordinates.

The set X(R) is a compact 1-dimensional manifold. However, it is not necessar-
ily connected, so that the analogue of Theorem 7.1 is false here. An example of a
disconnected variety X(R) has already appeared in Figure 8.

A connected compact 1-dimensional manifold is homeomorphic to the circle.
This is not hard to prove directly, and for the connected components of X(R) it
follows at once from the fact that they are triangulable, which we prove presently.
Thus X(R) is homeomorphic to some number of disjoint circles, so that the unique
topological invariant of this space is its number of connected components.

We prove in this chapter the main result relating this topological invariant of the
topological space X(R) to algebraic properties of the algebraic curve X.

Harnack’s Theorem If X is a nonsingular projective curve of genus g defined over
R then the number of connected components of X(R) is ≤g+ 1.

There are several proofs of this theorem. One of these takes place entirely in the
real domain; this can be found in Lang [55, Section 7, Chapter X]. We give here
another proof which is interesting in that the stated property of X(R) is deduced
from its embedding in the space X(C).

4.1 Complex Conjugation

The main role in the proof of Harnack’s Theorem given in Section 4.2 is played by
the complex conjugation map τ : Pn(C)→ P

n(C), that sends any point x ∈ Pn(C)

to the point with complex conjugate coordinates τ(x). Obviously, τ defines a
homeomorphism of the topological space P

n(C) (but not an automorphism of
the algebraic variety P

n!). Since X is defined by equations with real coefficients,
τ(X(C)) = X(C), and τ defines a homeomorphism of X(C). In other words, τ is
the automorphism of the scheme X⊗R C induced by the complex conjugation map
α �→ τ(α) on C.

As before, we use a triangulation of X(C), but now it is convenient to choose
it invariant under τ , that is, so that together with a simplex E, it also contains the
simplex τ(E). We prove that such a triangulation exists.

For this, we must repeat the whole process of constructing the triangulation of
the surface X(C). We start from a triangulation of P

1(C) invariant under τ and
such that P1(R) is a union of simplexes. The triangulation indicated in Figure 30
has these properties. Next, one can easily check that we can add extra precision to
Proposition of Section 3.4 on subdividing a triangulation: if Φ is invariant under
τ then the subdivision Ψ we construct is also invariant under τ . For this, one need
only, when subdividing a simplex E into E′ and E′′, simultaneously subdivide τ(E)

into τ(E′) and τ(E′′).
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Finally, we choose a nonconstant function f ∈ R(X), that is, a rational function
of the coordinates with real coefficients. The corresponding map f : X(C)→ P

1(C)

will obviously have the property that

f
(
τ(x)

)= τ
(
f (x)

)
.

It is easy to check that the process of constructing a triangulation Ψ of X(C) com-
patible with the triangulation Φ of P1(C) with respect to f described in the proof of
Theorem 7.6 leads to a τ -invariant triangulation Ψ , provided that Φ was τ -invariant.
Thus we have the following proposition.

Proposition 7.1 X(C) has a triangulation Φ invariant under the homeomorphism
τ . Then X(R) is obviously made up of simplexes of the triangulation.

Proposition 7.2 Let E be a 1-simplex of the triangulation Φ of X(C) contained in
X(R), and E′ and E′′ the two 2-simplexes meeting along E. Then τ(E′)=E′′.

Proof Since E′ and E′′ are the only two simplexes of the triangulation Φ with E

as boundary, Φ is τ -invariant and τ(E)= E, it follows that either τ(E′)= E′ and
τ(E′′)=E′′, or τ(E′)=E′′ and τ(E′′)=E′.

Let x be an interior point of E, and choose a local parameter t ∈ R(X), for
example the equation of a hyperplane with real coefficients passing through x and
transversal to X. Let x ∈U and

t : U→C

be a homeomorphism of U to the interior W of the unit disc |z|< 1 in C. Choose U

to be so small that it only intersects E, E′ and E′′ of all the simplexes of Φ .
Since t ∈R(X),

t
(
τ(x)

)= τ
(
t (x)

)
, (7.20)

and hence t (E∩U) equals the real diameter of the unit disc |z|< 1. We see that U \
(U ∩E) breaks up into two connected components U ∩ (E′ \E) and U ∩ (E′′ \E).
In the same way, t (U) \ t (E) breaks up into two components, the upper and lower
half-discs. Clearly the two different components of U \ (U ∩E) map onto the two
different components of the image. But the two half-discs are complex conjugate,
so that it follows from (7.20) that

τ
(
U ∩ (

E′ \E))=U ∩ (
E′′ \E)

.

Therefore τ(E′)∩E′′ �= ∅, and hence τ(E′)=E′′. The proposition is proved. �

4.2 Proof of Harnack’s Theorem

We use chain and homology groups with coefficients in Z/2Z. We work with coeffi-
cients Z/2Z, so that a chain S =∑

εiEi is a sum of simplexes Ei with coefficients
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εi = 0 or 1; we say that Ei appears in S if εi = 1. For an arbitrary surface F , we
write H1(F ) for the group H1(F,Z/2Z).

Let T1, . . . , Tk be all the connected components of X(R). In the triangulation
Φ(R), they are made up of 1- and 0-simplexes. They are obviously cycles in
H1(X(C)), and we denote them by the same symbol.

Proposition The cycles T1, . . . , Tk are either linearly independent elements of
H1(X(C)), or related by the single equation

T1 + · · · + Tk = 0.

Proof If the proposition is false then (after renumbering the Ti if necessary), there
exists a relation

T1 + · · · + Tr = 0 ∈H1
(
X(C)

)
with r < k.

In other words,

T1 + · · · + Tr = ∂S,

where S is a 2-chain of the triangulation Φ . The 2-simplexes not appearing in S

form a chain S, and since ∂(S + S)= 0, we get

∂S = ∂S = T1 + · · · + Tr . (7.21)

Thus every 1-simplex appearing in any of the Ti (for 1≤ i ≤ r) is a face of exactly
one 2-simplex appearing with coefficient 1 in S, and exactly one in S.

Now note that τ(S) is also a chain of the triangulation Φ , and

∂
(
τ(S)

)= τ(∂S)= ∂S (7.22)

in view of (7.21), and because τ(Ti) = Ti . Since H1(X(C)) is a Z/2Z-module,
(7.22) shows that

∂
(
S + τ(S)

)= 0. (7.23)

Because H2(X(C))= Z/2Z has only two elements, it follows from (7.23) that

either S + τ(S)= S + S, so that S = τ(S), (7.24)

or S + τ(S)= 0, so that S = τ(S), (7.25)

Consider an arbitrary 1-simplex E1 of the triangulation Φ contained in Ti for
some i = 1, . . . , r . Let E′ and E′′ be the 2-simplexes that meet along E1. Then we
can assume that E′ appears in S, and E′′ in S. By Proposition 7.2 we see that (7.25)
is impossible, so that (7.24) must hold.

Now consider the set Tr+1 (recall we are assuming that r < k) and choose any
point t ∈ Tr+1. Obviously t ∈ S or t ∈ S, but t /∈ S ∩ S, since this intersection is
T1 + · · · + Tr , which is disjoint from Tr+1. If for example t ∈ S then τ(t) ∈ τ(S).
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But τ(t)= t , since t ∈ Tr+1 ⊂X(R), and τ(S)= S, and hence t ∈ S ∩ S, which, as
we have seen, is false. The proposition is proved. �

To complete the proof of Harnack’s theorem, we appeal to yet another topological
argument. If F is an arbitrary oriented surface then H1(F,Z/2Z) is a module of
finite rank m over Z/2Z. The intersection pairing sends two elements α,β ∈H1(F )

to an element of Z/2Z denoted by (α,β). The function (α,β) is linear in each
argument and skewsymmetric, that is, (α,α) = 0 for any α ∈ H1(F ). By Poincaré
duality it follows that it is nondegenerate, that is, if ξ1, . . . , ξm is a basis of H1(F )

then

det
∣∣(ξi, ξj )

∣∣ �= 0.

It follows from this that any n > m/2 elements α1, . . . , αn ∈ H1(F ) such that
(αi, αj )= 0 for i, j = 1, . . . , n are linearly dependent.

We apply this remark to H1(X(C)). As proved in Section 3, it has rank 2g. The
cycles T1, . . . , Tk , the connected components of X(R), are disjoint by definition.
Hence (Ti, Tj ) = 0 for i, j = 1, . . . , k, and hence any g + 1 of them are linearly
dependent in H1(X(C)). But if the number of components k is >g + 1, we would
get a contradiction to the proposition. Harnack’s theorem is proved.

4.3 Ovals of Real Curves

In connection with Harnack’s theorem, Hilbert, in his famous 1900 lecture on the
problems of math, raised the question of the relative position of connected com-
ponents of a real nonsingular plane curve X ⊂ P

2 (see [38, Problem 16]). These
components are called ovals of X. We only discuss the exact statement of the ques-
tion in case of curves of even degree. In this case, we can prove that any oval of X
is homologous to 0 in P

2(R), and divides it into two connected components, one
homeomorphic to the disc and the other to the Möbius strip. The first component is
called the interior of the oval. Hence it makes sense to speak of one oval containing
another or being contained in it. The problem then consists of determining the pos-
sible relative positions of ovals (in the sense of which ovals contain one another) for
all real nonsingular plane curves of a given degree. An analogous statement of the
question in case of curves of odd degree is possible, but it requires more detailed
considerations, and we do not discuss it.

At the present time, the answer to this question is known for curves of degree
≤7. We describe the answer for curves of even degree under the assumption that the
number of ovals is the maximal allowed by Harnack’s theorem. Using the formula
for the genus of a nonsingular plane curve of degree 2n, we see that this maximal
number is 2n2 − 3n+ 2.

A curve of degree 2 can only have 1 oval. A curve of degree 4 has at most four
ovals. Here only one relative position is possible, with all four ovals outside one
another. A curve of degree 6 has at most 11 oval.
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In this case 3 different relative positions are possible: one of the ovals contains
1, 5 or 9 ovals, with none contained in another, and outside it there are respectively
9, 5 or 1 ovals, with again none contained in another.

As the degree increases the complexity grows very rapidly. Thus for curves of
degree 7 there are 121 types of relative position of ovals, of which 14 have the
maximal number of ovals.

Certain general equalities and congruences are also known, as restriction on the
relative position of ovals. For example, from a general result of I.G. Petrovskii it
follows that the number of ovals of a curve of degree 2n not containing one another
is ≤(3/2)n(n− 1)+ 1, from which it follows in particular that a curve of degree 6
cannot decompose as 11 ovals with none contained in another. The analysis of all
possible types of ovals is not known at present, and it is completely unclear in what
terms one could search for such an analysis.

A natural generalisation of Harnack’s theorem to higher dimensional varieties is
Thom’s theorem, according to which, for any nonsingular real algebraic variety X,
we have

b∗
(
X(R)

)≤ b∗
(
X(C)

)
.

Here b∗(Z) is the total Betti number mod 2, that is
∑

k dimHk(Z,Z/2Z).
In the same lecture, and in connection with the same problem, Hilbert points out

an analogy between questions of ovals of real algebraic curves and limit cycles of
differential equations

dy

dx
= f (x, y)

g(x, y)
,

where f and g are polynomials. In this question, there is not even an analogue of
Harnack’s theorem known, that is, no bound is known for the number of limit cycles
in terms of the maximum degrees of f and g. A bound is not even known when this
maximum is 2.

Only recently has it been proved that the number of limit cycles is finite for each
individual equation, but it is not known if there exists a general bound on the number
of limit cycles for all equations with given N =max(degf,degg), and a fortiori a
value for this bound, even for N = 2. In this case, equations with 4 limit cycles have
been constructed.

4.4 Exercises to Section 4

1 Prove that if a real curve of degree 4 decomposes as ≥3 ovals then none is con-
tained in another. [Hint: Otherwise there would exist a line intersecting the curve in
6 points.]

2 Prove that the normalisation of a real curve is again real.
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3 Consider the normalisation of the projective closure of the curve

y2 =−(x − e1) · · · (x − e2g+2) with ei ∈R and ei �= ej .

Prove that its number of ovals equals the bound of Harnack’s theorem.

4 Verify Thom’s theorem for a real quadric in P
3.

5 Prove that a real cubic surface, not a cone, is unirational over R. [Hint: Consider
the intersection of the surface with the tangent plane at a nonsingular point. Carry
out the same operation at every point of this singular cubic.]

6 Prove that the cubic surface t (z2+ y2)= x3− xt2 in P
3(R) consists of two com-

ponents. Deduce that it is not rational over R. This is a counterexample to the Lüroth
problem over R!



Chapter 8
Complex Manifolds

1 Definitions and Examples

1.1 Definition

In the preceding chapter we studied the topological space X(C) associated with an
arbitrary algebraic variety defined over the complex numbers C. The example of
nonsingular projective curves already gives a feeling for the extent to which X(C)

characterises the variety X. We proved that in this case the genus g of X is the
unique invariant of the topological space X(C). Thus we can say that the genus
is the unique topological invariant of a nonsingular projective curve. The genus is
undoubtedly an extremely important invariant of an algebraic curve, but it is very far
from determining it. We saw at the end of Section 7.1, Chapter 3 (see also Exercise 8
of Section 2.6, Chapter 3) that there are very many nonisomorphic curves of the
same genus. The relation between a variety X and the topological space X(C) is
similar in nature for higher dimensional varieties.

By looking more carefully at how the topology of the set X(C) was defined in
Section 1.1, Chapter 7, we observe that the same method allows us to associate
with X another object, which reflects many more properties of the variety X. We do
this here under the assumption that X is a nonsingular variety; the general case is
considered in Section 1.5.

We begin as in the preceding chapter: consider a point x ∈X(C) and some sys-
tem of local parameters t1, . . . , tn at x; these define a homeomorphism

ϕ : U ∼→ V ⊂C
n (8.1)

of some neighbourhood U of x with a neighbourhood V ⊂ C
n of the origin. This

homeomorphism was used to give X(C) the structure of a 2n-dimensional topo-
logical manifold. An essential point here was the compatibility of the different
maps (8.1) defined in various neighbourhoods U by various systems of local pa-
rameters. This follows from the fact that if f ∈C(X) is a regular function at x then
g = f ◦ ϕ−1 is complex analytic in a neighbourhood of the origin as a function of
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the n complex variables z1, . . . , zn of Cn. We have so far made very little use of
this property—only the continuity of g, from which it followed that any other local
parameters u1, . . . , un are continuous functions of t1, . . . , tn.

The essence of this argument is that there is an invariant way of defining a con-
tinuous complex valued (or real valued) function in a neighbourhood U of a point
x ∈ X(C). Thus it is natural to say that a function h : U → C is continuous if the
function h ◦ ϕ−1 is continuous on V ⊂ C

n, and this property is independent of the
choice of ϕ. Recall now that if f is a regular function at x, the function g = f ◦ϕ−1

is not just continuous, but also analytic. It follows that if u1, . . . , un is another sys-
tem of local parameters at x then u1, . . . , un are analytic functions of t1, . . . , tn in
some neighbourhood x ∈U ′ ⊂U . Hence if h : U→C is a continuous function and
h ◦ ϕ−1 is analytic near 0 then the same holds for any map (8.1) given by another
system of local parameters at x.

Thus the following notion is well defined: we say that a complex valued function
h on a neighbourhood of x ∈ X(C) is analytic at x if the function g(z1, . . . , zn)=
h ◦ ϕ−1 defined by means of a map (8.1) is analytic in a neighbourhood of 0 ∈ Cn

as a function of the variables z1, . . . , zn.
The functions h : U → C that are analytic at all points of an open set U form a

ring, that we denote by Oan(U). Since the definition of analytic is local in nature,
the map U → Oan(U) defines a sheaf Oan called the sheaf of analytic functions.
Oan is obviously a subsheaf of the sheaf of continuous functions on X(C), and in
turn the sheaf of regular functions O is a subsheaf of Oan.

In previous chapters of the book we defined an algebraic variety in terms of
its underlying topological space (in the Zariski topology) and its sheaf of regular
functions. In the same way, a topological space together with a specified sheaf of
analytic functions leads to the new notion that we wish to define.

We consider first a domain W in the space C
n of n complex variables. For any

open set U ⊂W the set of all functions that are analytic at all points of U forms an
algebra Oan(U) over C, and assigning U →Oan(U) defines a sheaf of C-algebras
on W , which is a subsheaf of the sheaf of continuous functions on W . This sheaf
Oan is called the sheaf of analytic functions on W . Ringed spaces of the form
W,Oan play the role of the simplest objects in our theory, and are analogous to
affine schemes in the definition of the general notion of scheme.

Definition A ringed space X, OX , consisting of a Hausdorff topological space X

together with a specified sheaf of C-algebras OX which is a subsheaf of the sheaf of
continuous functions on X, is a complex manifold or complex analytic manifold if
it satisfies the following condition: for every x ∈X there exists a neighbourhood U

such that the ringed space obtained by restricting OX to U is isomorphic to W,Oan,
where W is a domain in C

n and Oan the sheaf of analytic functions on W . This
isomorphism allows us to introduce coordinates z1, . . . , zn on U , that from now on
we call local analytic coordinates. An analytic function on an open set U ⊂X is a
continuous function on U that is a section of OX over U .

A map f : X→ Y of two complex manifolds is holomorphic if it is continuous
and defines a morphism of ringed spaces; this is equivalent to requiring that the
pullback f ∗(h) of an analytic function h is analytic.



1 Definitions and Examples 151

We say that a closed subset Y ⊂ X is a complex submanifold if there exists a
local analytic coordinate system z1, . . . , zn on X in a neighbourhood of every y ∈ Y
such that Y is given in this neighbourhood by the equations z1 = · · · = zm = 0. This
defines a natural structure of complex manifold on Y and the embedding Y ↪→X is
a holomorphic map.

If x is a point of a complex manifold, U a neighbourhood of x and f : U→W ⊂
C
n an isomorphism of U with an open set in C

n then the number n is called the com-
plex dimension of X at x. It follows from the definition that the topological space
X(C) is a 2n-dimensional topological manifold at x. Thus the complex dimension
is the same for all points of a connected component of a complex manifold. If X is
connected then this number n is its complex dimension.

We have just constructed a sheaf Oan on every nonsingular algebraic variety X

over C. Obviously X(C),Oan is a complex manifold, and we denote it by Xan; any
morphism f : X→ Y of algebraic varieties defines a holomorphic map Xan→ Yan
denoted by fan. The remainder of this chapter is devoted mainly to studying the
relation between algebraic varieties and the corresponding complex manifolds. For
example, the following questions arise:

(i) Is every complex manifold of the form Xan where X is some algebraic variety?
(ii) Is every holomorphic map Xan → Yan of the form fan, where f : X→ Y is

some regular map of algebraic varieties?
(iii) If Xan and Yan are isomorphic as complex manifolds then does it follow that X

and Y are isomorphic as algebraic varieties?

The answer to all these questions is negative, and counterexamples are not hard
to construct: for (i) and (ii) see Exercises 1–3 of Section 1.6; for (iii) see Section 3.2.
But if we restrict attention to compact complex manifolds, the same questions be-
come much deeper, and the answers less trivial. We consider these in the following
sections.

A number of arguments of the preceding Chapter 7 only used the fact that X(C)

is a complex manifold; this applies, for example, to the introduction of an orientation
on X(C).

Some Notation and Conventions As mentioned in the preface to this volume,
this chapter assumes known the theory of homology and cohomology on manifolds,
and we use freely the de Rham treatment of cohomology in terms of differential
forms. We gather here some conventions relating to complex manifolds. For more
details see, for example, Cartan [20, II.2.3].

An n-dimensional complex manifold is a 2n-dimensional differentiable mani-
fold. If z1, . . . , zn are local complex coordinates and zj = xj + iyj then we can
take x1, y1, . . . , xn, yn as local real coordinates. In particular any differential form
on X can be written in terms of the dxj and dyj . But it is usually convenient to use
coordinates zj and zj , setting

xj = 1

2
(zj + zj ), yj = 1

2i
(zj − zj ). (8.2)
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For example, one uses the definition

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
, (8.3)

under which the Cauchy–Riemann equations read “f holomorphic if and only if
∂f/∂z= 0.” We write the differential d acting on forms as d= d′ + d′′, where d′ is
the differential with respect to the variables zj and d′′ that with respect to the zj .
For example, if ϕ is a function then dϕ = d′ϕ + d′′ϕ, where

d′ϕ =
∑ ∂ϕ

∂zj
dzj and d′′ϕ =

∑ ∂ϕ

∂zj
dzj . (8.4)

Obviously (d′)2 = (d′′)2 = 0 and d′d′′ = −d′′d′.
In writing out a differential m-form η, we can group together all the terms

fj1...jmdzj1 ∧ · · · ∧ dzjp ∧ dzjp+1 ∧ · · · ∧ dzjm (8.5)

involving a given number p of the dzj , and therefore q = (m− p) of the dzj . By
doing this we get a unique decomposition

η=
∑

p+q=m
η(p,q), (8.6)

where η(p,q) is a form of type (p, q) or a (p, q)-form.

1.2 Quotient Spaces

We now describe a new method of constructing complex manifolds. Our first appli-
cation of this is a series of examples that answer some of the questions discussed at
the end of Section 1.1.

Let X be a topological space and G a group consisting of homeomorphisms of X.
We say that G acts freely and discretely on X if the following two conditions hold:

(1) Every point x ∈X has a neighbourhood U such that

g(U)∩U = ∅ for every g ∈G with g �= e. (8.7)

(2) Any two points x, y ∈X such that x �= g(y) for any g ∈G have neighbourhoods
U � x and V � y such that

g(U)∩ V = ∅ for every g ∈G.

We write X/G for the set of equivalence classes of points, where two points x1,
x2 are equivalent if there exists g ∈G such that g(x1)= x2. Sending each point to its
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equivalence class defines a map π : X→X/G. We introduce a topology on the set
X/G, saying that a subset U ⊂X/G is open if π−1(U) is open in X. Condition (2)
guarantees that if X is a Hausdorff space then so is X/G. If x ∈X, y = π(x), and
U is a neighbourhood of x satisfying (1) then V = π(U) is a neighbourhood of y.
Moreover by (8.7) we have

π−1(V )=
⋃

g∈G
g(U), where g1(U)∩ g2(U)= ∅ for g1 �= g2, (8.8)

and the map π : U → V is a homeomorphism. We say that a map of topological
spaces π : X→ Y with this property is a covering space or unramified cover.

Suppose now that X,OX is a complex manifold, and G a group of automor-
phisms of X acting freely and discretely on X. In this case we construct a sheaf
OX/G on X/G by defining OX/G(V ) to be the set of all continuous functions f on
V such that π∗(f ) is analytic on π−1(V ), that is, π∗(f ) ∈OX(π

−1(V )).
We now prove that X/G,OX/G is a complex manifold. For this, consider a neigh-

bourhood U of a point x ∈X that satisfies both (8.7) and the condition in the defini-
tion of a complex manifold, with ϕ : U →W the isomorphism to a domain of Cn.
Set π(U)= V , and consider a continuous function f on V . By (8.8), f ∈OX/G(V )

if and only if π∗(f ) ∈OX(g(U)) for every g ∈G. On the other hand, since g is an
automorphism of X, it defines an isomorphism of U and g(U), and the restrictions
of π∗(f ) to U and g(U) go into one another under this isomorphism. It follows
from this that if π1 : U→ V is the restriction of π1 to U then

f ∈OX/G(V ) ⇐⇒ π∗1 (f ) ∈OX(U).

Since π1 is a homeomorphism, it follows from this that π1 : U → V is an isomor-
phism of ringed spaces. Hence we have an isomorphism

ϕ ◦ π−1
1 : V →W ⊂C

n

of ringed spaces, whose existence proves that X/G is a complex manifold.

Example 8.1 (Quotients of C
n by a lattice) We view the n-dimensional complex

vector space C
n as a 2n-dimensional real vector space, and choose m linearly inde-

pendent vectors a1, . . . , am. Write Ω for the set of vectors of the form

a = k1a1 + · · · + kmam with ki ∈ Z,
which is a lattice of rank m. For each a ∈Ω the translation ga : Cn→C

n given by
ga(z)= z+ a for z ∈Cn is an automorphism of the complex manifold C

n. Since

ga+b = ga ◦ gb,
the translations ga with a ∈ Ω form a group G. Obviously G acts freely and
discretely on C

n. Indeed, extend a1, . . . , am to a basis a1, . . . , a2n of C
n and

write U for the open set consisting of vectors a = x1a1 + · · · + x2na2n with xi ∈
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(−1/2,1/2)⊂ R for i = 1, . . . ,m. Then the set z+ U consisting of vectors z+ u

with u ∈U is a neighbourhood of z, and

ga(z+U)∩ (z+U)= ∅ for a ∈Ω and a �= 0,

that is, condition (1) in the definition of free and discrete action holds. Condition (2)
is equally obvious.

Thus Cn/G is a complex manifold; it is easy to see that it is compact if and only
if m= 2n.

Suppose that m = 2n. In this case the manifold C
n/G has a very simple topo-

logical structure. Since

C
n =Ra1 + · · · +Ra2n and Ω = Za1 + · · · +Za2n,

C
n/G is homeomorphic to the product of 2n copies of R/Γ , where Γ is the group

of translations t �→ t+n with t ∈R and n ∈ Z. Obviously R/Γ is homeomorphic to
the circle, and C

n/G to the 2n-dimensional torus. Hence when m= 2n the manifold
C
n/G is called a complex torus. We will see later that two complex toruses are not

usually isomorphic to one another as complex manifolds.

Example 8.2 (Hopf manifolds) Write X = C
n \ 0 and let c be a real number with

c > 1. Let G be the group of transformations

(z1, . . . , zn) �→
(
ckz1, . . . , c

kzn
)

with k ∈ Z.

One can easily check directly that G acts freely and discretely on X; but this be-
comes completely obvious from the following considerations.

Write any point z ∈X in the form

z= ru,

where r is a positive number and u= (u1, . . . , un) a vector such that |u1|2 + · · · +
|un|2 = 1. This representation is obviously unique and defines a homeomorphism

X ∼=R+ × S2n−1,

where R+ is the set of positive real numbers and S2n−1 the (2n− 1)-dimensional
sphere. In this representation the transformations of G act trivially on S2n−1, and on
R+ by multiplying by powers of c. If we use the log function to map R+ to R then
this action becomes the translations by vectors of the lattice Zγ , where γ = log c.
From this we see that G acts freely and discretely, and that X/G is homeomorphic
to (R/Z)× S2n−1, that is, to S1 × S2n−1. The compact complex manifold we have
just constructed is called the Hopf manifold.
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1.3 Commutative Algebraic Groups as Quotient Spaces

We return to the quotient spaces C
n/G discussed in Example 8.1, where G is a

group consisting of translations by vectors of some lattice Ω . This lattice is a sub-
group of Cn, and the quotient space C

n/G is homeomorphic to the quotient group
C
n/Ω , and is hence a group. It is easy to check that the map

m : (Cn/Ω
)× (

C
n/Ω

)→C
n/Ω

defined by the group law is holomorphic. Thus C
n/Ω is a commutative complex

Lie group.
Suppose that the manifold C

n/Ω arises from some algebraic variety X, that is,
is of the form Xan. In this case one can prove that m= μan, where

μ : X×X→X

is a morphism that defines an algebraic group structure on X. In the most interesting
case when X is compact this will follow from Theorem 8.5. In this case, X is thus
an Abelian variety (see Section 4.3, Chapter 3).

We now show that, conversely, any commutative algebraic group over the com-
plex number field can be represented in the form C

n/Ω for some lattice Ω . For this
we need an auxiliary result.

Lemma An invariant differential 1-form ϕ ∈Ω1[G] (Sections 5.1 and 6.2, Chap-
ter 3) on a commutative algebraic group is closed.

Proof Let ϕ be an invariant differential form on a group G. It is easy to check that
then dϕ is also invariant. Hence it is enough to prove that dϕ(e)= 0, from which it
follows that also dϕ = 0.

We write ϕ in the form ϕ =∑
ψkduk , then use (3.72) of Section 6.2, Chapter 3:

∑

l

cklψl =ψk(e) ∈C.

It follows from this that

∑

l

∂ψl

∂ui
ckl +

∑

l

ψl

∂ckl

∂ui
= 0 for i = 1, . . . , n.

Consider this equality at the point e. Since ckl(e)= δkl , it follows that

∂ψk

∂ui
(e)+

∑

l

ψl(e)
∂ckl

∂ui
(e)= 0.

To prove the equality

∂ψk

∂ui
(e)= ∂ψi

∂uk
(e) (8.9)
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expressing that ϕ is a closed form, it is enough to check that

∂ckl

∂ui
(e)= ∂cil

∂uk
(e).

It is at this point that we use the commutativity of G. We use (3.71) of Section 6.2,
Chapter 3:

ckl =
∑

j

vlj
(
g−1)∂wlj

∂uk
(e).

Because the group is commutative,

μ∗(uk)(g1, g2)=
∑

j

vkj (g1)wkj (g2)=
∑

j

wkj (g1)vkj (g2).

Hence

ckl(g)=
∑

j

vlj
(
g−1)∂wlj

∂uk
(e)=

∑

j

wlj

(
g−1)∂vlj

∂uk
(e),

and therefore

∂ckl

∂ui
(e)=

∑

j

∂vlj

∂ui
(e)

∂wlj

∂uk
(e)=

∑

j

∂wlj

∂ui
(e)

∂vlj

∂uk
(e)= ∂cil

∂uk
(e).

This proves (8.9) and the lemma. �

Now consider an arbitrary n-dimensional connected commutative algebraic
group A defined over C. By Proposition of Section 6.2, Chapter 3, the space of
invariant differential 1-forms on A is n-dimensional. Write ω1, . . . ,ωn for a basis.
The differential forms ωi are closed by the lemma, so that there exist holomorphic
functions f1, . . . , fn defined in some complex neighbourhood U of the zero element
0= e ∈A such that

ωi = dfi and fi(e)= 0.

This is a simple local fact that can easily be checked directly; a more general as-
sertion is proved in Lemma of Section 4.3. Since the ωi are invariant, it follows
that

d
(
t∗g (fi)

)= dfi

in the domain U ∩ t−1
g (U). Thus

t∗g (fi)= fi + αi with αi ∈C. (8.10)

But (t∗g (fi))(g1)= fi(g+g1), where we write the group law on A additively. Hence
(8.10) means that fi(g + g1) = fi(g) + αi if g, g + g1 ∈ U . In particular, setting
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g = 0 we get that

fi(g + g1)= fi(g)+ fi(g1) for g, and g + g1 ∈U. (8.11)

Thus f1, . . . , fn defines a “local group homomorphism” of a neighbourhood of
e ∈ A to a neighbourhood of 0 ∈ C

n. We see by Section 6.2, Chapter 3 that defi
form a basis of Θ∗e , and therefore the Jacobian det |∂fi/∂tj (e)| �= 0 for any system
of local parameters t1, . . . , tn at 0. Hence the map ϕ defined by

ϕ(g)= (
f1(g), . . . , fn(g)

)

is an analytic isomorphism of a neighbourhood U of e in A to a neighbourhood V

of 0 in C
n, and by (8.11) is a “local group isomorphism”.

We now construct a homomorphism ψ : Cn→A, setting

ψ(z)= kϕ−1(z/k) for z ∈Cn,

where k is a sufficiently large integer such that z/k ∈ V . The fact that this is well
defined (independent of k) follows at once from (8.11). We have thus constructed
a homomorphism ψ : Cn→ A that is equal to ϕ−1 on V ⊂ C

n. From the fact that
ψ is isomorphic on V and A is connected it follows easily that ψ(Cn)= A. Write
Ω for the kernel of ψ . Then Ω ∩ V = 0, that is, Ω is a discrete subgroup of Cn. It
follows easily from this that Ω is a lattice, and therefore A∼= C

n/Ω where Ω is a
lattice.

We have thus proved the following result.

Theorem Let A be an n-dimensional connected commutative algebraic group de-
fined over C. Then Aan is isomorphic to C

n/Ω , where Ω is a lattice.

1.4 Examples of Compact Complex Manifolds not Isomorphic
to Algebraic Varieties

We now take up the first of the questions posed at the end of Section 1.2 in con-
nection with the definition of complex manifold: does every complex manifold arise
from some algebraic variety, that is, is it of the form Xan? Since the question is
only really interesting if we restrict ourselves to compact complex manifolds, we
consider it in this setting.

That the question is much more delicate under this restriction is apparent if only
because it has a positive answer for 1-dimensional complex manifolds: every com-
pact 1-dimensional manifold is isomorphic to Xan, where X is a nonsingular projec-
tive curve. This assertion is called the Riemann mapping theorem. We will not give
a proof; in any case, it requires some arguments of an analytic nature. A proof can
be found, for example, in Springer [74, Chapter 8] or Forster [28].



158 8 Complex Manifolds

The fact that our question has a negative answer in dimension >1 is therefore
all the more interesting. We meet once again a familiar phenomenon of algebraic
geometry: many of the difficulties do not yet arise in dimension 1. We now give
some example of nonalgebraic compact complex manifolds, restricting ourselves
for simplicity to 2-dimensional manifolds.

Since this is a question that relates to notions at the very heart of complex analytic
geometry, we will work out two principles for constructing such examples: in Ex-
ample 8.3 we use almost exclusively algebraic considerations, in Examples 8.4–8.5
more geometric ones.

Example 8.3 Our manifold is a complex torus, that is, is of the form C
2/Ω , where

Ω ⊂ C
2 is a lattice of rank 4. If it were algebraic, it would be an Abelian variety,

as we proved in Section 1.3. We now prove that Abelian varieties have a property
which turns out not to be satisfied by C

2/Ω for some choice of the lattice Ω . This
property is the Poincaré complete irreducibility theorem; it consists of the following
assertion.

Proposition If A and B are Abelian varieties and ϕ : A→ B a surjective homo-
morphism then there exists an Abelian subvariety C ⊂ A such that dimC = dimB

and ϕ : C→ B is surjective.

Proof We assume for brevity that dimA= 2, dimB = 1, and that the ground field
has characteristic 0; we will only make use of the proposition under these assump-
tions.

Consider a point a ∈ A and the fibre Y = ϕ−1(ϕ(a)) of ϕ through a. By the
theorem on dimension of fibres (Theorem 1.25 of Section 6.3, Chapter 1) Y is a
curve. There exists another irreducible curve X on A through a and not contained
in Y . This follows from the fact that A is algebraic. It is enough to consider an affine
neighbourhood of a and take X to be a suitable hyperplane section, or a component
of this. Let ψ : X→ B be the restriction of ϕ; this is obviously a morphism of finite
degree, and has finite fibres ψ−1(b).

For a divisor D =∑r
i=1 kixi on X, write S(D) for the point k1x1 ⊕ · · · ⊕ krxr

where ⊕ is the group law on A, and set

f (b)= S
(
ψ∗(b)

)
for b ∈ B.

We assert that f is a morphism from B to A. We first check that it is a rational map.
Let θ be a primitive element of the field extension k(X)/k(B), so that

k(X)= k(B)(θ).

The affine coordinates tj of some point x ∈ X are thus of the form Fj (θ) with
Fj ∈ k(B)(θ). Let θ1, . . . , θn be all the conjugates of θ over the field k(B). Then
since θ and θi are conjugate, the points xi with coordinates Fj (θi) belong to X and
have the same image in B:

ψ(xi)=ψ(x)= b.
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The coordinates of the points of f (b) can obviously be expressed as symmetric
rational functions in the coordinates of xi , that is, they are symmetric functions in
the θi , and are hence elements of k(B). This proves that f is a rational map.

Since A is complete and B is a nonsingular curve, it follows that f is a morphism,
and from Theorem 3.16 of Section 4.3, Chapter 3 that it is a homomorphism. Set
C = f (B). To prove the proposition it is enough to check that ϕ(C) �= 0. But by
definition

ϕ(C)= ϕ
(
f (B)

)= ν(B),

where ν : B→ B is the endomorphism of multiplying by n:

ν(b)= b⊕ · · · ⊕ b.

Since the ground field has characteristic 0, kerν is finite (Exercise 2 of Section 4.5,
Chapter 3), hence ν(B) �= 0. The proposition is proved. �

Now we can complete the construction of the example. The idea is to construct a
complex torus for which the proposition does not hold. Consider the lattice Ω ⊂C

2

with basis consisting of the 4 vectors

(1,0), (i,0), (0,1), (α,β).

It is easy to see that these are linearly independent over R provided that β is not
real. Set A = C

2/Ω and B = C
1/Ω ′, where Ω ′ is the lattice with basis 1 and β .

The map (z1, z2) �→ z2 induces a holomorphic map ϕ : A→ B which is a group
homomorphism. Suppose that A is an Abelian variety. It follows from the Riemann
existence theorem that B is an algebraic curve (we will verify this directly in The-
orem 9.3). As we will see a little later (Theorem 8.5), it follows from this that ϕ is
a morphism. We can apply the Poincaré complete irreducibility theorem to deduce
that there exists a 1-dimensional Abelian subvariety C ⊂A such that ϕ(C)= B .

Write Λ ⊂ C
2 for the inverse image of C. It is a closed subgroup of C

2, and
it is easy to determine all the closed subgroups of any R

n: a simple argument (see
Pontryagin [66, Section 19, Ex. 33, p. 110]) shows that they are of the form Ze1 +
· · · +Zes +Res+1+ · · · +Res+r , where e1, . . . , es+r are linearly independent over
R. In our case Λ ⊃ Ω , and hence it contains 4 linearly independent vectors over
R. Write Λ0 for the connected component of 0 in Λ. This is an R-vector subspace.
Since C ⊂ A is locally defined by one equation and is nonsingular, Λ0 ⊂ C

2 is
locally defined by an equation f (z1, z2)= 0 with nonzero linear part. Let

f = f1 + f2 + · · ·

be the Taylor series of f written out in homogeneous components. Then for suffi-
ciently small α ∈R

f (αz1, αz2)= αf1 + α2f2 + · · · ,
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and since Λ0 is an R-vector subspace, it follows that f2 = · · · = 0 and f = f1. We
see that Λ0 is defined by a linear equation f1 = 0. We deduce that

Λ= Ze1 +Ze2 +Re3 +Re4 = Ze1 +Ze2 +Λ0,

where Λ0 =Re3+Re4 is a C-vector subspace of C2; in other words, e4 = λe3 with
λ ∈ C. To conclude, recall that Λ ⊃Ω . It follows from this that the projection of
Ω to Ze1 + Ze2 maps a rank 2 sublattice of Ω to 0. Hence Λ0 ∩ Ω is a rank 2
sublattice of Λ0. We thus arrive at the conclusion that, in our case, the Poincaré
complete reducibility theorem means simply that there exists a complex line

Λ0 =Re3 +Re4 with e4 = λe3 for some λ ∈C,
such that Λ0 ∩Ω is a rank 2 sublattice of Λ0, and which projects to the whole line
z1, that is, is not equal to the line z2 = 0.

In other words, to check that the theorem holds, we have to find a vector e in
Ω such that z1 �= 0, and λe ∈Ω for some value λ ∈ C \ R. Now let’s see if this is
always possible. Suppose that

e= a(1,0)+ b(i,0)+ c(0,1)+ d(α,β),

λe= a(λ,0)+ b(iλ,0)+ c(0, λ)+ d(λα,λβ),

with a, b, c, d ∈ Z. The z2-coordinate of every vector of Ω is contained in Z+Zβ .
In particular (c+ dβ)λ ∈ Z+Zβ , and hence λ must be contained in the field Q(β)

(recall that c+ dβ �= 0 by assumption). Similarly by considering the z1-coordinate
we get that α ∈ Q(β,λ, i) = Q(β, i). Now this condition is obviously not always
satisfied: we need only set β = i and α =√2.

This completes the construction of the counterexample. It is interesting now to go
through our argument once more to understand at what point we have made essential
use of the assumption that A is algebraic. It is easy to see that all of the arguments
work also for complex manifolds, except one. This single essential argument occurs
in the proof of the Poincaré complete reducibility theorem, where we passed a curve
X not equal to any of the fibres ϕ−1(b) through a point of A. We conclude that
this cannot be done for the torus A constructed in our example. Thus A has a map
ϕ to a curve B such that the only compact complex submanifolds of A are the
fibres ϕ−1(b); the next section contains more details about the notion of complex
submanifold, but for the moment it can be taken to mean simply the image of a
projective curve under a holomorphic map to A. We see that 1-dimensional complex
submanifolds are very scarce in A. This is the main respect in which it differs from
algebraic surfaces, which are crisscrossed by curves in all directions.

Example 8.4 The second example also relates to a 2-dimensional torus, but we will
use some topological arguments. Again let

Ω = Ze1 +Ze2 +Ze3 +Ze4;
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then A= C
2/Ω is homeomorphic to the torus (R/Z)4. Therefore H2(A,Z)= Z

6,
with generators given by 6 cycles Si,j , the images in A of the planes Rei+Rej with
1≤ i < j ≤ 4.

In this example we start with the argument where we left off in Example 8.3. If A
were algebraic, we would be able to find an algebraic curve C ⊂ A. If ν : Cν→ C

is the normalisation map, then triangulating Cν using Theorem 7.5 makes Cν into a
singular cycle in H2(A,Z). In particular

C ∼
∑

1≤i<j≤4

ai,j Si,j with ai,j ∈ Z.

We now prove that C is not homologous to 0, so that not all the ai,j are equal to 0.
For this note that the differential form

1

2i
(dz1 ∧ dz1 + dz2 ∧ dz2)

on C
2 is invariant under Ω , and hence defines a differential form ω on A. We prove

that
∫
C
ω > 0, from which it follows that C is not homologous to 0. If we consider

z1 and z2 as functions in a neighbourhood of x ∈ C then in a neighbourhood of
y = ν−1(x) our form is equal to

1

2i

(∣∣∣∣
dν∗(z1)

dt

∣∣∣∣

2

+
∣∣∣∣
dν∗(z2)

dt

∣∣∣∣

2)
dt ∧ dt > 0, (8.12)

where t is a local parameter at y.
Now consider in the same way the differential form η on A corresponding to

dz1 ∧ dz2. On the one hand by Stokes’ theorem
∫

C

η=
∑

ai,j

∫

Si,j

η,

where the integral
∫
Si,j

η is easy to compute: we leave the reader to check that if

ei = (αi, βj ) ∈C2 then
∫

Si,j

η= αiβj − αjβi.

On the other hand
∫
C
η = 0. Indeed, in the same way as for (8.12), ν∗(η) on Cν

is equal to
(

dν∗(z1)

dt

)(
dν∗(z2)

dt

)
dt ∧ dt = 0.

Thus under the assumption that A is algebraic, we see that there is a relation

∑
ai,j (αiβj − αjβi)= 0 with ai,j ∈ Z, (8.13)
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and not all ai,j = 0. Of course, it is not difficult to choose α1, . . . , α4 and β1, . . . , β4,
in such a way that the numbers αiβj are linearly independent over Z. Then the
corresponding torus A will not be algebraic.

One sees easily that 1-dimensional submanifolds are even more scarce on this
torus than in that of Example 8.3: in fact it doesn’t have any compact 1-dimensional
complex submanifolds at all.

Remark 8.1 Write the coordinates of the basis vectors ei of Ω as a 2× 4 matrix

Ω =
(
α1 α2 α3 α4
β1 β2 β3 β4

)

and consider the skewsymmetric 4×4 matrix M = (ai,j ), where ai,j are as in (8.13).
Then (8.13) can be written as a

ΩMΩ ′ = 0, (8.14)

where Ω ′ is the transpose matrix. The existence of a matrix M satisfying this rela-
tion is obviously a necessary condition for the torus corresponding to the matrix Ω

to be projective, or even algebraic.
Other conditions are provided by inequalities of type (8.12). To get as many of

these conditions as possible, consider the 2-form

ω= 1

2i
(λ1λ1dz1 ∧ dz1 + λ1λ2dz1 ∧ dz2 + λ1λ2dz2 ∧ dz1 + λ2λ2dz2 ∧ dz2)

= (λ1dz1 + λ2dz2)∧ (λ1dz1 + λ2dz2).

Arguing exactly as in the proof of (8.12) gives that
∫
C
ω ≥ 0. Moreover, it is easy to

prove that if the torus A = C
2/Ω is projective and C corresponds to a hyperplane

section under some embedding then
∫
C
ω = 0 only if λ1 = λ2 = 0 (see Exercise 9).

This final condition can be expressed in another way. Let Ω∗ be the Hermitian
conjugate of Ω . Then it is easy to see that the 2× 2 matrix ΩMΩ∗ is Hermitian,
that is, it corresponds to a Hermitian form F(x). A simple substitution shows that∫
C
ω = F(λ) where λ= (λ1, λ2). Thus the relation deduced above means that F is

a positive definite form. This can be written

ΩMΩ∗ > 0. (8.15)

Thus the relations (8.14) and (8.15) are necessary conditions for the torus corre-
sponding to a period matrix Ω to be projective. In exactly the same way, the relations
are necessary for an n-dimensional complex torus with n× 2n period matrix Ω to
be projective. They are called the Frobenius relations. It can be proved that they are
also sufficient for the torus to be projective. A hint of the idea of proof is given in
the remark at the end of Section 2.2, Chapter 9.

Remark 8.2 In our treatment of Example 8.4, we could have replaced formula (8.12)
with a reference to Section 1.3, Chapter 7. Namely, repeating word-for-word the
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arguments given there shows that if [Cν] is the orientation cycle of the curve Cν

then ν∗([Cν]) is not homologous to 0 in A(C). The reference to the triangulation
of the curve Cν can similarly be replaced by integration over this cycle. This is the
most convenient way of proceeding in the following example.

Example 8.5 Let X be a Hopf manifold (Example 8.2). Since X is homeomorphic to
S1× Sn−1, it has second Betti number b2 = 0 for n > 1. Proposition of Section 1.3,
Chapter 7 shows that X is a nonprojective manifold. It is not hard to prove that it is
also nonalgebraic.

1.5 Complex Spaces

Complex manifolds are the analogues of nonsingular algebraic varieties. It would
be quite inconvenient to have to restrict ourselves to this notion. Indeed, singular
varieties arise as subvarieties, or as images under regular maps, even in the study
of nonsingular algebraic varieties. Furthermore, the majority of the arguments used
in Chapter 5 to demonstrate the necessity of introducing the definition of scheme
apply just as well to the complex analytic situation. The complex analytic notion
corresponding to scheme is not used in the remainder of this book. However, it
would be a shame to make no mention of it at all. We therefore give the definition
and discuss without proof a few of the basic properties. The proof of these properties
can be found, for example, in Gunning and Rossi [36, Chapters I–V].

We start with one particular case. Let W ⊂ C
n be a domain in the space of n

complex variables and f1, . . . , fk holomorphic functions on W . Denote by Y the set
of common zeros of f1, . . . , fk in W . We define a sheaf OY on Y as follows: let OW

be the sheaf of holomorphic functions on W . We then set

OY (V )=OW(V )/(f1, . . . , fk),

for V an open subset of Y , where V is an open set in W such that V = Y ∩V (every
open subset of Y is of this form), and (f1, . . . , fk) the ideal of OW(V ) generated
by f1, . . . , fk . Since Y is the set of common zeros of f1, . . . , fk , the right-hand side
does not depend on the choice of V . A topological space with this definition of sheaf
will be called a local model.

We proceed to the global definitions. We say that a ringed space X,O such that
O is a sheaf of C-algebras is a complex ringed space. Any open set U ⊂X is itself
a complex ringed space with the restriction of O to U as structure sheaf.

Definition A complex space or complex space is a complex ringed space X,O such
that for every point x ∈X there exists a neighbourhood U � x which is isomorphic
as a ringed space to some local model in the sense just explained.

Just as for schemes, the stalks of the structure sheaf of a complex space are local
rings. If they have no nilpotent elements then we say that the space X is reduced. In
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this case, O is a subsheaf of the sheaf of continuous functions on X, and on the local
model Y , the stalk Oy consists of functions induced on Y by holomorphic functions
on W in a neighbourhood of y. We then say that a continuous function f ∈ Oy

is a holomorphic function on Y at y. In what follows, we only deal with reduced
complex spaces, without further mention of this assumption. In this connection,
morphisms of complex spaces are called holomorphic maps.

Suppose that a closed subset X′ ⊂X has the following property: for any x ∈X′
there exists a neighbourhood x ∈U ⊂X and holomorphic functions f1, . . . , fk such
that X′ is equal in U to the set of common zeros of f1, . . . , fk . We give X′ the sheaf
obtained by restricting holomorphic functions on X to X′. It is easy to check that
we get in this way a complex space; we say that X′ is a subspace of X.

A complex space X is reducible if X = X′ ∪ X′′ with X′,X′′ � X two proper
subspaces. It is not hard to prove that any complex space X is a union of a set of
irreducible subspaces

X =
⋃

Xα,

with only finitely many Xα passing through each point x ∈X. In what follows, we
consider only irreducible complex spaces.

A point x ∈X is nonsingular if it has a neighbourhood isomorphic to a complex
manifold; otherwise x is singular. It can be shown that the set of nonsingular points
of an irreducible complex space is connected, and therefore has a well-defined di-
mension as a complex manifold, which we call the dimension of X. Any subspace of
X distinct from the whole of X has smaller dimension. In particular, one can prove
that the locus of singular points is a complex subspace. Because of this, a complex
space X is a union of a finite number of complex manifolds (not closed in X): the
set of nonsingular points, the set of nonsingular points of the singular locus, and so
on.

Complex spaces are the complex analytic analogues of algebraic varieties, and
even of schemes, at least in the sense that every scheme of finite type over the
complex number field C has an associated complex space Xan (here we again allow
schemes and complex spaces that are not necessarily reduced). We describe the
construction of the space Xan.

We start by associating with X the topological space of complex points of its
reduced subscheme X̃ =Xred(C), with the complex topology. An affine scheme X

of finite type over C defines a local model, where the domain W is the whole of the
ambient affine space CN containing X. It is easy to see that this local model does not
depend on the embedding X ↪→ A

N . The structure sheaf of the model constructed
in this way is denoted by Oan.

If X is an arbitrary scheme of finite type over C with an affine open cover X =⋃
U(i), the structure sheaves O(i)

an just defined on U(i) together determine a sheaf
Oan on the space X̃. The pair X̃,Oan is the complex space Xan associated with the
scheme X.

In Section 1.4 we met the question of the connections between the notions of
complex manifold and nonsingular algebraic varieties. Similar questions of course
arise concerning complex spaces and their connections with arbitrary algebraic
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varieties. There is an analogue in this set-up of the only positive result stated
in Section 1.4, the Riemann existence theorem; namely, any compact reduced 1-
dimensional complex space is isomorphic to an algebraic curve. This result can be
reduced to the Riemann existence theorem via the process of normalising a complex
space, which we now discuss briefly, omitting all proofs.

We say that a reduced complex space is normal if the local rings Ox of the struc-
ture sheaf are integrally closed. Following very closely the arguments that we gave
for the case of algebraic varieties, one can construct the normalisation ν : Xν→X

of any reduced irreducible complex space X; that is, Xν is a normal complex space
and ν a holomorphic map satisfying the conditions of Theorem 2.21 of Section 5.2,
Chapter 2. If X is compact then so is Xν . A detailed treatment of all the argu-
ments is given, for example, in Abhyankar [1, p. 447]. In the case of 1-dimensional
complex spaces discussed from now on, the situation is somewhat simpler, and the
reader could think through these arguments on his or her own as a (not quite trivial)
exercise.

Let X be a compact reduced 1-dimensional complex space with structure
sheaf O. By the Riemann existence theorem, Xν is a projective algebraic curve.
We give X the Zariski topology, in which the closed sets are finite sets or the whole
of X, and define the sheaf Õ by setting Õ(U) = O(U) ∩ C(Xν). It is not hard to
check that this defines an algebraic curve X̃ with X̃an =X.

1.6 Exercises to Section 1

1 Construct an example of a holomorphic map g : C1→C
1 not of the form fan for

any morphism f : A1→A
1.

2 Let X be a nonsingular irreducible algebraic curve and f a holomorphic function
on Xan. Prove that if f is bounded on the set X(C) then f ∈C.

3 Prove that the disc |z| < 1 in C
1 is not isomorphic to Xan for any nonsingular

curve X.

4 Let A be an elliptic curve, e ∈A the zero of the group law and m> 0 an integer;
give another proof of the fact that the number of solutions of the equation mx = e

with x ∈A is equal to m2 (compare Example 3.4 of Section 3.4, Chapter 3). If A is
an n-dimensional Abelian variety, prove that mx = e has m2n solutions.

5 Prove that a 1-dimensional Hopf manifold is isomorphic to a complex torus.

6 Let X = (C2 \ 0)/G be a 2-dimensional Hopf manifold as in Example 8.2. Prove
that the map C

2 \ 0→ P
1 defined by (z1, z2) �→ (z1 : z2) induces a holomorphic

map X→ P
1 whose fibres are 1-dimensional complex toruses.
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7 In the notation of Exercise 6, prove that X contains no 1-dimensional complex
subspaces other than the fibres of X→ P

1.

8 Let X be the complex space C
2, g the automorphism of X given by g(z1, z2)=

(−z1,−z2) and G the group {1, g}. Prove that the quotient space X/G (see Exer-
cise 1 of Section 3.6, Chapter 5) is a complex space, and is isomorphic to the cone
in A

3 given by xy = z2.

9 Let X =C
2/Ω be a complex torus, and x ∈X a point. Identify the tangent plane

to X at x with C
2 by the quotient map C

2→X, and use this to give coordinates on
X. As in Remark 8.1, suppose that ω is the 2-form

1

2i

(|λ1|2dz1 ∧ dz1 + λ1λ2dz1 ∧ dz2 + λ1λ2dz2 ∧ dz1 + |λ2|2dz2 ∧ dz2
);

let C ⊂ X be a complex curve. Prove that if x ∈ C is a nonsingular point and the
tangent vector to C at x has coordinates μ1, μ2, where λ1μ1 + λ2μ2 �= 0, then∫
C
ω > 0 (that is, is �= 0). Deduce from this that

∫
C
ω > 0 if the torus X is projective

and C is a hyperplane section.

2 Divisors and Meromorphic Functions

2.1 Divisors

We return now to the theory of complex manifolds, and consider the question of
constructing an analogue of the theory of divisors for them. We must begin by
treating some simple properties of the stalk Ox of the structure sheaf of a com-
plex manifold. By definition Ox is isomorphic to the ring C{z1, . . . , zn} of power
series in z1, . . . , zn that converge in some neighbourhood of x (the neighbourhood
depending on the power series). This ring is very similar to the ring of formal power
series. In particular, it is a regular local ring, and satisfies the analogue of the Weier-
strass preparation theorem, stated in exactly the same way and proved in almost the
same way as for formal power series (Lemma 2.1 of Section 3.1, Chapter 2); see
Siegel [71, Chapter 5, Section 2, p. 5]. It follows from this theorem, word-for-word
as in the case of formal power series, that C{z1, . . . , zn} is a UFD. In particular,
C{z1, . . . , zn} has no zerodivisors.

Let U be a connected complex manifold and O(U) the ring of functions holo-
morphic on the whole of U . Then O(U) has no zerodivisors. Indeed, if f,g ∈O(U)

and fg = 0 then the set of points where f �= 0 is open, and g = 0 on this set. But
then g = 0 on the whole of U by the uniqueness of analytic continuation. Elements
of the field of fractions of O(U) are called meromorphic fractions on U . If V ⊂ U

is a connected open subset then the restriction O(U)→ O(V ) extends to an iso-
morphic inclusion of the field of meromorphic fractions on U to that on V . We will
often identify two meromorphic fractions that correspond in this way.



2 Divisors and Meromorphic Functions 167

Definition A divisor on a complex manifold X is specified by a cover X =⋃
Uα

of X by connected open sets and a meromorphic fraction ϕα on each Uα , such that
ϕβ/ϕα is holomorphic and nowhere 0 on Uα ∩Uβ for each α, β .

Equality of two divisors and the sums of divisors is defined word-for-word as
for locally principal divisors on algebraic varieties. A divisor is effective if each
meromorphic fraction ϕα is holomorphic on its open set Uα .

Theorem 8.1 Every divisor is a difference of two effective divisors with no common
components.

Lemma If f and g are holomorphic functions at a point x ∈Cn and are relatively
prime as elements of the ring Ox =C{z1, . . . , zn} then there exists a neighbourhood
U of x such that f and g are holomorphic in U and relatively prime as elements of
Oy for every y ∈U .

Proof of the Lemma Multiplying f and g by invertible elements of Ox and using
the Weierstrass preparation theorem, we can arrange that f and g are polynomials
in z1 with coefficients in C{z2, . . . , zn} and leading coefficients 1. Since they are
relatively prime, there exist u,v ∈C{z1, . . . , zn} such that

f u+ gv = r, with r ∈C{z2, . . . , zn}, (8.16)

the equality holding in a neighbourhood U of x. Suppose that f and g have a com-
mon factor h ∈ Oy for some y ∈ U . Then h | r , and, again using the Weierstrass
preparation theorem, we see that h is an invertible element of Oy times an element
h1 ∈ C{z2, . . . , zn}. But h1 | f , and since f has leading coefficient 1 as a polyno-
mial in z1 over C{z2, . . . , zn}, it follows that h1 is invertible in C{z2, . . . , zn}. The
lemma is proved. �

Proof of Theorem 8.1 We can assume that D is given by a cover
⋃

Uα and a col-
lection of meromorphic fractions ϕα with

ϕα = fα/gα in Uα,

where fα and gα are holomorphic in Uα and relatively prime at every point y ∈Uα .
Then since Oy is a UFD, it follows that fα defines a divisor D′ and gα a divisor D′′,
with both D′ and D′′ effective and D =D′ −D′′. This proves the theorem. �

It is obvious that every effective divisor D defines a complex subspace of X,
defined by ϕα = 0 in the open set Uα . This is called the support of D, and denoted
by SuppD. If D =D′ −D′′ is the representation of D as a difference of effective
divisors with no common components, we set SuppD = SuppD′ ∪ SuppD′′ by
definition. Using the notion of dimension of a complex space introduced at the end
of Section 1.5, we state the following result.

Proposition The support of a divisor has codimension 1.
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Proof First of all, we must define this subspace by the most economic system of
equations. For this, at each point x ∈ Uα we factorise ϕα into irreducible factors
in Ox , and write ψx for the product of these factors each with power 1. Then ψx

is holomorphic in some neighbourhood Ux of x, and all these functions define the
same subset SuppD as the functions ϕα (although possibly a different divisor). Thus
we can assume from the start that the divisor is defined by functions ϕα with no
multiple factors in Ox for x ∈Uα .

By the Weierstrass preparation theorem we can assume that for some x ∈Uα the
function ϕα is of the form

ϕα = zm1 + a1z
m−1
1 + · · · + am, with ai ∈C{z2, . . . , zn},

where z1, . . . , zn are local parameters at x. By the above assumption on the ϕα we
can assume that ∂ϕα/∂z1 is relatively prime to ϕα in Ox , and hence ∂ϕα/∂z1 is not
identically 0 on SuppD in a neighbourhood of x. Now divide the points y ∈ SuppD
into two types: those for which all the ∂ϕα/∂zi(y) = 0 for i = 1, . . . , n, and the
remaining points. The points of the first type obviously form a complex subspace
S ⊂ SuppD, and as we have just seen, S �= SuppD.

The proposition is an obvious consequence of the following two assertions:
(a) a point of the first kind is a singular point of the subspace SuppD, that is, SuppD
is not isomorphic to a complex manifold in a neighbourhood of these points; and
(b) in a neighbourhood of a point of the second type SuppD is isomorphic to an
(n− 1)-dimensional complex manifold.

Assertion (a) follows from the representation

Oy,SuppD =Oy/(ϕα) (8.17)

of the local ring of a point y ∈ SuppD (we leave the verification of (8.17) to the
reader). If y is a point of the first type then ϕα ∈m2

y , where my is the maximal ideal
of the local ring Oy . It follows at once from this that Oy,SuppD is not a regular local
ring, and hence SuppD is not a manifold.

Assertion (b) is a direct consequence of the implicit function theorem. If say
∂ϕα/∂z1(y) �= 0, then z1 is a holomorphic function of z2, . . . , zn on SuppD in a
neighbourhood of y, and hence z2, . . . , zn define an isomorphism of this neighbour-
hood with a domain in C

n−1. The proposition is proved. �

We will not develop the theory of divisors on complex manifolds any further.
This can be done, leading to results completely analogous to those we obtained
for algebraic varieties. Namely, each divisor can be expressed in a unique way as
a linear combination of irreducible effective divisors, and irreducible divisors are
in one-to-one correspondence with codimension 1 complex subspaces. The proofs
of these facts are contained in Weil [79, Sections 5–8, Appendix, pp. 148–158] or
Griffiths and Harris [33, Section 1, Chapter 1]; they are quite elementary and do not
depend on other sections of these books.
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2.2 Meromorphic Functions

Now we consider the functions on a complex manifold that are the analogues of
rational functions of an algebraic variety, the meromorphic functions. The main tool
is the notion of meromorphic fraction introduced in Section 2.1.

Definition A meromorphic function on a complex manifold X is specified by a
cover X =⋃

Uα of X by connected open sets, and a system of meromorphic frac-
tions ϕα on Uα such that the restrictions of ϕα and ϕβ to Uα ∩Uβ are equal for all
α, β . Such a system ϕα of meromorphic fractions is said to be compatible.

A cover X =⋃
Uα and compatible system of functions ϕα define the same mero-

morphic function as another cover X =⋃
Vβ and compatible system ψβ if ϕα and

ψβ are equal when restricted to Uα ∩Uβ for all α, β .
Let ϕα = f/g be a meromorphic fraction on Uα , with f and g holomorphic on

Uα ; if g(x) �= 0 at some point x ∈Uα , then ϕα equals the holomorphic function f/g

in a neighbourhood of x. This notion extends naturally to meromorphic functions.
Thus for any meromorphic function ϕ on X there exists an open subset U ⊂X and
a holomorphic function f on U such that the restriction of ϕ to U is equal to f . We
say that ϕ is holomorphic at points of U .

Algebraic operations on meromorphic functions are defined in terms of the corre-
sponding meromorphic fractions; all the meromorphic functions on a complex man-
ifold X obviously form a ring. If X is connected, this ring is a field, the meromorphic
function field of X. Indeed, suppose that ϕ is given by a cover {Uα} and a compatible
system of functions {ϕα}. If ϕ �= 0, then at least one ϕα �= 0; but from the compat-
ibility of the functions ϕα it follows that ϕβ �= 0 for all β such that Uα ∩ Uβ �= ∅.
Now since X is connected, it follows that all the ϕα �= 0, and the function ϕ−1 exists,
given by the system ϕ−1

α . In what follows we only consider connected manifolds X.
The field of meromorphic functions on X is denoted by M(X).

If the manifold is of the form Xan where X is an irreducible nonsingular algebraic
variety, then rational functions on X obviously define meromorphic functions on
Xan. In other words C(X)⊂M(Xan). Of course, equality does not hold in general.
However, if X is complete then the two fields coincide, as we will prove in Section 3.

By putting together the definitions of meromorphic function and divisor, we see
that each meromorphic function ϕ defines a divisor, that we denote by divϕ. By def-
inition it follows that divϕ if effective if and only if ϕ is holomorphic on the whole
of X. For a compact connected manifold this is only possible if ϕ is a constant, by
analogy with Theorem 1.10 and Corollary 1.1 of Section 5.2, Chapter 1.

Theorem 8.2 A function ϕ that is holomorphic at every point of a compact con-
nected manifold X is constant.

Proof The modulus |ϕ| is obviously a continuous function on X, and it therefore
takes its maximum at some point x0. Consider a neighbourhood U of x0 isomorphic
to an open set V ⊂ C

n; we can assume that V consists of points (z1, . . . , zn) with
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∑ |zi |2 < 1, and that the isomorphism f : U→ V satisfies f (x0)= 0= (0, . . . ,0).
Then ψ = (f−1)∗(ϕ) is a holomorphic function on V , and its modulus has a maxi-
mum at 0. For any point (α1, . . . , αn) ∈ V , consider a 1-dimensional complex sub-
space zi = αit for i = 1, . . . , n. On this, ψ defines a holomorphic function of one
argument t , which is constant by the maximum modulus principle. It follows from
this that ψ is constant on V , and hence ϕ is constant on U . Since X is connected,
ϕ is constant on the whole of X by the uniqueness of analytic continuation. The
theorem is proved. �

Since the divisors of meromorphic functions satisfy the natural identities

div(ϕψ)= divϕ + divψ and div(ϕ/ψ)= divϕ − divψ,

the theorem implies the following result.

Corollary On a compact complex manifold, a meromorphic function is determined
uniquely up to a constant factor by its divisor.

In the light of the definition of meromorphic functions and their divisors, we
can look at the examples of nonalgebraic compact complex manifolds worked out
in Section 1.4 from another point of view. We start with Example 8.4, an algebraic
torus A which is nonalgebraic because it does not contain any algebraic curve. As we
said in Section 1.5, 1-dimensional complex subspaces are algebraic curves. There-
fore the torus A does not contain any 1-dimensional complex subspace, that is, no
nonzero divisor. It follows that the divisor of any meromorphic function on A equals
0, and hence every such function is constant by Theorem 8.2 and Corollary. In other
words M(A)=C. We thus have a new characteristic of the nonalgebraic nature of
the torus A: it has far fewer meromorphic functions than an algebraic variety, on
which at least all the rational functions are meromorphic.

Now consider Example 8.3. We constructed in that example a 2-dimensional
torus A and a holomorphic map f : A→ B to an elliptic curve. The torus A is
nonalgebraic because the only irreducible curves it contains are the fibres f−1(b).

By Theorem 8.1, the divisor of an arbitrary meromorphic function ϕ on A can be
expressed as

divϕ =D′ −D′′,

where D′ and D′′ are effective divisors. From the proof of this theorem it is easy to
see that the set SuppD′ ∩SuppD′′ consists only of isolated points, and since distinct
fibres f−1(b) do not intersect at all, it follows that

SuppD′ =
⋃

f−1(b′i
)
, SuppD′′ =

⋃
f−1(b′′j

)
with b′i �= b′′j .

Applying this argument to the functions ϕ − c with c ∈ C, we see that any mero-
morphic function ϕ on A is constant on the fibres of f . Choose local parameters
z1, z2 at a point a ∈ A such that z1 = f ∗(t), where t is a local parameter on B at
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b = f (a). In this coordinate system ϕ can be written as a meromorphic fraction
that does not depend on z2, that is, ϕ is locally of the form f ∗(ψ) where ψ is a
meromorphic fraction on B . It follows that on the whole manifold A we also have
equality ϕ = f ∗(ψ) with ψ ∈M(B). But B is an algebraic curve, and by the theo-
rem already quoted that we will prove in the next section, M(B)=C(B). Thus we
have proved that for the torus A of Example 8.3,

M(A)= f ∗
(
C(B)

)
.

We see that this equality again reflects the nonalgebraic nature of A. For an algebraic
surface X the field M(X) contains C(X), and hence has transcendence degree at
least 2, but in our case the transcendence degree is equal to 1.

The same arguments apply to Example 8.5 (see Exercises 6–7 of Section 1.6): on
a Hopf surface we have M(X)=C(P1).

2.3 The Structure of the Field M(X)

The examples given at the end of Section 2.2 show that a compact complex man-
ifold X may have “too few” meromorphic functions compared with an algebraic
variety of the same dimension: more precisely, the transcendence degree of M(X)

may be smaller than the dimension of X. A whole series of important properties of
compact complex manifolds follow from the fact that X cannot have “too many”
meromorphic functions. We now prove this.

Theorem 8.3 The meromorphic function field M(X) on a compact complex mani-
fold X has transcendence degree ≤dimX.

The proof of this theorem is quite elementary. We precede it with a simple re-
mark.

Schwarz’ Lemma Let f (z)= f (z1, . . . , zn) be a holomorphic function in the poly-
disc defined by |zi | ≤ 1 for i = 1, . . . , n, and suppose that M = max|zi |≤1 |f (z)|.
Write m0 for the maximal ideal of the local ring of analytic functions at the origin.
If f ∈mh

0 , that is, if f and all its derivatives of degree ≤ h− 1 vanish at 0, then

∣∣f (z)
∣∣≤M max

i
|zi |h (8.18)

for z in the open polydisc |zi |< 1 for i = 1, . . . , n.

Proof For z = (z1, . . . , zn) ∈ Cn we write |z| =maxi |zi |. For fixed z with |z|< 1,
set g(t) = f (tz) for t ∈ C. Then g(t) is a holomorphic function in the disc |t | ≤
|z|−1 and the first h coefficients of its Taylor series at 0 vanish. Therefore g(t)/th

is holomorphic for |t | ≤ |z|−1. By the maximum modulus principle, in this disk
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|g(t)/th| ≤M/|z|−h =M|z|h. Setting t = 1 gives the inequality (8.18). The lemma
is proved. �

Proof of the Theorem In the proof of the theorem, we use the fact that polynomials
in ν variables of degree ≤k form a vector space whose dimension is given by the
binomial coefficient

(
k+ ν

ν

)
= (k + 1)(k + 2) · · · (k + ν)

ν! .

Note that, as a function of k, this is a polynomial of degree ν.
Let f1, . . . , fn+1 be n + 1 meromorphic functions on a compact n-dimen-

sional complex manifold X. Our aim is to prove the existence of a polynomial
F(T1, . . . , Tn+1) such that

F(f1, . . . , fn+1)= 0. (8.19)

We choose three neighbourhoods Ux ⊃ Vx ⊃Wx � x for each point x ∈X. The first
Ux is chosen so that

fi = Pi,x

Qi,x

for i = 1, . . . , n+ 1, (8.20)

where Pi,x , Qi,x are holomorphic in Ux and relatively prime at each point y ∈ Ux ;
the existence of Ux follows from Lemma of Section 2.1. The second Vx is chosen
so that its closure V x is contained in Ux , and Vx has a local coordinate system
(z1, . . . , zn) with |z|< 1. The third neighbourhood Wx is given by |z|< 1/2.

Because for different points x and y the expressions (8.20) both represent the
same function fi , and since Pi,x and Qi,x are relatively prime, it follows that

Qi,x =Qi,yϕi,x,y,

where ϕi,x,y are holomorphic and nowhere 0 in Ux ∩Uy .
From the system of neighbourhoods Wx , we choose a finite cover:

X =
⋃

Wξ ;

this is the point where compactness is used. Write r for the number of the sets Wξ

(that is, the number of points ξ ∈X), and set

ϕξ,η =
n+1∏

i=1

ϕi,ξ,η and C =max
ξ,η

max
Vξ∩Vη

|ϕξ,η|.

Note that |ϕξ,η| is bounded in Vξ ∩ Vη , since its closure in contained in Uξ ∩ Uη ,
where ϕξ,η is holomorphic. Moreover, C ≥ 1, since ϕξ,ηϕη,ξ = 1.
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For a polynomial F(T1, . . . , Tn+1) (as yet to be determined) of degree k in
T1, . . . , Tn+1, set

F(f1, . . . , fn+1)= Rx

Qk
x

in Vx,

where

Qx =
n+1∏

i=1

Qi,x.

Obviously Rξ = ϕk
ξ,ηRη in Vξ ∩ Vη.

After introducing this notation, we can proceed with the substance of the proof.
As a first approximation to (8.19), we show that for any given h the polynomial F
can be chosen so that F �= 0 and

Rξ ∈mh
ξ (8.21)

for all r of the points ξ . These conditions can be written out as the set of relations

(
DsRξ

)
(ξ)= 0,

where Ds is the partial derivative of order s < h. Hence they are linear relations on
the coefficients of the polynomial F ; the number of relations is equal to r

(
n+h−1

n

)
.

If we choose the degree k of F such that
(
n+ k+ 1

n+ 1

)
> r

(
n+ h− 1

n

)
, (8.22)

then there exists a nonzero polynomial F for which (8.21) holds.
By Schwarz’ lemma, for this choice of F the functions Rξ will be small in the

neighbourhoods Wξ : if

M =max
ξ

max
x∈Vξ

∣∣Rξ (X)
∣∣,

then
∣∣Rξ (x)

∣∣≤ M

2h
for x ∈Wξ . (8.23)

Now this circumstance will imply that M = 0, that is, that (2) holds for sufficiently
large k and h. Indeed, suppose that the maximum value M is taken at a point x0 ∈
Vη. Then x0 ∈Wξ for some point ξ . Hence

M = ∣
∣Rη(x0)

∣
∣= ∣

∣Rξ (x0)
∣
∣
∣
∣ϕξ,η(x0)

∣
∣k.

If k and h are such that (8.22) holds, then also (8.23) holds, and hence

M ≤ M

2h
Ck.
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Now it remains to choose k and h so that, in addition to (8.22), we also have

Ck/2h < 1,

and we get M = 0. It is possible to make this choice: if C = 2λ then λ ≥ 0, since
C ≥ 1, and we need only take h ≥ λk and h, k satisfy (8.22). For example, for
k = h/m, where m is any integer with m > λ, on the left-hand side of (8.22) we
get a polynomial in h of bigger degree than on the right-hand side, and hence for
sufficiently large h divisible by m, the left-hand side will indeed be greater than the
right-hand side. The theorem is proved. �

Using similar arguments it can be proved that if the transcendence degree of the
field M(X) equals k and f1, . . . , fk are algebraically independent meromorphic
functions on X, then the degree of the irreducible relation

F(f,f1, . . . , fk)= 0

satisfied by an arbitrary meromorphic function f is bounded from above. Therefore
the field M(X) is not only of finite transcendence degree, but also finitely generated.

2.4 Exercises to Section 2

1 We define a complex analytic vector bundle by analogy with the way it was done
in Section 1.2, Chapter 6, with the difference that E and X are complex manifolds
and p : E→X is a holomorphic map. Prove that the correspondence between vec-
tor bundles and transition matrixes established in Section 1.2, Chapter 6 holds also
for complex analytic vector bundles.

2 Prove that the correspondence D �→ O(D) described in Section 1.4, Chapter 6
between divisors and line bundles extends to complex analytic divisors and line
bundles. For this one has to formulate a definition of this correspondence in terms
of transition matrixes (6.13). Prove that linearly equivalent divisors also define iso-
morphic line bundles in the complex analytic category.

3 Let X be a complex manifold, Uα ⊂X an open set isomorphic to an open set in
C
n, and zα,1, . . . , zα,n the inverse image of the coordinates in C

n under this isomor-
phism. If Uβ is another such open set, then in Uα ∩Uβ set

ϕαβ = det

∣∣∣∣
∂(zα,1, . . . , zα,n)

∂(zβ,1, . . . , zβ,n)

∣∣∣∣.

Prove that the ϕαβ are transition functions for some line bundle K. Prove that if
X = Yan with Y an algebraic variety then K=Kan, where K is the line bundle cor-
responding to the canonical class of Y . In the general case, K is called the canonical
line bundle of X.
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4 Let X be a complex manifold, and X = ⋃
Uα an open cover such that there

exist isomorphisms ϕα : Uα→ V ⊂C
n to open sets of Cn. Suppose given holomor-

phic functions fα on ϕα(Uα) such that under the isomorphisms ϕβ ◦ ϕ−1
α : ϕα(Uα ∩

Uβ)→ ϕβ(Uα ∩ Uβ), the forms fαdz1 ∧ · · · ∧ dzn and fβdz1 ∧ · · · ∧ dzn go into
one another. By definition, such a collection of functions defines a holomorphic n-
form ω on X. Prove that the functions ϕ∗α(fα) define a divisor on X; it is called the
divisor of the n-form ω, and denoted by divω. Prove that the divisors of any two
holomorphic n-forms are linearly equivalent. Prove that if X has a holomorphic dif-
ferential form, the line bundle defined by its divisor is isomorphic to the canonical
line bundle.

5 Prove that the canonical line bundle of a complex torus is trivial.

6 Let Ω ⊂ C
n be a lattice of rank 2n and X = C

n/Ω the n-dimensional torus
(Example 8.1). Suppose that χ : Ω → C

∗ is a group homomorphism of Ω to the
multiplicative group of nonzero complex numbers. Define an action of Ω on C

n ×
C

1 by

a(x, z)= (
x + a,χ(a)z

)
for x ∈Cn, z ∈C1 and a ∈Ω.

Prove that Ω acts freely and discretely on C
n × C

1. The projection C
n × C

1 →
C
n commutes with the action of Ω and defines a map p : Eχ = (Cn × C

1)/Ω→
C
n/Ω = X. Prove that p is holomorphic and makes Eχ into a line bundle over X

(compare Exercise 1).

7 In the notation of Exercise 6, prove that two line bundles Eχ and Eχ ′ are isomor-
phic if and only if there exists a nowhere vanishing holomorphic function g on C

n

such that g(x + a)g(x)−1 = χ ′(a)χ(a)−1 for all x ∈Cn and a ∈Ω .

8 In the notation of Exercises 6–7, suppose in addition that |χ(a)| = |χ ′(a)| = 1
for every a ∈Ω . Prove that the bundles Eχ and Eχ ′ are isomorphic only if χ = χ ′.

9 Prove that the analogue of Theorem 6.3 does not hold in the theory of complex
analytic line bundles; that is, not every line bundle is defined by some divisor.

3 Algebraic Varieties and Complex Manifolds

3.1 Comparison Theorems

We are now in a position to prove some basic facts showing that for a complete (or
projective) algebraic variety X over C, many of the properties of the corresponding
complex manifolds Xan can be reduced to algebraic properties of X.

Theorem 8.4 If X is a complete algebraic variety over C then a meromorphic func-
tion on the complex manifold Xan is a rational function on X.
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Proof Suppose that f is a meromorphic function on Xan. Since Xan is compact, f
is algebraic over C(X) by Theorem 8.3. Hence it is enough to prove that a mero-
morphic function f on Xan that is algebraic over C(X) is a rational function on X.
The completeness of X does not play any role in the proof of this fact.

Suppose that f is a root of an irreducible equation

F(f )= f m + a1f
m−1 + · · · + am = 0

over C(X). Discarding the poles of the rational functions ai from X, we can assume
that the ai are regular functions on X. Then f is also holomorphic on X. This
follows from the fact that the ring Ox,an is a UFD, and is therefore integrally closed
in its field of fractions.

Consider in the product X×A
1 the set X′ of points (x, z) satisfying the relation

F(z)= zm + a1(x)z
m−1 + · · · + am(x)= 0.

Then X′ is an irreducible algebraic variety, and C(X′) = C(X)(f ). Write
p : X′ → X for the natural projection. We again pass to smaller sets X and X′
by discarding from X the set of points at which the discriminant of the polynomial
F(T ) vanishes, and from X′ the inverse image under p of this set. We continue to
denote these smaller irreducible varieties by X and X′. We have thus achieved that
the inverse image p−1(x) of any point x ∈ X consists of m distinct points (x, z),
and that F ′T (x, z) �= 0 for any such point.

It follows that if z1, . . . , zn are local parameters at x ∈X then p∗(z1), . . . , p
∗(zn)

are local parameters at any point of p−1(x). Hence there exists a sufficiently small
complex neighbourhood U of x in X such that p−1(U) breaks up into m disjoint sets
U1, . . . ,Um, and the projection p : Ui→U is an isomorphism of the corresponding
complex manifolds. We only need that p is a homeomorphism. The assertion means
that X′(C) is an unramified cover of X(C). The function f defines a continuous map
X(C)→ X′(C) given by ϕ(x) = (x, f (x)), which is a section of this unramified
cover, that is, p ◦ ϕ = 1.

The information we have obtained is already enough to prove that m = 1, and
hence f ∈ C(X). Indeed, if m> 1 then ϕ(X) �=X′, because ϕ(x) is a single point,
and p−1(x) consists of m points. We show that ϕ(X(C)) and X′(C) \ ϕ(X(C)) are
closed and disjoint, from which it follows that X′(C) is disconnected. This contra-
dicts Theorem 7.1 because X′ is an irreducible algebraic variety.

All the assertions remaining to check are local in nature, that is, it is enough
to check them for the sets U and p−1(U) instead of X and X′, where U is any
neighbourhood of a point x ∈ X. In particular, we can choose U to be connected
and such that

p−1(U)=U1 ∪ · · · ∪Um with Ui ∩Uj = ∅ for i �= j.

Then ϕ(U) must coincide with one of the Ui , from which everything we need fol-
lows obviously. The theorem is proved. �
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Theorem 8.5 If X and Y are complete algebraic varieties then any holomorphic
map f : Xan→ Yan is of the form f = gan where g : X→ Y is a morphism.

Proof Choose a point x ∈ X and set y = f (x); let U be an affine neighbourhood
of y. Suppose that U ⊂ A

N , and write t1, . . . , tN for the coordinates in A
N . By

Theorem 8.4, the holomorphic functions f ∗(ti) are rational functions on X. If we
prove that these are regular at x then we get f = gan in some neighbourhood of
x, where g is the morphism defined by f ∗(t1), . . . , f ∗(tN ). Thus we construct a
system of morphisms gα : Vα→ Y on open sets Vα that cover X. Obviously these
define a single morphism g : X→ Y for which f = gan.

Thus everything reduces to the following local assertion: �

Lemma If a rational function g is holomorphic at a point x then it is regular at x.

Proof Write Ox,an for the ring of functions holomorphic in some neighbourhood of
x, and Ôx for the ring of formal power series. Taking a holomorphic function to its
power series defines an inclusion Ox,an ⊂ Ôx , so that

Ox ⊂Ox,an ⊂ Ôx.

Set g = u/v with u,v ∈ Ox . The fact that g is holomorphic at x means that
v | u in Ox,an. Then a fortiori v | u in Ôx . But according to Lemma of Section 7,
Appendix, this implies that v | u in Ox , and therefore g is regular at x. This proves
the lemma, and with it Theorem 8.5. �

Corollary Under the assumptions of Theorem 8.5, Xan and Yan are isomorphic as
complex manifolds if and only if X and X are isomorphic as algebraic varieties.

The local version of this result also holds: if two singular points of algebraic
varieties are formally analytically equivalent then some complex neighbourhoods
of these points are isomorphic as complex spaces.

Theorem 8.6 If X is a projective variety then any complex submanifold V of the
complex manifold Xan is of the form Yan, where Y is a closed algebraic subvariety
of X.

Proof Since X is contained in a projective space, it is enough to prove the theorem
in the case X = P

N . Moreover, it is enough to prove the assertion for connected
subvarieties V ⊂ P

N
an, since from the fact that V is compact it follows that it has

only a finite number of connected components. Hence we assume in what follows
that V is connected.

Write Y for the closure of V in the Zariski topology of P
N ; that is, Y is the

intersection of all algebraic subvarieties of PN containing V . We prove that Y is an
irreducible projective variety. For this, it is enough to prove that its homogeneous
ideal AY is prime, that is, that if P and Q are homogeneous polynomials such that
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PQ = 0 on V then P = 0 or Q = 0 on V . If P does not vanish on the whole
of V then the set U ⊂ V of points where P �= 0 is open in V . Suppose that the
homogeneous coordinate x0 is not 0 on the whole of V . If degQ = k then Q/xk0
is a meromorphic function on V and vanishes on U . Hence by the uniqueness of
analytic continuation, Q/xk0 = 0 on the whole of the connected component of V

containing U , that is, on the whole of V . Therefore Q= 0 on V .
It follows from the definition of Y that every rational function ϕ ∈C(Y ) defines

a meromorphic function on V , in other words,

C(Y )⊂M(V ). (8.24)

Set dimV = n, dimY = m. We have m ≥ n, because V ⊂ Y , and Y is an m-
dimensional complex manifold in the neighbourhood of any nonsingular point. But
by Theorem 8.3, the transcendence degree of M(V ) is at most n, so that from the
inclusion (8.24) we get

dimY = dimV = n. (8.25)

It is easy to deduce from (8.25) that Yan = V , which is what we have to prove.
Indeed, write S for the set of singular points of Y . The algebraic variety Y \ S
is irreducible, and hence by Theorem 7.1, (Y \ S)an is a connected manifold. The
subset V \ (V ∩S) is closed in (Y \S)an, since V is closed in Yan. On the other hand,
it follows from (8.25) that V \ (V ∩ S) is open in (Y \ S)an. Hence V \ (V ∩ S)=
(Y \ S)an, that is, (Y \ S)an ⊂ V . Since V is closed, and (Y \ S)an is everywhere
dense in Y by Lemma 7.1, it follows that Yan ⊂ V , that is V = Yan. The theorem is
proved. �

3.2 Example of Nonisomorphic Algebraic Varieties that Are
Isomorphic as Complex Manifolds

We now construct two nonisomorphic algebraic varieties X and Y such that the
associated complex manifolds Xan and Yan are isomorphic. By Theorem 8.5 and
Corollary of Section 3.1, if this happens then X and Y cannot be complete.

We first describe the example. Let C be a nonsingular projective plane cubic
curve, Q ∈ C a point, B the noncomplete curve C \Q and P ∈ B some point. We
saw in Section 1.4, Chapter 6 that any divisor on B corresponds to a line bundle
E→ B . Let X be the line bundle corresponding to P , and Y the product B × A

1,
the trivial line bundle, corresponding to the divisor 0. We need to prove two asser-
tions: (1) the algebraic varieties X and Y are not isomorphic; and (2) the complex
manifolds Xan and Yan are isomorphic.

Proof of (1) First we observe that X and Y are not isomorphic as line bundles. By
Theorem 6.3, for this it is enough to prove that the corresponding divisors are not
linearly equivalent, that is, the divisor P on B is not linearly equivalent to 0 on B .
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If P were linearly equivalent to 0, there would be a regular function f on B with
zero of order 1 at P and no other zero. The divisor of f on C would have to be
P − kQ. By Theorem 3.5 and Corollary of Section 2.1, Chapter 3, k = 1, and by
Theorem 3.8 of Section 2.1, Chapter 3 this would contradict the fact that C is not
rational.

Now suppose that there exists an isomorphism ϕ : X→ Y as algebraic varieties.
Write pX and pY for the projections of X and Y to B defined by their structure of
line bundles. For any point b ∈ B the curve p−1

X (b) is isomorphic to A
1, and hence

so is ϕ(p−1
X (b)). If pY (ϕ(p

−1
X (b))) were not a point of B then p∗Y would define

an inclusion of C(B) into C(ϕ(p−1
X (b))), which would contradict Lüroth’s theorem

(Section 1.3, Chapter 1), because ϕ(p−1
X (b)) is rational and B is not. Thus ϕ takes

fibres of X into fibres of Y . We see that there exists a map ψ : B→ B such that the
diagram

X
ϕ−→ Y

pX ↓ ↓ pY

B −→
ψ

B

commutes. If sX is the zero section of X then ψ = pY ◦ϕ ◦ sX , and it follows that ψ
is a morphism, and hence an automorphism of B . Write ψ×1 for the automorphism
of the line bundle Y = B ×A

1, that acts as ψ on B and as the identity on A
1. Then

ϕ′ = (ψ × 1)−1 ◦ ϕ is also an isomorphism of X and Y , but now for b in B we have
pY (ϕ

′(p−1
X (b)))= b and ψ ′ = pY ◦ ϕ ◦ sX = 1.

Set t = ϕ′ ◦ sX : B→ Y . This is a section of the line bundle Y . Recall now that Y
is a vector bundle, so that it makes sense to speak of subtracting vectors in its fibres.
We set

ϕ′′(x)= ϕ′(x)− t
(
pX(x)

)
.

This is obviously again an isomorphism of X and Y , but now not only is each fibre
taken into itself, but also the zero point of each fibre is preserved. However, the only
automorphisms of A1 preserving 0 are the linear maps α→ λα. Therefore ϕ′′ must
be an isomorphism of the vector bundles X and Y , but we have already seen that
they are not isomorphic.

This completes the proof that X and Y are not isomorphic as algebraic vari-
eties. �

Proof of (2) We will make use of the fact that the correspondence D �→ LD of
Section 1.4, Chapter 6 between divisors and line bundles carries over word-for-
word to complex manifolds and meromorphic functions (compare Exercises 1–2
of Section 2.4). In particular, if we prove that P is equal to the divisor of some
meromorphic function ϕ on B then we will have proved that the manifolds Xan and
Yan are isomorphic, and even isomorphic as complex analytic line bundles. Thus
our problem reduces to that of constructing a holomorphic function on B having a
single zero of order 1 at P and no other zero.
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To make everything entirely concrete, suppose that the curve C is given by the
equation

y2 = x3 + ax + b, (8.26)

and Q is the point at infinity. Then B is given by (8.26) in the affine plane.
On C consider the 3 rational differential 1-forms

ω1 = dx

y
, ω2 = x

dx

y
and ω3 = 1

2

y − y0

x − x0

dx

y
,

where P = (x0, y0). Consider the behaviour of these at Q ∈ C. At this point t = x/y

is a local parameter, and

x = u

t2
, y = v

t3
with u,v ∈OQ and u(Q)= v(Q)= 1.

It follows from this that ω1 is regular at Q, ω2 has a pole of order 2 and ω3 a pole of
order 1. Dividing (8.26) by y2, we see easily that xt2 ≡ 1 and yt3 ≡ 1 modulo t4. It
follows that

ω2 =
(
− 2

t2
+ f

)
dt and ω3 =

(
−1

t
+ g

)
dt with f,g ∈OQ. (8.27)

Since C has genus 1, by the results of Section 3.3, Chapter 7, the topologi-
cal space C(C) is homeomorphic to the torus. Let α and β be a basis of its 1-
dimensional homology group, for example a parallel and a meridian.

It is easy to see that ω1 is regular on C, and ω2 has a single pole at Q of order 2.
The integral of ω1 along a 1-cycle σ depends only on the homology class of σ . If σ
is homologous to aα + bβ then

∫

σ

ω1 = a

∫

α

ω1 + b

∫

β

ω1.

Although ω2 is not regular at Q, its integral along a small contour around Q

equals 0, since there is no term in 1/t in its expansion (8.27). Therefore the same
formula hold for it:

∫

σ

ω2 = a

∫

α

ω2 + b

∫

β

ω2,

provided that the cycle σ does not pass through Q.
Finally, for the form ω3 we get a similar expression

∫

σ

ω3 = a

∫

α

ω3 + b

∫

β

ω3 + 2πin with n ∈ Z, (8.28)

since ω3 has poles of order 1 at P and at Q, and its expansion at P is similar to
(8.27): ω3 = (1/u+ h)du with h ∈OP , where u is a local parameter at P .
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The vectors (
∫
α
ω1,

∫
β
ω1) and (

∫
α
ω2,

∫
β
ω2) in C

2 are linearly independent over
C. Indeed, if a linear combination of them with coefficients λ, μ were equal to 0 we
would get a relation

∫

σ

(λω1 +μω2)= 0

for any 1-cycle σ . Therefore the integral ϕ(x)= ∫ z

q
(λω1 + μω2) (for some choice

of base point q) would be a well-defined meromorphic function on Can. By Theo-
rem 8.4 it would have to be a rational function on C. If μ �= 0 then it would have a
single pole of order 1 at Q, which is impossible, since the curve C is not rational. If
μ= 0 then it is regular everywhere, which is also impossible.

Using the linear independence of these vectors, choose λ and μ such that

(∫

α

ω3,

∫

β

ω3

)
= λ

(∫

α

ω1,

∫

β

ω1

)
+μ

(∫

α

ω2,

∫

β

ω2

)
.

Now set η = ω3 − λω1 − μω2. The equality (8.28) shows that
∫
σ
η = 2πin with

n ∈ Z for any cycle σ . Hence
∫ z

q
η is a multivalued function Ban \ P → C, and its

exponential

ϕ = exp
∫ z

q

η

is well defined, and is holomorphic and nowhere zero on Ban \ P . In a neighbour-
hood of P we have ω3 = (1/u+ h)du with h ∈OP , and η has a similar expansion;
hence ϕ = uψ , where ψ is holomorphic and nonzero at P . This proves that the
divisor of ϕ on Ban consists of the point P with coefficient 1; in other words, in
the complex analytic category, the divisor P is linearly equivalent on Ban to 0, so
that Xan and Yan are isomorphic. (Note that ϕ has an essential singularity at Q ∈ C,
since if it were meromorphic it would be a rational function by Theorem 8.4.) (2) is
proved. �

3.3 Example of a Nonalgebraic Compact Complex Manifold
with Maximal Number of Independent Meromorphic
Functions

The transcendence degree of M(X), which is finite by Theorem 8.3, is the main in-
variant by means of which it is natural to try to classify compact complex manifolds.
We now discuss what is known in this direction, omitting all proofs.

From this point of view, the complex manifolds that are closest to algebraic vari-
eties are those for which the transcendence degree of M equals the dimension of X.
We start by constructing an example of a complex manifold with this property which
is not an algebraic variety. The construction is closely related to that used in Sec-
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tion 2.3, Chapter 6 to construct an example of a nonprojective algebraic variety. For
it we use the notion of blowup of a nonsingular subvariety in the case that the am-
bient space is a complex manifold. The reader will easily check that the definitions
and elementary properties given in Section 2.2, Chapter 6 carry over word-for-word
to this case.

We consider projective 3-space P
3 and a curve C ⊂ P

3 having a double point
x0 with two distinct tangent directions, for example the curve given by z= 0, y2 =
x2 + x3 (as in (1.2) of Section 1.2, Chapter 1). There exists a neighbourhood U of
x0 in the complex topology of P3 such that the complex space U ∩ C is reducible,
and breaks up into two irreducible 1-dimensional nonsingular submanifolds C′ and
C′′ that intersect transversally at x0 (the two branches of C at x0).

We perform first the blowup σ1 : U1 → U of U with centre in C′. The inverse
image C′1 = σ−1

1 (C′) is a nonsingular surface, and σ1 : C′1 → C′ has fibres iso-
morphic to P

1. Set L1 = σ−1
1 (x0). The inverse image σ−1

1 (C′′) of C′′ is reducible,
consisting of two 1-dimensional components, L1 together with a nonsingular curve
C′′1 that maps isomorphically to C′′ under σ1. Both these components are nonsingu-
lar and intersect transversally at the point x1 = L1 ∩C′′1 . Now consider the blowup
σ2 : U→U1 of U1 with centre in C′′1 . The inverse image σ−1

2 (L1) again consists of
two 1-dimensional components: σ−1

2 (L1)= L∪L1, where L= σ−1
2 (x1), and L1 is

a curve mapping isomorphically to L1 under σ2. We set σ = σ2 ◦ σ1 : U → U . On
the other hand, consider the blowup σ : V → (P3 \ x0) of P3 \ x0 with centre in the
submanifold C \ x0. Since over U \ x0 the composite blowup σ coincides with the
blowup of C − x0, the two manifolds and maps σ : U → U and σ : V → P

3 \ x0

glue together to give a single map

σ : X→ P
3.

Obviously C(P3)⊂M(X), so that the transcendence degree of M(X) equals 3.
We now prove that X is not an algebraic variety. For this we suppose that it is
an algebraic variety, and use the notion of numerical equivalence of curves on X,
introduced in Section 2.3, Chapter 6 in connection with the analogous example. We
use the fact that on an algebraic variety, a nonsingular irreducible curve cannot be
numerically equivalent to 0. Indeed, as we saw in Section 2.3, Chapter 6, for this
it is enough to construct an effective divisor intersecting our curve in a nonempty
finite set of points. Let E ⊂ X be our curve and W ⊂ X an affine open set (we
are assuming that X is an algebraic variety, remember). In W we can find a divisor
intersecting W ∩E in a nonempty finite set of points, for example by choosing two
distinct points x, x′ ∈ W ∩ E, and taking a hypersurface F in the ambient space
containing x and not x′. The closure F of F in X will have the property we require.

Now to get a contradiction to the assumption that X is an algebraic variety, we
need only find an irreducible curve in X numerically equivalent to 0. For this, we
use the fact that under a blowup with centre a curve, the inverse images of all points
of this curve are numerically equivalent. Choose points x ∈ C \ x0, x′ ∈ C′ \ x0 and
x′′ ∈ C′′ \ x0, and let L= σ−1(x), L′ = σ−1(x′) and L′′ = σ−1(x′′). If we consider
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L′′ as the inverse image of the point σ−1
1 (x′′) under σ2 we get that

L∼ L′′ ∼ L. (8.29)

On the other hand, on U1,

σ−1
1

(
x′

)∼ L,

and on U

L′ ∼ σ−1
2 (L1)= L+L1.

Thus

L∼ L+L1.

In conjunction with (8.29) this shows that L1 ∼ 0.
Note that in all these arguments, instead of numerical equivalence of curves on X

we could have used equivalence of the corresponding cycles under homology, using
the results of Section 1.3, Chapter 7.

Dimension 3 in our example is the smallest possible case, since it can be proved
that a compact complex manifold of dimension 2 with two algebraically indepen-
dent meromorphic functions is algebraic, and is hence projective, as we have already
indicated in Section 2.3, Chapter 6.

Complex manifolds X for which the transcendence degree of M(X) equals
dimX are very close to algebraic varieties. In this case the field M(X) is isomorphic
to the rational function field C(X′) of an algebraic variety X′ with dimX′ = dimX,
so that X is bimeromorphic to an algebraic variety. This fact can be made more pre-
cise, by proving an analogue of Chow’s lemma (see Section 2.1, Chapter 6). All this
suggests that there is a purely algebraic description of these complex manifolds, and
that analogous objects can be defined over an arbitrary field. Such an object, called
an algebraic space or Moishezon manifold, has indeed been introduced by Artin
and Moishezon. For this see Knutson’s book [48].

3.4 The Classification of Compact Complex Surfaces

We proceed to the type of complex manifold that comes next in our classification,
for which the transcendence degree of M(X) equals dimX − 1. By the Riemann
existence theorem, this case is not possible for dimX = 1, and we should expect to
meet it first when dimX = 2, that is, for complex surfaces. We know some exam-
ples of these surfaces: they are the complex toruses of Example 8.3 and the Hopf
surfaces of Example 8.5. A general description of surfaces in this class is given by
the following theorem of Kodaira:

Theorem A compact complex surface X for which the transcendence degree of M
is 1 has a holomorphic map p : X→ Y to an algebraic curve Y such that M(X)=
p∗(C(Y )), and such that all but a finite number of the fibres p−1(y) are elliptic
curves.



184 8 Complex Manifolds

An analogous result can also be proved for complex manifolds of arbitrary di-
mension, but in a weaker form:

Theorem If X is a compact n-dimensional complex manifold, and the transcen-
dence degree of M(X) equals n − 1, then X is bimeromorphic to a manifold X′
having a holomorphic map p : X′ → Y to an (n− 1)-dimensional algebraic variety
Y , such that M(X) =M(X′) = p∗(C(Y )) and p−1(y) is an elliptic curve for all
points y in an open dense set of the Zariski topology of Y .

Complex manifolds of other types have been studied almost exclusively in the
case of complex surfaces. For these, there remains only one type, when M(X) =
C. We now describe the classification of this type of surfaces, obtained by Ko-
daira.

We observe first that the notion of −1-curve carries over in a natural way to
complex manifolds. One can prove that any complex surface can be obtained by a
finite number of blowups of a surface not containing−1-curves. Kodaira proved that
for a compact surface X without −1-curves and with no nonconstant meromorphic
functions, the first Betti number b1 can take only one of 3 values, 4, 1 or 0. If b1 = 4
then X is a complex torus. We already know an example of a complex torus on
which all meromorphic functions are constant (Example 8.4).

If b1 = 0 then the canonical line bundle of X is trivial. (The canonical line bundle
is defined by analogy with the case of algebraic varieties, and is a replacement for
the canonical class in cases where we cannot use rational or meromorphic functions;
see Exercises 3–4 of Section 2.4.) All surfaces of this type are homeomorphic to one
another and to the algebraic K3 surfaces (see Section 6.7, Chapter 3). They are called
complex analytic K3 surfaces (see Exercises 1–5).

The case b1 = 1 has so far not been investigated so fully. Examples of such
surfaces are obtained by generalising the construction of Hopf varieties. Namely,
compact complex surfaces of the form (C2 \0)/G, where G is a group acting freely
and discretely on C

2 \ 0, are called generalised Hopf surfaces. For example, we
could take G to be the cyclic group generated by the automorphism (z1, z2) �→
(α1z1, α2z2), where |α1| < 1, |α2| < 1. It can be shown that if there do not exist
integers n1, n2, not both 0, such that αn1

1 = α
n2
2 , then all meromorphic functions on

this surface are constants.
There also exist other classes of surfaces without meromorphic functions with

b1 = 1, called the Inoue–Hirzebruch surfaces. Some of these surfaces have b2 = 0,
and some b2 > 0. This is the class of complex surfaces that is least well studied.

Thus, according to the value of the invariant k, the transcendence degree of
M(X), compact complex surfaces can be classified as follows:

k = 2: algebraic surfaces;
k = 1: surfaces with a pencil of elliptic curves;
k = 0: complex toruses, K3 surfaces, or surfaces with b2 = 1.

One is struck in this classification by the amazing similarity with the classifica-
tion of algebraic surfaces treated in Section 6.7, Chapter 3. In all probability, this
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analogy can only be understood in connection with a generalisation of both theories
to manifolds of arbitrary dimension. This is one of the most interesting problems in
the theory of algebraic varieties and complex manifolds.

3.5 Exercises to Section 3

1 Let A = C
2/Ω be a 2-dimensional torus, g the automorphism given by g(x) =

−x and G the group {1, g}. Prove that the ringed space X̃ = A/G (see Exercise 1
of Section 3.6, Chapter 5) is a complex space, with 16 singular points z1, . . . , z16
corresponding to the points x ∈A with 2x = 0.

2 In the notation of Exercise 1, prove that each of the singular points zi ∈ X̃ has a
neighbourhood isomorphic to a neighbourhood of the vertex of the quadratic cone
(see Exercise 8 of Section 1.6).

3 In the notation of Exercises 1–2, prove that there exists a complex manifold
X and a holomorphic map ϕ : X → X̃ such that X has 16 mutually disjoint
curves C1, . . . ,C16, each of which is isomorphic to P

1
an, with ϕ(Ci) = zi , and

ϕ : X \⋃
Ci → X̃ \⋃

zi an isomorphism. [Hint: Use Exercise 10 of Section 4.6,
Chapter 2.]

4 We use the notation of the previous exercises; let z1 and z2 be coordinates on C
2.

Prove that the differential 2-form dz1 ∧ dz2 on C
2 defines a holomorphic nowhere

vanishing 2-form on A (compare Exercises 3–4 of Section 2.4). Prove that it also
defines a holomorphic nowhere vanishing 2-form on X. Deduce from this that the
canonical line bundle of X is trivial.

5 In the notation of the previous exercises, prove that if on the torus A all mero-
morphic functions are constant, then the same holds for X. Prove that X is not iso-
morphic to a complex torus (prove for example that X does not have holomorphic
1-forms). Thus X is an example of a nonalgebraic K3 surface.

6 Prove that for every nonsingular projective variety X of dimension ≥3 there
exists a nonalgebraic compact complex n-dimensional manifold X′ such that
M(X′)=C(X).

4 Kähler Manifolds

We now describe a class of complex manifolds that are close to algebraic varieties.
This class is characterised by the existence of a Riemannian metric of a special type,
and its theory gives some idea of the powerful metric methods that can be used in
the study of complex manifolds, and in particular, of algebraic varieties.
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4.1 Kähler Metric

We begin by discussing the question on the level of linear algebra, treating some
properties of Hermitian forms that we need in what follows. Let L be a n-
dimensional complex vector space and ϕ a Hermitian form on L. Recall that this
means that ϕ(x, y) ∈ C for x, y ∈ L, and the following conditions hold for all
x1, x2, y ∈ L and for all α1, α2 ∈C:

ϕ(y, x)= ϕ(x, y),

ϕ(α1x1 + α2x2, y)= α1ϕ(x1, y)+ α2ϕ(x2, y).

Introducing coordinates in L, we can write ϕ in the form ϕ(x, y)=∑
cαβxαyβ ,

with cβα = cαβ . Viewing L as a 2n-dimensional real vector space, and setting
ϕ(x, y)= α(x, y)+ iβ(x, y), where α =%ϕ, β =&ϕ, we get two R-bilinear forms
α and β , with α symmetric and β skewsymmetric. The fact that α and β come from
a complex Hermitian form implies that

α(ix, iy)= α(x, y), β(ix, iy)= β(x, y) and α(x, y)= β(ix, y).

Conversely, if β is any skewsymmetric R-bilinear form on L, the relation α(x, y)=
β(ix, y) determines the form α uniquely, and hence also ϕ = α + iβ , which is a
Hermitian form provided that β(ix, iy)= β(x, y).

The form ω=−β , where β is the form just constructed, is called the associated
skewsymmetric bilinear form of the Hermitian form ϕ, and ϕ the associated Her-
mitian form of the skewsymmetric form ω. We view ω as an element of the second
exterior power

∧2
L∗ of the dual vector space L∗ of L. A simple computation shows

how ω is constructed from ϕ in coordinates. Namely, if ϕ(x, y)=∑
cαβxαyβ with

cβα = cαβ then

ω(x, y)= i

2

∑
(cαβxαyβ − cαβxαyβ)

= i

2

∑
(cαβxαyβ − cβαyβxα)

= i

2

∑
cαβ(xαyβ − yαxβ).

In other words, ω = (i/2)
∑

cαβξα ∧ ξβ , where ξα is the basis of L∗ dual to the
chosen basis of L, that is, such that ξα(x)= xα .

Now suppose that the Hermitian form ϕ is positive definite. Then, in some basis,
ϕ and ω can be written

ϕ(x, y)=
∑

xαyα and ω= i

2

∑
ξα ∧ ξα.

If a1, . . . , an are elements of a commutative ring satisfying a2
1 = · · · = a2

n = 0 then
(a1 + · · · + an)

n = n!a1 · · ·an. Applying this to the elements ξα ∧ ξα of the even
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subalgebra of the exterior algebra, we get

ωn =
(
i

2

)n

n!ξ1 ∧ ξ1 ∧ · · · ∧ ξn ∧ ξn.

Setting ξα = uα+ivα we see that ξα∧ξα =−2iuα∧vα , so that ωn = n!Ω , where Ω
is the standard volume form dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn on L (as a 2n-dimensional
vector space over R). In a more intrinsic form we can write these relations in the
form

ωn = ∣∣det |cαβ |
∣∣2dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn, (8.30)

if ω= (i/2)
∑

cαβξα ∧ ξβ . In particular ωn �= 0, and a fortiori ωm �= 0 for m< n.
Now let X be an n-dimensional complex manifold, with a given positive definite

Hermitian form. That is, ϕ defines a positive definite Hermitian form on the tangent
space at each point x ∈X. In some domain U with local coordinates z1, . . . , zn the
form ϕ can be written

∑
cαβdzαdzβ , where cαβ are functions on U that we will

assume to be complex valued real analytic functions of z1, . . . , zn, z1, . . . , zn. A
form of this type defines a Riemannian metric on X, which is called a Hermitian
metric. Any complex manifold admits many Hermitian metrics, in the same way
that any differentiable manifold admits many Riemannian metrics.

We first discuss the local properties of a Hermitian metric ϕ, in a sufficiently
small domain U . The simplest possible question is: can ϕ be transformed to the
flat form

∑
dzαdzα by a complex analytic coordinate change, at least in a small

neighbourhood of P ? In Riemannian geometry, it is well known that the answer is
as follows: a metric

∑
gαβdxαdxβ is not distinguished from a flat metric either by

the values gαβ(P ) at P of its matrix entries, or by the values (∂gαβ/∂xγ )(P ) at P of
their partial derivatives. More precisely, there exists a system of coordinates (called
normal or geodesic coordinates) such that gαβ(P ) = δαβ and (∂gαβ/∂xγ )(P ) = 0.
The obstruction to making the metric flat involves the second partial derivatives of
the coefficients of the metric; this is the curvature tensor.

The situation in the complex analytic case is more delicate. Of course, we can
carry out a complex analytic (or even linear) coordinate change so that in the new
coordinates cαβ(P ) = δαβ . However, there is a very simple obstruction to finding
a coordinate system in which (∂cαβ/∂zγ )(P )= (∂cαβ/∂zγ )(P )= 0; that is to say,
already the first derivatives of the matrix entries of the Hermitian metric distinguish
it from a flat metric.

Namely, consider on each tangent space at x ∈ U the skewsymmetric form ω

associated with the Hermitian form ϕ. Together these define a differential 2-form,
written ω= (i/2)

∑
cαβdzα ∧ dzβ in local coordinates. The description of the map

ϕ �→ ω given at the start of this section shows that it is intrinsic, that is, the construc-
tion of the form ω is independent of the choice of the coordinate system z1, . . . , zn.
But then the differential dω of this form is also defined by the Hermitian form ϕ in
an invariant way. In particular, the condition dω= 0 is independent of the coordinate
system, and is a necessary condition for the metric to become flat after a complex
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analytic coordinate change. We can write these conditions in the explicit form

∂cαβ

∂zγ
= ∂cγβ

∂zα
and

∂cαβ

∂zγ
= ∂cαγ

∂zβ
.

It is of course easy to write down Hermitian metrics that do not satisfy these rela-
tions. For such a metric, already the first derivatives show that it cannot be made
flat. It is natural to consider metrics for which this first obstruction vanishes.

Definition A Hermitian metric ϕ on a complex manifold is a Kähler metric if its
associated differential 2-form ω is closed, that is, dω = 0. A manifold with a given
Kähler metric is called a Kähler manifold.

4.2 Examples

Example 8.6 (Quotient manifolds) Let X be a complex Kähler manifold with Käh-
ler metric ϕ and G a group of analytic automorphisms of X acting freely and dis-
cretely (see Section 1.2). If each automorphism g ∈G preserves the Kähler metric ϕ
then it induces a metric ϕ∗ on the quotient space X/G. To define ϕ∗, we must take
an open set U ⊂ X/G whose inverse image π−1(U) under the natural projection
π : X→ X/G breaks up as a disjoint union of open sets Uα , each of which maps
isomorphically to U under π . We first restrict the metric ϕ to one of the sets Uα ,
then use the isomorphism π to transfer it to U . Since all the Uα are taken to one an-
other by automorphisms g ∈G, and ϕ is invariant under G, the resulting metric on
U does not depend on the choice of Uα and is entirely uniquely defined. From this
it is easy to deduce that the metrics defined on different neighbourhoods U ⊂X/G

glue together to give a metric ϕ∗ on the whole of X/G. Obviously this is a Kähler
metric, since being Kähler is a local property, and ϕ∗ coincides locally with ϕ.

A very important special case is Cn with the flat metric ϕ =∑
dzαdzα and G a

group of translations in vectors of a lattice Ω . Obviously translations preserve the
metric ϕ, and the differential 2-form ω = (i/2)

∑
dzα ∧ dzα associated with ϕ is

closed. It follows that any torus Cn/G is a Kähler manifold.

Example 8.7 (The Fubini–Study metric on P
n) From now on, as discussed at the

end of Section 1.1, we write the differential d acting on forms as d= d′ + d′′, where
d′ and d′′ are the differential with respect to zi and zi .

Let ζ0, . . . , ζn be homogeneous coordinates on P
n and ζ an arbitrary linear form.

Then ζα/ζ = zα are rational functions on P
n. Set

H = log
n∑

α=0

|zα|2 and ω= id′d′′H. (8.31)

Note first that the 2-form ω is independent of the choice of the linear form ζ . For
this it is enough to check that if η is another linear form then d′d′′ log |ζ/η|2 = 0.
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Indeed, wherever η �= 0, the function ζ/η = z is one of the local coordinates, and
the assertion reduces to an easy exercise in functions of one complex variable:

d′d′′ log |z|2 = 0, that is,
∂2

∂z∂z
log |z|2 = 0;

the meaning of this is that ∂2/∂z∂z= ∂2/∂2x+ ∂2/∂2y is the Laplace operator, and
log(x2 + y2) is an elementary solution of the Laplace equation.

The 2-form ω is obviously closed, because d(d′d′′h)= 0 for any function h. We
have the following explicit coordinate expression for it:

ω= i

2
d′d′′ log

∑
|zα|2

= i

2
d′

(∑
zαdzα

/ ∑
|zα|2

)

= i

2

∑
dzα ∧ dzα∑ |zα|2 − i

2

(
∑

zαdzα)∧ (
∑

zαdzα)

(
∑ |zα|2)2

, (8.32)

where as before zα = ζα/ζ .
We now show that the Hermitian metric associated with ω is positive definite,

so that ω is a Kähler metric on P
n. It is easiest to do this using the homogeneity

property of ω. Namely, the unitary group U(n+ 1) of Cn+1 with the metric
∑ |ζα|2

also acts on P
n = P(Cn+1). The 2-form ω is invariant under this action, because

g∗(ω)= id′d′′ log

∑ |ζα|2
|g∗ζ |2 = id′d′′ log

∑ |ζα|2
|ζ |2 = ω

for g ∈U(n+1). Now U(n+1) acts transitively on P
n, so that it is enough to check

that the associated Hermitian form of ω is positive definite at any one point, for
example, at P = (1 : 0 : · · · : 0).

Choose the linear form ζ to be the homogeneous coordinate ζ0, so that z1, . . . , zn
are local coordinates at P . Now since zα = zα = 0 at P and dz0 = 0, the form (8.32)
simplifies to (i/2)

∑n
α=1 dzα ∧ dzα , and we see that the associated Hermitian form

is
∑

dzαdzα , which is positive definite.
The Kähler metric we have constructed on P

n is called the Fubini–Study met-
ric. We mention without proof another interpretation of it. We view P

n as the
image of the sphere S2n+1 ⊂ C

n+1 defined by
∑n

0 |ζα|2 = 1. Each point P =
(ζ0 : · · · : ζn) ∈ Pn corresponds to an entire great circle of S2n+1 consisting of point
(ζ0e

2πiθ , . . . , ζne
2πiθ ). Then the distance in the Fubini–Study metric of Pn between

two points P , Q ∈ P
n is equal to the distance in the spherical geometry of S2n+1

between the corresponding great circles. For the proof, see Kostrikin and Manin [52,
Chapter III, Section 10].

Example 8.8 (The induced Kähler metric on a projective manifold X ⊂ P
n) Let X

be a Kähler manifold and Y ⊂X a complex submanifold. The restriction of differ-
ential forms from X to Y takes a closed form to a closed form. The restriction of
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Hermitian forms takes a positive definite form to a positive definite form. Finally the
relation between a Hermitian form and its associated 2-form is preserved, as follows
at once from the definition. It follows from all of this that the restriction of a Kähler
metric given on X to a complex submanifold Y ⊂X defines a Kähler metric on Y .

In particular we see that any projective variety X has a Kähler metric. This metric
is defined not by intrinsic properties of X but by its embedding into P

n.

4.3 Other Characterisations of Kähler Metrics

We first show that the formula (8.31) used to write down the Fubini–Study metric
was no accident.

Proposition 8.1 The 2-form ω associated with a Kähler form can be written in the
form

ω= d′d′′H

in a neighbourhood of any point, where H is a C∞ function of the real coordinates.
A form of type d′d′′H is obviously always of type (1,1) and closed.

We observe first that the condition for a 2-form ω to be closed is dω = d′ω +
d′′ω = 0. But ω is of type (1,1) (that it, is of degree 1 in both the dzα and the
dzα), and hence d′ω and d′′ω are of type (2,1) and (1,2) respectively. Hence from
d′ω+d′′ω= 0 it follows that the two summands separately are zero, d′ω= d′′ω= 0.

The proof of the proposition is preceded by a lemma on integrating differential
forms; this is an analogue of the Poincaré lemma (closed forms are locally exact),
depending on additional parameters y1, . . . , ym, with respect to which differentia-
tion does not takes place.

Lemma Consider a differential p-form ω =∑
fi1...ipdxi1 ∧ · · · ∧ dxip , defined in

a neighbourhood of the origin of Rn, and with coefficients fi1...ip which are real
analytic functions of the coordinates x1, . . . , xn, and also depend analytically on
some auxiliary variables y1, . . . , ym.

If p > 0 and dω= 0 then there exists a (p− 1)-form

η=
∑

gi1...ip−1dxi1 ∧ · · · ∧ dxip−1,

defined in a possibly smaller neighbourhood of the origin of Rn, and with coeffi-
cients gi1...ip−1 which are real analytic functions, such that dη = ω. This assertion
holds both in the case when the coefficients f are real analytic functions, and when
they are holomorphic functions.

The statement is clearly false if p = 0: then ω = g(x1, . . . , xn, y1, . . . , ym) is a
function, and dω= 0 just means ∂g/∂xi = 0, that is, ω= g(y1, . . . , ym) is indepen-
dent of the variables x1, . . . , xn.
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Proof We prove this by induction on the number of variables x1, . . . , xn, putting xn
among the variables y1, . . . , ym; we use a tilde˜ to denote differentials with respect
to the remaining variables x1, . . . , xn−1, and also forms involving only differentials
of x1, . . . , xn−1. We can write

ω= ω̃+ ξ̃ ∧ dxn,

where ξ̃ is a (p− 1)-form. Then

dω= dω̃+ d(̃ξ ∧ dxn)= d̃ω̃+ (−1)p
∂ω̃

∂xn
∧ dxn + d̃ξ ∧ dxn,

where ∂/∂xn stands for differentiating all the coefficients of a form. The assumption
dω= 0 gives

d̃ω̃= 0 and (−1)p
∂ω̃

∂xn
+ d̃ ξ̃ = 0.

By the inductive hypothesis we can write

ω̃= d̃ϕ̃, (8.33)

where moreover

d̃

(
(−1)p

∂ϕ̃

∂xn
+ ξ̃

)
= 0. (8.34)

If p > 1 then (−1)p∂ϕ̃/∂xn + ξ̃ is a (p − 1)-form with p − 1 > 0, so that by
induction on p we can find a (p− 2)-form ψ̃ such that

(−1)p
∂ϕ̃

∂xn
+ ξ̃ = d̃ψ̃.

Then setting η= ϕ̃ + ψ̃ ∧ dxn gives

dη= d̃ϕ̃ +
(

d̃ψ̃ + (−1)p−1 ∂ϕ̃

∂xn

)
∧ dxn = ω,

as required.
If p = 1 the inductive hypothesis is not applicable. But then it follows from (8.34)

that ξ̃ = ∂ϕ̃/∂xn + f (xn). Now recall that in (8.33) we can change the form ϕ̃ (in
the present case a function) by adding a function g(xn) to it. In particular, we can
choose this function g(xn) such that ∂g/∂xn + f (xn)= 0; then ω = d(ϕ̃ + g). The
lemma is proved. �

Proof of Proposition 8.1 Let ω be a (1,1)-form with d′ω = d′′ω = 0. In the equal-
ity d′′ω = 0, write ω as ω =∑

ηα ∧ dzα where the ηα are (0,1)-forms. Then also
d′′ηα = 0 for α = 1, . . . , n. We apply the lemma to this equality, viewing ηα as
forms in the variables z1, . . . , zn with coefficients depending on z1, . . . , zn. Then
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ηα = d′′ζα and hence ω = d′′ϕ where ϕ is a (1,0)-form. The equality d′ω = 0
implies d′′(d′ϕ) = 0. The form α = d′ϕ is a (2,0)-form, and d′′α = 0 implies
that it is holomorphic. On the other hand, from the fact that α = d′ϕ it follows
that d′α = 0. Applying the lemma again, this time in its holomorphic version, we
get that there exists a holomorphic 1-form β such that α = d′β . Thus d′ϕ = d′β
where β is holomorphic, and therefore d′(ϕ − β) = 0. Applying the lemma a
third time we get that ϕ − β = d′H where H is a function. Thus in conclusion,
ω= d′′ϕ = d′′(d′H + β)= d′′d′H , since β is holomorphic and hence d′′β = 0. The
proposition is proved. �

Our second characterisation of Kähler metrics is related to the arguments we
started from in Section 4.1. We saw there that the Kähler condition is the necessary
condition for the existence of a complex analytic coordinate system such that the
metric coincides with a flat metric up to terms of degree ≥2. We now show that this
condition is also sufficient.

Proposition 8.2 For a Kähler metric, there exists a complex analytic coordinate
system at each point P such that the matrix entries cαβ of the metric satisfy the
conditions

cαβ(P )= δαβ, and
∂cαβ

∂zγ
(P )= ∂cαβ

∂zγ
(P )= 0.

Proof We start from the associated form ω of the Kähler metric, and its represen-
tation ω = d′d′′H established in Proposition 8.1, where H is an analytic function
in the coordinates zα and zα . In the Taylor series expansion of H , the terms of de-
gree 0 and 1 have no effect whatsoever on ω, and we can assume that they are 0.
On the other hand, the terms of degree ≥4 have no effect on the values at P of the
matrix entries cαβ of the Hermitian metric and their first derivatives. Finally, terms
involving only monomials in the zα or zα separately are killed by the operator d′d′′,
and we can discard them too.

Consider the terms of degree 2 of the form cαβzαzβ . On applying d′d′′, these give
the matrix entries of the Hermitian form on the tangent space at P . Since this form
is positive definite, we can assume, at the cost of a linear change of variables, that
cαβ = δαβ , that is, that the terms of degree 2 are

∑
zαzα .

Finally, among terms of degree 3, we need only consider those of the form
dαβγ zαzβzγ and eαβγ zαzβzγ . We write these terms in the form

∑
ϕγ zγ +∑

ψγ zγ ,
where ϕγ and ψγ are quadratic forms in z1, . . . , zn. From the conditions cαβ =
cβα on the matrix entries of the Hermitian metric and the representation cαβ =
∂2H/∂zα∂zβ it follows that H must be a real valued function, hence ϕγ = ψγ .
Now a transformation of the form zγ �→ zγ + ϕγ kills these terms; this proves the
proposition. �

Finally we mention without proof another characterisation of Kähler metrics.
A Kähler metric on a manifold induces a Riemannian metric; but a Riemannian
metric defines an R-linear map of the tangent space at any point P into the tangent
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space at any infinitely near point, and by integrating along a curve, a map to the
tangent space at any point Q joined to P by a curve. This map is called a connection
or parallel transport. The formulas defining parallel transport depend only on the
matrix entries of the Riemann metric and their first derivatives. Since for a Kähler
metric the matrix entries and their first derivatives are the same as for a flat metric,
also parallel transport will have the same properties as ordinary parallel transport
x �→ x + a in the metric

∑
dzidzi . In particular, this is a C-linear map. It can be

shown that Kähler metrics on complex manifolds are exactly the Hermitian metrics
for which parallel transport is a C-linear map: the connection is a C-linear map
ΘX→ΘX ⊗Ω1.

4.4 Applications of Kähler Metrics

We saw in Section 4.1 that if ω is the associated skewsymmetric form of a Hermitian
metric on an n-dimensional complex vector space L then ωn = n!Ω , where Ω is the
volume form of L with respect to this metric (see (8.30)). It follows that for any n-
dimensional complex manifold X with a Hermitian metric ωn = n!Ω , where ω is the
associated 2-form of the metric and Ω the volume form of this metric. In particular

∫

[X]
ωn = n!

∫

[X]
Ω = n!VolX,

where VolX is the volume of X. This relation can be applied to an m-dimensional
subvariety Y ⊂ X. Since we know that restricting to a submanifold preserves the
relation between the metric and its associated form,

∫
[Y ]ω

m =m!VolY , where VolY
is the volume of Y in the given metric. This relation, expressing the volume of any
complex submanifold in terms of integrals of a fixed differential form, is called
Wirtinger’s theorem.

When the metric is Kähler, Wirtinger’s theorem gives us much more. In this
case, the 2-form ω is closed, and therefore so are all its powers ωm. It follows that∫
[Y ]ω

m depends only on the homology class [Y ] of Y . Thus VolY is some invariant
of the homology class containing the submanifold Y . The geometric meaning of
this invariant is that it is the lower bound for the volume VolZ as Z runs through
all real submanifolds that are homologous as cycles to [Y ]. In other words, if we
view a complex manifold X with a Kähler metric as a Riemannian manifold then
a complex submanifold is a minimal submanifold, realising the minimal volume
in its homology class. This is very easy to prove. If ω is the associated 2-form
of a Riemannian metric, dimY = m, and Z is a real 2m-dimensional submanifold
homologous to the cycle [Y ] then, as we have seen

VolY = 1

m!
∫

[Y ]
ωm = 1

m!
∫

[Z]
ωm.

It remains to prove that | ∫[Z]ωm| ≤ ∫
[Z]Ω , where Ω is the volume form on Z.

In local coordinates x1, . . . , x2m on Z we have ωm = f dx1 ∧ · · · ∧ dx2m and Ω =
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gdx1 ∧ · · · ∧ dx2m, and it is enough to prove that |f | ≤ |g|. We only need to verify
this inequality point-by-point, and hence everything reduces to an assertion in linear
algebra, that we state as the following lemma.

Lemma Let L be an n-dimensional complex vector space, ϕ(x, y) a Hermitian
metric on L, and ω(x, y) the associated skewsymmetric form of ϕ. Suppose that
F ⊂ L is a 2m-dimensional real vector subspace of L, where L is viewed as a
2n-dimensional vector space over R. Then for any basis f1, . . . , f2m of F we have

1

m!
∣∣ωm(f1, . . . , f2m)

∣∣≤ ∣∣Vol(f1, . . . , f2m)
∣∣, (8.35)

where Vol(f1, . . . , f2m) is the volume of the parallelepiped constructed on the vec-
tors f1, . . . , f2m, with respect to the metric ϕ. (See Exercise 5 for the converse
implication.)

Note that if we partition the basis vectors f1, . . . , f2m into two subsets f1, . . . , f2r

and f2r+1, . . . , f2m that are orthogonal with respect both to the scalar product
α(x, y) and the skewsymmetric form ω(x, y) associated with the metric ϕ, the
two sides of the inequality (8.35) are both multiplicative. For the volume this is well
known. For the left-hand side, we can write ω|F = ω1 ⊕ω2, where

ω1(fα, fβ)= ω(fα,fβ) and ω2(fα, fβ)= 0 for α,β = 1, . . . ,2r,

ω1(fα, fβ)= 0 and ω2(fα, fβ)= ω(fα,fβ) for α,β = 2r + 1, . . . ,2m.

Then by exterior algebra

1

m!ω
m = 1

m! (ω1 +ω2)
m = 1

m!
(
m

r

)
ωr

1ω
m−r
2 = 1

r!ω
r
1

1

(m− r)!ω
m−r
2 ,

so that

1

m!ω
m(f1, . . . , f2m)= 1

r!ω
r(f1, . . . , f2r )

1

(m− r)!ω
m−r (f2r+1, . . . , f2m).

Using the scalar product α(x, y), we can write ω|F in the form ω(x, y) =
α(A(x), y) where A : F → F is a skewsymmetric linear map. Now A has a 2-
dimensional invariant subspace F0 ⊂ F , since every linear map does. Because
A is skewsymmetric, the subspace F1 orthogonal to F0 is also invariant. Thus
F = F0 ⊕ F1, where F0 and F1 are orthogonal with respect to both α and ω.

Now note that on passing to another basis, both sides of the inequality (8.35) are
multiplied by the absolute value of the determinant of the matrix of the change of
basis. Hence we need only prove it for one particular basis. In particular, we can
assume that f1, f2 ∈ F0 and f3, . . . , f2m ∈ F1. By what we have proved above, it is
enough to prove the inequality for F0 and F1 separately. The proof thus reduces by
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induction to the case of a 2-dimensional subspace F . Moreover, we can assume that
the vectors f1 and f2 are orthogonal with respect to α. Then

∣∣ω(f1, f2)
∣∣= ∣∣ϕ(if1, f2)

∣∣≤ (∣∣ϕ(if1, if1)
∣∣ · ∣∣ϕ(f2, f2)

∣∣)1/2
. (8.36)

Since ϕ is Hermitian, ϕ(if1, if1) = ϕ(f1, f1) and the right-hand side of (8.36) is
|Vol(f1, f2)|. The lemma is proved.

We summarise what we have proved.

Theorem 8.7 In a Kähler complex manifold, the volume of an m-dimensional com-
plex submanifold Y is expressed as (1/m!) ∫[Y ]ωm, where ω is the 2-form associ-
ated with the Kähler metric. This volume is the same for all homologous complex
submanifolds, and realises the minimum volume for real submanifolds in the same
homology class.

Now consider nonsingular projective varieties X ⊂ P
N . As we saw in Sec-

tion 4.3, PN has a Kähler metric, the Fubini–Study metric, and hence all projec-
tive submanifolds are Kähler. It is well known that the 2n-dimensional homology
group H2n(P

N,Z) is isomorphic to Z, with the class of a projective linear subspace
P
n ⊂ P

N as generator. Hence for the cohomology of an n-dimensional complex sub-
manifold we have [X] = h[Pn] with h ∈ Z. To determine the value of the coefficient
h, we need to consider the intersection number with the cycle [Z] of a projective lin-
ear subspace Z = P

N−n of complementary dimension. We have seen that [X] ·[Z] =
degX (7.5). But [X] · [Z] = h([Pn] · [Z])= h, and therefore h= degX. On the other
hand, by Wirtinger’s theorem VolX = (1/n!) ∫[X]ωn = (h/n!) ∫[Pn]ω

n. We use γn

to denote the absolute value of the constant
∫
[Pn]ω

n (in fact γn = πn). We thus get
the following version of Wirtinger’s theorem:

degX = n!
γn

VolX.

A relation analogous to that just obtained holds for any cycle ζ ∈ H2n(P
N).

On the one hand, ζ = h[Pn], where h = ζ · [PN−n]. On the other hand,
∫
ζ
ωn =

h
∫
[Pn]ω

n = hγn, so that ζ · [PN−n] = (1/γn)
∫
ζ
ωn. We see that (1/γn)ωn defines

the same cohomology class as [PN−n]. In particular, the cohomology class of the
2-form ω/π is dual to the class of a hyperplane in the sense of the duality between
H 2 and H2n−2. All of these relations also hold for the homology class of projec-
tive varieties X ⊂ P

N , since the homology class ζ ∈Hk(X,Z) defines a class i∗ζ ∈
Hk(P

N,Z) where i : X ↪→ P
N is the inclusion map, and the class η ∈ Hk(PN,C)

defines the class i∗η ∈ Hk(X,Z). The standard formula i∗η · ζ = η · i∗ζ (the so-
called projection formula) shows that on any projective manifold, the 2-form ω/π

defines the cohomology class dual to the class of the hyperplane section.
All the above arguments were based on integrating powers of the 2-form ω of

the Kähler form of a Kähler manifold X. We give another very simple but im-
portant application of this idea. We have seen that

∫
[X]ω

n = n!VolX, and hence
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in particular
∫
[X]ω

n �= 0. Hence the form ωn is not homologous to 0. A for-
tiori ωm for m < n is not homologous to 0, since ωm = dξ would imply that
ωn = ωn−m ∧ dξ = d(ωn−m ∧ ξ). Hence we get a generalisation of Proposition
of Section 1.3, Chapter 7.

Proposition For an n-dimensional compact Kähler manifold X,

H 2m(X,C) �= 0 for m≤ n.

It follows of course by duality that also H 2m(X,C) �= 0.

In particular we see that the Hopf manifold (Example 8.5) does not admit a Käh-
ler metric. We see that, in contrast to Hermitian metrics, by no means every compact
complex manifold can be given a Kähler metric.

4.5 Hodge Theory

The most powerful applications of Kähler metrics are related to Hodge theory. Al-
though Hodge theory is not easy to construct, it is easy to describe its results.

As noted in (8.5)–(8.6), writing out a differential m-form in the coordinates zi
and zi and separating out terms involving p of the dzi , and q of the dzi defines a
decomposition

η=
∑

p+q=m
η(p,q), (8.37)

where the η(p,q) are forms of type (p, q).
Can this decomposition be carried over to the cohomology classes defined by

differential forms? To do this, in the first instance we need to know that a closed form
η has a decomposition (8.37), in which the η(p,q) are closed forms; we do not require
equality in (8.37), but only that the two sides of (8.37) are cohomologous. That is,
we need that any closed m-form η is cohomologous to a sum

∑
p+q=m η(p,q) with

dη(p,q) = 0. Secondly we need to know that the decomposition (1) is unique in terms
of cohomology classes; that is, if η =∑

p+q=m η(p,q) with dη(p,q) = 0 is an exact

differential, then all the η(p,q) are exact differentials.
There is of course no reason whatsoever for these properties to hold in general.

Hodge theory asserts that they are true for arbitrary compact Kähler manifolds. Note
that the assertions themselves express properties of the cohomology of complex
manifolds, and do not depend in any way on a metric. A complex manifold may
admit many different Kähler metrics (for example, we could embed a projective
manifold in many different ways into projective space and take the corresponding
Fubini–Study metrics). Any of these will do equally well in the foundation of Hodge
theory, but it only plays a role as auxiliary apparatus for proof. Moreover, there
exist important cases when there is no Kähler metric on a complex manifold, but
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the assertions of Hodge theory are nevertheless true. For example, this is the case
for the 2-dimensional cohomology of compact complex surfaces (see for example
Barth, Peters and Van de Ven [9, Chapter IV, Section 2]).

We recall that every projective manifold is Kähler, so that Hodge theory holds
for it.

According to Hodge theory, on a Kähler manifold we have a decomposition of
cohomology groups similar to (8.37)

Hm(X,C)=
⊕

p+q=m
Hp,q(X), (8.38)

where Hp,q(X) is the subspace spanned by closed (p, q)-forms. The dimension
of Hm(X,C) is the mth Betti number bm(X) of X. The dimension of Hp,q(X) is
denoted by hp,q(X). It follows from (8.38) that

bm =
∑

p+q=m
hp,q(X).

In (8.38), the complex conjugation operator obviously takes exact differentials
to exact differentials, and hence extends to cohomology groups Hm(X,C). In par-
ticular Hq,p(X) = Hp,q(X), so that hq,p = hp,q . If m is odd if follows from this
that

bm =
∑

p+q=m
hp,q(X)= 2

∑

p<m

hp,m−p(X), (8.39)

and we see that the odd dimensional Betti number of a compact Kähler manifold are
even.

Some of the spaces Hp,q(X) have a simpler interpretation. By definition
Hp,0(X) consists of classes of closed forms of the form

η= fi1...ipdzi1 ∧ · · · ∧ dzip .

The condition dη= 0 breaks up into the two conditions d′η= 0 and d′′η, the second
of which just means that the fi1...ip are holomorphic functions. Suppose that such a
form η is exact, η = dξ ; we prove that then η = 0. For this we construct the form
η ∧ η ∧ ωn−p , where ω is the 2-form associated with the Kähler metric. We prove
that if η �= 0 then η∧η∧ωn−p = γUΩ , where γ is a nonzero constant, U a positive
function and Ω the volume element. From this it follows that

∫
[X] η∧η∧ωn−p �= 0,

whereas at the same time, if η= dξ then

η ∧ η ∧ωn−p = d
(
ξ ∧ η ∧ωn−p)

and
∫

[X]
η ∧ η ∧ωn−p = 0.

The relation η∧η∧ωn−p = γUΩ is purely local in character, and we can check
it in the tangent space at every point. Suppose that in a suitable coordinate system
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ω =∑
dzα ∧ dzα , and for brevity write η =∑

cAdzA, where A runs through mul-
tiple indexes A= (α1, . . . , αp) and dzA = dzα1 ∧ · · · ∧ dzαp . Then

η ∧ η ∧ωn−p =
(
i

2

)n−p(∑
cAdzA

)
∧

(∑
cAdzA

)
∧

(∑
dzB ∧ dzB

)
,

where B runs through multiple indexes B = (β1, . . . , βn−p). It follows from an
obvious calculation in the exterior algebra that

η ∧ η ∧ωn−p = γ
(∑

|cA|2
)
Ω,

where γ is a nonzero constant.
Finally, for any p-form η=∑

fα1...αpdzα1 ∧ · · · ∧ dzαp with holomorphic coef-
ficients, consider ξ = dη. This form is obviously cohomologous to 0, and is of the
kind just considered. By the argument just given, it equals 0. Putting together what
we have said, we see that Hp,0(X) is the space of holomorphic p-forms, that is,
forms η =∑

fα1...αpdzα1 ∧ · · · ∧ dzαp where the coefficients fα1...αp are holomor-
phic functions. One can prove that if X is a projective variety, then these forms
are the regular rational differential forms on X, that is, in the notation of Sec-
tion 5.3, Chapter 3, Hp,0(X) = Ωp[X], and hp,0(X) = hp(X). For p = 0 this is
Theorem 8.2.

For example, for H 1(X,C), (8.39) says that b1 = 2h1,0, where h1,0 is the dimen-
sion of the space of holomorphic 1-forms.

We state one final result which is easy to deduce if you accept Hodge theory on
trust: taking the product of forms η �→ η ∧ ω with the Kähler 2-form ω induces an
inclusion

Hm(X,C) ↪→Hm+2(X,C) for m+ 1≤ n= dimX,

the so-called hard Lefschetz theorem. It follows from this that bm ≤ bm+2 for
m + 1 ≤ n. By Poincaré duality, also bm ≤ bm−2 for m ≥ n + 1. Thus the odd or
even Betti numbers of a Kähler manifold form a monotone sequence, the “Hodge
staircase”: up to the middle dimension they are monotonically nondecreasing, and
from the middle dimension upwards nonincreasing.

4.6 Exercises to Section 4

1 Let L be a complex vector space and LR the same space viewed as a vector space
over R of twice the dimension. Prove that a symmetric bilinear form α(x, y) on
LR is the real part of a Hermitian form ϕ on L if and only if α(ix, iy) = α(x, y).
Moreover, ϕ is unique.

2 Prove that every 1-dimensional compact complex manifold is Kähler (assume
known that it can be given a Hermitian metric).
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3 Calculate the integral over the 2-cycle [P1] of the 2-form ω on P
1 associated with

the Fubini–Study metric.

4 Prove that if X and Y are Kähler manifolds then so is X × Y with the natural
product metric.

5 Prove that in the inequality (8.35), equality holds if and only if F is a complex
subspace of L. Deduce that a 2m-dimensional real submanifold Y of a Kähler man-
ifold X that minimises the volume in its homology class is a complex manifold.

6 Use Hodge theory to prove that there are no holomorphic differential forms on
P
n.

7 Let X be a compact 1-dimensional complex manifold (therefore a Kähler
manifold). Multiplication defines a bilinear form Q(x,y) on the cohomology
H 1(X,C) = H 1,0(X) ⊕ H 0,1(X). If ϕ and ψ are differential forms belonging to
cohomology classes x and y, prove that Q(x,y) = ∫

[X] ϕ ∧ ψ . Deduce from this

that Q(ϕ,ϕ) > 0 for ϕ ∈H 1,0(X).

8 Let L be a 2-dimensional complex vector space with a Hermitian metric that can
be written z1z1 + z2z2 in some coordinate system, and ω the associated skewsym-
metric form. Prove that if a (1,1)-form ϕ on L satisfies ω∧ ϕ = 0 then ϕ ∧ϕ = cΩ

with c < 0, where Ω is the volume element.

9 Let X be a compact Kähler surface and

H 2(X,C)=H 2,0(X)⊕H 1,1(X)⊕H 0,2(X)

the Hodge decomposition (8.38) of its cohomology; suppose that Q(x,y) is defined
for x, y ∈H 2(X,C) by Q(x,y)= ∫

[X] ϕ ∧ ψ . Let ω be a Kähler form. Use Exer-

cise 8 to prove that if ϕ ∈H 1,1(X) satisfies Q(ϕ,ω)= 0 then Q(ϕ,ϕ) < 0. Deduce
that Q(x,y) defines a Hermitian form on H 1,1(X) whose canonical diagonalised
form

∑
λiξiξ i has one positive coefficient λi and the remainder negative. The cor-

responding Hermitian form on H 2(X,C) has 2h2,0 + 1 positive coefficients.

10 Let X be a compact Kähler surface, Y a nonsingular curve on X and 〈Y 〉 ∈
H 2(X,C) the dual cohomology class of Y . Prove that Y is a real class and 〈Y 〉 ∈
H 1,1(X). [Hint: Check that Q(〈Y 〉, ϕ)= 0 for ϕ ∈H 2,0(X)⊕H 0,2(X).]

11 Compare the result of Exercise 9 with the Hodge index theorem (Section 2.4,
Chapter 4). What do the results have in common, and how do they differ?



Chapter 9
Uniformisation

1 The Universal Cover

1.1 The Universal Cover of a Complex Manifold

In previous sections of this book we have used the notion of quotient space to con-
struct many important examples of complex manifolds. We now show that the notion
leads to a general method of studying complex manifolds.

We start by recalling some simple topological facts (see, for example, Pontrya-
gin [66, §§49–50]). Let X be a path-connected, locally connected and locally simply
connected space; later X will be a connected manifold and all these conditions will
be satisfied. The universal cover of X is a topological space X̃ having a projection
p : X̃→X that makes it into an unramified cover (Section 1.2, Chapter 8). Home-
omorphisms g : X̃→ X̃ satisfying the condition p ◦ g = p form a group G isomor-
phic to the fundamental group π1(X) of X. This group acts freely and discretely on
X and

X = X̃/G. (9.1)

Now suppose that X is a complex manifold, and write OX for the structure sheaf.
The universal cover X̃ (or indeed any unramified cover) can also be made into a
complex manifold in such a way that the projection p is a holomorphic map. For
this, consider the presheaf Õ on X̃ defined by

Õ(Ũ )=OX

(
p(Ũ)

)

for any open set Ũ ⊂ X̃; then also p(Ũ) is open in X, since p is an unramified
cover. Write OX̃ for the sheafication of Õ. Every point x̃ ∈ X̃ has a neighbourhood
Ũ that is mapped homeomorphically by p to p(Ũ). Thus the sheaf OX̃ is uniquely
determined by its restriction to these opens Ũ . It is easy to see that on them, OX̃ is
just the sheaf OX pulled back by the homeomorphism p.

I.R. Shafarevich, Basic Algebraic Geometry 2, DOI 10.1007/978-3-642-38010-5_5,
© Springer-Verlag Berlin Heidelberg 2013
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It follows from what we have said that the pair X̃,OX̃ defines a complex mani-
fold. Indeed, if p : Ũ→ p(Ũ) is a homeomorphism then the projection p defines an
isomorphism of the ringed spaces Ũ ,OX̃ |Ũ and p(Ũ),OX |p(Ũ). Hence if p(Ũ) is

isomorphic to a domain in C
n then the same is true of Ũ . It is also obvious that p is

holomorphic. Moreover, since the complex structure on X̃ is determined by the pro-
jection p, and the homeomorphisms g ∈G do not change this projection, they are
automorphisms of the complex manifold X̃. It follows that (9.1) is an isomorphism
of complex manifolds.

Suppose that two manifolds X and X′ have a common universal cover X̃. Then

X = X̃/G and X′ = X̃/G′,

and there are two unramified covers p : X̃→ X and p′ : X̃→ X′. We determine
when X and X′ are isomorphic. For this we use the following elementary topological
fact, which justifies the term universal cover: if p : X̃→ X is the universal cover
and q : X1 → X is any connected unramified cover then there exists a continuous
map ϕ : X̃→X1 such that q ◦ ϕ = p. Suppose that f : X′ →X is an isomorphism.
Then q = f ◦ p′ defines an unramified cover q : X̃→ X. Using the result stated
above once more, we have thus constructed a continuous map ϕ : X̃→ X̃ such that
the diagram

X̃
ϕ−→ X̃

p′ ↓ ↓ p

X′ −→
f

X
(9.2)

commutes. It follows that the map ϕ is holomorphic. Indeed, it follows from
the commutativity of the diagram that p ◦ ϕ is holomorphic, that is, for func-
tions u ∈ OX,x the function (p ◦ ϕ)∗(u) = ϕ∗(p∗(u)) is holomorphic at points
x̃ ∈ (p ◦ϕ)−1(x)= ϕ−1(p−1(x)). But all functions that are holomorphic in a neigh-
bourhood of a point x̃ ∈ p−1(x) are locally of the form p∗(u), from which it follows
that ϕ is holomorphic. Interchanging X and X′ in this argument, we see that ϕ is an
automorphism of the complex manifold X̃.

Now recall that the two groups G and G′ consist of all automorphisms of X̃ for
which

pγ = p for γ ∈G and p′γ ′ = p′ for γ ′ ∈G′.
Composing the first equality with f and using the commutativity of (9.2) we get
that G′ = ϕGϕ−1. We have proved the following result.

Theorem 9.1 Any connected complex manifold X can be written in the form X =
X̃/G where X̃ is a simply connected complex manifold and G is a group of auto-
morphisms of X̃ acting freely and discretely on it. For any two such representations
of the same complex manifold, the groups G and G′ are conjugate in the group of
all automorphisms of X̃.
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1.2 Universal Covers of Algebraic Curves

Theorem 9.1 allows us to reduce the study of arbitrary complex manifolds to that
of simply connected manifolds and their automorphism groups. Of course, this only
moves the problem somewhere else—it all depends how much we know about sim-
ply connected complex manifolds and their discrete groups of automorphisms. In
general, very little; we will say more about this in Section 4. The exception is pro-
vided by 1-dimensional complex manifolds, that we mainly study in what follows.

The classification of connected, simply connected 1-dimensional complex man-
ifolds is very simple. There are just 3 of them:

(1) The projective line P
1
an;

(2) the affine line C
1 =A

1
an;

(3) the open unit disc D ⊂C defined by |z|< 1.

In the theory of analytic functions, (1) and (2) are called the Riemann sphere and
the finite complex plane. This theorem is proved by the same methods as the Rie-
mann existence theorem. The proof is given, for example, in Springer [74, 9–2]. It
is easy to see that the three complex manifolds (1)–(3) are not isomorphic: (1) is
not isomorphic to the other two because it is compact, and they are not; (3) is not
isomorphic to (2) because it admits nonconstant bounded holomorphic functions,
and by Liouville’s theorem (2) does not.

Thus connected 1-dimensional complex manifolds divide into three classes, de-
pending on whether the universal cover is isomorphic to (1), (2) or (3). The three
classes corresponding to (1), (2) and (3) are called elliptic, parabolic or hyperbolic
complex manifolds; the same terminology is applied to noncompact 1-dimensional
complex manifolds.

To study complex manifolds in these three classes, we need to know what are the
groups of automorphisms acting freely and discretely on the universal covers. The
answer follows easily from simple facts from the theory of analytic functions of one
complex variable.

Proposition Any automorphism of P1
an has a fixed point. An automorphism group

G of C1 acting freely and discretely and with compact quotient C1/G consists of
translations z �→ z+ a, where a runs through the vectors of some lattice of rank 2
in C. All automorphisms of the unit disc are of the form

z �→ θ
z− α

1− αz
with |θ | = 1 and |α|< 1. (9.3)

Proof By Theorem 8.5, any automorphism of P1
an is of the form gan where g is an

automorphism of the algebraic variety P
1, and is hence a fractional linear transfor-

mation. Since any fractional linear transformation has a fixed point, this proves the
first assertion of the proposition.

An automorphism of C1 is given by an entire function f (z). If f had an essential
singularity at the point ∞ then in any neighbourhood of ∞ it would take values
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arbitrary close to any given value, by Weierstrass’ theorem. This would contradict
the assumption that f defines an automorphism. Indeed, if f (a)= b then f already
takes all values sufficiently close to b in a neighbourhood of a, and so cannot take
them in a neighbourhood of∞. Therefore f is a polynomial. If it has degree n then
it takes every value n times. Hence f defines an automorphism only if n = 1. In
other words, any automorphism of C1 is of the form

f (z)= az+ b with a �= 0. (9.4)

An automorphism belonging to a group G that acts freely does not have fixed points.
Hence a = 1 in (9.4). We see that G must consist of translations f (z) = z + b. If
we use the group structure on C

1 we can restate our result by saying that G is a
subgroup of C1 and X the quotient group C

1/G. In Section 1.4, Chapter 8, we have
already used a simple theorem that determines all discrete subgroups G⊂ C

1 with
compact quotient (see Pontryagin [66, Exercise 33 of Section 19, p. 110]). In our
case it shows that G = Zω1 + Zω2 is a lattice of rank 2, where ω1, ω2 ∈ C

1 are
linearly independent over R.

Finally, suppose that D is the open unit disc. A substitution show that transfor-
mations of type (9.3) form a group, and that this group acts transitively on D. Thus
composing any automorphism with some automorphism of type (9.3) we get an
automorphism γ that fixes 0. Hence it is enough to prove than any automorphism
fixing 0 is of the form (9.3) with α = 0. If γ (0)= 0 then

∣∣γ (z)/z
∣∣≤ 1 for z ∈D,

by Schwarz’ lemma (Section 2.3, Chapter 8), and since the relation between γ (z)

and z is symmetric, also |z/γ (z)| ≤ 1. It follows that γ (z)/z is constant:

γ (z)= θz with |θ | = 1.

The proposition is proved. �

Thus the classification of manifolds of elliptic type is trivial: they are all isomor-
phic: indeed, in (9.1) we have X̃ = P

1
an and G= e, so that X = X̃ = P

1
an.

In Sections 2–3 we treat compact manifolds of parabolic and hyperbolic type.
We prove that for any group G acting freely and discretely and such that X̃/G is
compact, the quotient manifold is a projective algebraic curve, and we construct an
explicit projective embedding of these manifolds. We will thus give a proof of the
Riemann existence theorem, starting from the classification theory of simply con-
nected 1-dimensional complex manifolds. We show moreover that compact com-
plex manifolds of parabolic type coincide with algebraic curves of genus 1, that is,
elliptic curves, and manifolds of hyperbolic type with curves of genus ≥2. (The ter-
minology is clearly a mess—an elliptic curve is a manifold of parabolic type, and
the projective line is of elliptic type; but this has been in general use for so long that
we do not attempt to correct it.)
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1.3 Projective Embedding of Quotient Spaces

In what follows we need to investigate various particular cases of the following
general situation. Let X̃ be a 1-dimensional complex manifold and G a group of
automorphisms of X̃ acting freely and discretely. Assume that the quotient space
X = X̃/G is compact; then how do we construct an embedding of it into projective
space P

n?
We specify such an embedding by n+ 1 functions f0, . . . , fn that are holomor-

phic on the whole of X̃. Suppose that they are not simultaneously 0 at any point
x̃ ∈ X̃. Then

f̃ : X̃→ P
n defined by f̃ (̃x)= (

f0(̃x) : · · · : fn(̃x)
)

(9.5)

is a holomorphic map.
In order that f̃ induces a map of X to P

n, we could require the functions fi to be
invariant under all g ∈G. But then they would be holomorphic functions on X, and
would thus be constant by Theorem 8.2. However, this condition can be weakened,
by requiring only that for every g ∈G there exists a function ϕg on X̃ such that

g∗(fi)= ϕgfi for i = 0, . . . , n. (9.6)

It follows already from this that f̃ ◦ g = f̃ for every g ∈ G, and hence f̃ factors
as f̃ = f ◦ π where π is the projection X̃→ X and f is some holomorphic map
X→ P

n. We will say that f̃ defines the map f : X→ P
n. Because the functions fi

are holomorphic and not simultaneously 0 on X̃, it follows that each function ϕg is
also holomorphic and does not vanish anywhere on X̃.

We determine when such a system of functions defines an isomorphic embedding
f : X→ P

n.

Proposition Let X̃ be a 1-dimensional complex manifold, G a group of automor-
phisms of X̃ acting freely and discretely, and f0, . . . , fn holomorphic functions on
X̃ satisfying (9.6), where the ϕg are holomorphic functions with no zeros on X̃.

Suppose that the following conditions hold:

rank

(
f0(x1) . . . fn(x1)

f0(x2) . . . fn(x2)

)

= 2 (A)

for any pair of points x1, x2 ∈ X̃ such that x1 �= g(x2) for all g ∈G and

rank

(
f0(x) . . . fn(x)

f ′0(x) . . . f ′n(x)

)

= 2 (B)

for all x ∈X. Here f ′(x) denotes the derivative of f as a function of a local param-
eter at x; condition (B) does not depend on the choice of this parameter. Then the
map (9.5) defines an isomorphic embedding of X = X̃/G into P

n.
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Proof The proof boils down to a simple verification. (A) guarantees that all the
functions fi are not simultaneously 0 at any point x ∈ X̃, so that (9.5) really defines
a point of projective space. Equation (9.6) shows that f defines a map

f : X→ P
n

that is holomorphic because of the preceding remark. Then (A) guarantees that f is
one-to-one.

Suppose that for some x0 ∈ X̃ we have f0(x0) �= 0. The image x ∈X has a neigh-
bourhood U in which f is given by the equations

yi = gi(x)= fi(x)/f0(x) for i = 1, . . . , n,

where y1, . . . , yn are coordinates in the affine piece A
n which U maps to. Now (B)

implies that g′i (x0) �= 0 for some i > 0; we assume that i = 1, so that g′1(x0) �= 0.
Because of this, the local parameter z at x0 can be expressed as an analytic function
of y1 = g1(z):

z= h(y1).

We see that f (X) is defined in a neighbourhood of f (x) by the analytic equations

yi − gi
(
h(y1)

)= 0 for i = 2, . . . , n,

where moreover the functions u1 = y1, ui = yi − gi(h(y1)) for i = 2, . . . , n form
a system of local coordinates in a neighbourhood of f (x) in P

n. This proves that
f (X) is a complex submanifold of Pn.

Finally the inverse map of f is given in a neighbourhood of f (x) by the function
z = h(y1) (recall that z can be viewed as a local coordinate on X). Hence f is an
isomorphic embedding. This proves the proposition. �

1.4 Exercises to Section 1

1 Prove that the universal cover of an n-dimensional Abelian variety over C is iso-
morphic to C

n.

2 Prove that two nonsingular projective surfaces that are birational have isomorphic
fundamental groups.

3 Let X be a compact complex manifold. Prove that there exists only a finite number
of nonisomorphic manifolds Y having a finite holomorphic map f : Y → X such
that Y is an unramified cover of X of given finite degree m.

4 Determine the fundamental group and the universal cover X̃ of the manifold X =
P

1(C) \ {0,∞}, and find a representation X = X̃/G where G is a discrete group of
automorphisms of X̃.
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5 The same as Exercise 4 for X =D \ 0, where D = {z||z|< 1}.

6 Prove that the universal cover of X = P
1(C) \ {α,β, γ }, where α, β , γ ∈ P1(C)

are 3 distinct points, is isomorphic to the disc D. [Hint: Use the classification of sim-
ply connected 1-dimensional complex manifolds given at the start of Section 1.2.]

7 Use the result of Exercise 6 to deduce the theorem of Picard that an entire function
f which does not take two values α and β (with α �= β) is constant. [Hint: Interpret
f as a map C

1→ P
1(C) \ {α,β,∞}.]

2 Curves of Parabolic Type

2.1 Theta Functions

It follows from Proposition of Section 1.2, that any compact complex curve of
parabolic type is a 1-dimensional torus, that is, it is of the form C

1/Ω where Ω is a
lattice of rank 2. By Theorem 9.1, two lattices Ω and Ω ′ have isomorphic quotient
spaces C

1/Ω and C
1/Ω ′ if and only if the groups of translation corresponding to

them are conjugate under some automorphism f of the complex manifold C
1. This

is obviously equivalent to Ω ′ = f (Ω). Since f can be written as f (z)= az+ b, it
follows that Ω and Ω ′ are similar lattices.

Our aim now is to show that every 1-dimensional torus X is of the form Yan,
where Y is a projective curve. For this we use the method described in Section 1.3.
First of all, since we can replace the lattice by a similar lattice without changing the
torus C

1/Ω , we will assume that Ω has a basis 1, τ where Im τ > 0. We attempt
to embed the torus C

1/Ω into P
n by means of functions f0, . . . , fn satisfying the

following special form of the relations (9.6):

fi(z+ 1)= fi(z)

fi(z+ τ)= e−2πikzfi(z)

}

for i = 0, . . . , n, (9.9)

where k is a positive integer. Formally speaking, we do not need to justify the choice
we have made, provided that we can prove that for some k we can find linearly inde-
pendent functions satisfying (9.9) and the assumptions of Proposition, Section 1.3.
However, it can be shown that in fact functions defining any embedding of X into
P
n can be reduced to this form. The point is that we do not change the map if we

multiply all the functions fi(z) by eu(z), where u(z) is an entire function. Using
this, it is not hard to show that the relations (9.6) can always be put in the special
form (9.9).

Definition An entire function satisfying the conditions (9.9) is called a theta func-
tion of weight k.
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All theta functions of weight k obviously form a vector space over C, which we
denote by Lk .

Theorem 9.2 dimLk = k.

Proof Let f (z) be any of the functions fi . The first of the conditions (9.9) shows
that f (z) = ϕ(t), where ϕ is a holomorphic function on C

1 \ 0, and t = e2πiz. In-
deed, ϕ(t)= f ((log t)/2πi) is a well-defined analytic function on C

1 \ 0. Suppose
that

ϕ(t)=
∞∑

m=−∞
cmt

m

is the Laurent series expansion of this function. Setting e2πiτ = λ transforms the
second of the conditions (9.9) into

ϕ(λt)=
∑

m∈Z
cmλ

mtm =
∑

m∈Z
cmt

m−k =
∑

m∈Z
cm+ktm,

or

cm+k = cmλ
m for m ∈ Z. (9.10)

We set

m= kr + a with 0≤ a < k. (9.11)

Then (9.10) implies

cm = caλ
ra+k r(r−1)

2 .

Thus the function ϕ is uniquely determined by the numbers c0, . . . , ck−1, and it
follows that dimLk ≤ k.

To complete the proof of the theorem, it is enough to prove that the series cor-
responding to any sequence of numbers satisfying (9.10) converges. We can restrict
ourselves to one arithmetic progression (9.11). We get a series

cat
a
∑

r∈Z
urμ

r(r−1)
2 , where u= tkλa and μ= λk .

Since by assumption Im τ > 0 and k > 0, it follows that |μ|< 1. Thus the series

∑
|u|r |μ| r(r−1)

2

obviously converges. The theorem is proved. �

Remark It follows from the theorem that up to a factor there exists a unique theta
function of weight 1. If we set c0 = 1 in (9.10) then this function is uniquely deter-
mined, and we denote it by θ(z).
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2.2 Projective Embedding

Now we can prove the main result of this section.

Theorem 9.3 For any k ≥ 3, the theta functions of weight k define an isomorphic
embedding of X =C

1/Ω into P
k−1.

Proof We give the proof for k = 3; the general case is entirely similar. We use the
following obvious remark: if f (z) is a theta function of weight k and a1, . . . , am are
complex numbers such that a1 + · · · + am = 0 then the function

g(z)=
m∏

i=1

f (z+ ai)

is a theta function of weight mk. In particular, for any a and b the function

f (z)= θ(z+ a)θ(z+ b)θ(z− a − b)

is a theta function of weight 3; here θ is the function defined at the end of Sec-
tion 2.1.

We have to prove that 3 linearly independent theta functions of weight 3 sat-
isfy the conditions (A) and (B) of Proposition, Section 1.3. If condition (A) is not
satisfied by the 3 basis elements of L3 then there exist two points z′, z′′ such that
z′ − z′′ /∈Ω and numbers α and β , not both 0, such that αf (z′)= βf (z′′) for every
f ∈ L3. In particular

αθ
(
z′ + u

)
θ
(
z′ + a

)
θ
(
z′ − u− a

)= βθ
(
z′′ + u

)
θ
(
z′′ + a

)
θ
(
z′′ − u− a

)

for any a and u. We set z′ + u= z, z′′ − z′ = ζ , viewing z as the variable, and the
other quantities as fixed. We saw that

αθ(z)θ
(
z′ + a

)
θ
(
2z′ − a − z

)= βθ(z+ ζ )θ
(
z′′ + a

)
θ
(
z′ + z′′ − a − z

)
,

that is,

θ(z)

θ(z+ ζ )
= β

α
× θ(z′′ + a)

θ(z′ + a)
× θ(z′ + z′′ − a − z)

θ(2z′ − a − z)
= const.

θ(z′ + z′′ − a − z)

θ(2z′ − a − z)
.

We choose a such that the functions θ(z) and θ(z′ + z′′ − a − z) have no common
zeros. Then the functions θ(z+ζ ) and θ(2z′ −a−z) have the same property. There-
fore θ(z)/θ(z + ζ ) has no zeros or poles, and it follows that θ(z + ζ ) = eg(z)θ(z)

where g is an entire function. From the definition of θ(z) it follows that

g(z+ 1)= g(z)+ 2πik, (9.12)

g(z+ τ)= g(z)− 2πiζ + 2πil, (9.13)
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with k, l ∈ Z. Thus g′(z) is a function with periods 1 and τ . Hence it is bounded
on C

1, and since it is entire, it is constant. We see that g(z)= αz+β , and it follows
from (9.12) that α = 2πik, and from (9.13) that

2πikτ =−2πiζ − 2πil, and ζ = l − kτ ∈Ω.

This contradiction proves condition (A).
Condition (B) is proved in a similar way. Namely, if it does not hold then there

exists z0 ∈ C
1 such that (f ′/f )(z0) = 0 for all f ∈ L3. In particular we can take

f = θ(z+ u)θ(z+ a)θ(z− u− a). We get that

θ ′(z0 + u)

θ(z0 + u)
+ θ ′(z0 + a)

θ(z0 + a)
+ θ ′(z0 − u− a)

θ(z0 − u− a)
= 0. (9.14)

We again think of u as the variable and choose a so that the functions θ(z0+u) and
θ(z0 − u− a) have no common zeros. Then equality (9.14) is only possible if all 3
factors on the left-hand side are entire functions of u. This in turn is only possible if
θ(z) has no zeros, that is θ(z)= eg(z), with g(z) an entire function. This expression
leads at once to a contradiction with the definition of the function θ . Indeed, from
its definition it follows that

g(z+ 1)= g(z)+ 2πim, (9.15)

g(z+ τ)= g(z)− 2πiζ − 2πik + 2πil. (9.16)

From this, as before, we get that g′′(z) is constant. Hence g(z) = αz2 + βz + γ ,
and then we see from (9.15) that α = 0 and from (9.16) that k = 0, contradicting the
assumption k > 0. The theorem is proved. �

Remark The proof that a higher dimensional complex torus is projective if its period
matrix satisfies the Frobenius relations (as mentioned in Remark 8.1) is a similar
argument, but more complicated.

2.3 Elliptic Functions, Elliptic Curves and Elliptic Integrals

Now that we have constructed a map f : X→ P
n, it is interesting to study it in more

detail. We have seen that Y = f (X) is a nonsingular algebraic curve. Adding points
on the torus defines a group structure also on Y . Moreover, the addition map defines
a holomorphic map μ : Y × Y → Y of the corresponding complex manifolds. By
Theorem 8.5 it follows that μ is a morphism. Thus Y is a 1-dimensional Abelian
variety. We saw in Section 6.3, Chapter 3, that in this case the canonical class of
Y is equal to 0, and hence the genus equals 1. Thus we have proved that compact
manifolds of parabolic type are nonsingular projective curves of genus 1, that is,
elliptic curves, and only them.
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Note that the zeros of theta functions on X make sense. Although the value of
θ(z) changes under the substitution z �→ z + a with a ∈ Ω , if θ(z) = 0 then also
θ(z+ a)= 0. The usual definition allows us to talk of the divisor of a theta function
on X.

Theta functions of weight 3 give an isomorphic embedding of X into P
2. In this

case Y = f (X) ⊂ P
2 is a nonsingular plane curve of genus 1. It follows from the

formula for the genus of a plane curve (Section 2.3, Chapter 4) that Y has degree
3. In particular any theta function of weight 3 defines a divisor on X, and the map
f : X→ P

2 associates with it a divisor of Y , the intersection of Y with a line of P2,
which has degree 3. Applying this remark to the function θ3, where θ is the theta
function of weight 1, implies that the divisor of θ on X consists of a single point
with multiplicity 1. If x0 is this point, then θ(z− a+ x0) has divisor a. This remark
throws new light on the role of theta functions: if we allow theta functions (which
are of course not meromorphic functions, nor indeed functions on X), then every
divisor is principal.

The embedding f we have constructed defines an isomorphism of fields
f ∗ : C(Y )→M(X). On the other hand, M can be described as the field of mero-
morphic functions on C

1 having the two periods 1 and τ . Functions of this type are
called elliptic functions. Thus the field C(Y ) is isomorphic to the field of elliptic
functions. In particular if

F(x, y)= 0

is the equation of an affine model of Y then there exists a parametrisation

x = ϕ(z), y =ψ(z)

of it by elliptic functions. A parametrisation of this type is called a uniformisation
of Y . This establishes the relation between elliptic functions and elliptic curves:
elliptic functions uniformise elliptic curves.

Suppose given an elliptic curve Y . How do we find the lattice Ω corresponding
to Y , for which Y =C

1/Ω? Let ω be a regular differential form on Y ; it is uniquely
determined up to a constant factor, since Y has genus 1. If f : C1→ Y is the holo-
morphic map that we are looking for, then f ∗(ω) is a holomorphic differential form
on C

1, which must moreover be invariant under translations by vectors of the lat-
tice Ω . This means that f ∗(ω)= u(z)dz, where u(z) is an entire function, invariant
under translations in Ω . Therefore u(z) is constant, and normalising the arbitrary
choice of ω, we can assume that

f ∗(ω)= dz.

Suppose that z0 ∈Ω , that is, f (z0)= f (0), and let s be a path joining 0 and z0

in C
1. Then

z0 =
∫ z0

0
dz=

∫

s

f ∗(ω)=
∫

f (s)

ω. (9.17)
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The path f (s) is closed in Y(C), that is, it defines an element of H1(Y (C),Z). In
this way we obviously obtain all elements of this group. Equation (9.17) shows that
the lattice Ω consists of all complex numbers

∫

σ

ω with σ ∈H1
(
Y(C),Z

)
.

In particular, it has a basis consisting of the two numbers

∫

σ1

ω,

∫

σ2

ω,

where σ1, σ2 is a basis of H1(Y (C),Z). For example, if Y is the curve given by
v2 = u3+Au+B then we can set ω= du/v, and the basis of Ω consists of the two
numbers

∫

σ1

du√
u3 +Au+B

,

∫

σ2

du√
u3 +Au+B

.

The integrals
∫
ω are called elliptic integrals, and the numbers

∫
σ
ω for σ ∈

H1(Y (C),Z) their periods. Thus the lattice Ω that defines the torus C1/Ω isomor-
phic to an elliptic curve Y consists of the periods of the elliptic integral associated
with this curve.

In conclusion we remark that uniformisation of elliptic curves gives us another
point of view on the fundamental fact that we discussed in Section 7.1, Chapter 3
(see also Exercise 8 of Section 3.6, Chapter 3), that not all curves of genus 1 are
isomorphic to one another. We can even form some impression of the structure of the
set of equivalence classes of elliptic curves up to isomorphism. For this, we represent
every elliptic curve as C1/Ω , and, replacing Ω if necessary by an equivalent lattice,
choose a basis 1, τ with Im τ > 0. It is easy to see that any two such bases 1, τ and
1, τ ′ define similar lattices if and only if

τ ′ = aτ + b

cτ + d
, for some a, b, c, d ∈ Z with ad − bc= 1. (9.18)

The set of all transformations (9.18) form a group G, called the modular group.
Write H for the upper half-plane Im τ > 0. Since elliptic curves are isomor-
phic if and only if the corresponding lattices are similar, the set of isomorphism
classes of elliptic curves is in one-to-one correspondence with points of the quotient
space H/G.

It can be shown that G acts on H discretely, although not freely (that is, it has
fixed points). Nevertheless, the quotient space H/G is a 1-dimensional complex
manifold. Moreover, it is isomorphic to C. The function j : H/G→ C realising
this isomorphism establishes a one-to-one correspondence between the set of iso-
morphism classes of elliptic curves and the complex numbers. An algebraic descrip-
tion of j can be extracted from Exercise 8 of Section 3.6, Chapter 3.
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2.4 Exercises to Section 2

1 Prove that if an elliptic curve X is defined by an equation with real coefficients
then it is isomorphic to C

1/Ω , where the lattice Ω is either rectangular or rhombic
(that is, generated by two vectors of the same length). In the first case X(R) consists
of one oval, and in the second, of two ovals.

2 Prove that if a real elliptic curve X has one oval then this oval is not homologous
to 0 in X(C).

3 Prove that if a real elliptic curve X has two ovals T1 and T2 then for suitable
orientations of T1 and T2 they are homologous in X(C).

4 Prove that for given periods 1 and τ , all the theta functions of weights 0,1, . . .
form a ring, and that this ring is generated by theta functions of weight ≤3.

5 Let f be an elliptic function with period lattice Ω . Prove that the number of zeros
and poles of f not equivalent under Ω are equal.

6 In the notation of Exercise 5, let α1, . . . , αm and β1, . . . , βm be the zeros, respec-
tively the poles, of f not equivalent under Ω . Prove that α1 + · · · + αm − β1 −
· · · − βm ∈ Ω . Prove that any numbers α1, . . . , αm and β1, . . . , βm satisfying this
condition is the set of zeros and poles of some elliptic function.

7 Let X = C
1/Ω and X′ = C

1/Ω ′ be two elliptic curves. Prove that the group
Hom(X,X′) of homomorphisms of algebraic groups X→ X′ is isomorphic to the
group of complex numbers α ∈C such that αΩ ⊂Ω ′.

8 Prove that the regular forms ω on X and ω′ on X′ can be chosen so that the
number α ∈C in Exercise 7 corresponding to a homomorphism f ∈Hom(X,X′) is
determined by f ∗(ω′)= αω.

9 Prove that for an elliptic curve X defined over C, the ring EndX =Hom(X,X) is
isomorphic either to Z or to Z+Zγ , where γ satisfies an equation γ 2+ aγ + b= 0
with a, b ∈ Z having no real roots. In the second case X =C

1/Ω , where the lattice
Ω is similar to an ideal of the ring of numbers Z+Zγ .

3 Curves of Hyperbolic Type

3.1 Poincaré Series

Consider the open unit disc D and a group G of automorphisms of D; we assume
that G acts freely and discretely on D with compact quotient space X =D/G. We
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are going to construct an embedding of X into projective space. As in the previous
section, this embedding is constructed by studying holomorphic functions f on D

that satisfy the condition

g∗(f )= ϕgf for g ∈G, (9.19)

where ϕg are nowhere vanishing holomorphic functions on D. It follows at once
from (9.19) that

ϕg1g2 = g∗2(ϕg1)ϕg2 for g1, g2 ∈G. (9.20)

For an automorphism g, we set

Jg = dg

dz
.

The chain rule for differentiating a function of a function shows that equality (9.20)
hold for ϕg = Jg , and hence also for ϕg = J k

g for any positive integer k.
It can be shown that any solution of (9.20) can be reduced using certain trivial

transformations to the form ϕg = J k
g . In what follows we only consider this case.

Definition A holomorphic function f in D satisfying the relation

g∗(f )= J k
g f for g ∈G,

is an automorphic form of weight k with respect to G.

Our immediate aim is to construct automorphic forms. For this, we take an arbi-
trary holomorphic function h that is bounded on D, and consider the series

∑

g∈G
J k
g g
∗(h), (9.21)

A function of this type is called a Poincaré series. If it defines an analytic function,
then a formal verification shows that this function is an automorphic form. Thus it
remains to prove the following result.

Proposition If k ≥ 2 then a Poincaré series converges absolutely and uniformly on
any compact set K ⊂D.

We use the following simple properties of analytic functions.

Lemma If a function f is analytic in the disc |z| ≤ r then

∣∣f (0)
∣∣2 ≤ 1

πr2

∫

|z|≤r
∣∣f (z)

∣∣2dx ∧ dy,

where z= x + iy.
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Proof For any ρ with 0 < ρ < r we have

f (0)2 = 1

2πi

∫ 2π

0
f

(
ρeiϕ

)2dϕ.

Multiplying this equality by ρdρ and integrating with respect to ρ from 0 to r gives

(
r2

2

)
f (0)2 = 1

2πi

∫ r

0

∫ 2π

0
f

(
ρeiϕ

)2
ρdρ ∧ dϕ = 1

2πi

∫

|z|≤r
f (z)2dx ∧ dy.

Hence

∣∣f (0)
∣∣2 = 1

πr2

∣
∣∣∣

∫

|z|≤r
f (z)2dx ∧ dy

∣
∣∣∣≤

1

πr2

∫

|z|≤r
∣∣f (z)

∣∣2dx ∧ dy.

The lemma is proved. �

Proof of the Proposition Since h is bounded on D, it is enough to prove the conver-
gence of the series

∑
g∈G |Jg|k , or even just of the series

∑

g∈G
|Jg|2. (9.22)

The proof uses the fact that |Jg|2 is the Jacobian determinant of the map g. Write
s(U) for the area of a domain U defined by the Euclidean metric of the plane C

1

containing D. Then

s
(
g(U)

)=
∫

g(U)

dx ∧ dy =
∫

U

|Jg|2dx ∧ dy. (9.23)

The convergence of (9.22) follows at once from this remark. Indeed, let U be a
disc with centre z0, and with small enough radius that g(U) ∩U = ∅ for all g ∈G
with g �= e. According to the Lemma and the remark just made,

∑

g∈G

∣∣Jg(z0)
∣∣2 ≤ 1

πr2

∑

g∈G

∫

U

∣∣Jg(z)
∣∣2dx ∧ dy

= 1

πr2

∑

g∈G
s
(
g(U)

)≤ s(D)

πr2
= 1

r2
, (9.24)

which proves convergence.
To prove uniform convergence, we note that if K1, K2 are any two compact sets

then there are at most a finite number of g ∈G such that g(K1) ∩K2 �= ∅. Indeed,
by the definition of a free and discrete group action in Section 1.2, Chapter 8, any
two points x, y have neighbourhoods U and V such that g(U) ∩ V = ∅ for all but
possibly one g ∈G. We take an arbitrary point x ∈ K1, and for any point y ∈ K2,
choose neighbourhoods Uy � x and Vy � y such that g(Uy) ∩ Vy = ∅ for all but



216 9 Uniformisation

possibly one g ∈G. It follows at once from the compactness of K2 that there exists
a neighbourhood U � x such that g(U) ∩K2 = ∅ for all but finitely many g ∈ G.
The assertion we need now follows at once from the compactness of K1.

Now choose r > 0 sufficiently small so that the disc of radius r with centre in
any point of K is contained in a compact set K ′ ⊂ D. For any ε > 0, let C ⊂ D

be a disc sufficiently close to D such that K ′ ⊂ C and s(D \ C) < ε. Write q for
the number of elements g ∈G such that g(K ′) ∩K ′ �= ∅. For all but finitely many
g ∈G, we have g(K ′)⊂D \ C. Write

∑′ for the sum taken over these g; then, as
in the course of deducing (9.23), we get that

∑′∣∣Jg(z)
∣
∣2 ≤ 1

πr2

∑′
s
(
g(U)

)≤ q

πr2
s(D \C) <

qε

πr2
,

which implies that (9.22) converges uniformly. The proposition is proved. �

Remark Denote by M the multiplicative group of nowhere vanishing holomorphic
functions on D. It is a G-module under the action f �→ g∗(f ). The condition (9.20)
is exactly the definition of a 1-cocycle of G with values in M . In the construction
of an automorphic form by means of a Poincaré series one can recognise the idea of
the proof of the so-called Hilbert Theorem 90 in homological algebra.

3.2 Projective Embedding

We can now proceed to the main result.

Theorem Let G be a group of automorphisms of D acting freely and discretely, and
with compact quotient X =D/G. Then there exists a finite number of automorphic
forms of the same weight k that define an isomorphic embedding of X into P

n.

The point is, of course, to check that there exist automorphic forms that satisfy
conditions (A) and (B) of Proposition, Section 1.3. We first arrange that these are
satisfied locally.

Lemma For any two points z1, z2 ∈D such that z2 �= g(z1) for all g ∈G, there exist
automorphic forms f0 and f1 satisfying (A) of Proposition, Section 1.3 for these
points. For any point z0 ∈D there exist automorphic forms f0 and f1 satisfying (B)
of Proposition, Section 1.3 at z0. In either case we can assume that

f0(z) �= 0 and f1(z) �= 0 for z= z1, z2 or z0.

Proof We look for automorphic forms fi satisfying condition (A) for z1, z2 as
Poincaré series

fi =
∑

g∗(hi)J k
g for i = 0, 1. (9.25)
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Because the Poincaré series converges, it follows that |Jg(z1)|< 1 and |Jg(z2)|< 1
for all but finitely many g ∈ G. Let g0 = e and suppose that g1, . . . , gN are these
exceptional elements. Then as k→∞

∑

g �=g0,...,gN

∣∣Jg(z)
∣∣k→ 0 for z= z1, z2 or z0. (9.26)

Now choose functions h0 and h1 satisfying the following conditions:

hi
(
gm(z1)

)= hi
(
gm(z2)

)= 0 for i = 0,1 and m= 1, . . . ,N;
hi(z1) �= 0, hi(z2) �= 0 for i = 0,1;
h0(z1)h1(z2)− h0(z2)h1(z1) �= 0.

These can be found for example among polynomials.
Then for i = 0, 1, we have

fi(z1)= hi(z1)+
∑

g �=g0,...,gN

hi
(
g(z1)

)
Jg(z1)

k = hi(z1)+ u
(k)
i (z1),

where u
(k)
i (z1)→ 0 as k→∞ by (9.26). The same holds for z2. It follows from

this that if k is sufficiently large, then fi(z1) �= 0, fi(z2) �= 0 for i = 0, 1, and

f0(z1)f1(z2)− f0(z2)f1(z1) �= 0.

Now we construct functions that satisfy condition (B) of Proposition, Section 1.3.
We again look for them in the form (9.25). Let g0 = e and suppose that g1, . . . , gN
are the elements g ∈G such that |Jg(z0)| ≥ 1. Choose h0 and h1 such that

hi
(
gm(z0)

)= h′i
(
gm(z0)

)= 0 for i = 0,1 and m= 1, . . . ,N;
hi(z0) �= 0 for i = 0,1;
h0(z0)h

′
1(z0)− h1(z0)h

′
0(z0) �= 0.

As before, we have

fi(z0)= hi(z0)+ u
(k)
i (z0) and f ′i (z0)= h′i (z0)+ v

(k)
i (z0)

for i = 0, 1, where u
(k)
i (z0), v

(k)
i (z0)→ 0 as k→∞. Hence

f0(z0)f
′
1(z0)− f1(z0)f

′
0(z0) �= 0

for k sufficiently large. This proves the lemma. �

Proof of the Theorem We note first that if functions f0 and f1 satisfy (B) of Propo-
sition, Section 1.3 at a point z0, then they also satisfy (A) for all points z1, z2 with
z1 �= z2 in a sufficiently small neighbourhood of z0. Indeed, the function

F(z1, z2)=
(
f1(z1)f0(z2)− f1(z2)f0(z1)

)
/(z1 − z2)
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= f0(z1)

(
f1(z1)− f1(z2)

z1 − z2

)
− f1(z1)

(
f0(z1)− f0(z2)

z1 − z2

)

is analytic, and

F(z, z)= f0(z)f
′
1(z)− f1(z)f

′
0(z).

Hence F(z0, z0) �= 0, and therefore F(z1, z2) �= 0 for points z1 and z2 sufficiently
close to z0, which gives our assertion.

Obviously, if conditions (A) or (B) of Proposition, Section 1.3 are satisfied for
some functions and points z1, z2 or z0, then they are also satisfied for sufficiently
close points. Using the lemma, we choose a finite cover of the compact manifold
X =D/G by open sets Ui for i = 1, . . . ,N0 such that in each Ui , condition (B) is
satisfied by functions f0i and f1i . By the remark that we made above, there exists a
neighbourhood U of the diagonal in X×X such that at every point of this set some
pair of functions f0i , f1i satisfies (A). Since the set X×X \U is compact, we can
extend the set of functions to a finite set {f0i , f1i} for i = 1, . . . ,N such that some
pair of functions f0i , f1i also satisfies (A) for every point of X×X.

Suppose that f0i and f1i have weight mi , and set M =∏
m1 and li =M/mi .

Consider the system of functions consisting of all the products of the form

f
2li
0i , f

2li
1i , f

li
0if

li
1i and f

li−1
0i f

li+1
1i for i = 1, . . . ,N.

These are obviously all automorphic forms of weight 2M . Let us prove that they
satisfy (A) and (B) of Proposition, Section 1.3. Indeed, if f0i and f1i satisfy (A) at
points z1, z2 then the following minor is nonzero:

(
f
li
0if

li
1i

)
(z1)

(
f
li−1
0i f

li+1
1i

)
(z2)−

(
f
li
0if

li
1i

)
(z2)

(
f
li−1
0i f

li+1
1i

)
(z1)

= f
li−1
0i (z1)f

li−1
0i (z2)f

li
1i (z1)f

li
1i (z2)

(
f0i (z1)f1i (z2)− f0i (z2)f1i (z1)

)
.

The verification of (B) is similar. The theorem is proved. �

Remark The proof of the theorem makes very little use of specific properties of
the open unit disc D. Even the assumption that X is 1-dimensional plays no essen-
tial role. The proof carries over almost without change to the case when D is any
bounded domain in C

n and G is a group of automorphism of D acting freely and
discretely such that the quotient X =D/G is compact. One needs only take Jg to
be the Jacobian of the transformation g ∈G in the definition of automorphic form.

3.3 Algebraic Curves and Automorphic Functions

In Sections 1–2 we proved that algebraic curves of elliptic and parabolic types are
exactly the curves of genus 0 and 1. Therefore curves of parabolic type are the
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curves of genus g ≥ 2. The theorem shows that these curves are the compact man-
ifolds of the form D/G, where D is the open unit ball and G a group of auto-
morphisms of D acting freely and discretely.

We now give the algebraic description of the embedding of the curve X =D/G

into projective space defined by automorphic forms. Let f (z) be an automorphic
form of weight k. The expression η= f (z)(dz)k defines a holomorphic differential
form of weight k on D. The definition of a holomorphic differential form of weight k
is given in Exercise 2 of Section 2.4, Chapter 8, and that of a differential form of
weight k in Exercise 7 of Section 8.1, Chapter 3. It follows from the definition of
automorphic form that η is invariant under automorphisms of G. In fact

g∗(η)= g∗(f )
(
dg(z)

)k = J k
g f J

−k
g (dz)k = η.

Therefore η = π∗(ω), where π is the projection D→D/G and ω a holomorphic
differential form of weight k on D/G. Finally if ϕ : D/G→X is an isomorphism
with an algebraic curve then ω′ = (ϕ−1)∗(ω) is a holomorphic differential form of
weight k on X. It follows from this that ω′ is a rational differential form on X. To
see this, it is enough to take its ratio with any rational differential form of the same
weight k on X; by Theorem 8.4, this ratio will be a rational function on X. Lemma
of Section 3.1, Chapter 8 shows that ω′ is a regular differential form of weight k
on X. It is easy to show that, conversely, every regular differential form of
weight k on X is obtained in this way.

We see that the space of automorphic forms of weight k is isomorphic to the
space of regular differential forms of weight k on the algebraic curve X. Thus the
map to projective space defined by all automorphic forms of weight k ≥ 2 coincides
with the map corresponding to the divisor class kKX . In Section 7.1, Chapter 3, we
deduced from the Riemann–Roch theorem that this map is an embedding for k ≥ 3.
Hence the same is true for the map defined by automorphic forms of weight k.
Furthermore, we obtain an interesting analytic application of the Riemann–Roch
theorem: the space of automorphic forms of weight k is finite dimensional, and by
the Riemann–Roch theorem, its has dimension

l(kKX)= (2k− 1)(gX − 1),

As in Section 2.3, it follows from Theorem 9.2 that the field C(X) is isomorphic
to the field of meromorphic functions on D invariant under G. Such functions are
called automorphic functions. Thus every curve of genus g ≥ 2 is uniformised by
automorphic functions.

Let us compare the picture we have obtained with that in the parabolic case. In
either case, the description of curves reduces to the description of certain discrete
groups. In the parabolic case, the discrete groups are extremely simple: they are
lattices in C. What happens in the hyperbolic case?

Poincaré discovered a general method of constructing groups of automorphisms
of the unit disc that act freely and discretely. His method is based on the fact that
one can define a metric on D such that the orientation-preserving isometries coin-
cide with analytic automorphisms of D; moreover, with this metric, D is isomor-
phic as a metric space to the Lobachevsky plane. In this isomorphism, the lines of
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Fig. 33 A fundamental
polygon (the case g = 2)

Lobachevsky geometry correspond to arcs of circles in D orthogonal to the unit cir-
cle, the boundary of D. We do not require the definition of this metric. Note only
that in it, the magnitude of an angle is equal to the magnitude of the angle between
circles (that is, between the tangent lines at their point of intersection) in the Eu-
clidean metric of the plane C

1 of a complex variable containing D.
Poincaré showed that any group G of automorphisms of D which acts freely

and discretely on D such that the quotient D/G is compact is defined by some
polygon in the geometry just described. This polygon plays the same role in the
hyperbolic case as the fundamental parallelogram of the lattice Ω in the parabolic
case, and is called the fundamental polygon of G. If the algebraic curve X =D/G

has genus g then the fundamental polygon has 4g sides. We choose a direction of
circumnavigation of the polygon (that is, clockwise or anticlockwise), and denote
its sides in the chosen cyclic order by a1, a2, a′1, a′2, a3, a4, a′3, a′4, . . . , a2g−1, a2g ,
a′2g−1, a′2g ; the sides are marked with the direction of circumnavigation. Figure 33
shows the case g = 2.

Then the following relations hold:

(1) the sides ai and a′i are congruent;
(2) the sum of the 4g internal angles of the polygon equals 2π .

The group G is defined by its fundamental polygon in the following way: for i =
1, . . . ,2g, write gi for the motion that takes the side ai into a′i , reversing the direc-
tion of circumnavigation but preserving the orientation. The motions gi generate G.

Conversely, given a polygon Φ satisfying conditions (1) and (2), the group G

generated by the transformations gi acts freely and discretely on D, with funda-
mental polygon Φ . Geometrically, this means that if F is the interior of Φ then
applying the generators gi first to F , then to the domains gj (F ), and so on, we tile
the whole of D with polygonal domains that intersect only along the sides of the
boundary.

It would be natural to try to use this picture to describe the set of isomorphism
classes of curves of genus g ≥ 2, by analogy with the way this was done at the end
of Section 2.3 for g = 1. However, the situation here is much more complicated. The
complex space corresponding to the problem, or even the algebraic variety (for the
definitions, see Ahlfors [3] and Bers [10] the analytic case and Mumford and Foga-
rty [64] in the algebraic case) can be defined precisely. It is called the moduli space
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of curves of genus g. The detailed study of its properties is the subject of much cur-
rent activity, but we do not have space to discuss the results here, and for the most
part they are not definitive. Of the problems that can be easily stated, the following
is one of the most interesting: is the moduli space rational, or at least unirational?
It is only known that the moduli space is rational for g = 2. The question of unira-
tionality seems to be easier: it can be proved easily for small genus (g = 3,4,5). It
is proved that Mg is unirational for g ≤ 13, and is not unirational if g ≥ 23.

3.4 Exercises to Section 3

1 Prove that already the automorphic forms of weight 3 define a projective embed-
ding of a compact hyperbolic curve D/G.

2 Prove that for a fixed group of automorphisms G of the open disc D with com-
pact quotient D/G, the equation

∑
g∈G g∗(h)J k

g = 0 has infinitely many linearly
independent solutions with h a bounded holomorphic function on D.

3 Prove that the genus g of a curve D/G and the area S of the fundamental domain
Φ in the sense of Lobachevsky geometry are related by g − 1= S/4π . [Hint: Use
the theorem of Lobachevsky geometry that the sum of angles of a triangle is 2π
minus its area; and the relation between the Euler characteristic and the genus.]

4 Uniformising Higher Dimensional Varieties

4.1 Complete Intersections are Simply Connected

Almost nothing is known about the universal covers and fundamental groups of
complex manifolds of dimension ≥2. We give a few simple examples and remarks,
with the aim of throwing some light on the nature of the problems that arise.

The main new phenomenon we come up against is the following. Among the
nonsingular complete algebraic curves, only one is simply connected, namely the
projective line; therefore, passing to the universal cover almost always reduces the
study of a curve to that of another manifold, which one hopes is easier to study, and
which turns out to be so. For complex manifolds of dimension ≥2 this is just not the
case: very many of them are simply connected, so that passing to the universal cover
gives nothing new. To be slightly more precise about what “very many” means, we
discuss a very wide class of complex manifolds of dimension ≥2, containing in
particular all the nonsingular projective hypersurfaces, and prove that they are all
simply connected.
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Definition We say that a projective variety X ⊂ P
N of codimension n is a complete

intersection if it the intersection of n hypersurfaces that meet transversally at each
point of intersection.

By definition, complete intersections are nonsingular algebraic varieties. From
now on, we consider them over the complex number field. We will prove that if
dimX ≥ 2 then the topological manifold X(C) is simply connected. This is a con-
sequence of a general result that we will use several times in what follows.

Proposition If V is an n-dimensional projective variety over the complex number
field and W ⊂ V a hyperplane section of V such that V \W is nonsingular then the
embedding W(C) ↪→ V (C) induces isomorphisms of homotopy groups

πr

(
W(C)

)∼= πr

(
V (C)

)
for r < n− 1.

The proposition is a simple application of Morse theory (see for example Milnor
[58]). One uses [58, Theorem 7.4] and the exact homotopy sequence of the pair
(V (C),W(C)).

We prove that complete intersections are simply connected by induction on their
codimension in projective space. At the first step of the induction we must use the
simple connectedness of Pn(C).

Let X ⊂ P
N be an intersection of n transversal hypersurfaces E1, . . . ,En of

degrees m1, . . . ,mn; by reordering, we can assume that m1 ≥ · · · ≥ mn. Since
E1, . . . ,En intersect transversally along X and have no common zeros outside X, it
is an easy exercise in Bertini’s theorem to see that, after replacing the Ei if necessary
by more general forms of the same degree generating the ideal of X, the intersection
E1 ∩ · · · ∩Ei is a nonsingular complete intersection for each i = 1, . . . , n.

In particular, Y =E1 ∩ · · · ∩En−1 is a complete intersection. Then Y(C) is sim-
ply connected by induction on n. Now consider the Veronese embedding

vm : PN ↪→ P
M, where m=mn = degEn and M =

(
N +m

N

)
− 1

(see Example 1.28 of Section 4.4, Chapter 1). Let V = vm(Y ) and W = vm(X).
Obviously W is the hyperplane section of V by the hyperplane corresponding to
En. Since V (C) is homeomorphic to Y(C), it is simply connected. We can apply
the proposition, and deduce that

π1
(
W(C)

)= π1
(
V (C)

)= 0 if dimV > 2,

that is, dimX ≥ 2. Since X(C) is homeomorphic to W(C), it is simply connected.

4.2 Example of Manifold with π1 a Given Finite Group

Despite what was said in Section 4.1, there exist many nonsimply connected alge-
braic varieties of any given dimension. We now illustrate this phenomenon, which
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is in a certain sense the opposite of that discussed in Section 4.1. Namely, we prove
that for any finite group Γ and any integer n ≥ 2 there exists an n-dimensional
complete algebraic variety whose fundamental group is isomorphic to Γ .

We construct the example first in the case that Γ is the symmetric group on
m elements Γ =Sm. For this, consider the product of m copies of s-dimensional
projective spaces, Π = P

s×· · ·×P
s . Points x ∈Π are denoted by x = (x1, . . . , xm)

with xi ∈ Ps . The group Sm acts on Π by permuting the m points:

g(x1, . . . , xm)= (xi1, . . . , xim), where g =
(

1 . . . m

i1 . . . im

)
∈Sm.

The basic step in the construction of the example is the construction of the quotient
space Π ′ = Π/Sm. By definition, Π ′ is a normal variety with a finite morphism
ϕ : Π→Π ′ such that ϕ(x)= ϕ(x′) if and only if x′ = g(x) for some g ∈Sm.

Write xj = (x0j , . . . , xsj ) to denote the homogeneous coordinates in the j th copy
of Ps . We introduce s + 1 auxiliary variables t0, . . . , ts and consider the form

F(x, t)=
m∏

j=1

Lj (xj , t), where Lj =
s∑

i=0

xij ti . (9.27)

Write T 1, . . . , T N for all the monomials of degree m in t0, . . . , ts . Then

F(x, t)=
N∑

α=1

Fα(x)T
α,

where the Fα(x) are forms in the variables xij that are linear in each of the m sets
of variables x0j , . . . , xsj . Consider the rational map

ϕ(x)= (
F1(x) : · · · : FN(x)

)

defined by these forms. This map is regular: if all F1(x)= · · · = FN(x)= 0 for some
x ∈Π then F(x, t)≡ 0 as a polynomial in t , and this means that Lj(xj , t)≡ 0 for
some j , that is, all the coordinates of the j th point xj are zero.

There is a simple relation between the map ϕ and the embedding of Π as a
closed subvariety Π of some projective space constructed in Section 5.1, Chapter 1.
Namely, it is easy to check that ϕ is a projection of Π , and moreover, the assump-
tions of Theorem 1.16 of Section 5.3, Chapter 1, hold for this projection, so that
ϕ : Π→Π ′ ⊂ P

N is finite onto its image Π ′ = ϕ(Π).
The action of g ∈Sm on Π interchanges the factors in (9.27), from which it fol-

lows that ϕ◦g = ϕ; that is, if x = g(y) then ϕ(x)= ϕ(y). Conversely if ϕ(x)= ϕ(y)

then x = g(y) for some g ∈ Sm. Indeed, if ϕ(x) = ϕ(y) then F(x, t) = cF (y, t)

with c �= 0, and by unique factorisation of polynomials, it follows that the points
y1, . . . , ym are obtained by permuting the points x1, . . . , xm. Therefore

ϕ−1(x′
)= {

g(x) | g ∈Sm

}
for x′ ∈Π ′. (9.28)
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We now prove that Π ′ is normal. For this note that the polynomials Fα(x1, . . . ,

xm) do not change on interchanging the points x1, . . . , xm. The converse is also
true: any polynomial in the homogeneous coordinates of the m points x1, . . . , xm
that is homogeneous in each of the m groups of variables and invariant under any
permutation of the points is a form in the polynomials Fα . This is an analogue of the
main theorem on symmetric functions, and is also proved in a completely analogous
way. The proof can be found in old algebra textbooks, for example Bôcher [12,
Theorem 1 of Section 89, Chapter XIX].

Let H be a form in the homogeneous coordinates of a point of Π ′, Y ⊂ Π ′
the affine open set defined by H �= 0, and X = ϕ−1(Y ). Then X is also affine and
defined by the condition ϕ∗(H) �= 0. We check that the ring ϕ∗(k[Y ]) is precisely
the ring of elements of k[X] invariant under Sm, that is

ϕ∗
(
k[Y ])= k[X]Sm. (9.29)

Indeed, the function f ∈ k[X] is of the form

f = H1

(ϕ∗(H))k
,

where H1 is a form of degree equal to that of (ϕ∗(H))k . If f is invariant under Sm

then the same holds for H1 (the form ϕ∗(H) is obviously invariant). Hence from the
generalised version just given of the theorem on symmetric functions it follows that
H1 is a form in the polynomials Fα , and this means that f ∈ ϕ∗(k[Y ]).

Thus the affine variety Y is the quotient of X under G, that is, Y =X/G. From
Example of Section 5.1, Chapter 2, it follows that Y is normal. Since the open sets
Y corresponding to different forms H cover Π ′, it follows that Π ′ is normal.

From (9.29), the analogous equality ϕ∗(k(Π ′))= k(Π)Sm for the field of frac-
tions follows easily. From the elementary set-up of Galois theory it now follows that
k(Π ′)⊂ k(Π) is a Galois extension with Galois group Sm. In particular

degϕ =m!. (9.30)

We write Δ⊂Π for the closed set consisting of all points (x1, . . . , xm) such that
xi = xj for some i �= j , and set Δ′ = ϕ(Δ)⊂Π ′ and W =Π \Δ, W ′ =Π ′ \Δ′. If
x′ ∈W ′ then by (9.28), ϕ−1(x′) consists of m! distinct points. Comparing this with
(9.30) we see that ϕ : W →W ′ is an unramified cover. It follows from Example of
Section 2.1, Chapter 2, that W ′ is nonsingular.

We have constructed two nonsingular varieties W and W ′ and an unramified
cover ϕ : W → W ′ with automorphism group Sm. However, this is not what we
need, since both of our varieties are incomplete. To overcome this defect, we inter-
sect Π ′ with a projective linear subspace L⊂ P

N such that L is disjoint from Δ, and
the variety Y = L ∩Π ′ is nonsingular. Such a subspace exists, and can be defined
by d linearly independent linear equations, provided that

d > dimΔ′. (9.31)
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The set of points (x1, . . . , xm)⊂Π for which xp = xq has codimension s in Π ,
and hence

codim(Δ⊂Π)= codim
(
Δ′ ⊂Π ′

)= s,

so that (9.31) takes the form d > (m− 1)s. We can choose the linear subspace such
that the dimension of Y is given by the theorem on dimensions of intersection

dimY = dimΠ ′ − d =ms − d.

It is obvious that taking s sufficiently large we can arrange that

dimY =ms − d = n with d > s.

For this it is enough that s > n.
Since Y ∩Δ′ = ∅, that is, Y ⊂W ′, it follows that X = ϕ−1(Y ) is an unramified

cover of Y with automorphism group Sm.
The preceding arguments were all purely algebraic. Suppose now that all the va-

rieties are defined over the field of complex numbers. As we saw in Section 6.3,
Chapter 2, the map ϕ : X(C)→ Y(C) is an unramified cover. Applying Proposition
of Section 4.1, with r = 0 shows that X(C) is connected. Indeed, X is obtained from
Π by intersecting with hypersurfaces, that we can view as intersecting with hyper-
planes under the Veronese embedding of Π to projective space. The same proposi-
tion can be applied when r = 1. Since Π(C) is simply connected, the proposition
implies also that X(C) is simply connected.

We see that X(C) is the universal cover of Y(C), and π1(Y (C))=Sm. Note that
Y(C) is projective by construction.

Starting from an unramified cover ϕ : X→ Y with group Sm, we can easily get a
cover with an arbitrary finite group Γ . For this, suppose that Γ ⊂Sm. We have seen
that the field extension C(Y )⊂C(X) is Galois with group Sm; by Galois theory, the
subgroup Γ corresponds to an intermediate subfield K such that C(Y )⊂K ⊂C(X)

and K ⊂ C(X) is Galois with group Γ . Let Y be the normalisation of Y in K . By
general properties of normalisation, we have morphisms

X
ϕ−→ Y

ψ−→ Y, with ψ ◦ ϕ = ϕ.

It follows from general properties of finite morphisms that ϕ and ψ are finite.
We now prove that Y is nonsingular, and ϕ is unramified. Indeed, since degϕ =
degϕ degψ , and the number of inverse images ϕ−1(y) of a closed point y ∈ Y is
equal to degϕ, it follows that for every y ∈ Y and y ∈ Y , the number of inverse
images ψ−1(y) and ϕ −1(y) equals degψ and degϕ respectively. Thus ϕ and ψ are
unramified, and since Y is nonsingular, Theorem 2.30 of Section 6.3, Chapter 2,
implies that Y is nonsingular. We see that X(C) is the universal cover of Y(C), and
π1(Y (C))= Γ . This completes the construction of the example. Note that from the
theorem that the normalisation of a projective variety is projective (which we have
not proved) it follows that the example Y just constructed is projective.
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4.3 Remarks

Concerning the examples constructed in Section 2, we should add that one can con-
struct many examples of projective varieties with infinite fundamental groups. Thus,
for an n-dimensional Abelian variety X, the complex manifold X(C) is homeomor-
phic to the 2n-dimensional torus by the results of Section 1.3, Chapter 8, so that
π1(X(C)) = Z

2n. If n ≥ 3 then by Proposition of Section 4.1, a nonsingular hy-
perplane section Y of X has the same fundamental group; its universal cover is a
subvariety of Cn about which nothing seems to be known.

In these examples we meet two types of construction of fundamental groups and
universal covers of algebraic varieties. Type I is when the fundamental group π1(X)

is finite. In this case one can show that the universal cover X̃ is a complete algebraic
variety, and if X is projective then so is X̃. The only 1-dimensional variety that can
be represented in this form is P1, the unique complex curve of elliptic type.

Type II is hard to define precisely at present, beyond the fact that the funda-
mental group is infinite. In this case, the universal cover is a “very big” complex
manifold, very far from being a projective or complete algebraic variety. In case of
dimension 1, this is the class of curves of parabolic or hyperbolic type. In case of di-
mension ≥2, it includes Abelian varieties, and (by the remark at the end of Sec-
tion 3.2) manifolds of the form D/G, where D is a bounded domain in C

n and G

a group of automorphisms of D acting freely and discretely and such that D/G is
compact. It also includes hyperplane sections of these manifolds.

To attempt to characterise the second type of manifold more precisely, we give
the definition of two types of complex space that play a basic role in the general
theory of complex spaces and manifolds.

We say that a complex space X is holomorphically convex if for any sequence
of points xn ∈X not having an accumulation point in X, there exists a holomorphic
function f on X such that |f (xn)| →∞ as n→∞. Every compact space is holo-
morphically convex, trivially. Another example is given by the spaces Xan, where X

is an affine algebraic variety: if X ⊂A
n then the required function f can already be

found among the coordinate functions on X.
A holomorphically convex complex space X is said to be holomorphically com-

plete or a Stein space if the holomorphic functions on X separate points, that is,
for any two distinct points x′, x′′ ∈ X, there exists a function f , holomorphic on
the whole of X, such that f (x′) �= f (x′′). It follows from Theorem of Section 2.2,
Chapter 8, that a compact complex variety is holomorphically complete only if it
consists of a single point. This also holds for compact complex spaces. Complex
spaces of the form Xan with X an affine algebraic variety are obviously holomor-
phically convex. Generally speaking holomorphically complete spaces play a role
in the theory of complex spaces analogous to that of affine varieties in algebraic ge-
ometry. For example, they are the “opposites” of compact spaces, in the same way
that affine varieties are the opposites of projective or complete varieties.

Now we can give a more precise description of the two types of examples of
universal covers of algebraic manifolds: in Type I the universal cover is compact,
and in Type II holomorphically complete. It is natural to hope that the general case is
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in some sense a “mixture” of these two extreme types. There is a fundamental result
in the theory of complex spaces that can be viewed as making the term “mixture”
more precise. This is the so-called Remmert reduction theorem, which asserts that
any holomorphically convex normal complex space X has a proper map f : X→ Y

to a holomorphically complete space Y (a map f is proper if the inverse image of
any compact set is compact; in particular, its fibres are compact).

In the light of this result it is an interesting question to know whether the universal
cover of a complete algebraic variety is holomorphically convex. (We could be more
cautious and restrict ourselves to projective varieties.)

All compact complex manifolds are obviously holomorphically convex. A typical
example of a manifold that is not holomorphically convex is C2 \ 0. Indeed, one can
see that a function holomorphic on C

2 \ 0 is also holomorphic at 0; (in the same
way that a rational function on a nonsingular algebraic variety fails to be regular at
points of a whole divisor.) Hence if xn→ 0 then any function f that is holomorphic
on C

2 \ 0 satisfies f (xn)→ f (0). The manifold C
2 \ 0 is indeed the universal cover

of a nonalgebraic complex manifold, for example the Hopf surface (Example 8.2).
Kodaira proved that a compact complex manifold with universal cover C2 \ 0 is not
algebraic.

In Section 3.2 we observed that if a bounded domain D ⊂ C
n is the universal

cover of a compact manifold then this manifold is algebraic. On the other hand, it
can be proved that any such domain D is holomorphically convex. These examples
speak in favour of our conjecture.4

4.4 Exercises to Section 4

1 Let C ⊂ P
2 be a nonsingular projective plane curve given by an equation

F(x0, x1, x2) = 0 of degree n and V ⊂ P
3 the surface given by F(x0, x1, x2) =

xn3 ; let f : V → P
2 be the projection from the point (0 : 0 : 0 : 1). Prove that

f : V \ f−1C→ P
2 \C is an unramified cover, and that V \ f−1C is the universal

cover of P2 \C. Deduce that π1(P
2 \C)∼= Z/n.

2 Prove that (P1)m/Sm = P
m.

3 Let X be a nonsingular projective curve, and G = {1, g} the group of order 2
where g : X×X→X×X is given by g(x, x′)= (x′, x). Prove that the ringed space
Y = (X×X)/G is a complex space and even a complex manifold (notwithstanding
the fixed points of g). Prove that π1(Y )∼=H1(X).

4J. Kollár [50, 51] has recently introduced a number of formal algebraic analogues of this con-
jecture, and has proved them in some cases, and discovered many applications of these ideas to
complex varieties.



228 9 Uniformisation

4 Find the mistake in the following “proof” of the Jacobian conjecture with k = C

(compare Section 2.3, Chapter 1). Let ϕ : A2→A
2 be a regular map with constant

nonzero Jacobian. Then U =A
2(C)\ϕ(A2(C)) is a finite set of points: for if a curve

f = 0 intersected ϕ(A2(C)) in a finite number of points, the polynomial ϕ∗(f )
would only have a finite number of zeros on A

2. Then from “general position”
arguments it follows easily that U is simply connected. However, ϕ : A2(C)→U is
an unramified cover, and since A

2(C) is connected, it must be an isomorphism. It is
easy to prove that A2 \ {x1, . . . , xr} is not an affine variety. Therefore ϕ(A2)= A

2,
and ϕ is an automorphism.



Historical Sketch

This sketch makes no pretence at a systematic treatment of the history of algebraic
geometry. It aims only to describe in very broad terms how the ideas and notions
discussed in the book came to be created. Because of this, when discussing the
research of this or that mathematician we often omit to mention important works,
sometimes even his or her most important works, if they do not bear on the contents
of our book.

We try to state results in language as close as possible to that of their authors,
only occasionally using modern notation and terminology. In cases when the inter-
pretation is not obvious, we give a discussion from the point of view of notions and
results of our book; parenthetical sections of this nature are printed in italics.

1 Elliptic Integrals

Naturally enough, algebraic geometry arose first as the theory of algebraic curves.
Properties of algebraic curves that are specific to algebraic geometry only arise
when we go beyond the context of rational curves. We thus leave to one side the the-
ory of curves of degree 2, which are all rational. The next case in order of difficulty,
and therefore the first nontrivial examples, are curves of genus 1, that is, elliptic
curves, and in particular nonsingular cubics. And, historically, the first stage in the
development of the theory of algebraic curves consisted of working out its basic
notions and ideas in the example of elliptic curves.

Thus it might seem that these ideas developed in the same sequence in which they
are now treated (as for example in Section 1, Chapter 1). However, in one respect
this is not at all the case. For the web of ideas and results that we now call the theory
of elliptic curves arose as a branch of analysis, and not of geometry: as the theory of
integrals of rational functions on an elliptic curve. It was these integrals that were
first given the name elliptic (because they turned up in connection with calculating
the arc length of an ellipse), which spread subsequently to functions and to curves.

I.R. Shafarevich, Basic Algebraic Geometry 2, DOI 10.1007/978-3-642-38010-5,
© Springer-Verlag Berlin Heidelberg 2013

229

http://dx.doi.org/10.1007/978-3-642-38010-5


230 Historical Sketch

Elliptic integrals arose as objects of study already in the 17th century, as exam-
ples of integrals that cannot be expressed in terms of elementary functions, thus
leading to new transcendental functions.

At the very end of the 17th century, first Jakob and then Johann Bernoulli came
across a new interesting property of these integrals (see Bernoulli [103, Vol. I,
p. 252]). In their study they considered the integrals that express the arc length of
certain curves. They discovered certain transformations of one curve into another
that preserve the arc length of the curves, although the arcs themselves are not con-
gruent. Clearly from the point of view of analysis this leads to a transformation of
one integral into another. In some cases transformations from an integral into itself
occur. In the first half of the 18th century many examples of such transformations
we discovered by Fagnano.

In its general form the problem was stated and solved by Euler. The first results in
this direction were communicated in a letter to Goldbach in 1752. His investigations
of elliptic integrals were published from 1756 to 1781 (see Euler [116, Section II,
Chapter VI], [117]).

Euler considers an arbitrary polynomial f (x) of degree 4 and poses the problem
of the possible relations between x and y under which

dx√
f (x)

= dy√
f (y)

. (A.1)

He treats this equality as a differential equation relating x and y. The required rela-
tion is the general integral of this differential equation. He finds this relation, which
turns out to be algebraic of degree 2 in both x and y. Its coefficients depend on the
coefficients of the polynomial f (x) and on an independent parameter c.

Euler also states this result in another way, as saying that the sum of two definite
integrals is equal to a third:

∫ α

0

dx√
f (x)

+
∫ β

0

dx√
f (x)

=
∫ γ

0

dx√
f (x)

, (A.2)

where γ can be expressed as a rational function of α and β . Moreover, Euler gives
an argument why such a relation cannot hold if f (x) is a polynomial of degree >4.

For arbitrary elliptic integrals of the form
∫
r(x)dx/

√
f (x), Euler proves a rela-

tion generalising (A.2):

∫ α

0

r(x)dx√
f (x)

+
∫ β

0

r(x)dx√
f (x)

−
∫ γ

0

r(x)dx√
f (x)

=
∫ δ

0
V (y)dy, (A.3)

where γ is the same rational function as in (A.2), and δ and V are also rational
functions.

The reason for the existence of the integral of (A.1), and for all the particular
cases discovered by Bernoulli and Fagnano is the group law on the elliptic curve
with equation s2 = f (t), and the fact that the everywhere regular differential form
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dt/s is invariant under translations by elements of this group. The relations holding
between x and y in (A.1) discovered by Euler can be written in the form

(x,
√
f (x))⊕ (c,

√
f (c))= (y,

√
f (y)),

where ⊕ denotes the addition of points on the elliptic curve s2 = f (t). Thus these
results contain at once the group law on an elliptic curve and the existence of an
invariant differential form on it.

The relation (A.2) is also an immediate consequence of the invariance of the
form ϕ = dx/

√
f (x). In it

(γ,
√
f (γ ))= (α,

√
f (α))⊕ (β,

√
f (β)),

and
∫ α

0
ϕ +

∫ β

0
ϕ =

∫ α

0
ϕ +

∫ γ

α

t∗gϕ =
∫ α

0
ϕ +

∫ γ

α

ϕ =
∫ γ

0
ϕ,

where tg is the translation by the point g = (α,
√
f (α)). Notice that here we write

equalities between integrals in a formal way, without indicating the path of inte-
gration. In essence this is an equality “up to a constant of integrations”, that is,
an equality between the corresponding differential forms. This is also how Euler
understood them.

Finally, the significance of the relation (A.3) will become clear later, in connec-
tion with Abel’s theorem (see Section 3 below).

2 Elliptic Functions

Following Euler, the theory of elliptic integrals was developed mainly by Legendre.
His researches, starting in 1786 are collected in his three-tome work Traité des fonc-
tions elliptiques et des intégrales Eulériennes [134]. Legendre used elliptic function
to mean what we now call elliptic integral. The modern terminology became firmly
rooted after Jacobi. In the first paragraph of the premier supplement, published in
1828, Legendre writes as follows (Tome III, p. 1):

Après m’être occupé pendant un grand nombre d’années de la théorie des
fonctions elliptiques, dont l’immortel Euler avait posé les fondemens, j’ai cru
devoir rassembler les résultats de ce long travail dans un Traité qui a été rendu
public au mois de janvier 1827. Jusque là les géomètres n’avaient pris presque
aucune part à ce genre de recherches; mais à peine mon traité avait-il vu le
jour, à peine son titre pouvait-il être connu des savans étrangers, que j’appris
avec autant d’étonnement que de satisfaction, que deux jeunes géomètres,
MM. Jacobi (C.-G.-J.) de Koenigsberg et Abel de Christiania, avaient reussi,
par leurs travauxs particuliers, à perfectionner considérablement la théorie des
fonctions elliptiques dans ses points les plus élevés.
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Abel’s work on elliptic functions appeared in 1827–1829. His starting point is
the elliptic integral (see Abel [101, Vol. I, Nos. XVI and XXIV])

θ =
∫ λ

0

dx
√
(1− c2x2)(1− e2x2)

, with c, e ∈C,

which he views as a function θ(λ) of the upper limit; he introduces the inverse
function λ(θ) and the function Δ(θ) = √

(1− c2λ2)(1− e2λ2). From the proper-
ties of elliptic integrals known at the time (in essence, from Euler’s relations 1,
(A.2)) he deduces that the functions λ(θ ± θ ′) and Δ(θ ± θ ′) can be simply ex-
pressed as rational functions of λ(θ), λ(θ ′), Δ(θ), Δ(θ ′). Abel proves that both
of these functions are periodic in the complex domain, with two periods 2ω and
2ω̃:

ω= 1

2

∫ 1/c

0

dx
√
(1− c2x2)(1− e2x2)

,

ω̃= 1

2

∫ 1/e

0

dx
√
(1− c2x2)(1− e2x2)

.

He finds an infinite product expansion for the functions λ(θ) and Δ(θ) as a product
taken over all their zeros.

As a direct generalisation of a problem which Euler had worked on, Abel poses
the following question (see Abel [101, Vol. I, No. XIX]): catalogue all cases in
which the differential equation

dy
√
(1− c2

1y
2)(1− e2

1y
2)

=±a dx
√
(1− c2x2)(1− e2x2)

. (A.4)

can be satisfied by taking y to be an algebraic function of x, either rational or irra-
tional.

This question became know as the transformation problem for elliptic functions.
Abel proved that if (A.1) can be satisfied with y an algebraic function, then it can
also be done with a rational function. He proved that if c1 = c and e1 = e then a

must be a rational number, or a number of the form μ′ + √−μ where μ, μ′ are
rational and μ > 0. In the general case, he proved that the periods ω1, ω′1 of the
integral on the left-hand side of (A.1), after multiplying by a common factor, can be
expressed as an integral linear combination of the periods ω, ω′ of the integral on
the right-hand side.

A little after Abel, but independently of him, Jacobi [125, Vol. I, Nos. 3, 4] also
considered the inverse function to an elliptic integral, proved that it has two in-
dependent periods, and obtained a series of results in the transformation problem.
Reworking as series the infinite product expansions of elliptic functions found by
Abel, Jacobi arrived at the notion of theta functions (these appeared earlier in 1822
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in Fourier’s book on the heat equation5), and found a multitude of applications of
them, not only in the theory of elliptic functions, but in number theory and mechan-
ics.

Finally, after the publication of Gauss’ posthumous papers, and especially his
diaries, it became clear that he had already to a greater or lesser extent mastered
some of these ideas long before the work of Abel and Jacobi.

The first part of Abel’s result requires practically no comment. The map x = λ(θ),
y =Δ(θ) defines a uniformisation of the elliptic curve y2 = (1− c2x2)(1− e2x2)

by elliptic functions. Under this map f : C1→X the regular differential form ϕ =
dx/y pulls back to a regular differential form on C

1 invariant under translations by
vectors of the lattice 2ωZ+ 2ω̃Z; such a form is a constant factor times dθ , and we
can assume that dθ = f ∗(dx/y), that is, θ = ∫

dx/y.
Integrating the differential equation (A.4) has the following geometric meaning.

Let X and X1 be the elliptic curves given by

u2 = (
1− c2x2)(1− e2x2) and v2 = (

1− c2
1y

2)(1− e2
1y

2).

The question concerns the study of curves C ⊂X×X1, (which correspond to alge-
braic relations between x and y). Since an elliptic curve is its own Picard variety
(see Section 4.4, Chapter 3), C defines a morphism f : X→X1. This explains why
the problem reduces to the case y a rational function of x. By Theorem 3.13 of Sec-
tion 3.3, Chapter 3, we can assume that f : X→ X1 is a homomorphism of alge-
braic groups. Thus Abel studied the group Hom(X,X1), and when X =X1, the ring
EndX. The homomorphism f ∈Hom(X,X1) defines a linear map of 1-dimensional
vector spaces f ∗ : Ω1[X1] →Ω1[X], which is determined by one number: this is
the factor ±a in (A.1). See also Exercises 7–9 of Section 2.4, Chapter 9.

3 Abelian Integrals

The step from elliptic curves to the study of arbitrary algebraic curves took place
still within the context of analysis. Abel showed that the basic properties of ellip-
tic integrals can be generalised to integrals of arbitrary algebraic functions. These
integrals subsequently became known as Abelian integrals.

In 1826 Abel wrote a paper (see [101, Vol. I, No. XII]) which marks the birth of
the general theory of algebraic curves. In it, he considers the algebraic function y

defined by

χ(x, y)= 0. (A.5)

5The reference, given by Krazer [150, p. 5], is probably to Fourier [118, Chapter IV, §§ 238–246].
The chapter, part of Fourier’s 1807 prize essay, treats the heat flow on the circle; compare Grattan-
Guiness [149, p. 254]. Theta functions are certainly among the general trigonometric series treated
in the chapter, but I doubt whether they occur specifically in Fourier. In any case, Grattan-Guiness
seems to suggest that Euler and Daniel Bernoulli considered related series more than a hundred
years earlier in connection with the equation of the plucked string.



234 Historical Sketch

He considers a second equation

θ(x, y)= 0, (A.6)

where θ(x, y) is a polynomial depending on x and y, and additionally depending
linearly on a number α of extra parameters a, a′, . . . . As these parameters vary,
there may be some common solutions of (A.5) and (A.6) that do not change. Let
(x1, y1), . . . , (xμ, yμ) be the variable solutions, and f (x, y) an arbitrary rational
function. Abel proves that

∫ x1

0
f (x, y)dx + · · · +

∫ xμ

0
f (x, y)dx =

∫
V (g)dg, (A.7)

where V (t) and g(x, y) are rational functions that also depend on the parameters
a, a′, . . . . Abel interpreted this result as saying that the left-hand side of (A.7) is an
elementary function.

Using the arbitrary choice of the parameters a, a′, . . . , Abel shows that the sum of
any number of integrals

∫ xi
0 f (x, y)dx can be expressed in terms of μ− α of them,

and a summand of the same type as the right-hand side of (A.7). He establishes that
the number μ− α depends only on (A.5). For example, for the equation y2 + p(x)

where p is a polynomial of degree 2m, we have μ− α =m− 1.
Next, Abel studies the functions f for which the right-hand side of (A.7) does

not depend on the parameters a, a′, . . . . Writing f in the form

f1(x, y)

f2(x, y)χ ′y
, where χ ′y =

∂χ

∂y
,

he proves that f2 = 1, and that f1 satisfies a series of restrictions which imply that
there are at most a finite number γ of linearly independent functions f satisfying
the current assumption. Abel proved that γ ≥ μ − α, and that γ = μ − α if, for
example, the curve χ(x, y) has no singular points (in subsequent terminology).

Considering the solutions (x1, y1), . . . , (xμ, yμ) of the system of (A.5) and (A.6)
brings us at once to the modern notion of linear equivalence of divisors. Namely,
let X be the curve with (A.5) and Dλ the divisor cut out on X by the form θλ (in
homogeneous coordinates), where λ = (a, a′, . . . ) is the system of parameters. By
assumption Dλ =Dλ +D0 where D0 does not depend on λ. Hence all the divisors
Dλ = (x1, y1)+· · ·+(xμ, yμ) are linearly equivalent. The problem Abel considered

reduces to the study of sums
∫ β1
α1

ϕ + · · · + ∫ βμ
αμ

ϕ, where ϕ is a differential form on
X, and αi and βi are points of X such that α1 + · · · + αμ ∼ β1 + · · · + βμ. We give
a sketch proof of Abel’s theorem, which is close in spirit to the original proof. We
can assume that α1 + · · · + αμ − β1 − · · · − βμ = divg, that is g ∈C(X), with

α1 + · · · + αμ = (divg)0 and β1 + · · · + βμ = (divg)∞.

Consider the morphism g : X→ P
1 and the corresponding field extension C(g)⊂

C(X). We assume for simplicity that this extension is Galois (the general case re-
duces easily to this), with group G. The automorphisms σ ∈ G act on C(X) and
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on X, and take the points α1, . . . , αμ to one another, since {α1, . . . , αμ} = g−1(0).
Hence {α1, . . . , αμ} = {σ(α) | σ ∈ G}, where α is one of the points αi . Similarly,
{β1, . . . , βμ} = {σ(β) | σ ∈G}. Writing ϕ as udg we see that

μ∑

i=1

∫ βi

αi

ϕ =
∑

σ∈G

∫ σ(β)

σ (α)

udg =
∫ β

α

(∑

σ∈G
σ(u)dg

)
. (A.8)

The function v =∑
σ∈G σ(u) is contained in C(g), and Abel’s theorem follows from

this.
We conclude that any sum of integrals

∑
i

∫ xi
0 f (x, y)dx can be expressed as

∑k
j=1

∫ x′j
0 f (x, y)dx+ ∫

V (g)dg, in terms of a sum of k integrals, provided that we
have a linear equivalence of the type:

∑

i

(αi −O)∼
k∑

j=1

(
α′j −O

)
, (A.9)

where αi = (xi, yi), α′j = (x′j , y′j ), and O ∈ X is a point with x = 0. From the
Riemann–Roch theorem, it follows at once that if k = g then a linear equivalence
(A.9) always holds (for any points αi , and certain corresponding α′j ) (see Exer-
cise 14 of Section 8.1, Chapter 3). Thus the constant μ− α introduced by Abel is
the genus of the curve X.

If the form ϕ ∈Ω1[X] then also vdg ∈Ω1[P1], where v =∑
σ∈G σ(u) in (A.8).

Since Ω1[P1] = 0, the term on the right-hand side of (A.7) vanishes in this case. It
follows that γ ≥ g. In natural cases the two numbers are equal.

We see that this work of Abel contains the notions of genus of an algebraic curve
and linear equivalence of divisors, and gives a criterion for linear equivalence in
terms of integrals. In this final respect it leads to the theory of the Jacobian variety
of an algebraic curve (see Section 5 below).

4 Riemann Surfaces

In his 1851 dissertation [142, No. I], Riemann applied an entirely new principle of
studying functions of a complex variable. He proposed that such a function is de-
fined not on the plane of a complex variable, but on a certain surface that covers
this plane in a many sheeted way. The real and imaginary parts of such a func-
tion satisfy the Laplace equation. A function is uniquely determined by this prop-
erty if we know the points at which it is infinite, together with the nature of its
singularities at these points, and the curve one needs to cut along to make it sin-
gle valued, together with the nature of its many valuedness on crossing over these
curves. Riemann also develops a method of constructing a function from data of
this kind, based on a variational principle which he called the “Dirichlet princi-
ple”.
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In the first part of his paper on the theory of Abelian functions which appeared in
1857 [142, No. VI], he applied these ideas to the theory of algebraic functions and
their integrals. The paper starts with a study of the properties of the corresponding
surfaces, which relate, in Riemann’s words, to analysis situs (that is, in modern ter-
minology, topology). After making an even number 2p of cuts, the surface becomes
a simply connected domain. By means of ideas taken from analysis situs he proves
that p = 1−n+w/2, where n is the number of sheets, and w the number of ramifi-
cation points (counted with appropriate multiplicities) of the surface as a cover over
the plane of one complex variable.

One considers functions, in general many valued on the surface, but that become
single valued in the domain obtained after the making the cuts, and on crossing over
the cuts their values change by constants called moduli of periodicity. The Dirichlet
principle provides a method of constructing functions of this kind. In particular,
there exist p linearly independent functions that are everywhere finite, the “integrals
of the first kind”. In a similar way one constructs functions that are infinite at given
points. To pick out those that are single valued on the surface, one has to set to zero
their moduli of periodicity. It follows from this that there are at least m − p + 1
linearly independent single valued functions that are infinite only at m given points.

Riemann proves that all the functions that are single valued on a given surface
are rational functions of two of them, s and z, which are connected by a relation
F(s, z)= 0. He says that two such relations belong to one “class” if they can be ra-
tionally transformed into one another. In this case the corresponding surfaces have
the same value of the number p. But the converse is not true. By studying the pos-
sible position of the ramification of points of a surface, Riemann proves that for
p > 1, the set of classes depends on 3p− 3 parameters that he calls “moduli”.

The surfaces introduced by Riemann correspond closely to the modern notion
of 1-dimensional complex manifold; these are the sets on which analytic functions
are defined. Riemann poses and solves the problem of the relation between this
notion and that of algebraic curve (the corresponding result is nowadays called the
Riemann existence theorem).

This circle of ideas of Riemann did not by any means become immediately clear.
Klein’s lectures [129] played an important role in explaining them. Klein stresses
that a Riemann surface is not a priori related to an algebraic curve or algebraic
function. A definition of a Riemann surface differing only in terminology from the
definition of 1-dimensional complex manifold in current use (for example, in this
book) was given by H. Weyl [148].

Riemann’s work initiated the study of the topology of algebraic curves. It made
clear the topological significance of the number p = dimΩ1[X]: it is equal to one
half of the dimension of the 1-dimensional homology of the topological space X(C).
Riemann used analysis to prove the inequality l(D)≥ degD−p+1. The Riemann–
Roch equality was proved by Roch, his student. Finally, in this work, the function
field k(X) first appears as an object of primary importance associated with a curve
X, together with the notion of birational equivalence.
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5 The Inversion of Abelian Integrals

Already Abel posed the problem of inverting the integrals of arbitrary algebraic
functions. He discovered in particular that the inverse of a hyperelliptic integral
associated with

√
ψ(x) is a function with periods equal to one half of the value of

this integral taken between two roots of ψ (see [101, Vol. II, No. VII]).
Jacobi observed that, except when the integral is actually elliptic, the inverse

should be a function of one complex variable which has more that 2 periods, which
is impossible for a reasonable function. In the case of a polynomial ψ(x) of degree 5
or 6, Jacobi proposed to consider the pair of functions

u=
∫ x

0

dt√
ψ(t)

+
∫ y

0

dt√
ψ(t)

, v =
∫ x

0

tdt√
ψ(t)

+
∫ y

0

tdt√
ψ(t)

.

He proposes to express x+y and xy as analytic functions of the two variables u and
v, and conjectures that such an expression is possible in terms of a generalisation
of theta functions (see Jacobi [125, Vol. II, Nos. 2 and 4]). This conjecture was
confirmed in a paper of Göpel [120], published in 1847.

The relation between theta functions and the inversion problem in the general
case is the subject of the second part of Riemann’s paper [142, No. VI] on Abelian
functions. He considers a series in p variables

θ(v)=
∑

m

eF(m)+2(m,v), (A.10)

where v = (v1, . . . , vp) ∈ C
p; here the sum takes place over all integer val-

ued p-vectors m = (m1, . . . ,mp) ∈ Z
p , with (m,v) = ∑

mivi and F(m) =∑
j,k αjkmjmk for some αjk = αkj . This series converges for all values of v if

the real part of the quadratic from F is negative definite. The basic property of the
function θ is the functional equation

θ(v + πir)= θ(v) and θ(v + αj )= eLj (v)θ(v), (A.11)

where r is any integer valued p-vector, and αj the j th column of the matrix (αjk);
here the Lj (v) are linear functions.

Riemann proves that the cuts a1, . . . , ap , b1, . . . , bp needed to make the surface
he introduced simply connected, and the basis u1, . . . , up of the differentials that
are finite everywhere on the surface, can be chosen in such a way that the integrals
of uj along ak are = 0 for j �= k and = πi if j = k, and the integrals of vj along
bk form a symmetric matrix (αjk) satisfying the conditions required to make the
right-hand side of (A.10) converge. He considers the function θ corresponding to
these coefficients αjk and the function θ(u− e), where u= (u1, . . . , up) (the ui are
the differentials that are finite everywhere on the surface) and e ∈Cp is an arbitrary
vector.

Riemann proves that the function θ(u− e) either has p zeros η1, . . . , ηp on the
surface, or is identically 0. For suitable choice of the lower limit of integration in
the integrals ui , in the first case



238 Historical Sketch

e≡ u(η1)+ · · · + u(ηp) modulo periods, (A.12)

where the congruence is considered modulo integral linear combinations of the pe-
riods of the integrals ui . The points η1, . . . , ηp are uniquely determined by this. In
the second case there exist points η1, . . . , ηp−2 such that

e≡−(
u(η1)+ · · · + u(ηp−2)

)
. (A.13)

Already Riemann knew that the periods of an arbitrary 2n-periodic function of
n variables satisfy relations analogous to those required for the convergence of the
series (A.10) defining theta functions. These relations between periods were written
out explicitly by Frobenius [119], who proved that they are necessary and sufficient
conditions for the existence of nontrivial functions satisfying the functional equa-
tion (A.11). It follows that these relations are necessary and sufficient conditions
for the existence of a meromorphic function with 2n given periods that cannot be
reduced by a linear change of coordinates to a function of fewer variables. One
need only apply the theorem that any meromorphic function with 2n periods can be
represented as a quotient of entire functions satisfying the functional equation of a
theta function. This theorem, stated by Weierstrass, was proved by Poincaré [141].
In 1921 Lefschetz [131] proved that if the Frobenius relations are satisfied then theta
functions define an embedding of the manifold C

n/Ω into projective space, where
Ω is the lattice corresponding to the given period matrix.

The problem of inverting Abelian integrals relates to questions that we only
touched on in passing in the book, often without proof. The subject under discus-
sion is the construction of the Jacobian variety of an algebraic curve and the prop-
erties of arbitrary Abelian varieties (Sections 4.3–4.4, Chapter 3 and Section 1.3,
Chapter 8).

If O ∈X is a fixed point then {f (x)= x −O | x ∈X} is obviously an algebraic
family of divisors of degree 0 on X, parametrised by X itself. By definition of the
Jacobian J (X) of X (recall from Section 4.4, Chapter 3 that for a curve X, the
Picard variety is called the Jacobian), there exists a morphism ϕ : X→ J (X) which
is an embedding if X has genus p �= 0. It can be proved that ϕ∗ : Ω1[J (X)] →
Ω1[X] is an isomorphism. Hence in the representation

J (X)=C
p/Ω, (A.14)

Ω ⊂C
p is the lattice of rank 2p consisting of the periods of the p linearly indepen-

dent differential forms ω ∈Ω1[X]. This analytic representation of the Jacobian is
Riemann’s starting point, and he goes on to develop the algebraic method of study-
ing it.

If D0 is an arbitrary effective divisor of degree p, then {g(x1, . . . , xp) = x1 +
· · ·+xp−D0 | x1, . . . xp ∈X} is a family of divisors of degree 0 on X whose param-
eter space we can take to be symmetric product Xp/Sp , that is, the quotient space
of the product of p copies of X by the symmetric group acting by permuting the fac-
tors. By definition of the Jacobian, there exists a morphism ψ : Xp/Sp→ J (X). It
follows easily from the Riemann–Roch theorem that this is onto, and is a one-to-one
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correspondence on an open set of J (X). The map ψ is not one-to-one, by definition,
at points (x1, . . . , xp) such that l(x1 + · · · + xp) > 1. It follows from the Riemann–
Roch theorem that this is equivalent to l(K − x1 − · · · − xp) > 0, that is, (since
degK = 2g− 2) to the condition that x1+ · · · + xp ∼K − y1− · · · − yp−2 for cer-
tain points y1, . . . , yp−2 ∈X. This final relation coincides with (A.13), up to adding
the summand K , and thus up to a translation by a point of J (X).

The Frobenius relations are the condition for a complex torus Cp/Ω to be pro-
jective. They are written out in (8.14) and (8.15).

6 The Geometry of Algebraic Curves

So far, we have seen how the notions and results that now form the basis of the
theory of algebraic curves were created under the influence and in the context of
the analytic theory of algebraic functions and their integrals. Independently of this
direction a purely algebraic theory of curves was developing. For example, in a book
appearing in 1839, Plücker [139] found the formulas relating the degree and class
of a plane curve and its number of double points (see Exercise 2 of Section 4.5,
Chapter 4). He proved there that a plane curve of degree 3 has 9 inflexion points
(compare Example 3.4 of Section 3.4, Chapter 3). But studies of this kind played a
secondary role in the math of that period, and did not relate to the deeper ideas.

It was only in the period following Riemann that the geometry of algebraic curves
occupied a central place in the math of the time, on a level with the theory of Abelian
integrals and Abelian functions. This change of viewpoint is connected especially
with the name of Clebsch. While for Riemann the basic object was a function, for
Clebsch it is an algebraic curve. One could say that Riemann considered a finite
morphism f : X→ P

1, whereas Clebsch considered the algebraic curve X itself.
The book Clebsch and Gordan [112] derives a formula for the number p of lin-
early independent integrals of the first kind (that is, the genus of X), expressing it in
terms of the degree of the curve and the number of singular points (see Exercise 2
of Section 4.5, Chapter 4). They also prove that if p = 0 then the curve has a ratio-
nal parametrisation, and if p = 1 then it can be transformed into a plane curve of
degree 3.

A mistake of Riemann turned out to be exceptionally profitable for the develop-
ment of the algebraic geometric aspect of the theory of algebraic curves. In the proof
of his existence theorems, he considered it obvious that a certain variational problem
could be solved, the “Dirichlet principle”. Soon after this, Weierstrass showed that
not every variational problem has a solution. Hence for a certain period, Riemann’s
results remained without rigorous foundation. One of the gains from this was the
appearance of algebraic proofs of these theorems; their statement was in essence
algebraic. These investigations undertaken by Clebsch (see Clebsch and Gordan
[112]) facilitated to a considerable extent the recognition of the essentially alge-
braic geometric nature of the results of Abel and Riemann, from under its mantle of
analysis.
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The direction initiated by Clebsch reached its zenith in the work of his student
Max Noether. The circle of ideas of Noether is especially clearly delineated in his
joint work with Brill [105]. The task this sets itself is to develop geometry on an al-
gebraic curve contained in the projective plane as a body of results that are invariant
under mutually single valued transformations (that is, birational transformations).
The basic notion is that of a group of points of a curve (distinct or with coinci-
dences). One considers systems of groups of points cut out on the original curve
by linear systems of curves (that is, having equations that form a linear space). It
can happen that all the groups of some system have some group G in common, that
is, they consist of G plus groups of another system G′. The system G′ obtained in
this way is called a linear system. If the dimension of the linear (projective) space
of equations of the curves cutting out a linear system is equal to q , and the group
G′ consists of Q points, then the system is denoted by g

(q)
Q . Two groups of one

system are said to be coresidual. This obviously corresponds to the modern notion
of linear equivalence of effective divisors, and if a group G is contained in a lin-
ear system g

(q)
Q then in modern notation degG =Q and l(G) ≥ q + 1 (recall that

l(G) is the dimension of a vector space, and q that of the corresponding projective
space).

Every group of points G defines a biggest possible linear system g
(q)
Q containing

all groups coresidual to G. The numbers q and Q are related by the Riemann–Roch
theorem, which is proved purely algebraically.

Of course, the statement of the Riemann–Roch theorem assumes a definition
of an analogue of the canonical class. This can be given without appealing to the
notion of differential form, but the relation with this notion is very easy to establish.
Namely, if a curve of degree n has equation F = 0 and is smooth, then a differential
form ω=Ω1[X] can be written as

ω= ϕdx

F ′y
, (A.15)

where ϕ is a homogeneous polynomial of degree n− 3 (Section 6.4, Chapter 3). It
can be proved that if a curve has only the simplest possible singularities then the
expression (A.15) remains valid if we require that ϕ should be 0 at all the singu-
lar points. Such polynomials are said to be adjoint; adjoint polynomials of degree
n− 3 define the linear system that is the analogue of the canonical class. Brill and
Noether consider the map of a curve to (p − 1)-dimensional projective space de-
fined by adjoint forms of degree n− 3. Its image is called a normal curve (in the
case of nonhyperelliptic curves). It is proved that a single valued (that is, birational)
correspondence between curves leads to a projective transformation of the normal
curves.

Noether [135] applies these ideas to the investigation of space curves. In modern
language one can say that this paper studies irreducible components of the Chow
variety of curves in P

3.
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7 Higher Dimensional Geometry

By the middle of the 19th century, a large number of special properties of algebraic
varieties of dimension >1, mainly surfaces, had been discovered. For example, sur-
faces of degree 3 were studied in detail, and in particular Salmon and Cayley proved
in 1849 that every cubic surface with no singular points contains 27 distinct lines.
However, for a long time these ideas were not unified by any general principles, and
were not connected to the deep ideas worked out up to this time in the theory of
algebraic curves.

The decisive step in this direction seems to have been made by Clebsch. In 1868
he published a short note [111] in which he considers (in modern terminology) alge-
braic surfaces from the point of view of birational equivalence. He considers double
integrals on a surface that are everywhere finite, and observes that the maximal
number of linearly independent integrals is invariant under birational equivalence.

These ideas were developed in the two-part work of Noether [136]. As is clear
already from the title, he considers algebraic varieties of any number of dimensions.
However, most of his results relate to surfaces. This is typical for all of the subse-
quent period of algebraic geometry. Although very many results are actually true for
varieties of arbitrary dimension, they are stated and proved only for surfaces.

In the first part, Noether considers “differential expressions” on varieties of any
dimension, and it is interesting that the integral sign only appears once. Thus the
algebraic nature of the notion of differential form already becomes formally obvious
here. Noether only considers differential forms of the highest order. He proves that
they form a finite dimensional space, whose dimension is invariant under single
valued (that is, birational) transformations.

In the second part he considers curves and surfaces; the final section only con-
tains some interesting remarks on 3-dimensional varieties. Noether describes the
canonical class (in modern terminology) using adjoint surfaces, by analogy with the
way this was done before for curves. He formulates the question of the surfaces cut-
ting out (again in modern terminology) the canonical class of a curve C lying on a
surface V ; he calls the curves on V that these cut out the adjoint curves of C, and he
gives an explicit description of them, which leads him to the formula for the genus
on a curve on a surface. This formula is essentially identical with that of (4.28) of
Section 2.3, Chapter 4; however, the insight that the adjoint curve is of the form
K +C was only achieved 20 years later in papers of Enriques.

In the same paper Noether studies the notion of exceptional curve contracted to
a point under a birational map.

The ideas of Clebsch and Noether found their most brilliant development not in
Germany but in Italy. The Italian school of algebraic geometry had an enormous in-
fluence on the development of the subject. Without doubt many of the ideas of this
school have not to this day been fully understood and developed. The founders of the
Italian school of geometry were Cremona, C. Segre and Bertini. Its most significant
representatives were Castelnuovo, Enriques and Severi. The papers of Castelnuovo
began appearing in the late 1880s. Enriques was a student (and a relative) of Castel-
nuovo; his papers appear from the early 1890s. Severi started work about 10 years
after Enriques and Castelnuovo.
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One of the fundamental achievements of the Italian school is the classification of
algebraic surfaces. The first result here can be considered to be the paper of Bertini
[104], in which he gives a classification of involutive transformations of the plane.
In modern terminology, the subject is the classification of elements of order 2 of
the group of birational self-maps of the plane, up to conjugacy in this group. The
classification turns out to be very simple, and in particular it follows easily from
it that a quotient of the plane by a group of order 2 is a rational surface. In other
words, if X is a unirational surface and the map f : P2→X has degree 2 then X is
rational.

The general case of the Lüroth problem for algebraic surfaces was solved (posi-
tively) by Castelnuovo [107]. After this he posed the question of characterising ra-
tional surfaces by numerical invariants, and solved this in [108]. The classification
of surfaces, discussed briefly in Section 6.7, Chapter 3, was obtained by Enriques in
a series of papers, which were finished already in the 1910s (see Enriques [115]).

In connection with the Lüroth problem for 3-folds, Fano studied certain types of
3-folds, and proposed proofs of their irrationality. Enriques had proved that many of
these are unirational. This would have given counterexamples to the Lüroth prob-
lem, but many unclear points were found in Fano’s proofs. Certain intermediate
propositions turned out to be false. The problem was definitively settled only while
the final pages of the first edition of this book were being written. V.A. Iskovskikh
and Yu.I. Manin showed that the basic idea of Fano can be salvaged. They proved
the irrationality of smooth hypersurfaces of degree 4 in P

4; B. Segre had previously
proved that some of these are unirational. At the same time Clemens and Griffiths
found a new analytic method of proof of the irrationality of certain varieties. They
proved the irrationality of smooth hypersurfaces of degree 3 in P

4 (see Exercise 13
of Section 8.1, Chapter 3). These results are of course only the first steps on the path
to a classification of unirational varieties.

The basic tool of the Italian school was the study of families of curves on sur-
faces, both linear families and algebraic families (which they called continuous
families). This led to the notion of linear and algebraic equivalence. The relation
between these two notions was first studied by Castelnuovo [109]. He discovered
the connection of this question with the important invariant of a surface called its
irregularity. We do not treat here the definition of irregularity used by Castelnuovo,
which is closely related to the ideas of sheaf cohomology. Another interpretation of
this notion is given by (A.16) below.

Castelnuovo [109] proved that if not every continuous system of curves is con-
tained in a linear system (that is, if algebraic equivalence is not equal to linear equiv-
alence) then the irregularity of the surface is nonzero. Enriques [114] proves the
converse. He shows moreover that every sufficiently general curve (in a precisely
defined sense) on a surface of irregularity q is contained in a continuous family that
is algebraically complete (that is, maximal) and fibred in linear families all having
the same dimension, where the base of the fibration is a variety of dimension q .
Castelnuovo proved [110] that the q-dimensional base of the fibration constructed
by Enriques has a group law, defined by addition of linear systems (that is, divisor
classes), under which this base is an Abelian variety, and is hence uniformised by
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Abelian functions (with 2q periods). This Abelian variety is determined by the sur-
face, and does not depend on the curve from which we started. It is called the Picard
variety of the surface.

The irregularity turned out to be related to the theory of differential 1-forms
on surfaces, the foundations of which were laid by Picard [137]; in this paper he
proves that the space of everywhere regular 1-forms is finite dimensional. In 1905
Severi and Castelnuovo proved that this dimension is equal to the irregularity; in our
notation

q = h1 = dimΩ1[X]. (A.16)

Severi [145] studied the group of algebraic equivalence classes, and proved that
it is finitely generated. His proof is based on the relation between the notion of alge-
braic equivalence and the theory of differential 1-forms. Namely, algebraic equiva-
lence n1C1 + · · · + nrCr ≈ 0 holds if and only if there exists a differential 1-form
whose set of “logarithmic singularities” equals the curves C1, . . . , Cr taken with
multiplicities n1, . . . , nr . (A 1-form ω has logarithmic singularity of multiplicity n

along a curve C if locally ω = ndf/f , where f is a local equation of C.) Picard
had already proved that the equivalence relation defined in this way in terms of dif-
ferential 1-forms defines a group of classes with a finite number of generators (see
Picard and Simart [138]).

8 The Analytic Theory of Complex Manifolds

Although a substantial proportion of the ideas of algebraic geometry arose in an-
alytic form, their algebraic significance eventually became clear. We now proceed
to notions and results which are (at least from a modern point of view) related to
analysis in an essential way.

At the beginning of the 1880s there appeared the papers of Klein and Poincaré
on the problem of uniformising algebraic curves by automorphic functions. The
aim, by analogy with the way that curves of genus 1 can be uniformised by elliptic
functions, is to uniformise any curve by the functions we now call automorphic
functions (the term was proposed by Klein after various different terms were used).
Klein’s starting point was the theory of modular functions (see Klein [128, No. 84]).
The field of modular functions is isomorphic to the field of rational functions, but
one can consider functions invariant under various subgroups of the modular group,
and thus get more complicated fields. In particular, Klein considered automorphic
functions with respect to the group consisting of all transformations z �→ (az +
b)/(cz+ d), where a, b, c, d ∈ Z, ad − bc = 1 and He proved that these functions
uniformise the curve of genus 3 given by x3y + y3z + z3x = 0. One can deform
the fundamental polygon of this group and obtain new groups that uniformise new
curves of genus 3.

A similar train of thought underlies the papers Klein [128, Nos. 101–103] and
Poincaré [140, Nos. 92, 108, 169]; here Poincaré used what are now called Poincaré
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series in the construction of automorphic functions. They both guessed correctly that
any algebraic curve admits a uniformisation by a corresponding group and made sig-
nificant progress in the direction of proving this result. However, a complete proof
was not obtained at that time. The proof was obtained by Poincaré, and indepen-
dently by Koebe, only in 1907. An important part was played in this by Poincaré’s
study of the fundamental group and universal cover.

The topology of algebraic curves is very simple and was completely studied by
Riemann. To study the topology of algebraic surfaces Picard developed a method
based on studying the fibres of a morphism f : X→ P

1. The question here is how
the topology of the fibres f−1(a) changes as the point a ∈ P1 moves, and in partic-
ular when the fibre becomes singular. By this method he proved, for example, that
smooth surfaces in P

3 are simply connected (see Picard and Simart [138, Vol. I]).
Using this method Lefschetz [132, 133] obtained many deep results in the topology
of algebraic surfaces, and of higher dimensional varieties.

The study of global properties of complex manifolds began relatively late (see
Hopf [124] and Weil [147]). This subject began to develop very actively in the 1950s
in connection with the creation and application by Cartan and Serre of the theory of
coherent analytic sheaves (see Cartan [106] and Serre [143]). We omit the definition
of this notion, which is an exact analogue of that of coherent algebraic sheaf (but we
should stress that the analytic definition was introduced earlier than the algebraic).
One of the basic results of this theory was the proof that the cohomology groups of
a coherent analytic sheaf (in particular its group of sections) on a compact manifold
are finite dimensional. In this connection Cartan gave the definition of a complex
manifold based on the idea of sheaf, and proposed the idea that the definition of
various types of manifolds and varieties is related to specifying sheaves of rings on
them.

9 Algebraic Varieties over Arbitrary Fields and Schemes

Formally speaking the study of varieties over an arbitrary field started only in the
20th century, but the foundations for this were laid earlier. An important part was
played here by two papers published in 1882 in the same volume of Crelle’s journal.
Kronecker [130] studies questions that would nowadays be part of the theory of
rings of finite type with no zerodivisors and of characteristic 0. In particular, he
constructs a theory of divisors for integrally closed rings.

Dedekind and Weber study the theory of algebraic curves in [113]. Their aim is
to give a purely algebraic treatment of a substantial part of this theory. The authors
stress that they nowhere use the notion of continuity, and their results remain valid
if the complex number field is replaced by the field of all algebraic numbers.

The essential significance of the article of Dedekind and Weber is that in it the
main object of study is the function field of an algebraic curve. Concrete affine mod-
els are only used as a technical means; the authors moreover use the term “invariant”
to indicate notions and results that do not depend on the choice of the model. The
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whole treatment in this paper parallels to a significant extent the theory of algebraic
number fields. They stress in particular the analogy between the prime ideals of an
algebraic number field and points of the Riemann surface of an algebraic function
field. We can say that in either case we are dealing with the maximal spectrum of a
1-dimensional scheme.

Interest in algebraic geometry over “nonclassical” fields arose first in connection
with the theory of congruences, that can be interpreted as equations over a finite
field. In his paper to the 1908 international congress, Poincaré says that the methods
of the theory of algebraic curves can be applied to the study of congruences in two
variables.

The groundwork for the systematic construction of algebraic geometry was laid
by the general development of the theory of rings and fields in the 1910s and 1920s.

In 1924 E. Artin published a paper [102, No. 1], in which he studied quadratic
extensions of the rational function field in one variable over a finite ground field k,
basing himself on the analogy with quadratic extensions of the rational number field.
Particularly essential for the subsequent development of algebraic geometry was his
introduction of the zeta function of such a field and his formulation of the analogue
of the Riemann hypothesis for zeta functions. Let us introduce (as Artin did not do)
the hyperelliptic curve X defined over the finite field k, so that our field is of the form
k(X). Then the Riemann hypothesis gives the best possible estimate for the number
N of points x ∈ X defined over a given finite extension field k ⊂ K (that is, such
that k(x)⊂K), much as the Riemann hypothesis for the rational number field gives
the best possible bound for the asymptotic distribution of prime numbers. More
precisely, the Riemann hypothesis is equivalent to the inequality |N − (q + 1)| ≤
2g
√
q , where q is the number of elements of K and g is the genus of X.

It immediately became clear that the Riemann hypothesis could be stated for any
algebraic curve over a finite field, and the attempt to prove it led Hasse and his
students in the 1930s to construct the theory of algebraic curves over an arbitrary
field. The Riemann hypothesis itself was proved for elliptic curves by Hasse himself
[122] (compare Example 3.5 of Section 3.4, Chapter 3).

Properly speaking, this theory discussed not the curves themselves, but the cor-
responding function fields, and geometric terminology is nowhere used. One can
get to know this style from Hasse’s book [123] (see the sections on function fields).
That such a birationally invariant theory of algebraic curves is possible is related to
the uniqueness of the nonsingular projective model of an algebraic curve. Therefore
there are substantial difficulties in applying this approach to the higher dimensional
case.

On the other hand, in a series of article published in Mathematische Annalen
under the general title “Zur algebraischen Geometrie” from the late 1920s to the
late 1930s, van der Waerden made progress in constructing algebraic geometry over
an arbitrary field. In particular he constructed an intersection theory (or as we would
say nowadays, he defined a ring of cycle classes) on a nonsingular projective variety.

In 1940 Weil succeeded in proving the Riemann hypothesis for an arbitrary alge-
braic curve over a finite field. He found two different methods of proof. One is based
on the theory of correspondences on a curve X, that is, divisors on the surface X×X
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(compare Exercise 10 of Section 2.7, Chapter 4), and the second on considering its
Jacobian variety. Thus higher dimensional varieties are invoked in either case. In
this connection, Weil’s book [146] contains a construction of algebraic geometry
over an arbitrary field: the theory of divisors, cycles, intersection theory. Here “ab-
stract” varieties (not necessarily quasiprojective) are defined for the first time by the
process of glueing affine pieces (as in Section 3.2, Chapter 5).

The definition of a variety based on the notion of sheaf is contained in Serre’s
paper [144], where he also constructs the theory of algebraic coherent sheaves; the
model for this was the recently created theory of analytic coherent sheaves (compare
8 above).

Generalisations of the notion of algebraic variety along similar lines to the defini-
tion of scheme introduced subsequently were proposed in the early 1950s. It seems
that the first and at the time very systematic development of these ideas is due to
Kähler [126, 127]. The idea of a scheme is due to Grothendieck, along with most of
the results in general scheme theory. The first systematic exposition of these ideas
is contained in Grothendieck’s paper to the 1958 international congress [121].
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Symbols
m-canonical form, 227, 230, 231
(p, q)-form, 152, 190
χ(OX), see Arithmetic genus
−1-curve, see Minus one curve
2-cocycles, 91

A
a.c.c., 34
Abelian

function, VII
integral, 233
surface, 230
variety, 186, 155, 158, 206

Abstract variety, 246
versus quasiprojective variety, 51, 68

Addition law, see Group law on cubic
Additive group Ga , 184, 42, 47
Adjunction formula, 251, 66
Affine

algebraic group, 186
cone, 80, 106
cover, 30
curve, 3
line with doubled-up origin, 44
linear geometry, 137
piece, 17, 45
plane A

2, 3
scheme, 26, 29
space A

n, 23
variety, 48

Algebraic
curve, 3, 132, 205, 210, 212, 97
dimension, 183

equivalence ≈, 188, 247, 258, 242, 243
family

of cycles, 258
of divisors, 188

group, 184, 203, 155
independence, 288
plane curve, 3
space, 183
subgroup, 185
subvariety, 56

Algebraic variety, 49
defined over k, 116
versus complex manifold, 151, 175

Algebraically
closed field, 4
nonclosed field, 4, 5, 181

Ambient space, 3
Analytic function, 150
Analytic manifold, see Complex manifold
Annihilator ideal AnnM , 295
Applications to number theory, 5, 28, 179, 181,

182, 4
Arithmetic, see Applications to number theory
Arithmetic genus χ(OX), 254
Associated complex space Xan, 164
Associated Hermitian form, 186
Associated map of ring homomorphism

aϕ : SpecB→ SpecA, 6
Associated sheaf, see Sheafication
Associative algebra, see Variety of associative

algebras
Automorphic

form, 214, 219
function, 219, 243
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Automorphism, 31, 33
of the plane AutA2, 32

B
Base of family, 107
Base point of linear system, 264, 67
Bertini’s theorem, 137–140

for very ample divisor, 102
Bézout’s theorem, 4, 17, 71, 168, 246

over R, 248
Bimeromorphic, 183
Binary dihedral group, 278
Binary groups (tetrahedral, etc.), 278
Birational, 12, 38, 51, 30

class, 120
classification, 120, 213, 230
equivalence, 12, 38, 51
invariance of regular differentials, 202
invariant, 198, 241, 244
map, 7, 12, 13, 20, 260

versus isomorphism, 39, 113, 120
model, 120
transform, 118, 261, 73

Birationally equivalent, 38, 30
Bitangent, 169
Blowup, 113, 118, 260, 270, 70, 72, 182

as Proj, 39
Branch locus, 142
Branch of curve at a point, 132, 141
Branch point, 142, 131
Bug-eyed affine line, 44
Bunch of curves, 273

C
Canonical

class, 205, 210, 211, 213, 230, 251, 65, 219
of product, 252

curve, 212, 240
differentials Ωn[X], 196, 204
embedding, 213
line bundle, 174
orientation, 118
ring, 231

Cartier divisor, see Locally principal divisor
Castelnuovo’s contractibility criterion, 267
Categorical product X×S Y , 40
Centre of a blowup, 114
Chain of blowups, 265
Characterisation of P1, 167, 169
Characteristic class c(E), 64
Characteristic exponent, 134
Characteristic p, 145, 179, 201

Characteristic pair, 134, 141
Chevalley–Kleiman criterion for projectivity,

80
Chow’s lemma, 68
Circular points at infinity, 17
Class C∞, 117
Class group Cl0 X, 167

of elliptic curve, 170
Class of plane curve, 229, 281
Classification

of curves, 212, 136
of geometric objects, 94
of simple Lie algebras, 275
of surfaces, 230, 184, 242
of varieties, 208, 231, 203

Closed
embedding, 59
graph, 57, 46, 50
image, 57
map, 34
point, 49
point versus k-valued point, 35
set, 49
subscheme, 32
subset, 46
subset X ⊂A

n, 23
subset X ⊂ P

n, 41
subvariety, 56, 50

Closed immersion, see Closed embedding
Closure, 24

of point {p} = V (p), 11
Codimension 1 subvariety, 106, 125
Codimension codimX Y , 67
Coherent sheaf, 157, 81, 85, 88, 244
Combinatorial surface, 132, 138
Compact, 105
Comparison theorems (GAGA), 175
Compatible system of functions {fi}, 151
Compatible triangulations, 131
Complete, 57, 105, 50
Complete intersection, 68, 222

is simply connected, 222
Complete irreducibility theorem, 158
Complete linear system, 158
Complete versus compact, 116
Completion of a local ring Ôx , 103
Complex

analytic geometry, 150
analytic K3 surface, 184
conjugation, 143
dimension, 151
manifold, 150
ringed space, 163
space, 163
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Complex (cont.)
submanifold, 151
topology, 105, 115
torus Cn/Ω , 154, 158, 188

Complex space
X(C) of a variety, 115, 117, 149

Component, see Irreducible component
Composite of blowups, 74
Cone, 80
Conic, 3
Conic bundle, 72, 137, 143, 159
Connected, 121
Connectedness of fibres, 127
Connection, 193
Conormal bundle N∗X/Y , 88

Conormal sheaf IY /I2
Y , 88

Constant presheaf, 20
Continuous, 150
Convergent power series ring C{z}, 166
Convolution u � x, 42
Coordinate ring k[X], 25
Coordinate ring of product, 26
Cotangent

bundle Ω1, 59
sheaf Ω1

X , 87
space Θ∗X,x =mx/m

2
x , 88

Covering space, 153
Cremona transformation, 267, 268
Criterion for irrationality, 242
Criterion for projectivity, 79
Cubic curve, 3, 72, 170, 211
Cubic 3-fold, 208

is not rational, 209
is unirational, 208, 229

Cubic surface, 39, 78, 255
is rational, 256

Curvature tensor, 187
Curves on a surface, 270
Curves on quadric surface, 251
Cusp, 14, 133, 280
Cycle ξ , 28
Cycle classes, 74
Cyclic quotient singularities, 274

D
Decomposition into irreducibles, 3, 34, 12
Defined over k, 116, 245
Definition of variety, 23, 31, 46, 3, 29, 49, 246
Degenerate conic bundle, 137
Degenerate fibre, 279
Degeneration of curves, 278
Degree, 3

degX, 41, 167, 243, 244, 101, 120

of cycle deg ξ , 28
of divisor degD, 150, 163
of map degf , 141, 163, 177
of rational map d(ϕ), 263
of topological cover, 124

Dense subset, 24
Derivation, 194, 200
Determinant line bundle detE, 59
Determinantal variety, 44, 56, 92
Dévissage, 88, 90
Diagonal Δ, 31, 57, 75, 259
Diagonal subscheme Δ(X)⊂X×X, 43
Differential 1-form, 190
Differential d : OX→Ω1, 82
Differential form, 241
Differential form of weight k, 227, 175, 219
Differential of function dxf , 87, 190
Differential of map dxf : ΘX,x→ΘY,y , 88
Differential p-form, 195, 93
Dimension, 151, 164

dimX, 66, 67, 70, 49, 101
of a divisor �(D), 157, 169, 171
of a local ring, 100, 14
of a product, 67
of a topological space, 13
of fibres, 75
of intersection, 69, 233

Dimension count, 77, 135, 168, 244
Direct sum of sheaves F ⊕F ′, 58
Dirichlet principle, 235, 239
Discrete valuation ring, 14, 15, 111, 126, 148,

39
Discrete valuation vC(f ), 148, 160
Discriminant of conic bundle, 143
Discriminant of elliptic pencil, 145
Distribution, 213, 214, 216, 218, 224, 226
Division algebra, 249
Divisor, 147, 233, 63, 83, 93, 167

and maps, 155, 158
class, 150, 212

group ClX, 150, 188, 246
of form divω, 175
of form divF , 152, 167
of function divf , 149, 153, 169, 170
of poles div∞, 149
of theta function, 211
of zeros div0, 149
on complex manifold, 166

Domain of definition, 37, 51
Domain of regularity Uω , 198
Dominate (X′ dominates X), 121
Double point, 245
Double tangent, 169
Du Val singularities, 274
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Dual curve, 97
Dual numbers D = k[ε]/(ε2), 98

and tangent vectors, 35
Dual sheaf F∗ =Hom(F,OX), 58, 87
Duality theorem, 217, 225

E
Effective divisor, 147, 167
Elementary symmetric functions, 287
Elimination theory, 4, 56
Elliptic

curve, 14, 170, 212, 229
is not rational, 20

function, 211
integral, 212, 229
pencil, 145
surface, 230, 279
type, 203

Embedding, 134, 212
dimension, 89
of vector bundles, 60

Empty set, 45
Endomorphism of elliptic curves, 213, 233
Equality of rational functions, 9
Equations of a variety, 23
Etale, see Unramified cover

quotient, 99
Euler characteristic e(X), 134, 140
Euler substitutions, 9
Euler’s theorem, 18
Exact differential, 196
Exact sequence of sheaves, 83
Exceptional curves of the first kind, see Minus

one curve
Exceptional divisor, 119
Exceptional locus, 261, 72
Exceptional subvariety, 119
Existence of inflexion, 71
Existence of zeros, 71
Exterior power of a sheaf

∧p
G F , 58

Exterior product ∧, 195

F
Factorial, see UFD
Factorisation of birational maps, 264
Family

of closed subschemes, 107
of geometric objects, 95
of maps, 186
of schemes, 42
of vector spaces, 53

Fermat’s last theorem, 5
Fibration X→ S, 278, 53
Fibre bundle, 67, 72

Fibre f−1(y), 75
Fibre of morphism of schemes, 42
Fibre product X×S Y , 276, 40
Field extension, 288
Field of formal Laurent series k((T )), 106
Field of meromorphic functions, see

Meromorphic function field M(X)

Field of rational functions, see Function field
k(X)

Field theory, 9
Finite, 60

dimensionality of L(D), 157, 169, 92
field Fpr , 5, 28
length, 294
map, 62, 166, 271
morphism, 121
type, 36

Finiteness conditions, 36
Finiteness of integral closure, 293
Finiteness of normalisation, 128, 131, 166
Finiteness theorem, 202, 92
First order deformation, 98, 109
First order infinitesimal neighbourhood, 36
Fixed point of a map, 28
Flat

family, 104
module, 104
morphism, 104

Flex, see Inflexion
Form, 18
Formal

analytic automorphism, 112
completion Ôx , 112
power series ring k[[T ]], 101, 108, 166

Formally analytically equivalent, 104
Free action, 99
Free and discrete action, 152
Free sheaf, 58
Frobenius map, 28, 145, 179, 260
Frobenius relations, 162, 210, 238
Fubini–Study metric, 188, 189
Function field M(X), 169
Function field k(X), 9, 13, 36, 50, 44, 49, 236,

244
Functional view of a ring, 7
Functor, 96
Fundamental group π1(X), 201, 222
Fundamental polygon, 220

G
Gauss’ lemma, 4, 74
Gaussian integers Z[i], 6
General linear group, 184
General position, 233, 238, 258
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Generalised Hopf surface, 184
Generic point, 11
Generically free sheaf, 88
Genus, 211
Genus formula, see Adjunction formula
Genus formula for singular curve, 272
Genus of curve g(X), 205, 207, 210, 213, 251,

66, 68, 134, 136, 149, 236, 239
Geodesic coordinates, 187
Germ of functions, 23
Global differential p-form, 93
Global holomorphic function, 169, 205
Global regular function is constant, 59
Glueing conditions, 19, 30
Glueing schemes, 30
Graded ideal, 41, 39
Graded module, 100
Graph of a resolution, 274
Graph of map Γf , 33, 57
Grassmannian Grass(r, n), 42, 43, 68, 77, 81,

90, 113, 55, 94, 97, 99
Grauert criterion for projectivity, 80
Ground field k, 23
Group law on cubic, 173, 230
Group of divisors DivX, 148
Group scheme, 42

H
Hard Lefschetz theorem, 198
Harnack’s theorem, 143, 146
Hasse–Weil estimates, 179
Hermitian form, 186
Hermitian metric, 187
Hessian, 16, 19, 71, 170
Highest common divisor hcd{D1, . . . ,Dn},

155
Hilbert, 146

basis theorem, 26
Nullstellensatz, 26, 289
polynomial, 100, 103, 105
scheme, 107

Hironaka’s counterexample, 74, 181
Hodge index theorem, 255, 260, 273, 199
Hodge theory, 196
Holomorphic

function, 164, 169
map, 150, 164

Holomorphically complete, 226
Holomorphically convex, 226
Homogeneous

coordinates, 17, 41
ideal, 41
ideal aX , 34, 39, 100
pieces of a graded module, 100

polynomial, 18
prime spectrum ProjΓ , 39
variety, 185

Homology groups with coefficients in Z/2Z,
145

Homology Hn(M,Z), 118
Homomorphism of sheaves, 57
Homomorphism of vector bundles, 58
Hopf manifold, 154, 165
Hurwitz ramification formula, 227, 129, 135,

142
Hyperbolic type, 203
Hyperelliptic curve y2 = f (x), 12, 209
Hyperplane class, 195
Hyperplane divisor E, 243
Hyperplane line bundle O(1), 65
Hyperplane section divisor, 152, 75
Hypersurface, 25, 27, 39, 41, 68, 69, 158, 206

I
Ideal of a closed set AX , 25, 41
Image, 37, 51
Image of sheaf homomorphism, 82
Implicit function theorem, 14, 104
Indeterminate equations, 5
Infinitely near point, 271
Infinitesimal neighbourhood, 36
Infinitesimals, 109
Inflexion, 16, 71, 175, 179, 239

multiplicity, 170
Inoue–Hirzebruch surfaces, 184
Inseparable map, 142, 145, 201
Integers of a number field, 9
Integral, 60
Integral as elementary functions, 7
Integrally closed ring, 124
Intersection

form on a surface, 254
multiplicity, 15, 85

along C, 239, 240
multiplicity D1 · · ·Dn, 234
number, 167, 234, 243, 74, 75
number in homology, 120
numbers on a surface, 243
of open is �= ∅, 37
product of cycles, 258
with the diagonal, 31

Invariant differential form, 203, 155
Inverse image, see Pullback
Invertible sheaf, 63, 65

of a divisor LD , 93
Irreducible, 3, 34, 37

component, 35
space, 12
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Irreducible variety is connected, 123
Irredundant, 35
Irrelevant ideal, 45
Isomorphic embedding, 32
Isomorphism

of closed sets, 30
of ringed spaces, 27
of varieties, 48
versus birational equivalence, 39, 51, 113,

120
Iterated torus knot, 141

J
Jacobi, VII
Jacobian conjecture, 32
Jacobian determinant J u1,...,un

v1,...,vn
, 197, 174

Jacobian J (X), 189, 238
Jordan–Hölder theorem, 239

K
k-cycle, 258
k-scheme, 29
K3 surface, 230
Kähler differentials ΩA, 194, 87
Kähler differentials versus regular

differentials, 200
Kähler manifold, 188
Kähler metric, 188
Kernel of sheaf homomorphism, 82
Klein, VII
Kleinian singularities, 274
Knot, 141
Kodaira dimension κ , 208, 231
Kronecker pairing, 120
Krull dimension, 100, 14
Kummer surface, 185

L
Lattice Ω ⊂C

n, 153, 159
Leading form, 95
Length of a module �(M), 239, 294
Line bundle, 63

of a divisor LD , 63, 174
Linear branch of curve at a point, 132
Linear equivalence ∼, 150, 188, 205, 212, 238,

242, 263, 63, 75, 240, 242
Linear projection, 63, 65
Linear system, 156, 158, 263, 240
Lines on cubic surface, 78, 253, 255
Link, 141
Local

analytic coordinates, 150
blowup, 115
equations of a subvariety, 106

homomorphism, 27
intersection number (D1 · · ·Dn)x , 234
model, 163
morphism of ringed spaces, 27, 39
parameter on curve, 15
property, 49, 83
uniformisation of Riemann surfaces, 129

Local parameters, 98, 110, 235, 70
Local ring, 291

Ap, 83
along subvariety OX,Y , 239
at subvariety OX,Y , 84
of point of scheme OX,x , 28
Ox , 83

Localisation AS , 83, 295, 7, 85
Locally free sheaf, 58, 63
Locally principal divisor, 151, 153, 235, 63, 83
Locally trivial fibration, 54, 67
Locus of indeterminacy, 109, 114, 51
Lüroth problem, 208, 231, 148, 242
Lüroth’s theorem, 10, 179

M
Manifold, 105
Maximal ideal m, 5
Maximal ideal of a point mx , 87
Maximal spectrum m-SpecA, 5
Maximum modulus principle, 123
Meromorphic

fraction, 166
function, 169
function field M(X), 169, 171

Minimal model, 121
of algebraic surface, 122

Minimal prime ideal, 240
Minimal resolution, 273
Minus one curve, 267
Minus one curve (−1-curve), 262, 267
Model, 120
Modular group, 212
Module

of differentials ΩA, 194, 87
of finite length, 239
of fractions MS , 85

Moduli
of curves of genus g, 212, 213, 97, 109,

220, 236
of elliptic curves, 183, 212
problems, 94
space, 220

Moishezon manifold, 183
Monoid, 40
Monoidal transformation, see Blowup
Monomial curve, 89
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Mordell theorem, 181
Mordell–Weil theorem, 181
Morphism

of families of vector spaces, 53
of ringed spaces, 25
of schemes, 28
of varieties, 47

Moving a divisor, 153
Moving lemma, 242, 258
Multiplicative group Gm, 184, 47
Multiplicative set, 7
Multiplicity, 14, 264

of a singular point, 95
of a tangent line, 95
of intersection, 85, see Intersection

multiplicity
of singular point μx(C), 236, 270
of tangency, 229
of zero, 15

Multiprojective space P
n × P

m, 55, 57, 69,
247, 259

N
Nakai–Moishezon criterion for projectivity, 80
Nakayama’s lemma, 99, 291
Negative definite lattice, 284
Negative semidefinite lattice, 284
Negativity of contracted locus, 273
Neighbourhood, 24
Néron–Severi group NSX, 189, 248
Newton polygon, 133
Nilpotent, 290, 4, 8, 35, 109
Nilradical, 8, 35
Nodal cubic curve, 6, 22
Node, 6, 14, 112, 133, 245, 280
Noether normalisation, 65, 128, 121
Noether’s theorem, 268
Noetherian ring, 34, 84
Noetherian scheme, 36
Non-Hausdorff space, 11
Nonaffine variety, 53
Nonalgebraic complex manifold, 157, 181
Nonprojective variety, 74, 181
Nonsingular, 14, 16, 92, 94, 127, 139, 164

in codimension 1, 126, 127, 148
model, 109, 131
point of a curve, 39
points are dense, 14
subvariety, 110, 70
variety as manifold, 105, 117

Nonsingularity and regular local rings, 100, 8
Normal

bundle NX/Y , 61, 65
complex space, 165

(geodesic) coordinates, 187
integral domain, 124
neighbourhoods, 131
sheaf NX/Y , 88, 108
subgroup, 185
variety, 127

Normalisation, 276, 52
ν : Xν→X, 128, 130, 165
of a curve, 130, 241, 271
of X in K , 136, 52

Nullstellensatz, 26
Number of points of variety over Fpr , 28
Number of roots, 4, 233
Number theory, see Applications to number

theory
Numerical criterion of flatness, 103, 105
Numerical equivalence ≡, 247, 75, 182

O
Obstructed deformation, 109
1-dimensional local ring, 240, 295
Open set, 24, 45
Opposite orientation, 140
Orbit space, see Quotient space X/G

Order of tangency, 235
Ordinary double point, 112, 137
Ordinary singularity, 133
Orientable triangulation, 140
Orientation, 117

class ωM or [M], 119
of a triangulation, 139

Orthogonal group, 184
Ovals of a real curve, 146

P
Parabolic type, 203, 207
Parallel transport, 193
Parametrisation, 6, 11
Parametrising a conic, 8
Pascal’s theorem, 21
Pencil

of conics, 72, 159, 255
of elliptic curves, 145
of quadrics, 143

Periods, 212
Picard group PicX, 150, 153
Picard variety, 188, 189, 243
Picard’s theorem, 207
Plane cubic curve, 13, 211, 212
Plücker coordinates, 42, 55, 97
Plücker quadric, 77, 81, 94
Plurigenera Pm, 230, 231
Poincaré complete irreducibility theorem, 158
Poincaré duality, 120
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Poincaré series, 214, 244
Point at infinity, 17
Point of indeterminacy of rational map, see

Resolution of indeterminacy
Point of multiplicity r , 14
Point of the spectrum, 5
Polar line, 5
Pole of function, 149
Polynomial function, 25
Power series, 100
Presheaf, 16

of groups, 16
Primary decomposition, 295, 90
Prime divisor, 147
Prime ideal as points, 5
Prime spectrum SpecA, 5
Primitive element theorem, 40
Principal divisor, 149, 153
Principal ideal, 125
Principal open set D(f ), 50, 10, 17, 39
Product

in a category X×S Y , 40
of irreducibles, 35
of schemes over S X×S Y , 40
of varieties X× Y , 25, 26, 54, 252, 52

Projection, 6, 33, 39, 52, 53, 135
Projection formula, 195
Projective

algebraic plane curve, 18
closure, 68
completion, 45
embedding, 134, 212, 230, 205, 209, 216
embedding of curve, 109
limit lim←−Eα , 18
line, 211
plane, 17
scheme is proper, 34
scheme over A, 33
schemes and homogeneous ideals, 34
space P

n, 41, 90
space as scheme P

N
A , 31

variety, 49, 105, 186
versus abstract varieties, 79

Projectivisation P(E), 72
P

1-bundle, 68
P
n-bundle, 68, 72, 81

Proper, 227
Proper map, 59, 116
Proper transform, see Birational transform
Pseudovariety, 67
Puiseux expansion, 133, 141
Pullback

of differential forms ϕ∗(ω), 200
of divisor f ∗D, 152, 163

of functions f ∗, 30, 38, 25
of subscheme, 34
of vector bundle, 55

Q
Quadratic transformation, 267
Quadric, 39, 41
Quadric cone, 94
Quadric surface, 56, 71, 81, 113
Quasilinear map, 181, 285
Quasiprojective variety, 23, 46
Quotient

bundle, 61
group G/N , 186
manifold X/G, 188
ringed space X/G, 38
sheaf G/H, 83
space X/G, 31, 152, 201, 223
variety X/G, 31, 44, 61, 99, 274, 103

R
r-simplex, 138
r-tuple point, 14
Radical of an ideal, 50
Ramification, 277

degree, 131
locus, 142
multiplicity, 227
point, 142, 131

Ramified, 142
Rank of a vector bundle rankE, 54
Rank of an A-module, 89
Rational

curve, 6, 7, 11, 167, 169, 211
differential r-form, 198
function, 9, 19, 36
function on affine and quasiprojective

variety, 50
map, 12, 19, 37, 109, 30, 46
map f : X→ P

m, 51, 155
surface, 256
variety, 39, 208
versus regular, 20, 36, 37, 109, 176, 193,

197, 198, 277
Rational divisor over k0, 181
Rational double points, 274
Rational function field, see Function field k(X)

Rational normal curve, 53
Rational ruled surface, 68
Rationality criterion, 230, 231
Real algebraic curve, 142
Real solutions, 248
Real topology, 105
Reduced complex space, 163
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Reduced subscheme, 50
Reduced subscheme Xred, 35
Reducible, 34

complex space, 164
topological space, 12

Regular, 36, 37, 46, 51, 109
differential form, 197, 219
differential form ϕ ∈Ω1[X], 190
differential r-form, 195
function, 25, 46, 83, 17
local ring, 100, 8
map, 20, 27, 47, 52, 67
point, 8
rational function at a point, 9
sequence, 237, 292
vector field, 93

Regularity of rational differential r-form, 198
Regularity of rational map, 37, 51
Relatively minimal model, 121
Representable functor, 96
Residue field at x, k(x), 7, 28
Residue of a 1-form Resω, 217, 218, 223, 224
Residue theorem, 219, 224, 225
Resolution of indeterminacy, 114, 263, 74
Resolution of singularities, 109, 131, 270, 273
Restriction F|U , 16
Restriction maps ρV

U , 16
Restriction of divisor ρY (D), 153, 65
Restriction of family E|U , 54
Resultant, 4, 56, 81
Riemann existence theorem, 165, 203, 236
Riemann hypothesis, 182, 260, 245
Riemann mapping theorem, 157, 203
Riemann surface, 235
Riemann–Roch

inequality, 254
inequality for curves, 121
space L(D), 156, 169, 171, 181, 93
theorem, 210, 219, 236
theorem for curves, 210

Ring of cycle classes, 258
Ring of fractions AS , 83, 7, 85
Ring of integers of a number field, 6, 9
Ring of invariants AG, 31
Ringed space X,O, 25, 81
Root systems, 275
Ruled surface, 122
Ruledness criterion, 230, 231

S
S-scheme, 40
Sard’s theorem, see Bertini’s theorem
Scalar product, 177, 283
Scheme, 31, 4, 15, 28, 246

of associative algebras, 99
of finite type, 37
over A, 28
over a field, 28
over k, 29
over S, 40
with nilpotents, 109

Scheme-theoretic inverse image, 34, 41
Schwarz’ lemma, 171, 204
Scroll, 68
Secant variety, 135
Section of vector bundle, 190, 56
Segre embedding, 55
Selfintersection number C2, 243
Separable extension, 40, 227
Separable map, 142
Separable transcendence basis, 40, 199, 201,

288
Separated scheme, 43
Separated versus Hausdorff, 116
Sheaf, 19

of 1-forms Ω1, 82
of analytic functions Oan, 150
of differential 1-forms Ω1

X , 87
of differential p-forms, 24, 59
of functions, 16
of ideals IY , 24, 84, 88
of modules, 57, 81
of O-modules, 81

Sheaf conditions, 19
Sheaf homomorphism, 57
Sheaf theory, 15, 21
Sheafication, 23, 24, 82
Sheaves and vector bundles, 56
σ -process, see Blowup
Simple, see Nonsingular
Simple (regular) point, 8
Simple singularities, 274
Simply connected, 222
Singular, 13, 92, 164

point, 13, 16
quadric, 92, 94

Singular point with distinct tangent lines, 133
Singularities of a map, 137
Singularity, 13, 270
Skewsymmetric bilinear form of Hermitian

form, 186
Smooth, see Nonsingular, 94
Smooth function, 117
Space of p-forms Ωp[X], 93
Specialisation, 11
Spectral topology, see Zariski topology
Spectrum SpecA, 5
Stalk of (pre-)sheaf Fx , 23
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Standard quadratic transformation, 54, 267
Stein space, 226
Stereographic projection, 8, 39, 53, 113
Strict transform, see Birational transform
Structure sheaf OX , 15, 17, 19, 20, 25
Subbundle, 60
Subdivision of a triangulation, 139
Subordinate triangulation, 139
Subring of invariants AG, 287
Subscheme, 32
Subsheaf, 82
Subspace, 164
Subvariety, 46, 56, 50
Support of divisor SuppD, 147, 153, 167
Support of sheaf SuppF , 84
Surface as curve over function field, 6
Surface fibration, 6
Surface of general type, 230
System of local parameters, 110, 117, 149

T
Tangent, 86

bundle Θ , 92, 60
cone Tx , 95
fibre space, 92, 200
line, 16, 95, 245
line to a linear branch, 132
sheaf ΘX , 87
space ΘX,x , 85, 86, 88, 89, 212, 9, 36
space to a functor, 98, 108
vector, 36

Tautological line bundle O(1), 55, 65
Taylor series, 101
Tensor product, 104

of sheaves F ⊗G F ′, 58
Theta function, 207, 237
Topological classification, 129
Topology of curves, 129
Torsion point of an elliptic curve, 179
Torsion sheaf, 90, 93
Torus knot of type (p, q), 141
Transcendence degree, 10, 288
Transition matrix, 54, 56, 63
Transversal, 98, 168
Tree of infinitely near points, 271
Triangulable space, 138
Triangulation, 138

Trivial family, 54
Tsen’s theorem, 72
Type of form, 152, 190

U
UFD, 3, 74, 107, 108, 292

is integrally closed, 125
Uniformisation, 211, 243
Unique factorisation, 292
Unique factorisation domain, see UFD
Unirational, 242
Unirational variety, 208
Universal cover X̃, 201
Universal family, 97
Universal property of normalisation, 129
Universal scheme, 94, 96
Unramified cover, 142, 143, 153, 201

V
Variety

as scheme, 29
of associative algebras, 44, 91, 29, 99
of quadrics, 92

Vector bundle, 53, 54, 174
Vector bundles and sheaves, 56
Vector field, 190, 93
Veronese curve, 53
Veronese embedding vm, 52, 59, 64, 158, 259,

222
Veronese variety, 52
Vertex of a simplex, 138
Vertex of a triangulation, 138
Volume form, 187, 193

W
Weierstrass normal form, 13, 72, 170, 175
Weierstrass preparation theorem, 108, 166
Weil conjectures, 182
Wirtinger’s theorem, 193

Z
Zariski Riemann surface, 121
Zariski topology, 24, 45, 10, 17, 115
Zero of function, 149
Zero section, 56
Zeta function ZX(t), 28, 29, 182, 245
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