
Building Trust and Reputation In: A Development
Framework for Trust Models Implementation

Francisco Moyano, Carmen Fernandez-Gago, and Javier Lopez

Network, Information and Computer Security Lab
University of Malaga, 29071 Malaga, Spain
{moyano,mcgago,jlm}@lcc.uma.es

Abstract. During the last years, many trust and reputation models have been
proposed, each one targeting different contexts and purposes, and with their own
particularities. While most contributions focus on defining ever-increasing com-
plex models, little attention has been paid to the process of building these models
inside applications during their implementation. The result is that models have
traditionally considered as ad-hoc and after-the-fact solutions that do not always
fit with the design of the application. To overcome this, we propose an object-
oriented development framework onto which it is possible to build applications
that require functionalities provided by trust and reputation models. The frame-
work is extensible and flexible enough to allow implementing an important variety
of trust models. This paper presents the framework, describes its main compo-
nents, and gives examples on how to use it in order to implement three different
trust models.

1 Introduction

There is not a standard definition of trust, although it is agreed that it is of paramount
importance when considering systems security, as a tool to leverage decision-making
processes. The concept of trust spans across several areas beyond computer science,
such as psychology, sociology or economy.

The concept and implications of trust are embodied in the so-called trust models,
which define the rules to process trust in an automatic or semi-automatic way in a
computational setting. There are different types of trust models, each one considering
trust in different ways and for different purposes. The origins of trust management date
back to the nineties, when Marsh [10] proposed the first comprehensive computational
model of trust based on social and psychological factors. Two years later, Blaze [2]
identified trust management as a way to enhance the problem of authorization, which
up to that date was separated into authentication and access control.

These two seminal contributions reveal the two main branches or categories of trust
models that have been followed until today, and which we classified in a previous work
[13]. On the one hand, and following Marsh’s approach, we find evaluation models,
where factors that have an influence on trust are identified, quantified and then aggre-
gated into a final trust score. Uncertainty and evaluation play an important role in these
models, as one entity is never completely sure whether it should trust another entity, and
a decision process is required after evaluating the degree of trust placed in the entity.

A. Jøsang, P. Samarati, and M. Petrocchi (Eds.): STM 2012, LNCS 7783, pp. 113–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

114 F. Moyano, C. Fernandez-Gago, and J. Lopez

On the other hand and following Blaze’s approach, we find decision models, which
are tightly related to authorization. An entity holds credentials and a policy verify
whether these credentials are enough to permit access to certain resources. Here, trust
evaluation is not so important in the sense that there are no degrees of trust (and as
a consequence, there is not uncertainty), and the outcome of the process is a binary
answer: yes (access granted) or no (access denied). In this paper, we lay aside these
models and focus only on evaluation models.

Both categories, evaluation and decision models, evolved, leading to ever-complex
models. One of the branches of evaluation models with higher impact has been repu-
tation models, in which a reputation score about a given entity is derived from other
entities’ opinions about it. Reputation and trust are related concepts, and as stated by
[8], reputation can be used to determine whether an entity can trust another entity.

One issue with trust models is that they are very context-dependent, and are often
designed as ad-hoc mechanisms to work in a limited range of applications. Actually,
the standard is to plug a trust model into an existing, already-built application after-the-
fact. This might lead to architectural mismatches between the application and the model,
and the reusability of the model could also be damaged. Moreover, it is not possible for
the model to exploit all the information available to the application, since there is not
any systematic procedure to include the model as a holistic part of the application. As
a consequence, there are no mechanisms to consider trust requirements from the very
beginning of the software development lifecycle or to align the design of the model with
the design of the application.

To overcome these shortcomings, we propose an object-oriented development frame-
work that allows implementing trust evaluation models as a core part of the applications
themselves. Our aim is to assist developers during the development of applications that
might require using evaluation models. The contributions of this paper are (i) a do-
main analysis for trust evaluation models; (ii) the elicitation of the requirements that
the framework should meet; (iii) a first design of the framework architecture; (iv) and
guidelines to implement three different trust evaluation models using the framework.

The rest of the paper is organized as follows. Section 2 reviews several contributions
that are related to ours. A conceptual model of trust, which constitutes the domain anal-
ysis for the framework, is presented in Section 3. This analysis is used as an input to
elicit the requirements and the design of the framework architecture, described in Sec-
tion 4, whereas Section 5 explains how the framework can be used to implement three
evaluation models. Finally, the conclusion and future work are presented in Section 6.

2 Related Work

SECURE project [3] proposes a trust model to formally reason about trust, and a frame-
work to provide applications with trust functionalities. Trust decisions rely on cost-
PDFs that compare the benefits of a given interaction with the cost of such interaction.
Thus, although the authors propose an interesting framework, we do not find it general
enough to implement other types of trust or reputation models found in the literature.

Kiefhaber et al. [16] present the Trust-Enabling Middleware, which provides ap-
plications running on top of it with methods to save, interpret and query trust related

A Development Framework for Trust Models Implementation 115

information. The middleware uses built-in functions to measure the reliability of nodes
by considering packets losses. Although rather complete, it lacks a framework-oriented
approach since it does not make explicit the process of implementing existing or new
trust models, and its focus is on distributed, message-oriented applications.

Huynh [6] proposes the Personalized Trust Framework (PTF), a rule-based system
that makes use of semantic technologies for, given a domain, to apply the most suitable
trust model. In a similar direction, Suryanarayana et al. [18] present PACE (Practi-
cal Architectural approach for Composing Egocentric trust), an architectural style for
composing different trust models into the architecture of a decentralized peer in a P2P
architecture. The first contribution is a user framework that assists users in determining
the trustworthiness of resources, but it is not a development framework. The second
contribution is an architectural style. Thus, its purpose is helping the architect of the
application with a style to compose trust models, but like the PTF, it is not a frame-
work, in the sense that it does not provide developers with mechanisms to implement
trust models, nor to use them in their own applications.

Har Yew [5] presents a computational trust model and a middleware called SCOUT,
made up of three services that implement the model: the evidence gathering service,
the belief formation service and the emotional trust service. Regardless being a com-
prehensive model, it is not designed as an extensible framework and it is not clear, if
possible at all, how a developer could implement existing trust models.

Finally, Lee and Winslett present TrustBuilder2 [9], where they propose an exten-
sible framework that supports the adoption of different negotiation-based trust mod-
els. Although this is indeed a development framework, they focus on decision models,
laying aside the evaluation models we are considering in this paper.

3 Trust and Reputation: A Domain Analysis

The aim of this section is to shed light on concepts related to trust and reputation. First,
in Section 3.1, we discuss some definitions of trust that are often found in the literature,
whereas in Section 3.2 we put forward a conceptual model in the form of knowledge
graphs that constitutes a domain analysis of trust and reputation models. This analysis
is required for identifying the concepts that are likely to be part of the framework, as
well as their relationships.

3.1 Definitions

Many definitions of trust have been provided along the years. This is due to the com-
plexity of this concept, which spans across several areas such as psychology, sociology,
economics, law, and more recently, computer science. The vagueness of this term is well
represented by the statement “trust is less confident than know, but also more confident
than hope” [12].

Gambetta [4] defines trust as “a particular level of the subjective probability with
which an agent will perform a particular action [. . .] in a context in which it affects
our own action”. McKnight and Chervany [11] explain that trust is “the extent to which
one party is willing to depend on the other party in a given situation with a feeling of

116 F. Moyano, C. Fernandez-Gago, and J. Lopez

relative security, even though negative consequences are possible”. For Olmedilla et al.
[14], “trust of a party A to a party B for a service X is the measurable belief of A in
that B behaves dependably for a specified period within a specified context (in relation
to service X)”. Ruohomaa and Kutvonen [17] state that trust is “the extent to which
one party is willing to participate in a given action with a given partner, considering
the risks and incentives involved”. Finally, Har Yew [5] defines trust as “a particular
level of subjective assessment of whether a trustee will exhibit characteristics consistent
with the role of the trustee, both before the trustor can monitor such characteristics (or
independently of the trustor’s capacity ever to be able to monitor it) and in a context in
which it affects the trustor’s own behavior”.

We propose the following definition : trust is a subjective, context-dependent prop-
erty that is required when (i) two entities need to collaborate (i.e. there is a dependence
relationship between them and there exists the willingness to collaborate), but they do
not know each other beforehand, (ii) and when the outcome of this collaboration is
uncertain (i.e. entities do not know if they will perform as expected) and risky (i.e. neg-
ative outcomes are possible). In this situation, trust acts as a mechanism to reduce the
uncertainty in the collaboration and to mitigate the risk. As risk increases (either the
probability or the impact of negative outcomes), trust becomes more crucial.

The concept of reputation is more objective than the concept of trust. According to
the Concise Oxford dictionary, reputation is “what is generally said or believed about
a person or the character or standing of a thing”. Although the exact relationship be-
tween trust and reputation remains fuzzy, we think that Jøsang [8] linked these two
terms appropriately with the following two statements: “I trust you because of your
good reputation” and “I trust you despite your bad reputation”. Thus, reputation can
be considered as a building block, or indicator, to determine trust, although it does not
have the final say.

3.2 Conceptual Model

This section presents the most important concepts related to evaluation trust models.
These concepts were identified surveying relevant literature and finding commonalities
and variations in the definition of different models. This conceptual model constitutes
a domain analysis and the starting point for the framework requirements elicitation
and for the architecture design, as some concepts and relationships can map to object-
oriented components. The conceptual framework is graphically described by means of
knowledge graphs and using a UML notation, as depicted in Figures 1 and 2. Due to
space limitations, we concentrate on those concepts that have a higher impact for the
requirements and architecture of the framework.

A trust model aims to compute trust in a given setting. This setting should have, at
least, two entities that need to interact. An entity might play a role or even several ones.
The basic roles are trustor (the entity that places trust) and trustee (the entity on which
trust is placed). Once there is a trustor and a trustee, we claim that a trust relationship
has been established. A trust relationship has a purpose, which can be for example con-
trolling the access to a resource, the provision of a resource or the identity of an entity.
It might also serve to set trust in the infrastructure (devices, hardware, etc). In the very
end, the purpose of a trust model is to aid making a decision. At the higher level, it

A Development Framework for Trust Models Implementation 117

is a trust decision in the sense of answering the question: would this entity behave as
expected under this context? At a lower level, an entity trusts a property of another en-
tity. For instance its capability to provide a good quality of service. A trust model also
makes some assumptions, such as “entities will provide only fair ratings” or “initial
trust values are assumed to exist”, and might follow different modeling methods.

Trust Model
Trust

computes

Context

Assumptions

Entities

Role

PurposeTrust Class

Access IdentiyProvision Infrastructure

Trust
Relationship

has

establishes

relates

plays

has

instantiates

has

1..*

2..*

1..*

2

1..*

1..*

Evaluation
Model

Trustee's
Objective
Properties

Trustee's
Subjective
Properties
Trustor's
Objective
Properties

Trustor's
Subjective
Properties

Factors

influence

Requester Provider Trusted Third
Party

Witness Trustor Trustee

Modeling
Method

LinguisticGraphicMathematic

uses

Behaviour
Model

Reputation
Model

Propagation
Model

Fig. 1. Concepts for Evaluation Models (i)

There are three types of evaluation models, namely reputation models, behaviour
models and propagation models.

Behaviour models often follow a trust lifecycle with three phases. In the bootstrap-
ping phase, initial trust values are assigned to the entities of the system. Then, some
monitoring is performed to observe a variable or set of variables. Finally, a trust assess-
ment process is done in order to assign values to these variables and to aggregate them
into a final trust evaluation.

In these models, trust relationships are tagged with a trust value that describe to what
extent the trustor trusts the trustee. This trust value has semantics and dimension, which
might be simple or a tuple. Trust values are assigned during trust assessment through
trust metrics, which receive a set of variables as input and produce a measure of one or
several attributes using a computation engine. There are several computation engines
used in the literature, ranging from the most simple ones such as summation engines,
to complex ones that entail probability distributions or fuzzy logic.

There are several sources of information that might feed a trust metric. The most
common one is the direct interaction of the entity with the trustee. Other possible
sources of information, although less frequent, are sociological information (e.g. con-
sidering the roles of entities or their membership to a group) and psychological infor-
mation (e.g. prejudice).

Reputation models can be, in turn, another source of information where opinions of
a given trustee by different entities are made public and are used to compute a score.
Reputation can be centralized or distributed, depending on whether reputation scores
are stored in a central location or are saved by each individual entity.

Propagation models aim to create new trust relationships from existing ones. Some
of them assume that trust is transitive and exploit this property. New trust values are
often computed by means of operators, and in several models, we find two of them:

118 F. Moyano, C. Fernandez-Gago, and J. Lopez

a concatenator and an aggregator. The former is used to compute trust along a trust path
or chain, whereas the latter aggregates the trust values computed for each path into a
final trust value.

Behaviour
Model

Trust
Relationship

Trust Lifecycle

Bootstrapping Assessment

Trust
Value

Source of
Information

Sociological
Information

Transitivity

Trust Metric

Semantics

Dimension

Objectivity

Direct
Experience

Direct
Interaction

Direct
Observation

Reputation

Psychological
Information

Attribute

Propagation
Model

Indirect Trust
ComputationOperators

Trust
Propensity

Centralized Distributed

1..*

computes

has

defines

has
1

influences
uses
1..*

measures

feeds

informs about

1..*

quantifies

1

might be a
property of

might exploit

allows

1..*

uses

Variable

1..*

uses

1..*

aggregates 1..*

disseminates 1..*

1..*

Uncertainty/
Reliability

Computation
Engine

Summation/
Average

Bayesian

Discrete

Belief

Fuzzy

uses1

might
consider

Time

might
consider

Scope

has 1

Approach

Game-
Theoretic

Socio-
cognitive

follows

Flow

Continous

Concatenator Aggregator

Fig. 2. Concepts for Evaluation Models (ii)

4 Trust and Reputation Development Framework

In this section, the object-oriented development framework for trust is presented. Both
the requirements and the design are influenced by the domain analysis presented in
the previous section. Section 4.1 describes the requirements that the framework should
fulfil, whereas Section 4.2 presents the first version of the framework architecture.

4.1 Framework Requirements

This section summarizes the requirements that the framework must meet. At a high-
level, the framework has to support the implementation of three types of evaluation
models, namely reputation models, behaviour models and propagation models. Al-
though these models have commonalities, they also pose subtle differences that the
framework must support.

The primary goal of reputation models is to compute reputation scores for entities.
These scores must be stored (centrally or distributively) and entities should be able
to access this information before interacting with other entities. On the other hand,
behaviour models establish relationships between entities, and their main goal is to
compute trust values for these relationships. Finally, propagation models also build on
trust relationships, and their primary goal is to disseminate trust information to establish
new trust relationships.

The following list of requirements describes the coarse-grained functionality that the
framework should provide to developers:

– Entities management: entities hold trust values in other entities. The framework
must allow the creation, binding and naming of entities.

A Development Framework for Trust Models Implementation 119

– Trust relationships management: trust relationships might change along time. New
trust relationships might be created (e.g. by propagation models), other relation-
ships might be deleted, and it is likely that trust values change as well.

– Trust metrics definition: although the framework can provide some default built-in
metrics implementations, it is important to let developers to define their own trust
metrics, as they are the core concept in evaluation models.

– Variables management: a trust metric is composed of variables. It is important to
let developers to create new variables, which can be used by user-defined metrics.

– Computation engines management: an engine implements a trust metric. This en-
gine uses variables according to certain rules. Engines range from simple summa-
tion or average functions to complex fuzzy and probability distributions.

– Indirect trust computation: the framework should provide ways to determine the
value of an undefined trust relationship based on defined ones by propagating trust
information.

– Operators definition: indirect trust computation relies on operators that take trust
paths as input and return trust values as output (and thus, a new trust relationship).
Although several operators should be provided by default, the framework should
allow developers to define new operators.

The ultimate goal of the framework is to allow developers to implement both existing
evaluation models and new ones. Next section describes the architecture that supports
these requirements.

4.2 Framework Architecture

This section describes a first version of the framework architecture. The structural view
of the architecture is depicted as a class diagram in Figure 3. Note that some classes
have been mapped directly from the conceptual model described in Section 3, such as
Entity and TrustRelationship among others.

The architecture follows a layered design, where each layer uses the services pro-
vided by the lower layer. Likewise, the framework follows a grey-box approach, where
the developer can use several functionalities in a black-box fashion as well as define
new functionalities based on his needs. Next we describe the classes and relationships
for each of the layers.

Model Layer. In this layer we find the models that the developer can implement,
namely reputation models, behaviour models, and propagation models. More informa-
tion about each type of model is provided in Section 5. ReputationModel, Behaviour-
Model and PropagationModel are inherited classes from EvaluationModels and as such,
they share a context (a string describing the context under which the model operates)
and a list of entities that take part in the model. EvaluationModel also provides other
methods, and their functionality will be delegated to lower layer classes, depending on
the model type.

A reputation model adds a connector to an external database system to store rep-
utation scores, and it holds the type of reputation model, which might be centralized
or distributed. Moreover, this class exposes the method updateReputation which, in
addition to computing the reputation score, it saves it in the trust database.

120 F. Moyano, C. Fernandez-Gago, and J. Lopez

setContext(ctx)
addEntity(Entity)
addVariable(Variable)
Variable getVariable(String)
setMetric(CEngine)
CEngine getMetric()

context
entities

EvaluationModel

DBConnector getConnector()
setConnector(DBConnector)
updateReputation()

connector
RepType type

ReputationModel
CENTRALIZED
DISTRIBUTED

<<enumeration>>
RepType

getTRelationship()
setTRelationship(Trust Relationship)

TrustRelationship tr[]
BehaviourModel

setSeqOperator(Operator)
setParOperator(Operator)
calculateIndirectTrust(Entity, Entity)

TRelationship tr
Operator seqOp
Operator parOp

PropagationModel

updateEntry(Entity,
Value, DBUri)

DBuri
DBConnector

Trust Database

String getName()
setName(String)
DBConnector getConnector()
setConnector(DBConnector)
TrustMetric getMetric()
setMetric(TrustMetric)

name
id
connector
metric

Entitiy

Entity getTrustor()
Entity getTrustee()
setTrustor(Entity)
setTrustee(Entity)
TrustMetric getMetric()
setMetric(TrustMetric)

Entity trustor
Entity trustee
value
metric

TrustRelationship

compute()
variables

<<interface>>
TrustMetric

String getName()
Object getValue()
setName(String)
setValue(Object)

name
value

Variable

String getName()
setName(String)

name
Operator

compute(TrustRelationships[])
SeqOperator

compute(Object[])
ParOperator

compute()
SummationEngine

Float getWeight()
setWeight(Float)

weight
WeightedVariable

compute(TrustRelationships[])
MinimunFunction

compute(TrustRelationships[])
MaximunFunction

compute()
WeightedSummationEngine

compute()
SummationEngine

Float getWeight()
setWeight(Float)

weight
WeightedVariable

compute(TrustRelationships[])
MinimunFunction

compute(TrustRelationships[])
MaximunFunction

compute()
WeightedSummationEngine

compute()
variables

<<interface>>
TrustMetric

String getName()
Object getValue()
setName(String)
setValue(Object)

name
value

Variable

String getName()
setName(String)

name
Operator

compute(TrustRelationships[])
SeqOperator

compute(Object[])
ParOperator

String getName()
setName(String)
DBConnector getConnector()
setConnector(DBConnector)
TrustMetric getMetric()
setMetric(TrustMetric)

name
id
connector
metric

Entitiy

Entity getTrustor()
Entity getTrustee()
setTrustor(Entity)
setTrustee(Entity)
TrustMetric getMetric()
setMetric(TrustMetric)

Entity trustor
Entity trustee
value
metric

TrustRelationship

DBConnector getConnector()
setConnector(DBConnector)
updateReputation()

connector
RepType type

ReputationModel
CENTRALIZED
DISTRIBUTED

<<enumeration>>
RepType

getTRelationship()
setTRelationship(Trust Relationship)

TrustRelationship tr[]
BehaviourModel

setSeqOperator(Operator)
setParOperator(Operator)
calculateIndirectTrust(Entity, Entity)

TRelationship tr
Operator seqOp
Operator parOp

PropagationModel

updateEntry(Entity,
Value, DBUri)

DBuri
DBConnector

Trust Databasse

User-Defined Layer

Computation Layer

Relational Layer

Model Layer

External DB System

Fig. 3. Framework Architecture

A behaviour model contains a list of trust relationships and exposes methods to get
and set these relationships. Finally, a propagation model, in addition to containing a list
of trust relationships, it also contains a sequential operator and a parallel operator 1.
It exposes methods to set them and to calculate indirect trust relationships.

Relational Layer. This layer contains the basic building blocks onto which the models
of the upper layer are developed: entities and trust relationships.

Entities have a name, an automatically-generated identifier, a database connector and
a trust metric. The fact that each entity holds a database connector enables distributed
reputation systems, where each entity must store the reputation information regarding
another entity in a personal database. Likewise, as each entity holds a trust metric in-
stance, we allow each entity in the model to use a different trust metric to compute other
entities’ reputation.

Regarding trust relationships, they consist on a tuple that specify which is the entity
that places trust (trustor), the entity on which trust is placed (trustee), the extent to which
the trustor trusts the trustee (value), and the trust metric used to derive this value. Again,
having the metric as an instance variable in this class improves flexibility as each trust
relationship could be measured with different metrics.

1 In the conceptual model we called them concatenator and aggregator operators. However, as
we later implement a model where they are called sequential and parallel, we have adopted
this notation for the architecture.

A Development Framework for Trust Models Implementation 121

The decision that both an entity and a trust relationship may define their metrics
supports the implementation of more advanced trust models where the final trust value
that a trustor places on a given trustee might be determined by both the reputation of
the trustee and the trust relationship between the trustor and the trustee.

Computation Layer. Evaluation models rely on trust metrics to perform trust values
calculations. This is the layer in charge of such computation.

Basically, TrustMetric is an interface that a developer should implement to over-
ride the compute() method, where the trust calculation takes place. Trust metrics use
variables, through the class Variable, which have a name and a value, as well as meth-
ods to get and set these parameters. Operators for propagation models belong also to
this layer.

Note that trust metrics contain instances of variables. As entities and trust relation-
ships hold in turn instances of trust metrics, each entity or relationship might use different
variables, increasing the flexibility of the framework to accommodate complex models.

User-Defined Layer. This layer is created as users extend the computation layer to ac-
commodate their own definitions. As we explain in the next section, users can create new
computation engines (implementations of the TrustMetric interface) and new variables
to implement an important range of models. For illustration purposes, the architecture
includes a summation engine (that basically sums up the variables that it contains) and
a weighted summation engine (that adds a weight to each variable). The latter requires
creating a specialized variable class that adds the weight to its internal state.

Up to now, we have described the framework from a structural point of view. The be-
havioural view of the architecture is further analyzed in the following section,
where the framework is used to implement three evaluation models.

5 Instantiations of the Framework

In this section, we describe how the framework presented in Section 4 could address
the implementation of three simple evaluation models. These models have been chosen
because they are well-known as well as representative of the three types of evaluation
models discussed earlier. In the first part of this section, we briefly describe the models
to be implemented. In the second part, we actually use the framework to implement
the models. The goal of this section is to analyze the feasibility of the framework to
implement different evaluation models.

5.1 Models Description

Ebay Reputation Model [15]. Ebay 2 is probably the most famous auction-based on-
line marketplace where buyers and sellers interact. Once a transaction has finished,
buyers can evaluate sellers, expressing their satisfaction with regard to the transaction
outcome. This evaluation is made by providing positive or negative feedbacks. The rep-
utation score of a seller is computed by subtracting the negative feedbacks from the

2 www.ebay.com

www.ebay.com

122 F. Moyano, C. Fernandez-Gago, and J. Lopez

positive feedbacks. This model has its shortcomings, as expressed by Jøsang et al. [8],
since people are usually reluctant to provide a negative evaluation and prefer to solve
their problems off-line. Thus, the reputation score of a person is not very representa-
tive, since a person with 50 positive feedbacks and 10 negative feedbacks should be
considered rather more untrustworthy than another one with only 40 positive feedbacks
(although they would have the same reputation score under the model). On the other
hand, it is a simple, easy-to-understand model, and that is why we have chosen it for
illustration purposes.

Risk and Utility-based Behaviour Model. In this made-up model a trustor determines
his trust in a trustee by means of two factors: the risk and utility of the interaction. The
higher the risk (as perceived by the trustor), the lower the trust. Likewise, the higher the
utility (as perceived by the trustor), the higher the trust. This model can be considered
an oversimplification of Marsh’s computational model [10], where the author identifies
many parameters that influence trust and combine them into different formulas. In the
simplified version that we propose, the trustor performs the division between the utility
and the risk to calculate the trust in the trustee.

Propagation Model. Agudo et al. [1] present a graph-based propagation model that
allows to compute indirect trust relationships from direct ones. Let us suppose, in the
context of the previous model, that an entity e1 does not know the risk and utility values
of interacting with an entity e3. In this setting, there is not an explicit trust relationship
between these two entities. However, let us suppose that we know the risk and util-
ity values that e1 hold for e2, and the ones that e2 hold for e3 (that is, there is a trust
relationship between e1 and e2, and between e2 and e3). Then, we could use the prop-
agation model to compute the final trust value from e1 to e3, establishing a new trust
relationship.

5.2 Using the Framework

Ebay Reputation Model. Let us suppose a distributed setting in which three entities
(which do not know each other beforehand) have to perform several works. These enti-
ties can choose whether to execute a given work by themselves or to delegate it to the
entity with the higher reputation. Each time an entity delegates a work, it registers a lis-
tener through which the delegatee informs about the outcome of the work (e.g. success
or failure, time consumed, etc). Depending on these parameters, the delegator decides
whether to place a positive feedback or a negative feedback on the delegatee. Thus, we
are implementing the eBay reputation model onto another kind of application.

ReputationModel rm = new ReputationModel("Work Dispatching",
3, CENTRALIZED, SUMMATION);

rm.addVariable("Positive Feedback", 0);
rm.addVariable("Negative Feedback", 0);

This simple code snippet creates a reputation model under the context “Work Dis-
patching”. The next parameter represents the number of entities (three in our example).

A Development Framework for Trust Models Implementation 123

Next, we specify that the reputation model is centralized (and not distributed), and this
creates a database connector that acts as the interface to the reputation database (where
reputation scores for the entities are stored). If the reputation model was distributed,
there would be required to create a database connector for each entity created. The final
parameter is the computation engine, which in this case is a simple built-in summation
engine. As mentioned earlier, the framework is designed to allow different computation
engines for different entities. By default, however, all entities share the same computa-
tion engines and the same variables.

After initializing the reputation model, we add the variables required, namely the
positive and negative feedbacks, specifying their default values. The code that adds the
variables is shown next:

public class ReputationModel {

//If no entity is specified, when we add a
//variable, it is added to the computation
//engine of every entity
public void addVariable(String name, Object value) {

for (int i = 0; i < entities.size(); i++) {
entities.get(i).getComputationEngine().

addVariable(name, f);
}

}

// ... (Other methods)
}

From this point onwards, the developer accesses the framework functionalities through
the reputation model instance variable. The following code snippet shows the method
to execute when the listener is triggered.

//This is the method the listener invokes when a work is finished
public void onWorkFinished(Work w, Entity delegatee, Message m,

Time tConsumed) {

Variable nFeedback = rm.
getVariable("Negative Feedback", delegatee);

Variable pFeedback = rm.
getVariable("Positive Feedback", delegatee);

if (m.isError() || tConsumed > threshold) {
rm.setVariable("Negative Feedback", delegatee,

-(++nFeedback.getValue()));
} else {

rm.setVariable("Positive Feedback", delegatee,
++pFeedback.getValue());

}

rm.updateReputation(delegatee);
}

124 F. Moyano, C. Fernandez-Gago, and J. Lopez

Variables are updated depending on the outcome of the work dispatching, and there is
a call to updateReputation. The code for this method is very simple, as shown next:

public class ReputationModel {

public void updateReputation (Entity e) {
//connector is an instance variable of reputation

// model that allows accessing a persistent
// database for storing reputation scores
connector.updateEntry(e,

e.getComputationEngine().compute());
}

// ...(Other methods)
}

The updateReputation method will perform the computation of the reputation score
according to the summation computation engine and the variables defined. Furthermore,
it will update the central reputation database.

The summation engine overrides the compute() method of TrustMetric. This way,
the framework provides enough flexibility to easily implement different metrics. An-
other metric could use weights to give a higher relevance to negative feedbacks, for
instance. The developer would need to define two new classes: one extending TrustMet-
ric, namely WeightedSummation, and another one extending Variable, namely Weight-
edVariable. The latter must contain the weight associated to the variable, whereas the
former should override the method compute() of TrustMetric, as depicted in Figure 4.

In the code snippets from Figure 4., variables.size() equals two, since there are two
variables (positive and negative feedbacks). The upper code represents the computation
of the traditional eBay reputation model, whereas the other one describes a weighted
version of it.

Risk and Utility-Based Behaviour Model. In reputation models, according to the
framework design, variables and computation engines belong to entities. That is, each
entity has its own variables and computation engines. Now, an entity might hold a dif-
ferent risk and utility values for any other entity in the system. In order to support this,
the framework introduces the class TrustRelationship, which encapsulates the informa-
tion regarding a trust relationship, namely the trustor, the trustee, the trust value, and
the computation engine used to calculate the trust value. Thus, any trust relationship
remains perfectly specified by an instance of this class.

Let us assume a setting with three entities again. The code snippet that the developer
has to write is the following:

A Development Framework for Trust Models Implementation 125

addVariable()
compute()

variables
Trust Metric

int compute()

Summation
Engine

float compute()
weightedVariables

WeightedSummation
Engine

id
name
value

Variable

setWeight(float)
float getWeight()

weight
WeightedVariable

Fig. 4. Creation of Metrics and Variables

BehaviourModel bm = new BehaviourModel("Work Dispatching");

//If entities do not exist, they are created in the
//addTrustRelationship method. This process is
//tedious and could better done through
//configuration files or GUIs
bm.addVariable(bm.addTrustRelationship("e1", "e2"),

"Risk", 0,3);
bm.addVariable(bm.addTrustRelationship("e1", "e2"),

"Utility", 0,9);
bm.addVariable(bm.addTrustRelationship("e2", "e3"),

"Risk", 0,6);
bm.addVariable(bm.addTrustRelationship("e2", "e3"),

"Utility", 0,4);

// Set engine for all trust relationships
bm.setComputationEngine(riskUtilityEngine);
bm.compute(bm.getTrustRelationship("e1", "e2"));
bm.compute(bm.getTrustRelationship("e2", "e3"));

The computation engine that implements the trust metric, namely riskUtilityEngine
must be defined by the developer, overriding the compute() method of TrustMetric. In
our example, the engine would only need to retrieve the variable named Risk and divide
it by the variable Utility.

126 F. Moyano, C. Fernandez-Gago, and J. Lopez

Note that after the execution of the previous code, there is a trust relationship between
e1 and e2, and between e2 and e3. We now proceed to use a propagation model to create
a trust relationship between e1 and e3, as described next.

Propagation Model. The model proposed by Agudo et al. [1] uses a sequential opera-
tor to compute the trust value between two entities in a given trust chain, and a parallel
operator to compute a global trust value between two entities linked by multiple trust
chains. The same concepts are used in other trust models, such as Jøsang’s belief model
[7], which disseminates opinions through discounting and consensus operators.

Consider the same example of the previous model. Let us assume that the developer
wants to compute a trust value between e1 and e3. The code he should write is the
following:

PropagationModel pm = new PropagationModel(bm, MIN, MAX);
pm.calculateIndirectTrust("e1", "e3");

In this example, we have chosen the built-in minimun and maximum functions as se-
quential and parallel operators, respectively. However, as there is only one trust path
from e1 to e3, the parallel operator is not necessary and will not be applied.

Also note that the first argument of the constructor is the instance of the previous
model (bm), since the propagation model needs access to the trust relationships previ-
ously defined.

The method calculateIndirectTrust is described next:

public void calculateIndirectTrust(Entity e1, Entity e3) {
float[] values;
TrustRelationship[] trustChains =

retrieveTrustChains(tr, e1, e3);
for (int i = 0; i < trustChains.size(); i++) {

values[i] = sequentialOp.compute(trustChains[i]);
}
tr.addTrustRelationship (e1, e3,

parallelOp.compute(values));
}

The sequentialOp and parallelOp are instance variables that store an instance of the
operators, which might be defined by the user extending the corresponding abstract
classes. Basically, the method retrieves all the trust paths between e1 and e3. Then, it
applies the sequential operator to every path, and finally, it applies the parallel operator
to the obtained values.

6 Conclusion and Future Work

There is a huge amount of different trust models proposed in the literature. These mod-
els, however, are often designed to work in ad-hoc environments, and to be plugged
into already-existing applications. In this paper, we have presented an object-oriented

A Development Framework for Trust Models Implementation 127

development framework to assist developers during the implementation of applications
that might require support from trust or reputation models. As the application is devel-
oped using the framework, trust models are aligned with the design of the application
and they can exploit all the data available to the application.

In order to achieve this, we have classified the knowledge about trust models by
means of knowledge graphs in a domain analysis. This analysis has helped us to elicit
the requirements that the framework should meet, and also to identify several classes, at-
tributes and methods, from which we designed a first version of the architecture. Finally,
we have proved the feasibility of the framework by giving guidelines on the implemen-
tation of three different evaluation models: the eBay reputation model, an oversimplified
version of Marsh’s model, and a propagation model.

As future work, we intend to extend the framework in order to accommodate several
models features that are often found in the literature. First, we are interested in support-
ing the implementation of models where the trust values are represented by a tuple of
values (multiple dimensions) rather than by a single value. We intend to allow defining
a different metric for each dimension in order to provide greater flexibility.

Some trust models yield an uncertainty value together with the trust value, in order
to inform other entities about how certain the trust value should be considered. We plan
to add support for this feature as well. Also, roles played by entities or the membership
of entities to a given group are factors taken into account in other models to determine
trust, and therefore we intend to include this feature in the near future too.

Finally, we aim to add more complex built-in computation engines, including
beta-probability distributions and fuzzy engines.

Acknowledgements. This work has been partially funded by the European Commis-
sion through the FP7 project NESSoS under grant agreement number 256980, and by
the Spanish Ministry of Science and Innovation through the research projects ARES
(CSD2007-00004) and SPRINT (TIN2009-09237). The first author is funded by the
Spanish Ministry of Education through the National F.P.U. Program.

References

1. Agudo, I., Fernandez-Gago, C., Lopez, J.: A model for trust metrics analysis. In: Furnell,
S.M., Katsikas, S.K., Lioy, A. (eds.) TrustBus 2008. LNCS, vol. 5185, pp. 28–37. Springer,
Heidelberg (2008)

2. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: IEEE Symposium
on Security and Privacy, pp. 164–173 (1996)

3. Cahill, V., Gray, E., Seigneur, J.-M., Jensen, C.D., Chen, Y., Shand, B., Dimmock, N., Twigg,
A., Bacon, J., English, C., Wagealla, W., Terzis, S., Nixon, P., di Marzo Serugendo, G., Bryce,
C., Carbone, M., Krukow, K., Nielsen, M.: Using trust for secure collaboration in uncertain
environments. IEEE Pervasive Computing 2(3), 52–61 (2003)

4. Gambetta, D.: Can we trust trust? In: Trust: Making and Breaking Cooperative Relations, pp.
213–237. Basil Blackwell (1988)

5. Har Yew, C.: Architecture Supporting Computational Trust Formation. PhD thesis,
University of Western Ontario, London, Ontario (2011)

128 F. Moyano, C. Fernandez-Gago, and J. Lopez

6. Huynh, T.D.: A Personalized Framework for Trust Assessment. In: ACM Symposioum on
Applied Computing - Trust, Reputation, Evidence and other Collaboration Know-how Track,
vol. 2, pp. 1302–1307 (December 2008)

7. Jøsang, A.: A logic for uncertain probabilities. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 9(3), 279–311 (2001)

8. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service
provision. Decision Support Systems 43(2), 618–644 (2007)

9. Lee, A.J., Winslett, M., Perano, K.J.: TrustBuilder2: A reconfigurable framework for trust
negotiation. In: Ferrari, E., Li, N., Bertino, E., Karabulut, Y. (eds.) IFIPTM 2009. IFIP AICT,
vol. 300, pp. 176–195. Springer, Heidelberg (2009)

10. Marsh, S.: Formalising Trust as a Computational Concept. PhD thesis, University of Stirling
(April 1994)

11. Harrison McKnight, D., Chervany, N.L.: The meanings of trust. Technical report, University
of Minnesota, Management Information Systems Research Center (1996)

12. Miller, K.W., Voas, J., Laplante, P.: In Trust We Trust. Computer 43, 85–87 (2010)
13. Moyano, F., Fernandez-Gago, C., Lopez, J.: A conceptual framework for trust models. In:

Fischer-Hübner, S., Katsikas, S., Quirchmayr, G. (eds.) TrustBus 2012. LNCS, vol. 7449,
pp. 93–104. Springer, Heidelberg (2012)

14. Olmedilla, D., Rana, O.F., Matthews, B., Nejdl, W.: Security and trust issues in seman-
tic grids. In: Proceedings of the Dagsthul Seminar, Semantic Grid: The Convergence of
Technologies, vol. 5271 (2005)

15. Resnick, P., Zeckhauser, R.: Trust among strangers in Internet transactions: Empirical
analysis of eBay’s reputation system. In: Baye, M.R. (ed.) The Economics of the Internet
and E-Commerce. Advances in Applied Microeconomics, vol. 11, pp. 127–157. Elsevier
Science (2002)

16. Siefert, F., Anders, G., Ungerer, T., Reif, W., Kiefhaber, R.: The Trust-Enabling Middleware:
Introduction and Application. Technical report, Institut fur Informatik Universitat Augsburg
(March 2011)

17. Ruohomaa, S., Kutvonen, L.: Trust management survey. In: Herrmann, P., Issarny, V., Shiu,
S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 77–92. Springer, Heidelberg (2005)

18. Suryanarayana, G., Diallo, M.H., Erenkrantz, J.R., Taylor, R.N.: Architectural Support
for Trust Models in Decentralized Applications. In: Proceeding of the 28th International
Conference on Software Engineering, pp. 52–61. ACM Press, New York (2006)

	Building Trust and Reputation In: A Development Framework for Trust Models Implementation
	Introduction
	Related Work
	Trust and Reputation: A Domain Analysis
	Definitions
	Conceptual Model

	Trust and Reputation Development Framework
	Framework Requirements
	Framework Architecture

	Instantiations of the Framework
	Models Description
	Using the Framework

	Conclusion and Future Work
	References

