
Boosting Model Checking

to Analyse Large ARBAC Policies

Silvio Ranise1, Anh Truong1, and Alessandro Armando1,2

1 Security and Trust Unit, FBK-Irst, Trento, Italia
2 DIST, Università degli Studi di Genova, Italia

Abstract. The administration of access control policies is a task of
paramount importance for distributed systems. A crucial analysis prob-
lem is to foresee if a set of administrators can give a user an access
permission. We consider this analysis problem in the context of the
Administrative Role-Based Access Control (ARBAC), one of the most
widespread administrative models. Given the difficulty of taking into ac-
count the effect of all possible administrative actions, automated analysis
techniques are needed. In this paper, we describe how a model checker
can scale up to handle very large ARBAC policies while ensuring com-
pleteness. An extensive experimentation shows that an implementation
of our techniques performs significantly better than Mohawk, a recently
proposed tool that has become the reference for finding errors in ARBAC
policies.

1 Introduction

The administration of access control policies is a task of paramount importance
for the flexibility and security of many distributed systems. For flexibility, ad-
ministrative actions are carried out by several security officers. For security, the
capabilities of performing such operations must be limited to selected parts of the
access control policies since officers can only be partially trusted. Indeed, flexi-
bility and security are opposing forces and avoiding under- or over-constrained
specifications of administrative actions is of paramount importance. In this re-
spect, it is crucial to foresee if a user can get a certain permission by a sequence
of administrative actions executed by a set of administrators. Since it is difficult
to take into account the effect of all possible administrative actions, push-button
analysis techniques are needed.

Role-Based Access Control (RBAC) [12] is one of the most widespread au-
thorization model and Administrative RBAC (ARBAC) [5] is the corresponding
widely used administrative model. In RBAC, access control policies are specified
by assigning users to roles that in turn are assigned to permissions. ARBAC
allows for the specification of rules that permit to modify selected parts of a
RBAC policy. The analysis problem consists of establishing if a certain user can
be assigned to a certain role (or permission) by a sequence of administrative
actions. Several automated analysis techniques (see, e.g., [11,10,14]) have been
developed for solving this problem in the ARBAC model. Recently, a tool called
asasp [2] has been shown (in [4]) to perform better than the state-of-the-art tool

A. Jøsang, P. Samarati, and M. Petrocchi (Eds.): STM 2012, LNCS 7783, pp. 273–288, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

274 S. Ranise, A. Truong, and A. Armando

rbacpat [8] on the set of benchmark problems in [14] and (in [3]) to be able
to tackle more expressive ARBAC policies that rbacpat cannot handle. More
recently, another tool called Mohawk has been shown (in [9]) to scale much
better than rbac-pat on the problems in [14] and more complex ones.

In this paper, we investigate how the model checking techniques underlying
asasp can scale up to solve the largest problem instances in [9]. In fact, pre-
liminary experiments showed that asasp can only handle instances of moderate
size in [9]. This has lead us to develop a new version of asasp, called asaspXL,
with the goal of boosting the model checking techniques underlying asasp and
guaranteeing to find errors in ARBAC policies if they exist. This is in contrast
with the approach of Mohawk, which—as said in [9]— is incomplete, i.e. it
may miss errors in a buggy policy. An extensive experimental comparison on the
benchmark problems in [9] shows that asaspXL performs significantly better
than Mohawk.

Plan of the paper. Section 2 introduces the ARBAC model and the related anal-
ysis problem. Section 3 briefly reviews the model checking technique underlying
asasp. Section 4 describes the techniques that we have designed for scalability.
Section 5 summarizes the findings of our experiments. Section 6 concludes.

2 Administrative Role-Based Access Control

In Role-Based Access Control (RBAC) [12], access decisions are based on the
roles that individual users have as part of an organization. Permissions are
grouped by role name and correspond to various uses of a resource. Roles can
have overlapping responsibilities and privileges, i.e. users belonging to differ-
ent roles may have common permissions. To allow for compact specifications of
RBAC policies, role hierarchies are used to reflect the natural structure of an
enterprise and make the specification of policies more compact by requiring that
one role may implicitly include the permissions that are associated with others.

RBAC policies need to be maintained according to the evolving needs of the
organization. For flexibility and scalability, large systems usually require several
administrators, and thus there is a need not only to have a consistent RBAC
policy but also to ensure that the policy is modified by administrators who are
allowed to do so. Several administrative frameworks have been proposed. One
of the most popular administrative frameworks is Administrative RBAC (AR-
BAC) [5] that controls how RBAC policies may evolve through administrative
actions that assign or revoke user memberships into roles. Since administrators
can be only partially trusted, administration privileges must be limited to se-
lected parts of the RBAC policies, called administrative domains. The ARBAC
model defines administrative domains by using RBAC itself to control how se-
curity officers can delegate (part of) their administrative permissions to trusted
users. Despite such restrictions, it is very difficult to foresee if a subset of the
security officers can maliciously (or inadvertently) assign a role to an untrusted
user that enable him/her to get access to security-sensitive resources.

Boosting Model Checking to Analyse Large ARBAC Policies 275

Formalization. Let U be a set of users, R a set of roles, and P a set of permis-
sions. Users are associated to roles by a binary relation UA ⊆ U × R and roles
are associated to permissions by another binary relation PA ⊆ R × P . A role
hierarchy is a partial order � on R, where r1 � r2 means that r1 is more senior
than r2 for r1, r2 ∈ R. A user u is a member of role r when (u, r) ∈ UA. A user
u has permission p if there exists a role r ∈ R such that (p, r) ∈ PA and u is a
member of r. A RBAC policy is a tuple (U,R, P, UA, PA,�).

Usually (see, e.g., [14]), administrators may only update the relation UA while
PA and � are assumed constant. An administrative domain is specified by a
pre-condition, i.e. a finite set of expressions of the forms r or r (for r ∈ R).
A user u ∈ U satisfies a pre-condition C if, for each � ∈ C, u is a member
of r when � is r or u is not a member of r when � is r for r ∈ R. Permission
to assign users to roles is specified by a ternary relation can assign containing
tuples of the form (Ca, C, r) where Ca and C are pre-conditions, and r a role.
Permission to revoke users from roles is specified by a binary relation can revoke
containing tuples of the form (Ca, r) where Ca is a pre-condition and r a role. In
both cases, we say that Ca is the administrative pre-condition, C is a (simple)
pre-condition, r is the target role, and a user ua satisfying Ca is the admin-
istrator. When there exist users satisfying the administrative and the simple
(if the case) pre-conditions of an administrative action, the action is enabled.
The relation can revoke is only binary because simple pre-conditions are useless
when revoking roles (see, e.g., [14]). The semantics of the administrative actions
in ψ := (can assign , can revoke) is given by the binary relation →ψ defined as
follows: UA →ψ UA′ iff there exist users ua and u in U such that either (i)
there exists (Ca, C, r) ∈ can assign , ua satisfies Ca, u satisfies C (i.e. (Ca, C, r)
is enabled), and UA′ = UA ∪ {(u, r)} or (ii) there exists (Ca, r) ∈ can revoke ,
ua satisfies Ca (i.e. (Ca, r) is enabled), and UA′ = UA \ {(u, r)}. A run of
the administrative actions in ψ := (can assign , can revoke) is a possibly infinite
sequence UA0, UA1, ..., UAn, ... such that UAi →ψ UAi+1 for i ≥ 0.

A pair (ug, Rg) is called a (RBAC) goal for ug ∈ U and Rg a finite set of roles.
The cardinality |Rg| of Rg is the size of the goal. Given an initial RBAC policy
UA0, a goal (ug, Rg), and administrative actions ψ = (can assign , can revoke);
(an instance of) the user-role reachability problem, identified by the tuple 〈UA,ψ,
(ug, Rg)〉, consists of checking if there exists a finite sequence UA0, UA1, ..., UAn
(for n ≥ 0) where (i) UAi →ψ UAi+1 for each i = 0, ..., n − 1 and (ii) ug is a
member of each role of Rg in UAn.

The user-role reachability problem defined here is the same of that in [14,9].
In the rest of the paper, we focus on problem instances where U and R are finite,
P plays no role, and � can be ignored (see, e.g., [13]). Thus, a RBAC policy is
a tuple (U,R,UA) or simply UA when U and R are clear from the context.

3 Model Checking Modulo Theories and ARBAC Policies

Prologue. Model Checking Modulo Theories (MCMT) [7] is a framework to
solve reachability problems for infinite state systems that can be represented by
transition systems whose set of states and transitions are encoded as constraints

276 S. Ranise, A. Truong, and A. Armando

in first-order logic. Such symbolic transition systems have been used as abstrac-
tions of parametrised protocols, sequential programs manipulating arrays, timed
system, etc (see again [7] for an overview).

The main idea underlying the MCMT framework is to use a backward reach-
ability procedure that repeatedly computes pre-images of the set of goal states,
that is usually obtained by complementing a certain safety property that the
system should satisfy. The set of backward reachable states of the system is ob-
tained by taking the union of the pre-images. At each iteration of the procedure,
it is checked whether the intersection with the initial set of states is non-empty
(safety test) and the unsafety of the system (i.e. there exists a (finite) sequence
of transitions that leads the system from an initial state to one satisfying the
goal) is returned. Otherwise, when the intersection is empty, it is checked if the
set of backward reachable states is contained in the set computed at the previous
iteration (fix-point test) and the safety of the system (i.e. no (finite) sequence
of transitions leads the system from an initial state to one satisfying the goal)
is returned. Since sets of states and transitions are represented by first-order
constraints, the computation of pre-images reduces to simple symbolic manipu-
lations and testing safety and fix-point to solving a particular class of constraint
satisfiability problems, called Satisfiability Modulo Theories (SMT) problems,
for which scalable and efficient SMT solvers are currently available (e.g., Z3 [1]).

Enter asasp. In [4,3], it is studied how the MCMT approach can be used to
solve (variants of) the user-role reachability problem. On the theoretical side,
it is shown that the backward reachability procedure described above decides
(variants of) the user-role reachability problem. On the practical side, extensive
experiments have shown that an automated tool, called asasp [2] implementing
(a refinement of) the backward reachability procedure, has a good trade-off be-
tween scalability and expressiveness. The success of asasp in terms of scalability
is discussed in [4]: it performs significantly better than the state-of-the-art tool
rbac-pat [8] on a set of synthetic instances of the user-role reachability problem
proposed in [14]. There are two main reasons for the efficiency of asasp: (1) the
use of the Z3 SMT solver for quickly discharging the proof obligations encoding
safety and fix-point tests and (2) the use of a divide et impera heuristics to de-
compose the goal of a user-role reachability problems into sub-goals (see [2] for
more on this issue). The success of asasp in terms of expressiveness is reported
in [3]: it successfully solves instances of the user-role reachability problems in
which role hierarchies and attributes (ranging over infinite sets of values) are
used to define administrative domains that rbac-pat is not capable of tackling
because of the following two reasons. First, the separate administration restric-
tion (see, e.g., [14]) does not hold for the variants of the user-role reachability
problem considered in [3]. Such a restriction—that distinguishes administrators
from simple users—allows to solve instances of user-role reachability problems by
considering only one user at a time. Second, the assumption that the cardinality
of the set U of users is bounded is also not satisfied. Despite this, designers of
administrative rules can still know, by using asasp, whether security properties
are satisfied or not, regardless of the number of users.

Boosting Model Checking to Analyse Large ARBAC Policies 277

Enter Mohawk. Immediately after asasp, a new tool, called Mohawk [9], has
been proposed for the analysis of ARBAC policies especially tuned to error-
finding rather than verification (as it is the case of both rbac-pat and asasp).
In [9], it is shown that Mohawk outperforms rbac-pat on the problems in [14]
and on a new set of much larger instances of the user-role reachability problem.
It was natural to run asasp on these new benchmark problems: rather disap-
pointingly, it could tackle problem instances containing up to 200 roles and 1,000
administrative operations but it was unable to scale up and handle the largest
instances containing 80,000 roles and 400,000 administrative operations. This
is in line with the following observation of [9]: “model checking does not scale
adequately for verifying policies of very large sizes.” The reason of the bad scal-
ability of asasp can be traced back to the fact that it was designed to handle
instances of the user-role reachability problems with a relatively compact but
complex specification (e.g., involving attributes ranging over infinite domains).
In contrast, the problem instances in [9] are quite large with very simple specifi-
cations in which there is a bounded but large number of roles, the role hierarchy
is not used, and the separate administration restriction holds. (Notice that the
absence of a role hierarchy is without loss of generality; see, e.g., [13].)

Exit asasp Enter mcmt. What were we supposed to do to make a tool based
on the MCMT approach capable of efficiently solving the user-role reachability
problem instances in [9]? One possibility was to extend asasp with new heuris-
tics to obtain the desired scalability. The other option was to re-use (possibly
off-the-shelf) a well-engineered model checker in which to encode the user-role
reachability problem for ARBAC policies. Our choice was to build a new analysis
tool on top of mcmt [2], the first implementation of the MCMT approach. The
advantage of this choice are twofold. First, we do not have to undergo a major
re-implementation of asasp that takes time and may insert bugs, but we only
need to write a translator from instances of the user-role reachability problem
to reachability problems in mcmt input language, a routine programming task.
Second, we can re-use a better engineered incarnation of the MCMT approach
that supports some features (e.g., the reuse of previous computations) that may
be exploited to significantly improve performances, as we will see in Section 4.

mcmt at Work. In [2], the development of asasp is justified with the fact
that it was not possible to encode user-role reachability problems in the input
language of mcmt because (a) it supports only unary relations and (b) it does
not allow transitions to have more than two parameters. Limitation (a) prevents
the representation of the relation UA ⊆ U × R and limitation (b) does not
allow to handle role hierarchies and to overcome the separate administration
restriction (see [4] for a discussion about these issues). In this respect, the limited
expressiveness required to specify the ARBAC policies in [9] makes the two
limitations above unproblematic. Concerning (a), it is not necessary to use the
binary relation UA to record user-role assignments, since the set R of roles
is finite. It is sufficient to replace UA with a finite collection of sets, one per
role. Formally, let R = {r1, ..., rn} for n ≥ 1, define Uri = {u|(u, ri) ∈ UA} for
i = 1, ..., n. Straightforward modifications to the definition of→ψ (for ψ a pair of

278 S. Ranise, A. Truong, and A. Armando

relations can assign and can revoke)—given in Section 2—allows one to replace
UA with the Uri ’s. Concerning (b), since the role-hierarchy has been eliminated
and the separate administration restriction is enforced, the definition of →ψ,
for a given tuple in can assign or can revoke, is parametric with respect to just
two users, namely the administrator and the user to which the administrative
action is going to be applied. These observations enable us to use mcmt for the
automated analysis of the instances of the user-role reachability problem in [9].
To this end, we have written a translator of instances of the user-role reachability
problems to reachability problems expressed in mcmt input language. To keep
technicalities to a minimum, we illustrate the translation on a problem from [14].

Example 1. According to [14], we consider just one user and omit administrative
users and roles so that the tuples in can assign are pairs composed of a simple
pre-condition and a target role and the pairs in can revoke reduce to target roles
only. Let U = {u1}, R = {r1, ..., r8}, initially UA := {(u1, r1), (u1, r4), (u1, r7)},
the tuples ({r1}, r2), ({r2}, r3), ({r3, r4}, r5), ({r5}, r6), ({r2}, r7), and ({r7}, r8)
are in can assign whereas the elements (r1), (r2), (r3), (r5), (r6), and (r7) are
in can revoke. The goal of the problem is (u1, {r6}).

To formalize this problem instance in mcmt, we introduce a unary relation
ur per role r ∈ R. The initial relation UA can thus be expressed as

∀x.
[
ur1(x) ↔ x = u1 ∧ ur4(x) ↔ x = u1 ∧ ur7(x) ↔ x = u1 ∧ ura(x) ↔ x = u2∧
¬ur2(x) ∧ ¬ur3(x) ∧ ¬ur5(x) ∧ ¬ur6(x)

]
.

For instance, ({r5}, r6) in can assign is formalized as

∃x. [ur5(x) ∧ ∀y.(u′
r6(y) ↔ (y = x ∨ ur6(y)))

]

and (r1) in can revoke as ∃x. [ur1(x) ∧ ∀y.(u′
r1(y) ↔ (y �= x ∧ ur1(y)))

]
,

where ur and u′r indicate the value of Ur immediately before and after, respec-
tively, of the execution of the administrative action (we also have omitted—
for the sake of compactness—identical updates, i.e. a conjunct ∀y.(u′r(y) ↔
ur(y)) for each role r distinct from the target goal in the tuple of can assign or
can revoke). The other administrative actions are translated in a similar way.
The goal can be represented as ∃x.ur6(x) ∧ x = u1. The pre-image of the goal
with respect to ({r5}, r6) is the set of states from which it is possible to reach
the goal by using the administrative action ({r5}, r6). This is formalized as the
formula

∃u′
r1 , ..., u

′
r8 .(∃x.(u′

r6(x) ∧ x = u1) ∧ ∃x. [ur5(x) ∧ ∀y.(u′
r6(y) ↔ (y = x ∨ ur6(y)))

]
),

that can be shown equivalent to ∃x.ur5(x) ∧ x = u1 (see [4] for details). On
this problem, mcmt returns unreachable and we conclude that (u1, {r6}) is
unreachable, confirming the result of [14]. ��

Boosting Model Checking to Analyse Large ARBAC Policies 279

4 MCMT’s New Clothes for Analysing ARBAC Policies

The design of the techniques used to enable mcmt to scale up to handle the
largest instances of the user-role reachability problem in [9] have been guided by
the following two simple observations:

(O1) The main source of complexity is the huge number of administrative op-
erations; thus, for scalability, the original problem must be split into smaller
sub-problems by using a heuristics that tries to maximize the probability of
mcmt to return reachable.

(O2) The invocations of mcmt are computationally very expensive; thus, heuris-
tics to minimize their numbers and reuse the findings of state space explo-
rations of previous sub-problems to speed up the solution of newer ones are
of paramount importance for scalability.

The main idea is to generate a sequence P0, ..., Pn−1, Pn of problem instances
with a fixed goal and an increasingly larger sub-set of the administrative oper-
ations. Key to speed up the solution of problem Pk+1 (for 0 ≤ k < n) is the
capability of mcmt to reuse the information gathered when exploring the search
spaces of problems P0, ..., Pk . Figure 1 shows the architecture of the tool, called
asaspXL, in which we have implemented these ideas.

It takes as input an instance of the user-role reachability problem (in the for-
mat of Mohawk) and returns reachable, when there exists a finite sequence of
administrative operations that lead from the initial RBAC policy to one satisfy-
ing the goal, and unreachable otherwise. We now describe the internal workings
of the various modules of asaspXL except for the Translator and mcmt that
have already been discussed in Section 3.

4.1 Useful Administrative Operations

After observation (O1), the idea is to extract increasingly larger sub-sets of
the tuples in ψ so as to generate a sequence of increasingly more precise

Fig. 1. asaspXL architecture

280 S. Ranise, A. Truong, and A. Armando

approximations of the original instance of the user-role reachability problem.
The heuristics to do this is based on the following notion of an administrative
action being useful.

Definition 1. Let ψ be administrative actions and Rg a set of roles. A tuple
in ψ is 0-useful iff its target role is in Rg. A tuple in ψ is k-useful (for k > 0)
iff it is (k − 1)-useful or its target role occurs (possibly negated) in the simple
pre-condition of a (k−1)-useful transition. A tuple t in ψ is useful iff there exists
k ≥ 0 such that t is k-useful.

The set of all k-useful tuples in ψ = (can assign, can revoke) is denoted with
ψ≤k = (can assign≤k, can revoke≤k). It is easy to see that can assign≤k ⊆
can assign≤k+1 and can revoke≤k ⊆ can revoke≤k+1 (abbreviated by ψ≤k ⊆
ψ≤k+1) for k ≥ 0. Since the sets can assign and can revoke in ψ are bounded,

there must exists a value k̃ ≥ 0 such that ψ≤k̃ = ψ≤k̃+1 (that abbreviates

ψ≤k̃ ⊆ ψ≤k̃+1 and ψ≤k̃+1 ⊆ ψ≤k̃) or, equivalently, ψ≤k̃ is the (least) fix-point,
also denoted with lfp(ψ), of useful tuples in ψ. Indeed, a tuple in ψ is useful iff
it is in lfp(ψ).

Example 2. Let ψ be the administrative actions in Example 1 and Rg := {r6}.
The sets of k-useful tuples for k ≥ 0 are the following:

ψ≤0 := ({({r5}, r6)}, {r6}) ψ≤1 := ψ≤0 ∪ ({({r3, r4}, r5)}, {r5})
ψ≤2 := ψ≤1 ∪ ({({r2}, r3)}, {r3}) ψ≤3 := ψ≤2 ∪ ({({r1}, r2)}, {r2})
ψ≤4 := ψ≤3 ∪ (∅, {r1}) ψ≤k := ψ≤4 for k > 4,

where (can assign1, can revoke1) ∪ (can assign2, can revoke2) abbreviates
(can assign1 ∪ can assign2, can revoke1 ∪ can revoke2). Notice that ψ≤4 =
lfp(ψ).

Now, consider the following instance of the user-role reachability problem:
〈UA,ψ≤4, (u1, {r6})〉 where UA the initial user-role assignment relation in Ex-
ample 1. After translation, mcmt returns unreachable on this problem instance.
We obtain the same result if we run the tool on the translation of the following
problem instance: 〈UA,ψ≤4, (u1, {r6})〉. Interestingly, if we ask mcmt to return
also the sets of user-role assignment relations that have been explored during
backward reachability for the two instances (this feature of mcmt will be dis-
cussed in Section 4.3 below), we immediately realize that they are identical. This
is not by accident as the following proposition shows. ��

Proposition 1. A goal (ug, Rg) is unreachable from an initial user-role assign-
ment relation UA by using the administrative operations in ψ iff (ug, Rg) is
unreachable from UA by using the administrative operations in lfp(ψ).

The proof of this fact consists of showing that the pre-image of the fix-point set
of backward reachable states with respect to any of the administrative operations
in ψ but not in lfp(ψ) (denoted with ψ \ lfp(ψ)) is redundant and can thus be
safely discarded. We illustrate this with an example.

Boosting Model Checking to Analyse Large ARBAC Policies 281

Example 3. Consider again the problem instance in Example 1. The set of back-
ward reachable states that mcmt visits during backward reachability is

∃x.
[
(ur6(x) ∧ x = u1) ∨ (ur5(x) ∧ x = u1) ∨ (ur3(x) ∧ ¬ur4(x) ∧ x = u1)∨
(ur2(x) ∧ ¬ur4(x) ∧ x = u1) ∨ (ur1(x) ∧ ¬ur4(x) ∧ x = u1)

]
, (1)

obtained by considering the tuples in ψ≤4 only, as observed in Example 2. (It is
possible to tell mcmt to save to a file the symbolic representation—such as (1)—
of the set of backward reachable states visited during backward reachability.)
Now, the pre-image of (1) with respect to ({r7}, r8) ∈ ψ \ ψ≤4 is the formula
(1)∧∃x.ur7(x) as r8 does not occur in (1). Indeed, such a formula trivially implies
(1) (or, equivalently, the conjunction of (1) with the negation of (1) ∧ ∃x.ur7(x)
is unsatisfiable) and the fix-point test is successful, confirming that (1) is also
a fix-point with respect to the administrative operations in ψ≤4 ∪ {({r7}, r8)}.
Similar observations hold for the other tuples in ψ \ψ≤4 allowing us to conclude
that (1) is also a fix-point with respect to ψ. ��
A formal proof of the proposition can be obtained by adapting the frame-
work in [4] to the slightly different symbolic representation for ARBAC policies
adopted in this paper.

The module Administrative action filter in Figure 1 uses the notion of
k-useful tuple to build a sequence of increasingly precise instances of user-role
reachability problem. Such a sequence is terminated either when the goal is found
to be reachable or when the fix-point of useful administrative operations is de-
tected (by Proposition 1, this is enough to conclude that a goal is unreachable
with respect to the whole set of administrative operations). Given an instance
〈UA,ψ, (ug, Rg)〉 of the user-role reachability problem, the Administrative
action filter works as follows:

1. Let k := 0 and UT be the set of k-useful tuples in ψ
2. Repeat

(a) Translate the instance 〈UA,UT , (ug, Rg)〉 of the user-role reachability
problem to mcmt input language

(b) If mcmt returns reachable, then return reachable

(c) Let k := k + 1, PUT := UT , and UT be the set of k-useful tuples in ψ

3. Until PUT = UT
4. Return unreachable

Initially, UT contains ψ≤0. At iteration k ≥ 1, UT stores ψ≤k and PUT contains
ψ≤(k−1). For k ≥ 0, the instance 〈UA,ψ≤k, (ug, Rg)〉 of the user-role reachability
problem is translated to mcmt input language (step 2(a)). In case mcmt discov-
ers that the goal (ug, Rg) is reachable with the sub-set ψ≤k of the administrative
operations, a fortiori (ug, Rg) is reachable with respect to the whole set ψ, and the
module returns (step 2(b)). Otherwise, a new instance of the user-role reachability
problem is considered at the next iteration if the condition at step 3 does not hold,
i.e. PUT does not yet store lfp(ψ). If the condition at step 3 holds, by Proposi-
tion 1, we can exit the loop and return the unreachability of the goal with respect

282 S. Ranise, A. Truong, and A. Armando

to the whole set ψ of administrative operations. The termination of the loop is
guaranteed by the existence of lfp(ψ). Notice how two instances of the user-role
reachability problem at iterations k and k + 1 only differ for the administrative
actions in ψ≤(k+1) \ ψ≤k while they share those in ψ≤k since ψ≤k ⊆ ψ≤(k+1).

4.2 Reducing the Number of Invocations to the Model Checker

Recall the first part of observation (O2) that suggests to find ways to reduce the
number of invocations to mcmt. Our idea is to exploit two interesting capabilities
of mcmt: (a) saving (to a file) the symbolic representation of the state space
explored when the goal is unreachable and (b) returning a sequence of transitions
that lead from the initial state to a state satisfying the goal.

The crucial observation to exploit capability (a) is that the negation of the
formula representing the (fix-point) set F of backward reachable states (e.g.,
formula (1) in Example 3 above) is the (strongest) invariant whose intersection
with the set G of states satisfying the goal is empty (see [7] for more on this
point). The negation of the formula representing F (together with the other
components of the instance of the user-role reachability problem that has gener-
ated it) is stored by the Learning (Post-Processing) module to the database
labelled Invariants in Figure 1 and it is used in the module Pre-processing
(see Figure 1) as follows. Assume that a new instance of the user-role reachabil-
ity problem shares the same initial user-role assignment relation and the same
set of administrative operations associated to a formula ϕ stored in the database
Invariants. If the formula representing the new goal is such that in conjunction
with ϕ is unsatisfiable, then we can immediately conclude that also the new goal
is unreachable. We illustrate this with an example.

Example 4. Consider again the instance of the user-role reachability problem
in Example 1 and formula (1) representing the the symbolic representation of
the set of backward reachable states that have been visited during backward
reachability. The conjunction of (1) with that representing the initial relation
UA (reported in Example 1) is unsatisfiable (safety check) and mcmt returns
unreachable (as anticipated in Example 1). At this point, the negation of (1),
i.e.

∀x.
[
(x = u1 → ¬ur6(x)) ∧ (x = u1 → ¬ur5(x)) ∧ (x = u1 ∧ ur3(x) → ur4(x))∧
(x = u1 ∧ ur2(x) → ur4(x)) ∧ (x = u1 ∧ ur1(x) → ur4(x))

]
(2)

is stored in the database Invariants together with the initial user-role assign-
ment relation and administrative operations of Example 1.

Now, consider that the next instance of the user-role reachability problem to
solve is composed of the same initial user-role assignment relation and adminis-
trative operations and the goal is (u1, {r5}). Since the conjunction of the symbolic
representation of the goal, ∃x.(x = u1∧ur5(x)), with (2) is obviously unsatisfiable
(this can be quickly established by an available SMT solver), our system immedi-
ately returns unreachable also for this instance without invoking mcmt. ��
Now, we turn to the problem of exploiting capability (b) of mcmt, i.e. returning
a sequence σ of transitions leading from the initial state to a state satisfying the

Boosting Model Checking to Analyse Large ARBAC Policies 283

goal. For this, notice that each state generated by applying a transition in σ is
indeed also reachable. The symbolic representation G of the sets of user-role as-
signment relations generated by the application of the administrative operations
in σ (together with the initial user-role assignment relation and the sequence
σ) are stored by the Learning (Post-Processing) module to the database la-
belled Unsafe States in Figure 1 and are used by the module Pre-processing
(see again Figure 1) as follows. Assume that a new instance of the user-role
reachability problem shares the same initial user-role assignment relation and
contains at least the administrative operations in σ associated to the sequence γ
of user-role assignment relations generated by the applications of the operations
in σ. If the goal g of a new problem instance is in γ, then we can immediately
conclude that g is reachable. We illustrate this with an example.

Example 5. Consider the following instance of the user-role reachability problem:
〈UA,ψ, (u1, {r2, r8})〉, where UA and ψ are those of Example 1. On the trans-
lated reachability problem, mcmt returns reachablewith the following sequence
σ = ({r7}, r8); ({r1}, r2) of administrative operations. The sequence γ of states
obtained by computing the pre-image of the goal with respect to the administra-
tive operations in σ contains the goal itself g0 := ∃x.(x = u1∧ur2(x)∧ur8(x)), the
pre-image of g0 with respect to ({r1}, r2), i.e. g1 := ∃x.(x = u1∧ur1(x)∧ur8(x)),
and the pre-image of g1 with respect to ({r7}, r8), i.e. ∃x.(x = u1 ∧ ur1(x) ∧
ur7(x)). This information is stored in the database Unsafe States.

If we now consider the following instance of the user-role reachability problem:
〈UA,ψ, (u1, {r1, r8})〉, where UA and ψ are again as in Example 1, asaspXL
immediately returns reachable without invoking mcmt because the symbolic
representation of this goal is equal to g1 in the database Unsafe States. ��
This concludes the description of the internal workings of the Pre-processing
module in Figure 1 that tries to minimize the number of invocations of mcmt
(first part of observation (O2)). The description of the Learning (Post-pro-
cessing) module will be finished in the following (sub-)section.

4.3 Reusing Previously Visited States

Recall the second part of observation (O2) that suggests to re-use as much as
possible the results of previous invocations of the model checker. Our idea is to
save the sets of user-role assignment relations visited when solving the instance
Pk = 〈UA,ψ≤k, (ug, Rg)〉 of the user-role reachability problem generated by the
Administrative action filter module (see Section 4.1) so as to avoid to visit
them again when solving the next instance Pk+1 = 〈UA,ψ≤(k+1), (ug, Rg)〉. As
observed above (see the last sentence of Section 4.1), two successive instances
Pk and Pk+1 of the user-role reachability problem generated by the Admin-
istrative action filter module only differ for the administrative actions in
ψ≤(k+1) \ ψ≤k and share those in ψ≤k. When solving Pk+1, it would thus be
desirable to visit only the states generated by the actions in ψ≤(k+1) \ ψ≤k and
avoid to recompute those generated by the actions in ψ≤k, that have already
been visited when solving Pk.

284 S. Ranise, A. Truong, and A. Armando

The description of the missing part of the internal workings of the Learning
(Post-processing) module can be completed as follows. Consider sub-problem
Pk = 〈UA,ψ≤k, (ug, Rg)〉 for k ≥ 0. There are two cases to consider depending
on the fact that (ug, Rg) is reachable or not.

First, assume thatmcmt has found (ug, Rg) to be unreachable and that ϕ is the
formula representing the complement of the set of backward reachable states. Be-
fore solving sub-problemPk+1, theLearningmodule deletes fromψ≤(k+1) the ad-
ministrative actions whose symbolic representation of the (simple) pre-condition
implies ϕ. The correctness of doing this is stated in the following proposition.

Proposition 2. Let 〈UA,ψ, (ug, Rg)〉 be an instance of the user-role reachabil-
ity problem such that (ug, Rg) is unreachable and F is the set of backward reach-
able states. If t �∈ ψ is an administrative operation whose simple pre-condition is
contained in F , then (ug, Rg) is also unreachable when considering the instance
〈UA,ψ ∪ {t}, (ug, Rg)〉 of the user-role reachability problem.

The proof of this fact is based on the following two observations. First, if t is not
useful then we can safely ignore it by Proposition 1. Second, if t is useful then
the pre-image of F with respect to t is contained in F because, by assumption,
its simple pre-condition is contained in F . We illustrate this with an example.

Example 6. Consider the instance of the user-role reachability problem in Ex-
ample 1. The goal is unreachable and the set of backward reachable states F is
symbolically represented as (1). Consider t1 = ({r2, r4}, r8): this is not useful,
the pre-image of F with respect to t1 is redundant by Proposition 1, F is a
fix-point also with respect to ψ∪{t1}, and the goal is still unreachable. Consider
now t2 = ({r2, r4}, r3): the pre-image of F with respect to t2 is symbolically rep-
resented by the formula ∃x.(ur2(x)∧¬ur4(x)∧x = u1). An available SMT solver
easily shows that this formula implies (1), F is a fix-point also with respect to
ψ ∪ {t2}, and the goal is still unreachable. ��
The second case of operation for the Learning module is when mcmt finds
(ug, Rg) to be reachable by a sequence σ = t1; · · · ; tn of administrative opera-
tions. Let g1; · · · ; gn be the sequence of user-role assignment relations obtained by
applying tj to gj−1 for j = 1, ..., n with g0 = UA. Before solving a new instance
of the user-role reachability problem with the same initial user-role assignment
relation UA and whose administrative actions contain those in σ, the Learning
module adds to ψ≤(k+1) the transition having as (simple) “pre-condition” UA
and as “update” gj , for j = 2, ...n. (Notice that the additional transitions do not
enlarge the set of reachable states.) We illustrate this with an example.

Example 7. Consider again the first instance of the user-role reachability prob-
lem of Example 5: 〈UA,ψ, (u1, {r2, r8})〉 where UA and ψ are those in Example 1.
As already said, the goal is reachable with the sequence σ = ({r7}, r8); ({r1}, r2).
Thus, the Learning module would add the following (redundant) transition:

∃x.
(
ur1(x) ∧ ur4(x) ∧ ur7(x)∧
∀y.(u′

r2(y) ↔ (y = x ∨ ur2(y))) ∧ ∀y.(u′
r8(y) ↔ (y = x ∨ ur8(y)))

)
,

where identical updates have been omitted for the sake of simplicity.

Boosting Model Checking to Analyse Large ARBAC Policies 285

Consider now the following new instance of the user-role reachability problem:
〈UA,ψ, (u1, {r3})〉. It is immediate to see that the goal is reachable by the se-
quence σ′ = σ; ({r2}, r3) of administrative operations. Because of the availability
of the additional transition above—whose execution has the same effect of the
(atomic) sequential execution of the administrative actions in σ—the reachabil-
ity of the goal can be detected in two steps instead of three. ��
As illustrated in the example, the hope is that establishing the reachability (if
the case) of the goal of a new instance of the user-role reachability problem could
be done by using one of the additional transitions whose effects is equivalent to
the execution of several transitions, thereby speeding up the search procedure.

This concludes the description of the internal workings of the Learning
(Post-processing) module in Figure 1.

4.4 Putting Things Together

We now describe the flow of execution among the various modules in asaspXL
(see Figure 1). The input instance P = 〈UA,ψ, (ug, Rg)〉 of the user-role
reachability problem is given to the Pre-processing module that searches the
databasesUnsafe states and Invariants (Safe states) to see whether the goal
can be declared reachable or unreachable because of the cached results of pre-
vious invocations to the model checker (Section 4.2). If no previous information
allows us to conclude, the instance is passed (arrow labelled with 1) to the Ad-
ministrative Action Filter that computes a sequence P1, ..., Pk of increasingly
precise approximations of P by using the notion of useful administrative opera-
tions (Section 4.1). Each Pk is sent (arrow labelled with 2) to the Translator
that converts the problem instance to a reachability problem in mcmt input
language. At this point, the model checker is invoked (arrow labelled with 3) on
the resulting problem and two outcomes are possible. If the goal is unreachable,
then control is given back to the Administrative Action Filter (arrow la-
belled 4.1) that considers a more precise approximation of the problem (if any)
that is translated and solved again by mcmt. If this is not possible, control is
passed to the Learning module (arrow labelled 5) that declares the instance of
the user-role reachability problem to be unreachable and updates the database
Invariants (Section 4.2). Instead, if the goal is found reachable by mcmt, then
control is passed directly to the Learning module (arrow labelled 4.2) that de-
clares the instance of the user-role reachability problem to be reachable and
updates the database Unsafe states (Section 4.2).

The completeness of asaspXL derives from the properties discussed in Sec-
tions 4.1, 4.2, and 4.3 as well as the correctness of the encoding in the module
Translation (see end of Section 3).

5 Experiments

We have implemented asaspXL in Python and have conducted an exhaustive ex-
perimental evaluation to compare it with Mohawk on the set of “Complex Poli-
cies” in [9], composed of three synthetic test suites:Test suite 1—whose problem

286 S. Ranise, A. Truong, and A. Armando

instances can be solved in polynomial time,Test suite 2—that are NP-complete,
and Test suite 3—that are PSPACE-complete. We do not consider the “Simple
Policies” in [9] as their solving time is very low and are not suited to evaluate the
scalability of the tools. We do not consider other tools (e.g., rbac-pat [8]) as the
experiments in [9] clearly shows that Mohawk is superior. For example, rbac-
pat when performing backward reachability is reported to seg-fault on problem
instances containing at least 20 roles and 100 rules in all test suites while it is
significantly slower than Mohawk when run in forward reachability mode; e.g.,

Table 1. Experimental results on the “complex” benchmarks in [9]

Test
suite

Roles,
Rules

Mohawk (Slicing time +
Verification time)

asaspXL Variance

Mohawk asaspXL

3, 15 0.42 (0.17 + 0.25) 0.12 0.00034 0.00126
5, 25 0.50 (0.20 + 0.30) 0.22 0.00104 0.02188
20, 100 0.60 (0.28 + 0.32) 0.11 0.00048 0.00314
40, 200 0.94 (0.39 + 0.55) 0.10 0.19242 0.00294
200, 1000 2.65 (1.25 + 1.40) 0.18 0.7027 0.02758

Test 500, 2500 4.87 (2.27 + 2.60) 0.43 7.0337 0.29594
suite 1 4000, 20000 16.90 (11.41 + 5.49) 1.64 1.26694 0.11166

20000, 80000 71.56 (44.70 + 26.86) 24.17 7.56264 0.27724
30000, 120000 195.54 (119.39 + 76.15) 59.08 66.4833 0.38058
40000, 200000 455.14 (263.82 + 191.32) 109.07 32.35406 2.42496
80000, 400000 2786.33 (1600.22 + 1186.11) 398.63 1251.832 0.51542

3, 15 0.40 (0.16 + 0.24) 0.12 0.00046 0.00204
5, 25 0.50 (0.19 + 0.31) 0.21 0.0019 0.02012
20, 100 0.54 (0.25 + 0.29) 0.10 0.00036 0.00242
40, 200 1.21 (0.37 + 0.84) 0.10 1.07136 0.00108
200, 1000 2.54 (1.24 + 1.30) 0.14 0.6452 0.01008

Test 500, 2500 5.02 (2.29 + 2.73) 0.43 5.91882 0.32836
suite 2 4000, 20000 14.33 (9.65 + 4.68) 1.48 0.53058 0.06206

20000, 80000 74.32 (45.35 + 28.97) 24.99 13.9347 0.0716
30000, 120000 194.85 (115.58 + 79.27) 57.09 42.39056 0.18292
40000, 200000 470.89 (262.39 + 208.50) 98.49 585.6608 0.26196
80000, 400000 2753.12 (1589.97 + 1163.15) 360.96 1493.596 3.19596

3, 15 0.41 (0.17 + 0.24) 0.09 0.00012 0.00078
5, 25 0.47 (0.19 + 0.28) 0.08 0.00164 0.0001
20, 100 0.77 (0.29 + 0.48) 0.54 0.0771 0.08822
40, 200 0.77 (0.38 + 0.39) 0.37 0.0012 0.00468
200, 1000 5.93 (1.53 + 4.4) 1.51 47.2814 0.20348

Test 500, 2500 3.78 (2.05 + 1.73) 1.12 0.05662 0.00298
suite 3 4000, 20000 14.05 (9.96 + 4.09) 11.13 0.09255 0.317425

20000, 80000 80.61 (48.64 + 31.97) 27.25 23.98093 2.974775
30000, 120000 259.15 (148.35 + 110.80) 97.55 325.5216 6343.912
40000, 200000 604.17 (346.10 + 258.07) 110.65 1247.141 110.9948
80000, 400000 3477.19 (1951.41 + 1525.78) 402.22 2776.703 0.50856

Boosting Model Checking to Analyse Large ARBAC Policies 287

according to [9], the instances with 20,000 roles and 80,000 rules in the three
test suites are solved in around a minute by Mohawk while rbac-pat goes in
time out after 60 minutes.

For each set of ARBAC policies in the test suites, we have generated an
instance of the user-role reachability problem by considering an empty initial
user-role assignment relation and 5 distinct (randomly generated) goals that
are selected to be reachable (this kind of instances of the user-role reachability
problem are said to be instances of the error-finding problem in [9]).

Table 1 reports the results of running asaspXL and Mohawk on these in-
stances. Column 1 reports the name of the test suite, column 2 contains the
number of roles and administrative operations in the policy, column 3 and 4
the average times (in seconds) taken by Mohawk and asaspXL, respectively,
to solve the five instances of the user-role reachability problem associated to an
ARBAC policy, and column 5 the variance in solving times for Mohawk and
asaspXL, respectively. For Mohawk, in column 3 we report also the time spent
in the slicing phase (a technique for eliminating irrelevant users, roles, and ad-
ministrative operations that are non relevant to solve a certain instance of the
user-role reachability problem, see [9,14] for more details) and the verification
phase (i.e. the abstract-check-refine model checking technique described in [9]).
All experiments were performed on an Intel Core 2 Duo T6600 (2.2 GHz) CPU
with 2 GB Ram running Ubuntu 11.10.1

The results clearly show that asaspXL performs significantly better than
Mohawk. In many cases, asaspXL overall time is less than Mohawk Verifica-
tion time (see column 3), i.e. even disregarding the Slicing time. Furthermore,
the behaviour of asaspXL is more predictable than Mohawk since the variance
of the latter is much larger (see the last column of the table). The results also
demonstrate the effectiveness of our approach and nicely complement the the-
oretical properties discussed in Section 4 that aim to guarantee that asaspXL
will not miss errors (if any). This is in contrast with Mohawk, that, as said
in [9], is incomplete and thus may not find all errors.

6 Conclusions

We have presented techniques to enable a model checker to solve large instances
of the user-role reachability problem for ARBAC policies. The model checker is
assumed to provide some basic functionalities such as the capability of storing
the already visited sets of states for later reuse and that of returning the sequence
of transitions that lead from an initial state to a state satisfying the goal (if the
case). In our implementation, we have used mcmt but any model checker with
these features can be plugged in. (This is so because we work under the separate
administration restriction and the capability of mcmt to handle infinite state
systems is not used since—as observed in, e.g., [14]—it is possible to consider just

1 We thank the authors of Mohawk for making available to us the latest version
of their tool. We also thank the support team of NuSMV for their help with the
installation of the tool, a necessary pre-requisite for using Mohawk.

288 S. Ranise, A. Truong, and A. Armando

one administrator without loss of generality.) We have shown that the proposed
techniques do not miss errors in buggy policies; this is in contrast with Mohawk
that is incomplete. We have also provided evidence that an implementation of
the proposed techniques, called asaspXL, performs significantly better than
Mohawk on the larger problem instances in [9].

As future work, we plan to design and implement asasp 2.0, a tool that
combines the flexibility of asasp [2] with the scalability of asaspXL. To this
end, we are currently collecting a database of heterogeneous problem instances
that will help us to understand the right level of expressiveness. In this respect,
the benchmark problems recently proposed in [6] (together with those in [3]) will
be of particular interest since the analysis must be done with respect to a finite
but unknown number of users. For such problems, the capability of mcmt to
handle infinite state systems will be key.

Acknowledgements. This work was partially supported by the “Automated
Security Analysis of Identity and Access Management Systems (SIAM)” project
funded by Provincia Autonoma di Trento in the context of the “team 2009 -
Incoming” COFUND action of the European Commission (FP7).

References

1. http://research.microsoft.com/en-us/um/redmond/projects/z3
2. Alberti, F., Armando, A., Ranise, S.: ASASP: Automated Symbolic Analysis of

Security Policies. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 26–33. Springer, Heidelberg (2011)

3. Alberti, F., Armando, A., Ranise, S.: Efficient Symbolic Automated Analysis of
Administrative Role Based Access Control Policies. In: ASIACCS, ACM Pr. (2011)

4. Armando, A., Ranise, S.: Automated Symbolic Analysis of ARBAC-Policies. In:
Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710,
pp. 17–34. Springer, Heidelberg (2011)

5. Crampton, J.: Understanding and developing role-based administrative models. In:
Proc. 12th CCS, pp. 158–167. ACM Press (2005)

6. Ferrara, A.L., Madhusudan, P., Parlato, G.: Security Analysis of Access Control
Policies through Program Verification. In: CSF (2012)

7. Ghilardi, S., Ranise, S.: Backward Reachability of Array-based Systems by SMT
solving: Termination and Invariant Synthesis. In: LMCS, vol. 6(4) (2010)

8. Gofman, M.I., Luo, R., Solomon, A.C., Zhang, Y., Yang, P., Stoller, S.D.: Rbac-Pat:
A policy analysis tool for role based access control. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 46–49. Springer, Heidelberg (2009)

9. Jayaraman, K., Ganesh, V., Tripunitara, M., Rinard, M., Chapin, S.: Automatic
Error Finding for Access-Control Policies. In: CCS, ACM (2011)

10. Jha, S., Li, N., Tripunitara, M.V., Wang, Q., Winsborough, H.: Towards formal
verification of role-based access control policies. IEEE TDSC 5(4), 242–255 (2008)

11. Li, N., Tripunitara, M.V.: Security analysis in role-based access control. ACM
TISSEC 9(4), 391–420 (2006)

12. Sandhu, R., Coyne, E., Feinstein, H., Youmann, C.: Role-Based Access Control
Models. IEEE Computer 2(29), 38–47 (1996)

13. Sasturkar, A., Yang, P., Stoller, S.D., Ramakrishnan, C.R.: Policy analysis for
administrative role based access control. In: CSF. IEEE Press (July 2006)

14. Stoller, S.D., Yang, P., Ramakrishnan, C.R., Gofman, M.I.: Efficient policy analysis
for administrative role based access control. In: CCS. ACM Press (2007)

http://research.microsoft.com/en-us/um/redmond/projects/z3

	Boosting Model Checkingto Analyse Large ARBAC Policies
	Introduction
	Administrative Role-Based Access Control
	Model Checking Modulo Theories and ARBAC Policies
	MCMT's New Clothes for Analysing ARBAC Policies
	Useful Administrative Operations
	Reducing the Number of Invocations to the Model Checker
	Reusing Previously Visited States
	Putting Things Together

	Experiments
	Conclusions
	References

