

H. Takeda et al. (Eds.): JIST 2012, LNCS 7774, pp. 129–145, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Instance Coreference Resolution
in Multi-ontology Linked Data Resources

Aynaz Taheri and Mehrnoush Shamsfard

Computer Engineering Department, Shahid Beheshti University, Tehran, Iran
ay.taheri@mail.sbu.ac.ir, m-shams@sbu.ac.ir

Abstract. Web of linked data is one of the main principles for realization of
semantic web ideals. In recent years, different data providers have produced
many data sources in the Linking Open Data (LOD) cloud upon different sche-
mas. Isolated published linked data sources are not themselves so beneficial for
intelligent applications and agents in the context of semantic web. It is not poss-
ible to take advantage of the linked data potential capacity without integrating
various data sources. The challenge of integration is not limited to instances; ra-
ther, schema heterogeneity affects discovering instances with the same identity.
In this paper we propose a novel approach, SBUEI, for instance co-reference
resolution between various linked data sources even with heterogeneous sche-
mas. For this purpose, SBUEI considers the entity co-reference resolution prob-
lem in both schema and instance levels. The process of matching is applied in
both levels consecutively to let the system discover identical instances. SBUEI
also applies a new approach for consolidation of linked data in instance level.
After finding identical instances, SBUEI searches locally around them in order
to find more instances that are equal. Experiments show that SBUEI obtains
promising results with high precision and recall.

Keywords: Linked Data, Coreference Resolution, Ontology, Schema, Instance,
Matching.

1 Introduction

Linked data is a new trend in the semantic web context. Nowadays increasing the
amount of linked data in Linking Open Data project is not the only challenge of pub-
lishing linked data; rather, matching and linking the linked data resources are also
equally important and can improve the effective consuming of linked data resources.
Linked data integration is one of the main challenges that become more important
considering development of linked data. Without these links, we confront with iso-
lated islands of datasets. The fourth rule of publishing linked data in [2] explains the
necessity of linking URIs to each other. Therefore, extension of datasets without
interlinking them is against the Linked Data principles.

In the web of linked data with so large scale, there are obviously many different
schemas in the various linked data sources. Considering that there is no compulsion
for data providers in utilizing specific schema, we confront with the problem of

130 A. Taheri and M. Shamsfard

schema heterogeneity in data sources. This issue is considerable in instance corefe-
rence resolution. Paying attention to schemas in linked data consolidation has many
advantages. When we are going to discover instances with unique identity in two data
sources, it is a complicated process to compare all the instances of two data sources in
order to find equivalents. Processing all of the instances has harmful effects on execu-
tion time and needs more computing power. However, if we know about schema
matching of two data sources, it is not necessary to look up all the instances. Rather, it
is enough to search only instances of two matched concepts of schemas, so perfor-
mance would become better. In addition, ignoring the schema may cause precision
decrease in instance matching. In many cases, the internal structure and properties of
instances do not have enough information to distinguish distinct instances and this
increases the possibility of wrong recognition of co-referent instances that are
apparently similar in some properties in spite of their different identities.

Although ontology/schema matching can be beneficial for instance matching, it
could be detrimental if it is done inefficiently. In [18] effects of ontological mis-
matches on data integration (in instance level) are described. They divide all types of
mismatches into two groups: conceptual mismatches and explication mismatches.
They represent that these kinds of mismatches such as conceptual mismatches could
be harmful for instance matching and could decrease the amount of precision by
wrong matching of concepts in the schema level. They do ontology matching at the
first step and instance matching at the second step. Because of this sequential process,
the errors of the first step can propagate into the next step.

In this paper, we propose a solution, SBUEI, to deal with the problem of instance
matching and schema matching in linked data consolidation. SBUEI proposes an
interleaving of instance and schema matching steps to find coreferences or unique
identities in two linked data sources. SBUEI, unlike systems such as [13, 21, 27] -
which uses just instance matching- or systems such as [15, 24] -which use just schema
matching- exploits both levels of instance and schema matching. The main difference
between SBUEI and other systems like [19], which exploit both levels, is that SBUEI
exploits an interleaving of them while [19] exploits them sequentially one after the
other (starts instance matching after completing schema matching). SBUEI utilizes
schema matching results in instance matching and use the instance matching results in
order to direct matching in schema level. SBUEI also has a new approach for instance
matching.

This paper is structured as follows: section 2 discusses some related work. Sec-
tion3 explains the instance coreference resolution algorithm at the first phase, and
section 4 describes the schema matching algorithm at the second phase. Section 5
demonstrates the experimental results of evaluating SBUEI. Finally, section 6 con-
cludes this paper.

2 Related Work

We divide related works in the area of entity coreference resolution in the context of
semantic web into four groups:

 Instance Coreference Resolution in Multi-ontology Linked Data Resources 131

Some related works deal with specific domains. Raimond et al. in [25] proposed a
method for interlinking two linked data music-related datasets that have similar ontol-
ogies and their method was applicable on that specific ontology. In [10], authors de-
scribed how they interlink a linked data source about movies with other data sources
in LOD by applying some exact and approximate string similarity measures. In [32] a
method for linking WordNet VUA (WordNet 3.0 in RDF) to DBpedia is proposed.
The methodology of this project is customized for only these two datasets. Finding
identical instances of foaf:person at social graph is explained in [26] by computing
graph similarity.

Some pieces of related works follow the challenge of linked data consolidation so
that their methods are not constrained to special domains but their methods are based on
the assumption that schemas of different data sets are equal and their approach only
concentrate on consolidation of data in instance level. In [11], capturing similarity be-
tween instances is based on applying inverse functional properties in OWL language. In
[21], authors used a similarity measure for computing similarity of instance matching
between two datasets with the same ontology. LN2R [27] is a knowledge based refer-
ence reconciliation system and combines a logical and a numerical method. LN2R re-
quires manual alignment at first and then turns to the reconciliation of instances.

Another group of approaches, which focus on consolidating linked data, claims
that their approach does not depend on schema information and can identify same
instances in heterogeneous data sources without considering their ontologies. Hogan
et al. [12] proposed a method for consolidation of instances in RDF data sources that
is based on some statistical analysis and suggests some formula in order to find “qua-
si” properties. ObjectCoref [13] is a self-training system based on a semi supervised
learning algorithm and tries to learn discriminative property-value pair based on a
statistical measurement. Song et al. [31] proposed an unsupervised learning algorithm
in order to find some discriminable properties as candidate selection key. SERIMI [1]
is an unsupervised method and has a selection phase in order to find some specific
properties and a disambiguating phase. Zhishi.links [20] is a distributed instance
matching system. It does not follow any special techniques for schema heterogeneity.
It uses an indexing process on the names of instances and uses string similarity to
filter match candidates.

Some other approaches of instance matching in linked data sources take advantage
of schema in data sets. HMatch(τ) [4] is an instance matcher and use HMatch 2.0 for
TBox matching and then tries to capture the power of properties at instance identifica-
tion [9]. RiMOM [33] , ASMOV [16] and AgreementMaker [5] are three ontology
matching systems that recently equipped with instance matchers and participated in
instance matching track of OAEI 2010. CODI [22] is also a system for ontology and
instance matching and is based on markov logic. Seddiqui et al. [30] proposed an
instance matching algorithm and Anchor-Flood algorithm [29] for ontology matching
at first and then begin instance matching. Nikolov et al. [18] discussed the effects of
ontology mismatches on instance resolution and proposed Knofuss architecture in
[19]. Linked Data Integration Framework (LDIF) [28] has two main components: Silk
Link Discovery Framework [14] and R2R Framework [3] for identity resolution and
vocabulary normalization respectively.

132 A. Taheri and M. Shamsfard

From the four above-mentioned groups, approaches in the last two groups are not
dependent on any schemas or domains. It seems that the forth group have more ad-
vantages in comparison with third group, because the approaches in the third group
have deprived themselves of utilizing useful information in the schema level. As we
said in the section 1, paying attention to schema has beneficial effects on linked data
consolidation. Our proposed approach, SBUEI, belongs to the forth group. What dis-
tinguish SBUEI from the aforementioned approaches in the forth group are its con-
secutive movements between schema and instance level and the matching algorithm
in the instance level. SBUEI exploits the instance level information in order to find
accurate proposal about schema matching and then applies schema matching in order
to do instance resolution with high precision and recall.

3 Instance Coreference Resolution In Linked Data Sources

The instance coreference resolution algorithm has two phases that are executed itera-
tively. The first phase needs to receive an anchor as input. Anchor is defined as a pair
of similar concepts across ontologies [23, 29]. As the first and second phases are ex-
ecuted in a cycle, for the first round, the user should provide this input, but in the next
times the input of the first phase (the anchors) is provided by the output of the second
phase.

The first phase starts by getting anchor: , . and are two similar
concepts from ontologies and respectively. It comprises three steps explained
in the following in details.

3.1 First Step: Create Linked Instances Cloud

In the first step, we introduce a new construction that is called Linked Instances Cloud
(LIC), as the basis of our matching algorithm.

For anchors , , we must create LICs. For each instance of concepts and
 we make one LIC. has some instances. For example the URI of one of the C

instances is called ‘i’ .We explain how to create LIC for instance ‘i’. For creating this
LIC, SBUEI extracts all of the triples whose subjects are instance ‘i’ and adds them to
the LIC. Then, in the triples that belong to LIC, we find neighbors of instance ‘i’. If
instance ‘j’ is one of the neighbors of instance ‘i’, SBUEI repeats the same process for
instance ‘j’. Triples whose subjects are instance ‘j’, are added to LIC and the process
is repeated for neighbors of the instance ‘j’. This process is actually like depth first
search among neighbors of instance ‘i’. To avoid falling in a loop and to eliminate the
size of search space, the maximum depth of search is experimentally set to 5. The LIC
that is created for instance ‘i’ is called . Starting point for this LIC is instance ‘i’.
The process of creating LICs is done for all of the instances of the two concepts
and .

Sometimes the identities of instances are not recognizable without considering the
instances that are linked to them, and neighbors often present important information
about intended instances. In some cases in our experiments, we observed that even

 Instance Coreference Resolution in Multi-ontology Linked Data Resources 133

discriminative property-value pairs for an instance may be displayed by its neighbors.
Fig. 1 shows an illustration about an instance that its neighbors describe its identity.
This example is taken from IIMB dataset in OAEI 2010. Fig. 1 shows .
‘Item21177’ is the starting point of this LIC and is an Actor, Director and a charac-
ter-creator. Each instance in the neighborhood of ‘Item21177’ describes some infor-
mation about it. For example ‘Item74483’ explains the city that ‘Item21177’ was born
in and ‘Item27054’ explains the name of the ‘Item21177’.

Fig. 1. An Illustration of LIC

Creating LICs not only helps us in discovering identities of instances, but also it
helps us to find locally more similar instances. This issue is explained in section 3.3.

3.2 Second Step: Compute Similarity between LICs

In the previous step, SBUEI created the LICs of two concepts and . In this step,
we must compare them. Each LIC from concept should be compared with all LICs
of concept in order to find similar LICs. Starting points of two similar LICs would
be equal. Therefore, the triples of two LICs should be compared so that two LICs can
be compared. In this process, only triples whose objects are data type values (and not
instances) would participate in the comparison. Properties values are very important
in comparison. This does not mean that properties (predicates in triples) are effectless
in similarity computation. However, finding equal properties in two different ontolo-
gies is not usually easy, especially in very heterogeneous ontologies. Therefore, val-
ues of properties have more importance for SBUEI. However, if we could find similar
properties, the process of similarity computation between properties values would be
easier and more effective in increasing of similarity value.

SBUEI computes similarity of LICs in three separate parts as the followings.

Part 1: Normalization of Properties Values
SBUEI applies some normalization techniques on properties values for improving the
result of string comparison. These techniques consist of: case normalization, blank
normalization, punctuation elimination and removing stop words.

Item21177
Item74483

Item27054

Item37461Item51467
Item67977

Actor
Director

Character-Creator

rdf:type
rdf:type rdf:type

Item77951

Item86061

Location
rdf:type

gender
religion

date-of-birth

name

born-in

has-value
has-valueMal

Buddhism
1944-05-14

George Lucas

Modesto

93.23957size

name

has-value

has-value

has-value
has-value

Item3478 Modesto is the county seat of Stanis-
laus County, California

article
has-value

134 A. Taheri and M. Shamsfard

Part 2: Compare Triples in Two LICs
In this part, all of the triples whose objects are values of data type will be compared in
two LICs. However, before comparing values of properties, properties itself will be
compared. Similarity computation for properties are done regarding to three different
aspects: range similarity, lexical similarity and properties hierarchies. Equation (1)
describes the function that computes properties similarities.

HierSim function computes hierarchal similarity between two properties and
. Properties in the hierarchy are examined by two functions LexicalSim and Ran-

Sim. RanSim function compares ranges of two properties and . LexicalSim func-
tion computes similarity between the labels of two properties and . Section 4.1
explains these functions in detail. , , , , ,3 (1)

If SBUEI finds similar properties in two LICs, then objects of triples that have equal
properties will be compared. Other triples in two LICs that we could not find equal
properties for them, will be compared considering only their values of properties. Our
experiments show that often in most cases SBUEI does not find similar properties
because of lexical, structural and semantical heterogeneity in schemas. Thus, we fo-
cus on values of properties when similar properties are not found.

We use Edit Distance method for computing similarity of properties values. Consi-
dering and as values of two properties and , SBUEI computes their simi-
larity according to (2). , , , , 0, ,

 (2)

Similarity values of triples objects -obtained by EditDisSim function- are added to-
gether for obtaining similarity value of two LICs. In (2) we applied a threshold equal
to 0.6 for edit distance method. This threshold was found by making a benchmark and
execution of edit distance algorithm based on the benchmark. Equation (2) removes
similarity values that are less than threshold. This prevents accumulating small simi-
larity values in the sum of similarity values of triples objects.

Some properties are comments about instances. For similarity computation of these
kinds of properties, we do not use (2). SBUEI in (3) applies a specific method for
finding comment similarity. It is based on the number of common tokens. Again, we
made a benchmark, found a threshold (δ) equal to 0.7. , , , , 0, ,

,
2 | || | | |

(3)

After calculating similarity of properties values, SBUEI computes similarity of two
LICs. Similarity of two LICs is dependent on similarity of their properties values.
Triples in two LICs have specific importance depend on the depth of their subjects
(instances that triples belong to) in the LICs. We noted in section 3.1 that depth of
instances are estimated towards the starting point of LIC. When depth of instances in

 Instance Coreference Resolution in Multi-ontology Linked Data Resources 135

LIC increases, their effectiveness in similarity computation of LICs decreases. The
following triples belong to in Fig. 1.

1 (‘Item67977’, has-value, Male)
2 (‘Item37461’, has-value, 1944-05-14)
3 (‘Item77951’, has-value, 93.23957)
4 (‘Item3478’, has-value, Modesto is the county seat of Stanislaus County, California)

The above triples describe some information about the starting point of .
Two first triples explain that ‘item21177’ has male gender and date of his birth is 1994-
05-14. Instances in the subjects of these two triples have depth equal to two. Two
second triples explain that ‘item21177’ has born in a city that its size is 93.23957 and
also is the county seat of Stanislaus County, California. Instances in the subjects of these
two triples have depth equal to three. As you can see, the first two triples have more
important role for determining the identity of ‘item21177’ than the second two triples.
Gender of a person and date of his birth is more important than some comments about
the city that he lives in. Nevertheless, this does not mean that existence of instances with
greater depth are not beneficial in the LICs; rather, they are less important in identity
recognition of the starting point of the LIC than those with less depth. In addition, we
utilize such instances in step three for finding more instances that are similar.

In this regard, similarities of properties values are added with an particular coeffi-
cient. SBUEI uses a weighted sum for computing similarity of LICs. The coefficients
(4) in this sum have inverse relations to the depth of the subject of triples in LIC . 1

 :

(4)

SBUEI normalizes the sum of similarities of properties values in two LICs into a range
of 0 and 1 by dividing the result to the sum of the numbers of triples in two LICs.

In (5) and have n and m triples, respectively. We find for each object of
 the most similar object in via LexicalPropValSim function. LexicalPropVal-

Sim works based on (2) and (3). Each of the two objects with most similarity; have a
coefficient equal to inverse of the depth of the triple that belongs to . We do the
same process for and then add obtained values of similarity and .
Normalization is done by the sum of the triples numbers in and (In (5) this
value is m+n), but each triple has a coefficient according to what mentioned in (4). , , … , , , … , ,∑ ,∑ ,

∑ ∑

(5)

136 A. Taheri and M. Shamsfard

Part 3: Choose Two Similar LICs
In the previous part, we computed the similarity of two LICs. Now we confront with a
complex challenge. The main challenge is determining the value of the threshold for
deciding whether two LICs are equal or not. This threshold is the final approver about
equality of two LICs based on their similarity value. Our experiments show that the
value of threshold is completely variable depending on the data sources and their
characteristics. The amounts of threshold have considerable differences in a range
between zero and one. For example results of several tests on two data sources, indi-
cated that the best value for similarity threshold of LICs are 0.7. While on two other
data sources this value was 0.2. Wide range of obtained values for threshold led us to
have a dynamic selection for threshold of LICs similarity.

Dynamic selection of threshold means that after creating LICs and computing their
similarities, we choose the value of threshold depending to the concepts that LICs be-
long to. and belong to two concepts and respectively. We calculate a
specific threshold for two concepts and . Afterward we apply acquired threshold
for comparing LICs from these two concepts. For all LICs that their starting points be-
long to two particular concepts from two ontologies, SBUEI use a specific threshold.

The purpose of threshold value variation and the necessity of dynamicity in thre-
shold selection can be justified because of the heterogeneity of ontologies viewpoints
regarding to concepts. Two ontologies may have information considering different
aspects of concepts and therefore their instances even with the same identities have
diverse information with little overlap. In such cases, ontologies are semantically
different. For example, one ontology has some properties such as name, director,
characters for describing a film and another ontology has name, actors, character-
creator properties for describing a film. Hence, equal instances of these two ontolo-
gies have low similarities despite the fact that they have the same identities.

SBUEI uses a heuristic for solving this problem. After finding the most similar
LICs of two concepts and , SBUEI calculates the similarity average of the most
similar LICs of two concepts. Instances of concept have almost the same proper-
ties for describing individuals and instances of concept are also the same way.
Hence, the similarity amounts of instances of these two concepts are approximately
predictable and are the same.

SimLIC in (6) is the set of most similar LICs of two concepts and . Each
member of the set is a triple: the first element is the intended LIC from concept ,
the second element is the most similar LIC from concept and the third element is
the value of their similarity. LICSimThreshold computes the threshold of two con-
cepts and . , , , , , , … , , ,

n

n

1i
is

=

(6)

3.3 Third Step: Determine New Equal Instances in Two Similar LICs

In this step, we continue the process of matching on those LICs of the previous step
that led to discovering equal instances or in the other words, those LICs that have

 Instance Coreference Resolution in Multi-ontology Linked Data Resources 137

equal starting points. The strategy in this step is searching locally around the identical
instances in order to find new equal instances. In [29] an algorithm for ontology
matching is created, and their algorithm is based on the idea that if two concepts of
two ontologies are similar, then there is a high possibility that their neighbors are
similar too. We use this idea but in instance level. This means that if two instances are
identical, then there is possibility that their neighbors are similar too.

Suppose that ‘i’ and ‘j’ are two instances of two concepts and and they are
detected identical in the previous step. Their LICs are called and . In this
step we describe how SBUEI finds more identical instances in and . This
step is composed of three parts as following.

Part 1: Create Sub-Linked Instances Cloud
We define a new construction called ‘Sub-LIC’. SBUEI makes one LIC for each in-
stance in and . Each LIC has some Sub-LICs in itself as many as the num-
ber of its instances.

Part 2: Discover Similar Sub-LICs
For discovering similar instances in and , we compare their Sub-LICs. Si-
milarity of Sub-LICs is computed same as LICs with the same threshold value. Sub-
LICs that have similarities more than the threshold are equal and their starting points
are considered as identical instances.

Finding identical instances of two concepts initially costs a lot because of consider-
ing all neighbors of an instance; later we can find locally more identical instances by
paying low computational cost.

Part 3: Compute Concept Similarities in Schema Level
After finding identical instances in Sub-LICs, now it is time to arrange for moving to
schema level. In this part instance matcher gives feedback to schema matcher. Con-
cepts whose instances are the starting points of equal Sub-LICs are candidates to be
similar. Suppose that _ and _ are two Sub-LICs of and
respectively and are detected similar in the previous part. Starting points of _ and _ belong to two concepts and from ontologies
and respectively. We can conclude that and are probably similar because
they have identical instances.

SBUEI repeats three above parts for all LICs of concepts and that are de-
tected similar in step 2. We define the following measure for similarity estimation
between two concepts and : ‘ratio of equal Sub-LICs of two concepts and

 that their starting points belong to concepts and to the total numbers of
LICs of two concepts and ’. Instance matcher utilizes this measure for helping
schema matcher in order to find equal concepts.

4 Schema Matching in Linked Data Sources

The second phase is done by a schema matcher. It receives feedback from the first
phase, which contains some similarities between concepts from the viewpoint of in-

138 A. Taheri and M. Shamsfard

stance matcher. At this time, schema matcher begins the process of matching in
schema level by applying some ontology matching algorithms. SBUEI compares all
of these similarity values that are proposed by instance matcher or obtained by sche-
ma matcher, and choose a pair of concepts that have the most similarity. SBUEI re-
peats these two phases consecutively until all of similar concepts that are given feed-
back to schema level or are detected by schema matcher, to be selected and schema
matcher could not find any similar concepts.

4.1 Compute Similarity between Concepts

When SBUEI wants to do ontology matching, it considers to the concepts that are
proposed as equal concepts in the previous iterations and the process of ontology
matching starts in the neighborhood of these concepts.

We applied the definition of concept neighborhood in [29]. In this definition,
neighbors of a concept include its children, grandchildren, parents, siblings, grandpa-
rents and uncles. Schema matcher utilizes two similarity measures for ontology
matching: label-based techniques and structure-based techniques. Therefore, we have
two kinds of matchers: lexical matcher and structural matcher.

Compute Lexical Similarity
Lexical similarity of two concepts or two properties are described by LexicalSim()
function in (8). We compute the similarity of two concepts or two properties with
using a string-based method and utilizing a lexical ontology.

Lexical features of a concept are such as id, label and comments. For computing
comments similarities between concepts or properties, we use a token-based method,
the same as equation (3). For other features of concepts or properties, SBUEI uses
Princeton WordNet [8], a lexical ontology, for finding similarities.

Let and be two labels or ids for two concepts and respectively, and let
Synset (denotes a synset in WordNet that belongs to it and Senses(s) returns all
of senses of a synset s, then | (7)

,
1, 1, , , ∉ ∉, , ∉ ∉

 (8)

 and have the most lexical Similarity value, if they are equal or is one of the
senses of the synset that belongs to or vice versa. WNStructuralSim , in (8)
computes the similarity of two synsets that and are one of their senses respec-
tively. The similarity of those synsets is computed regarding to their positions in the
hierarchy of WordNet. We used the Wu-Palmer measure presented in [34]. If or

 is not in WordNet we use Edit Distance method for computing their similarity.

 Instance Coreference Resolution in Multi-ontology Linked Data Resources 139

Compute Structural Similarity
In addition to the names, ids, comments and all other lexical features of concepts,
their structure in ontologies are also important for calculating concepts similarities. In
[6] structure based techniques are divided into two groups based on the internal struc-
ture and relational structure. SBUEI utilizes internal and relational structures for
computing similarities between concepts.
Internal Similarity.

Internal similarity compares properties of two concepts from two different ontolo-
gies. Let and be two properties belong to two concepts and respectively,
InternalStructuralSim() function in (9) is calculated using the following formula: ,

2 ∑ , ,,| |

(9)

We defined LexicalSim previously. CardSim compares cardinality of properties. It
will be 1.0 if Maximum and Minimum values of properties are equal and 0 otherwise.
RanSim computes similarity value between data types of two properties range. Utiliz-
ing hierarchy of XML schema data types is proposed in [6] for computing data type
similarity. SBUEI also uses XML schema data type hierarchy but applies Wu-Palmer
method on the hierarchy in order to find the similarity of two data types regarding to
their positions in the hierarchy.

Relational Similarity
Relational similarity in SBUEI computes similarity of hierarchies that two concepts
from two different ontologies belong to. SBUEI considers taxonomic structure and
pays more attention to rdfs:subClassOf for relational similarity computation. Parents
and children of a concept are compared with the parents and children of another con-
cept. For comparing parents and children in (10), we use LexicalSim and Internal-
StructuralSim functions.

,∑ , ,| |
∑ , ,| |

(10)

140 A. Taheri and M. Shamsfard

Similarity Aggregation
SBUEI uses a weighted linear aggregation process to compose the results of different
similarity values .The weights have been determined experimentally. We obtained
values as: =0.4, =0.3 and =0.3

5 Evaluation

The experimental results are downloadable at our website1 and some statistics of
SBUEI operations in comparison with other systems are prepared2.

For evaluating SBUEI, we use the datasets in OAEI [7] , a benchmarking initiative
in the area of semantic web. We report the experimental results of our proposed ap-
proach on four different datasets: PR in OAEI 2010, IIMB in OAEI 2010, IIMB in
OAEI 2011 and TAP-SWETO datasets in OAEI 2009. In the last experiment, we
found an interesting use case that takes advantage from our approach.

5.1 Person-Restaurants Benchmark

Person-Restaurants benchmark is one of the tasks in instance matching track in OAEI
2010 campaign. This benchmark is composed of three datasets: Person1, Person2 and
Restaurants. Each of them has two different owl ontologies and two sets of instances.
Person1 and Person2 contain instances about some peoples, and Restaurants has in-
stances about some restaurants. Sizes of these datasets are small. Reference align-
ments are provided in OAEI 2010 and all of participants in this task must compare
their results with the reference alignments. Five systems have participated in this task
and we compare our results with the results of other systems.

Fig. 2. Result of OAEI'10 Person-Restaurant Benchmark

F-measure values of all systems on the Person-Restaurant benchmark are shown in
Fig. 2. Performance of all systems (including SBUEI) are quite good on Person1 data-
set. Collected statistics of all the participants show that SBUEI has the best values of
F-measure and precision on Person2 and Restaurants datasets. According to obtained
values, we conclude that SBUEI performed well in matching at both schema and
instance levels of these three datasets.

1 http://nlp.sbu.ac.ir/sbuei/result.rar
2 http://nlp.sbu.ac.ir/sbuei/statistics.html

1 0.91 1 1 1 1

0.35 0.36

0.94 0.95 0.97 0.98
0.7 0.72 0.75 0.73 0.81 0.84

0
0.2
0.4
0.6
0.8

1

ASMOV CODI LN2R ObjectCoref RiMOM SBUEI

F-
M

ea
su

re

Person1 Person2 Restaurants

 Instance Coreference Resolution in Multi-ontology Linked Data Resources 141

5.2 IIMB’10 Track

The second part of our experiments includes IIMB task of OAEI 2010. IIMB com-
posed of 80 test cases. Each test case has OWL ontology and a set of instances.
Information of test cases in IIMB track is extracted from Freebase dataset. IIMB di-
vided test cases in four groups. Test cases from 1 to 20 have data value transforma-
tions, 21 to 40 have structural transformations, test cases from 40 to 60 have data
semantic transformations and 61 to 80 have combination of these three transforma-
tions. All of these 80 test cases must be matched against a source test case. We choose
IIMB 2010 test cases for the evaluation because this track of OAEI has a good num-
ber of participants and its test cases have all kinds of transformations and we could
compare all aspects of our system against the other systems.

Fig. 3. Results of OAEI'10 IIMB Track

The results of four systems on F-measure are depicted in Fig. 3. We could observe
that all four systems have good values of F-measure on datasets with data value trans-
formation. SBUEI and ASMOV have the best values for F-measure. All participating
systems have weaker results in test cases with structural value transformation.

SBUEI has better operations than others in these datasets. This means that SBUEI
is more stable in modifications such as removing, adding and hierarchal changing of
properties. Systems have better results in test cases with semantic value transforma-
tion against structure value transformation. SBUEI has the best F-measure in such
cases. Four systems do not have desirable results in datasets with combination all
kinds of transformations.

5.3 IIMB’11 Track

In this part of our experiments, we are going to show the results of SBUEI on IIMB
track of OAEI 2011. This track has also 80 test cases with four kinds of transforma-
tions just like the last year IIMB track. The purpose of selecting this track as one of
our experiments is that the size of IIMB 2011 has increased greatly compared to last
year and is more than 1.5 GB. Increased amount of the dataset size lets us evaluate
scalability of our approach. Unfortunately, there has been just one participant in this
track, CODI, with which we will compare our results. This shows the scalability diffi-
culties in systems performance at large scale datasets. We observe in Fig. 4 that the
recall values of SBUEI in four kinds of transformations are better than CODI but this
is not always true for precision value. The operations of SBUEI is clearly better than
CODI in datasets with structure transformation considering three aspects of precision,
recall and F-measure.

0.97 0.96 0.98 0.980.86 0.88 0.85 0.890.89 0.96 0.93 0.97

0.54 0.65 0.65 0.68

0

0.5

1

ASMOV CODI RiMOM SBUEI

F-
M

ea
su

re

Value Transformation Structure Transformation Logical Transformation Comprehensive

142 A. Taheri and M. Shamsfard

Fig. 4. Results of OAEI'11 IIMB Track

5.4 TAP-SWETO Datasets

OAEI 2009 created a benchmark in instance matching track that was created accord-
ing to different ontologies. This benchmark includes SWETO and TAP datasets. In
[18], authors used these two datasets and explained the effects of ontology mis-
matches in instance matching on these two datasets. We explain again one of the
problems that Nikolov pointed and describe how SBUEI overcame some difficulties
in instance matching of these two datasets. Unfortunately, this track was cancelled
due to the lack of participants and there are no reference alignments or any other sys-
tems to be compared with our results.

Therefore, we mention only how SBUEI performed the process of matching.
There are some instances about computer researchers in two datasets. TAP ontology
has a concept that is called ‘ComputerScientist’ and on the other hand SEWTO ontol-
ogy has a concept that is called ‘ComputerScienceResearcher’. These two concepts
have also some structural similarities in addition to lexical similarities, because their
positions in the hierarchy of ontologies are similar. The first one has Sub-class real-
tion with ‘Scientist’ concept and the second has Sub-class relation with ‘Reasercher’
concept. More over both ‘Scientist’ and ‘Reasercher’ concepts are children of ‘Per-
son’ concept in their ontologies. Therefore, ‘ComputerScientist’ and ‘ComputerS-
cience Researcher’ are good candidates to be matched by structural and lexical
matchers. If we confirm this matching and then start instance resolution process be-
tween their instances, we confront with a few numbers of matched instances. This is
because of conceptualization mismatches in schema. ‘ComputerScientist’ in TAP
includes only famous computer scientist and ‘ComputerScienceResearcher’ has more
general sense and includes who have a paper in computer science research areas.

SBUEI removed this problem and had a good instance resolution process. SBUEI
began the process of matching after receiving a pair of concepts as anchor: (‘Resear-
chPaper’ , ‘Scientific_Publication’). After acquiring these two concepts, SBUEI is
confident about similarity of instances between the concepts. SBUEI created LICs
around the instances of two concepts ‘ResearchPaper’ and ‘Scientific_Publication’
and computed similarity of LICs and then selected equal LICs with similarities more
than threshold. SBUEI found more similar instances in equal LICs of these two

0.93
0.78 0.84 0.89 0.83 0.850.83

0.59 0.68
0.87

0.61
0.70.73 0.67 0.64 0.71 0.72 0.650.66

0.28 0.36

0.66

0.32 0.39

0

0.2

0.4

0.6

0.8

1

precision recall F-measure precision recall F-measure

CODI SBUEI

Value Transformation Structure Transformation Logical Transformation Comprehensive

 Instance Coreference Resolution in Multi-ontology Linked Data Resources 143

concepts. In the neighborhood of LICs starting points, SBUEI found some equal
instances that are authors of papers. These newly founded instances belonged to con-
cepts such as: ‘CMUPerson’ and ‘W3CPerson’ from TAP and ‘ComputerScienceRe-
searcher’ from SEWTO. Thus, SBUEI discovered similarity between ‘CMUPerson’
and ‘W3CPerson’ concepts of TAP and ‘ComputerScienceResearcher’ concept of
SWETO. Then SBUEI started the process of instance resolution and found more
matched instances compared to the previous time. In particular, TAP has divided
computer researchers considering to their place of their works. These kinds of mis-
matches in schema level could not be discovered easily by ontology matchers. Ontol-
ogy matchers and instance matchers can improve their performance cooperatively.

6 Conclusion

In this paper, we proposed a new approach, SBUEI, for linked data consolidation.
This approach is applicable in with heterogeneous schemas. SBUEI pays attention to
matching in both schema and instance level. Instance resolution process starts in
SBUEI after getting two equal concepts as input by instances matcher. Instance
matcher creates LICs around the instances of two equal concepts and then compares
these clouds. After discovering instances with the same identity in LICs, instance
matcher utilizes them and sends some similarity feedback to the schema matcher.
Schema matcher receives feedback, applies some ontology matching algorithms, de-
termines two equivalent concepts in ontologies and gives them to instance matcher as
input. This process continues consecutively. Our experiments showed that our
approach achieved high precision and recall and outperforms other systems.

Our future target includes utilizing some methods that are proposed at the third
group of section 2 in our approach. This means that we are going to use some learning
algorithms to find discriminable properties in the LICs. This will help us to find simi-
lar LICs efficiently. Considering that SBUEI is a recently created approach, does not
have appropriate user interface. Therefore, it is important to make a powerful user
interface for SBUEI.

References

1. Araujo, S., Hidders, J., Schwabe, D., de Vries, A.P.: SERIMI - Resource Description Simi-
larity, RDF Instance Matching and Interlinking. CoRR, abs/1107.1104 (2011)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data-The Story So Far. Int. J. Semantic Web
Inf. Syst. 5(3), 1–22 (2009)

3. Bizer, C., Schultz, A.: The R2R Framework: publishing and discovering mapping on the
web. In: 1st International Workshop on Consuming Linked Data, China (2010)

4. Castano, S., Ferrara, A., Montanelli, S., Lorusso, D.: Instance matching for ontology popu-
lation. In: 16th Symposium on Advanced Database Systems, Italy (2008)

5. Cruz, I.F., Store, C., Caimi, F., Fabiani, A., Pesquita, C., Couto, F.M., Palmonari, M.: Us-
ing AgreementMaker to align ontologies for OAEI 2011. In: 6th International Workshop
on Ontology Matching, Germany (2011)

6. Euzenat, J., Shvaiko, P.: Ontology Matching, 1st edn. Springer, Heidelberg (2007)

144 A. Taheri and M. Shamsfard

7. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology Align-
ment Evaluation Initiative: Six Years of Experience. In: Spaccapietra, S. (ed.) Journal on
Data Semantics XV. LNCS, vol. 6720, pp. 158–192. Springer, Heidelberg (2011)

8. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
9. Ferrara, A., Lorusso, D., Montanelli, S.: Automatic identity recognition in the semantic

web. In: 1st ESWC Workshop on Identity and Reference on the Semantic Web, Spain
(2008)

10. Hassanzadeh, O., Consense, M.: Linked movie data base. In: 2nd Link Data on the Web,
Spain (2009)

11. Hogan, A., Harth, A., Decker, S.: Performing object consolidation on the semantic web da-
ta graph. In: 1st Identity, Identifiers, Identification Workshop, Canada ((2007)

12. Hogan, A., Polleres, A., Umbrich, J., Zimmermann, A.: Some entities are more equal than
others: statistical methods to consolidate linked data. In: 4th International Workshop on
New Forms of Reasoning for the Semantic Web, Greece (2010)

13. Hu, W., Chen, J., Qu, Y.: A Self-training Approach for Resolving Object Coreference Se-
mantic Web. In: 20th International World Wide Web Conference, India (2011)

14. Isele, R., Jentzsch, A., Bizer, C.: Silk server- adding missing links while consuming linked
data. In: 1st International Workshop on Consuming Linked Data, China (2010)

15. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology Alignment for Linked Open
Data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I.,
Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg
(2010)

16. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: ASMOV: Results for OAEI 2010. In:
5th International Workshop on Ontology Matching, China (2010)

17. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic ve-
rification. J. Web Sem. 7(3), 235–251 (2009)

18. Nikolov, A., Uren, V., Motta, E.: Toward data fusion in a multi-ontology environment. In:
2nd Linked Data on the Web Workshop, Spain (2009)

19. Nikolov, A., Uren, V., Motta, E., de Roeck, A.: Overcoming schema heterogeneity be-
tween linked semantic repositories to improve coreference resolution. In: Gómez-Pérez,
A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp. 332–346. Springer, Heidel-
berg (2009)

20. Niu, X., Rong, S., Zhang, Y., Wang, H.: Zhishi.links results for OAEI 2011. In: 6th Inter-
national Workshop on Ontology Matching, Germany (2011)

21. Noessner, J., Niepert, M., Meilicke, C., Stuckenschmidt, H.: Leveraging terminological
structure for object reconciliation. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A.,
Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS,
vol. 6089, pp. 334–348. Springer, Heidelberg (2010)

22. Noessner, J., Niepert, M.: CODI : Combinatorial Optimization for Data Integration – Re-
sults for OAEI 2010. In: 5th International Workshop on Ontology Matching, China (2010)

23. Noy, N., Musen, M.: Anchor-PROMPT: using non-local context for semantic matching.
In: Ontologies and Information Sharing Workshop, USA (2001)

24. Parundekar, R., Knoblock, C.A., Ambite, J.L.: Linking and building ontologies of linked data.
In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I.,
Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 598–614. Springer, Heidelberg
(2010)

25. Raimond, Y., Sutton, C., Sandler, M.: Automatic Interlinking of music datasets on the se-
mantic web. In: 1st Link Data on the Web, China (2008)

 Instance Coreference Resolution in Multi-ontology Linked Data Resources 145

26. Rowe, M.: Interlinking Distributed Social Graphs. In: 2nd Linked Data on the Web Work-
shop, Spain (2009)

27. Sais, F., Niraula, N., Pernelle, N., Rousset, M.: LN2R a knowledge based reference
reconciliation system: OAEI 2010 results. In: 5th International Workshop on Ontology
Matching, China (2010)

28. Schultz, A., Matteini, A., Isele, R., Bizer, C., Becker, C.: LDIF-Linked data integration
framework. In: 2nd International Workshop on Consuming Linked Data, Germany (2011)

29. Seddiqui, M.H., Aono, M.: An Efficient and Scalable Algorithm for Segmented Alignment
of Ontologies of Arbitrary Size. J. Web Sem. 7(4), 344–356

30. Seddiqui, M.H., Aono, M.: Ontology Instance Matching by Considering Semantic Link
Cloud. In: 9th WSEAS International Conference on Applications of Computer Engineer-
ing, Russia (2009)

31. Song, D., Heflin, J.: Automatically generating data linkages using a domain-independent can-
didate selection approach. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal,
L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 649–664. Springer,
Heidelberg (2011)

32. Taheri, A., Shamsfard, M.: Linking WordNet to DBpedia. In: Proceedings of the 6th Glob-
al WordNet Conference, Japan (2012)

33. Wang, Z., Zhang, X., Hou, L., Zhao, Y., Li, J., Qi, Y., Tang, J.: RiMOM Results for OAEI
2010. In: 5th International Workshop on Ontology Matching, China (2010)

34. Wu, Z., Palmer, M.: Verb Semantics and Lexical Selection. In: 32nd Annual Meeting of
the Association for Computational Linguistics, Las Cruces (1994)

	Instance Coreference Resolution in Multi-ontology Linked Data Resources
	Introduction
	Related Work
	Instance Coreference Resolution In Linked Data Sources
	First Step: Create Linked Instances Cloud
	Second Step: Compute Similarity between LICs
	Third Step: Determine New Equal Instances in Two Similar LICs

	Schema Matching in Linked Data Sources
	Compute Similarity between Concepts

	Evaluation
	Person-Restaurants Benchmark
	IIMB’10 Track
	IIMB’11 Track
	TAP-SWETO Datasets

	Conclusion
	References

