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Abstract. Web of linked data is one of the main principles for realization of 
semantic web ideals. In recent years, different data providers have produced 
many data sources in the Linking Open Data (LOD) cloud upon different sche-
mas. Isolated published linked data sources are not themselves so beneficial for 
intelligent applications and agents in the context of semantic web. It is not poss-
ible to take advantage of the linked data potential capacity without integrating 
various data sources. The challenge of integration is not limited to instances; ra-
ther, schema heterogeneity affects discovering instances with the same identity. 
In this paper we propose a novel approach, SBUEI, for instance co-reference 
resolution between various linked data sources even with heterogeneous sche-
mas. For this purpose, SBUEI considers the entity co-reference resolution prob-
lem in both schema and instance levels. The process of matching is applied in 
both levels consecutively to let the system discover identical instances. SBUEI 
also applies a new approach for consolidation of linked data in instance level. 
After finding identical instances, SBUEI searches locally around them in order 
to find more instances that are equal. Experiments show that SBUEI obtains 
promising results with high precision and recall. 

Keywords: Linked Data, Coreference Resolution, Ontology, Schema, Instance, 
Matching. 

1 Introduction 

Linked data is a new trend in the semantic web context. Nowadays increasing the 
amount of linked data in Linking Open Data project is not the only challenge of pub-
lishing linked data; rather, matching and linking the linked data resources are also 
equally important and can improve the effective consuming of linked data resources. 
Linked data integration is one of the main challenges that become more important 
considering development of linked data. Without these links, we confront with iso-
lated islands of datasets. The fourth rule of publishing linked data in [2] explains the 
necessity of linking URIs to each other. Therefore, extension of datasets without  
interlinking them is against the Linked Data principles.  

In the web of linked data with so large scale, there are obviously many different 
schemas in the various linked data sources. Considering that there is no compulsion 
for data providers in utilizing specific schema, we confront with the problem of 
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schema heterogeneity in data sources. This issue is considerable in instance corefe-
rence resolution. Paying attention to schemas in linked data consolidation has many 
advantages. When we are going to discover instances with unique identity in two data 
sources, it is a complicated process to compare all the instances of two data sources in 
order to find equivalents. Processing all of the instances has harmful effects on execu-
tion time and needs more computing power. However, if we know about schema 
matching of two data sources, it is not necessary to look up all the instances. Rather, it 
is enough to search only instances of two matched concepts of schemas, so perfor-
mance would become better. In addition, ignoring the schema may cause precision 
decrease in instance matching. In many cases, the internal structure and properties of 
instances do not have enough information to distinguish distinct instances and this 
increases the possibility of wrong recognition of co-referent instances that are  
apparently similar in some properties in spite of their different identities.  

Although ontology/schema matching can be beneficial for instance matching, it 
could be detrimental if it is done inefficiently. In [18] effects of ontological mis-
matches on data integration (in instance level) are described. They divide all types of 
mismatches into two groups: conceptual mismatches and explication mismatches. 
They represent that these kinds of mismatches such as conceptual mismatches could 
be harmful for instance matching and could decrease the amount of precision by 
wrong matching of concepts in the schema level. They do ontology matching at the 
first step and instance matching at the second step. Because of this sequential process, 
the errors of the first step can propagate into the next step. 

In this paper, we propose a solution, SBUEI, to deal with the problem of instance 
matching and schema matching in linked data consolidation. SBUEI proposes an 
interleaving of instance and schema matching steps to find coreferences or unique 
identities in two linked data sources. SBUEI, unlike systems such as [13, 21, 27] - 
which uses just instance matching- or systems such as [15, 24] -which use just schema 
matching- exploits both levels of instance and schema matching. The main difference 
between SBUEI and other systems like [19], which exploit both levels, is that SBUEI 
exploits an interleaving of them while [19] exploits them sequentially one after the 
other (starts instance matching after completing schema matching). SBUEI utilizes 
schema matching results in instance matching and use the instance matching results in 
order to direct matching in schema level. SBUEI also has a new approach for instance 
matching.  

This paper is structured as follows: section 2 discusses some related work. Sec-
tion3 explains the instance coreference resolution algorithm at the first phase, and 
section 4 describes the schema matching algorithm at the second phase. Section 5 
demonstrates the experimental results of evaluating SBUEI. Finally, section 6 con-
cludes this paper. 

2 Related Work 

We divide related works in the area of entity coreference resolution in the context of 
semantic web into four groups: 
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Some related works deal with specific domains. Raimond et al. in [25] proposed a 
method for interlinking two linked data music-related datasets that have similar ontol-
ogies and their method was applicable on that specific ontology. In [10], authors de-
scribed how they interlink a linked data source about movies with other data sources 
in LOD by applying some exact and approximate string similarity measures. In [32] a 
method for linking WordNet VUA (WordNet 3.0 in RDF) to DBpedia is proposed. 
The methodology of this project is customized for only these two datasets. Finding 
identical instances of foaf:person at social graph is explained in [26] by computing 
graph similarity. 

Some pieces of related works follow the challenge of linked data consolidation so 
that their methods are not constrained to special domains but their methods are based on 
the assumption that schemas of different data sets are equal and their approach only 
concentrate on consolidation of data in instance level. In [11], capturing similarity be-
tween instances is based on applying inverse functional properties in OWL language. In 
[21], authors used a similarity measure for computing similarity of instance matching 
between two datasets with the same ontology. LN2R [27] is a knowledge based refer-
ence reconciliation system and combines a logical and a numerical method. LN2R re-
quires manual alignment at first and then turns to the reconciliation of instances. 

Another group of approaches, which focus on consolidating linked data, claims 
that their approach does not depend on schema information and can identify same 
instances in heterogeneous data sources without considering their ontologies. Hogan 
et al. [12] proposed a method for consolidation of instances in RDF data sources that 
is based on some statistical analysis and suggests some formula in order to find “qua-
si” properties. ObjectCoref [13] is a self-training system based on a semi supervised 
learning algorithm and tries to learn discriminative property-value pair based on a 
statistical measurement. Song et al. [31] proposed an unsupervised learning algorithm 
in order to find some discriminable properties as candidate selection key. SERIMI [1] 
is an unsupervised method and has a selection phase in order to find some specific 
properties and a disambiguating phase. Zhishi.links [20] is a distributed instance 
matching system. It does not follow any special techniques for schema heterogeneity. 
It uses an indexing process on the names of instances and uses string similarity to 
filter match candidates. 

Some other approaches of instance matching in linked data sources take advantage 
of schema in data sets. HMatch(τ) [4] is an instance matcher and use HMatch 2.0 for 
TBox matching and then tries to capture the power of properties at instance identifica-
tion [9]. RiMOM [33] , ASMOV [16] and AgreementMaker [5] are three ontology 
matching systems that recently equipped with instance matchers and participated in 
instance matching track of OAEI 2010. CODI [22] is also a system for ontology and 
instance matching and is based on markov logic. Seddiqui et al. [30] proposed an 
instance matching algorithm and Anchor-Flood algorithm [29] for ontology matching 
at first and then begin instance matching. Nikolov et al. [18] discussed the effects of 
ontology mismatches on instance resolution and proposed Knofuss architecture in 
[19]. Linked Data Integration Framework (LDIF) [28] has two main components: Silk 
Link Discovery Framework [14] and R2R Framework [3] for identity resolution and 
vocabulary normalization respectively.  
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From the four above-mentioned groups, approaches in the last two groups are not 
dependent on any schemas or domains. It seems that the forth group have more ad-
vantages in comparison with third group, because the approaches in the third group 
have deprived themselves of utilizing useful information in the schema level. As we 
said in the section 1, paying attention to schema has beneficial effects on linked data 
consolidation. Our proposed approach, SBUEI, belongs to the forth group. What dis-
tinguish SBUEI from the aforementioned approaches in the forth group are its con-
secutive movements between schema and instance level and the matching algorithm 
in the instance level. SBUEI exploits the instance level information in order to find 
accurate proposal about schema matching and then applies schema matching in order 
to do instance resolution with high precision and recall. 

3 Instance Coreference Resolution In Linked Data Sources 

The instance coreference resolution algorithm has two phases that are executed itera-
tively. The first phase needs to receive an anchor as input. Anchor is defined as a pair 
of similar concepts across ontologies [23, 29]. As the first and second phases are ex-
ecuted in a cycle, for the first round, the user should provide this input, but in the next 
times the input of the first phase (the anchors) is provided by the output of the second 
phase. 

The first phase starts by getting anchor: , .  and  are two similar 
concepts from ontologies and  respectively. It comprises three steps explained 
in the following in details. 

3.1 First Step: Create Linked Instances Cloud 

In the first step, we introduce a new construction that is called Linked Instances Cloud 
(LIC), as the basis of our matching algorithm. 

For anchors , , we must create LICs. For each instance of concepts  and  
 we make one LIC.  has some instances. For example the URI of one of the C  

instances is called ‘i’ .We explain how to create LIC for instance ‘i’. For creating this 
LIC, SBUEI extracts all of the triples whose subjects are instance ‘i’ and adds them to 
the LIC. Then, in the triples that belong to LIC, we find neighbors of instance ‘i’. If 
instance ‘j’ is one of the neighbors of instance ‘i’, SBUEI repeats the same process for 
instance ‘j’. Triples whose subjects are instance ‘j’, are added to LIC and the process 
is repeated for neighbors of the instance ‘j’. This process is actually like depth first 
search among neighbors of instance ‘i’. To avoid falling in a loop and to eliminate the 
size of search space, the maximum depth of search is experimentally set to 5. The LIC 
that is created for instance ‘i’ is called . Starting point for this LIC is instance ‘i’.  
The process of creating LICs is done for all of the instances of the two concepts  
and .  

Sometimes the identities of instances are not recognizable without considering the 
instances that are linked to them, and neighbors often present important information 
about intended instances. In some cases in our experiments, we observed that even 
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discriminative property-value pairs for an instance may be displayed by its neighbors. 
Fig. 1 shows an illustration about an instance that its neighbors describe its identity. 
This example is taken from IIMB dataset in OAEI 2010. Fig. 1 shows . 
‘Item21177’ is  the starting point of this LIC and is an Actor, Director and  a charac-
ter-creator. Each instance in the neighborhood of ‘Item21177’ describes some infor-
mation about it. For example ‘Item74483’ explains the city that ‘Item21177’ was born 
in and ‘Item27054’ explains the name of the ‘Item21177’. 

 

 

Fig. 1. An Illustration of LIC 

Creating LICs not only helps us in discovering identities of instances, but also it 
helps us to find locally more similar instances. This issue is explained in section 3.3. 

3.2 Second Step: Compute Similarity between LICs  

In the previous step, SBUEI created the LICs of two concepts  and . In this step, 
we must compare them. Each LIC from concept  should be compared with all LICs 
of concept  in order to find similar LICs. Starting points of two similar LICs would 
be equal. Therefore, the triples of two LICs should be compared so that two LICs can 
be compared. In this process, only triples whose objects are data type values (and not 
instances) would participate in the comparison. Properties values are very important 
in comparison. This does not mean that properties (predicates in triples) are effectless 
in similarity computation. However, finding equal properties in two different ontolo-
gies is not usually easy, especially in very heterogeneous ontologies. Therefore, val-
ues of properties have more importance for SBUEI. However, if we could find similar 
properties, the process of similarity computation between properties values would be 
easier and more effective in increasing of similarity value. 

SBUEI computes similarity of LICs in three separate parts as the followings. 

Part 1: Normalization of Properties Values 
SBUEI applies some normalization techniques on properties values for improving the 
result of string comparison. These techniques consist of: case normalization, blank 
normalization, punctuation elimination and removing stop words. 
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Part 2: Compare Triples in Two LICs 
In this part, all of the triples whose objects are values of data type will be compared in 
two LICs. However, before comparing values of properties, properties itself will be 
compared. Similarity computation for properties are done regarding to three different 
aspects: range similarity, lexical similarity and properties hierarchies. Equation (1) 
describes the function that computes properties similarities.  

HierSim function computes hierarchal similarity between two properties  and 
. Properties in the hierarchy are examined by two functions LexicalSim and Ran-

Sim. RanSim function compares ranges of two properties  and . LexicalSim func-
tion computes similarity between the labels of two properties  and . Section 4.1 
explains these functions in detail.  ,  ,  , , ,3  (1)

If SBUEI finds similar properties in two LICs, then objects of triples that have equal 
properties will be compared. Other triples in two LICs that we could not find equal 
properties for them, will be compared considering only their values of properties. Our 
experiments show that often in most cases SBUEI does not find similar properties 
because of lexical, structural and semantical heterogeneity in schemas. Thus, we fo-
cus on values of properties when similar properties are not found. 

We use Edit Distance method for computing similarity of properties values. Consi-
dering  and  as values of two properties  and , SBUEI computes their simi-
larity according to (2). , , , , 0,         , 

 (2)

Similarity values of triples objects -obtained by EditDisSim function- are added to-
gether for obtaining similarity value of two LICs. In (2) we applied a threshold equal 
to 0.6 for edit distance method. This threshold was found by making a benchmark and 
execution of edit distance algorithm based on the benchmark. Equation (2) removes 
similarity values that are less than threshold. This prevents accumulating small simi-
larity values in the sum of similarity values of triples objects.  

Some properties are comments about instances. For similarity computation of these 
kinds of properties, we do not use (2). SBUEI in (3) applies a specific method for 
finding comment similarity. It is based on the number of common tokens. Again, we 
made a benchmark, found a threshold (δ) equal to 0.7.   ,  , , , 0,          , 

 

, 
2 | || | | |  

(3)

After calculating similarity of properties values, SBUEI computes similarity of two 
LICs. Similarity of two LICs is dependent on similarity of their properties values. 
Triples in two LICs have specific importance depend on the depth of their subjects 
(instances that triples belong to) in the LICs. We noted in section 3.1 that depth of 
instances are estimated towards the starting point of LIC. When depth of instances in 
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LIC increases, their effectiveness in similarity computation of LICs decreases. The 
following triples belong to  in Fig. 1.  

1  (‘Item67977’, has-value, Male )     
2  (‘Item37461’, has-value, 1944-05-14) 
3  (‘Item77951’, has-value, 93.23957) 
4  (‘Item3478’, has-value, Modesto is the county seat of Stanislaus County, California) 

The above triples describe some information about the starting point of  . 
Two first triples explain that ‘item21177’ has male gender and date of his birth is 1994-
05-14. Instances in the subjects of these two triples have depth equal to two. Two 
second triples explain that ‘item21177’ has born in a city that its size is 93.23957 and 
also is the county seat of Stanislaus County, California. Instances in the subjects of these 
two triples have depth equal to three. As you can see, the first two triples have more 
important role for determining the identity of ‘item21177’ than the second two triples. 
Gender of a person and date of his birth is more important than some comments about 
the city that he lives in. Nevertheless, this does not mean that existence of instances with 
greater depth are not beneficial in the LICs; rather, they are less important in identity 
recognition of the starting point of the LIC than those with less depth. In addition, we 
utilize such instances in step three for finding more instances that are similar. 

In this regard, similarities of properties values are added with an particular coeffi-
cient. SBUEI uses a weighted sum for computing similarity of LICs. The coefficients 
(4) in this sum have inverse relations to the depth of the subject of triples in LIC .  1

 :        

(4)

SBUEI normalizes the sum of similarities of properties values in two LICs into a range 
of 0 and 1 by dividing the result to the sum of the numbers of triples in two LICs. 

In (5)  and  have n and m triples, respectively. We find for each object of 
 the most similar object in  via LexicalPropValSim function. LexicalPropVal-

Sim works based on (2) and (3). Each of the two objects with most similarity; have a 
coefficient equal to inverse of the depth of the triple that belongs to . We do the 
same process for  and then add obtained values of similarity  and . 
Normalization is done by the sum of the triples numbers in  and  (In (5) this 
value is m+n), but each triple has a coefficient according to what mentioned in (4).  , , … ,  , , … ,  ,∑ ,∑ ,

∑ ∑  

(5)
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Part 3: Choose Two Similar LICs 
In the previous part, we computed the similarity of two LICs. Now we confront with a 
complex challenge. The main challenge is determining the value of the threshold for 
deciding whether two LICs are equal or not. This threshold is the final approver about 
equality of two LICs based on their similarity value. Our experiments show that the 
value of threshold is completely variable depending on the data sources and their 
characteristics. The amounts of threshold have considerable differences in a range 
between zero and one. For example results of several tests on two data sources, indi-
cated that the best value for similarity threshold of LICs are 0.7. While on two other 
data sources this value was 0.2. Wide range of obtained values for threshold led us to 
have a dynamic selection for threshold of LICs similarity. 

Dynamic selection of threshold means that after creating LICs and computing their 
similarities, we choose the value of threshold depending to the concepts that LICs be-
long to.  and  belong to two concepts  and  respectively. We calculate a 
specific threshold for two concepts  and . Afterward we apply acquired threshold 
for comparing LICs from these two concepts. For all LICs that their starting points be-
long to two particular concepts from two ontologies, SBUEI use a specific threshold.   

The purpose of threshold value variation and the necessity of dynamicity in thre-
shold selection can be justified because of the heterogeneity of ontologies viewpoints 
regarding to concepts. Two ontologies may have information considering different 
aspects of concepts and therefore their instances even with the same identities have 
diverse information with little overlap. In such cases, ontologies are semantically 
different. For example, one ontology has some properties such as name, director, 
characters for describing a film and another ontology has name, actors, character-
creator properties for describing a film. Hence, equal instances of these two ontolo-
gies have low similarities despite the fact that they have the same identities. 

SBUEI uses a heuristic for solving this problem. After finding the most similar 
LICs of two concepts  and , SBUEI calculates the similarity average of the most 
similar LICs of two concepts. Instances of concept  have almost the same proper-
ties for describing individuals and instances of concept  are also the same way. 
Hence, the similarity amounts of instances of these two concepts are approximately 
predictable and are the same.  

SimLIC in (6) is the set of most similar LICs of two concepts  and . Each 
member of the set is a triple: the first element is the intended LIC from concept , 
the second element is the most similar LIC from concept  and the third element is 
the value of their similarity. LICSimThreshold computes the threshold of two con-
cepts  and . , , , , , , … , , ,  

n

n

1i
is

=  

(6)

3.3 Third Step: Determine New Equal Instances in Two Similar LICs 

In this step, we continue the process of matching on those LICs of the previous step 
that led to discovering equal instances or in the other words, those LICs that have 
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equal starting points. The strategy in this step is searching locally around the identical 
instances in order to find new equal instances. In [29] an algorithm for ontology 
matching is created, and their algorithm is based on the idea that if two concepts of 
two ontologies are similar, then there is a high possibility that their neighbors are 
similar too. We use this idea but in instance level. This means that if two instances are 
identical, then there is possibility that their neighbors are similar too. 

Suppose that ‘i’ and ‘j’ are two instances of two concepts  and  and they are 
detected identical in the previous step. Their LICs are called  and . In this 
step we describe how SBUEI finds more identical instances in  and . This 
step is composed of three parts as following. 

Part 1: Create Sub-Linked Instances Cloud 
We define a new construction called ‘Sub-LIC’. SBUEI makes one LIC for each in-
stance in  and . Each LIC has some Sub-LICs in itself as many as the num-
ber of its instances. 

Part 2: Discover Similar Sub-LICs 
For discovering similar instances in  and , we compare their Sub-LICs. Si-
milarity of Sub-LICs is computed same as LICs with the same threshold value. Sub-
LICs that have similarities more than the threshold are equal and their starting points 
are considered as identical instances. 

Finding identical instances of two concepts initially costs a lot because of consider-
ing all neighbors of an instance; later we can find locally more identical instances by 
paying low computational cost. 

Part 3: Compute Concept Similarities in Schema Level 
After finding identical instances in Sub-LICs, now it is time to arrange for moving to 
schema level. In this part instance matcher gives feedback to schema matcher. Con-
cepts whose instances are the starting points of equal Sub-LICs  are candidates to be 
similar. Suppose that _  and _  are two Sub-LICs of  and  
respectively and are detected similar in the previous part. Starting points of _  and _  belong to two concepts  and  from ontologies  
and    respectively. We can conclude that  and  are probably similar because 
they have identical instances.  

SBUEI repeats three above parts for all LICs of concepts  and   that are de-
tected similar in step 2. We define the following measure for similarity estimation 
between two concepts  and : ‘ratio of equal Sub-LICs of two concepts  and 

 that their starting points belong to  concepts  and  to the total numbers of 
LICs of two concepts  and ’. Instance matcher utilizes this measure for helping 
schema matcher in order to find equal concepts. 

4 Schema Matching in Linked Data Sources 

The second phase is done by a schema matcher. It receives feedback from the first 
phase, which contains some similarities between concepts from the viewpoint of in-
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stance matcher. At this time, schema matcher begins the process of matching in 
schema level by applying some ontology matching algorithms. SBUEI compares all 
of these similarity values that are proposed by instance matcher or obtained by sche-
ma matcher, and choose a pair of concepts that have the most similarity. SBUEI re-
peats these two phases consecutively until all of similar concepts that are given feed-
back to schema level or are detected by schema matcher, to be selected and schema 
matcher could not find any similar concepts. 

4.1 Compute Similarity between Concepts 

When SBUEI wants to do ontology matching, it considers to the concepts that are 
proposed as equal concepts in the previous iterations and the process of ontology 
matching starts in the neighborhood of these concepts. 

We applied the definition of concept neighborhood in [29]. In this definition, 
neighbors of a concept include its children, grandchildren, parents, siblings, grandpa-
rents and uncles. Schema matcher utilizes two similarity measures for ontology 
matching: label-based techniques and structure-based techniques. Therefore, we have 
two kinds of matchers: lexical matcher and structural matcher. 

Compute Lexical Similarity 
Lexical similarity of two concepts or two properties are described by LexicalSim() 
function in (8). We compute the similarity of two concepts or two properties with 
using a string-based method and utilizing a lexical ontology.   

Lexical features of a concept are such as id, label and comments. For computing 
comments similarities between concepts or properties, we use a token-based method, 
the same as equation (3). For other features of concepts or properties, SBUEI uses 
Princeton WordNet [8], a lexical ontology, for finding similarities.  

Let  and  be two labels or ids for two concepts  and  respectively, and let 
Synset (  denotes a synset in WordNet that  belongs to it and Senses(s) returns all 
of senses of a synset s,  then |  (7)

,
1,              1,              , ,   ∉                                                  ∉, , ∉ ∉

 (8)

 and  have the most lexical Similarity value, if they are equal or  is one of the 
senses of the synset that  belongs to or vice versa. WNStructuralSim ,  in (8) 
computes the similarity of two synsets that  and  are one of their senses respec-
tively. The similarity of those synsets is computed regarding to their positions in the 
hierarchy of WordNet. We used the Wu-Palmer measure presented in [34].  If   or 

 is not in WordNet we use Edit Distance method for computing their similarity. 
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Compute Structural Similarity 
In addition to the names, ids, comments and all other lexical features of concepts, 
their structure in ontologies are also important for calculating concepts similarities. In 
[6] structure based techniques are divided into two groups based on the internal struc-
ture and relational structure. SBUEI utilizes internal and relational structures for 
computing similarities between concepts. 
Internal Similarity.  

Internal similarity compares properties of two concepts from two different ontolo-
gies. Let  and  be two properties belong to two concepts  and  respectively, 
InternalStructuralSim() function in (9) is calculated using the following formula: ,

2 ∑ , ,,| |  

 
(9)

We defined LexicalSim previously. CardSim compares cardinality of properties. It 
will be 1.0 if Maximum and Minimum values of properties are equal and 0 otherwise. 
RanSim computes similarity value between data types of two properties range. Utiliz-
ing hierarchy of XML schema data types is proposed in [6] for computing data type 
similarity. SBUEI also uses XML schema data type hierarchy but applies Wu-Palmer 
method on the hierarchy in order to find the similarity of two data types regarding to 
their positions in the hierarchy. 

Relational Similarity 
Relational similarity in SBUEI computes similarity of hierarchies that two concepts 
from two different ontologies belong to. SBUEI considers taxonomic structure and 
pays more attention to rdfs:subClassOf for relational similarity computation. Parents 
and children of a concept are compared with the parents and children of another con-
cept. For comparing parents and children in (10), we use LexicalSim and Internal-
StructuralSim functions. 

 

,∑ , ,| |
∑ , ,| |  

(10)
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Similarity Aggregation 
SBUEI uses a weighted linear aggregation process to compose the results of different 
similarity values .The weights have been determined experimentally. We obtained 
values as: =0.4, =0.3 and =0.3 

5 Evaluation 

The experimental results are downloadable at our website1 and some statistics of 
SBUEI operations in comparison with other systems are prepared2.  

For evaluating SBUEI, we use the datasets in OAEI [7] , a benchmarking initiative 
in the area of semantic web. We report the experimental results of our proposed ap-
proach on four different datasets: PR in OAEI 2010, IIMB in OAEI 2010, IIMB in 
OAEI 2011 and TAP-SWETO datasets in OAEI 2009. In the last experiment, we 
found an interesting use case that takes advantage from our approach. 

5.1 Person-Restaurants Benchmark 

Person-Restaurants benchmark is one of the tasks in instance matching track in OAEI 
2010 campaign. This benchmark is composed of three datasets: Person1, Person2 and 
Restaurants. Each of them has two different owl ontologies and two sets of instances. 
Person1 and Person2 contain instances about some peoples, and Restaurants has in-
stances about some restaurants. Sizes of these datasets are small. Reference align-
ments are provided in OAEI 2010 and all of participants in this task must compare 
their results with the reference alignments. Five systems have participated in this task 
and we compare our results with the results of other systems. 

 

Fig. 2. Result of OAEI'10 Person-Restaurant Benchmark 

F-measure values of all systems on the Person-Restaurant benchmark are shown in 
Fig. 2. Performance of all systems (including SBUEI) are quite good on Person1 data-
set. Collected statistics of all the participants show that SBUEI has the best values of 
F-measure and precision on Person2 and Restaurants datasets. According to obtained 
values, we conclude that SBUEI performed well in matching at both schema and  
instance levels of these three datasets. 

                                                           
1 http://nlp.sbu.ac.ir/sbuei/result.rar 
2 http://nlp.sbu.ac.ir/sbuei/statistics.html 
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5.2 IIMB’10 Track 

The second part of our experiments includes IIMB task of OAEI 2010. IIMB com-
posed of 80 test cases. Each test case has OWL ontology and a set of instances.  
Information of test cases in IIMB track is extracted from Freebase dataset. IIMB di-
vided test cases in four groups. Test cases from 1 to 20 have data value transforma-
tions, 21 to 40 have structural transformations, test cases from 40 to 60 have data 
semantic transformations and 61 to 80 have combination of these three transforma-
tions. All of these 80 test cases must be matched against a source test case. We choose 
IIMB 2010 test cases for the evaluation because this track of OAEI has a good num-
ber of participants and its test cases have all kinds of transformations and we could 
compare all aspects of our system against the other systems. 

 

Fig. 3. Results of OAEI'10 IIMB Track 

The results of four systems on F-measure are depicted in Fig. 3. We could observe 
that all four systems have good values of F-measure on datasets with data value trans-
formation. SBUEI and ASMOV have the best values for F-measure. All participating 
systems have weaker results in test cases with structural value transformation.  

SBUEI has better operations than others in these datasets. This means that SBUEI 
is more stable in modifications such as removing, adding and hierarchal changing of 
properties. Systems have better results in test cases with semantic value transforma-
tion against structure value transformation. SBUEI has the best F-measure in such 
cases. Four systems do not have desirable results in datasets with combination all 
kinds of transformations. 

5.3 IIMB’11 Track 

In this part of our experiments, we are going to show the results of SBUEI on IIMB 
track of OAEI 2011. This track has also 80 test cases with four kinds of transforma-
tions just like the last year IIMB track. The purpose of selecting this track as one of 
our experiments is that the size of IIMB 2011 has increased greatly compared to last 
year and is more than 1.5 GB. Increased amount of the dataset size lets us evaluate 
scalability of our approach. Unfortunately, there has been just one participant in this 
track, CODI, with which we will compare our results. This shows the scalability diffi-
culties in systems performance at large scale datasets. We observe in Fig. 4 that the 
recall values of SBUEI in four kinds of transformations are better than CODI but this 
is not always true for precision value. The operations of SBUEI is clearly better than 
CODI in datasets with structure transformation considering three aspects of precision, 
recall and F-measure. 
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Fig. 4. Results of OAEI'11 IIMB Track 

5.4  TAP-SWETO Datasets 

OAEI 2009 created a benchmark in instance matching track that was created accord-
ing to different ontologies. This benchmark includes SWETO and TAP datasets. In 
[18], authors used these two datasets and explained the effects of ontology mis-
matches in instance matching on these two datasets. We explain again one of the 
problems that Nikolov pointed and describe how SBUEI overcame some difficulties 
in instance matching of these two datasets. Unfortunately, this track was cancelled 
due to the lack of participants and there are no reference alignments or any other sys-
tems to be compared with our results.  

Therefore, we mention only how SBUEI performed the process of matching.  
There are some instances about computer researchers in two datasets. TAP ontology 
has a concept that is called ‘ComputerScientist’ and on the other hand SEWTO ontol-
ogy has a concept that is called ‘ComputerScienceResearcher’. These two concepts 
have also some structural similarities in addition to lexical similarities, because their 
positions in the hierarchy of ontologies are similar. The first one has Sub-class real-
tion with ‘Scientist’ concept and the second has Sub-class relation with ‘Reasercher’ 
concept. More over both ‘Scientist’ and ‘Reasercher’ concepts are children of ‘Per-
son’ concept in their ontologies. Therefore, ‘ComputerScientist’ and ‘ComputerS-
cience Researcher’ are good candidates to be matched by structural and lexical 
matchers. If we confirm this matching and then start instance resolution process be-
tween their instances, we confront with a few numbers of matched instances. This is 
because of conceptualization mismatches in schema. ‘ComputerScientist’ in TAP 
includes only famous computer scientist and ‘ComputerScienceResearcher’ has more 
general sense and includes who have a paper in computer science research areas.   

SBUEI removed this problem and had a good instance resolution process. SBUEI 
began the process of matching after receiving a pair of concepts as anchor: (‘Resear-
chPaper’ ,  ‘Scientific_Publication’). After acquiring these two concepts, SBUEI is 
confident about similarity of instances between the concepts. SBUEI created LICs 
around the instances of two concepts ‘ResearchPaper’ and ‘Scientific_Publication’ 
and computed similarity of LICs and then selected equal LICs with similarities more 
than threshold. SBUEI found more similar instances in equal LICs of these two  
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concepts. In the neighborhood of LICs starting points, SBUEI found some equal  
instances that are authors of papers. These newly founded instances belonged to con-
cepts such as: ‘CMUPerson’ and ‘W3CPerson’ from TAP and ‘ComputerScienceRe-
searcher’ from SEWTO. Thus, SBUEI discovered similarity between ‘CMUPerson’ 
and ‘W3CPerson’ concepts of TAP and  ‘ComputerScienceResearcher’ concept of 
SWETO. Then SBUEI started the process of instance resolution and found more 
matched instances compared to the previous time. In particular, TAP has divided 
computer researchers considering to their place of their works. These kinds of mis-
matches in schema level could not be discovered easily by ontology matchers. Ontol-
ogy matchers and instance matchers can improve their performance cooperatively. 

6 Conclusion 

In this paper, we proposed a new approach, SBUEI, for linked data consolidation. 
This approach is applicable in with heterogeneous schemas. SBUEI pays attention to 
matching in both schema and instance level. Instance resolution process starts in 
SBUEI after getting two equal concepts as input by instances matcher. Instance 
matcher creates LICs around the instances of two equal concepts and then compares 
these clouds. After discovering instances with the same identity in LICs, instance 
matcher utilizes them and sends some similarity feedback to the schema matcher. 
Schema matcher receives feedback, applies some ontology matching algorithms, de-
termines two equivalent concepts in ontologies and gives them to instance matcher as 
input. This process continues consecutively. Our experiments showed that our  
approach achieved high precision and recall and outperforms other systems. 

Our future target includes utilizing some methods that are proposed at the third 
group of section 2 in our approach. This means that we are going to use some learning 
algorithms to find discriminable properties in the LICs. This will help us to find simi-
lar LICs efficiently. Considering that SBUEI is a recently created approach, does not 
have appropriate user interface. Therefore, it is important to make a powerful user 
interface for SBUEI. 
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