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Abstract. Linked data interlinking is the discovery of every owl:sameAs
links between given data sources. An owl:sameAs link declares the ho-
mogeneous relation between two instances that co-refer to the same
real-world object. Traditional methods compare two instances by pre-
defined pairs of RDF predicates, and therefore they rely on the domain
of the data. Recently, researchers have attempted to achieve the domain-
independent goal by automatically building the linkage rules. However
they still require the human curation for the labeled data as the input
for learning process. In this paper, we present SLINT+, an interlink-
ing system that is training-free and domain-independent. SLINT+ finds
the important predicates of each data sources and combines them to
form predicate alignments. The most useful alignments are then selected
in the consideration of their confidence. Finally, SLINT+ uses selected
predicate alignments as the guide for generating candidate and match-
ing instances. Experimental results show that our system is very efficient
when interlinking data sources in 119 different domains. The very consid-
erable improvements on both precision and recall against recent systems
are also reported.

Keywords: linked data, interlinking, domain-independent, instance
matching.

1 Introduction

The linked data is an unsubstitutable component in the generation of semantic
web. It provides a mechanism by which the resources are interconnected by
structured links. These links not only help the representation of information
becomes clearer, but also makes the exploitation of information more efficient.
Since then, linked data gets a lot of interest from many of organizations and
researchers. Many linked data sources are developed and many support tools are
introduced.

Given two linked data sources, data interlinking discovers every owl:sameAs
links between these sources. An owl:sameAs link describes the homogeneity the in-
stances that refer to the same object in the real world. Data interlinking is used in
two typical processes: data construction and integration. When publishing linked
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data, an essential task is to declare the links between the instances to ensure the
“linked” property of the data. Among these links, finding the owl:sameAs is promi-
nently important and challenging [2]. In data integration, because many data
sources are independently developed, the consideration of the homogeneous in-
stances is important since it ensures the integrity and consistency of data.

We attempt to develop an interlinking system that is independent with the
domain of data. This goal is increasingly interested because linked data is spread-
ing over many areas. Since a linked data instance is represented by a set of RDF
triples (subject, predicate, and object), the schema of the data sources is equiva-
lent with the list of used RDF predicates. Frequently, different data sources may
use different RDF predicates to describe the same property of the instances.
Because the properties are commonly regulated by the domain of the data,
difference in domain has the same meaning with difference in schema.

Traditional approaches compare two instances by matching the RDF objects
that declared by the corresponding predicates and these alignments are manu-
ally mapped by the human [3,8,10]. This approach is inapplicable when the users
do not have enough knowledge about the data and manually generating predi-
cate alignments may ignore the hidden useful ones. Recently, researchers have at-
tempted to learn the linkage rules [5,6] for not relying on the domain. However,
most approaches require labeled data, which is still involved with human curation.

In this paper, we introduce SLINT+, a training-free system with a domain-
independent approach. Our system firstly collects the important predicates of
each data sources using the covering and discriminative abilities of predicates.
Then, it combines these predicates and selects the most appropriate alignments
by considering their confidence. The selected alignments are the guide for com-
paring instances in the final step, instance matching. While instance matching
produces all the owl:sameAs links between data sources, the preceding step is
the candidate generation, which extracts the potentially homogeneous instances.
The basic idea of candidate generation step is quickly comparing the collective
information of instances using collected predicates. While the key requirements
of an interlinking system are mainly the recall and precision, those of candidate
generation are the pair completeness and reduction ratio. These criteria are used
to evaluate our system in the experiment. For testing the domain-independent
ability, we use 1,6 million owl:sameAs links connecting DBpedia1 and Freebase2

with 119 different domains. The experimental results are the evidences for the
efficiency of SLINT+. Besides, we compare SLINT+ with the previous state-of-
the-art systems and report the considerable improvements.

The paper is structured as follows. In the next section, we review some rep-
resentative linked data interlinking approaches and systems. Section 3 is the de-
tail description about SLINT+. Section 4 reports the experiments as well as the
results and analyses. Section 5 closes the paper with the conclusions and future
directions.

1 http://dbpedia.org/
2 http://www.freebase.com/
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2 Related Works

One of the first linked data interlinking system is Silk [10]. Silk is a link discov-
ery framework that provides a declarative language for user to define the type
of link to discover. The main use of Silk is to find owl:sameAs links. Using Silk,
users need to declare the pairs of predicates that they want to compare when
matching the instances. Besides, the matching threshold is manually configured.
AgreementMaker [3] is known as a system that focuses on matching both on-
tologies and instances. In data interlinking, AgreementMaker use a three steps
matching process, including candidate generation, disambiguation, and match-
ing. Candidates are collected by picking the instances that share the same label
with others. The disambiguation step divides the candidates into smaller subsets
and the matching step verify every pair of instances in each subset to produce
the final result. Zhishi.Links [8] is one of the current state-of-the-art systems.
This system improves the matching efficiency by using weighting schemes (e.g.
TF-IDF, BM25) for RDF objects when generating candidate, as an adoption
of pre-matching phase of Silk. However, this system is still depending on the
domain of data.

Recently, many domain-independent approaches have been proposed [1,5,6,9].
SERIMI [1] selects the useful predicates and their alignments by considering the
entropy and the similarity of RDF objects. SERIMI is the second best system
at the OAEI Instance Matching 2011 [4]. Isele and Bizer presented a linkage
rule generation algorithm using genetic programming [5]. Nguyen et al. focused
on instance matching using learning approach [6]. They build a binary classifier
to detect the matched and non-matched pairs of instances. Song and Heffin
proposed a domain-independent candidate generation method [9]. They design
an unsupervised learning schema to find the most frequent and discriminative
predicates. The set of predicates in each data sources are used as the key for
candidate generation.

In general, most proposed domain-independent approaches use the labeled
data as the replacement for user knowledge about the schema or the domain
of the data. Our innovation is developing SLINT+, an interlinking system that
does not need any information about both the domain and the matching state of
a portion of data sources. SLINT+ is an extension of SLINT [7]. Comparing with
SLINT, SLINT+ is similar in the architecture of the system, and different in the
use of techniques in some steps. The major improvement of SLINT+ against
SLINT is the reduction of many manual thresholds. In the next section we will
describe the technical detail of SLINT+.

3 Domain-Independent Linked Data Interlinking System

In this section, we describe the SLINT+ system. The process of interlinking two
data sources DS and DT is summarized in Fig. 1. There are four ordered steps in
this process: predicate selection, predicate alignment, candidate generation, and
instance matching. The predicate selection step aims at finding the important
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Fig. 1. The interlinking process of SLINT+

predicates, which are illustrated as the dark triangles in the figure. This kind
of predicates in both source data DS and target data DT are then combined to
construct the raw predicate alignments in the next step. We collect the useful
alignments by comparing their confidence level with an automatically selected
threshold. While the first two steps resolve the domain-independent objective,
the last two steps perform the interlinking using the output of the previous ones.
The candidate generation step is installed to find the candidates, which are the
potentially homogeneous instances and are expected to be very small in quan-
tity compared with all possible pairs of instances. In Fig. 1, the candidates are
visualized as the connected pairs of small dark circles in the output of the third
step. SLINT+ only conducts the comparison for these candidates to produce the
final owl:sameAs links. In the following sections, we give the detail of each step.

3.1 Predicate Selection

The predicate selection step is designed to find the important predicates. We
assume that important predicates are the ones used to declare the common
properties and the distinct information of the object. Therefore, we implement
two criteria of an important predicate: the coverage and the discrimination.
The coverage of a predicate expresses its frequency while the discrimination
represents the variation of the RDF objects described by this predicate. In Eq.1
and Eq.2, we define the coverage cov(p,D) and discrimination dis(p,D) of a
predicate p in the data source D.
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cov(p,D) =
|{x|∃ < s, p, o >∈ x, x ∈ D}|

|D| . (1)

dis(p,D) = HMean(V (p,D), H(p,D))

Where

V (p,D) =
|{o|∃x ∈ D,< s, p, o >∈ x}|

|{< s, p, o > |∃x ∈ D,< s, p, o >∈ x}|
H(p,D) =

∑

wi∈O

f(wi)∑
wj∈O f(wj)

log
f(wi)∑

wj∈O f(wj)

O = {o|∃x ∈ D,< s, p, o >∈ x}.

(2)

In these equations, x represents an instance, which is a set of RDF triple <
s, p, o > (subject, predicate, object). Function f returns the frequency of input
RDF object in the interested data source. Using the coverage and discrimination,
a predicate is considered to be important if it satisfies the condition of Eq.3.

⎧
⎨

⎩

cov(p,D) ≥ α
dis(p,D) ≥ β
HMean(cov(p,D), dis(p,D)) ≥ γ.

(3)

The coverage of a predicate is the percent of the instances sharing it. This metric
is the first requirement of an important predicate because we aim at finding the
predicates that are used to describe the common properties of the instances. The
number of important predicates is considerably small when being compared with
all predicates. For example, in 24,110 instances of school domain in DBpedia,
there are 2,771 distinct predicates but only 1% of them, 28 predicates, has the
coverage that is over 0.5. On another hand, the discrimination is the harmonic
mean of the diversity and the entropy of RDF objects. The function H yields
the entropy of distinct RDF objects, while V returns the percent of them over
total triples. V is a good option to estimate the variation of RDF objects, and
H is used to reveal the difference of the predicates that share the same number
of distinct RDF objects but differ in the distribution of each value. Clearly, a
predicate that describes the ambiguous information of instances should not be
important. Therefore, we install the discrimination as the second criterion of an
important predicate.

The α and β are automatically configured using the average value of the cov-
erage and discrimination of all predicates, respectively. In another word, α and
β are set to αmean and βmean, respectively. The γ is the main requirement when
being used to select the predicates having high harmonic mean of coverage and
discrimination. Usually, αmean and βmean are quite small because the percent of
important predicates is not large. Therefore, γ should have a value larger than
αmean and βmean to correctly select the important predicates.
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Table 1. Representative extraction function R

Type Return values of R

string String tokens
URI String tokens (separator ‘/’, domain is omitted)
decimal Rounded values with 2 decimal numbers
integer Original values
date Original values

The idea of Eq.3 and function V are inherited from the work of Song and
Heffin [9]. We also implemented V as the discrimination function in SLINT [7].
In SLINT+, we extend the discrimination as the combination of V and entropy
functionH . Besides, we use the αmean and βmean instead of manually configuring
them as in [7,9].

For each input data source, SLINT+ collects the important predicates of each
source and forwards them into the next step, predicate alignment.

3.2 Predicate Alignment

The aim of this step is to collect the useful alignments of important predicates.
A predicate alignment is a pair of two predicates from source data and target
data. A useful alignment is expected to be the predicates that describe the same
information of the existing instances in each data source. We construct predicate
alignments by combining the predicates having the same data type, and after
that, we select the ones having high confidence for the result. We categorize RDF
predicates into five different types: string, URI, decimal, integer, and date. The
type of a predicate is determined using the major type of RDF objects, which
are accompanied by this predicate. For example, predicate p is used to declare
the values that can be string and URI if the frequency of the manner is higher
than the latter, then the data type assigned for p will be string.

We estimate the confidence of an alignment using the similarity of the repre-
sentatives of RDF objects. The representatives are the pre-processed values of
them. Denoting R as the representative extraction function, the return values
of R is given in Table 1. The confidence conf(pS , pT ) of the alignment between
two predicates pS and pT is then computed using Eq.4

conf(pS , pT ) =
2× |R(OS) ∩R(OT )|
|R(OS)|+ |R(OT )| , Ok = {o|∃x ∈ Dk, < s, pk, o >∈ x}. (4)

The idea of Eq.4 starts from the assumption in that the corresponding predicates
are used to describe the same properties of the instances. Therefore, the higher
value of confidence is, the more useful an alignment is. We use thresholding
approach for choosing the useful alignments with the threshold δ is set to the
average confidence δmean of all alignments. Because there are many meaningless
alignments when combining the predicates of two data sources, we ignore the
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low confidences. Therefore, we take the average value of the confidences larger
than ε, a small value.

Predicate alignment step is the key difference in the interlinking model of
SLINT+againstprevious systems.Other domain-independentapproaches [1,5,6,9]
directly generate linkage rules and do not find the corresponding predicates.We at-
tempt a new approach, in which the linkage rules are implicitly defined, and they
are the useful alignments.

The two first steps of SLINT+ are the solution for the domain-independent
ability. In the next steps, we use their results to perform the candidate generation
and instance matching.

3.3 Candidate Generation

When interlinking two data sources DS and DT , each instance in DS should
be compared with each instance in DT . However, conducting all the compar-
isons is impractical. Candidate generation step aims at collecting all pairs of
instances that have a high possibility to be homogeneous. These kind of pair is
called candidate. Since the basic idea of every set-matching problem is exhaust-
ing similitude, candidate generation should be designed not to perform explicit
comparisons. There are three consecutive parts in this step: indexing, accumu-
lating, and candidate selection. The first part indexes every instance in each data
source with the representative value of RDF objects. The second part builds the
weighted co-occurrence matrix to store the co-occurrence value of all pairs of
instances. The last part selects the candidate by considering the high elements
in the matrix. We put the summary of our candidate generation method in Al-
gorithm 1. In this algorithm, Prs and Prt represent the predicates that appear
in the useful alignments, where Prk belongs to Dk. H , M , C, Rp represent the
index table, weighted co-occurrence matrix, candidates set, and representative
extraction function, respectively. ζ is a factor that will be combined with max
to produce the threshold for candidate selection, as written in line 22.

In Algorithm 1, lines 4-11 describe the indexing process. The result of this part
is the inverted-index table H . An entry of H is formed by two elements: the key
r.Label, and the triples < D, x, r.V alue× sumConf >. In a triple, the first two
elements D and x indicate the identifier of instance x ∈ D (e.g. index of x in
D), which contains r.Label in the representative set of its RDF objects. The last
element is the weight of r.Label. If an entry ofH contains n triples, there will be n
instances sharing the same key of this entry. In the design of functionRp, r.Label is
extracted as the same manner with functionR (Table 1), and r.V alue is regulated
by the data type of interested predicate. For string or URI, r.V alue is set to the
TF-IDF score of the token. For decimal, integer, or date, r.V alue is fixed to 1.0.

Lines 12-15 are the building process of co-occurrence matrix M . An element
of this matrix is the co-occurrence value of two instances from source data and
target data. We use the confidence of useful predicate alignments as the weight
for each accumulated value. In addition with the inverted-indexing, the accu-
mulating process improves the speed of candidate generation because each data
source and the index table need to be traversed one time.
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Algorithm 1. Generating candidates set

Input: DS , DT , PrS, PrT , ζ
Output: Candidate set C

1 H ← ∅
2 M [|DS |, |DT |]← {0}
3 C ← ∅
4 foreach < D, P >∈ {< DS, P rS >,< DT , P rT >} do
5 foreach x ∈ D do
6 foreach pi ∈ P do
7 sumConf ←∑

pj∈{PrS,PrT }\P conf(pi, pj)

8 foreach r ∈ Rp(O), O = {o| < s, pi, o >∈ x} do
9 if not H.ContainsKey(r.Label) then

10 H .AddKey(r.Label)

11 H .AddValue(r.Label, < D,x, r.V alue× sumConf >)

12 foreach key ∈ H.AllKeys() do
13 foreach < xS, vS >∈ H.GetIndices(key,DS) do
14 foreach < xT , vT >∈ H.GetIndices(key,DT ) do
15 M [xS , xT ]←M [xS, xT ] + vS × vT

16 λ = Mean(M)
17 foreach xS ∈ DS do
18 foreach xT ∈ DT do
19 maxS ← Max(M [xS , xj ]), ∀xj ∈ DT

20 maxT ← Max(M [xi, xT ]), ∀xi ∈ DS

21 max← HMean(maxS,maxT )
22 if M [xS, xT ] ≥ λ and M [xS, xT ] ≥ ζ ×max then
23 C ← C∪ < xS, xT >

24 return C

Lines 16-23 are the candidate selection process. We apply an adaptive filtering
technique by using the data driven thresholds. λ is installed to warranty there is
no assumption about the surjection. This threshold is assigned to the average co-
occurrence value of all pairs of instances. This value is usually small because the
number of homogeneous pairs is frequently very much lower than that of the non-
homogeneous ones. ζ is manually configured and timed with an automatically
selected value max to produce the dynamic threshold ζ ×max. This threshold
is the main requirement of a homogeneous pair of instances.

Comparing with previous systems, our method is distinct for the weighted co-
occurrence matrix and adaptive filtering in candidate selection. While proposed
methods compare one or a few pairs of RDF objects, we aggregate multiple sim-
ilarities from many pairs of RDF objects for improving the quality of “rough”
similarity of instances. For candidate selection, SERIMI [1] and Song et al. use
traditional thresholding [9]. SLINT+ also use this approach as the availability
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of λ. However, the impact of λ is very small because the value assigned for
it is quite low and the key idea of the selection method is adaptive filtering.
Silk [10] and Zhishi.Links [8] selects k best correlated candidates for each in-
stance. This approach has advantage in handling the number of candidates, but
the fixed value for k seems not reasonable because the ambiguous level are
not the same for each instance. While some instances should have small value
of k, the others must have larger candidates for still including the homogeneous
ones. In the next step, SLINT+ verifies all selected candidates for producing the
final owl:sameAs links.

3.4 Instance Matching

We estimate the correlation of each candidate and the ones satisfying the process
of adaptive filtering will be considered to be homogeneous. The correlation of
a candidate, or of two instances, is computed using the similarity of RDF ob-
jects of interested instances. These objects are described using useful predicate
alignments and the final correlation of two instances is the weighted average of
these similarities. The correlation corr(xS , xT ) of two instances xS ∈ DS and
xT ∈ DT is defined in Eq.5.

corr(xS , xT ) =
1

W

∑

<pS ,pT>∈A

conf(pS , pT )× sim(R(OS), R(OT )),

Where

Ok = {o|∃x ∈ Dk, < s, pk, o >∈ x}
W =

∑

<pS ,pT>∈A

conf(pS , pT ).

(5)

In this equation, A is the set of useful predicate alignments; R is the represen-
tative extraction function, which is the same as that in Table 1; conf(pS, pT )
is the confidence of interested predicate alignment < pS , pT > (Eq.3). The sim
function returns the similarity of two set of representatives, and is regulated by
the data type of the predicates. For decimal and integer, we use the variance of
representative values. For date, we use exact matching and return the value 1 or
0 when the values are totally equal or not, respectively. For string and URI, we
take the cosine similarity with TF-IDF weighting, as given in Eq.6. While cosine
is widely used to estimate the similarity of two sets, the TF-IDF weighting very
helpful for many disambiguation techniques.

sim(Qs, Qt) =

∑
q∈Qs∩Qt

TFIDF (q,Qs)TFIDF (q,Qt)√∑
q∈Qs

TFIDF 2(q,Qs)×
∑

q∈Qt
TFIDF 2(q,Qt)

. (6)

After computing correlation value for every candidate, we apply adaptive fil-
tering to collect homogeneous pairs. An owl:sameAs link is created when two
instances have the score larger than a threshold, which is dynamically adjusted
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in accordance with the interested instances. Denoting C as the output candi-
dates of Algorithm 1, we define the set of homogeneous instances I as in Eq.7.

I = {< xS , xT > |corr(xS , xT ) ≥ η∧
corr(xS , xT )

max∀<xm,xn>∈C,xm≡xS∨xn≡xT corr(xm , xn)
≥ θ}. (7)

We assume that an owl:sameAs link connects two instances that have the highest
correlation if compared this value with the correlation of other candidate, in
which each instance appears. However, θ threshold is necessary to be installed to
select the pairs of instance that are co-homogeneous, because we do not assume
that there is no duplication in each data sources. In SLINT+, θ is set to a quite
large value. We use the average correlation ηmean of all candidates for configuring
η. Since there are frequently many candidates that are not homogeneous, ηmean

is usually small. Like λ in Algorithm 1, η ensures there is no assumption about
the surjection of given data sources and should be assigned with a low value.

Compared with previous systems, the instance matching step of SLINT+ is
distinct in the use of weighted average and adaptive filtering. We use adaptive
thresholds for each pair of data sources and the confidence of useful alignments
for weighting. Silk [10] also provides a weighted average combination method for
similarities, however these weightsmust be configuredmanually instead of observ-
ing from the data. Zhishi.Links [8] and AgreementMaker[3] select the best corre-
lated candidates, while Silk [10] and SERIMI [1] use traditional threshold-based
approach. In the next section, we will report our experiments and the results.

4 Experiments

4.1 Evaluation Metrics

We evaluate the efficiency of the interlinking process of SLINT+ at two main
metrics: recall and precision. The recall represents the ability that retains the
true owl:sameAs links, while the precision indicates the disambiguation ability
because it expresses the percent of true elements in all discovered links. In addi-
tion to precision and recall, we also report the F1 score, the harmonic mean of
them. Eq. 8 and 9 are the computation of recall RC and precision PR, respec-
tively.

RC =
Number of correctly discovered links

Number of actual links
. (8)

PR =
Number of correctly discovered links

Number of all discovered links
. (9)

For evaluating the candidate generation, we also use two main metrics, the pair
completeness and reduction ratio. The pair completeness expresses the percent
of correct generated candidates and the reduction ratio shows the compactness
of candidate set. The aim of candidate generation is to maximize the pair com-
pleteness while reserving a very high reduction ratio. Eq. 10 and 11 show the
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formula of pair completeness PC and reduction ratio RR, respectively. Some
studies also use the F1 score for PC and RR [9], however we think that it is
not equivalent to combine these metrics because RR is frequently very high in
compared with PC in most cases.

PC =
Number of correct candidates

Number of actual links
. (10)

RR = 1 − Number of candidates

Number of all instance pairs
. (11)

We also report the execution times of SLINT+ in the division of three parts,
predication selection and predicate alignment, candidate generation, and in-
stance matching. Every experiment is conducted on a desktop machine with
2.66Ghz of CPU, 8GB of memory, 32-bit Windows 7 operating system. In addi-
tion, we use C# language for developing SLINT+.

4.2 Experiment Setup and Datasets

Since SLINT+ contains few manual thresholds, we use the same value for each
threshold on every dataset to evaluate the domain-independent ability. We set
the value 0.5, 0.1, 0.5, and 0.95 for γ (Eq.3), ε (Section 3.2), ζ (Algorithm 1),
and θ (Eq. 7), respectively.

The aim of experiment is to evaluate the efficiency of SLINT+, especially the
domain-independent goal. Besides, a comparison with existing systems is also
necessary. Therefore, we use two datasets DF and OAEI2011. The first dataset,
DF is selected from a ground-truth provided by DBpedia3. This set contains
about 1,6 million owl:sameAs links between DBpedia and Freebase, and 141
domains of data. DBpedia and Freebase are the most well-known and are very
large data sources in the linked data community. DBpedia and Freebase contains
many domains such as people, species, drugs, rivers, songs, films, settlements,...
For constructing the DF , we pick up the domains that have the number of
owl:sameAs links is at most 40,000. After this selection, we have 891,207 links
with 119 domains. We divide these links into 119 subsets and each subset is
respective to a distinct domain. The smallest subset contains 1,008 links in ar-
chitect domain and the largest subset contains 37,120 links about plant. We
do not use the domains that contain more than 40,000 instances because the
computation of candidate generation requires a large amount of memory, which
is the limitation of our testing environment. However, the number 119 is still
convinced for verifying the domain-independent ability.

The second dataset, OAEI2011 is the data that was selected for the most re-
cent OAEI 2011 Instance Matching Campaign [4]. In this campaign, participants
are asked to build the owl:sameAs links between NYTimes4 to DBpedia, Free-
base, and Geonames5. NYTimes is a high quality data source while DBpedia,

3 http://downloads.dbpedia.org/3.8/links/freebase links.nt.bz2
4 http://data.nytimes.com/
5 http://www.geonames.org/
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Table 2. Domains and numbers of owl:sameAs links in OAEI2011 dataset

ID Source Target Domain Links

D1 NYTimes DBpedia Locations 1920
D2 NYTimes DBpedia Organizations 1949
D3 NYTimes DBpedia People 4977
D4 NYTimes Freebase Locations 1920
D5 NYTimes Freebase Organizations 3044
D6 NYTimes Freebase People 4979
D7 NYTimes Geonames Locations 1789

Table 3. Number of predicates and predicate alignments in DF dataset

PrS PrT PS PT A K

Min 228 9 7 4 12 6
Max 2711 1388 30 21 158 40
Average 468 315 14 8 45 16

Freebase, and Geonames are very large ones. Geonames is the data sources fo-
cusing on geography domain and currently contains over 8,0 million geographic
names. The OAEI2011 dataset has 7 subsets and 3 domains, which are location,
organization, and people. Denoting the 7 subsets as D1 to D7, the overview of
this dataset is given in Table 2.

In the next sections, we report the results and the discussions for each step
of SLINT+.

4.3 Results and Analyses

4.3.1 Discussion on Predicate Selection and Predicate Alignment
Table 3 gives the number of all predicates Pr in each data source, important
predicates P , all predicate alignments A and the useful alignments K in DF
dataset. S and T stand for DBpedia and Freebase, respectively. According to
this table, the numbers of all predicates are very high when being compared with
the numbers of important predicates at the threshold γ = 0.5, which means that
the requirements for covering and discriminative abilities are around 0.5. If we
consider the percent of important predicates with this threshold, the maximum
values are 25.00% and 17.24% in DBpedia and Freebase, respectively; and the av-
erages are only 4.95% and 3.70% in DBpedia and Freebase, respectively. The low
ratio of important predicates indicates the high heterogeneity of the predicates
in the schema of data sources. The predicate selection step is therefore necessary
to detect the useful predicates. As our observation, the selected predicates are
frequently the predicates describing the name or the label of the instances, and
some important predicates that rely on the domain of the data. For example, in
city domain, beside the predicate declaring the name, the useful predicates are
also about the longitude and latitude of the city. This example also indicates
the string data type is not the only important one although this assumption is
right in many cases.
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Table 4. Results of candidate generation on DF dataset

NC PC RR

Min 1238 0.9652 0.9969
Max 389034 1.0000 0.9999
Weighted average 87089 0.9890 0.9996

Fig. 2. Histogram of subsets on their pair completeness

For predicate alignment, since the number of important predicates is reduced
in the first step, the number of all alignments is not large when the maximum
value is only 158. In detail, the selected alignments, which are higher than the
average confidence, occupy 42.70% of all alignments at average, 91.30% at the
maximum, and 12.50% at the minimum. As our observation, the useful predi-
cate alignments are very appropriate when the predicates describing the similar
property are always combined. For example, in philosopher domain, the selected
alignments contains 3 interesting ones: the combination of 3 different DBpedia
predicates describing full name, surname, and given name with 1 Freebase pred-
icate describing the name of the person. It is not easy for a user to point out
every useful alignment, especially in the case that useful alignments can reach
the number of 16, as the average value in Table 3.

There is currently no dataset for clearly evaluating the efficiency of predicate
selection and predicate alignment. However, the high results of the candidate
generation and the whole interlinking process are the very clear evidences for
the efficiency of these tasks.

4.3.2 Candidate Generation
In this section, we report the results of candidate generation on DF dataset.
Table 4 summarizes the candidate generation results. In this table, NC is the
number of candidates, and the weight of weighted average values are the numbers
of owl:sameAs links in each subset. The pair completeness is very high when
candidate generation step reserves over 96.52% of correct candidates. Fig. 2 is
the histogram of subsets when their PC is rounded into the nearest value in
the horizontal axis. According to this figure, most PCs are distributed in the
range above 0.991 and reach the highest number at 0.992. The subsets having
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Table 5. Results of data interlinking on DF dataset

RC PR F1

Min 0.9002 0.8759 0.8985
Max 0.9973 1.0000 0.9986
Weighted average 0.9763 0.9645 0.9702

Fig. 3. Histogram of subsets on their F1 score

the PC that is higher than 0.991 are 73 and cover 61.34% of all the subsets in
DF . The reduction ratio RR in Table 4 is very impressive when always higher
than 0.9969 on every subset. The adaptive filtering technique is also verified
through the high result of pair completeness and reduction ratio. In general, the
candidate generation step has successfully performed its role on over 119 subsets.

4.3.3 The Whole Interlinking Process
For the whole interlinking process, we report the result of recall RC, precision
PR, and F1 score. As summarized in Table 5, both recall and precision are
very considerable when the weighted average value for F1 is very high at 0.9702.
Fig. 3 show the histogram of subsets when considering their F1 scores. There are
82.35% of subsets having the F1 higher than 0.965, the middle value of horizontal
axis. These subsets cover 79.40% of all owl:sameAs links in the DF dataset.
The high precision and recall not only express the efficiency of interlinking, but
also reveal that the predicate selection and predicate alignment produced useful
predicates and appropriate alignments.

Fig. 4 shows the runtime of predicate selection and predicate alignment, can-
didate generation, and instance matching in accordance with the size of the
subsets. There are a few points that the runtime does not consistently increase
because beside the size of data, the number of predicates also affects the speed
of each step. On large subsets, the time-variation of the each step is clearer and
we can see that the major time of interlinking process is the candidate genera-
tion. If we consider the weighted average runtime, this step occupies 54.45% of
total while the first two steps and the instance matching cover only 21.32% and
24.23%, respectively. In general the speed of SLINT+ is very high when it takes
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Fig. 4. Execution time of interlinking steps

Table 6. Comparison with previous interlinking systems on OAEI2011 dataset

Dataset SLINT+ Agree.Maker SERIMI Zhishi.Links
PR RC F1 PR RC F1 PR RC F1 PR RC F1

D1 0.96 0.97 0.97 0.79 0.61 0.69 0.69 0.67 0.68 0.92 0.91 0.92
D2 0.97 0.95 0.96 0.84 0.67 0.74 0.89 0.87 0.88 0.90 0.93 0.91
D3 0.99 0.99 0.99 0.98 0.80 0.88 0.94 0.94 0.94 0.97 0.97 0.97
D4 0.95 0.95 0.95 0.88 0.81 0.85 0.92 0.90 0.91 0.90 0.86 0.88
D5 0.97 0.96 0.96 0.87 0.74 0.80 0.92 0.89 0.91 0.89 0.85 0.87
D6 0.99 0.99 0.99 0.97 0.95 0.96 0.93 0.91 0.92 0.93 0.92 0.93
D7 0.99 0.99 0.99 0.90 0.80 0.85 0.79 0.81 0.80 0.94 0.88 0.91

H.Mean 0.97 0.97 0.97 0.92 0.80 0.85 0.89 0.88 0.89 0.93 0.92 0.92

below 10 minutes to interlink the largest subset with 37,120 links and nearly 1
second for the smallest one with 1,008 links.

4.4 Comparison with Previous Systems

We compare SLINT+ with AgreementMaker [3], SERIMI [1], and Zhishi.Links
[8]. These systems recently participated the OAEI 2011 Instance Matching Cam-
paign [4]. Among these systems, SERIMI is the only one that is domain-
independent while AgreementMaker and Zhishi.Links are not. Table 6 shows the
results of SLINT+ and the others. According to this table, SLINT+ is very much
higher if compared with other systems on both precision and recall. Zhishi.Links
is the second best in this comparison but is still 0.05 lower than SLINT+ in
overall. Particularly, SLINT+ performs very well on D4 and D5 datasets, which
are seem to be difficult for Zhishi.Links to interlink.

The improvement of SLINT+ against compared systems is the confirmation
of the robustness of domain-independent approach over domain-dependent ones,
such as AgreementMaker and Zhishi.Links. The limitation of SERIMI is that
this system solely uses the string measurement and only focus on short strings.
Therefore, this system is lower in precision and recall than those of SLINT+ on
every subset.
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5 Conclusion

In this paper, we present SLINT+, a domain-independent linked data inter-
linking system. Our system interlinks different data sources by comparing the
instances using collective information and weighted similarity measure. The in-
formation to be compared are extracted by RDF predicates which are automat-
ically selected using their covering and discriminative abilities. The key idea to
remove the requirement of labeled matched instances is the concept of the confi-
dence of a predicate alignment. The candidate generation step is also investigated
and evaluated. Experimental results show that SLINT+ is outstanding compar-
ing to previous famous systems on OAEI2011 dataset. The domain-independent
capability can be said to be achieved when SLINT+ perform very well on 119
different domains of data.

In the future, we will study on improving the scalability of SLINT+ in order to
match very large data sources. Besides, a cross-domain interlinking system, which
aims at matching the sources containing multiple domains, is a very interesting
objective to be explored.
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