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Abstract. Discovering cross-knowledge-base links is of central impor-
tance for manifold tasks across the Linked Data Web. So far, learning
link specifications has been addressed by approaches that rely on stan-
dard similarity and distance measures such as the Levenshtein distance
for strings and the Euclidean distance for numeric values. While these
approaches have been shown to perform well, the use of standard similar-
ity measure still hampers their accuracy, as several link discovery tasks
can only be solved sub-optimally when relying on standard measures.
In this paper, we address this drawback by presenting a novel approach
to learning string similarity measures concurrently across multiple di-
mensions directly from labeled data. Our approach is based on learning
linear classifiers which rely on learned edit distance within an active
learning setting. By using this combination of paradigms, we can ensure
that we reduce the labeling burden on the experts at hand while achiev-
ing superior results on datasets for which edit distances are useful. We
evaluate our approach on three different real datasets and show that our
approach can improve the accuracy of classifiers. We also discuss how
our approach can be extended to other similarity and distance measures
as well as different classifiers.

1 Introduction

Discovering cross-knowledge-base links is of central importance to realize the
vision of the Linked Data Web [1]. Over the last years, several frameworks and
approaches have been developed to address the two main hurdles of link discov-
ery: the quadratic runtime [16,10] and the discovery of accurate link specifica-
tions [18,19]. In both cases, most approaches assume that link discovery can be
carried out by devising a similarity function σ such that instances from a source
and target knowledge base whose similarity is larger than a certain threshold θ
should be linked. In most cases, σ is a combination of several atomic similarity
measures, i.e., of measures that compare solely one pair of property values from
the source and target instances. The combination (σ, θ) is usually called link
specification [16] or linkage rule [10]. So far, the detection of accurate link spec-
ification was carried out by using techniques such as linear or Boolean classifier
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Table 1. Example of property values

Source labels Target labels

Adenomatoid tumor Adenomatoid tumour
Odontogenic tumor Odontogenic tumour
Generalised epidermolysis Generalized epidermolysis
Diabetes I Diabetes I
Diabetes II Diabetes II
Anemia Type I Anemia Type I
Anemia Type II Anemia Type II
Anemia Type III Anemia Type III

learning [17] or genetic programming [11,18,19]. However, only generic string
similarity measures have been used as atomic measures within these learning
approaches. In this paper, we go beyond the state of the art by not only learning
classifiers but also learning the similarity metrics used in these classifiers directly
from the data. In addition, we go beyond the state-of-the-art in metric learning
by applying an active learning approach [24].

The need for our approach is motivated by the exemplary link discovery task
in the medical domain showed in Table 1. The source and target contain property
values are written in American and British English and thus display minor dif-
ferences (e.g., “Generalized” vs. “Generalised”). Therewith intertwined are yet
also semantic differences (e.g., “Diabetes I” vs. “Diabetes II”) which correspond
to exactly the same edit distance between the property values. Consequently,
if a user was to compute links between these two data sets by means of these
property values using the edit distance, he/she could either (1) choose to set the
distance threshold to 0, which would lead to a precision P = 1 but to a recall of
R = 0.625 (F = 0.77) or (2) choose to set the threshold to 1, which would lead
to R = 1 but to P = 0.57 (F = 0.73). It is obvious that for this particular ex-
ample, there is no distance threshold for the standard edit distance that would
lead to an F-measure of 1. The same holds for other generic string similarity
measures such as Jaccard. Consequently, none of the previous approaches (see
e.g. [19,18]) to learning link specifications would be able to detect an optimal
link specification for the data at hand. The basic intuition behind this work is
the following: If we could model that replacing “s” by”z” yields less semantics
that inserting the token “I” for this particular pair of property values, we could
assign different weights to these tokens during the computation of the edit dis-
tance. It is important to note that this difference would only be valid for this
particular pair of properties. For standardized labels such as company names,
the substitution of “s” by”z” might yield exactly the same semantics as inserting
an “I”. Given that most link specifications rely on a complex similarity functions
(i.e., on combination of several similarity values) to compute links (e.g., similar-
ity of label, longitude and latitude for cities, etc.), the additional requirement of
devising a domain-specific similarity measure for each of the property pairs used
for linking concurrently is of central importance. Hence, the main goal of this
work is to devise a supervised approach for learning link specifications which rely
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on complex domain-specific similarities learned directly from the input data. As
learning such a metric can require a considerable amount of human labeling, we
implement our metric learning approach within the pool-based setting of active
learning [24] to minimize the burden on human annotators. In the rest of this
paper, we focus on learning similarities based on generalized edit distances. In
the discussion section, we show how our approach can be extended to learning
other measures such as weighted Jaccard and n-gram-based similarities. Our
main contributions are thus as follows:

– We present a supervised machine for learning link specifications based on
domain-specific similarities.

– To reduce the burden on the user, we learn these similarities by using active
learning.

– We show how our framework can be extended to other similarities such as
Q-Grams and Jaccard.

– We evaluate the learned similarities against three different data sets and
analyze the strengths and weaknesses of our approach 1.

2 Preliminaries and Notation

2.1 Link Discovery as Classification

In this work, we regard link discovery as a classification problem. Let S (source)
and T (target) be two sets of resources. Furthermore and without loss of gen-
erality, let each resource from S and T be described by a tuple of n property
values such that the ith property value of elements of S maps the ith property
value of elements of T .2 The general aim of link discovery is to devise an (mostly
with respect to its F-score) accurate classifier C : S × T → {−1,+1} that as-
signs the class +1 to a pair (s, t) should be linked and −1 else. Most approaches
for link discovery rely on a combination of operators (such as minimum, max-
imum and linear combinations), similarity measures σi (such as Jaccard and
Cosine) that compare property values and similarity thresholds θi to determine
such as classifier. In previous works, only the operators and thresholds were
learned [17,11,18,19]. Yet, as shown by our example, such approaches are not
always sufficient to achieve a high F-measure. We go beyond the state of the art
by learning the similarity measures σi. In this work, we focus on learning these
measures in combination with weighted linear classifiers, i.e., classifiers such that

C(s, t) = +1 ⇔
(

n∑
i=1

wiσi(s, t)− θ ≥ 0

)
, (1)

where σi is a similarity function that compares the values of the ith property of
s and t and aim to learn the values of wi, θ and σi concurrently. Note that other

1 The implementation of our approach is publicly available at
http://metric-learning.googlecode.com

2 Note that such pairs can be calculated using schema matching approaches such as
those described in [20].

http://metric-learning.googlecode.com
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classifiers can be combined with our approach. For a given classifier C, we call
(s, t) positive if C(s, t) = +1 and negative else. Also note that while we focus
on string similarities in this work, our implementation also supports numerical
values by the means of learning Mahalanobis distances.

Learning classifiers within the context of active learning means relying on
user feedback after each iteration to improve the classifiers until a termination
condition is met. Given the type of classifier we use, we will assume the pool-
based sampling setting [24]. We will denote learning iterations with the variable
τ . We will denote classifiers, weights, thresholds, matrices and similarities at it-
eration τ by using superscripts. Consequently, we will label the input generated
by the user at iteration τ with Qτ . The classifier and distance matrix computed
at the same iteration will be denoted Cτ resp. M τ . Note that in the following,
we limit ourselves to learning generalized edit similarities σi, which we define
as (1 + δi)

−1, where δi is a generalized edit distance. We chose to learn similar-
ities instead of distances because they are bound by finite values, making the
computation of the classifier more efficient. However, the basic idea behind our
approach can be extended to other similarities and distances with ease. We thus
present generalization of other types of similarity measures and show how our
approach can be extended to them in Section 6.

2.2 Weighted Edit Distance

Let A and B be two strings over an alphabet Σ. Furthermore, let Σ∗ = Σ∪{ε},
where ε stand for the empty string. The edit distance δ(A,B) (also called Lev-
enshtein distance [13]) is defined as the minimal number of edit operations (in-
sertion, deletion and substitution) necessary to transform the string A into B.
Thus, e.g., δ(“Diabetes I”, “Diabetes II”) = δ(“Adenomatoid tumor”, “Adeno-
matoid tumour”) = 1. Previous work from the machine learning community (see
e.g., [3]) has proposed learning the cost of each possible insertion, deletion and
substitution. Achieving this goal is equivalent to learning a positive cost matrix
M of size |Σ∗| × |Σ∗|. The rows and columns of M are issued from Σ∗. The
entry mij stands for the cost of replacing the ith character of Σ∗ with the jth

character of Σ∗. Note that the deletion of a character c ∈ Σ is modeled as re-
placing c with ε, while insertion of c is modeled as replacing ε with c. Within
this framework, the standard edit distance can be modeled by means of a cost
matrix M such that mij = 1 if i �= j and 0 else. The distance which results from
a non-uniform cost matrix3 is called a weighted (or generalized) edit distance
δw. The distance δw(A,B) can now be defined as the least expensive sequence
of operations that transforms A into B.4 Note that we also go beyond the state
of the art in metric learning by combining metric learning and active learning,

3 For distances, a non-uniform matrix M is one such that ∃i, j, i′, j′ : (i �= j ∧ i′ �=
j′ ∧mij �= mi′j′).

4 Note that while the edit distance has been shown to be a metric,M being asymmetric
leads to δw not being a metric in the mathematical sense of the term, as ∃A,B :
δw(A,B) �= δw(B,A).
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which has been shown to be able to reduce the amount of human labeling needed
for learning link specifications significantly [18].

3 The ACIDS Approach

The aim of our approach, ACIDS (Active Learning of Distances and Similarities),
is to compute domain-specific similarity measures while minimizing the annota-
tion burden on the user through active learning. Note that while we focus on
learning similarity functions derived from the generalized edit distance, we also
show how our approach can be generalized to other similarity measures.

3.1 Overview

Our approach consists of the following five steps:

1. τ = 0; get Q0 and compute C0,M0
1...n;

2. If all elements of
τ⋃

i=0

Qτ can be separated by Cτ then goto step 4.

3. Else update the similarity measures στ
i and update the classifier Cτ . If the

maximal number of iterations is reached, goto step 4. Else goto step 2.
4. Increment τ . Select the k most informative positive and k most informative

negative examples from S × T and merge these two sets to Qτ .
5. Require labeling for Qτ from the oracle. If termination condition reached,

then terminate. Else goto step 2.

In the following, we elaborate on each of these steps.

3.2 Initialization

Several parameters need to be set to initialize ACIDS. The algorithm is initialized
by requiring k positive and k negative examples (s, t) ∈ S × T as input. The
positive examples are stored in P 0 while the negative examples constitute the
elements of N0. Q0 is set to P 0∪N0. For all n dimensions of the problem where
the property values are strings, σ0

i (s, t) = (1+ δ(s, t))−1 (where δ stands for the
edit distance with uniform costs) is used as initial similarity function.

The final initialization step consists of setting the initial classifier C0. While
several methods can be used to define an initial classifier, we focus on linear clas-
sifiers. Here, the classifier is a hyperplane in the n-dimensional similarity space S
whose elements are pairs (s, t) ∈ S×T with the coordinates (σ0

1(s, t), ..., σ
0
n(s, t)).

We set C0 to
n∑

i=1

σ0
i (s, t) ≥ nθ0. (2)

This classifier is the hyperplane located at the Euclidean distance θ0
√
n from the

origin of S and at (1 − θ0)
√
n from the point of S such that all its coordinates

are 1. Note that θ0 ∈ [0, 1] is a parameter that can be set by the user.



102 T. Soru and A.-C. Ngonga Ngomo

3.3 Computing Separability

The aim of this step is to check whether there is a classifier that can separate
the examples we know to be positive from those we know to be negative. At
each iteration τ , this step begins by computing the similarities στ

i (s, t) of all
labeled examples (s, t) ∈ Qτ w.r.t. the current distance matrix M τ . Note that
στ
i (s, t) varies with time as the matrix M τ is updated. Checking the separability

is carried out by using linear SVMs.5 The basic idea behind this approach is
as follows: Given a set of n-dimensional similarity vectors x1, ..., xm and the
classification yi ∈ {+1,−1} for each xi, we define a classifier by the pair (w, b),
where w is a n-dimensional vector and b is a scalar. The vector x is mapped to
the class y such that

y(wTx− θ) ≥ 0. (3)

The best classifier for a given dataset is the classifier that minimizes 1
2w

Tw
subject to ∀i ∈ {1, ...,m}, yi(w

Txi − θ) ≥ 0 [6]. In our case, the coordinates xi

of a point (s, t) at iteration τ are given by στ
i (s, t). The components wi of the

vector w are the weights of the classifier Cτ , while θ is the threshold. If we are
able to find a classifier with maximal accuracy using the algorithm presented
in [5] applied to linear kernels, then we know the data to be linearly separable.
In many cases (as for our toy data set for example), no such classifier can be
found when using the original edit similarity function. In this case, the basic
intuition behind our approach is that the similarity measures (and therewith
the distribution of positive and negative examples in the similarity space) need
to be updated in such a way that the positive examples wander towards the class
+1 of the classifier, while the negative wander towards −1. Altering all M τ

i in
such a way is the goal of the subsequent step.

3.4 Updating the Similarity Measures

Overview. Formally, the basic idea behind our approach to updating similarity
measures is that when given the two sets P ⊆ S × T of positive examples and
N ⊆ S × T of negative examples, a good similarity measure στ

i is one such that

∀(s, t) ∈ P ∀(s′, t′) ∈ N στ
i (s, t) ≥ στ

i (s
′, t′). (4)

Let N τ be the subset of Qτ which contains all pairs that were labeled as false
positives by the oracle at iteration τ . Furthermore, let P τ be set of pairs labeled
as false negatives during the same iteration. In addition, let μτ

i : M × S × T →
[0, 1] be a function such that μτ

i (mij , s, t) = 1 when the substitution operation
modeled by mij was used during the computation of the similarity στ

i (s, t) (the
approach to computing μ is shown in the subsequent subsubsection). We update
the weight matrix M τ

i of στ
i by employing a learning approach derived from

perceptron learning. The corresponding update rule is given by

mτ
ij := mτ

ij −
∑

(s,t)∈P τ

η+μτ
i (m

τ
ij , s, t) +

∑
(s′,t′)∈Nτ

η−μτ
i (m

τ
ij , s

′, t′). (5)

5 Note that any other type of classifier could be used here.
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While it might seem counter-intuitive that we augment the value ofmij for nega-
tives (i.e., points that belong to -1) and decrease it for positives, it is important to
remember that the matrix Mi describes the distance between pairs of resources.
Thus, by updating it in this way, we ensure that the operation encoded by mij

becomes less costly, therewith making the pairs (s, t) that rely on this operation
more similar. Negative examples on the other hand are a hint towards the given
operation being more costly (and thus having a higher weight) than assumed so
far. The similarity between two strings is then computed as σi(s, t) =

1
1+δi((s,t))

,

where the generic algorithm for computing weighted distances δi(A,B) for two
strings A, B is shown in Algorithm 1. The algorithm basically computes the
entries of the following matrix:

Lij(A,B) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i if j = 0 ∧ 0 ≤ i < |A|
j if i = 0 ∧ 0 < j < |B|
min {Li−1,j(A,B) + delCost(A[i]), 0 < i < |A| ∧ 0 < j < |B|
Li,j−1(A,B) + insCost(B[j]),
Li−1,j−1(A,B) + subCost(A[i], B[j])}

, (6)

where the computation of deletion, insertion and substitution costs for the same
strings are as follows:

delCost(A[i]) := mpos(A[i]),pos(ε), (7)

insCost(A[j]) := mpos(ε),pos(A[j]) and (8)

subCost(A[i], B[j]) := mpos(A[i]),pos(B[j]). (9)

Note that A[i] is the ith character of the string A, B[j] is the jth character of
the string B and pos(char) is the index of a character char in the edit distance
matrix.

Algorithm 1. Computation of Weighted Levenshtein distance

Require: A,B ∈ Σ∗

∀i, j L[i, j]← 0
for i = 1→ |A| do

L[i, 1]← i
end for
for j = 1→ |B| do

L[1, j]← j
end for
for i = 1→ |A| do

for j = 1→ |B| do
L[i, j]← min{L[i − 1, j − 1] + getSubCost(A[i], B[j]),

L[i− 1, j] + getDelCost(A[i]), L[i, j − 1] + getInsCost(B[j])}
end for

end for
return L[|A|, |B|]
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Computation of µ. One of the key steps in our approach is the extension of
the edit distance computation algorithm to deliver the sequence of operations
that were used for determining the distance between (and therewith the simi-
larity of) pairs (s, t). This computation has often been avoided (see e.g., [3]) as
it is very time-consuming. Instead, the generic edit distance algorithm was used
and the weights added to the path in a subsequent computation step. Yet, not
carrying out this computation can lead to false weights being updated. Consider
for example the computation of the edit distance between the two strings A
= “BAG” and B = “BAGS” over a weighted matrix where getInsCost(“s”) =
getSubCost(“s”, “S”) = 0.3. While the unweighted edit distance approach would
carry out the insertion of “S” in A (cost = 1), it would actually be cheaper to
carry out two operations: the insertion of “s” and the transformation of “s” to
“S” (total costs: 0.6). To achieve the computation of such paths, we used the
weighted distance computation algorithm shown in Algorithm 2. This algorithm
basically runs the inverse of the dynamic programming approach to comput-
ing weighted edit distances and counts when which of the basic operations was
used. It returns the sequence of operations that transformed A into B. Another
approach to computing the shortest path would have been using Dijkstra’s al-
gorithm [7]. This alternative was evaluated by comparing the time complexity
of both approaches. The combination of Algorithm 2 and 1 has a complexity
of O(mn) + O(m + n) � O(mn) where m = |A| and n = |B|. On the other
hand, the best implementation of Dijkstra’s algorithm, based on a min-priority
queue using Fibonacci heap [8], runs in O (|E|+ |V | log |V |). As the number of
edges is mn and the number of vertices is (m + 1)(n+ 1), the time complexity
is O (mn+ (m+ 1)(n+ 1) log ((m+ 1)(n+ 1))) � O

(
(m2 + n2) log

(
m2 + n2

))
.

Without loss of generality, the computational complexities can be reduced to
O
(
n2

)
for our approach and O

(
n2 logn

)
for Dijkstra’s algorithm under the

assumption that n ≥ m. Consequently, we chose our less generic yet faster im-
plementation of the computation approach for μ.

Computation of Learning Rates. Given the potential prevalence of negative
examples (especially when one-to-one mappings are to be computed), we define
η− as max(|S|, |T |)η+. The intuition behind this definition is that in most cases,
valid links only make up a small fraction of S×T as each s and each t are mostly
linked to maximally one other resource. The probability for a random pair (s, t)
of being a positive example for a link is then given by

P =
min(|S|, |T |)
|S| × |T | =

1

max(|S|, |T |) . (10)

Consequently the ratio of the positive and negative learning rates should be
proportional to

η+

η−
=

P

1− P
(11)

Given that P is usually very small, the equation reduces to

η− ≈ max(|S|, |T |)η+. (12)
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Algorithm 2. Computation of μ

Require: L(A,B)
L← L(A,B)
[i, j]← ‖L‖ − 1
while i �= 0 ∨ j �= 0 do

if j > 0 then
left← −L[i][j − 1]

else
left←∞

end if
if i > 0 then

up← −L[i− 1][j]
else

up←∞
end if
if i > 0 ∧ j > 0 then

upleft← −L[i− 1][j − 1]
else

upleft←∞
end if
if upleft ≤ left ∧ upleft ≤ up then

countSub(A[i− 1], B[j − 1]) // substitution
i← i− 1
j ← j − 1

else
if left < upleft then

countIns(B[j − 1]) // insertion
j ← j − 1

else
countDel(A[i− 1]) // deletion
i← i− 1

end if
end if

end while

The main implication of the different learning rates used by our approach is
that the false negatives have a higher weight during the learning process as the
probability of finding some is considerably smaller than that of finding false
positives.

3.5 Determining the Most Informative Examples

Formally, the most informative examples are pairs (s, t) /∈
τ⋃

i=0

Qi that are such

that knowing the right classification for these pairs would lead to the greatest
improvement of the current classifier Cτ . As pointed out in previous work [17],
these are the pairs whose classification is least certain. For linear classifiers, the
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Fig. 1. Most informative examples

pairs (s, t) whose classification is least certain are obviously those elements from
S×T with unknown classification that are closest to the boundary defined by Cτ .
Figure 1 depicts this idea. The circles with a dashed border represent the 2 most
informative positive and negative examples, the solid disks represent elements
from S×T and the circles are examples that have already been classified by the
user. Note that X is closer to the border than Y but is not a most informative
example as it has already been classified.

Detecting the most informative examples would thus require computing the

distance from all the pairs (s, t) ∈ S ×T \
τ⋃

i=0

Qi. Yet, this approach is obviously

unpractical as it would require a computing almost |S × T | similarity values,

given that |
τ⋃

i=0

Qi| is only a small fraction of |S × T |. We thus devised the

following approximation: Given the classifier defined by
n∑

i=1

wiσi(s, t) − θ ≥ 0,

we can derive the lower bound αi for the minimal similarity σi(s, t) that a pair
(s, t) must achieve to belong to +1:

σi(s, t) ≥ αi = θ −

n∑
j=1,j �=i

wjσj(s, t)

wi
. (13)

For each of the n dimensions of the similarity space, the most informative ex-
amples are thus likely to be found within the interval [αi − Δ,αi + Δ], where
Δ ∈ [0, 0.5]. Consequently, we only need to compute the exact similarity scores
of pairs (s, t) whose ith coordinates lie within this interval. Several time-efficient
approaches such as EdJoin [25] and PassJoin [14] have been developed to com-
pute that set of pairs (s, t) such that δ(s, t) is smaller than a given threshold.
Thus, if we never modified Mi, we could use these approaches to compute the
pairs (s, t) with σi(s, t) ∈ [αi −Δ,αi +Δ]. Yet, given that we alter Mi and that
the aforementioned approaches can only deal with uniform distance matrices M ,
we cannot only rely on them indirectly. Let κ = min

mij∈Mi

mij . Given m ≥ κ for all

entries of m of Mi, the inequality δi(s, t) ≥ κδ(s, t) holds. In addition, we know
that by virtue of σi = (1 + δi)

−1,
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σi(s, t) ≥ αi ⇒ δi(s, t) ≤
1− αi

αi
. (14)

Thus, we can approximate the set of pairs (s, t) with σi(s, t) ≥ αi −Δ by

σi(s, t) ≥ αi −Δ ⇒ δ(s, t) ≤ 1− (αi −Δ)

κ(αi −Δ)
. (15)

Consequently, we can run approaches such as EdJoin and PassJoin with the

threshold 1−(αi−Δ)
κ(αi−Δ) when computing the set of pairs with σi(s, t) ≥ αi − Δ.

Computing the set of pairs with σi(s, t) ∈ [αi −Δ,αi +Δ] can then be achieved
by simple filtering. Note that by using this approximation, we can discard a large
number of pairs (s, t) for values of κ close to 1. Yet, this approximation is less
useful when κ gets very small and is thus only of use in the first iterations of our
approach. Devising an approach for the efficient computation of weighted edit
distances remains future work.

3.6 Termination

Several termination conditions can be envisaged while running our approaches.
Here, we chose to terminate the iteration when the classifier Cτ was able to
classify all the entries of Qτ+1 correctly.

4 Experiments and Results

We began our experiments by running our approach on the toy example pro-
vided in Table 1. Our approach learned that the costs getSubCost(“s”, ”z”) =
getInsCost(“u”) = 0.3. Therewith, it was able to achieve an F-measure of 1.0.
We then ran our approach on benchmark data as presented in the following.

4.1 Experimental Setup

We evaluated our approach on 3 real data sets (see Table 2)6. The first two
of these data sets linked the publication datasets ACM, DBLP and Google
Scholar. The third dataset linked the products from the product catalogs Abt
and Buy [12]. We chose these datasets because they have already been used to
evaluate several state-of-the-art machine-learning frameworks for deduplication.
In addition, the first two datasets are known to contain data where algorithms
which rely on the edit distance can achieve acceptable F-measures. On the other
hand, the third dataset, Abt-Buy, is known to be a dataset where the edit dis-
tance performs poorly due to the labels of products being written using com-
pletely different conventions across vendors. The primary goal of our evaluation
was to compare our approach with classifiers based on the generic edit distance.
We thus compared our approach with the results achieved by using decision trees
and SVMs as implemented in MARLIN [4].

6 The data used for the evaluation is publicly available at http://dbs.uni-leipzig.
de/en/research/projects/object matching/fever/benchmark datasets for

entity resolution

http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
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Table 2. Data sets

Source Size Target Size Correct Links # Properties

DBLP 2,616 ACM 2,295 2,224 4
DBLP 2,616 Scholar 64,273 5,349 4
Abt 1,081 Buy 1,092 1,098 3

Table 3. Evaluation of ACIDS on three datasets

DBLP – ACM DBLP – Scholar Abt – Buy

k 5 10 5 10 5 10

F-score (%) 88.98 97.92 70.22 87.85 0.40 0.60
Precision (%) 96.71 96.87 64.73 91.88 0.20 0.30
Recall (%) 82.40 99.00 76.72 84.16 100.00 100.00
Run time (h) 7.53 7.31 8.45 8.36 12.27 12.01
Iterations 2 2 2 2 5 5

We used the following settings: we used the settings k = 5, 10 for the number
of examples submitted to the user for labeling. The positive learning rate η+

was set to 0.1. The boundary for most informative examples Δ was assigned the
value 0.1. The maximal number of iterations for the whole algorithm was set to
5. The number of iterations between the perceptron learning and the SVM was
set to 50. All experiments were carried out on a 64-bit Linux server with 4 GB
of RAM and a 2.5 GHz CPU.

4.2 Results

The results of our evaluation are shown in Table 3 and Figure 2. On all datasets,
using k = 10 led to better results. The termination condition was met on the
first two datasets and the classifiers and measures learned outperformed state-of-
the-art tools trained with 500 examples (see Fig. 3 in [12]). Especially, on the first
data set, we achieved results superior to the 96.4% resp. 97.4% reported for MAR-
LIN(SVM) resp. MARLIN(AD-Tree) when trained with 500 examples. Note that
we necessitated solely 40 labeled pairs to achieve these results. In addition, note
that we were actually able to outperform all other similarity measures and tools
presented in [12] on this particular data set. On the second data set, we outper-
formed the state of the art (i.e., MARLIN) by more than 7% F-measure while ne-
cessitating only 40 labeled pairs. Here both versions of MARLIN achieve less than
80% F-measure when trained with 500 examples. The results on the third data set
show the limitations of our approach. Given that the strings used to describe prod-
ucts vary largely across vendors, our approach does not converge within the first
five iterations, thus leading to no improvement over the state-of-the art when pro-
vided with 100 examples. The main drawback of our approach are the runtimes
necessary to compute the most informative examples. A solution to this approach
would be to devise an approach that allows for efficiently computing weighted edit
distances. Devising such an approach is work in progress.
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(a) DBLP–ACM dataset with k = 5. (b) DBLP–ACM dataset with k = 10.

(c) DBLP–Scholar dataset with k = 5. (d) DBLP–Scholar with k = 10.

(e) Abt-Buy dataset with k = 5. (f) Abt-Buy dataset with k = 10.

Fig. 2. Classifiers learned by ACIDS. Only a subset of all pairs is shown. The red data
points are negatives, while the blue are positives.
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5 Related Work

Our work is mostly related to Link Discovery and string similarity learning. Sev-
eral frameworks have been developed with the aim of addressing the quadratic
a-priori runtime of Link Discovery. [16,15] presents LIMES, a lossless and hybrid
Link Discovery framework, as well as the HYPPO algorithm for the time-efficient
computation of links. For example [10] present a lossless approach called Multi-
Block that allows to discard a large number of comparisons. Other frameworks
include those presented in [21,23]. The second core problem that needs to be
addressed while computing links across knowledge bases is the detection of ac-
curate link specifications. The problem has been addressed in manifold ways:
The RAVEN approach [17] relies on active learning to learn linear and Boolean
classifiers for discovering links. While [11] relies on batch learning and genetic
programming to compute link specifications, the approach presented in [18] com-
bines genetic programming and active learning to learn link specifications of high
accuracy. In recent work, approaches for the unsupervised computation of link
specifications have been devised. For example, [19] shows how link specifications
can be computed by optimizing a pseudo-F-measure. Manifold approaches have
been developed on string similarity learning (see, e.g., [22,4,3]). [4] for example
learns edit distances by employing batch learning and SVMs to record dedupli-
cation and points out that domain-specific similarities can improve the quality
of classifiers. [3] relies on a theory for good edit distances developed by [2]. An
overview of approaches to and applications of learning distances and similarities
is given in [9]. To the best of our knowledge, this work is the first to combine
active learning and metric learning within the context of link discovery.

6 Conclusion and Future Work

In this paper, we presented an approach for learning string similarities based
on edit distances within an active learning setting. We evaluated our approach
on three data sets and showed that it yields promising results. Especially, we
pointed out that if edit distances are suitable for the properties at hand, then
we can actually improve the similarity functions and outperform simple edit
distances. Still edit distances are not suitable for use on all datasets. While we
focused on how to learn similarity measures based on edit distances, the general
idea behind our approach can be easily extended to other string similarity mea-
sures. Most of these approaches rely on counting common tokens either in sets
or sequences. By replacing the counting of tokens by the addition of weights, we
could consequently extend most string similarity measures to weighted measures
and learn them within the ACIDS framework. For example, the Jaccard simi-

larity of two strings A and B is defined as jaccard(A,B) = |T (A)∩T (B)|
|T (A)∪T (B)| , where

T (X) is the set of tokens (i.e., words) that make up X . Given that all tokens
are issued from an alphabet Σ, we can define a weight function ω : Σ → [0, 1].
The weighted Jaccard similarity would then be
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weightedJaccard(A,B) =

∑
x∈(T (A)∩T (B))

ω(x)

∑
y∈(T (A)∪T (B))

ω(y)
. (16)

We could then apply the ACIDS learning approach to devise an appropriate
weight functions ω. Similarly, we can also assign weights to single n-grams derived
from any alphabet and learn weighted n-gram-based similarity functions. Thus

instead of computing the trigram similarity as trigrams(A,B) = 2|T (A)∩T (B)|
|T (A)|+|T (B)| ,

(where T (X) is the set of trigrams that make up X) we would compute

weightedT rigrams(A,B) =

2
∑

x∈(T (A)∩T (B))

ω(x)

∑
y∈T (A)

ω(y) +
∑

z∈T (B)

ω(z)
. (17)

In addition to carrying out exactly this task, we will devise an approach to
improve ACIDS’ runtime so as to make it utilizable within interactive settings
in future work. Moreover, we will evaluate the effect of the initial classifier and
learning rate setting on our approach.
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