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Abstract. Enabling complex querying paradigms over the wealth of
available Semantic Web data will significantly impact the relevance and
adoption of Semantic Web technologies in a broad range of domains.
While the current predominant paradigm is to retrieve a list of items, in
many cases the actual intent is satisfied by reviewing the lists and assem-
bling compatible items into lists or packages of resources such that each
package collectively satisfies the need, such as assembling different col-
lections of places to visit during a vacation. Users may place constraints
on individual items, and the compatibility of items within a package is
based on global constraints placed on packages, like total distance or
time to travel between locations in a package. Finding such packages us-
ing the traditional item-querying model requires users to review lists of
possible multiple queries and assemble and compare packages manually.

In this paper, we propose three algorithms for supporting such a pack-
age query model as a first class paradigm. Since package constraints may
involve multiple criteria, several competing packages are possible. There-
fore, we propose the idea of computing a skyline of package results as
an extension to a popular query model for multi-criteria decision-making
called skyline queries, which to date has only focused on computing item
skylines. We formalize the semantics of the logical query operator, Sky-
Package, and propose three algorithms for the physical operator imple-
mentation. A comparative evaluation of the algorithms over real world
and synthetic-benchmark RDF datasets is provided.

Keywords: RDF, Package Skyline Queries, Performance.

1 Introduction

The Linking Open Data movement and broadening adoption of Semantic Web
technologies has created a surge in amount of available data on the Semantic
Web. The rich structure and semantics associated with such data provides an
opportunity to enable more advanced querying paradigms that are useful for
different kinds of tasks. An important class of such advanced querying models
is the skyline query model for supporting multi-criteria retrieval tasks. While
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Fig. 1. Data For E-Commerce Example

this class of queries have been considered as an extension to traditional pattern
matching queries in relational [2][7][10] and more recently Semantic Web data
models [3], it is important to consider more complex underlying query models.
While pattern matching paradigms are predicated on finding individual single
items, often times a user is interested in finding item combinations or packages
that satisfy certain constraints. For example, a student may be interested in
finding a combination of e-learning resources that cover a set of topics, with
constraints like overall rating of resources should be high, and if being purchased,
total cost should be low.

As a more concrete example, assume stores expose Semantic Web enabled
catalogs, and a customer wishes to make a decision about what combination
of stores would best meet his or her purchase needs. The customer wishes to
purchase milk, eggs, and bread and is willing to make the purchase from multiple
stores as long as the total price spent is minimized, and the overall average rating
across stores is good or maximized, i.e., the stores are known to have good quality
products. Additional constraints could include minimizing total distance traveled
between the stores and some constraints about open shopping hours.

The example shows that the target of the query is in fact a set of items (a set
of stores), where the query should return multiple combinations or “packages”.
Since the preferences are specified over aggregated values for elements in a pack-
age, the process of producing combinations will need to precede the preference
checking. One possible package for the e-commerce example, given the sample
data in Fig 1, is aee (i.e., buying milk from store a, eggs from store e and bread
also from store e). Another possibility is bee (i.e., milk from store b, eggs and
bread from store e as in the previous case). The bottom right of Fig 1 shows
the total price and average rating for packages aee, bee and bge. We see that
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aee is a better package than bee because it has a smaller total price and the
same average rating. On the other hand, bge and aee are incomparable because
although bge’s total price is worse than aee’s, its average rating is better.

In [5][11][12], the idea of package recommendation has been explored. This
problem assumes a single criterion such that an optimal package can be selected
or a top-k of packages based on techniques similar to collaborative filtering for
recommendation. With respect to skyline queries, different indexing strategies
for optimizing skyline computation over a single relation or restricted join struc-
tures e.g. just two relations i.e. single join [10], star-like schemas [14] have been
investigated. The challenges of skylining over RDF data models which do not
conform to the requirement of being contained in two relations or having re-
stricted schema structures, were explored in [3]. The proposed approach inter-
leaved the join and skyline phases in such a way that the information about
the already explored values was used to prune the non-valuable candidates from
entering the skyline phase. However, these existing techniques all focus on com-
puting item-based skylines. The main challenge in terms of package skylines is
dealing with the increase in search space due to the combinatorial explosion.

In this paper, we introduce the concept of package skyline queries and propose
query evaluation techniques for such queries. Specifically, we contribute the fol-
lowing: 1) a formalization of the logical query operator, SkyPackage, for package
skyline queries over an RDF data model, 2) two families of query processing al-
gorithms for physical operator implementation based on the traditional vertical
partitioned storage model and a novel storage model here called target descrip-
tive, target qualifying (TDTQ), and 3) an evaluation of the three algorithms
proposed over synthetic and real world data. The rest of the paper is organized
as follows. The background and formalization of our problem is given in Sec-
tion 2. Section 3 introduces the two algorithms based on the vertical partitioned
storage model, and Section 4 presents an algorithm based on our TDTQ storage
model. An empirical evaluation study is reported in Section 5, and related work
is described in Section 6. The paper is concluded in Section 7.

2 Preliminaries

Specifying the e-commerce example as a query requires the use of a graph pattern
structure for describing the target of the query (stores), and the qualification for
the desired targets e.g. stores should sell at least one of milk or bread or eggs.
We call these target qualifiers. The second component of the query specifications
concerns the preferences, e.g., minimizing the total cost. In our example, prefer-
ences are specified over the aggregates of target attributes (datatype properties),
e.g., maximizing the average over store ratings, as well as the attributes of tar-
get qualifiers, e.g., minimizing total price. Note that the resulting graph pattern
structure (we ignore the details of preferences specification at this time) involves
a union query where each branch computes a set of results for one of the target
qualifiers, shown in Fig 2.
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SELECT ?s ?price ?rating ?store
WHERE ?store :hasSName ?s

?store :sells ?item
 ?store :hasRating ?rating

?item :hasIName “milk ”
?item :hasPrice ?price

SELECT ?s ?price ?rating ?store
WHERE ?store :hasSName ?s

?store :sells ?item
 ?store :hasRating ?rating

?item :hasIName “bread ”
?item :hasPrice ?price

SELECT ?s ?price ?rating ?store
WHERE ?store :hasSName ?s

?store :sells ?item
 ?store :hasRating ?rating

?item :hasIName “eggs ”
?item :hasPrice ?price

UNION UNION

s1 5 &I1 milk $2 s1 5 &I3 bread $5 s1 5 &I2 eggs $7
s1 5 &I1 milk $2 s1 5 &I3 bread $5 s2 5 &I5 eggs $10

…

s1 s1 s1 $14 5
s1 s1 s2 $17 5

…

s1 5 &I1 milk $2
s2 5 &I4 milk $3

…

s1 5 &I3 bread $5
s2 5 &I6 bread $4

…

s1 5 &I2 eggs $7
s2 5 &I5 eggs $10

…

a)

Rating
Price

c)
b)

Fig. 2. Dataflow for the Skyline Package Problem in Terms of Traditional Query Op-
erators

2.1 Problem Definition

Let D be a dataset with property relations P1, P2, .., Pm and GP be a graph
pattern with triple patterns TPi, TPj , .., TPk (TPx denotes triple pattern with
property Px). [[GP]]D denotes the answer relation for GP over D, i.e., [[GP]]D =
Pi �� Pj �� ... �� Pk. Let var(TPx) and var(GP ) denote the variables in the triple
and graph pattern respectively. We designate the return variable r ∈ var(GP ),
e.g., (?store), representing the target of the query (stores) as the target variable.
We call the triple patterns such as (?item hasName “milk”) target qualifying
constraints since those items determine the stores that are selected.

We review the formalization for preferences given in [7]. Let Dom(a1), . . . ,
Dom(ad) be the domains for the columns a1, .., ad in a d-dimensional tuple t ∈
[[GP]]D. Given a set of attributes B, then a preference PF over the set of tuples
[[GP]]D is defined as PF := (B;�PF ) where �PF is a strict partial order on the
domain of B. Given a set of preferences PF1, ..., PFm, their combined Pareto
preference PF is defined as a set of equally important preferences.

For a set of d-dimensional tuples R and preference PF = (B;�PF ) over R,
a tuple ri ∈ R dominates tuple rj ∈ R based on the preference (denoted as
ri�PF rj), iff (∀(ak ∈ B)(ri[ak] �− rj [ak]) ∧ ∃(al ∈ B)(ri[al] � rj [al]))

Definition 1 (Skyline Query). When adapting preferences to graph patterns
we associate a preference with the property (assumed to be a datatype property)
on whose object the preference is defined. Let PFi denote a preference on the
column representing the object of property Pi). Then, for a graph pattern GP =
TP1, .., TPm and a set of preferences PF = PFi, PFj , .., PFk, a skyline query
SKY LINE[[[GP ]]D, PF ] returns the set of tuples from the answer of GP such
that no other tuples dominate them with respect to PF and they do not dominate
each other.
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The extension of the skyline operator to packages is based on two functions Map
and Generalized Projection.

Definition 2 (Map and Generalized Projection). . Let F = {f1, f2, ...fk}
be a set of k mapping functions such that each function fj(B) takes a subset of
attributes B ⊆ A of a tuple t, and returns a value x. Map μ̂[F ,X ] (adapted from
[7]) applies a set of k mapping functions F and transforms each d-dimensional
tuple t into a k-dimensional output tuple t′ defined by the set of attributes X =
{x1, x2, ...xk} with xi generated by the function fi in F .

Generalized Projection
∏

colrx,colry,colrz,µ̂[F,X ]
(R) returns the relation

R′(colrx, colry, colrz, .., x1, x2, ...xk). In other words, the generalized projection
outputs a relation that appends the columns produced by the map function to the
projection of R on the attributes listed, i.e. colrx, colry, colrz.

Definition 3 (SkyPackage Graph Pattern Query). . A SkyPackage graph
pattern query is graph pattern GP[{c1,c2,...,cN},F={f1,f2,...,fk}{PFPi

,PFPj
,...PFPk

},r]
such that :

1. ci is a qualifying constraint.
2. r ∈ var(GP ) is called the target of the query e.g., stores.
3. PFPi is the preference specified on the property Pi, i.e., actually the object

of pi. fi is the mapping function of Pi.

Definition 4 (SkyPackage Query Answer). The answer to a skypackage
graph pattern query RSKY can be seen the result of the following steps:

1. Rproduct = [[GPc1 ]]×[[GPc2 ]]×...×[[GPcN ]] such that [[GPcx ]] is the result of
evaluating the branch of the union query with constraint cx. Fig 2.(b) shows
the partial result of the crossproduct of the three subqueries in (a) based on
the 3 constraints on milk, bread and eggs.

2. Rproject =
∏

r1,r2,...rN ,µ̂[F={f1,f2,...fk},X={x1,x2,...xk}] (Rproduct) where

ri is the column for the return variable in subquery i’s result, f1 : (domc1(o1)×
domc2(o1) × ... × domcN(o1)) → R where domc1(o1) is the domain of
values for the column representing the object of P1 e.g. column for object of
hasPrice, in [[GPc1 ]]. The functions in our example would be totalhasPrice,
averagehasRating. The output of this step is shown in Fig 2.(c)

3. SKYLINE [Rproject, {PFP ′
i
, PFP ′

j
, ...PFP ′

k
} ] such that {PFP ′

i
is the prefer-

ence defined on the aggregated columns produced by the map function (de-
noted by P ′

i e.g. minimizing totalprice.

In other words, the result of a skypackage query is the result of skylining over
the extended generalized projection (with map functions consisting of desired
aggregates) of the combination (product) relation.

3 Algorithms for Package Skyline Queries over Vertical
Partitioned Tables

We present in this section two approaches: Join, Cartesian Product, Skyline
(JCPS) and RDFSkyJoinWithFullHeader − Cartesian Product, Skyline
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(RSJFH − CPS), for solving the package skyline problem. These approaches
assume data is stored in vertically partitioned tables (VPTs) [1].

3.1 JCPS Algorithm

The formulation of the package skyline problem suggests a relatively straight-
forward algorithm involving multiple joins, followed by a Cartesian product to
produce all combinations, followed by a single-table skyline algorithm (e.g.,
block-nested loop), called JCPS.

Consider the VPTs hasIName, hasSName, hasItem, hasPrice, and
hasRating obtained from Fig 1. Solving the skyline package problem using
JCPS involves the following steps:

1. I ← hasIName �� hasSName �� hasItem �� hasPrice �� hasRating
2. Perform Cartesian product on I twice (e.g., I × I × I)
3. Aggregate price and rating attributes
4. Perform a single-table skyline algorithm

Steps 1 and 2 can be seen in Fig 3a, which depicts the Cartesian product being
performed twice on I to obtain all store packages of size 3. As the product is
being computed, the price and rating attributes are aggregated, as shown in
Fig 3b. Afterwards, a single-table skyline algorithm is performed to discard all
dominated packages with respect to total price and average rating.

item price store rating

milk 2 A 5

eggs 7 A 5

item price store rating

milk 2 A 5

eggs 7 A 5

item price store rating

milk 2 A 5

eggs 7 A 5

(a) Cartesian Product of Join Result

item1 item2 item3 store1 store2 store3 total 
price

average
rating

milk eggs bread A B C 10 5
milk eggs bread B B A 7 5

(b) Cartesian Product Result

Fig. 3. Resulting tables of JCPS

Algorithm 1 contains the pseudocode for such an algorithm. Solving the sky-
line package problem using JCPS requires all VPTs to be joined together (line
2), denoted as I. To obtain all possible combinations (i.e., packages) of tar-
gets, multiple Cartesian products are performed on I (lines 3-5). Afterwards,
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equivalent skyline attributes are aggregated (lines 6-8). Equivalent skyline at-
tributes, for example, of the e-commerce motivating example would be price and
rating attributes. Aggregation for the price of milk, eggs, and bread would be
performed to obtain a total price. Finally, line 9 applies a single-table skyline
algorithm to remove all dominated packages.

Algorithm 1. JCPS

Input: V PT1, V PT2, . . . V PTx containing skyline attributes s1, s2, . . . , sy, and
corresponding aggregation functions As1(T ),As2(T ), . . . ,Asy (T ) on table T

Output: Package Skyline P
1: n← package size
2: I ← V PT1 �� V PT2 �� · · · �� V PTx

3: for all i ∈ [1, n− 1] do
4: I ← I × I
5: end for
6: for all i ∈ [1, y] do
7: I ← Asi(I)
8: end for
9: P ← skyline(I)
10: return P

The limitations of such an algorithm are fairly obvious. First, many unneces-
sary joins are performed. Furthermore, if the result of joins is large, the input to
the Cartesian product operation will be very large even though it is likely that
only a small fraction of the combinations produced will be relevant to the sky-
line. The exponential increase of tuples after the Cartesian product phase will
result in a large number of tuple-pair comparisons while performing a skyline
algorithm. To gain better performance, it is crucial that some tuples be pruned
before entering into the Cartesian product phase, which is discussed next.

3.2 RSJFH − CPS Algorithm

A pruning strategy that prunes the input size of the Cartesian product opera-
tion is crucial to achieving efficiency. One possibility is to exploit the following
observation: skyline packages can be made up of only target resources that are in
the skyline result when only one constraint (e.g., milk) is considered (note that
a query with only one constraint is equivalent to an item skyline query).

Lemma 1. Let ρ = {p1p2 . . . pn} and ρ′ = {p1p2 . . . p′n} be packages of size n
and ρ be a skyline package. If pn 
Cn p′n, where Cn is a qualifying constraint,
then ρ′ is not a skyline package.

Proof. Let x1, x2, . . . , xm be the preference attributes for pn and p′n. Since
pn 
Cn p′n, pn[xj ] 
 p′n[xj ] for some 1 ≤ j ≤ n. Therefore, A1≤i≤n(pi[xj ]) 

A1≤i≤n(p

′
i[xj ]), where A is an aggregation function and p′i ∈ ρ′. Since for any

1 ≤ k ≤ n, where k �= j, A1≤i≤n(pi[xk]) = A1≤i≤n(p
′
i[xk]). This implies that

ρ 
 ρ′. Thus, ρ′ is not a skyline package. �
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As an example, let ρ = {p1p2} and ρ′ = {p1p′2} and x1, x2 be the preference
attributes for p1, p2, p

′
2. We define the attribute values as follows: p1 = (3, 4), p2 =

(3, 5), and p′2 = (4, 5). Assuming the lowest values are preferred, p2 
 p′2 and
p2[x1] 
 p′2[x1]. Therefore, A1≤i≤2(pi[x1]) 
 A1≤i≤2(p

′
i[x1]). In other words,

(p1[x1] + p2[x1]) 
 (p1[x1] + p′2[x1]), i.e., (3 + 3 = 6 
 7 = 3 + 4). Since all
attribute values except p′2[x1] remained unchanged, by definition of skyline we
conclude ρ 
 ρ′.

This lemma suggests that the skyline phase can be pushed ahead of the Carte-
sian product step as a way to prune the input of the JCPS. Even greater per-
formance can be obtained by using a skyline-over-join algorithm, RSJFH [3],
that combines the skyline and join phase together. RSJFH takes as input two
VPTs sorted on the skyline attributes. We call this algorithm RSJFH −CPS.
This lemma suggests that skylining can be done in a divide-and-conquer manner
where a skyline phase is introduced for each constraint, e.g., milk, (requiring 3
phases for our example) to find all potential members of skyline packages which
may then be fed to the Cartesian product operation.

Given the VPTs hasIName, hasSName, hasItem, hasPrice, and hasRating
obtained from Fig 1, solving the skyline package problem using RSJFH−CPS
involves the following steps:

1. I2 ← hasSName �� hasItem �� hasRating
2. For each target t (e.g., milk)

(a) I1t ← σt(hasIName) �� hasPrice
(b) St ← RSJFH(I1t , I

2)
3. Perform a Cartesian product on all tables resulting from step 2b
4. Aggregate the necessary attributes (e.g., price and rating)
5. Perform a single-table skyline algorithm

Fig 4a shows two tables, where the left one, for example, depicts step (a) for
milk, and the right table represents I2 from step 1. These two tables are sent
as input to RSJFH , which outputs the table in Fig 4b. These steps are done
for each target, and so in our example, we have to repeat the steps for eggs
and bread. After steps 1 and 2 are completed (yielding three tables, e.g., milk,
eggs, and bread), a Cartesian product is performed on these tables, as shown in
Fig 4c, which produces a table similar to the one in Fig 3b. Finally, a single-table
skyline algorithm is performed to discard all dominated packages.

Algorithm 2 shows the pseudocode for RSJFH − CPS The main difference
between JCPS and RSJFH−CPS appears in line 5-8. For each target, a select
operation is done to obtain all like targets, which is then joined with another
VPT containing a skyline attribute of the targets. This step produces a table for
each target. After the remaining tables are joined, denoted as I2 (line 4), each
target table I1i along with I2 is sent as input to RSJFH for a skyline-over-join
operation. The resulting target tables undergo a Cartesian product phase (line
9) to produce all possible combinations, and then all equivalent attributes are
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hasIName hasPrice

&I1 milk &I1 2

&I4 milk &I4 3

hasSName hasItem hasRating

&S1 A &S1 &I1 &S1 5

&S1 A &S1 &I2 &S1 5

(a) RSJFH (skyline-over-join) for milk

item price store rating
milk 2 A 5
milk 3 B 5

(b) RSJFH ’s result for milk

item price store rating

milk 2 A 5

item price store rating

eggs 3 B 5

item price store rating

bread 5 A 4

(c) Cartesian product on all targets (e.g., milk, eggs, and bread)

Fig. 4. Resulting tables of RSJFH

Algorithm 2. RSJFH-CPS

Input: V PT1, V PT2, . . . V PTx containing skyline attributes s1, s2, . . . , sy, and
corresponding aggregation functions As1(T ),As2(T ), . . . ,Asy (T ) on table T

Output: Package Skyline P
1: n← package size
2: t1, t2, . . . , tn ← targets of the package
3: V PT1 contains targets and V PT2 contains a skyline attribute of the targets
4: I2 ← V PT3 �� · · · �� V PTx

5: for all i ∈ [1, n] do
6: I1i ← σti(V PT1) �� V PT2

7: Si ← RSJFH(I1i , I
2)

8: end for
9: T ← S1 × S2 × · · · × Sn

10: for all i ∈ [1, n] do
11: I ← Asy (T )
12: end for
13: P ← skyline(I)
14: return P

aggregated (lines 10-12). Lastly, a single-table skyline algorithm is performed to
discard non-skyline packages (line 13). Since a skyline phase is introduced early
in the algorithm, the input size of the Cartesian product phase is decreased,
which significantly improves execution time compared to JCPS.
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4 Algorithms for Package Skyline Queries over the
TDTQ Storage Model

In this section, we present a more efficient and feasible method to solve the
skyline package problem. We discuss a devised storage model, Target Descriptive,
Target Qualifying (TDTQ), and an overview of an algorithm, SkyJCPS, that
exploits this storage model.

4.1 The TDTQ Storage Model

While the previous two approaches, JCPS and RSJFH−CPS, rely on VPTs,
the next approach is a multistage approach in which the first phase is analogous
to the build phase of a hash-join. In our approach, we construct two types of
tables: target qualifying tables and target descriptive tables, called TDTQ. Tar-
get qualifying tables are constructed from the target qualifying triple patterns
(?item hasIName “milk”) and the triple patterns that associate them with the
targets (?store sells ?item). In addition to these two types of triple patterns, a
triple pattern that describes the target qualifier that is associated with a prefer-
ence is also used to derive the target qualifying table. In summary, these three
types of triple patterns are joined per given constraint and a table with the
target and preference attribute columns are produced. The left three tables in
Fig 5 show the the target qualifying tables for our example (one for each con-
straint). The target descriptive tables are constructed per target attribute that
is associated with a preference, in our example rating for stores. These tables
are constructed by joining the triple patterns linking the required attributes and
produce a combination of attributes and preference attributes (store name and
store rating produced by joining hasRating and hasSName). The rightmost table
in Fig 5 shows the target descriptive table for our example.

store price store price store price store value
a 2 g 5 e 3 e 5
b 3 a 7 b 4 i 5
f 3 c 8 a 5 c 12
e 4 e 8 i 8 f 13
g 6 h 9 g 5 h 14
e 9 b 10 f 6 g 18
h 9 d 10 h 6 a 20
d 10 d 10 d 21

b 22

RATINGMILK EGGS BREAD

Fig. 5. Target Qualifying (milk, eggs, bread) and Target Descriptive (rating) Tables
for E-commerce Example

We begin by giving some notations that will aid in understanding of the
TDTQ storage model. In general, the build phase produces a set of partitioned
tables T1, . . . , Tn, Tn+1, . . . , Tm, where each table Ti consists of two attributes,
denoted by T 1

i and T 2
i . We omit the subscript if the context is understood or if
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the identification of the table is irrelevant. T1, . . . , Tn are the target qualifying
tables where n is the number of qualifying constraints. Tn+1, . . . , Tm are the
target descriptive tables, where m− (n+1)+ 1 = m−n is the number of target
attributes involved in the preference conditions.

4.2 CPJS and SkyJCPS Algorithms

Given the TDTQ storage model presented previously, one option for comput-
ing the package skyline would be to perform a Cartesian product on the target
qualifying tables, and then joining the result with the target descriptive tables.
We call this approach CPJS (Cartesian product, Join, Skyline), which results
in time and space complexity. Given n targets and m target qualifiers, nm pos-
sible combinations exist as an intermediate result prior to performing a skyline
algorithm. Each of these combinations is needed since we are looking for a set
of packages rather than a set of points. Depending on the preferences given,
additional computations such as aggregations are required to be computed at
query time. Our objective is to find all package skylines efficiently by eliminating
unwanted tuples before we perform a Cartesian product. Algorithm 3 shows the
CPJS algorithm for determining package skylines.

Algorithm 3. CPJS

Input: T1, T2, . . . Tn, Tn+1, . . . , Tm

Output: Package Skyline P
1: I ← T1 × T2 × · · · × Tn

2: for all i ∈ [n+ 1, m] do
3: I ← I �� Ti

4: end for
5: P ← skyline(I)
6: return P

CPJS begins by finding all combinations of targets by performing a Cartesian
product on the target qualifying tables (line 1). This resulting table is then
joined with each target descriptive table, yielding a single table (line 3). Finally,
a single-table skyline algorithm is performed to eliminate dominated packages
(line 5).

Applying this approach to the data in Fig 5, one would have to compute all
448 possible combinations before performing a skyline algorithm. The number
of combinations produced from the Cartesian product phase can be reduced
by initially introducing a skyline phase on each target, e.g., milk, as we did in
for RSJFH −CPS. We call this algorithm SkyJCPS. Although similarities to
RSJFH−CPS can be observed, SkyJCPS yields better performance due to the
reduced number of joins. Fig 4a clearly illustrates that RSJFH−CPS requires
four joins before an initial skyline algorithm can be performed. All but one of
these joins can be eliminated by using the TDTQ storage model. To illustrate
SkyJCPS, given the TDTQ tables in Fig 5, solving the skyline package problem
involves the following steps:
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1. For each target qualifying table TQi (e.g., milk)
(a) ITQi ← (TQi) �� rating
(b) I ′TQi

← skyline(ITQi)
2. CPJS(I ′TQ1

, . . . , I ′TQi
, rating)

Since the dominating cost of answering skyline package queries is the Carte-
sian product phase, the input size of the Cartesian product can be reduced by
performing a single-table skyline algorithm over each target.

5 Evaluation

The main goal of this evaluation was to compare the performance of the proposed
algorithms using both synthetic and real datasets with respect to package size
scalability. In addition we compared the the feasibility of answering the skyline
package problem using the VPT storage model and the TDTQ storage model.

5.1 Setup

All experiments were conducted on a Linux machine with a 2.33GHz Intel Xeon
processor and 40GB memory, and all algorithms were implemented in Java SE
6. All data used was converted to RDF format using the Jena API and stored
in Oracle Berkeley DB.

We compared three algorithms, JCPS, SkyJCPS, and RSJFH−CPS. Dur-
ing the skyline phase of each of these algorithms, we used the block-nested-loops
(BNL) [2] algorithm. The package size metric was used for the scalability study
of the algorithms. Since the Cartesian product phase is likely to be the domi-
nant cost in skyline package queries, it is important to analyze how the algo-
rithms perform when the package size grows, which increases the input size of the
Cartesian product phase.

5.2 Package-Size Scalability - Synthetic Data

Since we are unaware of any RDF data generators that allow generation of
different data distributions, the data used in the evaluations were generated
using a synthetic data generator [2]. The data generator produces relational
data in different distributions, which was converted to RDF using the Jena API.
We generated three types of data distributions: correlated, anti-correlated, and
normal distributions. For each type of data distribution, we generated datasets
of different sizes and dimensions.

In Fig 6 we show how the algorithms perform across packages of size 2 to 5
for the a triple size of approximately 635 triples. Due to the exponential increase
of the Cartesian product phase, this triple size is the largest possible in order to
evaluate all three algorithms. For all package sizes, SkyJCPS performs better
than JCPS because of the initial skyline algorithm performed to reduce the
input size of the Cartesian product phase. RSJFH outperformed SkyJCPS
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for packages of size 5. We argue that SkyJCPS may perform slightly slower
than RSJFH on small datasets distributed among many tables. In this sce-
nario, SkyJCPS has six tables to examine, while RSJFH has only two tables.
Evaluation results from the real datasets, which is discussed next, ensure us
that SkyJCPS significantly outperforms RSJFH when the dataset is large
and distributed among many tables. Due to the logarithmic scale used, it may
seem that some of the algorithms have the same execution time for equal sized
packages. This is not the case, and since BNL was the single-table skyline al-
gorithm used, the algorithms performed best using correlated data and worst
using anti-correlated data.
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Fig. 6. Package Size Scalability for Synthetic Data

5.3 Package-Size Scalability - Real Dataset

In order to test the algorithms’ performance with real data, we used the Movie-
Lens1 dataset, which consists of 10 million ratings and 10,000 movies, and the
Book-Crossing2, which consists of 271,000 books rated by 278,000 users.

We randomly chose five users from each of the datasets, with partiality to
those who have rated a large number of movies or books, from the datasets
for use in our package-size evaluations. For the MovieLens dataset, the users
consisted of those with IDs 8, 34, 36, 65, and 215, who rated 800, 639, 479,
569, and 1,242 movies, respectively. Similarly, for the Book-Crossing dataset,
the users consisted of those with IDs 11601, 11676, 16795, 23768, and 23902,
who rated 1,571, 13,602, 2,948, 1,708, and 1,503 books, respectively. The target

1 http://www.grouplens.org/node/73/
2 http://www.informatik.uni-freiburg.de/~cziegler/BX/dataset

http://www.grouplens.org/node/73/
http://www.informatik.uni-freiburg.de/~cziegler/BX/dataset
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descriptive table for MovieLens contained 10,000 tuples, i.e., all the movies, and
Book-Crossing contained 271,000 tuples, i.e., all the books. We used the following
queries, respectively, for evaluating MovieLens and Book-Crossing datasets: find
packages of n movies such that the average rating of all the movies is high, the
release date is high, and each movie-rater has rated at least one of the movie and
find packages of n books such that the average rating of all the books is high, the
publication date is high, and each book-rater has rated at least one of the books,
where n = 3, 4, 5.

The results of this experiment can be seen in Fig 10. It is easily observed
that SkyJCPS performed better in all cases. We were unable to obtain any
results from JCPS as it ran for hours. Due to the number of joins required
to construct the tables in the format required by RSJFH , most of its time
was spent during the initial phase, i.e., before the Cartesian product phase, and
performed the worst. On average, SkyJCPS outperformed RSJFH by a factor
of 1000. Although the overall execution time of the Book-Crossing dataset was
longer than the MovieLens dataset, the data we used from the Book-Crossing
dataset consisted of more tuples.
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Fig. 7. Package Size Scalability for MovieLens and Book-Crossing Datasets

5.4 Storage Model Evaluation

For each of the above experiments, we evaluated our storage model by comparing
the time taken to load the RDF file into the database using our storage model
versus using VPTs. All data was indexed using a B-trees. Fig 8 shows the time
of inserting the MovieLens and the Book-Crossing datasets, respectively, for
packages of size 3, 4, and 5.

In general, the data loading phase using the TDTQ storage model was longer
than that of VPTs. The number of tables created using both approaches are
not always equal, and either approach could have more tables than the other.
Since the time to load the data is roughly the same for each package size, the
number of tables created does not necessarily have that much effect on the total
time. Our approach imposes additional time because of the triple patterns that
must be matched. Since the time difference between the two is small and the
database only has to be built once, it is more efficient to use our storage model
with SkyJCPS than using VPTs.
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Fig. 8. Database build

6 Related Work

Much research has been devoted to the subject of preference queries. One kind
of preference query is the skyline query, which [2] originally introduced and pro-
vided a block nested loops, divide-and-conquer, and B-tree-based algorithms.
Later, [4] introduced a sort-filter-skyline algorithm that is based on the same in-
tuition as BNL, but uses a monotone sorting function to all for early termination.
Unlike [2] [4] [9], which have to read the whole database at least once, index-
based algorithms [6] [8] allow one to access only a part. However, all of these are
designed to work on a single relation. As the Semantic Web matures and RDF
data is populated, more research needs to be done on preference queries that
involve multiple relations. When queries involve aggregations, multiple relations
must be joined before any of the above techniques can be used.

Recently, an interest in multi-relation skyline queries has been growing. [3]
introduced three skyline algorithms that are based on the concept of a header
point, which allows some nonskyline tuples to be discarded before succeeding to
the skyline processing phase. [7] introduced a sky-join operator that gives the
join phase a small knowledge of a skyline. Others have used approximation and
top-k algorithms with regards to recommendation. [5] proposes a framework for
collaborative filtering using a variation of top-k. However, their set of results do
not contain packages but single items. [12] went a step further and used top-k
techniques to provide a composite recommendation for travel planning. Also, [11]
used similar techniques to provide a package recommendation by approximat-
ing. Top-k is useful when ranking objects is desired. However, top-k is prone to
discard tuples that have a ’bad’ value in one of the dimensions, whereas a skyline
algorithm will include this object if it is not dominated. [13] explains the concept
of top-k dominating queries. They combine the properties of skyline and top-k
to yield an algorithm that has the best of both worlds. [10] proposed a novel
algorithm called SFSJ (sort-first skyline-join) that computes the complete sky-
line. Given two relations, access to the two relations is alternated using a pulling
strategy, known as adaptive pulling, that prioritizes each relation based on the
number of mismatched join values. Although the algorithm has no limitations
on the number of skyline attributes, it is limited by two relations.
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7 Conclusion and Future Work

This paper addressed the problem of answering package skyline queries. We
have formalized and described what constitutes a “package” and have defined
the term skyline packages. Package querying is especially useful for cases where a
user requires multiple objects to satisfy certain constraints. We introduced three
algorithms for solving the package skyline problem. Future work will consider
the use of additional optimization techniques such as prefetching to achieve
additional performance benefits as well as the integration of top-k techniques to
provide ranking of the results when the size of query result is large.
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