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Abstract Against the background of Ambient Assisted Living, this article
proposes a new kind of unobtrusive, non-stigmatizing and continuous acquisition
of vital signs as respiratory rate and related features on the basis of ultra-wide-band
radar sensing. Through the runtime analysis of the reflection data, surrogating
mechanical signals e.g. the excursion of the thorax are detected and linked with
physiological values like the breathing rate. After a brief introduction to the
application context including an explanation of specific user demands and
restrictions of current solutions of the telemedicine, physical fundamentals of
measurement and the utilized electronics, the applied principles of spatial and
temporal data mining are described. Finally, experiments including real mea-
surements with the subsequent discussion of the measurement results provide an
outlook to the capabilities of our approach and grant information about open issues
and the steps in research.

1 Introduction

Due to the demographic trend in most of the highly industrialized countries, in
particular in Germany, the scientific area of Ambient Assisted Living, abbreviated
by the acronym AAL, gained much more importance in recent years and was
expedited by a couple of research projects funded by the BMBF, a German
governmental institution for research and education. AAL comprehends technical

B.-H. Busch (&) � R. Welge
Leuphana University Lueneburg, Institute VauST,
Volgershall 1, 21339 Lueneburg, Germany
e-mail: bhbusch@leuphana.de

R. Welge
e-mail: welge@leuphana.de

R. Wichert and H. Klausing (eds.), Ambient Assisted Living,
Advanced Technologies and Societal Change, DOI: 10.1007/978-3-642-37988-8_5,
� Springer-Verlag Berlin Heidelberg 2014

61



solutions and concepts for the unobtrusive support of elderly people in their
familiar environment. Obviously, this approach implies the usage of ambient
intelligence technologies for the collection of user data and the initiation of
domain interventions (e.g. emergency detection or domain regulations). Many
AAL-research projects deal with the development of human centered assistance
systems, including the development of agents for early emergency detection,
preventive diagnosis, energy awareness, compliance control and medicine man-
agement (refer to Fig. 1). The context aware analysis of certain living patterns
covering snap shots of health parameters requires a robust and reliable acquisition
of these values—the main objective of further considerations.

1.1 Limitations of the Telemedicine for AAL-Domains

Usually, in home care domains, established components of the telemedicine are
applied. In our approach for an assistance system, we utilize telemedical solutions
for the acquisition of weight, heart rate, blood oxygen, blood glucose, respiratory
rate through nasal prongs et cetera equipped with a Bluetooth interface. However,
these devices reveal a lot of disadvantages considering usability, significance and
validity of gathered raw data and questions of ethics as listed below.

• The patient has to use telemedical devices autonomously on his own. In
accordance to anamnesis and latest therapy recommendations, this has to be
done at determined instants of time. Otherwise, the raw data is not trustworthy
or out of sync with the aim of acquisition. The extracted information may be
diagnostically less conclusive.
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• The usage of telemedical devices is often inconvenient. Further, many body
attached sensor networks (BSN) restrict the user in their autonomy, agility and
mobility. Chest straps are impractical for long-term surveillance.

• The usage of BSNs is not only a question of comfort but also a factor of
stigmatization. Therefore, visible measurement of vital signs should be avoided
in home care scenarios.

• Imaging techniques based on the evaluation of cameras for the identification of
position, posture, activity, agility and emotional shape are inappropriate. The
user rejects, or often only accepts them with reservations because this approach
procures an impression of observation.

Regarding to these mentioned deficits, it is recommended to avoid camera-
based systems or BSNs. Therefore, we prefer the use of a UWB-sensor and
concentrate first of all on the most significant vital parameter we can observe: the
respiration rate.

1.2 Main Target: Identification of Respiratory Rate

Two main aspects are in the focus of interest—the determination of the physical
shape of a human and the extraction of convincing parameters for diagnosis
purpose itself (e.g. for the early detection of deteriorating states of health). Con-
sidering the physical shape, the vital capacity VC (depicted in Fig. 2) is a useful
score and common in spirometry physicals for the determination of the pulmonary
function; an indicator for the physiological performance capability. To interpret
the values for the vital capacity VC, depending on the standard breathing volume,
the maximum inhaled volume and the maximum exhaled volume, the following
Eq. (1) can be used to determine the typical set point for the comparison with
measured values. The reference value for the residual volume (remaining air in the
lungs) drops from 3–4 L at an age of 20 years to 2 L at an age of 65 years.

VC ¼ height3

k
� ð1:03� age� 25

100
� 0:75Þ ð1Þ

with gender factor k

kðgÞ ¼ 1:0; g ¼ male
1:1; g ¼ female

�
ð2Þ

Residual volume

Expiration reserve

Inspiration reserveVital capacity

Standard breathing volume ~ 0.5 L

~1.5-2 L

~1-1.5 L

~ 3-4 L
~2 L

Fig. 2 Vital capacity
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For the continuous approximation of the constituent parts of the vital capacity VC,
a previous anthropometric survey including test measurements for system calibration
is necessary. This has to be done in accordance to a concomitant body plethys-
mography. Therefore, features like the thorax and abdomen excursion need to be
detected and analyzed in the context of reference measurements. Features of interest
are respiratory rate RR, the variability of RR, the amplitude and it’s variability,
significant linear and sometimes exponential trends. These trends can be associated
with changes in the residual volume (short-time). That means, the person is breathing
erratically. For diagnosis effort, there are also additional features to detect. Most
common is the examination of breathing patterns gathered by polysomnographic
surveys. Usually, these surveys cover apnoea, hyperpneas or characteristic patterns
like Cheyne-Stokes respiration (CSR), Biot’s respiration (sometimes called ataxic
respiration), Kussmaul breathing and other forms of labored breathing. These
phenomena can also be linked to distinct excursion patterns.

Current developments for the detection of breathing parameters can be classified
by three main categories: direct measurement of air flow, the measurement of dif-
ferent gas concentrations in the expired air [2] or the blood and finally, the obser-
vation of the movement of the thorax or the abdomen or alterations in the tissue
impedance. One approach based on the analysis of tri-axial accelerometer data for the
detection of breathing rate and flow waveform estimation was proposed by [3]. The
extension of this approach deals with the simultaneous monitoring of the activity and
the respiration [4]. Also focused on the examination of mechanical signals evoked by
the upheaval of the breast, we integrated a sensor component within an armchair and
in a bed. Thereby, it is aimed to monitor the patient while he is watching TV, reading
a book or executing other activities which can be done in a sitting position. Addi-
tionally, the patient can be supervised during the night while he is sleeping.

2 Methodology

The basic concept deals with the investigation of alterations in the UWB-reflection
runtime. The concerned reflection is caused by a solid object. In this case, the
object is the human body and changes in the body’s position or the body’s
appearance induce also changes in reflection runtime (refer to Fig. 3).

2.1 Related Work

UWB-systems with various types of signal modulation are propagated and tested
for diverse applications. In order to discover hidden objects or, in particular humans
through massive walls the usage of a m-sequence radar was proposed by [5].
Another approach of through-wall radar measurement was introduced by [6]. The
assignment of localisation tasks in the context of automobile parking system to
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UWB-solutions was proposed by [7]. Much more focusing on aspects of hardware
design, [8] presents an on-chip solution with integrated electronics and on-board
data processing for UWB radar systems for the detection of humans. Recapitula-
tory, the elaborate survey about existing through-wall imaging technologies from
[9] grants a fruitful overview about the state of the art in this area. Addressing the
field of wireless communication, UWB-systems seem to be a promising concept for
diverse challenges. Thus, short range communication based on UWB is discussed
by [10]. A survey about existing MAC-protocols for ultra-wide-band communi-
cation was drafted by [11]. The main objective was the identification of develop-
ment potentials for an optimal MAC-layer considering the demand for high data
rates. [12] proposes a novel methodology for the signal acquisition in UWB-based
transmit-only wireless sensor networks. Thereby, the addressed autonomous sensor
nodes implement a single code approach to avoid concurrent transmissions and
collisions. [13] focusses on the design of filter-antennas for UWB-based commu-
nication networks with a bandwidth from 2.65 to 8.52 GHz. An approach for short
range communication is proposed by [14] who examines and optimizes the
usability of UWB-communication for portable devices. The benefit of UWB-
components for BAN-communication in the domain of telemedicine is part of the
work of [15]. Concerning our focus of work, UWB-radar was also used to detect
vital parameters. In order to correct and calibrate MRI-systems, [16] introduced
ultra-wide-band sensing for the detection of the patients exact position regarding
imaged body tissue, in particular the chest. The examination of different organic
materials in accordance to their content of water is the topic of [17].

2.2 System Setup and Data Processing

For the acquisition of vital signs, an ultra-wide-band radar system, consisting of one
transmitting channel and two receiving channels, was embedded within a resting
furniture. The connected antennas (type Vivaldi) are installed within the backside of
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an armchair and aligned to the abdomen of the sitting person. The armchair provides
the advantage that the person sitting inside is tied to a fixed position. This fact is
essential; motions of the body exert a disturbing influence on the quality of the
reflection pattern because these occurrences are belonging to the same or similar
dynamic range as the addressed vital signs. In order to cover a larger body area
(possibly to detect heart rate), two sensor systems can be coupled to increase the
number of receiving channels up to four. The UWB-system itself modulates a m-
sequence of 9th order with a length of 511 samples—the signal energy is equally
distributed over a bandwidth B ¼ fmax � fmin of 3.9 GHz from DC (cut-off -10 dB
and a master clock rate of 10.09 GHz. Each sample corresponds to a certain distance
resp. expressed by the elapsed propagation time of the signal response. The current
sample rate (for a complete frame/scan) is about 0.01496 s $ 66.8449 Hz which is
sufficient for the addressed target. For more details about the utilized hardware and
the m-sequence modulation refer to [6]. The general procedure for the treatment of
the n-dimensional reflection data is depicted in Fig. 4 and starts naturally with the
parameterization of the sensor device and the reading of the raw data. A single scan
(refer to Fig. 5) leads to a vector

Xn ¼ ðxijÞ i¼1;...;511
j¼1

¼ ðSample1. . .Sample511Þ0 ð3Þ

with xij 2 R. Unfortunately, due to hardware properties, measurement frames are
sometimes mismatching. Hence, it is important to identify a characteristic signal
content for adjustment which is present in every single measurement vector of Xn.
Referring to the signal curve drawn in Fig. 5, there is an eye-catching signal
content marked by the dotted rectangle one. This large polarization marks the
reflection caused by the cross-talk of the receiving and transmitting antenna.
Knowing the position of both antennas, a point of origin can be determined in
order to span a coordinate system. Each vector of index n has to be scaled/shifted
to this origin (depends on the reference vector of index r) by the shift factor csn .

csn ¼ j argmax
i¼511

i¼1
ðjðxi1ÞnjÞ � argmax

i¼511

i¼1
ðjðxi1ÞrjÞj ð4Þ

X�n ¼ ðxi�csn jÞn ð5Þ

Now, in accordance to the number of samples Di between the cross-talk
polarization and the object (e.g. marked by the dotted rectangle two), and the
spatial resolution Res�s of a single sample, the distance of the object can easily be
determined via d ¼ Di � c � Res�s. Completing a measurement campaign with the
length m (scan) with consecutive scaling, the result is represented by

X�c ¼ ðxijÞ i¼1;...;511
j...m

ð6Þ

A graphical representation (of the signal power over time mTs) is illustrated in
Fig. 6. Obviously, there are two noticeable regions in the plot—certain, suspicious
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Fig. 4 Process of reflection data analysis
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reflections. These signals may be associated with the cyclic excursion of the thorax
and the contraction of the heart muscle. Addressing dynamic processes as the
respiratory rate, it is important to consider the static content in the reflection data
representing the walls or the furniture in the environment. Therefore, it is
important to execute some preliminary measurements X�s with a scan length p for
the removal of the background. Thus, the underlying dynamic process can be
isolated. Due to noise reduction, it is an appropriate method to use the mean vector
of X�s ¼ p�1X�s 1 for the subtraction.

X�d ¼ 8i;jðx�ij � �xi1Þ ð7Þ

In order to isolate interesting features within the reflection pattern, data frames
X�d are parsed for maxima of signal power. Tracking these significant points in data
allows the determination of the vertical window size jwj.

cm ¼ argmax
i¼511

i¼1
ðx�dim
Þ ð8Þ
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Fig. 6 Temporal behavior of reflections
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jwj ¼ maxððcmÞÞ �minððcmÞÞ ð9Þ

The initial values for the observation window were set in accordance to average
amplitude values of breathing. After analyzing the observation window for the first
dielectric transient, a timeseries YðnTsÞ represented in Fig. 7 is the result.

YðnTsÞ ¼ TðnTsÞ þ ZðnTsÞ þ SðnTsÞ þ RðnTsÞ
n 2 N

þ; Ts ¼ 0:0149s
ð10Þ

TðnTsÞ covers the trend in the data, RðnTsÞ grasps all the noise, and ZðnTsÞ and
SðnTsÞ represent periodic short- and long-term developments in the signal.
A typical reason for an occurring TðnTsÞ may be a slowly decreasing amplitude in
breathing due to emerging edema in the lungs—reciprocal, the frequency might
increase. In order to reduce the high content of noise in the signal, filtering with
e.g. a moving average is the most common solution. Right at the start, an IIR-filter
following the transfer function

SðzÞ ¼ YðzÞ
XðzÞ ¼

PP
k¼0 bkz�kPQ
l¼0 alz�l

ð11Þ

SðzÞ ¼ b0 þ b1z�1 þ b2z�2 þ . . .bmz�m

a0 þ a1z�1 þ a2z�2. . .anz�n
ð12Þ

was selected to flatten the noise (refer to the filter output drawn in Fig. 8 of the
filter input depicted in Fig. 7). Filter coefficients are computed with the aid of
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Chebyshev-polynomials fitting the demand for an appropriate attenuation
regarding a cut-off frequency which corresponds with highest breathing rates. For
the isolation of signals with a smaller amplitude and much higher frequencies, a
pertinent band-pass filter was designed and implemented (refer to Fig. 9).
As expected, filtering the data through an IIR-filter results in a non-linear phase
shift of the signal and in an alteration of the underlying curve characteristic. If
respiratory rate is the only object of interest, this does not matter; the consecutive
windowed FFT-Fast Fourier Transform provides reliable results (refer to Fig. 10).
But if it is necessary to identify and localize variances in signal amplitudes or
frequencies, and in addition, particular patterns, this filtering procedures deliver
timeseries lacking important details of information. Instead of using sinus func-
tions for the decomposition of the timeseries, alternatives of functions only defined
over a small interval provide the chance to localize in the time and the frequency
domain. Therefore, curve approximation by the superposition of wavelets, an
established approach for the compression of data e.g. for pictures, seems to be the
best solution to reduce the noise and to preserve important and significant
parameters for the feature extraction process. The fundamental idea deals with the
approximation of an unknown function f through the superposition

f ¼
X

k

ckWk ð13Þ
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through the basis functions of Wk and the coherent coefficients ck. The basis
functions Wk belong to the orthonormal set of functions ðWkÞk2J with J � N

þ

under the following condition:

\Wi;Wk [ ¼ di;k :¼ 1; if i ¼ k
0; if i 6¼ k

�
ð14Þ

That means, the scalar product vanishes. Considering the preferred wavelets,
there exist many different types with varying properties. In general, the basis
function of Wk is described by

Wc1;c2 tð Þ 1ffiffiffiffiffi
c1
p W

t � c2

c1

� �
; c1 2 <þ; c2 2 < ð15Þ

and called mother wavelet. By varying the parameters c1; c2 for the shift and
scaling of the wavelet, best fitting coefficients for the approximation of the
function f can be derived. Using an recursive procedure, coefficients for a couple
of single wavelets for the linear combination can be computed. Thinking about
continuous functions of f , the transform is done by

CWT c1; c2ð Þ ¼ 1ffiffiffiffiffiffi
jaj

p Zþ1

�1
f tð ÞW� t � c2

c1

� �
ð16Þ

For discrete values f ðnTsÞ, the Fast Wavelet Transform is used. In order to
remove the noise content RðnTsÞ in the timeseries YðnTsÞ, the signal was
decomposed into the wavelet representations using symlets (modified Daubechies
wavelets). After computing the coefficients ck for the signal reconstruction, the
gathered values are modified in accordance to the threshold s as explained below
and used for signal estimation (refer to Fig. 11).
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Fig. 11 Denoised signal and separated white noise process
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ck ¼
0; ck � s
ck; ck [ s

�
ð17Þ

This procedure is known as thresholding and realized in two different man-
ners—hard and soft thresholding. Hard thresholding is expressed by the Eq. (17)
and means the strict suppression of small coefficients. The alternative soft thres-
holding deals with shrinkage of the coefficients ck ! ~ck by the value of s if ck is
greater than s.

After retransformation, we get an estimation

~f ¼
X
k2J

¼ ~ckWk ð18Þ

of the underlying unknown signal of respiratory. Or in other words

~YðnTsÞ ¼ ~ZðnTsÞ þ ~TðnTsÞ þ ~SðnTsÞ ð19Þ

with the separated noise

~RðnTsÞ ¼ YðnTsÞ � ~YðnTsÞ: ð20Þ

Figure 12 demonstrates the effect of both techniques. Better results for further
considerations are provided by the usage of soft thresholding because the recon-
structed signal is much smoother and more often free of any disturbing peaks resp.
outliers (refer to the dotted ellipse in Fig. 12). After the removal of the white noise
content, the detection of interesting points/areas in the curves was the next issue.
Analyzing a couple of reconstructed signals, the detection of extrema sometimes
fails due to the movement of the body in the armchair or increasing residual vol-
ume—at every intake of breath some additional air remains in the lungs. Assuming,
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that the reconstructed signal consists of a composition of an indistinguishable long-
term seasonal influence (~ZðnTsÞ ! 0), some variously weighted trend functions

~TðnTsÞ ¼
Xi¼1
i¼1

fiðnTsÞ; ð21Þ

and the sought-after hidden process ~SðnTsÞ, covering the short-time periodic
behavior, it is useful to remove disturbing components for the segmentation of the
series in the time domain. Using a model reduced to a linear trend and, in
accordance to previous observations, some exponential or power behavior, we
obtain

~YðnTsÞ ¼ ~SðnTsÞ þ ~TðnTsÞ ð22Þ

with a set of basic functions after the removal of the steady component c1nTsþ c2

in the signal (refer to the example in Fig. 13).

fT1ðnTsÞ ¼ c1ec2nTs ð23Þ

fT2ðnTsÞ ¼ c3ec4nTs þ c5ec6nTs ð24Þ

fT3 ¼ c7e�
nTs�c8

c9 ð25Þ

fT4 ¼ c10nTsc11 þ c12 ð26Þ
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For the approximation of the influence induced by the movement or motion of
the body, coefficients ci for the mentioned relationships are interpolated. The best
fitting function fTr for the trend removal is selected due to

fTr; r ¼ argmin
i¼4

i¼1
ðSSEiÞ: ð27Þ

After the abatement of these components (refer to Fig. 14 with the different
trend components of the extracted RR-signal), significant points as extrema are
ascertained via interval evaluation. Examining the rectified series, significant
extrema are detected. Of course, there are accumulations of these points in relation
to the degree of remaining noise or peaks and obviously, to the characteristics of
the breathing process itself (ref to Fig. 15). Due to their nearby unique occurrence
(in comparison to the high points), the low points of the curve are helpful for the
partition of the data to smaller evaluation intervals. Assuming that the largest value
in each interval marks the end of each single breathing process (end of inhalation),
these points are selected for the computation of frequency, and after rescaling
(adding previously removed non-linear trend) of the timeseries, the breathing
amplitude. Additionally, the low points are checked due to their Euclidean dis-
tance; if it seems that they belong together, a surrogate low point is computed and
used for the interval limitation. Furthermore, each identified extrema is weighted
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due to it’s location within the r-bounds of the distribution describing the general
stochastic signal properties considering a sensitivity factor cs. In summary, the
process ends with the provision of RR, RRV, AR, ARV and in addition, with the
localization of leaps and existing non-linearity within the data. These observations
need to be matched to distinct patterns as mentioned in section 2.B (Fig. 16).

3 Discussion of Results

In the early stages of research, preliminary measurements with deterministic signal
sources were executed. A programmable linear motor was configured to perform
motions with specified values for acceleration, velocity and distance. The maximum
periodic displacement of the armature of 45 cm was detected with an exact match
of 99.97 %. The lowest possible motion of the drive of 1 mm was detected with
an accuracy of 99.6 %; a fine result for further considerations. That means, it was
not possible to determine the best resolution because the drive itself is limited to
1 mm movement range.

Considering respiratory rate and variances in frequency and amplitude, the main
target of unobtrusive vital sign acquisition via UWB was accomplished. After
improving the hardware setup through auxiliary shielding in the backside of the
armchair, an increased robustness against disturbing backscattering was achieved.
In relation to our reference measurement device, a pulse oximeter with nasal prongs
(of course, observed signals are phase shifted, but have the same properties) a
sufficient accuracy was reached (refer to Table 1). In addition, the accuracy and

Table 1 Results of RR-measurement-FFT based

Test person Accuracy
(respiratory rate %)

Accuracy respiratory
rate (shielded %)

Male, 1.84 m, 74 kg 86 91.5
Male, 1.72 m, 82 kg 87 92.1
Male, 1.92 m, 79 kg 84 92.4
Male, 1.81 m, 76 kg 87 91.6
Female, 1.67 m, 59 kg 71 91.2
Average values 83 91.7
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Fig. 16 Selected extrema in respiratory pattern
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robustness for long-term measurement was improved by the evaluation of different
antenna topologies and their recalibration (direction and position). The accuracy of
RR-detection indexed by a was determined by measurement campaigns without the
mentioned hardware improvement. For the feature extraction in both campaigns, a
FFT with a consecutive spectrum distribution analysis was executed. Obviously,
the measurement accuracy depends on the constitution of the test person. Thinking
about heart rate detection, which is also part of our work, there are still open issues.
Accuracy for the detection of signals in this range drops to 43 % in comparison to
the accuracy of the RR-detection. The denoising of signals by wavelets including a
consecutive analysis in the time domain arose as a convenient alternative; the
accuracy of measurement of RR and it’s features rose significantly (refer to
Table 2). The amplitude of the respiratory signal was measured with an accuracy of
86.4 %. Possibly, an optimization of trend approximation can improve this result.
The variance of this feature lacks accuracy and stays at 56 % in comparison to the
reference system.

In summary, the results in Tables 1 and 2 show the benefit of analysis of the
extracted signals in the time domain. FWT-based denoising is the better approach
for filtering, because interesting features in the signal are preserved. In addition,
suspicious patterns are easier to recognize which is an important insight for the
next steps.

4 Conclusion and Outlook

As shown in the previous sections, the current state of research demonstrates the
potential benefit for the unobtrusive acquisition of vital signs which are incidental
to mechanical measures. Especially in the domain of geriatric care, according to
specific user demands, this approach seems to be worthwhile for practical appli-
cation. Not only restricted to home care scenarios or applications of Ambient
Assisted Living, this technical solution can, embedded within information pro-
cessing infrastructures, improve the accuracy of situation recognition systems and
additionally raise the diagnostic efficiency of such approaches. Thinking about
stand-alone solutions, this work can be the springboard for the development of a

Table 2 Results of RR-measurement—FWT-based

Test person Accuracy
(respiratory rate %)

Accuracy respiratory
rate variability (%)

Male, 1.84 m, 74 kg 95.4 67.5
Male, 1.72 m, 82 kg 96.3 72.1
Male, 1.92 m, 79 kg 95.2 69.4
Male, 1.81 m, 76 kg 97.2 69.6
Female, 1.67 m, 59 kg 94.7 68.2
Average values 95.7 69.3
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new type of telemedical devices—the fusion of furniture with ambient intelligence
focusing on health monitoring. At the present time, the work concentrates on the
detection and collating of respiratory patterns. At the beginning of September
2012, clinical trials with different objectives will start. After examining and
improving the robustness and accuracy of proposed approach in daily use for the
detection of respiratory rate and related features (patterns also), it is aimed to
detect the heart rate and arrhythmias in a reliable manner. In addition, it is planned
to aggregate ECG-recordings of atrial fibrillation with reflection patterns in order
to identify correlations between mechanical and bioelectrical observations
assigned to the same signal source. Furthermore, it is scheduled to perform test
campaigns with patients with congestive heart failure in order to detect edema in
the lungs by the evaluation of the thorax impedance. Current test measurements in
our laboratory with a mock-up prove the meaningfulness of the implemented
general functional principle but it is necessary to confirm it for practice by
examining persons with altering fluid retentions considering calibrated reference
measuring. And finally, derived vital sign must be assessed in the light of the user
situation or user activity.
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