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Abstract The aim of this research project is to automatically analyse human
behaviour in indoor environments using vibration sensors attached to the floor.
Vibration sensors are used in an absolute passive manner so the monitored persons
do not have to wear any sensors. Furthermore this technology preserves the private
sphere of monitored persons. In order to extract geometric gait features like motion
trajectories out of the vibrational signals, the main part of this work focuses on
methods for localization of seismic sources on the two-dimensional floor surface.
Starting from a conventional TDOA (Time Difference of Arrival) based technique
using uniaxial acceleration sensors we show how to minimize installation cost by
reducing the number of sensor entities via tri-axial sensor technology. We describe
the main challenges of wave propagation in solids, namely dispersion and multi-
path propagation and discuss their implications on robustness and accuracy of
localization results. To conclude our work we introduce potential application
scenarios.

1 Introduction

Since walking is one of the most frequent and important human activities, much
attention has been paid to the analysis of gait patterns [1] in the context of
developing smart Ambient Assisted Living solutions [2]. The investigation of gait
parameters as well as motion sequences reveals valuable information about the
individual mobility, the daily expenditure level and health stability of a person.
Furthermore several specific diseases like diabetes, depression and peripheral
neuropathy are correlated with symptoms characterized by gait instability or
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unsteadiness, which are indicated by a shorter step length [2]. However, much of
the work concerning the observation of gait properties focuses on wearable devices.
Marschollek et al. [3], try to assess the risk of a fall for an elderly person using an
acceleration sensor attached to the waist by a custom belt. In contrast, our work
focuses on pure passively operating sensor systems, and therefore provides a
non-invasive permanent monitoring process of a person’s well-being. The principle
idea is illustrated in Fig. 1.

2 Principles of Vibroacoustic Monitoring

We are interested in extracting two relevant pieces of information from the sensor
signals as described below. First, we would like to determine the cause of the
vibration signal which allows us to discriminate between signals of interest like a
footstep of a person and undesired noise sources like washing machines or walking
frames. This requires the implementation of a classification algorithm. Second, the
exact location of a seismic event is of great interest. Under the constraint of a
purely passive operation mode there are two basic methods of determining the
position of a seismic event.

The first method (Fig. 2) is an extension of the conventional TDOA (Time
Difference of Arrival) approach, which is well known in the processing of airborne
signals. However, this method suffers from diverging waveforms caused by dis-
persion and therefore only produces robust results in non-dispersive media like air.
By taking the dispersion characteristics of the underlying medium into account, we
are estimating the so called range differences between every pair of sensors in a

data acquisition and
processing

vibration sensors

Fig. 1 Principle of vibroacoustic monitoring
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direct way and subsequently formulate the nonlinear system of equations that
describes the localization problem in a mathematical way [4]. It is worth noting
that this approach makes use of uniaxial sensors i.e. it uses the vertical acceleration
of floor-surface-particles (z-axis).

In contrast, the second approach (Fig. 3), which is called AOA (Angle of
Arrival)-approach, uses tri-axial sensors and consequently processes the acquired
surface wave (Rayleigh Wave) as a vector-wave represented by the acceleration of
the particles into x-, y- and z-direction of the Cartesian sensor coordinate system.
The interpretation of these three components reveals the angle at which a surface
wave impinges at the sensor [5]. We compute the exact location of the seismic
event by triangulation using two or more tri-axial sensors.

After this short review of existing localization procedures, we present a novel
idea on the development of a localization-scheme making use of only one tri-axial
sensor station (Fig. 4). The key idea behind this scheme, besides the usual
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Fig. 2 Illustration of TDOA-approach
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AOA-estimation process, is to exploit the effect of dispersion in order to estimate
the distance to the seismic source. To accomplish this, we use advanced time–
frequency transformations [6], which allow a frequency-dependent time of arrival
estimation. Knowing the dispersion curve it is possible to translate this information
into an estimated distance and in combination with the determined AOA into the
position of the seismic source.

Localization in a continuous manner becomes a problem of tracking which
offers e.g. the extraction of motion patterns. Another processing of the location-
information allows the distinction between more than one entities of the same class
(e.g. the distinction between footsteps stemming from different persons) by using
probabilistic models representing the transition probabilities as a function of space.

3 Challenges

3.1 Multipath Propagation

A robust operation of the developed algorithms assumes the signal to be noiseless
and stemming from a single-mode Rayleigh wave. In a real indoor environment
however, we expect disturbances in the form of body wave reflections stemming
from the bottom side of the floor as well as Rayleigh wave reflections from
bordering walls (Fig. 5).
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Fig. 4 Illustration of single-
station approach
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Fig. 5 Illustration of wave
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3.2 Dispersion

In vertically layered media, Rayleigh wave propagation is characterized by dis-
persion, meaning the propagation speed is frequency dependent. This leads to
diverging waveforms (Fig. 6) and makes conventional localization methods from
air borne sound signal processing inapplicable because they generally do not
include the effect of dispersion in their signal model. Therefore we intend to
reliably estimate the dispersion curve of the floor in order to improve localization
results.

3.3 Space Variance

In general we have to consider a floor as an inhomogeneous anisotropic propa-
gation medium because parts of the floor construction, room furniture or other
objects related to floor properties do affect Rayleigh-wave propagation. This
implicates dispersion behaviour which is dependent on the excitation point and
differs for propagation into different directions. Consequently, consideration of the
dispersion effect into algorithm will require a manageable model of the floors
space variant properties.
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Fig. 6 Illustration of dispersion
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3.4 Noise

We not only expect noise sources like road noise but also interactions with objects
such as doors or kitchen furniture cause disturbing vibrations that need to be
ignored in the localization process. Moreover, sound pressure originating from TV,
radio or other participants cause vibrations at the sensor that influence signal
evaluation [2].

4 Results

Figure 7 shows the measurement setup for evaluating the localization performance
of the TDOA-approach. A typical parquet floor of size 6.9 9 5.57 m was excited
by an impulse hammer at ten different positions, five times each. Floor vibrations
where gathered by four IMI Sensors with a sensitivity of 100 mV/g and a resolution
of 350 lg. Table 1 contains the results we gathered by applying a conventional
adaptive threshold based TDOA-algorithm. We assumed the velocity of the fastest
occurring frequency to be 1,150 m/s. Localization results vary considerably for
different excitation points. Moreover these results show the performance without
taking dispersion into account.

Fig. 7 Measurement setup for localizing impact hammers
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We tried to deploy the TDOA based localization algorithm in order to localize
real footstep signals. Figure 8 shows a screenshot of a demo video, which should
demonstrate the algorithms operational functionality. In the left part of the picture
you can see the original sequence—a female person walking over the floor. The
right part illustrates the estimated footstep-locations as a walking path. As can be
seen in Fig. 8 we were able to successfully follow the path of the person. However,
reasonable localization results are limited to steady walking people with appro-
priate footwear.

Further results refer to the determination of the AOA approach a wave
impinging at a tri-axial sensor station. Figure 9 shows the measurement setup,
where a PCB 356A17 sensor was placed on a concrete floor, not too close to any
floor borders. Every test-angle was excited five times with an impulse hammer to
compute an average mean error of the estimated angles, which are presented in the
left part of Table 2a. Next, we placed the sensor directly a few centimeters to a
wall and repeated the experiment. The results can be seen in the right part of
Table 2b. Apparently, this sensor position leads to a much higher mean error of the
estimated angles. We conclude that there are reflections from the wall, sumper-
imposing with the direct signal and degrading bearing-estimation results.

These promising results led us to the decision to further follow the approach
using tri-axial sensor technology and AOA-estimation by testing it on real footstep
data. Figure 10 illustrates the experiment’s setup, where again a PCB 356A17
sensor station was stimulated by 15 barefooted heel strikes of medium to low
energy at each angle. Corresponding AOA-estimation results can be seen in
Table 3 and show reasonable accuracy.

Table 1 Results of impact
hammer localization TDOA-
approach

Point Mean error (m) Point Mean error (m)

1 0.31 6 0.40
2 0.60 7 0.67
3 0.19 8 0.47
4 0.72 9 1.46
5 0.39 10 0.72

Fig. 8 Screenshot of demo-video
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4.1 Real-Time Footstep Detection and Localization System

In order to further test the developed algorithms in real life scenarios, we are
implementing a real-time footstep detection and localization system. Its overall
structure is depicted in Fig. 11.

First we have to make sure to detect what we are interested in, namely foot-
steps. Figure 12 shows sample footstep signals stemming from a person walking
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Fig. 9 Measurement setup
for determining angle of
impinging wave

Table 2 Results of impact
hammer localization AOA-
approach

a b

Angle (�) Mean error (�) Angle (�) Mean error (�)

0 3 0 2
17 2 17 11
31 3 31 8
42 1 42 7
-17 2 -17 4
-31 3 -31 13
-42 2 -42 15
Total 2.3 8.6
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Fig. 10 Measurement setup
for the evaluation of AOA-
algorithm on real footstep
(heel strike) signals

54 K. Dobbler et al.



barefooted nearby the sensor on a laminate floor in a steady motion. The steps are
characterized by broadband high frequency contents stemming from toes and
tangential interaction with the floor-surface as well as low frequency content
produced by the heel-strike. Due to the strong damping of high frequency com-
ponents, we focused on detecting the low frequency content, propagating over
longer distances. Therefore we decided to implement a heel-strike classifier in
order to detect footsteps. To this end we compute Mel Frequency Cepstral
Coefficients (MFCCs) in addition to a general low frequency content energy
feature. Even though MFCCs are known to have been developed for speech
processing algorithms and may not be the best choice for this classification task,
they are able to characterize the relatively short heel-strike signal rather com-
pactly. After further reducing the dimensionality of feature space by Principal
Component Analysis (PCA), a Support Vector Machine (SVM) classifier decides
whether the observed signal block contains the heel-strike of a footstep signal.

The detected footstep signals are processed by the localization stage, which
consists of AOA-estimation for every tri-axial sensor station and finally the
determination of source location by triangulation. To further increase robustness,
the whole estimation is carried out three times with slightly shifted windows and
filtered through a median function to accommodate for classification inaccuracies.
During the development of the AOA-estimation algorithm based on Zhang [5], we
tried different implementations in order to achieve the most robust and reliable
result on real footstep signals. The most promising one is described as follows.

First of all the extracted heel strike windows of the three axes are transformed
into frequency domain by a conventional Fast Fourier Transform.

Table 3 Results of heel strike localization AOA-approach

Angle (�) Mean (�) Median (�) Standard deviation (�)

0 05.58 6.08 3.15
7 11.08 10.72 1.03
14 14.50 14.93 3.36
20 22.38 22.65 2.24
26 26.17 26.28 1.63
32 29.82 29.82 2.51
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Fig. 11 Overall structure of real time vibroacoustic monitoring system
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Az ¼ fftðazÞ ð1Þ

Ay ¼ fftðayÞ

Ax ¼ fftðaxÞ

Because of the elliptical motion of floor-surface particles we perform a
90 degree phase shift on the z-axis of the acceleration signal which can be obtained
by using the imaginary part of a Hilbert Transform

Azs ¼ Aze
�jp2 ð2Þ

In order to compute the frequency dependent cross correlation of the z-axis and
the y-axis respectively x-axis to

rzx ¼ Ax � conjðAzsÞ ð3Þ

rzy ¼ Ay � conj Azsð Þ

By applying the arcus tangent function to these signals, which represent the on
the y-axis and x-axis projected compressional part of the surface wave we obtain
the frequency dependent angle function.

/ ¼ arctanðrzx

rzy
Þ ð4Þ

Zhang [5] developed a weighted averaging method in order to compute the
estimated angle out of the obtained function in a way that weights frequency
components according to their energy. However, this approach did not work very
well in our conditions so we developed an alternative approach for the final angle
computation.

Due to the upper limit on reasonable phase accuracy of the used sensors we
restricted the analysed frequency content to the range between 20 and 2,000 Hz.
Within this band, the frequency dependent angle function is then windowed using

Fig. 12 Exemplary footstep signals
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overlapping rectangular windows. For each window the variance is calculated and
the ones with the three lowest variance values are selected. Only frequency
components exceeding an adaptive energy threshold are considered. For each
selected window the median is calculated and eventually the median out of these
three values leads to our final angle estimation. Should either the energy level of
the signal be too low or the variance of estimations too high, a reject option can be
implemented to avoid non-robust results.

First experiments with the system showed that reasonable results strongly rely
on a sufficient SNR of the footstep signals.

5 Applications

We assess that the introduced technology has great potential to be deployed in
Ambient Assisted Living and Surveillance solutions.

• Activity-Recognition/Quantification: How mobile is a monitored person?
Ratio Activity/Passivity?

• Abnormality-Recognition: Falls, falling objects
• Determination of gait parameters as indications for pathological gait patterns

and/or fall risk assessment
• Localization/Tracking: Analysis of motion patterns, Multi-Person-Recognition

In addition to these functions, the idea of monitored persons consciously
interacting with the system reveals other remarkable application scenarios in
which the system is used as a tangible acoustics interface (TAI) [7]. In this way,
elderly people could interact with any solid object to communicate their needs for
example by furnishing the table of the living room with our system. By discrim-
inating different types of excitation activities even more interactive applications
with input specific responses are imaginable. First experiments exploring this point
of view were limited to the localization of finger tips on table surfaces. They
showed general operational functionality of localization but a severe degradation
of achievable accuracy caused by reflections of table boundaries. First ideas to
overcome this problem include the application of windowing techniques as well as
the construction of appropriate table shapes.

6 Future Work

Future developments will concentrate on the evaluation of the whole classification
and localization system on real footstep data. Furthermore, because of the transient
character of the signals we would like to use more appropriate features like the
coefficients of the discrete wavelet transform for the heel strike classification task.
We also want to further explore the single station localization approach. Therefore
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we will thoroughly study a STFT-based approach offered by Chun [4] in order to
estimate the dispersion curve of floors and to introduce the obtained dispersion
curve into our localization algorithms. Finally, we will carry out further experi-
ments on tables in order to investigate the disturbing reflections from table
boundaries currently leading to worse localization accuracy.

7 Conclusion

We introduced the concept of vibroacoustic monitoring by means of classification
and localization of seismic events. Focusing on the localization part, after
reviewing existing localization methods, we presented a novel idea using only one
sensor station. The proposed method minimizes installation cost without signifi-
cantly increasing the financial cost. However, more work has to be done in order to
be able to apply the theoretical idea in a real application scenario. Besides that,
AOA-estimation of two sensor stations followed by triangulation seems to be the
most promising approach. A robust localization result depends on how well we are
able to account for multipath propagation as well as the inhomogeneity and
anisotropy of floors as an underlying medium. Furthermore the deployment of the
described technology in a real world application will raise the need to account for
external noise sources in order to ensure operational localization functionality. The
purely passive functionality as well as the low installation cost makes the intro-
duced non-invasive technology easily deployable in several potential application
scenarios and therefore interesting for further research.
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