
Scheduling Using Multiple Swarm Particle
Optimization with Memetic Features
on Graphics Processing Units

Steven Solomon, Parimala Thulasiraman, and Ruppa K. Thulasiram

Abstract We investigate the performance of a highly parallel Particle Swarm
Optimization (PSO) algorithm implemented on the graphics processing unit (GPU).
In order to achieve this high degree of parallelism we implement a collaborative
multi-swarm PSO algorithm on the GPU which relies on the use of many swarms
rather than just one. We choose to apply our PSO algorithm against a real-world
application: the task matching problem in a heterogeneous distributed computing
environment. Due to the potential for large problem sizes with high dimensionality,
the task matching problem proves to be very thorough in testing the GPU’s
capabilities for handling PSO. Our results show that the GPU offers a high degree
of performance and achieves a maximum of 37 times speedup over a sequential
implementation when the problem size in terms of tasks is large and many swarms
are used.

1 Introduction

A significant problem in a heterogeneous distributed computing environment, such
as grid computing, is the optimal matching of tasks to machines such that the
overall execution time is minimized. That is, given a set of heterogeneous resources
(machines) and tasks, we want to find the optimal assignment of tasks to machines
such that the makespan, or time until all machines have completed their assigned
tasks, is minimized.

Task matching, when treated as an optimization problem, quickly becomes
computationally difficult as the number of tasks and machines increases. In response

S. Solomon (�) � P. Thulasiraman � R.K. Thulasiram
University of Manitoba, Winnipeg, MB, Canada
e-mail: umsolom9@cs.umanitoba.ca; tulsi@cs.umanitoba.ca; thulasir@cs.umanitoba.ca

S. Tsutsui and P. Collet (eds.), Massively Parallel Evolutionary Computation
on GPGPUs, Natural Computing Series, DOI 10.1007/978-3-642-37959-8 8,
© Springer-Verlag Berlin Heidelberg 2013

149

mailto:umsolom9@cs.umanitoba.ca
mailto:tulsi@cs.umanitoba.ca
mailto:thulasir@cs.umanitoba.ca


150 S. Solomon et al.

to this problem, researchers and developers have made use of many heuristic
algorithms for the task mapping problem. Such algorithms include first-come-
first-serve (FCFS), min–max and min–min [4], and suffrage [8]. More recently,
bio-inspired heuristic algorithms such as Particle Swarm Optimization (PSO) [6]
have been used and studied for this problem [21, 22]. The nature of algorithms
such as PSO potentially allows for the generation of improved solutions without
significantly increasing the costs associated with the matching process.

The basic PSO algorithm, as described by Kennedy and Eberhart [6], works by
introducing a number of particles into the solution space (a continuous space where
each point represents one possible solution) and moving these particles throughout
the space, searching for an optimal solution. While single-swarm PSO has already
been applied to the task matching problem, there does not exist, to the best of our
knowledge, an implementation that makes use of multiple swarms collaborating
with one another.

We target the graphics processing unit (GPU) for our implementation. In recent
years, GPUs have provided significant performance improvements for many parallel
algorithms. One example comes from Mussi et al. [10]’s work on PSO, which shows
a high degree of speedup over a sequential CPU implementation. As the GPU offers
a tremendous level of parallelism, we believe that multi-swarm PSO provides a good
fit for the architecture. With a greater number of swarms, and, thus, a greater number
of particles, we can make better use of the threading capabilities of the GPU.

The rest of this chapter is organized as follows. The next section discusses the
CUDA programming model and GPU architecture, followed by a description of the
task matching problem in Sect. 3. In Sect. 4 we provide an introduction to single- and
multi-swarm PSO, and in Sect. 5, we discuss related work in PSO for task matching,
parallel PSO on GPUs, and multi-swarm PSO. We provide the description of our
GPU implementation of multi-swarm PSO for task matching in Sect. 6 and follow
this up with our performance and solution quality results in Sect. 7. Finally, we detail
our conclusions and ideas for future work in Sect. 8.

2 Parallel Computing and the GPU

We start with a discussion on the relevant details of the GPU architecture and CUDA
framework. As we implemented and tested all of our work on an Nvidia GTX
260 GPU (based on the GT200 architecture), all information and hard numbers in
this section pertains to this particular model. Because the GPU is a relatively new
architecture in the general purpose parallel algorithms arena, we start with a brief
discussion on the two general categories of parallel systems and where the GPU fits
in. We follow this with a discussion on the GPU architecture and CUDA itself and
conclude this section with a brief description of a basic parallel algorithm we use in
this work: parallel reduction.



Scheduling Using Multiple Swarm Particle Optimization 151

2.1 Parallel Systems

We divide the parallel systems used in parallel computing into two camps, homo-
geneous and heterogeneous. Which camp a parallel system belongs to is based
on the processing elements contained within the system. Homogeneous systems
are the most common systems and include hardware like the traditional multi-
core processor which contains a number of equivalent, or symmetrical, cores.
Such a system is homogeneous in that its processing elements are all the same.
Heterogeneous systems, on the other hand, contain processing elements that differ
from others within the same system.

The GPU falls under the heterogeneous systems category. While we will explain
that the GPU itself is composed of a number of identical processing elements, it,
alone, does not compose the entirety of the system. The GPU requires a traditional
CPU in order to drive the computational processes we want to execute on it. The
GPU, in effect, becomes an accelerator. When present in a system, we design
algorithms that the main CPU will schedule for execution on the GPU in order to
accelerate tasks on an architecture that may be able to offer improved performance.
We need both a CPU and a GPU within a system in order to execute algorithms/code
on the GPU, creating our heterogeneous system.

Flynn’s taxonomy [3] splits up parallel computing systems into three categories
based on their execution capabilities (Flynn actually describes four total categories
of computing systems; however, the Single Instruction Single Data category is not
a parallel system but a uniprocessing system). The two we are concerned about
here are Multiple Instruction Multiple Data (MIMD) and Single Instruction Multiple
Data (SIMD). With MIMD, each processing element executes independently of one
another. In essence, MIMD allows for each processing element to execute different
instructions on different data from one another.

SIMD, on the other hand, involves each processing element executing in lockstep
with one another. That is, every processing element executes the same instruction at
the same time as one another but executes this instruction on different data. MIMD
exploits task-level parallelism (achieving parallelism by executing multiple tasks
at one time), while SIMD exploits data-level parallelism (achieving parallelism by
taking advantage of repetitive tasks applied to different pieces of data). As we
discuss next, the MIMD style of system is very different from that of the GPU,
which follows the SIMD paradigm.

2.2 CUDA Framework

Prior to discussing the GPU architecture itself, we will cover some details of the
CUDA framework. Nvidia developed CUDA [13], or the Compute Unified Device
Architecture, in order to provide a more developer-friendly environment for GPU
application development. CUDA acts as an extension to the C language, providing



152 S. Solomon et al.

Fig. 1 Two-dimensional
organization of thread grid
and thread blocks [11]

access to all of the threading, memory, and helper functions that a developer requires
when working with the GPU for general purpose applications.

The GPU hardware provides us with a tremendous level of exploitable paral-
lelism on a single chip. Not only does a standard high-end GPU contain hundreds
of processing cores, but the hardware is designed to support thousands, hundreds of
thousands, even millions of threads being scheduled for execution. CUDA provides
a number of levels of thread organization in order to make the management of all
these threads simpler. At the top level of the thread organization we have the thread
grid. The thread grid encompasses all threads that will execute our GPU application,
otherwise referred to as a kernel. To get to the next level down, the thread block,
we split up the threads in the thread grid into multiple, equal-sized blocks. The user
specifies the organization of threads within a thread block and thread blocks within a
grid. What this means for a thread block is that we may organize and address threads
in a one-, two-, or three-dimensional fashion. The same holds true for thread blocks
within a grid; the user specifies one-, two-, or three-dimensional organization of the
blocks composing the thread grid. Figure 1 provides an example of two-dimensional
organization of a thread grid and thread blocks.

At the lowest level of the thread organization we have the thread warp. Equal-
sized chunks of threads from a thread block form the thread warps for that block.
Unlike the size or dimensions of a block/grid, the hardware specifications determine
the size of a warp, and the threads are ordered in a one-dimensional fashion. For
the GT200 (and earlier) architecture, 32 threads form a warp. The hardware issues
each thread within a warp the same instruction to execute, regardless of whether or
not all 32 threads have to execute it (we discuss this concept further in Sect. 2.3).
When branching occurs, threads which have diverged are marked as inactive and



Scheduling Using Multiple Swarm Particle Optimization 153

do not execute until instructions from their path of the branch are issued to the warp.
Algorithms for GPUs should therefore reduce branching or ensure that all threads
in a warp will take the same path in a branch in order to maximize performance.

Typically, a parallel application will involve some degree of synchronization.
Synchronization is the act of setting a barrier in place until some (or perhaps all)
threads reach the barrier. This ensures that the threads in question will all be at
the same step in the algorithm immediately after the synchronization point. CUDA
provides a few mechanisms for synchronization based around the thread warp,
block, and grid. First, each thread in a warp is always synchronized with all the
other threads in that same warp as they all receive the same instruction to execute.
Secondly, CUDA provides block-level synchronization in the form of an instruction.
By using the __syncthreads() instruction, threads reaching the instruction will
wait until all threads in the thread block have also hit that point.

Unfortunately, CUDA does not provide any mechanisms within a kernel to
synchronize all threads in a grid. As a result, we must complete execution of the
kernel and rely on the CPU to perform the synchronization. CUDA provides two
methods for accomplishing this:

1. Launching another kernel—after invoking one kernel, attempting to launch
another will result in the CPU application halting until the previous kernel has
completed execution (effectively “synchronizing” all threads in the thread grid,
as they must all have completed execution of the first kernel).

2. Using the cudaThreadSynchronize() instruction in the CPU applica-
tion—essentially the same as the above but explicitly controlled by the user.
Again, the CPU application will halt here until the previous kernel has completed
execution.

2.3 GPU Architecture

With the introductory CUDA material covered, we move on to a description of the
GPU architecture itself. We begin with the GPU as a whole, which is composed of
two separate units: the core and the off-chip memory. The GPU core itself contains
a number of Streaming Multiprocessors or SMs. As pictured in Fig. 2, each SM
contains eight CUDA cores or CCs. These CCs are the computational cores of
the GPU and handle the execution of instructions for the threads executing within
the SM. SMs also contain a multi-threaded instruction dispatcher and two Special
Function Units (SFUs) that provide extra transcendental mathematic capabilities.

Execution of instructions on each SM follows a model similar to SIMD, which
Nvidia [11] refers to as SIMT or Single Instruction Multiple Threads. In SIMT,
the hardware scheduler first schedules a warp for execution on the CCs of an SM.
The hardware then assigns the same instruction for execution across all threads in
the chosen warp—only the data each instruction acts on is changed. This threading
model implies that all threads in a warp are issued the same instruction, regardless



154 S. Solomon et al.

Fig. 2 General layout of a
streaming multiprocessor

of whether or not every thread needs to execute that instruction. Consider the case
where the threads encounter a branch: half of the threads in a warp take path A in
the branch, the other take path B . With SIMT, the hardware will issue instructions
for path A to all threads in the warp, even those that took path B . This represents an
important concept as threads in a warp diverging across different paths in a branch
results in a loss of parallelism—each branch is essentially executed serially, rather
than in parallel. That is to say, rather than having 32 threads performing useful
work, only a subset of the threads do work for path i , while the remaining threads
idle, waiting for instructions from their own path.

Reaching back to our knowledge of the CUDA framework, we see a connection
between thread blocks and SMs. All of the threads within a thread block must
execute entirely within a single SM. This means that we (or the hardware) cannot
split up the threads in a thread block between multiple SMs. Multiple thread blocks,
however, may execute on a single SM if that SM has enough resources to support
the requirements of more than one thread block.

Aside from the computational units, each SM also contains 16 kilobytes of
shared memory. This shared memory essentially acts as a developer-controlled
cache for data during kernel execution. As a result, the responsibility is on the
developer to place data into this memory space—there does not exist any automatic
hardware caching of data (Nvidia changed this in their Fermi [11] architecture,
which introduced a hardware-controlled cache at each SM). Nvidia [12] claims that
accesses to shared memory are up to 100 times faster than global memory, given
no bank conflicts. As shared memory is split into 16 32-bit wide banks, multiple
requests for data from the same bank arriving at the same time cause bank conflicts
and, as a result, are serialized. In effect, bank conflicts reduce the overall throughput
of shared memory, as some threads must wait for their requested data until the
shared memory has serviced the requests from previous threads. Shared memory
is exclusive to each thread block executing on a given SM. That is to say, a thread
block cannot access the shared memory data from another thread block, even if it is
executing on the same SM.



Scheduling Using Multiple Swarm Particle Optimization 155

Moving on to the other memory systems present within the GPU, we have
the global memory. Global memory is the largest memory space available on the
GPU and is read/write accessible to all threads. Unfortunately, a significant latency,
measured by Nvidia [11] at approximately 400–800 cycles, occurs for each access to
global memory. Global memory accesses are not cached at any level, and as a result,
every access to global memory incurs this hefty latency hit. The GPU contains,
however, some auxiliary memory systems that are cached at the SM level. Each SM
has access to caches for the constant and texture memory of the GPU. While these
two memories are still technically part of global memory (that is, data stored in these
memories are stored in the global memory space), their caches help to reduce the
latency penalty by exploiting data locality.

Based on what we have learned about the memory systems within the GPU,
we clearly want to place an emphasis on exploiting shared memory as much as
possible. With fast access speed and no significant dependencies on data locality
to mitigate high latencies, shared memory represents the most optimal location for
storage. Unfortunately, we run into many situations where the small size of shared
memory results in insufficient storage space for the data required at a given moment
in time.

While global memory clearly represents a major area of performance loss due to
latency, there is one important technique we can use to mitigate the damage: global
memory coalescing. In order to understand how coalescing works, we must first
revisit the idea of a warp. As we described earlier, a thread warp is composed of 32
threads, all of which are given the same instruction to execute. In the worst case, we
would expect there to be 32 individual requests to global memory if the instruction
in question requires data from global memory. With coalescing, however, we have
the ability to reduce the total number of requests down to only two requests in the
best case. The reason for this lies with how memory requests are handled at the
warp level: they are performed in a half -warp fashion. That is, 16 threads request
data from memory first, followed by the remaining 16 shortly thereafter. As a result,
the best scenario for coalescing combines all memory requests from each half warp.

In the GT200 architecture, coalescing occurs when at least two threads in one half
of a warp are accessing from the same segment in global memory. This technique is
very powerful and leads to tremendous improvements in the performance of global
memory. Unfortunately, data access patterns must be very structured in order to
ensure threads will access data from the same memory segment as one another,
something that is not guaranteed when working with irregular algorithms. The
easiest way to achieve this result is ensuring that each thread accesses data from
global memory that is one element over from the previous thread’s access location.
As we will show, we make use of coalescing as much as possible in our algorithms
in order to achieve greater memory performance.

We close this part off with a brief discussion on the isolation between thread
blocks enforced by CUDA. Recall that shared memory is exclusive to a thread
block—other threads in other blocks cannot access the shared memory allocated
by the block. Furthermore, there are no built-in mechanisms for communication
or synchronization between thread blocks. Of course, the availability of global



156 S. Solomon et al.

Fig. 3 Two styles of parallel add reduction on an array of elements

memory means that there will always exist a method for communication if desired.
The latency of global memory coupled with the overhead of potentially thousands
(if not more) of threads accessing a single data element (say, as a synchronization
flag) results in an entirely unacceptable solution with a tremendous degree of
performance degradation. All of these items combine to show one of the main tenets
of CUDA: thread blocks are isolated units of computation. Threads within a thread
block communicate with one another, but they cannot readily communicate with
other thread blocks.

2.4 Parallel Reduction

As we discuss the use of parallel reductions in our work, we provide a brief
description here. A parallel reduction involves reducing a set of values into a single
result, in parallel. More formally, given a set of values, v1; v2; : : : ; vn, we apply some
associative operator, ˚, to the elements, v1 ˚ v2 ˚ : : : ˚ vn, resulting in a single
value, w. We consider the structure of a parallel reduction to be that of a binary tree.
At the leaf nodes, we have the original set of values. We apply ˚ to each pair of leaf
nodes stemming from a parent node one layer up the tree (closer to the root node),
giving us the value for that parent node. We repeat this process until we reach the
root node, providing us with the final result, w.

When we want to parallelize this reduction technique, we first note that layer i

of the tree (where the root node is layer 0 and the leaves layer log n) requires the
accumulated partial solution values from layer i C 1. This requirement results in
synchronization; we can compute one layer of the tree in parallel, but we must wait
for all threads to complete their processing of nodes in that layer before moving
on to the next. Figure 3a provides an example of performing an addition reduction
(that is, ˚ D C) in parallel. Each subsequent array represents the next layer of
computations. In the first layer, we have the initial array. In parallel, we add up each
pair of elements (four parallel operations in total) and place the results back into the
array. In the next layer, we have two remaining parallel operations which we use



Scheduling Using Multiple Swarm Particle Optimization 157

to add up the partial sums from the previous layer. Finally, we add the remaining
two partial sums together and end up with the final result in element zero of the
array which contains the total sum of all initial values. On the GPU, we typically
perform a parallel reduction within a single thread block if possible. This allows us
to use thread block-level synchronization rather than the more costly thread grid-
level synchronization. As parallelism is plentiful on the GPU, we assign one thread
per node in the current layer of the tree. To further optimize this algorithm for the
GPU, we do not use the interleaving method shown in Fig. 3a but, rather, split the
layer into halves and work on one side (pulling data from the other). We show this
technique in Fig. 3b. By working on contiguous areas/halves we ensure coalescing
takes place as we read data from global memory, and bank conflicts do not occur as
we read data from shared memory.

3 The Task Matching Problem

The task matching problem represents a significant problem in heterogeneous,
distributed computing environments, such as grid or cloud computing. The problem
involves determining the optimal assignment, or matching, of tasks to machines
such that the total execution time is minimized. More specifically, if we are given
a set of heterogeneous computing resources and a set of tasks, we want to match
(assign) tasks to machines such that we optimize the time taken until all machines
have completed processing of their assigned tasks. We refer to this measure of time
that we look to optimize as the makespan, which is determined by the length of time
taken by the last machine to complete its assigned tasks.

We provide an example of one (suboptimal) solution to a task matching problem
instance in Fig. 4. In this case, we have three resources (machines) and six tasks.
Each task in the figure is vertically sized based on the amount of time required to
execute the task (we assume all three machines are equal in capabilities for this
example). In the solution provided, machine three defines the makespan, as it will
take the longest amount of time to complete. Of course, this solution is suboptimal,
as we could move task six to machine two in order to generate an improved solution.
In this improved solution, machine three still defines the makespan, but the actual
value will be smaller, as only task four needs processing, rather than four and six.

While a toy problem such as the one in Fig. 4 may not seem particularly
intensive, the task matching problem becomes very computationally intensive as
the problem size scales upwards. With many machines, and even more tasks, the
possible combinations of task to machine matchings become extraordinarily high.
Rather than a brute-force approach, we need more intelligent algorithms to solve
this problem within a reasonable amount of time.

While we will discuss the PSO-related solutions to this problem in Sect. 5.3,
we will conclude this section with a brief look at some of the simpler heuristic
algorithms developed for solving the task matching problem. The simplest of these
is the FCFS algorithm that simply matches each task to the currently most optimal



158 S. Solomon et al.

Fig. 4 Example of task
matching and makespan
determination

machine. The algorithm will choose an optimal machine based on the current
machine available time (MAT) of each machine. The MAT of a machine is the
amount of time required to complete all tasks currently matched to that machine.
The algorithm assigns the task to the machine with the lowest MAT.

Two more heuristics for solving the task matching problem are the min–max
and min–min [4] algorithms. The min–min algorithm first determines the minimum
completion time for each task that we want to consider across each machine.
Within these minimum completion time values, it searches for the minimum and
assigns that task to the corresponding machine. The min–max algorithm handles this
problem in a slightly opposite manner. The algorithm still computes the minimum
completion times, but rather than assigning the task with the minimum value to the
corresponding machine, it assigns the task with the maximum value.

The issue with these two algorithms is that they are suited for very particular
instances of the problem. Min–min, for example, works well with many small tasks,
as it will assign them to their optimal machines first, leaving the few longer tasks
for last. This algorithm may improve the makespan for problems with many small
tasks, but as the number of larger tasks increases, the results worsen. Min–max,
on the other hand, sees improved performance when the problem instance contains
many longer tasks. Neither of these problems provides optimal solutions across all
potential cases. PSO, on the other hand, searches for optimal solutions through the
solution space and may work effectively regardless of the task composition.

4 Particle Swarm Optimization

The PSO algorithm, first described by Kennedy and Eberhart [6], is a bio-inspired
or meta-heuristic algorithm that uses a swarm of particles which move throughout
the solution space, searching for an optimal solution. A point in the solution
space (defined by a real number for each dimension) represents a solution to the
optimization problem. As the particles move, they determine the optimality (fitness)
of these positions.



Scheduling Using Multiple Swarm Particle Optimization 159

The PSO algorithm uses a fitness function in order to determine the optimality of
a position in the solution space. Each particle stores the location of the best (most
optimal) position it has found thus far in the solution space (local best). Particles
collaborate with one another by maintaining a global, or swarm, best position
representing the best position in the solution space found by all particles thus far.

In order to have these particles move throughout the solution space they must
be provided with some velocity value. In this chapter, we follow the modified PSO
algorithm as established by Shi and Eberhart [15]. These authors update the velocity
of a particle, i , with the following equation:

ViC1 D w � Vi C c1 � rnd() � .XPbest � Xi / C c2 � rnd() � .XGbest � Xi/ (1)

where Xi is the particle’s current location, XPbest is the particle’s local best position,
XGbest is the global best position (for one swarm), and rnd() generates a uniformly
distributed random number between 0 and 1. w, the inertial weight factor along with
c1 and c2, provides some tuning of the impact Vi , XPbest, and XGbest will have on the
particle’s updated velocity. Once the velocity has been updated, the particle changes
its position, and we begin the next iteration.

Algorithm 1 provides the basic high-level form of PSO.

Algorithm 1 Basic PSO algorithm
Randomly disperse particles into solution space
for i D 0 ! numIterations do

for all particles in swarm do
Compute fitness of current location
Update XPbest if necessary
Update XGbest if necessary
Update velocity
Update position

end for
end for

We note that the PSO algorithm is an iterative, synchronous algorithm: each
iteration has the particles moving to a new location and testing the suitability
of this new position, and each phase (or line in Algorithm 1) carries implicit
synchronization.

As we wanted to investigate the suitability of the GPU for PSO, we needed
to think in terms of high degrees of parallelism. We consider a PSO variant that
collaborates amongst multiple swarms in order to increase the overall parallelism.
Furthermore, we hypothesized that such a variant of PSO may provide higher quality
solutions than we would otherwise generate with a single swarm.

The method we choose, described by Vanneschi et al. [19], collaborates amongst
swarms by swapping some of a swarm’s “worst” particles with its neighboring
swarm’s “best” particles. In this case, best and worst refer to the fitness of the
particle relative to all other particles in the same swarm. This swap occurs every



160 S. Solomon et al.

given number of iterations and forces communication among the swarms, ensuring
that particles are mixed around between swarms. Further, Vanneschi et al. [19] use
a repulsion factor for every second swarm. This repulsive factor repulses particles
away from another swarm’s global best position (XFGBest) by further augmenting the
velocity using the equation:

ViC1 D ViC1 C c3 � rnd() � f .XFGbest; XGbest; Xi/ (2)

where function f , as described by Vanneschi et al. [19], provides the actual
repulsion force. We believe that this algorithm represents a good fit for the GPU,
as it combines the potential for high degrees of parallelism with the iterative,
synchronous nature of the PSO algorithm.

5 Related Work

As this section deals with a few areas that can be considered independently, we split
the related work into a few subsections: multi-swarm PSO, PSO for the GPU, and
bio-inspired algorithms targeted at the task matching problem. We investigate the
existing work for each of these areas independently.

5.1 Multi-swarm PSO

The literature contains a number of works based around multi-swarm PSO. One
such work by Liang and Suganthan [7] acts as a modification to a dynamic multi-
swarm algorithm. The dynamic multi-swarm algorithm initializes a small number of
particles in each swarm and then randomly moves particles between swarms after
a given number of iterations. The authors augment this algorithm by including a
local refining step. This step occurs every given number of iterations and updates
the local best of a particle only if it is within some threshold value relative to the
other particles in the swarm.

A different work by van den Bergh and Engelbrecht [18] considers having each
swarm optimize only one of the problem’s dimensions, and the authors provide
a number of collaborative PSO variants. The authors showed that their algorithm
provides better solutions as the number of dimensions increases. Compared to
a genetic algorithm, van den Bergh and Engelbrecht experimentally show that
their collaborative PSO algorithms consistently perform better in terms of solution
quality. They further compare their algorithms against a standard PSO algorithm
and show that the collaborative PSO algorithms beat this standard algorithm four
times out of five. The authors mention, however, that if multiple dimensions are
correlated, they should be packed within a single swarm.



Scheduling Using Multiple Swarm Particle Optimization 161

As was previously mentioned, we follow the work described by Vanneschi
et al. [19] for our implementation on the GPU. Their “MPSO” algorithm solves an
optimization problem via multiple swarms that communicate by moving particles
amongst the swarms. Every given number of iterations swarms will move some of
their best particles to a neighboring swarm, replacing some of the worst particles
in that swarm. They describe a further addition to this algorithm, “MRPSO,”
that further uses a repulsive factor on each particle. Their results show that both
MPSO and MRPSO typically outperform the standard PSO algorithm, with MRPSO
providing improved performance over MPSO.

5.2 PSO on the GPU

To the best of our knowledge, there does not exist any collaborative, multi-swarm
PSO implementations on the GPU in the literature. Veronese and Krohling [2]
describe a simple implementation of PSO on the GPU. Their implementations use
a single swarm and split the major portions of PSO into separate kernels, with one
thread managing each particle. In order to generate random numbers Veronese and
Krohling [2] use a GPU implementation of the Mersenne Twister pseudorandom
number generator. When executed against benchmark problems the authors show up
to an approximately 23 times speedup compared to a sequential C implementation
when using a large number of particles (1,000).

Similar to the work of Veronese and Krohling, Zhou and Tan [23] also describe
a single-swarm PSO algorithm for the GPU. The authors, too, assign one thread
to manage one particle and split up the major phases of PSO into individual GPU
kernels. For random number generation, however, Zhou and Tan [23] differ from
Veronese and Krohling [2] in that they use the CPU to generate pseudorandom
numbers and transfer these to the GPU. The authors achieve up to an 11 times
speedup compared to a sequential CPU implementation. They take care to note,
however, that they used a midrange GPU for their tests, and they expect the results
to be improved further on more powerful GPU hardware.

Mussi et al. [9] investigate the use of PSO on the GPU for solving a real-
world problem: road-sign detection. When updating the position and velocity of the
particle, the authors map threads to individual elements/dimension values and not a
particle as a whole. Similarly, multiple threads within a block collaborate to compute
the fitness value of each particle during the fitness update phase. Mussi et al. show
that their GPU implementation achieves around a 20 times speedup compared to a
sequential CPU implementation.

Mussi et al. [10] provide another, more recent GPU implementation of PSO. As
with their earlier work in [9], the authors assign a single thread to a single dimension
for each particle. Mussi et al. [10] test their algorithm against benchmarking
problems with up to 120 dimensions and show that the parallel GPU algorithm
outperforms a sequential application. Finally, the authors mention in passing the
ability to run multiple swarms but do not elaborate or test such situations.



162 S. Solomon et al.

The general theme across the works we have covered has been parallelizing
single-swarm PSO (with, perhaps, a brief mention of multi-swarm PSO but no actual
descriptions of the work). In the most recent case, Mussi et al. [10] provided a
fine-grained implementation of PSO that attempts to take advantage of the massive
threading capabilities of the GPU. The authors, however, only run test sizes up to
120 dimensions and 32 particles. For our work, we wished to test across not only
a larger number of dimensions but a large number of particles as well. As a result,
we use a mixed strategy that does not lock a static responsibility to a thread and,
further, provides support for multiple swarms that collaborate with one another.

5.3 Evolutionary Computing for Task Matching

Applying evolutionary or bio-inspired algorithms to the task matching/mapping
problem has been studied in the past by various groups. For example, Wang
et al. [20] investigate the use of genetic algorithms for solving the task matching and
scheduling problem with heterogeneous resources. They show that their algorithm
is able to find optimal solutions for small problem sets and outperform simpler
(non-evolutionary) heuristics when faced with larger problem instances. Chiang
et al. [1] later discuss using ant colony optimization to solve the task matching and
scheduling problem and show that their algorithm provides higher quality solutions
than genetic algorithm from Wang et al. [20].

A number of previous works have investigated both continuous and discrete PSO
for solving the task matching problem. All of the works we discuss here share an
idea in common: they work in an n dimension solution space, where n is equal to the
number of tasks. One dimension maps to one task, and a location along a dimension
(typically, but not always) represents the machine that the task is matched to.

To start, Zhang et al. [22] apply the continuous PSO algorithm to the task
mapping problem. In their implementation, the authors use the Smallest Position
Value (SPV) technique (described by Tasgetiren et al. [17]) in order to generate a
position permutation from the location of the particles. Hence, the solution by Zhang
et al. does not directly map a location in a dimension to a matching but rather uses
the locations to generate some permutation of matchings. Zhang et al. benchmark
their algorithm against a genetic algorithm and show that PSO provides superior
performance.

A recent work by Sadasivam and Rajendran [14] also considers the continuous
PSO algorithm coupled with the SPV technique. The authors focus their efforts on
providing load balancing between grid resources (machines), thus adding another
layer of complexity into the problem. Unfortunately, the authors only compare their
PSO algorithm to a randomized algorithm and show that PSO provides superior
solution quality.

Moving away from continuous PSO, Kang et al. [5] experimented with the use of
discrete PSO for matching tasks to machines in a grid computing environment. They
compared the results of their discrete PSO implementation to continuous PSO, the



Scheduling Using Multiple Swarm Particle Optimization 163

min–min algorithm, as well as a genetic algorithm. The authors show that discrete
PSO outperforms all of the alternatives in all test cases. Shortly thereafter, Yan-
Ping et al. [21] described a similar discrete PSO solution with favorable results
compared to the max–min algorithm. Both sets of authors, however, test with very
small problem sizes—equal to or below 100 tasks.

Our work described here follows our previous work from Solomon et al. [16].

6 Collaborative Multi-swarm PSO on the GPU

To lead into the description of our GPU implementation, we will first describe the
mapping of the task matching problem to multi-swarm PSO without considering
the GPU architecture. From this groundwork we can then move on to discuss the
specifics of the GPU version itself.

To begin with, we define an instance of the task mapping problem as being
composed of two distinct components:

1. The set of tasks, T , to be mapped
2. The set of machines, M , which tasks can be mapped to

A task is defined simply by its length or number of instructions. A machine is
similarly defined by nothing more than its MIPS (millions of instructions per
second) rating. The problem size is therefore defined across two components:

1. The total number of tasks, jT j
2. The total number of machines, jM j
A solution for the task matching problem consists of a vector, V D .t0; t1; : : : ; tjT j�1/,
where the value of ti defines the machine that task i is assigned to. From V , we
compute the makespan of this solution. The makespan represents the maximum
MAT of the solution. Ideally, we want to find some V that minimizes the makespan
of the mapping.

We use an estimated time to complete (ETC) matrix to store lookup data on the
execution time of tasks for each machine. An entry in the ETC matrix at row i ,
column j , defines the amount of time machine i requires to execute task j , given
no load on the machine. While the ETC matrix is not a necessity, the reduction in
redundant computations during the execution of the PSO algorithm makes up for
the (relatively small) additional memory footprint. We will, however, have to take
into consideration the issues with memory latency when we investigate how to store
and access the ETC matrix from the GPU.

Similar to the work described in Sect. 5.3, each task in the problem instance
represents a dimension in the solution space. As a result, the solution space for a
given instance contains exactly jT j dimensions. As any task may be assigned to
any machine in a given solution, each dimension must have coordinates from 0 to
jM j � 1.



164 S. Solomon et al.

Fig. 5 Global best results for continuous and discrete PSO by iteration

At this point, we deviate from the standard PSO representation of the solution
space. Typically, a particle moving along dimension x moves along a continuous
domain: any possible point along that dimension represents a solution along that
dimension. Clearly, this is not the case for task mapping as a task cannot be mapped
to machine 3:673 but, rather, must be mapped to machine 3 or 4. Unlike Kang
et al. [5] or Yan-Ping et al. [21], we do not move to a modified discrete PSO
algorithm but maintain the use of the continuous domain in the solution space. We
compared simple, single-swarm implementations of continuous versus discrete PSO
and found that continuous provides improved results, as shown in Fig. 5. However,
unlike Zhang et al. [22] or Sadasivam and Rajendran [14], we do not introduce an
added layer of permutation to the position value by using the SPV technique. Rather,
we use the much simpler technique of rounding the continuous value to a discrete
integer.

6.1 Organization of Data on the GPU

We begin the description of our GPU implementation with a discussion on data orga-
nization. For our GPU PSO algorithm, we store all persistent data in global memory.
This includes the position, velocity, fitness, and current local best value/position for
each particle, as well as the global best value/position for each swarm. We also store
a set of pre-generated random numbers in global memory. We store each of these
sets of data in their own one-dimensional array in global memory.

For position, velocity, and particle/swarm best positions, we store the dimension
values for the particles of a given swarm in a special ordering. Rather than order
the data by particle, we order it by dimension. Figure 6 provides an example of
how this data is stored (swarm best positions are stored per swarm, rather than per



Scheduling Using Multiple Swarm Particle Optimization 165

Fig. 6 Global memory layout of position, velocity, and particle best positions (Pxy refers to
particle x’s value along dimension y)

Fig. 7 Global memory layout of fitness and particle best values

particle, however). In a given swarm, we store all of dimension 0’s values for each
particle, followed by all of dimension 1’s values, and so on. We will explain this
choice further in Sect. 6.2; however, it is suffice to say for now that this ensures
we maintain coalesced accesses to global memory for this data. Per-particle fitness
values as well as particle best and swarm best values are stored in a much simpler,
linear manner with only one value per particle (or swarm, in the case of the swarm
best values). Figure 7 shows this organization.

Outside of the standard PSO data, we know that we also need to store the ETC
matrix on the GPU as well. All threads require access to the ETC matrix during
the calculation of a particle’s fitness (makespan), and they perform the accesses in
a very non-deterministic fashion based on their current position at a given iteration.
To compute the makespan, each particle must first add to the execution time of tasks
assigned to each machine. This is, of course, handled by observing the particle’s
position along each dimension. As dimensions map to tasks, we are looping through
each of the tasks and determining which machine this particular solution is matching
them to. As there are likely to be many more tasks than machines in the problem
instance, there will likely be many duplicate reads to the ETC matrix by various
threads.

To help improve the performance of reads to the ETC matrix, we place the matrix
into texture memory. As discussed in Sect. 2.3, texture memory provides a hardware
cache at the SM level. As it is very likely that there will be multiple reads to the same
location in the ETC matrix by different threads, using a cached memory provides
latency benefits as threads may not have to go all the way to global memory to
retrieve the data they are requesting. In fact, if we did nothing but store the ETC
matrix in global memory, we may as well just perform the redundant computations
instead, as the latency associated with global memory may very well outweigh the
computational savings.



166 S. Solomon et al.

6.2 GPU Algorithm

We lead into our description of the GPU implementation by first discussing the
issue of random number generation. As we know from 1, PSO requires random
numbers for each iteration. In order to generate the large quantity of random
numbers required, we make use of the CURAND library included in the CUDA
Toolkit 3.2 [11] to generate high-quality, pseudorandom numbers on the GPU. We
generate a large amount of random numbers at a time (250 MB worth) and then
generate more numbers in chunks of 250 MB or less when these have been used up.

Our implementation of multi-swarm PSO on the GPU is split up into a series of
kernels that map to the various phases of the algorithm. These phases and kernels
are as follows:

6.2.1 Particle Initialization

This phase initializes all of the particles by randomly assigning them a position and
a velocity in the solution space. As each dimension of each particle can be initialized
independently of one another, we assign multiple threads to each particle: one per
dimension. All of the memory writes are performed in a coalesced fashion, as all
threads write to memory locations in an ordered fashion.

6.2.2 Update Position and Velocity

This phase updates the velocity of all particles using 1 and then moves the particles
based on this velocity. As was the case with particle initialization, each dimension
can be handled independently. As a result, we again assign a single thread to handle
each dimension of every particle. In the kernel, each thread updates the velocity
of the particle’s dimension it is responsible for and then immediately updates the
position as well. When updating the velocity using 1 and 2, one may note that all
threads covering particles in the same swarm will each access the same element
from the swarm best position in global memory. While this may seemingly result in
uncoalesced reads, global memory provides broadcast functionality in this situation,
allowing this read value to be broadcast to all threads in the half warp using only a
single transaction.

6.2.3 Update Fitness

Determining the fitness of a particle involves computing the makespan of its given
solution. In order to accomplish that, we must first determine the MAT of each
machine for the given solution. When computing the MAT we must read from the
ETC matrix at a location based on the task-machine matching. We do not know



Scheduling Using Multiple Swarm Particle Optimization 167

ahead of time which tasks will be assigned to which machines. As a result, we cannot
guarantee any structure in the memory requests, and we cannot ensure coalescing.

One option for parallelization involves having a thread compute the makespan
for a single machine and then perform a parallel reduction to find the makespan
for each particle. The issue with this approach, however, is that a particle’s position
vector is ordered by task, not by machine. We do not and cannot know which tasks
are assigned to which machine ahead of time. If we parallelized this phase at the
MAT computation level, then all threads would have to iterate through all of the
dimensions of a particle’s position anyways, in order to find the tasks matched to
the machine the thread is responsible for. As a result, we choose to take the coarser-
grained approach and have each particle compute the makespan for a given particle.

We implement two different kernels in order to accomplish this coarser-grained
approach. With the first approach, we use shared memory as a scratch space for
computing the MAT for each machine. Each thread requires jM j floating-point
elements of shared memory. Due to the small size of shared memory, however,
larger values of jM j (the exact value is dependent on the number of particles in
a swarm) require an amount of shared memory exceeding the capabilities of the
GPU. To solve this, we develop a second, less optimal kernel, where we use global
memory for scratch space. Given only one thread block executing per SM, the first
kernel can support 128 threads (particles) with a machine count of 30, whereas the
second kernel supports any value beyond that.

The second, global memory kernel shows our reasoning for choosing the ordering
of position elements in global memory (Fig. 6). When computing the makespan,
each thread reads the position for its particle in the current dimension being
considered in order to discover the task-machine matching. All the threads within
a thread block work in lockstep with one another and, thus, work on the same
dimension at the same time. The threads within a thread block, therefore, read from
a contiguous area in global memory and exploit coalescing. This coalescing results
in an approximate 200 % performance improvement over an uncoalesced version
based on our brief performance tests.

6.2.4 Update Best Values

This phase updates both the particle best and global best values. We use a single
kernel on the GPU and assign a single thread to each particle, as we did with
the fitness updating. As was the case with previous phases, we assign all threads
covering particles in the same swarm to the same thread block. The first step of
this kernel involves each thread determining if it must replace its particle’s local
best position, by comparing its current fitness value with its local best value. If the
current fitness value is greater, then the thread replaces its local best value/position
with its current fitness value and position.

In the second step, the threads in a block collaborate to find the minimal local
best value out of all particles in the swarm using a parallel reduction. If the minimal
value is better than the global best, the threads replace the global best position.



168 S. Solomon et al.

Threads work together and update as close to an equal number of dimensions as
possible. This allows us to have multiple threads updating the global best position,
rather than relying on only a single thread to accomplish this task. Similar to the
initialization phase, this kernel is very straightforward, and, as a result, we do not
provide the pseudocode.

6.2.5 Swap Particles

Finally, the swap particles phase replaces the n worst particles in a swarm with the n

best particles of its neighboring swarm. Following the work of Vanneschi et al. [19],
we set the swarms up as a simple ring topology in order to determine the direction
of swaps. We use two kernels for this phase. The first kernel determines the n best
and worst particles in each swarm. For this kernel, we again launch one thread per
particle, with thread blocks composed only of threads covering particles in the same
swarm. In order to determine the n best and worst particles, we iterate n parallel
reductions, one after the other. Each parallel reduction determines the nth best/worst
particle in the swarm covered by that thread block. We improve the performance of
this lengthy kernel by reading from global memory only once: at the beginning of
a kernel each thread reads in the fitness value of its particle into a shared memory
buffer. This buffer is then copied into two secondary buffers which are used in the
parallel reduction (one for managing best values, one for worst).

Once a reduction has been completed, we record the index of the located particles
into another shared memory buffer. We then restart the reduction for finding the
n C 1th particle by invalidating the best/worst particle from the original shared
memory buffer and recopying this slightly modified data into the two reduction
shared memory buffers. This process continues until all best/worst particles have
been found. At this point, n threads per block write out the best/worst particle
indices to global memory in a coalesced fashion.

The second kernel handles the actual movement of particles between swarms.
This step involves replacing the position, velocity, and local best values/position of
any particle identified for swapping by the first kernel. For this kernel we launch one
thread per dimension per particle to be swapped.

6.2.6 CPU Control Loop

In our implementation, the CPU only manages the main loop of PSO, the invocation
of the various GPU kernels, and determines when new random numbers need to be
generated on the GPU.



Scheduling Using Multiple Swarm Particle Optimization 169

Fig. 8 Comparison between sequential CPU and GPU algorithm as swarm count increases

7 Results

To test the performance of our GPU implementation we compare it against a
sequential multi-swarm PSO algorithm. This sequential algorithm has not been
optimized for a specific CPU architecture, but it has been tuned for sequential
execution. We execute the GPU algorithm on an Nvidia GTX 260 GPU with 27
SMs and the sequential CPU algorithm on an Intel Core 2 Duo running at 3.0 Ghz.
Both algorithms have been compiled with the -O3 optimization flag, and the GPU
implementation also uses the -use fast math flag. Finally, we compare the solution
quality against a single-swarm PSO implementation and a FCFS algorithm that
sequentially assigns tasks to the machine with the lowest MAT value at the time
(in this case, the MAT value includes the time to complete the task in question).

7.1 Algorithm Performance

In order to examine the performance of the algorithm, we first tested how the
algorithm scales with swarm count. For these tests, we use 128 particles per swarm,
1,000 iterations, and swap 25 particles every 10 iterations. For the swarm count
tests we set the numbers of tasks to 80 and machines to 8. As a result of this low
machine count, the shared memory version of the fitness kernel is used throughout.
Figure 8 shows the results for swarm counts from 1 to 60. As expected, the GPU
implementation outperforms the sequential CPU implementation by a very high
degree. With the swarm count set at 60, the GPU algorithm achieves an approximate
32 times speedup over the sequential algorithm.



170 S. Solomon et al.

Fig. 9 Total execution time for the various GPU kernels as the swarm count increases

We further measured the total time taken for each of the GPU kernels as the
swarm count increases. The results are shown in Fig. 9. The update position and
velocity kernel contributes the most to the increase in the GPU’s execution time
as the swarm count increases. We explain this result by revisiting the overall
responsibilities of this kernel. That is, the update position and velocity kernel
requires a large number of global memory reads and writes (to read in the many-
dimensioned position, velocity, and current bests position data), and updating the
velocity is relatively computationally intensive. When combined with the fact that
we are launching a thread per dimension per particle, the GPU’s resources quickly
become saturated.

We explain the “jump” in the fitness kernel’s execution time at the last three
data points as due to thread blocks waiting for execution. The GTX 260 GPU
has 27 SMs available. With, for example, 56 swarms, we have 56 thread blocks
assigned to the fitness kernel. With the configuration tested, each SM can support
only two thread blocks simultaneously. Hence, the GPU executes 54 thread blocks
simultaneously, leaving 2 thread blocks waiting for execution. This serialization
causes the performance loss observed.

To prove that the performance loss is due to insufficient SMs, we take our
experiments a step further and observe the performance of the algorithm on a
GTX 570. While the GTX 570 technically contains less SMs than the GTX 260,
each SM contains more CCs and allows for more threads and/or thread blocks
to execute on each simultaneously. As a result, we expect the jump in execution
time at swarm counts above 56 to be absent in the GTX 570 tests. As we show in
Fig. 10, our expectation matched our experimentation. We see that the GTX 570



Scheduling Using Multiple Swarm Particle Optimization 171

Fig. 10 Comparison between GTX 260 and 570 GPUs as swarm count increases

Fig. 11 Total execution time for the various GPU kernels as the swarm count increases for a GTX
570 GPU

performance line does not contain the same jump in the last three data points (at
swarm count sizes of 56, 58, and 60). The superior overall performance of the GTX
570 is expected and is simply due to the nature of testing on newer, more powerful
hardware with more available hardware parallelism compared to the GTX 260.

We measure the kernel execution times for the GTX 570 as well and have
provided the results in Fig. 11. We observe three differences between these new



172 S. Solomon et al.

Fig. 12 Comparison between sequential CPU and GPU algorithm as machine count increases

results and those from the GTX 260 in Fig. 9: the first being the overall reduced exe-
cution time of each measured kernel. We expect this, of course, for reasons already
discussed: the GTX 570 contains more CCs and a higher level of computational
performance than the GTX 260. Secondly, we see that the execution time for the
fitness update phase does not increase dramatically at swarm counts greater than or
equal to 56. This falls in line with the results we observed and discussed in Fig. 10.

Finally, we observe that the update bests kernel appears to have a much more
variable execution time than what we saw for the GTX 260 results in Fig. 9. The
results between the two are, in fact, very similar. Both the GTX 260 and GTX 570
see these perturbations and a slow increase in the execution time of the update bests
kernel as the swarm count increases, but this pattern is not as easily visible in Fig. 9
due to the difference in the scale of the Y-axis. While these GTX 570 results do not
hold any surprises, we want to note that our original implementation was run on
the GTX 570 without changes (that is: without Fermi-specific optimizations or code
changes). Were we to rebuild the algorithm from the ground up for the improved
capabilities of the Fermi-based architectures, we may be able to squeeze further
performance gains.

Moving back to our GTX 260 results, we also wanted to test our use of texture
memory for storing the ETC matrix. In order to accomplish this, we profiled a few
runs of the algorithm using the CUDA Visual Profiler tool. The results from this tool
showed that we were correct in our hypothesis that texture memory would help the
fitness kernel’s performance as the profiler reported anywhere from 88 % to 97 % of
ETC matrix requests were cache hits, significantly reducing the overall number of
global memory reads required to compute the makespan.



Scheduling Using Multiple Swarm Particle Optimization 173

Fig. 13 Total execution time for the various GPU kernels as the machine count increases

Moving on, we examine the performance and scaling of the algorithm when
we increase machine counts as well as increase the task counts. For the machine
count scaling we keep the task count and the number of swarms static at 80 and 10,
respectively. As the machine count increases, we observe the effect that switching
to the global memory fitness kernel has on the execution time. Figure 12 shows the
results with machine counts from 2 to 100. Unlike the swarm count tests, we see that
the execution time does not change dramatically as the machine count increases.
However, the GPU execution time still increases by 14 % when the machine count
increases from 30 to 32. This occurs due to the shift from shared memory to global
memory use for the fitness kernel, which, in turn, results in a 50 % increase in the
total execution time for this kernel.

Figure 13 provides the execution time results of the top kernels as the machine
count increases. We immediately observe that all but the fitness update kernel
exhibit roughly static execution times. We expect these results, as increasing the
machine count does not result in any computational or memory access increases
for these kernels. We do, however, see a substantial increase in the execution time
of the fitness kernel after 30 machines. As we know, this is the point where the
algorithm shifts from using the shared memory fitness kernel to the global memory
kernel. These results help us to observe the significant improvements in performance
achieved by using shared memory over global memory.

Moving on to the task count scaling tests, we keep the machine count and number
of swarms static at 8 and 10, respectively. We provide the results for task count
scaling in Fig. 14. The results are very similar to those of the swarm count tests
in that the GPU algorithm significantly outperforms the sequential CPU algorithm,
and the execution time increases as the task count increases. Overall, however, the



174 S. Solomon et al.

Fig. 14 Comparison between sequential CPU and GPU algorithm as task count increases

GPU cannot provide the same level of speedup while the swarm count remains low,
despite increasing task counts. We expect this, as increasing the number of swarms
increases the exploitable parallelism at a faster rate than the task count. We do not
provide a graph of the various kernel execution times as they are very similar to
those in Fig. 9, in that the update position and velocity kernel dominates the run
time again as the algorithm uses the shared memory fitness kernel.

Finally, we ran two tests using a large number of tasks and swarms, with one
using the shared memory kernel (10 machines) and the other using the global
memory kernel (100 machines) in order to gauge the overall performance of the
algorithm as well as come up with the overall percentage of execution time each
kernel uses. Figure 15 shows the results (the percentages for the initialization and
swapping kernels are not included in the figure as, combined, they contribute less
than 1 % to the overall execution time). Clearly, the shared memory instance is
dominated by the update position and velocity kernel, whereas the global memory
instance sees the fitness kernel moving to become the top contributor to the overall
execution time. As expected, the shared memory instance sees an improved speedup
(compared to the sequential CPU algorithm) of 37 compared to the global memory
instance’s speedup of 23.5.

7.2 Solution Quality

For the solution quality tests we compare the results of the GPU multi-swarm
PSO (MSPSO) algorithm with PSO and FCFS (which attempts to assign tasks to



Scheduling Using Multiple Swarm Particle Optimization 175

Fig. 15 Percentage of execution time taken by most significant kernels

Table 1 Solution quality of MSPSO and PSO normalized to FCFS
solution (< 1 is desired)

Num tasks Num machines MSPSO PSO

60 10 0.906 0.925
60 15 0.935 0.921
70 10 0.939 0.923
70 15 0.941 0.933
80 10 0.964 0.934
200 40 1.322 1.312
1,000 100 3.106 3.109

machines based on the current MAT values for each machine before and after the
task is added). We use 10 swarms with 128 particles per swarm. c1 is set to 2:0,
c2 to 1:4, and w to 1:0. We also introduce a wDecay parameter which reduces w
each iteration to a minimum value (set to 0:4) and runs 1; 000 iterations of PSO for
each problem. Finally, we randomly generate 10 task and machine configurations
for each problem size considered and run PSO against each of these data sets. Each
data set is run 100 times, and the averaged results are taken over each of the 100
runs.

Table 1 provides the averaged results of our experiments, normalized to the FCFS
solution. We first tested small data sets of sizes similar to those from Sadasivam
and Rajendran [14] as well as Yan-Ping et al. [21]. We can see from these that,
unfortunately, MSPSO does not outperform the single-swarm PSO to any significant
degree and performs worse on many occasions. Furthermore, as the problem size
increases, both variants of PSO fail to generate improved solutions when compared
to FCFS. In short, we do not see a reasonable level of quality improvement from
MSPSO with small problem sizes, and both variants of PSO utterly fail to provide
acceptable solution quality as the problem size increases.

Our explanation for this failure to provide a reasonable level of quality in the
solution rests with the nature of the solution space. Our hypothesis is that the
unstructured, random nature of the solution space presents an environment inimical
to the intelligence of the particles. These particles attempt to use their memory and
intelligence to track down optimal values in the solution space and are influenced



176 S. Solomon et al.

by previously known optimal locations. That is, they follow some structure in the
solution space and hope their exploration leads to an ideal solution. Unfortunately,
with task matching, we have no real structure to the solution space. With even
one task changing assignment from one machine to another, the makespan may
dramatically change. As a result, the intelligence of the particles cannot help us here.
The end result, we believe, is that the PSO algorithm devolves into a randomized
algorithm (or worse, since the intelligence of the particles reduces the overall area
of the solution space explored). The added cooperation between swarms in MSPSO
further provides no benefits and perhaps even serves to cluster particles between
swarms in all the same areas. In essence, the exploration aspects of PSO help
us to no greater degree than a randomized algorithm, and, thus, the exploitation
aspects are rendered useless, as exploitation of areas around local optima provides
no help given the unstructured nature of the solution space. As we will discuss in
the next and final section, this is an area with definite possibilities for future work
and investigation.

8 Conclusions and Future Work

At the start of this chapter, we proposed that collaborative, multi-swarm PSO
represented an ideal variant of PSO for parallel execution on the GPU. We described
how the synchronous nature of PSO combined with the significant degree of
parallelism offered by multi-swarm PSO provided a good complement to the
capabilities of the GPU. By implementing the various phases as individual (or, in
the case of swapping, multiple) kernels, we have achieved two goals: 1. We have
captured the original synchronous nature of the phases within the PSO algorithm
via the natural synchronization between GPU kernels. 2. We have allowed for the
fine-tuning of parallelism for each phase of PSO. As our performance analysis and
results showed, multi-swarm PSO performs exceptionally well on the GPU.

While the quality of solution for multi-swarm PSO left much to be desired for
larger problem sizes, the majority of the contributions made in this chapter are
easily transferrable to PSO algorithms focusing on solving other problems. In these
cases, only the fitness kernel itself requires a significant level of modification—
the knowledge gained through the design, implementation, and analysis of all the
remaining kernels retain a high level of generality.

For future work we can immediately identify the potential for further analysis to
see if this multi-swarm PSO algorithm can be tuned in order to improve the solution
quality further. With large problem sizes we saw the solution quality suffer when
compared against a deterministic algorithm, and the results were, overall, quite
close to a single-swarm PSO algorithm. We believe that a future investigation into
whether or not MSPSO can be tuned further to more readily support these types of
problems is worthwhile. Furthermore, we believe it may be interesting to see if the
onboard cache in Fermi-based GPUs can provide a performance boost for the global
memory-based fitness kernel. While we provided some brief experimentation with



Scheduling Using Multiple Swarm Particle Optimization 177

Fermi-based GPUs in this work, we did not specifically tune the GPU algorithm
for the changes introduced with the Fermi architecture. We leave these performance
tests and modifications as future work.

References

1. Change, C.W., Lee, Y.C., Lee, C.N., Chou, T.Y.: Ant colony optimisation for task matching
and scheduling. IEEE Proc. Comput. Digit. Tech. 153(6), 373–380 (1997)

2. de Veronese, P.L., Krohling, R.A.: Swarm’s flight: accelerating the particles using C-CUDA.
In: IEEE Congress on Evolutionary Computation, Trondheim, pp. 3264–3270 (2009)

3. Flynn, M.: Some computer organizations and their effectiveness. IEEE Trans. Comput.
C-21(9), 948–960 (1972)

4. Freund, R.F., Gherrity, M., Ambrosius, S., Campbell, M., Halderman, M., Hensgen, D., Keith,
E., Kidd, T., Kussow, M., Lima, J.D., Mirabile, F., Moore, L., Rust, B., Siegel, H.J.: Scheduling
resources in multi-user, heterogeneous, computing environments with SmartNet. In: The
Seventh IEEE Heterogeneous Computing Workshop, Orlando, pp. 184–199 (1998)

5. Kang, Q., He, H., Wang, H., Jiang, C.: A novel discrete particle swarm optimization algorithm
for job scheduling in grids. In: Fourth International Conference on Natural Computation,
pp. 401–405. IEEE, Jinan (2008)

6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on
Neural Networks, vol. 4, pp. 1942–1948. IEEE, Perth (1995)

7. Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer with local search.
In: IEEE Congress on Evolutionary Computation, Edinburgh, pp. 522–528 (2005)

8. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic matching and
scheduling of a class of independent tasks onto heterogeneous computing systems. In: The
Eighth IEEE Heterogeneous Computing Workshop, San Juan, pp. 30–44 (1999)

9. Mussi, L., Cagnoni, S., Daolio, F.: GPU-based road sign detection using particle swarm opti-
mization. In: Ninth International Conference on Intelligent Systems Design and Applications,
pp. 152–157. IEEE, Pisa (2009)

10. Mussi, L., Daolio, F., Cagnoni, S.: Evaluation of parallel particle swarm optimization algo-
rithms within the CUDA architecture. Inform. Sci. 181(20), 4642–4657 (2011)

11. NVIDIA: CUDA Programming Guide Version 3.1. NVIDIA, Santa Clara (2010)
12. NVIDIA: CUDA C Best Practices Guide. NVIDIA, Santa Clara (2011)
13. Nvidia: Nvidia CUDA developer zone. http://developer.nvidia.com/category/zone/cuda-zone

(2011)
14. Sadasivam, G.S., Rajendran, V.: An efficient approach to task scheduling in computational

grids. Int. J. Comput. Sci. Appl. 6(1), 53–69 (2009)
15. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE World Congress on

Computational Intelligence, pp. 69–73. IEEE, Anchorage (1998)
16. Solomon, S., Thulasiraman, P., Thulasiram, R.K.: Collaborative multi-swarm PSO for task

matching using graphics processing units. In: 13th Annual Conference on Genetic and
Evolutionary Computation (GECCO), Dublin, pp. 1563–1570 (2011)

17. Tasgetiren, M.F., Liang, Y.C., Sevkli, M., Gencyilmaz, G.: Particle swarm optimization and
differential evolution for the single machine total weighted tardiness problem. Int. J. Prod.
Res. 44(22), 4737–4754 (2006)

18. van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization.
IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

19. Vanneschi, L., Codecasa, D., Mauri, G.: An empirical comparison of parallel and distributed
particle swarm optimization methods. In: The Genetic and Evolutionary Computation
Conference, Portland, pp. 15–22 (2010)

http://developer.nvidia.com/category/zone/cuda-zone


178 S. Solomon et al.

20. Wang, L., Siegel, H.J., Roychowdhury, V.P., Maciejewski, A.A.: Task matching and scheduling
in heterogeneous computing environments using a genetic-algorithm-based approach. J. Par-
allel Distr. Comput. 47(1), 8–22 (1997)

21. Yan-Ping, B., Wei, Z., Jin-Shou, Y.: An improved PSO algorithm and its application to grid
scheduling problem. In: International Symposium on Computer Science and Computational
Technology, pp. 352–355. IEEE, Shanghai (2008)

22. Zhang, L., Chen, Y., Sun, R., Jing, S., Yang, B.: A task scheduling algorithm based on PSO for
grid computing. Int. J. Comput. Intell. Res. 4(1), 37–43 (2008)

23. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: IEEE Congress on
Evolutionary Computation, Trondheim, pp. 1493–1500 (2009)


	Scheduling Using Multiple Swarm Particle Optimization with Memetic Features on Graphics Processing Units
	1 Introduction
	2 Parallel Computing and the GPU
	2.1 Parallel Systems
	2.2 CUDA Framework
	2.3 GPU Architecture
	2.4 Parallel Reduction

	3 The Task Matching Problem
	4 Particle Swarm Optimization
	5 Related Work
	5.1 Multi-swarm PSO
	5.2 PSO on the GPU
	5.3 Evolutionary Computing for Task Matching

	6 Collaborative Multi-swarm PSO on the GPU
	6.1 Organization of Data on the GPU
	6.2 GPU Algorithm
	6.2.1 Particle Initialization
	6.2.2 Update Position and Velocity
	6.2.3 Update Fitness
	6.2.4 Update Best Values
	6.2.5 Swap Particles
	6.2.6 CPU Control Loop


	7 Results
	7.1 Algorithm Performance
	7.2 Solution Quality

	8 Conclusions and Future Work
	References


